
VB &VBA
IN A NUTSHELL

The Language

VB &VBA
IN A NUTSHELL

The Language
Paul Lomax
Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

VB & VBA in a Nutshell: The Language
by Paul Lomax

Copyright © 1998 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Ron Petrusha

Production Editor: Mary Anne Weeks Mayo

Printing History:

October 1998: First Edition.
Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly & Associates, Inc. The association of the image of
a Newfoundland dog and the topic of VB & VBA is a trademark of O’Reilly &
Associates, Inc.

IntelliSense, Microsoft, MS-DOS, PowerPoint, Visual Basic, Visual C++, Win32,
Windows, and Windows NT are registered trademarks, and ActiveX, Outlook, and
Visual Studio are trademarks of Microsoft Corporation. Visio is a registered
trademark of Visio Corporation. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

This book is printed on acid-free paper with 85% recycled content, 15% post-
consumer waste. O’Reilly & Associates is committed to using paper with the highest
recycled content available consistent with high quality.
ISBN: 1-56592-358-8 [4/99]

Table of Contents
v

Preface ... vii

Part I: The Basics

Chapter 1—Introduction .. 3

What Is VBA? .. 3
A Brief History of VBA ... 6
What Can You Do with VBA? .. 7
Object Models: The Power of Programming with VBA 8

Chapter 2—Program Structure ... 11

Getting a VB Program to Run .. 12
The Structure of a VB Program ... 19
Ending Your VB Program .. 23

Chapter 3—VBA Variables and Data Types 26

Visual Basic Data Types ... 26
Type Conversion .. 31
The Variant ... 33
Declaring Variables and Constants .. 37
Array Variables ... 39
User-Defined Types ... 45
Variable Scope and Lifetime .. 46
Object Variables and Binding .. 47
Passing Parameters ... 50
Intrinsic Constants .. 53
VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 4—Class Modules ... 54

Properties .. 55
Enumerated Constants .. 62
Class Module Events ... 63
Implementing Custom Class Methods ... 68
Creating ActiveX Components ... 70
Using ActiveX Components in a Project ... 75

Chapter 5—Automation .. 77

Creating Object Model References .. 77
Reading the Object Model ... 79
Working with the Object Model .. 81
Collection Objects .. 83
Trapping an Automation Server’s Events .. 84
Automation Examples .. 85
Automation Performance Tips ... 89

Chapter 6—Error Handling .. 91

Building a Robust Application ... 92
Error Handling in Procedures .. 95
Error Handling in ActiveX Servers ... 101
Reporting Errors ... 104

Part II: Reference

Chapter 7—The Language Reference .. 111

Part III: Appendixes

Appendix A—Language Elements by Category 583

Appendix B—Language Constants .. 598

Appendix C—Operators .. 606

Appendix D—What’s New in VB6? .. 613

Index .. 617
vi

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Preface

Before we go any further, let’s just clarify one fundamental point. Visual Basic for

Applications (VBA) is the language used to program in Visual Basic (VB). VB itself
is a development environment; the language element of that environment is VBA.
Similarly, VBA is the language used to program all the applications in the Microsoft
Office suite except Outlook, as well as a whole host of third-party applications.
The VBA language (with a very few minor exceptions) is the same whether you’re
programming within VB or creating an application in a hosted VBA environment
such as Word or Excel. Unless specifically noted, the language elements described
in this book can be used exactly the same in both the retail version of VB and the
hosted VBA environment; consequently throughout the book I often interchange
the terms VB and VBA.

While it’s important to emphasize that this book is a reference to a language
component that’s shared by VB and by applications that host VBA, it’s also impor-
tant to emphasize that it is not any of the following:

• A reference guide to VB controls and to their properties, events, and meth-
ods. These belong to the Visual Basic environment and aren’t part of VBA at
all. They are, however, documented in the forthcoming Visual Basic Controls
in a Nutshell, written by Evan S. Dictor and published by O’Reilly & Associ-
ates.

• A reference guide to UserForms and their controls, all of which are defined by
one or another version of the Microsoft Forms Library. Very much like VB
controls, these belong to the hosted VBA IDE and aren’t part of the language
proper.

• A reference guide to the individual object models of the Office suite. By
accessing its host application’s object model VBA can automate the applica-
tion. Nevertheless, both conceptually and practically, VBA code and object
model code are distinct components. Some of the object models, however,
are documented in the Programming the…Object Model series, published by
vii

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Why Another VB Book?
O’Reilly & Associates. These include Programming the Access/DAO Object
Models, by Helen Feddema, and Programming the Word Object Model, by
Julianne Sharer and Arthur Einhorn.

Why Another VB Book?
VBA is the single most important language for any developer to learn and master.
The large numbers of people beginning VB and VBA programming, as well as the
enormous number of current VB programmers who wish to deepen their knowl-
edge and programming skills, is attested to by the wealth of published material
about VB. Yet, there still is a desperate need for a detailed, professional reference
of the VBA language.

There are literally hundreds of books lining the shelves about how to program
using Visual Basic or how to use VBA to automate Office applications—seemingly
each one promising to teach you more quickly than the rest. But if you’re new to
VB, you won’t learn it overnight, or even in a few short weeks; VBA is a large and
detailed language, with hundreds of different functions, statements, and language
elements. Furthermore, because the Basic language has been developed over
many years (portions even having their origin in Basic and QBasic), and each new
version has to accommodate code written using the previous version, you will find
that most tasks can be achieved in a number of different ways. There may be the
really old function, the not-so-old function, and the brand-new function, all of
which achieve a similar result—but which is the old one and which is the new
one? Which one should you use? Is the new one really that much better than the
old one? This depth of information is where the experience of using a language
for many years, through all versions of VB and VBA, comes into play, and it is this
experience that I hope to impart through this book.

What’s Wrong with the Online Help?
In a word, nothing. The online help accompanying VB and VBA is an indispens-
able resource and one that most developers depend on. What this book does is
take up where the help section leaves off, to give you the full picture. Contained
within these pages are the experiences of professional VB developers who have
used the VBA language in both VB and as a hosted language in Office applica-
tions all day, every day, over many years, to create complex mission-critical
applications. It’s these experiences that you can benefit from. Whether you have
come to VB recently or have been using VB for years, there are always new tricks
to learn. And it’s always important to find out about the gotchas that’ll getcha!

For the most part, the documentation with VB and VBA isn’t bad; it just doesn’t
have the depth of information you need when you need it. Most of us can get by
day to day without even opening the help section. But when you need to open
the help section, it’s probably because you’ve either hit an unexpected problem or
need to know what the consequences of coding a particular procedure in a partic-
ular way will be. However, the help sections tend only to show you how a
function should be included in your code. This is understandable; after all, the
help sections for any language by their very nature must be created before that
language goes into general use, but it is only general, everyday use in real-life situ-
viii Preface

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Preface
ations that highlights how the language can best be used and what its problems
and pitfalls are. Therefore, online help confines itself to the main facts: what the
syntax is and, in a general way, how you should implement the particular func-
tion or statement.

A quick note here about the help section in VB6: Microsoft has decided to move
the help section into MSDN and to convert it from WinHelp to HTML Help. During
the prerelease stages, the new UI has come in for a lot of criticism for being slow,
memory hungry, and unintuitive (to say the least!). I hope therefore that you’ll
read up on the new VB6 language features and then keep this book close to hand.

Who Should Read This Book?
This book is aimed at professional software developers. The VBA language is the
most widely used rapid application development, or RAD, language in the world,
and in addition to the millions of developers now using VBA, many more devel-
opers are coming into the VB arena from other languages, such as C++, not so
much to replace those skills, but to augment their personal toolkit and to enhance
their career opportunities.

This book is a reference work and not a tutorial, so, for example, I won’t explain
the concept of a For...Next loop; as a professional developer, you already know
this, so you don’t want someone like me insulting your intelligence. But I will
detail how a For...Next loop works in VB, how it works in practice, what the
alternatives to it are, how it can be used to the best advantage, and what pitfalls it
has and how to get round them.

I also hope this book will be the main reference for experienced VB developers
who are upgrading to VB6. I have spent several months working with VB6 in
order to become familiar with and fully document the important new language
elements and object models within it. Here again, though, if you’re a VB devel-
oper upgrading to VB6, you don’t want to be led by the hand like a newbie
through the additional functions and object models; you know that your famil-
iarity with the VBA language means that you can pick up the new features of VB6
quickly. You just need to know how this stuff works in the real world, and you’ll
be off and running.

An Emphasis on Professional VB Development

Because the VBA language is increasingly important for creating mission-critical
applications, I have concentrated where appropriate on using language elements
in a multiuser environment, detailing points of particular note for when you are
programming components destined for an n-tier application model and for use
within environments such as DCOM and Microsoft Transaction Server. In the same
vein, I have also noted any differences found using language elements in NT and
Windows 95.

Another pet peeve of mine is the readability and maintainability of VB code. Most
corporate VB applications are now created by development teams rather than an
individual programmer. It’s therefore important to ensure that any member of the
team can get up to speed quickly when maintaining your code, and of course that
Preface ix

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

How This Book Should Be Used
you can understand what it was you where trying to do when you wrote the code
several months earlier! With this in mind, I have also noted—where necessary—
tips to improve the readability and self-documenting character of your VB code.

How This Book Should Be Used
Well, to get here you’ve obviously passed the first hurdle, which is turning the
pages; now all you need to do is read the words!

If You’re a Developer New to VB

If you are new to the VBA language, then this book assumes that VBA is your
second or subsequent language. The first half of the book leads you through the
important areas of programming VB and VBA style, which, while very different
from most other languages, are straightforward and easily mastered. I suggest
therefore that you read these chapters in order while referring to Chapter 7 when
necessary.

If You’re a VB or VBA Developer

As an experienced developer, you can dip into the book to get the lowdown on a
language element that interests you. Appendix A details all the functions, state-
ments, and object models by category to help you find the relevant section in
Chapter 7 more easily.

If You’re a VB or VBA Developer New to VB6

Appendix D is a good place to start; it lists the new and amended language
features and language-related object models in VB6. Work your way through this
list, referring to the relevant sections in Chapter 7. While VB6 isn’t the major leap
forward that VB4 and VB5 were, you’ll find some powerful additions that enhance
both the speed at which you can develop an application and the quality of your
applications. Note that because this book is specifically about the language, new
VB6 nonlanguage features such as dynamic control addition aren’t included.

How This Book Is Structured
This book is divided into three parts. The first part of the book, The Basics, is an
introduction to the main features and concepts of Visual Basic programming. Even
seasoned VB professionals should find items of interest here. If you’re new to VB,
this part of the book is essential reading. It’s divided into the following chapters:

Chapter 1, Introduction
In this chapter, you’ll find information on what the VBA language is and how
it fits in to the family of VB products. There’s also a short discussion of the
history of VBA.

Chapter 2, Program Structure
This chapter details how you create the basic program structures in VB and
VBA; how you implement procedures, functions, and properties; and how
you start and stop VB and VBA programs.
x Preface

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Preface
Chapter 3, VBA Variables and Data Types
This chapter looks at all the VBA data types and how to use them. There is
also an in-depth look at the variant, a data type unique to the VBA language.

Chapter 4, Class Modules
The introduction of the class module in Version 4 was probably the single
most important innovation in VB since the introduction of VB itself; certainly,
it has directly contributed to the success VB is now enjoying in the corporate
world. In this chapter, you’ll find out how to create and use class modules
within VB and VBA applications.

Chapter 5, Automation
Automation—the process by which a client accesses the functionality of a
server application and drives it remotely—is one of the more powerful tech-
nologies supported by VB. This chapter describes how OLE automation is
handled using VBA, detailing how to create and manipulate instances of
ActiveX-enabled applications.

Chapter 6, Error Handling
On the assumption that we all strive to create robust applications, this chapter
shows how to include error handling in your VB or VBA application and how
error handling is different when you’re creating an ActiveX application.

The second part of the book, The Reference, consists of one large chapter,
Chapter 7, The Language Reference, which thoroughly details all the functions,
statements, and object models that make up the VBA language. The emphasis here
is on the language elements found in VB4, 5, and 6. Also included (but with a
lesser emphasis) for backward compatibility and completeness are the language
elements still present in VB but that predate VB4; where these have been super-
seded by later additions to the language, this is noted.

The third and final section consists of the following appendixes:

Appendix A, Language Elements by Category
A listing of all VBA functions, statements and major keywords by category.

Appendix B, Language Constants
The constants built into the VBA language and available at all times.

Appendix C, Operators
A list of the operators supported by VB, along with a slightly more detailed
treatment of Boolean and bitwise operators.

Appendix D, What’s New in VB6?
A summary of the new language features and object models included in the
latest version of Visual Basic.

The Format of the Language Reference

The following template has been used for all functions and statements that appear
in Chapter 7:

Syntax
This section uses standard conventions (detailed in the following section) to
give a synopsis of the syntax used for the language item. It also lists parame-
Preface xi

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Conventions Used in This Book
ters and replaceable items, indicates whether they’re optional or not, lists their
data types, and provides a brief description.

Return Value
Where applicable, this section provides a brief description of the value or data
type returned by the function or property.

Description
A short description of what the language element does, and when and why it
should be used.

Rules at a Glance
This section describes the main points of how to use the function. The dos
and don’ts are presented in the form of a bulleted list to enable you to
quickly scan through the list of rules. In the vast majority of cases, this section
goes well beyond the basic details found in the VB documentation.

Example
It’s not uncommon for documentation to excel at providing bad examples.
How often do we encounter code fragments like the following:

' Illustrate conversion from Integer to Long!
Dim iVar1 As Integer
Dim lVar2 as Long
iVar1 = 3
lVar2 = CLng(iVar1)
Msgbox "The value of lVar2 is: " & lVar2

So you won’t find the gratuitous use of examples in this book. I see little
point in including a one- or two-line code snippet that basically reiterates the
syntax section. Therefore, I’ve only included examples that enhance the
understanding of the use of a language element or demonstrate a poorly
documented feature of a language element.

Programming Tips & Gotchas
This is the most valuable section of Chapter 7, gained from years of experi-
ence using the VBA language in many different circumstances. The
information included here will save you countless hours of head scratching
and experimentation. Mostly, this is the stuff Microsoft doesn’t tell you!

See Also
A simple cross-reference list of related or complimentary functions.

Conventions Used in This Book
Throughout this book, we’ve used the following typographic conventions:

Constant width
Constant width in body text indicates a language construct such as a VBA
statement (like For or Set), an intrinsic or user-defined constant, a user-
defined type, or an expression (like dElapTime = Timer()—dStartTime).
Code fragments and code examples appear exclusively in constant-width text.
In syntax statements and prototypes, text in constant width indicates such
language elements as the function or procedure name and any invariable
xii Preface

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Preface
elements required by the syntax. Constant width is also used for operators,
statements, and code fragments.

Constant width italic
Constant width italic in body text indicates parameter and variable names. In
syntax statements or prototypes, constant width italic indicates replaceable
parameters.

Italic
Italicized words in the text indicate intrinsic or user-defined functions and
procedure names. Many system elements such as paths and filenames are also
italicized. Finally, italics are used to denote a term that’s used for the first time.

How to Contact Us
We have tested and verified all the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made
mistakes). Please let us know about any errors you find, as well as your sugges-
tions for future editions, by writing to:

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the United States or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to
request a catalog, send email to:

nuts@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

Call for Additions and Amendments

It’s our hope that, as the Visual Basic language continues to evolve, so too will VB
& VBA in a Nutshell: The Language, and that the book will come to be seen by VB
and VBA developers as the official (so to speak) unofficial documentation on the
VBA language. To do that, we need your help. If you see errors here, we’d like to
hear about them. If you’re looking for information on some VBA language feature
and can’t find it in this book, we’d like to hear about that, too. And finally, if you
would like to contribute your favorite programming tip and gotcha, we’ll do our
best to include it in the next edition of this book. You can request these fixes,
additions, and amendments to the book at our website, http://www.oreilly.com/
catalog/vbanut.

Acknowledgments
This is my second book for O’Reilly & Associates, and I am proud to have been
asked back. My sincere thanks go to my editor, Ron Petrusha, an accomplished
Preface xiii

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Acknowledgments
author and Visual Basic programmer who has again contributed so much to this
book, steering me in the right direction, crossing the Ts and dotting the Is, helping
to nurture and develop this work, and adding that special quality that sets O’Reilly
books apart from the rest.

My thanks also go to Tim O’Reilly for again having the faith to let me loose on his
printing press! I would also like to thank the rest of the team at O’Reilly & Associ-
ates—Troy Mott, Katie Gardner, and all the other people within O’Reilly without
whom this book would not have been possible. Thanks to Cheryl Smith-John for
her hard work as technical editor, as well as to Dr. Steven Roman and Chris Burge
for their technical reviews, which have (I hope) helped to make this a better book.

During the course of writing this book, I’ve been developing a client server appli-
cation for Allied Carpets Group plc in the United Kingdom. I’d like to thank the
VB development team there for their help and support—namely (but in no partic-
ular order) Gary Atkinson, Rachel Adams, James Cullen, and Ian Fremaux. My
thanks also go to my agent, Nicky Properjohn at HG Resources.

Writing takes not just the dedication of the author, but a huge amount of support
and understanding from the family. I count myself lucky to have such a devoted
family—as always my strength and motivation Deb, Russel, and Victoria.
xiv Preface

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PART I

The Basics
This section serves as a general introduction to Visual Basic for Applications, the
programming language that is common to both Visual Basic and to a range of host
applications, including most of the applications in the Microsoft Office suite. Taken
together, these chapters form an extremely fast-paced introduction to the most crit-
ical VBA programming topics. If you’re an experienced programmer who is
learning VBA as a second (or additional) programming language, this material
should help to familiarize you with VBA in as short a time as possible. If you have
some experience with VBA programming, you’ll want to read Chapters 4 and 5 on
class modules and automation, since they discuss two of the newer and most
significant technologies incorporated into the VBA language.

In addition to its role as a tutorial, Chapter 3 is an essential reference to the data
types supported by VBA.

Part I consists of the following chapters:

• Chapter 1, Introduction

• Chapter 2, Program Structure

• Chapter 3, VBA Variables and Data Types

• Chapter 4, Class Modules

• Chapter 5, Automation

• Chapter 6, Error Handling
VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1Introduction
Introduction
CHAPTER 1

Introduction

To applications developers, end users, corporate buyers, and software vendors,

Visual Basic for Applications (VBA) is becoming an increasingly important
language. But VBA is more than just another software language; VBA is a unique
conceptual method of creating professional business-oriented solutions.

VBA is the same language whether you are using it to create a Visual Basic appli-
cation or to automate some task within Word or Excel. When you fire up your
copy of the retail version of Visual Basic, the vast majority of language elements
you use actually come from VBAx.DLL, the VBA library. Just look in the Object
Browser to see how dependent on VBA Visual Basic actually is. Consequently, this
book concentrates on the core VBA language regardless of its context.

What Is VBA?
Visual Basic for Applications is a hosted language and part of the Visual Basic
family of development tools. Although VBA can be thought of as sitting below the
retail version of VB and above VBScript in the VB hierarchy, VBA is actually an
essential element of the retail version of VB, providing the vast majority of
language elements used in VB. When hosted in VB, VBA provides language
support and an interface for forms, controls, objects, modules, and data-access
technologies. When hosted in other applications such as Word or Excel, VBA,
using a technology called automation, provides the means of interacting with and
accessing the host application’s object model, as well as the object models of other
applications and components.

In order to customize complex applications such as Excel, Word, Access, and a
growing number of other applications from Microsoft and other vendors, VBA
allows the developer to provide solutions that take advantage of sophisticated
components that have been tried and tested. VBA is a glue language: a language
that interfaces with the various objects that make up an application via the host
application’s object model. VBA is the means by which applications can become
3

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

What Is VBA?
extensible, and it’s ActiveX (or OLE automation) that provides the interface
between VBA and its host application. It’s this support for OLE automation that
makes VBA an outstanding tool for rapidly developing robust Windows
applications.

Until the launch of VBA 5.0 in early 1997, the language had no development envi-
ronment; very much like VBScript today, VBA was simply a language interpreter.
VBA 5.0 marked the start of an exciting new chapter for VBA; it now has its own
integrated development and debugging environment running within the process
space of the host application.

VBA itself becomes more object-oriented with each release, but the latest release
(Version 6.0) adds relatively few functions and keywords to the VBA language.
Instead, extra functionality has been incorporated into VB6 using new object
models, and again it’s the VBA language that allows you to integrate these object
models into your application.

How Does VBA Differ from VB?

VBA is a programming language common to Microsoft Visual Basic, Microsoft
Office, Microsoft Project, Visio, and a whole host of other applications. Although
the particular “flavor” of VBA you use depends on the environment that hosts
VBA, the core VBA language is basically identical regardless of the environment
that hosts it. In other words, VB, the Microsoft Office suite, and a number of other
applications share a common programming language named VBA that is identical
across its various hosts.

Having made this generalization, we should introduce two qualifications. First,
there are some differences that depend on the time at which the product hosting
VBA was released. For example, although VB5 and Office 97 both indicate that
they include version 5.00 of the VBA language, VBA for VB5 supports a number of
language elements (like the addressof operator) that are not supported by VBA
for Office 97. This is because VB5 was released somewhat after Office 97, which
left more time to incorporate some new features in the former implementation that
were omitted from the latter.

Second, there are some major differences that focus more on usage than on
language elements. This is because VB is a complete RAD environment that
features a range of user interface components and relies on VBA as its program-
ming language:

• VBA programs and the VBA development environment itself both execute in
the same process space as the host application, whereas VB programs can be
compiled into executables and run in their own process space, independent
of the host (i.e., Visual Basic) environment.

• Related to this, VB applications can be compiled into native code executa-
bles, whereas VBA applications are always interpreted.

• VB applications can be complied into ActiveX components and used within
other applications.

• Unlike the retail version of VB, VBA allows code to be written for multiple
platforms. Versions of VBA are currently available for Windows 95 and Win-
4 Chapter 1 – Introduction

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Introduction
What Is VBA?
dows NT on Intel; for NT on MIPS, Power PC, and Alpha RISC; and for Macin-
tosh/Power PC.

• VBA as a hosted programming language and VBA in VB are typically used dif-
ferently in developing applications. With VB, you normally use VBA to write
code that references controls, procedures, and functions that are part of the
program itself. With VBA, the vast amount of code is related to referencing
the methods, properties, and functions that make up the object model of the
host application. This is the overriding difference between VB and VBA,
although the two are beginning to converge in this area as VBA is increas-
ingly used in VB to control the ever-expanding list of VB’s own object mod-
els, VB class modules, and in-process and out-of-process servers.

• The programs created by the two products are typically used for different pur-
poses. VB creates standalone applications. VBA, though it can be used to cre-
ate “applications” that act as intermediaries between the user and the host
application (like Word or Excel) typically provides some essential service or
adds some enhancement to its host application.

How Does VBA Differ from VBScript?

VBScript was born of VBA.* VBA supports OLE automation; that is, you can create
instances of objects, call their methods, and set and return object properties. This
functionality was left out of VBScript, since it was thought too risky for the web
scripting environment. However, when used at the server side with Active Server
Pages, VBScript has almost the same OLE (ActiveX) functionality as VBA.† In addi-
tion, VBScript is simply an interpreted language component; it has no design
environment apart from the ActiveX Control Pad. In contrast, from Version 5
onward, VBA has its own integrated development environment, including an inte-
grated debugging window, a Properties window, and many of the standard
features that were originally found in the VB IDE.

How Does a VBA Program Differ from a Macro?

VBA takes over where macro languages left off. Macro languages are used to
simply automate repetitive tasks in an application. Because VBA replaced the
macro languages found in Office applications, there is still a common misconcep-
tion that VBA is a macro language. However, referring to VBA as a macro
language is like referring to a Ferrari as a means of getting from A to B. While it’s
basically a true statement, it hardly does justice to the product or to the sophistica-
tion of the technology involved. With VBA, like the Ferrari, you’ll get from A to B
faster and more stylishly, and you’ll be in demand! (Unlike a Ferrari, though, VBA
isn’t red.)

* For a fast-paced introduction to VBScript, see Learning VBScript, by Paul Lomax, published
by O’Reilly & Associates.

† It’s able to do this because the ASP Server object, rather than VBScript, instantiates objects
and provides support for automation. See Active Server Pages in a Nutshell, by Keyton Weiss-
inger, due from O’Reilly & Associates in early 1999.
What Is VBA? 5

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

A Brief History of VBA
Let’s look at how VBA has become the first almost universally accepted applica-
tion customization language.

A Brief History of VBA
The incredible popularity of Visual Basic shortly after its launch prompted
Microsoft to wonder if a “cut down” version of the product could replace the
many different macro languages lurking behind its range of business applications.
Bill Gates talked for many years—since the days of DOS—of a universal batch
language. This goal is now coming to fruition in the shape of VBA. However, as
the following chronology shows, this goal wasn’t achieved overnight:

1993—VBA launched with Microsoft Excel
VBA first saw the light of day as a replacement for the macro language in
Microsoft Excel. Its power and sophistication in comparison to the original
macro languages made it an instant success with those developers creating
custom solutions with Excel.

1994—VBA included with Microsoft Project
Perhaps because Microsoft Project had to be customized in many situations to
satisfy the wide and varied needs of project managers, Project was next on
the list of applications to be VBA-enabled.

1995—Included with Microsoft Access, replacing Access Basic
Perhaps the biggest boost to VBA came when Access Basic (a subset of VBA
written specifically for Access) was replaced with the full version of VBA.
Many of today’s VB programmers apprenticed on VBA in Access, cutting their
teeth on custom applications using VBA and Access. Many Access developers
have moved on to the full version of Visual Basic to create full three-tier client
server applications.

1996—VBA becomes the language element of Visual Basic
1996 saw the launch of Visual Basic 4.0, a massive leap forward and almost a
totally different product from VB3. Written in C++, Version 4 was a ground-up
rewrite of VB, whose previous versions were written in assembler. With VB4,
VB became object-oriented; VB could be used to create class models and
DLLs, as well as to easily reference external object libraries. Part of the
componentization of Visual Basic was the use of a separate language library,
VBA. Some intrinsic language elements remained in the VB and VB runtime
libraries for backward compatibility, but most were transferred to the VBA
library, and many were completely rewritten.

1996—Included with Word, replacing Word Basic
Many people were surprised that Word Basic was the last of the Microsoft
macro languages to hit the dust. This appears to have happened partly
because the demand for customized word processor applications is much
smaller than for customized applications using the other components of the
Office suite, and because the core of Word developers were initially opposed
to a change to VBA.
6 Chapter 1 – Introduction

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Introduction
What Can You Do with VBA?
1997—VBA 5.0 launched, covering the complete range of Office 97 products
With the inclusion of VBA in PowerPoint, all the members of Office 97 (with
the exception of Outlook, which is VBScript-enabled) now include VBA as
their programming language.

1997—Microsoft licenses VBA for use with other software
Over 50 major software vendors licensed VBA within the first few weeks of
Microsoft’s announcement. The fact that so many leading companies have
chosen to license VBA bodes well for the future. In learning VBA now, you
are building a skill set that will be in demand for a long time to come.

1998—VB and VBA Version 6 launched
The language continues to expand, although not at the same rate as previ-
ously. Interestingly, with the exception of two functions, the new functions in
VBA have come from VBScript. The rest of the new functionality available to
VB/VBA developers comes in the form of several new object models, which is
likely to be the way VB and VBA will expand in the future.

What Can You Do with VBA?
VBA contains all the functions and statements necessary to create robust Windows
applications, whether this is done using Visual Basic or a host application. The
tasks you can perform with VBA include (but are not limited to):

• Creating instances of OLE (ActiveX) objects within your code

• Creating classes (reusable custom software objects)

• Linking to ODBC databases like Access and SQL Server

• Integrating with the messaging API (MAPI) to create Exchange/Mail applications

• Integrating with Internet and intranet solutions

• Creating custom dialog boxes and forms

• Storing and retrieving data from the Windows registry

• Detecting and handling errors

• Incorporating ActiveX controls into the application interface

• Passing data between VBA-enabled applications with a minimum of program-
ming and fuss

• Driving a second VBA-enabled application from within a first VBA-enabled
application

• Controlling the Office applications; in theory, 100% of the functionality of
Office products is exposed as objects/properties/methods, which means that,
with occasional exceptions, there isn’t anything you can’t do programmati-
cally that you can do from the application’s interface.

• Automating anything that can be done from the keyboard, mouse, or menus

There is also one thing you can’t do directly with the VBA language: you can’t
output to a printer. So how do you print from a VBA application? When hosted in
an application, VBA can control the application’s own printing functionality; when
used within VB, VBA can control the VB Printer object.
What Can You Do with VBA? 7

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Object Models: The Power of Programming with VBA
Customizing and Creating Applications with VBA

Off-the-shelf—or “shrink-wrapped”—software products don’t always provide the
specialized features most corporate and many private users need, which means
that some kind of customization is often needed to create the desired solution.
Software vendors include features within their products that will appeal to as large
an audience as possible. They quite rightly have to balance the cost of develop-
ment with the potential extra sales for any new feature they add to their product.
There is such an infinite range of different and unique business problems that it
would be impossible for any off-the-shelf package to be versatile enough to fulfill
every need.

Let’s say you need an application that links to the company’s main database and
presents data in such a way that managers can readily understand and work with
it, create charts from it, reformat it, etc. You could either spend the next 12
months developing and debugging your very own spreadsheet application, or you
could supply a custom application written with VBA using Excel as the host. This
applies, of course, not only to Excel, but to the other applications in Microsoft
Office as well, which means that as a developer, you can also program interopera-
bility between all the applications in the Microsoft Office suite.

The traditional home of VBA has been in Microsoft products. However, since
Microsoft has now stamped VBA’s passport by licensing it to other major software
vendors, you will find VBA venturing further afield into territory that was once off
limits. VBA skills will become more and more in demand as a wider range of soft-
ware becomes VBA-enabled. This also means that for the first time, developers
across a wide range of products have a common programming interface.

Of course, a software developer can always start from scratch to create a solution
to a business problem, and the most popular tool for creating business applica-
tions is Visual Basic. A mark of Visual Basic’s maturity is that for the first time,
Microsoft’s own developers have used Visual Basic to write parts of the Visual
Studio 6 development suite. The most sophisticated business solutions using the
latest technologies can be created with Visual Basic, and corporations, large and
small, around the world are now looking to Visual Basic to provide mission crit-
ical enterprise-wide applications. The speed and relative ease with which a Visual
Basic application can be created and maintained results in major cost savings for
corporations. When you add to this the ease with which a Visual Basic applica-
tion can be ported to a web environment, you can see why Visual Basic is the
world’s most popular RAD tool.

Object Models: The Power of Programming
with VBA
VBA is a single language, although when comparing code taken from a VBA
program written for Word with one written for Access or Visual Basic, you could
be forgiven for thinking you are reading code from two very different languages.
This is because VBA interfaces with an application’s object model, and much of
the time the code you write references objects that are unique to the host applica-
tion. To demonstrate this, in the VBA code fragments shown in Examples 1-1
8 Chapter 1 – Introduction

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Introduction
Object Models: The Power of Programming with VBA
through 1-4, generic VBA code is shown in a normal typeface, object code that is
unique to the application is shown in bold, and variables are shown in italics.

Example 1-1: A Code Snippet from an Excel VBA Program

For Each c In Worksheets("Sheet1").Range("C4:C17").Cells
 If c.Value = iCond Then

tempTot = tempTot + c.Offset(0, 1).Value
 End If
Next c

Example 1-2: A Code Snippet from a Word VBA Program

Set myRange = ActiveDocument.Range(_
Start:=ActiveDocument.Paragraphs(2).Range.Start, _

 End:=ActiveDocument.Paragraphs(2).Range.End)
myRange.Select
myRange.Bold = True

Example 1-3: A Code Snippet from an Access VBA Program

Form_Form1.RecordSource = "SELECT Products.ProductCode, " _
 & " Products.BinLocation, Descriptions.Description" _
 & " FROM Products INNER JOIN Descriptions " _
 & " ON Products.ProductCode = Descriptions.ProductCode" _
 & " WHERE (((Descriptions.Language)="
 & iLangCode & "));"
Text0.ControlSource = "ProductCode"
Text2.ControlSource = "Descriptions.Description"
Text4.ControlSource = "BinLocation"

Example 1-4: A Code Snippet from a Visual Basic Program

Dim oADOComm As ADODB.Command
Dim oADORecs As ADODB.Recordset
Dim sSQL As String

Set oADOComm = New ADODB.Command
oADOComm.ActiveConnection = "LiveDSN"

 sSQL = "SELECT * FROM employees"
oADOComm.CommandType = adCmdText
oADOComm.CommandText = sSQL

 Set oADORecs = oADOComm.Execute
 If Not oADORecs.EOF And Not oADORecs.BOF Then
 Do While Not oADORecs.EOF

cboEmployeeNames.AddItem _
oADORecs.Fields("Name").Value

oADORecs.MoveNext
 Loop
 End If
 Set oADORecs = Nothing
Set oADOComm = Nothing
Object Models: The Power of Programming with VBA 9

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Object Models: The Power of Programming with VBA
As you can see from these examples, the referenced object model plays an inte-
gral role in the creation of VBA-based programs. The object model describes the
application and the features you can control. You then use VBA to access and
change properties of the object model, handle events fired by objects in the
model, and call the methods of the objects.

Once you’re familiar with one object model, you will find great reductions in the
time it takes to learn another object model. For example, about 50% of the Office
97 object models are shared. In short, if you can create applications using one
object model, you can move to another host and develop custom applications
there too, with a minimum amount of time spent learning the new object model.

Through the object model, the software vendor allows you to control the applica-
tion, to set and retrieve properties, and to invoke methods. It’s up to the software
vendor to decide how much or how little of the application you have access to via
its object model, and in the case of the Microsoft Office applications, 100% of their
functionality is presumably exposed via the various object models. In addition to
the object model, each host application has its own set of predefined (intrinsic)
constants to speed development and make code easier to read and maintain.

So although they are conceptually distinct from the VBA language itself, object
models are central to programming in VBA both within a host application, and—
although to a lesser extent—in Visual Basic. The extensive reliance on individual
object models, though, doesn’t diminish the significance of VBA, even if it is only
the “glue” that holds together a program’s use of an object model (or, in the case
of Visual Basic, a program’s use of ActiveX controls).

As we’ve already seen throughout this chapter, the VBA language is the single
most important development language in the business world and will continue to
be so for some time to come. Becoming proficient in the VBA language is there-
fore important to many millions of professional developers across the world,
because no other language presents the developer with so many opportunities—
not just a promise but a real demand for skills right now. However, VBA is by its
very nature a large language in terms of the number of functions, statements, and
constructs that must be mastered. Once the language is mastered, the rest of the
jigsaw falls into place, and you can easily and quickly move from one VBA-
enabled development environment to another.
10 Chapter 1 – Introduction

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 21fcProgram Structure
1fcProgram
Structure
CHAPTER 2

Program Structure

In its simplest form, Visual Basic for Applications is a glue language. This means

that as a VB or VBA developer, you concentrate on the interface of and interac-
tion between the objects and controls within the application, gluing the various
elements of the application together by writing procedures to perform program-
matic tasks and by adding code to handle events. Visual Basic programs are
primarily event-driven. Some event or other—such as the user clicking a button—
triggers most of the procedures you will write.

From a developer’s point of view, one of the most important characteristics of an
event-driven application is that, for the most part, the various elements of the
program are not interdependent. Sections of your program can be written in
complete isolation from the rest. Procedures can be added, removed, or disabled
without necessarily having an adverse effect on the whole application. This isn’t to
say that a Visual Basic application is unstructured; far from it. Before starting to
write your VB application, you should have a clear plan of how the various
elements of your application are going to interact.

Over the past few years, VB developers have been empowered with a rapidly
expanding development environment that can now create custom controls and
ActiveX DLLs and EXEs that run either as client-side servers or as remote servers.
This movement towards a more object-based ethos has forced a change in the
programming style of most VB developers. For the majority of professional VB
developers, the days when you could sit in front of a blank form and begin
programming without a written plan—altering the architecture of your application
on the fly—are long gone.

In this chapter, you will see how to structure a VB program, from starting your
program, through the various procedure types at your disposal, and then how you
can eventually end your VB program.
11

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Getting a VB Program to Run
Getting a VB Program to Run
Regardless of the type of application you’re writing and the development tool
(hosted VBA or the retail version of VB) you’re using, there has to be a starting
point or an entry point for your program. Here there is a major difference between
VB and VBA: a VB application is launched as an application in its own right,
whereas the VBA program has to be launched by the host application. But in
either case, the starting point you choose is decided by the type of application you
are writing, as well as by the facilities offered by your development environment
for launching applications. In this section, we’ll look at the methods available to
you for starting your application.

Because VBA is now hosted in a wide range of different applications, each of
which has its own ways of launching an application or routine, it’s impossible to
describe here how to start your program running in each. Instead, we’ll focus on
the two most popular applications for hosted VBA, Word and Excel.

In discussing the launching of VBA programs in Word and Excel, I
mention using the application’s user interface to launch the program
using a keyboard combination or a toolbar button. This can also be
done programmatically. A discussion of how to do so, however, is
beyond the scope of this book.

Running VBA Modules in Word

A Word/VBA program can take a multitude of forms, ranging from a small routine
that accomplishes some utility function at one extreme to a complete application
that handles every detail of the user’s interaction with Word. Of course, you want
the method that invokes your program to be consistent with its general purpose.
Fortunately, Word provides several ways to launch a VBA application.

Storing your code

Whenever Word starts, it automatically loads the default global template file,
normal.dot. It then loads all template (.dot) files in the Word startup directory,
which (assuming the software is Word 97) is defined by the STARTUP-PATH value
entry in the HKEY_CURRENT_USER\Software\Microsoft\Office\8.0\
Word\Options key in the registry and can be customized by selecting the File
Locations tab from the Options dialog (Tools ➝ Options) and modifying the
Startup entry. These also become part of Word’s global layer, as do Word add-in
(.wll) files, which are loaded last. So if your application is to affect the Word envi-
ronment or multiple Word documents, you should place your code in a template
that is loaded into the global layer. If your program is to be distributed to other
users, you should store your code in a global template file other than normal.dot,
where you’re likely to overwrite customizations the user has made.
12 Chapter 2 – Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

1fcProgram
Structure

Getting a VB Program to Run
A global template file loaded during Word startup is displayed in the
Project window visible in the development environment, but isn’t
viewable. To edit the file, you must open it in the Word environ-
ment. Note that you may have to close and reopen Word in order
for modifications to take effect. In some cases, even if the file is
open, you still may not be able to edit its code in the VBA IDE. In
that case, you’ll have to make modifications to a copy of the file
stored in another directory and synchronize the two copies.

If your application applies to a set of documents that are based on a template
(which is typically stored in the Office Template directory or one of its subdirecto-
ries), you can place your code in the template file. Each document created using
that template maintains a reference to the template. So even though the code
remains in the template and isn’t copied to the document, the VBA code in the
template can be executed as long as the reference is valid.

If your application applies only to a particular document, you can store the code
in the document itself. You don’t have to work with the templates loaded into
Word’s global layer.

At startup

If you are developing an application or routine that is responsible for initializing
the Word environment, that provides some service expected to be available
throughout a Word session, or that implements a customized interface that medi-
ates between the user and Word, you want to have Word launch your application
whenever Word itself is launched. Word provides two methods of doing this. Both
are remnants of WordBasic and both require that you store your macro in a global
template:

• Add a procedure called AutoExec to any code module. In order to execute at
startup, it must be a Public procedure.

• Create a new module named AutoExec and add a procedure to it called Main.
Once again, Main must be declared as Public in order to run at startup.

There is also a converse scenario—running a procedure when Word is closing—
that operates in exactly the same way as AutoExec. You simply name the proce-
dure AutoExit or include an AutoExit module with a Main procedure.

When a document loads

In many cases, your application should launch whenever a particular document
(or a set of documents, or even all documents) is opened. Once again, Word
offers several methods of executing code when an existing document is opened or
a new one is created. All of them require, though, that the code be located either
in the current template or in the document itself. The methods are:

• Creating a procedure called AutoOpen, which is executed whenever an exist-
ing document containing a reference to AutoOpen’s template or containing
Getting a VB Program to Run 13

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Getting a VB Program to Run
the actual AutoOpen code is fired. Similarly, you can create a procedure called
AutoNew, which is executed when a new document using the template con-
taining the code is created. The procedures must be declared as Public to be
visible. AutoOpen and AutoNew macros are a WordBasic, rather than a VBA,
feature.

• Creating a code module named AutoOpen (or, for a new document,
AutoNew) and defining a public Main procedure in it. AutoNew and
AutoOpen code modules are a WordBasic, rather than a VBA, feature.

• Attaching code to the template’s or document’s Document_Open event, which
fires when an existing document is opened, or to its Document_New event,
which fires when a new document is created based on the template contain-
ing the Document.New event handler. This is the “official” VBA way to create
self-executing macros when a document loads.

You can also designate a cleanup routine to execute when a document closes.
WordBasic recognizes either an AutoClose procedure or a Main routine in a code
module named AutoClose. VBA fires the Document.Close event when a document
closes.

In response to direct user action

Frequently, VBA/Word code is less an “application” as we typically understand it
than a “macro”—i.e., a small piece of self-contained code that performs some
useful function. For macros to be useful, there has to be a way for the user to run
them easily* from the Word interface. In this respect, Word provides a rich envi-
ronment for the macro developer, since it supports so many ways of hooking a
macro to the user interface. These include:

Intercepting Word’s built-in commands
Most common Word operations are public procedures. This means that if you
create a procedure of the same name and store it in a global template, in the
current document’s template, or in the active document itself, your proce-
dure, rather than Word’s built-in procedure, will execute. For example, when
the user selects the Close option from the File menu, the FileClose procedure
executes. Ordinarily, Word closes the active document. However, you can
modify Word’s behavior by substituting a FileClose routine like the following,
which gives the user the option of closing all open documents:

Public Sub FileClose()

Dim lngResponse As Long
Dim objDoc As Document

If Documents.Count = 1 Then
 Application.ActiveDocument.Close
Else

* The most obvious method is one we won’t discuss here. When the user selects Tools ➝
Macro ➝ Macros, Word displays the Macro dialog, which lists the names of all macros that are
in scope (i.e., public macros in the global layer, macros in the current template, and macros in
the current document).
14 Chapter 2 – Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

1fcProgram
Structure

Getting a VB Program to Run
 lngResponse = MsgBox("Close all open documents?", _
 vbQuestion Or vbYesNoCancel, _
 "File Close")
 Select Case lngResponse
 Case vbYes
 For Each objDoc In Documents
 objDoc.Close
 Next
 Case vbNo
 Application.ActiveDocument.Close
 Case vbCancel
 Exit Sub
 End Select
End If

End Sub

Assigning a macro to a toolbar button
You can add a button to a toolbar and assign a macro to it. To do this from
Word’s user interface, select the Customize option from the Tools menu, or
right-click on any toolbar and select the Customize option. Word opens the
Customize dialog. Make sure that the toolbar to which you add the button is
checked in the Toolbars tab, then select the Commands tab. Select Macros in
the Categories list box and the macro you want to add to the toolbar in the
Commands list box. Then drag the macro object from the Commands list box,
position it on the toolbar, and drop.

Assigning a macro to a key
To assign a macro to a keyboard combination, open the Customize dialog and
click on the Keyboard button. Select Macros in the Categories list box, then
select the macro to which you’d like to assign a key combination in the
Commands list box. Move the cursor to the “Press new shortcut key” text box
and select the key combination you’d like to activate your macro.

Running VBA Modules in Excel

An Excel/VBA application, like its Word counterpart, can be anything from a small
routine that performs a useful service to a large application that completely shields
the user from Excel’s basic interface. Excel, like Word, provides a variety of ways
to launch an application that’s consistent with its overall purpose.

Storing your code

When Excel loads, it automatically loads all workbook (.xls) and add-in (.xla) files
stored in the XLStart directory (and notably Personal.xls, a worksheet that can
serve as a repository for code, and that Excel makes hidden by default) and in an
alternate startup directory. XLStart is created by Excel during installation (it’s typi-
cally a subdirectory of the Office directory) and can’t be changed. The alternate
startup directory, if one is defined, supplements the XLStart directory, and it’s
configurable. To define or change it, you can select the Options option from the
Tools menu, click on the General tab of the Options dialog, and enter the path in
the “Alternate startup file location” text box.
Getting a VB Program to Run 15

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Getting a VB Program to Run
Typically, to store global macros, you’d want to create your own add-in file or
your own worksheet, which can be hidden and stored in the XLStart folder. Partic-
ularly since Personal.xls is a frequent target of Excel macro viruses, it’s best not to
use it as a repository for your code. Excel actually loads each of these startup files;
consequently, it’s important that they remain hidden. While Personal.xls and all
add-in files are hidden automatically, other files aren’t. To hide them, select the
Hide option from the workbook’s Window menu.

Like Word, Excel also supports the creation of documents from templates, which
also can contain code. So if your VBA code applies only to a particular kind of
workbook (that is to say, to all workbooks created from the same template), you
can store the code in the template (.xlt) file. Excel’s behavior here, though, is
somewhat different from Word’s; whereas Word adds a reference to the template
to the document, Excel actually embeds the template’s code in a newly created
workbook.

Finally, if VBA code applies only to a single document, the code can be added to
the document, rather than to autoloaded workbooks, add-ins, or templates.

At startup

When Excel starts. it automatically loads all add-in and workbook files in its
startup and alternate startup directories. Their Workbook.Open event is fired. Note
that, although this is a document-level event (that is, it’s fired by a workbook
being opened, rather than by Excel starting), the fact that no document work-
books are open when the startup workbooks and add-ins are loaded makes these
Workbook.Open event handlers functionally similar to the Word AutoExec
procedure.

When a document loads

To execute code when a particular workbook is opened, that workbook must
have been created using a template that included a Workbook.Open event
handler, or a Workbook.Open event handler must have been added to the work-
book itself. In fact, Excel workbooks support a rich event model; you can attach
event handlers to such Workbook events as Activate, BeforeClose, Deactivate,
NewSheet, and SheetActivate.

In response to direct user action

Like Word code, VBA code in Excel often consists of a set of macros. Sometimes,
you can hook these to a Workbook event. But more commonly, you have to
provide a way for the user to run your macro from the Excel interface. Although
Excel lacks Word’s ability to intercept basic procedures, it does offer two major
options for “hooking” your macro into the Excel interface:

Assigning a macro to a toolbar button
You can add a button to a toolbar or submenu and assign a macro to it. To
do this from Excel’s user interface, select the Customize option from the Tools
menu or right-click on any toolbar and select the Customize option. Excel
opens the Customize dialog. Make sure that the toolbar to which you add the
button is checked in the Toolbars tab, then select the Commands tab. Select
16 Chapter 2 – Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

1fcProgram
Structure

Getting a VB Program to Run
Macros in the Categories list box and either Custom Menu Item or Custom
Button from the Commands list box, depending on how you will attach your
macro to the interface. Next, drag the object from the Commands list box,
position it on the toolbar, and drop. Finally, right-click on the new menu item
or button, select the Assign Macro option from the context menu, and select
the routine you want to assign to the menu item or toolbar button.

Assigning a macro to a key
To assign a macro to a keyboard combination, open the Macro dialog (Tools
➝ Macro ➝ Macros), and select the macro you want to assign to a key combi-
nation from the Macro Name list box. Next, click on the Options button to
open the Macro Options dialog. Finally, select a shortcut key to use along
with the Ctrl key to activate your macro. Note that Excel doesn’t inform you if
you’ve chosen a key assignment already in use; it simply overwrites the old
assignment with the new one.

Running VB Executables

An application that is to be compiled into an executable file with the retail version
of Visual Basic and that contains forms can be started by the Visual Basic runtime
loading a form, or by running a specially named sub procedure called Main. An
application that is to be compiled into an ActiveX EXE, DLL, or OCX can only be
started using a Sub Main procedure. You specify the startup method for the project
in the General tab of the Project Properties dialog box (you open it by selecting
the <ProjectName> Properties option from the Project menu), where you select
either a form name or Sub Main from the StartUp Object combo box.

Whether you specify a Form or a Sub Main procedure within a code module as
the startup object for your program, the VB runtime module first loads into
memory all Public or Global constants and variables in all code modules within
the project. Therefore, you have instant access to these at startup. Beware,
however, that publicly declared variables in form modules aren’t loaded at startup
time; they are only available while the form itself is loaded. This means that you
can’t assign a value to a Public variable in another form from that of your startup
form or from a startup code module.

Using a Form at Startup

If you specify a form as the starting point for your project, the VB runtime module
loads this form after loading project-level variables and constants but before
executing any of your project code. When the form is loaded into memory, the
form’s Initialize event is fired, followed immediately by the Load event. Once the
Form is displayed on screen, the Activate event is fired.

The Form Load and Initialize events

Until Version 4 of VB, the initialization code for a Form module was placed in the
Form_Load event, and probably through habit—and possibly because it’s still the
default event—most VB developers continue to use the Form_Load event.
However, in line with other object modules such as class modules, the Form
Getting a VB Program to Run 17

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Getting a VB Program to Run
module now contains an Initialize event, which is fired as the Form is loaded into
memory. The Initialize event is immediately followed by the Form_Load event.

There is little operational difference between the Form’s Load and Initialize events,
and code to initialize the form—and the application if the form is the startup
object—can be written in either. However, if you use both events to write initial-
ization code, you may not always get the desired results. The reason for this is that
controls contained on the form aren’t completely loaded into memory when the
Initialize event is fired. Therefore, any code in the Initialize event handler that
references a control on the form forces the rest of the form to load, which then
fires the Load event. The following example illustrates this problem:

Private Sub Form_Initialize()

 Text1.Width = 2000
 Text1.Text = "Hello "

End Sub

Private Sub Form_Load()

 Text1.Text = Text1.Text & "World"

End Sub

Given that the Initialize event fires before the Load event, you’d expect the code
above to produce the tired old “Hello World” phrase in the text box. But you may
be surprised to discover that when this form is run, only the word “Hello” appears.
This is because when the Width property is set to 2000, execution branches to the
Form Load event, and the string “World” is placed in the text box. Execution then
passes back to the Initialize event and the string “Hello” is assigned to the text
property, thereby overwriting the word “World.”

Both the Form’s Load and Initialize events are executed only once, each time the
form is loaded into memory. Hiding the form and then reshowing it doesn’t re-
execute either event. However, another event, the Activate event, is executed in
this situation. You shouldn’t use the Activate event to write application initializa-
tion code because it executes every time the form regains the focus.

Using a Code Module at Startup

The preferred method of starting any Visual Basic application is to use a Sub Main
procedure.

The Sub Main procedure

To create a Sub Main, you need to include a code module in your project. Then
simply type the following:

Sub Main()

Visual Basic automatically adds an End Sub line for you. You can have only one
Sub Main procedure in your project. A scope keyword—such as Private or
18 Chapter 2 – Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

1fcProgram
Structure

The Structure of a VB Program
Public—isn’t required for the Sub Main procedure. While it’s possible to call Sub
Main from another procedure, it’s definitely not recommended.

The Sub Main procedure doesn’t necessarily have to contain any code. In fact, in
projects such as ActiveX DLLs, EXEs, or OCXs, it’s best not to write code in the
Sub Main. If you are using a Sub Main to start up a project and require a form to
be loaded on startup, you can use a Sub Main procedure similar to the following:

Sub Main()
 Dim oForm as frmStartUp
 Set oForm = New frmStartUp
 oForm.Show vbModal
 Set oForm = Nothing
End Sub

Here, an object variable is declared. A reference to a new instance of a Form
object called frmStartup is then assigned to that object variable. The object vari-
able can now be used to call the form’s Show method. The form is shown
modally, which means that the rest of the code in this procedure can’t be executed
until the form has completed its processing and is either hidden or unloaded.
Finally, the object variable is set to Nothing, thereby unloading the form from
memory. Using a Sub Main procedure in this way is now the recommended alter-
native to specifying a Startup form, since it allows you greater flexibility when
initializing the application.

The Structure of a VB Program
Any VB program—whether a hosted VBA application or a VB executable—is a
collection of modules containing code, graphical user interface objects, and
classes. This book concentrates on the language elements of VBA as they relate to
both hosted VBA and the retail version of VB. The VBA and VB user interfaces—
whether Word, Excel, Project, or a VB form—all fire events that are handled by the
code you create using the VBA language. Therefore the code modules within your
program are of greatest concern to us here.

Visual Basic code can be split into three categories:

• Code you write to handle events such as a button being clicked by the user;
these procedures are called event handlers

• Custom procedures, where you create the main functionality of your application

• Property procedures, used in form and class modules

All Visual Basic language elements work equally well in all three types of proce-
dure. For example, there are no restrictions placed on the type of code you can
write within a particular type of procedure. It’s left to you as the developer to
decide what code goes where.

Events: The Starting Point

An event is always the starting point for your procedure. It can be a system-gener-
ated event, such as the Form Load event or a Timer control event, or it can be a
user-generated event, such as the Click event on a command button.
The Structure of a VB Program 19

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Structure of a VB Program
To code an event handler for a control event, open the form’s code window and
select the control from the drop-down list of the available objects. Next, select the
required event from the drop-down list of available events for that control. The
Event handler definition is then automatically placed in the code window, and you
can start coding the event handler.

If you are writing a small and simple application, you could program the whole
thing within event handlers. However, the more complex your program becomes,
the more you find yourself repeating code within these event handlers, and at this
point you should start moving related blocks of code into their own separate
functions.

Use Event Handlers to Call Functions and Methods

I would recommend that you keep the code in your event handlers to an absolute
minimum, using them simply to call methods within a class or to call functions
within the project. You will find that your code becomes easier to follow, code
reuse is maximized, and maintenance time for the project is reduced.

The following Click event from a command button called cmdSave demonstrates
this minimalist approach to event handling:

Private Sub cmdSave_Click()

 On Error GoTo cmdSave_Click_Err

 If SaveDetails() Then
 MsgBox "Details Saved OK", vbInformation
 Else
 MsgBox "Details have not been saved", vbCritical
 End If

 Exit Sub
cmdSave_Click_Err:
 MsgBox Err.Description & vbCrLf & Err.Number

End Sub

Because all the code to actually save the details is held within the SaveDetails
function, this function can be called from anywhere in the form or project.

The move towards removing functional code from the user interface has been
spawned by the n-tier client-server model, in which the user interface is purely a
graphical device for displaying information and collecting user input. The middle
tier or tiers enforce business rules and provide the main functionality of the appli-
cation. Here’s another example of the same Click event, this time using a
SaveDetails method stored in a class module:

Private Sub cmdSave_Click()

On Error GoTo cmdSave_Click_Err

Dim oObj As Business.BusinessObj
Set oObj = New Business.BusinessObj
20 Chapter 2 – Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

1fcProgram
Structure

The Structure of a VB Program
 If oObj.SaveDetails() Then
 MsgBox "Details Saved OK", vbInformation
 Else
 MsgBox "Details have not been saved", vbCritical
 End If
Set oObj = Nothing

Exit Sub

cmdSave_Click_Err:
 MsgBox Err.Description & vbCrLf & Err.Number & vbCrLf _
 & Err.Source

End Sub

The following snippet, which provides the same functionality, demonstrates the
power of reducing UI code to a minimum:

Function doSave()

 Set oObj = CreateObject("Business.BusinessObj")
 If oObj.SaveDetails() Then
 doSave = "Details Saved OK"
 Else
 doSave = "Details have not been saved"
 End If
 Set oObj = Nothing

End Function

So what’s so special about this function? Well, this function is calling exactly the
same method as the previous Click event, only this code has been taken from an
Active Server Page used in a corporate intranet. Because the vast majority of code
has been moved away from the front end of the application, the task of porting
the application to an HTML/ASP user interface is made extremely easy. In this
simple example, the SaveDetails method could care less who or what has called it;
it doesn’t matter whether it was a Win32 application or an ASP web server applica-
tion—or both!

Writing Custom Procedures

Custom procedures can be written in any type of VB module. As a general rule,
form modules should only contain procedures that need to refer to properties of
the controls contained within the Form. Therefore, a procedure that doesn’t refer
to any form control properties should be placed in a code module.

To create a new procedure, you can use either the Add Procedure dialog, which is
accessed from the Add Procedure option of the Tools menu, or you can move to
the bottom of the code window and start typing the Function or Sub definition.

There are three types of custom procedures in Visual Basic:

• Functions

• Sub procedures

• Property procedures
The Structure of a VB Program 21

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Structure of a VB Program
Functions

A function is a collection of related statements and expressions that perform a
particular task. When it completes execution, the function returns a value to the
calling statement. If you don’t specify an explicit return value for the function, the
default value of the return data type is returned. If you write a custom function in
a class module and declare it as Public, it becomes a method of the class.

Here’s a quick example of a function that’s used to provide a minimum number:

Private Function MinNumber(ByVal iNumber As Integer) _
 As Integer
 If iNumber <= 500 Then
 MinNumber = iNumber
 Else
 MinNumber = 500
 End If

End Function

Because functions return a value, you can use them as part of an expression in
place of a value. In the following snippet, the string passed to the VB Instr func-
tion is a custom function that returns a customer name given a customers code:

If InStr(1, GetCustomerName(sCustCode), "P") > 0 Then

For full details on the syntax and use of functions, see the Private, Public, and
Friend statements in Chapter 7, The Language Reference. For details of how to
pass values into a function, see Chapter 3, VBA Variables and Data Types.

Sub procedures

A sub procedure is used exactly the same way as a function, the only difference
being that it doesn’t return a value and therefore can’t be used as part of an argu-
ment. Sub procedures are used by Visual Basic to provide event handling.

In general you should use functions rather than subs to create custom procedures.
Functions allow you to return a value, which at a minimum could be a Boolean
True or False to inform the calling statement that the function has succeeded or
failed. I have done some testing to determine whether there is a performance hit
for using a function instead of a sub, and there is no appreciable difference
between the two, even though the function has to return a value to the calling
statement, and a sub procedure doesn’t.

Like a function, if you write a custom sub in a class module and declare it as
Public, it becomes a method of the class.

For full details of the syntax and use of Sub procedures, see the Private, Public,
and Friend statements in Chapter 7. For details of how to pass values into a sub
procedure, see Chapter 3.

Property procedures

Property procedures are specialized procedures that assign and retrieve values of
custom properties. They can be included only within object modules such as form
or class modules. There are three types of property procedures:
22 Chapter 2 – Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

1fcProgram
Structure

Ending Your VB Program
Property Let
Assigns a value to a property

Property Get
Retrieves the value of a property

Property Set
Assigns an object reference to a property

For a more in-depth look at using properties and property procedures, see
Chapter 4, Class Modules.

Controlling Execution Flow

So you’ve got your event handlers that spring into life when the user clicks a
button, or a form loads, or a Timer control fires its Timer event. You’ve written
some neat functions to do all the work behind the scenes. How do you link the
two?

Calling sub and function procedures

Sub procedures can be called in one of two ways. First, you can use the Call
statement, like this:

Call DoSomething(sSomeString, iSomeInteger)

If you use the Call statement, you must enclose the argument list in parentheses.
The other method of calling a sub is by simply using its name, but if you don’t use
the Call statement, don’t put parentheses around the argument list:

DoSomething sSomeString, iSomeInteger

If you aren’t going to use the return value of a function, you can use either of the
above methods to call the function. Otherwise, use the function name as part of
an expression. For example:

If GetItNow(sSomeStuff) = 10 Then

Like the Call statement, when you use a function call as part of an expression,
the argument list must be enclosed within parentheses.

For more information, see the entry for the Call statement in Chapter 7.

Explicitly calling event procedures

It’s also possible to call an event handler from within your code. For example, to
replicate the user clicking on a button called cmdOne, you can use the code:

Call cmdOne_Click()

Because event handlers are private to the form in which they are defined, you can
only explicitly call an event handler from code within the same form.

Ending Your VB Program
At some stage, most users want to exit from a program. OK, yours might be a
really great program, but unfortunately the user may want to go off and do some-
Ending Your VB Program 23

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Ending Your VB Program
thing else—like go home! You have to allow your application to both exit and tidy
up before it ends. One advantage you have when building an application in a
VBA-hosted environment is that you don’t have to worry too much about finishing
the program; the majority of the work is taken care of by the host application. You
just have to ensure that any object references are cleaned up, and all database
connections closed. You can place this type of code in the Close event. VB devel-
opers writing executables have to take care of unloading the application
themselves, but in most cases this is no more onerous a task than in VBA; this
section shows you how.

How to End Your Program

If you specified a form as the startup object, then you must unload this form to
close the application. You can do this by including the following statement some-
where in the form, usually in the event handler of an Exit menu option or Exit
command button:

Unload Me

If you specified a Sub Main procedure as the startup object, the program termi-
nates when the Sub Main procedure is completed. For example, here’s the Sub
Main you saw earlier in this chapter:

Sub Main()
 Dim oForm as frmStartUp
 Set oForm = New frmStartUp
 oForm.Show vbModal
 Set oForm = Nothing
End Sub

Because the form is shown modally, the Sub Main procedure doesn’t continue
until the form is either hidden—using the statement Me.Hide—or unloaded. Once
this happens, program execution is handed back to the Sub Main procedure,
which destroys the form object it created by setting the reference to Nothing.
When the End Sub statement is executed, the whole application terminates.

If you are writing an ActiveX DLL or EXE, things are slightly different: you
shouldn’t place any code in your application to terminate the application. The
termination should be handled by the operating system. Basically, when all refer-
ences to your ActiveX component are set to Nothing, your component is
unloaded from memory. You should, however, write code to destroy dependent
objects in the Terminate event handler of any of your classes that have created
dependent objects. You can find further information about this in Chapter 4.

How a Form Unloads

When a form is unloaded from memory, the following chain of events is triggered:

QueryUnload
Allows you to cancel the unloading of a form. For example, you could use
this event to check whether data in the form has been saved and, if it hasn’t,
prevent the form from unloading. The QueryUnload event passes a ByRef
argument named Cancel to the event handler; if you set this to True, the
24 Chapter 2 – Program Structure

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

1fcProgram
Structure

Ending Your VB Program
unloading of the form is cancelled. This event is ideal for catching those users
who insist on closing an application using the Close Window button—the one
at the right of the titlebar—instead of using the nice Exit button or the menu
option that you provided.

Deactivate
This event is fired as the form loses focus to another form. You have to be
careful not to place termination code here, since this event being fired doesn’t
necessarily mean that the form is being unloaded from memory. If you have
an application in which multiple forms are displayed at the same time and
any can be selected, the Deactivate event is fired as you move away from one
form to another.

Unload
This is the point of no return. From here on, your application is on its way
out. Until Version 4 of VB, this was the end of the road. However, in the
same way that the Form Load event is now preceded by an Activate event, so
the Form Unload event is followed by a Terminate event.

Terminate
This event brings form modules into line with Class modules, and should be
used in place of the Unload event. As with the Form Load and Initialize
events, you should only use either the form’s Unload event or the Terminate
event, not both. Use either the Unload or Terminate events to destroy any
dependent objects you created during the lifetime of the form.

The End Statement

Visual Basic still supports an End statement, but this is purely for backward
compatibility. In general, its use should be discouraged. In particular, its use in
class modules and object-based VB applications is highly undesirable, since it has
no concept of object cleanup. If you follow the previous procedure, you’ll never
need the End statement.
Ending Your VB Program 25

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 3Variables & Data Types
CHAPTER 3

VBA Variables and Data Types

The VBA language offers a full set of the usual data types, plus a smart data type

called a Variant, which is the chameleon of the programming world, adapting
itself seamlessly to hold any type of data. This chapter lists the data types avail-
able in VBA and discusses a complete range of issues related to data types,
including variable scope and lifetime, the character of the variant, and perfor-
mance issues that arise in using particular data types.

Visual Basic Data Types
Visual Basic and Visual Basic for Applications support the following data types:

Boolean
Indicates the presence of logical data that can contain either of two values,
True or False. The keywords True and False are constants that are
predefined in VBA, so you can make use of them in your code when you
want to assign a value to a Boolean variable, as the following code fragment
shows:

var1 = True
var2 = False

Many of the properties of ActiveX controls have possible values of True or
False. In addition, within programs, Boolean variables often serve as flags to
control program flow, as the following example, which toggles (or reverses)
the value of myBool within the If...Else...End If construct, shows:

If myBool = False Then
 myVar = 4
 myBool = True
Else
 myVar = 5
 myBool = False
End If
26

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

Visual Basic Data Types
Storage required
Two bytes

Range
True or False

Default value
False

Byte
The smallest numeric subtype available in VBA. Because only one byte holds
a number ranging from 0 to 255 (or 00 to FF in hexadecimal), there is no
room for the sign, and so only positive numbers can be held in a Byte data
type. Attempting to assign a negative number or a number greater than 255 to
byte data results in a runtime error.

Storage required
One byte

Range
0 to 255

Default value
0

Currency
Provides a special numeric format for storing monetary values.

Storage required
Eight bytes

Range
–922,337,203,685,477.5808 to 922,337,203,685,477.5807

Default value
0

Date
Contains a specially formatted number that represents the date or time.

Storage Required
Eight bytes

Range
1 January 100 to 31 December 9999

Default value
00:00:00

Decimal
A variant subtype (and not a separate data type) that contains decimal
numbers scaled by a power of 10. Variants of subtype Decimal can only be
created by the CDec conversion function.

Storage required
14 bytes

Range
With no decimal point: +/– 79,228,162,514,264,337,593,543,950,335
Visual Basic Data Types 27

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Visual Basic Data Types
With up to 28 decimal places: +/– 7.9228162514264337593543950335

Default value
0

Double
Stores a double precision floating point number; basically, it’s the industrial
strength version of the Single data type.

Storage required
Eight bytes

Range
Negative values: –1.79769313486232E308 to –4.94065645841247E-324

Positive values: 1.79769313486232E308 to 4.94065645841247E-324

Default value
0

Integer
A whole number that ranges from –32,768 to 32,767. One bit represents the
sign (either positive or negative). Attempting to assign a value outside its
range results in a runtime error.

Storage required
two bytes

Range
–32,768 to 32,767

Default value
0

Long
A signed integer stored in four bytes of memory. One bit represents the sign.

Storage required
 Four bytes

Range
–2,147,483,648 to 2,147,486,647

Default value
0

Object
Contains a reference to (i.e., the address of) an object. The object can be an
OLE automation object such as an ActiveX component, or it can be a class
object within your project. When you use the generic Object data type, rather
than a more specific object type, you automatically use late binding. For more
information about using the Object data type, see Chapter 4, Class Modules.

Storage required
Four bytes

Range
Any object reference
28 Chapter 3 – VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

Visual Basic Data Types
Default value
Nothing*

Single
A single precision number that represents fractional numbers, numbers with
decimal places, or exponential numbers.

Storage required
Four bytes

Range
Negative values: –3.402823E38 to –1.401298E-45

Positive values: 1.401298E-45 to 3.402823E38

Default value
0

String (fixed length)
Popular in VB applications when memory and disk storage was at a premium
and programmers had to spend most of their time optimizing the size of
applications, fixed-length strings are now rarely used. To declare a fixed-
length string, use the syntax:

Dim|Private|Public varname As String * stringlength

Storage required

Length of string

Range
1 to 65,400 characters

Default value
A number of spaces equal to the length of the string

String (variable length)
String data type that expands and contracts dynamically to store as many
characters as required, up to somewhere in the neighborhood of two billion.
To declare a variable-length string, simply use the String keyword:

Dim variablename As String

VBA includes many useful intrinsic functions for handling and manipulating
string data. The list of string functions has been expanded in VB6, as many of
the string-manipulation functions introduced into VBScript have now made
their way into the full language.

Storage required
10 + length of the string

Range
0 to 2 billion characters

Default value
Zero-length string ("")

* Nothing and Empty are special Variant data subtypes and do not have the same meaning.
For more information, see the section about the Variant data type later in this chapter.
Visual Basic Data Types 29

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Visual Basic Data Types
User-defined type
A user-defined type allows you to create a single data type consisting of a
combination of intrinsic VB data types, arrays, objects, or other user-defined
types. User-defined types are created using the Type statement. The following
snippet shows how to declare a user-defined type:

Type udtCustomer
 Name As String
 Code As Long
 Orders(20) As udtOrders
 RenewalDate As Date
End Type

User-defined types are important data structures in VB and are often essential
when interfacing with the Windows API. For more information on user-
defined types, see the section “User-Defined Types” later in this chapter and
the entry for the Type statement in Chapter 7, The Language Reference.

Storage required
Sum of storage size of the individual elements

Range
Same range as data type of individual elements

Default value
The default value of the individual elements

Variant (character)
The variant string subtype is very much like a variable-length string data type.
All VB string functions can accept variant strings, and many have two versions
that return either a strongly typed string data type or a variant string subtype.
For example, the Left function—which returns the leftmost n characters of a
string—has two variations, Left$ (which returns a string data type) and Left
(which returns a variant of subtype string).

Storage required
22 bytes + length of string

Range
Same as variable length string

Default value
Empty*

Variant (numeric)
The variant numeric subtype holds any numeric value. As with all variant
data, memory allocation changes dynamically to accommodate the numeric
value. The variant also includes a special Decimal subtype that doesn’t have
an intrinsic equivalent, and allows you to hold very large numbers in a variety
of formats.

Storage required
16 bytes

* Nothing and Empty are special Variant data subtypes and don’t have the same meaning. For
more information, see the section about the Variant data type later in this chapter.
30 Chapter 3 – VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

Type Conversion
Range
Same as Double

Default Value
Empty*

Type Conversion
VBA provides two sets of built-in conversion functions. The first set, which
includes Int and Str, is from the early versions of VB and is simply left in for back-
wards compatibility. The functions of the second set all start with the letter “C” and
are the more recent conversion functions. Microsoft recommends that you use this
latter set of functions, since they are locale-aware; that is, they take account of
international date, time, and number settings on the host system.

The syntax for each of the latter conversion functions is basically the same. For
example:

CBool(variablename)

where variablename is either the name of a variable, a constant, or an expres-
sion (like x–y) that evaluates to a particular data type. Regardless of the particular
function you use, the data type being converted is immaterial; what matters is the
data type to which you want to convert a particular value.

The conversion functions supported by VBA are:

CBool
Converts variablename to a Boolean data type. variablename can contain
any numeric data type or any string capable of being converted into a
number. If variablename is 0 or “0”, CBool returns False; otherwise, it
returns True (-1).

CByte
Converts variablename to a Byte data type. variablename can contain any
numeric data or string data capable of conversion into a number that is
greater than or equal to 0 and less than or equal to 255. If variablename is
out of range, VBA displays an Overflow error message. If variablename is a
floating point number, it’s rounded to the nearest integer before being
converted to byte data.

CDec
Converts variablename to a Decimal data subtype. The function accepts any
numeric data within the limits of the Decimal data subtype or any string data
that can be converted to a number within the range of the Decimal data
subtype. This conversion function provides the only method of creating a
Decimal data subtype.

CDate
Converts variablename to a Date/Time data type. CDate accepts numeric and
string data that appears to be a date and converts it to the format specified by

* Nothing and Empty are special Variant data subtypes and do not have the same meaning.
For more information, see the section about the Variant data type later in this chapter.
Type Conversion 31

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Type Conversion
the locale information on the host computer. For example, on a machine set to
the American date format mm/dd/yy, if you enter a date in the British date
format dd/mm/yy in a text box and use the CDate function on the contents of
the text box, CDate converts it to the American mm/dd/yy format.

CCur
Converts variablename to a Currency data type. CCur accepts any numeric
or string data that can be expressed as a currency value. The function recog-
nizes the decimal and thousands separators based on locale information on
the host computer. It, as well as the currency variant subtype, is recognized
by VBA only.

CDbl
Converts variablename to a double precision data type. The function
accepts any numeric data within the limits of the Double data type or any
string data that can be converted to a number within the range of the double
data type.

CInt
Converts variablename to an Integer data type. CInt accepts any numeric
data within the limits of the integer data type or any string data that can be
converted to a number and is within the limits of the integer data type.

CLng
Converts variablename to a Long data type. The function accepts any
numeric data within the limits of the long integer data type or any string data
that can be converted to a number whose value lies within the range of a
long integer.

CSng
Converts variablename to a Single data type. The function accepts any
numeric data within the limits of the single data type or any string data that
can be converted to a number within the range of the Single data type.

CStr
Converts variablename to a String data type. CStr accepts any kind of data.

CVar
Converts variablename to a Variant data type. CVar accepts any kind of
data.

Implicit Type Conversion in VB

It’s worth mentioning that Visual Basic handles a lot of data type conversion for
you in the background. For example, the Text property of a VB text box is quite
clearly a String data type, not a Variant, and the Prompt property of a message box
is also a string. Given this, you might not expect the following code to run
successfully without generating a runtime type mismatch error:

Private Sub Command1_Click()

 Dim iValue As Integer
32 Chapter 3 – VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

The Variant
 iValue = txtTextBox.Text
 MsgBox Prompt:=iValue

End Sub

But assuming that a number is entered in the text box, there is no error; instead,
you can see from this example that VB allows you to assign a string representa-
tion of a number to an Integer data type, then assign this integer to the Prompt
property of a message box. VB handles the conversion of data types without your
having to do it explicitly.

The Variant
VBA contains a special data type, the Variant. Internally, the Variant is highly
complex, but it’s also extremely easy to use. The Variant is the default data type of
VBA, so the following code casts myVar as a variant:

Dim myVar

The Variant data type allows you to use a variable with any of the intrinsic VBA
data types, automatically working out what is the closest data type to the value
you are assigning. When you consider the amount of processing required to deter-
mine what data type should be used for an abstract value, it’s a testament to the
VB development team at Microsoft that the Variant is as quick as it is. However,
there is a slight performance hit when using both variant data and functions that
return variant data, which we discuss later in this chapter.

Another drawback to using variant data is that your code becomes at best horrible
to read, and at worst unreadable! To illustrate, consider two versions of the same
function, the first written exclusively with variants, the second using strong typing:

Private Function GoodStuff(vAnything, vSomething, _
 vSomethingElse)

If vAnything > 1 And vSomething > "" Then
 GoodStuff = vAnything * vSomethingElse
Else
 GoodStuff = vAnything + 10
End If

End Function

Private Function GoodStuff(iAnything As Integer, _
 sSomething As String, _
 iSomethingElse As Integer) _
 As Integer
If iAnything > 1 And sSomething > "" Then
 GoodStuff = iAnything * iSomethingElse
Else
 GoodStuff = iAnything + 10
End If

End Function

I know which one I’d rather maintain!
The Variant 33

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Variant
So how do you use variant data? Well, at the simplest level, you can ignore the
fact that there are such things as data types (or, to be more precise, when using
variants, you can ignore data subtypes). But to be a proficient VB programmer, if
you use variants at all, it’s best to be aware that every item of variant data has a
subtype (like Integer, Long, or String) that corresponds to one of the major data
types. And Decimal data is something of an exception: it’s only available as a
subtype of the Variant data type.

Special Variant Data Subtypes

In addition to all the intrinsic data types detailed above, the variant also supports
the following special data types:

Empty
The Empty subtype is automatically assigned to new Variant variables when
you declare them, but before you explicitly assign a value to them. For
instance, in the code fragment:

Dim var1, var2
var2 = 0

the subtype of var1 is Empty, whereas var2 is only Empty for the brief
period of time between the execution of the Dim statement on the first line
and the assignment statement on the second line. In addition, a variable’s
subtype is Empty if it has been explicitly assigned a value of Empty, as in the
following code fragment:

Dim var1
var1 = Empty

Null
Null is a special data subtype that indicates a variable doesn’t contain any
valid data. Usually, a variable is assigned a null value to indicate that an error
condition exists. In order for its subtype to be Null, a variable must have a
Null value assigned to it explicitly, as in the following line of code:

var1 = Null

A Null value also results from any operation in which the value of one or
more of the expressions is Null, as the following code fragment shows:

dim myVarOne, myVarTwo, myVarThree 'All three variables are EMPTY now
myVarOne = 9
myVarTwo=NULL 'We’ve made this variable NULL
myVarThree = myVarOne + myVarTwo 'The result is NULL

Error
The Error subtype is used to store an error number. Error numbers are gener-
ated automatically by VBA, and can then be used by your error handling
routine. Error-handling routines are discussed in Chapter 6, Error Handling.

Determining the Variant Subtype

Having the variant data type take care of your data typing is all well and good, but
what happens when you need to know exactly what type of data is stored to a
variable? VBA provides two functions: VarType, which returns a number that indi-
34 Chapter 3 – VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

The Variant
cates the type of data stored to a variable; and TypeName, which returns a string
containing the name of the data type.

VarType
The syntax of VarType is:

VarType(variablename)

where variablename is the name of the variable whose subtype you want to
determine. You can provide the name of only a single variable at a time. The
following table details the possible values returned by VarType and the data
subtypes they represent. For purposes of reference, the table also lists the
VBA constants you can use in your code to compare with the values returned
by the VarType function.

Actually, the VarType function never returns 8192, as shown in the table; this
is only a base figure indicating the presence of an array. When passed an
array, VarType returns 8192 plus the value of the array’s underlying data type.
For example, if you pass the variable name of an array of string to VarType,
the return value is 8200 (8192 + 8).

TypeName
The TypeName function allows you to write more readable, self-documenting
code by returning the name of the data subtype rather than a more abstract
number. The syntax for TypeName is:

result = TypeName(variable)

Value Data Subtype VBA Constant

0 Empty vbEmpty

1 Null vbNull

2 Integer vbInteger

3 Long Integer vbLong

4 Single vbSingle

5 Double vbDouble

6 Currency vbCurrency

7 Date vbDate

8 String vbString

9 OLE Automation Object vbObject

10 Error vbError

11 Boolean vbBoolean

12 Array of Variant vbVariant

13 Data access object vbDataObject

14 Decimal vbDecimal

17 Byte vbByte

36 User-defined Type vbUserDefinedType

8192 Array vbArray
The Variant 35

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Variant
Like the VarType function, TypeName is read-only; you can use it to deter-
mine the subtype of a variable, but you can’t use it to explicitly set the type of
a variable. To do this, you must use the conversion functions discussed in the
previous section. The following table shows the string that the TypeName
function returns for each data subtype.

If you pass an array of a particular data type to TypeName, the same return
string is used for the underlying data type of the array, suffixed with “()” to
denote an array. Therefore if you pass the variable name of an array of strings
to TypeName, the return value is “String()”.

As for making your code more readable and easier to maintain, just look at
this snippet:

If TypeName(x) = "Double" Then

Now you’ve no excuse for getting those nasty “type mismatch” errors!

Variant and Strongly Typed Data

The Variant might appear to be the answer to all your data type needs, but there’s
a price to pay. The variant is more than a data type, it’s a program within itself. It
takes a lot of processing to determine the data type of an abstract value. In tests
I’ve carried out, an expression consisting of only variant data executes about 30%
slower than the same expression using the correct intrinsic data types.

Return Value Data Subtype

<object type> Actual type name of an object

Boolean Boolean value: True or False

Byte Byte value

Currency Currency value

Date Date or time value

Decimal Decimal (single-precision) value

Double Double-precision floating-point value

Empty Uninitialized

Error Error

Integer Integer value

Long Long integer value

Nothing Object variable that doesn’t yet refer to an object instance

Null No valid data

Object Generic object

Single Single-precision floating-point value

String Character string value

Variant() Variant array

Unknown Unknown object type
36 Chapter 3 – VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

Declaring Variables and Constants
Variant and Strongly Typed Functions

The VBA language includes a number of string-handling functions that have two
versions, one that returns a variant and the other that returns a string. The latter
are suffixed with the old string-specifying character $ (for example, Left$), while
the former simply include the name of the function (for example, Left).

I have put the two versions through some performance testing to determine if
there is a significant difference in their performance. To simplify matters, I tested
both Left and Left$ and Mid and Mid$. When using the strongly typed versions, I
assigned the result to a string data type and passed string data types as parame-
ters; when using the variant versions, I assigned the result to a variant and passed
variant data types as parameters.

For example, here is a variant version of a sample code fragment that illustrates
the performance tests:

Dim sString
Dim sPartString

sString = "ABCDEFGH"

sPartString = Mid(sString, 1, 2)

and here is the String version:

Dim sString As String
Dim sPartString As String

sString = "ABCDEFGH"

sPartString = Mid$(sString, 1, 2)

I found that the variant version of each function executed about 50% slower than
its string counterpart. This obviously is a significant difference, and it suggests that
we should use the typed versions of all functions whenever they are available.

Declaring Variables and Constants
As was mentioned earlier, VBA supports a default data type, which means that,
unlike many other programming languages, VBA allows the implicit declaration of
variables. As soon as you use a variable or constant name within your code, VBA
does all the necessary work of allocating memory space, etc., and the variable is
considered to be declared.

However, it’s good programming practice (and one that will save you endless
hours of grief) to explicitly declare any variables and constants you want to use by
using the Dim, Private, or Public statements. Their syntax is:

Dim VariableName As datatype
Private VariableName As datatype
Public VariableName As datatype

If you have a number of variables to declare, you can do this on a single line by
separating them with commas, as in the following Dim statement:
Declaring Variables and Constants 37

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Declaring Variables and Constants
Dim iRefNo As Integer, iAnyVar As Integer

By explicitly declaring variables in this manner, you can reduce the number of
bugs in your code caused by spelling errors, perhaps the most common of
programming errors. Once declared, a variable name is available to you in the
IntelliSense statement completion drop-down list, which means that you should
never have a misspelled variable again!

For full details of how to use the Dim, Private, and Public statements, see their
entries in Chapter 7. There is further discussion later in this chapter about how the
declaration of variables affects their scope and lifetime.

Option Explicit

Using the Option Explicit statement is good programming practice. It forces us
to declare all variables and constants. You can automatically have VB add this to
new modules as they are created by checking the Require Variable Declaration
option, which can be found on the Editor tab of the Options dialog. (Select the
Options option from the Tools menu to open the dialog.)

When the Option Explicit statement is used, VB generates a compile-time error
if it encounters a variable that has not been declared.

A Whole Load of Nothing

An important element of any programming language is its ability to detect and to
handle nothing. By nothing, I actually mean “no valid data.” Because there are
several different types of “nothingness,” the VBA language has developed a
number of ways to allow you to determine or to assign empty or null values to a
variable. An understanding of the differences is important, since each has its own
uses and, in the main, they aren’t interchangeable.

vbNull
Used with the VarType function to determine if a variable contains Null. For
example:

varValue = Null
If VarType(varValue) = vbNull Then

Note that you can’t use the constant to assign a Null value. If you assign
vbNull to a variable, you actually assign a value of 1 (or “1”, if the variable is
a string), and the IsNull test will fail.

vbNullChar
Assigns or tests for a null character (as distinct from a Null value); a null
character has a value of Chr(0). In other words, vbNullChar is simply the
equivalent of assigning Chr(0) to a variable and can test a variable to deter-
mine whether its value is a null character.

This constant is useful when passing strings to external libraries that expect a
null-terminated string. For example:

sMyString & vbNullChar

vbNullString
Assigns or tests for a zero-length (empty) string. For example, the statement:
38 Chapter 3 – VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

Array Variables
strVar1 = vbNullString

is equivalent to:

strVar1 = ""

Null keyword
Assigns a Null value to a variant variable. You can then test the variable for a
null value by calling the IsNull function. Note that the code fragment:

varValue = Null
if varValue = Null

returns False, since a Null is False and therefore causes any expression
containing Null to return False. The following code fragment shows how to
use, and how not to use, the Null keyword:

Dim i As Variant

i = Null

If i = Null Then
 MsgBox "It's null" 'this fails
End If

If IsNull(i) Then
 MsgBox "It's null" 'this works
End If

Also note that the Null keyword can’t be used to assign a Null value to a
strongly typed variable; instead, it generates an “Invalid use of Null” error.

vbEmpty
Determines whether a variant has been initialized. For example:

If IsEmpty(varValue) Then

is identical to:

If varValue = vbEmpty then

However, you shouldn’t use vbEmpty to assign an empty value to a variant. If
you do, you actually assign 0 (or “0” if the variable is a string), and an
IsEmpty function call will fail.

Nothing keyword
Used only with object variables to determine either if a variable has a valid
object reference, as in:

If objVar Is Not Nothing Then

or to destroy a current object reference, as in:

Set objvar = Nothing

Array Variables
Before we look at the types of arrays at our disposal, let’s quickly cover some of
the terminology used when talking about arrays. Creating an array is called dimen-
sioning the array (i.e., defining its size). The individual data items within the array
Array Variables 39

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Array Variables
are known as elements, and the number used to access an element is known as an
index. The lowest and highest index numbers are known as bounds or bound-
aries. In VBA, there are four types of arrays: arrays can be either fixed or dynamic,
and arrays can also be either one-dimensional or multidimensional.

Fixed Arrays

Most of the time, we know how many values we need to store in an array in
advance. We can therefore dimension it to the appropriate size, or number of
elements, prior to accessing it by using a Dim statement like the following:

Dim myArray(5) As Integer

This line of code creates an array, named myArray, with six elements. Why six? All
VBA arrays start with location 0, so this Dim statement creates an array whose
locations range from myArray(0) to myArray(5).

But what happens if you try to access an element greater than five or less than
zero? You get an error message, “Subscript out of range.” In the next section you’ll
see how to check the size of the array before attempting to access a given
element.

Dynamic Arrays

Fixed arrays are fine when we know in advance how many values or elements we
need. But there are many cases where we do not have prior knowledge of this,
and we need a way to expand our array should we have to. For example, one
convenient use of an array is to store input from the user and allow the user to
input as many items of data as he or she likes. Our application therefore has no
way of knowing how to dimension the array beforehand. We can handle this situ-
ation by declaring and using a dynamic array. Dynamic arrays allow you to
expand the number of array elements using the ReDim statement to redimension
the array while the program is running.

Populating Arrays: The Array Function

If you want to populate an array with a series of values, use the Array func-
tion. The function allows you to quickly assign a range of comma-delimited
values to an array. For instance:

myArray = Array(12,3,13,64,245,75)

To use the Array function, simply declare a variant variable, then assign the
values of the array to the variable using the Array function. Any data type
(even mixed data types) can be used with the Array function. Another point
to remember about arrays built using the Array function is that they are
always based at 0, regardless of the Option Base setting, which is used to
define the lower boundary of an array.
40 Chapter 3 – VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

Array Variables
A dynamic array is declared by leaving out its number of elements, like this:

Dim iDynamicArray() As Integer

When you need to resize the array, use the ReDim keyword:

ReDim iDynamicArray(10)

You can also declare a dynamic array and specify the initial number of elements at
the same time by using ReDim:

ReDim anyDynamicArray(4) As Integer

There is no limit to the number of times you can redimension a dynamic array, but
obviously, messing around with variables in this way carries an element of risk. As
soon as you redimension an array, the data contained within it is lost. Don’t panic;
if you need to keep the data, use the Preserve keyword:

ReDim Preserve myDynamicArray(10)

In fact, ReDim creates a new array (hence its emptiness). Preserve copies the
data from the old array to the new array. Another important point to note is that if
you resize an array by contracting it, you always lose the data in the deleted array
elements.

Note that while you can resize an array by modifying its upper bound, you can’t
resize the lower bound of an array; this generates runtime error 9, “Subscript out
of range.”

ReDim Preserve’s Performance

As you have seen, dynamic arrays are resized using the Preserve keyword
by creating a new array in memory and copying the contents of the old
array into the new. This can obviously have an adverse affect on applica-
tion performance. The larger and more complex the array becomes, the
longer it takes to resize. Wherever possible, you should use fixed size
arrays. And if you do choose to use dynamic arrays, you should avoid
resizing the array each time you want to add an element; instead, you
should add an arbitrary number of elements at a single time, as the
following code fragment illustrates:

If lngCurPtr > UBound(varArray) Then
 ReDim Preserve varArray(UBound(varArray) + 10)
End If

In this case, we add 10 elements each time we redimension varArray.
Depending on the expected size of the array, we could select any number
greater than one, or we could even double the size of the array as long as
we were reasonably certain that the array would remain fairly small
(geometric progression has a habit of consuming memory very rapidly).
Array Variables 41

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Array Variables
The following snippet shows how to use a dynamic array to save multiple inputs
from the user. When the user clicks on the cmdButton1 button, the contents of
the text box are added to sMyArray, an array that is dynamically resized
beforehand:

Option Explicit 'require variable declaration
ReDim sMyArray(0) As String 'create a 1-element dynamic array
Dim iIndex As Integer 'variable to track array index
iIndex = 0 'assign the first index number

Sub cmdButton1_OnClick
 'Store the user input in the array
 sMyArray(intIndex) = txtText1.Text
 'increment the array counter by one
 iIndex = iIndex + 1
 'increase the size of the array
 ReDim Preserve sMyArray(iIndex)
 txtText1.Text = "" 'Empty the text box again
End Sub

The above example is fine as it stands, except that, as you can see from the source
code, we have to keep track of the size of the array by using the intIndex vari-
able. But VBA allows a much cleaner approach to the problem of finding out how
many elements there are in the array.

Determining array boundaries

The UBound and LBound functions can find the upper index and the lower index,
respectively, of an array.

The syntax for UBound is:

x = UBound(arrayname)

UBound returns the highest index number of an array. The actual number of
elements in the array depends upon the starting point of the array. If the default
lower boundary of 0 has been used, then UBound is one less than the actual
number of elements in the array. For example, if sMyArray has 10 elements and a
lower boundary of 0, Ubound(sMyArray) returns the number 9. So we would
determine the total number of elements in an array as follows:

iArraySize = UBound(array) + 1

If, however, the lower boundary has been set to 1, UBound returns the actual
number of elements is the array. It therefore makes sense to use the LBound func-
tion in conjunction with the UBound function to determine the actual number of
elements in the array, as follows:

iArraySize = UBound(array) – LBound(array) + 1

The UBound function is especially useful when dealing with dynamic arrays, as
this snippet demonstrates:

Option Explicit

Private sValues() As String
42 Chapter 3 – VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

Array Variables
Private Sub Form_Load()
 ReDim sValues(0)
End Sub

Private Sub Command1_Click()

 sValues(UBound(sValues)) = txtTextBox.Text
 ReDim Preserve sValues(UBound(sValues) + 1)

End Sub

Note that using the UBound function on an uninitialized array generates a
Subscript Out of Range error; therefore, the Form_Load event is used to redimen-
sion the array to 0 to insure that the array has one element.

Setting the lower boundary

By default, VBA arrays start with element 0. However, you can change this on a
per-module basis by using the Option Base statement in the declarations section
of your module. For example:

Option Base 1

generates arrays starting with element 1. The Option Base statement must be
used in the module before any variable declarations.

Another method used to set the lower boundary is to specify both the lower and
upper boundaries when the array is dimensioned, as the following syntax shows:

Dim arrayname(lowerboundary To upperboundary) As datatype

Multidimensional Arrays

The arrays we have looked at so far are single-dimension arrays; they hold one
element of data in each index location, which is fine for most needs. However,
sometimes you need a full set of data for each element; this is called a multidi-
mensional array.

In a single-dimension array, the data held within has no structure; it’s accessed
sequentially, and there is one piece of data for each element. When you need to
store more than this one piece of data for each logical element, you should use
either a multidimensional array or a user-defined type (which is discussed in the
next section).

A multidimensional array allows you to have a separate array of data for each
element of your array. Therefore, each element of the array in turn contains an
array. The structure of a multidimensional array resembles that of a database table.
The rows (or records) of the table represent the first dimension, and the columns
(or fields) represent by the second dimension, as the following table illustrates.

Field 1 Field 2 Field 3

Record 1 Array Element (0,0) Array Element (0,2)

Record 2 Array Element(1,1)
Array Variables 43

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Array Variables
Multidimensional arrays can contain up to 60 dimensions, though it’s
extremely rare to use more than two or three dimensions.

To define a multidimensional array, use the following syntax:

Dim arrayname(upperboundDimension1, _
upperboundDimension2,) As Datatype

As with single-dimension arrays, you can also specify the lower boundary within
the array definition, and you can specify different lower boundaries for each
element. For example:

Private myArray(1 To 20, 0 To 50) As String

Dynamic multidimensional arrays

Like single-dimension arrays, multidimensional arrays can be dynamic, and the
rules for redimensioning them are similar. But since you have more than one
dimension to think about, you have to take care how you use and redimension
your array. The rules for using a dynamic multidimensional array are:

• You can ReDim a multidimensional array to change both the number of
dimensions and the size of each dimension. This is illustrated by the follow-
ing, where the myArray dynamic array is originally defined as a two-dimen-
sional array with 11 elements in the first dimension and 6 in the second, but is
then redimensioned into a three-dimensional array with 5 elements in the first
dimension, 11 in the second, and 3 in the third.

Private myArray() As Integer
Private Sub cmdButtonOne_OnClick
 ReDim myArray(10,5)
End Sub
Private Sub cmdButtonTwo_OnClick
 ReDim myArray(4,10,2)
End Sub

• If you use the Preserve keyword, you can only resize the last array dimen-
sion, and you can’t change the number of dimensions at all. For example:

...
ReDim myArray(10,5,2)
...
ReDim Preserve myArray(10,5,4)
...

Record 3

Record 4 Array Element (3,0) Array Element (3,2)

Field 1 Field 2 Field 3
44 Chapter 3 – VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

User-Defined Types
Using UBound and LBound with multidimensional arrays

As you saw earlier, the UBound function returns the highest subscript (element
number) in an array—that is, its Upper Boundary. You can also use UBound with
a multidimensional array, except that to find the largest element of a multidimen-
sional array, you need to also specify a dimension:

largestElement = UBound(arrayname, dimensionNo)

The same is true of the LBound function:

smallestElement = LBound(arrayname, dimensionNo)

User-Defined Types
One major limitation of the multidimensional array is that all the dimensions
within the array must be of the same data type. The user-defined type (UDT),
which combines multiple data types into a single new data type, overcomes this
limitation.

Since VB 4.0, UDTs have gone out of fashion somewhat, this fall from favor
having resulted from the introduction of the Collection object, which on the
surface operates like an infinitely flexible UDT. However, VB6 has given the
humble UDT a new lease on life by allowing UDTs to be passed as property
values and to be used in public function declarations. This is good news, as the
UDT is far more efficient than a Collection object.

So what is a user-defined type? Simply put, it’s a pseudo-data type constructed
from other data types. One of its common applications is the replication of a data
record in memory. For example, let’s say you want to create a local array to hold
the data of your customer records. Because each of the fields within the record is
of a different data type, a multidimensional array can’t be used. A UDT, on the
other hand, is ideal in this situation. The following snippet defines a simple UDT:

Private Type custRecord
 custAccNo As Long
 custName As String
 RenewalDate As Date
End Type

Private custArray(10) As custRecord

The last line of code creates a local array of the UDT.

You can also use other UDTs within a UDT, as the following example
demonstrates:

Private Type custOrders
 OrderNo As Long
 OrderDate As Long
End Type

Private Type custRecord
 custAccNo As Long
 custName As String
 RenewalDate As Date
User-Defined Types 45

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variable Scope and Lifetime
 orders(10) As custOrders
End Type

Private custArray(10) As custRecord

Here, a user-defined type, custOrders, is defined to hold the OrderNo and
OrderDate fields; then, within the custRecord UDT, an array of type custRecord is
defined.

Here are two simple lines of code that access the data within these UDTs:

Text1.Text = custArray(iCust).custName
Text2.Text = custArray(iCust).orders(iOrder).OrderNo

Variable Scope and Lifetime
Sometimes you need a variable to be seen by all the procedures within your
project, while other variables should only be available within a particular proce-
dure. The visibility of a variable is known as its scope. Closely related to a
variable’s scope is its lifetime, or the period of program execution when the vari-
able is live and available for use. Precisely where you declare a variable or
constant in a program determines its scope and its lifetime.

In a nutshell, variables declared in the declarations section of a module using the
Private keyword can be accessed by all the procedures within the module. Vari-
ables declared in the declaration section of a code module using the Public
keyword can be accessed by the whole project. Variables declared in the declara-
tion section of a class module using the Public keyword can be accessed by the
whole project once an object reference has been made to the class. And variables
declared using the Dim statement within a subroutine or function can only be
accessed in the procedure in which they’ve been declared.

Procedure-Level Scope

A variable that is declared within an individual procedure (that is, within a subrou-
tine or a function) can only be used within that procedure, and is therefore said to
have procedure-level scope. You can therefore define different variables that use
the same name in different procedures (like the simple x variable commonly used
in the For...Next loop). You can even use the same variable names in a calling
procedure and in a procedure that it calls, and they will be treated as two sepa-
rate variables.

The lifetime of a procedure-level variable ends when the End Sub or End Func-
tion statement is executed. As soon as the procedure is complete, references to
the variables defined within that procedure are erased from the computer’s
memory. This makes procedure-level variables ideal for temporary, localized
storage of information.

There is also a special type of variable that has procedure-level scope, called a
static variable. A static variable is defined within a procedure, and although it has
procedure-level scope, it has module-level lifetime. In practice, this means that
you can only use the variable within the procedure in which it’s defined, but its
46 Chapter 3 – VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

Object Variables and Binding
value is maintained between calls to the procedure. To declare a static variable,
you use the Static keyword in a procedure; for example:

Static lngExecuted As Long

You can also declare a procedure as Static, in which case all variables declared
within the procedure are treated as static, and their values are preserved between
calls to the procedure. For example:

Static Procedure MyProcedure()
 Dim iCtr As Integer

Declaring a variable within a procedure must be done using the Dim or Static
statement; you can’t declare a variable or constant as Public, Private, or
Friend within a procedure.

Module-Level or Private Scope

A variable has module-level scope when it can be accessed by all the subroutines
and functions contained in a particular module. Variables and constants that have
module-level scope also reside in memory for the lifetime of the module. That is
to say, as long as the module remains in memory, its module-level variables and
constants also remain in memory. To create a variable with module-level scope,
you must declare it in the module’s Declarations section (that is to say, outside of
any subroutine or function) by using either the Dim or Private statement.

Friend Scope

The Friend keyword can only be used for variables and procedure declarations
within an object module, such as a class or a form module. Friend scope gives
other object modules within the project access to the variable or method without
requiring that it be declared as Public, which would include it in the class type
library, thereby making it accessible by software objects outside the project.

Public Scope

Used outside of a procedure in place of the Dim statement, Public allows a vari-
able to be seen by all procedures in all modules in the current project. If used in
the context of a Class module, its scope is extended beyond the boundaries of the
current project. The automatic creation of a COM interface for any public proce-
dure or property means that it can be called by other software components as a
method or property of the class in which it’s defined.

Object Variables and Binding
Although Object variables are in many ways no different from other types of vari-
ables, the fact that they are references to other software components rather than
simple values warrants special attention. While objects, classes, and binding are
discussed in greater depth in Chapter 4, a short introduction to the subject is
nevertheless worthwhile.
Object Variables and Binding 47

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Object Variables and Binding
Declaring Object Variables

Object variables are declared in much the same way as other variables. There are
three ways to declare an object variable:

Dim myObject As LibName.ClassName
Dim myObject As New LibName.ClassName
Dim myObject As Object

In each of the methods shown above, a Private or Public statement can replace
the Dim statement, and the same scope rules apply as for other variables.

In the first declaration, the object variable is referenced to the class type library,
but no instance of the class is assigned to the variable. At this stage, myObject is
set to Nothing. To reference the class in this manner, you must have used the
References dialog to add a reference to the class to your project. To assign a refer-
ence to a real instance of the class, you must use the Set statement prior to using
the variable; for example:

Set myObject = LibName.ClassName

This produces an early bound reference to the object.

In the second declaration, a reference to a new instance of the class is assigned to
the object variable, which is now ready to use immediately. Again, to reference the
class in this manner, you must have first used the References dialog to add a refer-
ence to the class to your project. This second method also produces an early
bound reference to the object; however, the object isn’t actually created until the
object variable is used.

In the third declaration, the object variable has been declared as a generic Object
data type. This is useful when you don’t know beforehand what type of object
you will be creating. At this stage, the object variable also has a value of Nothing;
to assign an object reference to it, you must use either the CreateObject or GetOb-
ject functions. An object variable declared in this manner is said to be late bound.

Early and Late Binding: Performance Comparisons

Whenever you read about when and why to use early binding and late binding,
the choice always seems unambiguous: late binding is less efficient than early
binding. But this isn’t always the case; there are a number of factors to consider
when choosing a method of object binding.

First, does the object to which you are binding execute within the same process as
the client, or does it run in its own process? Will it be running on the same
machine or on a remote server? In general terms, late binding is slightly more effi-
cient for out-of-process ActiveX EXEs, and early binding is vastly more efficient for
in-process DLLs.

A second factor that affects the relative performance of late and early binding is
the operating system. The differences between late and early binding appear to be
magnified on Windows 95, whereas they are less noticeable under Windows NT
4.0. You may also find variations if your DLL is running through Microsoft Transac-
tion Server.
48 Chapter 3 – VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

Object Variables and Binding
In short, you should always bear in mind that efficient communication between
software components takes careful planning and testing. You should be prepared
to create test projects to experiment with the various options and to assess their
performance.

In the same way that you should carefully consider how to handle your Object
variables, the same performance considerations come into play when you are
deciding how to pass variables between procedures and software components.

The Collection Object

VBA features one generic object type, the Collection object, which is simply a
container for data. Although typically its members are other objects, it can in fact
hold data of any type, including other collection objects. The collection object is
therefore an object-oriented version of the Visual Basic array. It supports the
following four methods:

Add
Adds an item to the collection. Along with the data itself, you can specify a
key value by which the member can be retrieved from the collection.

Count
Returns the number of items in the collection.

Item
Retrieves a member from the collection either by its index (or ordinal posi-
tion in the collection) or by its key (assuming that one was provided when
the item was added to the collection).

Remove
Deletes a member from the collection either by its index or its key.

For example, the following code fragment defines a collection object, colStates,
to hold U.S. state information, and adds two members to it that can later be
accessed by their key, which in this case happens to be their two-letter state code:

Dim colStates As New Collection
colStates.Add "New York", "NY"
colStates.Add "Michigan", "MI"

As we’ve noted, collection objects, like arrays, are containers for data. Like the
elements in arrays, the members of collections can be iterated using the For
Each...Next construct. And like arrays, they are accessible by their index value,
although the lower bound of a collection object’s index is always 1, and can’t be
set otherwise in code. But given the similarity to arrays, why use collection
objects, rather than arrays, in your code? The major reason is ease of access and
ease of maintenance:

• Members can be added before or after an existing member based on the lat-
ter’s key value as well as its index value.

• Members can be retrieved based on either their key value or their index
value.

• Members can be deleted based on either their key value or their index value.
Multiple deletions based on an index value, however, should be done back-
Object Variables and Binding 49

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Passing Parameters
wards, from higher index values to lower ones, since the collection is rein-
dexed after each deletion.

Passing Parameters
There are numerous occasions when you need to call a custom function or
subroutine from another function or subroutine, and a variable you are using in
the calling procedure is needed in the called procedure. You therefore pass the
variable as a parameter to the called procedure. Whether the called procedure is in
the same module, the same project, or is a method within a class on a remote
server, passing variables from one procedure to the other is always the same.

The called procedure, and not the calling procedure, determines how the variable
is passed from the calling to the called procedure. As the user of a called proce-
dure, you have no control over how Visual Basic treats the passed parameters. As
the author of a called procedure, it’s up to you to decide how best to bring in vari-
ables from calling procedures.

Visual Basic allows you to pass variables between procedures and components in
two ways. Within the function or subroutine definition, you specify either ByRef
or ByVal for each of the variables in the argument list.

ByRef

This is the default method for passing variables between procedures in Visual
Basic; that is, if you specify neither ByVal nor ByRef, VB treats the variable as
though it had been specified as ByRef.

ByRef means that the variable is passed by reference. In other words, only a refer-
ence to the original variable is passed to the called procedure. The called
procedure doesn’t get its own copy of the variable; it simply references the orig-
inal variable. This is very similar in concept to the pointers you find in C and C++.
The result is that if you make a change to the variable in the called procedure, that
change is reflected in the variable in the calling procedure, because they are actu-
ally the same variable.

The code fragment below demonstrates passing a variable by reference. It also
demonstrates how to circumvent the problem that a function can only return one
value. For example, if the GetValue function you are calling returns an input from
the user, how do you determine if the user wants to cancel the input altogether?
You can’t necessarily do this by using the return value of the function, since it may
be a valid input from the user. You therefore pass a Boolean variable by refer-
ence and test its value on return from the function:

Private Sub Command1_Click()

 Dim blnCancel As Boolean
 Dim lReturn As Long

 lReturn = GetValue(blnCancel)
 If blnCancel Then
 Exit Sub
50 Chapter 3 – VBA Variables and Data Types

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

Passing Parameters
 Else
 MsgBox lReturn
 End If

End Sub

Private Function GetValue(ByRef Cancel As Boolean) As Long

 Dim sResponse As String
 Dim iResponse As Integer

 Cancel = False

 sResponse = InputBox(Prompt:="Enter a value", _
 Title:="Input Required", _
 Default:=0)

 'an inputbox returns a zero length string if _
 the Cancel button was clicked
 If sResponse = "" Then
 Cancel = True
 Else
 If IsNumeric(sResponse) Then
 GetValue = CLng(sResponse)
 End If
 End If

End Function

As you can see, ByRef arguments can be extremely useful. For example, you can
use a ByRef argument to “return” a value from a subroutine that normally can’t
return a value. This can be used to great effect to obtain return values from an
event handler. And as demonstrated above, you can also use ByRef arguments to
return more than the one return value from a function.

ByVal

If you pass a variable by value using the ByVal keyword, the called procedure
obtains its own separate copy of the variable. You can therefore change the value
of the variable in the called procedure without affecting the original value of the
variable in the calling procedure.

ByRef and ByVal: Performance

When passing variables to procedures that are either in the same project or that
are methods of an in-process ActiveX component, ByRef is much faster than
ByVal. This is because the memory reference gives the called procedure almost
instantaneous access to the variable’s value.

However, when passing variables to a method in an out-of-process server, ByVal
has the performance advantage. This is because a procedure in a different process
can’t use the reference supplied by ByRef. Since they don’t share memory, the
called procedure has to obtain a copy of the variable’s value. But since parame-
Passing Parameters 51

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Passing Parameters
52 Chapter 3 – VBA Variables and Data Types

ters are usually passed by reference to permit called routines to change their
value, the value of the ByRef argument is copied back to the calling procedure,
and the original variable is updated with this value.

Optional Arguments

The Optional keyword can be used in the argument list of a procedure declara-
tion to denote that a particular argument doesn’t always have to be passed. This
allows you the flexibility to have different calling procedures passing different
argument lists. One restriction is that all arguments after the first optional argu-
ment must also be optional.

The Optional keyword was introduced in VB4, and at that time optional argu-
ments could only be declared as type Variant. However, VB5 extended its
functionality by allowing any intrinsic data type to be used as an optional
argument.

To test if a variant optional argument has been passed into your procedure, use
the IsMissing function. Other data types will have their default values if they have
not been explicitly passed as arguments; this, however, may be confusing. If an
optional integer value isn’t passed as a parameter, for example, its value in the
procedure is 0. But did the calling procedure actually pass in 0, or is its value 0
because the argument is missing?

ParamArray

The ParamArray keyword (short for Parameter Array) allows you to accept a vari-
able number of arguments into a procedure. The ParamArray must be the last
argument in the list, and it can’t be used in the same argument list as an Optional
argument.

The ParamArray is an optional variant array. That is, the array can be empty, or it
can contain any number of variant elements. To see how this operates, here’s a
quick example:

Private Sub cmdCallDoStuff_Click()

 Dim blnOK As Boolean

 blnOK = DoStuff("Wednesday", 1234, _
 CDate("04/12/1999"), 123.444)

End Sub

Private Sub cmdCallDoOtherStuff_Click()

 Dim blnOK As Boolean
 Dim oTest As testEXE.txtClass
 Set oTest = New testEXE.txtClass
 blnOK = DoStuff(123, 9999999.99, "Hello World", _
 oTest)
 Set oTest = Nothing

End Sub
VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Variables &
Data Types

Intrinsic Constants
Private Function DoStuff(ParamArray anyArgs()) As Boolean

 Dim i As Integer
 For i = 0 To UBound(anyArgs)
 MsgBox anyArgs(i) & vbCrLf & TypeName(anyArgs(i))
 Next i

End Function

As you can see from this simple example, a ParamArray gives you incredible flex-
ibility, allowing the calling program to pass any data type—including objects—in
any order to a procedure or function. However, this flexibility is often a draw-
back. Imagine yourself as the programmer of the calling procedure. What
arguments is the function looking for? What data types are they supposed to be? I
would recommend that you not get too excited at the flexibility offered by Param-
Array, and that you think instead about the wider benefits of type-safe functions
that are both easy to use and easy to maintain.

One last word of caution about ParamArrays. I have found in the past (and
particularly with early releases of Windows NT 4.0) that ParamArrays within
remote server applications often displayed unstable and inexplicable behavior.

Intrinsic Constants
In addition to allowing you to define your own constants using the Const
keyword, VBA includes a number of built-in or intrinsic constants whose values
are predefined by VBA. Along with saving you from having to define these values
as constants, the major advantage of using intrinsic constants is that they enhance
the readability of your code. So, for instance, instead of having to write code like
this:

If myObject.ForeColor = &hFFFF Then

you can write:

If myObject.ForeColor = vbYellow Then

Intrinsic constants are now available for most operations. The best place to find
information about the available intrinsic constants is in the VB object browser,
which you can open by selecting Object Browser from the View menu or by
pressing F2. In many cases, though, a list of available constants for a particular
operation will pop up as you are entering the code. Appendix B, Language
Constants, also lists constants available in VB and VBA.
Intrinsic Constants 53

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 4Class Modules
CHAPTER 4

Class Modules

To some degree, class modules can be seen as “replacements” for code modules—

that is, class modules are repositories for shared variables as well as for shared
code, just as code modules are. So why have class modules? What’s wrong with
normal code modules? Basically, there is nothing wrong with them. But code
modules allow you to share procedures only within the project in which they
reside. For example, you can call a public function from another code module in a
project, but you can’t call that function from another project. To do that, you have
to add the code module to your project or, even worse, create a second copy of
the code module.

Class modules have (without wanting to sound too evangelistic) revolutionized
VB. The whole style of writing VB programs has changed since version 4.0 of VB
was launched, bringing the VB/VBA language closer than ever to being a true
object-oriented language. In fact, much of VB’s current success in the corporate
marketplace can be directly attributed to the ability to create ActiveX components,
the cornerstone of which is the class module.

When you create a class module, you are creating a COM interface. Therefore,
class modules allow you to describe your application to the outside world via a
programmable interface that consists of properties, methods, and events in a way
that allows you to retain control over the application. Using class modules, you
can break an application into logical sections, each having its own class. This is
the concept of encapsulation—everything having to do with a particular thing
held within one wrapper—which is critical to object-oriented programming.

Finally, we have all heard and read loads about the “Holy Grail” of code reuse.
OK, anyone can reuse any code; simply copy and paste a procedure from your
last project, or create a .bas file containing a library of useful stuff you simply
include in every project (VB3 programmers will remember constant.bas). The
problem with this approach is that the source code has to be included in the
project each time. What happens if you find a new, more efficient way to perform
a particular function? You have to revisit each project to change all of the instances
54

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class
M

odules
Properties
of the same code. However, if you’d used a class to create your library, you could
simply add a reference to your class to any new project. This gives you the advan-
tage of not allowing the source code to be seen (or changed) in the current
project, and of only having to make a change to a procedure in one place. Class
modules therefore allow you to reuse code in a structured manner in your own
projects, and others can use them in their classes without having access to your
source code.

Properties
An important element of any class is its properties. These are the equivalent of
global or public variables in code modules. However, a property has the added
advantages that you can both validate a value and execute other code every time a
value is assigned to the property. In addition, properties declared within class
modules can be accessed from outside the current project. Properties help elimi-
nate the clutter of global variables that plagued almost every large-scale VB3
application I’ve seen, and that made both the development and maintenance of
VB3 applications a nightmare.

Implementing Properties

Properties allow users and other programmers (including yourself) to safely access
data. In many ways, properties are simply variables that hold a particular value or
object. But with careful planning and a professional approach, you can turn these
simple variables into powerful tools.

Take, for example, a class that is acting as a wrapper for a collection object. You
may have a read-only property within your class called Count that returns the
number of records held within the collection. Your Count property would simply
pass on the Count property of the collection object. However, you could write
code within your class’s Count property procedure that checks if the value of the
collection object’s Count property is zero and, if it’s zero, calls a procedure that
populates the collection. In this way, the user of your class could populate the
collection automatically by returning the Count property, as the following snippet
demonstrates:

Public Property Get Count() As Long
 If mcolAnyColl.Count = 0 Then
 Call PopulateCollection()

VBA and VB Class Modules

In most cases, a VBA class module is identical to a VB class module; code
from VBA class modules can be imported into VB, and vice versa. The sole
exception is custom-defined events, which missed the release of VBA5 in
Microsoft Office 97. What you can do with a class module, though, is
different in VBA and VB. You can’t compile a VBA class module into a stan-
dalone DLL or EXE; for this you need the retail version of VB.
Properties 55

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Properties
 End If
 Count = mcolAnyColl.Count
End Property

A major use of property procedures is to validate data. Without class modules and
properties, validation is typically performed at the form level; for example, the
Change or LostFocus event handler of a TextBox control determines if the data
entered in the text box is acceptable. It often happens, though, that this value is
referenced on many different forms, so that each reference has to be accompa-
nied by the data validation code. If a programmer gets the validation code wrong,
or simply ignores or forgets the validation altogether, you risk accepting invalid
data into your database. If the validation rules change, you have to visit each form
that contains a reference to the data item and change the validation code.

Now contrast this scenario with validation within a property procedure. The form
can attempt to assign a nonvalidated value to the property, and the property
procedure will validate the data and accept or reject it. The validation for this data
item is thereby centralized. Any form can use the property, and you can be certain
that only validated data is accepted into the database. Furthermore, if a change to
the validation is required, you only have to change the validation logic in one
place, thereby reducing the risk of error.

The following snippet demonstrates using a Property procedure to implement
business rules to validate incoming data:

Public Property Let ClaimDate(dVal as Date)
 'business rule: a claim cannot be more than 10 days old
 If dVal < DateAdd("d",-10,Now) Then
 Err.Raise vbObjectError + 700001, "", _
 "Cannot be more than 10 days ago"
 Else
 mdClaimDate = dVal
 End If
End Property

A property can be of any intrinsic data type or any user-defined object. As of VB6,
you also can create a property whose data type is a user-defined type, although
the implementation of this is somewhat different than that for a normal property;
for details, see the section “Implementing a User-Defined Type Property” later in
this chapter.

Properties can also be defined in Form modules, and can remove the need for
global or public variables to pass state from one module to another in a project.
For example, if you need to set a value for a form to use as it loads, the tradi-
tional method is to assign the value to a public variable, which is then accessible
to the form. The problem with this method is that before long, a large project
includes truckloads of global variables and keeping track of them is a nightmare.
Instead, you should create a property in the form’s code module; then, from
outside the form, you can assign a value to this property, as the following code
snippet shows:

Dim oFrm As frmEmpForm
Set oFrm = New frmEmpForm
oFrm.CurrentEmployeeCode = "0123"
56 Chapter 4 – Class Modules

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class
M

odules
Properties
oFrm.Show vbModal
Set oFrm = Nothing

You can create properties that return other objects, thereby building a hierarchy of
objects. For example, consider an application that deals with employees. The indi-
vidual employee’s record could be held in a collection wrapper class called
Employee, and the code to save and retrieve an employee’s record that’s common
to all employees could be held in a class called Employees. You could then place
a property procedure called Employee in the Employees class that returns an
Employee class object, similar to the following:

Public Property Get Employee(sEmployeeCode As String) _
 As Employee
 Set Employee = mcolEmployees.Item(sEmployeeCode)
End Property

You could then access a particular employee’s record from the client application
using the code:

TxtEmployeeName.Text = Employees.Employee("0123").Name

Having examined the vital role that property procedures can play in ActiveX object
creation, let’s look at the separate procedures you need to employ within your
class to successfully implement a robust property.

The Anatomy of a Property

A properly defined read-and-write property consists of three components:

• A Private member variable to hold the actual data

• A Property Let procedure to validate and accept the incoming value

• A Property Get procedure to pass the value of the private member variable
to the calling program, or optionally a Property Set procedure when deal-
ing with object references

Private member variable

The Private member variable holds the property’s actual value or object refer-
ence. By declaring the variable Private, you protect it from the outside world;
from outside its module, it’s accessible by the Property Let, Get, or Set
procedures.

It’s possible to create a property within a class module by simply
dimensioning a Public variable. However, its value can be modi-
fied from any other module in your project by a simple assignment
statement. This isn’t recommended, since it fails to take advantage of
the benefits associated with property procedures.
Properties 57

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Properties
When creating a property for a user-defined type, the type declara-
tion must be declared as Public. See the next section, “Implement-
ing a User-Defined Type Property,” for details.

