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PREFACE
Explain the signi�
an
e of the following sequen
e:un, dos, tres, quatre, 
in
, sis, set, vuit, nou, deu, : : :| RICHARD P. STANLEY, Enumerative Combinatori
s (1999)

This booklet 
ontains draft material that I'm 
ir
ulating to experts in the�eld, in hopes that they 
an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet for
ourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet rea
hed a very mature state. Beware: This material hasnot yet been proofread as thoroughly as the manus
ripts of Volumes 1, 2, and 3were at the time of their �rst printings. And those 
arefully-
he
ked volumes,alas, were subsequently found to 
ontain thousands of mistakes.Given this 
aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be dis
ouraged from reading the material 
arefully.I did try to make it both interesting and authoritative, as far as it goes. But the�eld is so vast, I 
annot hope to have surrounded it enough to 
orral it 
ompletely.Therefore I beg you to let me know about any de�
ien
ies you dis
over.To put the material in 
ontext, this is Se
tion 7.2.1.6 of a long, long 
hapteron 
ombinatorial algorithms. Chapter 7 will eventually �ll three volumes (namelyVolumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It willbegin with a short review of graph theory, with emphasis on some highlightsof signi�
ant graphs in the Stanford GraphBase, from whi
h I will be drawingmany examples. Then 
omes Se
tion 7.1, whi
h deals with the topi
 of bitwisemanipulations. (I drafted about 60 pages about that subje
t in 1977, butthose pages need extensive revision; meanwhile I've de
ided to work for awhileon the material that follows it, so that I 
an get a better feel for how mu
hto 
ut.) Se
tion 7.2 is about generating all possibilities, and it begins withSe
tion 7.2.1: Generating Basi
 Combinatorial Patterns|whi
h, in turn, beginswith Se
tion 7.2.1.1, \Generating all n-tuples," Se
tion 7.2.1.2, \Generating allpermutations," : : : , Se
tion 7.2.1.5, \Generating all set partitions." (Readersof the present booklet should have already looked at those se
tions, drafts ofwhi
h are available as Pre-Fas
i
les 2A, 2B, 3A, and 3B.) The stage is now setfor the main 
ontents of this booklet, Se
tion 7.2.1.6: \Generating all trees."Then will 
ome Se
tion 7.2.1.7, about the history of 
ombinatorial generation.Se
tion 7.2.2 will deal with ba
ktra
king in general. And so it will go on, if allgoes well; an outline of the entire Chapter 7 as 
urrently envisaged appears onthe tao
p webpage that is 
ited on page ii.iii
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iv PREFACEEven the apparently lowly topi
 of tree generation turns out to be surpris-ingly ri
h, with ties to Se
tions 1.2.3, 1.2.6, 1.2.9, 2.2.1, 2.3, 2.3.1, 2.3.2, 2.3.3,2.3.4.1, 2.3.4.2, 2.3.4.4, 2.3.4.5, 2.3.4.6, 2.4, 4.6.1, 5.1.1, 5.1.3, 5.1.4, 5.2.1, 5.3.4,6.2.1, 6.2.2, 6.2.3, and 6.4 of the �rst three volumes. I strongly believe in buildingup a �rm foundation, so I have dis
ussed this topi
 mu
h more thoroughly thanI will be able to do with material that is newer or less basi
. To my surprise, I
ame up with 124 exer
ises, even though|believe it or not| I had to eliminatequite a bit of the interesting material that appears in my �les.Some of the things presented are new, to the best of my knowledge, althoughI will not be at all surprised to learn that my own little \dis
overies" have beendis
overed before. Please look, for example, at the exer
ises that I've 
lassed asresear
h problems (rated with diÆ
ulty level 46 or higher), namely exer
ises 17,76, 89, 101, 102, and 109; I've also impli
itly posed additional unsolved questionsin the answers to exer
ises 34, 37, 46, 59, and 103. Are those problems still open?Please let me know if you know of a solution to any of these intriguing questions.And of 
ourse if no solution is known today but you do make progress on any ofthem in the future, I hope you'll let me know.I urgently need your help also with respe
t to some exer
ises that I madeup as I was preparing this material. I 
ertainly don't like to re
eive 
redit forthings that have already been published by others, and most of these results arequite natural \fruits" that were just waiting to be \plu
ked." Therefore pleasetell me if you know who deserves to be 
redited, with respe
t to the ideas foundin exer
ises 13, 15, 25, 27(e), 28(e), 29, 31, 36, 37, 42, 47, 54, 55, 60(
), 72, 74,75, 77, 78, 80, 82, 110, 112{119, 122, 123, and the remarks about D0 ! D00 andD� in answer 108. Has anybody published the 
on
ept of \prepostorder" or itsequivalent?I shall happily pay a �nder's fee of $2.56 for ea
h error in this draft when it is�rst reported to me, whether that error be typographi
al, te
hni
al, or histori
al.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/
 ea
h. (Furthermore, ifyou �nd a better solution to an exer
ise, I'll a
tually reward you with immortalglory instead of mere money, by publishing your name in the eventual book:�)Cross referen
es to yet-unwritten material sometimes appear as `00'; thisimpossible value is a pla
eholder for the a
tual numbers to be supplied later.Happy reading!Stanford, California D. E. K.09 July 2004
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PREFACE vA note on notation. At the beginning of Chapter 7 I'll de�ne some operationson graphs for whi
h many di�erent notations are presently rampant. My 
urrentplan is to say that, if G is a graph on the verti
es U = fu1; : : : ; umg and if H isa graph on the verti
es V = fv1; : : : ; vng, then:� G+H is the sum, aka juxtaposition, of G and H: It has the m+ n verti
esU [ V and the edges of G and H.� G �+H is the 
osum, aka join, of G and H, namely the 
omplement of thejuxtaposition of their 
omplements. (Thus its edges are those of G and H,plus all uj���vk.)� G�H is the Cartesian produ
t of G and H: It has the mn verti
es U � V ;its edges are (u; v)��� (u0; v) when u���u0 in G, and (u; v)��� (u; v0) whenv���v0 in H.� G H is the dire
t produ
t, aka 
onjun
tion, of G and H: Again its verti
esare U � V , but its edges are (u; v)���(u0; v0) if and only if u���u0 in G andv���v0 in H.� G H is the strong produ
t of G and H: As its symbol implies, it 
ombinesthe edges of G�H and G H.� There also are 
oprodu
ts, analogous to the 
osum.
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0 COMBINATORIAL ALGORITHMS (F4A)

