

Rampant TechPress

Tuning Third-party Vendor
Oracle systems
Tuning when you can't touch the
code

Mike Ault

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE II

Notice
While the author & Rampant TechPress makes every effort to ensure the
information presented in this white paper is accurate and without error, Rampant
TechPress, its authors and its affiliates takes no responsibility for the use of the
information, tips, techniques or technologies contained in this white paper. The
user of this white paper is solely responsible for the consequences of the
utilization of the information, tips, techniques or technologies reported herein. .

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE III

Tuning Third-party Vendor Oracle
systems
Tuning when you can't touch the code

By Mike Ault

Copyright © 2003 by Rampant TechPress. All rights reserved.

Published by Rampant TechPress, Kittrell, North Carolina, USA

Series Editor: Don Burleson

Production Editor: Teri Wade

Cover Design: Bryan Hoff

Oracle, Oracle7, Oracle8, Oracle8i, and Oracle9i are trademarks of Oracle
Corporation. Oracle In-Focus is a registered Trademark of Rampant TechPress.

Many of the designations used by computer vendors to distinguish their products
are claimed as Trademarks. All names known to Rampant TechPress to be
trademark names appear in this text as initial caps.

The information provided by the authors of this work is believed to be accurate
and reliable, but because of the possibility of human error by our authors and
staff, Rampant TechPress cannot guarantee the accuracy or completeness of
any information included in this work and is not responsible for any errors,
omissions, or inaccurate results obtained from the use of information or scripts in
this work.

Visit www.rampant.cc for information on other Oracle In-Focus books.

ISBN: 0-9740716-3-3

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE IV

Table Of Contents

Notice... ii

Publication Information... iii

Table Of Contents .. iv

Introduction ... 1

Tuning Overview ... 1

What Can Be Done?.. 2

Optimizing Oracle Internals ... 3
Database Buffer Tuning... 3

Database Writer Tuning... 6

Shared Pool Tuning ... 8

What is the shared pool?.. 8

Monitoring and Tuning the Shared Pool ... 10

Putting it All In Perspective... 17

What to Pin .. 22

The Shared Pool and MTS... 24
Large Pool Sizing .. 25

A Matter Of Hashing ... 26

Monitoring Library and Data Dictionary Caches 30

In Summary ... 32

Tuning Checkpoints... 33

Tuning Redo Logs ... 34

Redo Log Sizing .. 35

Tuning Rollback Segments.. 38

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE V

Tuning Oracle Sorts... 42

Optimizer Modes ... 44

Tuning the Multi-part Oracle8 Buffer Cache 45
Use of the Default Pool.. 45

Use of The KEEP Pool .. 45

Use of the RECYCLE Pool ... 46

Tuning the Three Pools.. 46

Adding Resources.. 47

Tuning Tables and Indexes .. 48
Table Rebuilds... 48
Rebuilding Indexes .. 49
Adjusting Index Cost in Oracle8 ... 52

Bitmapped Index Usage*... 52

Function Based Indexes... 55

Reverse Key Indexes ... 57

Index Organized Tables... 58

Partitioned Tables and Indexes.. 59

Partitioned Indexes .. 61

Parallel Query.. 62

Oracle8 Enhanced Parallel DML .. 62

Managing Multiple Buffer Pools in Oracle8 66

Use of the Default Pool.. 66

Use of The KEEP Pool .. 66

Use of the RECYCLE Pool ... 67

Sizing the Default Pool.. 67

Sizing the Keep Pool ... 67

Sizing the Recycle Pool ... 68

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

Tuning the Three Pools.. 68

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE VI

Using Outlines in Oracle8i ... 69
Creation of a OUTLINE object ... 70

Altering a OUTLINE... 71
Dropping an OUTLINE... 72
Use of the OUTLN_PKG To Manage SQL Stored Outlines............................. 72
DROP_UNUSED .. 72
DROP_BY_CAT... 73
UPDATE_BY_CAT.. 74

Summary.. 75

Using Oracle8i Resource Plans and Groups 76
Creating a Resource Plan... 76

DBMS_RESOURCE_MANAGER Package..................................... 82
DBMS_RESOURCE_MANGER Procedure Syntax... 84
Syntax for the CREATE_PLAN Procedure:.. 84
Syntax for the UPDATE_PLAN Procedure: ... 84
Syntax for the DELETE_PLAN Procedure: .. 85
Syntax for the DELETE_PLAN Procedure: .. 85
Syntax for the CREATE_RESOURCE_GROUP Procedure:............................ 85
Syntax for the UPDATE_RESOURCE_GROUP Procedure: 85
Syntax for the DELTE_RESOURCE_GROUP Procedure:............................... 86
Syntax for the CREATE_PLAN_DIRECTIVE Procedure:............................... 86
Syntax for the UPDATE_PLAN_DIRECTIVE Procedure: 87
Syntax for the DELETE_PLAN_DIRECTIVE Procedure: 88
Syntax for CREATE_PENDING_AREA Procedure: 88
Syntax of the VALIDATE_PENDING_AREA Procedure: 88
Usage Notes For the Validate and Submit Procedures: 89
Syntax of the CLEAR_PENDING_AREA Procedure: 89
Syntax of the SUBMIT_PENDING_AREA Procedure: 90
Syntax of the SET_INITIAL_CONSUMER_GROUP Procedure:.................... 90
Syntax of the SWITCH_CONSUMER_GROUP_FOR_ SESS Procedure: 90
Syntax of the SWITCH_CONSUMER_GROUP_FOR_ USER Procedure: 91

DBMS_RESOURCE_MANAGER_PRIVS Package 91
DBMS_RESOURCE_MANGER_PRIVS Procedure Syntax 91
Syntax for the GRANT_SYSTEM_PRIVILEGE Procedure:............................ 91
Syntax for the REVOKE_SYSTEM_PRIVILGE Procedure:............................ 92
Syntax of the GRANT_SWITCH_CONSUMER_GROUP Procedure: 92
Usage Notes... 93
Syntax of the REVOKE_SWITCH_CONSUMER_GROUP Procedure:.......... 93
Usage Notes... 93

Section Summary... 94

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE VII

Presentation Summary... 94

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE VIII

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 1

Introduction
In many Oracle shops today third-party applications are the norm. The major
problem for DBAs with these third-party applications is that you are not allowed
to alter the source code of the SQL used within the application. Many times the
application will generate SQL statements in an ad-hoc manner that further
complicates the tuning picture. This paper will attempt to provide insights into
how to tune Oracle when you can’t touch the code.

Tuning Overview
Everyone who has been in the Oracle DBA profession for any length of time has
seen the graph in figure 1. This graph shows the percentage gains, on the
average, from tuning various aspects of the Oracle database environment.

Design
20%

Database
17.5%

Application
60%

System
2.5%

Figure 1: Performance Gains from Tuning

As can be seen from a quick glance at the graph, 80% of tuning gains are
realized from proper design and application statement tuning. Unfortunately in a

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 2

third-party application such as those provided by SAP, PeopleSoft, Baen, Siebel
or Oracle Financials, the DBA is often forced to ignore bad design and SQL since
touching the code is forbidden. This leaves us with the 20% of gains that can be
reached through the tuning of the database and the system.

However, it should be noted that the graph in figure 1 is not applicable to all
cases and carries many unseen qualifications with it. The graph assumes that
the system and database have been set up by a reasonably qualified Oracle
DBA. Of course this is not always the case and in many locations a qualified
Oracle DBA isn’t hired until performance problems manifest themselves, this is
usually just as the system goes live and a full user load is experienced.

What Can Be Done?
Depending on the Oracle version there are tuning options available to the DBA
that don’t involve tweaking the SQL. Table 1 shows the main tuning options
available by Oracle version.

Oracle Version: 7.3.x 8.0.x 8.1.xOptimize Internals
X X X
Optimizer Modes X X X
Add Resources X X X
Tune Tables and Indexes X X X
Parallel Query X X X
Better Indexes X X
Index Only Tables X X
Partitioning X X
New INI features X X
Subpartitioning X
Outlines X
Resource Groups X
Table 1: Tuning Options by Oracle Version

As it should be expected, as the version increases so do the various tuning
options available to the DBA. This indicates that the DBA should always press to
be on the latest, stable version of Oracle (7.3.4.2, 8.0.6.2.2, 8.1.7.) Let’s examine
these tuning options and see how they can be applied to your databases. As we
cover the options an attempt will be made to show how the option is applied per
version as the feature implementations change as Oracle matures.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 3

Optimizing Oracle Internals
When beginning to tune a third-party database where the code can’t be touched
you should generally begin with making sure that the memory and database
internals are optimized for performance. If Oracle doesn’t have enough memory,
processes or other resources, the other tuning options won’t make much
difference generally speaking. The options for internals tuning are:

• Database Buffer Tuning
• Database Writer Tuning
• Shared Pool Tuning
• Checkpoints
• Redo Logs
• Rollback Segments
• Sort Area Size

Let’s examine each of these areas.

Database Buffer Tuning
When we refer to database buffer tuning we are actually discussing the tuning of
the memory used to store data used by Oracle processes. All data that passes to
users and then back to the database passes through buffers. If there aren’t
enough db block buffers there is a significant hit on performance. Likewise if the
database base block buffers aren’t of the correct size then they can’t be
efficiently utilized.

Generally it is suggested that the database block buffer size be set to at least
8192 (8k). This size of 8k allows for optimal storage of data and index information
on most Oracle platforms. The product of db_block_size and db_block_buffers
should be no less than 5-10% of the total physical data size (including indexes)
for the system. Usually the product of db_block_size and db_block_buffers will
be larger than 5-10% of the physical database size, but this is a good general
starting point. Of course the size of the buffer area and other shared global area
components, should not exceed 50-60% of the available physical memory or
swapping will result.

One gross indicator of database buffer health is called the hit ratio. The hit ratio is
expressed as a percent and is calculated using the formula:

(1-(physical reads/(db block gets+consistent gets))) * 100

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 4

Traditionally the information for calculating the database block buffers hit ratio is
taken from the V$SYSSTATS view. However, in versions 7.3.4 and higher of the
database the “physical reads” parameter was altered to include “direct reads”
which skews the hit ratio in the downward direction. In Oracle8i the statistic
“direct reads” is also recorded so you can subtract the “direct reads” from the
“physical reads” to get the correct value with which to calculate hit ratio.
However, Oracle has provided the V$BUFFER_POOL_STATISTICS view if the
DBA runs the CATPERF.SQL script in the latest releases in which
uncontaminated values for “physical reads” are available and this view should be
used where it is available.

Hit ratio should generally be as close to 100% as is possible to achieve,
however, in some cases artificially high values can be received if nonselective
indexes are used in queries. Hit ratio is not the best indicator of performance of
the database block buffers.

It is suggested that hit ratio be monitored to give a quick look at performance,
however tuning decisions should be made on a more detailed analysis of the
buffer area. Using cursors PL/SQL can be used to track hit ratios as is shown in
figure 2.

CURSOR get_stat(stat IN VARCHAR2) IS
 SELECT name,value FROM v$sysstat
 WHERE name = stat;
Supply the cursor with the variables:

'db block gets‘,'consistent gets‘, 'physical reads‘, ‘direct reads’
h_ratio := (1-(p_reads-d_reads)/(db_gets + con_gets)))*100;
Or use the cursor:

CURSOR get_hratio IS
 SELECT name, (1-(physical_reads/(db_block_gets+consistent_gets)))*100
H_RATIO
 FROM v$buffer_pool_statistics;

Notice the cursor returns a pool name as well, in Oracle8 and above multiple
buffer pools are allowed.

Figure 2: Example Hit Ratio Calculations

More detailed information about the database blcok buffers is contained in the
V$BH view. The V$BH view of the X$BH table is available in newer versions of
Oracle. In earlier versions the view had to be created using the CATPARR.SQL
script.

The X$BH view contains information on the buffers in the database block buffers
and their states. The state information contained in X$BH should be utilized to
get a true picture of what is happening with the database block buffers. An

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 5

example select, from: “ORACLE Performance Tuning Tips & Techniques”,
Richard Niemiec, Oracle Press, is shown in figure 3.

 CREATE VIEW BLOCK_STATUS AS
 SELECT DECODE(state, 0, ‘FREE’,
 1, DECODE(lrba_seq,0, ‘AVAILABLE’, ‘BEING USED’),
 3, ‘BEING USED’, state) “BLOCK STATUS”,
 COUNT(*) “COUNT”
 FROM x$bh
 GROUP BY
 decode(state,0,’FREE’,1,decode(lrba_seq,0,’AVAILABLE’,
 ’BEING USED’),3,’BEING USED’,state);

Figure 3: Example X$BH Select

If 10-25% buffers are free after 2 hours of use, good. If your database doesn’t
show at least 10-25% of the database block buffers free, then you should
consider increasing the value of DB_BLOCK_BUFFERS in 10-25% increments.
An alternative select using the X$BH from NOTE:1019635.6 on Metalink is
shown in figure 4.

create view buffer_status2 as select
decode(greatest(class,10),10,decode(class,1,'Data',2
 ,'Sort',4,'Header',to_char(class)),'Rollback') "Class",
 sum(decode(bitand(flag,1),1,0,1)) "Not Dirty",
 sum(decode(bitand(flag,1),1,1,0)) "Dirty",
 sum(dirty_queue) "On Dirty",count(*) "Total"
from x$bh
group by decode(greatest(class,10),10,decode(class,1,'Data',2
 ,'Sort',4,'Header',to_char(class)),'Rollback')
/

Figure 4: Example Select Against X$BH From Metalink

One thing to note about the scripts in Figures 3 and 4 is that they must be run
from the SYS user, both create views that can then be used by other users with
appropriate grants.

Another source of information about possible database block buffer problems is
the V$WAITSTAT view that summarizes the counts of the various wait conditions
occurring in the database. Figure 5 shows an example select against this view.

SELECT
 class,"COUNT"
 FROM
 v$waitstat
 WHERE
 class = ‘data block’;

Figure 5: Example V$WAITSTAT Select

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 6

It must be stated that data block waits by themselves do not indicate that an
increase in database block buffers is required. Data block waits can also be
caused by improperly set INITRANS and FREELISTS on heavily used tables.
However, in my experience a major portion of data block waits are directly
attributable to insufficient database block buffers in systems where a significant
number of data block waits are experienced (100 waits is not significant, 10000
are.) If you have high hit ratios (in the high 90’s) and experience data block waits
with the V$BH view showing 10-25% free buffers, then the waits are probably
due to INITRANS and FREELISTS, otherwise they point at insufficient database
block buffers.

Using the techniques discussed the DBA should be able to properly tune the size
of the DB_BLOCK_BUFFERS parameter to ensure adequate memory is
available for the databases data needs. As with virtually all other tuning aspects,
the setting for DB_BLOCK_BUFFERS will have to adjusted as the amount of
data in the database increases or decreases and the user data requirements
change.

Database Writer Tuning
Database writer tuning involves two basic areas, first, how often writes are
accomplished and how much is written in each write and second, how many
writer processes are designated to service the database output requirements.
The V$SYSSTAT view should also be used to calculate the value for the average
length of the dirty write queue, values larger than 100 show need for more
DB_BLOCK_BUFFERS or DB_WRITERS or a need to increase the size of the
DB_BLOCK_WRITE_BATCH (which becomes an undocumented parameter
beginning with Oracle8.)

Figure 6 shows a select taken from “Oracle Performance Tuning” , Mark Gurry
and Peter Corrigan, O’Reilly Press.

SELECT
DECODE (name, ‘summed dirty write queue length’, value)/
DECODE (name, ‘write requests’, value) “Write Request Length”
FROM v$sysstat
WHERE name IN (‘summed dirty queue length’, ‘write requests’) and
value>0;

Figure 6: Example Select for Dirty Queue Length

The parameters that govern the behavior and number of database writer
processes are shown in table 2.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 7

Parameter Description
In Oracle 7:
DB_WRITERS (2 x #disks) Sets number of DBWR processes
DB_BLOCK_BUFFERS Sets number of buffers
DB_BLOCK_CHECKPOINT_BATCH Number of blocks written per batch

during checkpoint (Obsolete in 8i)
_DB_BLOCK_WRITE_BATCH Sets number of buffers written per

IO
_DB_BLOCK_MAX_SCAN_CNT Sets number of blocks scanned

before a write is triggered
DISK_ASYNC_IO Allows asynchronous IO
DB_FILE_SIMULTANEOUS_WRITES Number of simultaneous writes to a

file
In Oracle 8.0:
DBWR_IO_SLAVES (2 x #disks) Same as DB_WRITERS
DB_FILE_DIRECT_IO_COUNT Number of blocks assigned to BU

and REC buffers as well as direct
IO buffers

In Oracle8i:
DB_WRITER_PROCESSES (2 x #disks) Same as DB_WRITERS
DBWR_IO_SLAVES Sets number of slave DBWR

processes
DB_FILE_DIRECT_IO_COUNT Number of blocks assigned to BU

and REC buffers as well as direct
IO buffers

DB_BLOCK_LRU_LATCHES Sets number of LRU latches
DB_BLOCK_MAX_DIRTY_TARGET Sets target limit of dirty buffers
Many more “_” parameters

Table 2: Initialization Parameters for DBWR Tuning (Duplicate parameters
removed)

Whether you use DB_WRITERS, DBWR_IO_SLAVES or
DB_WRITER_PROCESSES usually you won’t need more than 2 processes per
disk used for Oracle. Generally speaking if you exceed twice your number of
CPUs for the number of DBWR processes you will get diminishing returns. In
Oracle8i if you have multiple DB_WRITER_PROCESSES you can’t have multiple
DBWR_IO_SLAVES. You must also have at least one
DBWR_BLOCK_LRU_LATCH for each DBWR process. If you set
DBWR_IO_SLAVES in Oracle8i then the values for ARCH_IO_SLAVES and
LGWR_IO_SLAVES are set to 4 each and DB_WRITER_PORCESSES is set to
1 silently.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

DB_BLOCK_BUFFERS has already been discussed.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 8

The undocumented parameters (those preceded by an “_” underscore probably
shouldn’t be reset. In some cases reducing the value of
_DB_BLOCK_WRITE_BATCH may reduce waits for the DBWR processes.

DB_BLOCK_CHECKPOINT_BATCH sets the number of blocks the database
writer process(es) write with each checkpoint write. A small value allows
threading of other writes but causes longer checkpoint times. A large value gets
checkpoints completed faster but holds up other writes. If you set this value to
high Oracle will silently set it to the value of the database writer write batch.

DB_BLOCK_MAX_DIRTY_TARGET specifies the number of buffers that are
allowed to be dirty before DBRW will write them all out to disk. This limits the
required time for instance recovery after a crash but low values will cause DBRW
to perform extra work.

DB_FILE_SIMULTANEOUS_WRITES should be set to 4 times the number of
disks in your stripe sets. When striping is not used set it to 4.

DISK_ASYNC_IO is only used when asynchronous writes are not stable on your
system. Generally DISK_ASYNC_IO defaults to TRUE only set it to false if the
previously mentioned condition is true. If you must set DISK_ASYNC_IO to
FALSE, configure multiple DBRW or DBRW_IO_SLAVES to simulate
asynchronous IO.

One indication of DBWR problems is excessive BUFFER WAITS from
V$WAITSTAT. You can check this with a look at buffer waits from Gurry and
Corrigan:

SELECT name, value FROM v$sysstat
WHERE name=‘free buffer waits’;

Shared Pool Tuning
Perhaps one of the least understood areas of Oracle Shared Global Area
optimization is tuning the shared pool. The generally accepted tuning
methodology involves throwing memory into the pool until the problem goes
under. In this section of the paper we will examine the shared pool and define a
method for tuning the shared pool that uses measurement, not guesswork to
drive the tuning methodologies.

What is the shared pool?
Many people know that the shared pool is a part of the Oracle shared global area
(SGA) but little else, what exactly is the shared pool? The shared pool contains
several key Oracle performance related memory areas. If the shared pool is

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 9

improperly sized then overall database performance will suffer, sometimes
dramatically. Figure 7 diagrams the shared pool structure located inside the
various Oracle SGAs.

Figure 7: Oracle 7 and Oracle 8 Shared Pool Structures

As you can see from examining the structures pictured in Figure 7, the shared
pool is separated into many substructures. The substructures of the shared pool
fall into two broad areas, the fixed size areas that for a given database at a given
point in time stay relatively constant in size and the variable size areas that grow
and shrink according to user and program requirements.

In Figure 7 the areas inside the library caches substructure are variable in size
while those outside the library caches (with the exception of the request and
response queues used with MTS) stay relatively fixed in size. The sizes are
determined based on an Oracle internal algorithm that ratios out the fixed areas
based on overall shared pool size, a few of the intialization parameters and
empirical determinations from previous versions. In early versions of Oracle
(notably 6.2 and lower versions) the dictionary caches could be sized individually
allowing a finer control of this aspect of the shared pool. With Oracle 7 the
internal algorithm for sizing the data dictionary caches took control from the DBA.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 10

The shared pool is used for objects that can be shared among all users such as
table definitions, reusable SQL (although non-reusable SQL is also stored there),
PL/SQL packages, procedures and functions. Cursor information is also stored in
the shared pool. At a minimum the shared pool must be sized to accommodate
the needs of the fixed areas plus a small amount of memory reserved for use in
parsing SQL and PL/SQL statements or ORA-07445 errors will result.