The name of this variable should differ from that of the property to which it’s
attached. This is usually achieved using standard VB naming conventions and
prefixing the name with a lowercase “m” to denote a member variable. For
example:

Private msForeName As String
Private miNumber As Integer

The Property Let procedure

A Property Let procedure assigns a value to a property. You can perform all
your data validation within the Property Let procedure before assigning the
incoming value to your Private member variable. (For full details, see the entry
for the Property Let statement in Chapter 7, The Language Reference.) In its
simplest form, a Property Let procedure looks something like this:

Public Property Let ForeName(sVal As String)
 msForeName = sVal
End Property

The data type of the property’s argument must be the same as that of the private
member variable to which its value is assigned.

A Property Let procedure doesn’t return a value. Therefore, to reject a value
within your data validation code, you should use the Err.Raise method to generate
a trappable error in the client application.

A tricky issue is that of generating a warning, rather than an error. Let’s say that
part of your validation code checks the value of a data item and, if it’s above a
certain amount, warns the user that the amount appears high. You don’t want to
reject the value out of hand, because there could be a valid reason for the high
value. Now, if you coded the warning as follows, you would never get past the
warning if the value was above 10,000:

Public Property Let ClaimValue(dVal As Double)
 If dVal > 10000 Then
 Err.Raise vbObjectError + 40000, "", _
 "The Claim Value appears high"
 Else
 mdClaimValue = dVal
 End If
End Property

The way to get around this is to raise an event in the client. Events are covered
later in the chapter, and we’ll come back to this example in that section.
58 Chapter 4 – Class Modules

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class
M

odules
Properties
The Property Get procedure

The Property Get procedure is much like a function: just as you assign a value to
the name of the function to define its return value, you assign the value of the
Private member variable to the name of the Property Get procedure and
thereby return the property value. (For full details, see the entry for the Property
Get procedure in Chapter 7.)

In its simplest form, a Property Get procedure looks something like this:

Public Property Get ForeName() As String
 ForeName = msForeName
End Property

The data type returned by the Property Get procedure must be the same as that
of the Private member variable.

If the data type of the property is an object reference, you must use the Set state-
ment to return its value, like this:

Public Property Get Employee(sEmployeeCode As String) _
 As Employee
 Set Employee = mcolEmployees.Item(sEmployeeCode)
End Property

Property scope

The keyword you employ to declare a property procedure determines where the
property can be used:

Private
Restricts the visibility of the property to the class module within which the
method is defined. This is pointless, since you achieve identical results with a
private variable.

Friend
Restricts the visibility of the property to those modules contained within the same
project as the property definition. Friend properties appear in the IntelliSense
drop-down list for the class and are made available for statement completion in
other modules within the same project.

Public
Allows the property to be called from within the class module, from other
modules in the project, and from outside the project. Defining a property as
Public adds the property declaration to the Type Library for the class. When
a reference is made to the class from another project, Public properties appear
in the IntelliSense drop-down list for the class and are made available for
statement completion.

Implementing a User-Defined Type Property

Visual Basic 6 adds the user-defined type (UDT) to the list of data types a prop-
erty can represent. However, its use isn’t intuitive. Here are the steps needed to
create a UDT property in VB6:
Properties 59

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Properties
1. Declare a Public user-defined type definition.

2. Declare a Private member variable whose data type is that of the user-
defined type.

3. Declare a Public Property Get procedure whose data type is that of the
user-defined type.

4. The assignation within the Property Get procedure should be the Private
member variable.

5. Declare a Public Property Let procedure. The data type of the value
parameter is that of the user-defined type.

In addition, client applications using the UDT property can do so only by using
early binding. See the section “Using ActiveX Components in a Project” later in this
chapter for information about early binding.

Here’s a quick example:

Server code:

Public Type udtTestType
 EmployeeNo As Integer
 EmployeeName As String
End Type

Private mudtTestType As udtTestType

Public Property Get TestType() As udtTestType
 TestType = mudtTestType
End Property

Public Property Let TestType(udtVal As udtTestType)
 mudtTestType = udtVal
End Property

Client code:

Dim oServer As Server.ServerClass
Dim oRemUDT As Server.udtTestType

Set oServer = New Server.ServerClass

oRemUDT = oServer.TestType

oRemUDT.EmployeeName = "Tim"
oRemUDT.EmployeeNo = 1

oServer.TestType = oRemUDT

Set oServer = Nothing
60 Chapter 4 – Class Modules

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class
M

odules
Properties
To use remote user-defined types in this manner, you need a com-
puter with NT4 and NT Service Pack 4 or above.

Implementing a Read-Only Property

To define a property as read-only, you should implement the following:

• A Private member variable to hold the actual data

• A Property Get procedure to pass the value of the private member variable
to the calling program

In this way, the “outside world” can’t change the value of the property, because
there is no Property Let procedure. You have complete control over the value
of the property within the class.

Using Properties in the Client Application

Within a procedure, you shouldn’t make more than one call to a particular prop-
erty. Each time you call a property, there is overhead, which can result in a
massive performance hit on your application. This code snippet shows how not to
use a property:

Dim oEmps as Employees
Set oEmps = New Employees
If oEmps.EmployeeNo <> sExcludedEmpNo Then
 TxtEmpNo.Text = oEmps.EmployeeNo
 Call BuildSomeCombo(oEmps.EmployeeNo)
 MsgBox "Found Employee No" & oEmps.EmployeeNo
End If
Set oEmps = Nothing

In this simple example, there are four calls to the EmployeeNo property. That’s
four times the client application has to navigate to the Property Get procedure,
and four times the Property Get procedure has to execute. You can optimize this
code by accessing the property once and storing its value in a local variable, as
the following code fragment illustrates:

Dim oEmps as Employees
Dim sEmpNo as String
Set oEmps = New Employees
sEmpsNo = oEmps.EmployeeNo
Set oEmps = Nothing

If sEmpNo <> sExcludedEmpNo Then
 TxtEmpNo.Text = sEmpNo
 Call BuildSomeCombo(sEmpNo)
 MsgBox "Found Employee No" & sEmpNo
End If
Properties 61

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Enumerated Constants
You may have noticed another important benefit we’ve managed to gain in the
reworked code. The object reference is destroyed at a much earlier stage, which
means that the object is used only for a short period of time. This is a major
consideration as far as scalability is concerned when designing large client-server
applications.

Using a Mass Assignation Function in Collection
Classes

What’s a mass assignation function? Let’s say you have a collection class that
contains 20 properties, which you populate by reading data from a database. You
have a procedure that opens the database, creates a recordset, and then assigns
the values from the recordset to each of the relevant properties in the class, some-
thing like this:

oClass.EmployeeNo = rsRecordset!EmpNo
oClass.FirstName = rsRecordset!FirstName
Etc...

Using this method, you are calling the Property Let procedure of each property.
If there is validation code within the Property Let procedure, this must execute
too, most likely on data that has been validated before being saved in the data-
base. A more efficient method of population is to create a function within the
collection class, like this:

Friend Function Initialize(sEmpNo as String, _
 sFirstName as String ...etc) As Boolean
msEmpNo = sEmpNo
msFirstName = sFirstName
...Etc...

This single function assigns all the values for the object in one go by assigning the
values directly to the local variables, thus bypassing the Property Let proce-
dures and the redundant validation code. You can therefore pass all the values to
populate the object at once:

If oClass.Initialise(rsRecordset!EmpNo, _
 rsRecordset!FirstName, _
 etc...) Then

Of course, you should only use this method within a class module—never from
outside—and you should only employ this against data you are certain has already
been validated.

Enumerated Constants
Constants, as you know, are useful for improving the readability and maintain-
ability of code by making it self-documenting. However, you can’t define a public
constant (using the Public Const statement) within a class module. How do you
make some constants available both to yourself and possibly to other users of your
class? The answer lies in the use of enumerated constants.

Enumerated constants allow you to create a set of constants that become intrinsic
to your application or class, very much like the intrinsic constants, such as vbCrLf
62 Chapter 4 – Class Modules

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class
M

odules
Class Module Events
and vbRightButton, within VB itself. By using enumerated constants within your
class, you can associate a constant name and its value with the class, in the
process providing the user of the class with a set of meaningful constants that are
instantly available from the IntelliSense drop-down list for statement completion.

Using Enumerated Constants

To create a set of enumerated constants, you use the Enum statement, which
defines the name of the set of constant values, the names of the individual
constants within the set, and the individual values of these constants. You place
the Enum statement in the declarations section of your class module. For example:

Public Enum empTypes
 empTypeOne = 1
 empTypeTwo = 2
 empTypeThree = 3
End Enum

The major drawback with enumerated constants is that their values can be
numeric only. In other words, you can’t declare an enumerated constant that
represents a string.

Once you have created a reference to your class from the client application using
the references dialog or automatically if the class module in which empTypes is
defined is a part of your project, you have access to the enumerated constants via
the IntelliSense drop-down list. For example, you could access the constants
shown in the example above by typing emp, then pressing the Ctrl key and
spacebar together; in the list of available items, you would see all three of the
constants and the empTypes Enum type. This means that you can use either of the
following syntactical forms:

If iType = empTypes.empTypeOne Then
If iType = empTypeOne Then

Note that to use the enumerated constants from within a class, you don’t have to
have instantiated an object variable of that class as you do to access a property
within a class. This is an important point and worth repeating. Accessing a prop-
erty within a class requires you to declare an object variable of that class, then use
the variable and dot notation to get to the property; for example:

Dim oVar As Employee
Set oVar = New Employee
OVar.Name = "Peter"

However, as soon as a class module containing an enumerated constant is
included in your project or a reference to its class is added to your project, you
can use those constants within your code.

For more information on the Enum statement, see its entry in Chapter 7.

Class Module Events
Unlike normal code modules, class modules support two events that are automati-
cally defined when you add a class module to your project. These two standard
Class Module Events 63

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class Module Events
events, the Initialize and Terminate events, are analogous to the class constructor
and destructor in an object-oriented programming language like C++; they are
fired automatically when a class is instantiated and destroyed, respectively.

An event handler is the code attached to a particular event. When the event is
fired, the event handler is executed automatically. Like all event handlers, writing
code to handle the Initialize and Terminate events is optional, but it’s at the heart
of sound VB programming. So let’s look at some of the uses you can put these
event handlers to and some of the rules relating to these two events.

The Initialize Event

Let’s begin by examining precisely when the Initialize event is fired, then look at
some possible applications for the Initialize event handler.

When is the Initialize event fired?

The firing of the Initialize event depends on how the class object is instantiated. If
you use the combined method of declaring a New instance of an object:

Dim oVar As New svrObject

the Initialize event is fired when the first reference is made to a member of the
class, and not when the class is declared as New. For example:

Dim oVar As New svrObject ' Initialize event not called
oVar.AnyProp = sAnyVal ' Initialize event fired _
 immediately prior to the Property Let

However, if you use the Set statement to instantiate an object, the Initialize event
is fired when the Set statement is executed. For example:

Dim oVar As svrObject
Set oVar = New svrObject ' Initialize event fired here

Using the Initialize event

The Initialize event can be used for any of the following:

• To create new collection objects that are used within the class. For example:

Set mcolx = New Collection

• To include conditional debugging code to determine when the class has been
initialized. For example:

#If ccDebug Then
 Debug.Print "xyz Class Initialized"
#End If

• To create and instantiate dependent objects. For example:

Set moDepObj = New clsDependant
64 Chapter 4 – Class Modules

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class
M

odules
Class Module Events
The Terminate Event

As with the Initialize event, the precise time the Terminate event is fired has
created some confusion. Once again, we’ll examine when the Terminate event is
fired before looking at some applications of the Terminate event handler.

When is the Terminate event fired?

The simple answer is that the Terminate event is fired when all references to the
object are set to Nothing. However, life’s never that simple. You may assume that
because you have placed a Set objVar = Nothing statement in your program
that the objVar’s Terminate event will be fired, and in the vast majority of cases it
will be. However, having a live reference to another object in the objVar class
prevents objVar from terminating. This occurs, for example, if your class contains
a collection that contains a reference to another object, and you fail to destroy the
collection. Similarly, if your class contains a dependent object whose reference
was not released, your class may not terminate cleanly.

To prevent this from happening, use debugging code within both the Initialize and
Terminate event handlers to ensure that all objects are destroyed cleanly when you
think they should be destroyed. In addition, get into the habit of using the
following template when handling object variables:

Dim objectVariable As Class
Set objectVariable = New Class
 'indent code then it's easy to see the start and
 'end of an object reference
Set objectVariable = Nothing

I actually go as far as writing my Set objectVariable = Nothing statement
before I write the code between the two Set statements. This makes me approach
the two Set statements as if they formed a code block, like an If...Then...End
If block.

Using the Terminate event

The Terminate event can be used to provide “clean up” code for your class:

• To destroy collection objects used within the class being terminated. For
example:

Set mcolx = Nothing

• To include conditional debugging code to determine when the Terminate
event has fired. For example:

#If ccDebug Then
 Debug.Print "xyz Class Terminated"
#End If

• To destroy dependent objects of the class being terminated. For example:

Set moDepObj = Nothing
Class Module Events 65

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class Module Events
Implementing Custom Events

In the early versions of VB, programmers were limited to working with the built-in
events. In VB5, however, three simple keywords—Event, RaiseEvent, and
WithEvents—were added to the language to allow the programmer to define
custom events or to trap events in external objects that would otherwise be
inaccessible.

Custom events applications

Custom events can be used for any of the following:

• To report the progress of an asynchronous task back to the client application
from an out-of-process ActiveX EXE component.

• To pass through events fired by the underlying control in an ActiveX custom
control.

• As a central part of a real-time multiuser application in an n-tier client-server
application. (Incidentally, events can’t be fired from within a Microsoft Trans-
action Server Context.)

• To receive notification of events fired in automation servers.

• To query the user and receive further input.

Custom event rules

The following are some of the rules and “gotchas” for defining custom events:

• Events can be declared and fired only from within object modules (i.e., Form,
User Control, and Class modules). You can’t declare and fire events from a
standard code module.

• Events can be handled or intercepted only from within object modules. You can’t
handle any type of event from within a code module. This isn’t really a limitation
because you can simply include a call to a function or sub within a code module
from within your event handler, to pass program control to a code module—just
like you would write code in form and control event handlers.

• The event declaration must be Public so that it’s visible outside the object
module; it can’t be declared as Friend or Private.

• You can’t declare an object variable as WithEvents if the object doesn’t have
any events.

• To allow the client application to handle the event being fired, the object vari-
able must be declared using the WithEvents keyword.

• VB custom events don’t return a value; however, you can use a ByRef argu-
ment to return a value, as you will see in the next section, “Creating a custom
event.”

• If your class is one of many held inside a collection, the event isn’t fired to
the “outside world”—unless you have a live object variable referencing the
particular instance of the class raising the event.
66 Chapter 4 – Class Modules

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class
M

odules
Class Module Events
Creating a custom event

To raise an event from within an object module, you first of all must declare the
event in the declarations section of the object module that will raise the event.
You do this with the Event statement using the following syntax:

[Public] Event eventname [(arglist)]

For example:

Public Event DetailsChanged(sField As String)

In the appropriate place in your code, you need to fire the event using the
RaiseEvent statement. For example:

RaiseEvent DetailsChanged("Employee Name")

That is all you need to do within the object module. Simply declare an event using
Event, and fire it using RaiseEvent.

The client code is just as simple. You declare an object variable using the WithEv-
ents keyword to alert VB that you wish to be informed when an event is fired in
the object. For example:

Private WithEvents oEmployee As Employee

This declaration should be placed in the Declarations section of the module. VB
automatically places an entry for the object variable name in the Object drop-
down list at the top left of your code window. When you select this, note that the
events declared in the object are available to you in the Procedure drop-down list
at the top right of your code window. You can then select the relevant event and
its event handler. For example:

Private Sub oEmployee_DetailsChanged(sField As String)
 MsgBox sField & " has been changed"
End Sub

In the earlier section “The Property Let procedure,” we mentioned using a custom
event to fire a warning to the client as part of a data-validation procedure. Unfor-
tunately, though, events don’t return a value. However, if you define one of the
parameters of your event to be ByRef, you can examine the value of the variable
once the event has been handled to determine the outcome of the event handling
within the client application. Here’s a simple example:

Server code:

Public Event Warning(sMsg As String, ByRef Cancel As Boolean)

Public Property Let ClaimValue(dVal As Double)

 Dim blnCancel As Boolean

 If dVal > 10000 Then
 RaiseEvent Warning("The Claim Value appears high", _
 blnCancel)
 If blnCancel Then
 Exit Property
 End If
Class Module Events 67

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Implementing Custom Class Methods
 End If

 mdClaimValue = dVal

End Property

Client code:

Private WithEvents oServer As clsServer

Private Sub oServer_Warning(sMsg As String, _
 Cancel As Boolean)
 Dim iResponse As Integer
 iResponse = MsgBox(sMsg & " is this OK?", _
 vbQuestion + vbYesNo, _
 "Warning")
 If iResponse = vbNo Then
 Cancel = True
 Else
 Cancel = False
 End If

End Sub

As you can see, this is a powerful technology. However, it also demonstrates
another aspect of custom events that may not be desirable in certain circum-
stances: RaiseEvent is not asynchronous. In other words, when you call the
RaiseEvent statement in your class code, your class code won’t continue
executing until the event has been either handled by the client or ignored. (If the
client has not created an object reference using the WithEvents keyword, then it
isn’t handling the events raised by the class, and any events raised will be ignored
by that client.) This can have undesirable side effects, and you should bear it mind
when planning your application.

For more information on the custom event statements, see the entries for the
Event, Friend, Private, Public, RaiseEvent, and WithEvents statements in
Chapter 7.

Implementing Custom Class Methods
Class methods are implemented by creating subroutines (also known as sub proce-
dures) and functions within the class. There is no practical difference between
creating a subroutine or function in a class module or creating it in a code or form
module. If you’re used to programming in another language such as C or C++, the
concept of a subroutine will be new to you, although it’s analogous to a void
function.

VB functions and subroutines differ only in the ability of a function to return a
value to the calling procedure, and thus a function call can be placed on the right
side of an assignment statement. However, I always recommend that modules
consist only of functions, not of subroutines. Why? Since they are identical except
that functions return a value, you can use functions to improve the robustness of
your application by always returning at least a Boolean value indicating whether
68 Chapter 4 – Class Modules

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class
M

odules
Implementing Custom Class Methods
the function has succeeded or failed. The calling procedure isn’t forced to handle
the return value. Look at the two code snippets below:

Call OpenFile(sFileName)

If OpenFile(sFileName) Then

The first line of code calls a function to open a particular file. Since the return
value is discarded, the function has to assume that the file was opened success-
fully. The function call in the second line of code returns a Boolean True or
False value that is handled in the code, letting you know whether or not the call
to the OpenFile function was successful.

The Scope of Custom Methods

As with variables and properties, the scope or visibility of a class method is deter-
mined by the scope statement you use when defining the method. These are:

Private
Restricts the visibility of the method to the class module in which the method
is defined.

Friend
Restricts the visibility of the method to modules in the same project as the
method definition. Friend class methods appear in the IntelliSense drop-down
list for the class and are made available for statement completion in other
modules within the same project.

Public
Allows the method to be called from within the class module, from any other
module in the project, and from outside the project. Specifying a method as
public adds the method declaration to the Type Library for the class. When a
reference is made to the class from another project, public class methods
appear in the IntelliSense drop-down list for the class and are made available
for statement completion.

Passing Arguments to Custom Methods

Although the way you pass arguments to methods is the same as passing argu-
ments to other functions or subroutines, you should consider whether the class
will be running in or out of the calling application’s process.

If the method and calling statement are in the same process, generally you should
pass arguments by reference, using the ByRef keyword. Within the same process,
ByRef simply passes a reference to the variable, which in the main is more effi-
cient that passing a copy of the variable’s value, as ByVal does.

However, if there is a process boundary to be crossed, ByRef actually makes a
copy of the value that it passes to the called procedure. When the called proce-
dure terminates, it also makes a copy of the value to pass back to the calling
procedure. The calling procedure then copies the returned value into the original
value’s address in memory. This means that if you are passing arguments across
process boundaries, passing arguments by value with the ByVal keyword is more
efficient.
Implementing Custom Class Methods 69

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Creating ActiveX Components
Creating ActiveX Components
In the Professional and Enterprise editions of Visual Basic, you can use class
modules to create ActiveX components and compile them as either ActiveX DLLs
or ActiveX EXEs. The choice you are faced with, effectively, is whether you
require an in-process or an out-of-process component.

In-Process Components

An ActiveX DLL is an in-process component. But why is it called “in-process”?

In 16-bit Windows, a DLL effectively became part of the operating system, and all
running processes had access to the DLL. A handle to the DLL could be obtained
centrally from the operating system, and the operating system knew at any given
time how many (if any) handles to a particular DLL had been issued. In 32-bit
Windows, a DLL doesn’t become part of the operating system. It becomes part of
the process space of the application that calls the DLL. A call to a DLL forces the
operating system to create a file mapping object for the DLL. This object is then
mapped into the process space of the client or calling process. Hence the term in
process.

Out-of-Process Components

When you create an ActiveX EXE, you are creating an out-of-process component.
An ActiveX EXE runs as a separate process with its own threads. This also means
that calling a function within an ActiveX EXE is asynchronous; in other words, the
calling application doesn’t have to wait for a response from the function before
continuing. By calling an out-of-process method, you have effectively created a
multithreaded application.

While asynchronous function calls have tremendous benefits, they do require
special handling. For example, you need to know when a function call has
completed its task. This is typically done by raising an event from the out-of-
process component.

Class Module Properties

Depending on the type of project in which the class module (.cls) file is included,
class modules support the following properties that control their precise behavior:

Instancing
Only available when a class is part of an ActiveX project, the instancing prop-
erty defines how instances of the class are created. Its values are:

GlobalMultiUse
The class becomes global to the project in which it’s defined; references
are not necessary. For example, most VB language objects are global; as
soon as you load the environment, they are available to be used. Use this
property setting to create class modules containing enumerated constants
for your object model.
70 Chapter 4 – Class Modules

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class
M

odules
Creating ActiveX Components
MultiUse
The class has scope (i.e., it’s visible) outside the project in which it’s
defined, and it can’t be instantiated using the New keyword or the
CreateObject function. Use this for top-level objects in a hierarchy or
object model.

PublicNotCreateable
Although the class has scope (i.e., it’s visible) outside of the project in
which it’s defined, it can’t be instantiated from outside the project using
the New keyword or the CreateObject function. Use this for child objects
that can be created by accessing a function or property of a higher-level
object.

Private
The class can’t be “seen” outside the project in which it’s defined.

SingleUse
Every call by a client to create the object using either the New keyword or
the CreateObject function creates a completely new instance of the
object. Only available in ActiveX EXE projects.

GlobalSingleUse
As with the SingleUse property value, every call by a client to create the
object using either the New keyword or the CreateObject function creates
a completely new instance of the object. However, GlobalSingleUse
allows methods and properties to be seen as part of VB. Only available
in ActiveX EXE projects.

DataSourceBehavior
(VB6 only) This property, which isn’t available when the class is part of an
ActiveX EXE project, defines the ability of the class to serve as a data source
for other objects. Values are:

vbNone
The class doesn’t expose a bindable data interface.

vbDataSource
The class can act as a data source for other objects.

vbOLEDBProvider
The class can act as an OLE DB Simple Provider.

DataBindingBehavior
(VB6 only) This property controls the behavior of the class when it’s bound to
an external data source. Values are:

vbNone
The class can’t be bound to external data sources.

vbSimpleBound
The class can be to bound to a single data field in an external data
source.

vbComplexBound
The class can be bound to a row of data in an external data source.
Creating ActiveX Components 71

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Creating ActiveX Components
MTSTransactionMode
(VB6 only) Only available when the class is part of an ActiveX DLL project;
you should set this property whenever the class is registered within Microsoft
Transaction Server. This property automatically sets the Transaction Support
property for the object when it is registered in MTS, thereby giving the devel-
oper control over how the component is used by MTS. Values are:

NotAnMTSObject
NoTransactions

Sets the Transaction Support property to “Does not support
Transactions.”

RequiresTransactions
Sets the Transaction Support property to “Requires a Transaction.”

UsesTransactions
Sets the Transaction Support property to “Supports Transactions.”

RequiresNewTransaction
Sets the Transaction Support property to “Requires a new Transaction.”

Persistable
(VB6 only) Only available when a class is part of an ActiveX project, this
property determines whether the class can be saved to disk. Values are:

NotPersistable
The class properties can’t be saved.

Persistable
The class property values can be saved to a property bag.

Component Creation Hints and Tips

What follows are an assortment of topics, many of them frequently overlooked, to
consider when building your own ActiveX components.

Including user interfaces in ActiveX components

There is nothing to stop you from including form modules within your ActiveX
EXEs and DLLs. However, you should distinguish between an ActiveX component
that is designed to run on the client machine and one that will be a remote server.

The rule is that ActiveX remote server components shouldn’t contain any UI what-
soever—not only no forms, but no message boxes either. The reason for this is
that the UI appears on the remote machine, not on the client machine. You can
imagine the uselessness of a message box popping up on some remote applica-
tion server stuck away in a locked machine room, waiting for someone to click
OK!

Allowing clients to use the For Each…Next statement

Most of the time, we take the For Each...Next loop for granted as it iterates the
members of an array or a collection. It’s the fastest, most efficient method of
visiting all the members of the collection or array, and we could care less that, by
enumerating the members of the collection, the unseen code is actually gener-
72 Chapter 4 – Class Modules

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class
M

odules
Creating ActiveX Components
ating new references to members of the collection with each iteration of the loop.
However, as the provider of a collection class, it’s up to you to provide an inter-
face that the For Each...Next statement can work with.

This may sound a little daunting, but you’ll be pleasantly surprised by how easy it
is to implement a property that enumerates members of the collection within your
class. First of all, you must create a Property Get procedure called NewEnum with
the type of IUnknown. Its syntax is always the same:

Public Property Get NewEnum() As IUnknown
 Set NewEnum = mCol.[_NewEnum]
End Property

where mCol is the name of your private collection object variable.

Second, set the Procedure ID for this Property Get procedure to –4. To do this,
select the Procedure Attributes option from the Tools menu, then click the
Advanced button on the Procedure Attributes dialog. Enter a Procedure ID of –4.
You should also check the “Hide this member” option to prevent the property
from appearing in the IntelliSense drop-down list.

For more information about using the For Each...Next statement in a client
application, see its entry in Chapter 7.

Error handling

More care and thought than normal needs to go into handling errors within a class
module. In general you shouldn’t do more than pass on the error to the client with
the Err.Raise method. However, if your error handling code is going to pass the
error number back to the client, you need to decide if the error number should
have the vbObjectError constant added to it or not. (vbObjectError is a
constant that allows a referencing object to determine that the error was gener-
ated in a VB class object.) Another consideration is whether or not and how the
Err.Source property is passed back to the client.

A full discussion of error handling and the Err object, including class module error
handling, can be found in Chapter 6, Error Handling.

One last point to note is that you should never use the End statement within a
class module.

Use Dictionary objects rather than Collection objects

When you’re creating object models, many of your ActiveX server components will
be based upon collections of other objects. Ever since VB4, developers have
become accustomed to writing these classes based on the Collection object (in
effect, creating a wrapper for the Collection object), taking for granted the fact that
the Collection object is slow and expensive in terms of overhead, but also
knowing that there was no real alternative. However, if you’re using VB6 to create
collection classes, I strongly recommend that you use a Dictionary object in place
of the Collection object. The Dictionary object is fast in comparison to the Collec-
tion, and it has more functionality. For a complete explanation of the Dictionary
object, see the Dictionary Object entry in Chapter 7.
Creating ActiveX Components 73

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Creating ActiveX Components
Provide your own Exists property in collection classes

Collection objects are neat for quickly accessing values and objects given a key
value. You can add items to the collection, retrieve a given item from the collec-
tion, find out how many items are in the collection, and remove an item from the
collection. For example, this simple code retrieves an object from a collection
using its key:

Public Property myClass(vVal as Variant) As myClass
 Set myClass = mCol.Item(vVal)
End Property

However, if the key vVal doesn’t exist in the collection, you’re faced with a
runtime error. The gap in the usability of the Collection object is that there is no
Exists property. But you can easily plug this gap and provide a way to add a
missing property to the collection as follows:

Public Property Exists(sVal as String) As Boolean
 On Error Goto myClass_Err
 Dim oTest As myClass
 Set oTest = mCol.Item(sVal)
 Set oTest = Nothing
 Exists = True
 Exit Property
TryToGetIt:
 If getItemforCollection(sVal) Then
 Exists = True
 Else
 Exists = False
 End If
 Exit Property
MyClass_Err:
 If Err.Number = 5 Then
 Resume TryToGetIt
 Else
 'over-simplified error handler!
 Err.Raise Err.Number + vbObjectError
 End If
End Property

Quite simply, you attempt to assign the collection to a test object. If the assign-
ment works, return True; otherwise, handle the error by calling a function,
getItemforCollection, that adds the new item to the collection. If getItemforCollec-
tion returns False, however, this means that the item doesn’t exist, and the Exists
property must return False. Using the Exists property, you can preface each call
to get an object with a conditional statement like the following:

Set oMyClasses = New myClasses
 If oMyClasses.Exists("xyz") Then
 Set oMyClass = oMyClasses.MyClass("xyz")
 Else
 MsgBox "Sorry it doesn't exist!"
 End if
Set oMyClass = Nothing
74 Chapter 4 – Class Modules

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Class
M

odules
Using ActiveX Components in a Project
When is an in-process component out-of-process?

Until recently, you could say with certainty that an ActiveX EXE would run out-of-
process, whereas an ActiveX DLL would run in-process. However, if you were
now asked if a particular component was in-process or out-of-process, you would
have to respond with the question, “Whose process?”

Technically, ActiveX DLLs will always be in-process, but traditionally (if you can
call a couple of years a tradition!) the “process” referred to is that of the client
application—but not any more! This shift in thinking has come about because of
new technologies such as Distributed COM (DCOM), Microsoft Transaction Server
(MTS), and Microsoft Distributed Transaction Coordinator (MDTC), which are blur-
ring the traditional process boundaries.

For example, an ActiveX DLL running in MTS is running within the MTS’s process,
but it’s running outside of the client application’s process. In fact, boundaries are
becoming blurred to such an extent that to the user of the client application, the old
boundaries are for the most part completely invisible. During the development of a
client-server application recently, I was aware that one of my DLLs was executing,
only I wasn’t quite sure which one of three machines it was executing on!

Using ActiveX Components in a Project
If the ActiveX object you need to reference provides a type library and is regis-
tered on your computer, you can create a reference to the component using the
References dialog. This includes the component’s properties, methods, and events
in the Intellisense drop-down list and provides statement completion for its prop-
erties, methods, and events. Furthermore, this enables you to early bind to the
component’s classes.

If the ActiveX object either doesn’t provide a type library, or you don’t know at
design time which classes of a component you will need, you should use late
binding.

Manually Registering and Unregistering ActiveX
Components

There are occasions when you need to use an ActiveX component in your project,
and the DLL is available on your machine, but it isn’t registered. In this situation,
you must manually register the component before you can use it. Fortunately,
ActiveX components are designed to be self-registering: every ActiveX DLL
contains information about itself that Windows can write to the registry using a
program called RegSvr32.exe. For example, to register a DLL called myServer.DLL :

6. Click the Windows Start button and select Run.

7. Type RegSvr32 c:\windows\system32\myserver.dll, or the precise path
of the DLL. If you don’t know where the DLL is stored, you can locate it using
Explorer, type RegSvr32 in the Run dialog, then select the DLL and drag it to
the text box in the Run dialog; the complete path (with no spelling mistakes!)
is entered into the Run dialog for you.
Using ActiveX Components in a Project 75

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Using ActiveX Components in a Project
8. Click OK.

9. A dialog box should then be displayed informing you of the success or failure
of the component registration.

There are also occasions, particularly when you are developing remote server
applications, when you need to unregister components on your local machine.
The procedure is almost the same as that to register a component, the only differ-
ence being that you add the –U switch (for unregister). For example:

RegSvr32 –U c:\windows\system32\myserver.dll

Early Binding

Early binding is the most efficient method of accessing an ActiveX component.
This is because the reference to the Type Library for the component can be
compiled into your project, giving your project an almost instant navigational path
to the properties, methods, and events of the component, and allowing memory to
be allocated based on the type library. To provide early binding for a component,
you must use the References dialog to add a reference to the object to your
project. You can then use either of two methods of instantiating the object:

Dim oObjVar As New myClass

or:

Dim oObjVar As myClass
Set oObjVar = New myClass

Late Binding

Late binding is flexible in terms of coding but is much less efficient at runtime
because references to objects have to be resolved on the fly. To implement a late
bound object, you should declare an object variable as an Object or a generic
object, and then use the CreateObject function to assign a reference to the object
variable:

Dim oObjVar As Object
Set oObjVar = CreateObject("myComponent.myClass")

or, in VB6:

Set oObjVar = CreateObject("myComponent.myClass", "DEVSVR1")

As you can see, late binding allows you to specify the name of the class (and in
VB6, the name of the server where the component resides). However, late bound
component properties, methods, and events are not available for statement
completion, because your project knows nothing about the structure of the classes
at design time.

For more information about using object references, see the entries for the
CreateObject function, the Dim statement, the Friend statement, the GetObject
function, the Private statement, the Public statement, and the Set statement in
Chapter 7.
76 Chapter 4 – Class Modules

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5Automation
CHAPTER 5

Automation

In this chapter, you will see how VB can take advantage of the power of OLE
Autom
ation
automation to extend the capabilities of any VB application. While you will see
Microsoft Office applications acting as OLE automation servers, this technology
isn’t restricted to Microsoft Office applications; there are now hundreds of applica-
tions that can be used in this way, allowing you either to program within the
application itself using its VBA development environment or to use a VB/VBA
program to control the OLE automation application from outside.

The key to controlling an OLE automation application is a firm understanding of
the application’s object model. Each application’s object model is different, and the
amount of control you have over the application varies considerably. Microsoft
now claims that every function of every application in the Office suite is available
to the developer via the application’s object model.

The object model is a hierarchy of objects that contain the methods, properties,
and events that control the application. It acts to describe the application to you,
the developer. Once you have become familiar with one or two object models,
you will find that, in general, you can quickly pick up the basics of other object
models you come across.

Creating Object Model References
Before you can use the properties, methods, and events of an object model, you
must first create a programmatic reference to the class containing the properties,
methods, or events you wish to use. You do this by declaring a local object vari-
able to hold a reference to the object. You then assign a reference to the object to
the local variable. There are two methods, detailed next, for doing this in VB.
77

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Creating Object Model References
Generic Object References and Late Binding

In situations in which the object you are instantiating doesn’t provide a type
library, or when you are unsure at design time precisely which object you need to
reference, you can use a local variable dimensioned as the generic type of Object.
Then you use the CreateObject or GetObject function to return an object reference
to assign to the local generic object variable. For example:

Dim oObjVar As Object
Set oObjVar = CreateObject("myComponent.myClass")

VB6 has also added to the functionality of the CreateObject function by allowing
you to pass the server machine name as a string parameter. (For details on how to
use CreateObject and GetObject see Chapter 7, The Language Reference.)

This method of creating an object reference produces a late bound interface; your
application has no way of knowing in advance (that is, at design time) what the
makeup of the object interface is. Only at runtime does your application get to
bind to the interface; hence the term late binding. Because of this, you won’t be
given any help from VB’s IntelliSense statement completion feature when writing
your code; see the section “Reading the Object Model.”

Early Binding

The other—and now most common—method of adding an object reference to
your project is by using the References dialog, which is shown in Figure 5-1. You
can access the References Dialog by selecting the References option from the
Project Menu. All OLE Automation Servers registered on your machine are shown
in the list. To create a reference to one of them, check the box and click OK.

Once you have added a reference to your project in this manner, you can create
an early bound interface to the object by using the Private, Public, Friend, or
Dim statement to declare an object variable of the exact type. Then use the Set
statement to assign an object reference to the local variable. (For details on how to
use the Private, Public, Friend, Dim, and Set statements, see their entries in
Chapter 7.) For example:

Dim objDoc as Document
Set objDoc = Word.Application.ActiveDocument

You can also use the New keyword with the Private, Public, Friend, or Dim
statement, as in the following example:

Dim objDoc As New Document

If You Haven’t Set It, You Can’t Use It!

To assign an object reference to a local object variable, you must use the
Set statement. The sole exception is the For Each...Next loop, which
can iterate the object members of a collection. It generates an object refer-
ence automatically for each object that it iterates.
78 Chapter 5 – Automation

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Autom
ation

Reading the Object Model
Because your project has a reference to the object’s type library, binding to the
object can take place at compile time, which makes your application more effi-
cient and allows you to get help in your coding from IntelliSense.

Reading the Object Model
The object model of an OLE Automation server is a hierarchy of classes, each
containing methods, properties, and events. These methods, properties, and events
determine how you can control the application. First of all, though, you need to
know what methods, properties, and events are available to you. The first port of
call should be the documentation (if any) available from the producer of the OLE
Automation server. In addition, once you’ve created a project-level reference to the
application, you can find out a lot about the application’s object model from
within the VB development environment.

Using the Object Browser

You can use the Object Browser to explore the contents of each class and to find
out, for example, what data types are returned by various methods and proper-
ties, or what parameters a particular method is expecting. To open the Object
Browser, which is shown in Figure 5-2, do any of the following:

• Click the Object Browser button on the toolbar.

• Select the Object Browser option from the View menu.

• Press F2.

The Object Browser is divided into three panes. The left pane displays the classes
contained within the selected library; the right pane displays the properties,

Figure 5-1: The References dialog
Reading the Object Model 79

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Reading the Object Model
methods, events, and constants of the selected class; and the bottom pane displays
details about the selected method, property, event, or constant, such as its data
type or its parameters. There is a fourth pane that can be opened to show the
results of a library search.

IntelliSense and Statement Completion

Both the retail version of VB and the VBA development environment make use of
Microsoft’s IntelliSense technology. Statement Completion not only helps to speed
the development of VB applications, but it acts as a guide, leading you through
the object’s hierarchy as you are coding by displaying only those objects, methods,
properties, and events that are available for the code you are currently writing, as
Figure 5-3 shows.

Figure 5-2: The Visual Basic Object Browser

Figure 5-3: Statement Completion
80 Chapter 5 – Automation

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Autom
ation

Working with the Object Model
By adding an object reference to your project, you expose the class’s type library
to the VB development environment, allowing the details of its class hierarchy to
be displayed as you enter your code. The main features of IntelliSense and State-
ment Completion are:

• Available properties, events, and methods are shown in a drop-down list
when you press the dot key.

• Pressing the Ctrl key and spacebar combination when partway through an
object or procedure name either completes the name or displays a list of pos-
sible names.

• Where a property or method takes an argument list, a template of the argu-
ment list is shown as a tool tip above or below the line of code. Such a tem-
plate is shown in Figure 5-4.

When coding object references and calls to methods and properties, you soon find
that the number of keystrokes is dramatically reduced by IntelliSense.

Working with the Object Model
Regardless of the particular object model with which you’re working and the
application you’re developing, the same issues tend to arise: how to create a new
instance of an object, how to navigate downward from a parent to a child object,
and how to move up the object hierarchy from a child to its parent object. In this
section, we’ll take a look at these and other issues.

Externally Createable Objects

Before you can start to work with your OLE automation server application, you
must first create an instance of it. To do this, you must first know at what level the
objects within the application can be created—that is, which objects allow the use
of the New keyword.

Many OLE automation servers only allow you to use the New keyword with the
top-level object, like Word.Application. However, other OLE automation servers,
such as Microsoft Active Data Objects (ADO), allow you to create instances of
objects much further down the object hierarchy. The statement-completion feature
of Visual Basic helps you here. After you have typed the New keyword, a drop
down list is displayed containing only those objects that are externally createable.

Figure 5-4: Microsoft IntelliSense
Working with the Object Model 81

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Working with the Object Model
So if you can’t directly create an instance of the required object, how do you
obtain a reference to it? First, create an instance of an externally createable object
higher up the hierarchy; then use the prescribed method or property to create an
instance of the required object. For example:

Dim oXLapp As Excel.Application
Dim oXLwsh As Excel.Worksheet
Dim oXLhyp As Excel.Hyperlinks

Set oXLapp = New Excel.Application
Set oXLwsh = oXLapp.Worksheets.Add
Set oXLhyp = oXLwsh.Hyperlinks.Add

In the above snippet, your goal is to create a reference to an Excel Hyperlink
object. However, you can’t simply create a new Hyperlink object. You have to
create the Application object first, then a Worksheet object, then finally the Hyper-
link object.

For details of how you can restrict the creation of your own classes
written in VB, see the section “Class Module Properties—Instancing”
in Chapter 4, Class Modules.

Navigating Through the Object Model

You can think of the object model as a road map. To get from town A to town B,
you can’t simply drive across fields, through forests and rivers to get to your desti-
nation. You must take designated highways, and you leave the highway at the
most convenient interchange and take a minor road to the place you are going.
The same is true of an object hierarchy. You must use the paths laid down by the
designer of the object model to navigate from one level of the hierarchy to the
next, and so on. And just like a road system, there is often more than one route to
get to the same place, but one may be quicker and more efficient than another.

Objects returned by properties

One of the most common ways to obtain a reference to an object on the next level
down in an object model hierarchy is through a property that returns an object.
For example, a property of Excel’s Worksheet object is Cells, which in fact returns
a Range object. You must therefore understand what type of object is returned by
a particular property or method in order to declare a local object variable of the
correct type. For example:

Dim oXLapp As Excel.Application
Dim oXLwsh As Excel.Worksheet
Dim oXLrng As Excel.Range

Set oXLapp = New Excel.Application
Set oXLwsh = oXLapp.Worksheets.Add
Set oXLrng = oXLwsh.Cells
82 Chapter 5 – Automation

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Autom
ation
Collection Objects
Navigating up through the object model

There are many occasions when you are working with a particular object and
need to call a method or property belonging to an object directly above it in the
hierarchy. For this purpose, most object hierarchies provide you with a means of
navigating back up the object model. This not only saves time when coding, but
it’s much more efficient at runtime. While the implementation is different in each
object model, you should be on the lookout for properties called Parent, Window,
Application, or Top. These are the properties that return a reference to objects
further up the hierarchy.

Collection Objects
Many of the classes that make up an object model are in fact collections of other
classes or objects. You will find that these classes have several generic methods
and properties, such as Add, Item, and Count. The Add method creates a new
member of the collection stored against a unique key, the Item method returns a
member of the collection given a unique key or index value, and the Count
method returns the number of members in the collection.

You may find, however, that the collection object’s standard Item method has
been wrapped within a property, the name of which is the same as the name of
the class held by the collection. A call to this property returns an object of the type
of the class held by the collection. For example, an Employees collection object
may implement an Employee property that returns an Employee object, like this:

Public Property Get Employee(vEmpCode As Variant) As Employee
 Set Employee = McolEmployees.Item(vEmpCode)
End Property

Collections within object models are most commonly at the top of an object hier-
archy or at the top of a branch of an object hierarchy, and are most likely
createable with the New keyword or the CreateObject function. Access to indi-
vidual objects is gained through the collection. For example, the Worksheets
object spawns a Worksheet object; a Cells object spawns a Cell object.

Referencing by Name or Number

A correctly implemented collection object allows you to access the members of the
collection either by key name or by ordinal position in the collection. This is
handled by the Item method, which accepts a variant as its single parameter. If the
parameter is a string value, Item tries to match the parameter with a key in the
collection. On the other hand, if the parameter is numeric (including the string
representation of a number), the Item method uses this number to return the item
in that ordinal position. This is demonstrated by the following snippets:

sEmployeeName = adoRecordset.Fields.Item(1)

or:

sEmployeeName = adoRecordset.Fields(1)
Collection Objects 83

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Trapping an Automation Server’s Events
or:

sEmployeeName = adoRecordset.Fields("Empname")

You will also note from the above snippets that because Item is the default
method of the collection object, it can be called implicitly.

For Each…Next

You can iterate through a collection by obtaining its Count property value, which
returns the number of items in the collection, and executing a For...Next loop,
each time setting an object variable to the new collection member, as follows:

For i = 1 To oColl.Count
 Set oCollMember = oColl.Item(i)
 'do some stuff with oCollMember
 Set oCollMember = Nothing
Next i

However, VB provides a more efficient method: the For Each...Next loop. The
For Each...Next loop iterates through the collection, automatically assigning a
reference to the current member of the collection, then exiting once the end of the
collection has been reached, as this rewritten snippet shows:

For Each oCollMember in oColl
 'do some stuff with oCollMember
Next

Using For Each...Next is also safer because collection members can be auto-
matically reindexed by the actions of another part of the program—for example, if
a member is removed from the collection—which means that stored index
numbers shouldn’t relied upon.

For more information about the Collection object and the For Each...Next state-
ment, see their entries in Chapter 7.

Trapping an Automation Server’s Events
Most objects raise events, which can be used to great effect in your VB applica-
tion and add a further dimension to OLE automation. Rather than the usual one-
way conversation, in which your application is forever telling the server what to
do or asking it to provide information about its properties, making use of the
server’s events is like giving the server a “voice,” allowing it to report back to your
application. You might, for example, receive an event notification from the server
when certain tasks are about to be or have been completed.

You enable your application to listen for these event notifications by using the
WithEvents keyword. Use of the WithEvents keyword is restricted to variables
defined in the declarations section of your module. Only object modules—that is,
class and form modules—can contain variables declared using the WithEvents
keyword. Once a module-level variable is declared as WithEvents, you can
program against this event, enabling your application to respond to the changing
state of the OLE automation server.
84 Chapter 5 – Automation

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Autom
ation

Automation Examples
One word of warning when using the WithEvents keyword: if you
are building a client-server system using a WithEvents object refer-
ence, you must ensure that the client machine gives permission for
the server machine to create processes on it. Otherwise, even though
the client can create instances of the object on the server, the server
won’t be able to call back to the client with event notifications. In
fact your application won’t even launch before a Permission Denied
or similar error is generated. You can alter the permissions on the
client using the DCOM Config utility.

For more information about the WithEvents keyword see the entries for the Dim,
Friend, Private, and Public statements in Chapter 7.

Automation Examples
So let’s bring together all you’ve seen in this chapter with a few sample implemen-
tations of OLE automation servers.

Using Word as a Report Writer from VB

This first application demonstrates how you can seamlessly use Microsoft Word to
print output from your VB program without the user knowing that you have actu-
ally used Microsoft Word:

Private Sub cmdWordDoc_Click()

 'create an error handler
 On Error GoTo cmdWordDoc_Err

 'create the local Early Bound object variables
 Dim oWord As Word.Application
 Dim oWordActiveDoc As Word.Document
 Dim oWordSel As Word.Selection

 'Create a new instance of Word
 Set oWord = New Word.Application
 'Create a new document object
 Set oWordActiveDoc = oWord.Documents.Add
 Set oWordSel = oWord.Selection

 'Do some work with the Selection object
 oWordSel.TypeText "This is some text from the VB app.”
 oWordSel.WholeStory
 oWordSel.Font.Name = "Arial"
 oWordSel.Font.Size = 12
 oWordSel.Font.Bold = wdToggle

 'Now print out the doc
 oWordActiveDoc.PrintOut
Automation Examples 85

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Automation Examples
 'always tidy up before you leave
 Set oWordSel = Nothing
 Set oWordActiveDoc = Nothing

 Set oWord = Nothing

 Exit Sub

cmdWordDoc_Err:
 MsgBox Err.Number & vbCrLf & Err.Description & vbCrLf _
 & Err.Source

End Sub

Because this example uses early binding, you’ll have to use the References dialog
to add a project reference to the Word 8 Object Model.

Note that this application appears seamless because the applica-
tion’s Visible property is False by default. If you wanted to show
the Word application window in operation (which may be required
while debugging), simply set the property to True.

Using Email Within VB

This application demonstrates how you can work with a late bound object. The
OLE server in this instance is Windows MAPI. Using MAPI in this way uses
Outlook sort of through the back door; you don’t actually create an instance of
Outlook, but this sample demonstrates how closely tied MAPI and Outlook are. In
fact, the mail side of Outlook isn’t much more than a nice GUI to the Windows
MAPI. If you are connected to an Exchange server when this simple application
runs, the mail is sent automatically; otherwise, the mail is placed in Outlook’s
outbox, ready for you to send. You may also have to change the profile name to
match that on your own system.

The sample function shown below is called from a form containing a text box
(txtDomain) that holds the domain name of the recipients, and a list box
(lstEmails) that holds the individual addresses of the recipients. This example is
in fact part of a working application used several times a day to send test
messages to new email accounts:

Private Function SendReturnEMail() As Boolean

' create an error handler
On Error GoTo SendReturnEMail_Err

 'set the default return value
 SendReturnEMail = False

 'we're using late binding for this app
 Dim objSession As Object
 Dim objMessage As Object
86 Chapter 5 – Automation

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Autom
ation

Automation Examples
 Dim objRecipient As Object

 'declare some other utility variables
 Dim i As Integer
 Dim sSubject As String
 Dim sText As String
 Dim sName As String

 'set up the email message text
 sText = "This is an automatic test message, " & _
 vbCrLf & _
 "Please reply to the sender confirming receipt."
 'and the subject
 sSubject = "Test Message"

 'start with the top of the mapi hierarchy --
 'the session object
 Set objSession = CreateObject("mapi.session")
 'use the local Outlook default profile
 objSession.LogOn profilename:="Microsoft Outlook"

 'this application will send a number of test messages
 'to the members of a particular domain
 For i = 0 To lstEmails.ListCount - 1
 'build the addresses from the names in the list
 'and the given domain name
 sName = Trim(lstEmails.List(i)) & "@" & _
 Trim(txtDomain.Text)
 'now create a new message object
 Set objMessage = objSession.outbox.messages.Add
 'feed in the required property values for the
 'message
 objMessage.subject = sSubject
 objMessage.Text = sText
 'create a new recipient for this message
 Set objRecipient = objMessage.Recipients.Add
 'and set it's properties
 objRecipient.Name = sName
 objRecipient.Type = 1
 'make sure the email address is resolved
 objRecipient.resolve
 'now send the message
 objMessage.Send showdialog:=False
 'tidy up this message
 Set objRecipient = Nothing
 Set objMessage = Nothing
 'and go round again for the next one
 Next i
 'all done so off we go
 objSession.logoff
 'tidying up as always
 Set objSession = Nothing
 'set the success return value
 SendReturnEMail = True
Automation Examples 87

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Automation Examples
 Exit Function

SendReturnEMail_Err:
 MsgBox Err.Number & vbCrLf & Err.Description & vbCrLf _
 & Err.Source

End Function

Output from VB to Excel

To finish with, here’s an easy little application that places values from a VB appli-
cation into an Excel spreadsheet. There are project-level (early bound) references
created to both Excel and the ADODB 2.0 Reference Library. An ADO recordset
has already been created and is passed as a parameter to the OutputToExcel func-
tion. The function creates an instance of a new Excel workbook and worksheet,
then copies the values from the ADO recordset into the worksheet. Excel’s func-
tionality is used to perform a simple calculation on the data, the worksheet is
saved, Excel is closed down, and all references are tidied up.

This example illustrates the power of a glue language such as Visual Basic. Here
VB is acting as the glue between ADO, which is an ActiveX server, and Excel—
controlling both to produce a simple yet patently powerful and seamless
application:

Private Function OutputToExcel(oADORec As ADODB.Recordset) _
 As Boolean

On Error GoTo cmdExcel_Err

 'set up the default return value
 OutputToExcel = False

 ' Declare the Excel object variables
 Dim oXLApp As Excel.Application
 Dim oXLWBook As Excel.Workbook
 Dim oXLWSheet As Excel.Worksheet

 'start at the top of the model
 Set oXLApp = New Excel.Application
 'and work your way down
 Set oXLWBook = oXLApp.Workbooks.Add
 'until you get to the worksheet
 Set oXLWSheet = oXLWBook.Worksheets.Add

 oXLWSheet.Cells(1, 1).Value = oADORec!FirstValue
 oXLWSheet.Cells(2, 1).Value = oADORec!SecondValue

 ' do some stuff in Excel with the values
 oXLWSheet.Cells(3, 1).Formula = "=R1C1 + R2C1"

 ' save your work
 oXLWSheet.SaveAs "vb2XL.xls"

 'quit Excel
88 Chapter 5 – Automation

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Autom
ation

Automation Performance Tips
 oXLApp.Quit

 ' always remember to tidy up before you leave
 Set oXLWSheet = Nothing
 Set oXLWBook = Nothing
 Set oXLApp = Nothing

 OutputToExcel = True

 Exit Function

cmdExcel_Err:
 MsgBox Err.Description & vbCrLf & Err.Number & _
 vbCrLf & Err.Source

End Function

Automation Performance Tips
Because automation involves the remote control of a server application by a client
application, performance is always an issue. What follows are some basic tips to
help you optimize your application’s performance when using automation.

Use early binding wherever possible
Because an early bound reference to an object can be resolved at compile
time, by the VB or VBA IDE, rather than at design time, by the runtime
module, the result of early binding is significantly better performance. It isn’t
always possible to use early binding, but you should always try to use it if
you can.

Use as few “dots” as possible
Every dot that you place in your code represents at least one (and possibly
many) procedure calls that have to be executed in the background. Both the
For Each...Next loop and the With statement can be used to improve
performance. But what can really help is locally caching object references. For
example, you should store references to the upper levels of an object model
in local object variables, then use these references to create other objects
further down the hierarchy. For example, to reference a cell in an Excel
spreadsheet, you could use this code:

Dim oExcel As Excel.Application
Set oExcel = New Excel.Application
For i = 1 to 10
 oExcel.Workbooks(1).Worksheets(1).Cells(1,i).Value _
 = "Something"
Next i

The following code, though, would be far more efficient, because the calls to
obtain references to the Workbook and Worksheet object would only be
made once, whereas above they are being made 10 times:

Dim oExcel As Excel.Application
Dim oWorkBk As Excel.WorkBook
Dim oWorkSht As Excel.WorkSheet
Automation Performance Tips 89

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Automation Performance Tips
Set oExcel = New Excel.Application
Set oWorkBk = oExcel.Workbooks(1)
Set oWorkSht = oWorkBk.WorkSheets(1)

For i = 1 to 10
 oWorkSht.Cells(1,i).Value = "Something"
Next i

Improve your own performance: use the macro recorders
If the application you are programming against has a built-in macro recorder,
you should try to use it whenever possible. (In the Office applications that
support it, you can access the macro recorder by selecting the Macro ➝

Record New Macro submenus from the Tools menu.) For example, the basic
code for the sample Excel and Word applications used earlier in this chapter
was written using their respective macro recorders. You can save yourself
hours of valuable programming time by letting the application tell you what
method and property calls you need to make to achieve a particular result.
You can then focus on optimizing its code to achieve the best possible
performance.
90 Chapter 5 – Automation

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 6Error Handling
CHAPTER 6

Error Handling

Who was Murphy? I don’t know, but I know his law well enough: “Whatever can
Error
Handling
go wrong will.” As application developers, we quickly learn that assumption and
complacency lead to disaster. It’s no good telling users that you didn’t expect them
to enter the word Four instead of the number 4, or that you didn’t know that one
part of the system entered a Null value into a database field that you were trying
to read. Neither users nor MIS managers want excuses; they want applications that
work—and by work I mean applications that don’t curl up in the corner and die at
the first sign of trouble. Sure, errors and situations beyond your control—such as a
database server that unexpectedly goes off-line—are going to happen, but that
shouldn’t kill your application. At the very least, you should be in a position to
report back to the user what the problem is without generating a runtime error
that will bring down your application.

This chapter hasn’t been written as an exhaustive reference of all the statements,
objects, methods, and properties involved in VB error handling, but rather as a
guide to help you plan your error handling. It lays out the error-handling template
for you, and also sets out some of the ground rules involved in resolving the
everyday and not so everyday exceptions that can be thrown at your program.

We’ll assume that you have set the Option Explicit statement at the start of
each module (so there can’t be any variable name typos),* and that you have
started your program with a full compile (CTRL+F5) so that you won’t encounter
any syntax errors.

* Option Explicit requires that all variables used in your program be declared in advance.
It’s an option I highly recommend. Aside from the fact that variable declaration is a critical tech-
nique for professional programming, it helps to prevent and diagnose typos, which are the
most common programming error. To require variable declaration, select the Options option
from the Tools menu, select the Editor tab, and check the Require Variable Declaration box.
91

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Building a Robust Application
For a complete description of each of the statements, objects, methods, and prop-
erties mentioned in this section, refer to the relevant entries in Chapter 7, The
Language Reference.

So, before we get into the nitty-gritty of error handling, here are a few pointers to
help make your application more robust.

Building a Robust Application
There are two approaches to error handling. The first is to let the error occur, then
do something about it; the second is to prevent the error from occurring. Each has
its own merits. Supporters of the first approach argue that most errors occur very
infrequently. For example, users of a computer system are by and large well
trained and make few data entry errors. Therefore, the extra processing to prevali-
date such things as numeric values is a waste of processing time and power; it’s
more efficient to execute an error-handling routine occasionally than to invoke a
validation routine for every entry. On the other hand, supporters of the second
approach argue that it’s not good practice to allow errors to be generated and that
if there are techniques available that prevent an error from occurring, they should
be used. A remote server that’s offline, for example, could take several minutes to
generate an error due to network timeouts, whereas a correctly written validation
function could report this in seconds. Furthermore, error-handling routines them-
selves can be the source of further errors.

I think that each argument has merits. You have to judge for yourself whether to
use a “belts and braces” approach within a given procedure or whether the likeli-
hood of an error is so remote that a simple error-handling routine will suffice.
Don’t forget that adding functionality to a program costs time, which is money.
Here, though, is a list of simple error prevention measures you can add to any
application without ballooning the development time:

Check data types
In situations where you accept a numeric value from the user to use within a
vital function (like the index of an array, for example), you should first check
that a numeric item has been entered using the IsNumeric function, and then
check that it’s within bounds.

Check that objects have been created
Before you rush into using an object variable, first check that an object refer-
ence has actually been assigned to it. If not, the object variable will contain a
special value, Nothing. However, you can’t use the equality operator (=)
when querying an object variable; instead, you need to use the Is operator.
For example, the following code checks that the object variable myObject
isn’t Nothing—i.e., that it is something!

If Not myObject Is Nothing Then
... continue what you where doing
Else
... you have a problem
End If
92 Chapter 6 – Error Handling

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Error
Handling

Building a Robust Application
Trap Null data
When you are assigning column values from a recordset, you should ensure
that the column value doesn’t contain Null. This is quite a common occur-
rence with database recordsets, and often catches the unwary developer by
surprise. Even if you don’t expect to have any Null values, there may be
occasions when one is recorded in the database. The next time you access
that record, your program screams out with an “Invalid Use of Null” error.

There are two quick solutions for this. First, you can test the value using the
IsNull function, as follows:

If IsNull(rsRecordset!FieldName) Then

Second, you can catch Null string values using the Format function with no
parameters other than the field value. This returns a zero-length string and is
the quickest and easiest method:

sProperty = Format(rsRecordset!FieldName)

Check array boundaries
Applications are quicker and easier to maintain if you keep literal values and
constants to a minimum by making use of functions. One prime example of
this is the boundary function to determine the lower and upper boundaries of
an array. Imagine a situation where you regularly iterate through an entire
array in many different places within the program. You know that there are
10 elements in the array, and that there always have been, so you write the
function thus:

For i = 0 to 9
 cboList.AddItem myArray(i)
Next i

One day, someone comes along and adds a new element to the array. You’re
now faced with the task of finding all the instances where the program refer-
ences the maximum element of the array and increasing it by one. However,
if you had written the code with future maintenance in mind, it would look
like this:

For i = LBound(myArray) to UBound(myArray)
 cboList.additem myArray(i)
Next i

Test for the presence of a remote server
VB developers are increasingly in the front line of client-server application
development, which means that sooner rather than later you’ll be called on to
reference a remote ActiveX component from your client application. Regard-
less of the connection between client machine and the remote server, there
will also come a time (again, usually sooner rather than later!) when the
connection between the two machines is broken. When this happens, your
client application will sit twiddling its thumbs waiting for the operating system
to connect to the server, eventually the operation will time out, and to make
matters worse, the only error message displayed will indicate that the ActiveX
component couldn’t be created—which could be caused by any number of
things. An added complication to this little problem is DCOM; as the client
application developer, you may not know where the server component is
Building a Robust Application 93

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Building a Robust Application
going to execute (and even if you do when writing your application, this may
change over time).

The solution is to add a reference to a system DLL, RacReg.DLL, that contains
a function you can use to return information about the remote server compo-
nent you are trying to reach. Armed with this information, you can use any
number of quick and easy tests to determine if the remote server is online.
This could be as complex as writing a C++ program to access Net function-
ality or ping the server, to something as simple as using the Dir function on
the root of the server.

For more information on using the RacReg DLL, see the GetAutoServerSettings
entry in Chapter 7.

Use functions instead of sub procedures
Apart from their use for event handlers, I have yet to see a convincing argu-
ment for having custom Sub procedures in Visual Basic. In contrast, the use of
functions in place of subroutines can improve the stability of your applica-
tion. To demonstrate, let’s compare two versions of the same program, the
first of which uses a simple subroutine. In this example, we are going to call a
subroutine to open a disk file, then use the contents of the file:

Private Sub Command1_Click()

 On Error GoTo Command1_Err

 Dim iFile As Integer
 Dim sContents As String

 iFile = FreeFile

 Call FileOpener(File1.filename, iFile)

 Get #iFile, , sContents

 Text1.Text = sContents

 Exit Sub 'don't forget to exit or the error
 'handler will be executed!

Command1_Err:
 MsgBox Err.Description & vbCrLf & Err.Number
End Sub

Private Sub FileOpener(sFileName As String, _
 iFileNo As Integer)

 On Error GoTo FileOpener_Err

 Open sFileName For Input As #iFileNo

 Exit Sub

FileOpener_Err:
94 Chapter 6 – Error Handling

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Error
Handling

Error Handling in Procedures
 MsgBox Err.Description & vbCrLf & Err.Number
End Sub

As you can see, if the attempt to open the file fails, an error is raised in the
subroutine, and a message displayed to the user. However, the code
following the call to FileOpener is still executed, causing another error.

Now look how much smoother the operation is when using a function that
returns True if the file is successfully opened and False if an error occurs:

Private Sub Command1_Click()

 On Error GoTo Command1_Err

 Dim iFile As Integer
 Dim sContents As String

 iFile = FreeFile

 If FileOpener(File1.filename, iFile) = True Then
 Get #iFile, , sContents
 Text1.Text = sContents
 End If

 Exit Sub

Command1_Err:
 MsgBox Err.Description & vbCrLf & Err.Number
End Sub

Private Function FileOpener(sFileName As String, _
 iFileNo As Integer) As Boolean

 On Error GoTo FileOpener_Err

 Open sFileName For Input As #iFileNo

 FileOpener = True

 Exit Function

FileOpener_Err:
 MsgBox Err.Description & vbCrLf & Err.Number
End Function

In this second version, should an error occur within the FileOpener function,
the function returns its default value of False, and the code to access the
file’s contents isn’t executed. There are numerous places within an applica-
tion where this style of programming can make the code both easier to read
and more stable in execution.

Error Handling in Procedures
Even while building as robust an application as possible, errors inevitably occur,
and your application is expected to handle them elegantly. In this section, we
Error Handling in Procedures 95

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Error Handling in Procedures
examine how to use VB and VBA’s error-handling features to do just that, first by
examining error handling in subroutines and functions within standard modules
(i.e., code modules and form modules that make up a standard EXE or a standard
VBA program), and then by examining error handling in code or class modules
that are used in an ActiveX DLL, EXE, or OCX project. The reason for making this
distinction will become clear as you read through these sections.

To begin, let’s look at a couple of templates you can use to add error handling to
your procedures:

Private Sub Command1_Click()

 On Error GoTo Command1_Err

 Exit Sub

Command1_Err:
 MsgBox Err.Number & vbCrLf & Err.Description, _
 vbCritical, "Error!"

End Sub

This is error handling at its simplest; when an error occurs, an error message is
displayed, and the routine in which the error occurred terminates. The second
template is a variation on the same theme, but this time the Resume statement
resumes program execution at the Command1_Exit label:

Private Sub Command1_Click()

 On Error GoTo Command1_Err

 ...

Command1_Exit:
 Exit Sub

Command1_Err:
 MsgBox Err.Number & vbCrLf & Err.Description, _
 vbCritical, "Error!"
 Resume Command1_Exit
End Sub

Finally, here is a slightly more sophisticated error-handling device that automati-
cally reexecutes a bunch of code a given number of times—ideal for situations
where a connection may be temporarily unavailable:

Private Sub Command1_Click()

 On Error GoTo Command1_Err

 Dim iRetries As Integer

 '...your code goes here

Do_Retry:
96 Chapter 6 – Error Handling

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Error
Handling

Error Handling in Procedures
 '...your code goes here

 Exit Sub

Command1_Err:
 If Err.Number = 12345 And iRetries < 5 Then
 iRetries = iRetries + 1
 Resume Do_Retry
 Else
 MsgBox Err.Number & vbCrLf & Err.Description, _
 vbCritical, "Error!"
 End If
End Sub

The On Error Statement

The basic structure of error handling in VB begins with the On Error statement. It
diverts program execution in the event of an error, or it switches off error handling
in the given procedure.

The On Error statement remains valid while the procedure in which it’s defined is
in scope, or until another On Error statement is encountered. To explain, let’s
break this down.

First of all, a procedure is within scope until either an end or exit procedure state-
ment is executed. This means that a procedure is still in scope even when a call is
made to another procedure. This has important implications for the On Error
statement. For example, let’s say you define an error handler in one procedure,
and you then call another procedure that doesn’t contain an error handler. If an
error occurs in the called procedure, the first procedure (and its error handler) is
still in scope, so the error is handled by the calling procedure.

The following snippet demonstrates how this works. In this example, an error
handler is defined in the Command1 button’s Click event handler. A call is made
to the FunWithNumbers sub, and the value 0 is passed to it as a parameter. Unfor-
tunately, FunWithNumbers uses this value as the divisor and, since it’s illegal to
divide by zero, a runtime error is generated. The fun has just gone out of
FunWithNumbers, and the function has no error handler to handle the error.
However, the Command1_Click event handler is still in scope, so the error is
handled by the Command1_Click_Err error handler:

Private Sub Command1_Click()

 On Error GoTo Command1_Click_Err
 FunWithNumbers 0
 MsgBox "all ok"
 Exit Sub

Command1_Click_Err:
 MsgBox Err.Number & vbCrLf & Err.Description

End Sub

Private Sub FunWithNumbers(iVal As Integer)
Error Handling in Procedures 97

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Error Handling in Procedures
 Dim i As Integer
 i = 1
 txtResult.Text = CStr(i / iVal)

End Sub

To locate an error handler, the VB call stack is used. Each time a call is made from
a procedure, it’s added onto the end of the call stack. If an error occurs in a proce-
dure that doesn’t have an error handler, VB looks at the previous procedure in the
stack, until it finds an error handler. If no error handler is found, a terminal
runtime error is generated, and your program hits the dust.

A word of warning: you should take care when using On Error Resume and
Resume Next within a procedure that calls another procedure. If the called proce-
dure—like FunWithNumbers—doesn’t contain any error handling, execution
resumes with the line of code containing (in the case of Resume) or the line of
code immediately following (in the case of Resume Next) the call to the proce-
dure in the original calling routine that contains the error handler. This is
illustrated in the following code fragment:

Private Sub Command1_Click()

 On Error Resume Next

 FunWithNumbers 0
 MsgBox "All OK"
 Exit Sub

End Sub

Private Sub FunWithNumbers(iVal As Integer)

 Dim i As Integer
 i = 1
 txtResult.Text = CStr(i / iVal)

End Sub

The user would assume that the procedure has worked correctly because all he
sees is the “All OK” message; FunWithNumbers hasn’t updated the txtResult
text box with a value because control didn’t return to FunWithNumbers after the
error.

An On Error statement, then, remains in effect until the next On Error statement,
which can be in the same procedure or in a called procedure. For instance, in the
example above, if FunWithNumbers had implemented an error handler, it would
have handled the error rather than passing it back up the call stack to the
command button’s error handler. The following is an example of a procedure that
uses multiple On Error statements. In this example, an error handler is defined
and immediately activated. However, later in the procedure, a For Each...Next
statement is used in a way that most likely will cause an error in normal operation
(as would happen, for instance, if a control in the Controls collection doesn’t have
a Text property), so the original On Error statement is replaced by an On Error
Resume Next statement that basically skips past any errors. Once this section of
98 Chapter 6 – Error Handling

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Error
Handling

Error Handling in Procedures
the procedure is complete, the original error handler is switched back on,
canceling On Error Resume Next:

Private Function ResetControls() As Boolean

 On Error GoTo ResetControls_Err
 Dim oControl As Control

 If Not blnSaved Then
 Call ShowWarningMsg
 Exit Function
 End If

 On Error Resume Next
 For Each oControl In Controls
 oControl.Text = ""
 Next

 On Error GoTo ResetControls_Err

 Call DisplayDefaultValues
 Exit Function

ResetControls_Err:
 MsgBox Err.Number & vbCrLf & Err.Description
End Function

Note that if an error is generated within an error handler, the error is terminal;
Visual Basic doesn’t look back up the call stack for another enabled error handler.

The options for error handling within a VB procedure are set using the On Error
statement as follows:

On Error 0
Switches off error handling until the next On Error statement (a procedure
can contain any number of On Error statements).

On Error Resume
Take care with this one! Program execution continues with the line that
caused the error; using it may not be the smartest thing you ever did!

On Error Resume Next
Basically, the error is ignored, and program execution continues with the line
following the line containing the error.

On Error Goto label
label is the beginning of your error-handling routine within the procedure. A
label is a subroutine name followed by a full colon (:).

The Exit Sub Statement

The Exit Sub statement typically isn’t considered an error-handling statement,
though it’s present in virtually every error handler. As the templates above illus-
trate, if you forget to include it before the error handler, program execution always
falls through to the error handler, whether or not an error has occurred.
Error Handling in Procedures 99

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Error Handling in Procedures
The Err Object

The Err object has the following properties:

Description
A string containing a standard description of the last error.

Number
The system or custom number of the last error.

Source
A string containing the application or ActiveX server name in which the error
was generated.

LastDLLErr
About as much use as an ashtray on a motorbike. This supposedly contains
the error number from a called DLL—supposedly. And if you actually get it to
work, you must remember that the Err object’s Description property isn’t
updated with a description of a DLL error.

HelpFile
A string containing the full path to the help file for this application (if one is
available).

HelpContext
A string containing the context ID of the help section relating to this error (if
available).

Here are its methods:

Raise
Generates an error. Use this to pass errors back to the client from OLE
servers.

Clear
Resets the Err object to default values.

The Resume Statement

Resume as a standalone statement, when not combined with the On Error state-
ment, terminates the error handler and indicates where program flow should
return. The Resume statement resets the Err object’s properties to their default
values, then resumes normal program execution at the point specified by the argu-
ment included with the Resume statement. If no arguments are included—i.e., the
Resume statement is used on its own—execution recommences with the line of
code that generated the error. The valid arguments are:

Next
Normal program execution recommences with the line immediately following
the line of code in which the error occurred.

label
Normal program execution recommences at the specified subroutine label.
100 Chapter 6 – Error Handling

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Error
Handling

Error Handling in ActiveX Servers
Error Handling in ActiveX Servers
While the basic error-handling concepts are the same, errors within an ActiveX
server class have to be handled slightly differently than errors in a client applica-
tion. Some of the important differences include:

Don’t display the error
Unlike a client application, in which you might display a message box to the
user detailing the problem, you should remember that with a server-side
application, there might be no one there to click OK! Instead, you should
write an entry into an event log. (The following section, “Reporting Errors,”
details how to write an event log.) If you have a large application that already
has many MsgBox calls, and you don’t want to spend ages rewriting this code,
simply go to the project properties dialog and select the Unattended Execu-
tion option. This forces all MsgBox calls to be written to an event log.

Use Err.Raise
Once you’ve logged the error in your server class, you need some way of
informing the user that an error occurred. The simplest method of doing this
is to raise an error using the Err.Raise method. This error will be picked up by
the client’s error handler, and the relevant message displayed. This simple
client and server code demonstrates the Err.Raise method:

Client code:

Private Sub Command3_Click()

 On Error GoTo Command3_Err

 Dim oTest As TestErrors.DoStuff
 Set oTest = New TestErrors.DoStuff
 oTest.SomeStuff
 Set oTest = Nothing
Command3_Err:
 MsgBox Err.Description & vbCrLf & Err.Number & _
 vbCrLf & Err.Source

End Sub

Server code:

Public Function SomeStuff() As Boolean

 On Error GoTo SomeStuff_Err

 Dim i As Integer
 i = 100
 i = i / 0

 Exit Function

SomeStuff_Err:
 App.LogEvent Err.Description & " in " & _
 "TestErrors::SomeStuff", _
 vbLogEventTypeError
Error Handling in ActiveX Servers 101

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Error Handling in ActiveX Servers
 Err.Raise vbObjectError + Err.Number, _
 "TestErrors::SomeStuff", Err.Description
End Function

As you can see from the server code, an illegal operation takes place—you
can’t divide by zero. The error handler logs the event and then uses the
Err.Raise method to pass this error on to the client.

You can also use the Err.Raise method to trap incorrect user input. Look at
MoreStuff, the following modified version of the server SomeStuff function:

Public Function MoreStuff(iVal As Integer) As Integer

 On Error GoTo MoreStuff_Err

 If iVal > 50 Then
 Err.Raise 23456, "TestErrors::MoreStuff", _
 "Can't have a figure greater than 50"
 End If

 iVal = iVal / 0

 Exit Function

MoreStuff_Err:
 App.LogEvent Err.Description & " in " & _
 "TestErrors::MoreStuff", _
 vbLogEventTypeError
 Err.Raise vbObjectError + Err.Number, _
 "TestErrors::MoreStuff", Err.Description

End Function

This time, the Err.Raise method passes back a custom error code and descrip-
tion alerting the user of the invalid input.

Use the vbObjectError constant
Errors generated in OLE objects start at –2147221504. (Actually, OLE automa-
tion errors aren’t negative numbers; they are unsigned long integers. But
because VB doesn’t support unsigned longs, they appear as a negative.) VB
provides vbObjectError, an intrinsic constant for this value that you should
add to both custom error codes and system error codes. However, if you add
vbObjectError to an error code that is already of greater negative magni-
tude than –262144, you generate an “Overflow” error that masks the real error
that occurred in the procedure. Because of this, it’s best if your error handler
adds vbObjectError only to positive numbers, as this snippet demonstrates:

SomeStuff_Err:
 App.LogEvent Err.Description & " in " & _
 "TestErrors::SomeStuff", _
 vbLogEventTypeError
 If Err.Number < 0 Then
 Err.Raise Err.Number, "TestErrors::SomeStuff", _
 Err.Description
 Else
 Err.Raise vbObjectError + Err.Number, _
102 Chapter 6 – Error Handling

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Error
Handling

Error Handling in ActiveX Servers
 "TestErrors::SomeStuff", Err.Description
End If

Where did the error occur?
Passing back the source of the error to the client application is very impor-
tant. However, unless you take care writing your error handler, you can
report the source as the last procedure to handle the error, rather than the
one in which the error occurred. This example shows how this can happen:

Public Function SomeStuff() As Boolean

 On Error GoTo SomeStuff_Err

 Dim i As Integer
 i = 100
 i = MoreStuff(i)

 Exit Function

SomeStuff_Err:
 App.LogEvent Err.Description & " in " & _
 "TestErrors::SomeStuff", _
 vbLogEventTypeError
 If Err.Number < 0 Then
 Err.Raise Err.Number, _
 "TestErrors::SomeStuff", Err.Description
 Else
 Err.Raise vbObjectError + Err.Number, _
 "TestErrors::SomeStuff", Err.Description
 End If
End Function

Private Function MoreStuff(iVal As Integer) As Integer

 On Error GoTo MoreStuff_Err

 iVal = iVal / 0

 Exit Function

MoreStuff_Err:
 Err.Raise vbObjectError + Err.Number, _
 "TestErrors::MoreStuff", Err.Description

End Function

In this example, SomeStuff has called MoreStuff, in which an error is raised.
The error is first handled by the error handler in MoreStuff, which reports the
source of the error correctly. The error is then handled by SomeStuff ’s error
handler, which overwrites the original Source argument and reports it as
being SomeStuff. You would wrongly assume that your problem was with the
SomeStuff function.

If a system-generated error occurs, the source property of the Err object is set
to the same value as the App.Title property. So you know that if the
Error Handling in ActiveX Servers 103

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Reporting Errors
Err.Source property is the same as App.Title, the error has been generated in
the current procedure, and you can safely use your own custom Source string.
However, if the Err.Source property differs from the application title, the
current Err.Source property should be passed on, as this snippet shows:

Dim ErrSrc As String
If Err.Source <> App.Title Then
 ErrSrc = Err.Source
Else
 Err.Src = App.Title & "::SomeStuff"
End If

Don’t forget to clean up before you leave
If your procedure exits unexpectedly, you run the risk of leaving objects that
have been used in the procedure live. To prevent this, you should get into the
habit of adding code to the beginning of your error handler to set all object
variables that are declared in the procedure to Nothing. This way, whenever
an error occurs, you will be sure that all objects are safely destroyed.

Reporting Errors
Information about errors is vital to allow you as the developer to track down the
source of the error and to take steps to prevent it from happening again. The tradi-
tional method of reporting an error is to simply display a message box, but you
can also create a log on the user’s machine.

Reporting to the User

Include enough information both to inform the user that an error has occurred,
and to aid the developer to get to the real root of the problem. Your error
message should report:

• The name of the module

• The name of the procedure

• The error number

• The error description

• The error source

It’s entirely up to you how you style your message box. Figures 6-1 and 6-2 illus-
trate two very different methods. You will probably find that nontechnical users
can assimilate—and therefore both remember and recount—the information in the
style of Figure 6-1 much more readily than the impersonal style of Figure 6-2.

Adding Help

The MsgBox function from Version 5 of Visual Basic on includes the option to
display a Help button on the message box dialog, as shown in Figure 6-3. By
including the vbMsgBoxHelpButton constant for the Button parameter, VB auto-
matically displays the Help button. If your application provides context-sensitive
help, you can specify the help filename and a context ID as parameters, which
allows the user to navigate directly to the particular help section for the error:
104 Chapter 6 – Error Handling

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Error
Handling

Reporting Errors
MsgBox prompt:="Error Number: " & Err.Number & vbCrLf _
 & Err.Description, _
 buttons:=vbCritical + vbMsgBoxHelpButton, _
 Title:="Error!", _
 HelpFile:=Err.HelpFile, _
 context:=Err.HelpContext

One word of warning here, though. If your users are nontechnical, I would
suggest that you make the display of the Help button conditional on the error
number. The reason for this is that internal VB errors try to display the VB help
section, which probably won’t be loaded on an end user’s machine. Therefore,
only display the Help button for your own error codes when you have written a
specific section about the error in your application’s help file.

Figure 6-1: A conversational style message box

Figure 6-2: A bare-facts message box

Figure 6-3: Context-sensitive Help button on the Message Box dialog
Reporting Errors 105

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Reporting Errors
Silent Reporting: Logging the Error Event

Your efforts to resolve issues within an application are often frustrated by users
not reporting errors. The user simply clicks past the message box reporting the
error and continues. Either they forget or can’t be bothered to contact the MIS
department or the software developer to report the issue. There is a way you can
store information about the error on the user’s machine without having to go to
the trouble of coding a file open/write/close routine that itself could cause a fatal
error within the error handler.

The App object includes a method called LogEvent whose operation depends on
the operating system being used. On NT the LogEvent method writes to the
machine’s event log, whereas in Windows 9x a log file is created or an existing log
file appended to. Logging only takes place in compiled VB applications.

You can specify an event log file using the StartLogging method, which takes two
parameters, the log filename and the log mode. (The App object’s LogPath and
LogMode properties, which you would expect to set before beginning logging, are
read-only and can only be set by calling the StartLogging method.)

Note that the log mode constants were missing from Version 5 of
VB, so you either have to enter their literal values, or you have to
define your own constants.

In Windows NT, if you call the StartLogging method but don’t specify a log file, or
in Windows 95, if you don’t call the StartLogging method at all, VB creates a file
called vbevents.log, which is placed in the Windows directory. To use event
logging, you don’t necessarily need to use the StartLogging method.

The LogEvent method itself takes two parameters. The first is a string containing
all the detail you wish to store about the error or event. The second is an Event-
Type constant, which denotes an error, information, or a warning. In NT, this
event type value displays the correct icon in the event log, whereas in Windows
95, the word “Error,” “Information,” or “Warning” appears at the start of the item in
the event log file.

In a previous section, “Error Handling in ActiveX Servers,” you saw
how to force MsgBox prompts to be automatically written to an
event log by selecting the Unattended Application option. But which
event log? The MsgBox function doesn’t take a parameter to specify
an optional event log, so VB will write the string contained within
the Prompt parameter to the default vbevents.log in Windows 9x or
to the application event log in Windows NT. However, you can
place a call to the app object’s StartLogging method in the class’s Ini-
tialize event, thereby specifying a log file for all Msgbox and
LogEvent calls.
106 Chapter 6 – Error Handling

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Error
Handling

Reporting Errors
Once you have an event log for your application, you can look back through the
history of the application any time you choose. If you are networked to the user’s
machine, you can open the user’s event log from your machine and detect prob-
lems without even leaving your desk.
Reporting Errors 107

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PART II

Reference
This section consists of only a single very long chapter, Chapter 7, The Language
Reference, which contains an alphabetic reference to VBA language elements. It
doesn’t document the properties, methods, and events of Visual Basic forms and
controls or of VBA UserForms.

The chapter does document the following:

• Statements, like Dim or For Each.

• Functions, like Format or InStr.

• The object models, like the File System object model or the Data Binding
object model, that have been introduced with VB6. Here you’ll find complete
documentation of all of the objects, along with their properties and methods.

When you’re looking for a particular language element but don’t quite remember
what it’s called, an alphabetic reference is of little value. For this reason, I’ve
included Appendix A, Language Elements by Category.

Finally, except for Like, VBA operators aren’t included in this section. Instead,
you’ll find them discussed in Appendix C, Operators.
VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 7 vReference
CHAPTER 7

The Language Reference

VBA is a high-level language and, like all high-level languages, it is, by its very
vReference
nature, a large yet rich language. While this means that it takes time for new users
to understand the intricacies of the many and varied functions and statements
available to them, at the same time the language’s syntax is straightforward,
logical, and therefore easy to understand.

Perhaps the biggest obstacle to overcome is deciding which one of a number of
functions and statements available to perform roughly the same task should be
used. This situation has come about as the language has evolved over a number of
years, and older statements have been left in the language to provide backward
compatibility. If you always bear in mind that the language was originally made up
of statements, that later versions introduced functions, and that only recently have
object models been provided, then you can pinpoint the latest functionality within
the language.

To help speed the process of finding the right function or statement to perform a
particular task, you can use Appendix A, Language Elements by Category, to deter-
mine what language elements are available for the purpose you require. You can
also make use of the VB or VBA Object Browser to search or browse the VBA
library.

As I’ve stated several times already, this book concentrates on the VBA language,
and therefore doesn’t include the following components, which don’t form a part
of the VBA language:

• The methods, properties, and events associated with VB forms and controls

• The methods, properties, and events associated with VBA UserForms and the
VBA controls available from the Microsoft Forms library

• The objects, as well as their associated properties, methods, and events, that
are provided by each application that hosts VBA
111

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
You will, however, come across some (but thankfully very few) language elements
that relate only to VB or only to VBA. There are two reasons for this:

• The VBA DLL that provides VB with its language is slightly different than that
used in the hosted version of VBA, since they were released at different times.

• VB includes several unique functions to support its ability to create stand-
alone applications as either EXEs, DLLs, or OCXs.

The elements of the VBA language can be broken into four main areas: state-
ments, functions, operators, and object models.

Statements
Statements form the cornerstone of the language. You’ll notice from
Appendix A that the largest concentration of statements is in the program
structure section. Statements are mainly used for such tasks as declaring vari-
ables or declaring procedures.

There is another large concentration of statements in the file manipulation
section of VB. Again, these statements predate object programming in VB. It’s
likely that the new File System object model released with VB6 will replace
the intrinsic VBA file statements.

Some statements in VB are quite old, having their roots back in (and before)
Version 1 of VB. (Remember that Version 1 of VB itself represented a graph-
ical interface design program grafted onto the Basic language.) In some cases,
statements have been replaced by newer and more flexible functions, but the
statement remains in the language for compatibility. That said, there are liter-
ally only one or two instances where both a statement and function of the
same name exist.

Most statements don’t accept named arguments, since this concept didn’t exist
in the early days of VB. In the main, statements don’t return a value. There-
fore, you are often well-advised to wrap these statements in a custom function
that can return a value you can use to determine if a task was successful or
not.

Some newer statements are in fact methods of VBA class libraries. For
example the DeleteSetting statement is a method of the VBA.Interaction
class.

Functions
Functions are relatively new additions to the language, most dating back to
the Version 4 rewrite of VB and VBA. In the main, functions return a value,
although, as with any function, you can choose to ignore the return value.

In addition to returning a value, there are other important benefits of func-
tions over statements:

– You can view most functions in the VB Object Browser, whereas most
statements don’t appear.

– Most functions accept named arguments. This means that you can
improve the readability of your code by using the name of an argument
and the special argument assignment operator “:=”, as this code fragment
shows:
112 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
#Const Directive
Dim iReturnVal As Integer
iReturnVal = MsgBox(Prompt:="Click OK", Title:="Test")

Operators
An operator connects or performs some operation upon one or more
language elements to form a single expression. For example, in the code
fragment:

strResult = 16 + int(lngVar1)

the addition operator (+) combines 16 and the value returned by
int(lngVar1) into a single expression whose value is assigned to the vari-
able strResult.

Object models
Object models are increasingly used to provide additional functionality in the
VBA language. This is an ideal way of extending the language, since VBA
itself is adept at handling object models.

Interestingly, the VBA language is itself implemented as an object model,
although very rarely is it used as such. Since it’s a flat model (that is, it doesn’t
define a class hierarchy), it isn’t actually thought of as an object model. Never-
theless, if you use the object browser to examine the VBA component, you’ll
see that it’s an external library containing various classes.

Some of the latest additions to VBA have used object models. For example,
the Scripting Runtime provides us with the File System object model and the
Dictionary object. VB6 also includes the Data Binding and Data Formatting
objects. As time goes by we’ll find more and more object models augmenting
and replacing statements and functions in VBA.

Because of their importance to VB6, I’ve included full descriptions of the File
System, Dictionary, Data Binding, and Data Formatting object models in this
language section. Note that as long as the object libraries are available and are
registered in the system registry, their objects are available to all 32-bit VB and
VBA applications and macros developed in the current version, as well as
earlier versions of VB and VBA-hosted applications.

#Const Directive

Named Arguments

No

Syntax
#Const constantname = expression
constantname

Use: Required

Data Type: Variant (String)

Name of the constant.

expression
Use: Required
#Const Directive 113

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Data Type: Literal

Any combination of literal values, other conditional compilation constants
defined with the #Const directive, and arithmetic or logical operators
except Is.

Description

Defines a conditional compiler constant. By using compiler constants to create
code blocks that are included in the compiled application only when a particular
condition is met, you can create more than one version of the application using
the same source code. This is a two-step process:

• Defining the conditional compiler constant. This step is optional; conditional
compiler constants that aren’t explicitly defined by the #Const directive but
that are referenced in code default to a value of 0 or False.

• Evaluating the constant in the conditional compiler #If...Then statement
block.

A conditional compiler constant can be assigned any string, numeric, or logical
value returned by an expression. However, the expression itself can consist only
of literals, operators other than Is, and another conditional compiler constant.

When the constant is evaluated, the code within the conditional compiler
#If...Then block is compiled as part of the application only when the condi-
tional compiler constant evaluates to True.

You may wonder why you should bother having code that is compiled only when
a certain condition is met, when a simple If...Then statement could do the same
job. The reasons are:

• You may have code that contains early bound references to objects that are
present only in a particular version of the application. You’d want that code
compiled only when you know it wouldn’t create an error.

• You may wish to include code that executes only during the debugging phase
of the application. It’s often wise to leave this code in the application even
after the application has been released, so that you can check back over a
procedure if an issue arises. However, you don’t want the code to be exe-
cuted in the final application. The answer is to wrap your debugging code in
a conditional statement. You can then provide a conditional constant that acts
as a switch to turn debugging code on or off, as the example below demon-
strates.

• Although most operations performed with conditional compilation can be rep-
licated with normal If...Then code blocks, conditional compilation reduces
the size of the compiled application and thereby the amount of memory
required for the application, making for a more efficient application.

Rules at a Glance

• Conditional compiler constants are evaluated by the conditional compiler
#If...Then statement block.

• You can use any arithmetic or logical operator in the expression except Is.
114 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
#Const Directive
• You can’t use other constants defined with the standard Const statement in
the expression.

• According to the documentation, you can’t use intrinsic functions in the
expression; e.g., #Const MY_CONST = Chr(13) is illegal. In most cases, VBA
displays a “Compile error : Variable not found” message if you try this. But
there are numerous exceptions. For example, the use of the Int function in
the following code fragment doesn’t produce a compiler error, and in fact,
successfully defines a constant ccDefInt whose value is 3:

#Const ccDefFloat = 3.1417
#Const ccDefInt = Int(ccDefFloat)

• When using #Const, you can’t use variables to assign the conditional con-
stant a value.

• Constants defined with #Const can be used only in conditional code blocks.

• Constants defined with #Const have scope only within the module in which
they are defined; i.e., they are private.

• You can place the #Const directive anywhere within a module.

• You can’t use the #Const directive to define the same constant more than
once within a module. Attempting to do so produces a “Compile Error: Dupli-
cate Definition” error message.

• Interestingly, you can define the same constant both through the VB or VBA
interface (see the second item in the “Programming Tips & Gotchas” section)
and using the #Const directive. In this case, the constant defined through the
interface is visible throughout the application, except in the routine in which
the #Const directive is used, where the private constant is visible.

• The #Const directive must be the first statement on a line of code. It can be
followed only by a comment. Note that the colon, which combines two com-
plete sets of statements onto a single line, can’t be used on lines that contain
#Const.

Example
#Const ccDebug = 1 'evaluates to true

Function testValue(sValue as String)

sValue = UCase(sValue)
testValue = sValue

#If ccDebug Then
 'this code only executes if ccDebug evaluates to true
 Debug.Print sValue
#End If

End Function

Programming Tips & Gotchas

• Conditional compiler constants help you debug your code, as well as provide
a way to create more than one version of your application. You can include
#Const Directive 115

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
code that operates only when run in debug mode. The code can be left in
your final version and won’t compile unless running in the debugger. There-
fore, you don’t need to keep adding and removing debugging code.

• You can also define conditional constants outside of the application’s code. In
the VBA Editor, enter the conditional compiler constant into the Conditional
Compilation Arguments text box on the General tab of the Project Properties
dialog. You can reach it by selecting the Project Properties option (where
Project is the name that you’ve assigned to the project) from the Tools
menu. In Visual Basic, the Conditional Compilation Arguments text box is
found on the Make property sheet of the Project Properties dialog. It can be
accessed by selecting the Project Properties option (again, where Project
is the name that you’ve assigned to the project) from the Project menu. In
Access, the Conditional Compilation Arguments text box is found on the
Advanced property sheet of the Options dialog, which can be accessed by
selecting the Options item from the Tools menu. Conditional compiler con-
stants defined in this way are public to the project.

• In many cases, failing to properly define a constant doesn’t produce an error
message. When this happens (as it does, for instance, when you attempt to
assign a variable’s value to a constant), the default value of the constant is
False. As a result, attempting to assign the value resulting from an invalid
expression to a constant can lead to the inclusion of the wrong block of code
in the compiled application.

• Although it may be obvious, it’s important to remember that the constant
defined by #Const is evaluated at compile time, and therefore doesn’t return
information about the system on which the application is running. For exam-
ple, the intent of the following code fragment is to test for a sound card and,
if one is present, to include code taking advantage of the system’s enhanced
sound capabilities:

If waveOutGetNumDevs > 0 Then
 #Const ccSoundEnabled = True
Endif
...

Constants Defined Through the VB/VBA Interface

The rules for defining constants in the Conditional Compilation Arguments
text box are somewhat different than for constants defined in code using the
#Const statement. The value assigned through the VB/VBA interface must
be an integer literal; it can’t be an expression formed by using multiple
literals or conditional constants, along with one or more operators, nor can
it be a Boolean value (i.e., True or False). If multiple conditional constants
are assigned through the user interface, they are separated from one another
by a colon. For instance, the following fragment defines three constants,
ccFlag1, ccFlag2, and ccFlag3:

ccFlag1 = 1 : ccFlag2 = 0 : ccFlag3 = 1
116 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
#If...Then...#Else Directive
#If ccSoundEnabled Then
 ' Include code for sound-enabled systems
#Else
 ' Include code for systems without a sound card
#End If

However, the code doesn’t work as expected, since it includes or excludes
the code supporting a sound card based on the state of the development
machine, rather than the machine on which the application is running.

See Also
#If...Then...#Else Directive

#If...Then...#Else Directive

Named Arguments

No

Syntax
#If expression Then

statements
[#ElseIf furtherexpression Then
 [elseifstatements]]
[#Else
 [elsestatements]]
#End If
expression

Use: Required

An expression made up of operators and conditional compiler constants
that evaluate to True or False.

statements
Use: Required

One or more lines of code that are executed if expression evaluates to
True.

furtherexpression
Use: Optional

An expression made up of operators and conditional compiler constants
that evaluates to True or False. furtherexpression is evaluated only
if the preceding expression evaluates to False.

elseifstatements
Use: Optional

One or more lines of code that are executed if furtherexpression
evaluates to True.

elsestatements
Use: Optional
#If...Then...#Else Directive 117

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
One or more lines of code that are executed if expression or further-
expression evaluates to False.

Description

Defines a block or blocks of code that are included in the compiled application
only when a particular condition is met, allowing you to create more than one
version of the application using the same source code. Conditionally including a
block of code is a two-step process:

• Using the #Const directive to assign a value to a conditional compiler con-
stant

• Evaluating the conditional compiler constant using #If...Then...#End If
statement block.

As with the standard If...Then statement, only expressions that evaluate to True
are executed directly after the statement. You can use the #Else statement to
execute code when the #If...Then expression has evaluated to False. You can
also use an #ElseIf statement to evaluate more expressions in the event that
previous expressions in the same block have evaluated to False.

Some uses of conditional compilation code are:

• To provide blocks of debugging code that can be left within the source code
and switched on and off using a conditional constant.

• To provide blocks of code that can perform different functions based on the
build required by the developer. For example, you may have a sample ver-
sion of your application that offers less functionality than the full product.
This can be achieved using the same source code and wrapping the code for
menu options, etc., within conditional compiler directives.

• To provide blocks of code that reference different ActiveX servers depending
on the build criteria of the application.

Rules at a Glance

• According to the documentation, only operators (other than Is) and condi-
tional compiler constants can be used in the expression to be evaluated. In
fact, you can draw on a considerably broader range of the VBA language to

#If...Then and Platform

In Visual Basic 4.0, which included both 16- and 32-bit versions, the major
application of the #If...Then compiler directive was to generate separate
executables for the 16- and 32-bit Windows platforms. For this purpose,
VBA included two conditional compiler constants, Win16 and Win32; if one
was True, the other was automatically set to False. Visual Basic 5.0 and
VBA 5.0 onwards, however, support only the 32-bit Windows platforms.
Consequently, the Win16 and Win32 constants are no longer supported.
118 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Abs Function
evaluate a conditional compiler expression. In addition to these, you can use
literals, variables, and some functions.

• Unlike the normal If...Then statement, you can’t use a single-line version of
the #If...Then statement.

• All conditional compiler constants used in conditional compiler expressions
must be defined; otherwise, they evaluate to Empty. This, in turn, means that
the conditional compiler expression evaluates to False.

Example
#Const ccVersion = 2.5
Private oTest as Object

Sub GetCorrectObject()

#If ccVersion = 2.5 Then
 Set oTest = New MyObject.MyClass
#Else
 Set oTest = New MyOtherObject.MyClass
#End If

End Sub

Programming Tips & Gotchas

• You can negate the evaluation of the expression in the #If...Then or
#ElseIf...Then statements by placing the Not operator before the expres-
sion. For example, #If Not ccVersion = 5 Then forces the code after this
line to be compiled in all situations where ccVersion doesn’t equal 5.

• Conditional compilation helps you debug your code, as well as provide a way
to create more than one version of your application. You can include code
that operates only when run in debug mode. The code can be left in your
final version and won’t compile unless running in the debugger; therefore,
you don’t need to keep adding and removing code.

• That you can use a wider range of language elements without generating a
compiler error doesn’t necessarily mean that you should use them or that
using them produces the result that you want. This applies to the use of vari-
ables in particular; the distinguishing feature of a variable (and the reason for
its name) is that its value is allowed to vary at runtime. The evaluation of con-
ditional expressions, however, occurs at compile time.

See Also
#Const Directive, Debug.Print Method, If...Then Statement

Abs Function

Named Arguments

No
Abs Function 119

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Syntax
result = Abs(number)
number

Use: Required

Data Type: Any valid numeric expression

The number whose absolute value is to be returned.

Return Value

The absolute value of number. The data type is the same as that passed to the
function.

Description

Returns the absolute value of a number (i.e., its unsigned magnitude). For
example, Abs(-1) and Abs(1) both return 1. If number contains Null, Null is
returned; if it’s an uninitialized variable, zero is returned.

Rules at a Glance

Only numeric values can be passed to the Abs function.

Example

In this example, the LineLength function determines the length of a line on the
screen. If the line runs from left to right, X1 is less than X2, and the equation (X2-
X1) returns the length of the line. If, however, the line runs from right to left, X1 is
greater than X2, and a negative line length is returned. As you know, in most
circumstances, it doesn’t matter which way a line is pointing; all you want to know
is how long it is. Using the Abs function allows you to return the same figure
whether the underlying figure is negative or positive.

Function LineLength(X2 as Integer) as Integer

 Dim X1 As Integer

 X1 = 100
 LineLength = Abs(X2 – X1)

End Function

Programming Tips & Gotchas

Because the Abs function accepts only numeric values, you may want to check the
value you pass to Abs using the IsNumeric function to prevent generating an error.
This is illustrated in the following code snippet:

If IsNumeric(vExtent) Then
 Abs(vExtent)
 ...
End If

See Also
IsNumeric Function
120 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
AddressOf Operator
AddressOf Operator

Named Arguments

No

Syntax
AddressOf procedurename
procedurename

Use: Required

The name of an API procedure.

Description

Passes the address of a procedure to an API function. There are some API func-
tions that require the address of a callback function as a parameter. (A callback
function is a routine in your code that is invoked by the routine that your program
is calling: it calls back into your code.) These callback functions are passed to the
API function as pointers to a memory address. In the past, calling functions that
required callbacks posed a unique problem to VB, since, unlike C or C++, it lacks
a concept of pointers. However, the AddressOf operator allows you to pass such
a pointer in the form of a long integer to the API function, thereby allowing the
API function to call back to the procedure.

Rules at a Glance

• The callback function must be stored in a code module; attempting to store it
in a class or a form module generates a compile-time error, “Invalid use of
AddressOf operator.”

• The AddressOf operator must be followed by the name of a user-defined
function, procedure, or property.

• The data type of the corresponding argument in the API function’s Declare
statement must be As Any or As Long.

• The AddressOf operator can’t call one VB procedure from another.

Example

The following example uses the EnumWindows and GetWindowText API calls to
return a list of currently open windows. EnumWindows requires the address of a
callback function as its first parameter. A custom function, EnumCallBackProc, is
the callback function that populates the lstWindowTitles list box.

When the cmdListWindows command button is clicked, the list box is cleared,
and a call to the EnumWindows API function is made, passing the AddressOf the
EnumCallBackProc function and a reference to the list box control. EnumWin-
dows then calls back to EnumCallBackProc, passing it the window handle of an
open window and the reference to the list box. EnumCallBackProc then uses the
GetWindowText API function to return the text in the titlebar of the window,
passing it the window handle, a string buffer, and the length of that buffer. Enum-
CallBackProc is called by the API function as many times as is required,
depending upon the number of open windows. The first portion of the example
AddressOf Operator 121

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
code must be stored in a code module, while the cmdListWindows_Click event
handler can be stored in the form module containing the cmdListWindows
button.

Option Explicit

Public Declare Function EnumWindows Lib "User32" _
 (ByVal lpEnumFunc As Any, _
 ByVal lParam As Any) As Long

Public Declare Function GetWindowText Lib "User32" _
 Alias "GetWindowTextA" _
 (ByVal hWnd As Long, _
 ByVal lpString As String, _
 ByVal cch As Long) As Long

Function EnumCallBackProc(ByVal hWnd As Long, _
 ByVal lParam As ListBox) As Long

 On Error Resume Next

 Dim sWindowTitle As String
 Dim lReturn As Long

 sWindowTitle = String(512, 0)

 lReturn = GetWindowText(hWnd, sWindowTitle, 512)

 If lReturn > 0 Then
 lParam.AddItem sWindowTitle
 End If

 EnumCallBackProc = 1

End Function

Private Sub cmdListWindows_Click()

 Dim lReturn As Long

 lstWindowTitles.Clear
 lReturn = EnumWindows(AddressOf EnumCallBackProc, _
 lstWindowTitles)

End Sub

Programming Tips & Gotchas

• Debugging calls containing AddressOf is at best very difficult and most of the
time downright impossible.

• It’s possible to pass an AddressOf pointer from one VB procedure to another
by creating a wrapper for the callback function. To do this, however, you
must declare the pointer as either Long or Any. The following snippet shows
how you could add such a wrapper function to the example used above:
122 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
AppActivate Statement
Private Sub cmdListWindows_Click()

Dim lReturn As Long

lReturn = DoWindowTitles(AddressOf EnumCallBackProc, _
 lstWindowTitles)
End Sub

Private Function DoWindowTitles(CallBackAddr As Long, _
 lstBox As ListBox) As Long

 'other stuff here
 lstBox.Clear
 DoWindowTitles = EnumWindows(CallBackAddr, lstBox)

End Function

• Because you can’t pass an error back to the calling Windows API function
from within your VB callback function, you should use the On Error Resume
Next statement at the start of your VB callback function.

See Also
Declare Statement

AppActivate Statement

Named Arguments

Yes

Syntax
AppActivate title [, wait]
title

Use: Required

Data Type: Variant

The name of the application as currently shown in the application
window titlebar. Can also be the task ID returned from the Shell function.

wait
Use: Optional

Data Type: Boolean

If set to True, the calling application must itself wait to obtain the focus
before activating the called application. If set to False (its default value),
the application specified in title is activated immediately.

Description

Sets the focus to the application with a titlebar caption matching title. The
application title passed to AppActivate isn’t necessarily the name of the program
file of the application; it’s the name currently displayed in the application’s titlebar.
AppActivate Statement 123

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Rules at a Glance

• title isn’t case sensitive.

• The title of each running application is compared against title.

• If the application designated by title isn’t running, AppActivate doesn’t
launch it.

• If no title matching title is found, an application whose title starts with
title is matched. For example, the title “Microsoft Word” matches
“Microsoft Word—MyDocument.doc”.

• If more than one instance of an application is found, AppActivate passes the
focus to one of the instances purely at random.

• The window state (Maximized, Minimized, or Normal) of the activated appli-
cation isn’t affected by AppActivate.

• If a matching application can’t be found, runtime error 5, “Invalid procedure
call or argument,” is generated.

• AppActivate can be used with both standard windows and console mode or
DOS applications. In the latter case, title must correspond to the window
caption Windows assigns the console window.

Example
Private Sub CommandButton2_Click()

 Dim bVoid As Boolean
 bVoid = ActivateAnApp("Microsoft Excel")

End Sub

Function ActivateAnApp(vAppTitle As Variant) As Boolean

 On Error GoTo Activate_Err

 ActivateAnApp = False
 AppActivate vAppTitle
 ActivateAnApp = True

Activate_Exit:
 Exit Function

Activate_Err:
 MsgBox "Application " & vAppTitle & _
 " could not be activated"
 Resume Activate_Exit

End Function

Programming Tips & Gotchas

• You can also use the task ID returned by the Shell function with the AppAc-
tivate statement, as this simple example demonstrates:
124 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Array Function
Option Explicit
Private vAppID

Private Sub Command1_Click()
 vAppID = Shell("C:\Program Files\Internet\IEXPLORE.EXE”)
End Sub
Private Sub Command2_Click()
 AppActivate vAppID
End Sub

• AppActivate is difficult to use with applications whose application titles
change to reflect the state or context of the application. Microsoft Outlook fur-
nishes an excellent illustration of this problem. If the user has Outlook in the
Calendar section, the titlebar reads “Calendar—Microsoft Outlook,” whereas in
the Inbox section, the titlebar reads “Inbox—Microsoft Outlook.”

• Due to the uncertain nature of attempting to activate an application over
which you have little or no programmatic control, you are strongly advised to
wrap the appActivate statement within stout error handling.

• Wherever possible, it’s preferable to manipulate the other application using its
COM interface—i.e., to create an instance of the application object.

• AppActivate is often used to give a particular window the focus before
sending keystrokes to it using the SendKeys statement, which acts only upon
the active window.

• All high-level languages by their very nature have limitations. After all, if we
wanted a language that could do everything possible, we’d all be using
assembler. To my mind the AppActivate and the Shell functions highlight
the limitations of VB in 32-bit Windows, and especially Windows NT. To
make a long story short, if you want to manipulate other applications with
your application, you should either be using a technology, such as OLE auto-
mation, that focuses on controlling an application remotely, or you should be
programming those parts of your application in C++—and that doesn’t mean
MFC! (Even MFC is too high-level for some of the low-level windows func-
tionality you need to do the job right.)

See Also
Shell Function

Array Function

Syntax
Array([element1], [elementN],....)
element

Use: Required

Data Type: Any

The data to be assigned to the first array element

elementN
Use: Optional
Array Function 125

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Data Type: Any

Any number of data items you wish to add to the array.

Return Value

A variant array consisting of the arguments passed into the function.

Description

Returns a variant array containing the elements whose values are passed to the
function as arguments.

The code fragment:

Dim vaMyArray
vaMyArray = Array("Mr", "Mrs", "Miss", "Ms")

is the equivalent to writing:

Dim vaMyArray(3)
vaMyArray(0) = "Mr"
vaMyArray(1) = "Mrs"
vaMyArray(2) = "Miss"
vaMyArray(3) = "Ms"

Because Array creates a variant array, you can pass any data type, including user-
defined types and objects, to the Array function. You can also pass the values
returned by calls to other Array functions to create multidimensional arrays (but
see the comment on multidimensional arrays in the “Programming Tips &
Gotchas” section).

Rules at a Glance

• You can assign the array returned by the Array function only to a Variant.

• Although the array you create with the Array function is a variant data type,
the individual elements of the array can be a mixture of different data types.

• The initial size of the array you create is the number of arguments you place
in the argument list and pass to the Array function.

• The lower bound of the array created by the Array function is determined by
the Option Base directive; if there is no Option Base statement, the lower
bound of the array is 0.

• The array returned by the Array function is a dynamic rather than static array.
Once created, you can redimension the array using Redim, Redim Preserve,
or another call to the Array function.

• If you don’t pass any arguments to the Array function, an empty array is cre-
ated. Although this may appear to be the same as declaring an array in the
conventional manner with the statement:

Dim myArray()

the difference is that you can then use the empty array with the Array func-
tion again later in your code.
126 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Array Function
Programming Tips & Gotchas

• You can effectively use the Array function only in situations where you know
in advance the number of elements you will need. It’s not possible to write
the function statement with a variable number of elements.

• You can’t assign the return value of Array to a variable previously declared as
an array variable. Therefore, don’t declare the variant variable as an array
using the normal syntax:

Dim MyArray()

Instead, simply declare a variant variable, such as:

Dim MyArray as Variant

• Array can also be invoked as a method within the VBA object model* by
using the syntax:

VBA.Array()

In this case, Option Base has no effect on the base element number of the
array; the first element is always 0. Try this example:

Option Base 1
Private Sub CommandButton1_Click()

Dim vaListOne As Variant
vaListOne = VBA.Array("One", 2, "Three", 4)
MsgBox vaListOne(1)

Dim vaListTwo As Variant
vaListTwo = Array("One", 2, "Three", 4)
MsgBox vaListTwo(1)

End Sub

• The Array function is ideal for saving space and time and writing more effi-
cient code when creating a fixed array of known elements, for example:

Dim Titles as Variant
Title = Array("Mr", "Mrs", "Miss", "Ms")

• You can use the Array function to create multidimensional arrays. However,
accessing the elements of the array needs a little more thought. The follow-
ing code fragment creates a simple two-dimensional array with three ele-
ments in the first dimension and four elements in the second:

Dim vaListOne As Variant

vaListOne = Array(Array(1, 2, 3, 4), _
 Array(5, 6, 7, 8), _
 Array(9, 10, 11, 12))

* If you use the Object Browser to locate the Array method within the VBA object, though,
you won’t be able to find it, since, as a member of the _HiddenModule module, it’s hidden
from view, although it remains accessible.
Array Function 127

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Surprisingly, the code you’d expect to use to access the array returns a “Sub-
script out of range” error:

'This line generates a Subscript out of range error
MsgBox vaListOne(1, 2)

You can overcome this limitation by declaring a second variant and assigning
to it the element from the first dimension, then accessing the second dimen-
sion element in the normal way, like this:

Dim vaListTwo As Variant
vaListTwo = vaListOne(1)

MsgBox vaListTwo(2)

• You can also use the Array function to populate the ActiveX (Microsoft Forms
2.0) ListBox or ComboBox controls, as the following example shows:

Private Sub CommandButton2_Click()

ComboBox1.Clear
ComboBox1.List = Array("Mr", "Mrs", "Miss", "Ms")
ComboBox1.ListIndex = 0

End Sub

Note that this doesn’t work with the standard Visual Basic ListBox or Combo-
Box controls; it produces an “Argument not optional” compiler error. Our per-
formance comparisons, however, indicate that the conventional technique of
calling the control’s AddItem method to add an item is between 5 and 25%
faster than calling the Array function.

• Here’s another neat trick you can use with the Array function: you can even
create your own “on-demand” control array (of existing controls) by simply
listing a group of existing controls in the argument list to pass to the Array
function. You can then use the array element the same way you’d use an
object variable, as the following code demonstrates:

Dim vaTest as Variant

vaTest = Array(CommandButton1, CommandButton2, _
 CommandButton3)

MsgBox vaTest(1).Caption

• Because you declare the variant variable to hold the array as a simple variant,
rather than an array, and can then make repeated calls to Array, the function
can create dynamic arrays. For example, the following code fragment dimen-
sions a variant to hold the array, calls Array to create a variant array, then
calls Array again to replace the original variant array with a larger variant
array:

Dim varArray As Variant
varArray = Array(10,20,30,40,50)
...
varArray = Array(10,20,30,40,50,60)
128 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Asc, AscB, AscW Functions
The major disadvantage of using this method is that, while it makes it easy to
replace an array with a different array, it doesn’t allow you to easily expand
or contract an existing array.

See Also
Dim Statement, LBound Function, Option Base Statement, ReDim Statement,
Ubound Function

Asc, AscB, AscW Functions

Named Arguments

No

Syntax
Asc(string)
AscB(string)
AscW(string)
string

Use: Required

Data Type: String

Any expression that evaluates to a string.

Return Value

An integer that represents the character code of the first character of the string.
The range for the returned value is 0–255 on non-DBCS systems, but
–32768–32767 on DBCS systems.

Description

Returns the ANSI or Unicode character code that represents the first character of
the string passed to it. All other characters in the string are ignored. Use AscB with
Byte data and AscW on Unicode (DBCS) systems.

Rules at a Glance

• The string expression passed to the function must contain at least one charac-
ter, or a runtime error (either “Invalid use of Null” or “Invalid procedure call
or argument”) is generated.

• Only the first character of the string is evaluated by Asc, AscB, and AscW.

• Use the AscW function to return the Unicode character of the first character of
a string.

• Use the AscB function to return the first byte of a string containing byte data.

Example
Dim sChars As String
Dim iCharCode As Integer

sChars = TextBox1.Text
If Len(sChars) > 0 Then
Asc, AscB, AscW Functions 129

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 iCharCode = Asc(sChars)
 If iCharCode >= 97 And iChar <= 122 Then
 MsgBox "The first character must be uppercase"
 End If
End If

Programming Tips & Gotchas

• Always check that the string you are passing to the function contains at least
one character using the Len function, as the following example shows:

If Len(sMyString) > 0 Then
 iCharCode = Asc(sMyString)
Else
 MsgBox "Cannot process a zero-length string"
End If

• On platforms which don’t support Unicode, the AscW function performs
exactly the same as Asc.

• Surprisingly, although the VB Object Browser clearly shows that the data type
of the parameter passed to the Asc function is String, it can actually be any
data type. Evidently the Asc routine converts incoming values to strings before
extracting their first character.

• Use Asc within your data validation routines to determine such conditions as
whether the first character is upper- or lowercase and whether it’s alphabetic
or numeric, as the following example demonstrates:

Private Sub CommandButton1_Click()

Dim sTest As String
Dim iChar As Integer

sTest = TextBox1.Text

If Len(sTest) > 0 Then
 iChar = Asc(sTest)
 If iChar >= 65 And iChar <= 90 Then
 MsgBox "The first character is UPPERCASE"
 ElseIf iChar >= 97 And iChar <= 122 Then
 MsgBox "The first character is lowercase"
 Else
 MsgBox "The first character isn't alphabetical"
 End If
Else
 MsgBox "Please enter something in the text box"
End If

End Sub

• Use the Asc function and its converse, Chr, to create rudimentary encryption
methods. Once you have obtained the character code for a particular charac-
ter, you can perform calculations on this code to come up with a different
number and then convert this to a character using the Chr function. To
decrypt your string, simply reverse the calculation. Be sure, though, that your
130 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Asc, AscB, AscW Functions
calculation doesn’t generate character codes less than 20, since these are spe-
cial nonprinting characters, which, if displayed or printed, can cause undesir-
able effects.

Private Sub CommandButton2_Click()

Dim MyName As String, MyEncryptedString As String
Dim MyDecryptedString As String
Dim i As Integer

MyName = "Paul Lomax"

For i = 1 To Len(MyName)
 MyEncryptedString = MyEncryptedString & _
 Chr(Asc(Mid(MyName, i, 1)) + 25)
Next i

MsgBox "Hello, my name is " & MyEncryptedString

For i = 1 To Len(MyName)
 MyDecryptedString = MyDecryptedString & _
 Chr(Asc(Mid(MyEncryptedString, i, 1)) - 25)
Next i

MsgBox "Hello, my name is " & MyDecryptedString

End Sub

Unicode Characters and AscB, AscW, ChrB, and ChrW

The Unicode character set was developed to support software international-
ization and the consequent need for many more characters than the original
ASCII character set could provide. Unicode characters are represented by
two bytes and can therefore represent up to 65,536 characters, whereas
ANSI’s one-byte representation can cope only with 256. Today, both
Windows NT and OLE 2.0 are entirely Unicode, and since Version 4, Visual
Basic has represented strings in Unicode internally.

Because of the way VB handles strings internally, the operation of certain
functions (such as Chr) has changed when compared to VB’s early versions.
For example, assigning the return value of Chr to a string data type results
in a string one byte in length under Windows 95, a non-Unicode system;
this is the traditional behavior of Chr. But under Windows NT, a Unicode
system, it results in a string two bytes in length. To cope with the extra
demands of Unicode, VB4 introduced a number of new functions, including
AscB, AscW, ChrB, and ChrW. The “W”-suffixed functions handle the two
bytes of Unicode characters. The “B”-suffixed functions work with Byte data,
but, like the Asc and Chr functions, handle only the first byte of the byte
string passed to them.
Asc, AscB, AscW Functions 131

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
See Also
Chr, ChrB, ChrW Functions

Atn Function

Named Arguments

No

Syntax
Atn(number)
number

Use: Required

Data Type: Numeric

Any numeric expression, representing the ratio of two sides of a right
angle triangle.

Return Value

The return value is a Double data type representing the arctangent of number, in
the range –pi/2 to pi/2 radians.

Description

Takes the ratio of two sides of a right triangle (number) and returns the corre-
sponding angle in radians. The ratio is the length of the side opposite the angle
divided by the length of the side adjacent to the angle.

Rules at a Glance

• If no number is specified, a runtime error is generated.

• The return value of Atn is in radians, not degrees.

Example
Private Sub CommandButton1_Click()

 Dim dblSideAdj As Double
 Dim dblSideOpp As Double
 Dim dblRatio As Double
 Dim dblAtangent As Double

 dblSideAdj = 50.25
 dblSideOpp = 75.5

 dblRatio = dblSideOpp / dblSideAdj
 dblAtangent = Atn(dblRatio)
 'convert from radians to degrees
 dblDegrees = dblAtangent * (180 / 3.142)
 MsgBox dblDegrees & " Degrees"

End Sub
132 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Beep Statement
Programming Tips & Gotchas

• To convert degrees to radians, multiply degrees by pi/180.

