VB &VBA

N A NUTSHELL

The Language







VB &VBA

N A NUTSHELL

The Language

Paul Lomax

O’REILLY"

Beijing « Cambridge » Farnbam * Koln * Paris * Sebastopol * Taipei * Tokyo



VB & VBA in a Nutshell: The Language

by Paul Lomax

Copyright © 1998 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.
Editor: Ron Petrusha
Production Editor: Mary Anne Weeks Mayo

Printing History:

October 1998: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly & Associates, Inc. The association of the image of
a Newfoundland dog and the topic of VB & VBA is a trademark of O'Reilly &
Associates, Inc.

IntelliSense, Microsoft, MS-DOS, PowerPoint, Visual Basic, Visual C++, Win32,
Windows, and Windows NT are registered trademarks, and ActiveX, Outlook, and
Visual Studio are trademarks of Microsoft Corporation. Visio is a registered
trademark of Visio Corporation. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

&S
This book is printed on acid-free paper with 85% recycled content, 15% post-

consumer waste. O’Reilly & Associates is committed to using paper with the highest
recycled content available consistent with high quality.

ISBN: 1-50592-358-8 [4/99]



Table of Contents

Preface ... vii

Part I: The Basics

Chapter 1—Introduction ...................c.ccoeiiiioniiiiiiiieen, 3
What Is VBA? .ottt 3
A Brief History of VBA ...ooiiiiiiiiiiee e 6
What Can You Do with VBA? .. ..cccccoiiiiiiiiiiiiiiiiecccce 7
Object Models: The Power of Programming with VBA ....................... 8
Chapter 2—Program SIruCture ..., 11
Getting a VB Program to Run ..o 12
The Structure of 2 VB Program  ...........ccccoooiiiiiiiiiiiiiiieiie e 19
Ending Your VB Program ..........cccccoeeeiiiiiiiiiiiiie e 23
Chapter 3—VBA Variables and Data Types ......................... 26
Visual BasiC Data TYPES .o.vecviviiiiiiiiiiaieiie ettt 26
TYPE CONVEISION ittt ittt 31
The Varfant ....oocoooiiiiiiiii s 33
Declaring Variables and CONSANLS .......cocoocviriiriiiiniiieniiieieneeeas 37
Array Variables ... 39
User-Defined TYPES ..oooviiiiiiiiieiii ettt 45
Variable Scope and LIfetime ........cccccooiiiiiiiiiiiiiiiiiiicc 46
Object Variables and Binding .........c.cccooveiiiiiiiiiiiiiiiiicicccee 47
Passing PArameltersS ........cooveiiiuiiiiiiiiiiiieiitee et 50
INEriNSiC CONSTANES ...oouviiiiiiiiiiiiiiii e 53
v

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Chapter 4—Class Modules ..., 54

PLOPEITICS .ottt 55
Enumerated CONSLANLS .........coiiiiiiiiiiiieiiiiii et 62
Class MOAULE EVENLS .....c.ooiiiiiiiiiiiiiaiiet et 63
Implementing Custom Class Methods .........c.ccocvviiiiiiiiiniiniie. 68
Creating ActiveX COMPONENTS .......cccooiviiiiiiiiiiiiiiiiiiiiie e 70
Using ActiveX Components in a Project ..., 75
Chapter 5—AUtOMATION .................ccccccooiiiiiiiiiiiiiiiiiic, 77
Creating Object Model References .........cccccoovviiiiiiniiniiiicienee, 77
Reading the Object Model ........ccoooiiiiiiiiiiii e 79
Working with the Object Model ..........ccooviiiiiiiiiii 81
Collection ODJECES .....c.uiiiiiiiiiiiiiciiece e 83
Trapping an Automation Server’'s Events ..., 84
Automation EXamples .......cccooiiiiiiiiiiiiii 85
Automation Performance TiPS ....ccoovvieiiiiiiiiiiiieic e 89
Chapter 6—Error Handling ..., 91
Building a Robust Application ...........cooceiiiiiiaiiiiieic e 92
Error Handling in Procedures ...........ccccoooiiiiiiiiiiiiiiieiicecee 95
Error Handling in ACtVEX SEIVETS .....cccoiiviiriiiiiiiiiiiiiiiieeiieieeaie 101
RepOrting EITOIS .....ccciiiiiiiiiiiiiiiiiit e 104

Part II: Reference

Chapter 7—The Language Reference ....................cccco....... 111

Part III: Appendixes

Appendix A—Language Elements by Category ................ 583
Appendix B—Language COnstants ......................... 598
Appendix C—OPerators ..., 606
Appendix D—What's New in VBO? .............c.ccccccooovvvervnnn.. 613
TNACX ... 617
vi

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Preface

Before we go any further, let’s just clarify one fundamental point. Visual Basic for
Applications (VBA) is the language used to program in Visual Basic (VB). VB itself
is a development environment; the language element of that environment is VBA.
Similarly, VBA is the language used to program all the applications in the Microsoft
Office suite except Outlook, as well as a whole host of third-party applications.
The VBA language (with a very few minor exceptions) is the same whether you're
programming within VB or creating an application in a hosted VBA environment
such as Word or Excel. Unless specifically noted, the language elements described
in this book can be used exactly the same in both the retail version of VB and the
hosted VBA environment; consequently throughout the book I often interchange
the terms VB and VBA.

While it’s important to emphasize that this book is a reference to a language
component that's shared by VB and by applications that host VBA, it’s also impor-
tant to emphasize that it is zot any of the following:

e A reference guide to VB controls and to their properties, events, and meth-
ods. These belong to the Visual Basic environment and aren’t part of VBA at
all. They are, however, documented in the forthcoming Visual Basic Controls
in a Nutshell, written by Evan S. Dictor and published by O'Reilly & Associ-
ates.

e A reference guide to UserForms and their controls, all of which are defined by
one or another version of the Microsoft Forms Library. Very much like VB
controls, these belong to the hosted VBA IDE and aren’t part of the language
proper.

e A reference guide to the individual object models of the Office suite. By
accessing its host application’s object model VBA can automate the applica-
tion. Nevertheless, both conceptually and practically, VBA code and object
model code are distinct components. Some of the object models, however,
are documented in the Programming the... Object Model series, published by

vii

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



O'Reilly & Associates. These include Programming the Access/DAO Object
Models, by Helen Feddema, and Programming the Word Object Model, by
Julianne Sharer and Arthur Einhorn.

Why Another VB Book?

VBA is the single most important language for any developer to learn and master.
The large numbers of people beginning VB and VBA programming, as well as the
enormous number of current VB programmers who wish to deepen their knowl-
edge and programming skills, is attested to by the wealth of published material
about VB. Yet, there still is a desperate need for a detailed, professional reference
of the VBA language.

There are literally hundreds of books lining the shelves about how to program
using Visual Basic or how to use VBA to automate Office applications—seemingly
each one promising to teach you more quickly than the rest. But if you're new to
VB, you won't learn it overnight, or even in a few short weeks; VBA is a large and
detailed language, with hundreds of different functions, statements, and language
elements. Furthermore, because the Basic language has been developed over
many years (portions even having their origin in Basic and QBasic), and each new
version has to accommodate code written using the previous version, you will find
that most tasks can be achieved in a number of different ways. There may be the
really old function, the not-so-old function, and the brand-new function, all of
which achieve a similar result—but which is the old one and which is the new
one? Which one should you use? Is the new one really that much better than the
old one? This depth of information is where the experience of using a language
for many years, through all versions of VB and VBA, comes into play, and it is this
experience that I hope to impart through this book.

What's Wrong with the Online Help?

In a word, nothing. The online help accompanying VB and VBA is an indispens-
able resource and one that most developers depend on. What this book does is
take up where the help section leaves off, to give you the full picture. Contained
within these pages are the experiences of professional VB developers who have
used the VBA language in both VB and as a hosted language in Office applica-
tions all day, every day, over many years, to create complex mission-critical
applications. It’s these experiences that you can benefit from. Whether you have
come to VB recently or have been using VB for years, there are always new tricks
to learn. And it’s always important to find out about the gotchas that'll getcha!

For the most part, the documentation with VB and VBA isn’t bad; it just doesn’t
have the depth of information you need when you need it. Most of us can get by
day to day without even opening the help section. But when you need to open
the help section, it’s probably because you’ve either hit an unexpected problem or
need to know what the consequences of coding a particular procedure in a partic-
ular way will be. However, the help sections tend only to show you how a
function should be included in your code. This is understandable; after all, the
help sections for any language by their very nature must be created before that
language goes into general use, but it is only general, everyday use in real-life situ-

viti  Preface

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



ations that highlights how the language can best be used and what its problems
and pitfalls are. Therefore, online help confines itself to the main facts: what the
syntax is and, in a general way, how you should implement the particular func-
tion or statement.

A quick note here about the help section in VB6: Microsoft has decided to move
the help section into MSDN and to convert it from WinHelp to HTML Help. During
the prerelease stages, the new UI has come in for a lot of criticism for being slow,
memory hungry, and unintuitive (to say the least!). I hope therefore that you’ll
read up on the new VB0 language features and then keep this book close to hand.

Who Should Read This Book?

This book is aimed at professional software developers. The VBA language is the
most widely used rapid application development, or RAD, language in the world,
and in addition to the millions of developers now using VBA, many more devel-
opers are coming into the VB arena from other languages, such as C++, not so
much to replace those skills, but to augment their personal toolkit and to enhance
their career opportunities.

This book is a reference work and not a tutorial, so, for example, I won't explain
the concept of a For. . .Next loop; as a professional developer, you already know
this, so you don’t want someone like me insulting your intelligence. But I will
detail how a For. . .Next loop works in VB, how it works in practice, what the
alternatives to it are, how it can be used to the best advantage, and what pitfalls it
has and how to get round them.

I also hope this book will be the main reference for experienced VB developers
who are upgrading to VBO6. I have spent several months working with VB6 in
order to become familiar with and fully document the important new language
elements and object models within it. Here again, though, if you're a VB devel-
oper upgrading to VB6, you don’t want to be led by the hand like a newbie
through the additional functions and object models; you know that your famil-
iarity with the VBA language means that you can pick up the new features of VB6
quickly. You just need to know how this stuff works in the real world, and you’ll
be off and running.

An Emphasis on Professional VB Development

Because the VBA language is increasingly important for creating mission-critical
applications, I have concentrated where appropriate on using language elements
in a multiuser environment, detailing points of particular note for when you are
programming components destined for an n-tier application model and for use
within environments such as DCOM and Microsoft Transaction Server. In the same
vein, I have also noted any differences found using language elements in NT and
Windows 95.

Another pet peeve of mine is the readability and maintainability of VB code. Most
corporate VB applications are now created by development teams rather than an
individual programmer. It's therefore important to ensure that any member of the
team can get up to speed quickly when maintaining your code, and of course that

Preface ix

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



you can understand what it was you where trying to do when you wrote the code
several months earlier! With this in mind, I have also noted—where necessary—
tips to improve the readability and self-documenting character of your VB code.

How This Book Should Be Used

Well, to get here you've obviously passed the first hurdle, which is turning the
pages; now all you need to do is read the words!

If You’re a Developer New to VB

If you are new to the VBA language, then this book assumes that VBA is your
second or subsequent language. The first half of the book leads you through the
important areas of programming VB and VBA style, which, while very different
from most other languages, are straightforward and easily mastered. I suggest
therefore that you read these chapters in order while referring to Chapter 7 when
necessary.

If You’re a VB or VBA Developer

As an experienced developer, you can dip into the book to get the lowdown on a
language element that interests you. Appendix A details all the functions, state-
ments, and object models by category to help you find the relevant section in
Chapter 7 more easily.

If You’re a VB or VBA Developer New to VB6

Appendix D is a good place to start; it lists the new and amended language
features and language-related object models in VB6. Work your way through this
list, referring to the relevant sections in Chapter 7. While VB0 isn’t the major leap
forward that VB4 and VB5 were, you'll find some powerful additions that enhance
both the speed at which you can develop an application and the quality of your
applications. Note that because this book is specifically about the language, new
VB6 nonlanguage features such as dynamic control addition aren’t included.

How This Book Is Structured

This book is divided into three parts. The first part of the book, The Basics, is an
introduction to the main features and concepts of Visual Basic programming. Even
seasoned VB professionals should find items of interest here. If you're new to VB,
this part of the book is essential reading. It’s divided into the following chapters:

Chapter 1, Introduction
In this chapter, you’ll find information on what the VBA language is and how
it fits in to the family of VB products. There’s also a short discussion of the
history of VBA.

Chapter 2, Program Structure
This chapter details how you create the basic program structures in VB and
VBA; how you implement procedures, functions, and properties; and how
you start and stop VB and VBA programs.

x Preface

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Chapter 3, VBA Variables and Data Types
This chapter looks at all the VBA data types and how to use them. There is
also an in-depth look at the variant, a data type unique to the VBA language.

Chapter 4, Class Modules
The introduction of the class module in Version 4 was probably the single
most important innovation in VB since the introduction of VB itself; certainly,
it has directly contributed to the success VB is now enjoying in the corporate
world. In this chapter, you’ll find out how to create and use class modules
within VB and VBA applications.

Chapter 5, Automation
Automation—the process by which a client accesses the functionality of a
server application and drives it remotely—is one of the more powerful tech-
nologies supported by VB. This chapter describes how OLE automation is
handled using VBA, detailing how to create and manipulate instances of
ActiveX-enabled applications.

Chapter 6, Ervor Handling
On the assumption that we all strive to create robust applications, this chapter
shows how to include error handling in your VB or VBA application and how
error handling is different when you’re creating an ActiveX application.

The second part of the book, The Reference, consists of one large chapter,
Chapter 7, The Language Reference, which thoroughly details all the functions,
statements, and object models that make up the VBA language. The emphasis here
is on the language elements found in VB4, 5, and 6. Also included (but with a
lesser emphasis) for backward compatibility and completeness are the language
elements still present in VB but that predate VB4; where these have been super-
seded by later additions to the language, this is noted.