Monitoring and Tuning the Shared Pool
Let me begin this section by stating that the default values for the shared pool
size initialization parameters are almost always too small by at least a factor of
four. Unless your database is limited to the basic scott/tiger type schema and
your overall physical data size is less than a couple of hundred megabytes, even
the "large" parameters are far too small. What parameters control the size of the
shared pool? Essentially only one, SHARED_POOL_SIZE. The other shared
pool parameters control how the variable space areas in the shared pool are
parsed out, but not overall shared pool size. In Oracle8 a new area, the large
pool, controlled by the LARGE_POOL_SIZE parameter is also present. Generally
speaking I suggest you start at a shared pool size of 40 megabytes and move up
from there. The large pool size will depend on the number of concurrent users,
number of multi-threaded server servers and dispatchers and the sort
requirements for the application. Sizes of larger than 140-200 megabytes rarely
result in performance improvement. The major problem with the shared pool is
over population resulting in too many SQL areas to be efficiently managed.
Usually when you exceed 5000-7000 SQL areas performance in the shared pool
tends to degrade.

What should be monitored to determine if the shared pool is too small? For this
you need to wade into the data dictionary tables, specifically the V$SGASTAT
and V$SQLAREA views. Figure 8 shows a report that shows how much of the
shared pool is in use at any given time the script is run.

REM Script to report on shared pool usage
REM
column shared_pool_used format 9,999.99
column shared_pool_size format 9,999.99
column shared_pool_avail format 9,999.99
column shared_pool_pct format 999.99
@title80 'Shared Pool Summary'
spool rep_out\&db\shared_pool
select
 least(max(b.value)/(1024*1024),sum(a.bytes)/(1024*1024))
shared_pool_used,
 max(b.value)/(1024*1024) shared_pool_size,
 greatest(max(b.value)/(1024*1024),sum(a.bytes)/(1024*1024))-
(sum(a.bytes)/(1024*1024)) shared_pool_avail,
 ((sum(a.bytes)/(1024*1024))/(max(b.value)/(1024*1024)))*100
avail_pool_pct
 from v$sgastat a, v$parameter b

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 11

 where (a.pool='shared pool'
 and a.name not in ('free memory'))
 and
 b.name='shared_pool_size';
 spool off
ttitle off

Figure 8: Example Script to Show SGA Usage

The script in Figure 8 should be run periodically during times of normal and high
usage of your database. The results will be similar to Figure 9. If your
shared_pool_pct figures stay in the high nineties then you may need to increase
the size of your shared pool, however, this isn't always the case.

Date: 11/18/98 Page: 1
Time: 04:16 PM Shared Pool Summary SYSTEM
 ORTEST1 database

SHARED_POOL_USED SHARED_POOL_SIZE SHARED_POOL_AVAIL SHARED_POOL_PCT
---------------- ---------------- ----------------- ---------------
 3.66 38.15 34.49 9.60

Figure 9: Example Output From Script In Figure 8.

To often all that is monitored is how much of the shared pool is filled, no one
looks how is it filled; with good reusable SQL or bad throw away SQL. You must
examine how the space is being used before you can decide whether the shared
pool should be increased in size, decreased in size or perhaps a periodic flush
schedule set up with the size remaining the same. So how can we determine
what is in the shared pool and whether it is being properly reused or not? Let's
look at a few more reports.

The first report we will examine shows how individual users are utilizing the
shared pool. Before we can run the report a summary view of the V$SQLAREA
view must be created, I unimaginatively call this view the SQL_SUMMARY view.
The code for the SQL_SUMMARY view is shown in Figure 10.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 12

rem FUNCTION: Creates summary of v_$sqlarea and dba_users for use in
rem sqlmem.sql and sqlsummary.sql reports
rem
rem
create or replace view sql_summary as
select
username, sharable_mem, persistent_mem, runtime_mem
from
sys.v_$sqlarea a, dba_users b
where
a.parsing_user_id = b.user_id;
rem

Figure 10: Example SQL Script to Create A View to Monitor Pool Usage By User

Once the SQL_SUMMARY view is created the script in Figure 11 is run to
generate a summary report of SQL areas used by user. This shows the
distribution of SQL areas and may show you that some users are hogging a
disproportionate amount of the shared pool area. Usually, a user that is hogging
a large volume of the shared pool is not using good SQL coding techniques
which is generating a large number of non-reusable SQL areas.

rem
rem FUNCTION: Generate a summary of SQL Area Memory Usage
rem FUNCTION: uses the sqlsummary view.
rem showing user SQL memory usage
rem
rem sqlsum.sql
rem
column areas heading Used|Areas
column sharable format 999,999,999 heading Shared|Bytes
column persistent format 999,999,999 heading Persistent|Bytes
column runtime format 999,999,999 heading Runtime|Bytes
column username format a15 heading "User"
column mem_sum format 999,999,999 heading Mem|Sum
start title80 "Users SQL Area Memory Use"
spool rep_out\&db\sqlsum
set pages 59 lines 80
break on report
compute sum of sharable on report
compute sum of persistent on report
compute sum of runtime on report
compute sum of mem_sum on report
select
username,
sum(sharable_mem) Sharable,
sum(persistent_mem) Persistent,
sum(runtime_mem) Runtime ,
count(*) Areas,
sum(sharable_mem+persistent_mem+runtime_mem) Mem_sum
from
sql_summary
group by username
order by 2;

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

spool off

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 13

pause Press enter to continue
clear columns
clear breaks
set pages 22 lines 80
ttitle off

Figure 11: Example SQL Script To Report On SQL Area Usage By User

Example output from the script in Figure11 is shown in Figure 12. In the example
report no one user is really hogging the SQL area. If you have a particular user
that is hogging SQL areas, the report in Figure 12 will show you what SQL areas
they have and what is in them. This report on the actual SQL area contents can
then be used to help teach the user how to better construct reusable SQL
statements.

Date: 11/18/98 Page: 1
Time: 04:18 PM Users SQL Area Memory Use SYSTEM
 ORTEST1 database

 Shared Persistent Runtime Used
Mem
User Bytes Bytes Bytes Areas
Sum
--------------- ------------ ------------ ------------ --------- ---------

GRAPHICS_DBA 67,226 4,640 30,512 10
102,378
SYS 830,929 47,244 153,652 80
1,031,825
SYSTEM 2,364,314 37,848 526,228 63
2,928,390
 ------------ ------------ ------------ --------- ---------

sum 3,262,469 89,732 710,392 153
4,062,593

3 rows selected.

Figure 12: Example Output From Figure 11

In the example output we see that SYSTEM user holds the most SQL areas and
our application DBA user, GRAPHICS_DBA holds the least. Since these reports
where run on my small Oracle 8.0.5 database this is normal, however, usually
the application owner will hold the largest section of memory in a well designed
system, followed by ad-hoc users using properly designed SQL. In a situation
where users aren't using properly designed SQL statements the ad-hoc users will
usually have the largest number of SQL areas and show the most memory
usage. Again, the script in Figure 13 shows the actual in memory SQL areas for
a specific user. Figure 14 shows the example output from a report run against
GRAPHICS_USER using the script in Figure 13.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 14

rem
rem FUNCTION: Generate a report of SQL Area Memory Usage
rem showing SQL Text and memory catagories
rem
rem sqlmem.sql
rem
column sql_text format a60 heading Text word_wrapped
column sharable_mem heading Shared|Bytes
column persistent_mem heading Persistent|Bytes
column loads heading Loads
column users format a15 heading "User"
column executions heading "Executions"
column users_executing heading "Used By"
start title132 "Users SQL Area Memory Use"
spool rep_out\&db\sqlmem
set long 2000 pages 59 lines 132
break on users
compute sum of sharable_mem on users
compute sum of persistent_mem on users
compute sum of runtime_mem on users
select
username users, sql_text, Executions, loads, users_executing,
sharable_mem, persistent_mem
from
sys.v_$sqlarea a, dba_users b
where
a.parsing_user_id = b.user_id
and b.username like upper('%&user_name%')
order by 3 desc,1;
spool off
pause Press enter to continue
clear columns
clear computes
clear breaks
se

t pages 22 lines 80

Figure 13: Example Script To Show Active SQL Areas For a User

Date: 11/18/98
Page: 1
Time: 04:19 PM Users SQL Area Memory Use
SYSTEM
 ORTEST1 database

Shared Persistent
User Text Executions Loads Used
By Bytes Bytes
-------------- -- ---------- ------ -----
-- ------ ----------
GRAPHICS_DBA BEGIN dbms_lob.read (:1, :2, :3, :4); END; 2121 1
0 10251 488
 alter session set nls_language= 'AMERICAN' nls_territory= 7 1
0 3975 408
 'AMERICA' nls_currency= '$' nls_iso_currency= 'AMERICA'
 nls_numeric_characters= '.,' nls_calENDar= 'GREGORIAN'
 nls_date_format= 'DD-MON-YY' nls_date_language= 'AMERICAN'
 nls_sort= 'BINARY'
 BEGIN :1 := dbms_lob.getLength (:2); END; 6 1
0 9290 448
 SELECT TO_CHAR(image_seq.nextval) FROM dual 6 1
0 6532 484

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 15

 SELECT graphic_blob FROM internal_graphics WHERE 2 1
0 5863 468
 graphic_id=10
 SELECT RPAD(TO_CHAR(graphic_id),5)||': 1 1
0 7101 472
 '||RPAD(graphic_desc,30)||' : '||RPAD(graphic_type,10) FROM
 internal_graphics ORDER BY graphic_id
 SELECT graphic_blob FROM internal_graphics WHERE 1 1
0 6099 468
 graphic_id=12
 SELECT graphic_blob FROM internal_graphics WHERE 1 1
0 6079 468
 graphic_id=32
 SELECT graphic_blob FROM internal_graphics WHERE 1 1
0 6074 468
 graphic_id=4
 SELECT graphic_blob FROM internal_graphics WHERE 1 1
0 5962 468
 graphic_id=8

------ ---------
sum
67226 4640

Figure 14: Report Output Example For a Users SQL Area

One warning about the script in figure 13, the report it generates can run to
several hundred pages for a user with a large number of SQL areas. What things
should you watch for in a user's SQL areas? First, watch for the non-use of bind
variables, bind variable usage is shown by the inclusion of variables such as ":1"
or ":B" in the SQL text. Notice that in the example report in Figure 8 the first four
statements use bind variables, and, consequently are reusable. Non-bind usage
means hard coded values such as 'Missing' or '10' are used. Notice that for most
of the rest of the statements in the report no bind variables are used even though
many of the SQL statements are nearly identical. This is one of the leading
causes of shared pool misuse and results in useful SQL being drown in tons of
non-reusable garbage SQL.

The problem with non-reusable SQL is that it must still be looked at by any new
SQL inserted into the pool (actually it's hash value is scanned). While a hash
value scan may seem a small cost item, if your shared pool contains tens of
thousands of SQL areas this can be a performance bottleneck. How can we
determine, without running the report in Figure 13 for each of possibly hundreds
of users, if we have garbage SQL in the shared pool?

The script in Figure 15 shows a view that provides details on individual users
SQL area reuse. The view can be tailored to your environment if the limit on
reuse (currently set at 1) is too restrictive. For example, in a recent tuning
assignment resetting the value to 12 resulting in nearly 70 percent of the SQL
being rejected as garbage SQL, in DSS or data warehouse systems where
rollups are performed by the month, bi-monthly or weekly values of 12, 24 or 52
might be advisable. Figure 16 shows a report script that uses the view created in
Figure 15.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 16

REM
REM View to sort SQL into GOOD and GARBAGE
REM
CREATE OR REPLACE VIEW sql_garbage AS
SELECT
 b.username users,
 SUM(a.sharable_mem+a.persistent_mem) Garbage,
 TO_NUMBER(null) good
FROM
 sys.v_$sqlarea a, dba_users b
WHERE
 (a.parsing_user_id = b.user_id and a.executions<=1)
GROUP BY b.username
UNION
SELECT DISTINCT
 b.username users,
 TO_NUMBER(null) garbage,
 SUM(c.sharable_mem+c.persistent_mem) Good
FROM
 dba_users b, sys.v_$sqlarea c
WHERE
 (b.user_id=c.parsing_user_id and c.executions>1)
GROUP BY b.username;

Figure 15: Example Script to Create the SQL_GARBAGE View

REM
REM Report on SQL Area Reuse by user
REM
column garbage format 9,999,999,999 heading 'Non-Shared
SQL'
column good format 9,999,999,999 heading 'Shared SQL'
column good_percent format 999.99 heading 'Percent Shared'
set feedback off
break on report
compute sum of garbage on report
compute sum of good on report
compute avg of good_percent on report
@title80 'Shared Pool Utilization'
spool rep_out\&db\sql_garbage
select
 a.users,
 a.garbage,
 b.good,
 (b.good/(b.good+a.garbage))*100 good_percent
from
 sql_garbage a, sql_garbage b
where
 a.users=b.users
and
 a.garbage is not null
and
 b.good is not null
/
spool off
set feedback off
clear columns

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 17

clear breaks
clear computes

Figure 16: Example Report Script For SQL Reuse Statistics

The report script in Figure 16 shows at a glance (well, maybe a long glance for a
system with hundreds of users) which users aren't making good use of reusable
SQL. An example report output is shown in Figure 17.

Date: 11/18/98 Page: 1
Time: 04:16 PM Shared Pool Utilization SYSTEM
 ORTEST1 databas

USERS Non-Shared SQL Shared SQL Percent
Shared
------------------------------ -------------- -------------- -------------
-
GRAPHICS_DBA 27,117 38,207
58.49
SYS 302,997 575,176
65.50
SYSTEM 1,504,740 635,861
29.70
 -------------- -------------- -------------
-
avg
51.23
sum 1,834,854 1,249,244

Figure 17: Example Report From Showing SQL Reuse Statistics

Notice in Figure 17 that the GRAPHICS_DBA user only shows 58.49% shared
SQL use based on memory footprints. From the report in Figure 14 we would
expect a low reuse value for GRAPHICS_DBA. The low reuse value for the
SYSTEM user is due to its use as a monitoring user, the monitoring SQL is
designed to be used once per day or so and was not built with reuse in mind.

Putting it All In Perspective
So what have we seen so far? We have examined reports that show both gross
and detailed shared pool usage and whether or not shared areas are being
reused. What can we do with this data? Ideally we will use the results to size our
shared pool properly. Let's set out a few general guidelines for shared pool
sizing:

Guideline 1: If gross usage of the shared pool in a non-ad-hoc environment
exceeds 95% (rises to 95% or greater and stays there) establish a shared pool
size large enough to hold the fixed size portions, pin reusable packages and
procedures. Increase shared pool by 20% increments until usage drops below
90% on the average.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 18

Guideline 2: If the shared pool shows a mixed ad-hoc and reuse environment
establish a shared pool size large enough to hold the fixed size portions, pin
reusable packages and establish a comfort level above this required level of pool
fill. Establish a routine flush cycle to filter non-reusable code from the pool.

Guideline 3: If the shared pool shows that no reusable SQL is being used
establish a shared pool large enough to hold the fixed size portions plus a few
megabytes (usually not more than 40) and allow the shared pool modified least
recently used (LRU) algorithm to manage the pool.

In guidelines 1, 2 and 3, start at around 40 megabytes for a standard size
system. Notice in guideline 2 it is stated that a routine flush cycle should be
instituted. This flies in the face of what Oracle Support pushes in their shared
pool white papers, however, they work from the assumption that proper SQL is
being generated and you want to reuse the SQL present in the shared pool. In a
mixed environment where there is a mixture of reusable and non-reusable SQL
the non-reusable SQL will act as a drag against the other SQL (I call this shared
pool thrashing) unless it is periodically removed by flushing. Figure 18 shows a
PL/SQL package which can be used by the DBMS_JOB job queues to
periodically flush the shared pool only when it exceeds a specified percent full.

CREATE OR REPLACE PROCEDURE flush_it(
 p_free IN NUMBER, num_runs IN NUMBER) IS
--
CURSOR get_share IS
SELECT
 LEAST(MAX(b.value)/(1024*1024),SUM(a.bytes)/(1024*1024))
 FROM v$sgastat a, v$parameter b
 WHERE (a.pool='shared pool'
 AND a.name <> ('free memory'))
 AND b.name = 'shared_pool_size';
--
CURSOR get_var IS
 SELECT value/(1024*1024)
 FROM v$parameter
 WHERE name = 'shared_pool_size';
--
-- Following cursors from Steve Adams Nice_flush
--
 CURSOR reused_cursors IS
 SELECT address || ',' || hash_value
 FROM sys.v_$sqlarea
 WHERE executions > num_runs;
 cursor_string varchar2(30);
--
 CURSOR cached_sequences IS
 SELECT sequence_owner, sequence_name
 FROM sys.dba_sequences
 WHERE cache_size > 0;
 sequence_owner varchar2(30);
 sequence_name varchar2(30);
--

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 19

 CURSOR candidate_objects IS
 SELECT kglnaobj, decode(kglobtyp, 6, 'Q', 'P')
 FROM sys.x_$kglob
 WHERE inst_id = userenv('Instance') AND
 kglnaown = 'SYS' AND kglobtyp in (6, 7, 8, 9);
 object_name varchar2(128);
 object_type char(1);
--
-- end of Steve Adams Cursors
--
 todays_date DATE;
 mem_ratio NUMBER;
 share_mem NUMBER;
 variable_mem NUMBER;
 cur INTEGER;
 sql_com VARCHAR2(60);
 row_proc NUMBER;
--
BEGIN
 OPEN get_share;
 OPEN get_var;
 FETCH get_share INTO share_mem;
 FETCH get_var INTO variable_mem;
 mem_ratio:=share_mem/variable_mem;
 IF mem_ratio>p_free/100 THEN
 --
 -- Following keep sections from Steve Adams nice_flush
 --
 BEGIN
 OPEN reused_cursors;
 LOOP
 FETCH reused_cursors INTO cursor_string;
 EXIT WHEN reused_cursors%notfound;
 sys.dbms_shared_pool.keep(cursor_string, 'C');
 END LOOP;
 END;
 BEGIN
 OPEN cached_sequences;
 LOOP
 FETCH cached_sequences INTO sequence_owner, sequence_name;
 EXIT WHEN cached_sequences%notfound;
 sys.dbms_shared_pool.keep(sequence_owner || '.' || sequence_name,
'Q');
 END LOOP;
 END;
 BEGIN
 OPEN candidate_objects;
 LOOP
 FETCH candidate_objects INTO object_name, object_type;
 EXIT WHEN candidate_objects%notfound;
 sys.dbms_shared_pool.keep('SYS.' || object_name, object_type);
 END LOOP;
 END;
 --
 -- end of Steve Adams section
 --
 cur:=DBMS_SQL.OPEN_CURSOR;

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

 sql_com:='ALTER SYSTEM FLUSH SHARED_POOL';

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 20

 DBMS_SQL.PARSE(cur,sql_com,dbms_sql.v7);
 row_proc:=DBMS_SQL.EXECUTE(cur);
 DBMS_SQL.CLOSE_CURSOR(cur);
 END IF;
END flush_it;

 Figure 18: Example Script to Run a Shared Pool Flush Routine

The command set to perform a flush on a once every 30 minute cycle when
the pool reaches 95% full would be:

VARIABLE x NUMBER;
BEGIN
dbms_job.submit(
:X,'BEGIN flush_it(95); END;',SYSDATE,'SYSDATE+(30/1440)’);
END;
/
COMMIT;

(Always commit after assigning a job or the job will not be run and queued)

There is always a discussion as to whether this really does help performance so I
set up a test on a production instance where on day 1 I did no automated
flushing and on day 2 I instituted the automated flushing. Figure 19 shows the
graphs of performance indicators, flush cycles and users.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 21

Figure 19: Graphs Showing Effects of Flushing

The thing to notice about the graphs in Figure 19 is the overall trend of the
performance indicator between day 1 and day 2. On day 1 (the day with an initial
flush as indicated by the steep plunge on the pool utilization graph followed by
the buildup to maximum and the flattening of the graph) the performance
indicator shows an upward trend. The performance indicator is a measure of how
long the database takes to do a specific set of tasks (from the Q Diagnostic tool
from Savant Corporation). Therefore an increase in the performance indicator
indicates a net decrease in performance. On day 2 the overall trend is downward
with the average value less than the average value from day 1. Overall the
flushing improved the performance as indicated by the performance indicator by

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 22

10 to 20 percent. Depending on the environment I have seen improvements of up
to 40-50 percent.

One thing that made the analysis difficult was that on day 2 there were several
large batch jobs run which weren’t run on day 1. The results still show that
flushing has a positive effect on performance when the database is a mixed SQL
environment with a large percentage of non-reusable SQL areas.

Guideline 3 also brings up an interesting point, you may already have over
allocated the shared pool, in this case guideline 3 may result in you decreasing
the size of the shared pool. In this situation the shared pool has become a
cesspool filled with nothing but garbage SQL. After allocating enough memory for
dictionary objects and other fixed areas and ensuring that the standard packages
and such are pinned, you should only maintain a few megabytes above and
beyond this level of memory for SQL statements. Since none of the code is being
reused you want to reduce the hash search overhead as much as possible, you
do this by reducing the size of the available SQL area memory so as few a
number of statements are kept as possible.