• To convert radians to degrees, multiply radians by 180/pi.

• Don’t confuse Atn with the cotangent. Atn is the inverse trigonometric func-
tion of Tan, as opposed to the simple inverse of Tan.

See Also
Tan Function

Beep Statement

Syntax
Beep

Description

Sounds a tone through the computer’s speaker.

Example
Private Sub CommandButton2_Click()

 iVoid = DoSomeLongFunction()
 Beep
 MsgBox "Finished!"

End Sub

Programming Tips & Gotchas

• The frequency and duration of the tone depends on the computer’s hard-
ware. Bear in mind that on some systems, a mouse click is louder than the
beep.

• Overuse of the Beep statement won’t endear you to your users.

• Thoughtful use at the end of a long possibly unattended process may be
appropriate.

• Since the successful operation of the Beep statement doesn’t require the pres-
ence of any multimedia hardware (like a sound board, for example), it can be
used when a system isn’t configured to support sound. For example, if the
following is defined in the declarations section of a code module:

Declare Function waveOutGetNumDevs Lib "winmm.dll" () As Long
Declare Function PlaySound Lib "winmm.dll" _
 Alias "PlaySoundA" (ByVal lpszName As String, _
 ByVal hModule As Long, ByVal dwFlags As Long) _
 As Long

Public Const SND_APPLICATION = &H80
Public Const SND_ASYNC = &H1
Public Const SND_FILENAME = &H20000
Public Const SND_NODEFAULT = &H2
Beep Statement 133

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Public HasSound As Boolean

Public Function IsSoundSupported() As Boolean
 If (waveOutGetNumDevs > 0) Then _
 IsSoundSupported = True
End Function

then the procedure

Private Sub Form_Load()
 Dim intCtr As Integer
 HasSound = IsSoundSupported()
 If HasSound Then
 Call PlaySound("c:\windows\media\tada.wav", 0, _
 SND_FILENAME Or SND_NODEFAULT)
 Else
 For intCtr = 0 To 3
 Beep
 Next
 End If
End Sub

BindingCollection Object (VB6)

Description

The BindingCollection object—as the name suggests—is a collection of Binding
objects. The BindingCollection object plays a central role in the new data-binding
technology in VB6, allowing you to automatically map data fields to standard form
controls and to specify formatting for those data. Your application can have any
number of BindingCollection objects, each referring to a distinct data member
provided by a data source such as an ADO recordset or a VB data source class.
The Binding objects held within the class represent the individual mapping of
consumer control property to data provider field, a relationship created using the
BindingCollections Add method.

The relationship between the various data binding elements is shown in
Figure 7-1.

For an overview of data-binding objects, including the library reference needed to
access the object model, see the Data Binding Objects entry.

Createable

Yes

BindingCollection Properties
Count

Data Type: Long

The number of Binding objects in the collection.
134 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
BindingCollection Object (VB6)
DataMember
Type: DataMember

An optional string specifying the data member to use from the data
source. This is useful where the source provides more than one data
member. A DataSource application can provide many data members; you
need to create a BindingCollection object for each data member to which
you wish to bind.

DataSource
Data Type: DataSource

A valid data source object such as an ADO recordset or a VB class object
set to vbDataSource. The DataSource is distinct from the DataMember;
the DataSource is the application providing the data, whereas the Data-
Member is a discrete recordset within the DataSource.

Item
Data Type: Binding Object

Returns a Binding object. If you use a key string in the Add method, you
can also access the Binding object by key, as in:

obcAuthors.Item("fname")

UpdateMode
Type: UpdateMode enumerated constant (see below)

Specifies at what stage the data source is updated. However, if you open
a recordset as read-only, no update occurs.

Figure 7-1: How data-binding elements relate to each other

DataSource

Data Field
Data Field
Data Field
Data Field

DataMember

Data Field
Data Field
Data Field
Data Field

DataMember

BindingCollection
Binding Object
Binding Object
Binding Object
Binding Object

Binding Object
Binding Object
Binding Object
Binding Object

BindingCollection

Data Consumer Control
Property

Data Consumer Control
Property

Data Consumer Control
Property

Data Consumer Control
Property

Data Consumer Control
Property

Data Consumer Control
Property

Data Consumer Control
Property

Data Consumer Control
Property
BindingCollection Object (VB6) 135

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
UpdateMode Constants
vbUpdateWhenPropertyChanges

Value: 1

Don’t use this constant when dealing with VB class data sources. I found
it disabled the Binding object’s DataChanged property.

vbUpdateWhenRowChanges
Value: 2

The recordset is updated.

vbUsePropertyAttributes
Value: 0

Not relevant to class data sources.

BindingCollection Methods
The BindingCollection object supports the Add. Clear, and Remove collection
object methods. For details, see the entries for each method.

BindingCollection.Add Method (VB6)

Named Arguments

Yes

Syntax
oBindingColl.Add Object, PropertyName, DataField[, _
 DataFormat[, Key]]
oBindingColl

Use: Required

Data Type: BindingCollection object

An object reference that returns a BindingCollection object.

Object
Use: Required

Data Type: Object

The data consumer object. Either a form, control, or VB data bound class.

PropertyName
Use: Required

Data Type: String

The property of the consumer object to be bound to Datafield.

DataField
Use: Required

Data Type: String

The field of the recordset to be bound to PropertyName.

DataFormat
Use: Optional
136 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
BindingCollection.Add Method (VB6)
Data Type: StdDataFormat object

An object reference to a stdDataFormat object; see the Data Format
Objects entry for additional detail.

Key
Use: Optional

Data Type: String

A unique string value to allow direct access to the Binding object.

Description

You use the Add method to create the link between a field in the data provider
object and a field in the data consumer object.

The Add method of the BindingCollection object is identical in concept to any
other collection’s Add method. The BindingCollection object uses the Add method
to assign various properties and to create a new Binding object in the collection.

Rules at a Glance

Objectmust be a data consumer object. It can be any form, control, form object,
or even a VB class.

Programming Tips & Gotchas

• The data provider object is assigned to the BindingCollection by assigning an
object reference to the DataSource property. Both the DataSource and Data-
Member properties should be assigned before adding Binding objects to the
collection using the Add method.

• The Binding object provides simple binding, where each field of the data pro-
vider is mapped to an individual property of a data consumer. Don’t use the
Add method to bind complex controls or a complex bound data consumer
class. (In complex binding, the data consumer is bound to a complete row of
a recordset.)

• Many VB programmers now select property names from the IntelliSense drop-
down lists or use statement completion. But these features (i.e., IntelliSense
and statement completion) don’t apply to the PropertyName parameter,
which is a string value. This allows greater flexibility in runtime code, but cre-
ates a greater chance of typo errors creeping into your code.

• Although key is optional, it’s recommended that you provide a meaningful
key for your Binding object. This key allows you to directly reference the
Binding object in the BindingCollection later in your application.

• If the purpose of the format object defined by DataFormat is incompatible
with the control being bound, the Add method generates an error.

Example
obcAuthors.DataMember = "Authors"

Set obcAuthors.DataSource = oSource

obcAuthors.Add txtFirstName, "Text", "au_fname", fmtF1, _
BindingCollection.Add Method (VB6) 137

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 "fname"
obcAuthors.Add txtLastName, "Text", "au_lname", fmtF1, _
 "lname"

See Also
Binding Object

BindingCollection.Clear Method (VB6)

Syntax
oBindingColl.Clear
oBindingColl

Use: Required

Data Type: BindingCollection object

An object reference that returns a BindingCollection object.

Description

Removes all previously added Binding objects from the BindingCollection object.

Programming Tips & Gotchas

It’s not necessary to use the Clear method before setting the BindingCollection
object to Nothing. If all references to Binding objects within the collection have
been set to Nothing when the BindingCollection is set to Nothing, the object is
destroyed cleanly.

BindingCollection Remove.Method (VB6)

Named Arguments

Yes

Syntax
oBindingColl.Remove(Binding)
oBindingColl

Use: Required

Data Type: BindingCollection object

An object reference that returns a BindingCollection object.

Binding
Use: Required

Data Type: Binding object

A reference to a binding object in the BindingCollection.

Description

Removes a previously added Binding object from the BindingCollection object.
138 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Binding Object (VB6)
Programming Tips & Gotchas

Unlike most other Remove methods attached to collections in VBA, the Binding-
Collection’s Remove method’s parameter is a reference to the object being
removed from the collection.

Example

In this short snippet, we access the Item method using the key assigned to the
Binding object we want to remove. The method call assigns a reference to the
Binding object to be removed to our local oBind object variable, which can then
be passed to the Remove method. We then set the Bind object variable to
Nothing afterwards. The For Each...Next statement proves that the object has
been removed.

Set oBind = obcAuthors.Item("address")
 obcAuthors.Remove oBind
Set oBind = Nothing

For Each oBind In obcAuthors
 Debug.Print oBind.Key
Next

Binding Object (VB6)

Description

The binding object represents the binding of one property of one form control (or
another data consumer) to a data source. The data consumer represented by the
Binding object’s Object property can be a form control—or the form itself, or a VB
class with its DataBindingBehavior set to either vbSimpleBound or vbComplex-
Bound. The data consumer’s property that is updated by the data source is
represented by the string assigned to the PropertyName property. The data source
can be any valid data source, such as an ADO recordset or a VB class with its
DataSouceBehavior property set to vbDataSource

For an overview of data binding objects, including the library reference needed to
access the object model, see the Data Binding Objects entry. See the BindingCol-
lection object for more detail about data binding and an example demonstrating
the use of the Binding object.

Createable

Yes

Properties
DataChanged

Data Type: Boolean

A True or False flag that indicates if the user has changed the data
value. If the data value is the same as the recordset, the DataChanged
Binding Object (VB6) 139

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
property is False; if not, the value is True. Note that changing the prop-
erty value by navigating through the recordset doesn’t change the
DataChanged property.

DataField
Data Type: String

The name of the field in the recordset held by the data source that is
bound to the property in the data consumer control.

DataFormat
Data Type: StdDataFormat

A stdDataFormat object that specifies the type of formatting to apply to
the data.

Key
Data Type: String

An optional key to quickly reference an individual binding object from
within the collection.

Object
Data Type: Object

The data consumer object, either a form, a control, or a VB class with its
DataBindingBehavior property set to vbSimpleBound or vbComplex-
Bound.

PropertyName
Data Type: String

The name of the property in the data consumer object that is assigned
the value from the DataField property.

Calendar Property

Syntax
Calendar = calendarconstant

calendarconstant can be either of the following constants:

Description

Returns or sets a value specifying the type of calendar to use with your project.
The Gregorian calendar year of 1998 (which is based on the birth of Christ) is
roughly equivalent to the Hijri year of 1418 (which is based on the birth of
Mohammed). Note that the new year of each calendar is different, and the Hijri
calendar, being based more accurately on the cycles of the moon, is 11 days
shorter than the Gregorian calendar.

Constant Value Description

vbCalGreg 0 Application uses the Gregorian calendar (default)

vbCalHijri 1 Application uses the Hijri calendar
140 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Call Statement
Example
Calendar = vbCalHijri
MsgBox Format(Now, "dd-mm-yyyy")

Programming Tips & Gotchas

Unless you are writing applications that will be used by or for users living or
working in certain Muslim countries that use the Hijri calendar (for example, Saudi
Arabia), you shouldn’t need to set the Calendar property.

Call Statement

Syntax
[Call] procedurename [argumentlist]
Call

Use: Optional

procedurename
Use: Required

Data Type: n/a

The name of the subroutine being called.

argumentlist
Use: Optional

Data Type: Any

A comma-delimited list of parameters to pass to the subroutine being
called.

Description

Passes execution control to a procedure, function, or dynamic-link library (DLL)
procedure.

Rules at a Glance

• Components of argumentlist may include the keywords ByVal or ByRef to
describe how the arguments are treated by the called procedure. However,
ByVal and ByRef can be used with Call only when calling a DLL procedure
defined with the Declare statement. ByRef indicates that the variable’s
address in memory, rather than its value, is to be passed to the external rou-
tine; this means that, should the external routine modify the variable’s value,
this change is reflected in the variable’s value when the external DLL routine
returns control to the calling procedure. ByVal, on the other hand, indicates
that the parameter is passed to the DLL routine by value ; in other words, a
copy of the value, rather than its location in memory, is passed to the exter-
nal library routine. This means that, if the parameter is a variable, the exter-
nal routine can’t modify its value. (An exception is a string expression that’s
passed by value to a DLL routine. All strings are passed by reference to exter-
nal DLLs; however, a string passed using the ByVal keyword is passed by ref-
erence as a C string; whereas a string passed using the ByRef keyword is
passed by reference as a Visual Basic string.)
Call Statement 141

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• You aren’t required to use the Call keyword when calling a procedure. How-
ever, if you use the Call keyword to call a procedure that requires argu-
ments, argumentlist must be enclosed in parentheses. If you omit the Call
keyword from the procedure call, you must also omit the parentheses around
argumentlist.

• If you use either Call syntax to call any intrinsic or user-defined function, the
function’s return value is discarded.

Example
Call myProcedure(True, iMyInt)

Sub myProcedure(blnFlag as Boolean, iNumber as Integer)
...
End Sub

Programming Tips & Gotchas

• To pass a whole array to a procedure, use the array name followed by empty
parentheses.

• Your code will be easier to read and understand if you explicitly use the Call
keyword.

See Also
Sub Statement, Function Statement

CallByName Function (VB6)

Named Arguments

No

Syntax
CallByName(object, procedurename, calltype, _
 [argument1,..., argumentn])
object

Use: Required

Data Type: Object

A reference to the object containing the procedure being called.

procedurename
Use: Required

Data Type: String

The name of the procedure to call.

calltype
Use: Required

Data Type: vbCallType constant

A constant that indicates the type of procedure being called. vbCallType
constants are listed in the next table.
142 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
CallByName Function (VB6)
arguments
Use: Optional

Data Type: Variant

Any number of variant arguments, depending on the argument list of the
procedure to call.

Return Value

Depends on the return value (if any) of the called procedure.

Description

Provides a flexible method for calling a public procedure in a VB object module.
Since procedurename is a string expression, rather than the hard-coded name of a
routine, it’s possible to call routines dynamically at runtime with a minimum of
coding.

Rules at a Glance

• The return type of CallByName is the return type of the called procedure.

• procedurename isn’t case sensitive.

Programming Tips & Gotchas

• At last, VB allows you to create a call to a procedure using a string. This
means that the call can be flexible at runtime.

• The only drawback to the current implementation of CallByName is that the
parameters to pass to the called function must be entered individually. This
means that, when coding the CallByName function, you need to know in
advance how many parameters are needed. You could work around this by
coding your functions to accept only Variant arrays so that you only need to
pass a single parameter.

• Late binding is necessarily used to instantiate objects whose procedures are
invoked by the CallByName function. Consequently, the performance of Call-
ByName is inferior to that of method invocations in early bound objects. This
degradation of performance is especially acute if CallByName is invoked
repeatedly inside a looping structure.

Example

The following example takes CallByName and the amendments to CreateObject to
their logical conclusion: a variable procedure call to a variable ActiveX server in a
variable location. In this example, the SQL Server pubs database is used as the

Constant Value Description

vbGet 2 The called procedure is a Property Get

vbLet 4 The called procedure is a Property Let

vbMethod 1 The called procedure is a method; this can be
a Sub or a Function within object

vbSet 8 The called procedure is a Property Set
CallByName Function (VB6) 143

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
source of the data. Two ActiveX objects on two separate machines are used to
create two different recordsets: one from the Authors table, the other from the
Titles table. However, nowhere in the program are the names of the ActiveX DLLs,
the procedures, or the remote servers mentioned.

The middle tier of this application uses the registry to store these names, allowing
fast alteration of the application without touching a single line of code or creating
incompatibilities between components. The repercussions of this approach to
enterprise-wide programming are wide-reaching, and the prospects very exciting.

Only when dealing with the user interface of the client component are the names
of the required datasets and fields specified. The Form_Load event calls a stan-
dard function to populate combo box controls with the required data:

Private Sub Form_Load()

 PopulateCombo cboAuthors, "Authors", "au_lname"
 PopulateCombo cboTitles, "Titles", "title"

End Sub

The PopulateCombo function calls a GetRecordset function in the first middle tier
of the model, passing in the recordset name required (either Authors or Titles in
this case) and a search criteria string that is concatenated into the embedded SQL
script to refine the recordset. GetRecordset returns an ADO recordset that popu-
lates the desired combo box:

Private Function PopulateCombo(oCombo As ComboBox, _
 sRecords As String, _
 sField As String) As Boolean

 Dim adorRecords As ADODB.Recordset
 Dim sSearch As String

 If sRecords = "Authors" Then
 sSearch = "contract = 1 AND state = 'CA'"
 Else
 sSearch = ""
 End If

 Set adorRecords = oAdmin.GetRecordset(sRecords, sSearch)

 Do While Not adorRecords.EOF
 oCombo.AddItem adorRecords(sField)
 adorRecords.MoveNext
 Loop

 adorRecords.Close
 Set adorRecords = Nothing

End Function

The GetRecordset method that sits on a central machine interrogates the registry
(using the GetSetting function) to determine the names of the ActiveX server, the
machine, and the procedure to call. I’ve also coded an alternative method of
144 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
CallByName Function (VB6)
obtaining these names using a Select Case statement (which is commented out
in the code sample). Finally, the CreateObject function obtains a reference to the
appropriate ActiveX server on the appropriate machine and a call is made to the
function in that server to obtain the correct recordset:

Public Function GetRecordset(sRecords As String, _
 sCriteria As String _
) As ADODB.Recordset

 Dim sServer As String
 Dim sLocation As String
 Dim sMethod As String

 Dim oServer As Object

 sServer = GetSetting(App.Title, sRecords, "Server")
 sLocation = GetSetting(App.Title, sRecords, "Location")
 sMethod = GetSetting(App.Title, sRecords, "GetMethod")

' An alternative method of obtaining the names of the
' elements of the remote procedure call is to hard-code
' them into the application as follows:
' Select Case sRecords
' Case Is = "Titles"
' sServer = "TestDLL.Titles"
' sLocation = "NTSERV1"
' sMethod = "GetTitles"
' Case Is = "Authors"
' sServer = "Test2DLL.Authors"
' sLocation = "NTWS2"
' sMethod = "getAuthors"
' Case Else
' Set GetRecordset = Nothing
' Exit Function
' End Select

 Set oServer = CreateObject(sServer, sLocation)

 Set GetRecordset = CallByName(oServer, _
 sMethod, _
 VbMethod, _
 sCriteria)

End Function

The code to create the recordsets in TestDLL.Titles and Test2DLL.Authors
isn’t shown here, as it’s straightforward database access code.

Now, imagine for a moment that the organization using this application wanted a
minor alteration in the way the Authors recordset was presented to the client (a
different sort order, for example). You can now make a change to the procedure,
calling it getAuthorsRev ; compile a completely new ActiveX server; and place it on
the remote server. Then with two quick edits of the registry, all the clients in the
organization would instantly access the new procedure with a minimum of fuss,
CallByName Function (VB6) 145

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
no loss of component compatibility, zero downtime, and an almost seamless
transition.

See Also
Call Statement

CBool Function

Named Arguments

No

Syntax
CBool(expression)
expression

Use: Required

Data Type: String or Numeric

Any numeric expression or a string representation of a numeric value.

Return Value

expression converted to Boolean data type (True or False).

Description

Casts expression as a Boolean data type. Expressions that evaluate to 0 are
converted to False (0), and expressions that evaluate to nonzero values are
converted to True (–1).

Rules at a Glance

If the expression to be converted is a string, the string must be capable of being
treated as a number. Therefore, CBool("ONE") results in a type mismatch error,
yet CBool("1") converts to True.

Programming Tips & Gotchas

• You can check the validity of the expression prior to using the CBool func-
tion by using the IsNumeric function.

• When you convert an expression to a Boolean, an expression that evaluates
to 0 is converted to False (0), and any nonzero number is converted to True
(–1). Therefore, a Boolean False can be converted back to its original value
(i.e., 0), but the original value of the True expression can’t be restored unless
it was originally –1.

See Also
IsNumeric Function
146 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
CByte Function
CByte Function

Named Arguments

No

Syntax
CByte(expression)
expression

Use: Required

Data Type: Numeric or String

A string or numeric expression that evaluates to between 0 and 255.

Return Value

expression converted to Byte data type.

Description

Converts expression to a Byte data type. The byte data type is the smallest data
storage device in VBA. Being only one byte in length, it can store unsigned
numbers between 0 and 255.

Rules at a Glance

• If expression is a string, the string must be capable of being treated as a
number.

• If expression evaluates to less than 0 or more than 255, an overflow error is
generated.

• If expression isn’t a whole number, CByte rounds the number prior to con-
version.

Example
If IsNumeric(sMyNumber) Then
 If val(sMyNumber) >= 0 and val(sMyNumber) <= 255 Then
 BytMyNumber = Cbyte(sMyNumber)
 End If
End If

Programming Tips & Gotchas

• Check that the value you pass to CByte is neither negative nor greater than
255.

• Use IsNumeric to insure the value passed to CByte can be converted to a
numeric expression.

• When using CByte to convert floating point numbers, fractional values up to
but not including .5 are rounded down, while values of .5 and above are
rounded up.

See Also
IsNumeric Function, Chapter 3
CByte Function 147

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
CCur Function

Named Arguments

No

Syntax
CCur(expression)
expression

Use: Required

Data Type: Numeric or String

A string or numeric expression that evaluates to a number between
–922,337,203,685,477.5808 and 922,337,203,685,477.5807.

Return Value

expression converted to a currency data type.

Description

Converts an expression into a currency data type. The currency data type is stored
in eight bytes, with a precision to four decimal places.

Rules at a Glance

• If the expression passed to the function is outside the range of the Currency
data type, an overflow error occurs.

• Expressions containing more than four decimal places are rounded to four
decimal places.

• The only localized information included in the value returned by CCur is the
decimal symbol.

Example
If IsNumeric(sMyNumber) Then
 curMyNumber = CCur(sMyNumber)
End If

Programming Tips & Gotchas

• It’s often tempting to use the Val function to return a numeric data type from
a string. However, you should always use the correct data type function,
which takes account of the computer’s regional settings. In particular, CCur
can successfully handle currency symbols and thousands separators embed-
ded in a currency string, whereas Val can’t. This means, for example, that if
the user inputs a string value of $1,200.68, the CCur function can successfully
convert it to a currency value of 1200.68, whereas Val returns a value of 0.

• CCur doesn’t prepend or append a currency symbol; for this, you need to use
the Format function or (in VB6) the new FormatCurrency function. CCur
does, however, correctly convert strings that include a localized currency sym-
bol. For instance, if a user enters the string “$ 1234.68” into a text box whose
148 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
CDate Function
Text property is passed as a parameter to the CCur function, CCur correctly
returns a currency value of 1234.68.

• CCur doesn’t include the thousands separator; for this, you need to use the
Format function or (in VB6) the new FormatCurrency function. CCur does,
however, correctly convert currency strings that include localized thousands
separators. For instance, if a user enters the string “1,234.68” into a text box
whose Text property is passed as a parameter to the CCur function, CCur cor-
rectly converts it to a currency value of 1234.68.

See Also
Format Function, FormatCurrency Function, FormatNumber Function, Chapter 3

CDate Function

Named Arguments

No

Syntax
CDate(expression)
expression

Use: Required

Data Type: String or Numeric

Any valid date expression.

Return Value

expression converted into a Date data type.

Description

Converts expression to a Date data type. The format of expression—the order
of day, month, and year—is determined by the locale setting of your computer. To
be certain of a date being recognized correctly by CDate, the month, day, and year
elements of expression must be in the same sequence as your computer’s
regional settings; otherwise the CDate function has no idea that 4 is supposed to
be the 4th of the month, not the month of April.

CDate also converts numbers to a date. The precise behavior of the function,
however, depends on the value of expression:

• If expression is less than or equal to 23 and includes a fractional compo-
nent less than 60, the integer is interpreted as the number of hours since mid-
night, and the fraction is interpreted as the number of seconds.

• In all other cases, the integer portion of expression is converted to a date
that interprets the integer as the number of days before (in the case of nega-
tive numbers) or after December 31, 1899, and its fractional part is converted
to the time of day, with every .01 representing 864 seconds (14 minutes 24
seconds) after midnight.
CDate Function 149

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Rules at a Glance

• CDate accepts both numerical date expressions and string literals. You can
pass month names into CDate in either complete or abbreviated form; for
example, “31 Dec 1997” is correctly recognized.

• You can use any of the date delimiters specified in your computer’s regional
settings; for most systems, this includes “,”, “/”, “-”, and “ ”.

• The oldest date that can be handled by the Date data type is 01/01/100,
which in VBA terms equates to the number –657434. Therefore, if you try to
convert a number of greater magnitude than –657434 with CDate, an error
(“Type mismatch”) is generated.

• The furthest date into the future that can be handled by the Date data type is
31/12/9999, which in VBA terms equates to the number 2958465. Therefore, if
you try to convert a number higher than 2958465 with CDate, an error (“Type
mismatch”) is generated.

• A “Type mismatch” error is generated if the values supplied in expresssion
are invalid. However, CDate tries to treat a month value greater than 12 as a
day value.

Programming Tips & Gotchas

• Use the IsDate function to determine if expression can be converted to a
date or time.

• A common error is to pass an uninitialized variable to CDate, in which case
31 December 1899 is returned.

• A modicum of intelligence has been built into the CDate function. It can
determine the day and month from a string regardless of their position, but
only where the day number is larger than 12, which automatically distin-
guishes it from the number of the month. For example, if the string “30/12/97”
were passed into the CDate function on a system expecting a date format of
mm/dd/yy, CDate sees that 30 is obviously too large for a month number and
treats it as the day. It’s patently impossible for CDate to second guess what
you mean by “12/5/97”—is it the 12th of May, or 5th of December? In this sit-
uation, CDate relies on the regional settings of the computer to distinguish
between day and month. This can also lead to problems, as you may have
increased a month value to more than 12 inadvertently in an earlier routine,
thereby forcing CDate to treat it as the day value. If your real day value is 12
or less, no error is generated, and a valid, albeit incorrect, date is returned.

• If you pass a two-digit year into CDate, how does it know which century you
are referring to? Is “10/20/97” 20 October 1997 or 20 October 2097? The
answer is that two-year digits less than 30 are treated as being in the 21st Cen-
tury (i.e., 29 = 2029), and two-year digits of 30 and over are treated as being
in the 20th Century (i.e., 30 = 1930).

• Don’t follow a day number with “st”, “nd”, “rd”, or “th”, since this generates a
type mismatch error.

• If you don’t specify a year, the CDate function uses the year from the current
date on your computer.
150 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
CDbl Function
• A CVDate function is also provided for compatibility with earlier versions of
Visual Basic. The syntax of the CVDate function is identical to the CDate func-
tion. However, CVDate returns a Variant whose subtype is Date instead of an
actual Date type. Since there is now an intrinsic Date type, there is no further
need for CVDate.

• The Date data type is basically a Double data type. You can therefore return
the underlying date number (i.e., the number of days after or before 31
December 1899) by converting the date variable to a double. For example:

Dim dtDate as Date
Dim dblDate as Double
Dim sDate as string
SDate = "31/12/97"
DtDate = Cdate(sDate)
DblDate = CDbl(DtDate) 'returns 35795

This can be useful for converting back and forth between Unix dates, which
have a starting point of 1 January 1970 (VB date number 25569), and are
based as number of seconds, as this snippet demonstrates:

Dim dblDate As Double
Dim dblUnix As Double

dblDate = CDbl(dtDate)
dblUnix = (dblDate - 25569) * 86400

• All date functions, including CDate, are affected by the application’s Calendar
property setting. For example, if the Calendar property has been set to
vbCalHijri, the underlying date number is increased by 206362.

See Also
CVDate Function, Calendar Property, Format Function, FormatDateTime Function

CDbl Function

Named Arguments

No

Syntax
CDbl(expression)
expression

Use: Required

Data Type: Numeric or String

–1.79769313486232E308 to –4.94065645841247E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E308 for positive values.

Return Value

expression cast as a Double data type.
CDbl Function 151

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Description

Converts expression to a Double data type.

Rules at a Glance

• If the value of expression is outside the range of the double data type, an
overflow error is generated.

• Expression must evaluate to a numeric value; otherwise, a type mismatch
error is generated.

Example
Dim dblMyNumber as Double
If IsNumeric(sMyNumber) then
 dblMyNumber = CDbl(sMyNumber)
End If

Programming Tips & Gotchas

• When converting a string representation of a number to a numeric, you
should use the data type conversion functions—such as CDbl—instead of Val,
because the data type conversion functions take account of the system’s
regional settings. While CDbl recognizes and handles the thousands separa-
tor, the Val function can’t. If a user inputs a value of 6,231,532.11, for exam-
ple, CDbl correctly converts it to a double with a value of 6231532.11, while
Val returns a value of 6.

• Use IsNumeric to test whether expression evaluates to a number.

See Also
FormatNumberFunction, IsNumeric Function, Val Function

CDec Function

Named Arguments

No

Syntax
CDec(expression)
expression

Use: Required

Data Type: Numeric or String

The range is +/–79,228,162,514,264,337,593,543,950,335 for numbers with
no decimal places. For numbers with up to 28 decimal places, the range
is +/–7.9228162514264337593543950335. The smallest possible nonzero
number is 0.0000000000000000000000000001.

Return Value

expression cast as a Variant Decimal subtype.
152 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
ChDir Statement
Description

As there is no intrinsic Decimal data type in Visual Basic, CDec actually casts
expression as a variant of subtype Decimal.

Rules at a Glance

• If the value of expression is outside the range of the double data type, an
overflow error is generated.

• Expression must evaluate to a numeric value; otherwise a type-mismatch
error is generated. To prevent this, it can be tested beforehand with the IsNu-
meric function.

Example
Dim decMyNumber
If IsNumeric(sMyNumber) then
 decMyNumber = CDec(sMyNumber)
End If

Programming Tips & Gotchas

• Use the Decimal variant subtype for very large, very small, or very high preci-
sion numbers.

• Use IsNumeric to test whether expression evaluates to a number.

• When converting a string representation of a number to a numeric, you
should use the data type conversion functions—such as CDec—instead of Val,
because the data type conversion function takes account of the system’s
regional settings. In particular, the CDec function recognizes the thousands
separator if it’s encountered in the string representation of a number. For
example, if the user inputs the value 1,827,209.6654, CDec converts it to the
decimal value 1827209.6654, while Val converts it to a double value of 1.

See Also
CVar Function, FormatNumber Function, Val Function

ChDir Statement

Named Arguments

No

Syntax
ChDir path
path

Use: Required

Data Type: String

The path of the directory to set as the new default directory.

Description

Changes the current working (default) directory.
ChDir Statement 153

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Rules at a Glance

• Path can be an absolute or relative reference.

• On Windows systems, changing the default directory doesn’t change the
default drive; it changes only a particular drive’s default directory.

Example
sNewDir = "c:\program files\my folder\"
ChDir sNewDir
...
ChDir ".." 'c:\program files is now the default directory.

Programming Tips & Gotchas

• Remember that on the Apple Power Macintosh, the relative notation “::”
moves to the next higher folder, whereas on Windows 95 and NT, the nota-
tion is “..”.

• On Windows systems, the relative notation “.” represents the current directory.

• On Windows systems, the relative notation “..” represents the parent of the
current directory. If the root directory is the current directory, the statement:

ChDir ".."

doesn’t change the current directory and doesn’t produce a syntax error.

• On the Apple Power Macintosh, ChDir changes both the default directory and
the default drive.

• On Windows systems, the current drive is unaffected by ChDir. For instance,
if the current drive is C:\ and you issue the statement:

ChDir "D:\MyFolder"

the current directory on drive D: is changed to D:\MyFolder, but the current
drive is still C:\.

• If path isn’t found, a trappable error, 76, “Path not found,” is generated.
However, if path refers to another machine on the network, error 75, “Path/
File access error,” is generated.

• Although you can use a network path such as \\NTSERV1\d$\TestDir\ to
change the current directory on the network admin share \\NTSERV1\d$, you
can’t access this drive using ChDrive without having the drive mapped to a
drive letter, which makes using network paths with ChDir a little pointless!

• Use CurDir to determine the current default directory for a particular drive.

• If you are using VB6, you will find that the new File System objects offer
much more flexibility than the intrinsic drive and directory statements.

See Also
ChDrive Statement, CurDir Function, MkDir Statement, Name Statement,
RmDir Statement, File System Objects
154 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
ChDrive Statement
ChDrive Statement

Named Arguments

No

Syntax
ChDrive driveletter
driveletter

Use: Required

Data Type: String

The letter of the drive (A–Z) to set as the new default drive.

Description

Changes the current working (default) disk drive.

Rules at a Glance

• If a zero-length string is supplied, the drive isn’t changed.

• If driveletter consists of more than one character, only the first character
determines the drive.

Example

The following example demonstrates a utility function that uses ChDrive to deter-
mine if a given drive is available. By centralizing the test, the function reduces the
amount of coding required each time you need to use ChDrive:

Private Function IsAvailableDrive(sDrive As String) _
 As Boolean

 'if an error occurs goto to the next line of code
 On Error Resume Next

 Dim sCurDrv As String

 'get the letter of the current drive
 sCurDrv = Left$(CurDir$, 1)
 'attempt to change the drive
 ChDrive sDrive
 'did an error occur?
 If Err.Number = 0 Then
 'no - this drive is OK to use
 IsAvailableDrive = True
 Else
 'yes - don't use this drive
 IsAvailableDrive = False
 End If
 'set the drive back to what it was
 ChDrive sCurDrv

End Function
ChDrive Statement 155

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
The following snippet shows how this function could be implemented within your
application:

If IsAvailableDrive(sDrv) Then
 ChDrive sDrv
Else
 MsgBox "Cannot use Drive " & sDrv & ":\"
End If

Programming Tips & Gotchas

• On the Macintosh, ChDrive changes the current folder to the root folder of
the specified drive. On Windows systems, the default directory is unaffected
by the ChDrive statement.

• As ChDrive processes only the first letter of the driveletter string, it isn’t
possible to supply a piped name network drive name (e.g., //NTServer/);
instead, the machine your program is running on must have a drive letter
mapped to the network resource using Explorer or other network com-
mands. If driveLetter is specified as a UNC path, the function raises error
number 5, “Invalid procedure call or argument.”

• If driveLetter is invalid, the function returns error number 68, “Device
unavailable.”

• If you are using VB6, you will find that the new File System Objects offer
much more flexibility than the intrinsic drive and directory statements, espe-
cially when it comes to dealing with network drives.

See Also
ChDir Statement, File System Objects

Choose Function

Named Arguments

No

Syntax
Choose(index, item1[, item2, ...[,itemn]])
index

Use: Required

Data Type: Single

An expression that evaluates to the number of the item to choose from
the list.

item1 – n
Use: Required

Data Type: Variant

A comma-delimited list of values from which to choose.
156 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Choose Function
Return Value

A variant data type item chosen from the list; the data subtype is that of the
chosen item.

Description

Programmatically selects an item from a predefined list of values (which are
passed as parameters to the function) based on its ordinal position in the list.
Using Choose is a simpler alternative to populating an array with fixed values.

Rules at a Glance

• The list of items is based from 1, rather than the more usual VB default base
of 0.

• Because the list of values is a variant parameter array, you can mix data sub-
types within the list; you aren’t forced to use the same data subtype for each
item in the list. For example, item1 can be a variant string, item2 a long inte-
ger, and item3 a floating point number.

• The list of values can’t be expanded or contracted programmatically, but the
items within the list can be generated dynamically by including the return
value of a function call. For example:

vChosenOption = Choose(iOption, vFunction1(), _
 vFunction2(), vFunction3())

Example

Choose is useful for returning some result based on an option button selection.
This is most straightforward with Visual Basic, which supports control arrays. For
example:

Private Sub Option1_Click(Index As Integer)

Form1.BackColor = Choose(Index + 1, &HFF&, _
 &HFF00&, &HFF0000)

End Sub

Within Office/VBA (which doesn’t support control arrays), using the Choose func-
tion to handle the an option button selection is still useful:

Private Sub SetBackgroundColor(Index As Integer)

 UserForm1.BackColor = Choose(Index, &HFF&, &HFF00&, _
 &HFF0000)

End Sub

Private Sub OptionButton1_Click()
 SetBackgroundColor 1
End Sub

Private Sub OptionButton2_Click()
 SetBackgroundColor 2
End Sub
Choose Function 157

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Private Sub OptionButton3_Click()
 SetBackgroundColor 3
End Sub

Programming Tips & Gotchas

• Passing an index value that is either negative, zero, or greater than the num-
ber of items in the list returns a variant data subtype of Null without generat-
ing an error. Because the return value is a variant, you should check for it by
calling the IsNull function, as shown below; otherwise, you’ll generate an
“Invalid use of Null” error when you try to use the result:

Dim z As Variant
z = Choose(0, "Eany", "Meany", "Miney", "Mo")
If IsNull(z) Then
 MsgBox "bad choice"
Else
 MsgBox z
End If

• Strangely, the data type of index is Single, and not an Integer as you may
have expected (though it’s hard to believe anyone would hand-code a list of
more than 32,767 items to warrant a Long!). Does this mean you can choose
the 1.234th item in the list? No, of course not; the index number is automati-
cally rounded down to a whole number prior to being used to select an item.

• One word of warning when using the return value of functions to populate
the Choose list: All items in the list are evaluated. This means that every call to
the Choose function generates calls to each of the functions listed, which in
turn means that you must be sure that each function has the ability to be suc-
cessfully executed without causing undesirable side effects each time you call
the Choose function.

• You can save memory and create more efficient and self documenting code
by using the Choose function in preference to creating an array and populat-
ing it with fixed values each time the program executes. As the following
example illustrates, you can turn several lines of code into one:

Dim vMyArray(3)
vMyArray(1) = "This"
vMyarray(2) = "That"
vMyArray(3) = "The Other"
...
Sub chooseFromArray(iIndex as Integer)
 vResult = vMyArray(iIndex)
End Sub

Sub chooseFromChoose(sglIndex as Single)
 vResult = Choose(sglIndex, "This", "That", "The Other")
End Sub

See Also
IIf Function, Select Case Statement, Switch Statement
158 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Chr, Chr$, ChrB, ChrB$, ChrW Functions
Chr, Chr$, ChrB, ChrB$, ChrW Functions

Named Arguments

No

Syntax
Chr(charactercode)
Chr$(charactercode)
ChrB(charactercode)
ChrB$(charactercode)
ChrW(charactercode)
charactercode

Use: Required

Data Type: Long

An expression that evaluates to either an ASCII or DBCS character code.

Return Value

Chr, ChrB, and ChrW return a variant of the string subtype that contains the char-
acter represented by charactercode.

Chr$ and ChrB$ return a string containing the character represented by char-
actercode.

Description

Returns the character represented by charactercode.

Rules at a Glance

• Chr and Chr$ return the character associated with an ASCII or ANSI character
code.

• ChrB and ChrB$ return a one-byte string variant or a one-byte string, respec-
tively.

• ChrW returns a Unicode character; however, on systems that don’t support the
Unicode character set, the function behaves identically to the Chr function.

Programming Tips & Gotchas

• Use Chr(34) to embed quotation marks inside a string, as shown in the fol-
lowing example:

sSQL = "SELECT * FROM myTable _
 where myColumn = " & Chr(34) & sValue & Chr(34)

• It’s up to you as the programmer to decide which variation of the function to
use—that is, whether to use the string or variant version of the function. The
String versions, Chr$ and ChrB$ use less memory than their variant counter-
parts; however, you may find the variant versions more flexible, since they
convert data types automatically and handle Null values more cleanly.

• You can use the ChrB function to assign binary values to String variables. Try
this little demonstration of outputting a Unicode character (Unicode charac-
Chr, Chr$, ChrB, ChrB$, ChrW Functions 159

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
ters are two bytes in length; for example, “F” is represented by binary 70 and
binary 0):

Dim sBinVar As String
sBinVar = ChrB(70) & ChrB(0)
Debug.Print sBinVar

• You can use the ChrW function to return Unicode characters, but for the most
part these are difficult to see in VB, as the immediate window, label, and text-
box know how to display only the Unicode equivalent of ANSI characters!
However, try this code to produce a Unicode “G”:

Dim sBinVar As String
sBinVar = ChrW(AscW("G"))
Debug.Print sBinVar

Well, wasn’t that exciting: a “G” was displayed in the immediate window! The
difference is that the character displayed is a Unicode “G”. I wouldn’t, how-
ever, recommend that you try to convert all ANSI characters in this way; it’s
better to use the StrConv function.

• The following table lists some of the more commonly used character codes
that are supplied in the call to the Chr function:

See Also
Asc Function, CStr Function, Str Function

CInt Function

Named Arguments

No

Syntax
CInt(expression)
expression

Use: Required

Data Type: Numeric or String

The range of expression is –32,768 to 32,767; fractions are rounded.

Code Value Description

0 NULL For C/C++ string functions, the null character required to
terminate standard strings; equivalent to the vbNullChar
constant.

8 BS Equivalent to the vbBack constant.

9 TAB Equivalent to the vbTab constant.

10 CR Equivalent to the vbCr and vbCrLf constants.

13 LF Equivalent to the vbLf and vbCrLf constants.

34 " Quotation mark. Useful to embed quotation marks within
a literal string, especially when forming SQL query strings.
160 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
CLng Function
Return Value

expression cast as an Integer.

Description

Converts expression to an integer; any fractional portion of expression is
rounded.

Rules at a Glance

• expression must evaluate to a numeric value; otherwise a type mismatch
error is generated.

• If the value of expression is outside the range of the Integer data type, an
overflow error is generated.

• When the fractional part of expression is exactly 0.5, CInt always rounds it to
the nearest even number. For example, 0.5 rounds to 0, and 1.5 rounds to 2.

Example
Dim iMyNumber as Integer
If IsNumeric(sMyNumber) then
 iMyNumber = CInt(sMyNumber)
End If

Programming Tips & Gotchas

• When converting a string representation of a number to a numeric, you
should use the data type conversion functions—such as CInt—instead of Val,
because the data type conversion functions take account of the system’s
regional settings. In particular, CInt recognizes the thousands separator if it’s
present in expression, whereas Val doesn’t. For example, if expression is
1,234, CInt successfully converts it to the integer value 1234, while Val con-
verts it to 1.

• Use IsNumeric to test whether expression evaluates to a number before per-
forming the conversion.

• CInt differs from the Fix and Int functions, which truncate, rather than round,
the fractional part of a number. Also, Fix and Int always return a value of the
same type as was passed in.

See Also
Fix Function, FormatNumber Function, Int Function, IsNumeric Function

CLng Function

Named Arguments

No

Syntax
CLng(expression)
expression

Use: Required
CLng Function 161

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Data Type: Numeric or String

The range of expression is –2,147,483,648 to 2,147,483,647; fractions
are rounded.

Return Value

expression cast as a Long data type.

Description

Converts expression to an long integer; any fractional element of expression is
rounded.

Rules at a Glance

• expression must evaluate to a numeric value; otherwise, a type mismatch
error is generated.

• If the value of expression is outside the range of the long data type, an
overflow error is generated.

• When the fractional part is exactly 0.5, CLng always rounds it to the nearest
even number. For example, 0.5 rounds to 0, and 1.5 rounds to 2.

Example
Dim lngMyNumber as Long
If IsNumeric(sMyNumber) then
 lngMyNumber = CLng(sMyNumber)
End If

Programming Tips & Gotchas

• When converting a string representation of a number to a numeric, you
should use the data type conversion functions—such as CLng—instead of Val,
because the data type conversion function takes account of the system’s
regional settings. In particular, CLng recognizes the thousands separator if it’s
included in expression, while Val can’t. For example, if a user enters a
value of 1,098,234 into a text box, CLng converts it to the long integer
1098234, but Val converts it to a value of 1.

• Use IsNumeric to test whether expression evaluates to a number.

• CLng differs from the Fix and Int functions, which truncate, rather than round,
the fractional part of a number. Also, Fix and Int always return a value of the
same type as was passed in.

See Also
Fix Function, FormatNumber Function, Int Function, IsNumeric Function, Val
Function

Close Statement

Named Arguments

No
162 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Close Statement
Syntax
Close [filenumber]
filenumber

Use: Optional

Data Type: Integer

The file number used when opening the file in the Open statement.

Description

Closes a file opened with the Open statement.

Rules at a Glance

• If filenumber is omitted, all open files are closed.

• If the file you are closing was opened for output or append, the remaining
data in the I/O buffer is written to the file. The memory buffer is then
reclaimed.

• When the Close statement is executed, the file number used is freed for fur-
ther use.

• The hash (#) sign in front of the file number is optional.

• filenumber can either be a numeric constant (e.g., #1) or a numeric variable.

Example
Dim intFileNo as Integer
intFileNo = FreeFile()
Open sFileNameString For Output As #intFileNo
Write #intFileNo, sOutputString
Close #intFileNo

Programming Tips & Gotchas

• You can close more than one file at once with the Close method, by specify-
ing the file numbers as a comma-delimited list, as shown below:

Close #1, #3, #4

• The Close statement doesn’t check first to see if there is a file associated with
the given file number. Therefore, no error occurs if you use the Close state-
ment with a nonexistent file number. The drawback to this is that you may
think you have closed a file inadvertently when in fact you haven’t, thereby
leaving the file open, as this snippet demonstrates:

Dim sFilename As String
sFilename = "testtext.txt"

Open sFilename For Output As #1
Write #1, sFilename
Close #2
'just to prove the file is still open
Write #1, sFilename

See Also
Open Statement, File System Objects
Close Statement 163

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Collection Object

Syntax
Dim objectvariable As [New] Collection
Set objectvariable = [New] Collection
objectvariable

Use: Required

Data Type: Collection

The name of the Collection object.

Description

A Collection object allows you to store members of any data type, object, control,
class, or another collection, and to retrieve them using a unique key. You can
therefore create a structured collection object containing referential data. The real
power of a collection comes by using collections with user-defined classes. (You
can find details of creating and using class modules in Chapter 4, Class Modules.)

The collection is an intrinsic VBA object. VBA offers two method of creating a
collection. The first uses the New keyword in the collection declaration; for
example:

Dim obj As New Collection
Obj.Add Item:="Hello" Key:="Greeting"

Using the New keyword within the Dim statement forces an implied Set state-
ment, which causes the Collection object to be instantiated at that point. The
second syntax is:

Dim obj As Collection
Set obj = New Collection
Obj.Add Item:="Hello" Key:="Greeting"

In this second method, a Set statement is required to instantiate the collection,
and is preferable in situations where the creation of the object is the result of a
conditional statement, because if the condition fails, the collection isn’t instanti-
ated, and memory is saved. (Memory is still reserved for the collection, but there
isn’t the overhead involved in creating the collection.) In contrast, using the first
syntax, the collection resides in memory, perhaps needlessly, regardless of the
result of the conditional statement. The following code fragment, for instance,
illustrates the use of the Dim and Set statements to conditionally create a Collec-
tion object:

Dim obj As Collection

If x = 10 then
 Set obj = New Collection
 Obj.Add Item:="Hello", Key:="Greeting"
Else
 Exit Sub
End If
164 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Collection Object
The New keyword is required to create an instance of a collection that has not
been instantiated.

You can add only one piece of data, object, or another collection to a particular
“position” within a collection. This may at first glance seem somewhat limited.
However, the important point to note is that you can add a collection to a collec-
tion; in fact, there is no limit to nesting collections within collections.

Rules at a Glance

• You can use a Collection object to store any data type, control, object, or
another collection.

• Only one piece of data, etc. (known as a member) can be stored in each col-
lection location (see the Collection.Add method).

• Members of a collection can be accessed either by using their ordinal number
or by referring to the member’s Key, assuming that one was assigned at the
time that the member was added to the collection (see the Collection.Item
method).

• Use the Count method to return the number of members in the collection.

• The first member in a collection is stored at ordinal position 1 (not at 0, as is
the default for an array).

Example

This example shows how you can nest one collection within another. Basically, 10
instances of colSubCollection are created, each containing two integer values.
These 10 colSubCollection objects are stored within colMainCollection. The
code also shows how to read back the values of colMainCollection and
colSubCollection:

Sub testCollection()
 'declare objects for the main and sub collections
 'creating a new instance of the main collection
 'in the process
 Dim colMainCollection As New Collection
 Dim colSubCollection As Collection

 For i = 1 To 10
 'create a new instance of the sub collection object
 Set colSubCollection = New Collection
 'populate the sub collection with two integer values
 colSubCollection.Add Item:=i + 6, _
 Key:="MySixPlusVal"
 colSubCollection.Add Item:=i + 3, _
 Key:="MyThreePlusVal"
 'now add the sub collection to the main collection
 'using the count converted to a string as the key
 colMainCollection.Add Item:=colSubCollection, _
 Key:=CStr(i)
 'destroy the reference the sub collection
 Set colSubCollection = Nothing
 Next i
Collection Object 165

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 MsgBox colMainCollection.Count

 For i = 1 To colMainCollection.Count
 'use the Item method to obtain a reference to the
 'subcollection
 Set colSubCollection = _
 colMainCollection.Item(CStr(i))
 'display the values held in the sub collection.
 Debug.Print "6 + " & i & " = " & _
 colSubCollection.Item("MySixPlusVal")
 Debug.Print "3 + " & i & " = " & _
 colSubCollection.Item("MyThreePlusVal")
 'destroy the reference to the sub collection
 Set colSubCollection = Nothing
 Next i

End Sub

Programming Tips & Gotchas

• A highly efficient method of enumerating the members of a collection uses
the For Each...Next loop, as the following example shows:

Dim colMyCollection As New Collection
Dim colSubCollection As Collection

For i = 1 To 10
 Set colSubCollection = New Collection
 colSubCollection.Add Item:=i + 6, _
 Key:="MySixPlusVal"
 colSubCollection.Add Item:=i + 3, _
 Key:="MyThreePlusVal"
 colMyCollection.Add Item:=colSubCollection, _
 Key:=CStr(i)
 Set colSubCollection = Nothing
Next i

For Each colSubCollection In colMyCollection
 MsgBox colSubCollection.Item("MySixPlusVal")
Next

• The recommended three-character code convention for the collection object is
“col”.

• If you are using VB6, you should also take a look at the Dictionary object,
which is similar to the Collection object but operates faster and provides more
built-in functionality.

See Also
Collection.Add Method, Collection.Count Property, Collection.Item Method,
Collection.Remove Method, Dictionary Object, Dim Statement, For Each...Next
Statement, Set Statement
166 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Collection.Add Method
Collection.Add Method

Named Arguments

Yes

Syntax
objectvariable.Add item [, key, before, after]
objectvariable

Use: Required

Data Type: Collection object

 The name of the Collection object to which an item is to be added.

item
Use: Required

Data Type: Any

An expression of any type that specifies the member to add to the
collection.

key
Use: Optional

Data Type: String

A unique string expression that specifies a key string that can be used
instead of a positional index to access a member of the collection.

before
Use: Optional

Data Type: String or Numeric

An expression that specifies a relative position in the collection. The
member to be added is placed in the collection before the member iden-
tified by the before argument.

after
Key: Optional

Data Type: String or Numeric

An expression that specifies a relative position in the collection. The
member to be added is placed in the collection after the member identi-
fied by the after argument.

Description

Adds a data item to a collection.

Rules at a Glance

• If you don’t specify a before or after value, the member is appended to the
end of the collection.

• If you don’t specify a key value, you can’t then access this member using a
key, but instead must access it either by using its ordinal number or by enu-
Collection.Add Method 167

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
merating all the members of the collection with the For Each...Next con-
struct.

• Whether the before or after argument is a string expression or a numeric
expression, it must refer to an existing member of the collection, or an error
(runtime error 5, “Invalid procedure call or argument”) occurs. If it’s a string
value, the key must exist; if numeric it must be between 1 and the maximum
number of items.

• Key values must be unique or an error (runtime error 457, “This key is already
associated with an element of this collection”) is generated.

• You can specify a before or an after position, but not both.

Example
colMyCollection.Add Item:="Paul Lomax" Key:="Name"

Programming Tips & Gotchas

• Using named parameters helps to self-document your code:

colMyCollection.Add Item:="VB and VBA in a Nutshell"_
 Key:="Title"

• If your key parameter is a value being brought in from outside your program,
you must ensure that each value is always unique. One method for doing this
is illustrated in the entry for the Collection.Item method.

See Also
Collection Object, Collection.Count Property, Collection.Item Method,
Collection.Remove Method

Collection.Count Property

Syntax
objectvariable.Count
objectvariable

Use: Required

Data Type: Collection object

Object variable referring to a Collection object.

Description

Returns the number of members in the collection.

Rules at a Glance

Collections are 1-based; that is, the index of the first element of a collection is 1. In
contrast, arrays are 0-based; by default, the index of the first element of an array is 0.

Example
For i = 1 To colMyCollection.Count
 Set colSubCollection = colMyCollection.Item(CStr(i))
 MsgBox colSubCollection.Item("Name")
168 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Collection.Item Method
 Set colSubCollection = Nothing
Next i

Programming Tips & Gotchas

Because collections are 1-based, you can iterate the members of a collection by
using index values ranging from 1 to the value of objectvariable.Count.

See Also
Collection Object, Collection.Add Method, Collection.Count Property,
Collection.Item Method

Collection.Item Method

Named Arguments

Yes

Syntax
objectvariable.Item(index)
objectvariable

Use: Required

Data Type: Collection object

An object variable of type Collection.

index
Use: Required

Data Type: Numeric or String

If a string, index is the key; if numeric, index is the ordinal position.

Description

Returns the member of the collection whose key or ordinal position corresponds
to index.

Rules at a Glance

• If index is a string, it’s taken to be the key, and the member of the collection
with the key of index is returned.

• If index is a number, it’s taken to be the index number and the member in
the ordinal position index is returned.

• If index is a string and the key doesn’t exist in the collection, an error (run-
time error 5, “Invalid procedure call or argument”) is generated.

• If index is numeric, it must be between 1 and the maximum number of items
in the collection, or an error (runtime error 9, “Subscript out of range”) is gen-
erated.

Programming Tips & Gotchas

• When writing wrapper classes for collections, you can make your object
model more readable by making the name of the property that wraps the
Collection.Item Method 169

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Item method the same as the name of the object being obtained from the col-
lection. For example, if your collection class is called Employees and is a col-
lection of Employee records, your object model reads much better with an
Employee Property Get procedure, as follows:

Public Property Get Employee(vEmpCode as Variant) _
 As Boolean
 Employee = mcolEmployees.Item(vEmpCode)
End Property

• Note that in the above Property Get procedure, the parameter is passed as a
variant. This is because a Collection item can be extracted by its key (a string)
or by its ordinal number (integer or long). Therefore, by passing a variant,
your Property Get procedure can accept a number or a string, and the Item
method determines whether to access the collection by its key or its ordinal
number. There is, however, one little glitch here: what happens if you have
used the string representation of a number for the key? For example:

iKey = 10
mcol.Add Item:="Somestuff" Key:=CStr(iKey)

In this case, passing a string representation of the number as a variant doesn’t
work; the Item method is passed a number and assumes you want the item at
that ordinal position.

• Unlike the Dictionary object in VB6, there is no Exists method in the Collec-
tion object, so you can’t find out in advance if a particular key exists within
the Collection. However, you can create an “Exists” function by calling the
Item method with a given key and returning True if an item is returned or
False if an error is generated, as the following code shows:

Public Function Exists(vKey As Variant) As Boolean

 On Error Resume Next

 msValue = mcolMyCollection.Item(vKey)

 If Err.Number = 0 Then
 Exists = True
 Else
 Exists = False
 End If

End Function

• When I create wrapper classes for collections, I always include an Exists func-
tion like the one shown above, but with a little extra—if the Item requested
by the client doesn’t exist, I attempt to load it into the collection, as this code
demonstrates:

Public Function Exists(sEmpCode As String) As Boolean

On Error Goto Exists_Err
 'declare an object variable to hold the test object
 Dim oTest as Employee
 'attempt to get the Employee object from
170 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Collection.Item Method
 'the Employees collection
 oTest = mcolEmpoyees.Item(sEmpCode)
 'if the code gets here then we know all is well
 'clean up and leave
 Set oTest = Nothing
 Exists = True
 Exit Function
Exists_Err:
 'was the error because the Employee object did not
 'exist in the collection?
 If Err.Number = 5 Then
 'attempt to get the Employee object
 If GetEmployee(sEmpCode) then
 'we got the employee record and added it to
 'the collection
 Exists = True
 Else
 'the employee code does not exist so we
 'couldn't get the record
 Exists = False
 End If
 Else
 Exists = False
 End If

End Function

With this function in place, I can always ensure that the client-side code oper-
ates smoothly:

Dim oEmployees As New Employees
Dim oEmployees As Employee

If oEmployees.Exists(sEmpCode) Then
 Set oEmployee = oEmployees.Employee(sEmpCode)
Else
 MsgBox "This Employee Code could not be found"
End if

• The Item method is the default member of the Collection object. This means
that, when retrieving a member of a collection, you don’t have to actually
include an explicit call to the Item method. The following two statements, for
example, are identical to one another:

set objMember = objCollection.Item(6)
set objMember = objCollection(6)

See Also
Collection Object, Collection.Add Method, Collection.Count Property,
Collection.Remove Method
Collection.Item Method 171

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Collection.Remove Method

Named Arguments

Yes

Syntax
objectvariable.Remove index
objectvariable

Use: Required

Data Type: Collection object

An object variable of the Collection type.

index
Use: Required

Data Type: Numeric or String

If a string, index is interpreted as the key; if numeric, index is treated as
the ordinal position.

Description

Removes a member from a collection.

Rules at a Glance

• If index is a string data type or a variant of the string data subtype, index is
taken to be the key, and the member whose key corresponds to index is
removed.

• If index is a numerical data type or a variant of a numeric data subtype,
index is taken to be the index number, and the member in the index ordi-
nal position is removed.

• If index is a string and the key doesn’t exist in the collection, an error (run-
time error 5, “Invalid procedure call or argument”) is generated.

• If index is numeric and at least one member has been added to the collec-
tion, its value must be between 1 and the maximum number of items in the
collection or an error (runtime error 9, “Subscript out of range”) is generated.

Example
colMyCollection.Remove "Name"

Programming Tips & Gotchas

• Members of the collection that follow the removed member are automatically
moved downward by one position; therefore, no gaps are left in the collec-
tion.

• Because the collection is reindexed after each deletion, you should be sure
not to delete a member of the collection based on a stored numeric value of
index, since this value is capable of changing. Instead, you should either
delete the member by key or retrieve the index value immediately before call-
ing the Remove method.
172 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Command Function
• If you are deleting multiple members of a collection by numeric index value,
you should delete them backwards, from highest index value to lowest,
because the collection is reindexed after each deletion.

• If you are using a collection as the basis for a class module, or if you are
using functions in your application to wrap and enhance the limited function-
ality of a collection, you can include a Clear method to remove all the mem-
bers in your collection. The method should be written to remove the member
in position 1 until no members are left, as the following code demonstrates:

Public Sub Clear()

 Dim i As Integer

 For i = 1 To mcolMyCollection.Count
 mcolMyCollection.Remove 1
 Next i

End Sub

• Alternately, you could do the same thing by working from the end of the col-
lection forward, as the following code illustrates:

Dim intCtr As Integer

For intCtr = objCollec.Count To 1 Step -1
 objCollec.Remove intCtr
Next

See Also
Collection Object, Collection.Add Method, Collection.Count Property,
Collection.Item Method

Command Function

Named Arguments

No

Syntax
Command

Description

Returns the arguments used when launching VB or an application created with
VB.

Rules at a Glance

• For applications created with VB and compiled into an EXE, Command
returns a string containing everything entered after the name of the execut-
able file.
Command Function 173

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• This function isn’t implemented in hosted versions of VBA. Regardless of any
command line that may be passed to the host application, Command returns
a null string.

Example

The following example demonstrates how to parse command-line arguments to set
up a series of options in your executable. This example (which is bereft of all
error handling) looks for a hyphen or a forward slash in the command line argu-
ments and assumes that the following character is a command line switch. Given
the command-line arguments:

-d:50 -f -g –k

the program displays the following in the Immediate window:

Got option d
Option d Parameter = 50
Got option f
Got option g
Got option k

The source code is as follows:

Private Sub ParseCommandLine()

Dim i As Integer
Dim s As String
Dim iParam As Integer

For i = 1 To Len(Command)
 If Mid$(Command, i, 1) Like "[-/]" Then
 s = Mid$(Command, i + 1, 1)
 Select Case s
 Case Is = "d"
 Debug.Print "Got option d"
 iParam = Int(Mid$(Command, i + 3, 2))
 Debug.Print "Option d Parameter = " & _
 CStr(iParam)
 Case Is = "f"
 Debug.Print "Got option f"
 Case Is = "g"
 Debug.Print "Got option g"
 Case Is = "k"
 Debug.Print "Got option k"
 Case Is = "l"
 Debug.Print "Got option l"
 End Select
 End If
Next i

End Sub

Programming Tips & Gotchas

• During the development phase, you can pass arguments to your program
using the Command Line Arguments text box, which can be found by select-
174 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Const Statement
ing Properties from the Project menu and clicking the Make tab of the Project
Properties dialog.

• To handle command-line arguments, you have to write a routine similar to that
shown above to parse the string returned by Command, since the function
returns only a single string containing all input after the name of the execut-
able file.

• Command-line arguments are ideal for specifying various options on unat-
tended applications.

Const Statement

Named Arguments

No

Syntax
[Public|Private] Const constantname = constantvalue
constantname

Use: Required

The name of the constant.

constantvalue
Use: Required

Data Type: Numeric or String

A constant value, and optionally, arithmetic operators. Unlike variables,
constants must be initialized.

Description

Declares a constant value: i.e., its value can’t be changed throughout the life of the
program or routine. One of the ideas of declaring constants is to make code easier
to both write and read; it allows you to simply replace a value with a recogniz-
able word.

Rules at a Glance

• The rules for constantname are the same as those of any variable: the name
can be up to 255 characters in length and can contain any alphanumeric char-
acter, although it must start with an alphabetic character. In addition, the
name can include almost any other character except a period or any of the
data type definition characters $, &, %, !.

• The constantvalue expression can’t include any of the built-in functions or
objects, although it can be a combination of absolute values and operators.
The expression can also include previously defined constants. For example:

Private Const CONST_ONE = 1
Private Const CONST_TWO = 2
Private Const CONST_THREE = CONST_ONE + CONST_TWO

• The Private keyword restricts the use of the constant to the module in
which it’s defined, whereas the Public keyword allows the constant to be
Const Statement 175

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
used in all modules within the project. If neither Public nor Private is
declared, the constant has private scope by default. The Public keyword can
be used only with a Const in the declarations section of a code module.

Example
Private Const MY_CONSTANT = 3.1417

Programming Tips & Gotchas

• You can’t declare a Public Const in a class module. For ways in which you
can work around this limitation, see Chapter 4.

• Although the new Enum (Enumerated Constants) keyword, which was intro-
duced as part of Visual Basic Version 5, appears in the Microsoft documenta-
tion for VBA, the statement causes a compile-time error and isn’t part of VBA.
Enum, however, does work as documented with Visual Basic 5.0 and up.

• The recognized coding convention for constants is that the name is in uppercase
letters, and multiple-word names are separated with underscores. For example,
MY_CONSTANT is a constant name that adheres to this coding convention.

• One of the benefits of long variable and constant names (of up to 255 charac-
ters) in VBA is that you can make your constant names as meaningful as pos-
sible while using abbreviations sparingly. After all, you may know what
abbreviations mean, but will others?

• The older scope syntax of Global is still legal, although the more meaningful
Public declaration statement has superseded it.

• If you are building a large application with many different modules, you will
find your code easier to maintain if you create a single separate code module
to hold your Public constants.

See Also
#Const Directive, Private Statement, Public Statement

Cos Function

Named Arguments

No

Syntax
Cos(number)
number

Use: Required

Data Type: Double or numeric expression

An angle in radians.

Return Value

A Double data type denoting the cosine of an angle.
176 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
CreateObject Function
Description

Takes an angle specified in radians and returns a ratio representing the length of
the side adjacent to the angle divided by the length of the hypotenuse.

Rules at a Glance

The cosine returned by the function is between –1 and 1.

Example
Dim dblCosine as Double
dblCosine = Cos(dblRadians)

Programming Tips & Gotchas

• To convert degrees to radians, multiply degrees by pi/180.

• To convert radians to degrees, multiply radians by 180/pi.

See Also
Atn Function, Sin Function, Tan Function

CreateObject Function

Named Arguments

No

Syntax
Set objectvariable = CreateObject("library.object"[, servername])
objectvariable

Use: Required

Data Type: Object

A variable to hold the reference to the instantiated object.

library
Use: Required

Data Type: String

The name of the application or library containing the object.

object
Use: Required

Data Type: String

The type or class of object to create.

servername
Use: Optional (Available in VB6 only)

Data Type: String

The name of the server on which the object resides.
CreateObject Function 177

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Return Value

A reference to an ActiveX object.

Description

Creates an instance of an OLE Automation (ActiveX) object. Prior to calling the
methods, functions, or properties of an object, you are required to create an
instance of that object. Once an object is created, you reference it in code using
the object variable you defined.

Rules at a Glance

• If your project doesn’t include a reference to the object, you must declare the
object variable type as Object; this allows the variable to reference any type of
object.

• If an instance of the ActiveX object is already running, CreateObject may start
a new instance when it creates an object of the required type.

Example

The following routine defines a generic Object variable, as well as an Excel appli-
cation object. It then uses the Timer function to compare the performance of the
code fragment that uses late binding to instantiate the Excel application object
with the one that uses early binding. (For a discussion of late and early binding,
see the first item in the “Programming Tips & Gotchas” section.)

Private Sub TestBinding()

Dim dblTime As Double
Dim strMsg As String

' Calculate time for late binding
dblTime = Timer()
Dim objExcelLate As Object
Set objExcelLate = CreateObject("excel.application")
Set objExcelLate = Nothing
strMsg = strMsg & "Late Bound: " & Timer() - dblTime
strMsg = strMsg & vbCrLf

' Calculate time for early binding
dblTime = Timer()
Dim objExcelEarly As Excel.Application
Set objExcelEarly = Excel.Application
Set objExcelEarly = Nothing
strMsg = strMsg & "Early Bound: " & Timer() - dblTime

MsgBox strMsg, vbOKOnly, "Late and Early Binding"

End Sub

Programming Tips & Gotchas

• The Object data type is the most generic of Visual Basic objects. When an
object variable has been defined as type Object, CreateObject performs what
178 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
CreateObject Function
is termed late binding. This means that because the precise object type is
unknown at design time the object can’t be bound into your program when
it’s compiled. Instead, this binding occurs only at runtime, when the program
is run on the target system and the CreateObject function is executed. This
need to determine the precise object type by referencing the relevant inter-
faces at runtime is necessarily time-consuming, and therefore results in poor
performance. You can vastly improve performance by using early binding.
Early binding necessitates your adding a reference to the required object to
your project. You do this in VB by selecting the References option from the
Project menu and then selecting the required object from the References dia-
log. For example, to use the Microsoft Remote Data Objects (RDO) 2.0 library
in your project, simply open the References dialog and check the Microsoft
Remote Data Object 2.0 option. Then you can create explicit object variables
directly, as the following snippet shows:

Dim rcMyConnection As rdoConnection
Dim rsMyResults As rdoResultset
Dim sSQL As String

sSQL = "SELECT * FROM testtable"

Set rcMyConnection = _
 rdoEnvironments(0).OpenConnection("TestServ")
Set rsMyResults = rcMyConnection.OpenResultset(sSQL)

Because your project has a direct reference to the object, it can create the
object at the compilation stage. Your program is therefore able to bind refer-
ences to the object and its OLE interfaces before the object is needed (hence
the term early binding), thus improving the performance of the application. If
you are unsure of the available objects, methods, events, and properties, you
can get complete information from the Object Browser.

• With the advent of DCOM, the ActiveX object doesn’t need to necessarily
reside on the computer on which your program is running, although it must
always be registered on the computer on which your program is running.

• VB6 takes the CreateObject function one step further by adding a new param-
eter, servername. You can now specify the name of the server on which the
ActiveX object is registered. This means that you could even specify different
servers depending upon prevailing circumstances, as this short example dem-
onstrates:

Dim sMainServer As String
Dim sBackUpServer As String

sMainServer = "NTPROD1"
sBackUpServer = "NTPROD2"

If IsOnline(sMainServer) Then
 CreateObject("Sales.Customer",sMainServer)
Else
 CreateObject("Sales.Customer",sBackUpServer)
End If
CreateObject Function 179

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• To use a current instance of an already running ActiveX object, use the Get-
Object function.

• If an object is registered as a single-instance object (i.e., an out-of-process
ActiveX EXE), only one instance of the object can be created; regardless of
the number of times CreateObject is executed, you will obtain a reference to
the same instance of the object.

• It’s considered good programming practice (and often a necessity) to tidy up
after you have finished using an object by setting objectvariable to Noth-
ing. This has the effect of freeing the memory taken up by the instance of the
object, and, if there are no other “live” references to the object, shutting it
down. For example:

Set objectvariable = Nothing

• For a more in-depth look at creating objects and using them within your
application, see Chapter 4.

See Also
GetObject Function, Set Statement, Chapter 4

CSng Function

Named Arguments

No

Syntax
CSng(expression)
expression

Use: Required

Data Type: Numeric or String

The range of expression is –3.402823E38 to –1.401298E-45 for negative
values, 1.401298E-45 to 3.402823E38 for positive values.

Return Value

expression cast as a Single data type.

Description

Returns a single-precision number.

Rules at a Glance

• expression must evaluate to a numeric value; otherwise, a type mismatch
error is generated.

• If the value of expression is outside the range of the double data type, an
overflow error is generated.

Example
Dim sngMyNumber as Single
If IsNumeric(sMyNumber) then
180 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
CStr Function
 sngMyNumber = CSng(sMyNumber)
End If

Programming Tips & Gotchas

• Test that expression evaluates to a number by using the IsNumeric function.

• When converting a string representation of a number to a numeric, you
should use the data-type conversion functions—such as CSngl—instead of
Val, because the data type conversion functions take account of the com-
puter’s regional settings. The thousands separator is the most important of
these regional settings. For example, if the value of expression is the string
1,234.987, CSng converts it to 1234.987, while Val incorrectly converts it to 1.

See Also
FormatNumber Function, IsNumeric Function, Val Function

CStr Function

Named Arguments

No

Syntax
CStr(expression)
expression

Use: Required

Data Type: Any

Any expression that evaluates to a string.

Return Value

expression converted to a string.

Description

Returns a string representation of expression.

Rules at a Glance

• Almost any data can be passed to CStr to be converted to a string.

• CStr is equivalent to the older Str function.

Example
Dim sMyString as String
SMyString = CStr(100)

Programming Tips & Gotchas

• The string representation of Boolean values is either True or False, as
opposed to their underlying values of 0 and –1.

• Uninitialized numeric data types passed to CStr return “0”.

• An uninitialized date variable passed to CStr returns “12:00:00AM.”
CStr Function 181

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
See Also
Format Function, Str Function, Chapter 3

CurDir, CurDir$ Functions

Named Arguments

No

Syntax
CurDir[(drive)]
drive

Use: Optional

Data Type: String

The name of the drive.

Return Value

The current path.

Description

Returns a Variant of subtype String representing the current path.

Rules at a Glance

• If no drive is specified or if drive is a zero-length string (""), CurDir returns
the path for the current drive.

• drive can be the single-letter drive name with or without a colon (i.e., both
“C” and “C:” are valid values for drive).

• If drive is invalid, the function generates runtime error 68, “Device unavail-
able.”

• Because CurDir can accept only a single character string, you can’t use net-
work drive names, share names, or UNC drive names.

See Also
ChDir Statement, ChDrive Statement, MkDir Statement, Name Statement,
RmDir Statement

CVar Function

Named Arguments

No

Syntax
CVar(expression)
expression

Use: Required
182 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
CVErr Function
Data Type: Numeric or String

Same range as Double for numerics. Same range as String for non-
numerics.

Return Value

expression cast as a Variant.

Description

Returns expression as a Variant data type; the data subtype is automatically
selected by the CVar routine.

Rules at a Glance

There really aren’t any rules: you can literally throw anything at CVar, and a
variant of the appropriate data subtype is returned.

Programming Tips & Gotchas

Use CVar only in situations where you are confident that the data type you pass
into the function isn’t ambiguous; in other words, where you can be sure of the
data subtype that CVar selects. If you need data of a particular data type, use the
appropriate conversion function.

CVDate Function

The CVDate function is provided only for compatibility with previous versions of
VBA. CVDate returns a variant of subtype Date. However, because there is now an
intrinsic data type of Date as of VB 5.0, you should use the CDate function, which
returns a Date data type and whose syntax is identical to CVDate.

See Also
CDate Function

CVErr Function

Named Arguments

No

Syntax
CVErr(errornumber)
errornumber

Use: Required

Data Type: Long

Any valid number.

Return Value

A Variant of subtype Error containing an application-defined error number.
CVErr Function 183

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Description

Creates user-defined errors in user-created procedures. For example, you can use
CVErr to pass back error codes from a function, which allows you to handle
exceptions in the data rather than going to the full extent of raising an error and
invoking full error-handling routines. While the difference may appear subtle, in
practice the CVErr function offers a much more gentle approach to handling
exceptions that aren’t threatening to the stability of the application.

Rules at a Glance

The code CVErr(8001) returns “Error 8001.”

Example
Public Function GetValue(strText As String) As Variant

If IsNumeric(strText) Then
 GetValue = strText
 If GetValue <= 0 Then
 GetValue = CVErr(10001)
 End If
Else
 GetValue = CVErr(10001)
End If

End Function

Private Sub Command1_Click()

Dim varNumber As Variant
Dim lngNumber As Long

varNumber = GetValue(Text1.Text)
If TypeName(varNumber) = "Error" Then
 lngNumber = 0
 MsgBox "Please enter a positive integer in the text box."
Else
 lngNumber = varNumber
End If

End Sub

Programming Tips & Gotchas

• Although the return value from CVErr may appear to be a string, it is in fact a
Variant of subtype Error. Take care, therefore, not to directly assign the return
value of CVErr to a string variable, or to any other strongly typed variable. For
example, the following seemingly straightforward code generates a runtime
“Type Mismatch” error:

Function MyFunc(iValue as Integer) As String
 If iValue > 0 Then
 MyFunc = "Correct"
 Else
184 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Data Binding Objects (VB6)
 MyFunc = CVErr(80001)
 End If
End Function

The way you should handle this is to explicitly convert the return value to a
string data type using the CStr function. Alternately, you can assign the return
value to a variant and determine whether its data subtype is Error when the
function returns.

• CVErr isn’t the same as Err.Raise. Err.Raise invokes error handlers and assigns
values to the Err object, whereas CVErr doesn’t.

• Typically, you use inline code to handle an error raised by CVErr.

See Also
CStr Function, Err.Raise Method

Data Binding Objects (VB6)

Library to Reference

Microsoft Data Binding Collection (../SYSTEM32/MSBIND.DLL)

Description

Apparently, when Microsoft was planning the new release of Visual Basic, they
researched how professional developers were using the language. One result
which seems to have taken the VB development team by surprise was that very
few professional developers use the Data control and data bound controls. The
reason for this is quite easy to understand: rightly or wrongly, professional VB
developers see the Data control and data bound controls as inflexible and an
encroachment on their control over the database. Furthermore, as more and more
VB applications follow the n-tier paradigm, in which database access is performed
on a remote server, with only properties passed to (or requested by) the client, the
usefulness of a Data control was diminishing rapidly.

With this in mind, Microsoft introduced a new object model to give developers
control over data mapping without sacrificing the rapid development time offered
by more or less central data binding. The binding objects sit between standard
form controls and your recordset (which can be wrapped within a class in an
ActiveX server), automatically updating the form control as the user navigates
through the recordset. Therefore, any form control can now be bound to a data-
base field.

The Binding object model, which is shown in Figure 7-2, consists of a top-level
collection to which you add Binding objects, these being the physical binding of
data column to form control. The Binding object offers a flexibility that should
satisfy most needs. For example, you can bind data to any property on a control,
and you can specify at what point the data binding should be updated. A major
enhancement over previous data binding technologies is the ability to bind the
controls on a form to a VB class object. This can be achieved in both directions;
that is to say, a VB class module can now be a data source, or it can be a data
consumer.
Data Binding Objects (VB6) 185

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Example

To introduce the objects involved in both data binding and data formatting, this
example demonstrates how the objects can bind data from an ActiveX OLE server
to standard VB form controls without using a Data control. This example uses the
sample SQL Server pubs database, but it can be easily modified to use an Access
database or even the computer’s own file system as a source of data. What’s
important is the relationship between the different objects in the Data Binding and
Data Formatting object model.

In this example, an ActiveX DLL class object performs the database access and
exposes itself as a data source. The form creates a BindingCollection object that
binds various controls on the form to database fields in two different recordsets
held in the class. The example shows how to:

• Expose a VB class as a data source.

• Create a BindingCollection object.

• Specify the VB class as the data source for the BindingCollection object.

• Add individual Binding objects to the collection, thereby binding controls to
database fields held within the data provider class object.

• Create DataFormat objects to perform formatting functions on the incoming
and outgoing data.

• Navigate through the recordset.

• Perform simple validation and confirmation before updating the database.

Data Consumer Form Code

The form includes the following object references, which are selected from the
References dialog:

• Microsoft Data Binding Collection

• Microsoft Data Formatting Object Library

In addition, if the data source class isn’t in the same project as the data consumer
form, a reference to the data source class needs to be added.

Figure 7-2: The Data Binding object model

BindingCollection

Binding

stdDataFormat

stdDataValue
186 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Data Binding Objects (VB6)
The form contains the following controls:

Option Explicit
'declare object variables for the BindingCollection
'objects we'll need and a single Binding object.
Private obcAuthors As BindingCollection
Private obcTitles As BindingCollection
Private oBind As Binding

'declare an object variable referencing our
'BindingSource class
Private oSource As BindingSource

'declare object variables for the DataFormat objects
Private WithEvents fmtF1 As StdDataFormat
Private WithEvents fmtF2 As StdDataFormat
Private WithEvents fmtF3 As StdDataFormat
Private WithEvents fmtF4 As StdDataFormat

Private Sub Form_Load()

 'create new instances of the required objects
 'our source class
 Set oSource = New BindingSource
 'and the two BindingCollections
 Set obcAuthors = New BindingCollection
 Set obcTitles = New BindingCollection

 'Set up the required Format Objects
 'first to show a short message and automatically
 'handle NULL database values
 Set fmtF1 = New StdDataFormat
 fmtF1.Type = fmtCustom
 fmtF1.NullValue = "No Data Found"

 'second to handle 0 and 1 values in the database
 'displaying a string in the text box instead
 Set fmtF2 = New StdDataFormat
 fmtF2.Type = fmtBoolean

Control Name Control Type

chkContract Checkbox

cmdMoveNext Command button

cmdMovePrevious Command button

txtAddress Text box

txtContract Text box

txtFirstName Text box

txtlastName Text box

txtPubDate1 Text box

txtTitle1 Text box
Data Binding Objects (VB6) 187

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 fmtF2.FalseValue = "No Contract"
 fmtF2.TrueValue = "Contract Signed"

 'third to switch a checkbox on or off automatically
 'depending on the database value of 0 or 1
 Set fmtF3 = New StdDataFormat
 fmtF3.Type = fmtCheckbox

 'last one to format a date field
 Set fmtF4 = New StdDataFormat
 fmtF4.Type = fmtGeneral
 fmtF4.Format = "long date"

 'instruct the BindingCollection not to perform
 'an update until the user moves to the next record
 obcAuthors.UpdateMode = vbUpdateWhenRowChanges
 'set the DataMember to the required value - this
 'will be passed to the class to obtain a reference
 'to the correct recordset
 obcAuthors.DataMember = "Authors"

 'now assign our source class as the datasource for
 'the authors bindings collection
 Set obcAuthors.DataSource = oSource
 'use the add method to create the binding between
 'form controls and database fields
 obcAuthors.Add txtFirstName, "Text", "au_fname", _
 fmtF1, "fname"
 obcAuthors.Add txtLastName, "Text", "au_lname", _
 fmtF1, "lname"
 obcAuthors.Add txtContract, "Text", "contract", _
 fmtF2, "contract"
 obcAuthors.Add chkContract, "Value", "contract", _
 fmtF3, "chkCont"
 obcAuthors.Add txtAddress, "Text", "address", _
 fmtF1, "address"

 'now do the same for the Titles recordset
 obcTitles.UpdateMode = vbUpdateWhenRowChanges
 obcTitles.DataMember = "Titles"
 Set obcTitles.DataSource = oSource
 obcTitles.Add txtTitle1, "Text", "title", _
 fmtF1, "title"
 obcTitles.Add txtPubDate1, "Text", "pubdate", _
 fmtF4, "pubdate"

End Sub

Private Sub fmtF1_Format(ByVal DataValue As _
 StdFormat.StdDataValue)

 'the format event is called when a custom type
 'is about to be formatted. Just for fun let's set
 'the firstname field to uppercase and the
188 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Data Binding Objects (VB6)
 'lastname field to lowercase
 If DataValue.TargetObject.Name = "txtFirstName" Then
 fmtF1.Format = ">"
 Else
 fmtF1.Format = "<"
 End If

End Sub

Private Sub fmtF1_UnFormat(ByVal DataValue As _
 StdFormat.StdDataValue)

 'the unformat event is only called for custom type
 'formats that are just about to be written back to
 'the database - so lets convert them back to proper
 'case
 DataValue.Value = StrConv(DataValue.Value, _
 vbProperCase)

End Sub

Private Sub cmdMoveNext_Click()

 'the user has finished with the record and wants
 'the next one.

 'just check this out first..
 Call CheckForUpdate

 'ok now we'll give them the next record by calling
 'the MoveNext method in our source class.
 oSource.MoveNext
 'we need to rebind the titles recordset because
 'it's dynamically built
 Set obcTitles.DataSource = oSource

End Sub

Private Sub cmdMovePrev_Click()

 Call CheckForUpdate
 'call the MoveBack method in our source class
 oSource.MoveBack

End Sub

Private Function CheckForUpdate() As Boolean

 Dim iResponse As Integer

 'before we give them the next record - let's just
 'check whether they made any amendments to the
 'current record.
 'iterate through the Binding objects
Data Binding Objects (VB6) 189

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 For Each oBind In obcAuthors
 'see if any values have been changed by the user
 If oBind.DataChanged Then
 'indeed they did--was it intentional though?
 iResponse = MsgBox("The data has changed" _
 & vbCrLf & _
 "do you wish to update?", _
 vbYesNo + vbQuestion)
 If iResponse = vbNo Then
 'obviously not - so cancel the update from
 ' being written back to the database
 oBind.DataChanged = False
 End If
 'no point in looking any further...
 Exit For
 End If
 Next

End Function

Notes

• This form is set as the project’s startup object.

• In the Form_Load event, a reference to the data source class is assigned to the
BindingCollection.DataSource property, firing the data source class’s GetData-
Member event. The GetDataMember event handler assigns a reference to the
recordset specified in the BindingCollection.DataMember property to the
BindingCollection.

• The Binding object’s DataChanged property gives you control first, to interro-
gate the binding and determine if the value has been changed by the user,
and second, to prevent the update from being written back to the database.

• See the Data Format Objects entry for more information about the stdDataFor-
mat object.

Data Source Class Code

The class references the Microsoft ActiveX Data Objects 2.0 Library, selected from
the References dialog. The class also has its DataSourceBehavior property set to
vbDataSource.

Option Explicit
'declare the ADO objects
Private cn As ADODB.Connection
Private WithEvents rsAuthors As ADODB.Recordset
Private WithEvents rsTitles As ADODB.Recordset

Private Sub Class_GetDataMember(DataMember As String, _
 Data As Object)
 'this event is called as the datasource is assigned
 'to the BindingCollection object.
 If DataMember = "Authors" Then
 'this class provides two data members
 'the first is authors, the other is titles
190 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Data Binding Objects (VB6)
 'assign the required recordset back to the
 'BindingCollection object
 Set Data = rsAuthors
 Else
 Set Data = rsTitles
 End If
End Sub

Private Sub Class_Initialize()
 Dim sSQL

 'create an instance of the ADO Recordset to use
 'for the Titles recordset later
 Set rsTitles = New ADODB.Recordset

 'create the connection object
 Set cn = New ADODB.Connection
 'there is a DNS called Test on this machine
 'pointing to the Pubs database
 cn.ConnectionString = "Test"
 cn.Open

 'peform the query to return the data from Authors
 sSQL = "SELECT * FROM authors"
 Set rsAuthors = New ADODB.Recordset
 rsAuthors.Open sSQL, cn, adOpenKeyset, adLockOptimistic

 'force the Titles recordset to be created
 rsAuthors.MoveFirst

End Sub

Public Sub MoveNext()
 'move to the next record
 rsAuthors.MoveNext
 If rsAuthors.EOF Then
 rsAuthors.MoveFirst
 End If
End Sub

Public Sub MoveBack()
 'move to the previous record
 rsAuthors.MovePrevious
 If rsAuthors.BOF Then
 rsAuthors.MoveLast
 End If
End Sub

Private Sub rsAuthors_MoveComplete(ByVal adReason As _
 ADODB.EventReasonEnum, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)
Data Binding Objects (VB6) 191

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 'Move_Complete is an event from the ADO Recordset
 'This code allows us to keep the two recordsets
 'in synch.
 Dim sSQL As String

 sSQL = "SELECT titles.title, titles.pubdate" & vbCrLf _
 & " FROM titles, titleauthor" & vbCrLf _
 & " WHERE titleauthor.au_id = '" _
 & rsAuthors("au_id") & "'" & vbCrLf _
 & " AND titles.title_id = titleauthor.title_id"

 If rsTitles.State = adStateOpen Then
 rsTitles.Close
 End If

 'you'll need to rebind this recordset - see code in form
 rsTitles.Open sSQL, cn, adOpenKeyset, adLockOptimistic

End Sub

Notes

• The Class_GetDataMember event handler is automatically placed in the class
for you when you set the class’s DataSourceBehavior property to vbData-
Source.

• By declaring the ADO recordset object as WithEvents, you can access all the
events in the recordset object (such as WillChangeField, which allows you to
perform validation and cancellation prior to updating, if you wish).

See Also
BindingCollection Object, Binding Object

Data Format Objects (VB6)

Library to Reference

Microsoft Data Formatting Object Library (../SYSTEM32/MSSTDFMT.DLL)

Description

The Data Format objects can be used only in conjunction with the Data Binding
objects, although their use isn’t mandatory. They allow you to perform complex
formatting operations with a minimum of code. For example, formatting null data
or mapping a data field to a checkbox are common operations you had to code
manually in almost all database applications. Now these operations can be
handled with just a few lines of code.

The object model, which is shown in Figure 7-3, consists of a collection object, a
format object, and a value object. For most applications, you want to create a
formats collection object to hold the various format objects you use in the applica-
tion, but you can also simply create a format object without using the collection.
The value object isn’t createable and is available only when it’s passed to the
format object’s Format or Unformat events.
192 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
DataBindingBehavior Property (VB6 only)
When you bind a data source to a control using the bindings collection, you can
specify a Format object to bind with them. As data is read from the source, it’s
formatted and displayed automatically. When data is read from the control and
written back to the data source, it’s unformatted automatically. For complex
formatting operations, you can use the Format and Unformat events to code the
formatting and unformatting of data.

See Also
stdDataFormat Object, stdDataFormats Object

DataBindingBehavior Property (VB6 only)

Description

This property is one of the new VB6 class properties, and determines the behavior
of the class when it’s bound to an external data source. That is, the class is to act
as a Data Consumer. This property is available only at design time.

Values
vbNone

The class can’t be bound to external data sources.

vbSimpleBound
The class can be bound to a single data field in an external data source.

vbComplexBound
The class can be bound to a row of data in an external data source.

Programming Tips & Gotchas

When the property is set to vbSimpleBound, two procedures—the Property-
Changed event and the CanPropertyChange method—are automatically added to
the class module.

See Also
DataBinding Object, Chapter 4

Figure 7-3: The Data Format object model

stdDataFormats

stdDataFormat

stdDataValue
DataBindingBehavior Property (VB6 only) 193

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
DataSourceBehavior Property (VB6 only)

Description

This property is one of the new VB6 class properties, although it isn’t available
when the class is part of an ActiveX EXE project. It defines the ability of the class
to serve as a data source for other objects. This property is available only at design
time.

Values
vbNone

The class doesn’t expose a bindable data interface and therefore can’t act
as a data source.

vbDataSource
The class can act as a data source for other objects.

vbOLEDBProvider
The class can act as an OLE DB Simple Provider.

Programming Tips & Gotchas

• When the property is set to vbDataSource or vbOLEDBProvider, the Get-
DataMember event procedure is automatically added to the class module.

• The property may be set to vbOLEDBProvider only if the class is public.

• If the property is set to vbOLEDBProvider, the OnDataConnection event pro-
cedure is added automatically to the class module.

See Also
DataBinding Object, Chapter 4

Date, Date$ Functions

Syntax
Date

Return Value

Date returns a Variant of subtype Date; Date$ returns a String data type.

Description

Returns the current system date.

Rules at a Glance

They don’t come any easier than this!

Programming Tips & Gotchas

• Although Date returns a Variant, you can assign the return value of Date to a
variable declared as a Date data type.
194 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Date Statement
• To return both the current date and time in one variable, use the Now func-
tion.

• You can set the system date by using the Date statement.

See Also
Date Statement, IsDate Function, Now Function

Date Statement

Named Arguments

No

Syntax
Date = newdate
newdate

Use: Required

Date Type: String, Date, or Date Variant

Any valid date value.

Description

Sets the current system date.

Rules at a Glance

• If you are setting the system date with numbers, as opposed to spelling the
month, the sequence of Day, Month, and Year must be in the same sequence
as the computer’s regional settings.

• If you are running under Microsoft Windows, the earliest system date you can
set is January 1, 1980; the latest system date you can set is December 31,
2099.

• For Microsoft Windows NT, the earliest and latest system dates are January 1,
1980 and December 31, 2079, respectively.

Example
Date = "31 January 1998"

Programming Tips & Gotchas

• It’s good programming practice to synchronize the dates across the machines
in a multiuser environment, most commonly from the date on a server. This
can be done at the operating-system level within the logon script or at appli-
cation level using the Date and Time statements.

• To bulletproof your application from curious users who want to see what
happens if they change the regional settings to Danish, your application from
being installed on a new system on which the system administrator forgets to
change the regional settings to your locale, and a host of other ways in which
the computer your application is running on has regional settings different
from those you expect, you should never take a date for granted. Wherever
Date Statement 195

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
possible, use the Format function to explicitly set the date format you require
prior to using a date value.

• Modern windows systems are more reliant on the system date than ever
before. A single machine can have literally hundreds of different applications
installed, many of which will use dates in one way or another. You should
respect the machine on which your application is running and only in very
exceptional circumstances should you change the system date programmati-
cally.

See Also
Date Function, IsDate Function

DateAdd Function

Named Arguments

Yes

Syntax
DateAdd(interval, number, date)
interval

Use: Required

Data Type: String

An expression denoting the interval of time you need to add or subtract
(see the table “Interval Settings”).

number
Use: Required

Data Type: Numeric

An expression denoting the number of time intervals you want to add or
subtract.

date
Use: Required

Data Type: Date Variant

A Variant of subtype Date or a literal denoting the date on which to base
the DateAdd calculation.

Interval Settings

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday
196 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
DateAdd Function
Return Value

A Variant of subtype Date.

Description

Returns a variant of subtype Date representing the result of adding or subtracting a
given number of time periods to or from a given date. For instance, you can calcu-
late the date 178 months before today’s date, or the date and time 12,789 minutes
from now.

Rules at a Glance

• Specify the interval value as a string enclosed in quotation marks (i.e., "ww").

• If number is positive, the result is in the future; if number is negative, the
result is in the past. (The meaning of “future” and “past” here is relative to
date.)

• The DateAdd function has a built-in calendar algorithm to prevent it return-
ing an invalid date. For example, you can add 10 minutes to 31 December
1999 23:55, and DateAdd automatically recalculates all elements of the date to
return a valid date, in this case, 1 January 2000 00:05. This includes leap
years: the calendar algorithm takes the presence of 29 February into account
for leap years.

Example
Dim lNoOfIntervals as Long
lNoOfIntervals = 100
Msgbox DateAdd("d", lNoOfIntervals, Now)

Programming Tips & Gotchas

• When working with dates, always check that a date is valid using the IsDate
function prior to passing it as a parameter to the function.

• To add a number of days to date, use either the day of the year "y", the day
"d", or the weekday "w".

• Both the Date data type and the Variant date subtype can handle dates only
as far back as 100 A.D. DateAdd generates an error (runtime error number 5,
“Invalid procedure call or argument”) if the result precedes the year 100.

• Both the Date data type and the Variant date subtype can handle dates as far
into the future as 9999 A.D.—from a practical application standpoint, a virtual
infinity. If the result of DateAdd is a year beyond 9999 A.D., the function gen-
erates runtime error number 5, “Invalid procedure call or argument.”

ww Week

h Hour

n Minute

s Second

Setting Description
DateAdd Function 197

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• If number contains a fractional value, it’s rounded to the nearest whole num-
ber before being used in the calculation.

See Also
DateDiff Function, DatePart Function, DateSerial Function, IsDate Function

DateDiff Function

Named Arguments

Yes

Syntax
DateDiff(interval, date1, date2[, firstdayofweek[,
 firstweekofyear]])
interval

Use: Required

Data Type: String

The units of time used to express the result of the difference between
date1 and date2 (see the table “Interval Settings”).

date1
Use: Required

Data Type: Variant (Date)

The first date you want to use in the differential calculation.

date2
Use: Required

Data Type: Variant (Date)

The second date you want to use in the differential calculation.

firstdayofweek
Use: Optional

Data Type: Numeric constant

A numeric constant that defines the first day of the week. If not speci-
fied, Sunday is assumed (see the table “First Day of Week Constants”).

firstweekofyear
Use: Optional

Data Type: Numeric constant

A numeric constant that defines the first week of the year. If not speci-
fied, the first week is assumed to be the week in which January 1 occurs
(see the table “First Week of Year Constants”).
198 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
DateDiff Function
Interval Settings

First Day of Week Constants

First Week of Year Constants

Return Value

Variant (Long).

Description

Returns a variant of subtype long specifying the number of time intervals between
two specified dates.

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

Constant Value Description

vbUseSystem 0 Use the NLS API setting

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Constant Value Description

vbUseSystem 0 Use the NLS API setting.

vbFirstJan1 1 Start with the week in which January 1 occurs
(default).

vbFirstFourDays 2 Start with the first week that has at least four
days in the new year.

vbFirstFullWeek 3 Start with first full week of the year.
DateDiff Function 199

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
The DateDiff function calculates the number of time intervals between two dates.
For example, you can use the function to determine how many days there are
between 1 January 1980 and 31 May 1998.

Rules at a Glance

• The calculation performed by DateDiff is always date2—date1. Therefore, if
date1 chronologically precedes date2, the value returned by the function is
negative.

• If interval is Weekday "w", DateDiff returns the number of weeks between
date1 and date2. DateDiff totals the occurrences of the day on which date1
falls, up to and including date2, but not including date1. Note that an
interval of "w" doesn’t return the number of weekdays between two dates,
as you might expect.

• If interval is Week "ww", DateDiff returns the number of calendar weeks
between date1 and date2. To achieve this, DateDiff counts the number of
Sundays (or whichever other day is defined to be the first day of the week by
the firstdayofweek argument) between date1 and date2. If date2 falls on
a Sunday, it’s counted, but date1 isn’t counted even if it falls on a Sunday.

• The firstdayofweek argument affects only calculations that use the "ww"
(week) interval values.

Example
Dim dtNow As Date
Dim dtThen As Date
Dim sInterval As String
Dim lNoOfIntervals As Long

dtNow = Date
dtThen = "01/01/1990"
sInterval = "m"

lNoOfIntervals = DateDiff(sInterval, dtThen, dtNow)

MsgBox lNoOfIntervals

Programming Tips & Gotchas

• When working with dates, always check that a date is valid using the IsDate
function prior to passing it as a function parameter.

• When comparing the number of years between December 31 of one year to
January 1 of the following year, DateDiff returns 1 although in reality, the dif-
ference is only one day.

• DateDiff considers the four quarters of the year to be January 1–March 31,
April 1–June 30, July 1–September 30, and October 1–December 31. Conse-
quently, when determining the number of quarters between March 31 and
April 1 of the same year, for example, DateDiff returns 1, even though the lat-
ter date is only one day after the former.

• If interval is "m", DateDiff simply counts the difference in the months on
which the respective dates fall. For example, when determining the number
200 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
DatePart Function
of months between January 31 and February 1 of the same year, DateDiff
returns 1, even though the latter date is only one day after the former.

• To calculate the number of days between date1 and date2, you can use
either Day of year "y" or Day "d".

• In calculating the number of hours, minutes, or seconds between two dates, if
an explicit time isn’t specified, DateDiff provides a default value of midnight
(00:00:00).

• If you specify date1 or date2 as strings within quotation marks (" ") and
omit the year, the year is assumed to be the current year, as taken from the
computer’s date. This allows the same code to be used in different years.

See Also
DateAdd Function, DatePart Function, IsDate Function

DatePart Function

Named Arguments

Yes

Syntax
DatePart(interval, date[,firstdayofweek[, _
 firstweekofyear]])
interval

Use: Required

Data Type: String

The unit of time to extract from within date (see the table “Interval
Settings”).

date
Use: Required

Data Type: Variant (Date)

The Date value that you want to evaluate.

firstdayofweek
Use: Optional

Data Type: Numeric constant

A numeric constant that defines the first day of the week. If not speci-
fied, Sunday is assumed (see the table “First Day of Week Constants”).

firstweekofyear
Use: Optional

Data Type: Numeric constant

A numeric constant that defines the first week of the year. If not speci-
fied, the first week is assumed to be the week in which January 1 occurs
(see the table “First Week of Year Constants”).
DatePart Function 201

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Interval Settings

First Day of the Week Constants

First Week of Year Constants

Return Value

Variant (Integer)

Description

Extracts an individual component of the date or time (like the month or the
second) from a date/time value. It returns a Variant (Integer) containing the speci-

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

Constant Value Description

vbUseSystem 0 Use the NLS API setting

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Constant Value Description

vbUseSystem 0 Use the NLS API setting.

vbFirstJan1 1 Start with week in which January 1 occurs
(default).

vbFirstFourDays 2 Start with the first week that has at least four
days in the new year.

vbFirstFullWeek 3 Start with first full week of the year.
202 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
DateSerial Function
fied portion of the given date. DatePart is a single function encapsulating the
individual Year, Month, Day, Hour, Minute, and Second functions.

Rules at a Glance

The firstdayofweek argument affects only calculations that use either the "w" or
"ww" interval values.

Example
Dim sTimeInterval As String
Dim dtNow As Date

sTimeInterval = "n" 'minutes
dtNow = Now

MsgBox DatePart(sTimeInterval, dtNow)

Programming Tips & Gotchas

• When working with dates, always check that a date is valid using the IsDate
function prior to passing it as a function parameter.

• If you specify date within quotation marks (" ") omitting the year, the year is
assumed to be the current year taken from the computer’s date.

• If you attempt to extract either the hours, the minutes, or the seconds, but
date1 doesn’t contain the necessary time element, the function assumes a
time of midnight (0:00:00).

See Also
DateSerial Function, Day Function, Month Function, Year Function, Minute
Function, Hour Function, Second Function

DateSerial Function

Named Arguments

Yes

Syntax
DateSerial(year, month, day)
year

Use: Required

Data Type: Integer

Number between 100 and 9999, inclusive, or a numeric expression.

month
Use: Required

Data Type: Integer

Any numeric expression to express the month between 1 and 12.

day
Use: Required
DateSerial Function 203

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Data Type: Integer

Any numeric expression to express the day between 1 and 31.

Return Value

Variant (Date).

Description

Returns a Variant 7 data subtype (a date) from the three date components (year,
month, and day). For the function to succeed, all three components must be
present, and all must be numeric values. The value returned by the function takes
the short date format defined by the Regional Settings applet in the Control Panel
of the client machine.

Rules at a Glance

• If the value of a particular element exceeds its normal limits, DateSerial
adjusts the date accordingly. For example, if you tried DateSerial
(96,2,31)—February 31, 1996—DateSerial returns March 2, 1996.

• You can specify expressions or formulas that evaluate to individual date com-
ponents as parameters to DateSerial. For example, DateSerial
(98,10+9,23) returns 23 March 1999. This makes it easier to use DateSerial
to form dates whose individual elements are unknown at design-time or that
are created on the fly as a result of user input.

Example
Dim iYear As Integer
Dim iMonth As Integer
Dim iday As Integer

iYear = 1987
iMonth = 3 + 11
iday = 16

MsgBox DateSerial(iYear, iMonth, iday)

Programming Tips & Gotchas

• If any of the parameters exceed the range of the Integer data type (-32,768 to
32,767), an error (runtime error 6, “Overflow”) is generated.

• The Microsoft documentation for this function incorrectly states, “For the year
argument, values between 0 and 99, inclusive, are interpreted as the years
1900–1999.” In fact, DateSerial handles two-digit years in the same way as
other Visual Basic date functions. A year argument between 0 and 29 is taken
to be in the 21st Century (2000 to 2029), year arguments between 30 and 99
are taken to be in the 20th Century (1930 to 1999). Of course, the safest way
to specify a year is to use the full four digits.

See Also
DateAdd Function
204 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
DateValue Function
DateValue Function

Named Arguments

No

Syntax
DateValue(stringexpression)
stringexpression

Use: Required

Data Type: String

Any of the date formats recognized by IsDate.

Return Value

Variant (Date).

Description

Returns a date variant (variant type 7) containing the date represented by
stringexpression. The date value is formatted according to the short date
setting defined by the Regional Settings applet in the Control Panel. DateValue can
successfully recognize a stringexpression in any of the date formats recog-
nized by IsDate. DateValue doesn’t return time values in a date/time string; they
are simply dropped. However, if stringexpression includes a valid date value
but an invalid time value, a runtime error results.

Rules at a Glance

• The order of the day, the month, and the year within stringexpression
must be the same as the sequence defined by the computer’s regional set-
tings.

• Only those date separators recognized by IsDate can be used.

• If you don’t specify a year in your date expression, DateValue uses the cur-
rent year from the computer’s system date.

Example
Dim sDateExpression As String

sDateExpression = 10 & "/" & "March" & "/" & 1998

If IsDate(sDateExpression) Then
 Debug.Print DateValue(sDateExpression)
Else
 Debug.Print "invalid date"
End If

Programming Tips & Gotchas

• When working with dates, always check that a date is valid using the IsDate
function prior to passing it as a function parameter.
DateValue Function 205

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• If stringexpression includes time information as well as date information,
the time information is ignored; however, if only time information is passed to
DateValue, an error is generated.

• DateValue handles two-digit years in the following manner: year arguments
between 0 and 29 are taken to be in the 21st Century (2000 to 2029), while
year arguments between 30 and 99 are taken to be in the 20th Century (1930
to 1999). Of course, the safest way to specify a year is to use the full four dig-
its.

• The current formats being used for dates are easier to discover on Windows
NT than on Windows 95. On Windows NT, the date formats are held as string
values in the following registry keys:

Date Separator
HKEY_CURRENT_USER\Control Panel\International, sDate value entry

Long Date
HKEY_CURRENT_USER\Control Panel\International, sLongDate value

entry

Short Date
HKEY_CURRENT_USER\Control Panel\International, sShortDate value

entry

• The more common approach to date conversion is to use the CDate function.
Microsoft also recommends using the C... conversion functions due to their
enhanced capabilities and their locale awareness.

Example
Option Explicit

'declare the API Functions and constants required
Private Const HKEY_CURRENT_USER = &H80000001
Private Const KEY_ACCESS = &H3F
Declare Function RegOpenKeyEx Lib "advapi32.dll" Alias _
 "RegOpenKeyExA" (ByVal hKey As Long, _
 ByVal lpSubKey As String, ByVal ulOptions As Long, _
 ByVal samDesired As Long, phkResult As Long) _
 As Long
Declare Function RegQueryValueExNULL _

Returning the Current Date Formats in Windows NT

The example shows how to use the Windows API to return the current long
and short date formats on Windows NT 4.0 machines. Unfortunately,
Windows 95 exposes only the Locale ID in the registry unless individual
elements have been changed individually, and there are a thousand and one
API constants and function calls required to retrieve the settings. Such deep
API work is really outside the scope of this book.
206 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
DateValue Function
 Lib "advapi32.dll" Alias "RegQueryValueExA" _
 (ByVal hKey As Long, ByVal lpValueName As String, _
 ByVal lpReserved As Long, lpType As Long, _
 ByVal lpData As Long, lpcbData As Long) As Long
Declare Function RegQueryValueExString _
 Lib "advapi32.dll" Alias "RegQueryValueExA" _
 (ByVal hKey As Long, ByVal lpValueName As String, _
 ByVal lpReserved As Long, lpType As Long, _
 ByVal lpData As String, lpcbData As Long) As Long
Declare Function RegCloseKey Lib "advapi32.dll" _
 (ByVal hKey As Long) As Long

Public Function CurrentDateFormat(sType As String) _
 As String

 CurrentDateFormat = _
 QueryDateFormat("Control Panel\International", _
 "s" & sType & "Date")
End Function

Private Function QueryDateFormat(sKeyName As String, _
 sValueName As String) As String

 On Error GoTo QueryDateFormat_Err

 Dim lReturn As Long 'API Call return value

 Dim lhKey As Long 'handle of opened key
 Dim sValueSetting As String 'date format setting
 Dim lCCh As Long
 Dim lType As Long
 Dim lValue As Long

 'open the registry key
 lReturn = RegOpenKeyEx(HKEY_CURRENT_USER, sKeyName, _
 0, KEY_ACCESS, lhKey)
 'get the legnth of the setting
 lReturn = RegQueryValueExNULL(lhKey, sValueName, _
 0&, lType, 0&, lCCh)

 If lReturn <> 0 Then
 Err.Raise 40000, App.Title, _
 "Can't get registry key value"
 Else
 'pad a string to the legnth of the setting
 sValueSetting = String(lCCh, 0)
 'query the setting
 lReturn = RegQueryValueExString(lhKey, sValueName, _
 0&, lType, sValueSetting, lCCh)
 If lReturn = 0 Then
 QueryDateFormat = Left$(sValueSetting, lCCh)
 Else
 QueryDateFormat = ""
 End If
DateValue Function 207

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 End If
 'close the registry key
 RegCloseKey (lhKey)

 Exit Function

QueryDateFormat_Err:
 MsgBox Err.Description
End Function
...which can be accessed simply from the client like this...
Option Explicit

Private Sub Command1_Click()
 MsgBox CurrentDateFormat("Long")
End Sub
Private Sub Command2_Click()
 MsgBox CurrentDateFormat("Short")
End Sub

See Also
CDate Function, DateSerial Function, IsDate Function

Day Function

Named Arguments

No

Syntax
Day(dateexpression)
dateexpression

Use: Required

Data Type: Any valid date expression

The path of the directory to set as the new default directory.

Return Value

Variant of subtype Integer.

Description

Returns a variant integer data subtype that can take on a value ranging from 1 to
31, representing the day of the month of dateexpression. dateexpression, the
argument passed to the Day function, must be a valid date/time or time value.

Rules at a Glance

• dateexpression can be any variant, numeric expression, or string expres-
sion that represents a valid date.

• The range of dateexpression is 1/1/0000 to 12/31/9999.

• If dateexpression is Null, Null is returned.
208 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
DDB Function
Example
Debug.Print Day(Now)

Programming Tips & Gotchas

• When working with dates, always check that a date is valid using the IsDate
function prior to passing it as a function parameter.

• If dateexpression omits the year, Day still returns a valid day.

• If the day portion of dateexpression is outside its valid range, the function
generates runtime error 13, “Type mismatch.” This is also true if the day and
month portion of dateexpression is 2/29 for a nonleap year.

• To return the day of the week, use the WeekDay function.

See Also
DatePart Function, WeekDay Function, WeekDayName Function, Month
Function, Year Function

DDB Function

Syntax
DDB(cost, salvage, life, period[, factor])
cost

Use: Required

Data Type: Double

The initial cost of the asset.

salvage
Use: Required

Data Type: Double

The value of the asset at the end of life.

life
Use: Required

Data Type: Double

Length of life of the asset.

period
Use: Required

Data Type: Double

Period for which the depreciation is to be calculated.

factor
Use: Optional

Data Type: Variant

The rate at which the asset balance declines. If omitted, 2 (double-
declining method) is assumed. However, the documentation doesn’t
mention what other values are supported or what they mean.
DDB Function 209

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Return Value

Double representing the depreciation of an asset.

Description

Returns a Double representing the depreciation of an asset for a specific time
period using the double-declining balance method or another method you specify
using the factor argument. The double-declining balance calculates depreciation
at an differential rate that varies inversely with the age of the asset. Depreciation is
highest at the beginning of the life of an asset and declines over time.

Rules at a Glance

• life and period must be specified in the same time units. In other words,
both must be expressed in units of months, or both must be years.

• All arguments must be positive numbers.

Example
Dim dblInitialCost As Double
Dim dblSalvageValue As Double
Dim dblUsefulLife As Double
Dim dblPeriod As Double
Dim dblThisPeriodDepr As Double
Dim dblTotDepreciation As Double

dblInitialCost = 2000
dblSalvageValue = 50
dblUsefulLife = 12
dblTotDepreciation = 0

For dblPeriod = 1 To 12
 dblThisPeriodDepr = DDB(dblInitialCost, _
 dblSalvageValue, dblUsefulLife, dblPeriod)
 dblTotDepreciation = dblTotDepreciation + _
 dblThisPeriodDepr
 Debug.Print "Month " & dblPeriod & ": " & _
 dblThisPeriodDepr
Next dblPeriod

Debug.Print "TOTAL: " & dblTotDepreciation

Programming Tips & Gotchas

• The double-declining balance depreciation method calculates depreciation at
a higher rate in the initial period and decreases in subsequent periods.

• The DDB function uses the following formula to calculate depreciation for a
given period:

Depreciation / period = ((cost – salvage) * factor) / life

See Also
A psychiatrist!
210 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Debug.Assert Method
Debug Object

In both Visual Basic and VBA, the Debug Object is a relatively inaccessible object
that is responsible for sending output to the Immediate window.

Debug Object Methods

Debug.Assert Method

Syntax
object.Assert booleanexpression
object

Use: Required

Data Type: Debug object

Always evaluates to the Debug object.

booleanexpression
Use: Required

Data Type: Boolean

Expression that evaluates to a Boolean value.

Return Value

None.

Description

Conditionally suspends program execution and transfers control to the Immediate
window if the value of booleanexpression is False.

Rules at a Glance

• booleanexpression must evaluate to a Boolean value.

• If booleanexpression is False, program execution is suspended and con-
trol transfers to the Immediate window.

• Program execution can be resumed by pressing the Continue button on either
the Standard or Debug toolbars.

Programming Tips & Gotchas

• The Assert method is available only in Visual Basic; the Debug object in the
VBA development environment doesn’t support the Assert method.

Method Description

Assert Conditionally suspends execution and transfers control to the Imme-
diate window; available in Visual Basic, but not in VBA.

Print Displays output in the Immediate window.
Debug.Assert Method 211

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• Assert is typically used when debugging to test an expression that should
evaluate to True. If it doesn’t, the Immediate window can be used to investi-
gate why the test failed.

• Debug.Assert executes only when an application is run in the design-time
environment; the statement has no effect in a compiled application. This
means that Debug.Assert never produces a runtime error if the call to it is
inappropriate, nor does it suspend program execution outside of the VB IDE.
Because of this, you don’t have to remove Debug.Assert statements from fin-
ished code or separate them with conditional #If...Then statements.

Debug.Print Method

Syntax
object.Print [outputlist]
object

Use: Required

Data Type: Debug object

Always evaluates to the Debug object.

outputlist
Use: Optional

Data Type: String

Expression or list of expressions to print. If omitted, a blank line is
printed (for details, see the following table).

Output Syntax
{Spc(n) | Tab(n)} expression charpos
Spc(n)

Use: Optional

Inserts n space characters in the output string.

Tab(n)
Use: Optional

Inserts a Tab character at position n.

expression
Use: Optional

Numeric or string expression to print in the Immediate window.

charpos
Use: Optional

Determines the position of the next character.

Description

Prints text in the Immediate pane of the Debug window in the design-time
environment.
212 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Debug.Print Method
Rules at a Glance

• expression can include literal, numeric, string, and variant data.

• If charpos is a semicolon (;), the next character immediately follows the last
character of expression. For example:

Debug.Print sFileName; iFileNo

• The Tab(n) argument doesn’t actually insert any tab characters (Chr(9)); it
fills the space from the end of the last expression to column n (or to the start
of the next print zone) with space characters.

• You can also use Tab(n) as the charpos argument to position the next char-
acter at an absolute column number.

• If charpos is omitted, a carriage return is appended to expression, and the
next character is printed on the next line.

• Use the & concatenation character to create an output string from several ele-
ments.

• The Debug.Print method uses the locale settings of the current system to for-
mat dates, times, and numbers using the correct separators.

Example
#Const ccDebug = 1
...
#If ccDebug Then
 Debug.Print "Value of dblx: " & dblx
#End if

Programming Tips & Gotchas

• The Debug.Print method examines the values of variables or traces program
flow in a programming running within the VB or VBA design-time environ-
ment. It allows you to gather information about your program without inter-
rupting its execution, as you would if you set breakpoints or used the MsgBox
function to display debugging messages or the values of program variables.

• Unlike the retail version of VB, the Debug object in the VBA development
environment doesn’t include an Assert method.

• Certain data types may not behave as you’d expect, as this table shows:

• In Visual Basic applications, Debug.Print executes only when an application
is run in the design-time environment; the statement has no effect in a com-
piled application. Similarly, in Microsoft Office, Debug.Print executes only
when the Visual Basic editor window is open and the Immediate window is
displayed. This means that Debug.Print never produces a runtime error if the

Output Data Type Formatted Output to Immediate Window

Boolean True or False

Date Short Format Date as per system locale settings

Error Error followed by the corresponding error code

Null (Variant) Null
Debug.Print Method 213

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
call to it is inappropriate, and that you don’t have to remove Debug.Print
from finished code or separate it with conditional #If...Then statements.

See Also
#Const Directive, #If...Then...#Else Statement

Declare Statement

Named Arguments

No

Syntax

Syntax for subroutines

[Public | Private] Declare Sub name Lib "libname" _
 [Alias "aliasname"] [([arglist])]

Syntax for functions

[Public | Private] Declare Function name Lib "libname"
 [Alias "aliasname"] [([arglist])] [As type]
Public

Use: Optional

Keyword used to declare a procedure that has scope in all procedures in
all modules in the application.

Private
Use: Optional

Keyword used to declare a procedure that has scope only within the
module in which it’s declared.

Sub
Use: Optional

Keyword indicating that the procedure doesn’t return a value. Mutually
exclusive with Function.

Function
Use: Optional

Indicates that the procedure returns a value. Mutually exclusive with Sub.

name
Use: Required

Data Type: String

Any valid procedure name within the DLL or code library. If the alias-
name argument is used, name represents the name the function or
procedure is called in your code, while aliasname represents the name
of the routine as found in the external library.
214 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Declare Statement
Lib
Use: Required

Keyword indicating that the procedure is contained within a DLL or other
code library.

libname
Use: Required

Data Type: String

The name of the DLL or other code library that contains the declared
procedure.

Alias
Use: Optional

Keyword whose presence indicates that name is different from the proce-
dure’s real name within the DLL or other code library.

aliasname
Use: Optional

Data Type: String

The real name of the procedure within the DLL or code library.

arglist
Use: Optional

Data Type: Any

A list of variables representing the arguments that are passed to the
procedure when it’s called. (For details of the arglist syntax and
elements, see the entries for the Sub statement or Function statement.)

type
Use: Optional

Data type of the value returned by a function. (For further details see the
Function statement entry.)

Description

Used at module level to declare references to external procedures in a dynamic-
link library (DLL).

Rules at a Glance

• You can place a Declare statement within a code module, in which case it
can be public or private, or within the declarations section of a form or class
module, in which case it must be private.

• Leaving the parentheses empty and not supplying an arglist indicates that
the Sub or Function procedure has no arguments.

• The number and type of arguments included in arglist are checked each
time the procedure is called.

• The data type you use in the As clause following arglist must match that
returned by the function.
Declare Statement 215

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Example
Option Explicit

Declare Function GetVersion Lib "kernel32"() As Long

Public Function WhereAmI() As Boolean

 Dim lWinVersion As Long
 Dim lWinMajVer As Long
 Dim lWinMinVer As Long
 Dim sSys As String

 lWinVersion = GetVersion()

 lWinMajVer = lWinVersion And 255
 lWinMinVer = (lWinVersion And 65280) / 256

 If lWinVersion And &H80000000 Then
 sSys = "Windows 95"
 Else
 sSys = "Windows NT"
 End If

 Msgbox "Platform: " & sSys & vbCrLf & _
 "Version: " & lWinMajVer & "." & lWinMinVer

Programming Tips & Gotchas

• If you don’t specify a Public or Private keyword, the visibility of the exter-
nal procedure is public by default. However, if the routine is declared in the
declarations section of a form or a class module, a compiler error (“Constants,
fixed length strings, arrays, and Declare statements not allowed as Public mem-
bers of object modules”) results.