The third and final section consists of the following appendixes:

Appendix A, Language Elements by Category
A listing of all VBA functions, statements and major keywords by category.

Appendix B, Language Constants
The constants built into the VBA language and available at all times.

Appendix C, Operators
A list of the operators supported by VB, along with a slightly more detailed
treatment of Boolean and bitwise operators.

Appendix D, What's New in VB6?
A summary of the new language features and object models included in the
latest version of Visual Basic.

The Format of the Language Reference

The following template has been used for all functions and statements that appear
in Chapter 7:

Syntax
This section uses standard conventions (detailed in the following section) to
give a synopsis of the syntax used for the language item. It also lists parame-

Preface xi

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



ters and replaceable items, indicates whether they're optional or not, lists their
data types, and provides a brief description.

Return Value
Where applicable, this section provides a brief description of the value or data
type returned by the function or property.

Description
A short description of what the language element does, and when and why it
should be used.

Rules at a Glance
This section describes the main points of how to use the function. The dos
and don'ts are presented in the form of a bulleted list to enable you to
quickly scan through the list of rules. In the vast majority of cases, this section
goes well beyond the basic details found in the VB documentation.

Example
I's not uncommon for documentation to excel at providing bad examples.
How often do we encounter code fragments like the following:
' Illustrate conversion from Integer to Long!

Dim ivarl As Integer
Dim 1lVar2 as Long

ivarl = 3
1lvar2 = CLng(iVvarl)
Msgbox "The value of 1lvar2 is: " & 1lVar2

So you won't find the gratuitous use of examples in this book. I see little
point in including a one- or two-line code snippet that basically reiterates the
syntax section. Therefore, I've only included examples that enhance the
understanding of the use of a language element or demonstrate a poorly
documented feature of a language element.

Programming Tips & Gotchas
This is the most valuable section of Chapter 7, gained from years of experi-
ence using the VBA language in many different circumstances. The
information included here will save you countless hours of head scratching
and experimentation. Mostly, this is the stuff Microsoft doesn’t tell you!

See Also
A simple cross-reference list of related or complimentary functions.

Conventions Used in This Book

Throughout this book, we’ve used the following typographic conventions:

Constant width
Constant width in body text indicates a language construct such as a VBA
statement (like For or Set), an intrinsic or user-defined constant, a user-
defined type, or an expression (like dElapTime = Timer ()—dStartTime).
Code fragments and code examples appear exclusively in constant-width text.
In syntax statements and prototypes, text in constant width indicates such
language elements as the function or procedure name and any invariable

xii  Preface

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



elements required by the syntax. Constant width is also used for operators,
statements, and code fragments.

Constant width italic
Constant width italic in body text indicates parameter and variable names. In
syntax statements or prototypes, constant width italic indicates replaceable
parameters.

Ttalic
Italicized words in the text indicate intrinsic or user-defined functions and
procedure names. Many system elements such as paths and filenames are also
italicized. Finally, italics are used to denote a term that’s used for the first time.

How to Contact Us

We have tested and verified all the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made
mistakes). Please let us know about any errors you find, as well as your sugges-
tions for future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in the United States or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to
request a catalog, send email to:

nuts@oreilly.com
To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

Call for Additions and Amendments

It's our hope that, as the Visual Basic language continues to evolve, so too will VB
& VBA in a Nutshell: The Language, and that the book will come to be seen by VB
and VBA developers as the official (so to speak) unofficial documentation on the
VBA language. To do that, we need your help. If you see errors here, we'd like to
hear about them. If you're looking for information on some VBA language feature
and can’t find it in this book, we’d like to hear about that, too. And finally, if you
would like to contribute your favorite programming tip and gotcha, we’ll do our
best to include it in the next edition of this book. You can request these fixes,
additions, and amendments to the book at our website, bttp.//www.oreilly.com/
catalog/vbanut.

Acknowledgments

This is my second book for O'Reilly & Associates, and I am proud to have been
asked back. My sincere thanks go to my editor, Ron Petrusha, an accomplished

Preface  xiii

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



author and Visual Basic programmer who has again contributed so much to this
book, steering me in the right direction, crossing the Ts and dotting the Is, helping
to nurture and develop this work, and adding that special quality that sets O'Reilly
books apart from the rest.

My thanks also go to Tim O’Reilly for again having the faith to let me loose on his
printing press! I would also like to thank the rest of the team at O'Reilly & Associ-
ates—Troy Mott, Katie Gardner, and all the other people within O'Reilly without
whom this book would not have been possible. Thanks to Cheryl Smith-John for
her hard work as technical editor, as well as to Dr. Steven Roman and Chris Burge
for their technical reviews, which have (I hope) helped to make this a better book.

During the course of writing this book, I've been developing a client server appli-
cation for Allied Carpets Group plc in the United Kingdom. I'd like to thank the
VB development team there for their help and support—namely (but in no partic-
ular order) Gary Atkinson, Rachel Adams, James Cullen, and Ian Fremaux. My
thanks also go to my agent, Nicky Properjohn at HG Resources.

Writing takes not just the dedication of the author, but a huge amount of support
and understanding from the family. I count myself lucky to have such a devoted
family—as always my strength and motivation Deb, Russel, and Victoria.

xiv  Preface

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



PART I

The Basics

This section serves as a general introduction to Visual Basic for Applications, the
programming language that is common to both Visual Basic and to a range of host
applications, including most of the applications in the Microsoft Office suite. Taken
together, these chapters form an extremely fast-paced introduction to the most crit-
ical VBA programming topics. If you're an experienced programmer who is
learning VBA as a second (or additional) programming language, this material
should help to familiarize you with VBA in as short a time as possible. If you have
some experience with VBA programming, you’ll want to read Chapters 4 and 5 on
class modules and automation, since they discuss two of the newer and most
significant technologies incorporated into the VBA language.

In addition to its role as a tutorial, Chapter 3 is an essential reference to the data
types supported by VBA.

Part I consists of the following chapters:

e Chapter 1, Introduction

e Chapter 2, Program Structure

e  Chapter 3, VBA Variables and Data Types
e Chapter 4, Class Modules

e Chapter 5, Automation

e Chapter 6, Error Handling

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.






CHAPTER 1

Introduction

To applications developers, end users, corporate buyers, and software vendors,
Visual Basic for Applications (VBA) is becoming an increasingly important
language. But VBA is more than just another software language; VBA is a unique
conceptual method of creating professional business-oriented solutions.

VBA is the same language whether you are using it to create a Visual Basic appli-
cation or to automate some task within Word or Excel. When you fire up your
copy of the retail version of Visual Basic, the vast majority of language elements
you use actually come from VBAx.DLL the VBA library. Just look in the Object
Browser to see how dependent on VBA Visual Basic actually is. Consequently, this
book concentrates on the core VBA language regardless of its context.

What Is VBA?

Visual Basic for Applications is a hosted language and part of the Visual Basic
family of development tools. Although VBA can be thought of as sitting below the
retail version of VB and above VBScript in the VB hierarchy, VBA is actually an
essential element of the retail version of VB, providing the vast majority of
language elements used in VB. When hosted in VB, VBA provides language
support and an interface for forms, controls, objects, modules, and data-access
technologies. When hosted in other applications such as Word or Excel, VBA,
using a technology called automation, provides the means of interacting with and
accessing the host application’s object model, as well as the object models of other
applications and components.

In order to customize complex applications such as Excel, Word, Access, and a
growing number of other applications from Microsoft and other vendors, VBA
allows the developer to provide solutions that take advantage of sophisticated
components that have been tried and tested. VBA is a glue language: a language
that interfaces with the various objects that make up an application via the host
application’s object model. VBA is the means by which applications can become

3

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

=)
5
=
o
=
=)
S




extensible, and it's ActiveX (or OLE automation) that provides the interface
between VBA and its host application. It’s this support for OLE automation that
makes VBA an outstanding tool for rapidly developing robust Windows
applications.

Until the launch of VBA 5.0 in early 1997, the language had no development envi-
ronment; very much like VBScript today, VBA was simply a language interpreter.
VBA 5.0 marked the start of an exciting new chapter for VBA; it now has its own
integrated development and debugging environment running within the process
space of the host application.

VBA itself becomes more object-oriented with each release, but the latest release
(Version 6.0) adds relatively few functions and keywords to the VBA language.
Instead, extra functionality has been incorporated into VB6 using new object
models, and again it’s the VBA language that allows you to integrate these object
models into your application.

How Does VBA Differ from VB?

VBA is a programming language common to Microsoft Visual Basic, Microsoft
Office, Microsoft Project, Visio, and a whole host of other applications. Although
the particular “flavor” of VBA you use depends on the environment that hosts
VBA, the core VBA language is basically identical regardless of the environment
that hosts it. In other words, VB, the Microsoft Office suite, and a number of other
applications share a common programming language named VBA that is identical
across its various hosts.

Having made this generalization, we should introduce two qualifications. First,
there are some differences that depend on the time at which the product hosting
VBA was released. For example, although VB5 and Office 97 both indicate that
they include version 5.00 of the VBA language, VBA for VB5 supports a number of
language elements (like the addressof operator) that are not supported by VBA
for Office 97. This is because VB5 was released somewhat after Office 97, which
left more time to incorporate some new features in the former implementation that
were omitted from the latter.

Second, there are some major differences that focus more on usage than on
language elements. This is because VB is a complete RAD environment that
features a range of user interface components and relies on VBA as its program-
ming language:

e VBA programs and the VBA development environment itself both execute in
the same process space as the host application, whereas VB programs can be
compiled into executables and run in their own process space, independent
of the host (i.e., Visual Basic) environment.

e Related to this, VB applications can be compiled into native code executa-
bles, whereas VBA applications are always interpreted.

e VB applications can be complied into ActiveX components and used within
other applications.

e Unlike the retail version of VB, VBA allows code to be written for multiple
platforms. Versions of VBA are currently available for Windows 95 and Win-

4 Chapter 1— Introduction

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



dows NT on Intel; for NT on MIPS, Power PC, and Alpha RISC; and for Macin-
tosh/Power PC.

e VBA as a hosted programming language and VBA in VB are typically used dif-
ferently in developing applications. With VB, you normally use VBA to write
code that references controls, procedures, and functions that are part of the
program itself. With VBA, the vast amount of code is related to referencing
the methods, properties, and functions that make up the object model of the
host application. This is the overriding difference between VB and VBA,
although the two are beginning to converge in this area as VBA is increas-
ingly used in VB to control the ever-expanding list of VB’s own object mod-
els, VB class modules, and in-process and out-of-process servers.

e The programs created by the two products are typically used for different pur-
poses. VB creates standalone applications. VBA, though it can be used to cre-
ate “applications” that act as intermediaries between the user and the host
application (like Word or Excel) typically provides some essential service or
adds some enhancement to its host application.

How Does VBA Differ from VBScript?

VBScript was born of VBA." VBA supports OLE automation; that is, you can create
instances of objects, call their methods, and set and return object properties. This
functionality was left out of VBScript, since it was thought too risky for the web
scripting environment. However, when used at the server side with Active Server
Pages, VBScript has almost the same OLE (ActiveX) functionality as VBA.T In addi-
tion, VBScript is simply an interpreted language component; it has no design
environment apart from the ActiveX Control Pad. In contrast, from Version 5
onward, VBA has its own integrated development environment, including an inte-
grated debugging window, a Properties window, and many of the standard
features that were originally found in the VB IDE.

How Does a VBA Program Differ from a Macro?

VBA takes over where macro languages left off. Macro languages are used to
simply automate repetitive tasks in an application. Because VBA replaced the
macro languages found in Office applications, there is still a common misconcep-
tion that VBA is a macro language. However, referring to VBA as a macro
language is like referring to a Ferrari as a means of getting from A to B. While it’s
basically a true statement, it hardly does justice to the product or to the sophistica-
tion of the technology involved. With VBA, like the Ferrari, you’ll get from A to B
faster and more stylishly, and you’ll be in demand! (Unlike a Ferrari, though, VBA
isn’t red.)

* For a fast-paced introduction to VBScript, see Learning VBScript, by Paul Lomax, published
by OReilly & Associates.

t 1It's able to do this because the ASP Server object, rather than VBScript, instantiates objects
and provides support for automation. See Active Server Pages in a Nutshell, by Keyton Weiss-
inger, due from O’Reilly & Associates in early 1999.

What Is VBA? 5

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

=)
5
=
o
=
=)
S




Let's look at how VBA has become the first almost universally accepted applica-
tion customization language.

A Brief History of VBA

The incredible popularity of Visual Basic shortly after its launch prompted
Microsoft to wonder if a “cut down” version of the product could replace the
many different macro languages lurking behind its range of business applications.
Bill Gates talked for many years—since the days of DOS—of a universal batch
language. This goal is now coming to fruition in the shape of VBA. However, as
the following chronology shows, this goal wasn’t achieved overnight:

1993—VBA launched with Microsoft Excel
VBA first saw the light of day as a replacement for the macro language in
Microsoft Excel. Its power and sophistication in comparison to the original
macro languages made it an instant success with those developers creating
custom solutions with Excel.

1994—VBA included with Microsoft Project
Perhaps because Microsoft Project had to be customized in many situations to
satisfy the wide and varied needs of project managers, Project was next on
the list of applications to be VBA-enabled.

1995—Included with Microsoft Access, replacing Access Basic
Perhaps the biggest boost to VBA came when Access Basic (a subset of VBA
written specifically for Access) was replaced with the full version of VBA.
Many of today’s VB programmers apprenticed on VBA in Access, cutting their
teeth on custom applications using VBA and Access. Many Access developers
have moved on to the full version of Visual Basic to create full three-tier client
server applications.