What to Pin
In all of the guidelines stated so far I mention that the memory is usually
allocated above and beyond that needed for fixed size areas and pinned objects.
How do you determine what to pin? Generally speaking any package, procedure,
function or cursor that is frequently used by your application should be pinned
into the shared pool when the database is started. I suggest adding a “null”
startup function to every in house generated package it essentially looks like
Figure 20.

FUNCTION start_up
RETURN number IS
Ret NUMBER:=1;
BEGIN
Ret:=0
RETURN ret;
END start_up;

Figure 20: Example Null Startup Function

The purpose of the null startup function is to provide a touch point to pull the
entire package into the shared pool. This allows you to create a startup SQL
procedure that pulls all of the application packages into the pool and pins them
using the DBMS_SHARED_POOL package. The DBMS_SHARED_POOL
package may have to be built in earlier releases of Oracle. The
DBMS_SHARED_POOL package is built using the DBMSPOOL.SQL and
PRVTPOOL.PLB scripts located in (UNIX) $ORACLE_HOME/rdbms/admin or
(NT) x:\orant\rdbms\admin (where x: is the home drive for your install).

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 23

How do you determine what packages, procedures of functions to pin? Actually,
Oracle has made this easy by providing the V$DB_OBJECT_CACHE view that
shows all objects in the pool, and, more importantly, how they are being utilized.
The script in Figure 21 provides a list of objects that have been loaded more than
once and have executions greater than one. Some example output from this
script is shown in figure 22. A rule of thumb is that if an object is being frequently
executed and frequently reloaded it should be pinned into the shared pool.

rem
rem FUNCTION: Report Stored Object Statistics
rem
column owner format a11 heading Schema
column name format a30 heading Object|Name
column namespace heading Name|Space
column type heading Object|Type
column kept format a4 heading Kept
column sharable_mem format 999,999 heading Shared|Memory
column executions format 999,999 heading Executes
set lines 132 pages 47 feedback off
@title132 'Oracle Objects Report'
break on owner on namespace on type
spool rep_out/&db/o_stat
select
 OWNER,
 NAMESPACE,
 TYPE,
 NAME,
 SHARABLE_MEM,
 LOADS,
 EXECUTIONS,
 LOCKS,
 PINS,
 KEPT
from
 v$db_object_cache
where
 type not in (
'NOT LOADED','NON-EXISTENT','VIEW','TABLE','SEQUENCE')
 and executions>0 and loads>1 and kept='NO'
order by owner,namespace,type,executions desc;
spool off
set lines 80 pages 22 feedback on
clear columns
clear breaks
ttitle off

Figure 21: Script to Show Objects Which Should Be Kept

The output from the script in Figure 21 is shown in Figure 22. Notice the objects
with high executions.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 24

Date: 11/20/98
Page: 1
Time: 09:59 AM Oracle Objects Report
AULTM
 AGCD database

 Name Object Object Shared
Schema Space Type Name Memory LOADS Executes
LOCKS PINS Kept
------ --------------- -------------- ---------------------------- -------- --------- -------- ----
----- --------- ----
SYS BODY PACKAGE BODY DBMS_EXPORT_EXTENSION 6,957 1 1,338
1 0 NO
 DBMS_SQL 11,016 1 50
1 0 NO
 DBMS_SYS_SQL 21,428 1 50
1 0 NO
 DBMS_DEFER_IMPORT_INTERNAL 4,070 1 50
1 0 NO
 STANDARD 26,796 1 50
1 0 NO
 DBMS_APPLICATION_INFO 4,585 1 8
1 0 NO
 DBMS_OUTPUT 8,799 1 1
1 0 NO
 TABLE/PROCEDURE PACKAGE DBMS_EXPORT_EXTENSION 12,269 1 1,355
1 0 NO
 DBMS_DEFER_IMPORT_INTERNAL 10,662 1 51
1 0 NO
 DBMS_SQL 6,960 1 50
1 0 NO
 STANDARD 118,556 1 50
1 0 NO
 DBMS_SYS_SQL 7,472 1 50
1 0 NO
 DBMS_APPLICATION_INFO 11,569 1 9
1 0 NO
 DBMS_OUTPUT 13,391 1 1
1 0 NO

Figure 22: Example Output From the Script In Figure 21.

Unfortunately in my active instance I already have the objects pinned that are
required, but the example report in Figure 22 taken from one of my less active
instances still shows the concept. Note that you only have to pin the package, not
the package and package body.

Guideline 4: Determine usage patterns of packages, procedures, functions and
cursors and pin those that are frequently used.

The Shared Pool and MTS
The use of the multi-threaded server option (MTS) in Oracle requires a
sometimes dramatic increase in the size of the shared pool. This increase in the
size of the shared pool caused by MTS is due to the addition of the user global
areas required for sorting and message queues. If you are using MTS you should
monitor the V$SGASTAT values for MTS related memory areas and adjust the
shared pool memory allocations accordingly.

Note that in Oracle 8 you should make use of the large pool feature to pull the
user global areas (UGA) and multi-threaded server queues out of the shared pool

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 25

area if MTS is being used. This prevents the fragmentation problems that have
been reported in shared pools when MTS is used without allocating the large
pool. The parallel query option (PQO) in Oracle8 also makes use of the large
pool area, depending on the number of users and degree of parallel, the large
pool may require over 200 megabytes by itself in a PQO environment.

Large Pool Sizing
Sizing the large pool can be complex. The large pool, if configured must be at
least 600 kilobytes in size. Usually for most MTS applications 600k is enough.
However, if PQO is also used in your Oracle8 environment then the size of the
large pool will increase dramatically. The V$SGASTAT dynamic performance
view has a new column in Oracle8, POOL. The POOL column in the
V$SGASTAT view is used to contain the pool area where that particular type of
object is being stored. By issuing a summation select against the V$SGASTAT
view a DBA can quickly determine the size of the large pool area currently being
used.

SELECT name, SUM(bytes) FROM V$SGASTAT WHERE pool='LARGE POOL' GROUP BY
ROLLUP(name);

The above select should be used when an "ORA-04031:Unable to allocate 16084
bytes of shared memory ("large pool", "unknown object", "large pool hea", "PX
large pool") " error is received during operation with a large pool configured (the
number of bytes specified may differ). When the above select is run, the resulting
summary number of bytes will indicate the current size of the pool and show
how close you are to your maximum as specified in the initialization parameter
LARGE_POOL_SIZE. Generally increasing the large_pool by up to 100% will
eliminate the ORA-04031 errors.

Oracle8i provides for automated sizing of the large pool. If
PARALLEL_AUTOMATIC_TUNING is set to TRUE or if
PARALLEL_MAX_SERVERS is set to a non-zero value then the
LARGE_POOL_SIZE will be calculated, however, it can be over-ridden with a
manually specified entry in the initialization file. Indeed, if an ORA-27102: Out of
Memory error is received when you set either of these parameters (or both) you
must either manually set LARGE_POOL_SIZE or reduce the value for
PARALLEL_MAX_SERVERS. The following formula determines the set point for
the LARGE_POOL_SIZE if it is not manually set:

(DOP^2*(4I-1)+2*DOP*3+4*DOP(I-1))*PEMS*USERS

Where

 DOP – Degree of Parallel calculated from #CPU/NODE * #NODES

 I – Number of threads/CPU

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 26

 PEMS – Parallel execution message size – set with
PARALLEL_EXECUTION_MESSAGE_SIZE initialization parameter,
usually defaults to 2k or 4k but can be larger.

 USERS – Number of concurrent users using parallel query

For a 2k PEMS with 4 concurrent users for a steadily increasing value for DOP
the memory size is a quadratic function ranging from around 4 meg for 10 CPUs
to 120 meg with 70 CPUs. This memory requirement is demonstrated in Figure
23.

Figure 23: Example Chart for 2k PEMS and 4 Concurrent Users Showing
Memory Requirements as Number of CPUs Increases

On my NT4.0 Oracle8i, 8.1.3 test system I have 2 CPUs, set at 2 threads per cpu
(DOP of 4) and then 4 threads per cpu (DOP of 8), message buffer of 4k and I
performed multiple tests increasing the PARALLEL_MAX_SERVERS
initialization parameter to see what the resulting increase in
LARGE_POOL_SIZE would be, the results were:

PARALLEL_MAX_SERVERS DOP 4 LARGE_POOL_SIZE DOP 8 LARGE_POOL_SIZE
4 685,024 bytes
685,024 bytes
 857,056 bytes 857,056 bytes
16 1,151,968 bytes
1,545,184 bytes

Notice that for a small number of CPUs the large pool size increase from an
increase in parallel max servers isn't affected by changes in the number of
parallel threads until the value of threads is large in respect to the number of
CPUs.

For non-PQO systems a general rule of thumb is 5K of memory for each MTS
user for the large pool area.

Guideline 5: In Oracle7when using MTS increase the shared pool size to
accommodate MTS messaging and queuing as well as UGA requirements. In
Oracle8 use the Large Pool to prevent MTS from effecting the shared pool areas.

A Matter Of Hashing
We have discussed hashing in prior sections, essentially each SQL statement is
hashed and this hash value is then used to compare to already stored SQL
areas, if a matching hash is found the statements are compared. The hash is
only calculated based on the first 200 or so characters in the SQL statement, so
extremely long SQL statements can result in multiple hashes being the same
even though the stored SQL is different (if the first 100 or so characters in each

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 27

statement are identical). This is another argument for using stored procedures
and functions to perform operations and for the use of bind variables. In 8.0 the
hash value is calculated on the first 100 and last 100 characters reducing the
chances of multiple identical hash values for different SQL statements. In 8i the
hash is calculated on the entire SQL text so multiple identical hashes should
never occur.

If the number of large, nearly identical statements is high, then the number of
times the parser has to compare a new SQL statement to existing SQL
statements with the same hash value increases. This results in a higher
statement overhead and poorer performance. You should identify these large
statements and encourage users to re-write them using bind variables or to
proceduralize them using PL/SQL. The report in Figure 24 will show if you have a
problem with multiple statements being hashed to the same value.

Rem:
rem: FUNCTION: Shows by user who has possible
rem: SQL reuse problems
rem:
column total_hash heading 'Total Hash|Values'
column same_hash heading 'SQL With|Same
Hash'
column u_hash_ratio format 999.999 heading 'SQL Sharing|Hash'
start title80 'Shared Hash Value Report'
spool rep_out\&&db\shared_hash.lst
break on report
compute sum of total_hash on report
compute sum of same_hash on report
select
 a.username,
 count(b.hash_value) total_hash,
 count(b.hash_value)-count(unique(b.hash_value)) same_hash,
(count(unique(b.hash_value))/count(b.hash_value))*100 u_hash_ratio
from
 dba_users a,
 v$sqlarea b
where
 a.user_id=b.parsing_user_id
group by
 a.username;
clear computes

Figure 24: Example Script to Report on Hashing Problems

The script in Figure 24 produces a report similar to that shown in Figure 25. The
report in Figure 25 shows which users are generating SQL that hashes to the
same values. Once you have a user isolated you can then run the script in Figure
26 to find the bad SQL statements.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 28

Date: 11/20/98 Page: 1
Time: 11:40 AM Shared Hash Value Report AULTM
 DCARS database

 Total Hash SQL With SQL Sharing
USERNAME Values Same Hash Hash
------------------------------ ---------- --------- -----------
AULTM 129 0 100.000
DCARS 6484 58 99.105
MCNAIRT 20 0 100.000
PASSMAP 2 0 100.000
QDBA 109 0 100.000
RCAPS 270 0 100.000
RCOM 342 7 97.953
REPORTS1 28 0 100.000
SECURITY_ADMIN 46 0 100.000
SYS 134 0 100.000
 ---------- ---------
sum 7564 65

Figure 25: Hash Report

A quick glance at the report in Figure 25 shows that we need to look at the
DCARS user to correct hashing problems they might be having and improve the
reuse of SQL in the shared pool. However, look at the number of hash areas this
user has accumulated, 6,484, if I run the report from Figure 13 it will out weigh
the paper version of the Oracle documentation set. A faster way to find the hash
values would be to do a self join and filter out the hash values that are duplicate.
Sounds easy enough, but remember, the V$ tables have no rowids so you can’t
use the classic methods, you have to find another column that will be different
when the HASH_VALUE column in V$SQLAREA is the same. Look at the select
in Figure 26.

select distinct a.hash_value from v$sqlarea a, v$sqlarea b, dba_users c
where a.hash_value=b.hash_value and
a.parsing_user_id = c.user_id
and c.username='DCARS' and change to user you are concerned about
a.FIRST_LOAD_TIME != b.FIRST_LOAD_TIME

Figure 26: Example Select To Determine Duplicate Hash Values

Figure 27 has an example output from the above select.

DCARS:column hash_value format 99999999999
DCARS:set echo on
DCARS: select distinct a.hash_value from v$sqlarea a, v$sqlarea b,
 2 dba_users c
 3 where a.hash_value=b.hash_value and
 4 a.parsing_user_id = c.user_id
 5 and c.username='DCARS' and
 6* a.FIRST_LOAD_TIME != b.FIRST_LOAD_TIME

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 29

 HASH_VALUE

 -1595172473
 -1478772040
 -1344554312
 -941902153
 -807684425
 -507978165
 -270812489
 441376718
 784076104
 979296206
 1765990350
 1945885214

Figure 26: Example Hash Select Output

Once you have the hash value you can pull the problem SQL statements from
either V$SQLAREA or V$SQLTEXT very easily, look at Figure 27.

DCARS:select sql_text from v$sqlarea where hash_value='441376718';

SQL_TEXT

SELECT region_code, region_dealer_num, consolidated_dealer_num,
dealer_name, dealer_status_code, dealer_type_code, mach_credit_code,
parts_credit_code FROM dealer WHERE region_code = '32' AND
region_dealer_num = '6433'

SELECT region_code, region_dealer_num, consolidated_dealer_num,
dealer_name, dealer_status_code, dealer_type_code, mach_credit_code,
parts_credit_code FROM dealer WHERE region_code = '56' AND
region_dealer_num = '6273'

Figure 27: Example of Statements With Identical Hash Values But Different SQL

Long statements require special care to see that bind variables are used to
prevent this problem with hashing. Another help for long statements is to use
views to store values at an intermediate state thus reducing the size of the
variable portion of the SQL. Notice in the example select in Figure 27 that the
only difference between the two identically hashed statements is that the
“region_code” and “region_dealer_num” comparison values are different, if bind
variables had been used in these statements there would only have been one
entry instead of two.

Guideline 6: Use bind variables, PL/SQL (procedures or functions) and views to
reduce the size of large SQL statements to prevent hashing problems.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 30

Monitoring Library and Data Dictionary
Caches

I've spent most of this article looking at the shared SQL area of the shared pool.
Let's wrap up with a high level look at the library and data dictionary caches. The
library cache area is monitored via the V$LIBRARYCACHE view and contains
the SQL area, PL/SQL area, table, index and cluster cache areas. The data
dictionary caches contain cache area for all data dictionary related definitions.

The script in Figure 28 creates a report on the library caches. The items of
particular interest in the report generated by the script in Figure 28 (shown in
Figure 29) are the various ratios.

rem
rem Title: libcache.sql
rem
rem FUNCTION: Generate a library cache report
rem
column namespace heading "Library Object"
column gets format 9,999,999 heading "Gets"
column gethitratio format 999.99 heading "Get Hit%"
column pins format 9,999,999 heading "Pins"
column pinhitratio format 999.99 heading "Pin Hit%"
column reloads format 99,999 heading "Reloads"
column invalidations format 99,999 heading "Invalid"
column db format a10
set pages 58 lines 80
start title80 "Library Caches Report"
define output = rep_out\&db\lib_cache
spool &output
select
 namespace,
 gets,
 gethitratio*100 gethitratio,
 pins,
 pinhitratio*100 pinhitratio,
 RELOADS,
 INVALIDATIONS
from
 v$librarycache
/
spool off
pause Press enter to continue
set pages 22 lines 80
ttitle off
undef output

Figure 28: Example Script To Monitor The Library Caches

Look at the example output from the script in Figure 28 in Figure 29. In Figure 29
we see that all Get Hit% (gethitratio in the view) except for indexes are greater
than 80-90 percent. This is the desired state, the value for indexes is low

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 31

because of the few accesses of that type of object. Notice that the Pin Hit% is
also greater than 90% (except for indexes) this is also to be desired. The other
goals of tuning this area are to reduce reloads to as small a value as possible
(this is done by proper sizing and pinning) and to reduce invalidations.
Invalidations happen when for one reason or another an object becomes
unusable. However, if you must use flushing of the shared pool reloads and
invalidations may occur as objects are swapped in and out of the shared pool.
Proper pinning can reduce the number of objects reloaded and invalidated.

Guideline 7: In a system where there is no flushing increase the shared pool
size in 20% increments to reduce reloads and invalidations and increase hit
ratios.

Date: 11/21/98 Page: 1
Time: 02:51 PM Library Caches Report SYSTEM
 ORTEST1 database

Library Object Gets Get Hit% Pins Pin Hit% Reloads Invalid
--------------- ---------- -------- ---------- -------- ------- -------
SQL AREA 46,044 99.17 99,139 99.36 24 16
TABLE/PROCEDURE 1,824 84.59 6,935 93.21 3 0
BODY 166 93.98 171 91.23 0 0
TRIGGER 0 100.00 0 100.00 0 0
INDEX 27 .00 27 .00 0 0
CLUSTER 373 98.12 373 97.59 0 0
OBJECT 0 100.00 0 100.00 0 0
PIPE 0 100.00 0 100.00 0 0

Figure 29: Example Of The Output From Library Caches Report

The data dictionary caches used to be individually tunable through several
initialization parameters, now they are internally controlled. The script in Figure
30 should be used to monitor the overall hit ratio for the data dictionary caches.

rem
rem title: ddcache.sql
rem FUNCTION: report on the v$rowcache table
rem HISTORY: created sept 1995 MRA
rem
start title80 "DD Cache Hit Ratio"
spool rep_out\&db\ddcache
SELECT (SUM(getmisses)/SUM(gets)) RATIO
FROM V$ROWCACHE
/
spool off
pause Press enter to continue
ttitle off

Figure 30: Script to Monitor the Data Dictionary Caches

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 32

The output from the script in Figure 30 is shown in Figure 31.

Date: 11/21/98 Page: 1
Time: 02:59 PM DD Cache Hit Ratio SYSTEM
 ORTEST1 database

 RATIO

.01273172

Figure 31: Example Output From Data Dictionary Script

The ratio reported from the script in Figure 30 should always be less than 1. The
ratio corresponds to the number of times out of 100 that the database engine
sought something from the cache and missed. A dictionary cache miss is more
expensive than a data block buffer miss so if your ratio gets near 1 increase the
size of the shared pool since the internal algorithm isn't allocating enough
memory to the data dictionary caches.

Guideline 8: In any shared pool, if the overall data dictionary cache miss ratio
exceeds 1 percent, increase the size of the shared pool.

In Summary
In section of the tuning paper we have discussed ways to monitor for what
objects should be pinned, discussed multi-threaded server , looked at hashing
problems and their resolution as well as examined classic library and data
dictionary cache tuning. Including the guidelines from last months article we have
established 8 guidelines for tuning the Oracle shared pool:

Guideline 1: If gross usage of the shared pool in a non-ad-hoc environment
exceeds 95% (rises to 95% or greater and stays there) establish a shared pool
size large enough to hold the fixed size portions, pin reusable packages and
procedures. Gradually increase shared pool by 20% increments until usage
drops below 90% on the average.

Guideline 2: If the shared pool shows a mixed ad-hoc and reuse environment,
establish a shared pool size large enough to hold the fixed size portions, pin
reusable packages and establish a comfort level above this required level of pool
fill. Establish a routine flush cycle to filter non-reusable code from the pool.

Guideline 3: If the shared pool shows that no reusable SQL is being used
establish a shared pool large enough to hold the fixed size portions plus a few

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 33

megabytes (usually not more than 40) and allow the shared pool modified least
recently used (LRU) algorithm to manage the pool. (also see guideline 8)

Guideline 4: Determine usage patterns of packages, procedures, functions and
cursors and pin those that are frequently used.

Guideline 5: In Oracle7when using MTS increase the shared pool size to
accommodate MTS messaging and queuing as well as UGA requirements. In
Oracle8 use the Large Pool to prevent MTS from effecting the shared pool areas.

Guideline 6: Use bind variables, PL/SQL (procedures or functions) and views to
reduce the size of large SQL statements to prevent hashing problems.

Guideline 7: In a system where there is no flushing increase the shared pool
size in 20% increments to reduce reloads and invalidations and increase object
cache hit ratios.

Guideline 8: In any shared pool, if the overall data dictionary cache miss ratio
exceeds 1 percent, increase the size of the shared pool.

Using these guidelines and the scripts and techniques you should be well on the
way towards a well tuned and well performing shared pool.

Tuning Checkpoints
Checkpoints provide for concurrency in an Oracle database. Checkpoints write
out timestamp and SCN information as well as dirty blocks to the database
files.Pre-7.3.4 the checkpoint process was optional, now it is required.

Checkpoints provide for rolling forward after a system crash. Data is applied from
the time of the last checkpoint forward from the redo entries. Checkpoints also
provide for reuse of redo logs. When a redo log is filled the LGWR process
automatically switches to the next available log. All data in the now inactive log is
written to disk by an automatic checkpoint. This frees the log for reuse or for
archiving.