Just as in a single body there are pairs of individual members,
alled by the same name but distinguished as right and left,so when my spee
hes had postulated the notion of madness,as a single generi
 aspe
t of human nature,the spee
h that divided the left-hand portionrepeatedly broke it down into smaller and smaller parts.| SOCRATES, Ph�drus 266A (
. 370 B.C.)7.2.1.6. Generating all trees. We've now 
ompleted our study of the 
lassi
al
on
epts of 
ombinatori
s: tuples, permutations, 
ombinations, and partitions.But 
omputer s
ientists have added another fundamental 
lass of patterns tothe traditional repertoire, namely the hierar
hi
al arrangements known as trees.Trees sprout up just about everywhere in 
omputer s
ien
e, as we've seen inSe
tion 2.3 and in nearly every subsequent se
tion of The Art of ComputerProgramming. Therefore we turn now to the study of simple algorithms bywhi
h trees of various spe
ies 
an be exhaustively explored.First let's review the basi
 
onne
tion between nested parentheses and for-ests of trees. For example,(1 (2 )1 )2 (3 (4 (5 )3 )4 (6 (7 (8 )5 (9 (a )6 )7 )8 (b )9 )a (
 (d )b (e (f )
 )d )e )f (1)

0



7.2.1.6 GENERATING ALL TREES 1illustrates a string 
ontaining �fteen left parens `(' labeled 1, 2, : : : , f, and �fteenright parens `)' also labeled 1 through f; gray lines beneath the string show howthe parentheses mat
h up to form �fteen pairs 12, 21, 3f, 44, 53, 6a, 78, 85, 97,a6, b9, 
e, db, ed, and f
. This string 
orresponds to the forestk12k21 k3fk44k53 k6ak78k85 k97ka6
kb9 k
ekdb kedkf
 (2)

in whi
h the nodes are k12 , k21 , k3f , : : : , kf
 in preorder (sorted by �rst 
oor-dinates) and k21 , k12 , k53 , : : : , k3f in postorder (sorted by se
ond 
oordinates).If we imagine a worm that 
rawls around the periphery of the forest,kk kkk kkk kk
k kk kk (3)

seeing a `(' whenever it passes the left edge of a node and a `)' whenever it passesa node's right edge, that worm will have re
onstru
ted the original string (1).The forest in (2) 
orresponds, in turn, to the binary treek k
kkk kk

kkk kkk kkk21 k12
k53 k44

k85 ka6 k97 k78 kb9 k6a kdb kf
 ked k
e
k3f

(4)
via the \natural 
orresponden
e" dis
ussed in Se
tion 2.3.2; here the nodes arek21 , k12 , k53 , : : : , k3f in symmetri
 order, also known as inorder. The leftsubtree of node kx in the binary tree is the leftmost 
hild of kx in the forest,or it is an \external node" if kx is 
hildless. The right subtree of kx in thebinary tree is its right sibling in the forest, or if kx is the rightmost 
hild inits family. Roots of the trees in the forest are 
onsidered to be siblings, and theleftmost root of the forest is the root of the binary tree.
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2 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6Table 1NESTED PARENTHESES AND RELATED OBJECTS WHEN n = 4a1a2 : : : a8 forest binary tree d1d2d3d4 z1z2z3z4 p1p2p3p4 
1
2
3
4 mat
hing()()()() 1111 1357 1234 0000
()()(()) 1102 1356 1243 0001()(())() 1021 1347 1324 0010
()(()()) 1012 1346 1342 0011
()((())) 1003 1345 1432 0012(())()() 0211 1257 2134 0100(())(()) 0202 1256 2143 0101(()())() 0121 1247 2314 0110
(()()()) 0112 1246 2341 0111
(()(())) 0103 1245 2431 0112((()))() 0031 1237 3214 0120((())()) 0022 1236 3241 0121
((()())) 0013 1235 3421 0122
(((()))) 0004 1234 4321 0123