1996—VBA becomes the language element of Visual Basic

1996 saw the launch of Visual Basic 4.0, a massive leap forward and almost a
totally different product from VB3. Written in C++, Version 4 was a ground-up
rewrite of VB, whose previous versions were written in assembler. With VB4,
VB became object-oriented; VB could be used to create class models and
DLLs, as well as to easily reference external object libraries. Part of the
componentization of Visual Basic was the use of a separate language library,
VBA. Some intrinsic language elements remained in the VB and VB runtime
libraries for backward compatibility, but most were transferred to the VBA
library, and many were completely rewritten.

1996—Included with Word, replacing Word Basic
Many people were surprised that Word Basic was the last of the Microsoft
macro languages to hit the dust. This appears to have happened partly
because the demand for customized word processor applications is much
smaller than for customized applications using the other components of the
Office suite, and because the core of Word developers were initially opposed
to a change to VBA.

6 Chapter 1— Introduction

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



1997—VBA 5.0 launched, covering the complete range of Office 97 products
With the inclusion of VBA in PowerPoint, all the members of Office 97 (with
the exception of Outlook, which is VBScript-enabled) now include VBA as
their programming language.

1997—Microsoft licenses VBA for use with other software
Over 50 major software vendors licensed VBA within the first few weeks of
Microsoft’s announcement. The fact that so many leading companies have
chosen to license VBA bodes well for the future. In learning VBA now, you
are building a skill set that will be in demand for a long time to come.

1998—VB and VBA Version 6 launched
The language continues to expand, although not at the same rate as previ-
ously. Interestingly, with the exception of two functions, the new functions in
VBA have come from VBScript. The rest of the new functionality available to
VB/VBA developers comes in the form of several new object models, which is
likely to be the way VB and VBA will expand in the future.

What Can You Do with VBA?

VBA contains all the functions and statements necessary to create robust Windows

applications, whether this is done using Visual Basic or a host application. The

tasks you can perform with VBA include (but are not limited to):

e Creating instances of OLE (ActiveX) objects within your code

e Creating classes (reusable custom software objects)

e Linking to ODBC databases like Access and SQL Server

e Integrating with the messaging API (MAPD) to create Exchange/Mail applications

e Integrating with Internet and intranet solutions

e  Creating custom dialog boxes and forms

e  Storing and retrieving data from the Windows registry

e Detecting and handling errors

e Incorporating ActiveX controls into the application interface

e Passing data between VBA-enabled applications with a minimum of program-
ming and fuss

e Driving a second VBA-enabled application from within a first VBA-enabled
application

e Controlling the Office applications; in theory, 100% of the functionality of
Office products is exposed as objects/properties/methods, which means that,
with occasional exceptions, there isn’t anything you can’t do programmati-
cally that you can do from the application’s interface.

e Automating anything that can be done from the keyboard, mouse, or menus

There is also one thing you can’t do directly with the VBA language: you can’t
output to a printer. So how do you print from a VBA application? When hosted in
an application, VBA can control the application’s own printing functionality; when
used within VB, VBA can control the VB Printer object.

What Can You Do with VBA? 7

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

=)
5
=
o
=
=)
S




Customizing and Creating Applications with VBA

Off-the-shelf—or “shrink-wrapped’—software products don’t always provide the
specialized features most corporate and many private users need, which means
that some kind of customization is often needed to create the desired solution.
Software vendors include features within their products that will appeal to as large
an audience as possible. They quite rightly have to balance the cost of develop-
ment with the potential extra sales for any new feature they add to their product.
There is such an infinite range of different and unique business problems that it
would be impossible for any off-the-shelf package to be versatile enough to fulfill
every need.

Let’s say you need an application that links to the company’s main database and
presents data in such a way that managers can readily understand and work with
it, create charts from it, reformat it, etc. You could either spend the next 12
months developing and debugging your very own spreadsheet application, or you
could supply a custom application written with VBA using Excel as the host. This
applies, of course, not only to Excel, but to the other applications in Microsoft
Office as well, which means that as a developer, you can also program interopera-
bility between all the applications in the Microsoft Office suite.

The traditional home of VBA has been in Microsoft products. However, since
Microsoft has now stamped VBA’s passport by licensing it to other major software
vendors, you will find VBA venturing further afield into territory that was once off
limits. VBA skills will become more and more in demand as a wider range of soft-
ware becomes VBA-enabled. This also means that for the first time, developers
across a wide range of products have a common programming interface.

Of course, a software developer can always start from scratch to create a solution
to a business problem, and the most popular tool for creating business applica-
tions is Visual Basic. A mark of Visual Basic’s maturity is that for the first time,
Microsoft’'s own developers have used Visual Basic to write parts of the Visual
Studio 6 development suite. The most sophisticated business solutions using the
latest technologies can be created with Visual Basic, and corporations, large and
small, around the world are now looking to Visual Basic to provide mission crit-
ical enterprise-wide applications. The speed and relative ease with which a Visual
Basic application can be created and maintained results in major cost savings for
corporations. When you add to this the ease with which a Visual Basic applica-
tion can be ported to a web environment, you can see why Visual Basic is the
world’s most popular RAD tool.

Object Models: The Power of Programming
with VBA

VBA is a single language, although when comparing code taken from a VBA
program written for Word with one written for Access or Visual Basic, you could
be forgiven for thinking you are reading code from two very different languages.
This is because VBA interfaces with an application’s object model, and much of
the time the code you write references objects that are unique to the host applica-
tion. To demonstrate this, in the VBA code fragments shown in Examples 1-1

8 Chapter 1— Introduction

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



through 1-4, generic VBA code is shown in a normal typeface, object code that is
unique to the application is shown in bold, and variables are shown in italics.

Example 1-1: A Code Snippet from an Excel VBA Program

For Each ¢ In Worksheets("Sheetl").Range("C4:C1l7") .Cells
If c.Value = iCond Then
tempTot = tempTot + c.Offset(0, 1).Value
End If
Next c¢

=)
5
=
o
=
=)
S

Example 1-2: A Code Snippet from a Word VBA Program

Set myRange = ActiveDocument.Range( _
Start:=ActiveDocument .Paragraphs(2) .Range.Start, _
End:=ActiveDocument .Paragraphs (2) .Range.End)
myRange.Select
myRange.Bold = True

Example 1-3: A Code Snippet from an Access VBA Program

Form_Forml.RecordSource = "SELECT Products.ProductCode, " _
& " Products.BinLocation, Descriptions.Description” _
& " FROM Products INNER JOIN Descriptions " _
& " ON Products.ProductCode = Descriptions.ProductCode" _
& " WHERE (((Descriptions.Language)="
& iLangCode & "));"

Text0.ControlSource = "ProductCode"
Text2.ControlSource = "Descriptions.Description"
Text4 .ControlSource = "BinLocation"

Example 1-4: A Code Snippet from a Visual Basic Program

Dim oADOComm As ADODB.Command
Dim oADORecs As ADODB.Recordset
Dim sSQL As String

Set oADOComm = New ADODB.Command
OADOComm.ActiveConnection = "LiveDSN"
SSQL = "SELECT * FROM employees"
OADOComm.CommandType = adCmdText
OADOComm.CommandText = sSQL

Set oADORecs = oADOComm.Execute
If Not oADORecs.EOF And Not oADORecs.BOF Then
Do While Not oADORecs.EOF
cboEmployeeNames .AddItem _
OADORecs .Fields ("Name") .Value
oADORecs . MoveNext
Loop
End If
Set oADORecs = Nothing
Set oADOComm = Nothing

Object Models: The Power of Programming with VBA 9

VB & VBA in a Nutshell: The Language, eMaitter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



As you can see from these examples, the referenced object model plays an inte-
gral role in the creation of VBA-based programs. The object model describes the
application and the features you can control. You then use VBA to access and
change properties of the object model, handle events fired by objects in the
model, and call the methods of the objects.

Once you're familiar with one object model, you will find great reductions in the
time it takes to learn another object model. For example, about 50% of the Office
97 object models are shared. In short, if you can create applications using one
object model, you can move to another host and develop custom applications
there too, with a minimum amount of time spent learning the new object model.

Through the object model, the software vendor allows you to control the applica-
tion, to set and retrieve properties, and to invoke methods. It’s up to the software
vendor to decide how much or how little of the application you have access to via
its object model, and in the case of the Microsoft Office applications, 100% of their
functionality is presumably exposed via the various object models. In addition to
the object model, each host application has its own set of predefined (intrinsic)
constants to speed development and make code easier to read and maintain.

So although they are conceptually distinct from the VBA language itself, object
models are central to programming in VBA both within a host application, and—
although to a lesser extent—in Visual Basic. The extensive reliance on individual
object models, though, doesn’t diminish the significance of VBA, even if it is only
the “glue” that holds together a program’s use of an object model (or, in the case
of Visual Basic, a program’s use of ActiveX controls).

As we've already seen throughout this chapter, the VBA language is the single
most important development language in the business world and will continue to
be so for some time to come. Becoming proficient in the VBA language is there-
fore important to many millions of professional developers across the world,
because no other language presents the developer with so many opportunities—
not just a promise but a real demand for skills right now. However, VBA is by its
very nature a large language in terms of the number of functions, statements, and
constructs that must be mastered. Once the language is mastered, the rest of the
jigsaw falls into place, and you can easily and quickly move from one VBA-
enabled development environment to another.

10  Chapter 1 — Introduction

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



CHAPTER 2

Program Structure

In its simplest form, Visual Basic for Applications is a glue language. This means
that as a VB or VBA developer, you concentrate on the interface of and interac-
tion between the objects and controls within the application, gluing the various
elements of the application together by writing procedures to perform program-
matic tasks and by adding code to handle events. Visual Basic programs are
primarily event-driven. Some event or other—such as the user clicking a button—
triggers most of the procedures you will write.

From a developer’s point of view, one of the most important characteristics of an
event-driven application is that, for the most part, the various elements of the
program are not interdependent. Sections of your program can be written in
complete isolation from the rest. Procedures can be added, removed, or disabled
without necessarily having an adverse effect on the whole application. This isn’t to
say that a Visual Basic application is unstructured; far from it. Before starting to
write your VB application, you should have a clear plan of how the various
elements of your application are going to interact.

Over the past few years, VB developers have been empowered with a rapidly
expanding development environment that can now create custom controls and
ActiveX DLLs and EXEs that run either as client-side servers or as remote servers.
This movement towards a more object-based ethos has forced a change in the
programming style of most VB developers. For the majority of professional VB
developers, the days when you could sit in front of a blank form and begin
programming without a written plan—altering the architecture of your application
on the fly—are long gone.

In this chapter, you will see how to structure a VB program, from starting your
program, through the various procedure types at your disposal, and then how you
can eventually end your VB program.

11

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

%S
S
)
=
s ¥
S S
-
£
o D




Getting a VB Program to Run

Regardless of the type of application you’re writing and the development tool
(hosted VBA or the retail version of VB) you're using, there has to be a starting
point or an entry point for your program. Here there is a major difference between
VB and VBA: a VB application is launched as an application in its own right,
whereas the VBA program has to be launched by the host application. But in
either case, the starting point you choose is decided by the type of application you
are writing, as well as by the facilities offered by your development environment
for launching applications. In this section, we’ll look at the methods available to
you for starting your application.

Because VBA is now hosted in a wide range of different applications, each of
which has its own ways of launching an application or routine, it’s impossible to
describe here how to start your program running in each. Instead, we’ll focus on
the two most popular applications for hosted VBA, Word and Excel.

In discussing the launching of VBA programs in Word and Excel, I
mention using the application’s user interface to launch the program
using a keyboard combination or a toolbar button. This can also be
done programmatically. A discussion of how to do so, however, is
beyond the scope of this book.

Running VBA Modules in Word

A Word/VBA program can take a multitude of forms, ranging from a small routine
that accomplishes some utility function at one extreme to a complete application
that handles every detail of the user’s interaction with Word. Of course, you want
the method that invokes your program to be consistent with its general purpose.
Fortunately, Word provides several ways to launch a VBA application.

Storing your code

Whenever Word starts, it automatically loads the default global template file,
normal.dot. Tt then loads all template (.dod files in the Word startup directory,
which (assuming the software is Word 97) is defined by the STARTUP-PATH value
entry in the HKEY_CURRENT_USER\Software\Microsoft\Office\8.0\
Word\Options key in the registry and can be customized by selecting the File
Locations tab from the Options dialog (Tools O Options) and modifying the
Startup entry. These also become part of Word’s global layer, as do Word add-in
C.wliD files, which are loaded last. So if your application is to affect the Word envi-
ronment or multiple Word documents, you should place your code in a template
that is loaded into the global layer. If your program is to be distributed to other
users, you should store your code in a global template file other than normal.dot,
where you're likely to overwrite customizations the user has made.

12 Chapter 2 — Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



g A global template file loaded during Word startup is displayed in the
Project window visible in the development environment, but isn’t
viewable. To edit the file, you must open it in the Word environ-
ment. Note that you may have to close and reopen Word in order
for modifications to take effect. In some cases, even if the file is
open, you still may not be able to edit its code in the VBA IDE. In
that case, you'll have to make modifications to a copy of the file
stored in another directory and synchronize the two copies.

If your application applies to a set of documents that are based on a template
(which is typically stored in the Office Template directory or one of its subdirecto-
ries), you can place your code in the template file. Each document created using
that template maintains a reference to the template. So even though the code
remains in the template and isn’t copied to the document, the VBA code in the
template can be executed as long as the reference is valid.

If your application applies only to a particular document, you can store the code
in the document itself. You don’t have to work with the templates loaded into
Word’s global layer.

At startup

If you are developing an application or routine that is responsible for initializing
the Word environment, that provides some service expected to be available
throughout a Word session, or that implements a customized interface that medi-
ates between the user and Word, you want to have Word launch your application
whenever Word itself is launched. Word provides two methods of doing this. Both
are remnants of WordBasic and both require that you store your macro in a global
template:

e Add a procedure called AutoExec to any code module. In order to execute at
startup, it must be a Public procedure.

e Create a new module named AutoExec and add a procedure to it called Main.
Once again, Main must be declared as Public in order to run at startup.