• Using an alias is useful when the name of an external procedure would conflict
with a Visual Basic keyword or with the name of a procedure within your
project, or when the name of the procedure in the code library isn’t allowed by
the Visual Basic DLL naming convention. In addition, aliasname is frequently
used in the case of functions in the Win32 API that have string parameters,
where the “official” documented name of the function is used in code to call
either of two “real” functions, one an ANSI and the other a Unicode version.
For example:

Declare Function ExpandEnvironmentStrings _
 Lib "kernel32" Alias "ExpandEnvironmentStringsA" _
 (ByVal lpSrc As String, ByVal lpDst As String, _
 ByVal nSize As Long) As Long

defines the documented Win32 function ExpandEnvironmentStrings to a VB
application. However, although calls to the function take the form:

lngBytes = ExpandEnvironmentStrings(strOriginal, _
 strCopy, len(strCopy)
216 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Declare Statement
the actual name of the function as it exists in Kernel32.dll is ExpandEnviron-
mentStringsA. (Windows API functions ending in A are the ANSI string ver-
sions, and those ending in W (for Wide) are the Unicode string versions.)

• You can use the # symbol at the beginning of aliasname to denote that
aliasname is in fact the ordinal number of a procedure within the DLL or
code library. In this case, all characters following the # sign that compose the
aliasname argument must be numeric. For example:

Declare Function GetForegroundWindow Lib "user32" _
 Alias "#237" () As Long

• Remember that DLL entry points are case sensitive. In other words, either
name or, if it’s present and doesn’t represent a routine’s ordinal position,
aliasname must correspond in case exactly to the routine as it’s defined in
the external DLL. Otherwise, VB displays runtime error 453, “Specified DLL
function not found.” If you aren’t sure how the routine name appears in the
DLL, use QuickView to browse the DLL and scan for its export table.

• libname can include an optional path that identifies precisely where the
external library is located. If the path isn’t included along with the library
name, VB by default searches the current directory, the Windows directory,
the Windows system directory, and the directories in the path, in that order.

• If the external library is one of the major Windows system DLLs (like
Kernel32.dll or Advapi32.dll), libname can consist of only the root filename,
rather than the complete filename and extension.

• In some cases, a single parameter to an API function can accept one of several
data types as arguments. This is particularly common when a function accepts a
pointer to a string buffer if an argument is to be supplied and a null pointer if it
doesn’t; the former is expressed in Visual Basic by a string argument and the
latter by a 0 passed to the function by value. It’s also the case whenever an API
function designates a parameter’s data type as LPVOID, which indicates a
pointer to any data type. To handle this, you can define separate versions of the
DECLARE statement, one for each data type to be passed to the function. (In this
case, name designates the name by which a particular API function is refer-
enced in your program, while the ALIAS clause designates the name of the rou-
tine as it exists in the DLL.) A second alternative, rather than having to “strongly
type” a parameter in arglist, is to designate its data type as As Any, indicat-
ing that the routine accepts an argument of any data type. While this provides
you with a flexible way of partly overcoming the mismatch between VB and C
data types, you should use it with caution, since it suspends Visual Basic’s nor-
mal type checking for that argument.

• Windows NT was built from the ground up using Unicode (two-byte) strings;
however, it also supports ANSI strings. OLE 2.0 was built to use Unicode strings
exclusively. Visual Basic from Version 4 onwards uses Unicode strings inter-
nally, but passes ANSI strings into your program. What does all this mean for
you? Well, Windows NT and OLE 2.0 API calls that have string parameters
require them to be passed as Unicode strings. Unfortunately, although Visual
Basic uses Unicode strings internally, it converts strings passed to these DLLs
back into ANSI. The remedy is to use a dynamic array of type Byte. Passing and
receiving arrays of bytes circumvents Visual Basic’s Unicode-ANSI conversion.
Declare Statement 217

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
To pass a string to a Unicode API function, declare a dynamic byte array,
assign your string to the array, and concatenate a terminating null character
(vbNullChar) to the end of the string, then pass the first byte of the array (at
element 0) to the function, as the following simple snippet shows:

Dim bArray() As Byte
bArray() = "My String" & vbNullChar
someApiCall(bArray(0))

• One of the most common uses of the Declare statement is to make routines
in the Win32 API accessible to your programs. For more information on call-
ing the Win32 API from Visual Basic, see Dan Appleman’s The Visual Basic
Programmer’s Guide to the Win32 API, published by Ziff-Davis Press.

See Also
Sub Statement, Function Statement, StrConv Function

Def... Statement

Syntax
DefBool letterrange[,letterrange]
DefByte letterrange [,letterrange]
DefInt letterrange [,letterrange]
DefLng letterrange [,letterrange]
DefCur letterrange [,letterrange]
DefSng letterrange [,letterrange]
DefDbl letterrange [,letterrange]
DefDec letterrange [,letterrange]
DefDate letterrange [,letterrange]
DefStr letterrange [,letterrange]
DefObj letterrange [,letterrange]
DefVar letterrange [,letterrange]
letterrange

Use: Required

Data Type: String

Use the syntax Letter1[-Letter2].

Unless you are using a strict code convention, this way of declaring
variables is a way to become extremely confused with the data types
used in your application in as short a time as possible.

Description

Used at module level to define a default data type for variables, arguments passed
to procedures, and the return type for Function and Property Get procedures
whose names start with the specified characters. For example, the statement
DefStr s tells your program that every variable, function, and argument begin-
ning with the letter “s” is a string data type.
218 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Def... Statement
Rules at a Glance

• The statement name determines the data type:

• You can override the default data types defined with Def... by using the
Dim statement.

• Def... statements have scope only within the module in which they appear.
There is no such thing as a public or global Def... statement for the project.

Example
DefStr s
DefDbl d
DefInt i

...

iMyInteger = 100
dMyDouble = 122345.899
sMyString = "Hello World"

Programming Tips & Gotchas

• Elements of user-defined types aren’t affected by Def... statements because
the elements must be explicitly declared.

• Def... statements must appear before all other declarations within the decla-
rations section of a module.

• If your code includes the Option Explicit statement, which indicates that
your application relies on strong variable typing, Def... statements for the
most part are rendered superfluous, since the Dim statement is still required to
declare each variable. However, in this case, the Def... statement defines
the data type of variables whose Dim statements don’t specify a specific data
type. For example, in the code fragment:

Statement Data Type

DefBool Boolean

DefByte Byte

DefInt Integer

DefLng Long

DefCur Currency

DefSng Single

DefDbl Double

DefDec Decimal

DefDate Date

DefStr String

DefObj Object

DefVar Variant
Def... Statement 219

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Option Explicit
DefStr s

Public strMyVar1

strMyVar1 has been defined as a string by the DefStr statement.

See Also
Dim Statement

DeleteSetting Statement

Named Arguments

Yes

Syntax
DeleteSetting appname[, section[, key]]
appname

Use: Required

Data Type: String

The name of the application. This must be a subkey of the HKEY_
CURRENT_USER\Software\VB and VBA Program Settings registry key.

section
Use: Optional

Data Type: String

The name of the application key’s subkey that is to be deleted. section
can be a single key or a registry path separated with backslashes.

key
Use: Optional

Data Type: String

The name of the value entry to delete.

Description

Deletes a complete application key, one of its subkeys, or a single value entry
from the Windows registry.

Rules at a Glance

• section can contain a relative path (similar to that used to describe the fold-
ers on a hard drive) to navigate from the application key to the subkey to be
deleted. For example, to delete the value entry named TestKey in the regis-
try key HKEY_CURRENT_USER\Software\VB and VBA Program Settings\
RegTester\BranchOne\BranchTwo, you’d use:

DeleteSetting "RegTester", "BranchOne\BranchTwo", _
 "TestKey"

• You can’t use DeleteSetting to delete entries from registry keys that aren’t
subkeys of HKEY_CURRENT_USER\Software\VB and VBA Program Settings.
220 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
DeleteSetting Statement
• If key is supplied, only the value entry named key and its associated value
are deleted.

• If key is omitted, the subkey named section is deleted.

• If section is omitted, the entire application key named appname is deleted.

Example
Sub TestTheReg()
 SaveSetting "MyRealGoodApp", _
 "TestBranch\SomeSection\AnotherSection", _
 " Testkey ", "10"
 MsgBox "Now look in RegEdit"
End Sub

Sub TestDelete()

 If GetSetting("MyRealGoodApp", _
 "TestBranch\SomeSection\AnotherSection", _
 "") = "" Then

 DeleteSetting "MyRealGoodApp", _
 "TestBranch\SomeSection\AnotherSection", _
 "TestKey"

 MsgBox "Look again!"
 End If
End Sub

Programming Tips & Gotchas

• DeleteSetting was designed to operate on initialization files on 16-bit plat-
forms and on the registry on 32-bit platforms. But the terminology that
describes the statement in the official documentation is based on initialization
files, rather than on the registry. In particular, what is described as a key is a
named key in an initialization file and a value entry in the registry.

• The behavior of the DeleteSetting statement differs under Windows 95 and
Windows NT when it’s used to remove a key from the registry. Under Win-
dows 95, if the statement deletes either appname or section, all subkeys
belonging to the key to be deleted are also deleted. Under Windows NT, on
the other hand, the keys appname and section are deleted only if they con-
tain no subkeys.

• DeleteSetting can’t delete the default value (that is, the unnamed value
entry) belonging to any key. If you’re using only the VB registry functions,
though, this isn’t a serious limitation, since SaveSetting doesn’t allow you to
create a default value.

• Unless you are quite sure what you’re doing, you should delete only registry
settings that have been placed in the registry by your own code. Inadvert-
ently deleting the wrong entries can have disastrous consequences. However,
because this statement gives you access only to the subkeys of HKEY_
CURRENT_USER\Software\VB and VBA Program Settings, the potential
damage is minimized.
DeleteSetting Statement 221

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• Never assume that the key you want to delete is necessarily present in the
registry. DeleteSetting deletes a user key (that is, a subkey of HKEY_
CURRENT_USER); except on Win95 systems that aren’t configured to support
multiple users, the user key is formed from a file that reflects only the present
user’s settings. This means that when one user runs an application, user set-
tings are stored in his or her registry key. But when a second user runs the
application for the first time, settings for that user aren’t likely to be there.
Attempting to delete a nonexistent key produces runtime error 5, “Invalid pro-
cedure call or argument.” To prevent the error, you should first test for the
presence of the registry key, as shown in the previous example.

• For full details of how to work properly with the registry, see Inside the Win-
dows 95 Registry, written by Ron Petrusha, published by O’Reilly & Associates.

See Also
GetAllSettings Function, GetSetting Function, SaveSetting Statement

Dictionary Object (VB6)

Reference
Microsoft Scripting Runtime (../SYSTEM32/SCRRUN.DLL)

Description

The Dictionary object is another new feature of VB6 that has found its way into
wider use from its humble beginnings in Version 2 of the VBScript scripting
runtime. The Dictionary object is similar to a Collection object, except that it’s
loosely based on the Perl associative array. Like an array or a Collection object, the
Dictionary object holds elements, which are called items or members, containing
data. A Dictionary object can contain any data whatsoever, including objects and
other Dictionary objects. You access the value of these dictionary items by using
unique keys (or named values) that are stored along with the data, rather than by
using an item’s ordinal position, as you do with an array. This makes the Dictio-
nary object ideal when you need to access data that is associated with a particular
unique named value.

So if you’re happily using Collection objects throughout your VB programs, why
should you want to change? Here are some of the advantages afforded by the
Dictionary object over a Collection object:

• A Dictionary object returns an array of all its keys using one simple method.

• A Dictionary object returns an array of all its members using one simple
method.

• A Dictionary object lets you determine if a given key exists in the Dictionary.

• A Dictionary object gives you the ability to overwrite a member value.

• A Dictionary object lets you change a key value.

If that’s not enough to convince you, what about performance? In the perfor-
mance comparisons I’ve run, very much to my surprise, the Dictionary object ran
about twice as fast as a Collection object when adding and reading back objects.
222 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Dictionary Object (VB6)
But when adding and reading back simple data types, the Dictionary object was
up to three times faster than a Collection object. A clue to the excellent perfor-
mance of the Dictionary object can be found when you interrogate the Dictionary
object in the VB object browser and set the “Show Hidden Members” option.* A
new hidden property called HashVal appears. It appears, therefore, that the Dictio-
nary object uses a hash table and some advanced sorting and indexing algorithms
to achieve this superior performance.

Most of the code written for the Collection object appears to work perfectly well
with the Dictionary object, with several notable exceptions:

• You have to resort to some workarounds to use For Each...Next with a
Dictionary object. Actually, until recently, it was generally believed that For
Each...Next didn’t work with the Dictionary object. But in fact, it does.
However, rather than the _NewEnum function returning a reference to a
member of the Dictionary (as it would with a Collection object), it returns a
variant containing the key associated with the member. You then have to pass
this key to the Item method to retrieve the member, as the following exam-
ple shows:

Private Sub Command1_Click()

 Dim vKey As Variant
 Dim sItem As String
 Dim oDict As Dictionary

 Set oDict = New Dictionary
 oDict.Add "One", "Engine"
 oDict.Add "Two", "Wheel"
 oDict.Add "Three", "Tire"
 oDict.Add "Four", "Spanner"

 For Each vKey In oDict
 sItem = oDict.Item(vKey)
 Debug.Print sItem
 Next

 Set oDict = Nothing

End Sub

Note that even though the key is always a string, a variant must be used in
this situation because the For Each variable must be either a variant or an
object.

• You can’t directly access a Dictionary object item by its ordinal position in the
Dictionary. You can work around this easily by assigning the value returned
by the Items method to a variant array and iterating through that by ordinal
number. (For an example, see the code fragment for the Dictionary.Items

* To do this, click the right mouse button in either pane of the Object Browser. Then check
the Show Hidden Members option on the context menu.
Dictionary Object (VB6) 223

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
entry.) Even with this extra step, the Dictionary object is significantly faster
than a Collection object.

• The syntax of the Dictionary object’s Add method is:

Dictionary.Add(Key, Item)

The order of Key and Item are the reverse of that in the Collection object.
Furthermore, the Key parameter isn’t optional, and the Dictionary object
doesn’t support parameters to place an item Before or After another item,
since the object doesn’t support ordered access by any means other than a
key value.

Note that the Word object model also includes a Dictionary object of rather a
different kind. You can still use Dictionary objects in your Word VBA code, but
you have to qualify the object library from which you wish to instantiate the
Dictionary class. The following code fragment does that:

Dim objDict as New Scripting.Dictionary

Createable

Yes

Dictionary Object Properties

The Dictionary object includes the following four properties:

Dictionary Object Methods

The Dictionary object supports the following six methods:

Dictionary.Add Method (VB6)

Named Arguments

Yes

Syntax
dictionaryobject.Add key, item
dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

key
Use: Required

Data Type: String

A key value that’s unique in the Dictionary object.

CompareMode Item
Count Key

Add Items Remove
Exists Keys RemoveAll
224 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Dictionary.CompareMode Property (VB6)
item
Use: Required

Data Type: String

The item to be added to the dictionary.

Description

Adds a key and its associated item to the specified Dictionary object.

Rules at a Glance

• If the key isn’t unique, runtime error 457, “This key is already associated with
an element of this collection,” is generated.

• item can be of any data type, including objects and other Dictionary objects.

Example
Set oDict = New Dictionary
 iVal = 1
 Set oTest = New clsTest
 With oTest
 .Age = 10
 .Phone = "0112 31234"
 .TestName = "Russell"
 End With

 oDict.Add CStr(iVal), oTest
 Set oTest = Nothing

Dictionary.CompareMode Property (VB6)

Syntax
dictionaryobject.CompareMode [= CompareMethodConst]
dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

CompareMethodConst
Use: Optional when returning, required when setting

Data Type: Numeric constant

Acceptable values for CompareMode are BinaryCompare (0, Binary),
TextCompare (1, Text), and DatabaseCompare (2, Database). Values
greater than 2 refer to comparisons using specific locale IDs (LCIDs).

Property Data Type

Numeric enumeration (CompareMethod constant).
Dictionary.CompareMode Property (VB6) 225

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Description

Sets or returns the mode used to compare the keys in a Dictionary object. The
CompareMode setting is used by StrComp, the string comparison function.

Rules at a Glance

• CompareMode can be set only on a dictionary that doesn’t contain any data.

• You need to explicitly set the CompareMode property only if you don’t wish
to use the default binary comparison mode.

Dictionary.Count Property (VB6)

Syntax
dictionaryobject.Count
dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

Property Data Type

Long.

Description

A read-only property that returns the number of key/item pairs in a Dictionary
object.

Rules at a Glance

 Unlike a Collection object, the Dictionary object is always 0-based.

Example

The following code fragment shows how you can use the Count property:

Dim vArray As Variant
vArray = DictObj.Items
For i = 0 to DictObj.Count -1
 Set oObj = vArray(i)
Next

Dictionary.Exists Method (VB6)

Named Arguments

Yes

Syntax
dictionaryobject.Exists(key)
dictionaryobject

Use: Required
226 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Dictionary.Item Property (VB6)
Data Type: Dictionary object

A reference to a Dictionary object.

key
Use: Required

Data Type: String

The key value being sought.

Return Value

Boolean.

Description

Determines if a given key is present in a Dictionary object.

Rules at a Glance

Returns True if the specified key exists in the Dictionary object; False if not.

Programming Tips & Gotchas

If you attempt to return the Item of a nonexistent key, or assign a new key to a
nonexistent key, the nonexistent key is added to the dictionary, along with a blank
item. To prevent this, you should use the Exists property to ensure that the Key is
present in the dictionary before proceeding.

Example
If oDict.Exists(strOldKey) Then
 oDict.Key(strOldKey) = strNewKey
End If

Dictionary.Item Property (VB6)

Named Arguments

Yes

Syntax

The syntax for setting an item is:

dictionaryobject.Item(key) = item

The syntax for returning an item is:

value = dictionaryobject.Item(key)
dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.
Dictionary.Item Property (VB6) 227

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
key
Use: Required

Data Type: String

A unique string key for this Dictionary object.

item
Use: Optional

Data Type: Any

The data associated with key.

Property Data Type

Any.

Description

Sets or returns the data item to be linked to a specified key in a Dictionary object.

Rules at a Glance

• The data type is that of the item being returned.

• If you try to set item to a nonexistent key, the key is added to the dictio-
nary, and the item is linked to it, a sort of “implicit add.”

Programming Tips & Gotchas

• Unlike the Collection object, the Dictionary object doesn’t allow you to
retrieve an item by its ordinal position.

• If you provide a nonexistent key when trying to retrieve an item, the dictio-
nary exhibits rather strange behavior: it adds key to the Dictionary object
along with a blank item. You should therefore use the Exists method prior to
setting or returning an item, as the example shows.

• A major gripe of all programmers who use the Collection object is the diffi-
culty involved in overwriting an existing Collection member—not so with the
Dictionary object. Simply assign the value as you would with other properties.

Example
Dim sKey As String
Dim sName As String
sKey = "Name"
If oDictionary.Exists(sKey) Then
 sName = oDictionary.Item(sKey)
Else
 MsgBox "The Key " & sKey & " does not exist"
End If

This next example shows how to set or overwrite an item:

Dim sKey As String
Dim sName As String
sName = "Dick Shennary"
sKey = "Name"
If oDictionary.Exists(sKey) Then
228 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Dictionary.Key Property (VB6)
 oDictionary.Item(sKey) = sName
Else
 MsgBox "The Key " & sKey & " does not exist"
End If

Dictionary.Items Method (VB6)

Named Arguments

Yes

Syntax
dictionaryobject.Items
dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

Return Value

A Variant array.

Description

Returns an array containing all the items in the specified Dictionary object.

Rules at a Glance

The returned array is always a zero-based variant array whose data subtype
matches that of the items in the Dictionary object.

Programming Tips & Gotchas

• The only way to directly access members of the Dictionary is via their key val-
ues. However, using the Items method, you can “dump” the data from the
Dictionary into a zero-based variant array. The data items can then be
accessed like an array in the normal way, as the following code shows:

Dim vArray As Variant
vArray = DictObj.Items
For i = 0 to DictObj.Count -1
 Debug.Print vArray(i)
Next I

• The Items method retrieves only the items stored in a Dictionary object; you
can retrieve all the Dictionary object’s keys by calling its Keys method.

Dictionary.Key Property (VB6)

Data Type

String
Dictionary.Key Property (VB6) 229

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Named Arguments

Yes

Syntax
The syntax for setting a new key is:

dictionaryobject.Key(key) = newkey
dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

key
Use: Required

Data Type: String

A unique string key for this Dictionary object.

newkey
Use: Required

Data Type: String

A unique string key for this Dictionary object.

Property Data Type

A String.

Description

Returns the key or replaces an existing key with a new one.

Rules at a Glance

• As with the Item property, if a key that you are attempting to change doesn’t
exist, the new key is added to the dictionary and is linked to a blank item.

• A concept unknown to users of the Collection object is the ability to change
the key associated with an item; however, this is easy with the Dictionary
object, as the example demonstrates.

Example
Private Function ChangeKeyValue(sOldKey As String, _
 sNewKey As String) _
 As Boolean
 If oDictionary.Exists(sOldKey) Then
 oDictionary.Key(sOldKey) = sNewKey
 ChangeKeyValue = True
 Else
 ChangeKeyValue = False
 End If
End Function
230 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Dictionary.Remove Method (VB6)
Dictionary.Keys Method (VB6)

Named Arguments

Yes

Syntax
dictionaryobject.Keys
dictionaryobject

Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.

Return Value

A Variant array of subtype String.

Description

Returns an array containing all the Key values in the specified Dictionary object.

Rules at a Glance

The returned array is always a 0-based variant array whose data subtype is String.

Programming Tips & Gotchas

The Keys method retrieves only the keys stored in a Dictionary object; you can
retrieve all the Dictionary object’s items by calling its Items method.

Example
Dim vArray As Variant
vArray = DictObj.Keys
For i = 0 to DictObj.Count -1
 Debug.Print vArray(i)
Next

Dictionary.Remove Method (VB6)

Named Arguments

Yes

Syntax
dictionaryobject.Remove key

dictionaryobject
Use: Required

Data Type: Dictionary object

A reference to a Dictionary object.
Dictionary.Remove Method (VB6) 231

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
key
Use: Required

Data Type: String

The key associated with the item to be removed.

Description

Removes both the specified key and its associated data (i.e., its item) from the
dictionary.

Rules at a Glance

If key doesn’t exist, runtime error 32811, “Method ‘Remove’ of object ‘IDictionary’
failed,” occurs.

Dictionary.RemoveAll Method (VB6)

Named Arguments

Yes

Syntax
dictionaryobject.RemoveAll
dictionaryobject

Use: Required

Data Type: Dictionary Object

A reference to a Dictionary Object.

Description

Clears out the dictionary; in other words, removes all keys and their associated
data from the dictionary.

Programming Tips & Gotchas

Analogous to the Collection object’s Clear method.

Dim Statement

Named Arguments

No

Syntax
Dim varname[([subscripts])] [As [New] type] [,
 varname[([subscripts])] [As [New] type]] . . .
varname

Use: Required

Your chosen name for the variable.
232 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Dim Statement
subscripts
Use: Optional

Dimensions of an array variable.

New
Use: Optional

Keyword that creates an instance of an object.

type
Use: Optional

The data type of varname.

Description

Declares and allocates storage space in memory for variables. The Dim statement is
used either at the start of a procedure or the start of a module to declare a vari-
able of a particular data type.

Rules at a Glance

• In addition to the Visual Basic data types listed in Chapter 3, type can be an
Object, an object type, or a user-defined type. The default data type, when no
type is explicitly declared, is Variant.

• Variable-length strings are declared using the syntax:

Dim variablename As String

Fixed-length strings, on the other hand, are declared using the syntax:

Dim variablename As String * length

• You can declare multiple variables in a single Dim statement, but each vari-
able you declare must use a separate As type clause.

• Variables have the following values when they are first initialized with the
Dim statement:

• To use an object variable that has not been declared using the New keyword,
the Set statement must assign an object to the variable before it can be used,
as the following code fragment illustrates:

Dim oMySubObj As TestObject.SubObject
Set oMySubObj = oMyObj.SubObject

If, however, you use the New keyword, a new instance of the object is auto-
matically created when you first reference the variable, as shown in the fol-
lowing code fragment:

Dim oMyObj As New TestObject

Data Type Initial Value

Numeric 0

Variable-length string Zero-length string ("")

Fixed-length string Padded with zeros

Variant Empty

Object Nothing
Dim Statement 233

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• To declare array variables, use the following syntax:

Fixed length, single dimension
Dim arrayname(lower To upper) As type

Example: Dim myArray(1 To 10) As Integer

Fixed length, multidimension
Dim arrayname(lower To upper, lower To upper, ...)

Example: Dim MyArray(20,30) As Integer

Variable length, single or multidimension
Dim arrayname()

Example: Dim myArray() As Integer

• You can declare a multidimensional array with up to 60 dimensions.

• Variable-length arrays can be resized using the ReDim statement. Fixed-length
arrays can’t be resized.

• If you don’t state lower, the index of the first element of the array is either
the number indicated in the Option Base statement, or zero if Option Base
hasn’t been used.

Example
Public Sub Main()

Dim varArr As Variant
Dim intCtr As Integer

varArr = MakeArray()

For intCtr = 0 To UBound(varArr)
 Debug.Print intCtr & ": " & varArr(intCtr)
Next

End Sub

Private Function MakeArray() As Variant

Dim x As Variant

x = Array(5, 6, 7, 8)
MakeArray = x

End Function

Programming Tips & Gotchas

• It’s accepted practice to place all the Dim statements to be used in a particu-
lar procedure at the beginning of that procedure.

• To declare a multidimensional array that can handle different types of data in
each dimension, declare the array as a Variant.
234 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Dim Statement
• When you declare an object reference as WithEvents, that object’s events
can be handled within your application. Object variables must be declared
WithEvents at the module level to allow you to provide an error handler.
The reason for this is that if you declared the object variable WithEvents
inside a procedure, the object variable would have scope and lifetime only
within that procedure.

When you declare an object variable as WithEvents in the declarations sec-
tion of the module, the name of the object variable appears in the Object
drop-down list at the top left of your code window. Select this, and note that
the events exposed by the object are available in the Procedure drop-down
list at the top right of the code window. You can then add code to these
event procedures in the normal way, as shown below:

Private WithEvents oEmp As Employee

Private Sub oEmp_CanDataChange(EmployeeCode As String, Cancel
As Boolean)
 'event handling code goes here
End Sub

Private Sub oEmp_DataChanged(EmployeeCode As String)
 'event handling code goes here
End Sub

For a fuller description and discussion of the uses of WithEvents, Event,
and RaiseEvent, see the Event, RaiseEvent, and WithEvents entries, as
well as Chapter 4.

• The way in which you declare an Object variable with the Dim statement dic-
tates whether your application uses late binding or early binding. Early bind-
ing allows object references to be resolved at compile time and objects to be
initialized as your program is loaded into memory; therefore, they are avail-
able for use within your program almost instantaneously. Late binding, on the
other hand, resolves an object reference and initializes an object only when
it’s referenced in the code at runtime; therefore, your program can appear to
“hang” in mid-air while you wait for the object to be created in memory. To
optimize the performance of your application, you should use early binding
whenever possible. For more information, see Chapter 4.

• Variables declared with Dim at the module level are available to all proce-
dures within the module. At the procedure level, variables are available only
within the procedure.

• If you are calling a function that returns an array, define the array variable as
a simple variant. When the function returns, it’s a variant array, as the previ-
ous example illustrates.

• Take care when dimensioning fixed-length strings; you can’t use them to pass
data to external DLLs that are expecting string arguments.
Dim Statement 235

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
See Also
Const Statement, Def... Statement, Global Statement, Private Statement, Public
Statement, ReDim Statement, Set Statement, Static Statement, Type Statement,
Chapter 4

Dir, Dir$ Functions

Named Arguments

No

Syntax
Dir[(pathname[, attributes])]
pathname

Use: Optional

Data Type: String

A string expression that defines a path that may contain a drive name, a
folder name, and a filename.

attributes
Use: Optional

Data Type: Numeric or Constant

A constant or numeric expression specifying the file attributes to be
matched.

Return Value

Dir returns a variant of subtype string; Dir$ returns a string data type.

Description

Returns the name of a single file or folder matching the pattern or attribute passed
to the function.

Rules at a Glance

• A zero-length string ("") is returned if a matching file isn’t found.

• Possible values for attributes are:

• The object browser and published documentation list several other constants
that can be supplied as arguments to the attributes parameter. However,

Constant Value Description

vbNormal 0 Normal (not hidden and not a system file)

vbHidden 2 Hidden

vbSystem 4 System file

vbVolume 8 Volume label; if specified, all other attributes are
ignored

vbDirectory 16 Directory or folder
236 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Dir, Dir$ Functions
these either don’t work on the Win9x/NT platforms (i.e., vbAlias, which is
available only on the Macintosh) or have no effect on the operation of the
function (vbReadOnly, vbArchive).

• The attributes constants can be added together to create combinations of
attributes to match; e.g., vbHidden + vbDirectory matches hidden directories.

• If attributes isn’t specified, files matching pathname are returned regard-
less of attributes.

• You can use the wildcard characters * and ? within pathname to return multi-
ple files.

• Although pathname is optional, the first call you make to Dir must include
pathname. pathname must also be specified if you are specifying attri-
butes. In addition, once Dir returns a zero-length string, subsequent calls to
Dir must specify pathname or runtime error 5 (“Invalid procedure call or
argument”) results.

Example
Private Sub CommandButton1_Click()

Dim sFileName As String
Dim sPath As String

sPath = "c:\windows*.txt"
sFileName = Dir$(sPath)

Do While sFileName > ""
 ListBox1.AddItem sFileName
 sFileName = Dir$
Loop

End Sub

Programming Tips & Gotchas

• Dir can return only one filename at a time. To create a list of more than one
file that matches pathname, you must first call the function using the required
parameters, then make subsequent calls using no parameters. When there are
no more files matching the initial specification, a zero-length string is
returned. Once Dir has returned a zero-length string, you must specify a
pathname in a subsequent call or an error is generated. The example for the
Dir function shows how to do this in a VBA application using a UserForm
with a command button and a list box control. (Note: to get the example to
run under VB rather than VBA, the references to ListBox1 should simply be
replaced with List1. Also note that the above example doesn’t work with the
vbDirectory attribute.)

• The Dir function is the only method of determining if a file exists without
having to create elaborate error-handling routines. Quite simply, pass the
function the name of the file you wish to check. If Dir returns a zero-length
string, you know that the file doesn’t exist, as the following example shows:
Dir, Dir$ Functions 237

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Public Function FileExists(sPath As String) As Boolean

 If Dir(sPath) > "" Then
 FileExists = True
 Else
 FileExists = False
 End If

End Function

• The Dir function returns filenames in the order in which they appear in the
file allocation table. If you need the files in a particular order, you should first
store the names in an array before sorting.

• The Dir function saves its state between invocations, which means that the
function can’t be called recursively. For example, if the function returns the
name of the directory, you can’t then call the Dir function to iterate the files
in that directory and then return to the original directory.

• If attributes is set to vbDirectory only, the function behaves somewhat
differently. If wildcard characters are used in pathname, the function returns
only the first directory that matches the search criteria. Subsequent calls to the
function without providing a new pathname argument return the names of
ordinary files.

• If you are calling the Dir function to return the names of one or more files,
you must provide an explicit file specification. In other words, if you want to
retrieve the names of all files in the Windows directory, for instance, the func-
tion call:

strFile = Dir("C:\Windows", vbNormal)

necessarily fails. Instead, the Dir function must be called with the pathname
defined as follows:

strFile = Dir("C:\Windows*.*", vbNormal)

• A major limitation of the Dir and Dir$ functions is that they return only the
filename; they don’t provide other information, such as the size, date and time
stamp, or attributes of a file. These are most easily accessible by using the File
object’s Attributes property in the File System object model.

• Many difficulties with the Dir function result from not fully understanding
how various attributes constants affect the file or files returned by the
function. By default, Dir returns a “normal” file (i.e., a file whose hidden or
system attributes aren’t set). vbHidden returns a normal file or a hidden file,
but not a system file and not a system file that is hidden. vbSystem returns a
normal file or a system file, but not a hidden file, including a system file that
is hidden. vbSystem + vbHidden returns any file, regardless of whether it’s
normal, hidden, system, or system and hidden.

• Using the new File System object model in VB6 overcomes all the limitations
of Dir and Dir$.

See Also
CurDir Statement, File System Objects
238 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Do...Loop Statement
Do...Loop Statement

Named Arguments

No

Syntax
Do [{While | Until} condition]
 [statements]
[Exit Do]
 [statements]
Loop

or:

Do
 [statements]
[Exit Do]
 [statements]
Loop [{While | Until} condition]
condition

Use: Optional

Data Type: Boolean expression

An expression that evaluates to True or False.

statements
Use: Optional

Program statements that are repeatedly executed while, or until, condi-
tion is True.

Description

Repeatedly executes a block of code while or until a condition becomes True.

Rules at a Glance

• Do...Loop on its own repeatedly executes the code that is contained within
its boundaries indefinitely. You therefore need to specify within the code
under what conditions the loop is to stop repeating. In addition, if the loop
executes more than once, the variable controlling loop execution must be
modified inside of the loop. For example:

Do
 intCtr = intCtr + 1 ' Modify loop control variable
 MsgBox "Iteration " & intCtr & _
 " of the Do loop..."
 ' Compare to upper limit
 If intCtr = 10 Then Exit Do
Loop

Failure to do this results in the creation of an endless loop.

• Adding the Until keyword after Do instructs your program to Do something
Until the condition is True. Its syntax is:
Do...Loop Statement 239

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Do Until condition
 'code to execute
Loop

If condition is True before your code gets to the Do statement, the code
within the Do...Loop is ignored.

• Adding the While keyword after Do repeats the code while a particular condi-
tion is True. When the condition becomes False, the loop is automatically
exited. The syntax of the Do While statement is:

Do While condition
 'code to execute
Loop

Again, the code within the Do...Loop construct is ignored if condition is
False when the program arrives at the loop.

• In some cases, you may need to execute the loop at least once. You might,
for example, evaluate the values held within an array and terminate the loop
if a particular value is found. In that case, you’d need to execute the loop at
least once. To do this, place the Until or While keyword along with the
condition after the Loop statement. Do...Loop Until always executes the
code in the loop at least once and continues to loop until the condition is
True. Likewise, Do...Loop While always executes the code at least once,
and continues to loop while the condition is True. The syntax of these two
statements is as follows:

Do
 'code to execute
Loop Until condition

Do
 'code to execute
Loop While condition

• A Null condition is treated as False.

• Your code can exit the loop at any point by executing the Exit Do statement.

Programming Tips & Gotchas

You’ll also encounter situations in which you intend to continually execute the
loop while or until a condition is True, except in a particular case. This type of
exception is handled using the Exit Do statement. You can place as many Exit
Do statements within a Do...Loop structure as you require. As with any exit from
a Do...Loop, whether it’s exceptional or normal, the program continues execu-
tion on the line directly following the Loop statement. The following code
fragment illustrates the use of Exit Do:

Do Until condition1
 'code to execute
 If condition2 Then
 Exit Do
 End if
 'more code to execute—only if condition2 is false
Loop
240 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
DoEvents Function
See Also
For...Next Statement, For Each...Next Statement, While...Wend Statement

DoEvents Function

Named Arguments

No

Syntax
DoEvents()

Return Value

In VBA, DoEvents returns 0; in the retail version of VB, it returns the number of
open forms.

Description

Allows the operating system to process events and messages waiting in the
message queue. For example, you can allow a user to click a Cancel button while
a processor-intensive operation is executing. In this scenario, without DoEvents,
the click event wouldn’t be processed until after the operation had completed;
with DoEvents, the Cancel button’s Click event can be fired and its event handler
executed even though the processor-intensive operation is still executing.

Rules at a Glance

Control is returned automatically to your program or the procedure that called
DoEvents once the operating system has processed the message queue.

Example

The following example uses a UserForm with two command buttons to illustrate
how DoEvents interrupts a running process:

Option Explicit
Private lngCtr As Long
Private blnFlag As Boolean

Private Sub CommandButton1_Click()

 blnFlag = True

 Do While blnFlag
 lngCtr = lngCtr + 1
 DoEvents
 Loop
 MsgBox "Loop interrupted after " & lngCtr & _
 " iterations."
End Sub

Private Sub CommandButton2_Click()
DoEvents Function 241

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 blnFlag = False

End Sub

Programming Tips & Gotchas

• You may consider using the retail version of VB to create standalone ActiveX
EXEs that handle very intensive or long processes. These can then be called
from your VBA code. This allows you to pass the responsibility of time slic-
ing and multitasking to the operating system.

• Make sure that during the time you have passed control to the operating sys-
tem with DoEvents, the procedure calling DoEvents isn’t called from another
part of the application or from another application, since the return from
DoEvents may be compromised. For the same reason, you must not use the
DoEvents function within VB in-process ActiveX DLLs.

• While DoEvents can be essential for increasing the responsiveness of your
program, it should at the same time be used judiciously, since it entails an
enormous performance penalty. For example, the following table compares
the number of seconds required for a simple For...Next loop to iterate one
million times when DoEvents isn’t called, on the one hand, and when it’s
called on each iteration of the loop, on the other:

If most of a procedure’s processing occurs inside a loop, one way of avoid-
ing far-too-frequent calls to DoEvents is to call it conditionally every hundred
or thousand iterations of the loop. For example:

Dim lngCtr As Long
For lngCtr = 0 To 1000000
 If lngCtr / 1000 = Int(lngCtr / 1000) Then
 DoEvents
 End If
Next

Drive Object (VB6)

Description

Interrogates the system properties of any drive connected to the current machine,
including network drives. The Drive object supports no methods. The RootFolder
property returns a Folder object representing a drive’s root folder or directory;
from this you can obtain a Folders collection object containing the subfolders of
the root, and thus gain access to all parts of the drive.

See the File System object model entry for an overview, including the library refer-
ence needed to access it.

without DoEvents 0.3 seconds

with DoEvents 49.8 seconds
242 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Drive Object (VB6)
Createable

No

Returned by

FileSystemObject.Drives.Item property

Properties

All Drive object properties are read-only. In addition, removable media drives
must be ready (i.e., have media inserted) for the Drive object to read certain
properties.

AvailableSpace
Data Type: Variant

The number of bytes unused on the disk.

DriveLetter
Data Type: String

The drive letter used for this drive on the current machine (e.g., C).

DriveType
Data Type: DriveType constant

A Drive Type constant (see table) indicating the type of drive. Any remote
drive is shown only as remote. For example, a shared CD-ROM or Zip drive
that is both remote and removable is shown simply as remote on any
machine other than the machine on which it’s installed.

FileSystem
Data Type: String

The installed filesystem; returns FAT, NTFS, or CDFS.

FreeSpace
Data Type: Variant

The number of bytes unused on the disk.

IsReady
Data Type: Boolean

For hard drives, this should always return True. For removable media drives,
True is returned if media is in the drive; otherwise, False is returned.

Constant Value

CDROM 4

Fixed 2

RAM Disk 5

Remote 3

Removable 1

Unknown 0
Drive Object (VB6) 243

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Path
Data Type: String

The drive name followed by a colon (e.g., C:) This is the default property of
the Drive object.

RootFolder
Data Type: Folder object

Gives you access to the rest of the filesystem by exposing a Folder object
representing the root folder.

SerialNumber
Data Type: Long

The serial number of the drive.

ShareName
Data Type: String

For a network share, the machine name and share name (e.g., \\NTSERV1\
TestWork).

TotalSize
Data Type: Variant

The total size of the drive in bytes.

VolumeName
Data Type: String

The drive’s volume name, if one is assigned (e.g., DRIVE_C).

Drives Collection Object (VB6)

Description

All drives connected to the current machine are included in the Drives collection,
even those that aren’t currently ready (like removable media drives with no media
inserted in them). The Drives collection object is zero-based and is read-only.

See the File System object model entry for an overview, including the library refer-
ence needed to access it.

Createable

No

Returned by

FileSystemObject.Drives property

Properties

Count
Data Type: Long

Returns the number of Drive objects in the collection.
244 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
End... Statement
Item
Syntax: oDrives.Item(key)

Data Type: Drive object

Returns a Drive object whose key is key, the drive letter. This is an unusual
collection, since the drive’s index value (its ordinal position in the collection)
can’t be used; attempting to do so generates runtime error 5, “Invalid proce-
dure call or argument.” Since attempting to retrieve a Drive object for a drive
that doesn’t exists generates runtime error 68, it’s a good idea to call the File-
SystemObject object’s DriveExists method beforehand.

Example
Dim ofsFileSys As FileSystemObject
Dim ofsDrives As Drives
Dim ofsDrive As Drive

Set ofsFileSys = New FileSystemObject
 Set ofsDrives = ofsFileSys.Drives
 Set ofsDrive = ofsDrives.Item("C")
 MsgBox ofsDrive.DriveType
 Set ofsDrive = Nothing
 Set ofsDrives = Nothing
Set ofsFileSys = Nothing

See Also
Drive Object, FileSystemObject.Drives Property

End... Statement

Syntax
End Enum
End Function
End If
End Property
End Select
End Sub
End Type
End With

Description

Ends a procedure or a block of code.

Rules at a Glance

The End statement is used as follows:

Statement Description

End Terminates program execution.

End Enum Marks the end of an enumerated type.

End Function Marks the end of a Function procedure.
End... Statement 245

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

Although supported, the End statement used by itself to terminate the program
shouldn’t be used within a VBA application. Instead you should terminate execu-
tion of a procedure prematurely using the Exit... statement.

See Also
Exit... Statement

Enum Statement

Named Arguments

No

Syntax
[Public | Private] Enum name
membername [= constantexpression]
membername [= constantexpression]
. . .
End Enum
name

Use: Required

The name of the enumerated data type.

membername
Use: Required

The name of a member of the enumerated data type.

constantexpression
Use: Optional

Data Type: Long

The value to be assigned to membername.

Description

Defines an enumerated data type. All the values of the data type are defined by
the instances of membername.

End If Marks the end of an If...Then...Else statement.

End Property Marks the end of a Property Let, Property Get, or Prop-
erty Set procedure.

End Select Marks the end of a Select Case statement.

End Sub Marks the end of a Sub procedure.

End Type Marks the end of a user-defined type definition.

End With Marks the end of a With statement.

Statement Description
246 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Enum Statement
Rules at a Glance

• The Enum statement can appear only at module level, in the declarations sec-
tion of a form, code module, or class module.

• The Public keyword makes the enumerated data type visible throughout the
project in which it’s used; this is the default behavior. Note that adding a ref-
erence to a library containing public enumerated types to a project makes
those types visible to the project. A class doesn’t have to be instantiated to
access these enumerated types.

• The Private keyword makes the enumerated data type visible only to the
module in which it appears.

• constantexpression must evaluate to a Long. It can be either a negative or
a positive number. It can also be another member of an enumerated data type
or an expression that includes long integers and enumerated data types.

• If you assign a floating point value to constantexpression, it’s rounded
and converted to a long integer automatically.

• If constantexpression is omitted, the value assigned to membername is 0 if
it’s the first expression in the enumeration. Otherwise, its value is 1 greater
than the value of the preceding membername.

• The values assigned to membername can’t be modified at runtime.

Programming Tips & Gotchas

• When two enumerated data types in different libraries share the same name
but different members or values, references to the enumerated type are
resolved based on the library that has been assigned the highest priority in
the References dialog. Because enumerated data types aren’t members of a
class (even though they are defined in a class’s type library), a reference to a
particular enumerated data type can’t be qualified with a class name or library
name.

• Once you define an enumerated type, you can use name as the return value
of a function. For example, given the enumeration:

Public Enum enQuarter
 enQ1 = 1
 enQ2 = 2
 enQ3 = 3
 enQ4 = 4
End Enum

you can use it as the return value of a function, as illustrated by the following
function declaration:

Public Function QuarterFromDate(datVar as Date) _
 As enQuarter

You can also use it in a procedure’s parameter list when defining a parame-
ter’s data type, as in the following code fragment:

Public Function GetQuarterlySales(intQ As enQuarter) _
 As Double
Enum Statement 247

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• Individual values of an enumerated type can be used in your program just
like normal constants.

• Enumerated types provide the advantage of allowing you to replace numeric
values with more mnemonic labels, and of allowing you to select values using
the Auto List Members feature in the VB and VBA IDEs. However, when you
declare a parameter or function’s return value to be an enumerated type, VBA
provides no automatic type checking. Consequently, if your program needs to
insure that the values passed to a routine are valid, your code is responsible
for handling the validation.

• Remember that the members of an enumerated type must evaluate to a Long.
This is a major limitation, and there is no workaround.

See Also
Const Statement, Select Case Statement

Environ, Environ$ Functions

Named Arguments

Yes

Syntax
Environ({envstring | number})
envstring

Key: Optional

Data Type: String

The name of the required environment variable.

number
Key: Optional

Data Type: Numeric expression

The ordinal number of the environment variable within the environment
string table.

Return Value

Environ returns a string containing the text assigned to envstring.

Description

Returns the value assigned to an operating-system environment variable.

Rules at a Glance

• A zero-length string ("") is returned if envstring doesn’t exist in the operat-
ing system’s environment-string table, or if there is no environment string in
the position specified by number.

• envstring and number are mutually exclusive; that is, you can specify one
or the other, but not both.
248 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
EOF Function
Example
Private Type env
 strVarName As String
 strValue As String
End Type

Private Sub Form_Load()

Dim intCtr As Integer, intPos As Integer
Dim strRetVal As String
Dim udtEnv As env

intCtr = 1
Do
 strRetVal = Environ(intCtr)
 If strRetVal <> "" Then
 intPos = InStr(1, strRetVal, "=")
 udtEnv.strVarName = Left(strRetVal, intPos - 1)
 udtEnv.strValue = Mid(strRetVal, intPos + 1)
 Else
 Exit Do
 End If
 intCtr = intCtr + 1
Loop

End Sub

Programming Tips & Gotchas

• If you use number to specify the environment variable, both the name and
the value of the variable are returned. An equals sign (=) separates them. For
example, the function call Environ(1) might return the string TEMP=C:\WIN-
DOWS\TEMP.

• If you retrieve environment variables and their values by ordinal position, the
first variable is in position 1, not position 0.

• Due to the flexibility offered, it’s now accepted and recommended practice to
use the registry for variables needed by your application, rather than the envi-
ronment string table.

• Environment variables can be defined in a variety of ways, including by the
AUTOEXEC.BAT and MSDOS.SYS files, as well as by the HKEY_LOCAL_
MACHINE\System\CurrentControlSet\Control\SessionManager\Envi-
ronment and HKEY_CURRENT_USER\Environment keys in the registry. How-
ever, the Environ function doesn’t recognize environment variables defined in
the registry.

EOF Function

Named Arguments

No
EOF Function 249

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Syntax
EOF(filenumber)
filenumber

Use: Required

Data: Integer

Any valid file number.

Return Value

An integer containing –1 (True), or 0 (False).

Description

Returns an integer evaluating to True (–1) when the end of a file has been
reached; until the end of the file is reached, EOF returns False (0).

Rules at a Glance

• filenumber must be a valid number used in the Open statement to open
either a random or sequential file.

• If you have opened the file using either random or binary access, a Get state-
ment that can’t read a complete record (i.e., an attempt to access a record past
the last record in the file) causes EOF to return True.

Example
iFile = FreeFile
Open sFilename for Input as #iFile
Do While Not EOF(iFile)
 LineInput #iFile, sDataLine
 ...
Loop
Close #iFile

Programming Tips & Gotchas

• EOF allows you to test whether the end of a file has been reached without
generating an error.

• Because EOF dates back to the times when VB didn’t support an intrinsic
Boolean data type, the function uses an integer data type to hold the 0 and –1
False and True values.

• Because you always write data to sequential files at the end of the file, the file
marker is always at the end of the file, and EOF therefore always returns True
when testing files opened with their modes set equal to either input or
append.

• As Visual Basic is continually enhanced with new functions and new objects,
there are more efficient and elegant alternatives to some of the VB language
elements that have been with us since before “Visual” was even thought of!
The following snippets compare methods of populating an array with data
extracted from a comma-delimited text file. The first snippet uses a standard
Do...Loop and EOF flag:
250 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
EOF Function
Dim sFilename As String
Dim sContents As String
Dim iFile As Integer
Dim sArray() As String

iFile = FreeFile
sFilename = "testinput.txt"
ReDim sArray(0)
Open sFilename For Input As #1
 Do While Not EOF(1)
 Input #1, sContents
 ReDim Preserve sArray(UBound(sArray) + 1)
 sArray(UBound(sArray)) = sContents
 Loop
Close #1

You can replace this with a single call to the Input function, passing to it the
length of the text file, and, if you’re using VB6, you can call the Split function
to parse the comma-delimited string:

Dim sFilename As String
Dim sContents As String
Dim iFile As Integer
Dim sArray() As String

sFilename = "testinput.txt"
Open sFilename For Input As #iFile
 sContents = Input(LOF(iFile), iFile)
Close #iFile
sArray = Split(sContents, ",")

Again, for VB6 users only, there is the object-oriented way of extracting the
data, again passing the resulting string to the Split function to be parsed. For
this example to work, you have to create a project reference to the Microsoft
Scripting Runtime Library, which gives you access to the File System Object:

Dim sFilename As String
Dim sArray() As String
Dim ofsFileSys As New Scripting.FileSystemObject
Dim ofsTextStream As TextStream

sFilename = "testinput.txt"
Set ofsTextStream = _
 ofsFileSys.OpenTextFile(sFilename)
 sArray = Split(ofsTextStream.ReadAll, ",")
Set ofsTextStream = Nothing

• Don’t confuse the EOF Function with the EOF property of the RDO, DAO,
and ADO recordsets and result sets. The former is a function for testing the
position of the file pointer in a file opened using the VBA Open statement; the
latter is a property that indicates the state of the record pointer in a database
or recordset opened using automation.

• The AtEndOfStream property is the TextStream object’s equivalent to the EOF
function.
EOF Function 251

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
See Also
File System Objects, Get Statement, Loc Function, LOF Function, Open
Statement

Erase Statement

Syntax
Erase arraylist
arraylist

Use: Required

Data Type: String

A list of array variables to clear.

Description

Resets the elements of an array to their initial (unassigned) values. In short, Erase
“clears out” or empties an array.

Rules at a Glance

• Specify more than one array to be erased by using commas to delimit array-
list.

• Fixed array variables remain dimensioned; on the other hand, all memory
allocated to dynamic arrays is released.

• The following table describes how Erase reinitializes the elements of a fixed
array.

Programming Tips & Gotchas

Once you use Erase to clear dynamic arrays, they must be redimensioned with
ReDim before being used again. This is because Erase releases the memory
storage used by the dynamic array back to the operating system, which sets the
array to have no elements.

See Also
Dim Statement, ReDim Statement

Element Data Type Element Reset to...

Numeric Zero

Variable-length string Zero-length string ("")

Fixed-length string Zero

Boolean False

Variant Empty

User-defined type Each member of the user-defined type is treated as
a separate variable

Object Nothing
252 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Err Object
Err Object

Description

The Err object contains properties and methods that allow you to obtain informa-
tion about a single runtime error in a Visual Basic program. It also allows you to
generate errors and to reset the error object. Because the Err object is an intrinsic
object (which means that it’s part of every VB project you create) with global
scope, you don’t need to create an instance of it within your code.

When an error is generated in your application—whether it’s handled or not—the
properties of the Err object are assigned values you can then access to gain infor-
mation about the error that occurred. You can even generate your own errors
explicitly using the Err.Raise method. You can also define your own errors to
unify the error-handling process.

When your program reaches an Exit Function, Exit Sub, Exit Property,
Resume, or On Error statement, the Err object is cleared and its properties reini-
tialized. This can also be achieved explicitly using the Err.Clear method.

Properties

Methods

Programming Tips & Gotchas

• You may come across legacy code that has been written with either the Err
function or the Err statement, both of which simply returned the error num-
ber. This code still runs because the Err object’s default property is the Num-
ber property. As a result, simply using Err in your code (as you do when you
call either the Err function or the Err statement) is the same as writing
Err.Number.

• The Visual Basic Err object isn’t a collection; it contains only information
about the last error, if one occurred. You could, however, implement your

Property Name Description

Description The string associated with the given error number.

HelpContext A context ID within a VB Help file.

HelpFile The path to a VB Help file.

LastDLLError The last error code generated by a DLL; available only on 32-
bit Windows systems.

Number A long integer used to describe an error (i.e., an error code).

Source Either the name of the current project or the class name of the
application that generated the error.

Method Name Description

Clear Resets all the properties of the Err object.

Raise Forces an error of a given number to be generated.
Err Object 253

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
own error-collection class to store a number of errors by copying error infor-
mation from the Err object into an application-defined error-collection object.

• The Error statement, which was used in earlier versions of VB to generate an
error, is included only in the language for backward compatibility and
shouldn’t be used in new code. Use the Err.Raise method instead.

• An Err object can’t be passed back from a class module to a standard code
module.

• For a full description of error trapping and error handling, see Chapter 6,
Error Handling.

See Also
Err.Clear Method, Err.Raise Method, On Error Statement, Resume Statement

Err.Clear Method

Syntax
object.Clear
object

Use: Required

Data Type: Error object

An instance of the Err object.

Description

Explicitly resets all the properties of the Err object after an error has been handled.

Rules at a Glance

You need only to Clear the Err object if you need to reference its properties for
another error within the same subroutine or before another On Error statement
within the same subroutine.

Example
On Error Resume Next

i = oObjectOne.MyFunction(iVar)

If Err.Number <> 0 Then
 MsgBox "The Error : " & Err.Description & vbCrLf _
 & " was generated in " & Err.Source
 Err.Clear
End If

j = oObjectTwo.YourFunction(iVar)

If Err.Number <> 0 Then
 MsgBox "The Error : " & Err.Description & vbCrLf _
 & " was generated in " & Err.Source
 Err.Clear
End If
254 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Err.Description Property
Programming Tips & Gotchas

• Resetting the Err object explicitly using the Clear method is necessary when
you use On Error Resume Next and test the value of Err.Number repeat-
edly. Unless you reset the Err object, you run the very real risk of catching the
previously handled error, the details of which are still lurking in the Err
object’s properties.

• The Err object is automatically reset when either a Resume, Exit Sub, Exit
Function, Exit Property, or On Error statement is executed.

• You can achieve the same results by setting the Err.Number property to 0;
however your code will be more self-documenting if you use the Clear
method.

• When testing the value of Err.Number, don’t forget that OLE servers often
return “negative” numbers. Actually internally they’re not really negative;
they’re unsigned longs, but VB has no unsigned long data type. The extra bit
of the unsigned long type appears as a “-”.

See Also
Err Object, Err.Raise Method, On Error Statement, Resume Statement

Err.Description Property

Syntax

To set the property:

Err.Description = string

To return the property value:

string = Err.Description
string

Use: Required

Data Type: String

Any string expression.

Description

A read/write property containing a short string describing a runtime error.

Rules at a Glance

• When a runtime error occurs, the Description property is automatically
assigned the standard description of the error.

• For application-defined errors, you must assign a string expression to the
Description property or the error won’t have an accompanying textual mes-
sage.

• You can override the standard description by assigning your own description
to the Err object for both VB errors and application-defined errors.
Err.Description Property 255

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

• If an error occurs within a class module, an ActiveX DLL, or an EXE—regard-
less of whether it’s running in or out of your application’s process space—no
error information from the component is available to your application unless
you explicitly pass back an error code as part of the error-handling routine
within the component. This is done using the Err.Raise method, which allows
you to raise an error on the client, passing custom parameters for Number,
Source, and Description.

• If you raise an error with the Err.Raise method and don’t set the Description
property, the Description property is automatically set to “Application Defined
or Object Defined Error.”

• You can also pass the Err.Description to a logging device such as a log file in
Windows 95 or the application log in Windows NT by using the App.LogEv-
ent method, as the following code fragment demonstrates:

EmployeesAdd_Err:
App.LogEvent "EmployeesAdd" & "; " & _
 Err.Description, vbLogEventTypeError

• The best way to set the Description property for your own application-
defined errors is to use the named description argument with the Raise
method, as the following code shows:

Sub TestErr()

On Error GoTo TestErr_Err

 Err.Raise Number := 65444, _
 Description := "Meaningful Error Description"

TestErr_Exit:
 Exit Sub

TestErr_Err:
 MsgBox Err.Description
 Resume TestErr_Exit

End Sub

See Also
Err.Object, Err.Number, Err.Raise Method

Err.HelpContext Property

Syntax
Err.HelpContext

Description

A read/write property that either sets or returns a long integer value containing the
context ID of the appropriate topic within a Help file.
256 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Err.HelpContext Property
Rules at a Glance

• The Err object sets the HelpContext property automatically when an error is
raised.

• If the error is user-defined, and you don’t explicitly set the HelpContext prop-
erty yourself, the Err object sets the value to 1000095, which corresponds to
the “Application-defined or object-defined error” help topic in the VBA Help
file. (The HelpContext property is set by the fifth parameter to the Err.Raise
method.)

• HelpContext IDs are decided upon when writing and creating a Windows
help file. Once the Help file has been compiled, the IDs can’t be changed.
Each ID points to a separate Help topic.

Example
Sub TestErr()

On Error GoTo TestErr_Err

 Dim i
 i = 8

 MsgBox (i / 0)

TestErr_Exit:
 Exit Sub

TestErr_Err:
 MsgBox Err.Description, vbMsgBoxHelpButton, "ErrorVille", _
 Err.HelpFile, Err.HelpContext
 Resume TestErr_Exit

End Sub

Programming Tips & Gotchas

• You can display a topic from the Visual Basic help file by using the MsgBox
function with the vbMsgBoxHelpButton constant and passing Err.HelpCon-
text as the HelpContext argument (as shown in the previous example).
While this is a simple and effective way to add much more functionality to
your applications, bear in mind that some of your users could find the expla-
nations within the VB help file somewhat confusing. If time and budget allow,
the best method is to create your own help file (for which you need the Help
compiler and other Help file resources from the full version of VB), and pass
both the HelpContext and HelpFileName to MsgBox.

• Another method of displaying the Help file is to call the Application.Help
method, again passing both the Err.HelpFile and Err.HelpContext properties
into the method, as follows:

If Err.Number > 0 then
 Application.Help Err.HelpFile, Err.HelpContext
End If
Err.HelpContext Property 257

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
This method has the disadvantage that the help file page is shown immedi-
ately, without giving the user a chance to either recognize that an error has
taken place or to skip viewing the Help file altogether.

• If you supply a HelpContext ID that can’t be found in the Help file, the con-
tents page for the Help file should be displayed. However, what actually hap-
pens is that a Windows Help error is generated, and a message box is
displayed, which informs the user to contact their vendor.

• Some objects that you may use within your application have their own help
files, which you can access using HelpContext to display highly focused help
to your users.

• The Microsoft VBA Help Reference wrongly states that the Err.HelpContext
property is a string data type. It is in fact a Long.

See Also
MsgBox Function, Err.HelpFile Property, Chapter 6

Err.HelpFile Property

Syntax
Err.HelpFile

Description

A read/write string property that contains the fully qualified path of a Windows
Help file.

Rules at a Glance

• You can set a global Help file for the project in the project Properties dialog
box, which can be accessed from the Tools menu in VB 4.0 and the Project
menu in VB 5.0 and 6.0.

• The HelpFile property is automatically set by the Err object when an error is
raised.

• The default help file is the Microsoft Visual Basic for Applications reference.

Example

See Err.HelpContext.

Programming Tips & Gotchas

• You can display a topic from the Visual Basic help file by using the MsgBox
function with the vbMsgBoxHelpButton constant and passing Err.HelpFile as
the HelpFile argument (as shown in the example for the Err.HelpContext
property). While this is a simple and effective way to add more functionality
to your applications, bear in mind that some of your users could find the
explanations within the VB help file somewhat confusing. If time and budget
allow, the best method is to create your own help file (for which you need
the Help compiler and other Help file resources from the full version of VB),
and pass both the HelpContext and HelpFileName to MsgBox.
258 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Err.LastDLLError Property
• Another method of displaying the Help file is to call the Application.Help
method, again passing both the Err.HelpFile and Err.HelpContext properties
into the method, as follows:

If Err.Number > 0 then
 Application.Help Err.HelpFile, Err.HelpContext
End If

This has the disadvantage that the help file page is shown immediately, with-
out giving the user a chance to either recognize that an error has taken place
or to skip displaying the Help file altogether.

• Surprisingly, even if you have specified a Help file in the Project Properties
dialog, the Err object defaults to the VBA help file. The only way to use
another help file is to explicitly set the HelpFile property immediately prior to
calling either the MsgBox function or the Application.Help method.

• Some objects you may use within your application have their own help files,
which you can access using HelpFile to display highly focused help to your
users.

• Remember that once the program encounters an Exit... statement or an On
Error statement, all the properties of the Err object are reset; this includes the
Help file. You must therefore set the Err.HelpFile property each time your
application needs to access the help file.

See Also
Err.HelpContext Property, Err.Number Property, Chapter 6

Err.LastDLLError Property

Syntax
Err.LastDLLError

Description

A read-only property containing a long data type representing a system error
produced within a DLL called from within a VB program.

Rules at a Glance

• Only direct calls to a Windows system DLL from VB code assign a value to
LastDLLError.

• The value of the LastDLLError property depends upon the particular DLL
being called. Your code must be able to handle the various codes that can be
returned by the DLL you are calling.

• Don’t forget that a failed DLL call doesn’t itself raise an error within your VB
program. As a result, the Err object’s Number, Description, and Source proper-
ties aren’t filled.
Err.LastDLLError Property 259

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

• The LastDLLError property is used only by system DLLs, such as kernel32.dll,
and therefore errors that occur within DLLs you may have created in VB won’t
be assigned.

• Obtaining accurate documentation about the return values of system DLLs can
be a challenging experience. Most useful information can be found by study-
ing the API documentation for Visual C++. However, you can use the Win-
dows API FormatMessage to return the actual Windows error message string
from within Kernel32.DLL, which incidentally is also in the correct language.
The following is a brief example you can use in your applications to display
the actual Windows error description:

Option Explicit
Declare Function FormatMessage Lib "kernel32" _
 Alias "FormatMessageA" _
 (ByVal dwFlags As Long, lpSource As Any, _
 ByVal dwMessageId As Long, _
 ByVal dwLanguageId As Long, _
 ByVal lpBuffer As String, ByVal nSize As Long, _
 Arguments As Long) As Long
Public Const FORMAT_MESSAGE_FROM_SYSTEM = &H1000
Public Const FORMAT_MESSAGE_IGNORE_INSERTS = &H200

Function apiErrDesc(lErrCode As Long) As String

 Dim sErrDesc As String
 Dim lReturnLen As Long
 Dim lpNotUsed As Long

 sErrDesc = String(256, 0)
 lReturnLen = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM _
 Or FORMAT_MESSAGE_IGNORE_INSERTS, _
 lpNotUsed, lErrCode, 0&, sErrDesc, _
 Len(sErrDesc), ByVal lpNotUsed)

 If lReturnLen > 0 Then
 apiErrDesc = Left$(sErrDesc, lReturnLen)
 End If

End Function

Here’s a snippet demonstrating how you can use this utility function:

lReturn = SomeAPICall(someparams)
If lReturn <> 0 then
 Err.Raise Err.LastDLLError & vbObjectError, _
 "MyApp:Kernel32.DLL", _
 apiErrDesc(Err.LastDLLError)
End If

Note that some API calls return 0 to denote a successful function call; others
return 0 to denote an unsuccessful call. You should also note that some API
functions don’t appear to set the LastDLLError property. In most cases, these
260 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Err.Number Property
are functions that return an error code. You could therefore modify the snip-
pet above to handle these cases:

lReturn = SomeAPICall(someparams)
If lReturn <> 0 then
 If Err.LastDLLError <> 0 Then
 Err.Raise Err.LastDLLError & vbObjectError, _
 "MyApp:Kernel32.DLL", _
 apiErrDesc(Err.LastDLLError)
 Else
 Err.Raise lReturn & vbObjectError, _
 "MyApp:Kernel32.DLL", _
 apiErrDesc(lReturn)
 End If
End If

See Also
Err Object, Chapter 6

Err.Number Property

Syntax
Err.Number

Description

A read-write property containing a long value that represents the error code for
the last error generated.

Rules at a Glance

• When a runtime error is generated within the program, the error code is auto-
matically assigned to Err.Number.

• The Number property is updated with an application-defined error whose
code is passed as an argument to the Err.Raise method.

• When using the Err.Raise method in normal code, your user-defined error
codes can’t be greater than 65536 and less that 0. (For an explanation, see the
final note in the “Programming Tips & Gotchas” section of the entry for the
Err.Raise method.)

• VBA error numbers in the range of 1–1000 are for its own trappable errors. In
addition, error numbers from 31001 to 31037 are also used for VBA trappable
errors. In implementing a series of application-defined errors, your error han-
dlers should either translate application errors into VBA trappable errors or,
preferably, assign a unique range to application-defined errors.

• When using the Err.Raise method in ActiveX objects, add the vbObjectEr-
ror constant. (–2147221504) to your user-defined error code to distinguish
OLE errors from local application errors.

• When control returns to the local application after an error has been raised by
the OLE server, the application can determine that the error originated in the
Err.Number Property 261

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
OLE server and extract the error number with a line of code like the follow-
ing:

Dim lError as Long
If Err.Number And vbObjectError Then _
 lError = Err.Number XOr vbObjectError

Programming Tips & Gotchas

• An error code is a useful method of alerting your program that a function
within an ActiveX or class object has failed. By returning a number based on
the vbObjectError constant, you can easily determine that an error has
occurred. By then subtracting vbObjectError from the value returned by the
object’s function, you can determine the actual error code:

If Err.Number < 0 then
 Err.Number = Err.Number – vbObjectError
End If

• You can create a sophisticated multiresult error-handling routine by using the
Err.Number property as the Case statement within a Select Case block, tak-
ing a different course of action for different errors, as this snippet demon-
strates:

Select Case Err.Number
 Case < 0
 'OLE Object Error
 Set oObject = Nothing
 Resume DisplayErrorAndExit
 Case 5
 'increment the retry counter and try again
 iTries = iTries + 1
 If iTries < 5 Then
 Resume RetryFunctionCall
 Else
 Resume DisplayErrorAndExit
 End If
 Case 20
 'we almost expected this one!
 Resume Next
 Case Else
 Resume DisplayErrorAndExit
End Select

See Also
Err Object, Err.Raise Property, Chapter 6

Err.Raise Method

Named Arguments

Yes

Syntax
object.Raise number, source, description, _

helpfile, helpcontext
262 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Err.Raise Method
object
Use: Required.

Data Type: Err object

The Err object.

number
Use: Required.

Data Type: Long integer

A numeric identifier of the particular error.

source
Use: Optional.

Data Type: String

The name of the object or application responsible for generating the
error.

description
Use: Optional.

Data Type: String

A useful description of the error.

helpfile
Use: Optional.

Data Type: String

The fully qualified path of a Microsoft Windows Help file containing help
or reference material about the error.

helpcontext
Use: Optional.

Data Type: Long

The context ID within helpfile.

Description

Generates a runtime error.

Rules at a Glance

• To use the Raise method, you must specify an error number.

• If you supply any of the number, source, description, helpfile, and
helpcontext arguments when you call the Err.Raise method, they are sup-
plied as values to the Number, Source, Description, HelpFile, and HelpCon-
text properties, respectively. Refer to the entries for the individual properties
for full descriptions of and rules for each property.

Programming Tips & Gotchas

• The Err.Raise method replaces the older Error statement, which shouldn’t be
used in new code.
Err.Raise Method 263

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• The Raise method doesn’t reinitialize the Err object prior to assigning the val-
ues you pass in as arguments. This can mean that if you Raise an error against
an Err object that hasn’t been cleared since the last error, any properties you
don’t specify values for still contain the values from the last error.

• As well as using Raise in a runtime scenario, you can put it to good use in the
development stages of your program to test the viability of your error-han-
dling routines under various circumstances.

• The fact that Err.Number accepts only numbers in the range 0–65536 may
appear to be strange at first because the data type of the Error Number
parameter in the Raise event is a Long; however deep in the recesses of the
Err object, the error code must be declared as an unsigned integer, a data
type not supported by VB.

See Also
Err Object, Err.Clear Method, Err.HelpContext Property, Err.Number Property,
Chapter 6

Err.Source Property

Syntax
Err.Source

Description

A read-write string property containing the name of the application or the object
that has generated the error.

Rules at a Glance

• When a runtime error occurs in your code, the Source property is automati-
cally assigned the project name (that is, the string that is assigned to the
project’s Name property). Note that this isn’t necessarily the filename of the
project file.

• For clarity of your error messages, when you raise an error in a class module,
the format of the source parameter should be project.class. You can use
the App.Title property to obtain the project name.

Programming Tips & Gotchas

Knowing what type of error has occurred within a program is often of little use to
you if you don’t know where the error was generated. However, if you enhance
the standard Source by adding the name of the procedure, your debugging time
can be cut dramatically.

See Also
Err Object, Chapter 6
264 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Error Statement
Error, Error$ Functions

Named Arguments

No

Syntax
Error[(errornumber)]
errornumber

Use: Optional

Data Type: Long

Any valid error code.

Return Value

Error returns a variant of subtype string; Error$ returns a String. Both return values
are standard descriptions for the particular error code.

Description

Returns either the error description corresponding to the given error number or
the description for the last error.

Rules at a Glance

• If errornumber isn’t passed to the function, Error returns the description for
the last error to have occurred. If no errors have occurred, a zero-length string
("") is returned.

• If errornumber isn’t recognized as a VB error, the function returns the
description “Application-defined or object-defined error.”

• If errornumber is outside the range of a valid error code, an overflow error
is generated.

Example
x = Error(100)

Programming Tips & Gotchas

The Error and Error$ functions are included for only backward compatibility.
Instead, you should use the Description property of the Err object in all new code.
The Error$ function, however, is useful for obtaining an error description for any
error code “after the event,” when perhaps the Err object has been reinitialized.

See Also
Err.Description Property

Error Statement

Syntax
Error errornumber
Error Statement 265

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
errornumber
Use: Optional

Data Type: Long

Any valid error code.

Description

Raises an error.

Rules at a Glance

The Error statement is included only for backward compatibility; instead, you
should use the Err.Raise method in new code.

See Also
Err.Raise Method

Event Statement

Named Arguments

No

Syntax
Public Event eventName [(arglist)]
eventName

Use: Required

Data Type: String

The name of the event.

arglist
Optional; has the following syntax:

[ByVal | ByRef] varname[()] [As type]
ByVal

Use: Optional

The argument is passed by value; that is, a local copy of the variable is
assigned the value of the argument.

ByRef
Use: Optional

The argument is passed by reference; that is, the local variable is simply a
reference to the argument being passed. All changes made to the local
variable are reflected in the calling argument. ByRef is the default
method of passing variables.

varname
Use: Required

The name of the local variable containing either the reference or value of
the argument.
266 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Event Statement
type
Use: Optional

The data type of the argument. Can be any data type.

Description

Defines a custom event that the object can raise at any time using the RaiseEvent
statement.

Rules at a Glance

• The event declaration must be Public so that it’s visible outside the object
module; it can’t be declared as Friend or Private.

• An Event statement can appear only in the Declarations section of an object
module—that is, in a form or class module.

Example

The following snippet demonstrates how you can use an event to communicate a
status message back to the client application. To take advantage of this function-
ality, the client must declare a reference to this class using the WithEvents
keyword.

Public Event Status(Message As String)

Private Function UpdateRecords() as Boolean
...
 RaiseEvent Status "Opening the database..."
...
 RaiseEvent Status "Executing the query..."
...
 RaiseEvent Status "Records were updated..."
...
End Function

Programming Tips & Gotchas

• To allow the client application to handle the event being fired, the object vari-
able must be declared using the WithEvents keyword.

• VB custom events don’t return a value; however, you can use a ByRef argu-
ment in arglist to simulate a return value; for more details, see the Raise-
Event statement.

• Unlike parameter lists used with other procedures, Event parameters lists
can’t include Optional or ParamArray arguments or default values.

• If you use the Event statement in a standard interface class (i.e., a class in
which only properties and methods are defined but no code is included in the
procedures) for use with the Implements statement, the Implements state-
ment doesn’t recognize the “outgoing interfaces” used by events, and there-
fore the event is ignored.

• Events can’t be raised from within a Microsoft Transaction Server context.

• For more information about implementing your own custom events, see the
section, “Implementing Custom Events” in Chapter 4.
Event Statement 267

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
See Also
RaiseEvent Statement, WithEvents Keyword

Exit Statement

Syntax
Exit Do
Exit For
Exit Function
Exit Property
Exit Sub

Description

Prematurely exits a block of code.

Rules at a Glance

Exit Do
Exits a Do...Loop statement. If the current Do...Loop is within a nested
Do...Loop, execution continues with the next Loop statement wrapped
around the current one. If, however, the Do...Loop is standalone, program
execution continues with the first line of code after the Loop statement.

Exit For
Exits a For...Next loop. If the current For...Next is within a nested
For...Next loop, execution continues with the next Next statement
wrapped around the current one. If, however, the For...Next loop is stand-
alone, program execution continues with the first line of code after the Next
statement.

Exit Function
Exits the current function. Program execution is passed to the line following
the call to the function.

Exit Property
Exits the current property procedure. Program execution is passed to the line
following the call to the property.

Exit Sub
Exits the current sub procedure. Program execution is passed to the line
following the call to the procedure.

Programming Tips & Gotchas

Traditional programming theory recommends one entry point and one exit point
for each procedure. However, you can improve the readability of long routines by
using the Exit statement, as shown below. Using Exit Sub can save having to
wrap almost an entire subroutine (which could be tens of lines long) within an
If...Then statement.

With Exit Sub

Sub MyTestSub(iNumber As Integer)
 If iNumber = 10 Then
268 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Exp Function
 Exit Sub
 End If
 ...'code
End Sub

Without Exit Sub

Sub MyTestSub(iNumber As Integer)
 If iNumber <> 10 Then
 ...'code
 End If
End Sub

See Also
Do...Loop Statement, For...Next Statement, For Each...Next Statement,
Function Statement, Property Get Statement, Property Let Statement, Property
Set Statement, Sub Statement

Exp Function

Named Arguments

No

Syntax
Exp(number)
number

Use: Required

Data Type: Numeric Variant

Any valid numeric expression.

Return Value

A Double representing the antilogarithm of number.

Description

Returns the antilogarithm of a number; the antilogarithm is the base of natural
logarithms, e (whose value is the constant 2.7182818), raised to a power.

Rules at a Glance

The maximum value for number is 709.782712893.

Programming Tips & Gotchas

Exp is the converse of the Log function.

See Also
Log Function
Exp Function 269

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
File Object (VB6)

Description

The File object represents a disk file that can be a file of any type and allows you
to interrogate the properties of the file and to move upward in the file system hier-
archy to interrogate the system on which the file resides. The process of creating a
File object—for example, assigning a reference from the Files object’s Item prop-
erty to a local object variable—doesn’t open the file.

The File object is part of the File System object model; for an overview of the
model, including the library reference needed to access it, see the File System
object model entry.

Createable

No

Returned by

Files.Item property

Properties

Attributes
Data Type: FileAttribute constant

See the “FileAttribute Constants” table in the Folder Object entry.

DateCreated
Data Type: Date

The date the file was created.

DateLastAccessed
Data Type: Date

If available from the operating system, the date the file was last accessed.

DateLastModified
Data Type: Date

The date the file was last modified.

Drive
Data Type: Drive object

Returns a Drive object representing the drive on which the file resides.

Name
Data Type: String

The name of the file.

ParentFolder
Data Type: Folder object

Returns a Folder object representing the folder in which the file resides.

Path
Data Type: String
270 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
File.Copy Method (VB6)
Returns the full path to the file from the current machine, including drive
letter or network path/share name.

ShortName
Data Type: String

Returns a DOS 8.3 filename; may not work on an NTFS system.

ShortPath
Data Type: String

Returns a DOS 8.3 folder name; may not work on an NTFS system.

Size
Data Type: Variant

Returns the size of the file in bytes.

Type
Data Type: String

Returns a string containing the registered type description. This is the type
string displayed for the file in the Windows Explorer. If a file doesn’t have an
extension, the type is simply “File.” When a file’s type isn’t registered, the type
appears as the extension and “File.”

Methods

File.Copy Method (VB6)

Named Arguments

Yes

Syntax
oFileObj.Copy Destination [, OverwriteFiles]
oFileObj

Use: Required

Data Type: File object

Any object variable returning a File object.

Destination
Use: Required

Data Type: String

The path and optionally the filename of the copied file.

OverwriteFiles
Use: Optional

Data Type: Boolean

Copy Move
Delete OpenAsTextStream
File.Copy Method (VB6) 271

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
True if the copy operation can overwrite an existing file; False
otherwise.

Description

Copies the file represented by oFileObj to another location.

Rules at a Glance

Wildcard characters can’t be used in Destination.

Programming Tips & Gotchas

• If the Destination path is set to read-only, the Copy method fails regardless
of the Overwrite setting.

• If OverwriteFiles is False and the file exists in Destination, a trappable
error, runtime error 58, “File Already Exists,” is generated.

• If the user has adequate rights, Destination can be a network path or share
name. For example:

Copy "\\NTSERV1\d$\RootTwo\"
Copy "\\NTSERV1\RootTest"

File.Delete Method (VB6)

Named Parameters

Yes

Syntax
oFileObj.Delete [Force]
oFileObj

Use: Required

Data Type: File object

Any object variable returning a File object.

Force
Use: Optional

Data Type: Boolean

If set to True, ignores the file’s read-only flag (if it’s on), and deletes the
file.

Description

Removes the current file.

Rules at a Glance

• If the file is open, the method fails with a “Permission Denied” error.

• The default setting for Force is False.

• If Force is set to False, and the file is read-only, the method will fail.
272 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
File.Move Method (VB6)
Programming Tips & Gotchas

• Unlike the FileSystemObject object’s DeleteFile method, which accepts wild-
card characters in the path parameter and can therefore delete multiple files,
the Delete method deletes only the single file represented by oFileObj.

• As a result of the Delete method, the Files collection object containing
oFileObj is automatically updated, the deleted file is removed from the col-
lection, and the collection count reduced by one. You shouldn’t try to access
the deleted file object again; instead, you should set oFileObj to Nothing.

See Also
FileSystemObject.DeleteFile Method, Kill Statement

File.Move Method (VB6)

Named Arguments

Yes

Syntax
oFileObj.Move destination
oFileObj

Use: Required

Data Type: File object

Any object variable returning a File object.

destination
Use: Required

Data Type: String

The path to the location where the file is to be moved.

Description

Moves a file from one folder to another.

Rules at a Glance

• Wildcard characters can’t be used in Destination.

• Destination can be either an absolute or a relative path.

Programming Tips & Gotchas

• If a fatal system error occurs during the execution of this method (like a
power failure), the worst that can happen is that the file is copied to the desti-
nation but not removed from the source. There are no rollback capabilities
built into the File.Move method; however, because the copy part of this two-
stage process is executed first, the file can’t be lost.

• You can use the FileSystemObject’s FileExists and GetAbsolutePath methods
prior to calling the Move method to ensure its success.
File.Move Method (VB6) 273

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• Unlike the FileSystemObject’s MoveFile method, which accepts wildcard char-
acters in the path parameter and can therefore move multiple files, the Move
method moves only the single file represented by oFileObj.

• As a result of the Move method, the Files collection object containing oFile-
Obj is automatically updated, the moved folder being removed and the col-
lection count reduced by one. You shouldn’t try to access the moved file
object again in the same Folders collection object.

• If the user has adequate rights, Destination can be a network path or share
name. For example:

oFile.Move "\\NTSERV1\d$\RootTwo\myfile.doc"

See Also
FileSystemObject.MoveFile Method

File.OpenAsTextStream Method (VB6)

Named Arguments

Yes

Syntax
oFileObj.OpenAsTextStream ([IOMode[, Format]])
oFileObj

Use: Required

Data Type: File object

Any object variable returning a File object.

IOMode
Use: Optional

Data Type: IOMode constant

A constant specifying the purpose for opening the file.

Format
Use: Optional

Data Type: Tristate constant

A constant specifying ASCII or Unicode format.

Return Value

A TextStream object.

Description

Opens the referenced text file for reading or writing.
274 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
File System Object Model (VB6)
Rules at a Glance

• IOMode can be one of the following IOMode constants:

• Unicode can be one of the following Tristate constants:

– The default IOMode setting is ForReading (1).

– The default Format setting is ASCII (False).

– If another process has opened the file, the method fails with a “Permis-
sion Denied” error.

See Also
FileSystemObject: OpenTextFile Method, TextStream Object

File System Object Model (VB6)

Library to Reference

Microsoft Scripting Runtime (../SYSTEM32/SCRRUN.DLL)

Description

For years, VB developers have been using the VBA language to perform tasks such
as opening, writing, and closing files, but with VB6, that’s about to change. Of
course, for backward compatibility, all the original file and directory manipulation
statements and functions are still there, but now VB includes the File System object
model, a rich object model for local and network file access.

The File System object model is itself not an intrinsic part of the VBA language,
but is part of the Scripting Runtime library. Those of you familiar with VBScript
may recognize the original components of the File System object model, a very
basic version of which first appeared in Version 2 of the Scripting Runtime library,
when the model simply contained a top-level object, the FileSystemObject object,
and the TextStream object. Version 4 of the Scripting Runtime that ships with VB6

Constant Value Description

ForAppending 8 Opens the file in append mode; that is, the
current contents of the file are protected, and
new data written to the file is placed at the
end of the file.

ForReading 1 Opens the file for reading; you can’t write to a
file that has been opened for reading.

ForWriting 2 Opens the file for writing; all previous file
content is overwritten by new data.

Constant Value Description

TristateUseDefault –2 Open as System default

TristateTrue –1 Open as Unicode

TristateFalse 0 Open as ASCII
File System Object Model (VB6) 275

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
contains a full object model that represents all drives that are attached to the
computer, including hard drives, floppy and removable media drives, RAM drives,
CD-ROM drives, and drives on other machines. The File System object model
allows you to interrogate, create, delete, and otherwise manipulate folders and text
files. The depth of information that is provided within the object model would
have forced you to resort to the Win32 API in previous versions of VB.

To access the File System object model, you must use the References dialog to add
a reference to the Microsoft Scripting Runtime library to your project. You can then
create an instance of the FileSystemObject object, the only externally createable
object in the model. From there, you can navigate through the object model, as
shown in the object hierarchy diagram in Figure 7-4.

If you are dealing with random access files, the intrinsic VB language functions
and statements are still the way to go, since the File System object only directly
opens text files using the TextStream object.

See Also
File Object, Files Collection Object, FileSystemObject Object, Folder Object,
Folders Collection, TextStream Object

FileAttr Function

Named Arguments

Yes

Syntax
FileAttr(filenumber, [returntype])

Figure 7-4: The File System object model

Drives

Drive

Folder

FileSystemObject

Folders

Files

File

TextStream
276 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileAttr Function
filenumber
Use: Required

Data Type: Integer

Any valid file number.

returntype
Use: Required

Data Type: Integer

An optional number specifying the information to return; if you omit the
argument, its value defaults to 1.

Return Value

If you specify a returntype of 1, the file access mode is returned as a long
integer, as shown in the following table:

Description

Determines the file access mode for a file opened using the Open statement. When
used on a 16-bit Windows system, FileAttr can also obtain an operating-system file
handle.

Rules at a Glance

• Use a returntype of 1 to obtain a return value that indicates the mode in
which the file was opened.

• On 16-bit Windows systems only, use a returntype of 2 to obtain an operat-
ing system file handle for the file.

Programming Tips & Gotchas

• File handles—the numbers by which files are identified by the operating sys-
tem—are assigned by the operating system. In contrast, the application-
defined file number used in the Open statement or returned by the FreeFile
function is simply a pointer into an internal table of file handles maintained
by Visual Basic. In other words, the file number that references a file in a 16-
bit Visual Basic program is really a pseudo-handle that is local to the pro-
gram. By calling the FileAttr function with a returnvalue of 2, you can
obtain the systemwide file handle. This can then be used when calling MS-
DOS functions (like the services provided by MS-DOS interrupts) that require
the file handle but don’t recognize the application-defined file number.

Mode Value

Input 1

Output 2

Random 4

Append 8

Binary 32
FileAttr Function 277

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• Remember that a returntype of 2 can be used only on a 16-bit system; its
use on a 32-bit system generates an error.

• For 32-bit systems, the returntype argument is superfluous, since the only
legal value is the default value of 1. Supplying any other value generates
runtime error 5, “Invalid procedure call or argument.”

• The File System object model, new to VB6, includes a File object, one of
whose properties is Attributes. The File object has many properties that can
be queried to give far more information that the FileAttr function.

See Also
Open Statement, File System Object

FileCopy Statement

Named Arguments

Yes

Syntax
FileCopy source, destination
source

Use: Required.

Data Type: String

The name of the source file to be copied.

destination
Use: Required.

Data Type: String

The name and location of the file when copied.

Description

Copies a file.

Rules at a Glance

• The source and destination arguments may contain a drive name and a
folder name, but they must always contain the filename.

• You can’t copy a file that is currently in an open state.

Programming Tips & Gotchas

• If you don’t specify a drive or folder in either the source or destination,
the file is assumed to be in the current drive or folder.

• Unlike copying a file from one folder to another from outside VB, when using
the FileCopy statement, it isn’t sufficient to simply enter a path for destina-
tion. You must supply a filename, even if it’s the same as the source; other-
wise, runtime error 75, “Path/File access error” results.
278 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileDateTime Function
• FileCopy is a statement and not a function; there is no return value. You
therefore have to assume that if there are no errors generated from calling the
FileCopy statement, the file has been successfully copied. So be sure to wrap
FileCopy in robust error handling.

• Be aware that if the destination file already exists, it will be overwritten
without warning.

• A number of functions allow you to use the copy operation to rename a file.
(Typically, this is done by specifying the same path in the destination as in
the source, along with a different filename.) The FileCopy statement, how-
ever, doesn’t work in this way.

• In order for the copy operation to succeed, source must not be opened by
another application; if it is, runtime error 70, “Permission denied,” is gener-
ated. If source has already been opened by the application, the copy opera-
tion will still succeed if the file isn’t locked (i.e., has been opened with the
Shared keyword) or has been opened with a write lock only. If source has
already been opened with either a read lock or a read-write lock, the File-
Copy operation generates runtime error 70, “Permission denied.”

• destination must not be open if the copy operation is to succeed. If it has
been opened by another application, runtime error 70, “Permission denied,” is
generated. If it has already been opened by the application itself, runtime
error 55, “File already open,” is generated.

• VB6 introduces a new File System object, which has several methods that
allow you to copy and move files and folders.

See Also
ChDir Statement, File System Object

FileDateTime Function

Named Arguments

No

Syntax
FileDateTime(pathname)
pathname

Use: Required

Data Type: String

The filename, along with an optional drive and path.

Return Value

A Variant of subtype Date containing the date and time that the specified file was
last modified.

Description

Obtains the date and time a particular file was last modified.
FileDateTime Function 279

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Rules at a Glance

If you don’t specify a drive or folder with filename, the file is assumed to be in
the current drive or folder.

Programming Tips & Gotchas

• Use the Dir function to determine that the file exists before calling File-
DateTime. If filename doesn’t exist, your application generates runtime error
53, “File not found.”

• FileDateTime is a read-only: you can retrieve, but you can’t set, the file’s date
and time property.

• If a file has not been modified, its creation date and last modified date are
identical. However, if the file has been modified since its creation, the File-
DateTime function returns only the date last modified. To obtain the file’s cre-
ation date, you must use the Window’s API. The GetFileTime API call returns
not only the date last modified, but the file’s creation date and last access date
as well.

• You can also use FileDateTime on hidden files.

• The File System object model in VB6 allows you to reference a file using the
File object. You can use it to obtain the date a file was created, last accessed,
and last modified.

See Also
ChDir Statement, Dir Statement

FileLen Function

Named Arguments

No

Syntax
FileLen(pathname)
Pathname

Use: Required

Data Type: String

The filename, optionally along with its path and drive.

Return Value

A Long data type containing the length of the specified file in bytes.

Description

Indicates the length of a file.

Rules at a Glance

If you don’t specify a drive or folder with filename, the file is assumed to be in
the current drive or folder.
280 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Files Collection Object (VB6)
Programming Tips & Gotchas

• Use the Dir function to determine that the file exists before calling File-
DateTime. If the file doesn’t exist, FileDateTime generates runtime error 53,
“File not found.” Another method of determining that a file exists before refer-
encing it comes from the new FileSystemObject object in VB6, which includes
a FileExists method.

• Because FileLen returns the length of a file based on the file allocation table,
the value returned by FileLen reflects the size of the file before it was opened.
In the case of open files, you should instead use the LOF function to deter-
mine the open file’s current length.

See Also
FileDateTime Function, LOF Function, File System Objects

Files Collection Object (VB6)

Description

The Files collection object is a container for File objects that is returned by the
Files property of any Folder object. All files contained in the folder are included in
the Files collection object. You can obtain a reference to an individual File object
using the Files collection object’s Item property; this takes the exact filename,
including the file extension, as a parameter. To iterate through the collection, you
can use the For Each...Next statement.

The Files collection object is one of the objects in the File System object model; for
an overview of the model, including the library reference needed to access it, see
the File System object model entry.

Createable

No

Returned by

Folder.Files property

Properties

Count
Data Type: Long

The number of File objects in the collection.

Item
Data Type: File Object

Takes the filename (including the file extension) as a parameter and returns
the File object representing the file with that name. Individual File objects
can’t be accessed by their ordinal position in the collection. Item is the Files
collection object’s default property. The following code fragment uses the
Item property to retrieve the autoexec.bat File object:
Files Collection Object (VB6) 281

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Dim ofsFileSys As New FileSystemObject
Dim ofsFiles As Files
Dim ofsFile As File

Set ofsFiles = ofsFileSys.Drives("C").RootFolder.Files
 Set ofsFile = ofsFiles.Item("autoexec.bat")
 MsgBox ofsFile.DateCreated & vbCrLf & _
 ofsFile.DateLastModified & vbCrLf & _
 ofsFile.DateLastAccessed
 Set ofsFile = Nothing
Set ofsFiles = Nothing
Set ofsFileSys = Nothing

FileSystemObject Object (VB6)

Description

The FileSystemObject object is at the top level of the File System object model and
is the only externally createable object in the hierarchy; that is, it’s the only object
you can use the New keyword with. For information about the FileSystemObject
object’s properties and methods, see the entry for each property and method.

See the File System object model entry for an overview, including the library refer-
ence needed to access it.

Createable

Yes

Properties

Drives (returns a Drives collection object)

Methods

FileSystemObject.BuildPath Method (VB6)

Syntax
oFileSysObj.BuildPath(Path, Name)

BuildPath FileExists GetFileName
CopyFile FolderExists GetFolder
CopyFolder GetAbsolutePathName GetParentFolderName
CreateFolder GetBaseName GetSpecialFolderd
CreateTextFile GetDrive GetTempName
DeleteFile GetDriveName MoveFile
DeleteFolder GetExtensionName MoveFolder
DriveExists GetFile OpenTextFile
282 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.CopyFile Method (VB6)
oFileSysObj
Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

Path
Use: Required

Data Type: String

A drive and/or folder path.

Name
Use: Required

Data Type: String

The folder or file path to append to path.

Return Value

String

Description

Creates a string by concatenating the path parameter with the folder or filename,
adding, where required, the correct path separator for the host system.

Rules at a Glance

• Path can be an absolute or relative path and doesn’t have to include the
drive name.

• Neither Path nor Name has to currently exist.

• BuildPath doesn’t check the validity of the new folder or filename.

Programming Tips & Gotchas

The only advantage to using the BuildPath function as opposed to concatenating
two strings manually is that the function selects the correct path separator.

FileSystemObject.CopyFile Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.CopyFile Source, Destination [, OverwriteFiles]
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.
FileSystemObject.CopyFile Method (VB6) 283

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Source
Use: Required

Data Type: String

The path and name of the file to be copied.

Destination
Use: Required

Data Type: String

The path and optionally the filename of the copy to make.

OverwriteFiles
Use: Optional

Data Type: Boolean

Flag indicating whether an existing file is to be overwritten (True) or not
(False).

Description

Copies a file or files from one folder to another.

Rules at a Glance

• The default value for OverwriteFiles is True.

• The source path can be relative or absolute.

• The source filename can contain wildcard characters; the source path can’t.

• Wildcard characters can’t be included in Destination.

Programming Tips & Gotchas

• If the destination path or file is read-only, the CopyFile method fails, regard-
less of the value of OverwriteFiles.

• If OverwriteFiles is set to False and the file exists in Destination, a trap-
pable error—runtime error 58, “File Already Exists”—is generated.

• If an error occurs while copying more than one file, the CopyFile function
exits immediately, thereby leaving the rest of the files uncopied. There is no
roll-back facility to undo copies made prior to the error.

• If the user has adequate rights, the source or destination can be a network
path or share name. For example:

CopyFile "c:\Rootone*.*", "\\NTSERV1\d$\RootTwo\"
CopyFile "\\NTSERV1\RootTest\test.txt", "c:\RootOne"

• The CopyFile method copies a file or files stored in a particular folder. If the
folder itself has subfolders containing files, the method doesn’t copy these;
use the CopyFolder method.

See Also
FileSystemObject.CopyFolder Method, Folder.Copy Method
284 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.CopyFolder Method (VB6)
FileSystemObject.CopyFolder Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.CopyFolder Source, Destination [, _

OverwriteFiles]
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

Source
Use: Required

Data Type: String

The path and name of the folder to be copied from.

Destination
Use: Required

Data Type: String

The path for the folder where the copy is to be made.

OverwriteFiles
Use: Optional

Data Type: Boolean

Flag indicating whether existing files are to be overwritten (True) or not
(False).

Description

Copies the contents of a folder, including its subfolders, to another location.

Rules at a Glance

• Source must end with either a wildcard character or no path separator.

• Wildcard characters can be used in Source, but only for the last component.

• Wildcard characters can’t be used in Destination.

• All subfolders and files contained within the source folder are copied to Des-
tination unless disallowed by the wildcard characters. That is to say, the
CopyFolder method is recursive.

• If Destination ends with a path separator, or Source ends with a wildcard,
CopyFolder assumes that the folder stated in Source exists in Destination or
should otherwise be created. For example, given the following folder structure:

C:\
 Rootone
FileSystemObject.CopyFolder Method (VB6) 285

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 SubFolder1
 SubFolder2
 RootTwo

CopyFolder "c:\Rootone*", "C:\RootTwo" produces this folder structure:

C:\
 Rootone
 SubFolder1
 SubFolder2
 RootTwo
 SubFolder1
 SubFolder2

CopyFolder "c:\Rootone", "C:\RootTwo\" produces this folder structure:

C:\
 Rootone
 SubFolder1
 SubFolder2
 RootTwo
 Rootone
 SubFolder1
 SubFolder2

Programming Tips & Gotchas

• If the destination path or any of the files contained in Destination are set to
read-only, the CopyFolder method fails, regardless of the value of Overwrite.

• If OverwriteFiles is set to False, and the source folder or any of the files
contained in Source exists in Destination, a trappable error—runtime error
58, “File Already Exists”—is generated.

• If an error occurs while copying more than one file or folder, the CopyFolder
function exits immediately, leaving the rest of the folders or files uncopied.
There is also no roll-back facility to undo the copies prior to the error.

• If the user has adequate rights, both the source or destination can be a net-
work path or share name. For example:

CopyFolder "c:\Rootone", "\\NTSERV1\d$\RootTwo\"
CopyFolder "\\NTSERV1\RootTest", "c:\RootOne"

See Also
Folder.Copy Method

FileSystemObject.CreateFolder Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.CreateFolder(Path)
oFileSysObj

Use: Required
286 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.CreateTextFile Method (VB6)
Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

Path
Use: Required

Data Type: String

An expression that returns the name of the new folder to create.

Return Value

A Folder object

Description

Creates a single new folder in the path specified and returns its Folder object.

Rules at a Glance

• Wildcard characters aren’t allowed in newfoldername.

• Path can be a relative or absolute path.

• If no path is specified in Path, the current drive and directory are used.

Programming Tips & Gotchas

• If the Path path is read-only, the CreateFolder method fails.

• If Path already exists, the method generates runtime error 58, “File already
exists.”

• If the user has adequate rights, Path can be a network path or share name.
For example:

CreateFolder "\\NTSERV1\d$\RootTwo\newFolder"
CreateFolder "\\NTSERV1\RootTest\newFolder"

• You must use the Set statement to assign the Folder object to an object vari-
able. For example:

Dim oFileSys As New FileSystemObject
Dim oFolder As Folder
Set oFolder = oFileSys.CreateFolder("MyFolder")

See Also
Folders.Add Method

FileSystemObject.CreateTextFile Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.CreateTextFile Filename [, Overwrite[, _
 Unicode]])
FileSystemObject.CreateTextFile Method (VB6) 287

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
oFileSysObj
Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

Filename
Use: Required

Data Type: String

Any valid filename, along with an optional path.

Overwrite
Use: Optional

Data Type: Boolean

Flag indicating if an existing file of the same name should be overwritten.

Unicode
Use: Optional

Data Type: Boolean

Flag indicating if newfilename is to be written in Unicode or ASCII.

Return Value

A TextStream object.

Description

Creates a new file and returns its TextStream object.

Rules at a Glance

• Wildcard characters aren’t allowed in Filename.

• Filename can be a relative or absolute path.

• If no path is specified in Filename, the application’s current drive and direc-
tory are used.

• If the path specified in Filename doesn’t exist, the method fails.

• The default value for Overwrite is False.

• If Unicode is set to True, the file is created in Unicode; otherwise it’s created
as an ASCII text file. The default value for Unicode is False.

Programming Tips & Gotchas

• The newly created text file is automatically opened only for writing. If you
subsequently wish to read from the file, you must first close it and reopen it
in read mode.

• If the path referred to in Filename is set to read-only, the CreateTextFile
method fails regardless of the value of Overwrite.

• If the user has adequate rights, Filename can contain a network path or
share name. For example:

CreateTextFile "\\NTSERV1\RootTest\myFile.doc"
288 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.DeleteFile Method (VB6)
• You must use the Set statement to assign the TextStream object to your local
object variable.

See Also
Folder.CreateTextFile Method

FileSystemObject.DeleteFile Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.DeleteFile FileSpec [, Force]
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

FileSpec
Use: Required

Data Type: String

The name and path of the file or files to delete.

Force
Use: Optional

Data Type: Boolean

If set to True, the read-only flag on a file is ignored and the file deleted.

Description

Permanently removes a given file or files.

Rules at a Glance

• FileSpec can contain wildcard characters as the final path component.

• FileSpec can be a relative or absolute path.

• If any of the files specified for deletion are open, the method fails with a Per-
mission Denied error.

• The default setting for Force is False.

• If the specified file or files can’t be found, the method fails.

• If only a filename is used in FileSpec, the application’s current drive and
directory is assumed.

Programming Tips & Gotchas

• If an error occurs while deleting more than one file, the DeleteFile method
exits immediately, thereby leaving the rest of the files undeleted. There is also
no roll-back facility to undo deletions prior to the error.
FileSystemObject.DeleteFile Method (VB6) 289

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• If the user has adequate rights, the source or destination can be a network
path or share name. For example:

DeleteFile "\\NTSERV1\RootTest\myFile.doc"

• DeleteFile permanently deletes files; it doesn’t move them to the Recycle Bin.

See Also
Kill Statement

FileSystemObject.DeleteFolder Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.DeleteFolder FileSpec[, Force]
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

FileSpec
Use: Required

Data Type: String

The name and path of the folders to delete.

Force
Use: Optional

Data Type: Boolean

If set to True, the read-only flag on a file is ignored and the file deleted.

Description

Removes a given folder and all its files and subfolders.

Rules at a Glance

• FileSpec can contain wildcard characters as the final path component.

• FileSpec can’t end with a path separator.

• FileSpec can be a relative or absolute path.

• If any of the files within the specified folders are open, the method fails with
a Permission Denied error.

• The DeleteFolder method deletes all contents of the given folder, including
other folders and their contents.

• The default setting for Force is False.
290 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.DriveExists Method (VB6)
• If Force is False, and any of the files in the folders are read-only, the
method fails.

• If the specified folder can’t be found, the method fails.

Programming Tips & Gotchas

• If an error occurs while deleting more than one file or folder, the Delete-
Folder method exits immediately, thereby leaving the rest of the folders or
files undeleted. There is also no roll-back facility to undo the deletions prior
to the error.

• DeleteFolder permanently deletes folders and their contents; it doesn’t move
them to the Recycle Bin.

• If the user has adequate rights, the source or destination can be a network
path or share name. For example:

DeleteFolder "\\NTSERV1\d$\RootTwo"
DeleteFolder "\\RootTest"

See Also
RmDir Statement

FileSystemObject.DriveExists Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.DriveExists (DriveSpec)
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

DriveSpec
Use: Required

Data Type: String

A path or drive letter.

Return Value

Boolean (True or False).

Description

Determines if a given drive (of any type) exists on the local machine or on the
network.

Rules at a Glance

• If DriveSpec is a Windows drive letter, it doesn’t have to include the colon.
For example, “C” works just as well as “C:”.
FileSystemObject.DriveExists Method (VB6) 291

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• Returns True if the drive exists or is connected to the machine, False if not.

Programming Tips & Gotchas

• DriveExists doesn’t note the current state of removable media drives; for this,
you must use the IsReady property of the given drive.

• If the user has adequate rights, DriveSpec can be a network path or share
name. For example:

If ofs.DriveExists("\\NTSERV1\d$") Then

• This method is ideal for detecting any current drive around the network
before calling a function in a remote ActiveX server located on that drive.

FileSystemObject.Drives Property (VB6)

Syntax
oFileSysObj.Drives
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

Return Value

Drives collection object.

Description

Drives is a read-only property that returns the Drives collection; each member of
the collection is a Drive object, representing a single drive available on the system.
Using the collection object returned by the Drives property, you can iterate all the
drives on the system using a For...Next loop, or you can retrieve an individual
Drive object, which represents one drive on the system, by using the Drives
collection’s Item method.

See Also
Drive Object, Drives Collection Object

FileSystemObject.FileExists Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.FileExists(FileSpec)
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.
292 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.FolderExists Method (VB6)
FileSpec
Use: Required

Data Type: String

A complete path to the file.

Return Value

Boolean (True or False).

Description

Determines if a given file exists.

Rules at a Glance

• Returns True if the file exists or is connected to the machine, False if not.

• FileSpec can’t contain wildcard characters.

Programming Tips & Gotchas

If the user has adequate rights, FileSpec can be a network path or share name.
For example:

If ofs.FileExists("\\TestPath\Test.txt") Then

FileSystemObject.FolderExists Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.FolderExists(FolderSpec)
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

FolderSpec
Use: Required

Data Type: String

The complete path to the folder.

Return Value

Boolean (True or False).

Description

Determines if a given folder exists.

Rules at a Glance

• FolderSpec can’t contain wildcard characters.
FileSystemObject.FolderExists Method (VB6) 293

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• Returns True if the folder exists, False if not.

Programming Tips & Gotchas

If the user has adequate rights, FolderSpec can be a network path or share
name. For example:

If ofs.FileExists("\\NTSERV1\d$\TestPath\") Then

FileSystemObject.GetAbsolutePathName Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.GetAbsolutePathName(Path)
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

Path
Use: Required

Data Type: String

A path specifier.

Return Value

A string containing the absolute path of a given path specifier.

Description

Converts a relative path to a fully qualified path, including the drive letter.

Rules at a Glance

• “.” returns the drive letter and complete path of the current folder.

• “..” returns the drive letter and path of the parent of the current folder.

• “filename” returns the drive letter and path up to and including filename
within the current folder.

• All relative path names are assumed to originate at the current folder.

• If a drive isn’t explicitly provided as part of Path, it’s assumed to be the cur-
rent drive.

• Wildcard characters can be included in path at any point.

Programming Tips & Gotchas

• For mapped network drives and shares, the method doesn’t return the full
network address. Rather, it returns the fully qualified local path and locally
issued drive letter.
294 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.GetDrive Method (VB6)
• GetAbsolutePathName doesn’t verify that a given file or folder exists in the
path specified.

FileSystemObject.GetBaseName Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.GetBaseName(Path)
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

Path
Use: Required

Data Type: String

A path specifier.

Return Value

A string containing the last element in Path.

Description

Returns the name of the last path component, less any extension.

Rules at a Glance

The file extension of the last element in Path isn’t included in the returned string.

Programming Tips & Gotchas

• GetBaseName doesn’t verify that a given file or folder exists in Path.

• In stripping the “file extension” and returning the base name of Path, Get-
BaseName has no intelligence. That is, it doesn’t know whether the last com-
ponent of Path is a path or a filename. If the last component includes one or
more dots, it simply removes the last one, along with any following text.
Hence, GetBaseName returns a null string for a Path of “.” and it returns “.”
for a Path of “..”. It is, in other words, really a string manipulation function,
rather than a file function.

FileSystemObject.GetDrive Method (VB6)

Syntax
oFileSysObj.GetDrive(drivespecifier)
oFileSysObj

Use: Required
FileSystemObject.GetDrive Method (VB6) 295

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

drivespecifier
Use: Required

Data Type: String

A drive name, share name, or network path.

Return Value

A Drive object.

Description

Obtains a reference to a Drive object for the specified drive.

Rules at a Glance

• If drivespecifier is a share name or network path, GetDrive ensures that it
exists as part of the process of creating the Drive object; if it doesn’t, the
method generates runtime error 76, “Path not found.”

• If the specified drive isn’t connected or doesn’t exist, runtime error 67,
“Device unavailable,” occurs.

Programming Tips & Gotchas

• If you are deriving the drivespecifier string from a path, you should first
use GetAbsolutePathName to insure that a drive is present as part of the path;
then you should use FolderExists to verify that the path is valid before calling
GetDriveName to extract the drive from the fully qualified path. For example:

Dim oFileSys As New FileSystemObject
Dim oDrive As Drive

sPath = oFileSys.GetAbsolutePathName(sPath)
If oFileSys.FolderExists(sPath) Then
 Set oDrive = _
 oFileSys.GetDrive(oFileSys.GetDriveName(sPath))
End If

• If drivespecifier is a network drive or share, you should use the DriveEx-
ists method to confirm the required drive is available prior to calling the Get-
Drive method.

• You must use the Set statement to assign the Drive object to a local object
variable.

See Also
Drives.Item Property
296 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.GetExtensionName Method (VB6)
FileSystemObject.GetDriveName Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.GetDriveName (Path)
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

Path
Use: Required

Data Type: String

A path specifier.

Return Value

A String.

Description

Returns the drive name of a given path.

Rules at a Glance

If the drive name can’t be determined from the given path, a zero-length string ("")
is returned.

Programming Tips & Gotchas

• GetDriveName doesn’t verify that a given drive exists in Path.

• Path can be a network drive or share.

FileSystemObject.GetExtensionName Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.GetExtensionName(Path)
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

Path
Use: Required
FileSystemObject.GetExtensionName Method (VB6) 297

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Data Type: String

A path specifier.

Return Value

A String.

Description

Returns the extension of the file element of a given path.

Rules at a Glance

If the extension in Path can’t be determined, a zero-length string ("") is returned.

Programming Tips & Gotchas

• GetExtensionName doesn’t verify that Path is valid.

• Path can be a network drive or share.

• GetExtensionName has no intelligence. It simply parses a string and returns
the text that follows the last dot of the last element.

FileSystemObject.GetFile Method (VB6)

Syntax
oFileSysObj.GetFile(FilePath)
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

FilePath
Use: Required

Data Type: String

A path and filename.

Return Value

File object.

Description

Returns a reference to a File object.

Rules at a Glance

• FilePath can be an absolute or a relative path.

• If FilePath is a share name or network path, GetFile ensures that the drive
or share exists as part of the process of creating the File object.

• If any part of the path in FilePath can’t be contacted or doesn’t exist, an
error occurs.
298 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.GetFileName Method (VB6)
Programming Tips & Gotchas

• The object returned by GetFile is a File object, not a TextStream object. A File
object isn’t an open file; the point of the File object is to perform methods
such as coping or moving files and interrogating a file’s properties. Although
you can’t write to or read from a File object, you can use the File object’s
OpenAsTextStream method to obtain a TextStream object.

• You should first use GetAbsolutePathName to create the required FilePath
string.

• If FilePath includes a network drive or share, you could use the DriveExists
method to confirm the required drive is available prior to calling the GetFile
method.

• Since GetFile generates an error if the file designated in FilePath doesn’t
exist, you should call the FileExists method before calling GetFile.

• You must use the Set statement to assign the File object reference to a local
object variable.

See Also
Files.Item Property

FileSystemObject.GetFileName Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.GetFileName (Path)
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

Path
Use: Required

Data Type: String

A path specifier.

Return Value

A String value.

Description

Returns the filename element of a given path.

Rules at a Glance

• If the filename can’t be determined from the given Path, a zero-length string
("") is returned.
FileSystemObject.GetFileName Method (VB6) 299

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• Path can be a relative or an absolute reference.

Programming Tips & Gotchas

• GetFileName doesn’t verify that a given file exists in Path.

• Path can be a network drive or share.

• GetFileName has no built-in intelligence; it assumes that the last element of
the string that isn’t part of a drive specifier is, in fact, a filename. As with all
the GetxName methods of the FileSystemObject object, the GetFileName
method is more a string-manipulation routine than an object-related routine.

FileSystemObject.GetFolder Method (VB6)

Syntax
oFileSysObj.GetFolder(FolderPath)
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

FolderPath
Use: Required

Data Type: String

A path to the required folder.

Return Value

A Folder object.

Description

Returns a reference to a Folder object.

Rules at a Glance

• FolderPath can be an absolute or relative path.

• If FolderPath is a share name or network path, GetFolder ensures that the
drive or share exists as part of the process of creating the Folder object.

• If any part of path can’t be contacted or doesn’t exist, an error occurs.

Programming Tips & Gotchas

• You should first use GetAbsolutePathName to create the required path string.

• If FolderPath includes a network drive or share, you could use the DriveEx-
ists method to confirm the required drive is available prior to calling the Get-
Folder method.

• Since GetFolder requires that FolderPath is the path to a valid folder, you
should call the FolderExists method to verify that FolderPath exists.
300 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.GetParentFolderName Method (VB6)
• You must use the Set statement to assign the Folder object reference to a
local object variable.

See Also
Folders.Item Property

FileSystemObject.GetParentFolderName Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.GetParentFolderName(Path)
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

Path
Use: Required

Data Type: String

A path specifier.

Return Value

A String.

Description

Returns the folder name immediately preceding the last element of a given path.

Rules at a Glance

• If the parent folder name can’t be determined from Path, a zero-length string
("") is returned.

• Path can be a relative or an absolute reference.

Programming Tips & Gotchas

• GetParentFolderName doesn’t verify that any element of Path exists.

• Path can be a network drive or share.

• GetParentFolderName assumes that the last but one element of the string that
isn’t part of a drive specifier is the parent folder. It makes no other check than
this. As with all the GetxName methods of the FileSystemObject object, the
GetParentFolderName method is more a string parsing and manipulation rou-
tine than an object-related routine.

See Also
Folder.ParentFolder Property
FileSystemObject.GetParentFolderName Method (VB6) 301

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
FileSystemObject.GetSpecialFolder Method (VB6)

Syntax
oFileSysObj.GetSpecialFolder(SpecialFolder)
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

SpecialFolder
Use: Required

Data Type: Special folder constant

A value specifying one of three special system folders.

Return Value

A Folder object

Description

Returns a reference to a Folder object of one of the three special system folders:
System, Temporary, and Windows.

Rules at a Glance

SpecialFolder can be one of the following special folder constants:

Programming Tips & Gotchas

• This method is a great boon for VB programmers who don’t want to get
involved with the Windows API, which, in the past, is how you had to deter-
mine a path to one of the special folders.

• You can use the Set statement to assign the Folder object reference to a local
object variable. However, if you’re interested only in retrieving the path to the
special folder, you can do it with a statement like the following:

sPath = oFileSys.GetSpecialFolder(iFolderConst)

or:

sPath = oFileSys.GetSpecialFolder(iFolderConst).Path

The first statement works because the Path property is the Folder object’s
default property. Since the assignment isn’t to an object variable, it’s the

Constant Value Description

SystemFolder 1 The Windows system folder (/windows/system or
/windows/system32)

TemporaryFolder 2 The folder that stores temporary files
(../windows/temp)

WindowsFolder 0 The root folder of the Windows system folder
tree (/windows or /winnt)
302 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.MoveFile Method (VB6)
default property’s value, rather than the object reference, that is assigned to
sPath.

FileSystemObject.GetTempName Method (VB6)

Syntax
oFileSysObj.GetTempName
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

Return Value

A String.

Description

Returns a system-generated temporary file or folder name.

Rules at a Glance

GetTempName doesn’t create a temporary file or folder; it simply provides a name
you can use with the CreateTextFile method.

Programming Tips & Gotchas

As a general rule, you shouldn’t create your own temporary filenames. Windows
provides an algorithm within the Windows API to generate the special temporary
file and folder names so that it can recognize them later. The GetTempName
nicely wraps this GetTempFilename API function.

FileSystemObject.MoveFile Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.MoveFile source , destination
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

source
Use: Required

Data Type: String

The path to the file or files to be moved.
FileSystemObject.MoveFile Method (VB6) 303

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
destination
Use: Required

Data Type: String

The path to the location where the file or files are to be moved.

Description

Moves a file from one folder to another.

Rules at a Glance

• If source contains wildcard characters or if destination ends in a path sep-
arator, destination is interpreted as a path; otherwise, its last component is
interpreted as a filename.

• If the destination file exists, an error occurs.

• source can contain wildcard characters, but only in its last component.

• destination can’t contain wildcard characters.

• Both source and destination can be either absolute or relative paths.

• Both source and destination can be network paths or share names.

Programming Tips & Gotchas

• MoveFile resolves both arguments before beginning the operation.

• Any single file move operation is atomic; that is, any file removed from
source is copied to destination. However, if an error occurs while multi-
ple files are being moved, the execution of the function terminates, but files
already moved aren’t moved back to their previous folder. If a fatal system
error occurs during the execution of this method (like a power failure), the
worst that can happen is that the affected file is copied to the destination but
not removed from the source. There are no rollback capabilities built into the
File.Move method, however, since, because the copy part of this two-stage
process is executed first, the file can’t be lost. But while there is no chance of
losing data, particularly in multifile operations, it’s more difficult to determine
whether the move operations have succeeded or not. This is because an error
at any time while files are being moved causes the MoveFile method to be
aborted.

• You can use the GetAbsolutePath, FolderExists, and FileExists methods prior
to calling the MoveFile method to ensure its success.

See Also
FileSystemObject.CopyFile Method, FileSystemObject.FileExists Method,
FileSystemObject.GetAbsolutePath Method, File.Move Method

FileSystemObject.MoveFolder Method (VB6)

Named Arguments

Yes
304 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.MoveFolder Method (VB6)
Syntax
oFileSysObj.MoveFolder source , destination
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

source
Use: Required

Data Type: String

The path to the folder or folders to be moved.

destination
Use: Required

Data Type: String

The path to the location where the folder or folders are to be moved.

Description

Moves a folder along with its files and subfolders from one location to another.

Rules at a Glance

• source must end with either a wildcard character or no path separator.

• Wildcard characters can be used in source, but only for the last component.

• Wildcard characters can’t be used in destination.

• All subfolders and files contained within the source folder are copied to des-
tination unless disallowed by the wildcard characters. That is to say, the
MoveFolder method is recursive.

• If destination ends with a path separator or Source ends with a wildcard,
MoveFolder assumes that the folder in Source exists in Destination. For
example, given the following folder structure:

C:\
 Rootone
 SubFolder1
 SubFolder2
 RootTwo

MoveFolder "c:\Rootone*", "C:\RootTwo\" produces this folder structure:

C:\
 Rootone

 RootTwo
 SubFolder1
 SubFolder2

MoveFolder "c:\Rootone", "C:\RootTwo\" produces this folder structure:

C:\

 RootTwo
FileSystemObject.MoveFolder Method (VB6) 305

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 Rootone
 SubFolder1
 SubFolder2

• source and destination can be either absolute or relative paths.

• source and destination can be network paths or share names.

Programming Tips & Gotchas

• The MoveFolder method resolves both arguments before beginning the opera-
tion.

• If a fatal system error occurs during the execution of this method (like a
power failure), the worst that can happen is that the file is copied to the desti-
nation but not removed from the source. There are no rollback capabilities
built into the FileSystemObject.MoveFolder method, however, since, because
the copy part of this two-stage process is executed first, the file can’t be lost.