A string a1a2 : : : a2n of parentheses is properly nested if and only if it
ontains n o

urren
es of `(' and n o

urren
es of `)', where the kth `(' pre
edesthe kth `)' for 1 � k � n. The easiest way to explore all strings of nested paren-theses is to visit them in lexi
ographi
 order. The following algorithm, whi
h
onsiders `)' to be lexi
ographi
ally smaller than `(', in
ludes some re�nementsfor eÆ
ien
y suggested by I. Semba [Inf. Pro
essing Letters 12 (1981), 188{192℄:
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7.2.1.6 GENERATING ALL TREES 3Algorithm P (Nested parentheses in lexi
ographi
 order). Given an integern � 2, this algorithm generates all strings a1a2 : : : a2n of nested parentheses.P1. [Initialize.℄ Set a2k�1  `(' and a2k  `)' for 1 � k � n; also set a0  `)'and m 2n� 1.P2. [Visit.℄ Visit the nested string a1a2 : : : a2n. (At this point am = `(', andak = `)' for m < k � 2n.)P3. [Easy 
ase?℄ Set am  `)'. Then if am�1 = `)', set am�1  `(', m m�1,and return to P2.P4. [Find j.℄ Set j  m � 1 and k  2n � 1. While aj = `(', set aj  `)',ak  `(', j  j � 1, and k  k � 2.P5. [In
rease aj .℄ Terminate the algorithm if j = 0. Otherwise set aj  `(',m 2n� 1, and go ba
k to P2.We will see later that the loop in step P4 is almost always short: The operationaj  `)' is performed only about 13 times per nested string visited, on the average.Why does Algorithm P work? Let Apq be the sequen
e of all strings � that
ontain p left parentheses and q � p right parentheses, where (q�p� is properlynested, listed in lexi
ographi
 order. Then Algorithm P is supposed to generateAnn, where it is easy to see that Apq obeys the re
ursive rulesApq = )Ap(q�1); (A(p�1)q; if 0 � p � q 6= 0; A00 = �; (5)also Apq is empty if p < 0 or p > q. The �rst element of Apq is )q�p() : : : (),where there are p pairs `()'; the last element is (p)q. Thus the lexi
ographi
generation pro
ess 
onsists of s
anning from the right until �nding a trailingstring of the form aj : : : a2n = )(p+1)q and repla
ing it by ()q+1�p() : : : ().Steps P4 and P5 do this eÆ
iently, while step P3 handles the simple 
ase p = 0.Table 1 illustrates the output of Algorithm P when n = 4, together with the
orresponding forest and binary tree as in (2) and (4). Several other equivalent
ombinatorial obje
ts also appear in Table 1: For example, a string of nestedparentheses 
an be run-length en
oded as()d1()d2 : : : ()dn ; (6)where the nonnegative integers d1d2 : : : dn are 
hara
terized by the 
onstraintsd1 + d2 + � � �+ dk � k for 1 � k < n; d1 + d2 + � � �+ dn = n: (7)We 
an also represent nested parentheses by the sequen
e z1z2 : : : zn, whi
hspe
i�es the indi
es where the left parentheses appear. In essen
e, z1z2 : : : zn isone of the �2nn � 
ombinations of n things from the set f1; 2; : : : ; 2ng, subje
t tothe spe
ial 
onstraintszk�1 < zk < 2k for 1 � k � n; (8)if we assume that z0 = 0. The z's are of 
ourse related to the d's:dk = zk+1 � zk � 1 for 1 � k < n. (9)Algorithm P be
omes parti
ularly simple when it is rewritten to generate the
ombinations z1z2 : : : zn instead of the strings a1a2 : : : a2n. (See exer
ise 2.)
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4 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6A parenthesis string 
an also be represented by the permutation p1p2 : : : pn,where the kth right parenthesis mat
hes the pkth left parenthesis; in other words,the kth node of the asso
iated forest in postorder is the pkth node in preorder.(By exer
ise 2.3.2{20, node j is a des
endant of node k in the forest if and onlyif j < k and pj > pk, when we label the nodes in postorder.) The inversion table
1
2 : : : 
n 
hara
terizes this permutation by the rule that exa
tly 
k elements tothe right of k are less than k (see exer
ise 5.1.1{7); allowable inversion tableshave 
1 = 0 and 0 � 
k+1 � 
k + 1 for 1 � k < n. (10)Moreover, exer
ise 3 proves that 
k is the level of the forest's kth node in preorder(the depth of the kth left parenthesis), a fa
t that is equivalent to the formula
k = 2k � 1� zk: (11)Table 1 and exer
ise 6 also illustrate a spe
ial kind of mat
hing, by whi
h 2npeople at a 
ir
ular table 
an simultaneously shake hands without interferen
e.Thus Algorithm P 
an be useful indeed. But if our goal is to generate allbinary trees, represented by left links l1l2 : : : ln and right links r1r2 : : : rn, thelexi
ographi
 sequen
e in Table 1 is rather awkward; the data we need to getfrom one tree to its su