There is also a converse scenario—running a procedure when Word is closing—
that operates in exactly the same way as AutoExec. You simply name the proce-
dure AutoExit or include an AutoExit module with a Main procedure.

When a document loads

In many cases, your application should launch whenever a particular document
(or a set of documents, or even all documents) is opened. Once again, Word
offers several methods of executing code when an existing document is opened or
a new one is created. All of them require, though, that the code be located either
in the current template or in the document itself. The methods are:

e Creating a procedure called AutoOpen, which is executed whenever an exist-
ing document containing a reference to AutoOpen’s template or containing

Getting a VB Program to Run 13

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

%S
S
)
=
s ¥
S S
-
£
o D




the actual AutoOpen code is fired. Similarly, you can create a procedure called
AutoNew, which is executed when a new document using the template con-
taining the code is created. The procedures must be declared as Public to be
visible. AutoOpen and AutoNew macros are a WordBasic, rather than a VBA,
feature.

e Creating a code module named AutoOpen (or, for a new document,
AutoNew) and defining a public Main procedure in it. AutoNew and
AutoOpen code modules are a WordBasic, rather than a VBA, feature.

e Attaching code to the template’s or document’s Document_Open event, which
fires when an existing document is opened, or to its Document_New event,
which fires when a new document is created based on the template contain-
ing the Document.New event handler. This is the “official” VBA way to create
self-executing macros when a document loads.

You can also designate a cleanup routine to execute when a document closes.
WordBasic recognizes either an AutoClose procedure or a Main routine in a code
module named AutoClose. VBA fires the Document.Close event when a document
closes.

In response to direct user action

Frequently, VBA/Word code is less an “application” as we typically understand it
than a “macro”—i.e., a small piece of self-contained code that performs some
useful function. For macros to be useful, there has to be a way for the user to run
them easily® from the Word interface. In this respect, Word provides a rich envi-
ronment for the macro developer, since it supports so many ways of hooking a
macro to the user interface. These include:

Intercepting Word’s built-in commands

Most common Word operations are public procedures. This means that if you
create a procedure of the same name and store it in a global template, in the
current document’s template, or in the active document itself, your proce-
dure, rather than Word’s built-in procedure, will execute. For example, when
the user selects the Close option from the File menu, the FileClose procedure
executes. Ordinarily, Word closes the active document. However, you can
modify Word’s behavior by substituting a FileClose routine like the following,
which gives the user the option of closing all open documents:

Public Sub FileClose()

Dim lngResponse As Long
Dim objDoc As Document

If Documents.Count = 1 Then
Application.ActiveDocument.Close
Else

* The most obvious method is one we won'’t discuss here. When the user selects Tools [
Macro 0 Macros, Word displays the Macro dialog, which lists the names of all macros that are
in scope (i.e., public macros in the global layer, macros in the current template, and macros in
the current document).

14  Chapter 2 — Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



IngResponse = MsgBox("Close all open documents?",
vbQuestion Or vbYesNoCancel,
"File Close")
Select Case lngResponse
Case vbYes
For Each objDoc In Documents
objDoc.Close
Next
Case vbNo
Application.ActiveDocument.Close
Case vbCancel

Exit Sub
End Select
End If
End Sub

Assigning a macro to a toolbar button

You can add a button to a toolbar and assign a macro to it. To do this from
Word’s user interface, select the Customize option from the Tools menu, or
right-click on any toolbar and select the Customize option. Word opens the
Customize dialog. Make sure that the toolbar to which you add the button is
checked in the Toolbars tab, then select the Commands tab. Select Macros in
the Categories list box and the macro you want to add to the toolbar in the
Commands list box. Then drag the macro object from the Commands list box,
position it on the toolbar, and drop.

Assigning a macro to a key
To assign a macro to a keyboard combination, open the Customize dialog and
click on the Keyboard button. Select Macros in the Categories list box, then
select the macro to which you’d like to assign a key combination in the
Commands list box. Move the cursor to the “Press new shortcut key” text box
and select the key combination you’d like to activate your macro.

Running VBA Modules in Excel

An Excel/VBA application, like its Word counterpart, can be anything from a small
routine that performs a useful service to a large application that completely shields
the user from Excel’s basic interface. Excel, like Word, provides a variety of ways
to launch an application that’s consistent with its overall purpose.

Storing your code

When Excel loads, it automatically loads all workbook (.x/s) and add-in (.x/a@) files
stored in the XLStart directory (and notably Personal.xls, a worksheet that can
serve as a repository for code, and that Excel makes hidden by default) and in an
alternate startup directory. XLStart is created by Excel during installation (it’s typi-
cally a subdirectory of the Office directory) and can’t be changed. The alternate
startup directory, if one is defined, supplements the XILStart directory, and it’s
configurable. To define or change it, you can select the Options option from the
Tools menu, click on the General tab of the Options dialog, and enter the path in
the “Alternate startup file location” text box.

Getting a VB Program to Run 15

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

%S
S
)

=

s ¥
S S
-
£
o D




Typically, to store global macros, you'd want to create your own add-in file or
your own worksheet, which can be hidden and stored in the XLStart folder. Partic-
ularly since Personal.xls is a frequent target of Excel macro viruses, it’s best not to
use it as a repository for your code. Excel actually loads each of these startup files;
consequently, it’s important that they remain hidden. While Personal.xls and all
add-in files are hidden automatically, other files aren’t. To hide them, select the
Hide option from the workbook’s Window menu.

Like Word, Excel also supports the creation of documents from templates, which
also can contain code. So if your VBA code applies only to a particular kind of
workbook (that is to say, to all workbooks created from the same template), you
can store the code in the template (.x/f) file. Excel’s behavior here, though, is
somewhat different from Word’s; whereas Word adds a reference to the template
to the document, Excel actually embeds the template’s code in a newly created
workbook.

Finally, if VBA code applies only to a single document, the code can be added to
the document, rather than to autoloaded workbooks, add-ins, or templates.

At startup

When Excel starts. it automatically loads all add-in and workbook files in its
startup and alternate startup directories. Their Workbook.Open event is fired. Note
that, although this is a document-level event (that is, it’s fired by a workbook
being opened, rather than by Excel starting), the fact that no document work-
books are open when the startup workbooks and add-ins are loaded makes these
Workbook.Open event handlers functionally similar to the Word AutoExec
procedure.

When a document loads

To execute code when a particular workbook is opened, that workbook must
have been created using a template that included a Workbook.Open event
handler, or a Workbook.Open event handler must have been added to the work-
book itself. In fact, Excel workbooks support a rich event model; you can attach
event handlers to such Workbook events as Activate, BeforeClose, Deactivate,
NewSheet, and SheetActivate.

In response to direct user action

Like Word code, VBA code in Excel often consists of a set of macros. Sometimes,
you can hook these to a Workbook event. But more commonly, you have to
provide a way for the user to run your macro from the Excel interface. Although
Excel lacks Word’s ability to intercept basic procedures, it does offer two major
options for “hooking” your macro into the Excel interface:

Assigning a macro to a toolbar button
You can add a button to a toolbar or submenu and assign a macro to it. To
do this from Excel’s user interface, select the Customize option from the Tools
menu or right-click on any toolbar and select the Customize option. Excel
opens the Customize dialog. Make sure that the toolbar to which you add the
button is checked in the Toolbars tab, then select the Commands tab. Select

16 Chapter 2 — Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Macros in the Categories list box and either Custom Menu Item or Custom
Button from the Commands list box, depending on how you will attach your
macro to the interface. Next, drag the object from the Commands list box,
position it on the toolbar, and drop. Finally, right-click on the new menu item
or button, select the Assign Macro option from the context menu, and select
the routine you want to assign to the menu item or toolbar button.

Assigning a macro to a key

To assign a macro to a keyboard combination, open the Macro dialog (Tools
0 Macro O Macros), and select the macro you want to assign to a key combi-
nation from the Macro Name list box. Next, click on the Options button to
open the Macro Options dialog. Finally, select a shortcut key to use along
with the Ctrl key to activate your macro. Note that Excel doesn’t inform you if
you've chosen a key assignment already in use; it simply overwrites the old
assignment with the new one.

Running VB Executables

An application that is to be compiled into an executable file with the retail version
of Visual Basic and that contains forms can be started by the Visual Basic runtime
loading a form, or by running a specially named sub procedure called Main. An
application that is to be compiled into an ActiveX EXE, DLL, or OCX can only be
started using a Sub Main procedure. You specify the startup method for the project
in the General tab of the Project Properties dialog box (you open it by selecting
the <ProjectName> Properties option from the Project menu), where you select
either a form name or Sub Main from the StartUp Object combo box.

Whether you specify a Form or a Sub Main procedure within a code module as
the startup object for your program, the VB runtime module first loads into
memory all Public or Global constants and variables in all code modules within
the project. Therefore, you have instant access to these at startup. Beware,
however, that publicly declared variables in form modules aren’t loaded at startup
time; they are only available while the form itself is loaded. This means that you
can’t assign a value to a Public variable in another form from that of your startup
form or from a startup code module.

Using a Form at Startup

If you specify a form as the starting point for your project, the VB runtime module
loads this form after loading project-level variables and constants but before
executing any of your project code. When the form is loaded into memory, the
form’s Initialize event is fired, followed immediately by the Load event. Once the
Form is displayed on screen, the Activate event is fired.

The Form Load and Initialize events

Until Version 4 of VB, the initialization code for a Form module was placed in the
Form_Load event, and probably through habit—and possibly because it’s still the
default event—most VB developers continue to use the Form_Load event.
However, in line with other object modules such as class modules, the Form

Getting a VB Program to Run 17

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

%S
S
)
=
s ¥
S S
-
£
o D




module now contains an Initialize event, which is fired as the Form is loaded into
memory. The Initialize event is immediately followed by the Form_Load event.

There is little operational difference between the Form’s Load and Initialize events,
and code to initialize the form—and the application if the form is the startup
object—can be written in either. However, if you use both events to write initial-
ization code, you may not always get the desired results. The reason for this is that
controls contained on the form aren’t completely loaded into memory when the
Initialize event is fired. Therefore, any code in the Initialize event handler that
references a control on the form forces the rest of the form to load, which then
fires the Load event. The following example illustrates this problem:

Private Sub Form_Initialize()

Textl.width = 2000
Textl.Text = "Hello "

End Sub
Private Sub Form_Load()
Textl.Text = Textl.Text & "World"

End Sub

Given that the Initialize event fires before the Load event, you'd expect the code
above to produce the tired old “Hello World” phrase in the text box. But you may
be surprised to discover that when this form is run, only the word “Hello” appears.
This is because when the Width property is set to 2000, execution branches to the
Form Load event, and the string “World” is placed in the text box. Execution then
passes back to the Initialize event and the string “Hello” is assigned to the text
property, thereby overwriting the word “World.”

Both the Form’s Load and Initialize events are executed only once, each time the
form is loaded into memory. Hiding the form and then reshowing it doesn’t re-
execute either event. However, another event, the Activate event, is executed in
this situation. You shouldn’t use the Activate event to write application initializa-
tion code because it executes every time the form regains the focus.

Using a Code Module at Startup

The preferred method of starting any Visual Basic application is to use a Sub Main
procedure.

The Sub Main procedure

To create a Sub Main, you need to include a code module in your project. Then
simply type the following:

Sub Main/()

Visual Basic automatically adds an End Sub line for you. You can have only one
Sub Main procedure in your project. A scope keyword—such as Private or

18 Chapter 2 — Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Public—isn’t required for the Sub Main procedure. While it’s possible to call Sub
Main from another procedure, it's definitely not recommended.

The Sub Main procedure doesn’t necessarily have to contain any code. In fact, in
projects such as ActiveX DLLs, EXEs, or OCXs, it’s best not to write code in the
Sub Main. If you are using a Sub Main to start up a project and require a form to
be loaded on startup, you can use a Sub Main procedure similar to the following:

Sub Main/()
Dim oForm as frmStartUp
Set oForm = New frmStartUp
oForm. Show vbModal
Set oForm = Nothing
End Sub

Here, an object variable is declared. A reference to a new instance of a Form
object called frmStartup is then assigned to that object variable. The object vari-
able can now be used to call the form’s Show method. The form is shown
modally, which means that the rest of the code in this procedure can’t be executed
until the form has completed its processing and is either hidden or unloaded.
Finally, the object variable is set to Nothing, thereby unloading the form from
memory. Using a Sub Main procedure in this way is now the recommended alter-
native to specifying a Startup form, since it allows you greater flexibility when
initializing the application.

The Structure of a VB Program

Any VB program—whether a hosted VBA application or a VB executable—is a
collection of modules containing code, graphical user interface objects, and
classes. This book concentrates on the language elements of VBA as they relate to
both hosted VBA and the retail version of VB. The VBA and VB user interfaces—
whether Word, Excel, Project, or a VB form—all fire events that are handled by the
code you create using the VBA language. Therefore the code modules within your
program are of greatest concern to us here.

Visual Basic code can be split into three categories:

e Code you write to handle events such as a button being clicked by the user;
these procedures are called event handlers

e Custom procedures, where you create the main functionality of your application

e Property procedures, used in form and class modules

All Visual Basic language elements work equally well in all three types of proce-
dure. For example, there are no restrictions placed on the type of code you can
write within a particular type of procedure. It’s left to you as the developer to
decide what code goes where.

Events: The Starting Point

An event is always the starting point for your procedure. It can be a system-gener-
ated event, such as the Form Load event or a Timer control event, or it can be a
user-generated event, such as the Click event on a command button.

The Structure of a VB Program 19

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

%S
S
)
=
s ¥
S S
-
£
o D




To code an event handler for a control event, open the form’s code window and
select the control from the drop-down list of the available objects. Next, select the
required event from the drop-down list of available events for that control. The
Event handler definition is then automatically placed in the code window, and you
can start coding the event handler.