Checkpoints occur when a redo log is filled, when the INIT.ORA parameter
LOG_CHECKPOINT_INTERVAL ORACLE7 is reached (Total bytes written to a
redo log), or the elapsed time has reached the INIT.ORA parameter
LOG_CHECKPOINT_TIMEOUT expressed in seconds or every three seconds,
or when an ALTER SYSTEM command is issued with the CHECKPOINT option
specified.

While frequent checkpoints will reduce recovery time, they will also decrease
performance. Infrequent checkpoints will increase performance but increase

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 34

required recovery times. To reduce checkpoints to only happen on log switches,
set LOG_CHECKPOINT_INTERVAL to larger than your redo log size, and set
LOG_CHECKPOINT_TIMEOUT to zero.

If checkpoints still cause performance problems, set the INIT.ORA parameter
CHECKPOINT_PROCESS to TRUE to start the CKPT process running. This will
free the DBWR from checkpoint duty and increase performance. The INIT.ORA
parameter PROCESSES may also have to be increased. Note that on Oracle8
and greater the checkpoint process is not optional and is started along with the
other Oracle instance processes.

Another new option with Oracle8i is the concept of fast-start checkpointing. In
order to configure fast-start checkpointing you set the initialization parameter
FAST_START_IO_TARGET. The FAST_START_IO_TARGET parameter sets
the number of IO operations that Oracle will attempt to limit itself to before writing
a checkpoint. This feature is only available with Oracle 8i Enterprise Edition.

Other initialization parameters that control checkpointing are:

 LOG_BUFFER_SIZE – should be set such that there aren’t large
numbers of small writes and the overall write tiome isn’t too long, usually
not more than 1 megabyte.

 LOG_SMALL_ENTRY_MAX_SIZE (Gone in 8i) sets the size in bytes for
the largest copy to the redo buffers that occurs under the redo allocation
latch. Decreasing the size of this parameter will reduce contention for the
redo allocation latch.

 LOG_SIMULTANEOUS_COPIES (Gone to “_” in 8i) set to twice the
number of CPUs to reduce contention for the redo copy latches by
increasing the number of latches.

 LOG_ENTRY_PREBUILD_THRESHOLD(Gone to “_” in 8.0, gone in 8i)
sets the number of bytes of redo to gather before copying to the log
buffer. For multi-CPU systems increasing this value can be beneficial.

Tuning Redo Logs
To tune redo logs you should:

 Actually tune LGWR process to optimize log writes

 LGWR writes when log buffers 1/3 full, or on COMMIT

 Tune redo log size based on transaction size, too small a size results in
frequent inefficient IO, too large results in too long a write

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 35

 Be sure logs are not in contention with each other or other files

To Determine average transaction size as far as redo buffer writes:

(redo size + redo wastage)

Redo writes

Use data from V$SYSSTAT. Size your log buffers to near this size, error on too
much rather than too little.

Size actual redo logs such that they switch every thirty minutes, or based on the
amount of data you can afford to lose (loss of the active redo log results in loss of
its data.)
Redo logs maintain a complete history of data and database changing
transactions. Redo logs are critical for recovery and operation of the Oracle
database system. Unfortunately redo logs are another structure that is difficult to
tune before an application system goes active. The majority of tuning efforts with
redo logs deal with two important issues:

1. Minimize the impact of the redo log/archive log/checkpoint processes on
database performance.

2. Maximize recoverability of the database

At times these two goals may be in opposition since by maximizing recoverability
(by reducing time to recovery for example) you will cause a performance impact.
I am afraid you will have to balance these two goals while dealing with redo log
tuning, however one thing to remember is that you will (hopefully) spend much
more time dealing with an operational database than you will recovering a
database so in the greater scheme of things perhaps optimizing for performance
is the major goal you should attempt to reach.

Redo Log Sizing
The size of a redo log depends on the transaction volume within your database.
Unfortunately there are no magic formulae to apply that will give you a size value,
it is completely empirically derived. Oracle requires at least two groups with one
redo log member per group for Oracle to start. If you have archive logging
enabled this should b pushed to a minimum of three groups of one redo log
member each. I prefer a minimum of five groups of two mirrored members each
for archive logging.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

Redo logs should be sized so that should you loose the online redo log a minimal
amount of data is lost. What is a minimal amount of data? Your guess is as good
as mine is, however you need to ask your users (or managers) how much data

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 36

can they afford to lose? The value they give you for data will probably relate to a
time interval such as “we can lose an hours worth of data but no more”. If you are
given a time interval then you need to size the logs such that a log switch
happens approximately at that interval during normal usage.

Log switch information is contained in the various versions of the v$log_hist or
v$log_history views. Log switch information is also contained in the alert log.
Once you establish how much data you can afford to lose (based on a time
interval) monitor your views or alert log to find how often log switches are
happening and adjust the size up or down to meet your requirement. Figure 32
shows a script to generate log switch statistics.

REM NAME :log_hist.sql
REM PURPOSE:Provide info on logs for last 24 hour since last log switch
REM USE : From SQLPLUS
REM Limitations : None
REM
COLUMN thread# FORMAT 999 HEADING 'Thrd#'
COLUMN sequence# FORMAT 99999 HEADING 'Seq#'
COLUMN first_change# HEADING 'Low#'
COLUMN next_change# HEADING 'High#'
COLUMN first_time HEADING 'Accessed'
SET LINES 80
@title80 "Log History Report"
SPOOL rep_out\&db\log_hist
REM
SELECT thread#, sequence#,
 first_change#,next_change#,
 TO_CHAR(a.first_time,'dd-mon-yyyy hh24:mi:ss') first_time
FROM
 v$log_history a
WHERE
 a.first_time >
 (SELECT b.first_time-1
 FROM v$log_history b WHERE b.next_change# =
 (SELECT MAX(c.next_change#) FROM v$log_history c));
SPOOL OFF
SET LINES 80
CLEAR COLUMNS
TTITLE OFF
PAUSE Press enter to continue

Figure 32: Script to Generate redo Log Switch Information

The above script will provide log switch information, the output from the script is
shown in Figure 33.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 37

Date: 04/02/99 Page: 1
Time: 09:58 AM Log History Report SYSTEM
 DMDB database

Thrd# Seq# Low# High# Accessed
----- ------ ---------- ---------- --------------------
 1 71 66879 66977 30-mar-1999 11:13:04
 1 72 66977 67066 30-mar-1999 11:13:28
 1 73 67066 67160 30-mar-1999 11:13:43
 1 74 67160 67229 30-mar-1999 11:13:53
 1 75 67229 67303 30-mar-1999 11:14:02
 . . .
 1 248 104705 104716 30-mar-1999 16:04:57
 1 249 104716 104723 30-mar-1999 16:13:46
 1 250 104723 105257 30-mar-1999 16:13:47
 1 251 105257 105963 30-mar-1999 16:28:36
181 rows selected.
Press enter to continue

Figure 33: Output From Redo Log Switch Script

Of course, without knowing the current size of the redo logs the above
information does us little good, the script in figure 34 will document the size of
your redo logs and the location of their files.

REM NAME: log_file.sql
REM FUNCTION: Report on Redo Logs Physical files
REM
COLUMN group# FORMAT 999999
COLUMN member FORMAT a40
COLUMN meg FORMAT 9,999
REM
SET LINES 80 PAGES 60 FEEDBACK OFF VERIFY OFF
START title80 'Redo Log Physical Files'
BREAK ON group#
SPOOL rep_out\&db\rdo_file
REM
SELECT
a.group#,a.member,b.bytes,b.bytes/(1024*1024) meg
FROM
sys.v_$logfile a,
sys.v_$log b
WHERE
a.group#=b.group#
ORDER BY
group#;
SPOOL OFF
CLEAR COLUMNS
CLEAR BREAKS
TTITLE OFF
SET PAGES 22 FEEDBACK ON VERIFY ON
PAUSE Press enter to continue

Figure 34: Redo Log Physical File Report

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 38

The output from the above script is shown in figure 35.

Date: 04/02/99 Page: 1
Time: 10:10 AM Redo Log Physical Files SYSTEM
 DMDB database
 GROUP# MEMBER BYTES MEG
------- ------------------------------------- ---------- ------
 1 C:\ORACLE1\ORTEST1\REDO\LOG4DMDB.ORA 1048576 1
 2 D:\ORACLE2\ORTEST1\REDO\LOG3DMDB.ORA 1048576 1
 3 E:\ORACLE3\ORTEST1\REDO\LOG2DMDB.ORA 1048576 1
 4 F:\ORACLE4\ORTEST1\REDO\LOG1DMDB.ORA 1048576 1
Press enter to continue

Figure 35: Example Output of Redo Log File Report

Based on our desire to maximize performance and meet recoverability guidelines
(only lose a maximum of an hours data) we need to increase the size of the
above redo logs since they are switching about every ten seconds.

Another item to adjust that deals with redo logs is the size of the log buffer. The
log buffer is written to in a circular fashion and as the buffer fills (actually at about
a third full) the LGWR process starts to write it out to the redo log. Too small a
log buffer setting and you will incur excessive IO to the redo logs and work the
LGWR to death, too large a value and the writes are delayed. I usually suggest
no larger a size than 1 megabyte for the log_buffer parameter and that the size
be either equal to or an equal divisor of the actual redo log size. Unless you have
very small redo logs the default value for log_buffers supplied by Oracle is too
small.

Tuning Rollback Segments
It is difficult if not impossible to proactively tune rollback segments. The reason
for this difficulty in the tuning of rollback segments is that they depend on the size
of transactions for their sizing information and you usually won't know the size of
a transaction until the transaction is running on a production level system.
However, once transactions are running in a quasi-production size environment
the sizing of rollback segments is made much easier. The views
DBA_ROLLBACK_SEGS and V$ROLLSTAT along with V$ROLLNAME are used
in an active environment to aid in the sizing estimations. The views shown in
Figure 36 help parse the large amount of information in these views into more
manageable chunks.

REM
REM FUNCTION: create views required for rbk1 and rbk2 reports.
REM
rem exit
CREATE OR REPLACE VIEW rollback1 AS
SELECT
 d.segment_name,extents,

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 39

 optsize,shrinks,
 aveshrink,aveactive,
 d.status
FROM
v$rollname n,
v$rollstat s,
dba_rollback_segs d
WHERE
d.segment_id=n.usn(+)
and d.segment_id=s.usn(+);

CREATE OR REPLACE VIEW rollback2 AS
SELECT
d.segment_name,extents,
xacts,hwmsize,rssize,
waits,wraps,extends
FROM
v$rollname n,
v$rollstat s,
dba_rollback_segs d
WHERE
d.segment_id=n.usn(+)
and d.segment_id=s.usn(+);

Figure 36: Views to Parse out Rollback Data

Once the views in figure 36 are created, two simple reports give us the
information to derive a best guess estimate of rollback sizing parameters. These
reports are shown in figure 37.

REM NAME : RBK1.SQL
REM FUNCTION : REPORT ON ROLLBACK SEGMENT STORAGE
REM FUNCTION : USES THE ROLLBACK1 VIEW
REM USE : FROM SQLPLUS
REM Limitations : None
REM
COLUMN hwmsize FORMAT 9999999999 HEADING 'LARGEST TRANS'
COLUMN tablespace_name FORMAT a10 HEADING 'TABLESPACE'
COLUMN segment_name FORMAT A10 HEADING 'ROLLBACK'
COLUMN optsize FORMAT 9999999999 HEADING 'OPTL|SIZE'
COLUMN shrinks FORMAT 9999 HEADING 'SHRINKS'
COLUMN aveshrink FORMAT 9999999999 HEADING 'AVE|SHRINK'
COLUMN aveactive FORMAT 9999999999 HEADING 'AVE|TRANS'
COLUMN waits FORMAT 99999 HEADING 'WAITS'
COLUMN wraps FORMAT 99999 HEADING 'WRAPS'
COLUMN extends FORMAT 9999 HEADING 'EXTENDS'
rem
BREAK ON REPORT
COMPUTE AVG OF AVESHRINK ON REPORT
COMPUTE AVG OF AVEACTIVE ON REPORT
COMPUTE AVG OF SHRINKS ON REPORT
COMPUTE AVG OF WAITS ON REPORT
COMPUTE AVG OF WRAPS ON REPORT
COMPUTE AVG OF EXTENDS ON REPORT
COMPUTE AVG OF HWMSIZE ON REPORT

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

SET FEEDBACK OFF VERIFY OFF LINES 132 PAGES 58

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 40

@title132 "ROLLBACK SEGMENT STORAGE"
SPOOL rep_out\&db\rbk1
rem
SELECT * FROM rollback1 ORDER BY segment_name;
SPOOL OFF
CLEAR COLUMNS
TTITLE OFF
SET FEEDBACK ON VERIFY ON LINES 80 PAGES 22
PAUSE Press enter to continue
TTITLE OFF
SET FEEDBACK ON VERIFY ON LINES 80 PAGES 22
PAUSE Press enter to continue

REM NAME : RBK2.SQL
REM FUNCTION : REPORT ON ROLLBACK SEGMENT STATISTICS
REM FUNCTION : USES THE ROLLBACK2 VIEW
REM USE : FROM SQLPLUS
REM Limitations : None
REM
COLUMN segment_name FORMAT A10 HEADING 'ROLLBACK'
COLUMN extents FORMAT 9,999 HEADING 'EXTENTS'
COLUMN xacts FORMAT 9,999 HEADING 'TRANS'
COLUMN hwmsize FORMAT 9,999,999,999 HEADING 'LARGEST TRANS'
COLUMN rssize FORMAT 9,999,999,999 HEADING 'CUR SIZE'
COLUMN waits FORMAT 999 HEADING 'WAITS'
COLUMN wraps FORMAT 999 HEADING 'WRAPS'
COLUMN extends FORMAT 999 HEADING 'EXTENDS'
REM
SET FEEDBACK OFF VERIFY OFF lines 80 pages 58
REM
@title80 "ROLLBACK SEGMENT STATISTICS"
SPOOL rep_out\&db\rbk2
REM
SELECT * FROM rollback2 ORDER BY segment_name;
SPOOL OFF
SET LINES 80 PAGES 20 FEEDBACK ON VERIFY ON
TTITLE OFF
CLEAR COLUMNS
PAUSE Press enter to continue

Figure 37: Reports Using ROLLBACK1 and ROLLBACK2

The output from the reports in figure 37 will resemble those shown in figure 38.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 41

Date: 12/07/98 Page:
1
Time: 03:38 PM Rollback Segment Report
DBAUTIL
 ORTEST1 database
 Tablespace Rollback Initial Next Minimum Maximum Current Optimal
Owner Name Segment Name Extent Extent Extents Extents Extents Setting
------ ------- ------------ --------- --------- -------- -------- -------- -------
PUBLIC PSRBS2 A09 10485760 10485760 2 121 2
 A10 10485760 10485760 2 121 2
SYS PSRBS2 A05 20480 20480 4 249 120 2457600
 R06 2097152 2097152 4 249 4 8388608
 R07 2097152 2097152 4 249 4 8388608
 R09 2097152 2097152 4 249 4 8388608
 RBSBIG 104857600 52428800 4 120 4
 R10 2097152 2097152 4 249 4 8388608
 R08 2097152 2097152 4 249 4 8388608
 SYSTEM SYSTEM 53248 53248 2 249 4

Date: 12/08/98 Page: 1
Time: 05:15 PM ROLLBACK SEGMENT STATISTICS DBAUTIL
 ORTEST1 database

ROLLBACK EXTENTS TRANS LARGEST TRANS CUR SIZE WAITS WRAPS EXTENDS
--------- ------- ------ -------------- -------------- ----- ----- -------
A05 4 0 8,433,664 8,433,664 3 5 0
A09 7 0 73,396,224 73,396,224 4 5 0
A10 3 0 31,453,184 31,453,184 1 3 0
R06 4 0 33,746,944 8,433,664 8 34 23
R07 4 0 65,388,544 8,433,664 3 6 0
R08 4 1 103,358,464 8,433,664 0 3 0
R09 4 0 21,090,304 8,433,664 9 21 6
R10 4 0 23,199,744 8,433,664 2 17 7
RBSBIG 4 0 262,139,904 262,139,904 1 0 0
SYSTEM 4 0 241,664 241,664 0 0 0

Figure 38: Example Rollback Segment Report

As you can see from looking at the report the ORTEST instance rollback
segments are a bit of a mess. We have both public (Owner PUBLIC) and private
(Owner SYS) rollback segments, segments that have extent sizes from 20k to
100 megabytes and a mix of segments with and without OPTIMAL set. The
second report shows that there are numerous waits, wraps and extends.

In sizing rollback segments your goal should be to reduce waits, wraps and
extends (and thus shrinks) to a minimum. The act of extending or shrinking
cause recursive SQL which is a performance robber as well as dynamic
extension which is another performance robber. By properly sizing rollback
segments there should be no shrinks and no waits.

I have found that sizing rollback segments such that the initial and next extents
are sized for the average transaction and the optimal is set at the average of the
largest transaction waits and shrinks are reduced or eliminated.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 42

Unless you are using a shared server environment I do not suggest using public
rollback segments at all. All rollback segments should be sized identically except
for a special rollback segment used for large transactions (in this case RBSBIG).
Notice how the large rollback segment is mixed in with the smaller rollback
segments, this is not a good practice. The large rollback segment should be
placed in its own tablespace that has been optimized for its use.

In many cases, large transactions such as batch loads, updates or deletes can
be "chunked" to reduce impact on rollback segments and thus prevent the
frustration of running out of extents, space, snapshot too old or all three during a
large transaction.

Tuning Oracle Sorts
Sorts are done when Oracle performs operations that retrieve information and
require the information retrieved to be an ordered set, in other words, sorted.
Sorts are done when the following operations are performed:

 Index creation

 Group by or Order by statements

 Use of the distinct operator

 Join operations

 Union, Intersect and Minus set operators.

Each of these operations requires a sort. There is one main indicator that your
sorts are going to disk and therefore your sort area in memory is too small. This
area is defined by the initialization parameters SORT_AREA_SIZE and
SORT_AREA_RETAINED_SIZE in both ORACLE7 and ORACLE8.

The primary indicator is the sorts (disk) statistic shown in Figure 15.42. If this
parameter exceeds 10% of the sum of sorts(memory) and sorts(disk) increase
the SORT_AREA_SIZE parameter. Large values for this parameter can induce
paging and swapping, so be careful you don't over allocate. In ORACLE 7 this
area is allocated either directly from memory to each user or, if the multi-
threaded server is used (MTS) a section of the shared pool is allocated to each
user. In ORACLE8 an extra shared area called the LARGE POOL is used (if it
has been initialized).

Under ORACLE7 the SORT_AREA_SIZE parameter controls the maximum sort
area. The sort area will be dynamically reallocated down to the size specified by
the initialization parameter SORT_AREA_RETAINED_SIZE.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 43

In ORACLE7.2 and later the initialization parameters SORT_DIRECT_WRITES,
SORT_WRITE_BUFFER_SIZE and SORT_WRITE_BUFFERS control how
needed disk sorts are optimized. By specifying SORT_DIRECT_WRITES to
TRUE you an improve your sort times by several fold because this forces writes
direct to disk rather than using the buffers. The SORT_WRITE_BUFFER_SIZE
parameter should be set such that SORT_WRITE_BUFFERS *
SORT_WRITE_BUFFER_SIZE is as large as you dare have it be on your system
and still not get swapping. The SORT_WRITE_BUFFERS is a value from 2 to 8
and the SORT_WRITE_BUFFER_SIZE is set between 32 and 64k bytes.
Therefore the maximum size this can be will be 8*64k = 512k or half a megabyte.

Some additional sort parameters are SORT_READ_FAC and
SORT_SPACEMAP_SIZE. The SORT_READ_FAC parameter assists with sort
merges. Set this to between 25-100% of the value of the
_DB_BLOCK_MULTIBLOCK_READ_COUNT parameter. The
SORT_SPACEMAP_SIZE parameter if set correctly helps with actions such as
index builds. The suggested setting is:

 ((total sort bytes/(SORT_AREA_SIZE)) + 64

Where:

total sort bytes = (number of records in sort) * (average row length + (2 *
No_of_columns))

However setting it higher temporarily isn’t harmful and can speed the index build
appreciably.

For standard sorts you should set the SORT_AREA_SIZE to the average sort
size for your database. The temporary tablespaces initial and next default
storage parameter should be set to the value of SORT_AREA_SIZE. For use
with parallel query sorts a temporary tablespace should be spread (striped)
across as many disks as the degree of parallelism.

On versions that support temporary tablespace specification a temporary
tablespace should be used for the target for disk sorts. A temporary tablespace
(one created or altered to be TEMPORARY in nature) has greatly reduced space
management overhead and thus can speed sorts. Another tip for the tablespaces
used for sorting is that it should be striped over as many drives as possible to
speed access to the sort sets.

The initialization parameter SORT_MULTIBLOCK_READ_COUNT does for sorts
what DB_MULTIBLOCK_READ_COUNT does for full table scans, it forces
Oracle to read at least that amount of data specified per merge read pass.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 44

The views that are used to help in the sort tuning process are
V$SORT_SEGMENT and V$SORT_USAGE. These views are not populated
unless dosk sorts occur. The V$SORT_SEGMENT view contains a single line for
each sort operation that gives detailed information about segment size in blocks.
If you are getting excessive disk sorts you should query this view to calculate the
best possible sort area size. An example query to give average sort area size is
shown in Figure 39.