essor is not readily available. Fortunately, an ingeniousalternative s
heme for dire
t generation of all linked binary trees is also available:Algorithm B (Binary trees). Given n � 1, this algorithm generates all binarytrees with n internal nodes, representing them via left links l1l2 : : : ln and rightlinks r1r2 : : : rn, with nodes labeled in preorder. (Thus, for example, node 1 isalways the root, and lk is either k + 1 or 0; if l1 = 0 and n > 1 then r1 = 2.)B1. [Initialize.℄ Set lk  k + 1 and rk  0 for 1 � k < n; also set ln  rn  0,and set ln+1  1 (for 
onvenien
e in step B3).B2. [Visit.℄ Visit the binary tree represented by l1l2 : : : ln and r1r2 : : : rn.B3. [Find j.℄ Set j  1. While lj = 0, set rj  0, lj  j + 1, and j  j + 1.Then terminate the algorithm if j > n.B4. [Find k and y.℄ Set y  lj and k  0. While ry > 0, set k  y and y  ry.B5. [Promote y.℄ If k > 0, set rk  0; otherwise set lj  0. Then set ry  rj ,rj  y, and return to B2.[See W. Skarbek, Theoreti
al Computer S
ien
e 57 (1988), 153{159; step B3uses an idea of J. Korsh.℄ Exer
ise 44 proves that the loops in steps B3 and B4both tend to be very short. Indeed, fewer than 9 memory referen
es are needed,on the average, to transform a linked binary tree into its su

essor.Table 2 shows the fourteen binary trees that are generated when n = 4,together with their 
orresponding forests and with two related sequen
es: Arrayse1e2 : : : en and s1s2 : : : sn are de�ned by the property that node k in preorder hasek 
hildren and sk des
endants in the asso
iated forest. (Thus sk is the size of k'sleft subtree in the binary tree; also, sk + 1 is the length of the SCOPE link in thesense of 2.3.3{(5).) The next 
olumn repeats the fourteen forests of Table 1 inthe lexi
ographi
 ordering of Algorithm P, but mirror-reversed from left to right.
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7.2.1.6 GENERATING ALL TREES 5Table 2LINKED BINARY TREES AND RELATED OBJECTS WHEN n = 4l1l2l3l4 r1r2r3r4 binary tree forest e1e2e3e4 s1s2s3s4 
olex forest lsib/r
hild2340 0000 1110 3210
0340 2000 0110 0210
2040 0300 2010 30102040 3000 1010 1010
0040 2300 0010 0010
2300 0040 1200 3200
0300 2040 0200 0200
2300 0400 2100 3100
2300 4000 1100 21000300 2400 0100 0100
2000 0340 3000 3000
2000 4300 2000 2000
2000 3040 1000 1000
0000 2340 0000 0000
And the �nal 
olumn shows the binary tree that represents the 
olex forest; italso happens to represent the forest in 
olumn 4, but by links to left sibling andright 
hild instead of to left 
hild and right sibling. This �nal 
olumn provides aninteresting 
onne
tion between nested parentheses and binary trees, so it givesus some insight into why Algorithm B is valid (see exer
ise 19).
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6 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6*Gray 
odes for trees. Our previous experien
es with other 
ombinatorialpatterns suggest that we 
an probably generate parentheses and trees by makingonly small perturbations to get from one instan
e to another. And indeed, thereare at least three very ni
e ways to a
hieve this goal.Consider �rst the 
ase of nested parentheses, whi
h we 
an represent bythe sequen
es z1z2 : : : zn that satisfy 
ondition (8). A \near-perfe
t" way togenerate all su
h 
ombinations, in the sense of Se
tion 7.2.1.3, is one in whi
hwe run through all possibilities in su
h a way that some 
omponent zj 
hangesby �1 or �2 at ea
h step; this means that we get from ea
h string of parenthesesto its su