If you are writing a small and simple application, you could program the whole
thing within event handlers. However, the more complex your program becomes,
the more you find yourself repeating code within these event handlers, and at this
point you should start moving related blocks of code into their own separate
functions.

Use Event Handlers to Call Functions and Methods

I would recommend that you keep the code in your event handlers to an absolute
minimum, using them simply to call methods within a class or to call functions
within the project. You will find that your code becomes easier to follow, code
reuse is maximized, and maintenance time for the project is reduced.

The following Click event from a command button called cmdSave demonstrates
this minimalist approach to event handling:

Private Sub cmdSave_Click()
On Error GoTo cmdSave_Click_Err

If SaveDetails () Then

MsgBox "Details Saved OK", vbInformation
Else

MsgBox "Details have not been saved", vbCritical
End If

Exit Sub
cmdSave_Click_Err:
MsgBox Err.Description & vbCrLf & Err.Number

End Sub

Because all the code to actually save the details is held within the SaveDetails
function, this function can be called from anywhere in the form or project.

The move towards removing functional code from the user interface has been
spawned by the n-tier client-server model, in which the user interface is purely a
graphical device for displaying information and collecting user input. The middle
tier or tiers enforce business rules and provide the main functionality of the appli-
cation. Here’s another example of the same Click event, this time using a
SaveDetails method stored in a class module:

Private Sub cmdSave_Click()
On Error GoTo cmdSave_Click_Err

Dim oObj As Business.BusinessObj
Set oObj = New Business.BusinessObj

20 Chapter 2— Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



If oObj.SaveDetails() Then
MsgBox "Details Saved OK", vbInformation
Else
MsgBox "Details have not been saved", vbCritical
End If
Set oObj = Nothing

Exit Sub
cmdSave_Click Err:

MsgBox Err.Description & vbCrLf & Err.Number & vbCrLf _
& Err.Source

%S
S
)
=
s ¥
S S
-
£
o D

End Sub

The following snippet, which provides the same functionality, demonstrates the
power of reducing UI code to a minimum:

Function doSave ()

Set oObj = CreateObject ("Business.BusinessObj")
If oObj.SaveDetails() Then

doSave = "Details Saved OK"
Else

doSave = "Details have not been saved"
End If

Set oObj = Nothing

End Function

So what’s so special about this function? Well, this function is calling exactly the
same method as the previous Click event, only this code has been taken from an
Active Server Page used in a corporate intranet. Because the vast majority of code
has been moved away from the front end of the application, the task of porting
the application to an HTML/ASP user interface is made extremely easy. In this
simple example, the SaveDetails method could care less who or what has called it;
it doesn’t matter whether it was a Win32 application or an ASP web server applica-
tion—or both!

Writing Custom Procedures

Custom procedures can be written in any type of VB module. As a general rule,
form modules should only contain procedures that need to refer to properties of
the controls contained within the Form. Therefore, a procedure that doesn’t refer
to any form control properties should be placed in a code module.

To create a new procedure, you can use either the Add Procedure dialog, which is
accessed from the Add Procedure option of the Tools menu, or you can move to
the bottom of the code window and start typing the Function or Sub definition.

There are three types of custom procedures in Visual Basic:

Functions
Sub procedures

Property procedures

The Structure of a VB Program 21

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Functions

A function is a collection of related statements and expressions that perform a
particular task. When it completes execution, the function returns a value to the
calling statement. If you don’t specify an explicit return value for the function, the
default value of the return data type is returned. If you write a custom function in
a class module and declare it as Public, it becomes a method of the class.

Here’s a quick example of a function that’s used to provide a minimum number:

Private Function MinNumber (ByVal iNumber As Integer)
As Integer
If iNumber <= 500 Then
MinNumber = iNumber
Else
MinNumber = 500
End If

End Function

Because functions return a value, you can use them as part of an expression in
place of a value. In the following snippet, the string passed to the VB Instr func-
tion is a custom function that returns a customer name given a customers code:

If InStr(l, GetCustomerName (sCustCode), "P") > 0 Then

For full details on the syntax and use of functions, see the Private, Public, and
Friend statements in Chapter 7, The Language Reference. For details of how to
pass values into a function, see Chapter 3, VBA Variables and Data Types.

Sub procedures

A sub procedure is used exactly the same way as a function, the only difference
being that it doesn’t return a value and therefore can’t be used as part of an argu-
ment. Sub procedures are used by Visual Basic to provide event handling.

In general you should use functions rather than subs to create custom procedures.
Functions allow you to return a value, which at a minimum could be a Boolean
True or False to inform the calling statement that the function has succeeded or
failed. I have done some testing to determine whether there is a performance hit
for using a function instead of a sub, and there is no appreciable difference
between the two, even though the function has to return a value to the calling
statement, and a sub procedure doesn’t.

Like a function, if you write a custom sub in a class module and declare it as
Public, it becomes a method of the class.

For full details of the syntax and use of Sub procedures, see the Private, Public,
and Friend statements in Chapter 7. For details of how to pass values into a sub
procedure, see Chapter 3.

Property procedures

Property procedures are specialized procedures that assign and retrieve values of
custom properties. They can be included only within object modules such as form
or class modules. There are three types of property procedures:

22 Chapter 2— Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Property Let
Assigns a value to a property

Property Get
Retrieves the value of a property

Property Set
Assigns an object reference to a property

For a more in-depth look at using properties and property procedures, see
Chapter 4, Class Moduules.

Controlling Execution Flow

So you’ve got your event handlers that spring into life when the user clicks a
button, or a form loads, or a Timer control fires its Timer event. You've written
some neat functions to do all the work behind the scenes. How do you link the
two?

Calling sub and function procedures

Sub procedures can be called in one of two ways. First, you can use the Call
statement, like this:

Call DoSomething (sSomeString, iSomeInteger)

If you use the Call statement, you must enclose the argument list in parentheses.
The other method of calling a sub is by simply using its name, but if you don’t use
the Call statement, don’t put parentheses around the argument list:

DoSomething sSomeString, iSomeInteger

If you aren’t going to use the return value of a function, you can use either of the
above methods to call the function. Otherwise, use the function name as part of
an expression. For example:

If GetItNow(sSomeStuff) = 10 Then

Like the Call statement, when you use a function call as part of an expression,
the argument list must be enclosed within parentheses.

For more information, see the entry for the Call statement in Chapter 7.

Explicitly calling event procedures

It's also possible to call an event handler from within your code. For example, to
replicate the user clicking on a button called cmdOne, you can use the code:

Call cmdOne_Click()

Because event handlers are private to the form in which they are defined, you can
only explicitly call an event handler from code within the same form.
Ending Your VB Program

At some stage, most users want to exit from a program. OK, yours might be a
really great program, but unfortunately the user may want to go off and do some-

Ending Your VB Program 23

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

%S
S
)
=
s ¥
S S
-
£
o D




thing else—like go home! You have to allow your application to both exit and tidy
up before it ends. One advantage you have when building an application in a
VBA-hosted environment is that you don’t have to worry too much about finishing
the program; the majority of the work is taken care of by the host application. You
just have to ensure that any object references are cleaned up, and all database
connections closed. You can place this type of code in the Close event. VB devel-
opers writing executables have to take care of unloading the application
themselves, but in most cases this is no more onerous a task than in VBA; this
section shows you how.

How to End Your Program

If you specified a form as the startup object, then you must unload this form to
close the application. You can do this by including the following statement some-
where in the form, usually in the event handler of an Exit menu option or Exit
command button:

Unload Me

If you specified a Sub Main procedure as the startup object, the program termi-
nates when the Sub Main procedure is completed. For example, here’s the Sub
Main you saw earlier in this chapter:

Sub Main()
Dim oForm as frmStartUp
Set oForm = New frmStartUp
oForm.Show vbModal
Set oForm = Nothing
End Sub

Because the form is shown modally, the Sub Main procedure doesn’t continue
until the form is either hidden—using the statement Me.Hide—or unloaded. Once
this happens, program execution is handed back to the Sub Main procedure,
which destroys the form object it created by setting the reference to Nothing.
When the End Sub statement is executed, the whole application terminates.

If you are writing an ActiveX DLL or EXE, things are slightly different: you
shouldn’t place any code in your application to terminate the application. The
termination should be handled by the operating system. Basically, when all refer-
ences to your ActiveX component are set to Nothing, your component is
unloaded from memory. You should, however, write code to destroy dependent
objects in the Terminate event handler of any of your classes that have created
dependent objects. You can find further information about this in Chapter 4.

How a Form Unloads
When a form is unloaded from memory, the following chain of events is triggered:

QueryUnload
Allows you to cancel the unloading of a form. For example, you could use
this event to check whether data in the form has been saved and, if it hasn’t,
prevent the form from unloading. The QueryUnload event passes a ByRef
argument named Cancel to the event handler; if you set this to True, the

24  Chapter 2— Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



unloading of the form is cancelled. This event is ideal for catching those users
who insist on closing an application using the Close Window button—the one
at the right of the titlebar—instead of using the nice Exit button or the menu
option that you provided.

Deactivate
This event is fired as the form loses focus to another form. You have to be
careful not to place termination code here, since this event being fired doesn’t
necessarily mean that the form is being unloaded from memory. If you have
an application in which multiple forms are displayed at the same time and
any can be selected, the Deactivate event is fired as you move away from one
form to another.

Unload
This is the point of no return. From here on, your application is on its way
out. Until Version 4 of VB, this was the end of the road. However, in the
same way that the Form Load event is now preceded by an Activate event, so
the Form Unload event is followed by a Terminate event.

Terminate
This event brings form modules into line with Class modules, and should be
used in place of the Unload event. As with the Form Load and Initialize
events, you should only use either the form’s Unload event or the Terminate
event, not both. Use either the Unload or Terminate events to destroy any
dependent objects you created during the lifetime of the form.

The End Statement

Visual Basic still supports an End statement, but this is purely for backward
compatibility. In general, its use should be discouraged. In particular, its use in
class modules and object-based VB applications is highly undesirable, since it has
no concept of object cleanup. If you follow the previous procedure, you’ll never
need the End statement.

Ending Your VB Program 25

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

%S
S
)
=
s ¥
S S
-
£
o D




CHAPTER 3

VBA Variables and Data Types

The VBA language offers a full set of the usual data types, plus a smart data type
called a Variant, which is the chameleon of the programming world, adapting
itself seamlessly to hold any type of data. This chapter lists the data types avail-
able in VBA and discusses a complete range of issues related to data types,
including variable scope and lifetime, the character of the variant, and perfor-
mance issues that arise in using particular data types.

Visual Basic Data Types

Visual Basic and Visual Basic for Applications support the following data types:

Boolean
Indicates the presence of logical data that can contain either of two values,
True or False. The keywords True and False are constants that are
predefined in VBA, so you can make use of them in your code when you
want to assign a value to a Boolean variable, as the following code fragment
shows:

varl = True
var2 = False

Many of the properties of ActiveX controls have possible values of True or
False. In addition, within programs, Boolean variables often serve as flags to
control program flow, as the following example, which toggles (or reverses)
the value of myBool within the If...Else...End If construct, shows:

If myBool = False Then
myVar = 4
myBool = True
Else
myVar = 5
myBool = False
End If

26

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Storage required
Two bytes
Range
True or False

Default value
False

Byte

The smallest numeric subtype available in VBA. Because only one byte holds
a number ranging from 0 to 255 (or 00 to FF in hexadecimal), there is no
room for the sign, and so only positive numbers can be held in a Byte data
type. Attempting to assign a negative number or a number greater than 255 to
byte data results in a runtime error.
Storage required

One byte
Range

0 to 255

Default value
0

Currency
Provides a special numeric format for storing monetary values.
Storage required
Eight bytes
Range
—-922,337,203,685,477.5808 to 922,337,203,685,477.5807

Default value
0

Date
Contains a specially formatted number that represents the date or time.
Storage Required
Eight bytes
Range
1 January 100 to 31 December 9999
Default value
00:00:00
Decimal
A variant subtype (and not a separate data type) that contains decimal
numbers scaled by a power of 10. Variants of subtype Decimal can only be
created by the CDec conversion function.
Storage required
14 bytes
Range
With no decimal point: +/— 79,228,162,514,264,337,593,543,950,335

Visual Basic Data Types 27

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

oS
S S
[y
=
S
T
“




With up to 28 decimal places: +/— 7.9228162514264337593543950335

Default value
0

Double
Stores a double precision floating point number; basically, it’s the industrial
strength version of the Single data type.

Storage required
Eight bytes

Range
Negative values: —1.79769313486232E308 to —4.94005645841247E-324

Positive values: 1.79769313486232E308 to 4.94065645841247E-324

Default value
0

Integer
A whole number that ranges from —32,768 to 32,767. One bit represents the
sign (either positive or negative). Attempting to assign a value outside its
range results in a runtime error.

Storage required
two bytes

Range
-32,768 to 32,767

Default value
0

Long
A signed integer stored in four bytes of memory. One bit represents the sign.

Storage required
Four bytes

Range
2,147 483,648 to 2,147,486,647

Default value
0

Object
Contains a reference to (i.e., the address of) an object. The object can be an
OLE automation object such as an ActiveX component, or it can be a class
object within your project. When you use the generic Object data type, rather
than a more specific object type, you automatically use late binding. For more
information about using the Object data type, see Chapter 4, Class Modules.

Storage required
Four bytes

Range
Any object reference

28 Chapter 3— VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Default value
Nothing”

Single
A single precision number that represents fractional numbers, numbers with
decimal places, or exponential numbers.