REM
REM FUNCTION: Generate a summary of Disk Sort Area Usage
REM
REM disksort.sql
REM
COLUMN value NEW_VALUE bs NOPRINT
SELECT value FROM v$parameter WHERE name='db block size';
START title80 "Instance Disk Area Average Sizes"
SPOOL rep_out\&&db\disk_sort
SELECT
 Tablespace_name,
 COUNT(*) areas,
 (SUM(total_blocks)/COUNT(*))*&&bs avg_sort_bytes
FROM v$sort_segment
GROUP BY tablespace_name;
SPOOL OFF

Figure 39: Example Report On Disk Sort Sizes

Optimizer Modes
Essentially there are two optimizer modes: RULE or CHOOSE. CHOOSE must
be used if:

 HINTS used

 Mode set to FIRST_ROWS or ALL_ROWS

 New features are to be used

However, CHOOSE has its drawbacks:

 Must use frequent ANALYZE

 Must Use histograms with skewed data

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 45

Tuning the Multi-part Oracle8
Buffer Cache

In Oracle8 and Oracle8i the database block buffer has been split into three
possible areas, the default, keep and recycle buffer pool areas. It is not required
that these three pools be used, only one, the default pool configured with the
DB_BLOCK_BUFFERS initialization parameter must be present, the others are
“sub” pool to this main pool. How are the various pools used?

Use of the Default Pool
If a table, index or cluster is created with specifying that the KEEP or RECYCLE
pool be used for its data, then it is placed in the default pool when it is accessed.
This is standard Oracle7 behavior and if no special action is taken to use the
other pools then this is also standard Oracle8 and Oracle8I behavior. The
initialization parameters DB_BLOCK_BUFFERS and
DB_BLOCK_LRU_LATCHES must be set if multiple pools are to be used:

DB_BLOCK_BUFFERS = 2000
DB_BLOCK_LRU_LATCHES = 10

Use of The KEEP Pool
The KEEP database buffer pool is configured using the BUFFER_POOL_KEEP
initialization parameter which looks like so:

BUFFER_POOL_KEEP = ‘100,2’

The two specified parameters are the number of buffers from the default pool to
assign to the keep pool and the number of LRU (least recently used) latches to
assign to the keep pool. The minimum number of buffers assigned to the pool is
50 times the number of assigned latches. The keep pool, as its name implies, is
used to store object data that shouldn’t be aged out of the buffer pool such as
look up information and specific performance enhancing indexes. The objects are
assigned to the keep pool through either their creation statement or by
specifically assigning them to the pool using the ALTER command. Any blocks
already in the default pool are not affected by the ALTER command, only
subsequently accessed blocks.

The keep pool should be sized such that it can hold all the blocks from all of the
tables created with the buffer pool set to KEEP.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 46

Use of the RECYCLE Pool
The RECYCLE database buffer pool is configured using the
BUFFER_POOL_RECYCLE initialization parameter which looks like so:

BUFFER_POOL_RECYCLE = ‘1000,5’

The two specified parameters are the number of buffers from the default pool to
assign to the recycle pool and the number of LRU (least recently used) latches to
assign to the keep pool. The minimum number of buffers assigned to the pool is
50 times the number of assigned latches. The recycle pool, as its name implies,
is used to store object data that should be aged out of the buffer pool rapidly
such as searchable LOB information. The objects are assigned to the recycle
pool through either their creation statement or by specifically assigning them to
the pool using the ALTER command. Any blocks already in the default pool are
not affected by the ALTER command, only subsequently accessed blocks.

As long as the recycle pool shows low block contention it is sized correctly.

With the above setpoints for the default, keep and recycle pools the default pool
would end up with 900 buffers and 3 lru latches.

Tuning the Three Pools
Since the classic method of tuning the shared pool is not available in Oracle8i we
must examine new methods to achieve the same ends. This involves looking at
what Oracle has provided for tuning the new pools. A new script, catperf.sql
offers several new views for tuning the Oracle buffer pools. These views are:

 V$BUFFER_POOL -- Provides static information on pool configuration

 V$BUFFER_POOL_STATISTICS -- Provides Pool related statistics

 V$DBWR_WRITE_HISTOGRAM -- Provides summary information on
DBWR write activities

 V$DBWR_WRITE_LOG -- Provides write information for each
buffer area.

Of the four new views the V$BUFFER_POOL_STATISTICS view seems the
most useful for tuning the buffer pool. The V$BUFFER_POOL_STATISTICS view
contains statistics such as buffer_busy_waits, free_buffer_inspected,
dirty_buffers_inspected and physical write related data.

If a buffer pool shows excessive numbers of dirty_buffers_inspected and high
amounts of buffer_busy_waits then it probably needs to be increased in size.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 47

When configuring LRU latches and DBWR processes remember that the latches
are assigned to the pools sequentially and to the DBRW processes round robin.
The number of LRU processes should be equal to or a multiple of the value of
DBWR processes to ensure that the DBRW load is balanced across the
processes.

Adding Resources
If all possible tuning has been accomplished then add resources. Resource are
either memory, additional CPUs or more disks. However, you should analyze the
system to see what will give you the greatest return on investment. If you aren’t
seeing memory contention then it makes no sense to add memory. If you aren’t
CPU bound adding CPUs probably won’t help (unless you are going to parallel
query or multiple DBWR processes.) Likewise if you aren’t seeing disk contention
then additional disks probably won’t buy you much. However, if you are seeing
redo log contention or IO contention due to having to share disks between
multiple files, then performance gains may be realized by spreading the offending
files across multiple disk arrays even if the existing disks aren’t IO bound.

All things considered, memory will give the most tuning benefit. On the average
memory is 14,000 times faster than disk. Anytime an operation can be moved
into memory performance will be improved. Proper caching of indexes and
tables, proper sort area sizing and proper sizing of cache and pool areas are
critical to proper performance.

It has been said that parallel query is the often sought “make_database_faster”
initialization parameter, but only for a properly designed set of tables and
indexes. Multiple CPUs will help if you use parallel query since having parallel
threads running against insufficient CPUs will make problems worse. Parallel
query and multiple processes (DBWR, LGWR, etc) not much help with single
CPU system.

Use proper striping (RAID1/0 is usually best performer, RAID5 most dependable)
when laying out your tables and indexes. Also consider partitioning and in
Oracle8i subpartitioning. Table 3 shows the various RAID levels and what files
should be placed on them.

RAID Type of

Raid
Control File Database

File
Redo Log File Archive

Log File
0 Striping Avoid OK Avoid Avoid
1 Shadowing Recommended OK Recommended Recom-

mended
0+1 Striping

and
Shadowing

OK Recom-
mended

Avoid Avoid

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 48

RAID Type of
Raid

Control File Database
File

Redo Log File Archive
Log File

3 Striping
with static
parity

OK OK Avoid Avoid

5 Striping
with
rotating
parity

OK Recomm
ended if
RAID0-1
not
available

Avoid Avoid

Table 3: RAID Recommendations (From Metalink NOTE:45635.1)

Tuning Tables and Indexes
The biggest thing you can do to tune tables is to ensure that tables are properly
sized and spread on the disk array. In recent articles the concept of using fixed
extent sizes for all objects in a specific tablespace has been discussed. This is
an excellent concept for reducing fragmentation problems when used properly.
You must still perform sizing on the tables to be sure that you place the table in
the proper sizing model. With modern disk arrays and use of RAID, many of the
old table structure rules no longer apply, however, even on RAID Oracle blocks
are Oracle blocks. Therefore it is still wise to place the fixed length, fixed size, or
fixed value columns first and place the variable size or updated columns last in
the table order when the table is built. This allows optimal use of the PCTFREE
area.

Just like tables, indexes need to be properly sized, ordered and spread on disk
array. Indexes like large block sizes since this allows more optimal use of
available block space. The order of columns in an index should match the order
of columns in the query WHERE clause. Unless the leading column in the index
matches the leading column in the where clause an index may not be used. In
Oracle8i with query rewrite you can get away with miss-ordered columns but it is
not suggested unless done to reduce the indexes clustering factor.

Table Rebuilds
Tables should be rebuilt for the following reasons:

 Excessive numbers of extents

 Excessive amounts of row chaining

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 49

 To partition the table

 To move the table to a different tablespace

Even though many suggest that multiple extents aren’t harmful to a table or
index, if you get excessive extents it makes doing table and index maintenance
more difficult due to the excessive calls to FET$ and UET$ tables.

Row chaining occurs when an update forces a row to grow beyond the available
free space left in the block for updates. Row chaining results in doubling of your
IO to retrieve specific values.

Unless a table is created as a partitioned table from the start you cannot add
partitions or make it partitioned later without rebuilding the table entirely.

The REBUILD command can also be used to move a table from one tablespace
to another.

Rebuilding Indexes
Indexes should be rebuilt when:

 Index has too many levels

 Index is too broad

 Index clustering factor too high

A Balanced tree is defined as a tree structure in which any path from the root
page to any leaf page will traverse the same number of levels. Figure 40 shows
the basic structure of a B*Tree index.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 50

Figure 40: Basic B*Tree structure

When the number of levels gets too deep or the width of the final level gets too
broad the performance of the index degrades. This also goes hand-in-hand with
a poor clustering factor.

The index clustering factor (CF) determines the price of accessing data via the
rowids retrieved from the index. The CF tells you how many data blocks are read
in a full index scan. You can determine the actual number of data blocks read by
multiplying the CF by the percentage of data to be read. The CF can range
between the number of blocks containing data to the number of rows in the
tableA high clustering factor can either be implicit in the index design, in which
case there is nothing you can do other than reorder the index columns, or it can
be caused by an index that has been frequently updated causing block splits.
Figures 41 and 42 show indexs with good and bad clustering factors.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 51

Figure 41: Index with Good (low) Clustering Factor

Figure 42: Index with a Bad (high) Clustering Factor

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 52

Adjusting Index Cost in Oracle8
In Oracle 8i the total cost of the index is adjusted using the following formula:

Adjusted Cost = Cost * OPTIMIZER_INDEX_COST_ADJ / 100

This adjustment bypasses the Oracle assumption of a low buffer hit ratio used in
the data access calculation. In order to ensure that this adjustment is the proper
thing to do make sure there is adequate memory allocated to Oracle and that the
index is cached.
If you assume that most of the data will be placed in the buffer cache and remain
there, you can set OPTIMIZER_INDEX_COST_ADJ to a value less than 100,
reflecting the percentage of time data will be found in the buffer.

If you set the OPTIMIZER_INDEX_COST_ADJ to 10, the price of accessing any
index is 10% of the previously calculated price, presuming that data will be found
in the buffer cache 90% of the time on average.

However, you must be very careful. It is very tempting to explicitly set a low value
for OPTIMIZER_INDEX_COST_ADJ and force index usage in all casesyou must
be sure that your buffer cache can support data remaining in the buffer so that
the assumption will be correct. You must also be sure that the buffer cache
remains in memory and is not paged out (i.e., make sure you have adequate
physical memory!)

Bitmapped Index Usage*
A bitmapped index is used for low-cardinality data such as sex, race, hair color,
and so on. If a column to be indexed has a selectivity of greater than 30 to 40%
of the total data then it is probably a good candidate for bitmap indexing.

Bitmap indexing is not suggested for high-cardinality, high-update, or high-delete-
type data as in these type situations bitmap indexes may have to be frequently
rebuilt.

There are three things to consider when choosing an index method:

 Performance

 Storage

 Maintainability

The major advantages for using bitmapped indexes are: performance impact
for certain queries, and their relatively small storage requirements. Note,
however, that bitmapped indexes are not applicable to every query and

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 53

bitmapped indexes, like B-tree indexes, can impact the performance of insert,
update, and delete statements.

Bitmapped indexes can provide very impressive performance improvements.
Under test conditions the execution times of certain queries improved by several
orders of magnitude. The queries that benefit the most from bitmapped indexes
have the following characteristics:

 The WHERE-clause contains multiple predicates on low-cardinality
columns.

 The individual predicates on these low-cardinality columns select a large
number of rows.

 Bitmapped indexes have been created on some or all of these low-
cardinality columns.

 The tables being queried contain many rows.

An advantage of bitmapped indexes is that multiple bitmapped indexes can be
used to evaluate the conditions on a single table. Thus, bitmapped indexes are
very useful for complex ad hoc queries that contain lengthy WHERE-clauses
involving low cardinality data.

Bitmapped indexes incur a small storage cost and have a significant storage
savings over B-tree indexes. A bitmapped index can require 100 times less
space than a B-tree index for a low-cardinality column.

Remember that a strict comparison of the relative sizes of B-tree and bitmapped
indexes is not an accurate measure for selecting bitmapped over B-tree indexes.
Because of the performance characteristics of bitmapped indexes and B-tree
indexes, you should continue to maintain B-tree indexes on your high-cardinality
data. Bitmapped indexes should be considered primarily for your low-cardinality
data.

The storage savings are so large because bitmapped indexes replace multiple-
column B-tree indexes. In addition, single bit values replace possibly long
columnar type data. When using only B-tree indexes, you must anticipate the
columns that will commonly be accessed together in a single query and then
create a multicolumn B-tree index on those columns. Not only does this B-tree
index require a large amount of space, but it will also be ordered; that is, a B-tree
index on (MARITAL_STATUS, RACE, SEX) is useless for a query that only
accesses RACE and SEX. To completely index the database, you are forced to
create indexes on the other permutations of these columns. In addition to an
index on (MARITAL_STATUS, RACE, SEX), there is a need for indexes on
(RACE, SEX, MARITAL_STATUS), (SEX, MARITAL_STATUS, RACE), etc. For

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 54

the simple case of three low-cardinality columns, there are six possible
concatenated B-tree indexes.
What this means is that you are forced to decide between disk space and
performance when determining which multiple-column B-tree indexes to create.

With bitmapped indexes, the problems associated with multiple-column B-tree
indexes is solved because bitmapped indexes can be efficiently combined during
query execution. Three small single-column bitmapped indexes are a sufficient
functional replacement for six three-column B-tree indexes. Note that while the
bitmapped indexes may not be quite as efficient during execution as the
appropriate concatenated B-tree indexes, the space savings provided by
bitmapped indexes can often more than justify their utilization.

The net storage savings will depend upon a database’s current usage of B-tree
indexes:

 A database that relies on single-column B-tree indexes on high-
cardinality columns will not observe significant space savings (but should
see significant performance increases).

 A database containing a significant number of concatenated B-tree
indexes could reduce its index storage usage by 50% or more, while
maintaining similar performance characteristics.

 A database that lacks concatenated B-tree indexes because of storage
constraints will be able to use bitmapped indexes and increase
performance with minimal storage costs.

Bitmapped indexes are best for read-only or light OLTP environments. Because
there is no effective method for locking a single bit, row-level locking is not
available for bitmapped indexes. Instead, locking for bitmapped indexes is
effectively at the block level which can impact heavy OLTP environments. Note
also that like other types of indexes, updating bitmapped indexes is a costly
operation.

Although bitmapped indexes are not appropriate for databases with a heavy load
of insert, update, and delete operations, their effectiveness in a data
warehousing environment is not diminished. In such environments, data is
usually maintained via bulk inserts and updates. For these bulk operations,
rebuilding or refreshing the bitmapped indexes is an efficient operation. The
storage savings and performance gains provided by bitmapped indexes can
provide tremendous benefits to data warehouse users.

In preliminary testing of bitmapped indexes, certain queries ran up to 100 times
faster. The bitmapped indexes on low-cardinality columns were also about ten
times smaller than B-tree indexes on the same columns. In these tests, the

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 55

queries containing multiple predicates on low-cardinality data experienced the
most significant speedups. Queries that did not conform to this characteristic
were not assisted by bitmapped indexes. Bitmapped composite indexes cannot
exceed 30 columns.

The Initialization parameters of concern when dealing with bitmap indexes are:

 CREATE_BITMAP_AREA_SIZE -- Determines the amount of memory
allocated for bitmap creation. Default is 8MB. If cardinality is small, this
value can be reduced significantly.

 BITMAP_MERGE_AREA_SIZE -- Amount of memory to use for merging
bitmap strings. Default value is 1MB. Larger value can improve
performance since the bitmap segments must be pre-sorted before being
merged into a single bitmap.

Some perfromance characteristics for bitmap indexes are:

Larger block sizes can improve the storing and retrieving of bitmap information.
This means more efficient and thus faster operations involving bitmaps.

To compress storage further, use the NOT NULL constraint on bitmap index
columns. This is because nulls do exist in bitmap indexes, therefore they can be
used to support IS NULL and IS NOT NULL conditions.

Another consideration with bitmap indexes is that an ALTER TABLE command
that modifies a bitmap index column may invalidate the index structure.

The final thing you should remember about bitmap indexes is that they are not
considered by the RBO. In order to use bitmap indexes you must use cost based
(CBO) optimization.

Function Based Indexes
New to oracle8i is the concept of a function based index. In previous releases of
Oracle if we wanted to have a column that was always searched uppercase (for
example a last name that could have mixed case like McClellum) we had to place
the returned value with its mixed case letters in one column and add a second
column that was upper-cased to index and use in searches. This doubling of
columns required for this type of searching lead to doubling of size requirements
for some application fields. The cases where more complex such as SOUNDEX
and other functions would also have required use of a second column. This is not
the case with Oracle8i, now functions and user-defined functions as well as
methods can be used in indexes. Let's look at a simple example using the
UPPER function.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 56

CREATE INDEX tele_dba.up1_clientsv81
ON tele_dba.clientsv81(UPPER(customer_name))
TABLESPACE tele_index
STORAGE (INITIAL 1M NEXT 1M PCTINCREASE 0);

In many applications a column may store a numeric value that translates to a
minimal set of text values, for example a user code that designates functions
such as 'Manager', 'Clerk', or 'General User'. In previous versions of Oracle you
would have had to perform a join between a lookup table and the main table to
search for all 'Manager' records. With function indexes the DECODE function can
be used to eliminate this type of join.

CREATE INDEX tele_dba.dec_clientsv81
ON tele_dba.clientsv81(DECODE(user_code,
1,'MANAGER',2,'CLERK',3,'GENERAL USER'))
TABLESPACE tele_index
STORAGE (INITIAL 1M NEXT 1M PCTINCREASE 0);

A query against the clientsv8i table that would use the above index would look
like:

SELECT customer_name FROM tele_dba.clientsv8i
WHERE DECODE(user_code,
1,'MANAGER',2,'CLERK',3,'GENERAL USER')='MANAGER';

The explain plan for the above query shows that the index will be used to
execute the query:

SQL> SET AUTOTRACE ON EXPLAIN
SQL> SELECT customer_name FROM tele_dba.clientsv8i
 2 WHERE DECODE(user_code,
 3* 1,'MANAGER',2,'CLERK',3,'GENERAL USER') = 'MANAGER'

no rows selected

Execution Plan
--
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1 Card=1 Bytes=526)
1 0 TABLE ACCESS (BY INDEX ROWID)OF 'CLIENTSV8I'(Cost=1 Card=1 Bytes=526)
2 1 INDEX (RANGE SCAN) OF 'DEC_CLIENTSV8I' (NON-UNIQUE) (Cost=1 Card=1)

The table using function based indexes must be analyzed, the intialization
parameter ENABLE_QUERY_REWRITE set to true, and the optimizer mode set
to CHOOSE or the function based indexes will not be used. The RULE based
optimizer cannot use function based indexes.

If the function based index is built using a user defined function, any alteration or
invalidation of the user function will invalidate the index. Any user built functions
must not contain aggregate functions and must be deterministic in nature. A
deterministic function is one that is built using the DETERMINISTIC key word in

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 57

the CREATE FUNCTION, CREATE PACKAGE or CREATE TYPE commands. A
deterministic function is defined as one that always returns the same set value
given the same input no matter where the function is executed from within your
application.

As of 8.1.5 the validity of the DETERMINISTIC key word usage is not verified
and it is left up to the programmer to ensure it is used properly. A function based
index cannot be created on a LOB, REF or nested table column or against an
object type that contains a LOB, REF or nested table. Let's look at an example of
a user defined type (UDT) method.

CREATE TYPE room_t AS OBJECT(
lngth NUMBER,
width NUMBER,
MEMBER FUNCTION SQUARE_FOOT
RETURN NUMBER DETERMINISTIC);
/
CREATE TYPE BODY room_t AS
 MEMBER FUNCTION SQUARE_FOOT
 RETURN NUMBER IS
 area NUMBER;
 BEGIN
 AREA:=lngth*width;
 RETURN area
 END;
END;
/
CREATE TABLE rooms OF room_t
TABLESPACE test_data
STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0);

CREATE INDEX area_idx ON rooms r (r.square_foot());

Note: the above example is based on the examples given in the oracle manuals,
when tested on 8.1.3 the DETERMINISTIC keyword caused an error, dropping
the DETERMINISTIC keyword allowed the type to be created , however, the
attempted index creation failed on the alias specification. In 8.1.3 the key word is
REPEATABLE instead of DETERMINISTIC, however, even when specified with
the REPEATABLE keyword the attempt to create the index failed on the alias.

A function based index is allowed to be either a normal B*tree index or it can also
be mapped into a bitmapped format.