essor by simply 
hanging either ()$ )( or ())$ ))( in the vi
inityof the jth left parenthesis. Here's one way to do the job when n = 4:1357; 1356; 1346; 1345; 1347; 1247; 1245; 1246; 1236; 1234; 1235; 1237; 1257; 1256:And we 
an extend any solution for n � 1 to a solution for n, by taking ea
hpattern z1z2 : : : zn�1 and letting zn run through all of its legal values using endo-order or its reverse as in 7.2.1.3{(45), pro
eeding downward from 2n�2 and thenup to 2n� 1 or vi
e versa, and omitting all elements that are � zn�1.Algorithm N (Near-perfe
t nested parentheses). This algorithm visits all n-
ombinations z1 : : : zn of f1; : : : ; 2ng that represent the indi
es of left parenthesesin a nested string, 
hanging only one index at a time. The pro
ess is 
ontrolledby an auxiliary array g1 : : : gn that represents temporary goals.N1. [Initialize.℄ Set zj  2j � 1 and gj  2j � 2 for 1 � j � n.N2. [Visit.℄ Visit the n-
ombination z1 : : : zn. Then set j  n.N3. [Find j.℄ If zj = gj , set gj  gj � 1 (thereby 
omplementing the leastsigni�
ant bit), j  j � 1, and repeat this step.N4. [Home stret
h?℄ If gj � zj is even, set zj  zj + 2 and return to N2.N5. [De
rease or turn.℄ Set t  zj � 2. If t < 0, terminate the algorithm.Otherwise, if t � zj�1, set t  t + 2[t< zj�1 ℄ + 1. Finally set zj  t andgo ba
k to N2.[A somewhat similar algorithm was introdu
ed by D. Roelants van Baronaigien inJ. Algorithms 35 (2000), 100{107; see also Xiang, Ushijima, and Tang, Inf. Pro
.Letters 76 (2000), 169{174. F. Ruskey and A. Proskurowski, in J. Algorithms11 (1990), 68{84, had previously shown how to 
onstru
t perfe
t Gray 
odesfor all tables z1 : : : zn when n � 4 is even, thus 
hanging some zj by only �1at every step; but their 
onstru
tion was quite 
omplex, and no known perfe
ts
heme is simple enough to be of pra
ti
al use. Exer
ise 48 shows that perfe
tionis impossible when n � 5 is odd.℄If our goal is to generate linked tree stru
tures instead of strings of paren-theses, perfe
tion of the z-index 
hanges is not good enough, be
ause simpleswaps like ()$ )( don't ne
essarily 
orrespond to simple link manipulations. Afar better approa
h 
an be based on the \rotation" algorithms by whi
h we were
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7.2.1.6 GENERATING ALL TREES 7able to keep sear
h trees balan
ed in Se
tion 6.2.3. Rotation to the left 
hangesa binary tree
from � � !

A B to � � !A B ; (12)
thus the 
orresponding forest is 
hanged

from � � � � � !A B to � � �
� � !A B : (13)

\Node A be
omes the leftmost 
hild of its right sibling." Rotation to the rightis, of 
ourse, the opposite transformation: \The leftmost 
hild of B be
omesits left sibling." The verti
al line in (12) stands for a 
onne
tion to the overall
ontext, either a left link or a right link or the pointer to the root. Any or allof the subtrees �, �, or ! may be empty. The ` � � � ' in (13), whi
h representsadditional siblings at the left of the family 
ontaining B , might also be empty.The ni
e thing about rotations is that only three links 
hange: The rightlink from A , the left link from B , and the pointer from above. Rotationspreserve inorder of the binary tree and postorder of the forest. (Noti
e also thatthe binary-tree form of a rotation 
orresponds in a natural way to an appli
ationof the asso
iative law (��)! = �(�!) (14)in the midst of an algebrai
 formula.)A simple s
heme very mu
h like the 
lassi
al re
e
ted Gray 
ode for n-tuples(Algorithm 7.2.1.1H) and the method of plain 
hanges for permutations (Algo-rithm 7.2.1.2P) 
an be used to generate all binary trees or forests via rotations.Consider any forest on n � 1 nodes, with k roots A1 , : : : , Ak . Then there arek+1 forests on n nodes that have the same postorder sequen
e on the �rst n�1nodes but with node n last; for example, when k = 3 they are
�1 �2 �3A1 A2 A3 n ; �1 �2 �3

A1 A2 A3n ; �1 �2 �3
A1 A2 A3n ; �1 �2 �3A1 A2 A3n ;

obtained by su

essively rotating A3 , A2 , and A1 to the left. Moreover, atthe extremes when n is either at the right or at the top, we 
an performany desired rotation on the other n � 1 nodes, be
ause node n isn't in theway. Therefore, as observed by J. M. Lu
as, D. Roelants van Baronaigien, andF. Ruskey [J. Algorithms 15 (1993), 343{366℄, we 
an extend any list of the(n � 1)-node trees to a list of all n-node trees by simply letting node n roam