Storage required
Four bytes

Range
Negative values: —3.402823E38 to —1.401298E-45

Positive values: 1.401298E-45 to 3.402823E38

Default value
0

String (fixed length)
Popular in VB applications when memory and disk storage was at a premium
and programmers had to spend most of their time optimizing the size of
applications, fixed-length strings are now rarely used. To declare a fixed-
length string, use the syntax:

oS
S S
[y
=
S
T
“

Dim|Private|Public varname As String * stringlength
Storage required

Length of string
Range

1 to 65,400 characters

Default value
A number of spaces equal to the length of the string

String (variable length)
String data type that expands and contracts dynamically to store as many
characters as required, up to somewhere in the neighborhood of two billion.
To declare a variable-length string, simply use the String keyword:

Dim variablename As String
VBA includes many useful intrinsic functions for handling and manipulating
string data. The list of string functions has been expanded in VB6, as many of
the string-manipulation functions introduced into VBScript have now made
their way into the full language.
Storage required

10 + length of the string
Range

0 to 2 billion characters

Default value
Zero-length string (")

* Nothing and Empty are special Variant data subtypes and do not have the same meaning.
For more information, see the section about the Variant data type later in this chapter.

Visual Basic Data Types 29

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



User-defined type
A user-defined type allows you to create a single data type consisting of a
combination of intrinsic VB data types, arrays, objects, or other user-defined
types. User-defined types are created using the Type statement. The following
snippet shows how to declare a user-defined type:

Type udtCustomer
Name As String
Code As Long
Orders (20) As udtOrders
RenewalDate As Date
End Type

User-defined types are important data structures in VB and are often essential
when interfacing with the Windows API. For more information on user-
defined types, see the section “User-Defined Types” later in this chapter and
the entry for the Type statement in Chapter 7, The Language Reference.

Storage required
Sum of storage size of the individual elements

Range
Same range as data type of individual elements

Default value
The default value of the individual elements

Variant (character)
The variant string subtype is very much like a variable-length string data type.
All VB string functions can accept variant strings, and many have two versions
that return either a strongly typed string data type or a variant string subtype.
For example, the ZLeft function—which returns the leftmost n characters of a
string—has two variations, Left$§ (which returns a string data type) and Left
(which returns a variant of subtype string).

Storage required
22 bytes + length of string

Range
Same as variable length string

Default value
Empty”

Variant (numeric)
The variant numeric subtype holds any numeric value. As with all variant
data, memory allocation changes dynamically to accommodate the numeric
value. The variant also includes a special Decimal subtype that doesn’t have
an intrinsic equivalent, and allows you to hold very large numbers in a variety
of formats.

Storage required
16 bytes

* Nothing and Empty are special Variant data subtypes and don’t have the same meaning. For
more information, see the section about the Variant data type later in this chapter.

30 Chapter 3— VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Range
Same as Double

Default Value
Empty™

Type Conversion

VBA provides two sets of built-in conversion functions. The first set, which
includes Int and Str, is from the early versions of VB and is simply left in for back-
wards compatibility. The functions of the second set all start with the letter “C” and
are the more recent conversion functions. Microsoft recommends that you use this
latter set of functions, since they are locale-aware; that is, they take account of
international date, time, and number settings on the host system.

The syntax for each of the latter conversion functions is basically the same. For
example:

CBool (variablename)

where variablename is either the name of a variable, a constant, or an expres-
sion (like x-y) that evaluates to a particular data type. Regardless of the particular
function you use, the data type being converted is immaterial; what matters is the
data type to which you want to convert a particular value.

The conversion functions supported by VBA are:

CBool
Converts variablename to a Boolean data type. variablename can contain
any numeric data type or any string capable of being converted into a
number. If variablename is 0 or “0”, CBool returns False; otherwise, it
returns True (-1).

CByte
Converts variablename to a Byte data type. variablename can contain any
numeric data or string data capable of conversion into a number that is
greater than or equal to 0 and less than or equal to 255. If variablename is
out of range, VBA displays an Overflow error message. If variablename is a
floating point number, it’s rounded to the nearest integer before being
converted to byte data.

CDec
Converts variablename to a Decimal data subtype. The function accepts any
numeric data within the limits of the Decimal data subtype or any string data
that can be converted to a number within the range of the Decimal data
subtype. This conversion function provides the only method of creating a
Decimal data subtype.

CDate
Converts variablename to a Date/Time data type. CDate accepts numeric and
string data that appears to be a date and converts it to the format specified by

* Nothing and Empty are special Variant data subtypes and do not have the same meaning.
For more information, see the section about the Variant data type later in this chapter.

Type Conversion 31

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

oS
S S
[y
=
S
T
“




the locale information on the host computer. For example, on a machine set to
the American date format mm/dd/yy, if you enter a date in the British date
format dd/mm/yy in a text box and use the CDate function on the contents of
the text box, CDate converts it to the American mm/dd/yy format.

CCur
Converts variablename to a Currency data type. CCur accepts any numeric
or string data that can be expressed as a currency value. The function recog-
nizes the decimal and thousands separators based on locale information on
the host computer. It, as well as the currency variant subtype, is recognized
by VBA only.

CDbl
Converts variablename to a double precision data type. The function
accepts any numeric data within the limits of the Double data type or any
string data that can be converted to a number within the range of the double
data type.

Clnt
Converts variablename to an Integer data type. CInt accepts any numeric
data within the limits of the integer data type or any string data that can be
converted to a number and is within the limits of the integer data type.

CLng
Converts variablename to a Long data type. The function accepts any
numeric data within the limits of the long integer data type or any string data
that can be converted to a number whose value lies within the range of a
long integer.

CSng
Converts variablename to a Single data type. The function accepts any
numeric data within the limits of the single data type or any string data that
can be converted to a number within the range of the Single data type.

CStr
Converts variablename to a String data type. CStr accepts any kind of data.

CVar
Converts variablename to a Variant data type. CVar accepts any kind of
data.

Implicit Type Conversion in VB

It's worth mentioning that Visual Basic handles a lot of data type conversion for
you in the background. For example, the Text property of a VB text box is quite
clearly a String data type, not a Variant, and the Prompt property of a message box
is also a string. Given this, you might not expect the following code to run
successfully without generating a runtime type mismatch error:

Private Sub Commandl_Click()

Dim iValue As Integer

32 Chapter 3— VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



ivalue = txtTextBox.Text
MsgBox Prompt:=iValue

End Sub

But assuming that a number is entered in the text box, there is no error; instead,
you can see from this example that VB allows you to assign a string representa-
tion of a number to an Integer data type, then assign this integer to the Prompt
property of a message box. VB handles the conversion of data types without your
having to do it explicitly.

The Variant

VBA contains a special data type, the Variant. Internally, the Variant is highly
complex, but it’s also extremely easy to use. The Variant is the default data type of
VBA, so the following code casts myVar as a variant:

Dim myVar

The Variant data type allows you to use a variable with any of the intrinsic VBA

oS
S S
[y
=
S
T
“

data types, automatically working out what is the closest data type to the value
you are assigning. When you consider the amount of processing required to deter-
mine what data type should be used for an abstract value, it’s a testament to the
VB development team at Microsoft that the Variant is as quick as it is. However,
there is a slight performance hit when using both variant data and functions that
return variant data, which we discuss later in this chapter.

Another drawback to using variant data is that your code becomes at best horrible
to read, and at worst unreadable! To illustrate, consider two versions of the same
function, the first written exclusively with variants, the second using strong typing:

Private Function GoodStuff (vAnything, vSomething,

vSomethingElse)

If vAnything > 1 And vSomething > "" Then
GoodStuff = vAnything * vSomethingElse

Else

GoodStuff = vAnything + 10

End If

End Function

Private Function GoodStuff (iAnything As Integer,

sSomething As String,
iSomethingElse As Integer)
As Integer

If iAnything > 1 And sSomething > "" Then
GoodStuff = iAnything * iSomethingElse

Else

GoodStuff = iAnything + 10

End If

End Function

I know which one I’d rather maintain!

The Variant 33

VB & VBA in a Nutshell: The Language, eMatter Edition

Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



So how do you use variant data? Well, at the simplest level, you can ignore the
fact that there are such things as data types (or, to be more precise, when using
variants, you can ignore data subtypes). But to be a proficient VB programmer, if
you use variants at all, it’s best to be aware that every item of variant data has a
subtype (like Integer, Long, or String) that corresponds to one of the major data
types. And Decimal data is something of an exception: it's only available as a
subtype of the Variant data type.

Special Variant Data Subtypes

In addition to all the intrinsic data types detailed above, the variant also supports
the following special data types:

Empty
The Empty subtype is automatically assigned to new Variant variables when
you declare them, but before you explicitly assign a value to them. For
instance, in the code fragment:

Dim varl, var2
var2 = 0

the subtype of varl is Empty, whereas var2 is only Empty for the brief
period of time between the execution of the Dim statement on the first line
and the assignment statement on the second line. In addition, a variable’s
subtype is Empty if it has been explicitly assigned a value of Empty, as in the
following code fragment:
Dim varl
varl = Empty

Null
Null is a special data subtype that indicates a variable doesn’t contain any
valid data. Usually, a variable is assigned a null value to indicate that an error
condition exists. In order for its subtype to be Null, a variable must have a
Null value assigned to it explicitly, as in the following line of code:

varl = Null

A Null value also results from any operation in which the value of one or
more of the expressions is Null, as the following code fragment shows:

dim myVarOne, myVarTwo, myVarThree 'All three variables are EMPTY now
myVarOne = 9

myVarTwo=NULL 'Weve made this variable NULL
myVarThree = myVarOne + myVarTwo "The result is NULL

Error
The Error subtype is used to store an error number. Error numbers are gener-

ated automatically by VBA, and can then be used by your error handling
routine. Error-handling routines are discussed in Chapter 6, Error Handling.

Determining the Variant Subtype

Having the variant data type take care of your data typing is all well and good, but
what happens when you need to know exactly what type of data is stored to a
variable? VBA provides two functions: VarType, which returns a number that indi-

34 Chapter 3— VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



cates the type of data stored to a variable; and TypeName, which returns a string
containing the name of the data type.

VarType

The syntax of VarType is:
VarType (variablename)

where variablename is the name of the variable whose subtype you want to
determine. You can provide the name of only a single variable at a time. The
following table details the possible values returned by VarType and the data
subtypes they represent. For purposes of reference, the table also lists the
VBA constants you can use in your code to compare with the values returned
by the VarType function.

Value Data Subtype VBA Constant § §

0 Empty VbEmpty ;. %

1 Null vbNull B
%

2 Integer vbInteger

3 Long Integer vbLong

4 Single vbSingle

5 Double vbDouble

6 Currency vbCurrency

7 Date vbDate

8 String vbString

9 OLE Automation Object vbObject

10 Error vbError

11 Boolean vbBoolean

12 Array of Variant vbVariant

13 Data access object vbDataObject

14 Decimal vbDecimal

17 Byte vbByte

36 User-defined Type vbUserDefinedType

8192 Array vbArray

Actually, the VarType function never returns 8192, as shown in the table; this
is only a base figure indicating the presence of an array. When passed an
array, VarType returns 8192 plus the value of the array’s underlying data type.
For example, if you pass the variable name of an array of string to VarType,
the return value is 8200 (8192 + 8).

TypeName

The TypeName function allows you to write more readable, self-documenting
code by returning the name of the data subtype rather than a more abstract
number. The syntax for TypeName is:

result = TypeName (variable)

The Variant 35

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Like the VarType function, TypeName is read-only; you can use it to deter-
mine the subtype of a variable, but you can’t use it to explicitly set the type of
a variable. To do this, you must use the conversion functions discussed in the
previous section. The following table shows the string that the 7)peName
function returns for each data subtype.

Return Value Data Subtype

<object type> Actual type name of an object
Boolean Boolean value: True or False

Byte Byte value

Currency Currency value

Date Date or time value

Decimal Decimal (single-precision) value
Double Double-precision floating-point value
Empty Uninitialized

Error Error

Integer Integer value

Long Long integer value

Nothing Object variable that doesn’t yet refer to an object instance
Null No valid data

Object Generic object

Single Single-precision floating-point value
String Character string value

Variant() Variant array

Unknown Unknown object type

If you pass an array of a particular data type to TypeName, the same return
string is used for the underlying data type of the array, suffixed with “()” to
denote an array. Therefore if you pass the variable name of an array of strings
to TypeName, the return value is “String()”.

As for making your code more readable and easier to maintain, just look at
this snippet:
If TypeName (x) = "Double" Then

Now you’ve no excuse for getting those nasty “type mismatch” errors!

Variant and Strongly Typed Data

The Variant might appear to be the answer to all your data type needs, but there’s
a price to pay. The variant is more than a data type, it's a program within itself. It
takes a lot of processing to determine the data type of an abstract value. In tests
I've carried out, an expression consisting of only variant data executes about 30%
slower than the same expression using the correct intrinsic data types.

36  Chapter 3— VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Variant and Strongly Typed Functions

The VBA language includes a number of string-handling functions that have two
versions, one that returns a variant and the other that returns a string. The latter
are suffixed with the old string-specifying character $ (for example, Left$), while
the former simply include the name of the function (for example, Lef?.

I have put the two versions through some performance testing to determine if
there is a significant difference in their performance. To simplify matters, I tested
both Left and Left$ and Mid and Mid$. When using the strongly typed versions, 1
assigned the result to a string data type and passed string data types as parame-
ters; when using the variant versions, I assigned the result to a variant and passed
variant data types as parameters.

For example, here is a variant version of a sample code fragment that illustrates
the performance tests:

Dim sString
Dim sPartString

sString = "ABCDEFGH"

sPartString = Mid(sString, 1, 2)
and here is the String version:

Dim sString As String
Dim sPartString As String

sString = "ABCDEFGH"

sPartString = Mid$ (sString, 1, 2)

I found that the variant version of each function executed about 50% slower than
its string counterpart. This obviously is a significant difference, and it suggests that
we should use the typed versions of all functions whenever they are available.