Reverse Key Indexes

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

New in oracle8 are reversed key indexes. A reversed key index prevents
unbalancing of the b*-tree and the resulting hot blocking which will happen if the
b*-tree becomes unbalanced. Generally, unbalanced b*trees are caused by high
volume insert activity in a parallel server where the key value is only slowly
changing such as with an integer generated from a sequence or a data value. A

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 58

reverse key index works by reversing the order of the bytes in the key value, of
course the ROWID value is not altered, just the key value. The only way to create
a reverse key index is to use the CREATE INDEX command, an index that is not
reverse key cannot be altered or rebuilt into a reverse key index, however, a
reverse key index can be rebuilt to be a normal index.

One of the major limitations of reverse key indexes are that they cannot be used
in an index range scan since reversing the index key value randomly distributes
the blocks across the index leaf nodes. A reverse key index can only use the
fetch-by-key or full-index(table)scans methods of access. Let's look at an
example.

CREATE INDEX rpk_po ON tele_dba.po(po_num) REVERSE
TABLESPACE tele_index
STORAGE (INITIAL 1M NEXT 1M PCTINCREASE 0);

The above index would reverse the values for the po_num column is it creates
the index. This would assure random distribution of the values across the index
leaf-nodes. But what if we then determine that the benefits of the reverse key do
not out weigh the draw backs? We can use the ALTER command to rebuild the
index as a noreverse index:

ALTER INDEX rpk_po REBUILD NOREVERSE;
ALTER INDEX rpk_po RENAME TO pk_po;

While the manuals only discuss the benefits of the reverse key index in the realm
of Oracle Parallel Server, if you experience performance problems after a bulk
load of data, dropping and recreating the indexes involved as reverse key
indexes may help if the table will continue to be loaded in a bulk fashion.

Index Organized Tables
Index organized tables have been around since Oracle8.0. If neither the HASH or
INDEX ORGANIZED options are used with the create table command then a
table is created as a standard hash table. If the INDEX ORGANIZED option is
specified, the table is created as a B-tree organized table identical to a standard
Oracle index created on similar columns. Index organized tables do not have
rowids.

Index organized tables have the option of allowing overflow storage of values
that exceed optimal index row size as well as allowing compression to be used to
reduce storage requirements. Overflow parameters can include columns to
overflow as well as the percent threshold value to begin overflow. An index
organized table must have a primary key. Index organized tables are best suited
for use with queries based on primary key values. Index organized tables can be
partitioned in Oracle8i as long as they do not contain LOB or nested table types.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 59

The pcthreshold value specifies the amount of space reserved in an index block
for row data, if the row data length exceeds this value then the row(s) are stored
in the area specified by the OVERFLOW clause. If no overflow clause is
specified rows that are too long are rejected. The INCLUDING COLUMN clause
allows you to specify at which column to break the record if an overflow occurs.
For example:

CREATE TABLE test8
 (doc_code CHAR(5),
 doc_type INTEGER,
 doc_desc VARCHAR(512),
 CONSTRAINT pk_docindex PRIMARY KEY (doc_code,doc_type))
 ORGANIZATION INDEX TABLESPACE data_tbs1
 PCTTHRESHOLD 20 INCLUDING doc_type
 OVERFLOW TABLESPACE data_tbs2
/

In the above example the IOT test8 has three columns, the first two of which
make up the key value. The third column in test8 is a description column
containing variable length text. The PCTHRESHOLD is set at 20 and if the
threshold is reached the overflow goes into an overflow storage in the data_tbs2
tablespace with any values of doc_desc that won't fit in the index block. Note
that you will the best performance from IOTs when the complete value is stored
in the IOT structure, otherwise you end up with an index and table lookup as you
would with a standard index-table setup.

Partitioned Tables and Indexes
In Oracle8 we have true table and index partitioning where the system maintains
range partitioning, maintains indexes and all operations are supported against
the partitioned tables. Partitions are good because:

 Each partition is treated logically as its own object. It can be dropped,
split or taken offine without affecting other partitions in the same object.

 Rows inside partitions can be managed separately from rows in other
partitions in the same object. This is supported by the extended partition
syntax.

 Maintenance can be performed on individual partitions in an object, this
is all known as partition independence.

 Storage values (initial, next, ext) can be different between individual
partitions or can be inherited.

 Partitions can be loaded without affecting other partitions.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 60

A partitioned table in Oracle8 is range partitioned, for example on month, day,
year or some other integer or numeric value. This makes partitioning of tables
ideal for the time-based data that is the main-stay of data warehousing.

So an accounts payable table would become:

CREATE TABLE acct_pay_99 (acct_no NUMBER, acct_bill_amt NUMBER, bill_date
DATE, paid_date DATE, penalty_amount NUMBER, chk_number NUMBER)
STORAGE (INITIAL 40K NEXT 40K PCTINCREASE 0)
PARTITION BY RANGE (paid_date)
(
PARTITION acct_pay_jan99
 VALUES LESS THAN (TO_DATE('01-feb-1999','DD-mon-YYYY'))
 TABLESPACE acct_pay1,
PARTITION acct_pay_feb99
 VALUES LESS THAN (TO_DATE('01-mar-1999','DD-mon-YYYY'))
 TABLESPACE acct_pay1,
PARTITION acct_pay_mar99
 VALUES LESS THAN (TO_DATE('01-apr-1999','DD-mon-YYYY'))
 TABLESPACE acct_pay1,
PARTITION acct_pay_apr99
 VALUES LESS THAN (TO_DATE('01-may-1999','DD-mon-YYYY'))
 TABLESPACE acct_pay1,
PARTITION acct_pay_may99
 VALUES LESS THAN (TO_DATE('01-jun-1999','DD-mon-YYYY'))
 TABLESPACE acct_pay1,
PARTITION acct_pay_jun99
 VALUES LESS THAN (TO_DATE('01-jul-1999','DD-mon-YYYY'))
 TABLESPACE acct_pay1,
PARTITION acct_pay_jul99
 VALUES LESS THAN (TO_DATE('01-aug-1999','DD-mon-YYYY'))
 TABLESPACE acct_pay1,
PARTITION acct_pay_aug99
 VALUES LESS THAN (TO_DATE('01-sep-1999','DD-mon-YYYY'))
 TABLESPACE acct_pay1,
PARTITION acct_pay_sep99
 VALUES LESS THAN (TO_DATE('01-oct-1999','DD-mon-YYYY'))
 TABLESPACE acct_pay1,
PARTITION acct_pay_oct99
 VALUES LESS THAN (TO_DATE('01-nov-1999','DD-mon-YYYY'))
 TABLESPACE acct_pay1,
PARTITION acct_pay_nov99
 VALUES LESS THAN (TO_DATE('01-dec-1999','DD-mon-YYYY'))
 TABLESPACE acct_pay11,
PARTITION acct_pay_dec99
 VALUES LESS THAN (TO_DATE('01-jan-2000','DD-mon-YYYY'))
 TABLESPACE acct_pay12,
PARTITION acct_pay_2000
 VALUES LESS THAN (MAXVALUE))
 TABLESPACE acct_pay_max
/

The above command results in a partitioned table that can be treated as a single
table for all inserts, updates and deletes or, if desired, the individual partitions
can be addressed. In addition the indexes created will be by default local indexes

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 61

that are automatically partitioned the same way as the base table. Be sure to
specify tablespaces for the index partitions or they will be placed with the table
partitions.

In the example the paid_date is the partition key which can have up to 16
columns included. Deciding the partition key can be the most vital aspect of
creating a successful partitioned table. I suggest using the UTLSIDX.SQL script
series to determine the best combination of key values. The UTLSIDX.SQL script
series is documented in the script headers for UTLSIDX.SQL, UTLOIDXS.SQL
and UTLDIDXS.SQL script SQL files. Essentially you want to determine how
many key values or concatenated key values there will be and how many rows
will correspond to each key value set. In many cases it will be important to
balance rows in each partition so that IO is balanced. However in other cases
you may want hard separation based on the data ranges and you don't really
care about the number of records in each partition, this needs to be determined
on a warehouse-by-warehouse basis.

Partitioned Indexes
An index can be range partitioned unless:

 It is a cluster index

 It is defined on a clustered table

Oracle supports three types of partitioned indexes:

 Local Prefixed

 Local Non-Prefixed

 Global Prefixed

A local index is defined as an index that is equi-partitioned with the underlying
base table, i.e., all keys in a given index partition refer only to rows stored in the
single related table partitionLocal index partitions are automatically maintained as
table partitions are inserted, dropped or split.

A global partitioned index is defined as an index in which the keys in a given
index partition may refer to rows in more than one underlying table
partition.Generally not equi-partitioned with the tableGlobal partitioned indexes
offer better performance via index partition “pruning”In Oracle, global indexes
must be prefixed.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 62

A partitioned index is said to be local prefixed if it is partitioned based on the
value of the left-most column(s) in the key. A partitioned index is said to be local
non-prefixed if it is partitioned based on the value of any column(s) other than the
left-most index column(s). A partitioned index is said to be global prefixed if it is
partitioned based on the value of the left-most column(s) in the key, which differs
from the table partition key.

Global indexes can offer performance benefits as a result of partition pruning but
they can potentially reduce availability by preventing partition-level maintenance
operations. Conversely, local indexes improve maintainability and availability but
can be more I/O intensive to scan.

Parallel Query
Parallel query was first offered in Oracle version 7. However, in Oracle 7 the
implementation was rather weak and sometimes generated questionable results.
Parallel Query in Oracle8 and 8i is more stable and offers a great performance
boost to specific types of SQL activities.

Parallel query splits the query into multiple segments and then assigns a
segment of the query or operation to each available parallel query slave based
on the settings for degree of parallel. This allows for maximal usage of multiple
CPUs.

Parallel query works best if table and indexes are partitioned. The value for
degree of parallel is set at database, table or index level. There are numerous
tuning options available for parallel query in 8 and 8i allowing a very fine degree
of control.

Oracle8 Enhanced Parallel
DML

To use parallel anything in Oracle8 the parallel server parameters must be set
properly in the initialization file, these parameters are:

 COMPATIBLE Set this to at least 8.0

 CPU_COUNT this should be set to the number of CPUs on your server,
if it isn't set it manually.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 63

 DML_LOCKS set to 200 as a start for a parallel system.

 ENQUEUE_RESOURCES set this to DML_LOCKS+20

 OPTIMIZER_PERCENT_PARALLEL this defaults to 0 favoring serial
plans, set to 100 to force all possible parallel operations or somewhere in
between to be on the fence.

 PARALLEL_MIN_SERVERS set to the minimum number of parallel
server slaves to start up.

 PARALLEL_MAX_SERVERS set to the maximum number of parallel
slaves to start, twice the number of CPUs times the number of
concurrent users is a good beginning.

 SHARED_POOL_SIZE set to at least
((3*msgbuffer_size)*(CPUs*2)*PARALLEL_MAX_SERVERS) bytes + 40
megabytes

 ALWAYS_ANTI_JOIN Set this to HASH or NOT IN operations will be
serial.

 SORT_DIRECT_WRITES Set this to AUTO

DML, data manipulation language, what we know as INSERT, UPDATE and
DELETE as well as SELECT can use parallel processing, the list of parallel
operations supported in Oracle8 is:

 Table scan

 NOT IN processing

 GROUP BY processing

 SELECT DISTINCT

 AGGREGATION

 ORDER BY

 CREATE TABLE x AS SELECT FROM y;

 INDEX maintenance

 INSERT INTO x ... SELECT ... FROM y

 Enabling constraints (index builds)

 Star transformation

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 64

In some of the above operations the table has to be partitioned to take full
advantage of the parallel capability. In some releases of Oracle8 you have to
explicitly turn on parallel DML using the ALTER SESSION command:

ALTER SESSION ENABLE PARALLEL DML;

Remember that the COMPATIBLE parameter must be set to at least 8.0.0 to get
parallel DML. Also, parallel anything doesn't make sense if all you have is one
CPU. Make sure that your CPU_COUNT variable is set correctly, this should be
automatic but problems have been reported on some platforms.

Oracle8 supports parallel inserts, updates, and deletes into partitioned tables. It
also supports parallel inserts into non-partitioned tables. The parallel insert
operation on a non-partitioned table is similar to the direct path load operation
that is available in Oracle7. It improves performance by formatting and writing
disk blocks directly into the datafiles, bypassing the buffer cache and space
management bottlenecks. In this case, each parallel insert process inserts data
into a segment above the high watermark of the table. After the transaction
commits, the high watermark is moved beyond the new segments.

To use parallel DML, it must be enabled prior to execution of the insert, update,
or delete operation. Normally, parallel DML operations are done in batch
programs or within an application that executes a bulk insert, update, or delete.
New hints are available to specify the parallelism of DML statements.

I suggest using explain plan and tkprof to verify that operations you suspect are
parallel are actually parallel. If you find for some reason Oracle isn't doing parallel
processing for an operation which you feel should be parallel, use the parallel
hints to force parallel processing:

 PARALLEL

 NOPARALLEL

 APPEND

 NOAPPEND

 PARALLEL_INDEX

An example would be:

SELECT /*+ FULL(clients) PARALLEL(clients,5,3)*/ client_id, client_name,
client_address FROM clients;

By using hints the developer and tuning DBA can exercise a high level of control
over how a statement is processed using the parallel query option. The

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 65

initialization parameters for use with Oracle Parallel Query in all versions is
shown in Table 4.

PARAMETER DESCRIPTION
In Oracle7
PARALLEL_MAX_SERVERS The maximum number of parallel query

slaves
PARALLEL_MIN_SERVERS The minimum number of parallel query

slaves
PARALLEL_MIN_PERCENT Sets the minimum percent of query

slaves which must be available.
PARALLEL_SERVER_IDLE_TIME Max allowed idle time in minutes before

a slave is terminated.
In Oracle8
OPTIMIZER_PERCENT_PARALLEL If set to non-zero allows optimizer to

look at DOP when calculating cost. Low
favors indexes, high favors tables.

PARALLEL_ADAPTIVE_MULTI_
USER

If set, reduces DOP based on user load

PARALLEL_BROADCAST_
ENABLED

Improves parallel performance in hash
and merge joins.

PARALLEL_EXECUTION_
MESSAGE_SIZE

Specifies the size of the parallel
execution messages.

PARALLEL_MIN_MESSAGE_POOL Minimum amount of shared_pool
allocated to parallel query if no large
pool configured.

2 UNDOCUMENTED
PARAMETERS

In Oracle8i
PARALLEL_AUTOMATIC_TUNING Provides for fully automatic tuning of

parallel query processing, overrides
PARALLEL_ADAPTIVE_MULTI_USER
if set.

PARALLEL_THREADS_PER_CPU Sets number of threads or processes a
CPU can handle during a parallel query
operation.

11 UNDOCUMENTED
PARAMETERS

Table 4: Parallel Query Initialization Parameters

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 66

Managing Multiple Buffer Pools
in Oracle8

In Oracle8 and Oracle8i the database block buffer has been split into three
possible areas, the default, keep and recycle buffer pool areas. It is not required
that these three pools be used, only one, the default pool configured with the
DB_BLOCK_BUFFERS initialization parameter must be present, the others are
“sub” pool to this main pool. How are the various pools used?

Use of the Default Pool
If a table, index or cluster is created with specifying that the KEEP or RECYCLE
pool be used for its data, then it is placed in the default pool when it is accessed.
This is standard Oracle7 behavior and if no special action is taken to use the
other pools then this is also standard Oracle8 and Oracle8I behavior. The
initialization parameters DB_BLOCK_BUFFERS and
DB_BLOCK_LRU_LATCHES must be set if multiple pools are to be used:

DB_BLOCK_BUFFERS = 2000
DB_BLOCK_LRU_LATCHES = 10

Use of The KEEP Pool
The KEEP database buffer pool is configured using the BUFFER_POOL_KEEP
initialization parameter which looks like so:

BU

FFER_POOL_KEEP = ‘100,2’

The two specified parameters are the number of buffers from the default pool to
assign to the keep pool and the number of LRU (least recently used) latches to
assign to the keep pool. The minimum number of buffers assigned to the pool is
50 times the number of assigned latches. The keep pool, as its name implies, is
used to store object data that shouldn’t be aged out of the buffer pool such as
look up information and specific performance enhancing indexes. The objects are
assigned to the keep pool through either their creation statement or by
specifically assigning them to the pool using the ALTER command. Any blocks
already in the default pool are not affected by the ALTER command, only
subsequently accessed blocks.

The keep pool should be sized such that it can hold all the blocks from all of the
tables created with the buffer pool set to KEEP.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 67

Use of the RECYCLE Pool
The RECYCLE database buffer pool is configured using the
BUFFER_POOL_RECYCLE initialization parameter which looks like so:

BU

FFER_POOL_RECYCLE = ‘1000,5’

The two specified parameters are the number of buffers from the default pool to
assign to the recycle pool and the number of LRU (least recently used) latches to
assign to the keep pool. The minimum number of buffers assigned to the pool is
50 times the number of assigned latches. The recycle pool, as its name implies,
is used to store object data that should be aged out of the buffer pool rapidly
such as searchable LOB information. The objects are assigned to the recycle
pool through either their creation statement or by specifically assigning them to
the pool using the ALTER command. Any blocks already in the default pool are
not affected by the ALTER command, only subsequently accessed blocks.

As long as the recycle pool shows low block contention it is sized correctly.

With the above setpoints for the default, keep and recycle pools the default pool
would end up with 900 buffers and 3 lru latches.

Sizing the Default Pool
The default pool holds both the keep and recycle pools, it must be sized
according to the following formula as a minimum:

Default = (keep + recycle + (total_of_non-
keep_or_recycle_object_sizes/100))/DB_BLOCK_SIZE

Each object not explicitly assigned to the keep or recycle pools will be placed into
the default pool when it is accessed. As a general rule of thumb the data
currently in use will be equal to approximately 5 to 10 percent of the physical
database objects such as tables, clusters and indexes. I suggest to start at five
percent and move up from there.

Sizing the Keep Pool
The keep buffer pool should be sized to the total size of the data objects that are
explicitly signed to the pool. Remember, the keep pool is designed to hold
objects that would have been cached in earlier versions of Oracle. Generally
speaking small indexes, lookup tables, small active data tables are good
candidates for the keep pool. To size the pool you must have a good estimate of
the size of the objects you want to keep.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 68

Sizing the Recycle Pool
Probably the most difficult pool to size will be the recycle pool. The reason the
recycle pool is difficult to size is that it is designed to hold transient data objects
(such as chunks of LOB data items.) I would suggest to size the recycle pool
according to the following formula:

Recycle = (SUM(size_non_lob_object(1-n)/20) + (lob_chunk_size_i(1-n)
* No_simul_accesses_i))

The first part of this formula is for non-lob objects that might be searched in large
pieces such as partitioned tables. If you can find the partition size then exclude
the divide by 20 and just use the partition size.

The second half of the formula addresses LOB (BLOB, CLOB, NCLOB) type
objects that will be accessed in chunks such as for searching or comparing using
piece-wise logic. The specified chunk size for each assigned object times the
number of expected different simultaneous accesses is used to derive the area
size required.

The sum of the above two numbers should give a size for the recycle pool.

Tuning the Three Pools
Since the classic method of tuning the shared pool is not available in Oracle8i we
must examine new methods to achieve the same ends. This involves looking at
what Oracle has provided for tuning the new pools. A new script, catperf.sql
offers several new views for tuning the Oracle buffer pools. These views are:

 V$BUFFER_POOL -- Provides static information on pool configuration

 V$BUFFER_POOL_STATISTICS -- Provides Pool related statistics

 V$DBWR_WRITE_HISTOGRAM -- Provides summary information on
DBWR write activities

 V$DBWR_WRITE_LOG -- Provides write information for each buffer
area.

Of the four new views the V$BUFFER_POOL_STATISTICS view seems the
most useful for tuning the buffer pool. The V$BUFFER_POOL_STATISTICS view
contains statistics such as buffer_busy_waits, free_buffer_inspected,
dirty_buffers_inspected and physical write related data for each of the pool
areas.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 69

If a buffer pool shows excessive numbers of dirty_buffers_inspected and high
amounts of buffer_busy_waits then it probably needs to be increased in size.

When configuring LRU latches and DBWR processes remember that the latches
are assigned to the pools sequentially and to the DBRW processes round robin.
The number of LRU processes should be equal to or a multiple of the value of
DBWR processes to ensure that the DBRW load is balanced across the
processes.

Using Outlines in Oracle8i
In versions of Oracle prior to Oracle8i the only way to stabilize an execution plan
was to ensure that tables where analyzed frequently and that the relative ratios of
rows in the tables involved stayed relatively stable. Neither of these options in
pre-Oracle8i for stabilizing execution plans worked 100 percent of the time. In
Oracle8i a new feature known as OUTLINEs has been added.

New in Oracle8i is the OUTLINE capability. An outline allows the DBA to tune a
SQL statement and then store the optimizer plan for the statement in what is
known as an OUTLINE. From that point forward whenever an identical SQL
statement to the one in the OUTLINE is used, it will use the optimizer instructions
contained in the OUTLINE.

This storing of plan outlines for SQL statements is known as plan stability and
insures that changes in the Oracle environment don't affect the way a SQL
statement is optimized by the cost based optimizer. If you wish, Oracle will
define plans for all issued SQL statements at the time they are executed and this
stored plan will be reused until altered or dropped. Generally I do not suggest
using the automatic outline feature as it can lead to poor plans being reused by
the optimizer. It makes more sense to monitor for high cost statements and tune
them as required, storing an outline for them only once they have been properly
tuned.