• Although there is no chance of actually losing data, it can be difficult to deter-
mine whether the operation has succeeded or failed in the event of an error
when multiple folders are being moved. This is because an error in the mid-
dle of a multifile move operation causes the MoveFolder method to be aban-
doned and subsequent folder operations to be aborted.

• You can call the GetAbsolutePath and FolderExists methods before calling the
MoveFile method to ensure its success.

• If the user has adequate rights, the source or destination can be a network
path or share name. For example:

MoveFolder "c:\Rootone", "\\NTSERV1\d$\RootTwo\"

See Also
FileSystemObject.CopyFolder Method, FileSystemObject.FolderExists Method,
FileSystemObject.GetAbsolutePath Method, Folder.Move Method

FileSystemObject.OpenTextFile Method (VB6)

Named Arguments

Yes

Syntax
oFileSysObj.OpenTextFile(FileName[, IOMode[, Create[, _

Format]]])
oFileSysObj

Use: Required

Data Type: FileSystemObject object

Any object variable returning a FileSystemObject object.

FileName
Use: Required

Data Type: String

The path and filename of the file to open.
306 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FileSystemObject.OpenTextFile Method (VB6)
IOMode
Use: Optional

Data Type: IOMode constant

A constant specifying the purpose for opening the file.

Create
Use: Optional

Data Type: Boolean

A Boolean flag denoting if the file should be created if it can’t be found
in the given path.

Format
Use: Optional

Data Type: Tristate constant

A constant specifying ASCII or Unicode format.

Return Value

A TextStream object.

Description

Opens (and optionally first creates) a text file for reading or writing.

Rules at a Glance

• File open (IOMode) constants are:

• Tristate (Format) constants:

• The path element of FileName can be relative or absolute.

• The default IOMode setting is ForReading (1).

• The default Format setting is ASCII (False).

Constant Value Description

ForAppending 8 Opens the file for appending; that is, the current
contents of the file are protected and new data
written to the file is placed at the end of the file.

ForReading 1 Opens the file for reading; ForReading files are
read-only.

ForWriting 2 Opens the file for writing; all previous file
content is overwritten by new data.

Constant Value Description

TristateUseDefault –2 Open as System default

TristateTrue –1 Open as Unicode

TristateFalse 0 Open as ASCII
FileSystemObject.OpenTextFile Method (VB6) 307

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• If another process has opened the file, the method fails with a Permission
Denied error.

Programming Tips & Gotchas

• You can use the GetAbsolutePath and FileExists methods prior to calling the
OpenTextFile method to ensure its success.

• The value of IOMode can be only that of a single constant. For example, a
method call such as the following:

lMode = ForReading Or ForWriting
oFileSys.OpenTextStream(strFileName, lMode) ' WRONG

generates runtime error 5, “Invalid procedure call or argument.”

• If the user has adequate rights, path element of FileName can be a network
path or share name. For example:

OpenTextFile "\\NTSERV1\d$\RootTwo\myFile.txt"

See Also
File.OpenAsTextStream Method, TextStream Object

Filter Function (VB6)

Named Arguments

No

Syntax
Filter(SourceArray, FilterString[, Switch[, Compare]])
SourceArray

Use: Required

Data Type: String or Variant

An array containing values to be filtered.

FilterString
Use: Required

Data Type: String

The string of characters to find in the source array.

Switch
Use: Optional

Data Type: Boolean

A Boolean (True or False) value. If True, the default value, Filter
includes all matching values in result; if False, Filter excludes all
matching values (or, to put it another way, includes all nonmatching
values).

Compare
Use: Optional

Type: Constant of vbCompareMethod Enumeration
308 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Filter Function (VB6)
An optional constant (possible values are vbBinaryCompare, vbText-
Compare, vbDatabaseCompare) that indicates the type of string
comparison to use. The default value is vbBinaryCompare.

Return Value

A String array of the elements filtered from SourceArray.

Description

Produces an array of matching values from an array of source values that either
match or don’t match a given filter string. In other words, individual elements are
copied from a source array to a target array if they either match or don’t match a
filter string.

Rules at a Glance

• The default Switch value is True.

• The default Compare value is vbBinaryCompare.

• vbBinaryCompare is case sensitive; that is, Filter matches both character and
case. In contrast, vbTextCompare is case insensitive, matching only character
regardless of case.

• The returned array is always base 0, regardless of any Option Base setting.

Programming Tips & Gotchas

• The Filter function ignores zero-length strings ("") if SourceArray is a string
array and ignores empty elements if SourceArray is a variant array.

• The array you declare to assign the return value of Filter must be a dynamic,
single-dimension String array or a variant.

• Although the Filter function is primarily a string function, you can also filter
numeric values. To do this, specify a SourceArray of type Variant and pop-
ulate this array with numeric values. Although FilterString appears to be
declared internally as a string parameter, a String, Variant, Long, or Integer
can be passed to the function. Note, though, that the returned string contains
string representations of the filtered numbers. For example:

Dim varSource As Variant, varResult As Variant
Dim strMatch As String

strMatch = CStr(2)
varSource = Array(10, 20, 30, 21, 22, 32)
varResult = Filter(varSource, strMatch, True, _
 vbBinaryCompare)

In this case, the resulting array contains four elements: 20, 21, 22, and 32.

• The Filter function is an ideal companion to the Dictionary object. The Dictio-
nary object is a collection-like array of values, each of which is stored with a
unique string key. The Keys method of the Dictionary object allows you to
produce an array of these Key values, which you can then pass into the Filter
function as a rapid method of filtering the members of your Dictionary, as the
following example demonstrates.
Filter Function (VB6) 309

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Example
Dim sKeys() As String
Dim sFiltered() As String
Dim sMatch As String
Dim blnSwitch As Boolean
Dim oDict As Dictionary

Set oDict = New Dictionary

oDict.Add "One Microsoft Way", "Microsoft"
oDict.Add "31 Harbour Drive", "AnyMicro Inc"
oDict.Add "The Plaza", "Landbor Data"
oDict.Add "999 Pleasant View", "Micron Co."

sKeys = oDict.Keys
sMatch = "micro"
blnSwitch = True
'find all keys that contain the string "micro" - any case
sFiltered() = Filter(sKeys, sMatch, blnSwitch, _
 vbTextCompare)
'now iterate through the resulting array
For i = 0 To UBound(sFiltered)
 Set oSupplier = oDict.Item(sFiltered(i))
 With oSupplier
 Debug.Print oSupplier.Address1
 End With
 Set oSupplier = Nothing
Next i

Fix Function

Named Arguments

No

Syntax
Fix(number)
number

Use: Required

Data Type: Numeric

Any valid numeric expression.

Return Value

The same data type as passed to the function containing only the integer portion
of number.

Description

Removes the fractional part of a number. Operates in a similar way to the Int
function.
310 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Folder Object (VB6)
Rules at a Glance

• If number is Null, Fix returns Null.

• The operations of Int and Fix are identical when dealing with positive num-
bers: numbers are rounded down to the next lowest whole number. For
example, both Int(3.14) and Fix(3.14) return 3.

• If number is negative, Fix removes its fractional part, thereby returning the
next greater whole number. For example, Fix(-3.667) returns –3. This con-
trasts with Int, which returns the negative integer less than or equal to num-
ber (or –4, in the case of our example).

Example
Sub TestFix()

 Dim dblTest As Double
 Dim varTest As Variant

 dblTest = -100.9353
 varTest = Fix(dblTest)
 ' returns -100
 Debug.Print varTest & " " & TypeName(varTest)

 dblTest = 100.9353
 varTest = Fix(dblTest)
 'returns 100
 Debug.Print varTest & " " & TypeName(varTest)

End Sub

Programming Tips & Gotchas

Fix doesn’t round number to the nearest whole number; it simply removes the
fractional part of number. Therefore, the integer returned by Fix is the nearest
whole number less than (or greater than, if the number is negative) the number
passed to the function.

See Also
Int Function, CInt Function, CLng Function

Folder Object (VB6)

Description

The Folder object allows you to interrogate the system properties of the folder and
provides methods that allow you to copy, move, and delete the folder. You can
also create a new text file within the folder.

The Folder object is unusual because with it, you can gain access to a Folders
collection object. The more usual method is to extract a member of a collection to
gain access to the individual object. However, because the Drive object exposes
only a Folder object for the root folder, you have to extract a Folders collection
object from a Folder object (the collection represents the subfolders of the root).
Folder Object (VB6) 311

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
From this collection, you can navigate downward through the file system to extract
other Folder objects and other Folders collections. A Boolean property, IsRoot-
Folder, informs you whether or not the Folder object you are dealing with
currently is the root of the Drive or not.

The Folder object is one of the objects in the File System object model; see the
File System object model entry for an overview of the model, including the library
reference needed to access it.

Createable

No

Returned by

Drive.RootFolder Property, Folder.SubFolders.Item Property

Properties

Attributes
Data Type: FileAttributes constant

A set of flags representing the folder’s attributes. You can determine which
flag is set by using logical AND along with the value returned by the prop-
erty and the value of the constant you’d like to test. For example:

If oFolder.Attributes And ReadOnly Then
 ' Folder is read-only

The FileAttributes constants are:

Date Created
Data Type: Date

The date the folder was created.

DateLastAccessed
Data Type: Date

If available from the operating system, the date the Folder was last accessed.

DateLastModified
Data Type: Date

The date the folder was last modified.

Constant Value

Alias 64

Archive 32

Compressed 2048

Directory 16

Hidden 2

Normal 0

ReadOnly 1

System 4

Volume 8
312 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Folder Object (VB6)
Drive
Data Type: Drive object

Returns a Drive object representing the drive on which this folder resides.

Files
Data Type: Files collection object

Returns a Files collection object representing all files in the current folder.

IsRootFolder
Data Type: Boolean

Returns True if the folder is the root folder of its drive.

Name
Data Type: String

Returns the name of the folder.

ParentFolder
Data Type: Folder object

Returns a folder object representing the folder that’s the parent of the current
folder; not available if the current object is the root folder of its drive.

Path
Data Type: String

Returns the complete path of the current folder, including its drive.

ShortName
Data Type: String

Returns a DOS 8.3 folder name. May not work on an NTFS system.

ShortPath
Data Type: String

Returns a DOS 8.3 folder name. May not work on an NTFS system.

Size
Data Type: Variant

Returns the complete size of all files, subfolders, and their contents in the
folder structure, starting with the current folder.

SubFolders
Data Type: Folders collection object

Returns a Folders collection object representing all subfolders within the
current folder.

Type
Data Type: String

Doesn’t appear to be fully implemented; always returns “File Folder.”
Folder Object (VB6) 313

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Methods

Folder.Copy Method (VB6)

Named Arguments

Yes

Syntax
oFolderObj.Copy Destination [, OverwriteFiles]
oFolderObj

Use: Required

Data Type: Folder object

Any object variable returning a Folder object.

Destination
Use: Required

Data Type: String

The path and optionally the filename of the copy to be made.

OverwriteFiles
Use: Optional

Data Type: Boolean

Indicates whether existing files and folders should be overwritten (True)
or not (False).

Description

Copies the current folder and its contents, including other folders, to another
location.

Rules at a Glance

• Wildcard characters can’t be used in Destination.

• The folder and all subfolders and files contained in the source folder are cop-
ied to Destination. That is to say, the Copy method is recursive.

• Unlike the FileSystemObject.CopyFolder method, there is no operational dif-
ference between ending Destination with a path separator or not.

Programming Tips & Gotchas

• If the destination path or any of the files contained in the Destination struc-
ture are set to read-only, the Copy method will fail regardless of the value of
OverwriteFiles.

• If OverwriteFiles is set to False, and the source folder or any of the files
contained in the Destination structure exists in the Destination structure,
then trappable error 58, “File Already Exists,” is generated.

Copy CreateTextFile
Delete Move
314 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Folder.CreateTextFile Method (VB6)
• If an error occurs while copying more than one file, the Copy method exits
immediately, leaving the rest of the files uncopied. There is also no roll-back
facility to undo the copies prior to the error.

• If the user has adequate rights, Destination can be a network path or share
name. For example:

oFolder.Copy "\\NTSERV1\d$\RootTwo\"

Folder.CreateTextFile Method (VB6)

Named Arguments

Yes

Syntax
oFolderObj.CreateTextFile FileName[, Overwrite[, _

Unicode]])
oFolderObj

Use: Required

Data Type: Folder object

Any object variable returning a Folder object.

FileName
Use: Required

Data Type: String

Any valid filename and optional path.

Overwrite
Use: Optional

Data Type: Boolean

Flag to indicate if an existing file of the same name should be overwritten.

Unicode
Use: Optional

Data Type: Boolean

Flag to indicate if file is to be written in Unicode or ASCII.

Return Value

A TextStream object

Description

Creates a new file at the specified location and returns a TextStream object for that file.

Rules at a Glance

• Wildcard characters aren’t allowed in FileName.

• The default value for Overwrite is False.
Folder.CreateTextFile Method (VB6) 315

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• If Unicode is set to True, a Unicode file is created; otherwise it’s created as
an ASCII text file.

• The default value for Unicode is False.

Programming Tips & Gotchas

• The newly created text file is automatically opened only for writing. If you
subsequently wish to read from the file, you must first close it and reopen it
in read mode.

• You must use the Set statement to assign the TextStream object to a local
object variable.

• The CreateTextFile method in the Folder object is identical in operation to
that in the FileSystemObject object.

See Also
FileSystemObject.CreateTextFile Method

Folder.Delete Method (VB6)

Named Arguments

Yes

Syntax
oFolderObj.Delete [Force]
oFolderObj

Use: Required

Data Type: Folder object

Any object variable returning a Folder object.

Force
Use: Optional

Data Type: Boolean

If set to True, any read-only flag on a file is ignored and the file deleted.

Description

Removes the current folder and all its files and subfolders.

Rules at a Glance

• If any of the files within the folder are open, the method fails with a “Permis-
sion Denied” error.

• The Delete method deletes all the contents of the given folder, including
other folders and their contents.

• The default setting for Force is False.

• If Force is set to False and any of the files in the folders are set to read-
only, the method fails.
316 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Folder.Move Method (VB6)
Programming Tips & Gotchas

• If an error occurs while deleting more than one file or folder, the Delete
method exits immediately, thereby leaving the rest of the folders or files unde-
leted. There is also no roll-back facility to undo the deletions prior to the error.

• Unlike the FileSystemObject’s DeleteFolder method, which accepts wildcard
characters in the path parameter and can therefore delete multiple folders, the
Delete method deletes only the single folder represented by the Folder object.

• Immediately after the Delete method executes, the Folders collection object
containing the Folder object is automatically updated. The deleted folder is
removed from the collection, and the collection count reduced by one. You
shouldn’t try to access the deleted Folder object again, and you should set the
local object variable to Nothing, as the following snippet demonstrates:

Set ofsSubFolder = ofsSubFolders.Item("roottwo")
 MsgBox ofsSubFolders.Count
 ofsSubFolder.Delete False
 MsgBox ofsSubFolders.Count
Set ofsSubFolder = Nothing

See Also
FileSystemObject.DeleteFolder Method, RmDir Statement

Folder.Move Method (VB6)

Named Arguments

Yes

Syntax
oFolderObj.Move destination
oFolderObj

Use: Required

Data Type: Folder object

Any object variable returning a Folder object.

destination
Use: Required

Data Type: String

The path to the location where the folder or folders are to be moved.

Description

Moves a folder structure from one location to another.

Rules at a Glance

• Wildcard characters can’t be used in Destination.

• If any of the files within the folder being moved are open, an error is generated.
Folder.Move Method (VB6) 317

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• All subfolders and files contained within the source folder are copied to Des-
tination, unless disallowed by the wildcard characters. That is to say, the
Move method is recursive.

• Destination can be either an absolute or a relative path.

Programming Tips & Gotchas

• If a fatal system error occurs during the execution of this method (like a
power failure), the worst that can happen is that the folder is copied to the
destination but not removed from the source. There are no roll-back capabili-
ties built into the Folder.Move method, however, since, because the copy part
of this two-stage process is executed first, the folder can’t be lost.

• If an error occurs in the middle of a move operation, the operation is termi-
nated immediately, and the remaining files and folders in the folder aren’t
moved.

• To ensure its success, you can use the FileSystemObject’s FolderExists and
GetAbsolutePath methods prior to calling the Move method.

• Unlike the FileSystemObject’s MoveFolder method, which accepts wildcard
characters in the source parameter and can therefore move multiple folders,
the Move method moves only the single folder represented by the Folder
object and its contents.

• Immediately after the Move method executes, the Folders collection object
containing the Folder object is automatically updated, the moved folder is
removed from the collection and the collection count is reduced by one. You
shouldn’t try to access the moved folder object again from the same Folders
collection object.

• If the user has adequate rights, the destination can be a network path or share
name. For example:

Move "\\NTSERV1\d$\RootTwo\"

See Also
FileSystemObject.MoveFolder Method

Folders Collection Object (VB6)

Description

The Folders collection object is a container for Folder objects. Normally, you
expect to access a single object from the collection of that object; for example,
you’d expect to access a Folder object from the Folders collection object.
However, things are the other way round here: you access the Folders collection
object from an instance of a Folder object. This is because the first Folder object
you instantiate from the Drive object is a Root Folder object, and from it you
instantiate a subfolders collection. You can then instantiate other Folder and
subfolder objects to navigate through the drive’s filesystem.
318 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Folders.Add Method (VB6)
The Folders collection object is one of the objects in the File System object model;
see the File System object model entry for an overview of the model, including the
library reference needed to access it.

Createable

No

Returned by

Folder.SubFolders property

Properties

Item
Data Type: Folder object

Retrieves a particular Folder object from the Folders collection object. You can
access an individual folder object by providing the exact name of the folder
without its path. However, you can’t access the item using its ordinal number.
For example, the following statement returns the Folder object that represents
the roottwo folder:

Set ofsSubFolder = ofsSubFolders.Item("roottwo")

Count
Data Type: Long

The number of Folder objects contained in the Folders collection.

Methods
Add

See Also
Folders.Add Method, Folder Object

Folders.Add Method (VB6)

Syntax
oFoldersCollObj.Add newfoldername
oFoldersCollObj

Use: Required

Data Type: Folders collection object

Any object variable returning a Folders collection object.

newfoldername
Use: Required

Data Type: String

The name of the new folder.

Return Value

Folder object.
Folders.Add Method (VB6) 319

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Description

Creates a new folder. The location of the new folder is determined by the parent
to which the Folders collection object belongs. For example, if you are calling the
Add method from a Folders collection object that is a child of the root Folder
object, the new folder is created in the root (i.e., it’s added to the root’s subfolders
collection). For example:

Dim oFileSys As New FileSystemObject
Dim oRoot As Folder, oChild As Folder
Dim oRootFolders As Folders

Set oRoot = oFileSys.Drives("C").RootFolder
Set oRootFolders = oRoot.SubFolders
Set oChild = oRootFolders.Add("Downloads")

Rules at a Glance

You can’t use a path specifier in newfoldername; you can use only the name of
the new folder.

See Also
FileSystemObject.CreateFolder Method

For...Next Statement

Named Arguments

No

Syntax
For counter = initial_value To maximum_value _
 [Step stepcounter]
'code to execute on each iteration

 [Exit For]
Next [counter]
counter

Use: Required (optional with Next statement)

Data Type: Numeric Variant

Any valid numeric variable to be used as the loop counter.

initial_value
Use: Required

Data Type: Numeric Variant

Any valid numeric expression that specifies the loop counter’s initial
value.

maximum_value
Use: Required

Data Type: Numeric Variant
320 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
For...Next Statement
Any valid numeric expression that specifies the loop counter’s maximum
value.

stepcounter
Use: Optional (required if Step used)

Data Type: Numeric Variant

Any valid numeric expression that indicates how much the loop counter
should be incremented with each new iteration of the loop.

Description

Defines a loop that executes a given number of times, as determined by a loop
counter. To use the For...Next loop, you must assign a numeric value to a
counter variable. This counter is either incremented or decremented automatically
with each iteration of the loop. In the For statement, you specify the value that is
to be assigned to the counter initially and the maximum value the counter will
reach for the block of code to be executed. The Next statement marks the end of
the block of code that is to execute repeatedly, and also serves as a kind of flag
that indicates the counter variable is to be modified.

Rules at a Glance

• If maximum_value is greater than initial_value, and no Step keyword is
used or the step counter is positive, the For...Next loop is ignored and exe-
cution commences with the first line of code immediately following the Next
statement.

• If initial_value and maximum_value are equal and stepcounter is 1, the
loop executes once.

• counter can’t be a Boolean variable or an array element.

• counter is incremented by one with each iteration unless the Step keyword
is used.

• The For...Next loop can contain any number of Exit For statements.
When the Exit For statement is executed, program execution commences
with the first line of code immediately following the Next statement.

• If the Step keyword is used, stepcounter specifies the amount counter is
incremented if stepcounter is positive or decremented if it’s negative.

• If the Step keyword is used, and stepcounter is negative, initial_value
should be greater than maximum_ value. If this isn’t the case, the loop
doesn’t execute.

Example

The following example demonstrates the use of a For...Next statement to iterate
through the items in a combo box until an item in the combo box list matches a
particular value:

For i = 0 to cboCombo.ListCount – 1
 If cboCombo.List(i) = sSought Then
 cboCombo.ListIndex = i
 Exit For
For...Next Statement 321

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 End If
Next i

The next example demonstrates how to iterate from the end to the start of an array
of values:

For i = UBound(sArray) to LBound(sArray) Step – 1
 Debug.Print sArray(i)
Next i

This last example demonstrates how to select only every other value from an array
of values:

For i = LBound(sArray) to UBound(sArray) Step 2
 Debug.Print sArray(i)
Next i

Programming Tips & Gotchas

• You can also nest For...Next loops, as shown below:

For iDay = 1 to 365
 For iHour = 1 to 23
 For iMinute = 1 to 59
 ...
 Next iMinute
 Next iHour
Next iDay

• Although the counter following the Next keyword is optional, you will find
your code is much easier to read if you use it, especially when nesting
For...Next loops.

• You should avoid changing the value of counter in the code within the loop.
Not only can this lead to unexpected results; it makes for code that’s incredi-
bly difficult to read and to understand.

• Once the loop has finished executing, the value of counter is officially unde-
fined. That is, you shouldn’t make any assumptions about its value outside of
the For...Next loop, and you shouldn’t use it unless you first reinitialize it.

See Also
For Each...Next Statement

For Each...Next Statement

Named Arguments

No

Syntax
For Each element In group
[statements]
[Exit For]
[statements]
Next [element]
322 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
For Each...Next Statement
element
Use: Required

Data Type: Variant or Object

A variant or object variable to which the current element from the group
is assigned.

group
Use: Required

A collection, object collection, or an array.

statements
Use: Optional

A line or lines of program code to execute within the loop.

Description

Loops through the items of a collection or the elements of an array.

Rules at a Glance

• The For...Each code block is executed only if group contains at least one
element. If group is a dynamic array that has not yet been dimensioned or an
empty collection, a syntax error (runtime error 92, “For loop not initialized,”
and 424, “Object required,” respectively) results.

• All statements are executed for each element in group in turn until either
there are no more elements in group, or the loop is exited prematurely using
the Exit For statement. Program execution then continues with the line of
code following Next.

• For Each...Next can’t be used with an array of user-defined types, because
you can’t assign a user-defined type to a variant.

• For Each...Next can’t be used with an array of fixed-length strings.

• For Each...Next loops can be nested, but each element must be unique.
For example:

For Each myObj In AnObject
 For Each subObject In myObj
 SName = subObject.NameProperty
 Next
Next

uses a nested For Each...Next loop, but two different variables, myObj and
subObject, represent element.

• Any number of Exit For statements can be placed with the For
Each...Next loop to allow for conditional exit of the loop prematurely. On
exiting the loop, execution of the program continues with the line immedi-
ately following the Next statement. For example, the following loop termi-
nates once the program finds a name in the myObj collection that has fewer
than 10 characters:

For Each subObject In myObj
 SName = subObject.NameProperty
For Each...Next Statement 323

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 If Len(Sname) < 10 then
 Exit For
 End if
Next

Programming Tips & Gotchas

• Each time the loop executes when iterating the objects in a collection, an
implicit Set statement is executed. The following code reflects the “long-
hand” method that is useful for explaining what is actually happening during
each iteration of the For Each...Next loop:

For i = 1 to MyObject.Count
 Set myObjVar = MyObject.Item(i)
 Debug.Print myObjVar.NameProperty
Next i

• Because the elements of an array are assigned to element by value, element
is a local copy of the array element, and not a reference to the array element
itself. This means that you can’t make changes to the array element using For
Each...Next and expect them to be reflected in the array once the For
Each...Next loop terminates, as the following example demonstrates:

strNameArray(0) = "Paul"
strNameArray(1) = "Bill"

For Each varName In strNameArray
 varName = "Changed"
 Debug.Print strNameArray(0)
Next

If you run the code through the VB or VBA development environment, note
that on the first loop, although varName has been changed from “Paul” to
“Changed,” the underlying array element, strNameArray(0), still reports a
value of “Paul.” This proves that a referential link between the underlying
array and object variable isn’t present, and that, instead, the value of the array
element is passed to element by value.

• The Microsoft VBA documentation for the For Each...Next loop contains an
example which is confusing, misleading, and incorrect. The example states,
“The following code loops through each element in an array and sets the
value of each to the value of the index variable I”:

Dim TestArray(10) As Integer, i As Variant
For Each i In TestArray
 TestArray(i) = i
Next i

In fact, if you look at this code carefully, you’ll see that on each loop, i has a
value of 0. Therefore all this code does is assign a value of 0 to element 0 of
the array 11 times! This example makes the mistake of combining the For
Each...Next statement, which iterates each member of an array or collec-
tion in an arbitrary order, with the traditional For...Next statement, which
iterates each member of an array in index order.
324 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Format, Format$ Functions
See Also
Exit Statement, For...Next Statement

Format, Format$ Functions

Named Arguments

No

Syntax
Format(expression[, format[, firstdayofweek[, _

firstweekofyear]]])
expression

Use: Required

Data Type: String/Numeric

Any valid string or numeric expression.

format
Use: Optional

A valid named or user-defined format expression.

firstdayofweek
Use: Optional

Data Type: Numeric

A constant that specifies the first day of the week.

firstweekofyear
Use: Optional

Data Type: Numeric

A constant that specifies the first week of the year.

Return Value

A variant of subtype string containing the formatted expression.

Description

Allows you to use either predefined or user-defined formats to create an infinite
variety of ways to output string, numeric, and date/time data. It’s possibly the most
complex single function call in VB.

Rules at a Glance

• See CDate for an explanation of the firstdayofweek and firstweekof-
year arguments.

• format can be either a predefined or a user-defined format.
Format, Format$ Functions 325

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• User-defined formats for numeric values are created with up to four sections.
Each section is used for a different type of numeric value and is delimited
with a semicolon. The four possible sections are shown in the following table:

• It’s not necessary to include all four sections in the format clause. However,
the number of sections present determines what types of numeric values each
section defines, as the following table shows:

• If you leave a section blank, that section uses the same format as that defined
for positive values. For example, the format string:

"#.00;;#,##"

means that negative values will appear in the same format as positive values.

• Only one section is allowed where one of the named formats is used.

• User-defined formats for string values can have two sections. The first is for
all values, the second applies only to Null values or zero-length strings.

The predefined date and time formats are:

General Date
Example: Format("01/06/98","General Date")

Returns: 1/6/98

Long Date
Example: Format("01/06/98","Long Date")

Returns: Tuesday, January 06, 1998

Medium Date
Example: Format("01/06/98","Medium Date")

Returns: 06-Jan-98

Short Date
Example: Format("01/06/98","Short Date")

Returns: 1/6/98

Section Applies to

1 All values, if used alone; positive values, if used with more than
one section

2 Negative values

3 Zero values

4 Null values

of Sections Applies to

1 All numeric values

2 Positive and zero values, negative values

3 Positive values, negative values, zero values

4 As shown in previous table
326 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Format, Format$ Functions
Long Time
Example: Format("17:08:06","Long Time")

Returns: 5:08:06 P.M.

Medium Time
Example: Format("01/06/98","Medium Time")

Returns: 05:08 P.M.

Short Time
Example: Format("01/06/98","Short Time")

Returns: 17:08

The predefined numeric formats are:

General Number
Example: Format(562486.2356, "General Number")

Returns: 562486.2356

Currency
Example: Format(562486.2356, "Currency")

Returns: $562,486.24

Fixed
Example: Format(0.2, "Fixed")

Returns: 0.20

Standard
Example: Format(562486.2356, "Standard")

Returns: 562,486.24

Percent
Example: Format(.7521, "Percent")

Returns: 75.21%

Scientific
Example: Format(562486.2356, "Scientific")

Returns: 5.62E+05

Yes/No
Example #1: Format(0,"Yes/No")

Returns: No

Example #2: Format(23,"Yes/No")

Returns: Yes

True/False
Example #1: Format(0," True/False")

Returns: False

Example #2: Format(23," True/False")

Returns: True
Format, Format$ Functions 327

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
On/Off
Example #1: Format(0," On/Off")

Returns: Off

Example #2: Format(23," On/Off")

Returns: On

• Characters that create user-defined date and time formats are:

c Element: Date

Display as: A date and/or time based on the short date and short time
international settings of the current Windows system.

Example: Format("01/06/98 17:08:06", "c")

Returns: 1/6/98 5:08:06 PM

dddddd
Element: Date

Display as: A complete date based on the long date international setting
of the current Windows system.

Example: Format("01/06/98", "dddddd")

Returns: Tuesday, January 06, 1998

(/) Element: Date separator

Display as: A date delimited with the specified character.

Example: Format("01/06/98", "mm-dd-yyyy")

Returns: 01-06-1998

d Element: Day

Display as: A number (1–31) without a leading zero.

Example: Format("01/06/98", "d")

Returns: 6

dd Element: Day

Display as: A number (01–31) with a leading zero.

Example: Format("01/06/98", "dd")

Returns: 06

ddd
Element: Day

Display as: An abbreviation (Sun–Sat).

Example: Format("01/06/98", "ddd")

Returns: Tue

dddd
Element: Day

Display as: A full name (Sunday–Saturday).
328 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Format, Format$ Functions
Example: Format("01/06/98", "dddd")

Returns: Tuesday

ddddd
Element: Date

Display as: A date based on the short date section in the computer’s
Windows international settings.

Example: Format("01/06/98", "ddddd")

Returns: 1/6/98

h Element: Hour

Display as: A number (0–23) without leading zeros.

Example: Format("05:08:06", "h")

Returns: 5

hh Element: Hour

Display as: A number (00–23) with leading zeros.

Example: Format("05:08:06", "hh")

Returns: 05

n Element: Minute

Display as: A number (0–59) without leading zeros.

Example: Format("05:08:06", "n")

Returns: 8

nn Element: Minute

Display as: A number (00–59) with leading zeros.

Example: Format("05:08:06", "nn")

Returns: 08

m Element: Month

Display as: A number (1–12) without a leading zero.

Example: Format("01/06/98", "m")

Returns: 1

mm Element: Month

Display as: A number (01–12) with a leading zero.

Example: Format("01/06/98", "mm")

Returns: 01

mmm
Element: Month

Display as: An abbreviation (Jan–Dec).

Example: Format("01/06/98", "mmm")

Returns: Jan
Format, Format$ Functions 329

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
mmmm
Element: Month

Display as: A full month name (January–December).

Example: Format("01/06/98", "mmmm")

Returns: January

q Element: Quarter

Display as: A number (1–4)

Example: Format("01/06/98", "q")

Returns: 1

s Element: Second

Display as: A number (0–59) without leading zeros.

Example: Format("05:08:06", "s")

Returns: 6

ss Element: Second

Display as: A number (00–59) with leading zeros.

Example: Format("05:08:06", "ss")

Returns: 06

ttttt
Element: Time

Display as: A time based on the 12-hour clock, using the time separator
and leading zeros specified in Windows locale settings.

Example: Format("05:08:06", "ttttt")

Returns: 5:08:06 AM

AM/PM
Element: Time

Display as: A 12-hour clock format using uppercase A.M. and P.M.

Example: Format("17:08:06", "hh:mm:ss AM/PM")

Returns: 05:08:06 PM

am/pm
Element: Time

Display as: A 12-hour clock format using lowercase a.m. and p.m.

Example: Format("17:08:06", "hh:mm:ss am/pm")

Returns: 05:08:06 pm

A/P Element: Time

Display as: A 12-hour clock format using an uppercase “A” for A.M. and
“P” for P.M.

Example: Format("17:08:06", "hh:mm:ss A/P")

Returns: 05:08:06 P
330 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Format, Format$ Functions
a/p Element: Time

Display as: A 12-hour clock format using a lowercase “a” for a.m. and “p”
for p.m.

Example: Format("17:08:06", "hh:mm:ss a/p")

Returns: 05:08:06 p

(:) Element: Time separator

Display as: A time format using a nonstandard character.

Example: Format("17:08:06", "hh::mm::ss")

Returns: 17::08::06

ww Element: Week

Display as: A number (1–54).

Example: Format("01/06/98", "ww")

Returns: 2

w Element: Weekday

Display as: A number (1 for Sunday through 7 for Saturday).

Example: Format("01/06/98", "w")

Returns: 3

y Element: Day of Year

Display as: A number (1–366).

Example: Format("01/06/98", "y")

Returns: 6

yy Element: Year

Display as: A two-digit number (00–99).

Example: Format("01/06/98", "yy")

Returns: 98

yyyy
Element: Year

Display as: A 4-digit number (100–9999).

Example: Format("01/06/98", "yyyy")

Returns: 1998

• Characters that create user-defined number formats are as follows:

(0) Description: Digit Placeholder. If expression contains a digit in the
appropriate position, the digit is displayed; otherwise, a 0 is displayed.
The format definition dictates the number of digits after the decimal
point, forcing the number held within an expression to be rounded to the
given number of decimal places. It doesn’t, however, affect the number
of digits shown to the left of the decimal point.

Example #1: Format(23.675, "00.0000") returns 23.6750
Format, Format$ Functions 331

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Example #2: Format(23.675, "00.00") returns 23.68

Example #3: Format(2658, "00000") returns 02658

Example #4: Format(2658, "00.00") returns 2658.00

(#) Description: Digit placeholder. If expression contains a digit in the
appropriate position, the digit is displayed; otherwise, nothing is displayed.

Example #1: Format(23.675, "##.##") returns 23.68

Example #2: Format(23.675, "##.####") returns 23.675

Example #3: Format(12345.25, "#,###.##") returns 12,345.25

(.) Description: Decimal placeholder. The actual character displayed as a
decimal placeholder depends on the international settings of the local
Windows system.

(%) Description: Percentage placeholder. Displays expression as a percent-
age by first multiplying the value of expression by 100.

Example: Format(0.25, "##.00%") returns 25.00%

(,) Description: Thousands separator. The actual character displayed as a
thousands separator depends on the international settings of the local
Windows system. You need to show only one thousands separator in
your definition.

Example: Format(1000000, "#,###") returns 1,000,000

(E- E+ e- e+)
Description: Scientific format. If the format expression contains at least
one digit placeholder (0 or #) to the right of “E-”, “E+”, “e-”, or “e+”, the
number is displayed in scientific format, and the letter “E” or “e” that was
used in the format expression is inserted between the number and its
exponent. The number of digit placeholders to the right determines the
number of digits displayed in the exponent. Use “E-” or “e-” to place a
minus sign next to negative exponents. Use “E+” or “e+” to place a minus
sign next to negative exponents and a plus sign next to positive
exponents.

Example: Format(1.09837555, "######E-###") returns 109838E-5

- + $ ()
Description: Displays a literal character

Example: Format(2345.25, "$#,###.##") returns $2,345.25

(\) Description: The character following the backslash is displayed as a literal
character. Use the backslash to display a special formatting character as a
literal.

Example: Format(0.25, "##.00\%") returns .25%

Note the difference between the result of this example and the result of
the % formatting character.
332 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Format, Format$ Functions
• Characters that create user-defined string formats:

@ Description: Character placeholder. If expression contains a character
in the appropriate position, the character is displayed; otherwise, a space
is displayed.

Example: Format("VBA", "*@*@@@@@") returns * * VBA

& Description: Character placeholder. If expression contains a character
in the appropriate position, the character is displayed; otherwise, nothing
is displayed.

Example: Format("VBA", "*&&*&&&&") returns **VBA

< Description: Displays all characters in lowercase.

Example: Format("VBA", "<") returns vba

> Description: Displays all characters in uppercase.

Example: Format("vba", ">") returns VBA

! Description: Processes placeholders from left to right (the default is to
process from right to left).

Programming Tips & Gotchas

• A little-known and important use of the Format function is to prevent an
Invalid Use of Null error from occurring when assigning values from a
recordset to a variable within your program. For example, if a field within
either a DAO or RDO recordset created from either an Access or SQL Server
database contains a Null value, you can trap this and change its value to ""
as follows:

If IsNull(rsMyRecordSet!myValue) Then
 sMyString = ""
Else
 sMyString = rsMyRecordSet!myValue
End If

However, assigning the value returned by the Format function that has been
passed the recordset field can do away with this long and tedious coding, as
the following line of code illustrates:

sMyString = Format(rsMyRecordSet!myValue)

• The Format function is a workaround when using the ! delimiter to assign the
value of a field in an RDO recordset to an item of a collection. The following
code shows the assignment of a recordset field to a collection element:

MyColl.Add rsMyRecordSet!myValue

When this recordset is closed, references to this item of this collection ele-
ment results in an error. One of the simplest workarounds is to assign the
return value of a Format function, like this:

MyColl.Add Format(rsMyRecordSet!myValue)

• If you are passing a date to SQL Server, what date format should you use? By
default, SQL Server expects an American date format, mmddyy, but the data-
base may have been altered to accept other date formats, or you could be
Format, Format$ Functions 333

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
passing data to a stored procedure that begins with a date time conversion
statement (SET DATEFORMAT dateformat). The only sure way of passing a
date into SQL Server is by using the ANSI standard date format ‘yyyymmdd’—
including the single quotation marks.

• When passing a date to a Jet (Access) database, you should surround the date
with hash characters (#); for example: #12/31/1999#.

• Formatting numbers using Format without a format definition is also prefera-
ble to simply using the Str function. Unlike Str, the Format function removes
the leading space normally reserved for the sign from positive numbers.

• You can also use the Format function to scale numbers by 1000 by placing a
thousands separator to the immediate left of the decimal point for each 1000
you wish the number to be scaled by. Thus:

' one separator divides the expression by 1000 = 1000
Format(1000000, "##0,.")
'two separators divides the expression by 1,000,000 = 1
Format(1000000, "##0,,.")

• Visual Basic Version 6 introduces the concept of data binding, where a field
in a data recordset can be programmatically bound to a property of a form,
control, or other data consumer. Part of this new technology is the Format
Object, which automatically formats data coming from the recordset based on
properties you set within the object. Modified data passed back to the record-
set is automatically unformatted.

See Also
CStr Function, Data Format Objects, Str Function

FormatCurrency, FormatNumber, FormatPercent Functions
(VB6)

Named Arguments

No

Syntax
FormatCurrency(number[,DecimalPlaces][, _
 IncLeadingZero[,UseParenthesis[,GroupDigits]]]])
FormatNumber(number[,DecimalPlaces][, _

IncLeadingZero[,UseParenthesis[,GroupDigits]]]])
FormatPercent(number[,DecimalPlaces][, _

IncLeadingZero[,UseParenthesis[,GroupDigits]]]])
number

Use: Required

Data Type: Any numeric expression

The number to be formatted.

DecimalPlaces
Use: Optional
334 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FormatCurrency, FormatNumber, FormatPercent Functions (VB6)
Data Type: Long

Number of digits the formatted string should contain after the decimal
point.

IncLeadingZero
Use: Optional

Data Type: TriState constant

Indicates if the formatted string is to have a 0 before floating point
numbers between 1 and –1.

UseParenthesis
Use: Optional

Data Type: TriState constant

Specifies whether parentheses should be placed around negative numbers.

GroupDigits
Use: Optional

Data Type: TriState constant

Determines whether digits in the returned string should be grouped using
the delimiter specified in the computer’s regional settings. For example,
on English language systems, the value 1000000 is returned as 1,000,000
if GroupDigits is True.

Return Value

String

Description

The three functions are almost identical. They all take identical arguments, the
only difference being that FormatCurrency returns a formatted number beginning
with the currency symbol specified in the computer’s regional settings, Format-
Number returns just the formatted number, and FormatPercent returns the
formatted number followed by a percentage sign (%).

Rules at a Glance

• If DecimalPlaces isn’t specified, the value in the computer’s regional set-
tings is used.

• The Tristate constant values are TristateTrue, TristateFalse, and
TriStateUseDefault.

Programming Tips & Gotchas

These three functions first appeared in VBScript version 2 as “light” alternatives to
the Format function, which had originally been left out of VBScript due to its size.
They are quick and easy to use, and make your code more self-documenting; you
can instantly see what format is being applied to a number without having to deci-
pher the format string.

See Also
Format Function
FormatCurrency, FormatNumber, FormatPercent Functions (VB6) 335

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
FormatDateTime Function (VB6)

Syntax
FormatDateTime(date[,format])
date

Use: Required

Data Type: Date or String

Any expression that can be evaluated as a date.

format
Use: Optional

Data Type: vbDateTimeFormat constant

Defines the format; see the list of constants in the section “Rules at a
Glance.”

Return Value

String

Description

Formats a date or time expression based on the computer’s regional settings.

Rules at a Glance

• The intrinsic constants to use for the format argument are:

vbGeneralDate
Value: 0

Displays a date and/or time. If there is a date part, displays it as a short
date. If there is a time part, displays it as a long time. If present, both
parts are displayed.

VbLongDate
Value: 1

Uses the long date format specified in the client computer’s regional
settings.

VbShortDate
Value; 2

Uses the short date format specified in the client computer’s regional
settings.

VbLongTime
Value: 3

Uses the time format specified in the computer’s regional settings.

VbShortTime
Value: 4

Uses a 24-hour format (hh:mm).

• The default date format is vbGeneralDate.
336 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FreeFile Function
Programming Tips & Gotchas

• Remember that date and time formats obtained from the client computer are
based on the client computer’s regional settings. It’s not uncommon for a sin-
gle application to be used internationally, so that date formats can vary
widely. Not only that, but you can never be sure that a user has not modified
the regional settings on a computer. In short, never take a date coming in
from a client machine for granted; ideally, you should always insure it’s in the
format you need prior to using it.

• It’s hard to see why this new function has been added to VB6. There is no
appreciable difference in either coding or performance between these two
statements:

sDate = FormatDateTime(dDate, vbLongDate)
sDate = Format(dDate, "Long Date")

See Also
Format Function

FreeFile Function

Named Arguments

No

Syntax
FreeFile[(rangenumber)]
rangenumber

Use: Optional

Data Type: Variant

Specifies the range of numbers from which the next available file number
is selected.

Return Value

An integer representing a the next unused file number.

Description

Returns the next available file number for use in an Open statement.

Rules at a Glance

• You can change the range of numbers used by FreeFile by supplying a
rangenumber argument, as follows:

rangenumber File Number Range

 0 (or None) 1–255

1 256–511
FreeFile Function 337

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

Get into the habit of always using FreeFile to obtain a file number to use in the
Open statement: you can’t go wrong!

See Also
Open Statement

Function Statement

Named Arguments

No

Syntax
[Public | Private | Friend] [Static] Function name _
 [(arglist)] [As type][()]
 [statements]
 [name = expression]
 [Exit Function]
 [statements]
 [name = expression]
End Function
Public

Use: Optional

Type: Keyword

Gives the function scope through all procedures in all modules in the
project. If used within a createable class module, the function is also
accessible from outside the project. Public, Private, and Friend are
mutually exclusive.

Private
Use: Optional

Type: Keyword

Restricts the scope of the function to those procedures within the same
module. Public, Private, and Friend are mutually exclusive.

Friend
Use: Optional

Type: Keyword

Only valid within a class module; gives the function scope to all modules
within a project, but not to modules outside the project. Public, Private,
and Friend are mutually exclusive.

Static
Use: Optional

Type: Keyword

Preserves the value of variables declared inside the function between
calls to the function.
338 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Function Statement
name
Use: Required

The name of the function.

arglist
Use: Optional

A comma-delimited list of variables to be passed to the function as argu-
ments from the calling procedure.

type
Use: Optional

The return data type of the function.

statements
Use: Optional

Program code to be executed within the function.

expression
Use: Optional

The value to return from the function to the calling procedure.

arglist uses the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type]
[= defaultvalue]

Optional
Use: Optional

An optional argument is one that need not be supplied when calling the
function. However, all arguments following an optional one must also be
optional. A ParamArray argument can’t be optional.

ByVal
Use: Optional

The argument is passed by value; that is, the local copy of the variable is
assigned the value of the argument.

ByRef
Use: Optional

The argument is passed by reference; that is, the local variable is simply a
reference to the argument being passed. All changes made to the local
variable are also reflected in the calling argument. ByRef is the default
method of passing variables.

ParamArray
Use: Optional

Indicates that the argument is an optional array of variants containing an
arbitrary number of elements. It can be used only as the last element of
the argument list, and it can’t be used with the ByRef, ByVal, or
Optional keywords.
Function Statement 339

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
varname
Use: Required

The name of the local variable containing either the reference or value of
the argument.

type
Use: Optional

The data type of the argument.

defaultvalue
Use: Optional

For optional arguments, you can specify a constant default value.

Description

Defines a function procedure.

Rules at a Glance

• If you don’t include one of the Public, Private, or Friend keywords, a
function is Public by default.

• If you declare a function as Public within a module that contains an Option
Private directive, the function is treated as Private.

• Any number of Exit Function statements can be placed within the func-
tion. Execution continues with the line of code immediately following the call
to the function. If a value has not been assigned to the function when the
Exit Function statement executes, the function returns the default initializa-
tion value of the data type specified for the return value of the function. If the
data type of the function was an object reference, the exited function returns
Nothing.

• The return value of a function is passed back to the calling procedure by
assigning a value to the function name. This may be done more than once
within the function.

• To return an object reference from a function, the object must be assigned to
the function’s return value using the Set statement. For example:

Private Function GetAnObject() As SomeObject
 Dim oTempObject As SomeObject
 Set oTempObject = New SomeObject
 Set GetAnObject = oTempObject
 Set oTempObject = Nothing
End Function

• Until Visual Basic Version 6, the return value of a function could not be an
array of any data type. One of the major improvements in VB6 is that it allows
you to return arrays of any type from a procedure. But to do this, there are
two rules to follow. First, you must use parentheses after the data type—
which is also mandatory—in the return value of the function declaration. Sec-
ond, any array in the calling program that is assigned the return value of the
function call must be of the same data type as the function.
340 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Function Statement
Here’s a quick example showing this in operation. Here, the PopulateArray
function is called and is passed a string value. PopulateArray takes this value
and concatenates the numbers 1 to 10 to it, assigns each value to an element
of an array, then passes this array back to the calling procedure. Note that in
the calling procedure, the array that accepts the array returned from the func-
tion is declared as a dynamic array. Its size is never explicitly defined in the
calling routine; another new feature of VB6 is the ability to assign arrays of
any type from one array variable to another in a single assignment state-
ment—as long as the array on the left side of the expression is dynamic:

Private Sub Command3_Click()

 Dim i As Integer
 Dim sReturnedArray() As String

 sReturnedArray() = PopulateArray("A")

 For i = 1 To UBound(sReturnedArray)
 Debug.Print sReturnedArray(i)
 Next i

End Sub

Private Function PopulateArray(sVal As String) _
 As String()

 Dim sTempArray(10) As String
 Dim i As Integer

 For i = 1 To 10
 sTempArray(i) = sVal & CStr(i)
 Next i

 PopulateArray = sTempArray

End Function

• If you specify an optional parameter in your function declaration, you can
also provide a default value for that parameter. For example:

Private Function ShowMessage(Optional sMsg _
 As String = "Not given")

• If you’re not using VB6, you can still return an array from a function. How-
ever, it can be only a variant containing an array. For example:

Private Function MakeArray() As Variant

 MakeArray = Array(1, 2, 3, 4)

End Function

Private Sub Form_Load()

 Dim varArray As Variant
Function Statement 341

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 varArray = MakeArray()
 MsgBox UBound(varArray)

End Sub

• A function can’t define a fixed-length string as an argument in arglist; this
produces the design-time error, “Expected array.”

• A calling program can pass a fixed-length string to a function. In most cases,
however, this makes little sense, since the string as defined by the function
prototype must be either a variable-length string or a variant string. This
means that if another string is concatenated with the string, the “extra” por-
tion of the string is lost when the function returns.

• A user-defined type can’t be included in an argument list as an optional argument.

• Another addition to VB6 is the ability to pass a user-defined type (UDT)
remotely; that is, you can add a UDT to the parameter list of a public func-
tion and as the return value of a public function or method. To enable a pub-
lic class or code module to expose a UDT, you must declare its type as
Public so that clients can “see” the UDT. Here’s a simple example of pass-
ing a UDT remotely. The first part of the example is a class module in an
ActiveX DLL; the second part is a standard EXE project that has a reference to
the ActiveX DLL. First, the server code:

Option Explicit
'declare the public user defined type
Public Type RemUDT
 AuID As String
 LName As String
 FName As String
 Phone As String
End Type

'declare a local array variable to hold an
'array of the udt
Private muRemUDT(1 To 10) As RemUDT

Private Function getAuthors() As Boolean
 'this function simply populates the udt array
 'using the SQL Server pubs test database
 Dim adoConn As ADODB.Connection
 Dim adoRecs As ADODB.Recordset
 Dim i As Integer
 Dim sSQL As String
 'create instances of ADO objects
 Set adoConn = New ADODB.Connection
 Set adoRecs = New ADODB.Recordset
 'open the ado connection using a test DSN
 adoConn.Open "Test"
 'create a SQL query
 sSQL = "SELECT *" & vbCrLf __
 & "FROM authors" & vbCrLf
 'open the recordset
 adoRecs.Open sSQL, adoConn, adOpenForwardOnly, _
342 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Function Statement
 adLockReadOnly
 'populate 10 elements of the array
 For i = 1 To 10
 muRemUDT(i).AuID = adoRecs!au_id
 muRemUDT(i).LName = adoRecs!au_lname
 muRemUDT(i).FName = adoRecs!au_fname
 muRemUDT(i).Phone = adoRecs!Phone
 Next i
 'kill the ado recordset
 Set adoRecs = Nothing
End Function

Public Function AuthorUDTArray() As RemUDT()
 'pass back an array of the udt to the client
 AuthorUDTArray = muRemUDT
End Function

Public Function AuthorUDT(iVal As Integer) As RemUDT
 'pass back a single element of the
 'udt array to the client
 AuthorUDT = muRemUDT(iVal)
End Function

Here’s the client code:

Option Explicit
'declare local array for udt
Private uUDTArray() As RemUDT
'declare local copy of udt
Private uUDT As RemUDT
'declare local udt class object
Private oUDT As UDTClass

Private Sub Form_Load()
 'instantiate the udt class object
 Set oUDT = New UDTClass
End Sub

Private Sub cmdUDTArray_Click()

 Dim i As Integer

 'call the remote array function and
 'assign the array to the local udt array
 uUDTArray = oUDT.AuthorUDTArray
 'iterate through the array
 For i = 1 To UBound(uUDTArray)
 With uUDTArray(i)
 Debug.Print .AuID
 Debug.Print .FName
 Debug.Print .LName
 Debug.Print .Phone
 End With
Function Statement 343

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 Next i

End Sub

Private Sub cmdSingleUDT_Click()

 Dim sVal As String
 Dim i As Integer

 For i = 1 To 10
 'call the single udt function & assign the result
 'to the local udt copy
 uUDT = oUDT.AuthorUDT(i)
 With uUDT
 Debug.Print .AuID
 Debug.Print .FName
 Debug.Print .LName
 Debug.Print .Phone
 End With
 Next i

End Sub

Private Sub Form_Unload(Cancel As Integer)
 'kill the udt class object reference
 Set oUDT = Nothing
End Sub

• The default value for an optional object argument can be only Nothing.

Programming Tips & Gotchas

• There is often confusion between the ByRef and ByVal methods of assigning
arguments to the function. ByRef assigns a reference to the variable in the call-
ing procedure to the variable in the function; any changes made to the variable
from within the function are in reality made to the variable in the calling proce-
dure. On the other hand, ByVal assigns the value of the variable in the calling
procedure to the variable in the function. Changes made to the variable in the
function have no effect on the variable in the calling procedure. In general,
ByRef arguments within class modules take longer to perform, since marshal-
ling back and forth between function and calling module must take place; so
unless you need to modify a variable’s value explicitly within a function, it’s
best to pass parameters by value.

• Functions can return only one value, or can they? Look at the following code:

Sub testTheReturns()

 Dim iValOne As Integer

 iValOne = 10
 If testValues(iValOne) = True Then
 Debug.Print iValOne
344 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Function Statement
 End If

End Sub

Function testValues(ByRef iVal As Integer) As Boolean

 iVal = iVal + 5
 testValues = True

End Function

Because the argument was passed ByRef, the function acted upon the under-
lying variable iValOne. This means you can use ByRef to obtain several
“return” values (although they’re not strictly return values) from a single func-
tion call. I would go so far as to say that your program can be made much
more robust by returning only a Boolean from the actual function call, then
testing its value prior to proceeding with the routine in hand.

• It’s possible to pass an array as the return value for a function by assigning
the array to the function in the usual manner—i.e., myFunction =
myArray(). However, Microsoft recommends you not use this method for
“performance reasons.”

• What about a performance gain from returning arrays from functions? In many
cases you will be simply shifting the creation of the array from one place to
another, i.e., in the earlier example, assuming both procedures are within the
same project, the performance gain is minimal, since the only benefit is that
you are making one function call instead of 10 to populate an array. How-
ever when you start to investigate more complex uses for returning arrays,
you start to see some substantial benefits.

For example, the following code demonstrates two methods of populating a
combo box with the names of authors in the SQL Server sample database
“pubs.” An Authors object holds a collection of Author objects, which to keep
things simple holds only the name of each author. Two methods are used. In
the first, Command1_Click uses the traditional method of instantiating an Author
object by calling the Authors.Author property for each Author object in the
Authors collection and assigning the value of the AuthorName property to the
combo box’s list. In the second, Command2_Click calls a function,
Authors.AuthorsNames, which returns an array of all the author names. Here’s
the code for the client application:

Option Explicit

Private moAuthors As Authors

Private Sub Command1_Click()

 cboAuthors.Clear
 Dim i As Integer
 Dim oAuthor As Author
 'the traditional method of obtaining the names
 For i = 1 To moAuthors.Count
 Set oAuthor = moAuthors.Author(i)
Function Statement 345

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 cboAuthors.AddItem oAuthor.AuthorName
 Set oAuthor = Nothing
 Next i

End Sub

Private Sub Command2_Click()

 cboAuthors.Clear
 Dim i As Integer
 Dim sAuthors() As String
 'the new method of bringing in an array from
 'the object
 sAuthors() = moAuthors.AuthorNames
 For i = 1 To UBound(sAuthors)
 cboAuthors.AddItem sAuthors(i)
 Next i

End Sub

The code for the Authors object is shown below. Note that the Author object
is prepopulated to save confusing the code here:

Option Explicit

Private mcolAuthors As Collection

Public Function AuthorNames() As String()
 Dim oAuthor As Author
 Dim sTempArray() As String
 Dim i As Integer

 ReDim sTempArray(1 To mcolAuthors.Count)
 For i = 1 To mcolAuthors.Count
 Set oAuthor = mcolAuthors.Item(i)
 sTempArray(i) = oAuthor.AuthorName
 Set oAuthor = Nothing
 Next i
 AuthorNames = sTempArray
End Function

Public Property Get Author(vVal As Variant) As Author
 Set Author = mcolAuthors.Item(vVal)
End Property

Public Property Get Count() As Long
 Count = mcolAuthors.Count
End Property

The two projects were then run as a standard client EXE and an ActiveX
server DLL. When executed on the same machine, the time taken to populate
the combo box is roughly the same, although the array method has a slight
advantage. When the DLL was run via Microsoft Transaction Server on a
remote machine, the difference in performance is astounding—though not
346 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Function Statement
entirely surprising. Below are the figures obtained from taking the average
time required to populate the combo box 100 times using each method:

• Another addition to VB6 goes hand in hand with returning arrays from func-
tions: the ability to assign arrays of any type from one array variable to
another in a single assignment expression. There is one condition: the array
on the left side of the assignment statement must be dynamic.

• Using UDTs remotely—that is, passing a UDT from a DLL to a client or from an
EXE to a client—requires you to upgrade OLE on both the client and server
machine. If you are running NT5 or Windows 98, you should already have the
required upgrade, as should an NT machine with Service Pack 4 applied. Other-
wise you need to obtain the latest versions of OLE32.DLL and RPCRT4.DLL. For
Windows 95 machines, you should install the latest version of DCOM95.

• Optional arguments afford you wonderful flexibility, allowing you to create
generic functions that can be used in a variety of scenarios. Until version 5 of
VBA, optional arguments could be only of the variant data type. Now, with the
release of VB 5.0, almost any data type can be cast as an optional argument.
However, I would still advocate the use of a variant for optional arguments.
Why? The variant has a special state called Missing that makes it easy to check
the value of an optional argument using the IsMissing function. If IsMissing
returns True, you know immediately that the optional argument wasn’t sup-
plied in the function call. Checking to determine whether a strongly typed vari-
able (an integer, for example) is missing is more difficult:

Sub testMissingInt()

 Dim iVal As Integer
 Dim iValTwo As Integer

 iVal = 10
 iValTwo = 0

 Debug.Print testFunc(iVal, iValTwo)

End Sub

Function testFunc(ByRef iVal As Integer, _
 Optional iValTwo As Integer) As Integer

 If iValTwo = 0 Then
 'perform this if iValTwo is missing
 testFunc = iVal + 10
 Else
 'perform this if iValTwo is present
 testFunc = iVal + iValTwo

Method Used Average Time (secs.)

Returned object .4175

Returned array .0455
Function Statement 347

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 End If

End Function

A missing optional integer argument appears within the function as its initial-
ized value, which is 0. But what happens when you want to pass the value 0
to the function? It’s interpreted as being missing. In other words, in a case
such as this, you have no way to tell if the argument is really missing.

• A ParamArray must be declared in the function as an array of type variant.
However, the calling procedure doesn’t pass the argument explicitly as an
array; the individual elements are passed as a comma-delimited list of values
or variables, as the following example shows:

Sub testParam()

 Debug.Print testFunc(10, 500, 60)

End Sub

Function testFunc(ParamArray someArgs() As Variant) _
 As Integer
 Dim iArg As Integer
 Dim i As Integer
 Dim vArg As Variant

 For Each vArg In someArgs
 iResult = iResult + vArg
 Next

 testFunc = iResult

End Function

• For reasons I haven’t quite fathomed yet, you can’t use ParamArrays to pass
arguments to functions in remote server applications. It’s difficult to describe
the results you obtain; suffice it to say they don’t generate errors, but that,
quite simply, the results are little more than garbage. However, you can pass
an explicit variant array to a function in a remote server application. The
enormous advantage of this is that you can change both the type and num-
ber of arguments passed into the function without changing the COM inter-
face, thereby retaining compatibility with a previous version of the server
application.

• One of the most useful additions to VB5 and VBA5 is the Friend keyword,
which allows you to expose a property function or subroutine in a class mod-
ule to the other modules within the same project, but at the same time pre-
vent “the outside world” from having access to the interface. This can be seen
as halfway between Private—which prevents the interface from being seen
by any module—and Public—which exposes the interface both to modules
in the same project and to modules outside the project.

• There are many occasions where you will run into the dreaded (by some!)
recursive function call. Recursion occurs when you call a function from within
itself. Recursion is a legitimate and often essential part of software develop-
348 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
FV Function
ment; for example, it’s the only reliable method of enumerating or iterating a
hierarchical structure. However, you must be aware that Microsoft—while
never being specific on this point—indicates that recursion can lead to stack
overflow. The extent to which you can get away with recursion really
depends upon the complexity of the function concerned, the amount and
type of data being passed in, and an infinite number of other variables and
unknowns.

See Also
IsMissing Function, Option Private Statement, Sub Statement, Declare
Statement

FV Function

Named Arguments

Yes

Syntax
FV(rate, nper, pmt[, pv [, due]])
rate

Use: Required

Data Type: Double

The interest rate per period.

nper
Use: Required

Data Type: Integer

The number of payment periods in the annuity.

pmt
Use: Required

Data Type: Double

The payment made in each period.

pv
Use: Optional

Data Type: Variant

The present value of the loan or annuity.

due
Use: Optional

Data Type: Variant

Flag specifying whether payments are due at the start or the end of the
period.

Return Value

A Double specifying the future value of an annuity.
FV Function 349

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Description

Calculates the future value of an annuity (either an investment or loan) based on a
regular number of payments of a fixed value and a static interest rate over the
period of the annuity.

Rules at a Glance

• The time units used for the number of payment periods, the rate of interest,
and the payment amount must be the same. In other words, if you state the
payment period in months, you must also express the interest rate as a
monthly rate and the amount paid per month.

• The rate per period is stated as a fraction of 100. For example 10% is stated as
.10. If you are calculating using monthly periods, you must also divide the
rate per period by 12. Therefore, 10% per annum, for example, equates to a
rate per period of .00833.

• The pv argument is most commonly used as the initial value of a loan. The
default is 0.

• Payments made against a loan or added to the value of savings are expressed
in negative numbers.

• The due argument indicates whether the payment is made at the start of a
period (1) or at the end (0, which is the default value).

See Also
IPmt Function, NPer Function, Pmt Function, PPmt Function, PV Function,
Rate Function

Get Statement

Named Arguments

No

Syntax
Get [#]filenumber, [recnumber], varname
filenumber

Use: Required

Data Type: Integer

Any valid file number.

recnumber
Use: Optional

Data Type: Variant (Long)

Record or byte number.

varname
Use: Required

Data Type: Any
350 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Get Statement
The variable into which the data is read.

Description

Copies data from a file on disk into a program variable.

Rules at a Glance

• For files opened in random mode, recnumber refers to the record number in
the file.

• For files opened in binary mode, recnumber refers to the byte number within
the file.

• The number of bytes read by the Get statement is governed by the data type
of varname.

• The position of the first record or byte within a file is always 1.

• Even if recnumber is omitted, you must use the delimiting commas (i.e., Get
#1,,myVar).

• When a record or number of bytes is read from a file using Get, the file
pointer automatically moves to the record or byte following the one just read.
You can therefore read all data from a random or binary file sequentially by
omitting recnumber, as this snippet shows:

Dim hFile as long
hFile = FreeFile()
Open sFileName For Random as #hFile
Do While Not EOF(1)
 Get #1,,myVar
Loop
Close #hFile

• Get is used most commonly to read data from files written with the Put state-
ment.

Programming Tips & Gotchas

• If you are using a Len clause with the Open statement and reading data from
a random access file with the Get statement, you must be aware of the total
number of bytes that the Get statement reads for each data field. This isn’t
always straightforward, since many data types use descriptors to inform pro-
grams reading them how many bytes the data takes up on the disk. For exam-
ple, when reading a variant of a numeric subtype, Get first reads a two-byte
descriptor, then the length of the data type. Your Len clause must therefore
take account of these descriptors. You can obtain a complete list of all
descriptors for each data type in the explanation of the Open statement.

• It’s usual practice to create a user-defined type to accept data from the file
into your program. Your user-defined type must match both the data types
and positions of the data in the file. You can then create an instance of your
user-defined type to use as the variable, as the following example shows:

Option Explicit

Type MyType
Get Statement 351

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 CustNo as Long
 CustName As String * 20
 CustPhone As String * 30
 CustZip As String * 10
End Type

Public CustDetails(10) As MyType

Public Function ReadData() As Boolean

 Dim sFileName As String
 Dim i As Integer

 sFileName = "custData.dat"
 Open sFileName For Random As #1 Len = 64

 For i = 1 To 10
 Get #1, i, CustDetails(i)
 Next i
 Close #1

 MsgBox CustDetails(3).CustPhone

End Function

• With the increase in the power, flexibility, and ease of use of modern DBMSs,
the use of external standalone data files has fallen dramatically, which means
that statements such as Get and Open are fast becoming redundant. Further-
more, any application or user-specific configuration data is best kept in the
registry, again reducing the need for external files.

• If you use a Len clause in the Open statement, you should ensure that the
value of Len matches the record length. It’s possible to read records whose
length is less than Len; however, you will then be unsure where the end of
the record is, because the space between the length of Len and the end of
the record will have been automatically padded with spurious characters.

See Also
Open Statement, Put Statement, Seek Function

GetAllSettings Function

Named Arguments

Yes

Syntax
GetAllSettings(appname, section)
appname

Use: Required

Data Type: String

Name of the application.
352 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
GetAllSettings Function
section
Use: Required

Data Type: String

Relative path from appname to the key containing the settings to retrieve.

Return Value

A Variant containing a two-dimensional array of strings.

Description

Returns the registry value entries and their corresponding values for the application.

Rules at a Glance

• GetAllSettings works exclusively with the subkeys of HKEY_CURRENT_
USER\Software\VB and VBA Program Settings.

• The elements in the first dimension of the array returned by GetAllSettings
contain the value entry names.

• The elements in the second dimension of the array returned by GetAllSettings
contain the values for the respective value entries.

• The two-dimensional array returned by GetAllSettings is based at zero. There-
fore, the first value entry name is referenced using (0,0).

• A call to GetAllSettings returns only the value entry names and data belong-
ing to the final registry key specified by the section argument. If that key
itself has one or more subkeys, their data isn’t retrieved by the function.

• If an application has multiple nested subkeys, all their data can be retrieved
by specifying the relative path from the application key to the desired key in
the section parameter. For example, if Settings\Coordinates is the value
of the section argument, the function attempts to retrieve all values from the
subkey HKEY_CURRENT_USER\Software\VB and VBA Program Set-
tings\appname\Settings\Coordinates.

• If appname or section doesn’t exist, GetAllSettings returns an uninitialized
Variant.

Programming Tips & Gotchas

• GetAllSettings is a function that was developed to retrieve data from initializa-
tion files in 16-bit environments and to retrieve data from the registry under
Win9x and WinNT. The language of the documentation, however, reflects the
language of initialization files. The arguments labeled appname and section
are in fact registry keys; the argument labeled key is a registry value entry.

• The built-in registry manipulation functions allow you to create professional
32-bit applications that use the registry for holding application specific data, in
the same way that .INI files were used in the 16-bit environment. You can, for
example, store information about the user’s desktop settings (i.e., the size and
position for forms) the last time the program is run.

• Because the built-in registry functions in VB create only string type registry
keys, GetSetting and GetAllSettings return string values. Therefore, before you
GetAllSettings Function 353

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
use a numeric value returned from the registry, you should explicitly convert
the value to a numeric data type.

• GetAllSettings, SaveSettings, and GetSetting allow you direct access to a lim-
ited section of the windows registry, that being a special branch created for
your application (HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\yourappname). You can’t access or change other registry settings
without using the Win32 API.

• Use the App object’s EXEName property to pass your application’s name to
the GetAllSetting function.

• All the registry-manipulation functions in VB work equally well with both
Windows NT and Windows 95. The same, however, can’t be said of the
Win32 API calls required to return and change other registry settings.

• Only those settings that are created using either the Win32 API or the SaveSet-
tings function are returned. In other words, a VB application doesn’t have a
registry entry unless you create one explicitly.

• If the key read by GetAllSettings has a default value, that value isn’t retrieved
by the function. If you want to store and retrieve default values, you must call
the Win32 API directly.

• Because GetAllSettings returns an uninitialized Variant when either appname
or section doesn’t exist, if you subsequently try to perform a UBound or
LBound function on the variant, a Type Mismatch error is generated. You can
test the validity of the returned variant using the IsEmpty function as follows:

Dim vRegSettings As Variant
Dim iSettings As Integer

vRegSettings = GetAllSettings(appname:=App.EXEname, _
 section:="Startup")
If Not IsEmpty(vRegSettings) Then
 For iSettings = LBound(vRegSettings, 1) To _
 UBound(vRegSettings, 1)
 Debug.Print vRegSettings(iSettings, 0) & "; " _
 & vRegSettings(iSettings, 1)
 Next iSettings
End If

• Because GetAllSettings retrieves data from the user branch of the registry, and
the physical file that forms the user branch of the registry may change
(depending, of course, on who the user is and, in the case of Win9x systems,
whether or not the system is configured to support multiple users), never
assume that an application has already written data to the registry. In other
words, even if you’re sure your application’s installation routine or the appli-
cation itself has successfully stored values in the registry, never assume that a
particular value entry exists and always be prepared to substitute a default
value if it doesn’t.

See Also
DeleteSetting Statement, GetSetting Function, SaveSetting Statement
354 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
GetAttr Function
GetAttr Function

Named Arguments

No

Syntax
GetAttr(pathname)
pathname

Use: Required

Data Type: String

File and optional path name.

Return Value

An integer representing the attributes set for the file or folder, being the sum of
the following constant values:

Description

Determines which attributes have been set for a file, directory, or folder.

Rules at a Glance

• pathname may optionally include a directory or folder name and a drive let-
ter, including a network drive. pathname can also follow the UNC format of
//machine_name/drive.

• You can check if a particular attribute has been set by performing a bit-wise
comparison of the GetAttr return value and the value of the attribute constant
using the And operator. A nonzero result means that the particular attribute
has been set; conversely, a zero value indicates that the attribute has not been
set. For example:

If GetAttr(myfile.txt) And vbReadOnly = 0 then
 Msgbox "The file is Read-Write"
Else
 MsgBox "The file is Read-Only"
End If

Programming Tips & Gotchas

The file attribute constants are defined to be globally available for use within your
projects.

Constant Value Description

vbNormal 0 Normal

vbReadOnly 1 Read-only

vbHidden 2 Hidden

vbSystem 4 System

vbDirectory 16 Directory or folder

vbArchive 32 File has changed since last backup
GetAttr Function 355

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
GetAutoServerSettings Function

Syntax
object.GetAutoServerSettings([Progid], [Clsid])
object

Use: Required

Data Type: Object expression

An object variable representing the RacReg library.

Progid
Use: Optional

Data Type: Variant

The programmatic identifier (ProgID) for the component.

Clsid
Use: Optional

Data Type: Variant

The class identifier (CLSID) for the component.

Return Value

A Variant containing an array of values, described in the following table:

Description

Returns registration information for an ActiveX object.

Rules at a Glance

• Although both ProgID and Clsid are optional, one must be specified. They
are also mutually exclusive.

• The variant array that is returned by GetAutoServerSettings is one-based.

• To access this function, you must reference the RacReg library in the Refer-
ences section of your project.

Example
Public Function tryCalling() As Boolean

 'create local variables
 Dim oMyObj As MyRemServer.ServClass
 Dim oRacReg As New RacReg.RegClass
 Dim vASS As Variant

Index Description

1 1 if the ActiveX component is registered to execute remotely, 0 if regis-
tered to run locally

2 Remote machine name

3 RPC network protocol name

4 RPC authentication level
356 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
GetAutoServerSettings Function
 Dim sTest As String

 'get the settings of the ActiveX server
 vASS = _
 oRacReg.GetAutoServerSettings("MyRemServer.ServClass")

 If Not (IsEmpty(vASS)) Then
 'check element 1 of the array - True if remote
 If vASS(1) Then
 'quick and dirty method of contacting the server
 'at least it'll still work with NT5!
 sTest = Dir("\\" & vASS(2) & "\c$\autoexec.bat")
 'test the return value of the Dir function
 If sTest = "autoexec.bat" Then
 'if ok then create the instance
 Set oMyObj = New MyRemServer.ServClass
 'do some stuff with the object here
 End If
 Else
 'the server is local - no problem!
 Set oMyObj = New MyRemServer.ServClass
 'do some stuff with the object here
 End If
 End If

tryCalling_Exit:
 'tidy up before you leave
 Set oMyObj = Nothing
 Set oRacReg = Nothing

tryCalling_Err:
 'catch the error thrown by the Dir function when it
 'times out because the LAN or WAN lines to the
 'remote server are down
 If Err.Number = 52 Then
 MsgBox "The server " & vASS(2) & _
 " can't be reached at this time"
 Else
 MsgBox Err.Description
 End If

 'a variation is to ask the user if they want to retry
 '& resume to a label just above the Dir function.
 Resume tryCalling_Exit

End Function

Programming Tips & Gotchas

• Be sure to test that the variant is not empty before trying to reference the
array elements.

• This rather neat little function allows you to determine if an ActiveX compo-
nent is registered to run locally or remotely via DCOM. That said, it doesn’t
allow you to change where the component is registered, nor is there any
GetAutoServerSettings Function 357

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
immediately perceptible benefit in knowing on which server it’s to run. I sup-
pose if you know that a particular server is switched off during certain times
of the day you can bypass the call!

• The function allows you to build in some precall testing to check that the LAN
or WAN lines to the server are operational. In other words, you could pro-
grammatically “ping” the server and, if successful, make your call to the
ActiveX component. This is particularly beneficial when producing client-
server applications that operate across a corporate WAN. An annoyance of try-
ing maintain such systems is that the error returned when the “lines” are
down is exactly the same as the one when a local DLL can’t be instantiated.
Therefore, being able to inform the user that a remote server can’t be reached
and to exit the program gracefully is of great benefit to both user and devel-
oper. A complete working example of this concept is shown in the previous
example.

• RPC stands for Remote Procedure Call; DCOM for Distributed COM.

• If this book hits the streets before you upgrade to NT5, and you’re having
problems with DCOM on your NT4 boxes, make sure you’ve applied the now
legendary Service Pack 3, since earlier builds and service packs had some
fairly fundamental glitches in DCOM (i.e., it didn’t work!). If you’re running
Windows 95, you don’t automatically have DCOM; however, it’s available as a
free download from the Microsoft web site. As Windows 9x moves ever closer
to NT, DCOM has been made an integral part of Windows 98.

• The example for GetAutoServerSettings in the VB5 help file contains an error;
the name of the remote server is held at element 2 of the array, not element 1.

• The “registered to run remotely” flag held in element 1 of the array returns 1
or 0, not True or False (a subtle but important difference in VB).

GetObject Function

Named Arguments

Yes

Syntax
GetObject([pathname] [, class])
pathname

Use: Optional

Data Type: Variant (String)

The full path and name of the file containing the ActiveX object.

class
Use: Optional

Data Type: Variant (String)

The class of the object (see next list).

The class argument has these parts:
358 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
GetObject Function
Appname
Use: Required

Data Type: Variant (String)

The name of the application.

Objecttype
Use: Required

Data Type: Variant (String)

The class of object to create, delimited from Appname by using a point
(.). For example, Appname.Objecttype.

Return Value

Returns a reference to an ActiveX object.

Description

Accesses an ActiveX server held within a specified file.

Rules at a Glance

• Although both pathname and class are optional, at least one parameter must
be supplied.

• In situations in which you can’t create a project-level reference to an ActiveX
object, you can use the GetObject function to assign an object reference from
an external ActiveX object to an object variable.

• GetObject is used when there is a current instance of the ActiveX object; to
create the instance, use the CreateObject function.

• If you specify pathname as a zero-length string, GetObject returns a new
instance of the object—unless the object is registered as single instance, in
which case the current instance is returned.

• If you omit the pathname, the current instance of the object is returned.

• An error is generated if pathname isn’t specified, and no current instance of
the object can be found.

• The object variable you use within your program to hold a reference to the
ActiveX object is dimensioned as type Object. This causes the object to be late
bound; that is, your program knows nothing of the type of object nor its inter-
face until the object has been instantiated within your program. To assign the
reference returned by GetObject to your object variable, you must use the Set
statement:

Dim myObject As Object
Set myObject = GetObject("C:\OtherApp\Library.lib")

• The details of how you create different objects and classes are determined by
how the server has been written; you need to read the documentation for the
server to determine what you need to do to reference a particular part of the
object. There are three ways you can access an ActiveX object:
GetObject Function 359

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
– The overall object library. This is the highest level, and it gives you
access to all public sections of the library and all its public classes:

 GetObject("C:\OtherApp\Library.lib")

– A section of the object library. To access a particular section of the
library, use an exclamation mark (!) after the filename, followed by the
name of the section:

 GetObject("C:\OtherApp\Library.lib!Section")

– A class within the object library. To access a class within the library, use
the optional Class parameter:

 GetObject("C:\OtherApp\Library.lib", "App.Class")

Programming Tips & Gotchas

• Pay special attention to objects registered as single instance. As their type sug-
gests, there can be only one instance of the object created at any one time.
Calling CreateObject against a single-instance object more than once has no
effect; you still return a reference to the same object. The same is true of
using GetObject with a pathname of ""; rather than returning a reference to a
new instance, you obtain a reference to the original instance of the object. In
addition, you must use a pathname argument with single-instance objects
(even if this is ""); otherwise an error is generated.

• You can’t use GetObject to obtain a reference to a class created with Visual
Basic.

• When possible, you should use early binding in your code. For more details
on early and late binding, see Chapter 4. You can use GetObject in early bind-
ing, as in:

Dim objExcel As Excel.Application
Set objExcel = GetObject(, "Excel.Application")

The following table shows when to use GetObject and CreateObject :

See Also
CreateObject Function, Set Statement

Task Use

Create a new instance of an OLE server CreateObject

Create a subsequent instance of an already instantiated
server (if the server isn’t registered as single instance)

CreateObject

Obtain a further reference to an already instantiated
server without launching a subsequent instance

GetObject

Launch an OLE server application and load an instance
of a subobject

GetObject

Instantiate a class created with VB CreateObject

Instantiate a class registered on a remote machine CreateObject
360 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
GetSetting Function
GetSetting Function

Named Arguments

Yes

Syntax
GetSetting(appname, section, key[, default])
appname

Use: Required

Data Type: String

The name of the application.

section
Use: Required

Data Type: String

The path from the application key to the key containing the value entries.

key
Use: Required

Data Type: String

The name of the value entry whose value is to be returned.

default
Use: Optional

Data Type: String

The value to return if no value can be found.

Return Value

A string containing the value of the specified key; default if key, section, or
appname aren’t found.

Description

Returns a single value from a specified section of your application’s entry in the
HKEY_CURRENT_USER\Software\VB and VBA Program Settings\ branch of the
registry.

Rules at a Glance

• If appname, section, or key isn’t found in the registry, GetSetting returns
default.

• If default is omitted, it’s assumed to be a zero-length string ("").

• The function retrieves a value from a subkey of the KEY_CURRENT_
USER\Software\VB and VBA Program Settings key of the registry.

• section need not be an immediate subkey of appname; instead, section can
be a fully qualified path to a nested subkey, with each subkey separated from its
parent by a backslash. For example, a value of Settings\Coordinates for the
section argument indicates that the value is to be retrieved from HKEY_
GetSetting Function 361

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
CURRENT_USER\Software\VB and VBA Program Settings\appname\Set-
tings\Coordinates.

Programming Tips & Gotchas

• GetSetting is a function that was developed to retrieve data from initialization
files in 16-bit environments and to retrieve data from the registry under Win9x
and WinNT. The language of the official documentation, however, reflects the
language of initialization files. The arguments labeled appname and section
are in fact registry keys; the argument labeled key is in fact a registry value
entry.

• Because the built-in registry functions in VB create only string type registry
value entries, GetSetting and GetAllSettings return string values. Therefore,
before you use numeric values returned from the registry, you should convert
the value to a numeric data type explicitly using the appropriate conversion
function.

• Use the App object’s EXEName property to pass your application’s name to
the GetSetting function as the value of the appname parameter both when
reading and writing registry data.

• The built-in registry manipulation functions allow you to create professional
32-bit applications that use the registry for holding application-specific data, in
the same way .INI files were used in the 16-bit environment. You can, for
example, store information about the user’s desktop settings (i.e., the size and
position of forms) from the last time the program was run.

• GetSetting, GetAllSettings, and SaveSettings allow you direct access to only a
limited section of the windows registry, that being a special branch created for
your application (HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\yourappname). You can’t access or change other registry settings
without resorting to the Windows API.

• GetSetting doesn’t allow you to retrieve the default value of a registry key.
Attempting to do so produces runtime error 5, “Invalid procedure call or argu-
ment.” This isn’t as great a limitation as it may appear, since SaveSetting also
can’t write a default value to a registry key.

• Because GetSetting retrieves data from the user branch of the registry, and the
physical file that forms the user branch of the registry may change (depend-
ing, of course, on who the user is and, in the case of Win9x systems, whether
or not the system is configured to support multiple users), never assume that
an application has already written data to the registry. In other words, even if
you’re sure your application’s installation routine or the application itself has
successfully stored values in the registry, always supply a meaningful value
for the default argument.

• Only those settings that are created using the Windows API or the SaveSet-
ting function are returned. In other words, a VB application doesn’t have a
registry entry unless you have create one explicitly.

• Although GetSetting writes string data only to the registry, you can use a vari-
able of almost any data type to retrieve it. The GetSetting function automati-
cally handles the conversion of string data to the data type of the variable to
362 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
GoSub...Return Statement
which the return value of GetSetting is assigned. The sole exceptions are user-
defined data types and arrays of byte data.

See Also
DeleteSetting Statement, GetAllSettings Function, SaveSetting Statement

GoSub...Return Statement

Syntax
GoSub label
...
label:
...
Return
label

Use: Required

Subroutine name.

Description

Passes execution to and returns from a subroutine within a procedure.

Rules at a Glance

• GoSub and its counterpart, Return, must reside within the same procedure.
This means you can’t use GoSub to “call” a subroutine from within another
procedure.

• A subroutine can contain any number of Return statements.

• Return causes execution to continue with the code immediately following
the last executed GoSub.

Programming Tips & Gotchas

The only reason I’ve included this relic of the past here is to help if you have the
misfortune of maintaining or updating legacy code (and by legacy, I mean VB1 or
2!). A program written in VB3 onward shouldn’t contain a single GoSub. If you
come across a GoSub, split the code into its own Sub procedures, or, better still,
create a new function procedure containing the code within the GoSub. Even if
you aren’t going to use a return value now, cast the return value of the function as
a Boolean; this is good programming practice and allows early error trapping
within your code.

Old code

Private Sub Command1_Click()
 Dim iSomething As Integer
 Dim strOther As String
 GoSub AnOldGosub
 GoSub AnOlderGosub
 GoSub AnotherGosub
 Exit Sub
AnOldGosub:
GoSub...Return Statement 363

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 Dim x As Integer
 For x = 1 To 10
 iSomething = iSomething + 1
 Next x
 Return
AnOlderGosub:
 Dim y As Integer
 For y = 1 To 10
 strOther = strOther & "="
 Next y
 Return
AnotherGosub:
 Printer.Print strOther
 Printer.Print iSomething
 Printer.EndDoc
 Return
End Sub

New code

Private Sub Command2_Click()
 Printer.Print GetOther()
 Printer.Print GetSomething()
 Printer.EndDoc
End Sub

Private Function GetSomething() As Integer
 Dim x As Integer
 For x = 1 To 10
 iSomething = iSomething + 1
 Next x
 GetSomething = iSomething
End Function

Private Function GetOther() As String
 Dim y As Integer
 For y = 1 To 10
 strOther = strOther & "="
 Next y
 GetOther = strOther
End Function

See Also
Goto Statement

Goto Statement

Syntax
GoTo label
label

Use: Required

Subroutine name.
364 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Hex, Hex$ Functions
Description

Passes execution to a subroutine within a procedure.

Rules at a Glance

label must be a subprocedure defined within the same procedure as Goto.

Programming Tips & Gotchas

• The only time a modern VB program should include a Goto statement is in an
error handler, as in:

On Error Goto My_Sub_Err

• For more information on error handling, see Chapter 6.

See Also
GoSub...Return Statement, Chapter 6

Hex, Hex$ Functions

Named Arguments

No

Syntax
Hex(number)
number

Use: Required

Data Type: Numeric or String

A valid numeric or string expression.

Return Value

String representing the hexadecimal value of number.

Description

Returns a string that represents the hexadecimal value of a number.

Rules at a Glance

• If number contains a fractional part, it’s rounded automatically to the nearest
whole number prior to processing.

• number must evaluate to a numeric expression that ranges from
–2,147,483,648 to 2,147,483,647. If the argument is outside this range, runtime
error 6, “Overflow,” results.

• The return value of Hex is dependent upon the value and type of number:

number Return Value

Null Null

Empty Zero (0)

Any other number Up to eight hexadecimal characters
Hex, Hex$ Functions 365

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

If the value of number is known beforehand and isn’t the result of an expression,
you can represent the number as a hexadecimal by simply affixing &H to number.
Each of the following two statements assigns a hexadecimal value to a variable, for
instance:

lngHexValue1 = &HFF ' Assigns 255
lngHexValue2 = "&H" & Len(dblNumber) ' Assigns 8

See Also
Oct, Oct$ Functions

Hour Function

Named Arguments

No

Syntax
Hour(time)
time

Use: Required

Data Type: Any variant, numeric, or string expression

Any valid time expression.

Return Value

A variant of data subtype Integer representing the hour of the day.

Description

Extracts the hour element from a time expression.

Rules at a Glance

• Regardless of the time format passed to Hour, the return value is a whole
number between 0 and 23, representing the hour of a 24-hour clock.

• If time contains Null, Null is returned.

See Also
Minute Function, Now Function, Second Function

If...Then...Else Statement

Named Arguments

No

Syntax
If condition Then
 [statements]
366 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
If...Then...Else Statement
[ElseIf condition-n Then
 [elseifstatements] ...
[Else
 [elsestatements]]
End If

Or, you can use the single-line syntax:

If condition Then [statements] [Else elsestatements]
condition

Use: Required

Data Type: Boolean

An expression returning either True or False or an object type.

statements
Use: Optional

Program code to be executed if condition is True.

condition-n
Use: Optional

Same as condition.

elseifstatements
Use: Optional

Program code to be executed if the corresponding condition-n is True.

elsestatements
Use: Optional

Program code to be executed if the corresponding condition or condi-
tion-n is False.

Description

Executes a statement or block of statements based on the Boolean (True or
False) value of an expression.

Rules at a Glance

• If condition is True, the statements following the If are executed.

• If condition is False and no Else or ElseIf statement is present, execu-
tion continues with the corresponding End If statement. If condition is
False and ElseIf statements are present, the condition of the next ElseIf
is tested. If condition is False, and an Else is present, the statements fol-
lowing the Else are executed.

• In the block form, each If statement must have a corresponding End If
statement. ElseIf statements don’t have their own End If. For example:

If condition Then
statements

ElseIf condition Then
statements

End If
If...Then...Else Statement 367

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• ElseIf and Else are optional, and any number of ElseIf and Else state-
ments can appear in the block form. However, no ElseIf statements can
appear after an Else.

• condition can be any statement that evaluates to True or False.

• If condition returns Null, it’s treated as False.

• You can also use the If statement to determine object types by using the
TypeOf and Is keywords, as follows:

If TypeOf objectname Is objecttype Then

• statements are optional only in the block form of If. However, state-
ments are required when using the single-line form of If in which there is no
Else clause.

Programming Tips & Gotchas

• You can use the single-line form of the If statement to execute multiple state-
ments, which you can specify by delimiting the statements using colons; how-
ever, single-line form If statements are hard to read and maintain, and should
be avoided for all but the simplest of situations.

• In situations where you have many possible values to test, you will find the
Select Case statement much more flexible, manageable, and readable than a
bunch of nested If statements.

• You will come across situations in which very large blocks of code have to
execute based one or more conditions. In these—and in all situations—you
should try to make your code as readable as possible, not only for other pro-
grammers, but for yourself when you try to maintain the code several months
down the line. Take a common scenario in which, at the beginning of a pro-
cedure, a check is made to see if the procedure should in fact be executed
under the current circumstances. You have the choice of surrounding the
whole code with an If...Then...End If construct, like this:

If iSuccess Then
 ...
 ...
 ... 'x000 lines of code
End If

Or you can switch the result to look for a False, then exit the sub, like this:

If Not iSuccess Then
 Exit Sub
End If
.... 'x000 lines of code

The difference is that, with the second method, you don’t have to scroll down
screens worth of code looking for the matching End If.

• Indentation is important for the readability of If, and especially nested If,
statements. The recommended indentation is four characters, which you will
find is the Visual Basic editor’s default tab value. The set of statements within
each new If...Else..EndIf block should be indented. And here’s a quick
tip when using the VB5 or VBA development environment: you can select a
368 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
If...Then...Else Statement
block of code and press the Tab key to indent the complete selected block.
The following example shows correctly indented code:

If x = y Then
 DoSomethingHere
 If y < z Then
 DoSomethingElseToo
 Else
 DoAnotherThing
 If z - 1 = 100 Then
 DoAThing
 End If
 End If
Else
 DoAlternative
End If

• Use of the If statement requires some understanding of the implicit and
explicit use of True in Visual Basic. The following If statement uses an
implicit True:

If iSuccess Then

Notice that you are allowing VB to evaluate the iSuccess variable to True or
False. When this implicit form is used, any non-zero value evaluates to True,
and conversely a zero value evaluates to False. For example, the following
code evaluates iSuccess as True and prints the “OK” message box:

Dim iSuccess As Integer
iSuccess = 41
If iSuccess Then
 MsgBox "OK"
Else
 MsgBox "False"
End If

However, when you compare a variable to an explicit True or False, the
value must be –1 to evaluate to True, and 0 for False. If you amend the
above code fragment as follows:

iSuccess = 41
If iSuccess = True Then

iSuccess doesn’t evaluate to VB’s version of True (–1). As you can imagine,
this can lead to some confusion, since a variable can evaluate to True when
using an implicit comparison but not when using an explicit comparison.
Actually, just to add to the confusion, you could get the explicit comparison
to behave the same as the implicit one by converting iSuccess to a Boolean:

If CBool(iSuccess) = True Then

This isn’t entirely recommended, but it does show that VB’s built-in constants
of True and False evaluate only –1 and 0, respectively.

• Logical comparison operators can be included in the condition expression,
allowing you to make decisions based on the outcome of more than one indi-
If...Then...Else Statement 369

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
vidual element. The most common of these are And and Or. You can create
conditions like:

If x = 1 And y = 3 Then

• Visual Basic always evaluates both sides of a logical comparison, unlike some
languages that allow you to stop before each portion of a comparison has
been evaluated. For example, in the following code, if x does equal 1, then
the If condition has been met. Some languages would stop the evaluation
here. But regardless of the value of x, Visual Basic still evaluates the compari-
son with y.

If x = 1 Or y = 3 Then

• The If statement is also used with objects to determine if an object has been
successfully assigned to an object variable. (Actually, that’s not completely
accurate; you check to see if the object variable is still set to Nothing.) How-
ever, you can’t use the equality operator (=) for this comparison. Instead, you
must use the object comparison operator Is, as the following code shows:

If Not objectname Is Nothing Then

See Also
Choose Function, IIf Function, Select...Case Statement, Switch Function

IIf Function

Named Arguments

Yes

Syntax
IIf(expr, truepart, falsepart)
expr

Use: Required

Data Type: Boolean

Expression to be evaluated.

truepart
Use: Required

Data Type: Any value or expression

Expression or value to return if expr is True.

falsepart
Use: Required

Data Type: Any value or expression

Expression or value to return if expr is False.

Return Value

The value or result of the expression indicated by truepart or falsepart.
370 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
IMEStatus Function
Description

Returns one of two results, depending on whether expr evaluates to True or
False.

Rules at a Glance

• IIf always evaluates both the truepart and falsepart expressions indepen-
dently of the value of expr. You must therefore ensure that both expressions
can be safely evaluated when the IIf function is called or an error is generated.

• The IIf function is the equivalent of:

If testexpression Then
result = truereturn

Else
result = falsereturn

End If

The only difference is that, in the corresponding If...Then...Else...End
If statement, only one of either truepart or falsepart is evaluated,
depending on the result of expr.

• truepart and falsepart can be any one variable, constant, literal, expres-
sion, or the return value of a function call.

Programming Tips & Gotchas

The IIf function is ideal for very simple tests resulting in single expressions. If you
really feel the need, IIf function calls can be nested; however, your code can
become difficult to read quickly. The following code fragment illustrates the use of
a nested IIf function:

Dim x As Integer
x = CInt(Text1.Text)
MsgBox IIf(x < 10, "Less than ten", IIf(x < 20, _
 "Less than 20", "Greater than 20"))

See Also
Choose Function, If...Then...Else Statement, Select Case Statement,
Switch Function

IMEStatus Function

Named Arguments

No

Syntax
IMEStatus()

Return Value

A Long representing the status of the input method editor (IME), as represented by
the following constants for the Japanese, simplified Chinese, and traditional
Chinese locales:
IMEStatus Function 371

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
For a Korean locale, the status of the IME is given by the five low-order bytes of
the return value:

The status of any particular pair of attributes can therefore be accessed with a
code fragment like the following:

If 2 And IMEStatus() Then
 Debug.Print "IME is enabled"
Else
 Debug.Print "IME Is disabled"
End If

Description

Indicates the state or character set of the IME, which is used in the Far Eastern
editions of Windows to handle keyboard messages and to translate them into a
local character set.

Constant Value Description

vbIMENoOP 0 IME not implemented.

vbIMEOn 1 IME is on.

vbIMEOff 2 IME is off.

vbIMEDisable 3 IME is disabled (Japanese locale only).

vbIMEHiragana 4 IME is using Hirgana double-byte characters
(Japanese locale only).

vbIMEKatakanaDbl 5 IME is using Katakana double-byte characters
(Japanese locale only).

vbIMEKatakanaSng 6 IME is using Katakana single-byte characters
(Japanese locale only).

vbIMEAlphaDbl 7 IME is using an alphanumeric double-byte
character set (Japanese locale only).

vbIMEAlphaSng 8 IME is using an alphanumeric single-byte
character set (Japanese locale only).

Byte Value Description

0 0 IME not installed

1 IME installed

1 0 IME disabled

1 IME enabled

2 0 IME English mode

1 Hangeul mode

3 0 Banja mode (single-byte)

1 Junja mode (double-byte)

4 0 Normal mode

1 Hanja conversion mode
372 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Implements Statement
Rules at a Glance

In the case of non-Far Eastern versions of Windows, where IMEs aren’t supported,
a call to IMEStatus returns vbIMENoOP.

Implements Statement

Named Arguments

No

Syntax
Implements objVarName
objVarName

Use: Required

Type: Class

The name of an object variable referencing a standard interface class.

Description

The Implements statement allows you to provide polymorphism within your
object models. Polymorphism has the advantages of speed and flexibility over
inheritance—though, unfortunately, we have neither the time nor space to explore
these concepts in depth here. Polymorphism boils down to a set of guidelines or a
framework the user works within to create a different end result (or implementa-
tion). Polymorphism is seen most obviously in nature. For example, a structure we
all know well is a tree; its model states that it has a trunk, leaves, branches, and
roots. An oak tree is one implementation of the tree “model,” whereas a pine is a
very different implementation of the same basic model. In Visual Basic, polymor-
phism is provided by standard interface (or abstract) classes and the Implements
statement. The Implements statement informs VB that you are going to provide
implementations for each of the Public methods and properties found in the
referenced standard interface class.

The basic concept of standard interface classes is that it’s the user of the class—not
the interface class itself—that decides how a particular method or property should
be implemented. For example, you could create a standard interface class that acts
as a wrapper for a collection object. The standard interface could provide an Exists
function, for example. However, the implementation of this procedure could be
very different depending on the context in which the class implementing the stan-
dard interface is being used.

The following examples show a procedure prototype as it may appear within our
example standard interface, followed by two different ways in which this proce-
dure could be implemented. First, the standard (or abstract) procedure prototype:

Public Function Exists(vVal as Variant) As Boolean
End Function

One implementation of the Exists method might look like this:

Public Function Exists(vVal As Variant) As Boolean
Implements Statement 373

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 On Error Goto Exists_Err
 Dim oTest as TestObject
 Set oTest = m_col.Item(vVal)
 Set oTest = Nothing
 Exists = True
 Exit Function

Exists_Err:
 Exists = False
End Function

Another implementation of the Exists method might be as follows:

Public Function Exists(vVal As Variant) As Boolean

 On Error Goto Exists_Err
 Dim oTest as TestObject
 Set oTest = m_col.Item(vVal)
 Set oTest = Nothing
 Exists = True
 Exit Function
Retry:
 If GetNewItem(vVal) = True Then
 Exists = True
 Else
 Exists = False
 End If
 Exit Function
Exists_Err:
 If Err.Number = 5 Then
 Resume Retry
 End If
 Exists = False
End Function

A standard interface class therefore is a class that contains only procedure declara-
tions; there is no code in those procedures. It’s up to the developer who uses this
class interface to implement code for these procedures.

Rules at a Glance

• Within the module containing the Implements statement, you must create a
procedure for each of the public procedures in the class being implemented.

• The Implements statement can be used only in Form and Class modules.

• A reference to the class objVarName must be added to the project using the
References dialog.

• By convention, you should name your abstract or standard interface classes
beginning with a capital I to denote them as interfaces (for example, Imy-
Interface).

Programming Tips & Gotchas

• If you don’t wish to support a procedure from the implemented class, you
must still create a procedure declaration for the implemented procedure.
374 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Initialize Event
However, you can simply raise an error using the special error constant
Const E_NOTIMPL = &H80004001.

• The Implements statement doesn’t support events. Any events publicly
declared in the standard interface class are ignored.

• Standard (or abstract) interfaces allow for greater coherence when develop-
ing in teams. For example, all developers could use a set of standard inter-
faces to produce controls and objects of a particular type without being
constrained by implementation. That is, each developer would be free to
implement a particular property or method in the way that he or she saw fit.

• The polymorphism model dictates that standard interface classes shouldn’t
change once they have been written and distributed. Any additional function-
ality required should be provided by defining additional interfaces.

• The use of the Implements statement provides an increasingly important
method of adding extra functionality to VB. For example, the Implements
statement with an object reference to the OLEDBSimpleProvider type library
creates an OLEDB simple provider.

Initialize Event

Syntax
Private Sub object_Initialize()

Description

Use the Initialize event of an object or class to prepare the object or class for use,
setting any references to subobjects or assigning values to module-level variables.

Rules at a Glance

• The Initialize event is triggered automatically when an object or class module
is first used. The precise point at which the Initialize event is fired depends
on how the object is created.

• The Initialize event isn’t triggered by the declaration of a new object. It’s not
until the object is used for the first time that the Initialize event is called. For
example, in the code fragment:

Dim MyObject As New MyClass
'some code
...
'initialize event called here
strName = MyObject.CustName

The assignment of the CustName property value generates the Initialize event,
yet in the following code, the Set statement generates the Initialize event.

Dim MyObject As MyClass
'some code
...
'initialize event called here
Set MyObject = New MyClass
StrName = MyObject.CustName
Initialize Event 375

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• The Initialize event is only private and doesn’t take any arguments.

Programming Tips & Gotchas

• While it’s possible to explicitly call the Initialize event from within the object
at any stage after the object has been created, it isn’t recommended because
the code in the Initialize event should be written to be “run once” code.

• Use the Initialize event of a class module to generate references to depen-
dent objects. For example:

Option Explicit

Dim mcolMyCollection As Collection
Dim moSubObject As mySubObject

Private Sub Class_Initialize()

 Set mcolMyCollection = New Collection
 Set moSubObject = New mySubObject
 If glbInstance = 0 Then
 Set glbMainObj = Me
 glbInstance = 1
 End If

End Sub

• The Initialize event is triggered only once, when a new object is created.
When an object variable is assigned a reference to an existing object, the Ini-
tialize event isn’t invoked. For example, in the following code fragment, the
Initialize event is invoked only once, when the Set objMine1 statement is
executed:

Dim objMine1 As MyObj, objMine2 As MyObj
Set objMine1 = New MyObj
Set objMine2 = objMine1

• See Chapter 4 for an in-depth study using classes and objects in VB and VBA.

See Also
Set Statement, Terminate Event

Input, Input$, InputB, InputB$ Functions

Syntax
Input(number, [#]filenumber)
number

Use: Required

Data Type: Numeric

Specifies the number of characters to return.

filenumber
Use: Required
376 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Input # Statement
Data Type: Integer

Any valid file number.

Return Value

A string (in the case of Input$ and InputB$) or a variant string (if Input or InputB)
containing number characters.

Description

Accesses data from within a file opened in input or binary mode.

Rules at a Glance

• Input should be used only once with files opened in input or binary mode.

• The function begins reading characters from the current position of the file
pointer.

• Input returns all characters it reads, regardless of their type, returning the raw
data of the file. This includes spaces, carriage returns, linefeeds, commas, end-
of-file markers, unprintable characters, etc.

• Once the function finishes reading number characters, it also advances the file
pointer number characters.

• The InputB and InputB$ function variants of the Input function are used to
read binary data from a file. In this case, number refers to the number of
bytes to read, as opposed to the number of characters.

Programming Tips & Gotchas

• Input reads data written to a file using either the Print# or Put statements.

• Input always attempts to read precisely number characters from the file. If
there aren’t number characters from the position of the file pointer to the end
of the file, Input attempts to read beyond the end of the file, thereby generat-
ing runtime error 62, “Input past end of file.” To prevent this, you should use
the LOF function after opening the file to insure that you don’t attempt to read
past the end-of-file marker.

See Also
Input# Statement, LOF Function, Open Statement, Print# Statement, Put
Statement, Write# Statement

Input # Statement

Syntax
Input #filenumber, varlist
filenumber

Use: Required

Data Type: Integer

Any valid file number.
Input # Statement 377

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
varlist
Use: Required

Data Type: Any

Comma-delimited list of variables or user-defined types.

Description

Reads delimited data from a sequential file opened in input or binary mode.

Rules at a Glance

• Use Input# only with files opened in input or binary modes.

• Variables in varlist can’t be array or object variables.

• Both the type and position of data items in the file must match the variables
in varlist.

• If Input# expects to find a numeric value based on the type of a variable in
varlist, and the data in the file isn’t numeric, the variable is assigned a zero
value. When reading the value of a variable, the function won’t perform any
data conversion. This means, for example, that if your program reads the
string “10” and assigns it to a long integer variable named lngVar, the value
of lngVar is 0.

• Input# strips off quotation marks ("") it finds around strings.

• After Input# reads varlist, it advances the file pointer to the first unread
variable or, if the file contains no additional delimited data, to the end of the
file.

• If the end of the file is reached during an Input#, an error is generated.

• Input# assigns string and numeric data to the relevant variable in varlist
without modification; however, other types of data can be modified as shown
in the following table.

Programming Tips & Gotchas

• Use the EOF function to check that the end of the file has or hasn’t been
reached.

• You should use the Write# statement to write data to a file, since Write#
delimits data fields correctly. This insures that the data can be read correctly
with the Input# statement.

Data Value Assigned to Variable

Delimiting comma or blank line Empty

#NULL# Null

#TRUE# or #FALSE# True or False

#yyyy-mm-dd hh:mm:ss# Date and/or time

#ERROR errornumber# Error number (variable is a variant of
subtype error)
378 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
InputBox Function
See Also
Input, InputB, Input$, InputB$ Functions; Write# Statement

InputBox Function

Named Arguments

Yes

Syntax
InputBox(prompt[, title] [, default] [, xpos] _
 [, ypos] [, helpfile, context])
prompt

Use: Required

Data Type: String

The message in the dialog box.

title
Use: Optional

Data Type: String

The titlebar of the dialog box.

default
Use: Optional

Data Type: String

String to be displayed in the text box on loading.

xpos
Use: Optional

Data Type: Numeric

The distance from the left side of the screen to the left side of the dialog
box.

ypos
Use: Optional

Data Type: Numeric

The distance from the top of the screen to the top of the dialog box.

helpfile
Use: Optional

Data Type: String

Specifies the Help file to use if the user clicks the Help button on the
dialog box.

context
Use: Optional

Data Type: Numeric
InputBox Function 379

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Specifies the context number to use within the Help file specified in
helpfile.

Return Value

InputBox returns a variant string containing the contents of the text box from the
InputBox dialog.

Description

Displays a dialog box containing a label, which prompts the user about the data
you expect them to input, a text box for entering the data, an OK button, a Cancel
button, and optionally a Help button. When the user clicks OK, the function
returns the contents of the text box.

Rules at a Glance

• If the user clicks Cancel, a zero-length string ("") is returned.

• prompt can contain approximately 1,000 characters, including nonprinting
characters like the intrinsic vbCrLf constant.

• If the title parameter is omitted, the name of the current application or
project is displayed in the titlebar.

• If you don’t use the default parameter to specify a default entry for the text
box, the text box is shown empty; a zero-length string is returned if the user
doesn’t enter anything in the text box prior to clicking OK.

• xpos and ypos are specified in twips. A twip is a device-independent unit of
measurement that equals 1/20 of a point or 1/1440 of an inch).

• If the xpos parameter is omitted, the dialog box is centered horizontally.

• If the ypos parameter is omitted, the top of the dialog box is positioned
approximately one-third of the way down the screen.

• If the helpfile parameter is provided, the context parameter must also be
provided, and vice versa.

• In VB5 and in VBA applications, when both helpfile and context are
passed to the InputBox function, a Help button is automatically placed on the
InputBox dialog, allowing the user to click and obtain context-sensitive help.
In VB4, the user wasn’t presented with a Help button and could access help
only by pressing the F1 key.

Programming Tips & Gotchas

• If you are omitting one or more optional arguments and are using subse-
quent arguments, you must use a comma to signify the missing parameter. For
example, the following code fragment displays a prompt, a default string in
the text box, and the help button, but default values are used for the title and
positioning.

sString = InputBox("Enter it now", , "Something", , _
 , "help.hlp", 321321)

• Note that when using InputBox with VBA in Office applications, the maxi-
mum length of the prompt string is 256 characters.
380 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Instancing Property (VB only)
See Also
MsgBox Function

Instancing Property (VB only)

Description

Only available when a class is part of an ActiveX project. The Instancing property
defines how instances of the class are created, and whether or not instances of the
class can be created outside of the project. This property is available only at
design time.

Values
GlobalMultiUse

The class becomes global to the project in which it’s defined; references
aren’t necessary. For example, most VB language objects are global; as
soon as you load the environment, they can be used. Not available
within ActiveX Control projects.

MultiUse
The default property value for classes within ActiveX DLL or EXE
projects. The class has scope (i.e., it’s visible) outside the project in
which it’s defined, and it can be instantiated using the New keyword or
the CreateObject function. Not available within ActiveX Control projects.

PublicNotCreateable
The default property value for classes within ActiveX Control projects.
Although the class has scope (i.e., it’s visible) outside the project in
which it’s defined, it can’t be instantiated from outside the project using
the New keyword or the CreateObject function.

Private
The default property value for classes within standard EXE projects. The
class can’t be “seen” outside of the project in which it’s defined. Also, the
only instancing property available in standard EXE projects.

SingleUse
Every call by a client to create the object using either the New keyword or
the CreateObject function creates a completely new instance of the
object. Only available in ActiveX EXE projects.

GlobalSingleUse
As with the SingleUse property value, every call by a client to create the
object using either the New keyword or the CreateObject function creates
a completely new instance of the object. However, GlobalSingleUse
allows methods and properties to be seen as part of VB. Only available
in ActiveX EXE projects.

Programming Tips & Gotchas

• Use the GlobalMultiUse property setting to create class modules containing
enumerated constants for your object model.
Instancing Property (VB only) 381

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• Use the MultiUse property setting for top-level objects in a hierarchy or object
model.

• Use the PublicNotCreatable property setting for child objects created by
accessing a function or property of a higher-level object.

• Use the Private property setting for objects that are used only within the
project.

• With the GlobalSingleUse property value, an instance of the class is created
automatically for you. It’s therefore not necessary to explicitly create an
instance of the class.

• If the class is part of an ActiveX control project and the control’s Public prop-
erty is set to False, the Instancing property is ignored.

See Also
Chapter 4

InStr, InStrB Functions

Named Arguments

No

Syntax
InStr([start,]stringtosearch, stringtofind[, _

comparemode])
start

Use: Optional

Data Type: Numeric

The starting position for the search.

stringtosearch
Use: Required

Data Type: String

The string being searched.

stringtofind
Use: Required

Data Type: String

The string being sought.

comparemode
Use: Optional

Data Type: Integer

The type of string comparison.

Return Value

A variant of subtype Long.
382 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
InStr, InStrB Functions
Description

Finds the starting position of one string within another.

Rules at a Glance

• The return value of InStr is influenced by the values of stringtosearch and
stringtofind, as the following table details:

• If the start argument is omitted, InStr commences the search with the first
character of stringtosearch.

• If the start argument is Null, an error occurs.

• You must specify a start argument if you are specifying a comparemode
argument.

• VB5 and VBA support intrinsic constants for comparemode, as follows:

• If the comparemode argument contains Null, an error is generated.

• If comparemode is omitted, the type of comparison is determined by the
Option Compare setting.

Programming Tips & Gotchas

You can use the InStrB function to compare byte data contained within a string. In
this case InStrB returns the byte position of stringtofind, as opposed to the
character position.

See Also
InStrRev Function, Left Function, Mid Function, Option Compare Statement,
Right Function, StrComp Function

Condition InStr Return Value

stringtosearch is zero-length 0

stringtosearch is Null Null

stringtofind is zero-length start

stringtofind is Null Null

stringtofind is not found 0

stringtofind found within
stringtosearch

Position at which the start of
stringtofind is found

start > len(stringtofind) 0

Comparison Mode Value Constant

Binary (default) 0 vbBinaryCompare

Text—case insensitive 1 vbTextCompare

Database (Microsoft Access only) 2 vbDatabaseCompare
InStr, InStrB Functions 383

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
InstrRev Function (VB6)

Named Arguments

No

Syntax
InstrRev(sourcestring, soughtstring[, start[, compare]])
sourcestring

Use: Required

Data Type: String

The string to be searched.

soughtstring
Use: Required

Data Type: String

The substring to be found within sourcestring.

start
Use: Optional

Data Type: Numeric

The starting position of the search. If no value is specified, start
defaults to 1.

compare
Use: Optional

Type: vbBinaryCompare constant

The method that compares soughtstring with sourcestring; its value
can be vbBinaryCompare, vbTextCompare, or vbDatabaseCompare.

Return Value

Long

Description

Determines the starting position of a substring within a string by searching from
the end of the string to its beginning.

Rules at a Glance

• While InStr searches a string from left to right, InStrRev searches a string from
right to left.

• vbBinaryCompare is case sensitive; that is, InstrRev matches both character
and case, whereas vbTextCompare is case insensitive, matching only charac-
ter, regardless of case.

• The default value for compare is vbBinaryCompare.

• start designates the starting point of the search and is the number of charac-
ters from the start of the string.
384 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Int Function
• If start is omitted, the search begins from the last character in source-
string.

• sourcestring is the complete string in which you want to find the starting
position of a substring.

• If soughtstring isn’t found, InStrRev returns 0.

• If soughtstring is found within sourcestring, the value returned by InStr-
Rev is the position of sourcestring from the start of the string.

Programming Tips & Gotchas

The usefulness of a function that looks backward through a string for the occur-
rence of another string isn’t immediately apparent.

Example

This example uses both InStr and InStrRev to highlight the different results
produced by each. Using a sourcestring of “I like the functionality that InStrRev
gives”, InStr finds the first occurrence of “th” at character 8, while InStrRev finds
the first occurrence of “th” at character 26.

Dim myString As String
Dim sSearch As String
myString = "I like the functionality that InsStrRev gives"
sSearch = "th"

Debug.Print InStr(myString, sSearch)
Debug.Print InStrRev(myString, sSearch)

See Also
InStr Function

Int Function

Named Arguments

No

Syntax
Int(number)
number

Use: Required

Data Type: Any valid numeric data type

The number to be processed.

Return Value

Returns a value of the data type passed to it.

Description

Returns the integer portion of a number.
Int Function 385

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Rules at a Glance

• The fractional part of number is removed and the resulting integer value
returned. Int doesn’t round number to the nearest whole number; for exam-
ple, Int(100.9) returns 100.

• If number is negative, Int returns the first negative integer less than or equal
to number; for example, Int(-10.1) returns –11.

Programming Tips & Gotchas

• Int and Fix work identically with positive numbers. However, for negative
numbers, Fix returns the first negative integer greater than number. For exam-
ple, Int(-10.1) returns –10.

• Don’t confuse the Int function with CInt. CInt casts the number passed to it as
an Integer data type, whereas Int returns the same data type that was
passed to it.

See Also
Fix Function

IPmt Function

Named Arguments

Yes

Syntax
IPmt(rate, per, nper, pv[, fv[, type]])
rate

Use: Required

Data Type: Double

The interest rate per period.

per
Use: Double

Data Type: Any valid numeric expression

The period for which a payment is to be computed.

nper
Use: Double

Data Type: Any valid numeric expression

The total number of payment periods.

pv
Use: Double

Data Type: Any valid numeric expression

The present value of a series of future payments.

fv
Use: Optional
386 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
IPmt Function
Data Type: Variant

The future value or cash balance after the final payment. If omitted, the
default value is 0.

type
Use: Optional

Data Type: Variant

A value indicating when payments are due. 0 indicates that payments are
due at the beginning of the payment period; 1 indicates that payments
are due at the end of the period. If omitted, the default value is 0.

Return Value

A Double representing the interest payment.

Description

Computes the interest payment for a given period of an annuity based on peri-
odic, fixed payments and a fixed interest rate. An annuity is a series of fixed cash
payments made over a period of time. It can be either a loan payment or an
investment.

Rules at a Glance

• The value of per can range from 1 to nper.

• If pv and fv represent liabilities, their value is negative; if assets, their value is
positive.

Example

The ComputeSchedule function accepts a loan amount, an annual percentage rate,
and a number of payment periods. It uses the Pmt function to calculate the
payment per period, then returns a two-dimensional array in which each subarray
contains the number of the period, the interest paid for that period, and the prin-
cipal paid for that period.

Private Function ComputeSchedule(dblAmount As Double, _
 dblRate As Double, lngNPer As Long) _
 As Variant

Dim dblIPmt As Double, dblPmt As Double
Dim dblPrincipal As Double
Dim lngPer As Long
Dim strFmt As String
Dim varArray() As Variant
ReDim varArray(lngNPer, 2)

strFmt = "###,###,##0.00"
dblPmt = Pmt(dblRate / 12, lngNPer, -dblAmount, 0, 0)

For lngPer = 1 To lngNPer
 dblIPmt = IPmt(dblRate / 12, lngPer, lngNPer, -dblAmount)
 dblPrincipal = PPmt(dblRate / 12, lngPer, lngNPer, _
 -dblAmount)
IPmt Function 387

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 dblAmount = dblAmount - dblPrincipal
 varArray(lngPer, 0) = lngPer & "."
 varArray(lngPer, 1) = Format(dblIPmt, strFmt)
 varArray(lngPer, 2) = Format(dblPrincipal, strFmt)
Next

ComputeSchedule = varArray

End Function

Programming Tips & Gotchas

• rate and nper must be expressed in the same time unit. That is, if nper
reflects the number of monthly payments, rate must be the monthly interest
rate.

• The interest rate is a percentage expressed as a decimal. For example, if nper
is the total number of monthly payments, an annual percentage rate (APR) of
12% is equivalent to a monthly percentage rate of 1%. The value of rate is
therefore .01.

See Also
NPer Function, Pmt Function, PPmt Function, Rate Function

IRR Function

Named Arguments

Yes

Syntax
IRR(values()[, guess])
values()

Use: Required

Data Type: Array of Double

An array of cash flow values.

guess
Use: Optional

Data Type: Double

Estimated value to be returned by the function.

Return Value

A Double representing the internal rate of return.

Description

Calculates the internal rate of return for a series of periodic cash flows (payments
and receipts). The internal rate of return is the interest rate generated by an invest-
ment consisting of payments and receipts that occur at regular intervals. It’s
generally compared to a “hurdle rate,” or a minimum return, to determine whether
a particular investment should be made.
388 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
IsArray Function
Rules at a Glance

• values must be a one-dimensional array that contains at least one negative
value (a payment) and one positive value (a receipt).

• Individual members of values are interpreted sequentially; that is, val-
ues(0) is the first cash flow, values(1) is the second, etc.

• If guess is omitted, the default value of 0.1 is used.

• IRR begins with guess and uses iteration to derive an internal rate of return
that is accurate to within 0.00001 percent. If IRR can’t do this within 20 itera-
tions, the function fails.

Programming Tips & Gotchas

• Each element of values represents a payment or a receipt that occurs at a
regular time interval. If this isn’t the case, IRR returns erroneous results.

• If the function fails if it can’t calculate an accurate result in 20 iterations, try a
different value for guess.

See Also
MIRR Function

IsArray Function

Named Arguments

No

Syntax
IsArray(varname)
varname

Use: Required

Data Type: Any

The name of the variable to be checked.

Return Value

Boolean (True or False).

Description

Tests whether a variable is an array.

Rules at a Glance

If the variable passed to IsArray is an array or contains an array, True is returned;
otherwise, IsArray returns False.

Programming Tips & Gotchas

Due to the nature of variants, it isn’t always obvious if a variant variable contains
an array, especially if you pass the variant to a function, and the function may or
may not attach an array to the variant. Calling any of the array functions, such as
IsArray Function 389

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
LBound or UBound, or trying to access an element in an array that doesn’t exist
will obviously generate an error. In these situations, you should first use the
IsArray function to determine if you can safely process the array.