Declaring Variables and Constants

As was mentioned earlier, VBA supports a default data type, which means that,
unlike many other programming languages, VBA allows the implicit declaration of
variables. As soon as you use a variable or constant name within your code, VBA
does all the necessary work of allocating memory space, etc., and the variable is
considered to be declared.

However, it’s good programming practice (and one that will save you endless
hours of grief) to explicitly declare any variables and constants you want to use by
using the Dim, Private, or Public statements. Their syntax is:

Dim VariableName As datatype
Private VariableName As datatype
Public VariableName As datatype

If you have a number of variables to declare, you can do this on a single line by
separating them with commas, as in the following Dim statement:

Declaring Variables and Constants 37

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

oS
S S
[y
=
S
T
“




Dim iRefNo As Integer, iAnyVar As Integer

By explicitly declaring variables in this manner, you can reduce the number of
bugs in your code caused by spelling errors, perhaps the most common of
programming errors. Once declared, a variable name is available to you in the
IntelliSense statement completion drop-down list, which means that you should
never have a misspelled variable again!

For full details of how to use the Dim, Private, and Public statements, see their
entries in Chapter 7. There is further discussion later in this chapter about how the
declaration of variables affects their scope and lifetime.

Option Explicit

Using the Option Explicit statement is good programming practice. It forces us
to declare all variables and constants. You can automatically have VB add this to
new modules as they are created by checking the Require Variable Declaration
option, which can be found on the Editor tab of the Options dialog. (Select the
Options option from the Tools menu to open the dialog.)

When the Option Explicit statement is used, VB generates a compile-time error
if it encounters a variable that has not been declared.

A Whole Load of Nothing

An important element of any programming language is its ability to detect and to
handle nothing. By nothing, T actually mean “no valid data.” Because there are
several different types of “nothingness,” the VBA language has developed a
number of ways to allow you to determine or to assign empty or null values to a
variable. An understanding of the differences is important, since each has its own
uses and, in the main, they aren’t interchangeable.

vbNull
Used with the VarType function to determine if a variable contains Null. For
example:

varValue = Null
If VarType(varValue) = vbNull Then

Note that you can’t use the constant to assign a Null value. If you assign

vbNull to a variable, you actually assign a value of 1 (or “17, if the variable is
a string), and the IsNull test will fail.

vbNullChar
Assigns or tests for a null character (as distinct from a Null value); a null
character has a value of Chr(0). In other words, vbNullChar is simply the
equivalent of assigning Ch#(0) to a variable and can test a variable to deter-
mine whether its value is a null character.

This constant is useful when passing strings to external libraries that expect a
null-terminated string. For example:

sMyString & vbNullChar

vbNuliString
Assigns or tests for a zero-length (empty) string. For example, the statement:

38 Chapter 3— VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



strVarl = vbNullString
is equivalent to:
strvarl = ""

Null keyword
Assigns a Null value to a variant variable. You can then test the variable for a
null value by calling the IsVull function. Note that the code fragment:

varValue = Null
if varvalue = Null

returns False, since a Null is False and therefore causes any expression
containing Null to return False. The following code fragment shows how to
use, and how not to use, the Null keyword:

Dim i As Variant

i = Null

oS
S S
[y
=
S
T
“

If 1 = Null Then
MsgBox "It's null" 'this fails
End If

If IsNull(i) Then
MsgBox "It's null" 'this works
End If

Also note that the Null keyword can’t be used to assign a Null value to a
strongly typed variable; instead, it generates an “Invalid use of Null” error.

vbEmpty
Determines whether a variant has been initialized. For example:

If IsEmpty(varValue) Then
is identical to:
If varValue = vbEmpty then

However, you shouldn’t use vbEmpty to assign an empty value to a variant. If
you do, you actually assign 0 (or “0” if the variable is a string), and an
IsEmpty function call will fail.

Nothing keyword

Used only with object variables to determine either if a variable has a valid
object reference, as in:

If objVar Is Not Nothing Then
or to destroy a current object reference, as in:

Set objvar = Nothing

Array Variables

Before we look at the types of arrays at our disposal, let’s quickly cover some of
the terminology used when talking about arrays. Creating an array is called dimen-
sioning the array (i.e., defining its size). The individual data items within the array

Array Variables 39

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



are known as elements, and the number used to access an element is known as an
index. The lowest and highest index numbers are known as bounds or bound-
aries. In VBA, there are four types of arrays: arrays can be either fixed or dynamic,
and arrays can also be either one-dimensional or multidimensional.

Fixed Arrays

Most of the time, we know how many values we need to store in an array in
advance. We can therefore dimension it to the appropriate size, or number of
elements, prior to accessing it by using a Dim statement like the following:

Dim myArray (5) As Integer

This line of code creates an array, named myArray, with six elements. Why six? All
VBA arrays start with location 0, so this Dim statement creates an array whose
locations range from myArray (0) to myArray (5).

Populating Arrays: The Array Function

If you want to populate an array with a series of values, use the Array func-
tion. The function allows you to quickly assign a range of comma-delimited
values to an array. For instance:

myArray = Array(12,3,13,64,245,75)

To use the Array function, simply declare a variant variable, then assign the
values of the array to the variable using the Array function. Any data type
(even mixed data types) can be used with the Array function. Another point
to remember about arrays built using the Array function is that they are
always based at 0, regardless of the Option Base setting, which is used to
define the lower boundary of an array.

But what happens if you try to access an element greater than five or less than
zero? You get an error message, “Subscript out of range.” In the next section you’ll
see how to check the size of the array before attempting to access a given
element.

Dynamic Arrays

Fixed arrays are fine when we know in advance how many values or elements we
need. But there are many cases where we do not have prior knowledge of this,
and we need a way to expand our array should we have to. For example, one
convenient use of an array is to store input from the user and allow the user to
input as many items of data as he or she likes. Our application therefore has no
way of knowing how to dimension the array beforehand. We can handle this situ-
ation by declaring and using a dynamic array. Dynamic arrays allow you to
expand the number of array elements using the ReDim statement to redimension
the array while the program is running.

40 Chapter 3 — VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



A dynamic array is declared by leaving out its number of elements, like this:
Dim iDynamicArray() As Integer

When you need to resize the array, use the ReDim keyword:
ReDim iDynamicArray (10)

You can also declare a dynamic array and specify the initial number of elements at
the same time by using ReDim:

ReDim anyDynamicArray(4) As Integer

There is no limit to the number of times you can redimension a dynamic array, but
obviously, messing around with variables in this way carries an element of risk. As
soon as you redimension an array, the data contained within it is lost. Don’t panic;
if you need to keep the data, use the Preserve keyword:

ReDim Preserve myDynamicArray (10)

In fact, ReDim creates a new array (hence its emptiness). Preserve copies the
data from the old array to the new array. Another important point to note is that if
you resize an array by contracting it, you always lose the data in the deleted array
elements.

Note that while you can resize an array by modifying its upper bound, you can’t
resize the lower bound of an array; this generates runtime error 9, “Subscript out
of range.”

ReDim Preserve’s Performance

As you have seen, dynamic arrays are resized using the Preserve keyword
by creating a new array in memory and copying the contents of the old
array into the new. This can obviously have an adverse affect on applica-
tion performance. The larger and more complex the array becomes, the
longer it takes to resize. Wherever possible, you should use fixed size
arrays. And if you do choose to use dynamic arrays, you should avoid
resizing the array each time you want to add an element; instead, you
should add an arbitrary number of elements at a single time, as the
following code fragment illustrates:

If 1lngCurPtr > UBound(varArray) Then
ReDim Preserve varArray (UBound(varArray) + 10)
End If

In this case, we add 10 elements each time we redimension varArray.
Depending on the expected size of the array, we could select any number
greater than one, or we could even double the size of the array as long as
we were reasonably certain that the array would remain fairly small
(geometric progression has a habit of consuming memory very rapidly).

Array Variables 41

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

oS
S S
[y
=
S
T
“




The following snippet shows how to use a dynamic array to save multiple inputs
from the user. When the user clicks on the emdButtonl button, the contents of
the text box are added to sMyArray, an array that is dynamically resized
beforehand:

Option Explicit 'require variable declaration
ReDim sMyArray(0) As String 'create a l-element dynamic array
Dim iIndex As Integer 'variable to track array index
iIndex = 0 'assign the first index number

Sub cmdButtonl_OnClick

'Store the user input in the array

sMyArray (intIndex) = txtTextl.Text

'increment the array counter by one

iIndex = iIndex + 1

'increase the size of the array

ReDim Preserve sMyArray (iIndex)

txtTextl.Text = "" 'Empty the text box again
End Sub

The above example is fine as it stands, except that, as you can see from the source
code, we have to keep track of the size of the array by using the intIndex vari-
able. But VBA allows a much cleaner approach to the problem of finding out how
many elements there are in the array.

Determining array boundaries

The UBound and LBound functions can find the upper index and the lower index,
respectively, of an array.

The syntax for UBound is:
x = UBound (arrayname)

UBound returns the highest index number of an array. The actual number of
elements in the array depends upon the starting point of the array. If the default
lower boundary of 0 has been used, then UBound is one less than the actual
number of elements in the array. For example, if sMyArray has 10 elements and a
lower boundary of 0, Ubound (sMyArray) returns the number 9. So we would
determine the total number of elements in an array as follows:

iArraySize = UBound(array) + 1

If, however, the lower boundary has been set to 1, UBound returns the actual
number of elements is the array. It therefore makes sense to use the LBound func-
tion in conjunction with the UBound function to determine the actual number of
elements in the array, as follows:

iArraySize = UBound (array) - LBound(array) + 1

The UBound function is especially useful when dealing with dynamic arrays, as
this snippet demonstrates:

Option Explicit

Private sValues() As String

42  Chapter 3— VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Private Sub Form_Load()
ReDim sValues (0)
End Sub

Private Sub Commandl_Click()

sValues (UBound (sValues)) = txtTextBox.Text
ReDim Preserve sValues (UBound(sValues) + 1)

End Sub

Note that using the UBound function on an uninitialized array generates a
Subscript Out of Range error; therefore, the Form_Load event is used to redimen-
sion the array to 0 to insure that the array has one element.

Setting the lower boundary

By default, VBA arrays start with element 0. However, you can change this on a
per-module basis by using the Option Base statement in the declarations section
of your module. For example:

oS
S S
[y
=
S
T
“

Option Base 1

generates arrays starting with element 1. The Option Base statement must be
used in the module before any variable declarations.

Another method used to set the lower boundary is to specify both the lower and
upper boundaries when the array is dimensioned, as the following syntax shows:

Dim arrayname(lowerboundary To upperboundary) As datatype

Multidimensional Arrays

The arrays we have looked at so far are single-dimension arrays; they hold one
element of data in each index location, which is fine for most needs. However,
sometimes you need a full set of data for each element; this is called a multidi-
mensional array.

In a single-dimension array, the data held within has no structure; it’s accessed
sequentially, and there is one piece of data for each element. When you need to
store more than this one piece of data for each logical element, you should use
either a multidimensional array or a user-defined type (which is discussed in the
next section).

A multidimensional array allows you to have a separate array of data for each
element of your array. Therefore, each element of the array in turn contains an
array. The structure of a multidimensional array resembles that of a database table.
The rows (or records) of the table represent the first dimension, and the columns
(or fields) represent by the second dimension, as the following table illustrates.

| Field 1 | Field 2 | Field 3
Record 1 | Array Element (0,0) Array Element (0,2)
Record 2 Array Element(1,1)

Array Variables 43

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Field 1 Field 2 Field 3

Record 3
Record 4 | Array Element (3,0) Array Element (3,2)

Multidimensional arrays can contain up to 60 dimensions, though it's
extremely rare to use more than two or three dimensions.

To define a multidimensional array, use the following syntax:

Dim arrayname (upperboundDimensionl,
upperboundDimension2, ....) As Datatype

As with single-dimension arrays, you can also specify the lower boundary within
the array definition, and you can specify different lower boundaries for each
element. For example:

Private myArray (1l To 20, 0 To 50) As String

Dynamic multidimensional arrays

Like single-dimension arrays, multidimensional arrays can be dynamic, and the
rules for redimensioning them are similar. But since you have more than one
dimension to think about, you have to take care how you use and redimension
your array. The rules for using a dynamic multidimensional array are:

e You can ReDim a multidimensional array to change both the number of
dimensions and the size of each dimension. This is illustrated by the follow-
ing, where the myArray dynamic array is originally defined as a two-dimen-
sional array with 11 elements in the first dimension and 6 in the second, but is
then redimensioned into a three-dimensional array with 5 elements in the first
dimension, 11 in the second, and 3 in the third.

Private myArray() As Integer

Private Sub cmdButtonOne_OnClick
ReDim myArray(10,5)

End Sub

Private Sub cmdButtonTwo_OnClick
ReDim myArray(4,10,2)

End Sub

e If you use the Preserve keyword, you can only resize the last array dimen-
sion, and you can’t change the number of dimensions at all. For example:

ReDim myArray(10,5,2)

ReDim Preserve myArray(10,5,4)

44  Chapter 3 — VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Using UBound and LBound with multidimensional arrays

As you saw earlier, the UBound function returns the highest subscript (element
number) in an array—that is, its Upper Boundary. You can also use UBound with
a multidimensional array, except that to find the largest element of a multidimen-
sional array, you need to also specify a dimension:

largestElement = UBound (arrayname, dimensionNo)
The same is true of the ZBound function:

smallestElement = LBound (arrayname, dimensionNo)

User-Defined Types

One major limitation of the multidimensional array is that all the dimensions
within the array must be of the same data type. The user-defined type (UDT),
which combines multiple data types into a single new data type, overcomes this
limitation.

oS
S S
[y
=
S
T
“

Since VB 4.0, UDTs have gone out of fashion somewhat, this fall from favor
having resulted from the introduction of the Collection object, which on the
surface operates like an infinitely flexible UDT. However, VB6 has given the
humble UDT a new lease on life by allowing UDTs to be passed as property
values and to be used in public function declarations. This is good news, as the
UDT is far more efficient than a Collection object.