The use of OUTLINES also facilitates the tuning of systems where the code
cannot be changed. This is accomplished through the concept of “stealth hints”
that is, hints that are applied at parse time but are otherwise invisible. An
example use of this technique would be where there are two indexes that, due to
the way cost is figured, are not being used properly for a specific query. By
dropping the offending index, creating an outline with the proper index being
used and then recreating the index that was dropped you can force the use of a
specific index without changing the code.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 70

As with the storage of SQL in the shared pool, storage of outlines depends on
the statement being reissued in an identical fashion each time it is used. If even
one space is out of place the stored outline is not reused. Therefore your queries
should be stored as PL/SQL procedures, functions or packages (or perhaps Java
routines) and bind variables should always be used. This allows reuse of the
stored image of the SQL as well as reuse of stored outlines.

Remember that to be useful over the life of an application the outlines will have to
be periodically verified by checking SQL statement performance. If performance
of SQL statements degrades the stored outline may have to be dropped and
regenerated after the SQL is retuned.

Creation of a OUTLINE object
Outlines are created using the CREATE OUTLINE command, the syntax for this
command is:

CREATE [OR REPLACE] OUTLINE outline_name
[FOR CATEGORY category_name]
ON statement;

Where:

 Outline_name -- is a unique name for the outline

 [FOR CATEGORY category_name] – This optional clause allows more
than one outline to be associated with a single query by specifying
multiple catagories each named uniquely.

 ON statement – This specifies the statement for which the outline is
prepared.

An example would be:

CREATE OR REPLACE OUTLINE get_tables
ON
SELECT
a.owner,
a.table_name,
a.tablespace_name,
SUM(b.bytes),
COUNT(b.table_name) extents
FROM
 dba_tables a,
 dba_extents b
WHERE
 a.owner=b.owner
 AND a.table_name=b.table_name
GROUP BY
 a.owner, a.table_name, a.tablespace_name;

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 71

Assuming the above select is a part of a stored PL/SQL procedure or perhaps
part of a view, the stored outline will now be used each time an exactly matching
SQL statement is issued.

Altering a OUTLINE
Outlines are altered using the ALTER OUTLINE or CREATE OR REPLACE form
of the CREATE command. The format of the command is identical whether it is
used for initial creation or replacement of an existing outline. For example, what if
we want to add SUM(b.blocks) to the previous example?

CREATE OR REPLACE OUTLINE get_tables
ON
SELECT
a.owner,
a.table_name,
a.tablespace_name,
SUM(b.bytes),
COUNT(b.table_name) extents,
SUM(b.blocks)
FROM
 dba_tables a,
 dba_extents b
WHERE
 a.owner=b.owner
 AND a.table_name=b.table_name
GROUP BY
 a.owner, a.table_name, a.tablespace_name;

The above example has the effect of altering the stored outline get_tables to
include any changes brought about by inclusion of the SUM(b.blocks) in the
SELECT list. But what if we want to rename the outline or change a category
name? The ALTER OUTLINE command has the format:

ALTER OUTLINE outline_name
[REBUILD]
[RENAME TO new_outline_name]
[CHANGE CATEGORY TO new_category_name]

The ALTER OUTLINE command allows us to rebuild the outline for an existing
outline_name as well as rename the outline or change its category. The benefit
of using the ALTER OUTLINE command is that we do not have to respecify the
complete SQL statement as we would have to using the CREATE OR REPLACE
command.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 72

Dropping an OUTLINE
Outlines are dropped using the DROP OUTLINE command the syntax for this
command is:

DROP OUTLINE outline_name;

Use of the OUTLN_PKG To Manage SQL Stored Outlines
The OUTLN_PKG package provides for the management of stored outlines. A
stored outline is an execution plan for a specific SQL statement. A stored outline
permits the optimizer to stabilize a SQL statements execution plan giving
repeatable execution plans even when data and statistics change.

The DBA should take care to who they grant execute on the OUTLN_PKG, by
default it is not granted to the public user group nor is a public synonym created.

The following sections show the packages in the OUTLN_PKG.

DROP_UNUSED
The drop_unused procedure is used to drop outlines that have not been used in
the compilation of SQL statements. The drop_unused procedure has no
arguments.

SQL> EXECUTE OUTLN_PKG.DROP_UNUSED;

PL/SQL procedure successfully executed.

To determine if a SQL statement OUTLINE is unused, perform a select against
the DBA_OUTLINES view:

SQL> desc dba_outlines;
 Name Null? Type
 ------------------------------- -------- ----
 NAME VARCHAR2(30)
 OWNER VARCHAR2(30)
 CATEGORY VARCHAR2(30)
 USED VARCHAR2(9)
 TIMESTAMP DATE
 VERSION VARCHAR2(64)
 SQL_TEXT LONG

SQL> set long 1000
SQL> select * from dba_outlines where used='UNUSED';

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 73

NAME OWNER CATEGORY USED TIMESTAMP VERSION SQL_TEXT
------------ ------ -------- ------ --------- ---------- ----------------------
TEST_OUTLINE SYSTEM TEST UNUSED 08-MAY-99 8.1.3.0.0 select a.table_name,
 b.tablespace_name,
 c.file_name from
 dba_tables a,
 dba_tablespaces b,
 dba_data_files c
 where
 a.tablespace_name =
 b.tablespace_name
 and b.tablespace_name
 = c.tablespace_name
 and c.file_id =
 (select
 min(d.file_id) from
 dba_data_files d
 where
 c.tablespace_name =
 d.tablespace_name)

1 row selected.

SQL> execute sys.outln_pkg.drop_unused;

PL/SQL procedure successfully completed.

SQL> select * from dba_outlines where used='UNUSED';

no rows selected

Remember, the procedure drops all unused outlines so use it carefully.

DROP_BY_CAT
The drop_by_cat procedure drops all outlines that belong to a specific category.
The procedure drop_by_cat has one input variable, cat, a VARCHAR 2 that
corresponds to the name of the category you want to drop.

SQL> create outline test_outline for category test on
 2 select a.table_name, b.tablespace_name, c.file_name from
 3 dba_tables a, dba_tablespaces b, dba_data_files c
 4 where
 5 a.tablespace_name=b.tablespace_name
 6 and b.tablespace_name=c.tablespace_name
 7 and c.file_id = (select min(d.file_id) from dba_data_files d
 8 where c.tablespace_name=d.tablespace_name)
 9 ;
Operation 180 succeeded.

SQL> select * from dba_outlines where category='TEST';

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 74

NAME OWNER CATEGORY USED TIMESTAMP VERSION SQL_TEXT
------------ ------ -------- ------ --------- ---------- -------------------------
TEST_OUTLINE SYSTEM TEST UNUSED 08-MAY-99 8.1.3.0.0 select a.table_name, b.ta
 blespace_name, c.file_nam
 e from
 dba_tables a, dba_tablesp
 aces b, dba_data_files c
 where
 a.tablespace_name=b.table
 space_name
 and b.tablespace_name=c.t
 ablespace_name
 and c.file_id = (select m
 in(d.file_id) from dba_da
 ta_files d
 where c.tablespace_name=d
 .tablespace_name)

1 row selected.

SQL> execute sys.outln_pkg.drop_by_cat('TEST');

PL/SQL procedure successfully completed.

SQL> select * from dba_outlines where category='TEST';

no rows selected

UPDATE_BY_CAT
The update_by_cat procedure changes all of the outlines in one category to a
new category. If the SQL text in an outline already has an outline in the target
category, then it is not merged into the new category. The procedure has two
input variables, oldcat VARCHAR2 and newcat VARCHAR2 where oldcat
corresponds to the category to be merged and newcat is the new category that
oldcat is to be merged with.

SQL> create outline test_outline for category test on
 2 select a.table_name, b.tablespace_name, c.file_name from
 3 dba_tables a, dba_tablespaces b, dba_data_files c
 4 where
 5 a.tablespace_name=b.tablespace_name
 6 and b.tablespace_name=c.tablespace_name
 7 and c.file_id = (select min(d.file_id) from dba_data_files d
 8 where c.tablespace_name=d.tablespace_name)
 9 ;

Operation 180 succeeded.

SQL> create outline test_outline2 for category test on
 2 select * from dba_data_files;

Operation 180 succeeded.

SQL> create outline prod_outline1 for category prod on
 2 select owner,table_name from dba_tables;

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 75

Operation 180 succeeded.

SQL> create outline prod_outline2 for category prod on
 2 select * from dba_data_files;

Operation 180 succeeded.

SQL> select name,category from dba_outlines order by category
NAME CATEGORY
--------------- --------
PROD_OUTLINE1 PROD
PROD_OUTLINE2 PROD
TEST_OUTLINE2 TEST
TEST_OUTLINE TEST

4 rows selected.

SQL> execute sys.outln_pkg.update_by_cat('TEST','PROD');

PL/SQL procedure successfully completed.

SQL> select name,category from dba_outlines order by category;
NAME CATEGORY
--------------- --------
TEST_OUTLINE PROD
PROD_OUTLINE1 PROD
PROD_OUTLINE2 PROD
TEST_OUTLINE2 TEST

4 rows selected.

As a result of the update_by_cat procedure call we moved the TEST_OUTLINE
outline into the PROD category, but the TEST_OUTLINE2, since it is a duplicate
of PROD_OUTLINE2, was not merged.

Summary
The OUTLN_PKG is a powerful new feature in Oracle. By its capability to add
hints to Oracle SQL statements without altering code it allows the DBA greater
flexibility in tuning “hands off” systems than ever before.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 76

Using Oracle8i Resource Plans
and Groups

New in Oracle8i is the concept of Oracle resource groups. A resource group
specification allows you to specify that a specific group of database users can
only use a certain percentage of the CPU resources on the system. A resource
plan must be developed that defines the various levels within the application and
their percentage of CPU resources in a waterfall type structure where each
subsequent levels percentages are based on the previous levels.

Creating a Resource Plan
Rather than have a simple CREATE RESOURCE PLAN command, Oracle8i has
a series of packages which must be run in a specific order to create a proper
resource plan. All resource plans are created in a pending area before being
validated and committed to the database. The requirements for a valid resource
plan are outlined in the definition of the
DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA procedure
below.
Resource plans can have up to 32 levels with 32 groups per level allowing the
most complex resource plan to be easily grouped. Multiple plans, sub-plans and
groups can all be tied together into an application spanning CPU resource
utilization rule set. This rule set is known as a set of directives.

An example would be a simple 2-tier plan like that shown in Figure 41.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 77

Plan: MASTER

Plan Directives

Sub Plan:
Users
CPU:

60

Sub Plan:
Reports

CPU:
20

Sub Group:
Online_Users

CPU:
70

Sub Group:
Batch_Users

CPU:
30

Sub Group:
Online_Reports

CPU:
70

Sub Group:
Batch_Reports

CPU:
30

Set level CPU_P1 in directive

Set level CPU_P2 in directive

Sub Plan:
OTHER_GROUPS

(REQUIRED)
CPU:

20

Figure 41 Example Resource Plan

An example of how this portioning out of CPU resources works would be to
examine what happens in the plan shown in Figure 41. In figure 41 we have a top
level called MASTER which can have up to 100% of the CPU if it requires it. The
next level of the plan creates two sub-plans, USERS and REPORTS which will
get maximums of 60 and 20 percent of the CPU respectively (we also have the
required plan OTHER_GROUPS to which we have assigned 20 percent, if a user
is not assigned to a specific group, they get OTHERS). Under USERS we have
two groups, ONLINE_USERS and BATCH_USERS. ONLINE_USERS gets 70
percent of USERS 60 percent or an overall percent of CPU of 42 percent while
the other sub-group, BATCH_USERS gets 30 percent of the 60 percent for a
total overall percent of 18.

The steps for creating a resource plan, its directives and its groups is shown in
Figure 42.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 78

Figure 42 Steps to Create a Resource Plan

One thing to notice about Figure 42 is that the last step shows several possible
packages which can be run to assign or change the assignment of resource
groups. The first package listed,
DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GRO
UP must be run the first time a user is assigned to a resource group or you won't
be able to assign the user to the group. After the user has been given the
SWITCH_CONSUMER_GROUP system privilege you don't have to re-run the
package. Figure 3 shows the code to create the resource plan in Figure 41.
Figure 44 shows the results from running the source in figure 43.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 79

set echo on
spool test_resource_plan.doc
-- Grant system privilege to plan administrator
--
execute
dbms_resource_manager_privs.grant_system_privilege('SYSTEM','ADMINISTER_RE
SOURCE_MANAGER',TRUE);
--
--connect to plan administrator
--
CONNECT system/system_test@ortest1.world
--
-- Create Plan Pending Area
--
EXECUTE dbms_resource_manager.create_pending_area();
--
-- Create plan
--
execute dbms_resource_manager.create_plan('MASTER','Example Resource
Plan','EMPHASIS');
execute dbms_resource_manager.create_plan('USERS','Example Resource Sub
Plan','EMPHASIS');
execute dbms_resource_manager.create_plan('REPORTS','Example Resource Sub
Plan','EMPHASIS');
--
--Create tiers of groups in plan
--
EXECUTE dbms_resource_manager.create_consumer_group('ONLINE_USERS','3rd
level group','ROUND-ROBIN');
EXECUTE dbms_resource_manager.create_consumer_group('BATCH_USERS','3rd
level group','ROUND-ROBIN');
EXECUTE dbms_resource_manager.create_consumer_group('ONLINE_REPORTS','2rd
level group','ROUND-ROBIN');
EXECUTE dbms_resource_manager.create_consumer_group('BATCH_REPORTS','2rd
level group','ROUND-ROBIN');
--
-- Create plan directives
--
EXECUTE dbms_resource_manager.create_plan_directive('MASTER', 'USERS',
0,60,0,0,0,0,0,0,NULL);
EXECUTE dbms_resource_manager.create_plan_directive('MASTER', 'REPORTS',
0,20,0,0,0,0,0,0,NULL);
EXECUTE
dbms_resource_manager.create_plan_directive('MASTER','OTHER_GROUPS',
0,20,0,0,0,0,0,0,NULL);
EXECUTE dbms_resource_manager.create_plan_directive('USERS',
'ONLINE_USERS', 0,0,70,0,0,0,0,0,NULL);
EXECUTE dbms_resource_manager.create_plan_directive('USERS',
'BATCH_USERS', 0,0,30,0,0,0,0,0,NULL);
EXECUTE
dbms_resource_manager.create_plan_directive('REPORTS','ONLINE_REPORTS',0,0
,70,0,0,0,0,0,NULL);
EXECUTE
dbms_resource_manager.create_plan_directive('REPORTS','BATCH_REPORTS',
0,0,30,0,0,0,0,0,NULL);
--
-- Verify Plan

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

--

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 80

EXECUTE dbms_resource_manager.validate_pending_area;
--
-- Submit Plan
--
EXECUTE dbms_resource_manager.submit_pending_area;
spool off
set echo off

Figure 43 Script to create example resource plan

Notice how the script in figure 3 follows the chart in Figure 2. These are the
proper steps to create a resource plan. Figure 4 shows the results from running
the script in Figure 3.

SQL> -- Grant system privilege to plan administrator
SQL> --
SQL> execute
dbms_resource_manager_privs.grant_system_privilege('SYSTEM','ADMINISTER_RE
SOURCE_MANAGER',TRUE);

PL/SQL procedure successfully completed.

SQL> --
SQL> --connect to plan administrator
SQL> --
SQL> CONNECT system/system_test@ortest1.world
Connected.
SQL> --
SQL> -- Create Plan Pending Area
SQL> --
SQL> EXECUTE dbms_resource_manager.create_pending_area();

PL/SQL procedure successfully completed.

SQL> --
SQL> -- Create plan
SQL> --
SQL> execute dbms_resource_manager.create_plan('MASTER','Example Resource
Plan','EMPHASIS');

PL/SQL procedure successfully completed.

SQL> execute dbms_resource_manager.create_plan('USERS','Example Resource
Sub Plan','EMPHASIS');

PL/SQL procedure successfully completed.

SQL> execute dbms_resource_manager.create_plan('REPORTS','Example Resource
Sub Plan','EMPHASIS');

PL/SQL procedure successfully completed.

SQL> --
SQL> --Create tiers of groups in plan
SQL> --

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 81

SQL> EXECUTE
dbms_resource_manager.create_consumer_group('ONLINE_USERS','3rd level
group','ROUND-ROBIN');

PL/SQL procedure successfully completed.

SQL> EXECUTE
dbms_resource_manager.create_consumer_group('BATCH_USERS','3rd level
group','ROUND-ROBIN');

PL/SQL procedure successfully completed.

SQL> EXECUTE
dbms_resource_manager.create_consumer_group('ONLINE_REPORTS','2rd level
group','ROUND-ROBIN');

PL/SQL procedure successfully completed.

SQL> EXECUTE
dbms_resource_manager.create_consumer_group('BATCH_REPORTS','2rd level
group','ROUND-ROBIN');

PL/SQL procedure successfully completed.

SQL> --
SQL> -- Create plan directives
SQL> --
SQL> EXECUTE dbms_resource_manager.create_plan_directive('MASTER',
'USERS', 0,60,0,0,0,0,0,0,NULL);

PL/SQL procedure successfully completed.

SQL> EXECUTE dbms_resource_manager.create_plan_directive('MASTER',
'REPORTS', 0,20,0,0,0,0,0,0,NULL);

PL/SQL procedure successfully completed.

SQL> EXECUTE
dbms_resource_manager.create_plan_directive('MASTER','OTHER_GROUPS',
0,20,0,0,0,0,0,0,NULL);

PL/SQL procedure successfully completed.

SQL> EXECUTE dbms_resource_manager.create_plan_directive('USERS',
'ONLINE_USERS', 0,0,70,0,0,0,0,0,NULL);

PL/SQL procedure successfully completed.

SQL> EXECUTE dbms_resource_manager.create_plan_directive('USERS',
'BATCH_USERS', 0,0,30,0,0,0,0,0,NULL);

PL/SQL procedure successfully completed.

SQL> EXECUTE
dbms_resource_manager.create_plan_directive('REPORTS','ONLINE_REPORTS',0,0
,70,0,0,0,0,0,NULL);

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

PL/SQL procedure successfully completed.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 82

SQL> EXECUTE
dbms_resource_manager.create_plan_directive('REPORTS','BATCH_REPORTS',
0,0,30,0,0,0,0,0,NULL);

PL/SQL procedure successfully completed.

SQL> --
SQL> -- Verify Plan
SQL> --
SQL> EXECUTE dbms_resource_manager.validate_pending_area;

PL/SQL procedure successfully completed.

SQL> --
SQL> -- Submit Plan
SQL> --
SQL> EXECUTE dbms_resource_manager.submit_pending_area;

PL/SQL procedure successfully completed.

SQL> spool off

Figure 44 Example run of script to create example resource plan

The other operations allowed against the components of the resource plan are
alter and drop. Let's look at a quick drop example in Figure 45.

EXECUTE dbms_resource_manager.delete_plan('MASTER');
EXECUTE dbms_resource_manager.delete_plan('USERS');
EXECUTE dbms_resource_manager.delete_plan('REPORTS');
--
--delete tiers of groups in plan
--
EXECUTE dbms_resource_manager.delete_consumer_group('ONLINE_USERS');
EXECUTE dbms_resource_manager.delete_consumer_group('BATCH_USERS');
EXECUTE dbms_resource_manager.delete_consumer_group('ONLINE_REPORTS');
EXECUTE dbms_resource_manager.delete_consumer_group('BATCH_REPORTS');

Figure 45 Example Drop Procedure

Notice how you must drop all parts of the plan, this is because Oracle allows
Orphan groups and plans to exist. As you can tell from looking at the scripts the
DBMS_RESOURCE_MANAGER and DBMS_RESOURCE_MANAGER_PRIVS
packages are critical to implementing Oracle resource groups. Let's examine
these packages.

DBMS_RESOURCE_MANAGER Package
The DBMS_RESOURCE_MANAGER package is used to administer the new
resource plan and consumer group options in Oracle8i. The package contains

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 83

several procedures that are used to create, modify, drop and grant access to
resource plans, groups, directives and pending areas. The invoker must have the
ADMINISTER_RESOURCE_MANAGER system privilege to execute these
procedures. The procedures to grant and revoke this privilege are in the package
DBMS_RESOURCE_MANAGER_PRIVS. The procedures in
DBMS_RESOURCE_MANAGER are listed in table 5.

Procedure Purpose
CREATE_PLAN Creates entries that define resource plans.
UPDATE_PLAN Updates entries that define resource plans.
DELETE_PLAN Deletes the specified plan as well as all the

plan directives it refers to.
DELETE_PLAN_CASCADE Deletes the specified plan as well as all its

descendants (plan directives, subplans,
consumer groups).

CREATE_CONSUMER_GROUP

Creates entries that define resource
consumer groups.

UPDATE_CONSUMER_GROUP

Updates entries that define resource
consumer groups.

DELETE_CONSUMER_GROUP

Deletes entries that define resource
consumer groups.