IsDate Function

Named Arguments

No

Syntax
IsDate(expression)
expression

Use: Required

Data Type: Variant

Variable or expression containing a date or time.

Return Value

Boolean (True or False).

Description

Determines if a variable’s value can be converted to a date.

Rules at a Glance

If the expression passed to IsDate is a valid date, True is returned; otherwise,
IsDate returns False.

Programming Tips & Gotchas

• IsDate uses the locale settings of the current Windows system to determine if
the value held within the variable is recognizable as a date. Therefore, what is
a legal date format on one machine may fail on another.

• IsDate is particularly useful for validating data input. However, don’t use
IsDate in the VB text box control’s Change event. The Change event is fired
with every keystroke, which means that when the user starts to enter the date,
the chances are that the date will be invalid until the point at which the user
has completed the data entry.

IsEmpty Function

Named Arguments

No

Syntax
IsEmpty(varname)
varname

Use: Required
390 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
IsError Function
Data Type: Variant

A numeric or string expression.

Return Value

Boolean (True or False).

Description

Determines if the variable has been initialized by having an initial value (other
than Empty) assigned to it.

Rules at a Glance

• If the variant passed to IsEmpty has been initialized, True is returned; other-
wise, IsEmpty returns False.

• IsEmpty works only with variants. You shouldn’t use it with the primitive data
types (such as Integer, String, etc.) because these data types are automatically
initialized with default values and therefore are never empty.

• Although IsEmpty can take an expression as the value of varname, it always
returns False if more than one variable is used in the expression. IsEmpty is
therefore most commonly used with single variables.

Programming Tips & Gotchas

When dealing with uninitialized object variables, if a reference to an object vari-
able has not been successfully set, the variable has a value of Nothing. However,
to determine if an object variable has been set successfully, you must use the
syntax:

If objvar is Nothing Then
...
End If

IsError Function

Named Arguments

No

Syntax
IsError(expression)
expression

Use: Required

Data Type: Variant

Variable to be evaluated to determine if its subtype is vbError.

Return Value

Boolean (True or False).
IsError Function 391

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Description

Determines whether expression is a valid error value.

Rules at a Glance

• Use IsError only with variants. (Strongly typed variables can also be passed to
IsError, but that’s pointless; only variants have a vbError subtype and there-
fore have a chance of returning True.)

• If the variant passed to IsError represents a valid error number, True is
returned; otherwise, IsError returns False.

Example

In this example, the SquarePositive function squares the values of only positive
integers; if an integer isn’t positive, the function returns a variant of subtype
vbError:

Private Function SquarePositive(lngVal As Long) As Variant

If lngVal > 0 Then
 SquarePositive = lngVal ^ 2
Else
 SquarePositive = CVErr(0)
End If

End Function

Private Sub cmdSquare_Click()

Dim varRetVal As Variant

If IsNumeric(txtNumber.Text) Then
 varRetVal = SquarePositive(CLng(txtNumber.Text))
 If IsError(varRetVal) Then
 MsgBox "Error: Enter a positive number!"
 Else
 txtNumber.Text = varRetVal
 End If
Else
 txtNumber.Text = ""
End If

End Sub

Programming Tips & Gotchas

• You can create an error value by converting a real number using the CVErr
function.

• IsError evaluates the value returned by a function to determine whether the
function executed without error, as the previous example shows.

See Also
CVErr Function
392 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
IsMissing Function
IsMissing Function

Named Arguments

No

Syntax
IsMissing(argname)
argname

Use: Required

Data Type: Variant

The name of an optional procedure argument of type Variant.

Return Value

Boolean (True or False).

Description

Determines whether an argument has been passed to a procedure.

Rules at a Glance

• If the argument name passed to IsMissing has not been passed to the proce-
dure, True is returned; otherwise, IsMissing returns False.

• False is returned if IsMissing is used on data types other than variants, which
may lead to incorrect handling of optional arguments.

Programming Tips & Gotchas

• Always use IsMissing to detect a missing optional variant parameter.

• Version 5 of both VB and VBA for the first time allowed other data types to
be used as optional arguments within procedure prototypes; previously,
optional arguments had to be variants. However, if you use data types other
than variants for optional arguments, you can’t use the IsMissing function;
instead, you must check for the uninitialized value of the data type. For exam-
ple, if an integer argument is missing, its value is 0. This can cause confusion,
because you have no way of knowing whether a 0 was a legal value passed
to the procedure or whether the argument was not passed at all. The only
safe way to use optional arguments is to continue to use variants and to
check their validity using the IsMissing function.

• You can’t use IsMissing on an optional ParamArray because the function
always returns False. Instead, you should check for a missing or empty
ParamArray by using UBound and LBound to compare the values of its
upper and lower bounds; if the ParamArray is empty, the upper bound is
less than the lower bound.

See Also
LBound Function, UBound Function
IsMissing Function 393

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
IsNull Function

Named Arguments

No

Syntax
IsNull(expression)
expression

Use: Required

Data Type: Variant

An expression containing string or numeric data.

Return Value

Boolean (True or False).

Description

Determines whether expression contains any Null data.

Rules at a Glance

• If the expression passed to IsNull contains null data, True is returned; other-
wise, IsNull returns False.

• All variables in expression are checked for null data. If null data is found in
any one part of the expression, True is returned for the entire expression.

• Although any data type can be passed to the function, only a variant variable
can be null. As a result, it makes little sense to pass nonvariant data to the
function, since it must always return False.

Programming Tips & Gotchas

• IsNull is useful when returning data from a database. You should check field
values in columns that allow Nulls against IsNull before assigning the value to
a collection or other variable. This stops the common “Invalid Use of Null”
error from occurring.

• IsNull is the only way to evaluate an expression containing a null. For exam-
ple, the seemingly correct statement:

If varMyVar = Null Then

always evaluates to False, even if varMyVar is null. This occurs because the
value of an expression containing Null is always Null and therefore False.

IsNumeric Function

Named Arguments

No
394 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
IsObject Function
Syntax
IsNumeric(expression)
expression

Use: Required

Data Type: Any numeric or string expression

A numeric or string expression.

Return Value

Boolean (True or False).

Description

Determines whether expression can be evaluated as a number.

Rules at a Glance

If the expression passed to IsNumeric evaluates to a number, True is returned;
otherwise, IsNumeric returns False.

Programming Tips & Gotchas

• If expression is a date or time, IsNumeric evaluates to False.

• If expression is a currency value, including a string that includes the cur-
rency symbol defined by the Control Panel’s Regional Settings applet, IsNu-
meric evaluates to True.

IsObject Function

Named Arguments

No

Syntax
IsObject(varname)
varname

Use: Required

Data Type: Any

Name of the variable to be evaluated.

Return Value

Boolean (True or False).

Description

Indicates if a variable contains a reference to an object—in other words, if it’s an
object variable.

Rules at a Glance

If the variable passed to IsObject references or has referenced an object, even if its
value is Is Nothing, True is returned; otherwise, IsObject returns False.
IsObject Function 395

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

• IsObject doesn’t validate the reference being held by an object variable; it sim-
ply determines if the variable has been declared as an object or as an instance
of a valid class. To insure that an object reference is valid, you can use the
syntax Is Nothing, as shown in this code snippet:

If objVar is Nothing Then
...
End if

• IsObject is simply a “convenience” function that is roughly equivalent to the
following Visual Basic user-defined function:

Private Function IsObject(varObj As Variant) As Boolean

If VarType(varObj) = vbObject Then
 IsObject = True
Else
 IsObject = False
End If

End Function

Join Function (VB6)

Named Arguments

No

Syntax
result = Join(sourcearray, [delimiter])
sourcearray

Use: Required

Data Type: String or Variant

Array whose elements are to be concatenated.

delimiter
Use: Optional

Data Type: String

Character used to delimit the individual values in the string.

Return Value

A String.

Description

Concatenates an array of values into a delimited string using a specified delimiter.

Rules at a Glance

• If no delimiter is specified, the space character is used as a delimiter.
396 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Kill Statement
• If you use numeric values in sourcearray, use a Variant array, don’t specify
a numeric data type for sourcearray; otherwise, the function raises runtime
error 5, “Invalid procedure call or argument.”

• sourcearray can have any lower bound; that is, Join operates equally well
with 0- or 1-based arrays.

• When a delimiter is specified, unused sourcearray elements are noted in
the return string by the use of the delimiter. For example, if you specify a
delimiter of “,” and a source array with a lower bound of 1 and an upper
bound of 10 in which only the first two elements are used, Join returns a
string similar to the following:

"a,b,,,,,,,,,"

Programming Tips & Gotchas

The Join function is ideal for quickly and efficiently writing out a comma-delimited
text file from an array of values.

Kill Statement

Named Arguments

No

Syntax
Kill pathname
pathname

Use: Required

Data Type: String

The file or files to be deleted.

Description

Deletes a file from disk.

Rules at a Glance

• If pathname doesn’t include a drive letter, the folder and file are assumed to
be on the current drive.

• If pathname doesn’t include a folder name, the file is assumed to be in the
current folder.

• You can use the multiple-character (*) and single-character (?) wildcards to
specify multiple files to delete.

• If the file is open or is set to read-only, an error is generated.

Programming Tips & Gotchas

• Note that in the Windows 95 and NT environments, the deleted file isn’t
placed in the Recycle Bin. However, the following code demonstrates how to
use the FileOperation API found in Shell32.DLL to move a file to the Win-
dows 95 Recycle Bin or the NT4 Recycler:
Kill Statement 397

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Option Explicit

'declare the file operation structure
Type SHFILEOPSTRUCT
 hWnd As Long
 wFunction As Long
 pFrom As String
 pTo As String
 fFlags As Integer
 fAborted As Boolean
 hNameMaps As Long
 sProgress As String
End Type

'declare two constants needed for the delete operation
Private Const FO_DELETE = &H3
Private Const FO_FLAG_ALLOWUNDO = &H40

'declare the API call function
Declare Function SHFileOperation Lib "shell32.dll" _
 Alias "SHFileOperationA" _
 (lpFileOp As SHFILEOPSTRUCT) As Long

Public Function WinDelete(sFileName As String) As Long
 'create a copy of the file operation structure
 Dim SHFileOp As SHFILEOPSTRUCT

 'need a Null terminating string
 sFileName = sFileName & vbNullChar

 'assign relevant values to structure
 With SHFileOp
 .wFunction = FO_DELETE
 .pFrom = sFileName
 .fFlags = FO_FLAG_ALLOWUNDO
 End With

 'pass the structure to the API function
 WinDelete = SHFileOperation(SHFileOp)

End Function

• Use the RmDir statement to delete folders.

See Also
RmDir Statement

LBound Function

Syntax
LBound(arrayname[, dimension])
398 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
LCase, LCase$ Functions
arrayname
Use: Required

Data Type: Any

The name of the array.

dimension
Use: Optional

Data Type: Variant (Long)

A number specifying the dimension of the array.

Return Value

A Long integer.

Description

Determines the lower limit of a specified dimension of an array. The lower
boundary is the smallest subscript you can access within the specified array.

Rules at a Glance

• If dimension isn’t specified, 1 is assumed. To determine the lower limit of the
first dimension of an array, set dimension to 1, 2 for the second, and so on.

• The lower bound of an array dimension can be set using To, Dim, Private,
Public, Redim, and Static, and can be set to any integer value.

Programming Tips & Gotchas

• The Option Base statement sets the default lower bound of an array to either
1 or 0.

• An array created with the Array function always has a lower bound of zero.

• The LBound function can’t determine the lower limit of a control array.
Instead, in both Visual Basic and Visual Basic for Applications, you can use
the control array’s LBound property to determine its lower limit.

See Also
Array Function, Option Base Statement, UBound Function

LCase, LCase$ Functions

Named Arguments

No

Syntax
LCase(string)
string

Use: Required

Data Type: String

A valid string expression.
LCase, LCase$ Functions 399

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Return Value

LCase$ returns a String, and LCase returns a variant of subtype String.

Description

Converts a string to lowercase.

Rules at a Glance

• LCase affects only uppercase letters; all other characters in string are unaf-
fected.

• LCase returns Null if string contains a Null.

Programming Tips & Gotchas

As with all string functions for which two variations are available (one suffixed
with the $ sign and one without a $), the $ version returns a String data type,
while the plain version returns a variant of subtype String.

See Also
UCase Function

Left, Left$, LeftB, LeftB$ Functions

Named Arguments

Yes

Syntax
Left(string, length)
string

Use: Required

Data Type: String

The string to be processed.

length
Use: Required

Data Type: Variant (Long)

The number of characters to return from the left of the string.

Return Value

Left$ and LeftB$ return a String, and Left and LeftB return a variant of subtype
String.

Description

Returns a string containing the leftmost length characters of string.

Rules at a Glance

• If length is 0, a zero-length string ("") is returned.

• If length is greater than the length of string, string is returned.
400 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Len, LenB Functions
• If length is less than 0 or Null, the function generates runtime error 5,
“Invalid procedure call or argument,” and runtime error 94, “Invalid use of
Null,” respectively.

• If string contains Null, Left returns Null.

• Left and Left$ process strings of characters; LeftB and LeftB$ process binary
data.

Programming Tips & Gotchas

• Use the Len function to determine the overall length of string.

• When you use the LeftB function with byte data, length specifies the num-
ber of bytes to return.

See Also
Len Function, Mid Functions, Right Function

Len, LenB Functions

Syntax
Len(string | varname)
string

Use: Required

Data Type: String

A valid string expression.

varname
Use: Required

Data Type: Any except object

A valid variable name.

Return Value

A Long integer

Description

Counts the number of characters within a string or the size of a given variable. Use
LenB to determine the actual number of bytes required to hold a given variable in
memory.

Rules at a Glance

• string and varname are mutually exclusive; that is, you must specify either
string or varname, but not both.

• If either string or varname contains Null, Len returns Null.

• Len returns the size (number of characters) that a user-defined type occupies
when written to a file.

• LenB returns the actual size of a user-defined type in memory.
Len, LenB Functions 401

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• When you use LenB with byte data or a Unicode string, LenB returns the
number of bytes that represent the data or the string.

• You can’t use Len with an object variable.

• If varname is an array, you must also specify a valid subscript. In other
words, Len can’t determine the total number of elements in or the total size of
an array.

Programming Tips & Gotchas

• When you use a random access file to store data and a user-defined type to
handle that data within your application, you can use Len to determine the
value of the Len = clause of the file’s Open statement. However, if you have
used variable length strings within your user-defined type, Len may not accu-
rately determine the actual storage requirement of the user-defined type. For
this purpose, fixed-length strings that are set equal to the maximum size of
the string field should be used instead. The following example shows how to
use the Len function to specify the buffer length when opening a random
access file:

Option Explicit

Type udtTest
 FName As String * 20
 LName As String * 25
 Age As Integer
End Type

Public udtRec(1 To 10) As udtTest

Public Function RandomFileSave() As Boolean

 Dim sFile As String
 Dim iFile As Integer
 Dim i As Integer

 sFile = "test.dat"
 iFile = FreeFile

 Open sFile For Random As #iFile Len = Len(udtRec(1))
 For i = 1 To 10
 Put #iFile, i, udtRec(i)
 Next i
 Close #iFile

End Function

• Variants are treated the same as a string variables, and Len returns the actual
number of characters stored to the variable. But this can lead to unexpected
results. Take the following snippet as an example:

Dim vVar
vVar = 100

MsgBox Len(vVar)
402 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Like Operator
You may expect the Len function to return 2 because iVar is obviously a
variant of subtype integer. In fact, Len returns 3—the number of characters
contained within the variant.

• When used with a strongly typed variable, Len returns the number of bytes
required to store that variable. The length of a Long, for instance, is 4.

• Because Visual Basic uses Unicode strings (which store each character in two
bytes) internally, different return values are obtained from Len and LenB
when string variables are passed. For example, a string of four characters
returns 4 from Len, but returns 8 from LenB.

• Just in case you had any doubt about the efficiency of explicitly declaring
data types wherever possible, you can try this quick example with the LenB
function:

Dim lVar As Long
Dim vVar

lVar = 10000000
vVar = 10000000

MsgBox "The Long version uses " & LenB(lVar) & _
 " bytes of memory" & vbCrLf & _
 "The Variant version uses " & LenB(vVar)

The conclusion is clear: variants consume significantly more memory than
strongly typed variables.

Like Operator

Syntax
result = string Like pattern
result

Use: Required

Data Type: Boolean

If string matches pattern, result is True; otherwise, result is
False.

string
Use: Required

Data Type: String

The string to be tested against pattern.

pattern
Use: Required

Data Type: String

A series of characters used by the Like operator to determine if string
and pattern match.
Like Operator 403

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Description

Determines if a string matches a given pattern.

Rules at a Glance

• If either string or pattern is Null, then result is Null.

• The default comparison method for the Like operator is binary. This can be
overridden using the Option Compare statement.

• Binary comparison is based on comparing the internal binary number repre-
senting each character; this produces a case-sensitive comparison.

• Text comparison, the alternative to binary comparison, is case insensitive;
therefore, A = a.

• The sort order is based on the code page currently being used, as deter-
mined by the Windows regional settings.

• The following table describes the special characters to use when creating pat-
tern; all other characters match themselves:

• list matches a group of characters in pattern to a single character in
string and can contain almost all available characters, including digits.

• Use a hyphen (-) in list to create a range of characters to match a character
in string; for example [A-D] matches A,B,C, or D in that character position
in string.

• Multiple ranges of characters can be included in list without the use of a
delimiter. For example, [A-D J-L].

• Ranges of characters should appear in sort order; for example, [c-k].

• Use the hyphen at the start or end of list to match to itself. For example,
[- A-G] matches a hyphen or any character from A to G.

• The exclamation mark in pattern matching is similar to the negation operator
in C. Use an exclamation mark before a character or range of characters in
list to match all but that character. For example, [!A-G] matches all charac-
ters apart from the characters from A to G.

• The exclamation mark outside of the bracket matches itself.

• To use any special character as a matching character, enclose the special char-
acter in brackets. For example, to match to a question mark, use [?].

Character Meaning

? Any single character

* Zero or more characters

Any single digit (0–9)

[list] Any single character in list

[!list] Any single character not in list

[] A zero-length string ("")
404 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Line Input# Statement
Example

The following example displays OK if the text entered into Text1 starts with either
V or A, followed by any characters and ends with “in a Nutshell.” Therefore “Paul
in a Nutshell” returns Wrong, whereas either “ASP in a Nutshell” or “VB & VBA in
a Nutshell” is OK.

Private Sub Command1_Click()
 Dim sTitle As String, sPattern As String
 sTitle = "in a Nutshell"
 sPattern = "[V A]* " & sTitle
 If Text1.Text Like sPattern Then
 MsgBox "OK"
 Else
 MsgBox "Wrong"
 End If
End Sub

Programming Tips & Gotchas

Different languages place different priority on particular characters with relation to
sort order. Therefore, the same program using the same data may yield different
results when run on machines in different parts of the world, depending upon the
locale settings of the systems.

See Also
Option Compare Statement

Line Input# Statement

Syntax
Line Input #filenumber, varname
filenumber

Use: Required

Data Type: Integer

Any valid file number.

varname
Use: Required

Data Type: String or Variant

The name of a string or variant variable.

Description

Assigns a single line from a sequential file opened with the For Input method to a
string or variant variable.

Rules at a Glance

• Data is read into a buffer one character at a time until a line feed or carriage
return sequence (either Chr(13) or Chr(13)+Chr(10)) is encountered.
Line Input# Statement 405

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
When this happens, all characters in the buffer are assigned to varname as a
single string, without the carriage return sequence, and the buffer is cleared.

• After reading a line, the file pointer advances to the first character after the
end of the line or to the end-of-file marker.

Example
Dim intLine As Integer, hFile As Integer
Dim strBuffer As String

hFile = FreeFile
Open "lineinp.txt" For Input As #hFile
Do While Not EOF(hFile)
 intLine = intLine + 1
 Line Input #hFile, strBuffer
 List1.AddItem strBuffer
Loop

Close #hFile

Programming Tips & Gotchas

You use the Line Input statement to read data from unstructured sequential data
files. To write data back to this type of file, use the Print # statement.

Load Statement

Syntax
Load object
object

Use: Required

Data Type: A Form or Control object

An expression that evaluates to a form or control.

Description

Loads a form or control into memory.

Rules at a Glance

• When a control or form is first loaded using the Load statement, it’s resident
in memory, but it isn’t visible on the screen. To make a form visible, use the
form’s Show method. To make a control visible, set its Visible property to
True.

• You can explicitly create a control only with the Load statement as part of a
control array. See following sidebar “Creating a Dynamic Control Array.”

Programming Tips & Gotchas

• Use the Unload statement to remove from memory the form or control you’ve
loaded with the Load statement.
406 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Load Statement
• Referencing any property or method of a form—or of a control on a form—
that isn’t already loaded forces the form to be loaded into memory.

• In Visual Basic, the Form_Initialize event, followed by the Form_Load
event (for VBA UserForms, the UserForm_Initialize event only) is fired
when the Load statement is called, or when the form is loaded into memory.

Creating a Dynamic Control Array

To create a dynamic control array—that is, an array of controls you can add
to at runtime—you must first place a control of the required type on the
form and set its index property to 0. You can then use the Load statement
to create new controls based on the control whose Index is 0. The new
controls inherit all the properties of the original control, including its size
and position. This means you must set the Left and Top properties for the
new controls; otherwise, all your controls will sit on top of each other!
These newly loaded controls are also hidden, so you must also set their
Visible property to True once you have sized and positioned them. The
following example creates a control array containing five command buttons
that appear horizontally across a form:

Private Sub Form_Load()
 Dim intCtrlCtr As Integer
 Dim varCtrl As Variant

 For intCtrlCtr = 1 To 4
 Load cmdArray(intCtrlCtr)
 cmdArray(intCtrlCtr).Caption = "Button #" _
 & intCtrlCtr + 1
 cmdArray(intCtrlCtr).Top = cmdArray(0).Top
 cmdArray(intCtrlCtr).Left = _
 cmdArray(intCtrlCtr - 1).Left + _
 cmdArray(intCtrlCtr - 1).Width + 75
 Next

 For Each varCtrl In cmdArray
 varCtrl.Visible = True
 Next
End Sub

Controls belonging to a single control array share the same event handlers.
However, their Index property is passed as a parameter to the event
handler, allowing you to determine which control fired the event.

Trying to load a control that’s already loaded causes an error, so it’s a good
idea to maintain an instance counter to determine the next index number to
use when creating a control.

Note that, unlike previous versions of VB, VB6 supports dynamic control
creation. Also note that hosted versions of VBA don’t support dynamic
control creation.
Load Statement 407

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• In these days of VB rapidly becoming a more object-oriented language, a new
syntax is emerging for loading and unloading controls and forms. The idea is
to create an instance of a form and assign that instance to a local object vari-
able as you would for any another object. The following example shows a
comparison of the new and old styles for loading a form:

'New Syntax
Dim frmNewForm As Form2
Set frmNewForm = New Form2
frmNewForm.Show vbModal
Set frmNewForm = Nothing

'Old Syntax
Load Form2
Form2.Show vbModal
Unload Form2

• Loading a form causes the form’s visual interface to be loaded. Whether or
not the form is loaded, however, its code remains in memory and continues
to be accessible.

See Also
Set Statement, Unload Statement

LoadResData Function

Syntax
LoadResData(resID, resType)
resID

Use: Required

Data Type: Variant

A numeric or string value specifying the resource ID of the data to load.

resType
Use: Required

Data Type: Variant

A numeric or string value denoting the format of the data to load. See the
table below for valid values:

ResType Value Meaning

1 Cursor resource

2 Bitmap resource

3 Icon resource

6 String resource

10 User-defined resource

12 Group cursor

14 Group icon
408 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
LoadResData Function
Return Value

A Unicode string.

Description

Returns a binary (Unicode) string containing the specified resource from a
resource (.RES) file included with the project.

Resource files store graphics, strings, and other data inside the application, the
contents of the .RES file being compiled into the final EXE. The advantage of
storing support files in this manner is that they are permanently available to the
application, unlike separate support files that can be accidentally deleted or not
transferred should the application be moved. You can also store several localized
versions of your resources in the .RES file that loads depending on the locale of
the current machine, thereby easily internationalizing your application.

Rules at a Glance

• You can pass a string value to restype if you are loading a custom or user-
defined resource. For example:

sRTFText = LoadResData(102, "CUSTOM")

This is the only case in which a string value is permitted.

• The maximum string length returned by LoadResData is 64KB.

• In Visual Basic, there is no advantage to using LoadResData to load a graphic
resource because the function returns a Unicode string containing the actual
byte data of the resource. When dealing with graphic resources, you should
use LoadResPicture.

Programming Tips & Gotchas

• String data returned from LoadResData is in Unicode format. For the vast
majority of current VB controls, you need to convert this string to ANSI before
it can be used. The following example shows how to do this.

• Note that LoadResData is part of the VB Runtime Library and isn’t available in
VBA applications.

• Contrary to the documentation for LoadResData in both VB5 and VB6, the fol-
lowing resource types aren’t supported in Visual Basic and should therefore
be ignored: 4 Menu resource, 5 Dialog box, 7 Font directory resource, 8 Font
resource, and 9 Accelerator table.

• The VB Runtime Library includes a set of intrinsic constants for specifying
resource types, called LoadResConstants. However, these don’t match the
values of the LoadResData resType parameter. The LoadResConstants
should be used only with the LoadResPicture function.

Example

In the following example, a richtext format document has been stored using the
ID 102 as a custom resource within a .RES file. The custom RTF resource is
displayed in a RichTextBox control. However, because LoadResData returns a
LoadResData Function 409

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Unicode string, the returned string must be converted into an ANSI string before
it’s used.

Private Sub Command1_Click()
 Dim suRTFText As String
 Dim sRTFText As String
 Dim i As Integer

 suRTFText = LoadResData(102, "CUSTOM")
 'convert to ANSI
 For i = 1 To LenB(suRTFText)
 sRTFText = sRTFText & _
 Chr(AscB(MidB(suRTFText, i, 1)))
 Next i

 RichTextBox1.TextRTF = sRTFText

End Sub

See Also
LoadResPicture Function, LoadResStringFunction

The VB6 Resource Editor Add-In

Users of VB6 can load a Resource Editor Add-In that greatly simplifies the
task of creating and managing .RES files within a project. For users of VB5,
the add-in is a free download from the Owners Area of the Visual Basic web
site. Figure 7-5 shows the resource editor loaded with the resource file used
for the LoadResData, LoadResPicture, and LoadResString examples.

Figure 7-5: The Visual Basic Resource Editor Add-In
410 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
LoadResPicture Function
LoadResPicture Function

Syntax
LoadResPicture(resID, resType)
resID

Use: Required

Data Type: Variant

A numeric or string value specifying the resource ID of the picture to
load.

resType
Use: Required

Data Type: Variant

A numeric constant denoting the format of the picture to load. See the
following table for valid constants and values:

Return Value

An IPictureDisp interface.

Description

Assigns a graphic from a resource file (.RES) to the Picture property of a form or
control.

Rules at a Glance

• The images to be loaded by LoadResPicture must be included in a resource
(.RES) file. Each must be assigned a unique identifier, which is typically repre-
sented by a numeric constant.

• The file loaded by LoadResPicture can be a Windows bitmap file (.BMP or
.RLE), an icon file (.ICO), or a cursor file (.CUR).

• The image returned by the LoadResPicture function can be assigned to any
form or control property that expects an StdPicture object. These include the
Picture property of a PictureBox or an Image control, the Icon property of a
Form object, or the MouseIcon property of a form.

Programming Tips & Gotchas

• LoadResPicture is part of the VB Runtime Library and, as such, isn’t available
in VBA applications.

• Visual Basic 6 includes an add-in Resource Editor; see the previous sidebar for
more information.

Constant Value Description

vbResBitmap 0 Bitmap resource

vbResIcon 1 Icon resource

vbResCursor 2 Cursor resource
LoadResPicture Function 411

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• Using graphics from a .RES file speeds up the loading of a form.

Example

In this example, bitmaps that denote the type of employee have been stored in a
resource file. A Select Case statement then determines which bitmap should be
loaded into the Picture property of the current grid cell. The advantage of using
this method to load pictures is that the graphic is loaded only as it’s needed, as
opposed to the traditional method of loading all possible pictures into hidden
controls on the form, which slows the loading of the form.

Private Function RefreshEmployeeGrid(iEmployeeType _
 As Integer)
 Select Case iEmployeeType
 Case Is = MAINT_SERV
 grdEmp.Picture = LoadResPicture(102, vbResBitmap)
 Case Is = PRODUCTION
 grdEmp.Picture = LoadResPicture(103, vbResBitmap)
 Case Is = CLERICAL
 grdEmp.Picture = LoadResPicture(104, vbResBitmap)
 End Select

End Function

You could enhance this example by making the ID of each bitmap resource iden-
tical to the iEmployeeType value, so that you could replace the Select Case
construct with just one line of code:

grdEmp.Picture = LoadResPicture(iEmployeeType, vbResBitmap)

See Also
LoadResData Function, LoadResString Function

LoadResString Function

Syntax
LoadResString(resID)
resID

Use: Required

Data Type: Variant

A numeric value specifying the resource ID of the string to load.

Return Value

A String.

Description

Retrieves a string from a resource file (.RES) that can be assigned to a string vari-
able or to the string property of a control, such as a label caption.
412 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
LoadResString Function
Rules at a Glance

• The strings to be retrieved by LoadResString must be included in a resource
(.RES) file. Each must be assigned a unique identifier, which is typically repre-
sented by a numeric constant.

• The identifier 1 is reserved for use by the application icon.

Programming Tips & Gotchas

• LoadResString is part of the VB Runtime Library and isn’t available in VBA
applications.

• Using resource strings is the ideal way to internationalize your application, as
the following example demonstrates.

• Unlike the LoadResData function, LoadResString returns an ANSI string that
can be directly assigned to a form or control property.

• VB6 includes an add-in Resource Editor; see the sidebar in the previous entry
for more information.

Example

This example demonstrates how to use LoadResString in conjunction with the
GetLocaleInfo API call to internationalize a VB application. This example assumes
that a resource file containing menu caption strings in various languages has been
created and added to the project. A Form_Load event could call the getLanguage
function, which in turns calls the relevant API function to return the current
language of the machine. This value then passes a code to a function that retrieves
the relevant menu caption and assigns it to the menu object. This example uses
the language string constant purely to make the code easier to read; however, in a
real application, you should return the language ID number from the API call by
using the LOCALE_ILANGUAGE constant.

Option Explicit

Public Const LOCALE_SLANGUAGE = &H2
Public Const LOCALE_ILANGUAGE = &H1

Declare Function GetLocaleInfo Lib "kernel32" Alias _
 "GetLocaleInfoA" (ByVal Locale As Long, _
 ByVal LCType As Long, ByVal lpLCData As String, _
 ByVal cchData As Long) As Long

Public Function getLanguage() As Boolean

 Dim lReturn As Long
 Dim lLocID As Long
 Dim lType As Long
 Dim sData As String
 Dim lDataLen As Long

 lDataLen = 0
 'passing 0 as the data length returns the required
 'size of the string
LoadResString Function 413

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 lReturn = GetLocaleInfo(lLID, LOCALE_SLANGUAGE, sData, _
 lDataLen)
 'create a null terminated buffer of the correct length
 sData = String(lReturn, 0) & vbNullChar
 'assign the length
 lDataLen = lReturn
 'call the API funtion again; this time sData will
 'be assigned the Language name
 lReturn = GetLocaleInfo(lLID, LOCALE_SLANGUAGE, sData, _
 lDataLen)

 'determine which language is being used.
 Select Case UCase$(Left$(sData, 6))
'pass across a code to the SetCaptions function
 Case Is = "ENGLIS"
 SetCaptions 1000
 Case Is = "FRENCH"
 SetCaptions 2000
 Case Is = "GERMAN"
 SetCaptions 3000
 Case Is = "SPANIS"
 SetCaptions 4000
 End Select

End Function

Private Function SetCaptions(iCode As Integer) As Boolean

 'assign strings from the Res file for each caption
 'i.e., The English "Open File" caption will have an
 'ID of 1001
 mnuOpenFile.Caption = LoadResString(iCode + 1)
 mnuCloseFile.Caption = LoadResString(iCode + 2)
 mnuEdit.Caption = LoadResString(iCode + 3)
 mnuCompleteQuestions.Caption = LoadResString(iCode + 4)
 mnuDelete.Caption = LoadResString(iCode + 5)

End Function

See Also
LoadResData Function, LoadResPicture Function

Loc Function

Named Arguments

No

Syntax
Loc(filenumber)
filenumber

Use: Required
414 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Lock Statement
Data Type: Integer

Any valid file number.

Return Value

A Long integer.

Description

Determines the current position of the file read/write pointer.

Rules at a Glance

• If you have opened the file in random mode, Loc returns the record number
of the last record read or written.

• If you have opened the file in input or output mode (sequential), Loc returns
the current byte position in the file divided by 128.

• If you have opened the file in binary mode, Loc returns the position of the
last byte read or written.

Example
Dim hFile As Integer
Dim lngPtr As Long, lngFileLen As Long
Dim strBuffer As String

hFile = FreeFile()
Open "loc.bin" For Binary As #hFile
lngFileLen = LOF(hFile)
Do While lngPtr < lngFileLen
 strBuffer = strBuffer & Input(1, hFile)
 lngPtr = Loc(hFile)
Loop
Close #hFile
Text1.Text = strBuffer

Programming Tips & Gotchas

For sequential files, the return value of Loc isn’t required and shouldn’t be used.

See Also
Open Statement

Lock Statement

Syntax
Lock [#]filenumber[, recordrange]
filenumber

Use: Required

Data Type: Integer

Any valid file number.
Lock Statement 415

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
recordrange
Use: Optional

Data Type: Long

A range of records.

The syntax for the recordrange argument is:

recnumber | [start] To end
recnumber

Use: Required

Data Type: Long

The record or byte number at which to commence the lock.

start
Use: Optional

Data Type: Long

The first record or byte number to lock.

end
Use: Required

Data Type: Long

The last record or byte number to lock.

Description

Use the Lock statement in situations where multiple programs or more than one
instance of your program may need read and write access to the same data file.
The Lock statement prevents another process from accessing a record, a section,
or the whole file until it’s unlocked by the Unlock statement.

Rules at a Glance

• recnumber is interpreted as a record number in the case of random files and
a byte number in the case of binary files. Records and bytes in a file are
always numbered sequentially from 1 onward.

• To lock a particular record, specify its record number, and only that record is
locked.

• Use the Lock statement, omitting recnumber, to lock the whole file.

• The Lock statement locks an entire file opened in input or output (sequen-
tial) mode, regardless of the recordrange argument.

• If you omit the start argument in the recnumber syntax, Lock locks all
records from the start of the file to record or byte number end.

• Attempting to access a locked file or portion of a file returns runtime error 70,
“Permission denied.”

Programming Tips & Gotchas

• You must take care to remove all file locks with the Unlock statement before
either closing a file or ending the application; otherwise, you can leave the
416 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
LOF Function
file in an unstable state. This of course means that, where appropriate, your
error-handling routines must be made aware of any locks currently in place so
that they may be removed if necessary.

• You use the Lock and Unlock statements in pairs, and the argument lists of
both statements must match exactly.

• The Lock statement doesn’t guarantee under all circumstances that the locked
file will be protected from access by other processes. There are two circum-
stances under which an apparent access violation can occur:

– The file has already been opened but has not been locked by a process
when the current process locks it. However, the first process can’t
perform operations on the file once the second file successfully locks it.

– The block of code responsible for opening the file and then locking it is
interrupted by the scheduling policy of the operating system before the
file can be locked. If a second process then opens and locks the file, it,
not the first process, has sole use of the file.

Because of this, the Lock statement should immediately follow the Open state-
ment in code. This reduces, but doesn’t eliminate, the problems that result
from the fact that opening and locking a file isn’t an atomic operation.

See Also
Unlock Statement

LOF Function

Named Arguments

No

Syntax
LOF(filenumber)
filenumber

Use: Required

Data Type: Integer

Any valid file number.

Return Value

A Long integer.

Description

Returns the size of an open file in bytes.

Rules at a Glance

filenumber must be the number of a file opened using the Open statement.
LOF Function 417

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Example

The following example shows how to use the LOF function to determine the
length of a data file and to determine the number of records it contains:

Open sFileName For Random As #iFile Len = Len(udtCustomer)
iMaxRecs = LOF(iFile) / Len(udtCustomer)
For iRec = 1 To iMaxRecs

Get #1, iRec, udtCustomers(iRec)
Next iRec
Close #iFile

Programming Tips & Gotchas

LOF works only on an open file; if you need to know the size of a file that isn’t
open, use the FileLen function.

See Also
FileLen Function

Log Function

Named Arguments

No

Syntax
Log(number)
number

Use: Required

Data Type: Double

A numeric expression greater than zero.

Return Value

A Double.

Description

Returns the natural logarithm of a given number.

Rules at a Glance

• The natural logarithm is based on e, a constant whose value is approximately
2.718282. The natural logarithm is expressed by the equation:

ez = x

where z = Log(x). In other words, the natural logarithm is the inverse of the
exponential function.

• number, the value whose natural logarithm the function is to return, must be
a positive real number. If number is negative or zero, the function generates
runtime error 5, “Invalid procedure call or argument.”
418 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
LSet Statement
Programming Tips & Gotchas

• You can calculate base-n logarithms for any number, x, by dividing the natu-
ral logarithm of x by the natural logarithm of n, as the following expression
illustrates:

Logn(x) = Log(x) / Log(n)

For example, the Log10 function shows the source code for a custom func-
tion that calculates base-10 logarithms:

Static Function Log10(X)
 Log10 = Log(X) / Log(10#)
End Function

• A number of other mathematical functions that aren’t intrinsic to VBA can be
computed using the value returned by the Log function. The functions and
their formulas are:

Inverse Hyperbolic Sine
HArcsin(X) = Log(X + Sqr(X * X + 1))

Inverse Hyperbolic Cosine
HArccos(X) = Log(X + Sqr(X * X - 1))

Inverse Hyperbolic Tangent
HArctan(X) = Log((1 + X) / (1 - X)) / 2

Inverse Hyperbolic Secant
HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)

Inverse Hyperbolic Cosecant
HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X)

Inverse Hyperbolic Cotangent
HArccotan(X) = Log((X + 1) / (X - 1)) / 2

LSet Statement

Syntax
LSet stringvar = string
stringvar

Use: Required

Data Type: String

The name of a string variable to receive the string.

string
Use: Required

Data Type: String

A string expression to be copied into stringvar.

Description

Copies string into stringvar, left-aligning string within stringvar.
LSet Statement 419

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Rules at a Glance

• LSet has meaning only when used with fixed-length strings.

• If the length of string is less than that of stringvar, the extra characters
within stringvar are padded with spaces.

• If the length of string is greater than that of stringvar, string is trun-
cated to the length of stringvar.

Programming Tips & Gotchas

• LSet and RSet are legacies from the pre-Visual Basic days of BASIC. LSet
doesn’t really need to be used at all, since the same result can be accom-
plished with a simple assignment operation to either a fixed-length string or a
variable-length string.

• Although its use is unnecessary, LSet does appear to yield some performance
benefit in comparison to assignment statements. When LSet copies a string of
approximately 70 characters to a variable-length string, it executes approxi-
mately 33% faster than a simple assignment statement. When copying the
same string to a fixed-length string, it offers approximately a 25% perfor-
mance gain.

• According to the Visual Basic documentation, you can also use the LSet state-
ment to copy a variable of one user-defined type to a variable of another user-
defined type. In fact, the Microsoft VB5 help section goes so far as to include
the syntax for this (although the online documentation for VB6 explicitly warns
against this practice). However, copying the data from one data type into the
memory space of a different data type is a recipe for disaster in any program-
ming language. Basically, what happens behind the scenes is that the raw
binary is copied from one memory location to another. This means that the
individual data types of the elements within the user-defined types are com-
pletely ignored. When you then access the data in the copied user-defined type,
the information it holds is, at best, useless. If you must copy (and in the pro-
cess translate) one user-defined data structure to another, do this using assign-
ment statements on an element-by-element basis.

See Also
RSet Statement

LTrim, LTrim$ Functions

Named Arguments

No

Syntax
LTrim(stringexp)
stringexp

Use: Required

Data Type: String

A valid string expression.
420 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Me Operator
Return Value

A Variant of subtype String (in the case of LTrim) or a String (in the case of
LTrim$).

Description

Removes any leading spaces from stringexp.

Rules at a Glance

• LTrim returns a variant of subtype String.

• LTrim$ returns a String data type.

• If stringexp contains a Null, LTrim returns Null.

Programming Tips & Gotchas

• Unless you need to keep trailing spaces, it’s best to use the Trim function,
which is the equivalent of LTrim(RTrim(string)). This allows you to
remove both leading and trailing spaces in a single function call.

• Although I have seen it done, it’s extremely unwise to create data relation-
ships that rely on leading spaces. Most string-based data types in relational
database management systems like SQL Server and Access automatically
remove leading spaces.

See Also
RTrim Function, Trim Function

Me Operator

Syntax
Me

Description

The Me operator can represent a class or a form, but only from within that class or
form.

Rules at a Glance

• Me is an implicit object reference to the current object module—either a Form,
a UserForm, or a Class module.

• The Me operator is particularly useful when passing an instance of the cur-
rently executing class as a parameter.

Example

In this example, a class method passes an instance of itself to another class using
the Me operator:

Public Function ChangeName(NewName As String) As Boolean
 Dim oMain As Main.Utils
 If IsUnique(NewName) Then
 msName = NewName
Me Operator 421

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 Set oMain = New Main.Utils
 oMain.Save Me
 Set oMain = Nothing
 ChangeName = True
 Else
 ChangeName = False
 End If
End Function

Programming Tips & Gotchas

• Unfortunately, unlike the implementation of the Me operator in other lan-
guages, the VB/VBA version can’t refer to an individual control.

• The Me operator can’t be used on the left side of an expression.

• Another favorite use of the Me keyword is within Form modules, when
unloading the Form or UserForm. For example:

Private Sub mnuExit
 Unload Me
End Sub

Mid, Mid$, MidB, MidB$ Functions

Named Arguments

Yes

Syntax
Mid(string, start[, length])
string

Use: Required

Data Type: String

The expression from which to return a substring.

start
Use: Required

Data Type: Long

The starting position of the substring.

length
Use: Optional

Data Type: Variant (Long)

The length of the substring.

Return Value

A Variant of subtype String or a String data type.

Description

Returns a substring of a specified length from within a given string.
422 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Mid, Mid$, MidB, MidB$ Functions
Rules at a Glance

• If string contains a Null, Mid returns Null.

• If start is more than the length of string, a zero-length string is returned.

• If start is less than zero, runtime error 5, “Invalid procedure call or argu-
ment,” is generated.

• If length is omitted, or length is greater than the length of string, all char-
acters from start to the end of string are returned.

• The MidB version of the Mid function is used with byte data held within a
string. When using MidB, both start and length refer to numbers of bytes
as opposed to numbers of characters.

Example

The following example parses the contents of a text box control (named
txtString) and writes each word to a list box (named lstWord). Note the use of
the InStr function to determine the position of either a space or a carriage return/
linefeed character combination, the two characters that can terminate a word in
this case:

Private Sub cmdParse_Click()

Dim strString As String, strWord As String
Dim intStart As Integer, intEnd As Integer
Dim intStrLen As Integer, intCrLf As Integer
Dim blnLines As Boolean

lstWords.Clear

intStart = 1
strString = Trim(txtString.Text)
intStrLen = Len(strString)
intCrLf = InStr(1, strString, vbCrLf)
If intCrLf Then blnLines = True

Do While intStart > 0
 intEnd = InStr(intStart, strString, " ") - 1
 If intEnd <= 0 Then intEnd = intStrLen
 If blnLines And (intCrLf < intEnd) Then
 intEnd = intCrLf - 1
 intCrLf = InStr(intEnd + 2, strString, vbCrLf)
 If intCrLf = 0 Then blnLines = False
 lstWords.AddItem Mid(strString, intStart, _
 intEnd - intStart + 1)
 intStart = intEnd + 3
 Else
 lstWords.AddItem Mid(strString, intStart, _
 intEnd - intStart + 1)
 intStart = intEnd + 2
 End If
Mid, Mid$, MidB, MidB$ Functions 423

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 If intStart > intStrLen Then intStart = 0
Loop

End Sub

Programming Tips & Gotchas

• Use the Len function to determine the total length of string.

• Use InStr to determine the starting point of a given substring within another
string.

See Also
Left, Left$, LeftB, LeftB$ Functions; Len Function; Mid, MidB Statements; Right,
Right$, RightB, RightB$ Functions

Mid, MidB Statements

Named Arguments

No

Syntax
Mid(stringvar, start[, length]) = string
stringvar

Use: Required

Data Type: String

The name of the string variable to be modified.

start
Use: Required

Data Type: Variant (Long)

The position within stringvar at which the replacement commences.

length
Use: Optional

Data Type: Variant (Long)

The number of characters in stringvar to replace.

string
Use: Required

Required: String

The string that replaces characters within stringvar.

Description

Replaces a section of a string with characters from another string.

Rules at a Glance

• If you omit length, as many characters of string as can be fitted into
stringvar are used.
424 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Minute Function
• If start + length is greater then the length of stringvar, string is trun-
cated to fit in the same space as stringvar. This means that the length of
stringvar isn’t altered by the Mid statement.

• If start is less than 0, runtime error 5, “Invalid procedure call or argument,”
occurs.

• The MidB version of the Mid statement is used with byte data held within a
string. When using MidB, both start and length refer to the number of
bytes, as opposed to the number of characters.

Programming Tips & Gotchas

• If string contains Null, runtime error 94, “Invalid Use of Null,” is generated.

• VB6 includes the Replace function, which enhances the functionality of the
Mid statement by allowing you to specify the number of times the replace-
ment is carried out in the same string.

• Although the documentation refers to Mid when it appears on the left side of
an assignment statement as a statement and on the right side as a function,
you may find it easier to remember their purpose and syntax if you consider
both variations as functions. In the second case, stringvar is passed to the
function by value, and therefore it isn’t modified by the function itself, which
returns the substring desired. In the first case, stringvar is passed to the
function by reference, so that, when the function returns, its value is modi-
fied accordingly.

See Also
Mid, MidB Functions; Replace Function

Minute Function

Named Arguments

Yes

Syntax
Minute(time)
time

Use: Required

Data Type: Date/Time

Any valid date/time expression, or an expression that can be evaluated as
a date/time expression.

Description

Returns an integer between 0 and 59 representing the minute of the hour from a
given date/time expression.

Rules at a Glance

If time is Null, the Minute function returns Null.
Minute Function 425

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

If time isn’t a valid date/time expression, the function generates runtime error 13,
“Type mismatch.” To prevent this, use the IsDate function to check the argument
before calling the Minute function.

See Also
Hour Function, Second Function

MIRR Function

Named Arguments

Yes

Syntax
MIRR(values(), finance_rate, reinvest_rate)
values()

Use: Required

Data Type: Array of Double

An array of cash flow values.

finance_rate
Use: Required

Data Type: Double

The interest rate paid as the cost of financing.

reinvest_rate
Use: Required

Data Type: Double

The interest rate received on gains from cash investment.

Return Value

A Double representing the modified internal rate of return.

Description

Calculates the modified internal rate of return, which is the internal rate of return
when payments and receipts are financed at different rates.

Rules at a Glance

• values must be a one-dimensional array that contains at least one negative
value (a payment) and one positive value (a receipt). The order of elements
within the array should reflect the order in which payments and receipts
occur.

• finance_rate and reinvest_rate are percentages expressed as decimal
values. For example, 10% is expressed as 0.10.
426 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
MkDir Statement
Programming Tips & Gotchas

Each element of values represents a payment or a receipt that occurs at a regular
time interval. If this isn’t the case, MIRR returns erroneous results.

See Also
IRR Function

MkDir Statement

Named Arguments

No

Syntax
MkDir path
path

Use: Required

Data Type: String

The name of the folder to be created.

Description

Creates a new folder.

Rules at a Glance

• If you omit the drive from path, a new folder is created on the current drive.

• You can specify the drive using either its local drive letter or its UNC name.

Programming Tips & Gotchas

• If your program is running on Windows NT, ensure that the logged-in user
has the rights to create a folder on the specified drive prior to calling the
MkDir statement.

• VB doesn’t make the new folder the current folder automatically after a call to
MkDir. You need to call the ChDir statement to do this.

• To remove a folder, use the RmDir statement.

• Use CurDir to determine the current drive.

• VB6 includes a new File System object model that has a Folders collection
object and Folder object. You will find these objects much more flexible and
easier to use than the intrinsic VB folder-management functions.

See Also
ChDir Statement, CurDir Function, File System Objects, RmDir Statement
MkDir Statement 427

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Month Function

Named Arguments

No

Syntax
Month(date)
date

Use: Required

Date: Variant

Any valid date expression.

Return Value

A variant integer between 1 and 12.

Description

Returns an integer representing the month of the year of a given date expression.

Rules at a Glance

If date contains Null, Month returns Null.

Programming Tips & Gotchas

• The validity of the date expression and the position of the month element
within the date expression are initially determined by the locale settings of the
current Windows system. However, some intelligence has been built into the
Month function that surpasses the usual comparison of a date expression to
the current locale settings. For example, on a Windows machine set to U.S.
date format (mm/dd/yyyy), the date “13/12/1998” is technically illegal. How-
ever, the Month function returns 12 when passed this date. The basic rule for
the Month function is that if the system-defined month element is outside
legal bounds (i.e., greater than 12), the system-defined day element is
assumed to be the month and is returned by the function.

• Since the IsDate function adheres to the same rules and assumptions as
Month, it determines whether a date is valid before passing it to the Month
function.

• Visual Basic 6 introduces a new MonthName function for returning the name
of the month.

See Also
Day Function, Year Function, IsDate Function, MonthName Function

MonthName Function (VB6)

Named Arguments

No
428 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
MsgBox Function
Syntax
MonthName monthnumber [, abbreviate]
monthnumber

Use: Required

Data Type: Long

The ordinal number of the month, from 1 to 12.

abbreviate
Use: Optional

Data Type: Boolean

A flag to indicate if an abbreviated month name should be returned.

Return Value

A String.

Description

Returns the month name of a given month. For example, 1 returns January, or if
abbreviate is True, Jan.

Rules at a Glance

The default value for abbreviate is False.

Programming Tips & Gotchas

• monthnumber must be an integer or a long; it can’t be a date. Use
DatePart("m", dateval) to obtain a month number from a date.

• MonthName with abbreviate set to False is the equivalent of Format
(dateval, "mmmm").

• MonthName with abbreviate set to True is the equivalent of Format
(dateval, "mmm").

See Also
Month Function, WeekdayName Function, DatePart Function

MsgBox Function

Named Arguments

Yes

Syntax
MsgBox(prompt[, buttons][, title][, helpfile, context])
prompt

Use: Required

Data Type: String

The text of the message to display in the message box dialog.
MsgBox Function 429

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
buttons
Use: Optional

Data Type: Numeric

The sum of the Button, Icon, Default Button, and Modality constant
values.

title
Use: Optional

Data Type: String

The title displayed in the titlebar of the message box dialog.

helpfile
Use: Optional

Data Type: String

An expression specifying the help file to provide help functionality for
the dialog.

context
Use: Optional

Data Type: Numeric

An expression specifying a context ID within helpfile.

Return Value

An Integer value indicating the button clicked by the user.

Description

Displays a dialog box containing a message, buttons, and optional icon to the
user. The action taken by the user is returned by the function in the form of an
integer value.

Rules at a Glance

• prompt can contain approximately 1,000 characters, including carriage return
characters such as the built-in vbCrLf constant.

• If the title parameter is omitted, the name of the current application or
project is displayed in the titlebar.

• If the helpfile parameter is provided, the context parameter must also be
provided, and vice versa.

• In VB5 and VB6 applications, when both helpfile and context are passed
to the MsgBox function, a Help button is automatically placed on the MsgBox
dialog, allowing the user to click and obtain context-sensitive help. However,
in VB4, the user was not presented with a Help button and could access help
only by pressing the F1 key. VBA applications such as Excel automatically
show a Help button.

• If you omit the buttons argument, the default value is 0; that is, VB opens an
application modal dialog containing only an OK button.
430 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
MsgBox Function
• The following intrinsic constants can be added together to form a complete
buttons argument:

ButtonDisplayConstant + IconDisplayConstant + _
DefaultButtonConstant + ModalityConstant

Only one constant from each group can make up the overall buttons value.

Button Display Constants

Icon Display Constants

Default Button Constants

Modality Constants

Constant Value Buttons to Display

vbOKOnly 0 OK only

vbOKCancel 1 OK and Cancel

vbAbortRetryIgnore 2 Abort, Retry, and Ignore

vbYesNoCancel 3 Yes, No, and Cancel

vbYesNo 4 Yes and No

vbRetryCancel 5 Retry and Cancel

Constant Value Icon To Display

vbCritical 16 Critical Message

vbQuestion 32 Warning Query

vbExclamation 48 Warning Message

vbInformation 64 Information Message

Constant Value Default Button

vbDefaultButton1 0 First button

vbDefaultButton2 256 Second button

vbDefaultButton3 512 Third button

vbDefaultButton4 768 Fourth button

Constant Value Modality

vbApplicationModal 0 Application

vbSystemModal 4096 System
MsgBox Function 431

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• The following intrinsic constants determine the action taken by the user and
represent the value returned by the MsgBox function:

Return Values

• If the MsgBox contains a Cancel button, the user can press the Esc key, and
the function’s return value is that of the Cancel button.

• The Help button doesn’t itself return a value, because it doesn’t close the Msg-
Box dialog. If the user clicks the Help button, a Help window is opened.
Once the Help window is closed, the user clicks one of the other buttons on
the message box to close the dialog; this then returns a value.

Programming Tips & Gotchas

• Application modality means that the user can’t access other parts of the applica-
tion until a response to the message box has been given. In other words, the
appearance of the message box prevents the application from performing other
tasks or from interacting with the user other than through the message box.

• System modality used to mean that all applications were suspended until a
response to the message box was given. However, with multitasking operating
systems such as Windows 95 and Windows NT, this isn’t the case. Basically the
message box is defined to be a “Topmost” window that is set to “Stay on Top,”
which means that the user can switch to another application and use it without
responding to the message box, but because the message box is the topmost
window, it’s positioned on top of all other running applications.

• Unlike its InputBox counterpart, MsgBox can’t be positioned on the screen; it’s
always displayed in the center of the screen.

• If your application is to run out-of-process on a remote machine, you should
remove all MsgBox functions, since they won’t be displayed to the user, but
will instead appear on the monitor of the remote server! For in-process server
components, VB now has an option to compile an ActiveX DLL for Unat-
tended Execution, in which case all user interface references are instead writ-
ten to an event log when the program executes. However, you must decide
how your program would execute if this were the case; if you’re looking for a
particular return value from a Msgbox function for your program to continue,
your program may not function correctly (if at all) if these references are auto-
matically removed.

Constant Value Button Clicked

vbOK 1 OK

vbCancel 2 Cancel (or Esc key pressed)

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No
432 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
MTSTransactionMode Property (VB6 only)
See Also
InputBox Function

MTSTransactionMode Property (VB6 only)

Description
Only available when a class is part of an ActiveX DLL project, you should set
this property whenever the class is to be registered as a Microsoft Transaction
Server (MTS) component. MTS uses this property to determine the level of
support a particular component has for transactions. This property is avail-
able only at design time.

When MTS components created using VB5 are added to an MTS package, the
administrator of the MTS package must manually set the Transaction Support
property for the component to operate correctly. VB6 has included the
MTSTransactionMode property to ease the burden on MTS administrators
either forgetting to set the property or setting the incorrect value. Therefore,
developers of MTS components now have more direct control over the way in
which their components are registered within MTS.

Values
NotAnMTSObject (Default)

Use this value if the component isn’t to be used in Microsoft Transaction
Server.

NoTransactions
Use this value if the component is to be a nontransactional part of an
MTS package. When the component is installed in MTS, the Transaction
property is set to “Does not support Transactions.” This value tells MTS
that the component shouldn’t execute within the context of a transaction
regardless of the transactional state of the client.

RequiresTransactions
When the component is installed in MTS, the Transaction property is set
to “Requires a Transaction.” This means that if the client isn’t executing in
the context of a transaction, a new transaction is created for this compo-
nent. However, if the client is executing in the context of a transaction,
this component joins in that same transaction.

UsesTransactions
When the component is installed in MTS, the Transaction property is set
to “Supports Transactions.” There is a subtle yet important difference
between a component that supports transactions and one that requires a
transaction. A component that supports transactions executes only in the
context of a transaction if the client is executing in the context of a trans-
action, in which case this component will join in that same transaction. If
however, the client isn’t executing in the context of a transaction, this
component won’t have a new transaction created for it and won’t execute
in the context of a transaction.
MTSTransactionMode Property (VB6 only) 433

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
RequiresNewTransaction
Use this value if the component is to execute in its own transaction.
When the component is installed in MTS, the transaction property is set
to “Requires a new transaction.” This means that regardless of the trans-
actional state of the client, this object is always created in the context of a
new transaction.

Programming Tips & Gotchas

For further details about creating Microsoft Transaction Server components using
Visual Basic, see my book Creating MTS Components with VB6, soon to be
published by O’Reilly & Associates.

See Also
Chapter 4

Name Property

Description

Used to name a class, module, or project. This property is only available at design
time.

Rules at a Glance

• Standard VB naming conventions apply.

• VBA assigns default names (Project1, Class1, etc.) to classes and projects.

Programming Tips & Gotchas

• You can’t use the same name for a class and the project within which the
class resides.

• The Project name for an ActiveX project is used by OLE Automation as the
Library name when creating or referring to an object. The object reference
takes the form LibraryName.ClassName.

• Since you typically refer to a class, form, or module by its name from outside
of that object, it’s best to replace the default value of the Name property
(unless, of course, that’s the name you intend to keep) as soon after adding it
to your project as possible.

Name Statement

Syntax
Name oldpathname As newpathname
oldpathname

Use: Required

Data Type: String

The current filename and optional path.
434 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Now Function
newpathname
Use: Required

Data Type: String

The new filename and optional path.

Description

Renames a disk file or folder.

Rules at a Glance

• newpathname must not already exist or an error is generated.

• newpathname and oldpathname can’t be on different drives.

• Path information included in newpathname and oldpathname can take the
form of the local system’s path or the UNC path.

• newpathname and oldpathname can’t include the wildcard characters ? and *.

• You can’t use the Name statement with a file that is already open.

Programming Tips & Gotchas

The Name statement can move a file from one folder to another, and optionally,
can change the file’s name at the same time. If the folder specified in newname-
path exists and is different from that stated in oldnamepath, the file is moved to
the folder specified in newnamepath. If the filename in newnamepath is also
different, the file is renamed at the same time. Moving an object in this way,
however, only works with files; you can’t use the Name statement to move folders.

Now Function

Syntax
Now

Return Value

A Variant of subtype Date.

Description

Returns the current date and time based on the system setting.

Example

The following example returns the date 10 days from today:

Dim dFutureDate As Date
dFutureDate = DateAdd("d",10,Now)

Programming Tips & Gotchas

• It’s often overlooked that workstations in a modern Windows environment are
at the mercy of the user! If your application relies on an accurate date and
time setting, you should consider including a line in the workstation’s logon
script to synchronize the time with one of the servers. Many so-called bugs
Now Function 435

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
have been traced to a workstation that has had its date or time wrongly
altered by the user. The following line of code, when added to the logon
script of an NT4 machine, synchronizes the machine’s clock with that of a
server called NTSERV1:

net time \\NTSERV1 /set

• The date returned by Now takes the Windows General Date format based on
the locale settings of the local computer. The U.S. setting for General Date is
mm/dd/yy hh:mm:ss.

• The Now function is often used to generate timestamps. However, for short-
term timing and intra-day timestamps, the Timer function, which returns the
number of milliseconds elapsed since midnight, affords greater accuracy.

See Also
Timer Function

NPer Function

Named Arguments

Yes

Syntax
NPer(rate, pmt, pv [, fv [, due]])
rate

Use: Required

Data Type: Double

The interest rate per period.

pmt
Use: Required

Data Type: Double

The payment to be made each period.

pv
Use: Required

Data Type: Double

The present value of the series of future payments or receipts.

fv
Use: Optional

Data Type: Double

The future value of the series of payments or receipts. If omitted, the
default value is 0.

due
Use: Optional

Data Type: Variant
436 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
NPer Function
A value indicating when payments are due. 0 indicates that payments are
due at the end of the payment period; 1 indicates that payments are due
at the end of the period. If omitted, the default value is 0.

Return Value

A Double indicating the number of payments.

Description

Determines the number of payment periods for an annuity based on fixed peri-
odic payments and a fixed interest rate.

Rules at a Glance

• rate is a percentage expressed as a decimal. For example, a monthly interest
rate of 1% is expressed as 0.01.

• For pv and fv, cash paid out is represented by negative numbers; cash
received is represented by positive numbers.

Example

Typically, the amount of time required to repay credit card debt is never explicitly
stated. The following program uses the NPer function to determine how much
time is required to repay credit card debt.

Private Sub HowLongToPay()

On Error GoTo ErrHandler

Dim dblRate As Double, dblPV As Double
Dim dblPmt As Double
Dim lngNPer As Long

dblPV = InputBox("Enter the Credit Card balance: ")
dblPmt = InputBox("Enter the monthly payment: ")
dblRate = InputBox("Enter the interest rate: ")

lngNPer = NPer(dblRate, -dblPmt, dblPV, 0, 1)

MsgBox "Your credit card balance will be paid in " & _
 lngNPer & " months." & vbCrLf & "That's " & _
 Int(lngNPer / 12) & " years and " & _
 Round(lngNPer Mod 12, 2) & " months."

Exit Sub

ErrHandler:

Err.Clear

End Sub
NPer Function 437

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

• Both rate and pmt must be expressed in the same time unit. That is, if pmt
reflects the monthly payment amount, rate must be the monthly interest rate.

• NPer is useful in calculating the number of payment periods required to repay
a loan when the monthly loan payment is fixed or when the approximate
amount of a monthly payment is known. In this case, pv reflects the amount
of the loan, and fv is usually 0, reflecting the fact that the loan is to be
entirely repaid.

• NPer is useful in determining the length of time required to meet some future
financial goal. In this case, pv represents the current level of savings, and fv
represents the desired level of savings.

See Also
IPmt Function, Pmt Function, PPmt Function, Rate Function

NPV Function

Named Arguments

Yes

Syntax
NPV(rate, values())
rate

Use: Required

Data Type: Double

The discount rate over the period, expressed as a decimal.

values()
Use: Required

Data Type: Double

An array of cash flow values.

Return Value

A Double specifying the net present value.

Description

Calculates the net present value of an investment based on a series of periodic
variable cash flows (payments and receipts) and a discount rate. The net present
value is the value today of a series of future cash flows discounted at some rate
back to the first day of the investment period.

Rules at a Glance

• rate must be a percentage expressed as a decimal. For example, 10% is
expressed as 0.10.

• values is a one-dimensional array that must contain at least one negative
value (a payment) and one positive value (a receipt).
438 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Oct, Oct$ Functions
• The NPV investment begins one period before the date of the first cash flow
value and ends with the last cash flow value in the array.

• NPV requires future cash flows. If the first cash flow occurs at the beginning
of the first period, the first value must be added to the value returned by NPV
and must not be included in values.

Programming Tips & Gotchas

• rate and the individual elements of values must reflect the same time
period. For example, if values reflects annual cash flows, rate must be the
annual discount rate.

• Individual members of values are interpreted sequentially. That is, val-
ues(0) is the first cash flow, values(1) is the second, etc.

• NPV is like the PV function, except that PV allows cash flows to begin either
at the beginning or the end of a period and requires that cash flows be fixed
throughout the investment.

See Also
FV Function, IRR Function, MIRR Function, PV Function

Oct, Oct$ Functions

Named Arguments

No

Syntax
Oct(number)
number

Use: Required

Data Type: Numeric or String

Number or string representation of a number to convert.

Return Value

A Variant of subtype String or a String

Description

Returns the octal value of a given number.

Rules at a Glance

• If number isn’t already a whole number, it’s rounded to the nearest whole
number before being evaluated.

• If number is Null, Oct returns Null.

• If number is the special Empty variant, Oct returns 0 (zero).

• Oct returns up to 11 octal characters.

• Oct returns a variant string, while Oct$ returns a string data type.
Oct, Oct$ Functions 439

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

You can also use literals in your code to represent octal numbers by appending &O
to the relevant octal value. For example, 100 decimal has the octal representation
&O144. The following two statements each assign an octal value to a variable:

lngOctValue1 = &H200 ' Assigns 128
lngOctValue2 = "&O" & Len(dblNumber) ' Assigns 8

See Also
Hex, Hex$ Function

On Error Statement

Syntax 1
On Error GoTo label|0
label

Use: Either label or 0 is required

A valid label within the subroutine.

Syntax 2
On Error Resume Next

Description

Enables or disables error handling within a procedure. If you don’t use an On
Error statement in your procedure, or if you have explicitly switched off error
handling, the Visual Basic runtime engine handles the error automatically. First, it
displays a dialog containing the standard text of the error message, something
many users are likely to find incomprehensible. Second, it terminates the applica-
tion, so any error that occurs in the procedure produces a fatal runtime error.

Rules at a Glance

Syntax 1

• The 0 argument disables error handling within the procedure until the next On
Error statement is executed.

• The label argument specifies the name of the label defining an error-han-
dling routine within the current procedure that will be branched to should an
error occur.

• A subroutine label must be suffixed with a colon; furthermore, you can’t use a
VB, reserved word for a subroutine label name. For example:

someroutine:

• label must be in the same procedure as the On Error statement.

Syntax 2

• When a runtime error occurs, program execution continues with the program
line following the line that generated the error.
440 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
On Error Statement
Programming Tips & Gotchas

• If you have no error handling in your procedure or if error handling is dis-
abled, the VB runtime engine traces back through the call stack until a proce-
dure is reached where error handling is enabled. In that case, the error is
handled by that procedure. However, if no error handler can be found in the
call stack, a runtime error occurs, and program execution is halted.

• On Error Resume Next is useful in situations where you are certain that
errors will occur or where the errors that could occur are minor. The follow-
ing example shows how you can quickly cycle through the controls on a form
and set the Text property to an empty string without checking what type of
control you’re dealing with. Of course, you are aware that many of the con-
trols don’t have a Text property, so the attempt to access their Text property
generates an error. By using the On Error Resume Next statement, you force
your program to ignore this error and carry on with the next control.

On Error Resume Next
For Each Control In Me.Controls
 Control.Text = ""
Next

• Use of the On Error Resume Next statement should be kept to a minimum,
since errors are basically ignored, and their occurrence is silent to the user.
This means that, should an unexpected error (that is, an error that you were
not intending to handle when you chose to ignore errors) occur, or should
your application behave unexpectedly, the job of finding and correcting the
cause of the error becomes almost impossible.

• The following is a template for error handling within your procedures:

Sub/Function/Property Name ()
 On Error Goto Name_Err

... 'procedure code

Name_Exit:
 ... 'tidying up code – such as Set Object = Nothing
 Exit Sub/Function/Property

Name_Err:
 ... 'error handling code e.g. a MsgBox to inform the user
 Resume Name_Exit

End Sub/Function/Property

If cleanup code isn’t required within the procedure, you can simplify the tem-
plate by removing the Name_Exit label and removing the Resume Name_
Exit statement.

• If you are writing an error handling routine for use within a class module or a
DLL, you should use the following template, which raises an error back to the cli-
ent, thereby notifying the client of the error and allowing the client to handle it:

Sub/Function/Property Name ()
 On Error Goto Name_Err
 ... 'procedure code
On Error Statement 441

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 ... 'tidying up code – such as Set Object = Nothing
 Exit Sub/Function/Property

Name_Err:
 ... 'error handling and tidying up code
 Err.Raise etc...

End Sub/Function/Property

• Errors that occur within an error handler always generate a runtime error.

• The quality of error trapping, error handling, and error reporting within a pro-
gram often determines the success or failure of the application. Attention to
detail in this area can be the difference between a stable, well-behaved, and
robust application and one that seems to generate nothing but hassle. Using
logs like the NT application log within your error-handling routines can help
you track down persistent problems quickly and efficiently. See Chapter 6,
which details creating robust VB and VBA error handling routines.

See Also
Resume Statement, Chapter 6

Open Statement

Named Arguments

No

Syntax
Open pathname For mode [Access access] [lock] As [#]filenumber
 [Len=reclength]
pathname

Use: Required

Data Type: String

The name of the file to open, along with an optional path.

mode
Use: Required

Data Type: Keyword

The file access mode: append, binary, input, output, or random.

access
Use: Optional

Data Type: Keyword

Specifies the allowable operations by the current process.

lock
Use: Optional

Type: Keyword

Specifies the allowable operations by other processes.
442 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Open Statement
filenumber
Use: Required

Data Type: Integer

A valid file number between 1 and 511.

reclength
Use: Optional

Data Type: Integer

The length of the record or I/O buffer.

Description

Before reading from and/or writing to a disk file, you must first open the file using
the Open statement. The Open statement allocates memory for the I/O buffer and
optionally sets access locks on the file.

Rules at a Glance

• pathname may include the directory or folder and drive; if these are omitted,
the file is assumed to reside in the current working directory. If pathname
does include drive and path information, this may take the form of a path rel-
ative to the local system or a UNC path.

• The default mode for opening a disk file (when mode isn’t specified) is random.

• If the specified file doesn’t exist when opening in input mode, an error
occurs.

• A new file is created if the specified file doesn’t exist when opening in
append, binary, output, or random mode.

• access allows you to restrict the actions that can be taken against the file in
the current process, by specifying Read, Write, or Read Write. The default is
Read Write.

• The lock argument allows you to restrict the operations performed on the
open file by other processes, as shown in the following table:

Lock Type Description

Shared Other processes can open the file for both read and
write operations.

Lock Read Other processes can only write to the file.

Lock Write Other processes can only read from the file.

Lock Read Write Other processes can’t open the file.
Open Statement 443

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• The reclength argument is treated differently, depending upon the open
mode, as the following table shows:

Example

The following example opens a data file for random access and assigns a record
from that file to a user-defined type.

Private Function getCustomerData(sFileName As String, _
 lCustNo As Long) As Boolean

Dim iFile As Integer
iFile = FreeFile

Open sFileName For Random As #iFile Len = Len(udtCustomer)
Get #iFile, lCustNo, udtCurrentCustomer
Close #iFile

End Function

Programming Tips & Gotchas

• To avoid using the file number of an already open file and generating an
error, use the FreeFile function to allocate the next available file number.

• You can open an already opened file using a different file number in binary,
input, and random modes. However, you must close a file opened using
append or output before you can open it with a different file number.

See Also
FreeFile Function

Option Base Statement

Syntax
Option Base {0 | 1}

Description

Used at the beginning of a module to specify the default lower bound for arrays
dimensioned within the module.

Rules at a Glance

• The default lower bound for arrays created in Visual Basic is 0. Therefore, you
should only use Option Base 1 to change the default base for arrays to 1.

Open Mode Meaning of Len Is...

Random Length in bytes of each record

Binary Ignored

Append/input/output The number of characters to buffer
444 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Option Explicit Statement
• The Option Base statement must appear at the start of a module, before any
array declarations.

• The Option Base statement affects only those arrays declared in the module
in which the Option Base statement appears.

Programming Tips & Gotchas

• Another more flexible method of specifying the lower bound of an array
(other than the default) is to use the To clause when dimensioning an array,
as the following snippet shows:

Dim myArray(1 to 50) As String

• Option Base doesn’t affect the lower bound of arrays created with the Array
function or the ParamArray keyword; these are always base 0.

See Also
Dim, Private, Public, ReDim, Static Statements

Option Compare Statement

Syntax
Option Compare {Binary | Text | Database}

Description

Sets the default method for comparing string data.

Rules at a Glance

• When Option Compare isn’t used in a module, the default comparison
method is binary.

• When Option Compare is used, it must appear at the start of the module’s
declarations section, before any procedures.

• Binary comparison—the default text comparison method in Visual Basic—
uses the internal binary code of each character to determine the sort order of
the characters. For example “A” < “a”.

• Text comparison uses the locale settings of the current system to determine
the sort order of the characters. Text comparison is case insensitive. For
example “A” = “a”.

• Database comparison is only for use in Microsoft Access. Strings are com-
pared based on the sort order defined by the international settings stored in
the database engine.

Option Explicit Statement

Syntax
Option Explicit
Option Explicit Statement 445

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Description

Use Option Explicit to generate a compile-time error whenever a variable that
has not been declared is encountered.

Rules at a Glance

• The Option Explicit statement must appear in the declarations section of a
module before any procedures.

• In modules where the Option Explicit statement isn’t used, any unde-
clared variables are automatically cast as variants.

Programming Tips & Gotchas

• It’s considered good programming practice to always use the Option
Explicit statement. The following example shows why:

1: Dim iVariable As Integer

2: iVariable = 100
3: iVariable = iVarable + 50
4: MsgBox iVariable

In this code snippet, an integer variable, iVariable, has been declared.
However, because the name of the variable has been mistyped in line 3, the
message box shows its value as only 50 instead of 150. This is because
iVarable is assumed to be an undeclared variant whose value is 0. If the
Option Explicit statement had been used, the code wouldn’t have com-
piled, and iVarable would have been highlighted as the cause.

• You can automatically add the Option Explicit statement to all new mod-
ules as follows: Select Options from the Tools menu, select the Editor tab of
the Options dialog, then check the “Require Variable Declaration” option in
the Code Settings section and click OK.

See Also
DefType Statement

Option Private Module Statement

Syntax
Option Private Module

Description

Restricts the scope and visibility of the contents of a module (i.e., its variables,
classes, functions, and procedures) in VBA-enabled applications that allow refer-
ences across multiple projects (e.g., Microsoft Office applications) to the module’s
project. Option Private Module has no effect in the standalone version of Visual
Basic.

Rules at a Glance

• The Option Private Module statement must appear in the declarations sec-
tion of a module before any procedures.
446 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Pmt Function
• Publicly declared procedures, variables, and objects contained within a mod-
ule that has been set as private using the Option Private Module statement
aren’t available to other projects and applications. However, they are still
available in the usual way to other members of the same project.

Programming Tips & Gotchas

You should only use the Option Private Module statement in applications such
as Microsoft Excel that allow you to load multiple projects. In this way, the
Option Private Module statement restricts visibility of publicly declared items.

Persistable Property (VB6 Only)

Description
Only available when the class is part of an ActiveX DLL project that is both
public and createable, this property determines whether the class can be
saved to disk. This property is only available at design time.

Values
NotPersistable

The class properties can’t be saved.

Persistable
The class property values can be saved to a property bag.

Programming Tips & Gotchas

If the property value is set to Persistable, four procedures—the InitProperties,
ReadProperties, and WriteProperties events, and the PropertyChanged method—
are automatically added to the class module.

See Also
Chapter 4

Pmt Function

Named Arguments

Yes

Syntax
Pmt(rate, nper, pv[, fv[, due]])
rate

Use: Required

Data Type: Double

The interest rate per period.

nper
Use: Required

Data Type: Integer

The total number of payment periods.
Pmt Function 447

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
pv
Use: Required

Data Type: Double

The present value of the series of future payments.

fv
Use: Optional

Data Type: Double

The future value or cash balance after the final payment.

due
Use: Optional

Data Type: Variant

A value indicating when payments are due. 0 indicates that payments are
due at the beginning of the payment period; 1 indicates that payments
are due at the end of the period. If omitted, the default value is 0.

Return Value

A Double representing the monthly payment.

Description

Calculates the payment for an annuity based on periodic fixed payments and a
fixed interest rate. An annuity can be either a loan or an investment.

Rules at a Glance

• rate is a percentage expressed as a decimal. For example, an interest rate of
1% per month is expressed as 0.01.

• If fv is omitted, the default value of 0 (reflecting the complete repayment of a
loan) is used.

• For pv and fv, cash paid out is represented by negative numbers; cash
received is represented by positive numbers

• If due is omitted, the default value of 0, reflecting payments at the beginning
of each period, is used.

Example

See the example for the IPmt function.

Programming Tips & Gotchas

• rate and nper must be calculated using payment periods expressed in the
same units. For example, if nper reflects the total number of monthly pay-
ments, rate must be the monthly interest rate.

See Also
IPmt Function, NPer Function, Rate Function
448 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
PPmt Function
PPmt Function

Named Arguments

Yes

Syntax
PPmt(rate, per, nper, pv[, fv[, due]])
rate

Use: Required

Data Type: Double

The interest rate per period.

per
Use: Double

Data Type: Any valid numeric expression

The period for which a payment is to be computed.

nper
Use: Double

Data Type: Any valid numeric expression

The total number of payment periods.

pv
Use: Double

Data Type: Any valid numeric expression

The present value of a series of future payments.

fv
Use: Optional

Data Type: Variant

The future value or cash balance after the final payment. If omitted, the
default value is 0.

due
Use: Optional

Data Type: Variant

A code indicating whether payments are due at the end (0) or beginning
(1) of the payment period.

Return Value

A Double representing the principal paid in a given payment.

Description

Computes the payment of principal for a given period of an annuity based on
periodic, fixed payments and a fixed interest rate. An annuity is a series of fixed
cash payments made over a period of time. It can be either a loan payment or an
investment.
PPmt Function 449

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Rules at a Glance

• The value of per can range from 1 to nper.

• If pv and fv represent liabilities, their value is negative; if assets, their value is
positive.

• If fv is omitted, its default value of 0 is used.

• If due is omitted, the default value of 0, reflecting payments at the beginning
of each period, is used.

Example

See the example for the IPmt function.

Programming Tips & Gotchas

• rate and nper must be expressed in the same time unit. That is, if nper
reflects the number of monthly payments, rate must be the monthly interest
rate.

• The interest rate is a percentage expressed as a decimal. For example, if nper
is the total number of monthly payments, an annual percentage rate (APR) of
12% is equivalent to a monthly percentage rate of 1%. The value of rate is
therefore .01.

See Also
IPmt Function, NPer Function, Pmt Function, Rate Function

Print # Statement

Named Arguments

No

Syntax
Print #filenumber, [outputlist]
filenumber

Use: Required

Data Type: Integer

Any valid file number.

outputlist
Use: Optional

A list of expressions to output to a file.

The syntax of outputlist is:

[{Spc(n) | Tab[(n)]}] [expression] [charpos]
Spc(n)

Use: Optional

Insert n space characters before expression.
450 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Print # Statement
Tab(n)
Use: Optional

Position the insertion point either at the next print zone (by omitting n)
or at column number (n).

expression
Use: Optional

The data expression to output.

charpos
Use: Optional

Position of the insertion point for the first character of the next expression.

Description

Outputs formatted data to a disk file opened for append or output.

Rules at a Glance

• You can delimit multiple expressions using either a space or a semicolon,
both of which have the same effect. In fact, from version 5 of VB, the semi-
colon is placed automatically in the line of code for you. For example:

Print #iFile, sName; sAge
Print #iFile, sName sAge

• The semicolon also denotes that the insertion point for the first character of
the next expression is immediately after the last character of the current
expression.

• The Tab(n) argument doesn’t actually insert any tab characters (Chr(9));
instead, it fills the space from the end of the last expression to column n (or
to the start of the next print zone) with space characters.

• Omitting charpos forces the next expression to be printed on a new line.

• Using Print # followed by a list separator writes an empty line to the file.
For example:

Print #iFile,

• The Print # statement uses the locale settings of the current system to for-
mat dates, times, and numbers using the correct separators.

Programming Tips & Gotchas

• You may find that sequential data files written using the Print # statement
don’t read back correctly using the Input statement. For heavily structured
sequential data, it’s recommended that you use the Write # statement, which
ensures that all fields are correctly delimited.

• Certain data types may not behave as you may expect. These are listed in the
following table:

Output Data Type Formatted Output to File

Boolean True or False

Date Short Format Date based on system locale settings
Print # Statement 451

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
See Also
Write # Statement

Printer Object and Printers Collection

Since it’s part of the VB library, the Printer object isn’t available to VBA applica-
tions. When you write a VBA (as opposed to VB) program, you simply make use
of the host application’s own built-in printing functionality. For example:

Set oWordActiveDoc = oWord.Documents.Add
Set oWordSel = oWord.Selection

oWordSel.TypeText "This is text coming in from the VB app."
oWordSel.WholeStory
oWordSel.Font.Name = "Arial"
oWordSel.Font.Size = 12
oWordSel.Font.Bold = wdToggle

oWordActiveDoc.PrintOut

Printer Object

• Visual Basic contains a global printer object, which refers to the default
printer for the current system. Because this object is global to all parts of the
VB project, you don’t need to create an object variable; you can simply use
the Printer object directly. For example:

If Printer.Duplex Then

• The global printer object is also a virtual document onto which you place
your text output using the Print method and a range of built-in graphics meth-
ods. For example:

Printer.Print "Private and Confidential"
Printer.Line (0, 100)-(Printer.ScaleWidth, 100)

• You can position text and drawings precisely in output by using the Printer
object’s CurrentX and CurrentY properties. The coordinate system of the
printer object is based from the top left corner of the object. The default coor-
dinate unit is a Twip, but this can be changed by using the ScaleHeight, Scale-
Width, ScaleLeft, ScaleTop, and ScaleMode properties.

• Because the output of proportional fonts is so hard to predict, two very use-
ful properties are TextWidth and TextHeight. These return the actual size that
a given string will occupy when placed on the printer object using the cur-
rent font, font size, and font style. This allows you to determine at what coor-
dinates to start printing the string on the printer object.

• The Printer object holds a virtual document that can contain any number of
pages; you start with page one, can add pages by calling the NewPage

Error Error, followed by the corresponding error code

Null (Variant) Null

Output Data Type Formatted Output to File
452 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Printer Object and Printers Collection
method, and can keep count of the number of pages with the Page property.
For example:

Printer.NewPage
Printer.Print "Page No:" & Printer.Page

• When you’ve finished the document and want to output it to the printer
device, simply call the EndDoc method, which dumps the current Printer
buffer to the device and resets the Printer object:

Printer.EndDoc

• A useful tip is that the PictureBox control and the Printer object have identi-
cal graphics and print methods. Why is this significant? The following code
shows how you can start to create a Print Preview form using the same code
to reference either a Printer object or a PictureBox control:

Private Sub mnuPrintPreview_Click()

 Dim oPic As PictureBox
 Set oPic = Picture1
 If PrintOutput(oPic) Then
 oPic.Visible = True
 End If

End Sub

Private Sub mnuPrint_Click()
 If PrintOutput(Printer) Then
 Printer.EndDoc
 Else
 Printer.KillDoc
 End If
End Sub

Public Function PrintOutput(oPrintSurface As Object) _
 As Boolean
 oPrintSurface.Print "Hello World"
 oPrintSurface.Line (100, 300) – (600, 300)
 PrintOutput = True
End Function

Printer Object Properties

The Printer object supports the following properties and methods. Note that not all
properties are available to all printer devices; some properties depend on the
capabilities of the current device driver. In the following synopses, oPrinter is an
expression that evaluates to a Printer object:

ColorMode
Returns or sets a flag denoting whether a color printer outputs in mono-
chrome or color.

Syntax: oPrinter.ColorMode [= constValue]

where constValue can be vbPRCMMonochrome or vbPRCMColor.
Printer Object and Printers Collection 453

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Copies
Returns or sets the number of copies to be printed.

Syntax: oPrinter.Copies [=intValue]

CurrentX
Returns or sets the horizontal coordinate for the next print or drawing
method.

Syntax: oPrinter.CurrentX [= singValue]

CurrentY
Returns or sets the vertical coordinate for the next print or drawing method.

Syntax: oPrinter.CurrentY [= singValue]

DeviceName
Read-only property that returns the name of the current printer device.

DrawMode
Returns or sets a flag denoting the method used to output graphics methods.

Syntax: oPrinter.DrawMode [= constValue]

constValue can be:

DrawStyle
Returns or sets a flag denoting the style of lines output in graphics methods.

Syntax: oPrinter.DrawStyle [= constValue]

constValue can be vbSolid, vbDash, vbDot, vbDashDot, vbDashDotDot,
vbInvisible, vbInvisibleSolid.

DrawWidth
Returns or sets the width in pixels of lines output by graphics methods.

Syntax: oPrinter.DrawWidth [= intValue]

DriverName
Returns the name of the current driver for the current Printer object.

Syntax: oPrinter.DriverName

Duplex
Returns or sets a flag denoting whether a page is to be printed on both sides.

Syntax: oPrinter.Duplex [= constValue]

constValue can be vbPRDPSimplex, vbPRDPHorizontal, vbPRDP-
Vertical.

FillColor
Returns or sets the fill color used in graphics methods

vbBlackness vbCopyPen (default) vbInvert
vbMaskPen vbMaskPenNot vbMaskNotPen
vbMergeNotPen vbMergePen vbMergePenNot
vbNop vbNotCopyPen vbNotMaskPen
vbNotMergePen vbNotXorPen vbXorPen
vbWhiteness
454 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Printer Object and Printers Collection
Syntax: oPrinter.FillColor [= Value]

Value can be the result of a call to the QBColor function or one of the
intrinsic Visual Basic color constants.

FillStyle
Returns or sets the pattern used to fill shapes created with graphics methods.

Syntax: oPrinter.FillStyle [= constValue]

constValue can be:

Font
Returns a Font object. This is the recommended method of setting font prop-
erties for the Printer object.

Syntax: oPrinter.Font.FontProperty [= FontPropertyValue]

FontBold, FontItalic, FontStrikeThru, FontTransparant, FontUnderline
Returns or sets the style of the current font. But it’s instead recommended that
you use the properties of the Font object; for example, Font.Bold.

Syntax: oPrinter.FontBold [= booleanValue]

Syntax: oPrinter.FontItalic [= booleanValue]

Syntax: oPrinter.FontStrikethru [= booleanValue]

Syntax: oPrinter.FontTransparant [= booleanValue]

Syntax: oPrinter.FontUnderline [= booleanValue]

FontCount
Returns the number of fonts available to the current Printer object.

Syntax: NoOfFonts = oPrinter.FontCount

FontName
Returns or sets the name of the current font. But to retrieve the name of the
current font, you should use the Font.Name method instead.

Syntax: oPrinter.FontName [= strVal]

Fonts
Returns a collection of all fonts available to the current Printer object. An indi-
vidual font can be accessed by its ordinal position in the collection.

Syntax: oPrinter.Fonts(index)

FontSize
Returns or sets the font size in points of the current font. The recommended
method is to use the Font.Size property instead.

Syntax: oPrinter.FontSize [= sngVal]

vbCross vbDiagonalCross vbDownwardDiagonal
vbFSSolid vbFSTransparent bHorizontalLine
vbUpwardDiagonal vbVerticalLine
Printer Object and Printers Collection 455

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
hDC
Returns a window handle that can be used in a Win32 API call to identify the
current Printer object. Don’t store hDC property values, since they can change
while the application is executing.

Syntax: oPrinter.hDC

Height
Returns or sets the height of the current printer object in twips. Setting the
height property overrides the current PaperSize property.

Syntax: oPrinter.Height [= sngVal]

Orientation
Returns or sets the orientation of the printed output.

Syntax: oPrinter.Orientation [= constValue]

constValue can have these settings: vbPRORPortrait, vbPRORLandscape.

Page
Returns the number of the current page. Reset to one when the EndDoc or
KillDoc methods is called. Incremented when the NewPage method is called
or when textual output on the current page overruns onto subsequent pages.
Note that graphical output is truncated and never overruns onto subsequent
pages.

Syntax: oPrinter.Page

PaperBin
Sets or returns the tray from which paper is fed.

Syntax: oPrinter.PaperBin [= constValue]

constValue can have these settings:

PaperSize
Sets or returns the paper size.

Syntax: oPrinter.PaperSize [= constValue]

constValue can have these settings:

vbPRBNUpper vbPRBNLower vbPRBNMiddle
vbPRBNManual vbPRBNEnvManual vbPRBNAuto
vbPRBNTractor vbPRBNSmallFmt vbPRBNLargeFmt
vbPRBNLargeCapacity vbPRBN-Cassette

vbPRPS10x14 vbPRPS11x17 vbPRPSA3
vbPRPSA4 vbPRPSA4Small vbPRPSA5
vbPRPSB4 vbPRPSB5 vbPRPSCSheet
vbPRPSDSheet vbPRPSEnv9 vbPRPSEnv11
vbPRPSEnv14 vbPRPSEnvB4 vbPRPSEnvB5
vbPRPSEnvB6 vbPRPSEnvC3 vbPRPSEnvC4
vbPRPSEnvC5 vbPRPSEnvC6 vbPRPSEnvC65
bPRPSEnv10 vbPRPSEnv12 vbPRPSEnvDL
456 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Printer Object and Printers Collection
Port
Returns the name of the port used by the current printer object.

Syntax: oPrinter.Port

PrintQuality
Returns or sets the flag denoting the printer’s print quality setting.

Syntax: oPrinter.PaperSize [= constValue]

constValue can have these settings: vbPRPQDraft, vbPRPQLow, vbPRPQMe-
dium, vbPRPQHigh.

RightToLeft (VB6 onward)
Returns a True or False value denoting whether or not text in the current
system should appear from right to left, as for example when running Arabic
or Hebrew Windows.

Syntax: oPrinter.RightToLeft

ScaleHeight, ScaleWidth
Returns or sets the height and width of the print object’s print area based on
the units defined by ScaleMode.

Syntax: oPrinter.ScaleHeight[= sngVal]

Syntax: oPrinter.ScaleWidth [= sngVal]

ScaleLeft, ScaleTop
Returns or sets the virtual top and left of the print object’s print area based on
the units defined by ScaleMode.

Syntax: oPrinter.ScaleLeft[= sngVal]

Syntax: oPrinter.ScaleTop [= sngVal]

ScaleMode
Determines the coordinate system used by the ScaleLeft, ScaleTop, Scale-
Width, and ScaleHeight properties. Note: due to a bug in the initial release of
VB5, the ScaleMode property had no effect; this was corrected with Service
Pack 2.

Syntax: oPrinter.ScaleMode [= constValue]

constValue can have these settings: vbUser, VbTwips, VbPoints, vbChar-
acters, VbInches, VbMillimeters, VbCentimeters.

TrackDefault
Returns or sets a Boolean flag to denote whether the Printer object should
refer to the default printer, even when the default printer is changed through

vbPRPSEnvItaly vbPRPSEnvMonarch vbPRPSESheet
vbPRPSExecutive vbPRPSFanfoldLgl-German vbPRPSFanfoldStd-German
vbPRPSFanfoldUS vbPRPSFolio vbPRPSLedger
vbPRPSLegal vbPRPSLetter vbPRPSLetterSmall
vbPRPSNote vbPRPSStatement vbPRPSTabloid
vbPRPSQuarto vbPRPSUser
Printer Object and Printers Collection 457

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Control Panel (True), or whether the Printer object should continue to refer
to the same printer, regardless of the system default printer setting (False).

Syntax: oPrinter.TrackDefault [= booleanValue]

TwipsPerPixelX, TwipsPerPixelY
Returns the number of twips per pixel in the horizontal plane (TwipsPer-
PixelX) or vertical plane (TwipsPerPixelY) of the Printer object.

Syntax: oPrinter.TwipsPerPixelX

Syntax: oPrinter.TwipsPerPixelY

Width
Returns or sets the width in twips of the current Printer object. Setting the
width property overrides the current PaperSize property.

Syntax: oPrinter.Width[= sngVal]

Zoom
Returns or sets the percentage by which the printer output is scaled up or
down.

Syntax: oPrinter.Zoom [= sngVal]

Printer Object Methods

In the following synopses, oPrinter is an expression that evaluates to a Printer
object:

EndDoc
Outputs the Printer object’s output buffer to the printer driver or spooler.

Syntax: oPrinter.EndDoc

KillDoc
Terminates the current job, emptying the Printer object’s output buffer and, if
possible, deleting the current print job.

Syntax: oPrinter.KillDoc

Line
Outputs a line, a box outline, or a filled box.

Syntax: oPrinter.Line [Step] (x1, 1) [Step] (x2, y2), [color], [B][F]

NewPage
Adds a page to the Printer object and increments the Page property by 1.
CurrentX and CurrentY are set to 0,0 on the new page.

Syntax: oPrinter.NewPage

PaintPicture
Introduced with VB5, the method is a wrapper for Win32 API BitBlt functions
to allow .bmp, .wmf, .emf, .ico, or .dib images to be transferred from the
Picture property of a form or picture box, and to be manipulated and trans-
ferred onto the Printer object.

Syntax: oPrinter.PaintPicture picture, x1, y1, width1, height1, x2,
y2, width2, height2, opcode
458 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Printer Object and Printers Collection
PSet
Outputs a single pixel of a given color to the Printer object at a given point.

Syntax: oPrinter.PSet [Step] (x, y), [color]

Scale
Sets the coordinate system for the printer object. If no arguments are passed
to the method, the scale mode is reset to twips.

Syntax: oPrinter.Scale [(x1, y1) – (x2, y2)]

ScaleX, ScaleY
Converts the width or height of the Printer object from one scale mode to
another.

Syntax: oPrinter.ScaleX (width, fromscale, toscale)

Syntax: oPrinter.ScaleY (height, fromscale, toscale)

TextHeight
Returns the width in pixels that the given text will take up on the printer
object using the current font settings.

Syntax: oPrinter.TextHeight (string)

TextWidth
Returns the width in pixels that the given text will take up on the printer
object using the current font settings. Due to a bug in the initial release of
VB5, the TextWidth property gave inconsistent results when run within the
VB IDE. This problem was rectified with Service Pack 2.

Syntax: oPrinter.TextWidth (string)

Printers Collection

• The Printers collection represents all printers installed on the current system.
You can iterate through the Printers collection either by ordinal number or by
using the For Each...Next statement. For example:

For i = 0 To Printers.Count - 1
 Debug.Print Printers(i).DeviceName
Next i

For Each oPrinter In Printers
 Debug.Print oPrinter.DeviceName
Next

• You can use the Printers collection to find a specific printer that provides par-
ticular functionality, then assign that printer to the global Printer object using
the Set statement. For example, you may need a printer that handles duplex
printing:

For Each oPrinter In Printers
 If oPrinter.Duplex Then
 Set Printer = oPrinter

 End If
Next

Or

For i = 0 to Printers.Count -1
Printer Object and Printers Collection 459

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 If Printers(i).Duplex Then
 Set Printer = Printers(i)
 End If
Next

• A bug in VB5 prevented you from assigning a printer from the collection to a
locally defined Printer object variable. This was corrected in VB5 Service Pack
1. For example:

Dim oPrinter As Printer
Set oPrinter = Printers(2)

• If you reference a printer using the Collection object, the properties of that
printer are read-only. To access printer properties on a read-write basis, you
have to assign the reference to the Printer object, thereby making it the
default printer.

• The Printers collection has one property, Count, which returns the number of
printers connected to the current machine. Remember, however, that the
Printers collection is 0-based, unlike standard collection objects, which are 1-
based. Therefore, you iterate through the Printers collection from 0 to
Count–1.

• The Printers collection’s Item method is its default method and therefore can
be used implicitly as shown above.

Private Statement

Named Arguments

No

Syntax
Private [WithEvents] varname[([subscripts])] [As [New] _

type] [, [WithEvents] varname[([subscripts])] _
 [As [New] type]] . . .
WithEvents

Use: Optional

Type: Keyword

A keyword that denotes the object variable varname can respond to
events triggered from within the object to which it refers.

varname
Use: Required

Data Type: Any

The name of the variable, following Visual Basic naming conventions.

subscripts
Use: Optional

Data Type: Integer or Long

Denotes varname as an array and specifies the number and extent of
array dimensions.
460 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Private Statement
New
Use: Optional

Type: Keyword

Automatically creates an instance of the object referred to by the object
variable varname.

type
Use: Optional

Data type of the variable varname.

Description

Used at module level to declare a private variable and allocate the relevant storage
space in memory.

Rules at a Glance

• A Private variable’s scope is limited to the module in which it’s created.

• WithEvents is only valid when used to declare an object variable. The With-
Events keyword informs VB that the object being referenced exposes events.
When you declare an object variable using WithEvents, an entry for the
object variable is placed in the code window’s object list, and a list of the
events available to the object variable is placed in its procedures list. You can
then write code in the object variable’s event handlers in the same way that
you write other more common event handlers like Form_Load.

• There is no limit to the number of object variables that can refer to the same
object using the WithEvents keyword; they all respond to that object’s
events. For example:

Private WithEvents adrEmployees As ADODB.Recordset
Private WithEvents adrDepartments As ADODB.Recordset

Private Sub adrDepartments_MoveComplete(_
 ByVal adReason As ADODB.EventReasonEnum, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)
 'code here....
End Sub

Private Sub adrEmployees_MoveComplete(_
 ByVal adReason As ADODB.EventReasonEnum, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)
 'code here....
End Sub

• You can’t create an array variable that uses the WithEvents keyword.

• The New keyword can’t be used in the same object variable declaration as
WithEvents. This is because WithEvents is designed to trap event notifica-
Private Statement 461

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
tions that would ordinarily be inaccessible to a Visual Basic program. Conse-
quently, WithEvents can define only an instance of an existing object.

• The subscripts argument has the following syntax:

[lowerbound To] upperbound [,[lowerbound To] upperbound]

For example:

Private strNames(10)

defines an array of 11 elements (an array whose lower bound is zero, since an
explicit lowerbound value isn’t provided, and whose upper bound is ten).
Similarly:

Private(lngPrices(1 to 10)

defines an array of ten elements whose index values range from 1 through 10.

• Using the subscripts argument, you can declare up to 60 multiple dimen-
sions for the array.

• The lowerbound argument of the subscripts argument is optional; when
not used, the lower bound of the array is specified by the Option Base state-
ment. If Option Base isn’t used, the lower bound of the array is 0.

• If the subscripts argument isn’t used (i.e., the variable name is followed by
empty parentheses), the array is declared dynamic. You can change both the
number of dimensions and number of elements of a dynamic array using the
ReDim statement.

• The New keyword is used only when declaring an object variable and denotes
that a new instance of the object is created when the first reference to the
object is made. Use of the New keyword therefore eliminates the need to use
the Set statement to instantiate the object. For example:

Private oEmployee As Employee
Set oEmployee = New Employee

or:

Private oEmployee As New Employee

• The New keyword can be used only with early bound objects; that is, an
object that has a reference added to the project using the References dialog.

• You can’t use the New keyword to declare variables of any intrinsic data type,
instances of dependent objects, or variables that use the WithEvents argument.

• If you don’t use the New keyword with an object variable, you must use the
Set statement to assign an existing object to the variable before you can use it.

• datatype may be Byte, Boolean, Currency, Date, Double, Integer, Long,
Object, Single, String, Variant, a user-defined type, or an object type.

• If you don’t specify datatype and you haven’t used a DefType statement,
the variable is cast as a Variant.
462 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Private Statement
• The following table shows the values held by each data type when a variable
is first initialized.

• The individual elements of a user-defined type are initialized with the value
corresponding to their data type.

• To declare a fixed-length string, use the syntax:

Private stringvar As String * stringlength

Programming Tips & Gotchas

• All variables created at procedure level are Private by default. That is, they
don’t have scope outside the procedure in which they are created.

• In VBA applications, the WithEvents keyword is valid only in class mod-
ules. However, standalone versions of VB allow the use of WithEvents in
class, form, and other object modules.

• A new type of scope was introduced in Visual Basic 5.0. The Friend scope is
halfway between Public and Private. It’s useful in situations where Pri-
vate is too restricting, and Public is too open. For more information, refer
to the Friend statement.

• Note that when you use the New keyword to declare an object variable, the
Initialize event of the object is fired on the first reference to the object, not
when the object variable is declared.

• It’s good programming practice to always use Option Explicit at the begin-
ning of a module to prevent misnamed variables from causing hard-to-find
errors.

• You may have occasion to maintain legacy Visual Basic code that was written
prior to Version 4, when the Private and Public statements came into the
language. In this case, those variables declared in the Declarations section at
the start of a code or form module that aren’t explicitly defined as global are
in fact Private variables.

See Also
Friend Statement, Public Statement, ReDim Statement, Set Statement,
WithEvents Keyword

Data Type Initial Value

Numeric 0

Variable-length string Zero-length string ("")

Fixed-length string Filled with zeros

Variant Empty

Object Nothing

Date Saturday 30 December 1899 12:00:00
Private Statement 463

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Property Get Statement

Named Arguments

No

Syntax
[Public | Private | Friend] [Static] Property Get name _

 [(arglist)] [As type[()]]
 [statements]
 [name = expression]
 [Exit Property]
 [statements]
 [name = expression]
End Property
Public

Use: Optional

Type: Keyword

Gives the property scope through all procedures in all modules in the
project. If used within a createable class module, the property is also
accessible from outside the project. Public, Private, and Friend are
mutually exclusive.

Private
Use: Optional

Type: Keyword

Restricts the scope of the property to those procedures within the same
module. Public, Private, and Friend are mutually exclusive.

Friend
Use: Optional

Type: Keyword

Only valid in a class module, it gives the property scope to all modules
within a project, but not to modules outside the project. Public, Private,
and Friend are mutually exclusive.

Static
Use: Optional

Type: Keyword

Preserves the value of variables declared inside the property between
calls to the property.

name
Use: Required

The name of the property.

arglist
Use: Optional

Data Type: Any
464 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Property Get Statement
A comma-delimited list of variables to be passed to the property as argu-
ments from the calling procedure.

type
Use: Optional

The return data type of the property.

()
Use: Optional

Indicates that the property returns an array. As of VB6, Property Get
procedures can return arrays.

statements
Optional

Program code to be executed within the property.

expression
Optional

Data Type: Any

The value to return from the property to the calling procedure.

arglist has the following syntax:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] _
 [As type] [= defaultvalue]
Optional

Use: Optional

Indicates the argument is optional. An optional argument is one that need
not be supplied when calling the property. However, all arguments
following an optional one must also be optional. A ParamArray argu-
ment can’t be optional.

ByVal
Use: Optional

The argument is passed by value; that is, a local copy of the variable is
assigned the value of the argument.

ByRef
Use: Optional

The argument is passed by reference; that is, the local variable is simply a
reference to the argument being passed. All changes made to the local
variable are reflected in the calling argument. ByRef is the default
method of passing variables.

ParamArray
Use: Optional

Indicates that the argument is an optional array of variants containing an
arbitrary number of elements. It can be used only as the last element of
the argument list, and it can’t be used with the ByRef, ByVal, or
Optional keywords.
Property Get Statement 465

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
varname
Use: Required

The name of the local variable containing either the reference or value of
the argument.

type
Use: Optional

The data type of the argument.

defaultvalue
Use: Optional

For optional arguments, you can specify a constant default value.

Description

Declares the name, arguments, and code for a procedure that reads the value of a
property and returns it to the calling procedure.

Rules at a Glance

• Property procedures are Public by default.

• In VBA applications the Option Private Module statement restricts the
scope of a procedure defined as public to the project in which it was defined.

• The Friend keyword is only valid within class modules. Friend procedures
are accessible to all procedures in all modules and classes within a project,
but aren’t listed in the class library for that project. Therefore, they can’t be
accessed from projects or applications outside the defining application.

• Properties and procedures defined using the Friend keyword can’t be late-
bound.

• The Static keyword only affects variables declared within the Property
Get procedure. If you don’t use the Static keyword, the values of all local
variables are lost between calls.

• Unlike other function and procedure names, the name of the Property Get
procedure doesn’t have to be unique within its class module. Specifically, the
Property Let and Property Set procedures can have the same name as
the Property Get procedure. For example:

Property Let Name(sVal as String)
 msName = sVal
End Property

Property Get Name() as String
 Name = msName
End Property

• The number and data types of the arguments passed to a Property Get
statement must match the corresponding Property Let or Property Set
statement. For example:

Public Property Let MyProperty(sVal As String, iVal As Integer)
 miMyProperty = iVal
End Property
466 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Property Get Statement
Public Property Get MyProperty(sVal As String) As Integer
 MyProperty = miMyProperty
End Property

Both the Property Let and Property Get procedures share a common
argument, sVal. The Property Let procedure has one additional argument,
iVal, which represents the value that is to be assigned to the MyProperty
property. (For details, see the next point.)

• In a Property Let procedure, the last argument defines the data type for the
property. Therefore, the return data type of the Property Get procedure
must match the last argument of any corresponding Property Let or Prop-
erty Set procedure.

• type may be Byte, Boolean, Currency, Date, Double, Integer, Long, Object,
Single, String, Variant, a user-defined type, or an object type.

• Fixed-length strings can’t be used for type.

• From VB6 onward, type can be an array of any type.

• VB6 introduces the concept of remote user-defined types. Before VB6, type
could only be a user-defined type if the property was Private. Now UDTs
can be passed as Public variables or as the return values of Public proper-
ties. However, this requires that either NT Service Pack 4 or the latest
DCOM95 patch has been applied. For details, see Chapter 4.

• If an Exit Property statement is executed, the property procedure exits and
program execution immediately continues with the statement following the
call to the property. Any number of Exit Property statements can appear in
a Property Get procedure.

• If the value of the Property Get procedure has not been explicitly set when
the program execution exits the procedure, its value is the uninitialized value
of the return data type, as shown in the following table:

Programming Tips & Gotchas

• You can create a read-only property by defining a Property Get procedure
without a corresponding Property Let or Property Set procedure.

• You should protect the values of properties by defining a Private variable to
hold the internal property value and control the updating of the property by
outside applications through the Property Let and Property Get state-
ments, as the following template describes:

'Class Module Declarations Section
'private data member only accessable from within

Data Type Initial Value

Numeric 0

Variable-length string Zero-length string ("")

Variant Empty

Object Nothing

Date Saturday 30 December 1899 12:00:00
Property Get Statement 467

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
'this code module
Private miMyProperty As Integer

Public Property Let MyProperty(iVal As Integer)
 'procedure to allow the outside world to
 'change the value of private data member
 miMyProperty = iVal
 '(do not use a Property Let when creating a
 'Read-Only Property)
End Property

Public Property Get MyProperty() As Integer
 'procedure to allow the outside world to
 'read the value of private data member
 MyProperty = miMyProperty
End Property

Otherwise, if the variable used to store a property value is public, its value
can be modified arbitrarily by any application that accesses the class module
containing the property.

See Also
Property Let Statement, Property Set Statement, “Implementing Properties” in
Chapter 4

Property Let Statement

Named Arguments

No

Syntax
[Public | Private | Friend] [Static] Property Let name _
 ([arglist,] value)
 [statements]
 [Exit Property]
 [statements]
End Property
Public

Use: Optional

Type: Keyword

Gives the property scope through all procedures in all modules in the
project. If used within a createable class module, the property procedure
is also accessible from outside the project. Public, Private, and
Friend are mutually exclusive.

Private
Use: Optional

Type: Keyword

Restricts the scope of the property to those procedures within the same
module. Public, Private, and Friend are mutually exclusive.
468 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Property Let Statement
Friend
Use: Optional

Type: Keyword

Only valid within a class module; gives the property scope to all modules
within a project, but not to modules outside the project. Public,
Private, and Friend are mutually exclusive.

Static
Use: Optional

Type: Keyword

Preserves the value of all private variables declared inside the property
between calls to the property.

name
Use: Required

Type: Keyword

The name of the property.

arglist
Use: Required

Data Type: Any

A comma-delimited list of variables to be passed to the property as argu-
ments from the calling procedure.

value
Use: Required

Type: Any

The last (or only) argument in arglist, being a variable containing the
value to be assigned to the property.

statements
Use: Optional

Program code to be executed within the property.

arglist uses the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] [As type] _
 [= defaultvalue]

Optional
Use: Optional

Type: Keyword

An optional argument is one that need not be supplied when calling the
property. However, all arguments following an optional one must also be
optional. A ParamArray argument can’t be optional.

ByVal
Use: Optional

Type: Keyword
Property Let Statement 469

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
The argument is passed by value; that is, a local copy of the variable is
assigned the value of the argument.

ByRef
Use: Optional

Type: Keyword

The argument is passed by reference; that is, the local variable is simply a
reference to the argument being passed. All changes made to the local
variable are reflected in the calling argument when control returns to the
calling procedure. ByRef is the default method of passing variables.

ParamArray
Use: Optional

Type: Keyword

Indicates that the argument is an optional array of variants containing an
arbitrary number of elements. It can be used only as the last element of
the argument list, and it can’t be used with the ByRef, ByVal, or
Optional keywords.

varname
Use: Required

Type: Any

The name of the local variable containing either the reference or value of
the argument.

type
Use: Optional

The data type of the argument.

defaultvalue
Use: Optional

For optional arguments, you can specify a constant default value.

Description

Declares the name, arguments, and code for a procedure which assigns a value to
a property.

Rules at a Glance

• A Property Let statement must contain at least one argument in arglist. If
there is more than one argument, it’s the last one that contains the value to be
assigned to the property.

• The data type of the last argument in arglist must match both the private
data member (at least, it should be defined as Private; see the “Program-
ming Tips & Gotchas” section) that holds the property value and the return
value of the corresponding Property Get procedure, if there is one.

• Property procedures are Public by default.
470 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Property Set Statement
• In VBA applications, the Option Private Module statement restricts the
scope of procedures defined as public to the project in which they were
defined.

• The Friend keyword is only valid within class modules. Friend procedures
are accessible to all procedures in all modules and classes within a project,
but aren’t listed in the type library for that project. Therefore, they can’t be
accessed from projects or applications outside the defining application.

• Properties and procedures defined using the Friend keyword can’t be late
bound.

• The Static keyword affects only variables declared within the Property
Let procedure. If you don’t use the Static keyword, the values of all local
variables are lost between calls.

• Unlike other functions and procedures, the name of the Property Let proce-
dure can be repeated within the same module as the name of the Property
Get and Property Set procedures.

• The number and data types of the arguments passed to a Property Let
statement must match the corresponding Property Get statement. For
details, see the section “Rules at a Glance” in the entry for Property Get.

• If an Exit Property statement is executed, program flow continues with the
statement following the call to the property. Any number of Exit Property
statements can appear in a Property Let procedure.

Programming Tips & Gotchas

You should protect the values of properties by defining a Private variable to
hold the internal property value and control the updating of the property by
outside applications via Property Let and Property Get statements, as
described in the “Programming Tips & Gotchas” section of the Property Get
Statement.

See Also
Property Get Statement, Property Set Statement, the section “Implementing
Properties” in Chapter 4

Property Set Statement

Named Arguments

No

Syntax
[Public | Private | Friend] [Static] Property Set name _
 ([arglist,] reference)
 [statements]
 [Exit Property]
 [statements]
End Property
Property Set Statement 471

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Public
Use: Optional

Type: Keyword

Gives the property scope through all procedures in all modules in the
project. If used within a createable class module, the function is also
accessible from outside the project. Public, Private, and Friend are
mutually exclusive.

Private
Use: Optional

Type: Keyword

Restricts the scope of the property to those procedures in the same
module. Public, Private, and Friend are mutually exclusive.

Friend
Use: Optional

Type: Keyword

Only valid within a class module; gives the property scope to all modules
within a project, but not to modules outside the project. Public,
Private, and Friend are mutually exclusive.

Static
Use: Optional

Type: Keyword

Preserves the value of all private variables declared inside the property
between calls to the property.

name
Use: Required

Type: Any

The name of the property.

arglist
Use: Required

A comma-delimited list of variables to be passed to the property as argu-
ments from the calling procedure.

reference
Use: Required

Type: Object

The last (or only) argument in arglist, which is a variable containing
the object reference to be assigned to the property.

statements
Use: Optional

Program code to be executed within the property.
472 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Property Set Statement
arglist uses the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] _

 [As type] [= defaultvalue]

Optional
Use: Optional

Type: Keyword

An optional argument is one that need not be supplied when calling the
property. However, all arguments following an optional one must also be
optional. A ParamArray argument can’t be optional.

ByVal
Use: Optional

Type: Keyword

The argument is passed by value; that is, a local copy of the variable is
assigned the value of the argument.

ByRef
Use: Optional

Type: Keyword

The argument is passed by reference; that is, the local variable is simply a
reference to the argument being passed. All changes made to the local
variable are reflected in the calling argument when control returns to the
calling procedure. ByRef is the default method of passing variables.

ParamArray
Use: Optional

Type: Keyword

Indicates that the argument is an optional array of variants containing an
arbitrary number of elements. It can be used only as the last element of
the argument list, and it can’t be used with the ByRef, ByVal, or
Optional keywords.

varname
Use: Required

Data Type: Any

The name of the local variable containing either the reference or value of
the argument.

type
Use: Optional

The data type of the argument.

defaultvalue
Use: Optional

For optional arguments, you can specify a constant default value.
Property Set Statement 473

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Description

Declares the name, arguments, and code for a procedure that assigns an object
reference to a property.

Rules at a Glance

• A Property Set statement must contain at least one argument in arglist. If
there is more than one argument, it’s the last one that contains the object ref-
erence to be assigned to the property.

• The data type of the last argument in arglist must match both the private
data member used to hold the property value and the return value of the cor-
responding Property Get procedure, if there is one.

• Property procedures are Public by default.

• In VBA applications, the Option Private Module restricts the scope of pro-
cedures defined as public to the project in which they were defined.

• The Friend keyword is only valid within class modules. Friend procedures
are accessible to all procedures in all modules and classes within a project,
but they aren’t listed in the type library for that project. Therefore, they can’t
be accessed from projects or applications outside the defining application.

• Properties and procedures defined using the Friend keyword can’t be late
bound.

• The Static keyword only affects private variables declared within the Prop-
erty Set procedure. If you don’t use the Static keyword, the values of
local variables are lost between calls.

• Unlike other variables and procedures, the name of a Property Set proce-
dure can be repeated within the same module as the name of a Property
Get procedure.

• The number and data types of the arguments passed to a Property Set state-
ment must match the corresponding Property Get statement. For example:

Public Property Set MyProperty(sVal As String, _
 oVal As myObject)
 Set miMyProperty = oVal
End Property

Public Property Get MyProperty(sVal As String) As myObject
 Set MyProperty = miMyProperty
End Property

• If an Exit Property statement is executed, program execution immediately
continues with the statement following the call to the property. Any number
of Exit Property statements can appear in a Property Set procedure.

Programming Tips & Gotchas

You should protect the values of properties by defining a Private variable to
hold the internal property value and control the updating of the property by
outside applications via Property Let and Property Get statements, as
474 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Public Statement
described in the “Programming Tips & Gotchas” section of the entry for the Prop-
erty Get statement.

See Also
Property Get Statement, Property Let Statement, the section “Implementing
Properties” in Chapter 4

Public Statement

Named Arguments

No

Syntax
Public [WithEvents] varname[([subscripts])] _
 [As [New] type] [, [WithEvents] _

varname[([subscripts])] [As [New] type]] . . .
WithEvents

Use: Optional

Type: Keyword

A keyword that denotes the object variable varname can respond to
events triggered from within the object to which it refers.

varname
Use: Required

Data Type: Any

The name of the variable, which must follow Visual Basic naming
conventions.

subscripts
Use: Optional

Denotes varname as an array and specifies the dimensions and number
of elements of the array.

New
Use: Optional

Type: Keyword

Used to automatically create an instance of the object referred to by the
object variable varname.

type
Use: Optional

Data type of the variable varname.

Description

Used at module level to declare a public variable and allocate the relevant storage
space in memory. A Public variable has both project-level scope—that is, it can
be used by all procedures in all modules in the project—and, when used in a class
module, it can have scope outside the project.
Public Statement 475

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Rules at a Glance

• The behavior of a Public variable depends on where it’s declared, as the fol-
lowing table shows:

• In VBA applications, the Option Private Module statement restricts the
scope of a public variable to the project in which it was defined.

• WithEvents is only valid when used to declare an object variable.

• There is no limit to the number of variables that can refer to the same object
using the WithEvents keyword; they will all respond to that object’s events.

• You can’t create an array variable that uses the WithEvents keyword.

• The New keyword can’t be used in the same object variable declaration as
WithEvents.

• The subscripts argument has the following syntax:

[lowerbound To] upperbound [, _
 [lowerbound To] upperbound]

• Using the subscripts argument, you can declare up to 60 dimensions for
the array.

• The lowerbound argument of the subscripts argument is optional; when
not used, the lower bound of the array is specified by the Option Base state-
ment. If Option Base isn’t present, the lower bound of the array is zero.

• If the subscripts argument isn’t used (i.e., the variable name is followed by
empty parentheses), the array is declared as dynamic. You can change both
the number of dimensions and number of elements of a dynamic array using
the ReDim statement.

• The New keyword denotes that a new instance of the object is created when
the first reference to the object is made. Use of the New keyword therefore
negates the need to use the Set statement.

• You can’t use the New keyword to declare any of the following: variables of
any intrinsic data type (the New keyword is for use with object variables only),
instances of dependent objects (a dependent object is one that can only be
created from a method or property in another object; a dependent object isn’t
publicly createable), a variable that uses the WithEvents argument.

Variable Declared in... Scope

Any procedure Illegal; generates a compile-time error.