7



8 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6ba
k and forth. A 
areful attention to low-level details makes it possible in fa
tto do the job with remarkable eÆ
ien
y:Algorithm L (Linked binary trees by rotations). This algorithm generates allpairs of arrays l0 l1 : : : ln and r1 : : : rn that represent left links and right links ofn-node binary trees, where l0 is the root of the tree and the links (lk; rk) pointrespe
tively to the left and right subtrees of the kth node in symmetri
 order.Equivalently, it generates all n-node forests, where lk and rk denote the left 
hildand right sibling of the kth node in postorder. Ea
h tree is obtained from its pre-de
essor by doing a single rotation. Two auxiliary arrays k1 : : : kn and o0o1 : : : on,representing ba
kpointers and dire
tions, are used to 
ontrol the pro
ess.L1. [Initialize.℄ Set lj  0, rj  j + 1, kj  j � 1, and oj  �1 for 1 � j < n;also set l0  o0  1, ln  rn  0, kn  n� 1, and on  �1.L2. [Visit.℄ Visit the binary tree or forest represented by l0 l1 : : : ln and r1 : : : rn.Then set j  n and p 0.L3. [Find j.℄ If oj > 0, set m lj and go to L5 if m 6= 0. If oj < 0, set m kj ;then go to L4 if m 6= 0, otherwise set p  j. If m = 0 in either 
ase, setoj  �oj , j  j � 1, and repeat this step.L4. [Rotate left.℄ Set rm  lj , lj  m, x  km, and kj  x. If x = 0, setlp  j, otherwise set rx  j. Return to L2.L5. [Rotate right.℄ Terminate if j = 0. Otherwise set lj  rm, rm  j, kj  m,x km. If x = 0, set lp  m, otherwise set rx  m. Go ba
k to L2.Exer
ise 38 proves that Algorithm L needs only about 9 memory referen
es pertree generated; thus it is almost as fast as Algorithm B. (In fa
t, two memoryreferen
es per step 
ould be saved by keeping the three quantities on, ln, and knin registers. But of 
ourse Algorithm B 
an be speeded up too.)Table 3 shows the sequen
e of binary trees and forests visited by Algorithm Lwhen n = 4, with some auxiliary tables that shed further light on the pro
ess.The permutation q1q2q3q4 lists the nodes in preorder, when they have beennumbered in postorder of the forest (symmetri
 order of the binary tree); itis the inverse of the permutation p1p2p3p4 in Table 1. The \
oforest" is the
onjugate (right-to-left re
e
tion) of the forest; and the numbers u1u2u3u4 areits s
ope 
oordinates, analogous to s1s2s3s4 in Table 2. A �nal 
olumn showsthe so-
alled \dual forest." The signi�
an
e of these asso
iated quantities isexplored in exer
ises 11{13, 19, 24, 26, and 27.The links l0 l1 : : : ln and r1 : : : rn in Algorithm L and Table 3 are not 
om-parable to the links l1 : : : ln and r1 : : : rn in Algorithm B and Table 2, be
auseAlgorithm L preserves inorder/postorder while Algorithm B preserves preorder.Node k in Algorithm L is the kth node from left to right in the binary tree, sol0 is needed to identify the root; but node k in Algorithm B is the kth node inpreorder, so the root is always node 1 in that 
ase.Algorithm L has the desired property that only three links 
hange per step;but we 
an a
tually do even better in this respe
t if we sti
k to the preorder
onvention of Algorithm B. Exer
ise 25 presents an algorithm that generates

8



7.2.1.6 GENERATING ALL TREES 9Table 3BINARY TREES AND FORESTS GENERATED BY ROTATIONS WHEN n = 4l0 l1l2l3l4 r1r2r3r4 k1k2k3k4 binary tree forest q1q2q3q4 
oforest u1u2u3u4 dual10000 2340 0123 1234 0000
10003 2400 0122 1243 1000
10002 4300 0121 1423 2000
40001 2300 0120 4123 3000
40021 3000 0110 4132 3100
10023 4000 0111 1432 210010020 3040 0113 1324 010030010 2040 0103 3124 0200
40013 2000 0100 4312 3200
40123 0000 0000 4321 321030120 0040 0003 3214 021020100 0340 0023 2134 001020103 0400 0022 2143 101040102 0300 0020 4213 3010

all linked binary trees or forests by 
hanging just two links per step, preservingpreorder. One link be
omes zero while another be
omes nonzero. This prune-and-graft algorithm, whi
h is the third of the three \very ni
e Gray 
odes fortrees" promised above, has only one downside: Its 
ontrolling me
hanism is a bittri
kier than that of Algorithm L, so it needs about 40% more time to do the 
al-
ulations when we in
lude the 
ost of de
iding what links to 
hange at ea
h step.