So what is a user-defined type? Simply put, it’s a pseudo-data type constructed
from other data types. One of its common applications is the replication of a data
record in memory. For example, let’s say you want to create a local array to hold
the data of your customer records. Because each of the fields within the record is
of a different data type, a multidimensional array can’t be used. A UDT, on the
other hand, is ideal in this situation. The following snippet defines a simple UDT:

Private Type custRecord
custAccNo As Long
custName As String
RenewalDate As Date

End Type

Private custArray(10) As custRecord
The last line of code creates a local array of the UDT.

You can also use other UDTs within a UDT, as the following example
demonstrates:

Private Type custOrders
OrderNo As Long
OrderDate As Long

End Type

Private Type custRecord
custAccNo As Long
custName As String
RenewalDate As Date

User-Defined Types 45

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



orders (10) As custOrders
End Type

Private custArray(10) As custRecord

Here, a user-defined type, custOrders, is defined to hold the OrderNo and
OrderDate fields; then, within the custRecord UDT, an array of type custRecord is
defined.

Here are two simple lines of code that access the data within these UDTs:

Textl.Text = custArray(iCust) .custName
Text2.Text = custArray(iCust) .orders (iOrder) .0OrderNo

Variable Scope and Lifetime

Sometimes you need a variable to be seen by all the procedures within your
project, while other variables should only be available within a particular proce-
dure. The visibility of a variable is known as its scope. Closely related to a
variable’s scope is its lifetime, or the period of program execution when the vari-
able is live and available for use. Precisely where you declare a variable or
constant in a program determines its scope and its lifetime.

In a nutshell, variables declared in the declarations section of a module using the
Private keyword can be accessed by all the procedures within the module. Vari-
ables declared in the declaration section of a code module using the Public
keyword can be accessed by the whole project. Variables declared in the declara-
tion section of a class module using the Public keyword can be accessed by the
whole project once an object reference has been made to the class. And variables
declared using the Dim statement within a subroutine or function can only be
accessed in the procedure in which they’ve been declared.

Procedure-Level Scope

A variable that is declared within an individual procedure (that is, within a subrou-
tine or a function) can only be used within that procedure, and is therefore said to
have procedure-level scope. You can therefore define different variables that use
the same name in different procedures (like the simple x variable commonly used
in the For. . .Next loop). You can even use the same variable names in a calling
procedure and in a procedure that it calls, and they will be treated as two sepa-
rate variables.

The lifetime of a procedure-level variable ends when the End Sub or End Func-
tion statement is executed. As soon as the procedure is complete, references to
the variables defined within that procedure are erased from the computer’s
memory. This makes procedure-level variables ideal for temporary, localized
storage of information.

There is also a special type of variable that has procedure-level scope, called a
static variable. A static variable is defined within a procedure, and although it has
procedure-level scope, it has module-level lifetime. In practice, this means that
you can only use the variable within the procedure in which it’s defined, but its

46  Chapter 3— VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



value is maintained between calls to the procedure. To declare a static variable,
you use the Static keyword in a procedure; for example:

Static lngExecuted As Long

You can also declare a procedure as Static, in which case all variables declared
within the procedure are treated as static, and their values are preserved between
calls to the procedure. For example:

Static Procedure MyProcedure ()
Dim iCtr As Integer

Declaring a variable within a procedure must be done using the Dim or Static
statement; you can’t declare a variable or constant as Public, Private, or
Friend within a procedure.

Module-Level or Private Scope

A variable has module-level scope when it can be accessed by all the subroutines
and functions contained in a particular module. Variables and constants that have
module-level scope also reside in memory for the lifetime of the module. That is
to say, as long as the module remains in memory, its module-level variables and
constants also remain in memory. To create a variable with module-level scope,
you must declare it in the module’s Declarations section (that is to say, outside of
any subroutine or function) by using either the Dim or Private statement.

Friend Scope

The Friend keyword can only be used for variables and procedure declarations
within an object module, such as a class or a form module. Friend scope gives
other object modules within the project access to the variable or method without
requiring that it be declared as Public, which would include it in the class type
library, thereby making it accessible by software objects outside the project.

Public Scope

Used outside of a procedure in place of the Dim statement, Public allows a vari-
able to be seen by all procedures in all modules in the current project. If used in
the context of a Class module, its scope is extended beyond the boundaries of the
current project. The automatic creation of a COM interface for any public proce-
dure or property means that it can be called by other software components as a
method or property of the class in which it’s defined.

Object Variables and Binding

Although Object variables are in many ways no different from other types of vari-
ables, the fact that they are references to other software components rather than
simple values warrants special attention. While objects, classes, and binding are
discussed in greater depth in Chapter 4, a short introduction to the subject is
nevertheless worthwhile.

Object Variables and Binding 47

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

oS
S S
[y
=
S
T
“




Declaring Object Variables

Object variables are declared in much the same way as other variables. There are
three ways to declare an object variable:
Dim myObject As LibName.ClassName

Dim myObject As New LibName.ClassName
Dim myObject As Object

In each of the methods shown above, a Private or Public statement can replace
the Dim statement, and the same scope rules apply as for other variables.

In the first declaration, the object variable is referenced to the class type library,
but no instance of the class is assigned to the variable. At this stage, myObject is
set to Nothing. To reference the class in this manner, you must have used the
References dialog to add a reference to the class to your project. To assign a refer-
ence to a real instance of the class, you must use the Set statement prior to using
the variable; for example:

Set myObject = LibName.ClassName
This produces an early bound reference to the object.

In the second declaration, a reference to a new instance of the class is assigned to
the object variable, which is now ready to use immediately. Again, to reference the
class in this manner, you must have first used the References dialog to add a refer-
ence to the class to your project. This second method also produces an early
bound reference to the object; however, the object isn’t actually created until the
object variable is used.

In the third declaration, the object variable has been declared as a generic Object
data type. This is useful when you don’t know beforehand what type of object
you will be creating. At this stage, the object variable also has a value of Nothing;
to assign an object reference to it, you must use either the CreateObject or GetOb-
Ject functions. An object variable declared in this manner is said to be late bound.

Early and Late Binding: Performance Comparisons

Whenever you read about when and why to use early binding and late binding,
the choice always seems unambiguous: late binding is less efficient than early
binding. But this isn’t always the case; there are a number of factors to consider
when choosing a method of object binding.

First, does the object to which you are binding execute within the same process as
the client, or does it run in its own process? Will it be running on the same
machine or on a remote server? In general terms, late binding is slightly more effi-
cient for out-of-process ActiveX EXEs, and early binding is vastly more efficient for
in-process DLLs.

A second factor that affects the relative performance of late and early binding is
the operating system. The differences between late and early binding appear to be
magnified on Windows 95, whereas they are less noticeable under Windows NT
4.0. You may also find variations if your DLL is running through Microsoft Transac-
tion Server.

48 Chapter 3— VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



In short, you should always bear in mind that efficient communication between
software components takes careful planning and testing. You should be prepared
to create test projects to experiment with the various options and to assess their
performance.

In the same way that you should carefully consider how to handle your Object
variables, the same performance considerations come into play when you are
deciding how to pass variables between procedures and software components.

The Collection Object

VBA features one generic object type, the Collection object, which is simply a
container for data. Although typically its members are other objects, it can in fact
hold data of any type, including other collection objects. The collection object is
therefore an object-oriented version of the Visual Basic array. It supports the
following four methods:

Add
Adds an item to the collection. Along with the data itself, you can specify a
key value by which the member can be retrieved from the collection.

Count
Returns the number of items in the collection.

Item
Retrieves a member from the collection either by its index (or ordinal posi-
tion in the collection) or by its key (assuming that one was provided when
the item was added to the collection).

Remove
Deletes a member from the collection either by its index or its key.

For example, the following code fragment defines a collection object, colStates,
to hold U.S. state information, and adds two members to it that can later be
accessed by their key, which in this case happens to be their two-letter state code:

Dim colStates As New Collection
colStates.Add "New York", "NY"
colStates.Add "Michigan", "MI"

As we've noted, collection objects, like arrays, are containers for data. Like the
elements in arrays, the members of collections can be iterated using the For
Each. . .Next construct. And like arrays, they are accessible by their index value,
although the lower bound of a collection object’s index is always 1, and can’t be
set otherwise in code. But given the similarity to arrays, why use collection
objects, rather than arrays, in your code? The major reason is ease of access and
ease of maintenance:

e Members can be added before or after an existing member based on the lat-
ter’s key value as well as its index value.

e Members can be retrieved based on either their key value or their index
value.

e Members can be deleted based on either their key value or their index value.
Multiple deletions based on an index value, however, should be done back-

Object Variables and Binding 49

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

oS
S S
[y
=
S
T
“




wards, from higher index values to lower ones, since the collection is rein-
dexed after each deletion.

Passing Parameters

There are numerous occasions when you need to call a custom function or
subroutine from another function or subroutine, and a variable you are using in
the calling procedure is needed in the called procedure. You therefore pass the
variable as a parameter to the called procedure. Whether the called procedure is in
the same module, the same project, or is a method within a class on a remote
server, passing variables from one procedure to the other is always the same.

The called procedure, and not the calling procedure, determines how the variable
is passed from the calling to the called procedure. As the user of a called proce-
dure, you have no control over how Visual Basic treats the passed parameters. As
the author of a called procedure, it’'s up to you to decide how best to bring in vari-
ables from calling procedures.

Visual Basic allows you to pass variables between procedures and components in
two ways. Within the function or subroutine definition, you specify either ByRef
or ByVal for each of the variables in the argument list.

ByRef

This is the default method for passing variables between procedures in Visual
Basic; that is, if you specify neither ByVal nor ByRef, VB treats the variable as
though it had been specified as ByRef.

ByRef means that the variable is passed by reference. In other words, only a refer-
ence to the original variable is passed to the called procedure. The called
procedure doesn’t get its own copy of the variable; it simply references the orig-
inal variable. This is very similar in concept to the pointers you find in C and C++.
The result is that if you make a change to the variable in the called procedure, that
change is reflected in the variable in the calling procedure, because they are actu-
ally the same variable.

The code fragment below demonstrates passing a variable by reference. It also
demonstrates how to circumvent the problem that a function can only return one
value. For example, if the GetValue function you are calling returns an input from
the user, how do you determine if the user wants to cancel the input altogether?
You can’t necessarily do this by using the return value of the function, since it may
be a valid input from the user. You therefore pass a Boolean variable by refer-
ence and test its value on return from the function:

Private Sub Commandl_Click()

Dim blnCancel As Boolean
Dim 1lReturn As Long

1Return = GetValue (blnCancel)
If blnCancel Then
Exit Sub

50  Chapter 3 — VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.



Else
MsgBox 1Return
End If

End Sub
Private Function GetValue (ByRef Cancel As Boolean) As Long

Dim sResponse As String
Dim iResponse As Integer

Cancel = False

sResponse = InputBox(Prompt:="Enter a value",
Title:="Input Required",
Default:=0)

'an inputbox returns a zero length string if
the Cancel button was clicked
If sResponse = "" Then

Cancel = True
Else

If IsNumeric (sResponse) Then

GetValue = CLng (sResponse)

End If

End If

End Function

As you can see, ByRef arguments can be extremely useful. For example, you can
use a ByRef argument to “return” a value from a subroutine that normally can’t
return a value. This can be used to great effect to obtain return values from an
event handler. And as demonstrated above, you can also use ByRef arguments to
return more than the one return value from a function.

ByVal

If you pass a variable by value using the ByVal keyword, the called procedure
obtains its own separate copy of the variable. You can therefore change the value
of the variable in the called procedure without affecting the original value of the
variable in the calling procedure.

ByRef and ByVal: Performance

When passing variables to procedures that are either in the same project or that
are methods of an in-process ActiveX component, ByRef is much faster than
ByVal. This is because the memory reference gives the called procedure almost
instantaneous access to the variable’s value.

However, when passing variables to a method in an out-of-process server, ByVal
has the performance advantage. This is because a procedure in a different process
can’'t use the reference supplied by ByRef. Since they don’t share memory, the
called procedure has to obtain a copy of the variable’s value. But since parame-

Passing Parameters 51

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

oS
S S
[y

=
S
T
“




ters are usually passed by reference to permit called routines to change their
value, the value of the ByRef argument is copied back to the calling procedure,
and the original variable is updated with this value.

Optional Arguments

The Optional keyword can be used in the argument list of a procedure declara-
tion to denote that a particular argument doesn’t always have to be passed. This
allows you the flexibility to have different calling procedures passing different
argument lists. One restriction is that all arguments after the first optional argu-
ment must also be optional.

The Optional keyword was introduced in VB4, and at that time optional argu-
ments could only be declared as type Variant. However, VB5 extended its
functionality by allowing any intrinsic data type to be used as an optional
argument.

To test if a variant optional argument has been passed into your procedure, use
the IsMissing function. Other data types will have their default values if they have
not been explicitly passed as arguments; this, however, may be confusing. If an
optional integer value isn’'t passed as a parameter, for example, its value in the
procedure is 0. But did the calling procedure actually pass in 0, or is its value O
because the argument is missing?

ParamArray

The ParamArray keyword (short for Parameter Array) allows you to accept a vari-
able number of arguments into a procedure. The ParamArray must be the last
argument in the list, and it can’t be used in the same argument list as an Optional
argument.

The ParamArray is an optional variant array. That is, the array can be empty, or it
can contain any number of variant elements. To see how this operates, here’s a
quick example:

Private Sub cmdCallDoStuff_Click()
Dim blnOK As Boolean

blnOK = DoStuff ("Wednesday", 1234, _
CDate("04/12/1999"), 123.444)

End Sub
Private Sub cmdCallDoOtherStuff_Click()

Dim blnOK As Boolean
Dim oTest As testEXE.txtCl