Code module
declarations section

Variable is available to all modules within the
project.

Class module
declarations section

Variable is available as a property of the class to
all modules within the project, and to all other
projects referencing the class.

Form module
declarations section

Variable is available as a property of the form to
all modules within the project.
476 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Public Statement
• If you don’t use the New keyword with an object variable, you must use the
Set statement to assign an existing object to the variable before you can use it.

• type may be Byte, Boolean, Currency, Date, Double, Integer, Long, Object,
Single, String, Variant, a user-defined type, or an object type.

• If you don’t specify type, and you haven’t used a DefType statement, the
variable is cast as a Variant.

• The following table shows the values held by each data type when a variable
is first initialized:

• The individual elements of a user-defined type are initialized with the value
corresponding to their data type.

• To declare a fixed-length string, use the syntax:

As String * stringlength

where stringlength is the number of characters to allocate to the string.

• You can’t use the Public statement to declare a fixed-length string variable in
a class module.

Programming Tips & Gotchas

• Instead of declaring a variable as Public within either a form or class mod-
ule, you should create Property Let and Property Get sub procedures that
assign and retrieve the value of a private variable, respectively.

• In VBA applications, WithEvents is valid only in class modules; however,
standalone versions of VB allow the use of WithEvents all object modules.

• A new type of scope has been introduced in Visual Basic 5.0. The Friend
scope is halfway between Public and Private. It’s useful in situations
where Private is too restricting, and Public is too open. For more informa-
tion, refer to the Friend statement.

• You should note that when you use the New keyword, the Initialize event of
the object is fired on the first reference to the object, not when the object
variable is declared.

• It’s good programming practice to always use Option Explicit at the begin-
ning of a module to prevent misnamed variables causing hard-to-find errors.

• You may have occasion to maintain legacy Visual Basic code written prior to
Version 4, when the Private and Public statements came into the lan-
guage. In this case, those variables declared in the Declarations section at the

Data Type Initial Value

Numeric 0

Variable-length string Zero-length string ("")

Fixed-length string Filled with zeros

Variant Empty

Object Nothing

Date Saturday 30 December 1899 12:00:00
Public Statement 477

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
start of a code or form module that carry the prefix keyword Global are simi-
lar to Public variables.

See Also
Friend Statement, Option Private Module Statement, Private Statement, ReDim
Statement, Set Statement

Put Statement

Named Arguments

No

Syntax
Put [#]filenumber, [recnumber], varname
filenumber

Use: Required

Data Type: Integer

Any valid file number.

recnumber
Use: Optional

Data Type: Variant (Long)

Record or byte number to begin the write operation.

varname
Use: Required

The name of the variable containing the data to be written to the file.

Description

Writes data from a program variable to a disk file.

Rules at a Glance

• If filenumber is opened in random access mode, recnumber refers to the
record number; if the file is opened in binary access mode, recnumber refers
to a byte number.

• Both bytes and records in a file are numbered from 1 upward.

• If recnumber is omitted, the next byte or record to be written is placed at the
position immediately after the position pointed to by the last Get or Put state-
ment, or by the last Seek function. To omit recnumber, you must use the
delimiting commas, as the following statement shows:

Put #1,,myVar

• If you have opened the file in random mode, it’s important to ensure that the
record length specified in the Len clause of the Open statement matches the
actual length of the data being written. If the length of the data being written
is less than that specified by the Len clause, the space up to the end of the
record is padded with the current contents of the file buffer—whatever that
478 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
PV Function
may be. If, on the other hand, the actual data length is more than that speci-
fied, an error occurs.

• Certain data types complicate determining the actual data length of a record.
These data types need a secondary data element called a descriptor to inform
VB of either their underlying data type or their physical length. The following
table details the descriptors used in VB:

• If the file was opened in random access mode, you can use the Put state-
ment to write a variant array to disk.

• The Put statement can’t write objects to disk.

• If you open the file in binary mode, the Len clause has no effect. When you
use Put to write data to the disk, the data is written contiguously, and no
padding is placed between records.

• When you write arrays to disk using the Put statement with a file opened in
binary mode, only arrays contained within a user-defined type have the array
descriptor added; all other arrays are written to disk without the descriptor.
Individual array elements, however, may have descriptors, depending on their
data types.

• Similarly, variable-length strings written to a file opened in binary mode are
written without the two-byte descriptor.

Programming Tips & Gotchas

Because of the structured format of data written with the Put statement, it’s
customary to read the data back from the file using the Get statement.

See Also
Get Statement

PV Function

Named Arguments

Yes

Syntax
PV(rate, nper, pmt[, fv [, due]])

Variable Data Type Descriptor

Variable-length string 2 bytes containing length of string

Variant (numeric) 2 bytes identifying VarType

Variant (string) 2 bytes containing length + 2 bytes identifying
vartype

Dynamic array 2 + (8 × number of dimensions)

Any other data types No descriptor

User-defined type Each element treated the same as the individual
data type
PV Function 479

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
rate
Use: Required

Data Type: Double

The interest rate per period.

nper
Use: Required

Data Type: Integer

The number of payment periods in the annuity.

pmt
Use: Required

Data Type: Double

The payment made in each period.

fv
Use: Optional

Data Type: Variant

The future value of the loan or annuity.

type
Use: Optional

Data Type: Variant

Flag specifying whether payments are due at the start or the end of the
period.

Return Value

A Double specifying the present value of an annuity.

Description

Calculates the present value of an annuity (either an investment or loan) based on
a regular number of future payments of a fixed value and a fixed interest rate. The
present value is the current value of a future stream of equal cash flows discounted
at some fixed interest rate.

Rules at a Glance

• The time units used for the number of payment periods, the rate of interest,
and the payment amount must be the same. In other words, if you state the
payment period in months, you must also express the interest rate as a
monthly rate and the amount paid per month.

• The rate per period is stated as a fraction of 100. For example, 10% is stated
as .10. If you are calculating using monthly periods, you must also divide the
rate per period by 12. Therefore, 10% per annum, for example, equates to a
rate per period of .00833.

• The fv argument indicates the future value or cash balance after the last pay-
ment. The default is 0, since that reflects the value of a loan after the final
payment.
480 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
QBColor Function
• Payments made against a loan or added to the value of savings are expressed
as negative numbers.

• The due argument states whether the payment is made at the start of a period
(1) or at the end (0, which is the default value).

Programming Tips & Gotchas

Make sure that nper, rate, and pmt are all reflect values for an identical time
period. For example, if pmt represents a monthly payment, rate should represent
the monthly interest rate, rather than an annual interest rate.

See Also
FV Function

QBColor Function

Named Arguments

No

Syntax
QBColor(color)
color

Use: Required

Data Type: Integer

A whole number between 0–15.

Return Value

A Long integer.

Description

Returns a long integer representing the RGB system color code.

Rules at a Glance

color has the following settings:

Number Color

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Yellow

7 White

8 Gray

9 Light Blue
QBColor Function 481

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

• The RGB function allows much more flexibility than the older QBColor func-
tion, which is a remnant of QBasic.

• Visual Basic now contains a wide range of intrinsic color constants that can
assign colors directly to color properties of objects.

See Also
RGB Function

RaiseEvent Statement

Named Arguments

No

Syntax
RaiseEvent eventName [arglist]
eventName

Use: Required

Data Type: String

The name of the event.

arglist
Use: Optional

Data Type: Any (defined by the Event statement)

A comma-delimited list of variables.

Description

Generates a predefined custom event within any procedure of an object module.

Rules at a Glance

• eventName must already be defined in the Declarations section of the mod-
ule using the Event statement.

• arglist must match the number and data type of parameters defined in the
Event statement.

• The RaiseEvent and Event statements can be used only in object mod-
ules—i.e., in form and class modules—and not in code modules.

10 Light Green

11 Light Cyan

12 Light Red

13 Light Magenta

14 Light Yellow

15 Bright White

Number Color
482 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Randomize Statement
Example

The following snippet demonstrates how you can use an event to communicate a
status message back to the client application, and at the same time use a ByRef
argument to trap a user response in the client application. This gets around the
fact that events can’t return values. To take advantage of this functionality, the
client must declare a reference to this class using the WithEvents keyword.

Public Event Status(Message As String, _
 ByRef Cancel As Boolean)

Private Function UpdateRecords(iVal As Integer) as Boolean
 Dim blnCancel As Boolean
 ...
 If iVal > 1000 Then
 RaiseEvent Status "Is value too high?", blnCancel
 If blnCancel Then
 Exit Function
 End If
 End If
 ...
End Function

Programming Tips & Gotchas

• To allow the client application to handle the event being fired, the object vari-
able must be declared using the WithEvents keyword.

• VB custom events don’t return a value; however, you can use a ByRef argu-
ment in arglist to simulate a return value, as shown in the above example.

• RaiseEvent is not asynchronous. In other words, when you call the Raise-
Event statement in your class code, your class code won’t continue execut-
ing until the event has been either handled by the client or ignored (if the cli-
ent isn’t handling the events raised by the class). This can have undesirable
side effects, and you should bear in mind when planning your application.
For example, you may have a recordset open or a transaction pending and
have to wait for the user to respond to a message dialog at the client. This
could easily turn into a bottleneck adversely affecting the scalability of your
application.

• Events can’t be raised from within a Microsoft Transaction Server context.

• For more information about implementing your own custom events, see the
section “Implementing Custom Events,” in Chapter 4.

See Also
Event Statement, WithEvents Keyword

Randomize Statement

Named Arguments

No
Randomize Statement 483

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Syntax
Randomize [number]
number

Use: Optional

Data Type: Variant

Any valid numeric expression.

Description

Initializes the random number generator.

Rules at a Glance

• Randomize uses number as a new seed value to initialize the random num-
ber generator used by the Rnd function. The seed value is an initial value that
generates a sequence of pseudo-random numbers.

• If you don’t pass number to the Randomize statement, the value of the sys-
tem timer is used as the new seed value.

• Repeatedly passing the same number to Randomize doesn’t cause Rnd to
repeat the same sequence of random numbers.

Programming Tips & Gotchas

If you need to repeat a sequence of random numbers, you should call the Rnd
function with a negative number as an argument immediately prior to using
Randomize with any numeric argument.

See Also
Rnd Function

Rate Function

Named Arguments

Yes

Syntax
Rate(nper, pmt, pv[, fv[, due[, guess]]])
nper

Use: Required

Data Type: Double

The total number of periods in the annuity.

pmt
Use: Required

Data Type: Double

The payment amount per period.

pv
Use: Required
484 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Rate Function
Data Type: Double

The present value of the payments or future receipts.

fv
Use: Optional

Data Type: Variant

The future value or cash balance after the final payment. If omitted, its
value defaults to 0.

due
Use: Optional

Data Type: Variant

A flag indicating whether payments are due at the beginning of the
payment period (a value of 0, the default) or at the end of the payment
period (a value of 1).

guess
Use: Optional

Data Type: Double

An estimate of the value to be returned by the function. If omitted, its
value defaults to .1 (10%).

Return Value

A Double representing the interest rate per period.

Description

Calculates the interest rate for an annuity (a loan or an investment) that consists of
fixed payments over a known duration.

Rules at a Glance

• For pv and fv, cash paid out is expressed as a negative number; cash
received is expressed as a positive number.

• The function works using iteration. Starting with guess, Rate cycles through
the calculation until the result is accurate to within 0.00001 percent. If a result
can’t be found after 20 tries, the function fails.

Programming Tips & Gotchas

• In the case of a loan, pv is the loan amount. In the case of an investment, pv
is the beginning balance.

• In the case of a loan, fv is typically 0, reflecting that the entire loan has been
paid. In the case of an investment, fv is the value of the investment with
interest at the end of the investment period.

• If the function fails because it couldn’t calculate an accurate interest rate in 20
iterations, try a different value for guess.

• The value returned by the function rate is the interest rate for the same time
period as payments were made. Typically, this is one month, in which case
you must multiply by 12 to derive the annual percentage rate.
Rate Function 485

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
See Also
IPmt Function, NPer Function, Pmt Function, PPmt Function

ReDim Statement

Named Arguments

No

Syntax
ReDim [Preserve] varname(subscripts) [As type] _
 [, varname(subscripts) [As type]] . . .
Preserve

Use: Optional

Type: Keyword

Preserves the data within an array when changing the only or last
dimension.

varname
Use: Required

Data Type: Any

Name of the variable.

subscripts
Use: Required

Number of elements and dimensions of the array, using the syntax:

 [lower To] upper [,[lower To] upper] . . .
type

Use: Optional

Data type of the array.

Description

Used within a procedure to resize and reallocate storage space for a dynamic
array.

Rules at a Glance

• A dynamic array is created using a Private, Public, or Dim statement with
empty parentheses. Only dynamic arrays created in this manner can be
resized using the ReDim statement. There is no limit to the number of times
you can redimension a dynamic array.

• Use of the Preserve keyword allows you to retain the current values within
the array, but it also places several limitations on how the Redim statement
can be used:

– The data subtype of elements of an array held within a variant can’t be
changed.

– Only the last dimension of an array can be resized.
486 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
ReDim Statement
– The number of dimensions can’t be changed.

– Only the upper bound of the array can be changed.

• If you reduce either the number of elements of the array or the number of
dimensions in the array, data in the removed elements is permanently lost,
irrespective of the use of the Preserve keyword.

• If the lower argument isn’t used within the subscripts syntax, the lower
bound of the dimension is determined by the Option Base statement. If
Option Base isn’t used, the lower bound defaults to zero.

• type may be Byte, Boolean, Currency, Date, Double, Integer, Long, Object,
Single, String, Variant, a user-defined type, or an object type.

• When the array is held within a variant, type refers to the underlying data
subtype of the elements.

• The following table shows the values held by each data type when an array is
initialized.

Programming Tips & Gotchas

• Microsoft’s documentation for ReDim states that if the array has been passed
by reference to a procedure, you can’t redimension it within the procedure
and return the modified array to the calling procedure. This doesn’t appear to
be the case, as the following example shows:

Private Sub Command1_Click()

 Dim strArray() As String
 Dim strElement As String
 Dim intCtr As Integer

 ReDim strArray(9)

 For intCtr = 0 To UBound(strArray)
 strArray(intCtr) = "Original element"
 Next

 Call ExpandArray(strArray)

 For intCtr = 0 To UBound(strArray)
 Debug.Print strArray(intCtr)
 Next

Data Type Initial Value

Numeric 0

Variable-length string Zero-length string ("")

Fixed-length string Filled with zeros

Variant Empty

Object Nothing

Date Saturday 30 December 1899 12:00:00
ReDim Statement 487

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
End Sub

Private Sub ExpandArray(ByRef arrDynamic() As String)

 Dim intBound As Integer, intCtr As Integer

 intBound = UBound(arrDynamic)

 ReDim Preserve arrDynamic(UBound(arrDynamic) * 2)

 For intCtr = intBound + 1 To UBound(arrDynamic)
 arrDynamic(intCtr) = "New element"
 Next

End Sub

When you run this example, both the original elements and new elements are
printed to the immediate window, proving that in fact the array was success-
fully expanded in the ExpandArray procedure.

• It’s possible to create a new dynamic array within a procedure using the
ReDim statement if the array to which it refers doesn’t already exist at either
module or level. Typically, this results from an error of omission; the pro-
grammer forgets to explicitly define the array using Dim, Public, or Pri-
vate. Since this method of creating an array can cause conflicts if a variable
or array of the same name is subsequently defined explicitly, ReDim should
be used only to redimension an existing array, not to define a new one.

• An array contained within a variant can only be resized if the variable has
been explicitly declared as a variant.

See Also
Dim Statement, Private Statement, Public Statement

Rem Statement

Syntax
Rem comment
' comment
comment

Use: Optional

A textual comment to place within the code.

Description

Use the Rem statement or an apostrophe (') to place remarks within the code.

Rules at a Glance

• Text or code commented out using either the Rem statement or an apostro-
phe isn’t compiled into the final program and therefore doesn’t add to the size
of the executable.
488 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Replace Function (VB6)
• If you use the Rem statement on the same line as program code, a colon is
required after the program code and before the Rem statement. For example:

Set objDoc = MyApp.MyObj : Rem Define the object
 Rem reference

This isn’t necessary when using the now more common apostrophe:

Set objDoc = MyApp.MyObj ' Define the object reference

• Apostrophes held within quotation marks aren’t treated as comment markers,
as this code snippet shows:

myVar = "'Something'"

Programming Tips & Gotchas

• The VB and VBA development environments contain block comment and
block uncomment buttons on the Edit toolbar, which allow you to comment
out or uncomment a selection of many rows of code at once.

• You can also use the line continuation character (_) with comments, as this
snippet shows:

'this is _
a comment _
on more than one line

Replace Function (VB6)

Named Arguments

No

Syntax
Replace(string, stringToReplace, replacementString [, _

start[, count[, compare]]])
string

Use: Required

Data Type: String

The complete string containing the substring to be replaced.

stringToReplace
Use: Required

Data Type: String

The substring to be found by the function.

replacementString
Use: Required

Data Type: String

The new substring to replace stringToReplace in string.

start
Use: Optional
Replace Function (VB6) 489

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Data Type: Long

The character position in string at which the search for stringToRe-
place begins.

count
Use: Optional

Data Type: Long

The number of instances of stringToReplace to replace.

compare
Use: Optional

Data Type: VbCompareMethod constant

The method that compares stringToReplace with string; its value
can be vbBinaryCompare, vbTextCompare, or vbDatabaseCompare.

Return Value

The return value from Replace depends on the parameters you specify in the argu-
ment list, as the following table shows:

Description

Replaces a given number of instances of a specified substring in another string.

Rules at a Glance

• If start is omitted, the search begins at the start of the string.

• If count is omitted, all instances of the substring after start are replaced.

• vbBinaryCompare is case sensitive; that is, Replace matches both character
and case, whereas vbTextCompare is case insensitive, matching only charac-
ter, regardless of case.

• The default value for compare is vbBinaryCompare.

• start not only specifies where the search for stringToReplace begins, but
also where the new string returned by the Replace function commences.

Programming Tips & Gotchas

• If count isn’t used, be careful when replacing short strings that may form
parts of unrelated words. For example, consider the following:

If Return Value

string = "" Zero-length string ("")

string is Null An error

StringToReplace = "" Copy of string

replacementString = "" Copy of string with all instances of string-
ToReplace removed

start > Len(string) Zero-length string ("")

count = 0 Copy of string
490 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Reset Statement
Dim sString
sString = "You have to be careful when you do this " _
 & "or you could ruin your string"
Debug.Print Replace(sString, "you", "we")

Because we don’t specify a value for count, the call to Replace replaces every
occurrence of “you” in the original string with “we.” But the fourth occur-
rence of “you” is part of the word “your,” which is modified to become “wer.”

• You must also be aware that if start is greater than 1, the returned string
starts at that character, and not at the first character of the original string, as
you might expect. For example, given the statements:

sOld = "This string checks the Replace function"
sNew = Replace(sOld, "check", "test", 5, _
 vbTextCompare)

sNew will contain the value

"string tests the Replace function"

• You can use the Mid function on the left side of an argument to replace a
part of string, but to replace more than one instance of a substring requires a
complicated Do While loop that constantly checks for the position of any
remaining instances of the substring to be replaced.

See Also
Mid Function

Reset Statement

Syntax
Reset

Description

Closes all currently open files.

Rules at a Glance

• Reset only closes those files that were opened using the Open statement.

• The contents of any current file buffers are written to disk by the Reset state-
ment immediately prior to Reset, thereby closing the respective files.

Programming Tips & Gotchas

The Reset statement should be used only as a last resort to clean up if your
program is terminating abnormally. Normally, you should write code to close each
open file using the Close statement.

See Also
Close Statement, Open Statement
Reset Statement 491

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Resume Statement

Syntax
Resume
Resume Next
Resume label

Description

Used to continue program execution when an error-handling routine is complete.

Rules at a Glance

Programming Tips & Gotchas

• You can only use the Resume statement in an error-handling routine; other-
wise, a runtime error is generated.

• An error-handling routine doesn’t necessarily have to contain a Resume state-
ment. If the error-handling routine is at the end of the procedure, and the
result of the error handling would be to exit the procedure, you can simply
allow the program to execute the End Sub or End Function statement. This
has the effect of both resetting the Err object and exiting the procedure. This
is shown in the following simple snippet:

Private Sub DoSomething()

 On Error GoTo DoSomething_Err
 ...
DoSomething_Err:
 MsgBox Err.Description

Statement Description

Resume • If the error-handling routine is in the same procedure as
the statement that caused the error, program execution
continues with the statement that caused the error.

• If the error occurred in an external procedure called by the
procedure containing the error handler, program execu-
tion continues with the statement in the procedure
containing the error handler that last called the external
procedure.

Resume Next • If the error-handling routine is in the same procedure as
the statement that caused the error, program execution
continues with the statement following the statement that
caused the error.

• If the error occurred in an external procedure called by the
procedure containing the error handler, program execu-
tion continues with the statement in the procedure
containing the error handler immediately following the
statement that last called the external procedure.

Resume label • label must be in the same procedure as the error handler.
• Program execution continues at the specified label.
492 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
RGB Function
End Sub

See Also
On Error Statement

Return Statement

Syntax
GoSub label
...
label

Return
label

Use: Required

A subroutine label within a procedure.

Description

Branches back to a calling GoSub statement after executing a subroutine within a
procedure.

Rules at a Glance

• A subroutine can include an number of Return statements.

• Return branches back to the statement immediately following the last exe-
cuted GoSub statement in the current subroutine.

• A GoSub statement and the subroutine it calls must reside within the same
procedure.

Programming Tips & Gotchas

The Return statement is only included in this book for completeness, should you
have to maintain legacy code; otherwise, you shouldn’t be writing new code using
the GoSub...Return statements, since it tends to create “spaghetti” code that is
very difficult to read and to maintain. Code should be rewritten using separate
procedures.

See Also
GoSub Statement

RGB Function

Named Arguments

Yes

Syntax
RGB(red, green, blue)
red

Use: Required
RGB Function 493

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Data Type: Variant (Integer)

A number between 0 and 255, inclusive.

green
Use: Required

Data Type: Variant (Integer)

A number between 0 and 255, inclusive.

blue
Use: Required

Data type: Variant (Integer)

A number between 0 and 255, inclusive.

Return Value

A long integer representing the RGB color value.

Description

Returns a system color code that can be assigned to object color properties.

Rules at a Glance

• The RGB color value represents the relative intensity of the red, green, and
blue components of a pixel that produces a specific color on the display.

• The RGB function assumes any argument greater than 255 is 255.

• The following table demonstrates how the individual color values combine to
create certain colors:

Programming Tips & Gotchas

• The RGB value is derived with the following formula:

RGB = red + (green * 256) + (blue * 65536)

In other words, the individual color components are stored in the opposite
order one would expect. VB stores the red color component in the low-order
byte of the long integer’s low-order word, the green color in the high-order
byte of the low-order word, and the blue color in the low-order byte of the
high-order word.

• Visual Basic now contains a wide range of intrinsic color constants that can
assign color values directly to color properties of objects.

Color Red Green Blue

Black 0 0 0

Blue 0 0 255

Green 0 255 0

Red 255 0 0

White 255 255 255
494 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Right, Right$, RightB, RightB$ Functions
See Also
QBColor Function

Right, Right$, RightB, RightB$ Functions

Named Arguments

Yes

Syntax
Right(string, length)
string

Use: Required

Data Type: String

The string to be processed.

length
Use: Required

Data Type: Variant (Long)

The number of characters to return from the right of the string.

Return Value

A string or variant of subtype String.

Description

Returns a string containing the rightmost length characters of string.

Rules at a Glance

• If length is 0, a zero-length string ("") is returned.

• If length is greater than the length of string, string is returned.

• If length is less than zero or is Null, an error is generated.

• If string contains a Null, Right returns Null.

Example

The following function assumes it’s passed either a filename or a complete path
and filename, and returns the filename from the end of the string:

Private Function ParseFileName(strFullPath As String)

Dim lngPos As Long, lngStart As Long
Dim strFilename As String

lngStart = 1
Do
 lngPos = InStr(lngStart, strFullPath, "\")
 If lngPos = 0 Then
 strFilename = Right(strFullPath, Len(strFullPath) -
lngStart + 1)
Right, Right$, RightB, RightB$ Functions 495

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
 Else
 lngStart = lngPos + 1
 End If
Loop While lngPos > 0

ParseFileName = strFilename

End Function

Programming Tips & Gotchas

• Use the Len function to determine the total length of string.

• When you use the RightB function with byte data, length specifies the num-
ber of bytes to return.

See Also
Len Function, Left Function

RmDir Statement

Named Arguments

No

Syntax
RmDir path
path

Use: Required

Data Type: String

The path of the folder to be removed.

Description

Removes a folder.

Rules at a Glance

• You may include a drive letter in path; if you don’t specify a drive letter, the
folder is assumed to be on the current drive.

• If the folder contains files or other folders, RmDir will generate runtime error
75, “Path/File access error.”

Example

The following subroutine deletes all the files in a folder and removes its
subfolders. If those contain files or folders, it deletes those too by calling itself
recursively until all child folders and their files are removed.

Private Sub RemoveFolder(ByVal strFolder As String)

Static blnLowerLevel As Boolean ' A recursive call - no
 ' need to prompt user
Dim blnRepeated As Boolean ' Use Dir state info on
496 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
RmDir Statement
 ' repeated calls
Dim strFile As String ' File/Directory contained in
 ' strFolder

' Delete all files
Do
 strFile = Dir(strFolder & "*.*", _
 vbNormal Or vbHidden Or vbSystem)
 If strFile <> "" Then
 If Not blnLowerLevel Then
 If MsgBox("Delete files in directory " & _
 strFolder & "?", _
 vbQuestion Or vbOKCancel, _
 "Confirm File Deletion") _
 = vbCancel Then Exit Sub
 End If
 strFile = strFolder & "\" & strFile
 Kill strFile
 End If
Loop While strFile <> ""
' Delete all directories
Do
 If Not blnRepeated Then
 strFile = Dir(strFolder & "*.*", vbDirectory)
 blnRepeated = True
 Else
 strFile = Dir(, vbDirectory)
 End If
 If strFile <> "" And _
 strFile <> "." And strFile <> ".." Then
 If Not blnLowerLevel Then
 blnLowerLevel = True
 If MsgBox("Delete subdirectories of " & _
 strFolder & "?", _
 vbQuestion Or vbOKCancel, _
 "Confirm Directory Deletion") _
 = vbCancel Then Exit Sub
 End If
 RemoveFolder strFolder & "\" & strFile
 blnRepeated = False
 End If
Loop While strFile <> ""

RmDir strFolder

End Sub

Programming Tips & Gotchas

• Use the Kill statement to delete any remaining files from the folder prior to
removing the folder.

• To remove folders, you can call the Dir function recursively to navigate
downward into a folder’s subfolders. Note that because it saves state informa-
tion between invocations, the documentation incorrectly indicates that the Dir
RmDir Statement 497

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
function can’t be called recursively. The previous example indicates how this
might be done.

• The effects of using Kill and RmDir are irreversible, since these statements
don’t move deleted files to the Recycle Bin.

• Visual Basic Version 6 introduces the File System object model, which con-
tains Folders and Folder objects and gives much greater control and flexibility
that the intrinsic MkDir and RmDir statements. Removing a folder using the
FileSystemObject.DeleteFolder method is similar to deleting a folder using the
Windows Explorer: i.e., all files, subfolders, and their contents are removed.

See Also
MkDir Statement, ChDir Statement, Kill Statement, File System Object Method

Rnd Function

Named Arguments

No

Syntax
Rnd[(seed)]
seed

Use: Optional

Data Type: Single

Any valid numeric expression.

Return Value

A Single data type random number.

Description

Returns a random number.

Rules at a Glance

• The behavior of the Rnd function is determined by seed, as described in this
table:

• The Rnd function always returns a value between 0 and 1.

• If number isn’t supplied, the Rnd function uses the last number generated as
the seed for the next generated number. This means that given an initial seed

number Rnd Generates...

< 0 The same number each time, using seed as the seed
number

> 0 The next random number in the current sequence

0 The most recently generated number

Not supplied The next random number in the current sequence
498 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Round Function (VB6)
(seed), the same sequence is generated if number isn’t supplied on subse-
quent calls.

Example

The following example uses the Randomize statement along with the Rnd func-
tion to fill 100 cells of an Excel worksheet with random numbers.

Public Sub GenerateRandomNumbers()

Dim objSheet As Worksheet
Dim intRow As Integer, intCol As Integer

Set objSheet = Application.ActiveWorkbook.ActiveSheet
Randomize
' Set the color of the input text to blue
objSheet.Cells.Font.ColorIndex = 5
' Loop through first 10 rows & columns,
' filling them with random numbers
For intRow = 1 To 10
 For intCol = 1 To 10
 objSheet.Cells(intRow, intCol).Value = Rnd
 Next
Next
' Resize columns to accommodate random numbers
objSheet.Columns("A:C").AutoFit
Set objSheet = Nothing

End Sub

Programming Tips & Gotchas

• Before calling the Rnd function, you should use the Randomize statement to
initialize the random number generator.

• The standard formula for producing numbers in a given range is as follows:

Int((highest - lowest + 1) * Rnd + lowest)

where lowest is the lowest required number in the range, and highest is
the highest.

See Also
Randomize Statement

Round Function (VB6)

Syntax
Round(expression[, numdecimalplaces])
expression

Use: Required

Data Type: Numeric Expression

Any numeric expression.
Round Function (VB6) 499

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
numdecimalplaces
Use: Optional

Data Type: Long

The number of places to include after the decimal point.

Return Value

The same data type as expression.

Description

Rounds a given number to a specified number of decimal places.

Rules at a Glance

• numdecimalplaces can be any whole number between 0 and 16.

• Round follows standard rules for rounding. That is, if the digit in the position
to the right of numdecimalplaces is 6 or greater, the digit in the numdeci-
malplaces position is incremented by 1; if 5, it becomes the nearest even
number; otherwise, the digits to the right of numdecimalplaces are dropped.

Programming Tips & Gotchas

• Round with a numdecimalplaces set to 2 is equivalent to Format (expres-
sion, "#.##").

• If expression is a string representation of a numeric value, Round converts
it to a numeric value before rounding. However, if expression isn’t a string
representation of a number, Round generates runtime error 13, “Type mis-
match.” The IsNumeric function insures that expression is a proper numeric
representation before calling Round.

• If expression contains fewer decimal places than numdecimalplaces,
Round doesn’t pad the return value with trailing zeros.

See Also
Fix Function, Int Function

RSet Statement

Syntax
RSet stringvar = string
stringvar

Use: Required

Data Type: String

The name of a string variable to receive string.

string
Use: Required

Data Type: String

A string expression to be copied into stringvar.
500 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
RTrim, RTrim$ Functions
Description

Copies string into stringvar, right-aligning string within stringvar.

Rules at a Glance

• RSet has meaning only when dealing within fixed-length strings.

• If the length of string is less than that of stringvar, the extra characters
within stringvar are padded with spaces.

• If the length of string is greater than that of stringvar, string is trun-
cated to the length of stringvar.

Programming Tips & Gotchas

• RSet can’t be used with user-defined types.

• RSet overwrites the entire contents of stringvar. The last len(string)
characters are overwritten by the value of string, while the remaining char-
acters are replaced with spaces.

See Also
LSet Statement

RTrim, RTrim$ Functions

Named Arguments

No

Syntax
RTrim(stringexp)
stringexp

Use: Required

Data Type: String

A valid string expression.

Return Value

RTrim returns a variant of subtype String; RTrim$ returns a string.

Description

Remove any trailing spaces from stringexp.

Rules at a Glance

• If stringexp contains a Null, RTrim returns Null.

• RTrim returns a variant of subtype String.

• RTrim$ returns a String data type.
RTrim, RTrim$ Functions 501

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

Unless you need to keep leading spaces, you should use the Trim function, which
is the equivalent of RTrim(LTrim(string)), thereby clearing both leading and
trailing spaces in a single function call.

See Also
LTrim Function, Trim Function

SaveSetting Statement

Named Arguments

Yes

Syntax
SaveSetting appname, section, key, setting
appname

Use: Required

Data Type: String

The name of the application.

section
Use: Required

Data Type: String

The name of the registry key.

key
Use: Required

Data Type: String

The name of the value entry whose value is to be saved.

setting
Use: Required

Data Type: String or numeric

The value to save.

Description

Creates or saves an entry for a VB application in the Windows registry.

Rules at a Glance

• If either the appname or section subkeys isn’t found in the registry, it’s auto-
matically created.

• The function writes a value to a subkey of the KEY_CURRENT_USER\Soft-
ware\VB and VBA Program Settings key of the registry.

• section need not be an immediate subkey of appname; instead, section
can be a fully qualified path to a nested subkey, with each subkey separated
from its parent by a backslash. For example, a value of Settings\Coordi-
502 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Second Function
nates for the section argument indicates that the value is to be retrieved
from HKEY_CURRENT_USER\Software\VB and VBA Program Settings\
appname\Settings\Coordinates.

• Visual Basic writes setting to the registry as a string (REG_SZ) value. If set-
ting isn’t a string, VB attempts to coerce it into a string in order to write it.

• If the setting can’t be saved, a runtime error is generated.

Programming Tips & Gotchas

• Use the App object’s EXEName property to pass your application’s name to
the GetSetting function.

• The built-in registry manipulation functions allow you to create professional
32-bit applications that use the registry for holding application-specific data, in
the same way .INI files were used in the 16-bit environment. You can, for
example, store information about the user’s desktop settings (i.e., the size and
position of forms, for example) the last time the program was run.

• Since it writes to the current user’s registry key, SaveSetting should be used
exclusively for storing user settings; it shouldn’t store nonuser information
(i.e., hardware information, system-level information, or application informa-
tion that is independent of the user).

• GetSetting, GetAllSettings, and SaveSetting allow you direct access to only a
limited section of the windows registry, that being a special branch created for
your application (HKEY_CURRENT_USER\Software\VB and VBA Program
Settings\yourappname). You can’t access or change other registry settings
without resorting to the Windows API.

• SaveSetting doesn’t allow you to write to the default value of a registry key.
Attempting to do so produces runtime error 5, “Invalid procedure call or argu-
ment.” This isn’t as great a limitation as it may appear, since GetSetting also
can’t retrieve a default value from a registry key.

• It may seem obvious but has been often overlooked: if a user hasn’t run the
application before, and your application’s initialization doesn’t set up the reg-
istry structure for the application, the key values won’t be there.

• The above point is particularly apt when running your application on Win-
dows NT and Windows 95 in a multiuser environment, since Microsoft chose
to use the HKEY_CURRENT_USER branch of the registry to store entries for VB
and VBA applications. This means that your application can be running swim-
mingly for one user, but when another user logs onto the machine, the regis-
try settings aren’t available.

See Also
DeleteSetting Statement, GetSetting Function, GetAllSettings Function

Second Function

Named Arguments

No
Second Function 503

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Syntax
Second(time)
time

Use: Required

Data Type: Variant

Any valid expression that can represent a time value.

Return Value

A Variant of subtype Integer in the range 0 to 59.

Description

Extracts the seconds from a given time expression.

Rules at a Glance

If the time expression time is Null, the Second function returns Null.

See Also
Hour Function, Minute Function

Seek Function

Named Arguments

No

Syntax
Seek(filenumber)
filenumber

Use: Required

Data Type: Integer

Any valid file number.

Return Value

A Long integer indicating the current read/write position.

Description

Returns the current position of the read and write marker in the open file
filenumber.

Rules at a Glance

• The Seek function returns a whole number in the range 1 to 2,147,483,647.

• If filenumber was opened in random mode, the number returned by the
Seek function refers to the next record to be written or read.

• In all other file open modes (append, binary, input, and output), the number
returned by the Seek function is the byte position at which the next read or
write operation occurs.
504 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Seek Statement
See Also
Get Statement, Open Statement, Print# Statement, Put Statement, Write#
Statement

Seek Statement

Syntax
Seek [#]filenumber, position
filenumber

Use: Required

Data Type: Integer

Any valid file number.

position
Use: Required

Data Type: Long Integer

Any whole number between 1 and 2,147,483,647.

Description

Places the read/write marker at a given position where the next read/write opera-
tion should occur.

Rules at a Glance

• If the file has been opened in random mode, position refers to the next
record number that should be read or written.

• In all other file open modes (append, binary, input, and output), position is
the byte where the next read or write operation will start.

• The use of a record number in any subsequent Get or Put statement over-
rides the position set by the Seek method.

• The size of a file can be increased as the result of a write operation that is
performed after a Seek statement in which position is beyond the end of
the file.

• If position is 0 or negative, a runtime error is generated.

Programming Tips & Gotchas

Unused records in a random access data file aren’t necessarily blank. For example,
if you open a brand new data file, then perform a seek operation to record 10 and
write a new record, the preceding nine records are filled with binary data that was
present on the section of the disk used by the new file prior to its creation.

See Also
Get Statement, Open Statement, Print# Statement, Put Statement, Write#
Statement
Seek Statement 505

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Select Case Statement

Syntax
Select Case testexpression
 [Case expressionlist-n
 [statements-n]] ...
 [Case Else
 [elsestatements]]
End Select
testexpression

Use: Required

Data Type: Any

Any numeric or string expression whose value determines which block of
code is executed.

expressionlist-n
Use: Required

Data Type: Any

Comma-delimited list of expressions to compare values with
testexpression.

statements-n
Use: Optional

Program statements to execute if a match is found between any section
of expressionlist and testexpression.

elsestatements
Use: Optional

Program statements to execute if a match between testexpression and
any expressionlist can’t be found.

expressionlist can use any (or a combination of any) of the following:

Description

Allows for conditional execution of a block of code, typically out of three or more
code blocks, based on some condition. Use the Select Case statement as an
alternative to complex nested If...Then...Else statements.

expressionlist Syntax Examples

expression iVar - iAnotherVar
iVar

expression To expression 5 To 10
8 To 11, 13 to 15
"A" To "D"

Is comparisonoperator expression Is = 10
506 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Select Case Statement
Rules at a Glance

• Any number of Case clauses can be included in the Select Case statement.

• If a match between testexpression and any part of expressionlist is
found, the program statements following the matched expressionlist are
executed. When program execution encounters the next Case clause or the
End Select clause, execution continues with the statement immediately fol-
lowing the End Select clause.

• If used, the Case Else clause must be the last Case clause. Program execu-
tion encounters the Case Else clause—and thereby executes, the els-
estatements—only if all other expressionlist comparisons fail.

• Use the To keyword to specify a range of values. The lower value must pre-
cede the To clause, and the higher value follow it. Failure to do this doesn’t
generate a syntax error; instead, it causes the comparison of the expression
with testexpression to always fail, so that program execution falls through
to the Case Else code block, if one is present.

• The Is keyword precedes any comparison operators.

• Select Case statements can also be nested, resulting in a successful match
between testexpression and expressionlist being another Select
Case statement.

Example

The following example uses Select Case to implement the click event handler
for a menu control array—that is, several menu options with the same name and
different index numbers.

Private Sub mnuOption_Click(Index As Integer)

Select Case Index
 Case Is = 0
 Call ShowAddNewForm
 Case Is = 1
 Call ShowEditForm
 Case Is = 2
 Call ShowDeleteForm
 Case Else
 MsgBox "Not a valid menu option"
End Select

End Sub

Programming Tips & Gotchas

• The Select Case statement is the VB equivalent of the Switch construct
found in C and C++.

• The Case Else clause is optional. However, as with If...Then...Else
statements, it’s often good practice to provide a Case Else to catch the
exceptional instance where—perhaps unexpectedly—a match can’t be found
in any of the expressionlists you have provided.
Select Case Statement 507

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• The To clause can specify ranges of character strings. However, it’s often diffi-
cult to predict the thousands of possible combinations of valid characters
between two words that are successfully matched by Select Case.

• The Is keyword used in the Select Case statement isn’t the same as the Is
comparison operator.

• Multiple conditions in a single Case statement are evaluated separately, not
together; that is, they are connected with a logical OR, not a logical AND. For
example, the statement

Case Is > 20, Is < 40

evaluates to True whenever the value of testexpression is greater than 20.
In this case, the second comparison is never evaluated; it’s evaluated only when
testexpression is under 20. This suggests that if you use anything other than
the most straightforward conditions, you should test them thoroughly.

See Also
If...Then Statement

SendKeys Statement

Named Arguments

Yes

Syntax
SendKeys string[, wait]
string

Use: Required

Data Type: String

The keystrokes to send.

wait
Use: Optional

Data Type: Boolean

Expression evaluating to True or False denoting the wait mode.

Description

Programmatically simulates specified keys being typed at the keyboard.

Rules at a Glance

• SendKeys sends its keystrokes to the application and application window that
has the focus.

• One or more characters represent each key.

• The default setting for wait is False. Setting wait to True informs the appli-
cation to wait until the keystrokes have been processed before passing con-
trol back to the current procedure. A False setting returns control back to the
current procedure as soon as the keys are sent.
508 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
SendKeys Statement
• To send normal alphabetical or numeric characters, simply use the character
or characters enclosed in quotation marks. For example, “SOME Text 123”.

• The following characters represent special keys or have special meaning
within the SendKeys string:

To use these characters literally, you must surround the character with braces.
For example, to specify the percentage key, use {%}.

• Preceding a string with the special characters described in the table above
allows you to send a keystroke combination beginning with Shift, Ctrl, or Alt.
For example, to specify Ctrl followed by M, use ^M.

• If you need to specify that the Shift, Ctrl, or Alt key is held down while
another key is pressed, you should enclose the key or keys in parentheses
and precede the parentheses with the special character code. For example to
specify the M key being pressed while holding down the Alt key use %(M).

• The following table describes how to specify nondisplaying (action) charac-
ters in the SendKeys string:

Character Special Key Representation

+ Shift

^ Ctrl

% Alt

~ Enter

[] May be used by Dynamic Data Exchange (DDE)

Key Code

Back Space {Backspace}, {Bs}, or {Bksp}

Break {Break}

Caps Lock {CapsLock}

Del or Delete {Del} or {Delete}

Down arrow {Down}

End {End}

Enter {Enter} or ~

Esc {Esc}

Help {Help}

Home {Home}

Ins or Insert {Ins} or {Insert}

Left arrow {Left}

Num Lock {Numlock}

Page Down {Pgdn}

Page Up {Pgup}

Right arrow {Right}

Scroll Lock {Scrolllock}

Tab {Tab}
SendKeys Statement 509

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• Special formatting syntax allows you to specify a key being repeatedly
pressed. The syntax is:

{key numberoftimes}

For example, "{M 3}" represents pressing the M key three times.

Example

The following program launches Notepad, loads a text file whose name is passed
as a parameter, gives the focus to Notepad, then uses its File Exit menu option to
close the application:

Private Sub LaunchNotepad(strFN As String)

Dim lngTaskID As Long
Dim strCmdLine As String

strCmdLine = "C:\windows\notepad.exe " & strFN
lngTaskID = Shell(strCmdLine, vbNormalNoFocus)
' timing delay
DelayLoop 100000

AppActivate lngTaskID, False
DoEvents
' timing delay
DelayLoop 100000

SendKeys "%Fx", False

End Sub

Up arrow {Up}

F1 {F1}

F2 {F2}

F3 {F3}

F4 {F4}

F5 {F5}

F6 {F6}

F7 {F7}

F8 {F8}

F9 {F9}

F10 {F10}

F11 {F11}

F12 {F12}

F13 {F13}

F14 {F14}

F15 {F15}

F16 {F16}

Key Code
510 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
SendKeys Statement
Programming Tips & Gotchas

• SendKeys works directly only with applications designed to run in Microsoft
Windows. To send keystrokes to an MS-DOS application or to the console
window, you must use the Clipboard as an intermediary. For example, the fol-
lowing subroutine uses the Clipboard and SendKeys to launch a command or
program from the DOS window:

Private Sub RunDOSCommand(strCmd As String)

Dim lngCtr As Long

Shell "Command.com", vbNormalNoFocus
Clipboard.Clear
Clipboard.SetText strCmd & Chr(13)
AppActivate "MS-DOS Prompt", False
SendKeys "% ep", True
For lngCtr = 0 To 700000
Next

SendKeys "% c", True

AppActivate Me.Name

End Sub

• You may find that some keys or key combinations can’t be sent successfully. For
example, you can’t use SendKeys to send the Print Screen key to any applica-
tion. And you can’t send the Alt-Tab keys (%{Tab}) under Windows 9x.

• Typically, SendKeys is used as a “convenience” feature to send an occasional
keystroke to its application or to another application. It can also add a key-
stroke macro capability to an application. In some cases, it’s used for remotely
controlling an application. In this latter case, SendKeys is often combined
with the Shell function to start an instance of another application and with the
AppActivate statement to give it the focus before SendKeys is used; the pre-
vious example illustrates this.

• It’s worthwhile mentioning the difficulties of using SendKeys as a method for
controlling a program remotely. Windows is an event-driven operating sys-
tem. Direct consequences of this are that the order of events is controlled pri-
marily by the user, and the precise order of events is difficult or even
impossible to anticipate in advance. Remote control of an application using
SendKeys, however, typically makes a number of assumptions about that
application, the most basic of which is that it has the focus when SendKeys is
called. Given that SendKeys doesn’t offer close control over a remote applica-
tion in the same way that, for instance, OLE automation does, the event-
driven character of Windows can easily intervene to invalidate those assump-
tions. This makes SendKeys a less than optimal tool for remotely controlling
an application.
SendKeys Statement 511

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Set Statement

Named Arguments

No

Syntax
Set objectvar = {[New] objectexpression | Nothing}
objectvar

Use: Required

Data Type: Object

The name of the object variable or property.

New
Use: Optional

Type: Keyword

Creates a new instance of the object.

objectexpression
Use: Required

Data Type: Object

An expression evaluating to an object.

Nothing
Use: Optional

Type: Keyword

Assigns the special data type Nothing to objectvar, thereby releasing
the reference to the object.

Description

Assigns an object reference to a variable or property.

When using Dim, Private, Public, ReDim, or Static to declare an object vari-
able, the variable is assigned a value of Nothing unless the New keyword is used
in the statement. The Set statement is then required to assign a reference to an
instance of the object referred to in the declarative statement.

Rules at a Glance

• Before the Set statement is used, objectvar must have been declared either
as a generic object data type or (preferably) using the same object type as
objectexpression. For example:

Dim objVar As Object
Dim objExcel As Excel.Application

Set objVar = Word.Application
Set objExcel = Excel.Application

• objectvar doesn’t hold a copy of the underlying object; it simply holds a
reference to the object.
512 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Set Statement
• If the New keyword is used, a new instance of the class is immediately cre-
ated. This fires that class’s Initialize event.

• The New keyword can’t be used with intrinsic data types or dependent
objects; in other words, objects and classes must be createable.

• If objectvar holds a reference to an object when the Set statement is exe-
cuted, the current reference is released and the new one referred to in
objectexpression is assigned.

• objectexpression can be any of the following:

– The name of an object.

– A variable that has been previously declared and instantiated using the
Set statement and that refers to the same type of object.

– A call to a function, method, or property that returns the same type of
object.

• By assigning Nothing to objectvar, the reference held by objectvar to the
object is released.

Example

The following example uses the Set statement to create instances of two ActiveX
objects.

Private Function GetEmployeeName(sEmpNo As String) As String
Dim oEmps As Employees
Dim oEmp As Employee

Set oEmps = New Employees

If oEmps.Exists(sEmpNo) Then
 Set oEmp = oEmps.Employee(sEmpNo)
 GetEmployeeName = oEmp.Name
 Set oEmp = Nothing
End If
Set oEmps = Nothing

End Function

Programming Tips & Gotchas

• You can have more than one object variable referring to the same object.
However, bear in mind that a change to the underlying object using one
object variable is reflected in all the other object variables that reference that
object. For example, consider the following code fragment, in which the obj-
ColorCopy object reference is set equal to the objColor object:

Dim objColor As CColor, objColorCopy As CColor
Set objColor = New CColor
Set objColorCopy = objColor

objColor.CurrentColor = "Blue"
Debug.Print objColorCopy.CurrentColor
Set Statement 513

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Since both objColor and objColorCopy reference a single object, the value
of the CurrentColor property is Blue in both cases.

• If you use the New keyword when declaring an object, you don’t have to use
the Set statement to instantiate the object. In most cases, this is more a mat-
ter of programming style than of programming optimization or performance
issues. The following snippets show the two methods of instantiating an early
bound object (that is, an object that has had a project-level reference created
using the references dialog):

Method 1

Dim myObj As New SomeClass

Method 2

Dim myObj As SomeClass
Set myObj = New SomeClass

There are, however, certain instances where you can only use the New key-
word with the Set statement, as the next example shows. Here a recordset
has been created from a database, and each record is assigned to an object
that is held in a collection. With each loop, a new instance of the class has to
be created. Therefore, the New keyword is used with the Set statement:

Dim oVar As clsNames
Do While Not rsNames.EOF
 Set oVar = New clsNames
 oVar.FirstName = rsNames!FName
 oVar.LastName = rsNames!LName
 mcolNames.Add oVar
 Set oVar = Nothing
Loop

• It’s often essential (and certainly good programming practice) to set object ref-
erences to Nothing once the application is finished using them. For exam-
ple, you must set an object to Nothing when you have created one or a
number of sub (or dependent) objects from within another object. If you
don’t release the references to the child objects from the client code when
you have finished with them, you can’t explicitly release the reference to the
main object from the client. This snippet shows how it should be done:

Dim myMainObj as MainClass
Dim mySubObj as SomeSubClass

Set myMainObj = New MainClass
 Set mySubObj = MainClass.Item(1)
 'work with the sub object
 Set MySubObj = Nothing
Set MyMainObj = Nothing

Each object instance maintains a counter of the number of current references to
it. If the object referenced by the object variable has no other references when
object variable is set to Nothing (that is, its counter is decremented to zero),
the object’s Terminate event is fired, and the object unloads from memory.

During the development stage, you should use conditional compilation and
the Debug.Print method to check that all references to an object or class are
514 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Set Statement
being released correctly. This can be done as shown in the snippet below
within the class’s Terminate event:

#If ccDebug Then
 Debug.Print "Class myClass Terminated"
#End If

This is important because although you are prevented from specifying circu-
lar object references (where one class references another and—perhaps indi-
rectly—the referenced class also holds a reference to the class referencing it)
within the references dialog, you can build in circular object references quite
easily without realizing it or even deliberately, as a result of your application
design. Classes with circular references don’t release from memory until the
application terminates. For more details, see Chapter 4.

• When trying to discover whether or not an object reference has been success-
fully assigned, you should determine if the object variable has been assigned
Nothing. However, you can’t use the equality comparison operator (=) for
this purpose; you must use the Is operator, as the following code snippet
shows:

If objectvar Is Nothing Then
 ... 'assignment failed
End If

• While the Set statement used with the New keyword provides for early bind-
ing to an externally createable object, a type library may not be available for a
particular automation object, or the precise automation object to be used may
not be known at design time. In that case, externally createable objects can be
instantiated at runtime (i.e., can be late bound) by using the Set statement
along with the CreateObject function. For example:

Dim oMainObject As MainLib.MainObject
Set oMainObject = CreateObject("MainLib.MainObject")

In addition, from VB6 onward, CreateObject supports an extra parameter
specifying the remote machine on which the object is registered. For example:

Dim oRemServ As MainLib.MainObj
If ServerOnLine("NTSERV1") Then
 Set oMainObject = CreateObject("MainLib.MainObj", _
 "NTSERV1")
Else
 Set oMainObject = CreateObject("MainLib.MainObj", _
 "NTSERV2")
End If

See Also
Dim Statement; Friend Statement; Private Statement; Public Statement;
Chapter 5, Automation
Set Statement 515

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
SetAttr Statement

Named Arguments

Yes

Syntax
SetAttr pathname, attributes
pathname

Use: Required

Data Type: String

The name of the file whose attributes are to be set.

attributes
Use: Required

Data Type: Integer

Numeric expression or constant specifying the attributes.

Description

Changes the attribute properties of a file.

Rules at a Glance

• Visual Basic now includes the following intrinsic constants for setting file
attributes:

• File attributes’ constants can be added together or logically ORed to set more
than one attribute at the same time. For example:

SetAttr "SysFile.Dat", vbSystem Or vbHidden
SetAttr "MyFile.Txt", vbArchive + vbReadOnly

• pathname can include a drive letter. If a drive letter isn’t included in path-
name, the current drive is assumed. If a drive letter is used, the fully qualified
path is required unless the file is located in the current directory.

• pathname can include a folder name. If the folder name isn’t included in
pathname, the current folder is assumed.

• Attempting to set the attributes of an open file will generate a runtime error.

Example
Private Sub AddAttributes(strFN As String, _
 intNewAttrib As Integer)

Constant Value Description

vbNormal 0 Normal (default)

vbReadOnly 1 Read-only

vbHidden 2 Hidden

vbSystem 4 System file

vbArchive 32 File has changed since last backup
516 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Sgn Function
Dim intAttrib As Integer

intAttrib = GetAttr(strFN)
SetAttr strFN, intAttrib Or intNewAttrib

End Sub

Programming Tips & Gotchas

• Setting file attributes simultaneously clears any attributes that aren’t set with
the SetAttr statement. For example, if SysFile.Dat is a read-only, hidden sys-
tem file, the statement:

SetAttr "sysfile.dat", vbArchive

sets the archive attribute but clears the read-only, hidden, and system
attributes. Clearly, this can have disastrous implications. To retain a file’s
attributes while setting new ones, first retrieve its attributes using the GetAttr
function, as the previous example illustrates.

• Setting a file’s attributes to vbNormal clears all file attributes.

See Also
GetAttr Function

Sgn Function

Named Arguments

No

Syntax
Sgn(number)
number

Use: Required

Data Type: Numeric

A numeric expression.

Return Value

A Variant of subtype Integer.

Description

Determines the sign of a number.

Rules at a Glance

The return value of the Sgn function is determined by the sign of number:

If number is... Sgn Returns

Positive 1

Zero 0

Negative –1
Sgn Function 517

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

• I suppose that someone, somewhere, has found a really good use for the Sgn
function. However, its usefulness escapes me, because you need to carry out
a test on the return value of the function identical to that which you could use
on the number to find its sign.

• If you’re planning on using the Sgn function to evaluate a result to False (0)
or True (any nonzero value), you could also use the CBool function.

• The major use for Sgn—and a fairly trivial one—is to determine the sign of an
expression. It’s equivalent to the following code:

Public Function Sgn(varNumber as Variant) as Integer

If varNumber > 0 Then
 Sgn = 1
ElseIf varNumber = 0 Then
 Sgn = 0
Else
 Sgn = -1
End If

• Sgn is useful in cases in which the sign of a quantity defines the sign of an
expression. For example:

lngResult = lngQty * Sgn(lngValue)

See Also
If...Then Statement

Shell Function

Named Arguments

Yes

Syntax
Shell(pathname[,windowstyle])
pathname

Use: Required

Data Type: Variant (String)

Name of the program to execute.

windowstyle
Use: Optional

Data Type: Variant (Integer)

The style of window and whether it receives the focus.

Return Value

A Variant of subtype Double.
518 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Shell Function
Description

Launches another application and, if successful, returns that application’s task ID.

Rules at a Glance

• pathname can include a drive letter. If a drive letter isn’t included in path-
name, the current drive is assumed. If a drive letter is used, the fully qualified
path is required unless the file is located in the current directory.

• pathname can include a folder name. If the folder name isn’t included in
pathname, the current folder is assumed.

• pathname can include any command-line arguments and switches required by
the application.

• Visual Basic includes the following intrinsic constants for setting the window-
style argument:

vbHide
Value: 0

New application window is: hidden

Focus: New Application

vbNormalFocus
Value: 1

New application window is: shown in its original position and size

Focus: New Application

vbMinimizedFocus
Value: 2

New application window is: displayed as an icon

Focus: New Application

vbMaximizedFocus
Value: 3

New application window is: maximized

Focus: New Application

vbNormalNoFocus
Value: 4

New application window is: shown in its original position and size

Focus: Current Application

vbMinimizedNoFocus
Value: 6

New application window is: displayed as an icon

Focus: Current Application

• The default when no windowstyle is specified as vbMinimizedFocus (2).

• If the application named in pathname executes successfully, Shell returns the
window’s task ID of the program. (The task ID is better known as the pro-
Shell Function 519

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
cess ID (or PID), a unique 32-bit value used to identify each running pro-
cess.) It can be used as a parameter to the AppActivate statement to give
the application the focus and possibly control it remotely using the Send-
Keys statement. The process ID is also required by a number of Win32 API
calls.

• If the application named in pathname fails to execute, a runtime error is generated.

• The file launched by Shell must be executable. That is, it must be a file whose
extension is .EXE or .COM (an executable file), .BAT (a batch file), or .PIF (a
DOS shortcut file).

Programming Tips & Gotchas

• Applications launched by the Shell function run asynchronously, which means
that the launching application isn’t notified when the launched application has
finished executing. Therefore, program statements in the launching applica-
tion may execute before the launched application has completed.

• If you require the Shell function to run another program synchronously, you
need to use Win32 API calls. The required calls vary depending upon whether
you are using Windows 95 or Windows NT. Be aware, though, that the pro-
gramming required to run another process in Windows NT is quite complex,
and I could quite easily take up another book trying to explain it. In fact, cer-
tain procedures relating to launching processes in Windows NT aren’t possi-
ble using VB—or for that matter MFC. In 16-bit Windows, launching
applications or processes synchronously and keeping track of them was a rel-
atively painless exercise; you’d simply monitor the GetModuleUseage API call.
However, 32-bit Windows operates on an entirely different system of launch-
ing and monitoring (or not, as the case may be) processes, which doesn’t
allow you to use GetModuleUseage.

• The Shell function doesn’t use file associations. You can’t, for example, sup-
ply MyReport.Doc as the pathname in the hope that VB will load Microsoft
Word, which in turn will load MyReport.Doc.

Sin Function

Named Arguments

No

Syntax
Sin(number)
number

Use: Required

Data Type: Numeric

An angle expressed in radians.

Return Value

A Double containing the sine of an angle.
520 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
SLN Function
Description

Returns the ratio of two sides of a right triangle in the range –1 to 1.

Rules at a Glance

The ratio is determined by dividing the length of the side opposite the angle by
the length of the hypotenuse.

Programming Tips & Gotchas

• You can convert degrees to radians using the formula:

radians = degrees * (pi/180)

• You can convert degrees to radians using the formula:

degrees = radians * (180/pi)

See Also
The math teacher I wish I’d listened to in school.

SLN Function

Named Arguments

Yes

Syntax
SLN(cost, salvage, life)
cost

Use: Required

Data Type: Double

The initial cost of the asset.

salvage
Use: Required

Data Type: Double

The value of the asset at the end of its useful life.

life
Use: Required

Data Type: Double

The length of the useful life of the asset.

Return Value

A Double representing depreciation per period.

Description

Computes the straight-line depreciation of an asset for a single period.
SLN Function 521

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Rules at a Glance

• The function uses a very simple formula to calculate depreciation:

(cost – salvage) / life

• The depreciation period is determined by the time period of life.

• All arguments must be positive numeric values.

See Also
DDB Function, SYD Function

Space, Space$ Functions

Named Arguments

No

Syntax
Space(number)
number

Use: Required

Data Type: Integer

An expression evaluating to the number of spaces required.

Return Value

A Variant of subtype String containing number spaces (in the case of Space) or a
String containing number spaces (in the case of Space$).

Description

Creates a string containing number spaces.

Rules at a Glance

While number can be zero (in which case the function returns a null string),
runtime error 5, “Invalid procedure call or argument,” is generated if number is
negative.

Programming Tips & Gotchas

You can use the Space function to both pad and clear data stored in fixed-length
strings. For example, the following code fragment fills a fixed-length string with
spaces:

Dim strFixed As String * 32
...
strFixed = Space(Len(strFixed))

See Also
String Function
522 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Spc Function
Spc Function

Syntax
Spc(n)
n

Use: Required

Data Type: Integer

The number of spaces required.

Return Value

A String containing n spaces.

Description

Inserts spaces between expressions in a Print # statement, Debug.Print method,
or Printer.Print method.

Rules at a Glance

• Although Spc has more built-in “intelligence” than the Space function, it can
be used only with the Print # statement and the Debug.Print method. For
example, it isn’t possible to use the Spc function to pad a fixed-length string
as the Space function does. When dealing with the Printer object, far more
flexibility is available by setting properties, such as CurrentX, for accurately
placing text strings.

• If the width of the device being printed to is greater than n, the print position is
set to be immediately after the number of spaces printed by the Spc function.

• If the width of the device being printed to is less than n, the print position is
set to the current position plus the result of the formula n Mod devicewidth.

• If n is greater than the difference between the current print position and the
width of the device, Spc inserts a line break and then inserts spaces in accor-
dance with the following formula:

n – (devicewidth – currentposition)

• When using a proportional font, the Spc function uses the average width of all
characters for the particular font to determine the width of the space charac-
ter to print.

• When the number of fixed-width columns is important, you should use either
the Space or the Tab function, since there isn’t necessarily a relationship
between the spaces provided by the Spc function and fixed-width columns.

Programming Tips & Gotchas

• When placing output on the Printer object, use the TextWidth method to
determine the actual width taken up by a given string in a given font and font
size.

• While on the surface it appears that Spc and Space are interchangeable func-
tions that both simply return a given number of spaces, their internal work-
ings are somewhat different. The Spc function can be used only in
Spc Function 523

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
conjunction with a Print or Print # function. For example, you generate a
design-time error if you try to write the following code:

Dim sStr As String * 20
'no can do
sStr = Spc(20)

See Also
Print # Statement, Debug Object, Printer Object

Split Function (VB6)

Named Arguments

No

Syntax
Split (expression, [delimiter[, count[, compare]]])
expression

Use: Required

Data Type: String

A string to be broken up into multiple strings.

delimiter
Use: Optional

Data Type: Variant

The character used to delimit the substrings in expression.

count
use: Optional

Data Type: Log

The number of strings to return.

compare
Use: Optional

Data Type: VbCompareMethod constant

The method of comparison. Possible values are vbBinaryCompare,
vbTextCompare, or vbDatabaseCompare.

Return Value

A variant array consisting of the arguments passed into the function.

Description

Parses a single string containing delimited values into an array

Rules at a Glance

• The returned array is always base 0 regardless of any Option Base setting.
524 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Static Statement
• If delimiter isn’t found in expression, Split returns the entire string in ele-
ment 0 of the return array.

• If delimiter is omitted, a space character (" ") is used as the delimiter.

• If count is omitted or its value is –1, all strings are returned.

• The default comparison method is vbBinaryCompare.

• Once count has been reached, the remainder of the string is placed, unproc-
essed, into the next element of the returned array.

Programming Tips & Gotchas

• The array you declare to assign the return value of Filter must be a dynamic,
single-dimension string array, or a variant.

• Strings are written to the returned array in the order in which they appear in
expression.

See Also
Join Function

Sqr Function

Named Arguments

No

Syntax
Sqr(number)
number

Use: Required

Data Type: Double

Any numeric expression greater than or equal to 0.

Return Value

A Double containing the square root of number.

Description

Calculates the square root of a given number.

Rules at a Glance

number must be equal to or greater than zero or runtime error 5, “Invalid proce-
dure call or argument,” occurs.

Static Statement

Syntax
Static varname[([subscripts])] [As [New] type] _
 [,varname[([subscripts])] [As [New] type]] . . .
Static Statement 525

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
varname
Use: Required

Data Type: Any

The name of the variable, following Visual Basic naming conventions.

subscripts
Use: Optional

Data Type: Long Integer

Denotes varname as an array, and specifies the number and extents of
dimensions of the array.

New
Use: Optional

Type: Keyword

Used to automatically create an instance of the object referred to by the
object variable varname.

type
Use: Optional

Type: Keyword

Data type of the variable varname.

Description

Used at procedure level to declare a static variable and allocate the relevant
storage space in memory. Static variables retain their value between calls to the
procedure in which they are declared.

Rules at a Glance

• A static variable’s scope is limited to the procedure in which it’s created.

• The subscripts argument has the following syntax:

[lowerbound To] upperbound [, _
[lowerbound To] upperbound]

• Using the subscripts argument, you can declare up to 60 multiple dimen-
sions for the array.

• The lowerbound argument of the subscripts argument is optional. When
not used, the lower bound of the array is specified by the Option Base state-
ment. If Option Base has not been used, the lower bound of the array is
zero.

• If the subscripts argument isn’t used (i.e., the variable name is followed by
empty parentheses), the array is declared as dynamic. You can change both
the number of dimensions and number of elements of a dynamic array by
using the ReDim statement.

• The New keyword denotes that a new instance of the object is created when
the first reference to the object is made. Use of the New keyword in the
Static statement therefore eliminates the need to use the Set statement.
526 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Static Statement
• You can’t use the New keyword to declare variables of any intrinsic data type
or instances of dependent objects.

• If you don’t use the New keyword with an object variable, you must use the
Set statement to assign an existing object to the variable before you can use
the variable.

• datatype may be Byte, Boolean, Currency, Date, Double, Integer, Long,
Object, Single, String, Variant, a user-defined type, or an object type.

• If you don’t specify datatype and you haven’t used a DefType statement,
the variable is cast as a variant.

• The following table shows the values held by each data type when a variable
is first initialized:

• The individual elements of a user-defined type are initialized with the value
corresponding to their data types.

• To declare a fixed length string, use the syntax:

Static varname As String * stringlength

Programming Tips & Gotchas

• It’s a recognized programming practice when using the Static statement in a
procedure to put the Static statements at the beginning of that procedure.

• Although their value persists between calls to a procedure, static variables
don’t have scope outside of the procedure in which they are created.

• You should note that when you use the New keyword, the Initialize event of
the underlying object is fired on the first reference to the object, not when the
object variable is declared.

• It’s good programming practice to always use Option Explicit at the begin-
ning of a module to require variable declaration, and thus prevent misnamed
variables causing hard-to-find errors.

See Also
Friend Statement, Public Statement, ReDim Statement, Set Statement

Data Type Initial Value

Numeric 0

Variable-length string Zero-length string ("")

Fixed-length string Filled with zeros

Variant Empty

Object Nothing

Date Saturday 30 December 1899 12:00:00
Static Statement 527

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
stdDataFormat Object (VB6)

Description

The stdDataFormat object sits silently between the Binding object and the data
consumer control. Data coming into the Binding object is reformatted by the
stdDataFormat object and made ready for display in the consumer control. Data
changed by the user that the Binding object is returning to the database is auto-
matically unformatted as it leaves the data consumer control.

The formatting applied to the data is based on the properties you have set for the
particular format object. In the case of complex formatting, you may also be
required to unformat the data manually before processing by the database. In all
cases, you should set the Type property, which tells the format object which
format you require; optionally, you can provide a property value for one or more
of the special format properties.

Only one format object can be applied to a Binding object, but there is no limit on
how many different format objects your application can contain. If you use
multiple format objects, you should contain them within the stdDataFormats
collection object and simply pass a reference to the object in the collection to the
Binding object. This prevents you from having many stdDataFormat objects all live
at the same time. The drawback to this approach, though, is that the collection
object stifles the format object’s Format and Unformat events, which are vital for
custom formatting.

If the purpose of the format object is incompatible with the control being bound,
an error is generated by the BindingsCollection.Add method. For example, if you
have created a format object that deals with a checkbox format and try to bind this
to a Textbox control, an error occurs.

For an overview of data format objects, including the library reference needed to
access the object model, see the Data Format Objects entry.

Createable

Yes

Properties

FalseValue
Data Type: Variant

When used in conjunction with a Type value of fmtBoolean, the FalseValue
is assigned to the consumer control’s bound property if the incoming data is
False (0). For example, in the following snippet, if the value of the bound
data field is 0, the string "No Contract" is placed in the bound control:

Set fmtF2 = New StdDataFormat
 fmtF2.Type = fmtBoolean
 fmtF2.FalseValue = "No Contract"
When changed data is read back into the database, if the value of the bound
control property matches FalseValue, a False (0) is written to the database.
528 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
stdDataFormat Object (VB6)
For example, using our snippet above, if the data in the bound control is
changed to “No Contract,” 0 or False is written to the database.

It’s advisable to provide both a FalseValue and a TrueValue for a format
object whose Type is fmtBoolean.

FirstDayOfWeek
Data Type: constant from FirstDayOfWeek enumeration

Specifies which day should be treated as the first day of the week. This prop-
erty can be used for date formatting. The FirstDayOfWeek constants used by
stdFormatObject differ from the intrinsic ones by their “fmt” (instead of “vb”)
prefix.

FirstWeekOfYear
Data Type: constant of FirstWeekOfYear enumeration

Specifies which week of the year should be treated as the first. This property
can be used for date formatting. The FirstWeekOfYear constants used by
stdFormatObject differ from the intrinsic ones by their “fmt” (instead of “vb”)
prefix.

Format
Data Type: String

When the value of the Type property is fmtCustom, the Type property can
provide a formatting string identical to those recognized by the Format func-
tion; for details, see the entry for the Format function.

NullValue
Data Type: Variant

Defines the value to replace a Null for all format types. If the data from the
data source is Null, it’s automatically replaced by this value. Beware, though:
if the data in the bound control is changed to this value, the Binding object
attempts to write a Null to the database. For example, in the following
snippet, a value of 0 appears in the bound control if the original value in the
database is Null. However, if the original database value is 1 and the user
changes it to 0, then Null is written to the database.

Set fmtF2 = New StdDataFormat
 fmtF2.Type = fmtGeneral
 fmtF2.NullValue = 0
Note that an order of precedence applies when translating the values of
bound data controls back to their original values. Typically, the NullValue
property has the lowest precedence. For example, if the value of the Type
property is fmtCheckbox, a data value of 0 sets the checkbox’s value to
vbUnchecked, and a value of 1 sets it to vbChecked. If the value of the
NullValue property is also 0, a Null isn’t written to the database when the
checkbox control becomes unchecked (i.e., its value changes to 0), since this
0 is interpreted as vbUnchecked rather than Null. Similarly, for a type of
fmtBoolean, a 0 is interpreted as False rather than Null.

TrueValue
Data Type: Variant
stdDataFormat Object (VB6) 529

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Defines the value assigned to the consumer control’s bound property for
format objects whose Type is fmtBoolean and whose incoming data is True
(1 or –1). For example, in the following code fragment, if the value of the
bound data field is 1 or –1, the string "Contract Signed" appears in the
bound control:

Set fmtF2 = New StdDataFormat
 fmtF2.Type = fmtBoolean
 fmtF2.TrueValue = "Contract Signed"

Type
Data Type: Constant of FormatType enumeration

Defines the type of data to be formatted, which in turn determines which
properties are used in formatting a data item. Ensure that the type you set is
compatible with both the data you are binding and with the control you are
binding to. The FormatType constants are as follows:

stdDataFormats Events

Your stdDataFormat object variable must be declared WithEvents to receive
events. The following events are supported by the stdDataformat object:

Changed
Fired when the formatting properties of the object are changed.

Format
Fired when the bound data is about to be formatted for the fmtGeneral and
fmtCustom format types. The event handler can override the formatting
manually. An stdDataValue object is passed to the event, as the following
example shows:

Private Sub fmtF1_Format(ByVal DataValue As _
 StdFormat.StdDataValue)
 If DataValue.TargetObject.Name = "txtFirstName" Then
 'force lowercase
 fmtF1.Format = ">"

Constant Value Description

fmtGeneral 0 For any type of data. Forces the Format and
Unformat events to fire.

fmtCustom 1 For any type of data. The Format property can
define a custom format value. Forces the Format
and Unformat events to fire.

fmtPicture 2 Format and Unformat events aren’t fired.

fmtObject 3 Format and Unformat events aren’t fired.

fmtCheckbox 4 For binding to a checkbox control. A data value
of 0 equates to vbUnChecked, whereas 1 or –1
equates to vbChecked. Format and Unformat
events aren’t fired for this type.

fmtBoolean 5 For Boolean data; specifies that the TrueValue
and FalseValue properties be used. Format and
Unformat events aren’t fired.
530 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
stdDataFormats Object (VB6)
 Else
 'force uppercase
 fmtF1.Format = "<"
 End If
End Sub

Note that the stdDataValue object isn’t createable and only manifests itself as a
parameter passed to the Format and Unformat event handlers.

Unformat
Fired for the fmtGeneral and fmtCustom format types when the bound data
is to be unformatted and written back to the database. The event handler can
override the unformatting manually. A stdDataValue object is passed into the
event, as the following example shows:

Private Sub fmtF1_UnFormat(ByVal DataValue As _
 StdFormat.StdDataValue)
 DataValue.Value = StrConv(DataValue.Value, _
 vbProperCase)
End Sub

Note that the stdDataValue object isn’t createable and only manifests itself as a
parameter passed to the Format and Unformat event handlers.

Example

See the Data Binding Objects entry for a complete example of how data binding
and data formatting is performed.

See Also
stdDataFormats Object

stdDataFormats Object (VB6)

Description

Contains a collection of stdDataFormat objects. For an overview of the data format
object model, including the library reference needed to access it, see the Data
Format Objects entry.

Createable

Yes

stdDataFormats Properties

Count
Data Type: Long

The number of stdDataFormat objects held in the collection.

Item
Data Type: stdDataFormat Object

Allows access to individual stdDataFormat objects in the collection. You can
use either the For...Each...Next statement or the item’s key to specify a
member of the collection. For example:
stdDataFormats Object (VB6) 531

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Set oFormat = oStdDataFormats.Item("bool")
Since the Item property is the stdDataFormat object’s default property, you
call it implicitly like this:

Set oFormat = oStdDataFormats("bool")

stdDataFormats Methods

Add
Adds a stdDataFormat object along with its optional variant key to the collec-
tion. For example:

oStdDataFormats.Add oFormat, "bool"

Clear
Removes all stdDataFormat objects from the collection.

Remove
Removes a particular stdDataFormat object from the collection. For example:

oStdDataFormats.Remove "bool"

Stop Statement

Syntax
Stop

Description

Halts program execution.

Rules at a Glance

• There is no limit to the number and position of Stop statements within procedures.

• The Stop statement acts like a breakpoint, placing the program in break
mode and highlighting the current line in the development environment,
allowing you to step through the code line by line.

Programming Tips & Gotchas

• Stop is intended primarily for use in the design-time environment, where it
suspends program execution without terminating it. In the runtime environ-
ment, however, Stop displays a message box that reads Stop statement
encountered before terminating program execution. Needless to say, users
are sure to find this type of behavior baffling. Consequently, all Stop state-
ments should be removed (or commented out) before compiling the execut-
able file.

• Care must be taken when using the Stop statement, because unlike the End
statement, Stop doesn’t explicitly close any open files or clear variables
unless running in a compiled EXE.

• These limitations suggest that the Stop statement, which exists primarily to
permit a programmatically generated breakpoint, is best replaced by explicit
breakpoints in the design-time environment.
532 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
StrComp Function
See Also
End Statement

Str, Str$ Functions

Named Arguments

No

Syntax
Str(number)
number

Use: Required

Data Type: Numeric Variant

Any numeric expression.

Return Value

A Variant of subtype String (returned by Str) or a String (returned by Str$) repre-
senting number.

Description

Converts number from a numeric to a string.

Rules at a Glance

If the return value is positive, the Str function always includes a leading space in
the returned string for the sign of number.

Programming Tips & Gotchas

• Use the LTrim function to remove the leading space that the Str function adds
to the start of the returned string.

• Both the CStr and Format functions have now superseded the Str function.
The CStr function doesn’t add a leading space for the sign of a positive num-
ber. The Format function is internationally aware, being able to recognize
decimal delimiters other than the period (.).

See Also
CStr Function, Format Function, LTrim Function

StrComp Function

Named Arguments

Yes

Syntax
StrComp(string1, string2[, compare])
string1

Use: Required
StrComp Function 533

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Data Type: String

Any string expression

string2
Use: Required

Data Type: String

Any string expression

compare
Use: Optional

Data Type: Integer constant

The type of string comparison to perform.

Return Value

A Variant of subtype Integer.

Description

Determines whether two strings are equal and, if not, which of two strings has the
greater value.

Rules at a Glance

• The following intrinsic constants are available to use as the settings for the
compare argument:

• If compare isn’t specified, the setting of Option Compare (if present) deter-
mines the type of comparison performed.

• This table describes the possible return values from the StrComp function:

Programming Tips & Gotchas

• If you just need to know if string1 is greater than string2 (or vice versa),
couldn’t you simply use the < or > comparison operators? When you’re deal-
ing with strings of characters, Visual Basic sees each character as a number.
Simply using the comparison operators therefore compares the numerical
value of one string with the other. Take this scenario:

Constant Value Comparison to perform

vbBinaryCompare 0 Binary (default)

vbTextCompare 1 Textual

vbDatabase 2 Database (Microsoft Access only)

Scenario Return Value

string1 < string2 –1

string1 = string2 0

string1 > string2 1

string1 or string2 is Null Null
534 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
StrConv Function
Dim sString1 As String
Dim sString2 As String

sString1 = "hello world"
sString2 = "HELLO WORLD"

Subjectively, because of the significance of uppercase letters in text, we’d
probably say that sString2 is greater than sString1. But Visual Basic sees
these strings as a series of Unicode numbers, and because uppercase charac-
ters have a lower Unicode number than lowercase numbers, the lowercase
string (sString1) is greater.

This is exactly how the default StrComp option vbBinaryCompare operates—
comparing the Unicode numbers of each string at binary level. However, the
vbTextCompare option effectively equalizes the case of both strings prior to
conducting the comparison; vbTextCompare looks only for differences in the
character. You could think of vbTextCompare as representing:

If UCase(sString1) < UCase(sString2) Then
 '-1
ElseIf UCase(sString1) = UCase(sString2) Then
 '0
Else
 '1
End If

• Even performing a simple single comparison like:

If UCase(sString1) < UCase(sString2) Then

shows a performance hit of about 30% over the much more elegant and effi-
cient StrComp function call:

If StrComp(sString1,sString2, vbTextCompare) = -1 Then

The former version, though, is easier to read and makes the code self-docu-
menting.

See Also
Option Compare Statement

StrConv Function

Named Arguments

Yes

Syntax
StrConv(string, conversion)
string

Use: Required

Data Type: String

The string expression to convert.
StrConv Function 535

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
conversion
Use: Required

Data Type: Integer

Sum of constant or numeric values denoting the conversion to apply to
string.

Return Value

A Variant of subtype String converted according to conversion.

Description

Performs special conversions on a string.

Rules at a Glance

• The following intrinsic conversion constants specify the type of conversion to
perform:

• You can combine most of these constants by adding them together or using a
logical OR. For example:

vbUpperCase + vbUnicode

The only restriction is that the constants must be mutually exclusive. For
example:

vbUpperCase Or vbProperCase ' Error

is the type of value that’s not permitted.

• vbKatakana and vbHiragana apply only to locales in Japan. Use of these
constants on systems using other locales generates runtime error 5, “Invalid
procedure call or argument.”

Constant Value Converts...

vbUpperCase 1 the entire string to uppercase.

vbLowerCase 2 the entire string to lowercase.

vbProperCase 3 the first letter of every word in string to an
uppercase character.

vbWide 4 narrow (single-byte) characters in string to
wide (double-byte) characters.

vbNarrow 8 wide (double-byte) characters in string to
narrow (single-byte) characters.

vbKatakana 16 Hiragana characters in string to Katakana
characters.

vbHiragana 32 Katakana characters in string to Hiragana
characters.

vbUnicode 64 the entire string to Unicode using the default
code page of the system.

vbFromUnicode 128 the entire string from Unicode to the default
code page of the system.
536 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
String, String$ Functions
• vbWide and vbNarrow apply only to locales in the Far East. Use of these con-
stants on systems using other locales generates a runtime error.

• When determining the start of a new word to perform a conversion to Proper
Case, StrConv recognizes the following characters as word separators:

– Null: Chr$(0)

– Horizontal tab: Chr$(9)

– Linefeed: Chr$(10)

– Vertical tab: Chr$(11)

– Formfeed: Chr$(12)

– Carriage return: Chr$(13)

– Space: Chr$(32)

Example

This short example demonstrates how to convert a string to an array of bytes, for
use in an API function call.

Dim byArray() As Byte
Dim sString As String
sString = "Some stuff"
byArray = StrConv(sSting, vbFromUnicode)

Programming Tips & Gotchas

The StrConv function is important when using the Win32 API, since many calls
require that Unicode strings be passed to them, or they assign Unicode strings to
return variables.

See Also
UCase Function, LCase Function

String, String$ Functions

Named Arguments

Yes

Syntax
String(number, character)
number

Use: Required

Data Type: Long

The length of the required string.

character
Use: Required

Data Type: Variant

Character or character code used to create the required string.
String, String$ Functions 537

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Return Value

A Variant of subtype string made up of character, repeated number times.

Description

Creates a string comprising a specified single character repeated a specified
number of times.

Rules at a Glance

• If number contains Null, Null is returned.

• If character contains Null, Null is returned.

• character can be specified as a string or as an ANSI character code. For
example:

strBuffer1 = String(128, "=") ' Fill with "="
strBuffer2 = String(128, 0) ' Fill with Chr$(0)

Programming Tips & Gotchas

• The String function is useful for creating long strings of “_” , “-”, or “=” char-
acters to create horizontal lines for delimiting sections of a report.

• When calling Win32 API functions that write string values to a buffer, the
String function is typically used beforehand to create a string variable of the
proper length and to fill it with a single character, like Chr$(0). For example,
given the following statements in the declarations section of a code module:

Private Declare Function GetWindowsDirectory _
 Lib "kernel32" _
 Alias "GetWindowsDirectoryA" _
 (ByVal lpBuffer As String, _
 ByVal nSize As Long) As Long

Private Const MAX_PATH = 260

the following code fragment retrieves the drive and path to the Windows
directory:

Dim strWinDir As String
Dim lngDirLen As Long

strWinDir = String(MAX_PATH + 1, 0)
lngDirLen = GetWindowsDirectory(strWinDir, _
 Len(strWinDir))
strWinDir = Left(strWinDir, lngDirLen)

See Also
Space Function, Str Function

StrReverse Function (VB6)

Named Arguments

No
538 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Sub Statement
Syntax
StrReverse(str_expression)
str_expression

Use: Required

Data Type: String

The string whose characters are to be reversed.

Return Value

A String.

Description

Returns a string that is the reverse of the string passed to it. For example, if the
string “and” is passed to it as an argument, StrReverse returns the string “dna.”

Sub Statement

Named Arguments

No

Syntax
[Public | Private | Friend] [Static] Sub name [(arglist)]
 [statements]
 [Exit Sub]
 [statements]
End Sub
Public

Use: Optional

Type: Keyword

Gives the sub procedure scope through all procedures in all modules in
the project. If used within a createable class module, the sub procedure is
also accessible from outside the project. Public, Private, and Friend
are mutually exclusive.

Private
Use: Optional

Type: Keyword

Restricts the scope of the sub procedure to those procedures within the
same module. Public, Private, and Friend are mutually exclusive.

Friend
Use: Optional

Type: Keyword

Only valid within a class module; gives the sub procedure scope to all
modules within a project, but not to modules outside the project.
Public, Private, and Friend are mutually exclusive.
Sub Statement 539

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Static
Use: Optional

Type: Keyword

Preserves the value of variables declared inside the sub procedure
between calls to the sub procedure.

name
Use: Required

The name of the sub procedure.

arglist
Use: Optional

Data Type: Any

A comma-delimited list of variables to be passed to the sub procedure as
arguments from the calling procedure.

statements
Use: Optional

Program code to be executed within the sub procedure.

arglist uses the following syntax and parts:

[Optional] [ByVal | ByRef] [ParamArray] varname[()] _
 [As type] [= defaultvalue]

Optional
Use: Optional

An optional argument is one that need not be supplied when calling the
sub. However, all arguments following an optional one must also be
optional. A ParamArray argument can’t be optional.

ByVal
Use: Optional

The argument is passed by value; that is, a local copy of the variable is
assigned the value of the argument.

ByRef
Use: Optional

The argument is passed by reference; that is, the local variable is simply a
reference to the argument being passed. All changes made to the local
variable are also reflected in the calling argument. ByRef is the default
method of passing variables.

ParamArray
Use: Optional

Indicates that the argument is an optional array of variants containing an
arbitrary number of elements. It can be used only as the last element of
the argument list, and it can’t be used with the ByRef, ByVal or
Optional keywords.

varname
Use: Required
540 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Sub Statement
The name of the local variable containing either the reference or value of
the argument.

type
Use: Optional

The data type of the argument.

defaultvalue
Use: Optional

For optional arguments, you can specify a constant default value.

Description

Defines a sub procedure.

Rules at a Glance

• If you don’t include one of the Public, Private, or Friend keywords, a sub
procedure is Public by default.

• If you declare a sub procedure as Public within a module that contains an
Option Private directive, the sub procedure is treated as Private.

• Unlike a Function procedure, a sub procedure doesn’t return a value to the
calling procedure, and therefore can’t be used as part of an expression.

• Any number of Exit Sub statements can be placed within the sub proce-
dure. Execution continues with the line of code immediately following the call
to the sub procedure.

• A sub procedure can’t define a fixed-length string as an argument in arglist;
this produces the design-time error, “Expected array.”

• A user-defined type can be passed as an argument only if the argument is
required (i.e., not optional). In addition, if a Public sub procedure accepts a
user-defined type as an argument, that user-defined type must also be defined
as Public within a code module.

• The default value for an optional object argument can only be Nothing.

Programming Tips & Gotchas

• There is often confusion between the ByRef and ByVal methods of assign-
ing arguments to the sub procedure. ByRef assigns the reference of the vari-
able in the calling procedure to the variable in the sub procedure; that is, it
passes a pointer containing the address in memory of the variable in the call-
ing procedure. As a result, any changes made to the variable from within the
sub procedure are, in reality, made to the variable in the calling procedure.
On the other hand, ByVal assigns the value of the variable in the calling pro-
cedure to the variable in the sub procedure; that is, it makes a separate copy
of the variable in a separate memory location. Changes made to the variable
in the sub procedure have no effect on the variable in the calling procedure.
In general, ByRef arguments (Visual Basic’s default method of passing param-
eters) within class modules take longer to perform, since marshalling back
and forth between sub procedure and calling module must take place; so
Sub Statement 541

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
unless you explicitly need to modify a variable’s value within a sub proce-
dure, it’s best to pass parameters by value.

• Sub procedures can’t return a value, or can they? Look at the following code:

Sub testTheReturns()
 Dim iValOne As Integer

 iValOne = 10
 Call testValues(iValOne)
 Debug.Print iValOne
End Sub

Sub testValues(ByRef iVal As Integer)
 iVal = iVal + 5
End Sub

Because the argument was passed ByRef, the sub procedure acted upon the
underlying variable iValOne. This means that you can use ByRef to obtain a
“return” value or values (although they’re not strictly return values) from a sub
procedure call.

• Optional arguments afford wonderful flexibility, allowing you to create
generic sub procedures that can be used in a wide variety of scenarios. Until
version 5 of VBA, optional arguments could be only of the Variant data type.
With the release of VB 5.0, almost any data type can be cast as an optional
argument. However, I would still advocate the use of a variant for optional
arguments. Why? The variant has a special state called Missing that makes it
easy to check the value of an optional argument using the IsMissing sub pro-
cedure. If IsMissing returns True, you know immediately that the optional
argument was not supplied in the sub procedure call. Checking to determine
whether a strongly typed variable (an integer, for example) is missing is much
more difficult, as the following code shows:

Sub testMissingInt()
 Dim iVal As Integer
 Dim iValTwo As Integer

 iVal = 10
 iValTwo = 0

 Call testFunc(iVal, iValTwo)
End Sub

Sub testFunc(ByRef iVal As Integer, _
 Optional iValTwo As Integer)
 If iValTwo = 0 Then
 'perform this if iValTwo is missing
 glbTest = iVal + 10
 Else
 'perform this if iValTwo is present
 glbTest = iVal + iValTwo
 End If
End Sub
542 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Sub Statement
A missing optional integer argument appears within the sub procedure as its
initialized value, which is 0. But what happens when you want to pass the
value 0 to the sub procedure? It’s interpreted as being missing. In other
words, in a case such as this, you have no way to tell if the argument is really
missing. In this case, it’s important to take advantage of the defaultvalue
argument to replace a missing optional argument either with a meaningful
default value or with a value that can be readily identified as missing.

• A ParamArray must be declared in the sub procedure as an array of variant.
However, the calling procedure doesn’t pass the argument explicitly as an
array; the individual elements are passed as a comma-delimited list of values
or variables, as the following example shows:

Sub testParam()

 Call testFunc(10, 500, 60)

End Sub

Sub testFunc(ParamArray someArgs() As Variant)

 Dim iArg As Integer
 Dim i As Integer
 Dim iResult As Integer
 Dim vArg As Variant

 For Each vArg In someArgs
 iResult = iResult + vArg
 Next

End Sub

• For reasons that I haven’t quite fathomed yet, you can’t use ParamArrays to
pass arguments to sub procedures in remote server applications. It’s difficult
to describe the results you obtain; suffice it to say that they don’t generate
errors, but that, quite simply, the results are little more than garbage. How-
ever, you can pass an explicit variant array to a sub procedure in a remote
server application. The enormous advantage of this is that you can change
both the type and number of arguments passed into the sub procedure with-
out changing the COM interface, thereby retaining compatibility with a previ-
ous version of the server application.

• One of the most useful additions to VBA (as of Version 5.0) is the Friend
keyword, which allows you to expose a property, sub procedure, or function
in a class module to the other modules within the same project, but at the
same time prevent “the outside world” from having access to the interface.
This can be seen as halfway between Private—which prevents the interface
from being seen by any module—and Public—which exposes the interface
both to modules in the same project and to modules outside the project.

• There are many occasions in which you will run into the dreaded (by some!)
recursive sub procedure call. Recursion occurs when you call a sub proce-
dure from within itself. Recursion is a legitimate and often essential part of
software development; for example, it’s the only reliable method of enumerat-
Sub Statement 543

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
ing or iterating a hierarchical structure. However, you must be aware that
Microsoft—while never being specific on this point—indicates that recursion
can lead to stack overflow. The extent to which you can get away with recur-
sion really depends upon the complexity of the sub procedure concerned, the
amount and type of data being passed in, and an infinite number of other
variables and unknowns.

• Fixed-length strings can’t be passed as parameters to a sub procedure. You
may think that you can get around this by using code similar to the following:

Private Sub Command1_Click()

 Dim sFixed As String * 20
 sFixed = "Hello"
 AddSomeStuff sFixed
 MsgBox sFixed

End Sub

Private Sub AddSomeStuff(ByRef sStrFx As String)

 sStrFx = sStrFx & " World"

End Sub

In fact, what happens in this case is that the variable sStrFx isn’t actually a
reference to sFixed in the calling procedure. It’s as though you have passed
the string by value—sStrFx is a variable-length copy of sFixed. So adding
to the string affects only sStrFx; when control returns to the calling proce-
dure, sFixed is unchanged.

See Also
Call Statement, Exit Statement, Function Statement

Switch Function

Named Arguments

No

Syntax
Switch(expr-1, value-1[, expr-2, value-2 ... [, _

expr-n,value-n]])
expr

Use: Required

Data Type: Variant

A number of expressions to be evaluated.

value
Use: Required

Data Type: Variant
544 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
SYD Function
An expression or value to return if the associated expression evaluates to
True.

Return Value

A Variant value or expression.

Description

Evaluates a list of expressions and, on finding the first expression to evaluate to
True, returns an associated value or expression.

Rules at a Glance

• A minimum of two expression/value pairs is required; additional pairs are
optional.

• Expressions are evaluated from left to right.

• If none of the expressions are True, the Switch function returns Null.

• Although Switch returns only the first True expression’s associated value, all
expressions in the list are evaluated. This means that no performance gains
result from placing expressions that are more likely to evaluate to True ear-
lier in the list. It also means that any expression is capable of raising a run-
time error.

• value can be a constant, a variable, or an expression.

Example

The GetTextColor function uses the Switch function to return a color value that
depends on the sign of the long integer passed to it as a parameter.

Private Function GetTextColor(lValue As Long) As Long

GetTextColor = Switch(lValue > 0, vbBlue, lValue = 0, _
 vbBlack, lValue < 0, vbRed)

End Function

Programming Tips & Gotchas

The Switch function can prove to be an efficient alternative to If...Then...Else
statements, but it can’t be used in situations where multiple lines of code are
required to be executed on finding the first True expression.

See Also
If...Then Statement, Select Case Statement

SYD Function

Named Arguments

Yes
SYD Function 545

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Syntax
SYD(cost, salvage, life, period)
cost

Use: Required

Data Type: Double

The initial cost of the asset.

salvage
Use: Required

Data Type: Double

The value of the asset at the end of its useful life.

life
Use: Required

Data Type: Double

The length of the useful life of the asset.

period
Use: Required

Data Type: Double

The period whose depreciation is to be calculated.

Return Value

A Double representing depreciation per period.

Description

Computes the sum-of-years’ digits depreciation of an asset for a specified period.
The sum-of-years’ digits method allocates a larger amount of the depreciation in
the earlier years of the asset.

Rules at a Glance

• life and period must be expressed in the same time unit. For example, if
life represents the life of the asset in years, period must be a particular
year for which the depreciation amount is to be computed.

• All arguments must be positive numeric values.

• To calculate the depreciation for a given period, SYD uses the formula:

(Cost-Salvage)*((Life-Period + 1)/(Life*(Life + 1)/2))

See Also
DDB Function, SLN Function

Tab Function

Syntax
Tab[(colno)]
546 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Tab Function
colno
Use: Optional

Data Type: Integer

A column number to which the insertion point moves before displaying
or printing the next expression.

Description

Moves the text insertion point to a given column or the start of the next print zone

Rules at a Glance

• If the colno argument is omitted, the text insertion point is moved to the
beginning of the next print zone.

• The value of colno determines the behavior of the insertion point:

• The left column is always 1.

• When expressions are output to files using the Print # statement, the width
of the output is determined by the Width # statement.

• When output is sent to either the screen or the printer, the surface is divided
into columns, the width of each column being the average width of all charac-
ters in the current point size of the current font. This means that the number of
columns for tabulation purposes doesn’t necessarily relate to the number of
characters that can be printed across the width of the output surface.

Programming Tips & Gotchas

• When placing output on the Printer object, use the TextWidth method to
determine the actual width of a given string in a given font and font size.
Another more flexible (although more complex) method of setting the cur-
rent print position for the Printer object is to set the CurrentX property.

• The Tab function without a colno argument is useful when outputting data to
a file using the Print # statement in locales where the comma would be rec-
ognized as a decimal separator.

See Also
Width # Statement

Value of colno Position of Insertion Point

Current column > colno Moves one line down and moves to the colno
column.

colno > Output Width Uses the formula colno Mod width. If the
result is less than the current insertion point,
the insertion point moves down one line;
otherwise, the insertion point remains on the
same line.

< 1 Column 1
Tab Function 547

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Tan Function

Named Arguments

No

Syntax
Tan(number)
number

Use: Required

Data Type: Double

An angle in radians.

Return Value

A Double containing the tangent of an angle.

Description

Returns the ratio of two sides of a right angle triangle.

Rules at a Glance

The returned ratio is derived by dividing the length of the side opposite the angle
by the length of the side adjacent to the angle.

Programming Tips & Gotchas

• You can convert radians to degrees using the following formula:

radians = degrees * (pi/180)

• You can convert degrees to radians using the following formula:

degrees = radians * (180/pi)

Terminate Event

Syntax
Private Sub object_Terminate()
Private Sub Class_Terminate()
object

Use: Required

Data Type: Object

A Form, MDIForm, User control, Property Page, or a VBA UserForm.

Description

The Terminate event is fired when the last instance of an object or class is
removed from memory.
548 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Terminate Event
Rules at a Glance

• Instances of an object or class are removed from memory by explicitly setting
the object variable to Nothing or by the object variable going out of scope.

• The Terminate event of a form-based object is fired after the Unload event.

• If an application ends because of a runtime error, a class’s Terminate event
isn’t fired.

Example

The following example shows a typical terminate event in a class object that
decrements a global instance counter used to ensure only a single instance of a
particular utility object is created. When the counter reaches 0, the global object
reference to the utility object is destroyed.

Private Sub Class_Terminate()

 glbUtilCount = glbUtilCount – 1
 If glbUtilCount = 0 then
 Set goUtils = Nothing
 End If

End Sub

Programming Tips & Gotchas

• If an application is terminated using the End statement prior to removing all
instances of a class or form from memory, the Terminate event of that class
isn’t fired. This is the main reason you shouldn’t use the End statement to ter-
minate an application. Instead, you should use a Sub Main procedure. Spec-
ify Sub Main as the start-up procedure of your application; when program
execution reaches the End Sub statement of the Sub Main procedure, the pro-
gram terminates cleanly.

• The Terminate event is also fired when the object variable holding a refer-
ence to the last instance of an object is re-referenced in a Set statement using
the New keyword, or is assigned a reference to a new instance of the same
type of object. In the following example, two object variables of the same
object type are declared at form level. When the Command1 button is clicked,
they are both referenced to new (and different) instances of the same class.
When the Command2 button is clicked, the reference held by oTwoObj is
assigned to the variable oOneObj; this implicitly releases the reference held by
oOneObj, and the Terminate event of that original instance is fired:

Option Explicit
Private oOneObj As myClass
Private oTwoObj As myClass

Private Sub Command1_Click()
 Set oOneObj = New myClass
 Set oTwoObj = New myClass
End Sub
Private Sub Command2_Click()
 Set oOneObj = oTwoObj
Terminate Event 549

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
End Sub

Code for the myClass class:

Option Explicit

Private Sub Class_Initialize()
 Debug.Print "My Class Initialized"
End Sub

Private Sub Class_Terminate()
 Debug.Print "My Class Terminated"
End Sub

• You should get into the habit of setting object variables to Nothing explic-
itly. This is good programming practice, and it allows you to follow the life
cycle of an object through your code. This should also include setting object
variables to Nothing within error-handling routines.

• During the development stage, you should make use of conditional compila-
tion and the Debug.Print method to check that all references to an object or
class are being released correctly. This can be done as shown in the snippet
below, which is added to the class’s Terminate event:

#If ccDebug Then
 Debug.Print "Class myClass Terminated"
#End If

This is important, because although you are prevented from specifying circu-
lar object references (where one class references another and—perhaps indi-
rectly—the referenced class also holds a reference to the class referencing it)
within the references dialog, you can quite easily build in circular object refer-
ences without realizing it or even deliberately. Classes with circular refer-
ences don’t release from memory until the application terminates. For more
details, see Chapter 4.

See Also
Initialize Event, Set Statement

TextStream Object

Description

The TextStream object represents a text file. You can open a TextStream object to
read, append, or write. The TextStream object provides methods to read, write,
and close the text file.

The TextStream object is one of objects in the File System object model; for an
overview of the model, including the library reference needed to access it, see the
File System object model entry.

Createable

No
550 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
TextStream.Close Method
Returned by

File.OpenTextStream Method, FileSystemObject.CreateTextFile Method, FileSystem-
Object.OpenTextFile Method

Properties

All of the following TextStream object properties are read-only:

AtEndOfLine
Data Type: Boolean

A flag denoting when the end of a line marker has been reached. Only rele-
vant when reading a file.

AtEndofStream
Data Type: Boolean

A flag denoting when the end of the stream has been reached. Only relevant
when reading a file.

Column
Data Type: Long

Returns the column number position of the file marker.

Line
Data Type: Long

Returns the line number position of the file marker.

Methods

TextStream.Close Method

Syntax
oTextStreamObj.Close

Description

Closes the current TextStream object.

Rules at a Glance

You shouldn’t try to reference a TextStream object that has been closed.

Programming Tips & Gotchas

After closing the TextStream object, set oTextStreamObj to Nothing.

Close Read ReadAll
ReadLine Skip SkipLine
Write WriteBlankLines WriteLine
TextStream.Close Method 551

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
TextStream.Read Method

Named Arguments

Yes

Syntax
oTextStreamObj.Read(Characters)
oTextStreamObj

Use: Required

Data Type: TextStream object

Any object variable returning a TextStream object.

Characters
Required

Data Type: Long

The number of characters you want to read from the TextStream.

Return Value

A String.

Description

Reads a given number of characters from a file.

Rules at a Glance

Files opened for writing or appending can’t be read; you must first close the file
and reopen it using the ForRead constant.

See Also
TextStream.ReadAll Method, TextStream.ReadLine Method

TextStream.ReadAll Method

Syntax
oTextStreamObj.ReadAll

Return Value

A String.

Description

Reads the entire file into memory.

Rules at a Glance

• For large files, use the ReadLine or Read methods to reduce the load on mem-
ory resources.

• Files opened for writing or appending can’t be read; you must first close the
file and reopen it using the ForRead constant.
552 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
TextStream.Skip Method
See Also
TextStream.Read Method, TextStream.ReadLine Method

TextStream.ReadLine Method

Syntax
oTextStreamObj.ReadLine

Return Value

A String.

Description

Reads a line of the text file into memory, from the start of the current line up to
the character immediately preceding the next end of line marker.

Rules at a Glance

Files opened for writing or appending can’t be read; you must first close the file
and reopen it using the ForRead constant.

See Also
TextStream.ReadAll Method, TextStream.ReadLine Method

TextStream.Skip Method

Named Arguments

Yes

Syntax
oTextStreamObj.Skip (Characters)
oTextStreamObj

Use: Required

Data Type: TextStream object

Any object variable returning a TextStream object.

NoOfChars
Use: Required

Data Type: Long

Number of characters to skip when reading.

Description

Ignores the next Characters characters when reading from a text file.

Rules at a Glance

The internal file marker is placed at the character immediately following the last
skipped character.
TextStream.Skip Method 553

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
See Also
TextStream.SkipLine Method

TextStream.SkipLine Method

Syntax
oTextStreamObj.SkipLine

Description

Ignores the current line when reading from a text file.

Rules at a Glance

The internal file marker is placed at the beginning of the line immediately
following the skipped line.

TextStream.Write Method

Named Arguments

Yes

Syntax
oTextStreamObj.Write(Text)
oTextStreamObj

Use: Required

Data Type: TextStream object

Any object variable returning a TextStream object.

Text
Use: Required

Data Type: String

Any string expression to write to the file.

Description

Writes a string to the text file.

Rules at a Glance

The file marker is set at the end of string. As a result, subsequent writes to the file
adjoin each other, with no spaces inserted. To write data to the file in a more
structured manner, use the WriteLine method.

See Also
TextStream.WriteBlankLines Method, TextStream.WriteLine Method
554 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
TextStream.WriteLine Method
TextStream.WriteBlankLines Method

Named Arguments

Yes

Syntax
oTextStreamObj.WriteBlankLines(Lines)
oTextStreamObj

Use: Required

Data Type: TextStream object

Any object variable returning a TextStream object.

Lines
Use: Required

Data Type: Long

The number of new line characters to insert.

Description

Inserts one or more newline characters in the file at the current file marker
position.

See Also
TextStream.Write Method, TextStream.WriteLine Method

TextStream.WriteLine Method

Syntax
oTextStreamObj.WriteLine (String)
oTextStreamObj

Use: Required

Data Type: TextStream object

Any object variable returning a TextStream object.

String
Use: Required

Data Type: String

A string expression to write to the file.

Description

Writes a string immediately followed by a new line character to a text file.

See Also
TextStream.WriteBlankLines Method
TextStream.WriteLine Method 555

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Time, Time$ Functions

Syntax
Time

Return Value

A Variant of subtype Date.

Description

Returns the current system time.

Rules at a Glance

The Time function returns the time in the date format hh:mm:ss AM/PM.

Programming Tips & Gotchas

The Time function returns only the system time; you can use the Time statement
to set the system time.

See Also
Time Statement, Now Function

Time Statement

Syntax
Time = time
time

Use: Required

Data Type: Variant

Any valid time expression.

Description

Sets the current system time.

Rules at a Glance

The Time statement attempts to evaluate the variant you are assigning as a valid
time; if it can’t be converted to a valid time, a runtime error is generated.

Programming Tips & Gotchas

• It’s not a good idea to independently set the date and time in a networked
environment. Instead, the log-on script of each workstation should include
code to set the date and time of the workstation to be that of the PDC or
another centrally used server.

• You can use the Time function to return the current system time.

See Also
Time Function
556 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
TimeSerial Function
Timer Function

Syntax
Timer

Return Value

A Single.

Description

Returns the number of seconds since midnight.

Programming Tips & Gotchas

• You can use the Timer function as an easy method of passing a seed number
to the Randomize statement, as follows:

Randomize Timer

• The Timer function is ideal for measuring the time taken to execute a proce-
dure or program statement, as the following snippet shows:

Dim sStartTime As Single
Dim i As Integer

sStartTime = Timer
 For i = 1 To 100
 Debug.Print "Hello"
 Next i
MsgBox "Time Taken = " & Timer - sStartTime & " Seconds"

TimeSerial Function

Named Arguments

Yes

Syntax
TimeSerial(hour, minute, second)
hour

Use: Required

Data Type: Integer

A number in the range 0 to 23.

minute
Use: Required

Data Type: Integer

Any valid integer.

second
Use: Required

Data Type: Integer
TimeSerial Function 557

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Any valid integer.

Return Value

A Variant of subtype Date.

Description

Constructs a valid time given a number of hours, minutes, and seconds.

Rules at a Glance

• Any of the arguments can be specified as relative values or expressions.

• The hour argument requires a 24-hour clock format; however, the return
value is always in a 12-hour clock format suffixed with A.M. or P.M.

• If any of the values are greater than the normal range for the time unit to
which it relates, the next higher time unit is increased accordingly. For exam-
ple, a second argument of 125 is evaluated as 2 minutes 5 seconds.

• If any of the values are less than zero, the next higher time unit is decreased
accordingly. For example, TimeSerial(2,-1,30) returns 01:59:30.

Programming Tips & Gotchas

Because TimeSerial handles time units outside of their normal limits, it can be
used for time calculations. However, because the DateAdd function is more flex-
ible and is internationally aware, it should be used instead.

See Also
DateAdd Function

TimeValue Function

Named Arguments

No

Syntax
TimeValue(time)
time

Use: Required

Data Type: String

Any valid string representation of a time.

Return Value

A Variant of sub data type Date.

Description

Converts a string representation of a time to a Variant Date data type.

Rules at a Glance

• If time is invalid, a runtime error is generated.
558 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Trim, Trim$ Functions
• If time is Null, TimeValue returns Null.

• Both 12- and 24-hour clock formats are valid.

• Any date information contained within time is ignored by the TimeValue
function.

Programming Tips & Gotchas

• A time literal can also be assigned to a Variant or Date variable by surround-
ing the date with hash characters (#), as the following snippet demonstrates:

Dim dMyTime As Date
dMyTime = #12:30:00 AM#

• The CDate function can also cast a time expression contained within a string
as a Date variable, with the additional advantage of being internationally
aware.

See Also
CDate Function, TimeSerial Function

Trim, Trim$ Functions

Named Arguments

No

Syntax
Trim(string)
string

Use: Required

Data Type: String

Any string expression.

Return Value

A String (Trim$) or Variant of subtype String (Trim).

Description

Removes both leading and trailing spaces from a given string.

Rules at a Glance

If string is Null, the Trim function returns Null.

Programming Tips & Gotchas

Trim combines into a single function call what would otherwise be separate calls
to the RTrim and LTrim functions.

See Also
LTrim Function, RTrim Function
Trim, Trim$ Functions 559

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Type Statement

Named Arguments

No

Syntax
[Private | Public] Type varname

elementname [([subscripts])] As type
 [elementname [([subscripts])] As type]
 . . .
End Type
Public

Use: Optional

Type: Keyword

Gives the user-defined type scope through all procedures in all modules
in the project. Public and Private are mutually exclusive.

Private
Use: Optional

Type: Keyword

Restricts the scope of the user-defined type to those procedures within
the same module. Public and Private are mutually exclusive.

varname
Use: Required

The name of the user-defined type.

elementname
Use: Required

Data Type: Any

The name of an element of the user-defined type.

subscripts
Use: Optional

Data Type: Numeric literal or constant

The dimensions of an array element.

type
Use: Required

The data type of the element.

Description

Used at module level to define a user-defined type.

Rules at a Glance

• A user-defined type can contain one or more elements.

• The Type statement can’t be used within a procedure; it can be used only
within the declaration section of a module.
560 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Type Statement
• In form and code modules, user-defined types are Public by default. You
can reduce the scope and visibility of a user-defined type to the current mod-
ule by using the Private keyword.

• Until Version 6 of VB, publicly declared user-defined types were not permit-
ted in class modules. Now, VB6 has introduced the remote user-defined types,
which allow you to declare a property as a user-defined type, or have a class
method return a user-defined type. The following snippet shows how to
implement a remote user-defined type property within a class module:

Public Type udtTestType
 EmployeeNo As Integer
 EmployeeName As String
End Type

Private mudtTestType As udtTestType

Public Property Get TestType() As udtTestType
 TestType = mudtTestType
End Property

Public Property Let TestType(udtVal As udtTestType)
 mudtTestType = udtVal
End Property

• A variable can be declared as being of a user-defined type by using the Dim,
Private, Public, ReDim, or Static statements anywhere within the scope
of the user-defined type.

• The subscripts clause uses the following syntax:

[lowerbound To] upperbound [, _
[lowerbound To] upperbound] . . .

• When the optional lowerbound clause isn’t present, the lower bound of the
array defaults to that defined by the Option Base statement.

• If an Option Base statement has not been used in the current module, the
lower bound is zero.

• lowerbound and upperbound must be stated as numeric literals or con-
stants; variables can’t be used.

• Contrary to standard variable naming conventions, keywords can be used for
the names of the elements of a user-defined type. However, this isn’t recom-
mended, since it makes code confusing to read.

• type may be Byte, Boolean, Currency, Date, Double, Integer, Long, Object,
Single, String, Variant, another user-defined type, or an object type.

• The following table shows the values held by each data type when an ele-
ment is initialized:

Data Type Initial Value

Numeric 0

Variable-length string Zero-length string ("")
Type Statement 561

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Programming Tips & Gotchas

• Frequently, related items of information in an application are stored to paral-
lel arrays. There is far less coding (and confusion) involved, however, if the
elements are stored to a user-defined type instead. Using an array of user-
defined types also tends to produce more readable code than using a multidi-
mensional array.

• User-defined types are central to building advanced data structures such as
linked lists, stacks, and queues.

• Visual Basic classes and collections of classes have largely taken over from
user-defined types. A class module can be thought of as a direct develop-
ment of the user-defined type. In a class module, properties replace the ele-
ments of a user-defined type. Furthermore, class modules contain subroutines
and functions and can have scope outside of the current project. However,
VB6 has somewhat revived the user-defined type by allowing user-defined
types to be passed across process boundaries. For more information, see
Chapter 4.

• Using remote user-defined types requires NT 5, NT 4 Service Pack 4, or the
latest version of DCOM95. Win98 also support remote user-defined types.

• When using UDTs in an ActiveX Server (in VB6 onwards), a client of the
server sees the UDT as an ActiveX object. Proof of this comes from the fact
that you can use the TypeOf operator (which compares one object with
another) with a user-defined type, as the following example demonstrates.
This example also shows the use of the new vbUserDefinedType vartype
constant, and the use of TypeName with a remote UDT. The first code snip-
pet comes from an ActiveX server, which is referenced by a standard EXE
project (the second code snippet) using the References dialog (this works
only with early binding).

Code From Class Module in ActiveX DLL Project

Option Explicit

Public Type udtTestType
 Name As String
 Age As Integer
End Type

Code From Form Module in Standard EXE Project

Option Explicit

Private udtTest As udtTestType

Fixed-length string Filled with zeros

Variant Empty

Object Nothing

Date Saturday 3o December 1899 12:00:00

Data Type Initial Value
562 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
TypeName Function
Private Sub Command1_Click()

 If VarType(udtTest) = vbUserDefinedType Then
 Debug.Print "user defined type"
 End If

 'returns "udtTestType"
 Debug.Print TypeName(udtTest)
 ' returns "Integer"
 Debug.Print TypeName(udtTest.Age)
 'returns "String"
 Debug.Print TypeName(udtTest.Name)

 If TypeOf udtTest Is udtTestType Then
 Debug.Print "this is a udtTestType"
 End If

End Sub

See Also
ReDim Statement

TypeName Function

Named Arguments

No

Syntax
TypeName(varname)
varname

Use: Required

Data Type: Any

The name of a variable.

Return Value

A String

Description

Returns a string containing the name of the data type of a variable.

Rules at a Glance

• If varname is a Variant, TypeName returns the variant’s data subtype. If the
variant has not been assigned a value, TypeName returns Empty. Therefore,
TypeName never actually returns the string “Variant.”

• TypeName can’t be used with a user-defined type.
TypeName Function 563

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• The following table describes the possible return values and their meaning;

• If varname contains an array, TypeName appends the appropriate data type
name with empty parentheses to denote an array. For example, an array of
String returns String().

See Also
VarType Function

UBound Function

Syntax
UBound(arrayname[, dimension])
arrayname

Use: Required

The name of the array.

dimension
Use: Optional

Data Type: Variant (Long)

A number specifying the dimension of the array.

Return Value Underlying Data Type

Boolean Boolean

Byte Byte

classname An object variable explicitly declared as type classname

Currency Currency

Date Date

Decimal Decimal

Double Double-precision floating-point number

Empty Uninitialized variant

Error An error

Integer Integer

Long Long integer

Nothing Unassigned object variable

Null No valid data

Object Variable explicitly declared as type Object

Single Single-precision floating-point number

String String

Unknown An object whose type is unknown

Variant() A variant containing an array created using the Array
function
564 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
UCase, UCase$ Functions
Return Value

UBound returns a Long integer.

Description

Indicates the upper limit of a specified dimension of an array. The upper
boundary is the largest subscript you can access within the specified array.

Rules at a Glance

• If dimension isn’t specified, 1 is assumed. To determine the upper limit of
the first dimension of an array, set dimension to 1, to 2 for the second
dimension, and so on.

• The upper bound of an array dimension can be set using To, Dim, Private,
Public, Redim, and Static, and can be set to any integer value.

Programming Tips & Gotchas

• Note that UBound returns the actual subscript of the upper bound of a partic-
ular array dimension

• UBound is especially useful for determining the current upper boundary of a
dynamic array.

• The UBound function works only with conventional arrays. To determine the
upper bound of a collection, retrieve the value of its Count property. To
determine the upper bound of a control array or a menu control array, use
the array’s UBound property.

See Also
LBound Function

UCase, UCase$ Functions

Named Arguments

No

Syntax
UCase(string)
string

Use: Required

Data Type: String

A valid string expression.

Return Value

A String or Variant of subtype String.

Description

Converts a string to uppercase.
UCase, UCase$ Functions 565

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
Rules at a Glance

• UCase affects only lowercase alphabetical letters; all other characters within
string remain unaffected.

• UCase returns Null if string contains a Null.

Programming Tips & Gotchas

As with all string functions in which two variations are available (one suffixed with
the $ sign and one without), the $ version returns a String data type; the plain
version returns a variant of subtype string.

See Also
LCase Function

Unload Statement

Syntax
Unload object
object

Use: Required

Data Type: Object

A form or control loaded at runtime.

Description

Removes a form or (in Visual Basic) a dynamically created member of a control
array from memory.

Rules at a Glance

• Only controls added to a control array at runtime can be removed from mem-
ory using the Unload statement. Those controls added to a form at design
time can’t be unloaded individually.

• When a form, the form’s Query_Unload event is fired. Once its event handler
has executed, the form’s Form_Unload event is fired.

• When object is an MDI form, the following is the order of events:

a. MDI form QueryUnload event

b. All loaded child forms’ QueryUnload events

c. All loaded child forms’ Form_Unload events

d. MDI form Form_Unload event

Programming Tips & Gotchas

• You can prevent a form from unloading by setting the Cancel argument to
True in a QueryUnload or Form_Unload event procedure. Cancel is a param-
eter passed by reference to both the QueryUnload and the Unload events.
566 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Unlock Statement
• When you unload a form from within the form’s code, you should use the Me
keyword to refer to the form. This makes your code more readable, as the fol-
lowing snippet shows:

Unload Me

• Microsoft recommends that forms should be unloaded only in the Click event
of a CommandButton or menu control. Calling the Unload statement in other
event handlers can have undesirable side effects and cause general protection
faults (GPFs).

• You can also bring your code for loading and unloading forms in line with
the latest object coding in Visual Basic. The following snippet shows the mod-
ern alternative to using the Load and Unload statements for a Form object:

Dim frmVar as Form1
Set frmVar = New Form1
...
frmVar.Show vbModal
...
Set frmVar = Nothing

This requires, of course, that a form named Form1 be included in the project,
and that it not be designated as the startup module.

• When you unload a form from memory, only the form window and controls
are unloaded; the code attached to a form and controls within the form mod-
ule remain in memory.

See Also
Load Statement

Unlock Statement

Syntax
Unlock [#]filenumber[, recordrange]
filenumber

Use: Required

Data Type: Integer

Any valid file number.

recordrange
Use: Optional

Data Type: Long

A range of records.

The syntax for the recordrange argument is:

recnumber | [start] To end
recnumber

Use: Required

Data Type: Long
Unlock Statement 567

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
The record or byte number to unlock.

start
Use: Optional

Data Type: Long

The first record or byte number to unlock.

end
Use: Required

Data Type: Long

The last record or byte number to unlock.