CREATE_PLAN_DIRECTIVE Creates resource plan directives.
UPDATE_PLAN_DIRECTIVE Updates resource plan directives.
DELETE_PLAN_DIRECTIVE Deletes resource plan directives.
CREATE_PENDING_AREA Creates a work area for changes to

resource manager objects.
VALIDATE_PENDING_AREA Validates pending changes for the resource

manager.
CLEAR_PENDING_AREA Clears the work area for the resource

manager.
SUBMIT_PENDING_AREA Submits pending changes for the resource

manager.
SET_INITIAL_CONSUMER_
GROUP

Assigns the initial resource consumer group
for a user.

SWITCH_CONSUMER_
GROUP_FOR_SESS

Changes the resource consumer group of a
specific session.

 SWITCH_CONSUMER_
GROUP_FOR_USER

Changes the resource consumer group for
all sessions with a given user name.

Table 5 DBMS_RESOURCE_MANAGER_PACKAGES

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 84

DBMS_RESOURCE_MANGER Procedure Syntax

The calling syntax for all of the DBMS_RESOURCE_MANAGER
packages follow.

Syntax for the CREATE_PLAN Procedure:
DBMS_RESOURCE_MANAGER.CREATE_PLAN (
 plan IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_mth IN VARCHAR2 DEFAULT 'EMPHASIS',
 max_active_sess_target_mth IN VARCHAR2 DEFAULT
 'MAX_ACTIVE_SESS_ABSOLUTE',
 parallel_degree_limit_mth IN VARCHAR2 DEFAULT
 'PARALLEL_DEGREE_LIMIT_ABSOLUTE');

Where:

 Plan - the plan name

 Comment - any text comment you want associated with the plan name

 Cpu_mth - one of EMPHASIS or ROUND-ROBIN

 max_active_sess_target_mth - allocation method for max. active
sessions

 parallel_degree_limit_mth - allocation method for degree of parallelism

Syntax for the UPDATE_PLAN Procedure:
DBMS_RESOURCE_MANAGER.UPDATE_PLAN (
 plan IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL,
 new_cpu_mth IN VARCHAR2 DEFAULT NULL,
 new_max_active_sess_target_mth IN VARCHAR2 DEFAULT NULL,
 new_parallel_degree_limit_mth IN VARCHAR2 DEFAULT NULL);

Where:

 plan - name of resource plan

 new_comment - new user's comment

 new_cpu_mth - name of new allocation method for CPU resources

 new_max_active_sess_target_mth - name of new method for max.
active sessions

 new_parallel_degree_limit_mth - name of new method for degree of
parallelism

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 85

Syntax for the DELETE_PLAN Procedure:
DBMS_RESOURCE_MANAGER.DELETE_PLAN (
 plan IN VARCHAR2);

Where:

 Plan - Name of resource plan to delete.

Syntax for the DELETE_PLAN Procedure:
DBMS_RESOURCE_MANAGER.DELETE_PLAN_CASCADE (
 plan IN VARCHAR2);

Where:

 Plan - Name of plan.

Syntax for the CREATE_RESOURCE_GROUP
Procedure:

DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 consumer_group IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_mth IN VARCHAR2 DEFAULT 'ROUND-ROBIN');

Where:

 consumer_group - Name of consumer group.

 Comment - User's comment.

 cpu_mth - Name of CPU resource allocation method.

Syntax for the UPDATE_RESOURCE_GROUP
Procedure:

DBMS_RESOURCE_MANAGER.UPDATE_CONSUMER_GROUP (
 consumer_group IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL,
 new_cpu_mth IN VARCHAR2 DEFAULT NULL);

Where:

 plan - name of resource plan

 new_comment - new user's comment

 new_cpu_mth - name of new allocation method for CPU resources

 new_max_active_sess_target_mth - name of new method for max.
active sessions

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 86

 new_parallel_degree_limit_mth - name of new method for degree of
parallelism

Syntax for the DELTE_RESOURCE_GROUP Procedure:
DBMS_RESOURCE_MANAGER.DELETE_CONSUMER_GROUP (
 consumer_group IN VARCHAR2);

Where:

 plan - name of resource plan.

Syntax for the CREATE_PLAN_DIRECTIVE Procedure:
DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_p1 IN NUMBER DEFAULT NULL,
 cpu_p2 IN NUMBER DEFAULT NULL,
 cpu_p3 IN NUMBER DEFAULT NULL,
 cpu_p4 IN NUMBER DEFAULT NULL,
 cpu_p5 IN NUMBER DEFAULT NULL,
 cpu_p6 IN NUMBER DEFAULT NULL,
 cpu_p7 IN NUMBER DEFAULT NULL,
 cpu_p8 IN NUMBER DEFAULT NULL,
 max_active_sess_target_p1 IN NUMBER DEFAULT NULL,
 parallel_degree_limit_p1 IN NUMBER DEFAULT NULL);

Where:

 plan - name of resource plan

 group_or_subplan - name of consumer group or subplan

 comment - comment for the plan directive

 cpu_p1 - first parameter for the CPU resource allocation method

 cpu_p2 - second parameter for the CPU resource allocation method

 cpu_p3 - third parameter for the CPU resource allocation method

 cpu_p4 - fourth parameter for the CPU resource allocation method

 cpu_p5 - fifth parameter for the CPU resource allocation method

 cpu_p6 - sixth parameter for the CPU resource allocation method

 cpu_p7 - seventh parameter for the CPU resource allocation method

 cpu_p8 - eighth parameter for the CPU resource allocation method

 max_active_sess_target_p1 - first parameter for the max. active
sessions allocation method

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 87

 (RESERVED FOR FUTURE USE)

 parallel_degree_limit_p1 - first parameter for the degree of parallelism
allocation method

Syntax for the UPDATE_PLAN_DIRECTIVE Procedure:
DBMS_RESOURCE_MANAGER.UPDATE_PLAN_DIRECTIVE (
 plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2,
 new_comment IN VARCHAR2 DEFAULT NULL,
 new_cpu_p1 IN NUMBER DEFAULT NULL,
 new_cpu_p2 IN NUMBER DEFAULT NULL,
 new_cpu_p3 IN NUMBER DEFAULT NULL,
 new_cpu_p4 IN NUMBER DEFAULT NULL,
 new_cpu_p5 IN NUMBER DEFAULT NULL,
 new_cpu_p6 IN NUMBER DEFAULT NULL,
 new_cpu_p7 IN NUMBER DEFAULT NULL,
 new_cpu_p8 IN NUMBER DEFAULT NULL,
 new_max_active_sess_target_p1 IN NUMBER DEFAULT NULL,
 new_parallel_degree_limit_p1 IN NUMBER DEFAULT NULL);

Where:

 plan - name of resource plan

 group_or_subplan - name of group or subplan

 new_comment - comment for the plan directive

 new_cpu_p1 - first parameter for the CPU allocation method

 new_cpu_p2 - parameter for the CPU allocation method

 new_cpu_p3- parameter for the CPU allocation method

 new_cpu_p4 - parameter for the CPU allocation method

 new_cpu_p5 - parameter for the CPU allocation method

 new_cpu_p6 - parameter for the CPU allocation method

 new_cpu_p7 - parameter for the CPU allocation method

 new_cpu_p8 - parameter for the CPU allocation method

 new_max_active_sess_target_p1 - first parameter for the max. active
sessions allocation method

 (RESERVED FOR FUTURE USE)

 new_parallel_degree_limit_p1 - first parameter for the degree of
parallelism allocation method

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 88

Syntax for the DELETE_PLAN_DIRECTIVE Procedure:
DBMS_RESOURCE_MANAGER.DELETE_PLAN_DIRECTIVE (
 plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2);

Where:

 plan - name of resource plan

 group_or_subplan - name of group or subplan.

Syntax for CREATE_PENDING_AREA Procedure:
This procedure lets you make changes to resource manager objects.

All changes to the plan schema must be done within a pending area. The
pending area can be thought of as a "scratch" area for plan schema changes.
The administrator creates this pending area, makes changes as necessary,
possibly validates these changes, and only when the submit is completed do
these changes become active.

You may, at any time while the pending area is active, view the current plan
schema with your changes by selecting from the appropriate user views.

At any time, you may clear the pending area if you want to stop the current
changes. You may also call the VALIDATE procedure to confirm whether the
changes you has made are valid. You do not have to do your changes in a given
order to maintain a consistent group of entries. These checks are also implicitly
done when the pending area is submitted.

Note: Oracle allows "orphan" consumer groups (i.e., consumer groups that have
no plan directives that refer to them). This is in anticipation that an administrator
may want to create a consumer group that is not currently being used, but will be
used in the future. The procedure has no arguments.

DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA;

Syntax of the VALIDATE_PENDING_AREA Procedure:
The VALIDATE_PENDING_AREA procedure is used to validate the contents of a
pending area before they are submitted. The procedure has no arguments.

DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA;

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 89

Usage Notes For the Validate and Submit Procedures:
The following rules must be adhered to, and they are checked whenever the
validate or submit procedures are executed:

1. No plan schema may contain any loops.

2. All plans and consumer groups referred to by plan directives must exist.

3. All plans must have plan directives that refer to either plans or consumer
groups.

4. All percentages in any given level must not add up to greater than 100
for the emphasis resource allocation method.

5. No plan may be deleted that is currently being used as a top plan by an
active instance.

6. For Oracle8i, the plan directive parameter, parallel_degree_limit_p1, may
only appear in plan directives that refer to consumer groups (i.e., not at
subplans).

7. There cannot be more than 32 plan directives coming from any given
plan (i.e., no plan can have more than 32 children).

8. There cannot be more than 32 consumer groups in any active plan
schema.

9. Plans and consumer groups use the same namespace; therefore, no
plan can have the same name as any consumer group.

10. There must be a plan directive for OTHER_GROUPS somewhere in any
active plan schema.This ensures that a session not covered by the
currently active plan is allocated resources as specified by the
OTHER_GROUPS directive.

If any of the above rules are broken when checked by the VALIDATE or SUBMIT
procedures, then an informative error message is returned. You may then make
changes to fix the problem(s) and reissue the validate or submit procedures.

Syntax of the CLEAR_PENDING_AREA Procedure:
The CLEAR_PENDING_AREA procedure clears the pending area without
submitting it, all changes or entries are lost. The procedure has no arguments.

DBMS_RESOURCE_MANAGER.CLEAR_PENDING_AREA;

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 90

Syntax of the SUBMIT_PENDING_AREA Procedure:
The SUBMIT_PENDING_AREA procedure submits the contents of the pending
area. First the contents are validated and then they are stored as valid in the
database. The procedure has no arguments.

DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA;

Syntax of the SET_INITIAL_CONSUMER_GROUP
Procedure:

The SET_INITIAL_CONSUMER_GROUP procedure sets the initial consumer
group to which a user will belong. The user must have been granted
SWITCH_RESOURCE_GROUP permission before you attempt to run this
procedure.

DBMS_RESOURCE_MANAGER.SET_INITIAL_CONSUMER_GROUP (
 user IN VARCHAR2,
 consumer_group IN VARCHAR2);

Where:

 User – The user that is to have the resource group set.

 Consumer_group – The resource (or consumer) group to grant to the
user.

Syntax of the SWITCH_CONSUMER_GROUP_FOR_
SESS Procedure:

The SWITCH_RESOURCE_GROUP_FOR_SESS procedure allows an
administrator to switch a user's consumer group for the duration of the current
session.

DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_SESS(
 SESSION_ID IN NUMBER,
 SESSION_SERIAL IN NUMBER,
 CONSUMER_GROUP IN VARCHAR2);

Where:

 session_id - SID column from the view V$SESSION

 session_serial - SERIAL# column from the view V$SESSION

 consumer_group - name of the consumer group of which to switch.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 91

Syntax of the SWITCH_CONSUMER_GROUP_FOR_
USER Procedure:

The SWITCH_CONSUMER_GROUP_FOR_USER switches a user's default
consumer group to a new group. This is a permanent change.

DBMS_RESOURCE_MANAGER.SWITCH_CONSUMER_GROUP_FOR_USER (
 user IN VARCHAR2,
 consumer_group IN VARCHAR2);

Where:

 user - name of the user

 consumer_group - name of the consumer group to switch to

DBMS_RESOURCE_MANAGER_PRIVS
Package

The DBMS_RESOURCE_MANAGER package has a companion package that
grants privileges in the realm of the resource consumer option. The companion
package is DBMS_RESOURCE_MANAGER_PRIVS. The procedures inside
DBMS_RESOURCE_MANAGER_PRIVS are documented in table 6.

Procedure Purpose
GRANT_SYSTEM_PRIVILEGE Performs a grant of a system

privilege.
 REVOKE_SYSTEM_PRIVILEGE Performs a revoke of a system

privilege.
 GRANT_SWITCH_CONSUMER_
GROUP

Grants the privilege to switch to
resource consumer groups.

 REVOKE_SWITCH_CONSUMER_
GROUP

Revokes the privilege to switch to
resource consumer groups.

Table 6 DBMS_RESOURCE_MANAGER_PRIVS Procedures

DBMS_RESOURCE_MANGER_PRIVS Procedure Syntax
The calling syntax for all of the DBMS_RESOURCE_MANAGER_PRIVS
packages follows.

Syntax for the GRANT_SYSTEM_PRIVILEGE Procedure:
The GRANT_SYSTEM_PRIVILEGE procedure grants
ADMINISTER_RESOURCE_MANAGER privilege to a user. Currently there is
only one resource group system grant.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 92

DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE (
 grantee_name IN VARCHAR2,
 privilege_name IN VARCHAR2 DEFAULT 'ADMINISTER_RESOURCE_MANAGER',
 admin_option IN BOOLEAN);

Where:

 grantee_name - Name of the user or role to whom privilege is to be
granted.

 privilege_name - Name of the privilege to be granted.

 admin_option - TRUE if the grant is with admin_option, FALSE
otherwise.

Syntax for the REVOKE_SYSTEM_PRIVILGE Procedure:
The REVOKE_SYSTEM_PRIVILEGE procedure revokes the
ADMINISTER_RESOURCE_MANAGER privilege from a user.

DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SYSTEM_PRIVILEGE (
 revokee_name IN VARCHAR2,
 privilege_name IN VARCHAR2 DEFAULT 'ADMINISTER_RESOURCE_MANAGER');

Where:

 revokee_name - Name of the user or role from whom privilege is to be
revoked.

 privilege_name - Name of the privilege to be revoked.

Syntax of the GRANT_SWITCH_CONSUMER_GROUP
Procedure:

The GRANT_SWITCH_CONSUMER_GROUP procedure grants a user the
ability to switch resource groups. This privilege must be granted to a user before
their initial resource group can be granted.

DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SWITCH_CONSUMER_GROUP (
 grantee_name IN VARCHAR2,
 consumer_group IN VARCHAR2,
 grant_option IN BOOLEAN);

Where:

 grantee_name - Name of the user or role to whom privilege is to be
granted.

 consumer_group - Name of consumer group.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 93

 grant_option - TRUE if grantee should be allowed to grant access,
FALSE otherwise.

Usage Notes
1. If you grant permission to switch to a particular consumer group to a

user, then that user can immediately switch their current consumer group
to the new consumer group.

2. If you grant permission to switch to a particular consumer group to a role,
then any users who have been granted that role and have enabled that
role can immediately switch their current consumer group to the new
consumer group.

3. If you grant permission to switch to a particular consumer group to
PUBLIC, then any user can switch to that consumer group.

4. If the grant_option parameter is TRUE, then users granted switch
privilege for the consumer group may also grant switch privileges for that
consumer group to others.

5. In order to set the initial consumer group of a user, you must grant the
switch privilege for that group to the user.

Syntax of the REVOKE_SWITCH_CONSUMER_GROUP
Procedure:

The REVOKE_SWITCH_CONSUMER_GROUP procedure revokes the ability of
a user to switch their resource group.

DBMS_RESOURCE_MANAGER_PRIVS.REVOKE_SWITCH_CONSUMER_GROUP (
 revokee_name IN VARCHAR2,
 consumer_group IN VARCHAR2);

Where:

 revokee_name - Name of user/role from which to revoke access.

 consumer_group - Name of consumer group.

Usage Notes
1. If you revoke a user's switch privilege for a particular consumer group,

then any subsequent attempts by that user to switch to that consumer
group will fail.

2. If you revoke the initial consumer group from a user, then that user will
automatically be part of the DEFAULT_CONSUMER_GROUP
(OTHERS) consumer group when logging in.

COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

ROBO BOOKS MONOGRAPH TUNING WHEN YOU CAN'T TOUCH THE CODE

 PAGE 94
COPYRIGHT © 2003 RAMPANT TECHPRESS. ALL RIGHTS RESERVED.

3. If you revoke the switch privilege for a consumer group from a role, then
any users who only had switch privilege for the consumer group via that
role will not be subsequently able to switch to that consumer group.

4. If you revoke the switch privilege for a consumer group from PUBLIC,
then any users who could previously only use the consumer group via
PUBLIC will not be subsequently able to switch to that consumer group.

Section Summary
By carefully planning your resource allocation into plans and resource groups a
multi-tier resource allocation plan can be quickly developed. By allocating CPU
resources you can be sure that processing power is concentrated where it needs
to be such that the CEO isn't waiting on a sub-clerk's process to finish before
they get their results.

This section has shown how to use the various DBMS packages to configure and
maintain a resource plan with its associated consumer groups.

Presentation Summary
In this presentation we have looked at non-code related Oracle tuning for
application where alteration of source code is not allowed. We have looked at
physical and internals tuning, indexing options, table and index tuning as well as
methods for placing “stealth hints” into code.

This paper contains excerpts from the book: "Oracle Administration and
Management", Michael R. Ault, John Wiley and Sons publishing with permission.

	Tuning Third-party Vendor Oracle Systems
	Cover

	Notice
	Publication Information
	Table Of Contents
	Introduction
	Tuning Overview
	What Can Be Done?
	Optimizing Oracle Internals
	Database Buffer Tuning
	Database Writer Tuning
	Shared Pool Tuning
	What is the shared pool?
	Monitoring and Tuning the Shared Pool
	Putting it All In Perspective
	What to Pin
	The Shared Pool and MTS
	Large Pool Sizing

	A Matter Of Hashing
	Monitoring Library and Data Dictionary Caches

	In Summary
	Tuning Checkpoints
	Tuning Redo Logs
	Redo Log Sizing
	Tuning Rollback Segments
	Tuning Oracle Sorts

	Optimizer Modes
	Tuning the Multi-part Oracle8 Buffer Cache
	Use of the Default Pool
	Use of The KEEP Pool
	Use of the RECYCLE Pool
	Tuning the Three Pools
	Adding Resources

	Tuning Tables and Indexes
	Table Rebuilds
	Rebuilding Indexes
	Adjusting Index Cost in Oracle8

	Bitmapped Index Usage*
	Function Based Indexes
	Reverse Key Indexes
	Index Organized Tables
	Partitioned Tables and Indexes
	Partitioned Indexes

	Parallel Query
	Oracle8 Enhanced Parallel DML
	Managing Multiple Buffer Pools in Oracle8
	Use of the Default Pool
	Use of The KEEP Pool
	Use of the RECYCLE Pool
	Sizing the Default Pool
	Sizing the Keep Pool
	Sizing the Recycle Pool
	Tuning the Three Pools

	Using Outlines in Oracle8i
	Creation of a OUTLINE object
	Altering a OUTLINE
	Dropping an OUTLINE
	Use of the OUTLN_PKG To Manage SQL Stored Outlines
	DROP_UNUSED
	DROP_BY_CAT
	UPDATE_BY_CAT

	Summary
	Using Oracle8i Resource Plans and Groups
	Creating a Resource Plan
	DBMS_RESOURCE_MANAGER Package
	DBMS_RESOURCE_MANGER Procedure Syntax
	Syntax for the CREATE_PLAN Procedure:
	Syntax for the UPDATE_PLAN Procedure:
	Syntax for the DELETE_PLAN Procedure:
	Syntax for the DELETE_PLAN Procedure:
	Syntax for the CREATE_RESOURCE_GROUP Procedure:
	Syntax for the UPDATE_RESOURCE_GROUP Procedure:
	Syntax for the DELTE_RESOURCE_GROUP Procedure:
	Syntax for the CREATE_PLAN_DIRECTIVE Procedure:
	Syntax for the UPDATE_PLAN_DIRECTIVE Procedure:
	Syntax for the DELETE_PLAN_DIRECTIVE Procedure:
	Syntax for CREATE_PENDING_AREA Procedure:
	Syntax of the VALIDATE_PENDING_AREA Procedure:
	Usage Notes For the Validate and Submit Procedures:
	Syntax of the CLEAR_PENDING_AREA Procedure:
	Syntax of the SUBMIT_PENDING_AREA Procedure:
	Syntax of the SET_INITIAL_CONSUMER_GROUP Procedure:
	Syntax of the SWITCH_CONSUMER_GROUP_FOR_ SESS Procedure:
	Syntax of the SWITCH_CONSUMER_GROUP_FOR_ USER Procedure:

	DBMS_RESOURCE_MANAGER_PRIVS Package
	DBMS_RESOURCE_MANGER_PRIVS Procedure Syntax
	Syntax for the GRANT_SYSTEM_PRIVILEGE Procedure:
	Syntax for the REVOKE_SYSTEM_PRIVILGE Procedure:
	Syntax of the GRANT_SWITCH_CONSUMER_GROUP Procedure:
	Usage Notes
	Syntax of the REVOKE_SWITCH_CONSUMER_GROUP Procedure:
	Usage Notes

	Section Summary

	Presentation Summary
	Team DDU