9



10 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6The number of trees. There's a simple formula for the total number of outputsthat are generated by Algorithms P, B, N, and L, namelyCn = 1n+ 1�2nn � = �2nn �� � 2nn� 1�; (15)we proved this fa
t in Eq. 2.3.4.4{(14). The �rst few values aren = 0 1 2 3 4 5 6 7 8 9 10 11 12 13Cn = 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900and they are 
alled Catalan numbers be
ause of some in
uential papers writtenby Eug�ene Catalan [Journal de math. 3 (1838), 508{515; 4 (1839), 95{99℄.Stirling's approximation tells us the asymptoti
 value,Cn = 4np� n3=2�1� 98n + 145128n2 � 11551024n3 + 3693932768n4 +O(n�5)�; (16)in parti
ular we 
an 
on
lude thatCn�kCn = 14k�1 + 3k2n +O�k2n2�� when jkj � n2 : (17)(And of 
ourse Cn�1=Cn is equal to (n+1)=(4n�2), exa
tly, by (15).) In Se
tion2.3.4.4 we also derived the generating fun
tionC(z) = C0 + C1z + C2z2 + C3z3 + � � � = 1�p1� 4z2z (18)and proved the important formula[zn℄C(z)r = rn+ r�2n+ r � 1n � = �2n+ r � 1n �� �2n+ r � 1n� 1 �; (19)see the answer to exer
ise 2.3.4.4{33, and CMath equation (5.70).These fa
ts give us more than enough information to analyze Algorithm P,our algorithm for lexi
ographi
 generation of nested parentheses. Step P2 isobviously performed Cn times; then P3 usually makes a simple 
hange and goesba
k to P2. How often do we need to go on to step P4? Easy: It's the numberof times that step P2 �nds m = 2n� 1. And m is the lo
ation of the rightmost`(', so we have m = 2n � 1 in exa
tly Cn�1 
ases. Thus the probability thatP3 sets m  m � 1 and returns immediately to P2 is (Cn � Cn�1)=Cn � 3=4,by (17). On the other hand when we do get to step P4, suppose we need to setaj  `)' and ak  `(' exa
tly h � 1 times in that step. The number of 
aseswith h > x is the number of nested strings of length 2n that end with x trivialpairs () : : : (), namely Cn�x. Therefore the total number of times the algorithm
hanges aj and ak in step P4 isCn�1 + Cn�2 + � � �+ C1 = Cn�Cn�1Cn + Cn�2Cn + � � �+ C1Cn�= 13Cn�1 + 2n +O� 1n2��; (20)by (17); we have proved the 
laim for eÆ
ien
y made earlier.

10



7.2.1.6 GENERATING ALL TREES 11For a deeper understanding it is helpful to study the re
ursive stru
tureunderlying Algorithm P, as expressed in (5). The sequen
es Apq in that formulahave Cpq elements, whereCpq = Cp(q�1) + C(p�1)q ; if 0 � p � q 6= 0; C00 = 1; (21)and Cpq = 0 if p < 0 or p > q. Thus we 
an form the triangular arrayC00C01 C11C02 C12 C22C03 C13 C23 C33C04 C14 C24 C34 C44C05 C15 C25 C35 C45 C55C06 C16 C26 C36 C46 C56 C66
=

11 11 2 21 3 5 51 4 9 14 141 5 14 28 42 421 6 20 48 90 132 132
(22)

in whi
h every entry is the sum of its nearest neighbors above and to the left;the Catalan numbers Cn = Cnn appear on the diagonal. The elements of thistriangle, whi
h themselves have a venerable pedigree going ba
k to de Moivrein 1711, are 
alled \ballot numbers," be
ause they represent sequen
es of p + qballots for whi
h a running tabulation never favors a 
andidate with p votes overan opponent who re
eives q votes. The general formulaCpq = q � p+ 1q + 1 �p+ qp � = �p+ qp �� �p+ qp� 1� (23)
an be proved by indu
tion or in a variety of more interesting ways; see exer
ise 39and the answer to exer
ise 2.2.1{4. Noti
e that, be
ause of (19), we haveCpq = [zp℄C(z)q�p+1: (24)When n = 4, Algorithm P essentially des
ribes the re
ursion tree3423 2412 13 12 13 1401 02 01 02 03 01 02 01 02 03 01 02 03 04 (25)
be
ause the spe
i�
ation (5) implies that Ann = (A(n�1)n and thatApq = )q�p(A(p�1)p; )q�p�1(A(p�1)(p+1); )q�p�2(A(p�1)(p+2);: : : ; (A(p�1)q when 0 � p < q. (26)The number of leaves below node pq in this re
ursion tree is Cpq, and node pqappears exa
tly C(n�q)(n�1�p) times on level n� 1� p; therefore we must haveXq C(n�q)(n�1�p)Cpq = Cn; for 0 � p < n. (27)The fourteen leaves of (25), from left to right, 
orrespond to the fourteen rowsof Table 1, from top to bottom. Noti
e that the entries in 
olumn 
1
2
3
4 ofthat table assign the respe
tive numbers 0000, 0001, 0010, : : : , 0123 to the leaves