Description

Use the Unlock statement in situations where more than one part of your program
may need read and write access to the same data file. The Unlock statement
removes a lock placed on a section or the whole file that was locked with the
Lock statement.

Rules at a Glance

• Records and bytes in a file are always numbered sequentially from 1 onwards.

• To unlock a particular record, specify its record number and only that record
is unlocked.

• Use the Unlock statement omitting recnumber to unlock the whole file.

• The Unlock statement unlocks an entire file opened in input or output
(sequential) mode, regardless of the recordrange argument.

• If you omit the start argument in the recnumber syntax, Unlock unlocks all
records from the start of the file to record or byte number end.

Programming Tips & Gotchas

• You must take care to remove all file locks using the Unlock statement before
either closing a file or ending the application; otherwise, you can leave the
file in an unstable state. This, of course, means that, where appropriate, your
error handling routines must be made aware of any locks you currently have
in place so that they may be removed if necessary.

• You use the Lock and Unlock statements in pairs, and the argument lists of
both statements must match exactly.

See Also
Lock Statement

Val Function

Named Arguments

No
568 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
VarType Function
Syntax
Val(string)
string

Use: Required

Data Type: String

Any string representation of a number.

Return Value

A numeric data type able to hold the number contained in string.

Description

Converts a string representation of a number into a numeric data type.

Rules at a Glance

• The Val function starts reading the string with the leftmost character and stops
at the first character it doesn’t recognize as being part of a valid number. For
example, the statement:

iNumber = Val("1A1")

returns 1.

• &O and &H (the octal and hexadecimal prefixes) are recognized by the Val
function.

• Currency symbols such as $ and £, and delimiters such as commas aren’t rec-
ognized as numbers by the Val function.

• The Val function recognizes only the period (.) as a decimal delimiter.

• Prior to processing string, Val removes spaces, tabs, and linefeed characters.

Programming Tips & Gotchas

If you are developing an international application, you should use the more
modern, internationally aware CDbl function to convert strings to numbers, since
CDbl can recognize decimal separators.

See Also
CCur Function, CDbl Function, CDec Function, CInt Function, CLng Function,
CSng Function

VarType Function

Named Arguments

No

Syntax
VarType(varname)

varname
Use: Required
VarType Function 569

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
The name of a variable.

Return Value

An integer representing the data type of varname.

Description

Determines the data type of a specified variable.

Rules at a Glance

• The VarType function can’t be used with user-defined types.

• The following intrinsic constants can test the return value of the VarType
function:

• If varname is an array, the VarType function returns 8194 (vbArray) plus the
value of the data type of the array. For example, an array of strings returns
8194 + 8 = 8204. To test for an array, you can use the intrinsic constant vbAr-
ray. For example:

If VarType(myVar) And vbArray Then
 MsgBox "This is an array"
End If

Constant Value Data Type or Variant Value

vbBoolean 11 Boolean

vbByte 17 Byte

vbCurrency 6 Currency

vbDataObject 13 A data access object variable

vbDate 7 Date

vbDecimal 14 Decimal

vbDouble 5 Double-precision floating-point number

vbEmpty 0 Uninitialized variant

vbError 10 An error

vbInteger 2 Integer

vbLong 3 Long integer

vbNull 1 No valid data

vbObject 9 Variable explicitly declared as type
Object

vbSingle 4 Single-precision floating-point number

vbString 8 String

cbUserDefinedType 36 User-defined type

vbVariant 12 Variant—only returned with vbArray
(8194)
570 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Weekday Function
Programming Tips & Gotchas

When you use VarType with an object variable, you may get what appears to be
an incorrect return value. The reason for this is that if the object has a default
property, VarType returns the data type of the default property.

See Also
TypeName Function

Weekday Function

Named Arguments

Yes

Syntax
Weekday(date, [firstdayofweek])
date

Use: Required

Data Type: Variant

Any valid date expression.

firstdayofweek
Use: Optional

Data Type: Integer

Constant value specifying the first day of the week.

Return Value

A Variant of subtype Integer.

Description

Determines the day of the week of a given date.

Rules at a Glance

• The following intrinsic constants determine the value returned by the Week-
day function:

• If date is Null, the Weekday function also returns Null.

Constant Return Value Day Represented

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday
Weekday Function 571

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
• The following table describes the possible settings for the firstdayofweek
argument:

Programming Tips & Gotchas

• If you specify a firstdayofweek argument, the function returns the day of
the week relative to firstdayofweek. For instance, if you set the value of
firstdayofweek to vbMonday (2), indicating that Monday is the first day of
the week, and attempt to determine the day of the week on which October 1,
1996, falls, the function returns a 2. That’s because October 1, 1996, is a Tues-
day, the second day of a week whose first day is Monday.

• The fact that the function’s return value is relative to firstdayofweek makes
using the day of the week constants to interpret the function’s return value
confusing, to say the least. If we use our October 1, 1996, example once
again, the following expression evaluates to True if the day of the week is
Tuesday:

If vbMonday = WeekDay(CDate("10/1/96"), vbMonday) Then

See Also
DatePart Function, Day Function, Month Function, Year Function

WeekdayName Function (VB6)

Syntax
WeekdayName(WeekdayNo, [abbreviate [, FirstDayOfWeek]])
WeekdayNo

Use: Required

Data Type: Long

The ordinal number of the required weekday from 1 to 7.

abbreviate
Use: Optional

Data Type: Boolean

Specifies whether to return the full day name or an abbreviation.

Constant Value Description

vbUseSystem 0 Use the NLS API setting

vbSunday 1 Sunday (default)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday
572 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
While...Wend Statement
FirstDayOfWeek
Use: Optional

Data Type: vbDayOfWeek constant

Specifies which day of the week should be first.

Return Value

A String

Description

Returns the real name of the day.

Rules at a Glance

• WeekDayNo must be a number between 1 and 7, or the function generates
runtime error 5, “Invalid procedure call or argument.”

• If FirstDayOfWeek is omitted, WeekdayName treats Sunday as the first day
of the week.

• The default value of abbreviate is False.

Programming Tips & Gotchas

• WeekdayName with abbreviate set to False is the equivalent of Format
(dateval, "dddd").

• WeekdayName with abbreviate set to True is the equivalent of Format
(dateval, "ddd").

• You’d expect that, given a date, WeekDayName would return the name of that
date’s day. But this isn’t how the function works. To determine the name of
the day of a particular date, combine WeekDayName with a call to the Week-
Day function, as the following code fragment shows:

sDay = WeekDayName(Weekday(dDate, iFirstDay), _
 bFullName, iFirstDay)

Note that the value of the FirstDayOfWeek argument must be the same in
the calls to both functions for WeekDayName to return an accurate result.

See Also
Format Function, WeekDay Function

While...Wend Statement

Named Arguments

No

Syntax
While condition
 [statements]
Wend
While...Wend Statement 573

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
condition
Use: Required

Data Type: Numeric or String

An expression evaluating to True or False.

statements
Use: Optional

Program statements to execute while condition remains True.

Description

Repeatedly executes program code while a given condition remains True.

Rules at a Glance

• A Null condition is evaluated as False.

• If condition evaluates to True, the program code between the While and
Wend statements is executed. After the Wend statement is executed, control is
passed back up to the While statement, where condition is evaluated again.
When condition evaluates to False, program execution skips to the first
statement following the Wend statement.

• You can nest While...Wend loops within each other.

Programming Tips & Gotchas

The While...Wend statement remains in Visual Basic for backward compatibility
only. It has been superseded by the much more flexible Do...Loop statement.

See Also
Do...Loop Statement

Width # Statement

Syntax
Width #filenumber, width
filenumber

Use: Required

Data Type: Integer

Any valid file number.

width
Use: Required

Data Type: Numeric

A number between 0 and 255.

Description

Specifies a virtual file width when working with files opened with the Open
statement.
574 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
With Statement
Rules at a Glance

• width defines the number of characters that can be placed on a single out-
put line.

• The default width of 0 denotes that there isn’t a limit to the number of char-
acters that can be placed on a single output line.

See Also
Input # Statement, Open Statement, Print # Statement, Write # Statement

With Statement

Named Arguments

No

Syntax
With object
 [statements]
End With
object

Use: Required

Data Type: Object

A previously declared object variable or user-defined type.

statements
Use: Optional

Program code to execute against object.

Description

Performs a set of property assignments and executes other code against a partic-
ular object or user-defined type, thus allowing you to refer to the object only once.
Because the object is referred to only once, the “behind the scenes” qualification
of that object is also performed only once, leading to improved performance of
the code block.

Rules at a Glance

• The single object referred to in the With statement remains the same through-
out the code contained within the With...End With block. Therefore, only
properties and methods of object can be used within the code block with-
out explicitly referencing the object. All other object references within the
With...End statement must start with a fully qualified object reference.

• With statements can be nested, as long as the inner With statement refers to
a sub object or a dependent object of the outer With statement.

Programming Tips & Gotchas

It’s important that you don’t include code within the With statement block that
forces execution to branch out of the block. Similarly, don’t write code that forces
With Statement 575

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
program flow to jump into a With block. Both the With and its associated End
With statement must be executed or you will generate unpredictable errors and
results.

See Also
Do...Loop Statement, Set Statement

WithEvents Keyword

Named Arguments

No

Syntax
Dim|Private|Public WithEvents objVarname As objectType
objVarName

Use: Required

Data Type: String

The name of any object variable that refers to an object that exposes
events.

objectType
Use: Required

Data Type: Any object type other than the generic Object

The ProgID of a referenced object.

Description

The WithEvents keyword informs VB that the object being referenced exposes
events. When you declare an object variable using WithEvents, an entry for the
object variable is placed in the code window’s drop-down Object List, and a list of
the events available to the object variable is placed in the code window’s drop-
down Procedures List. You can then write code event handlers for the object vari-
able in the same way that you write other more common event handlers such as
Form_Load.

Rules at a Glance

• An object variable declaration using the WithEvents keyword can be used
only in an object module such as a Form or Class module.

• An object variable declaration using the WithEvents keyword should be
placed only in the Declarations section of the object module.

• Any ActiveX object or class module that exposes events can be used with the
WithEvents keyword. WithEvents is valid only when used to declare an
object variable.

• You can’t use WithEvents when declaring the generic Object type.

• Unlike other variable declarations, the As keyword is mandatory.
576 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
WithEvents Keyword
• There is no limit to the number of object variables that can refer to the same
object using the WithEvents keyword; they all respond to that object’s
events.

• You can’t create an array variable that uses the WithEvents keyword.

Example

The following example demonstrates how to trap and respond to the events
within an ADO recordset. An object variable is declared using the WithEvents
keyword in the declarations section of a form module. This allows you to write
event-handling code for the ADO’s built-in events, in this case the FetchProgress
event. (The FetchProgress event allows you to implement a Progress Bar control
that shows progress in populating the recordset.)

Private WithEvents oADo As ADODB.Recordset

Private Sub oADo_FetchProgress(ByVal Progress As Long, _
 ByVal MaxProgress As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 ProgressBar1.Max = MaxProgress
 ProgressBar1.Value = Progress

End Sub

Programming Tips & Gotchas

• Placing the object variable declaration that uses the WithEvents keyword in
a procedure doesn’t add the object variable name to the module’s Object List.
In other words, the events fired from the object would have scope only in the
procedure and therefore can’t be handled.

• Even if you declare the object variable using the Public keyword, the events
fired by the object have scope only in the module in which the object vari-
able has been declared.

• Because you can’t use WithEvents to declare a generic Object type, WithEv-
ents can be used only with early bound object references. In other words,
objects must have been added to the project using the References dialog.
Without this prior knowledge of the object’s interface, VB has no chance of
knowing how to handle events from the object.

• If the object you are referencing doesn’t expose any public events, you will
generate a compile-time error, “Object doesn’t source Automation Events.”

• You can’t handle any type of event from within a code module. This isn’t
really a limitation, because to pass program control to a code module, you
can simply call one of its functions or procedures from your event handler,
just as you would from a form or control’s event handler.

• For information about generating your own custom events in form and class
modules, see the “Implementing Custom Events” section in Chapter 4.
WithEvents Keyword 577

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Language Reference
See Also
Dim Statement, Event Statement, Private Statement, Public Statement,
RaiseEvent Statement

Write # Statement

Named Arguments

No

Syntax
Write #filenumber, [outputlist]
filenumber

Use: Required

Data Type: Integer

Any valid file number.

outputlist
Use: Optional

A comma-delimited list of expressions to be written to the file.

Description

Writes structured data to a sequential file.

Rules at a Glance

• outputlist can contain multiple expressions delimited with either a comma,
a semicolon, or a space.

• Calling the Write # statement with a single comma in place of outputlist
forces a blank line to be written to the file.

• Object data can’t be written to a file opened with the Open statement.

• The following table describes how the Write # statement handles certain
types of data, regardless of the locale, to allow files to be read universally:

• The Write statement automatically does the following:

– Delimits data fields with a comma.

– Places quotation marks around string data.

– Inserts a newline character (Chr(13) + Chr(10)) after the last item in
outputlist is written to the file.

Data Type Data Written to File

Numeric Decimal separator is always a period (.)

Boolean #TRUE# or #FALSE#

Date #yyyy-mm-dd hh:mm:ss# (Hours specified in 24-hour format)

Null #NULL#

Error #ERROR errorcode#
578 Chapter 7 – The Language Reference

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vReference
Year Function
Programming Tips & Gotchas

The structured data written to a file using the Write # statement is most suited to
being read back from the file using the Input # statement.

See Also
Input # Statement, Print # Statement

Year Function

Named Arguments

No

Syntax
Year(date)
date

Use: Required

Data Type: Variant

Any valid date expression.

Return Value

A Variant of subtype Integer.

Description

Returns an integer representing the year in a given date expression.

Rules at a Glance

If date contains Null, Year returns Null.

Programming Tips & Gotchas

• The validity of the date expression and position of the year element within
the given date expression are initially determined by the locale settings of the
Windows system. However, some extra intelligence relating to two-digit year
values (see next item) has been built into the Year function that surpasses the
usual comparison of a date expression to the current locale settings.

• What happens when you pass a date over to the Year function containing a
two-digit year? Quite simply, when the Year function sees a two-digit year, it
assumes that all values equal to or greater than 30 are in the 20th Century
(i.e., 30 = 1930, 98 = 1998), and that all values less than 30 are in the 21st
Century (i.e., 29 = 2029, 5 = 2005). Of course, if you don’t want sleepless
nights rewriting your programs in the year 2029, I’d suggest you insist on a
four-digit year, which will see your code work perfectly for about the next
8,000 years!

See Also
DatePart Function, Day Function, IsDate Function, Month Function, Weekday
Function
Year Function 579

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PART III

Appendixes
Part III contains four appendixes that supplement the core reference material
provided in Part II. These include:

• Appendix A, Language Elements by Category, which lists each VBA state-
ment, function, procedure, property, or method in each of a number of cate-
gories. You can use it to identify a particular language element so that you
can look up its detailed entry in Part II.

• Appendix B, Language Constants, which lists the constants that are automati-
cally supported by VBA.

• Appendix C, Operators, which lists VBA operators, including a somewhat
more detailed treatment of the logical and bitwise operators.

• Appendix D, What’s New in VB6?, examines the new language features found
in the latest release of Microsoft’s Visual Basic product.
VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Appendix ALanguage Elements
Language
Elem

ents
APPENDIX A

Language Elements by Category
Collection Object
Add Method Adds a member to the collection
Count Method Returns the number of members in the collection
Item Method Returns the member associated with a given key or

ordinal position
Remove Method Removes the member associated with a given key or

ordinal position

Conditional Compilation
#Const Statement Declares a conditional compiler constant
#If…Then Statement Defines a block of code that will only be compiled

into the program if the conditional constant is True

Data Type Conversion Functions
CBool Function Returns a Boolean data type
CByte Function Returns a Byte data type
CCur Function Returns a Currency data type
CDate Function Returns a Date data type
CDbl Function Returns a Double data type
CDec Function Returns a Decimal data subtype
CInt Function Returns an Integer data type
CLng Function Returns a Long data type
CSng Function Returns a Single data type
CStr Function Returns a String data type
CVar Function Returns a Variant data type
CVDate Function Converts expression to Date
CVErr Function Converts expression to Error
Error Function Returns an error message as a variant
583

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Data Bindings Objects (VB6 only)
Error$ Function Returns an error message as a string
Fix Function Returns an Integer portion of number
Hex Function Returns a hexadecimal representation of number as a

variant
Hex$ Function Returns a hexadecimal representation of a number as a

string
Int Function Returns the integer portion of a number
Oct Function Returns an octal representation of a number as a

variant
Oct$ Function Returns an octal representation of a number as a string
Str Function Returns a string representation of a value as a variant
Str$ Function Returns a string representation of a value as a string
Val Function Returns the Double value of a string representation of

a number

Data Bindings Objects (VB6 only)

BindingCollection Object
Add Method Creates a binding between a control and a data field
Clear Method Removes all binding objects from the collection
Count Property Returns the number of Binding objects in the collection
DataMember Property Returns or sets the data member to provide the data
DataSource Property Returns or sets the object that will be the source of the

data
Item Property Returns the Binding object associated with a specified

key
Remove Method Removes a single Binding object from the collection
UpdateMode Property Returns or sets the type of update to be performed

Binding Object
DataChanged Property Returns True if the data has changed
DataField Property Returns or sets the data field providing the data
DataFormat Property Returns or sets a DataFormat object to provide format-

ting for the data
Key Property Returns the key value used to add the Binding object

to the collection
Object Property Returns or sets a reference to the object providing the

data
PropertyName Property Returns or sets the name of the property within the

control that will consume the data

Date and Time Functions
Calendar Property Returns or sets the system calendar
Date Property Returns the current system date as a date
Date$ Property Returns the current system date as a string
Date Statement Sets the system date
584 Appendix A – Language Elements by Category

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Language
Elem

ents
Err Object
DateAdd Function Returns the result of a date/time addition or subtrac-
tion calculation

DateDiff Function Returns the difference between two dates
DatePart Function Returns the part of the date requested
DateSerial Function Returns a date from an expression containing month,

day, and year
DateValue Function Returns a date from a representation of a date
Day Function Returns a number representing the day of the week
Hour Function Returns a number representing the hour of the day
Minute Function Returns a number representing the minute of the hour
Month Function Returns a number representing the month of the year
MonthName Function* Returns the name of the month for a given date
Now Property Returns the current system time
Second Function Returns a number representing the second of the time
Time Property Returns or sets the current system time as a variant
Time$ Property Returns or sets the current system time as a string
Timer Property Returns the number of seconds elapsed since midnight
TimeSerial Function Returns a representation of a given hour, minute, and

second
TimeValue Function Returns a time value from a string representation of a

time
Weekday Function Returns a number representing the day of the week
Year Function Returns a number representing the year in a date

expression

Dictionary Object (VB6 Only)
Add Method Adds an item to the dictionary against a given key
CompareMode Property Returns or sets the comparison mode
Count Property Returns the number of items in the dictionary
Exists Method Returns True if the key exists
Item Property Returns or sets the item associated with a given key
Items Method Returns an array of all items in the dictionary
Key Property Returns or sets a given key
Keys Method Returns an array of all keys in the dictionary
Remove Method Removes an item associated with a given key
RemoveAll Method Removes all items from the dictionary

Err Object
Clear Method Resets the current Err object
Description Property Returns or sets the description of the current error
HelpContext Property Returns or sets the help file ID for the current error
HelpFile Property Returns or sets the name and path of the help file

relating to the current error
LastDLLError Property Returns the error number from an error raised with a

system API DLL

* VB6 only
Err Object 585

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

FileSystem Objects (VB6 only)
Number Property Returns or sets the current error code
Raise Method Generates a user-defined error
Source Property Returns or sets the source of an error

FileSystem Objects (VB6 only)

FileSystemObject Object
BuildPath Function Returns a string containing the full path
CopyFile Method Copies a file
CopyFolder Method Copies a folder and its contents
CreateFolder Function Returns a Folder object for the newly created folder
CreateTextFile Function Returns a TextStream object for the newly created text

file
DeleteFile Method Removes a file from disk
DeleteFolder Method Removes the folder and its contents from disk
DriveExists Function Returns True if the specified drive is found
Drives Property Returns a Drives object
FileExists Function Returns True if the specified file is found
FolderExists Function Returns True if the specified folder is found
GetAbsolutePathName Function

Returns the canonical representation of the path
GetBaseName Function Returns the base name from a path
GetDrive Function Returns a Drive object for the specified drive
GetDriveName Function Returns a string representing the name of a drive
GetExtensionName Function

Returns a string containing the extension from a given
path

GetFile Function Returns a File object
GetFileName Function Returns a string containing the name of a file from a

given path
GetFolder Function Returns a Folder object
GetParentFolderName Function

Returns the name of the folder immediately above the
folder in a given path

GetSpecialFolder Function Returns a folder object representing one of the special
Windows folders

GetTempName Function Returns a string containing a valid Windows tempo-
rary filename

MoveFile Method Moves a file from one location to another
MoveFolder Method Moves a folder and all its contents from one location to

another
OpenTextFile Function Returns a TextStream object of the opened file

Drives Collection Object
Count Property Returns the number of Drive objects in the collection
Item Property Returns the Drive object associated with the given key

(Drive Name)
586 Appendix A – Language Elements by Category

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Language
Elem

ents
FileSystem Objects (VB6 only)
Drive Object
AvailableSpace Property Returns a variant representing the available space on

the drive in bytes
DriveLetter Property Returns a string containing the drive letter
DriveType Property Returns a DriveTypeConst specifying the type of drive
FileSystem Property Returns a string containing an abbreviation for the file-

system type (i.e., FAT)
FreeSpace Property Returns a variant containing the free space on the drive

in bytes
IsReady Property Returns True if the specified drive is ready
Path Property Returns a string containing the full path of the drive
RootFolder Property Returns a Folder object representing the root of the

drive
SerialNumber Property Returns a Long containing the serial number of the

disk
ShareName Property Returns a String containing the share name, if any
TotalSize Property Returns a variant containing the total size of the disk in

bytes
VolumeName Property Returns a string containing the name of the current

volume

Folders Collection Object
Add Function Returns a Folder object for the newly created folder
Count Property Returns the number of Folder objects in the collection
Item Property Returns the Folder object associated with the specified

key

Folder Object
Attributes Property Returns a FileAttributes constant value
Copy Method Copies this folder and its contents to another location
CreateTextFile Function Returns a TextStream object for the newly created text

file
DateCreated Property Returns the date the folder was created
DateLastAccessed Property Returns the date the folder was last accessed
DateLastModified Property Returns the date the folder was last modified
Delete Method Removes this folder and all its contents
Drive Property Returns a Drive object representing the drive on which

this folder is located
Files Property Returns a Files collection object representing the files

in this folder
IsRootFolder Property Returns True if this folder is the root of the drive
Move Method Moves this folder and its contents to another location
Name Property Returns the name of the folder
ParentFolder Property Returns a Folder object representing the next folder up

in hierarchy
Path Property Returns a string containing the full path of this folder
ShortName Property Returns a string containing the short name of the folder
ShortPath Property Returns a string containing the short path of the folder
FileSystem Objects (VB6 only) 587

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

FileSystem Objects (VB6 only)
Size Property Returns a Variant specifying the total size of all files
and all subfolders contained in this folder

SubFolders Property Returns a Folders collection object representing the
subfolders contained in this folder

Type Property Returns a string detailing the type of folder

Files Collection Object
Count Property Returns the number of Folder objects in the collection
Item Property Returns the File object associated with the specified

key

File Object
Attributes Property Returns a FileAttributes constant
Copy Method Copies this file to another location
DateCreated Property Returns the date the file was created
DateLastAccessed Property Returns the date the file was last accessed
DateLastModified Property Returns the date the file was last modified
Delete Method Removes this file
Drive Property Returns a Drive object representing the drive on which

this file is located
Move Method Moves this file to another location
Name Property Returns the name of this file
OpenAsTextStream Method

Opens this file for text manipulation and returns the
open file as a TextStream object

ParentFolder Property Returns a Folder object representing the folder in
which this file is contained

Path Property Returns a string containing the full path of this file
ShortName Property Returns a string containing the short name of this file
ShortPath Property Returns a string containing the short path of this file
Size Property Returns a Variant specifying the size of this file
Type Property Returns a string detailing the type of this file

TextStreamObject
AtEndOfLine Property Returns True if the end of the line has been reached
AtEndOfStream Property Returns True if the end of the text stream has been

reached
Close Method Closes the TextStream object
Column Property Returns a Long specifying the current column number
Line Property Returns a Long specifying the current line number
Read Function Returns a string containing a specified number of char-

acters from the TextStream
ReadAll Function Returns a string containing the entire contents of the

TextStream
ReadLine Function Returns a string containing the current line within the

TextStream
Skip Method Skips a specified number of characters
588 Appendix A – Language Elements by Category

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Language
Elem

ents
Financial Functions
SkipLine Method Skips to the next line
Write Method Writes a specified string to the TextStream
WriteBlankLines Method Writes a specified number of blank lines to the

TextStream
WriteLine Method Writes a specified string and a line break to the

TextStream

File and Folder Handling
ChDir Statement Changes the current directory
ChDrive Statement Changes the current drive
Close Statement Closes a file opened using the Open statement
CurDir Function Returns a variant containing the current path
CurDir$ Function Returns a String containing the current path
Dir Function Returns the name or names of a matching file or folder
EOF Function Returns a flag denoting the end of a file
FileAttr Function Returns a value denoting the attributes of the current

file
FileCopy Statement Copies a file
FileDateTime Function Returns the date and time a given file was created
FileLen Function Returns the length of a file in bytes
FreeFile Function Returns the number of the next available file
Get Statement Reads from a file opened in random or binary mode
GetAttr Function Returns the attributes of a given file or folder
Kill Statement Deletes a file or folder
Loc Function Returns the position of the current file read or write

marker
LOF Function Returns the length of an open file in bytes
MkDir Statement Creates a new folder
Open Statement Opens a file for reading or writing
Print# Statement Writes to a sequential text file
Put Statement Writes to a file opened in random or binary mode
Reset Statement Closes all files opened using the Open statement
RmDir Statement Deletes a folder
Seek Function Sets or returns the position of the current file read or

write marker
SetAttr Statement Sets a file’s attributes
Write# Statement Writes to a sequential text file

Financial Functions
DDB Function Returns double-declining balance depreciation of an

asset for a specific period
FV Function Returns the future value of an annuity
IPmt Function Returns the interest payment for a given period of an

annuity
IRR Function Returns the internal rate of return for a series of peri-

odic cash flows
MIRR Function Returns the modified internal rate of return for a series

of periodic cash flows
Financial Functions 589

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Formatting Functions
NPer Function Returns the number of periods for an annuity
NPV Function Returns the net present value of an investment
Pmt Function Returns the payment for an annuity
PPmt Function Returns the principal payment for a given period of an

annuity
PV Function Returns the present value of an annuity
Rate Function Returns the interest rate per period for an annuity
SLN Function Returns the straight-line depreciation of an asset for a

single period
SYD Function Returns the sum-of-years’ digits depreciation on an

asset

Formatting Functions
Format Function Returns a string variant formatted to a given

specification
Format$ Function Returns a string formatted to a given specification
FormatCurrency Function Returns a string variant formatted using the currency

settings for the current locale
FormatDateTime Function Returns a string variant formatted using the date

settings for the current locale
FormatNumber Function Returns a numeric variant formatted to a given

specification
FormatPercent Function Returns a numeric variant formatted using the "%"

symbol

Information Functions
Err Function Returns the error code of the last error
IMEStatus Function Returns the system’s current IME mode
IsArray Function Returns True if a variable is an array
IsDate Function Returns True if an expression can be converted to a

date
IsEmpty Function Returns True if a variant variable has not been

initialized
IsError Function Returns True if an expression is an error value
IsMissing Function Returns True if an optional parameter has not been

passed
IsNull Function Returns True if an expression evaluates to Null
IsNumeric Function Returns True if an expression can be evaluated as a

number
IsObject Function Returns True if a variable contains an object reference
QBColor Function Returns the RGB color code for a specified color

number
RGB Function Returns a number representing an RGB color value
TypeName Function Returns the data subtype name of a variant variable
VarType Function Returns a number representing the data subtype of a

variant variable
590 Appendix A – Language Elements by Category

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Language
Elem

ents
Math Functions
Interaction Functions
AppActivate Statement Gives the focus to a specified application
Beep Function Sounds a note through the computer’s speaker
Choose Function Returns a selected value from a list
Command Function Returns the argument portion of the command line as

a variant
Command$ Function Returns the argument portion of the command line as

a string
CreateObject Function Returns a reference to an ActiveX component
DeleteSetting Statement Deletes a given setting in the registry
DoEvents Function Passes control to Windows to allow the system

message queue to be purged
Environ Function Returns the value assigned to an environment variable

as a variant
Environ$ Function Returns the value assigned to an environment variable

as a String
GetAllSettings Function Returns all values from an applications key within the

registry
GetObject Function Returns a reference to an ActiveX object
GetSettting Function Returns a specific value from an applications key

within the registry
IIf Function Returns one of two values based on a Boolean

expression
InputBox Function Returns user input from a simple dialog box
MsgBox Function Returns the user selection of a choice of buttons on a

simple message box
Partition Function Returns a string indicating where a number occurs

within a series of ranges
SaveSetting Statement Saves a value to the registry within the application’s

key and given section
SendKeys Statement Replicates a keystroke in the active window
Shell Function Executes an external application
Switch Function Returns the first value or expression in a list that is

True

Math Functions
Abs Function Returns the absolute value of a given number
Atn Function Returns the arctangent of a number
Cos Function Returns the cosine of an angle
Exp Function Returns the base of a natural logarithm raised to a

power
Log Function Returns the natural logarithm of a number
Randomize Statement Initializes the random number generator
Rnd Function Returns a random number
Sgn Function Returns an integer indicating the sign of a number
Sin Function Returns the sine of an angle
Sqr Function Returns the square root of a number
Tan Function Returns the tangent of an angle
Math Functions 591

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Programming and ActiveX Programming
Programming and ActiveX Programming
AddressOf Operator Passes the address of a Visual Basic callback function

to an API function
CreateObject Function Returns a reference to an ActiveX component
Declare Statement Defines a prototype for a call to an external DLL

library function
Event Statement Defines a prototype for a custom event
For Each…Next Statement Iterates through a collection or array of objects or

values, returning a reference to each of the members
GetObject Function Returns a reference to an ActiveX object
Implements Statement Denotes that the current module implements all proce-

dures of the specified standard or abstract interface
class

RaiseEvent Statement Fires an event
Set Statement Assigns an object reference to an object variable
With…End With Statement Allows the implicit use of an object reference
WithEvents Keyword Denotes that the current module will handle events

fired by the specified object

Printer Object*
Circle Method Draws a circle, ellipse, or arc on the current object
ColorMode Property Returns or sets the color mode of a color printer
Copies Property Returns or sets the number of copies of the current

document to print
CurrentX Property Returns or sets the horizontal coordinates for next print

or draw method
CurrentY Property Returns or sets the vertical coordinates for next print or

draw method
DeviceName Property Returns or sets the name of the device the current

printer driver supports
DrawMode Property Returns or sets the appearance of output from graphics

methods or of a Shape or Line control
DrawStyle Property Returns or sets the line style for output from graphics

methods
DrawWidth Property Returns or sets the line width for output from graphics

methods
DriverName Property Returns or sets the name of the driver for a Printer

object
Duplex Property Returns or sets a value to determine whether a page is

printed on both sides
EndDoc Method Closes the current printer buffer, outputs the buffer to

the printer, and resets the printer object
FillColor Property Returns or sets the color used to fill in shapes, circles,

and boxes
FillStyle Property Returns or sets the fill style of a shape

* Not available in hosted versions of VBA
592 Appendix A – Language Elements by Category

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Language
Elem

ents
Printer Object
Font Property Returns a Font object
FontBold Property Returns or sets the current font to bold
FontCount Property Returns the number of fonts available to the current

printer object
FontItalic Property Returns or sets the current font to italic
FontName Property Returns or sets the name of the current font
Fonts Property Returns the names of all fonts available to the current

printer object
FontSize Property Returns or sets the size in points of the current font
FontStrikethru Property Returns or sets whether strikethrough is in effect
FontTransparent Property Returns or sets whether the current font is transparent
FontUnderline Property Returns or sets whether text is underlined
ForeColor Property Returns or sets the current foreground color
hDC Property Returns the Windows handle of the printer object
Height Property Returns or sets the height of the printer object
KillDoc Method Ends the current printer operation, empties the printer

buffer, and initializes the printer object
Line Method Draws a line or a box on the printer object
NewPage Method Creates a new page in the printer object
Orientation Property Returns or sets the printer object to output either Land-

scape or Portrait
Page Property Returns the number of the current printer page
PaintPicture Method Outputs the contents of a graphic file onto the printer

object
PaperBin Property Returns or sets the paper source on the current printer
PaperSize Property Returns or sets the size of paper to use for the current

print operation
Port Property Returns the name of the port being used by the current

printer
Print Method Outputs text to the printer object
PrintQuality Property Returns or sets the printer resolution
PSet Method Outputs a single point to the printer object
RightToLeft Property Determines text display direction and controls visual

appearance on a bidirectional system
Scale Method Determines the coordinate system to be used for the

current printer object
ScaleHeight Property Returns or sets the vertical measurement for the

current printer object based on the current scale
ScaleLeft Property Returns or sets the measurement to the left edge of the

current printer object based on the current scale
ScaleMode Property Returns or sets the value indicating measurement units

for object coordinates when using graphics methods or
positioning controls

ScaleTop Property Returns or sets the measurement to the top edge of the
current printer object based on the current scale

ScaleWidth Property Returns or sets the horizontal measurement for the
current printer object based on the current scale
Printer Object 593

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Program Structure and Flow
ScaleX Method Converts the value for the width of the printer object
from one scale mode to another

ScaleY Method Converts the value for the height of the printer object
from one scale mode to another

TextHeight Function Returns the height that a given string would be if
printed with the current font

TextWidth Function Returns the width that a given string would be if
printed with the current font

TrackDefault Property Returns or sets a value that determines if the current
printer object is automatically changed to that set via
the Control Panel

TwipsPerPixelX Property Returns the number of twips per pixel across the width
of the printer object

TwipsPerPixelY Property Returns the number of twips per pixel along the height
of the printer object

Width Property Returns or sets the width of the printer object
Zoom Property Returns or sets the percentage by which printed output

is to be scaled up or down

Program Structure and Flow
CallByName Function* Calls the procedure specified as a string variable
Declare Statement Defines a prototype for a call to an external DLL

library function
Do…Loop Statement Repeats a section of code while or until a condition is

met
Exit Statement Branches to the next line of code outside of the

currently executing structure
For Each…Next Statement Iterates through a collection or array of objects or

values, returning a reference to each to the members
For…Next Statement Iterates through a section of code a given number of

times
Friend Statement Declares the procedure or variable to have scope only

within the project in which it is defined
Function Statement Defines a prototype for a procedure that returns a

value
If...Then...Else Statement Defines a conditional block or blocks of code
Private Statement Declares the procedure or variable to have scope only

within the module in which it is defined
Property Get Statement Defines a prototype for a property procedure that

returns a value
Property Let Statement Defines a prototype for a property procedure that

accepts a value
Property Set Statement Defines a prototype for a property procedure that sets

a reference to an object

* VB6 only
594 Appendix A – Language Elements by Category

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Language
Elem

ents
String Manipulation
Public Statement Declares the procedure or variable to have scope
within the module and project in which it is defined
and, if declared within an object module, to have
scope outside the current project

Select Case…End Select Statement
A series of code blocks, only one of which will
execute based on a given value

Sub Statement Declares a prototype for a procedure that does not
return a value or an event-handling procedure

While…Wend Statement Repeats a section of code while or until a condition is
met

With…End With Statement
Allows the implicit use of an object reference

WithEvents Keyword Denotes that the current module will handle events
fired by the specified object

Registry Functions
DeleteSetting Statement Deletes a given registry setting
GetAllSettings Function Returns all values from an application key in the

registry
GetSettting Function Returns a specific value from an application key in the

registry
SaveSetting Statement Saves a value to the application’s key in the registry

String Manipulation
Asc Function Returns a variant number representing the ANSI char-

acter of the first character of a string
AscB Function Returns the value of the first byte in a string
AscW Function Returns the native character code of the first character

in a string (Unicode or ANSI)
Chr Function Returns a variant string containing the character associ-

ated with the specified character code
Chr$ Function Returns a string containing the character associated

with the specified character code
ChrB Function Returns a variant string containing the specified single

byte
ChrB$ Function Returns a string containing the specified single byte
ChrW Function Returns a variant string containing the specified native

character (Unicode or ANSI)
ChrW$ Function Returns a string containing the specified native char-

acter (Unicode or ANSI)
Filter Function* Returns an array of strings matching (or not) a speci-

fied value
Format Function Returns a variant string formatted to a given

specification

* VB6 only
String Manipulation 595

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

String Manipulation
Format$ Function Returns a string formatted to a given specification
FormatCurrency Function Returns a string variant formatted using the currency

settings for the current locale
FormatDateTime Function Returns a string variant formatted using the date

settings for the current locale
FormatNumber Function Returns a numeric variant formatted to a specified

format
FormatPercent Function Returns a numeric variant formatted using the “%”

symbol
InStr Function Returns the position of the first occurrence of one

string within another
InStrB Function Returns the byte position of the first occurrence of one

string in another
InStrRev Function* Returns the first occurrence of a string within another

string searching from the end of the string
Join Function* Returns a string constructed by concatenating an array

of values with a given separator
LCase Function Returns a variant string converted to lowercase
LCase$ Function Returns a string converted to lowercase
Left Function Returns a variant string containing the leftmost n char-

acters of a string
Left$ Function Returns a string containing the leftmost n characters of

a string
LeftB Function Returns a variant string containing the leftmost n bytes

of a string
LeftB$ Function Returns a string containing the leftmost n bytes of a

string
Len Function Returns the length of a given string
LenB Function Returns the number of bytes in a given string or

needed to hold a given variable
LTrim Function Returns a variant string with any leading spaces

removed
LTrim$ Function Returns a string with any leading spaces removed
Mid Function Returns a variant substring containing a specified

number of characters
Mid$ Function Returns a substring containing a specified number of

characters
MidB Function Returns a variant string containing a specified number

of bytes from a string
MidB$ Function Returns a substring containing a specified number of

bytes from a string
Replace Function* Returns a string where a specified value has been

replaced with another given value
Right Function Returns a variant string containing the rightmost n

characters of a string

* VB6 only
596 Appendix A – Language Elements by Category

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Language
Elem

ents
Variable Declaration
Right$ Function Returns a string containing the rightmost n characters
of a string

RightB Function Returns a variant string containing the rightmost n
bytes of a string

RightB$ Function Returns a string containing the rightmost n bytes of a
string

RTrim Function Returns a variant string with any trailing spaces
removed

RTrim$ Function Returns a string with any trailing spaces removed
Space Function Returns a variant string consisting of the specified

number of spaces
Space$ Function Returns a string consisting of the specified number of

spaces
Split Function* Returns an array of values derived from a single string

and a specified separator
StrComp Function Returns the result of a comparison of two strings
StrConv Function Returns the result of converting a string
String Function Returns a variant string containing a repeated character
String$ Function Returns a string containing a repeated character
StrReverse Function* Returns the reverse of a string
Trim Function Returns a variant string with both leading and trailing

spaces removed
Trim$ Function Returns a string with both leading and trailing spaces

removed
UCase Function Returns a variant string converted to uppercase
UCase$ Function Returns a string converted to uppercase

Variable Declaration
Const Statement Declares a constant
Dim Statement Declares a local variable at procedure level
Friend Statement Declares the procedure or variable to have scope only

in the project in which it is defined
Private Statement Declares the procedure or variable to have scope only

in the module in which it is defined
Public Statement Declares a procedure or variable to have scope in the

module and project in which it is defined and, if
declared in an object module, to have scope outside
the current project

ReDim Statement Declares a dynamic array variable
Type…EndType Statement Declares a user-defined type

* for VB6 only
Variable Declaration 597

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Appendix BLanguage Constants
APPENDIX B

Language Constants

What follows is a series of tables listing the intrinsic enumerated types and their

members. While the bulk of constants are defined in the VBA library, several—all of
which are preceded by an asterisk—are taken from the Microsoft Scripting Runtime
library, and one, the UpdateMode enumerated type, is taken from the Microsoft Data
Binding Collection. Finally, the logging enumerated constants, LogEventTypeCon-
stants and LogModeConstants, which are available in the VB runtime library, are
also included; note that these may be unavailable to VBA hosted within Office or other
applications. Because this book deals solely with the Visual Basic language, constants
relating to controls and other nonlanguage UI elements aren’t listed.

Application Window Style (VbAppWinStyle)

Calendar (VbCalendar)

Constant Value

vbHide 0

vbMaximizedFocus 3

vbMinimizedFocus 2

vbMinimizedNoFocus 6

vbNormalFocus 1

vbNormalNoFocus 4

Constant Value

vbCalGreg 0

vbCalHijri 1
598

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Language
Constants

Day of Week (VbDayOfWeek)
Call Type (VB6 only)
(VbCallType)

Compare Method (VbCompareMethod)

Data Binding Update Mode (VB6 Only)
(UpdateMode)

Date Time Format Styles (VB6 Only)
(VbDateTimeFormat)

Day of Week (VbDayOfWeek)

Constant Value

vbGet 2

vbLet 4

vbMethod 1

vbSet 8

Constant Value

vbBinaryCompare 0

vbDatabaseCompare 2

vbTextCompare 1

Constant Value

vbUpdateWhenPropertyChanges 1

vbUpdateWhenRowChanges 2

vbUsePropertyAttributes 0

Constant Value

vbGeneralDate 0

vbLongDate 1

vbLongTime 3

vbShortDate 2

vbShortTime 4

Constant Value

vbSunday 1

vbMonday 2

vbTuesday 3

vbWednesday 4
Day of Week (VbDayOfWeek) 599

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Drive Type (VB6 only)
Drive Type (VB6 only)
(DriveTypeConst)

File Attributes (VbFileAttribute)

File System Objects File Attributes (VB6 Only)
(FileAttribute)

vbThurday 5

vbFriday 6

vbSaturday 7

vbUseSystemDayOfWeek 0

Constant Value

CDRom 4

Fixed 2

RamDisk 5

Remote 3

Removable 1

Unknown 0

Constant Value

vbAlias 64

vbArchive 32

vbDirectory 16

vbHidden 2

vbNormal 0

vbReadOnly 1

vbSystem 4

vbVolume 8

Constant Value

Alias 64

Archive 32

Compressed 2048

Directory 16

Hidden 2

Normal 0

ReadOnly 1

Constant Value
600 Appendix B – Language Constants

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Language
Constants

Language Constants
First Week of Year (VbFirstWeekOfYear)

IME Status (VbIMEStatus)

Language Constants

System 4

Volume 8

Constant Value

vbFirstFourDays 2

vbFirstFullWeek 3

vbFirstJan1 1

vbUseSystem 0

Constant Value

vbIMEAlphaDbl 7

vbIMEAlphaSng 8

vbIMEDisable 3

vbIMEHiragana 4

vbIMEKatakanaDbl 5

vbIMEKatakanaSng 6

vbIMEModeAlpha 8

vbIMEModeAlphaFull 7

vbIMEModeDisable 3

vbIMEModeHangul 10

vbIMEModeHangulFull 9

vbIMEModeHiragana 4

vbIMEModeKatakana 5

vbIMEModeKatakanaHalf 6

vbIMEModeNoControl 0

vbIMEModeOff 2

vbIMEModeOn 1

vbIMENoOp 0

vbIMEOff 2

vbIMEOn 1

Constant Value

vbBack Chr$(8)

vbCr Chr$(13)

Constant Value
Language Constants 601

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Log Event Type Style (LogEventTypeConstants)
Log Event Type Style (LogEventTypeConstants)

Log Mode Constants (VB6 only)
(LogModeConstants)

Message Box Result (VbMsgBoxResult)

vbCrLf Chr$(10) & Chr$(13)

vbFormFeed Chr$(12)

vbLf Chr$(10)

vbNewLine Platform-specific

vbNullChar Chr$(0)

vbNullString Zero-length string

vbObjectError –2147221504

vbTab Chr$(9)

vbVerticalTab Chr$(11)

Constant Value

vbLogEventTypeError 1

vbLogEventTypeInformation 4

vbLogEventTypeWarning 2

Constant Value

vbLogAuto 0

vbLogOff 1

vbLogOverwrite 16

vbLogThreadID 32

vbLogToFile 2

vbLogToNT 3

Constant Value

vbAbort 3

vbCancel 2

vbIgnore 5

vbNo 7

vbOK 1

vbRetry 4

vbYes 6

Constant Value
602 Appendix B – Language Constants

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Language
Constants

String Conversion (VbStrConv)
Message Box Style (VbMsgBoxStyle)

Special Folder Types (VB6 only)
(SpecialFolderConst)

String Conversion (VbStrConv)

Constant Value

vbAbortRetryIgnore 2

vbApplicationModal 0

vbCritical 16

vbDefaultButton1 0

vbDefaultButton2 256

vbDefaultButton3 512

vbDefaultButton4 768

vbExclamation 48

vbInformation 64

vbMsgBoxHelpButton 16384

vbMsgBoxRight 524288

vbMsgBoxRtlReading 1048576

vbMsgBoxSetForeground 65536

vbOKCancel 1

vbOKOnly 0

vbQuestion 32

vbRetryCancel 5

vbSystemModal 4096

vbYesNo 4

vbYesNoCancel 3

Constant Value

SystemFolder 1

TemporaryFolder 2

WindowsFolder 0

Constant Value

vbFromUnicode 128

vbHiragana 32

vbKatakana 16

vbLowerCase 2

vbNarrow 8

vbProperCase 3
String Conversion (VbStrConv) 603

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

TextStream IOMode (VB6 only)
TextStream IOMode (VB6 only)
(IOMode)

Tristate Constants (VB6 Only)
(VbTriState)

Variant Type (VbVarType)

vbUnicode 64

vbUpperCase 1

vbWide 4

Constant Value

ForAppending 8

ForReading 1

ForWriting 2

Constant Value

vbFalse 0

vbTrue –1

vbUseDefault –2

Constant Value

vbArray 8192

vbBoolean 11

vbByte 17

vbCurrency 6

vbDataObject 13

vbDate 7

vbDecimal 14

vbDouble 5

vbEmpty 0

vbError 10

vbInteger 2

vbLong 3

vbNull 1

vbObject 9

vbSingle 4

vbString 8

Constant Value
604 Appendix B – Language Constants

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Language
Constants

Variant Type (VbVarType)
vbUserDefinedType
(VB6 only)

36

vbVariant 12

Constant Value
Variant Type (VbVarType) 605

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Appendix COperators
APPENDIX C

Operators

There are four groups of operators in VBA: arithmetic, concatenation, comparison,

and logical. You’ll find some to be instantly recognizable and familiar, while others
require a much deeper understanding of mathematics than both the scope of this
book and my knowledge of math are able to offer. However, if you have the need
to use these types of operators, it is likely that you know the mathematics funda-
mentals behind them. We will look at each group of operators in turn before
discussing the order of precedence VBA uses when it encounters more than one
type of operator within an expression.

Arithmetic Operators
+ The addition operator. Used to add numeric expressions, as well as to concat-

enate (join together) two string variables. However, it’s preferable to use the
concatenation operator with strings to eliminate ambiguity.

Example: result = expression1 + expression2

– The subtraction operator. Used to find the difference between two numeric
values or expressions, as well as to denote a negative value. Unlike the addi-
tion operator, it can’t be used with string variables.

Example: result = expression1 - expression2

/ The division operator. Returns a floating-point number.

Example: result = expression1 / expression2

* The multiplication operator. Used to multiply two numerical values.

Example: result = expression1 * expression2

\ The integer division operator. Performs division on two numeric expressions
and returns an integer result (no remainder or decimal places).

Example: result = expression1 \ expression2
606

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Operators
Comparison Operators
Mod
The modulo operator. Performs division on two numeric expressions and
returns only the remainder. If either of the two numbers is a floating-point
number, it’s rounded to an integer value prior to the modulo operation.

Example: result = expression1 Mod expression2

^ The exponentiation operator. Raises a number to the power of the exponent.

Example: result = number ^ exponent

String Operator
There is only one operator for strings, the concatenation operator, represented by
the ampersand symbol, &. It’s used to bind a number of string variables together,
creating one string from two or more individual strings. Any nonstring variable or
expression is converted to a string prior to concatenation. Its syntax is:

result = expression1 & expression2.

Comparison Operators
There are three main comparison operators: < (or less than), > (or greater than),
and = (or equal to). They can be used individually, or any two operators can be
combined with each other. Their general syntax is:

result = expression1 operator expression2

The resulting expression is True (-1), False (0), or Null. A Null results only if
either expression1 or expression2 itself is Null.

What follows is a list of all the comparison operators supported by VBA, as well as
an explanation of the condition required for the comparison to result in True:

> expression1 greater than and not equal to expression2

< expression1 less than and not equal to expression2

<> expression1 not equal to expression2 (less than or greater than)

>= expression1 greater than or equal to expression2

<= expression1 less than or equal to expression2

= expression1 equal to expression2

Comparison operators can be used with both numeric and string variables.
However, if one expression is numeric and the other is a string, the numeric
expression is always “less than” the string expression. If both expression1 and
expression2 are strings, the “greatest” string is the one that is the longest. If the
strings are of equal length, the comparison is case sensitive. (Lowercase letters are
“greater” than their uppercase counterparts.)

The Is Operator

While not strictly a comparison operator, the Is operator determines whether two
object reference variables refer to the same object. Thus, it tests, in some sense, for
the “equality” of two object references. Its syntax is:
Comparison Operators 607

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Logical and Bitwise Operators
result = object1 Is object2

If both object1 and object2 refer to the same object, the result is True; other-
wise, the result is False. You also use the Is operator to determine if an object
variable refers to a valid object. This is done by comparing the object variable to
the special Nothing data type:

If oVar Is Nothing Then

The result is True if the object variable does not hold a reference to an object.

Logical and Bitwise Operators
Logical operators allow you to evaluate one or more expressions and return a
logical value. VBA supports six logical operators: And, Or, Not, Eqv, Imp, and Xor.
These operators also double as bitwise operators. A bitwise comparison examines
each bit position in both expressions and sets or clears the corresponding bit in
the result depending upon the operator used. The result of a bitwise operation is a
numeric value.

And
Performs logical conjunction; that is, it only returns True if both
expression1 and expression2 evaluate to True. If either expression is
False, then the result is False. If either expression is Null, then the result is
Null. Its syntax is:

result = expression1 And expression2

For example:

If x = 5 And y < 7 Then

In this case, the code after the If statement is executed only if the value of x
is five and the value of y is less than seven.

As a bitwise operator, And returns 1 if the compared bits in both expressions
are 1, and returns 0 in all other cases, as shown in the following table:

For example, the result of 15 And 179 is 3, as the following binary representa-
tion shows:

00000011 = 00001111 And 10110011

Or
Performs logical disjunction; that is, if either expression1 or expression2
evaluates to True, or if both expression1 and expression2 evaluate to
True, the result is True. Only if neither expression is True does the Or oper-
ation return False. If either expression is Null, then the result is also Null.
The syntax for the Or operator is:

Bit in expression1 Bit in expression2 Result

0 0 0

0 1 0

1 0 0

1 1 1
608 Appendix C – Operators

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Operators
Logical and Bitwise Operators
result = expression1 Or expression2

For example:

If x = 5 Or y < 7 Then

In this case, the code after the If statement is executed if the value of x is
five or if the value of y is less than seven.

As a bitwise operator, Or is the converse of And. Or returns 0 if the compared
bits in both expressions are 0, and returns 1 in all other cases, as shown in
the following table:

For example, the result of 15 Or 179 is 191, as the following binary represen-
tation shows:

10111111 = 00001111 Or 10110011

Not
Performs logical negation on a single expression; that is, if the expression is
True, the Not operator causes it to become False, while if it is False, the
operator causes its value to become True. If the expression is Null, though,
the result of using the Not operator is still a Null. Its syntax is:

result = Not expression1

For example:

If Not IsNumeric(x) Then

In this example, the code following the If statement is executed if IsNumeric
returns False, indicating that x isn’t a value capable of being represented by
a number.

As a bitwise operator, Not simply reverses the value of the bit, as shown in
the following table:

For example, the result of Not 16 is 239, as the following binary representa-
tion shows:

Not 00010000 = 11101111

Eqv
Performs logical equivalence; that is, it determines whether the value of two
expressions is the same. Eqv returns True when both expressions evaluate to

Bit in expression1 Bit in expression2 Result

0 0 0

0 1 1

1 0 1

1 1 1

expression1 Result

0 1

1 0
Logical and Bitwise Operators 609

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Logical and Bitwise Operators
True or both expressions evaluate to False, but it returns False if either
expression evaluates to True while the other evaluates to False. Its syntax is:

result = expression1 Eqv expression2

As a bitwise operator. Eqv returns 1 if the compared bits in both expressions are
the same, and it returns 0 if they are different, as shown in the following table:

For example, the result of 15 Eqv 179 is 67, as the following binary represen-
tation shows:

01000011 = 00001111 Eqv 10110011

Imp
Performs logical implication, as shown in the following table:

Its syntax is:

result = expression1 Imp expression2

As a bitwise operator, Imp returns 1 if the compared bits in both expressions
are the same or if expression1 is 1; it returns 0 if the two bits are different
and the bit in expression1 is 1, as shown in the following table:

Bit in expression1 Bit in expression2 Result

0 0 1

0 1 0

1 0 0

1 1 1

expression1 expression2 result

True True True

True False False

True Null Null

False True True

False False True

False Null True

Null True True

Null False Null

Null Null Null

Bit in expression1 Bit in expression2 Result

0 0 1

0 1 1

1 0 0

1 1 1
610 Appendix C – Operators

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Operators
Operator Precedence
For example, the result of 15 Imp 179 is 243, as the following binary repre-
sentation shows:

11110011 = 00001111 Imp 10110011

Xor
Performs logical exclusion, which is the converse of Eqv; that is, Xor (an
abbreviation for eXclusive OR) determines whether two expressions are
different. When both expressions are either True or False, then the result is
False. If only one expression is True, the result is True. If either expression
is Null, the result is also Null. Its syntax is:

result = expression1 Xor expression2

As a bitwise operator, Xor returns 1 if the bits being compared are different,
and returns 0 if they are the same, as shown in the following table:

For example, the result of 15 Xor 179 is 188, as the following binary represen-
tation shows:

10111100 = 00001111 Imp 10110011

Operator Precedence
If you include more than one operator in a single line of code, you need to know
the order in which VBA will evaluate them. Otherwise, the results may be
completely different than you intend. The rules that define the order in which a
language handles operators are known as the order of precedence. If the order of
precedence results in operations being evaluated in an order other than the one
you intend—and therefore if the value that results from these operations is
“wrong” from your point of view—you can explicitly override the order of prece-
dence through the use of parentheses. However, the order of precedence still
applies to multiple operators within parentheses.

When a single line of code includes operators from more than one category, they
are evaluated in the following order:

• Arithmetic operators

• Concatenation operators

• Comparison operators

• Logical operators

Within each category of operators except for the single concatenation operator,
there is also an order of precedence. If multiple comparison operators appear in a

Bit in expression1 Bit in expression2 Result

0 0 0

0 1 1

1 0 1

1 1 0
Operator Precedence 611

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Operator Precedence
single line of code, they are evaluated from left to right. The order of precedence
of arithmetic operators is as follows:

• Exponentiation (^)

• Division and multiplication (/, *) (no order of precedence between the two)

• Integer division (\)

• Modulo arithmetic (Mod)

• Addition and subtraction (+, –) (no order of precedence between the two)

If the same arithmetic operator is used multiple times in a single line of code, the
operators are evaluated from left to right.

The order of precedence of logical operators is:

• Not

• And

• Or

• Xor

• Eqv

• Imp

If the same arithmetic or logical operator is used multiple times in a single line of
code, the operators are evaluated from left to right.
612 Appendix C – Operators

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Appendix DWhat’s New in VB6?
W
hi
APPENDIX D

What’s New in VB6?

At first sight, Visual Basic 6 may not appear to be the revolution of the VB
 at’s New
n VB6?
language and development environment that Versions 4 and 5 were. However,
when you get under the surface of VB6, you will find some very powerful
enhancements and new language features that make the upgrade worthwhile from
the viewpoint of productivity and of your ability to create ever more powerful
applications that take advantage of new technologies.

Version 6 uses the same development environment as Version 5 and consolidates
the major advances made in Versions 4 and 5. This means that you can consoli-
date your knowledge of and expertise with programming in the new object style
of VB without having too much new stuff to learn.

In keeping with the rest of the book, this section details the new language
features. Of course there are lots of other new features in VB6 that aren’t specifi-
cally concerned with the language (like the ability to add new controls to a form
at runtime) that are outside the scope of this book.

A final note: VB6 is every bit as stable and well-behaved as VB5—something that’s
always a worry when it comes time to upgrade. While writing this book, I’ve used
all the prerelease and release candidate versions of VB6, and enjoyed every
minute. Unfortunately, I can’t say the same for the new VB6 documentation,
which—like MSDN—has been moved to a very underdeveloped HTML Help
environment.

The major changes in the VB and VBA languages are as follows.

Create DataSource and Data
Consumer Classes
A data source class is a VB class module that exposes an interface that can be
used by the new BindingCollection object to bind data from a property of the class
to a property of a form control. A Data Source Class can use any form of external
613

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Functions Can Return Arrays
data: a text file, a directory structure, or an ADO recordset are all examples of data
that can be accessed via a VB data source class. A number of new properties have
been added to VB class modules, one of which is the DataSourceBehavior prop-
erty, which is set to vbDataSource to enable the class to be used as a data
source.

A data consumer class is a VB class module that is bound to a form control that
acts as a data source using the BindingCollection object. Another of the new prop-
erties that has been added to VB class modules is the DataBindingBehavior
property, which is set to either vbSimpleBound or vbComplexBound to enable the
class to be used as a data consumer.

For information on data source and data consumer classes, see the Data Binding
Objects entry in Chapter 7, The Language Reference.

Functions Can Return Arrays
Functions and property procedures can now return arrays of any type. Previous
versions of VB allowed you to return a variant data type containing an array, but
now you can return a strongly typed array. For example:

Dim sArray() As String
Dim oCustomers As New Customers
sArray() = oCustomers.Names

Public Property Get Names() As String()
 Dim TempArray() As String
 '...code to get all the names of the customers
 Names = TempArray()
End Function

For information, see the entry for the Function statement in Chapter 7.

Dynamic Arrays Can Be Assigned
As part of the added functionality to allow functions to return arrays, you can now
also place a dynamic array on the left side of an assignment (as shown in the
example above). Fixed-size arrays still can’t be used on the left side of an
assignment.

Remote User-Defined Types
User-defined types (UDTs) have always been a powerful part of VB program-
ming. Their use, however, diminished slightly with the introduction of the
Collection object in VB4. VB6 has redressed the balance by allowing you to define
a public property or function that returns a UDT, or to use a UDT as an argument
in a public function. This means that you can pass around strongly typed complex
data structures, as opposed to passing around objects.

To go along with this change, UDTs can now also be used with the TypeName
function and the TypeOf operator, and a new variable type constant, vbUserDe-
finedType, has also been added to the language.
614 Appendix D – What’s New in VB6?

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

W
hat’s New
in VB6?

Enhanced CreateObject Function
Note that because the use of remote UDTs has required a change to the under-
lying COM/Automation structure, to use remote UDTs you must apply NT4 service
pack 4, the latest version of DCOM95 (DCOM98), or be running on either NT5 or
Windows 98.

For information on how to use remote UDTs, see the Type Statement entry in
Chapter 7 and the section “Implementing a User-Defined Type Property” in
Chapter 4, Class Modules.

New Functions
Several new string-manipulation functions have been introduced into VB6 (or
rather, they have been borrowed from VBScript). The functions were originally
required by the web programming community, and since VB6 extends Visual Basic
further into the web programming arena (with DHTML projects, IIS projects, and
web classes), these functions are now required in VB6 as well. But even if you’re
not planning on doing any web work, you’ll find loads of uses for these new func-
tions. The new string manipulation functions are:

• Filter

• FormatCurrency

• FormatDateTime

• FormatNumber

• FormatPercent

• InStrRev

• Join

• Replace

• Split

• StrReverse

The CallByName function is one of only two really new functions in the VB
language. CallByName allows you to call a function by using a string variable to
specify the name of the function and a ParamArray to pass the parameters.

A new function that could possibly be placed in the “miscellaneous improve-
ments” category is MonthName, a function that returns the name of the month
from a given month number.

For information, see the entry for each new function in Chapter 7.

Enhanced CreateObject Function
The CreateObject function has had a major enhancement with an additional string
parameter that allows you to specify the name of the server where the object
resides. If you’re writing client-server applications with remote servers, you should
find this a powerful addition to your armory, as this short example demonstrates:

Dim sMainServer As String
Dim sBackUpServer As String
Enhanced CreateObject Function 615

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

New Object Models
sMainServer = "NTPROD1"
sBackUpServer = "NTPROD2"

If IsOnline(sMainServer) Then
 CreateObject("Sales.Customer",sMainServer)
Else
 CreateObject("Sales.Customer",sBackUpServer)
End If

For information, see the CreateObject function entry in Chapter 7.

New Object Models
Visual Basic is becoming a more object-oriented language, and much of the new
functionality available to VB6 programmers comes in the form of object models
that can be referenced and used within VB.

Data binding and formatting
One of the most important additions to VB6 is the data binding functionality
provided by the BindingCollection and Binding objects. The data bindings
object model allows you to bind a field of a data source to any property of
any form control. It’s more powerful and affords the developer more control
than the previous data controls in Visual Basic.

The new data binding object model includes the Data Format object, which
allows you to seamlessly format data from the data source before displaying it
in the control, and then unformat the data before it’s written to the data
source.

For information, see the entries for Data Binding object and Data Format
object in Chapter 7.

Dictionary object
A member of the Scripting Runtime Library, the Dictionary object is a much-
enhanced version of the Collection object. It’s faster in execution and easier to
use.

For details, see the Dictionary object entry in Chapter 7.

File System objects
Another member of the Scripting Runtime Library, the File System objects
provide a powerful new model representing all connected drives and the
folders and files in them. The model is well-designed and is therefore straight-
forward and intuitive to use. Any drive of any type that is connected to a
system, including networked and CD-ROM drives, is included in the Drives
collection.

The File System Folders collection and Folder objects give you complete
control when moving, adding, and deleting folders and their contents, unlike
the built-in VB functions that require you to empty folders prior to deletion.
You can also determine and return special Windows folders such as System32.

The Files collection and File objects again allow you to move, copy, and
delete files, and provide useful properties to both set and return a file’s
attributes.

For full details, see the File System object entry in Chapter 7.
616 Appendix D – What’s New in VB6?

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Index

ActiveX components
Symbols
& (concatenation) operator, 607
< (less than) operator, 607
< > (not equal to) operator, 607
<= (less than or equal to) operator, 607
> (greater than), 607
>= (greater than or equal to) operator,

607
* (multiplication) operator, 606
\ (integer division) operator, 606
^ (exponentiation) operator, 607
= (equal to) operator, 607
#Const directive, 113–117
#If...Then...#Else directive, 117–119
- (subtraction) operator, 606
+ (addition) operator, 606
/ (division) operator, 606

A
Abs function, 119–120
absolute pathnames, 294–295
absolute values, 119–120
Access Basic, 6
accessing file data, 350–352, 376–379,

405–406, 552–553
Lock/Unlock statements with,

415–417, 567–568
actions (user), launching VB at, 14, 16
Activate event, 18

binding, performance and, 48, 76
creating, 70–75
creating objects, 177–180
in-process DLLs, 75

passing variables, 51
out-of-process EXEs, 75
programming statements (list), 592
references to, 358–360
registering and unregistering, 75
registration information, 356–358
server errors, handling, 101–104
Sub Main procedure, 19
terminating, 24

Add method
BindingConnection object, 136–138
Collection object, 49, 83, 167–168
Dictionary object, 224–225
Folders collection object, 319–320

adding (see Add method)
addition (+) operator, 606
addressing objects (see object variables)
AddressOf operator, 121–123
allocating space for variables, 232–236
And operator, 608
annuities

future values of, 349–350
interest payments, 386–388
interest rates, 484–486
number of periods for, 436–438
617

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

annuities (continued)
payments for, 447–448, 449–450
present values, 479–481

ANSI character codes, 129–132
antilogarithms, 269
anti-tangents, 132–133
API functions, passing addresses to,

121–123
AppActivate statement, 123–125
Application property, 83
applications

customizing with VBA, 8
launching another, 518–520
setting focus to, 123–125

applications (see also VB programs)
arguments

named, 112
passing to methods, 69

arithmetic operators, 606–607
Array function, 40, 125–129
arrays, 39–45

Choose function instead of, 156–158
concatenating elements of, 396–397
determining bounds, 42, 45, 93,

398–399, 564–565
filtering elements from, 308–310
IsArray function, 389–390
of parameters, 52
parsing strings into elements,

524–525
populating, 40
resetting element values, 252
setting bounds, 43, 444
variant arrays, creating, 125–129
VB6 features, 614

Asc, AscB, AscW functions, 129–132
ASCII codes, converting to characters,

159–160
Assert method (Debug), 211–212
asynchronicity

ActiveX EXE functions, 70
RaiseEvent statement, 68

Atn function, 132–133
attributes, file/folder

FileAttr function, 276–278
GetAttr function, 355
SetAttr function, 516–517

audio beep, creating, 133–134
AutoClose procedure (Word), 14

AutoExec procedure (Word), 13
automation, 3–4, 77–90

Collection objects and, 83–84
creating objects, 177–180
examples of, 85–89
externally createable objects, 81
performance tips, 89–90
reading object model, 79–81
trapping events, 84, 576–578

AutoOpen procedure (Word), 13

B
base pathnames, 295
Beep statement, 133–134
binding (see data binding)
Binding object, 139–140, 584, 616
BindingCollection object, 134–139, 584,

616
bitwise operators, 608–611
Boolean data type, 26

converting to, 31, 146
bounds, array, 40

determining, 42, 45, 93, 398–399,
564–565

setting, 43, 444
BuildPath method (FileSystemObject),

282–283
built-in constants, 53, 598–605

enumerated constants vs., 62
Button parameter (MsgBox), 104
buttons on toolbars, VB programs as

Microsoft Excel, 16
Microsoft Word, 15

ByRef keyword, 50–52
events and data validation, 67
passing arguments to methods, 69

Byte data type, 27
converting to, 31, 147

ByVal keyword, 51

C
caching object references, 89
calendar (see date and time)
Calendar property, 140–141
Call statement, 23, 141–142
callback functions, 121
CallByName function, 142–146
618 Index

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

calling procedures, 23
case conversion (strings), 399–400, 565
CBool function, 31, 146
CByte function, 31, 147
CCur function, 32, 148–149
CDate function, 31, 149–151
CDbl function, 32, 151–152
CDec function, 31, 152–153
character variant data type, 30
characters

case conversion, 399–400, 565
converting character codes to,

159–160
getting ANSI/Unicode codes, 129–132
ignoring when reading, 553
repeating into strings, 537–538
(see also strings)

ChDir statement, 153–154
ChDrive statement, 155–156
Choose function, 156–158
Chr, Chr$, ChrB, ChrB$, ChrW

functions, 159–160
CInt function, 32, 160–161
class constructor/destructor (see

Initialize event; Terminate event)
class methods

calling from event handlers, 20–21
custom, 68–69

class modules, 54–76
creating ActiveX components, 70–75
events of, 63–68
private, 446
properties for, 70–72

classes, setting ability to save, 447
Clear method

BindingCollection object, 138
Err object, 254–255

Clear method (Err), 100
clearing (see deleting)
CLng function, 32, 161–162
Close method (TextStream), 551
Close statement, 162–163
closing files, 162–163, 491, 551
cmdWordDoc_Click function

(example), 85
code (see program code)
code modules

class modules vs., 54
using at startup, 18

code reuse, 54
collection class, implementing For

Each...Next, 73
Collection object, 45, 49, 83–84,

164–173, 583
deleting members, 172–173
Dictionary objects vs. (ActiveX), 73
Exists property for, 74
mass assignation functions, 62
referencing members of, 83
stdDataFormats collection object, 531
(see also Dictionary object)

Collection objects, custom
BindingCollection object, 134–139,

584
Drives collection object, 244–245, 586
Files collection object, 281–282, 588
Folders collection object, 318–319,

587
Printers collection object, 452–460

colors
QBColor function, 481–482
RGB function, 493–495

Command function, 173–175
command-line arguments parsing, 174
commands, intercepting (Microsoft

Word), 14
comments in program code, 488–489
CompareMode property (Dictionary),

225–226
comparing strings, 403–405, 445,

533–535
comparison operators, 607
compiler constants, defining, 113–117
conditional execution

If...Then...Else statement, 366–370
#If...Then...#Else directive, 117–119
IIf function, 370–371
Select Case statement, 506–508
Switch statement, 544–545
While...Wend statement, 573–574
(see also flow control)

#Const directive, 113–117
Const statement, 175–176
constants

declaring, 37–39, 175–176
enumerated constants, 62–63
intrinsic constants, 53, 598–605

constructor (see Initialize event)
Index 619

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

converting between data types, 31–33,
146–154, 583

converting strings, 533, 535–537, 558
(see also strings)

Copy method
File object, 271–272
Folder object, 314–315

CopyFile method (FileSystemObject),
283–284

CopyFolder method (FileSystemObject),
285–286

copying files, 271–272, 278–279,
283–284

copying folders, 285–286
Cos function, 176–177
cosines, 176–177
Count method (Collection), 49, 83,

168–169
Count property (Dictionary), 226
counting items (see Count method)
CreateFolder method

(FileSystemObject), 286–287
CreateObject function, 78, 177–180

VB6 enhancements, 615
CreateTextFile method

FileSystemObject object, 287–289
Folder object, 315–316

creating (see Add method)
CSng function, 32, 180–181
CStr function, 32, 181–182
CurDir, CurDir$ functions, 182
Currency data type, 27

converting to, 32, 148–149
custom

applications, VBA for, 8
class methods, 68–69
events, 66–68, 266–268
Exists property, 74
procedures, 21–23

CVar function, 32, 182–183
CVDate function, 151, 183
CVErr function, 183–185

D
data binding, 47–50, 77–79

Binding object, 139–140, 584, 616
BindingCollection object, 134–139,

584, 616

Data Binding objects, 185–192, 584
DataBindingBehavior property, 193
email within VB (example), 86–88
performance, 48, 89
stdDataFormat object, 528–531
stdDataFormats collection object, 531

data consumer classes, 613
Data Format object, 616
data formatting

Data Format objects, 192–193
Format, Format$ functions, 325–334
FormatCurrency, FormatNumber,

FormatPercent functions,
334–335

FormatDateTime function, 336–337
functions for (list), 590
stdDataFormat object, 528–531
stdDataFormats collection object, 531

data source classes, 613
data types, 26–37

checking, 92
converting between (VBA), 31–33,

146–154, 583
determining, 569–571
enumerated, 246–248
enumerated constants, 63
nothing, handling, 38
Property Get procedure and, 59
UDTs (user-defined types), 30, 45–46

properties as, 59–61
using default in declarations, 218–220
Variant (see Variant data type)

data validation, 56
Let and custom events, 58
Property Let and custom events, 67

DataBindingBehavior property, 71
DataSourceBehavior property, 71, 194
date and time

CDate function, 31
Date data type, 27
vbCalendar type, 598
vbDateTimeFormat type, 599
vbDayOfWeek type, 599
vbFirstWeekOfYear type, 601

date and time functions (list), 584
Date data type, 31, 149–151
Date statement, 195–196
Date, Date$ functions, 194–195
DateAdd function, 196–198
620 Index

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

DateDiff function, 198–201
DatePart function, 201–203
DateSerial function, 203–204
DateValue function, 205–208
Day function, 208–209
DDB function, 209–210
Deactivate event, 25
Debug object, 211–214
Decimal data type, 27

converting to, 31, 152–153
Declare statement, 214–218
declaring/defining

arrays (see arrays)
conditional compiler constants,

113–117
custom events, 67, 266–268
functions, 338–349
object variables, 67
object variables as Nothing, 104
references to external procedures,

214–218
storage space for variables, 232–236
sub procedures, 539–544
UDTs, 560–563
using default data types, 218–220
variables, 597
variables and constants, 37–39,

175–176
enumerated constants, 63, 246–248
errors when undefined, 445
object variables, 48

variant arrays, 125–129
Def... statements, 218–220
Delete method

File object, 272–273
Folder object, 316–317

DeleteFile method (FileSystemObject),
289–290

DeleteFolder method
(FileSystemObject), 290–291

DeleteSetting statement, 220–222
deleting (clearing)

Binding objects from
BindingCollection, 138

Collection object members, 172–173
Dictionary keys and data, 231–232
Err object properties, 254–255
files, 272–273, 289–290, 397–398
folders, 290–291, 316–317, 496–498

forms from memory, 566–567
Registry keys and entries, 220–222
whitespace from strings, 420–421,

501, 559
depreciation, 209–210, 521–522,

545–546
Description property (Err), 100,

255–256
destructor (see Terminate event)
dialog boxes, 379–381, 429–433
Dictionary object, 222–232, 585, 616
Dictionary objects

Collection objects vs. (ActiveX), 73
Dim statement, 37, 47, 232–236
dimensioning arrays (see arrays)
Dir, Dir$ functions, 236–238
directory, working, 153–154
disk drives (see drives)
division (/) operator, 606
division (\) operator (integer), 606
DLLs (see in-process ActiveX DLLs)
Do...Loop statement, 239–241
Document_Open event (Word), 14
documentation on VB/VBA, viii
documents, running programs when

loading, 13, 16
DoEvents function, 241–242
Double data type, 28

converting to, 32, 151–152
double-declining balance depreciation,

209–210
drives

ChDrive statement, 155–156
Drive object, 242–244, 587
DriveExists method

(FileSystemObject), 291–292
Drives collection object, 244–245, 586
Drives property (FileSystemObject),

292
DriveTypeConst type, 600
GetDrive method (FileSystemObject),

295–296
GetDriveName method

(FileSystemObject), 297
working, changing, 155–156

dynamic arrays, 40–43
assigning, 614
multidimensional, 44
redimensioning, 486–488
Index 621

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

E
early binding, 48, 76, 78, 89

(see also data binding)
elements, array, 40

concatenating, 396–397
filtering out of arrays, 308–310
parsing strings into, 524–525
resetting values of, 252

email within VB (example), 86–88
Empty subtype (Variant), 34
encapsulation, 54
end of file, 249–252
End... statements, 25, 245–246
ending VB programs, 23–25
Enum statement, 63, 246–248
enumerated constants, 62–63, 246–248

intrinsic (built-in), 598–605
Environ, Environ$ functions, 248–249
environment variables, values of,

248–249
EOF function, 249–252
equal to (=) operator, 607
Eqv operator, 609
Erase statement, 252
Err object, 100, 253–264, 585
Error subtype (Variant), 34
errors, 91–107

in ActiveX servers, 101–104
checklist for handling, 92–95
CVErr function, 183–185
Err object, 100, 253–264, 585
error messages to users, 104
Error statement, 265–266
Error, Error$ functions, 265
handling in ActiveX components, 73
Help to prevent, 104
IsError function, 391–392
logging, 106
On Error statement, 440–442
in procedures, 95–100
for undefined variables, 445

event-driven programs, 11
events, 19

Automation Server, trapping, 84,
576–578

calling functions/methods upon,
20–21

of class modules, 63–68
custom, 66–68, 266–268

DoEvents function, 241–242
errors (see errors)
event handlers, defined, 64
Event statement, 67, 266–268
explicitly creating, 23
firing (see firing events)
keyboard key presses

assigning VB macros to, 15, 17
simulating with SendKeys, 508–511
user actions, launching VB

programs at, 14, 16
Excel (Microsoft), 6

running VBA modules, 15–17
VB output to (example), 88

executables (VB), running, 17
execution flow, 23, 594
EXEs (see out-of-process ActiveX EXEs)
existence check

Dictionary keys, 226–227
drives, 291–292
files, 292–293
folders, 293–294
IsEmpty function, 390–391
IsMissing function, 393
IsNull function, 394

Exists method (Dictionary), 226–227
Exists property, 74
Exit statement, 268–269
Exit Sub statement, 99
Exp function, 269
exponentiation (^) operator, 607
extension, filename, 297–298
externally createable objects, 81

F
FileExists method (FileSystemObject),

292–293
filename extensions, 297–298
files

accessing data from, 350–352,
376–379, 405–406, 552–553

Lock/Unlock statements with,
415–417, 567–568

CopyFile method (FileSystemObject),
283–284

copying (see copying files)
CreateTextFile method

(FileSystemObject), 287–289
622 Index

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CreateTextFile method (Folder),
315–316

Delete method (Folder), 316–317
DeleteFile method

(FileSystemObject), 289–290
deleting, 272–273, 289–290, 397–398
Dir, Dir$ functions, 236–238
EOF function, 249–252
File object, 270–275, 588, 616
File System Folders collection, 616
File System object, 616
File System object model, 275–276
FileAttr function, 276–278
FileAttribute type, 600
FileCopy statement, 278–279
FileDateTime function, 279–280
FileExists method (FileSystemObject),

292–293
FileLen function, 280–281
Files collection object, 281–282, 588,

616
FileSystemObject object, 282–308,

586
FreeFile function, 337–338
GetAttr function, 355
GetExtensionName method

(FileSystemObject), 297–298
GetFile method (FileSystemObject),

298–299
GetFileName method

(FileSystemObject), 299–300
GetTempName method

(FileSystemObject), 303
handling (functions/statements list),

589
help files, 258–259
Move method (Folder), 317–318
MoveFile method (FileSystemObject),

303–304
opening/closing, 162–163, 274–275,

442–444, 491, 551
OpenTextFile method

(FileSystemObject), 306–308
read/write position, 415, 504–505
SetAttr function, 516–517
vbFileAttribute type, 600
width of, 574

writing to, 478–479, 554, 554–555,
578–579

(see also folders)
Filter function, 308–310
finances

CCur function, 32
Currency data type, 27
FormatCurrency function, 334–335
functions for (list), 589

firing events
custom events, 67, 482–483
Initialize event, 64
Terminate event, 65

first week of the year, 202
Fix function, 310–311
fixed arrays, 40
fixed-length strings, 29
floating point numbers

converting to, 32, 151–152, 161–162,
180–181

data types for, 28
flow control, 23, 594
focus, setting to application, 123–125
folders

Add method (Folders), 319–320
Copy method (Folder), 314–315
CopyFolder method

(FileSystemObject), 285–286
CreateFolder method

(FileSystemObject), 286–287
CreateTextFile method (Folder),

316–317
creating new, 427
DeleteFolder method

(FileSystemObject), 290–291
deleting, 290–291, 316–317, 496–498
Dir, Dir$ functions, 236–238
File System Folders collection, 616
Folder object, 311–318, 587
FolderExists method

(FileSystemObject), 293–294
Folders collection object, 318–319,

587
Folders object, 616
GetAttr function, 355
GetFolder method

(FileSystemObject), 300–301
Index 623

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

folders (continued)
GetParentFolderName method

(FileSystemObject), 301
GetSpecialFolder method

(FileSystemObject), 302–303
GetTempName method

(FileSystemObject), 303
handling (functions/statements list),

589
Move method (Folder), 317–318
MoveFolder method

(FileSystemObject), 304–306
SetAttr function, 516–517
SpecialFolderConst type, 603
(see also files)

For Each...Next loops, 322–325
in ActiveX components, 72
implementing in custom collection

objects, 73
iterating through collections, 84

For...Next statement, 320–322
Format, Format$ functions, 325–334
FormatCurrency, FormatNumber,

FormatPercent functions,
334–335

FormatDateTime function, 336–337
formatting (see data formatting)
forms

binding controls (see data binding)
defining properties in, 56
Form Load event, 17–18
loading into memory, 406–408
removing from memory, 566–567
running at startup, 17–18
unloading from memory, 24

FreeFile function, 337–338
Friend keyword, 47
friend scope

class methods, 69
properties, 59
variables, 47

functions, 22, 112
Call statement, 141–142
calling, 20–21, 23
custom class methods, 68–69
defining (Function statement),

338–349
mass assignation functions, 62

new for VB6 (list), 615
returning arrays, 614
strongly typed, variants and, 37
sub procedures vs., 68, 94–95
(see also procedures)

FV function, 349–350

G
Get property procedure, 23, 59,

464–468
Get statement, 350–352
GetAbsolutePathName method

(FileSystemObject), 294–295
GetAllSettings function, 352–354
GetAttr function, 355
GetAutoServerSettings function,

356–358
GetBaseName method

(FileSystemObject), 295
GetDrive method (FileSystemObject),

295–296
GetDriveName method

(FileSystemObject), 297
GetExtensionName method

(FileSystemObject), 297–298
GetFile method (FileSystemObject),

298–299
GetFileName method

(FileSystemObject), 299–300
GetFolder method (FileSystemObject),

300–301
GetObject function, 78, 358–360
GetParentFolderName method

(FileSystemObject), 301
GetSetting function, 361–363
GetSpecialFolder method

(FileSystemObject), 302–303
GetTempName method

(FileSystemObject), 303
global template file (Word), 12
GlobalMultiUse value (Instancing), 70
GlobalSingleUse value (Instancing), 71
GoSub...Return statement, 363–364
Goto statement, 364–365
greater than (>) operator, 607
greater than or equal to (>=) operator,

607
624 Index

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

H
Help button in message boxes, 104
help for VB/VBA, viii
HelpContext property (Err), 100,

256–258
HelpFile property (Err), 100, 258–259
Hex, Hex$ functions, 365–366
hexadecimal numbers, 365–366
history of VBA, 6
Hour function, 366

I
If...Then...Else statement, 366–370
#If...Then...#Else directive, 117–119
IIf function, 370–371
IME (input method editor)

IMEStatus function, 371–373
vbIMEStatus type, 601

Immediate window (Debug object),
211–214

Imp operator, 610
Implements statement, 373–375
implicit type conversion, 32
indexes of array elements, 40
information functions (list), 590
Initialize event, 18, 64, 375–376
in-process ActiveX DLLs

binding, performance and, 48, 76
creating, 70, 72–75
error handling, 101–104
as out-of-process EXEs, 75
passing variables, 51
registering and unregistering, 75
Sub Main procedure, 19
terminating, 24

Input, Input$, InputB, InputB$
functions, 376–377

Input # Statement, 377–379
input method editor (see IME)
InputBox function, 379–381
Instancing property, 70, 381–382
InStr, InStrB functions, 382–383
InstrRev function, 384–385
Int function, 385–386
Integer data type, 28

converting to, 32, 160–161
integer division (\) operator, 606
IntelliSense technology, 80

interactive functions (list), 591
interest payments, 386–388
interest rates, 484–486
internal rate of return, 388–389,

426–427
intrinsic constants, 53, 598–605

enumerated constants vs., 62
inverse tangents, 132–133
IOMode type, 604
IPmt function, 386–388
IRR function, 388–389
Is operator, 607
IsArray function, 389–390
IsDate function, 390
IsEmpty function, 390–391
IsError function, 391–392
IsMissing function, 393
IsNull function, 394
IsNumeric function, 394–395
IsObject function, 395–396
Item method (Collection), 83, 169–171
Item object (Collection), 49
Item property (Dictionary), 227–229
Items method (Dictionary), 229
iterations (see flow control)

J
Join function, 396–397

K
Key property (Dictionary), 229–230
keyboard key presses

assigning VB macros to, 15, 17
simulating with SendKeys, 508–511

Keys method (Dictionary), 231
Kill statement, 397–398

L
language constants, 601
LastDLLErr property (Err), 100
LastDLLError property (Err), 259–261
last-modification time (files), 279–280
late binding, 48, 76, 78

email within VB (example), 86–88
(see also data binding)

launching VB programs, 12–19
Index 625

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

LBound function, 42, 45, 93, 398–399
LCase, LCase$ functions, 399–400
leading spaces, deleting, 420
Left, Left$, LeftB, LeftB$ functions,

400–401
Len, LenB functions, 401–403
length, file, 280–281, 417–418, 574
length, string, 401–403
less than (<) operator, 607
less than or equal to (<=) operator, 607
Let property procedure, 23, 58, 468–471

mass assignation functions vs., 62
lifetime, variable, 46–47
Like operator, 403–405
Line Input# statement, 405–406
Load event (forms), 17–18
Load statement, 406–408
loading documents, running programs

when
Microsoft Excel, 16
Microsoft Word, 13

LoadResData function, 408–410
LoadResPicture function, 411–412
LoadResString function, 412–414
Loc function, 414–415
locally caching object references, 89
Lock statement, 415–417
LOF function, 417–418
Log function, 418–419
logarithms, 418–419
LogEvent method (App), 106
logging

error events, 106
LogEventTypeConstants type, 602
LogModeConstants type, 602

logical operators, 608–611
LogMode property (App), 106
LogPath property (App), 106
Long data type, 28

converting to, 32, 161–162
loops (see flow control)
LSet statement, 419–420
LTrim, LTrim$ functions, 420–421

M
macro recorders, 90
macros, launching VB scripts as, 14, 16
macros, VBA vs., 5

mail within VB (example), 86–88
MAPI server, 86
mass assignation functions, 62
mathematics functions (list), 591

date-related, 196–201
Me operator, 421–422
message boxes

vbMsgBoxResult type, 602
vbMsgBoxStyle type, 603

methods (see class methods)
Microsoft Access, 6
Microsoft Excel, 6

running VBA modules, 15–17
VB output to (example), 88

Microsoft IntelliSense technology, 80
Microsoft Office 97, 7

object models, 10
Microsoft Project, 6
Microsoft Transaction Server (MTS)

ActiveX components and, 75
MTSTransactionMode property, 72,

433–434
Microsoft Word, 6

running VBA modules, 12–15
VB report writer (example), 85

Mid, Mid$, MidB, MidB$ functions,
422–424

Mid, MidB statements, 424–425
Minute function, 425–426
MIRR function, 426–427
MkDir statement, 427
Mod operator, 607
modification times (files), 279–280
modified internal rate of return,

426–427
module-level (private) scope

properties, 59
variables, 47

modules (see class modules; code
modules)

money (see finances)
Month function, 428
MonthName function, 428
Move method

File object, 273–274
Folder object, 317–318

MoveFile method (FileSystemObject),
303–304
626 Index

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

MoveFolder method (FileSystemObject),
304–306

moving files, 273–274
moving folders, 317–318
MsgBox function, 104, 429–433
MTS (Microsoft Transaction Server)

ActiveX components and, 75
MTSTransactionMode property, 72,

433–434
multidimensional arrays, 43–45
multiplication (*) operator, 606
MultiUse value (Instancing), 71

N
Name property, 434
Name statement, 434
names

absolute pathnames, 294–295
base pathnames, 295
calling procedures by, 142–146
classes, modules, projects, 434
data types, 563–564
drives, 297
filename extensions, 297–298
files, 299–300, 434
folders, 301, 303, 434
function arguments, 112
months, 428
weekdays, 572–573

natural logarithms, 418–419
navigating through object model, 82–83
negativity of numbers, 517–518
net present value, 438–439
normal.dot file (Word), 12
not equal to (< >) operator, 607
Not operator, 609
NotAnMTSObject value

(MTSTransactionMode), 72
Nothing keyword, 39

setting all object variables as, 104
Terminate event and, 65

nothing, handling, 38, 93
NotPersistable value (Persistable), 72
NoTransactions value

(MTSTransactionMode), 72
Now function, 435
NPer function, 436–438
NPV function, 438–439

null
IsNull function, 394
null data, 38

trapping, 93
Null keyword, 39
Null subtype (Variant), 34

Number property (Err), 100, 261–262
numeric variant data type, 30

O
Object Browser, 79
Object data type, 28, 48
object models, 8–10, 77–83, 113

binding (see data binding)
Collections (see Collection object)
externally createable objects, 81
File System object model, 275–276
formatting (see data formatting)
navigating through, 82–83
new for VB6, 616
polymorphism, 373–375
reading, 79–81
references to, 77–79

object references (see references)
object variables, 28, 77–79

binding and, 47–50
declaring for events, 67
Nothing keyword, 39

Terminate event and, 65
setting all as Nothing, 104
verifying object creation, 92

objects
automation, creating, 177–180
checking if created, 92
collections of (see Collection objects)
externally createable, 81
GetObject function, 358–360
IsObject function, 395–396
returning by properties, 82

Oct, Oct$ functions, 439
octal numbers, 439
Office 97, 7

object models, 10
OLE automation, 3–4, 77–90

Collection objects and, 83–84
creating objects, 177–180
examples of, 85–89
externally createable objects, 81
Index 627

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

OLE automation (continued)
performance tips, 89–90
reading object model, 79–81
trapping events, 84, 576–578

On Error statement, 97–99, 440–442
On Error Resume [Next], 98–99

online help with VB, viii
Open statement, 442–444
OpenAsTextStream method (File),

274–275
opening files, 274–275, 442–444
OpenTextFile method

(FileSystemObject), 306–308
operators, 113, 606–612

precedence, 611
Option Base statement, 43, 444
Option Compare statement, 445
Option Explicit statement, 38, 91, 445
Option Private Module statement, 446
Optional keyword, 52
Or operator, 608
order of precedence (operators), 611
out-of-process ActiveX EXEs

binding, performance and, 48, 76
creating, 70, 72–75
error handling, 101–104
in-process DLLs as, 75
Sub Main procedure, 19
terminating, 24

output from VB programs
printing with Word (example), 85
sending to Excel (example), 88

OutputToExcel function (example), 88

P
ParamArray keyword, 52
parameter arrays, 52
parameters, passing, 50–53
parent folders, 301
Parent property, 83
parsing command-line arguments, 174
passing arguments/parameters, 50–53

to custom methods, 69
paths

absolute pathnames, 294–295
base pathnames, 295
changing working directory, 153–154

current path, 182
determining for files/folders, 282–283

performance
automation, 89–90
early and late binding, 48, 76, 89
error handling, 91–107
mass assignation functions, 62
ParamArrays, 53
passing parameters, 51
property calls, 61
ReDim Preserve statement, 41
variants and, 33, 36–37

Persistable property, 72, 447
Personal.xls worksheet (Excel), 15
Picture property, 411
Pmt function, 447–448
pointer for file read/write, 415, 504–505
polymorphism, 373–375
populating arrays, 40
PPmt function, 449–450
precedence, operator, 611
present values of annuities, 479–481
Preserve keyword, 41
principal payments, 449–450
Print method (Debug), 212–214
printing, 7

error messages, 104
Print # statement, 450–452
Printer object, 452–460, 592–594
Printers collection object, 452–460
VB output with Word (example), 85

Private member variables (properties),
57

assigning, 59
private scope

class methods, 69
class modules, 446
properties, 59
variables, 47

Private statement, 37, 47, 460–463
Private value (Instancing), 71
procedure-level scope, 46
procedures

Call statement, 141–142
calling, 23
calling by name, 142–146
custom, 21–23
error handling, 95–100
628 Index

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

external, declaring references to,
214–218

functions (see functions)
GoSub...Return statement, 363–364
passing parameters, 50–53
property procedures, 22

validating data, 56
Return statement, 493
sub procedures (subs), 22

program code
cleaning with Terminate, 65
comments (remarks) in, 488–489
storing, 12, 15

programs (see VB programs)
properties, 55–62

assigning object references to,
512–515

binding (see data binding)
calling, performance and, 61
class modules, 70–72
components of, 57–59
objects returned by, 82
property procedures, 22

validating data, 56
read-only, 61
UDTs for, 59–61

Property Get statement, 23, 59, 464–468
Property Let statement, 23, 58, 468–471

mass assignation functions vs., 62
Property Set statement, 23, 471–475
public scope

class methods, 69
properties, 59
variables, 47

Public statement, 37, 47, 475–478
PublicNotCreateable value (Instancing),

71
Put statement, 478–479
PV function, 479–481

Q
QBColor function, 481–482
QueryUnload event, 24

R
Raise method (Err), 100, 262–264

ActiveX Servers and, 101–102

RaiseEvent statement, 67, 482–483
raising events (see firing events)
random numbers, 483–484, 498–499
Randomize statement, 483–484
Rate function, 484–486
Read method (TextStream), 552
read/write position, 415, 504–505
ReadAll method (TextStream), 552
reading file data, 350–352, 376–379,

405–406, 552–553
Lock/Unlock statements with,

415–417, 567–568
reading object model, 79–81
ReadLine method (TextStream), 553
read-only properties, 61
ReDim statement, 41, 44, 486–488
redimensioning dynamic arrays, 41,

486–488
references

assigning, 512–515
binding (see data binding)
caching locally, 89
to collection object members, 83
declaring, 214–218
to objects (see object variables)
passing parameters by, 50–52
to ActiveX objects, 358–360

References dialog, 78
registering ActiveX components, 75
registration information (ActiveX

objects), 356–358
Registry functions, 595
Rem statement, 488–489
remarks in program code, 488–489
remote server, testing for, 93
remote UDTs, 614
Remove method

BindingConnection object, 138
Collection object, 49, 172–173
Dictionary object, 231–232

RemoveAll method (Dictionary), 232
removing (see deleting)
renaming (see names)
Replace statement, 489–491
report writer, VB (example), 85
reporting errors, 104–107
RequiresTransactions, RequiresNew-

Transaction values
(MTSTransactionMode), 72
Index 629

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Reset statement, 491
resetting array element values, 252
resource (.RES) files, 408–414
Resource Editor Add-In, 410
Resume statement, 96, 100, 492–493

On Error Resume [Next], 98–99
return rate, 388–389, 426–427
Return statement, 493
reusing code, 54
reversing strings, 538–539
RGB function, 493–495
Right, Right$, RightB, RightB$

functions, 495–496
RmDir statement, 496–498
Rnd statement, 498–499
Round statement, 499–500
rounding numbers, 499–500
RSet statement, 500–501
RTrim, RTrim$ functions, 501
running VB programs, 12–19

S
saveability of classes, 447
SaveSetting statement, 502–503
scope

custom class methods, 69
property, 59
variables, 18, 46–47

Second statement, 503–504
Seek function, 504
Seek statement, 505
Select Case statement, 506–508
self-registering ActiveX components, 75
SendKeys statement, 508–511
SendReturnEMail function (example),

86
Set property procedure, 23, 471–475
Set statement, 512–515

Initialize event and, 64
SetAttr function, 516–517
Sgn function, 517–518
Shell function, 518–520
sign of numbers, 517–518
Sin function, 520–521
sines, 520–521
Single data type, 29

converting to, 32, 180–181
SingleUse value (Instancing), 71

size, file, 280–281, 417–418, 574
size, string, 401–403
Skip method (TextStream), 553
SkipLine method (TextStream), 554
SLN function, 521–522
Source property (Err), 100, 264
Space, Space$ functions, 522
spaces (see whitespace)
Spc function, 523–524
SpecialFolderConst type, 603
speed, program (see performance)
Split function, 524–525
Sqr function, 525
square roots, 525
StartLogging method (App), 106
startup

code modules at, 18
ending programs run at, 24
running Excel/VBA modules, 16
running forms at, 17–18
running Word/VBA modules, 13

Statement Completion, 80
statements, 112
Static statement, 47, 525–527
static variables, 46
stdDataFormat object, 528–531
stdDataFormats collection object, 531
Stop statement, 532–533
storing program code, 12, 15
Str, Str$ functions, 533
straight-line depreciation, 521–522
StrComp function, 533–535
StrConv function, 535–537
string concatenation operator, 607
String, String$ functions, 537–538
strings

case conversion, 399–400, 565
copying into files, 554–555
manipulation functions (list), 595–597
from resource files, 412–414
String data type, 29

converting to, 32, 181–182
null strings, 38

vbStrConv type, 603
whitespace (see whitespace)
(see also characters; text)

strong typing, 36–37
StrReverse function, 538–539
structure, program, 19–23, 594
630 Index

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Sub Main procedure
ending programs, 24
running program at startup, 17–19

sub procedures, 22
Call statement, 141–142
calling, 23
custom class methods, 68–69
defining, 539–544
functions vs., 68, 94–95
GoSub...Return statement, 363–364
Goto statement, 364–365
Return statement, 493

Sub statement, 539–544
subroutines (see functions; sub

procedures)
substrings (see strings)
subtraction (-) operator, 606
subtypes (see data types)
sum-of-years’ depreciation, 545–546
Switch function, 544–545
SYD function, 545–546
synchronicity

ActiveX EXE functions, 70
RaiseEvent statement, 68

system time, 556
system-generated errors, 103

T
Tab function, 546–547
Tan function, 548
tangents, 548
templates

Microsoft Excel, 16
Microsoft Word, 12

temporary files/folders, 303
Terminate event, 25, 65, 548–550
text

Close method (TextStream), 551
CreateTextFile method

(FileSystemObject), 287–289
CreateTextFile method (Folder),

315–316
OpenAsTextStream method (File),

274–275
OpenTextFile method

(FileSystemObject), 306–308
Read method (TextStream), 552
ReadAll method (TextStream), 552

ReadLine method (TextStream), 553
Skip method (TextStream), 553
SkipLine method (TextStream), 554
TextStream object, 550–555, 588

IOMode type, 604
Write method (TextStream), 554
WriteBlankLines method

(TextStream), 555
WriteLine method (TextStream), 555

time (see date and time)
Time, Time$ functions, 556
Time statement, 556
Timer function, 557
TimeSerial function, 557–558
TimeValue function, 558–559
tone, creating, 133–134
toolbar buttons, VB programs on

Microsoft Excel, 16
Microsoft Word, 15

Top property, 83
Transaction Server (Microsoft)

ActiveX components and, 75
MTSTransactionMode property, 72,

433–434
trapping Automation Server events, 84
trigonometry (see mathematics

functions)
Trim, Trim$ functions, 559
Tristate constants, 604
truncating numbers, 310–311, 385–386
Type statement, 560–563
TypeName function, 35–36, 563–564

U
UBound function, 42, 45, 93, 564–565
UCase, UCase$ functions, 565
UDTs (user-defined types), 30, 45–46

defining, 560–563
properties as, 59–61
remote, 614

Unicode character codes, 129–132
Unload event, 25
Unload statement, 566–567

Unload Me statement, 24
unloading forms, 24
Unlock statement, 567–568
unregistering ActiveX components, 75
UpdateMode type, 599
Index 631

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

user actions, launching VB programs at,
14, 16

user-defined types (UDTs), 30, 45–46
defining, 560–563
properties as, 59–61
remote, 614

user interface for ActiveX components,
72

users, reporting errors to, 104
UsesTransactions value

(MTSTransactionMode), 72

V
Val function, 568–569
validating data, 56

Let and custom events, 58
Property Let and custom events, 67

value, passing parameters by, 51
variable-length strings, 29
variables, 37–53

allocating space for, 232–236
array variables, 39–45
assigning object references to,

512–515
declaring, 37–39, 597
environment, values of, 248–249
nothing, handling, 38
object variables

binding and, 47–50
Nothing keyword, 39, 65

passing parameters, 50–53
scope and lifetime, 46–47
static variables, 46
UDTs (user-defined types), 30, 45–46

properties as, 59–61
undefined, errors for, 445
writing values to disk, 478–479
(see also data types)

Variant data type, 30, 33–37
converting to, 32, 182–183
creating variant arrays, 125–129
null values for, 39
performance and, 33, 36–37
subtypes of, 34–36
vbVarType type, 604

VarType function, 34–35, 569–571

VB (Visual Basic)
email within (example), 86–88
Object Browser, 79
output to Excel (example), 88
Resource Editor Add-In, 410
VBA vs., vii, 4
Version 6 features, 613–616
Word report writer (example), 85

VB programs
code for (see program code)
ending, 23–25
error handling, 91–107
executables, 17
execution flow, 23, 594
output from

printing with Word (example), 85
sending to Excel (example), 88

running, 12–19
speed of (see performance)
structure of, 19–23, 594

VBA (Visual Basic for Applications),
3–10

application possibilities, 7–8
Excel/VBA modules

running, 15–17
history of, 6
VB vs., vii, 4
Word/VBA modules

running, 12–15
vbAppWinStyle type, 598
vbCalendar type, 598
VbCallType type, 599
vbCompareMethod type, 599
vbComplexBound value

(DataBindingBehavior), 71
vbDataSource value

(DataSourceBehavior), 71
VbDateTimeFormat type, 599
vbDayOfWeek type, 202, 599
vbEmpty function, 39
vbevents.log file, 106
vbFileAttribute type, 600
vbFirstFourDays constant, 202
vbFirstFullWeek constant, 202
vbFirstJan1 constant, 202
vbFirstWeekOfYear type, 601
vbIMEStatus type, 601
632 Index

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

vbMsgBoxHelpButton constant, 104
vbMsgBoxResult type, 602
vbMsgBoxStyle type, 603
vbNone value

DataBindingBehavior property, 71
DataSourceBehavior property, 71

vbNull function, 38
vbNullChar function, 38
vbNullString function, 38
vbObjectError constant, 102
vbOLEDBProvider value

(DataSourceBehavior), 71
VBScript language, 5
vbSimpleBound value

(DataBindingBehavior), 71
vbStrConv type, 603
vbTriState type, 604
vbVarType type, 604
Visual Basic (see VB)
Visual Basic for Applications (see VBA)

W
Weekday function, 571–572
WeekdayName function, 572–573
While...Wend statement, 573–574
whitespace

creating strings of, 522
deleting from strings, 420, 501, 559
inserting, 523–524

Width # statement, 574
Windows MAPI server, 86
Windows property, 83
With statement, 575–576
WithEvents keyword, 67, 84–85,

576–578
Word (Microsoft)

running VBA modules, 12–15
VB report writer (example), 85

Word Basic, 6
Workbook.Open event (Excel), 16
working directory, changing, 153–154
Write # statement, 578–579
Write method (TextStream), 554
WriteBlankLines method (TextStream),

555
WriteLine method (TextStream), 555
writing to files, 478–479, 554, 554–555,

578–579

X
XLStart directory (Excel), 15
Xor operator, 611

Y
Year function, 579
Index 633

VB & VBA in a Nutshell: The Language, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

About the Author

Paul Lomax is the author of Learning VBScript (published by O’Reilly & Associates)
and technical director of Mentorweb (http://www.mentorweb.net/), a leading web
design and hosting company. Over the past two years Paul has created and main-
tained over 60 commercial websites for Mentorweb’s clients. He is also the driving
force behind ShopAssistant, a new NT/ASP based high-end shopping cart/web com-
merce server (http://www.shopassistant.com/).

Paul has been a programmer for over 12 years and has been a dedicated fan of Visual
Basic since Version 1. He has written systems for financial derivatives forecasting,
satellite TV broadcasting, the life insurance industry, and he’s written a major mate-
rials tracking system for the oil and gas industry. He is also responsible for the
concept, design, and programming of the successful “Contact” series of national
business databases.

When not sitting in front of a keyboard, Paul can usually be found behind the wheel
of a racing car competing in events around the United Kingdom. Paul and his fam-
ily—wife Deborah and children Russel and Victoria—have recently returned to their
home in England after several years spent living in the Arabian gulf.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of VB & VBA in a Nutshell: The Language is a Newfound-
land dog, a domesticated breed known for its size and sweet temperament.
Newfoundlands, from the island of the same name, are semiaquatic, usually black
dogs. They stand about 28 inches tall and weigh around 130–150 pounds.

The Newfoundland, descended from European breeds, has traditionally been used
as a working dog, on land and around water, for hunting and fishing. Their large,
webbed feet, thick coat, powerful frame, and large lung capacity are well suited for
work on ships and around water, as well as for the island’s climate. The breed is
associated with stories of brave animals making heroic ocean rescues and assisting
with shipwrecks. Today, the Newfoundlands’ docile nature and calm disposition
have made them popular pets.

Mary Anne Weeks Mayo was the copy editor and project manager for VB & VBA in
a Nutshell: The Language. Melanie Wang, Ellie Fountain Maden, Clairemarie Fisher
O’Leary, and Sheryl Avruch provided quality control. Mike Sierra provided
FrameMaker support and Seth Maislin wrote the index.

Edie Freedman designed the cover of this book, using a 19th-century engraving from
the Dover Pictorial Archive modified in Adobe Photoshop. The cover layout was
produced with QuarkXPress 3.32 using the ITC Garamond font.

The inside layout was designed by Nancy Priest and implemented in FrameMaker
5.5 by Mike Sierra. The text and heading fonts are ITC Garamond Light and Gara-
mond Book. The illustrations that appear in the book were created in Adobe
Photoshop 4 and Macromedia FreeHand 7 by Robert Romano. This colophon was
written by Nancy Kotary.

The production editors for VB & VBA in a Nutshell: The Language, eMatter Edition
were Ellie Cutler and Jeff Liggett. Linda Walsh was the product manager. Kathleen
Wilson provided design support. Lenny Muellner, Mike Sierra, Erik Ray, and Benn
Salter provided technical support. This was produced with FrameMaker 5.5.6.

	Copyright
	Table of Contents
	Preface
	Why Another VB Book?
	What's Wrong with the Online Help?
	Who Should Read This Book?
	How This Book Should Be Used
	How This Book Is Structured
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments

	Part I: The Basics
	Chapter 1 - Introduction
	What Is VBA?
	A Brief History of VBA
	What Can You Do with VBA?
	Object Models: The Power of Programming with VBA

	Chapter 2 - Program Structure
	Getting a VB Program to Run
	The Structure of a VB Program
	Ending Your VB Program

	Chapter 3 - VBA Variables and Data Types
	Visual Basic Data Types
	Type Conversion
	The Variant
	Declaring Variables and Constants
	Array Variables
	User-Defined Types
	Variable Scope and Lifetime
	Object Variables and Binding
	Passing Parameters
	Intrinsic Constants

	Chapter 4 - Class Modules
	Properties
	Enumerated Constants
	Class Module Events
	Implementing Custom Class Methods
	Creating ActiveX Components
	Using ActiveX Components in a Project

	Chapter 5 - Automation
	Creating Object Model References
	Reading the Object Model
	Working with the Object Model
	Collection Objects
	Trapping an Automation Server's Events
	Automation Examples
	Automation Performance Tips

	Chapter 6 - Error Handling
	Building a Robust Application
	Error Handling in Procedures
	Error Handling in ActiveX Servers
	Reporting Errors

	Part II: Reference
	Chapter 7 - The Language Reference
	#Const Directive
	#If...Then...#Else Directive
	Abs Function
	AddressOf Operator
	AppActivate Statement
	Array Function
	Asc, AscB, AscW Functions
	Atn Function
	Beep Statement
	BindingCollection Object (VB6)
	BindingCollection.Add Method (VB6)
	BindingCollection.Clear Method (VB6)
	BindingCollection Remove.Method (VB6)
	Binding Object (VB6)
	Calendar Property
	Call Statement
	CallByName Function (VB6)
	CBool Function
	CByte Function
	CCur Function
	CDate Function
	CDbl Function
	CDec Function
	ChDir Statement
	ChDrive Statement
	Choose Function
	Chr, Chr$, ChrB, ChrB$, ChrW Functions
	CInt Function
	CLng Function
	Close Statement
	Collection Object
	Collection.Add Method
	Collection.Count Property
	Collection.Item Method
	Collection.Remove Method
	Command Function
	Const Statement
	Cos Function
	CreateObject Function
	CSng Function
	CStr Function
	CurDir, CurDir$ Functions
	CVar Function
	CVDate Function
	CVErr Function
	Data Binding Objects (VB6)
	Data Format Objects (VB6)
	DataBindingBehavior Property (VB6 only)
	DataSourceBehavior Property (VB6 only)
	Date, Date$ Functions
	Date Statement
	DateAdd Function
	DateDiff Function
	DatePart Function
	DateSerial Function
	DateValue Function
	Day Function
	DDB Function
	Debug Object
	Debug.Assert Method
	Debug.Print Method
	Declare Statement
	Def... Statement
	DeleteSetting Statement
	Dictionary Object (VB6)
	Dictionary.Add Method (VB6)
	Dictionary.CompareMode Property (VB6)
	Dictionary.Count Property (VB6)
	Dictionary.Exists Method (VB6)
	Dictionary.Item Property (VB6)
	Dictionary.Items Method (VB6)
	Dictionary.Key Property (VB6)
	Dictionary.Keys Method (VB6)
	Dictionary.Remove Method (VB6)
	Dictionary.RemoveAll Method (VB6)
	Dim Statement
	Dir, Dir$ Functions
	Do...Loop Statement
	DoEvents Function
	Drive Object (VB6)
	Drives Collection Object (VB6)
	End... Statement
	Enum Statement
	Environ, Environ$ Functions
	EOF Function
	Erase Statement
	Err Object
	Err.Clear Method
	Err.Description Property
	Err.HelpContext Property
	Err.HelpFile Property
	Err.LastDLLError Property
	Err.Number Property
	Err.Raise Method
	Err.Source Property
	Error, Error$ Functions
	Error Statement
	Event Statement
	Exit Statement
	Exp Function
	File Object (VB6)
	File.Copy Method (VB6)
	File.Delete Method (VB6)
	File.Move Method (VB6)
	File.OpenAsTextStream Method (VB6)
	File System Object Model (VB6)
	FileAttr Function
	FileCopy Statement
	FileDateTime Function
	FileLen Function
	Files Collection Object (VB6)
	FileSystemObject Object (VB6)
	FileSystemObject.BuildPath Method (VB6)
	FileSystemObject.CopyFile Method (VB6)
	FileSystemObject.CopyFolder Method (VB6)
	FileSystemObject.CreateFolder Method (VB6)
	FileSystemObject.CreateTextFile Method (VB6)
	FileSystemObject.DeleteFile Method (VB6)
	FileSystemObject.DeleteFolder Method (VB6)
	FileSystemObject.DriveExists Method (VB6)
	FileSystemObject.Drives Property (VB6)
	FileSystemObject.FileExists Method (VB6)
	FileSystemObject.FolderExists Method (VB6)
	FileSystemObject.GetAbsolutePathName Method (VB6)
	FileSystemObject.GetBaseName Method (VB6)
	FileSystemObject.GetDrive Method (VB6)
	FileSystemObject.GetDriveName Method (VB6)
	FileSystemObject.GetExtensionName Method (VB6)
	FileSystemObject.GetFile Method (VB6)
	FileSystemObject.GetFileName Method (VB6)
	FileSystemObject.GetFolder Method (VB6)
	FileSystemObject.GetParentFolderName Method (VB6)
	FileSystemObject.GetSpecialFolder Method (VB6)
	FileSystemObject.GetTempName Method (VB6)
	FileSystemObject.MoveFile Method (VB6)
	FileSystemObject.MoveFolder Method (VB6)
	FileSystemObject.OpenTextFile Method (VB6)
	Filter Function (VB6)
	Fix Function
	Folder Object (VB6)
	Folder.Copy Method (VB6)
	Folder.CreateTextFile Method (VB6)
	Folder.Delete Method (VB6)
	Folder.Move Method (VB6)
	Folders Collection Object (VB6)
	Folders.Add Method (VB6)
	For...Next Statement
	For Each...Next Statement
	Format, Format$ Functions
	FormatCurrency, FormatNumber, FormatPercent Functions (VB6)
	FormatDateTime Function (VB6)
	FreeFile Function
	Function Statement
	FV Function
	Get Statement
	GetAllSettings Function
	GetAttr Function
	GetAutoServerSettings Function
	GetObject Function
	GetSetting Function
	GoSub...Return Statement
	Goto Statement
	Hex, Hex$ Functions
	Hour Function
	If...Then...Else Statement
	IIf Function
	IMEStatus Function
	Implements Statement
	Initialize Event
	Input, Input$, InputB, InputB$ Functions
	Input # Statement
	InputBox Function
	Instancing Property (VB only)
	InStr, InStrB Functions
	InstrRev Function (VB6)
	Int Function
	IPmt Function
	IRR Function
	IsArray Function
	IsDate Function
	IsEmpty Function
	IsError Function
	IsMissing Function
	IsNull Function
	IsNumeric Function
	IsObject Function
	Join Function (VB6)
	Kill Statement
	LBound Function
	LCase, LCase$ Functions
	Left, Left$, LeftB, LeftB$ Functions
	Len, LenB Functions
	Like Operator
	Line Input# Statement
	Load Statement
	LoadResData Function
	LoadResPicture Function
	LoadResString Function
	Loc Function
	Lock Statement
	LOF Function
	Log Function
	LSet Statement
	LTrim, LTrim$ Functions
	Me Operator
	Mid, Mid$, MidB, MidB$ Functions
	Mid, MidB Statements
	Minute Function
	MIRR Function
	MkDir Statement
	Month Function
	MonthName Function (VB6)
	MsgBox Function
	MTSTransactionMode Property (VB6 only)
	Name Property
	Name Statement
	Now Function
	NPer Function
	NPV Function
	Oct, Oct$ Functions
	On Error Statement
	Open Statement
	Option Base Statement
	Option Compare Statement
	Option Explicit Statement
	Option Private Module Statement
	Persistable Property (VB6 Only)
	Pmt Function
	PPmt Function
	Print # Statement
	Printer Object and Printers Collection
	Private Statement
	Property Get Statement
	Property Let Statement
	Property Set Statement
	Public Statement
	Put Statement
	PV Function
	QBColor Function
	RaiseEvent Statement
	Randomize Statement
	Rate Function
	ReDim Statement
	Rem Statement
	Replace Function (VB6)
	Reset Statement
	Resume Statement
	Return Statement
	RGB Function
	Right, Right$, RightB, RightB$ Functions
	RmDir Statement
	Rnd Function
	Round Function (VB6)
	RSet Statement
	RTrim, RTrim$ Functions
	SaveSetting Statement
	Second Function
	Seek Function
	Seek Statement
	Select Case Statement
	SendKeys Statement
	Set Statement
	SetAttr Statement
	Sgn Function
	Shell Function
	Sin Function
	SLN Function
	Space, Space$ Functions
	Spc Function
	Split Function (VB6)
	Sqr Function
	Static Statement
	stdDataFormat Object (VB6)
	stdDataFormats Object (VB6)
	Stop Statement
	Str, Str$ Functions
	StrComp Function
	StrConv Function
	String, String$ Functions
	StrReverse Function (VB6)
	Sub Statement
	Switch Function
	SYD Function
	Tab Function
	Tan Function
	Terminate Event
	TextStream Object
	TextStream.Close Method
	TextStream.Read Method
	TextStream.ReadAll Method
	TextStream.ReadLine Method
	TextStream.Skip Method
	TextStream.SkipLine Method
	TextStream.Write Method
	TextStream.WriteBlankLines Method
	TextStream.WriteLine Method
	Time, Time$ Functions
	Time Statement
	Timer Function
	TimeSerial Function
	TimeValue Function
	Trim, Trim$ Functions
	Type Statement
	TypeName Function
	UBound Function
	UCase, UCase$ Functions
	Unload Statement
	Unlock Statement
	Val Function
	VarType Function
	Weekday Function
	WeekdayName Function (VB6)
	While...Wend Statement
	Width # Statement
	With Statement
	WithEvents Keyword
	Write # Statement
	Year Function

	Part III: Appendixes
	Appendix A - Language Elements by Category
	Collection Object
	Conditional Compilation
	Data Type Conversion Functions
	Data Bindings Objects (VB6 only)
	Date and Time Functions
	Dictionary Object (VB6 Only)
	Err Object
	FileSystem Objects (VB6 only)
	File and Folder Handling
	Financial Functions
	Formatting Functions
	Information Functions
	Interaction Functions
	Math Functions
	Programming and ActiveX Programming
	Printer Object
	Program Structure and Flow
	Registry Functions
	String Manipulation
	Variable Declaration

	Appendix B - Language Constants
	Application Window Style (VbAppWinStyle)
	Calendar (VbCalendar)
	Call Type (VB6 only)
	Compare Method (VbCompareMethod)
	Data Binding Update Mode (VB6 Only)
	Date Time Format Styles (VB6 Only)
	Day of Week (VbDayOfWeek)
	Drive Type (VB6 only)
	File Attributes (VbFileAttribute)
	File System Objects File Attributes (VB6 Only)
	First Week of Year (VbFirstWeekOfYear)
	IME Status (VbIMEStatus)
	Language Constants
	Log Event Type Style (LogEventTypeConstants)
	Log Mode Constants (VB6 only)
	Message Box Result (VbMsgBoxResult)
	Message Box Style (VbMsgBoxStyle)
	Special Folder Types (VB6 only)
	String Conversion (VbStrConv)
	TextStream IOMode (VB6 only)
	Tristate Constants (VB6 Only)
	Variant Type (VbVarType)

	Appendix C - Operators
	Arithmetic Operators
	String Operator
	Comparison Operators
	Logical and Bitwise Operators
	Operator Precedence

	Appendix D - What's New in VB6?
	Create DataSource and Data Consumer Classes
	Functions Can Return Arrays
	Dynamic Arrays Can Be Assigned
	Remote User-Defined Types
	New Functions
	Enhanced CreateObject Function
	New Object Models

	Index
	About the Author/Colophon