11



12 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6of (25), in a

ord with \Dewey de
imal notation" for tree nodes (but with indi
esstarting at 0 instead of 1, and with an extra 0 ta
ked on at the beginning).A worm that 
rawls from one leaf to the next, around the bottom of there
ursion tree, will as
end and des
end h levels when h of the 
oordinates 
1 : : : 
nare 
hanged, namely when Algorithm P resets the values of h `('s and h `)'s.This observation makes it easy to understand our previous 
on
lusion that the
ondition h > x o

urs exa
tly Cn�x times during a 
omplete 
rawl.Yet another way to understand Algorithm P arises when we 
ontemplate anin�nite dire
ted graph that is suggested by the re
ursion (21):0001 1102 12 2203 13 23 3304 14 24 34 44
(28)

Clearly Cpq is the number of paths from pq to 00 in this digraph, be
auseof (21). And indeed, every string of parentheses in Apq 
orresponds dire
tly tosu
h a path, with `(' signifying a step to the left and `)' signifying a step upward.Algorithm P explores all su
h paths systemati
ally by trying �rst to go upwardwhen extending a partial path.Therefore it is easy to determine the Nth string of nested parentheses thatis visited by Algorithm P, by starting at node nn and doing the following
al
ulation when at node pq : If p = q = 0, stop; otherwise, if N � Cp(q�1),emit `)', set q  q � 1, and 
ontinue; otherwise set N  N � Cp(q�1), emit`(', set p p� 1, and 
ontinue. The following algorithm [Frank Ruskey, Ph.D.thesis (University of California at San Diego, 1978), 16{24℄ avoids the need topre
ompute the Catalan triangle by evaluating Cpq on the 
y as it goes:Algorithm U (Unrank a string of nested parentheses). Given n and N , where1 � N � Cn, this algorithm 
omputes the Nth output a1 : : : a2n of Algorithm P.U1. [Initialize.℄ Set q  n and m  p  
  1. While p < n, set p  p + 1and 
 ((4p� 2)
)=(p+ 1).U2. [Done?℄ Terminate the algorithm if q = 0.U3. [Go up?℄ Set 
0  ((q + 1)(q � p)
)=((q + p)(q � p+ 1)). (At this point wehave 1 � N � 
 = Cpq and 
0 = Cp(q�1).) If N � 
0, set q  q � 1, 
 
0,am  `)', m m+ 1, and return to U2.U4. [Go left.℄ Set p  p � 1, 
  
 � 
0, N  N � 
0, am  `(', m  m + 1,and return to U3.Random trees. We 
ould 
hoose a string a1a2 : : : a2n of nested parenthesesat random by simply applying Algorithm U to a random integer N between 1

12



7.2.1.6 GENERATING ALL TREES 13and Cn. But that idea isn't really very good, when n is bigger than 32 or so, be-
ause Cn 
an be quite large. A simpler and better way, proposed by D. B. Arnoldand M. R. Sleep [ACM Trans. Prog. Languages and Systems 2 (1980), 122{128℄,is to generate a random \worm walk" by starting at nn in (28) and repeatedlytaking leftward or upward bran
hes with the appropriate probabilities. Theresulting algorithm is almost the same as Algorithm U, but it deals only withnonnegative integers less than n2 + n+ 1:Algorithm W (Uniformly random strings of nested parentheses). This algo-rithm generates a random string a1a2 : : : a2n of properly nested (s and )s.W1. [Initialize.℄ Set p q  n and m 1.W2. [Done?℄ Terminate the algorithm if q = 0.W3. [Go up?℄ Let X be a random integer in the range 0 � X < (q+p)(q�p+1).If X < (q + 1)(q � p), set q  q � 1, am  `)', m  m + 1, and returnto W2.W4. [Go left.℄ Set p p� 1, am  `(', m m+ 1, and return to W3.A worm's walk 
an be regarded as a sequen
e w0w1 : : : w2n, where wm is theworm's 
urrent depth after m steps. Thus, w0 = 0; wm = wm�1 + 1 when am =`('; wm = wm�1�1 when am = `)'; and we have wm � 0, w2n = 0. The sequen
ew0w1 : : : w30 
orresponding to (1) and (2) is 0121012321234345432321232343210.At step W3 of Algorithm W we have q + p = 2n+ 1�m and q � p = wm�1.Let's say that the outline of a forest is the path that runs through the points(m;�wm) in the plane, for 0 � m � 2n, where w0w1 : : : w2n is the worm walk
orresponding to the asso
iated string a1 : : : a2n of nested parentheses. Figure 36shows what happens if we plot the outlines of all 50-node forests and darken ea
hpoint a

ording to the number of forests that lie above it. For example, w1 isalways 1, so the triangular region at the upper left of Fig. 36 is solid bla
k.But w2 is either 0 or 2, and 0 o

urs in C49 � C50=4 
ases; so the adja
entdiamond-shaped area is a 75% shade of gray. Thus Fig. 36 illustrates the shapeof a random forest, analogous to the shapes of random partitions that we've seenin Figs. 30, 31, and 35 of Se
tions 7.2.1.4 and 7.2.1.5.

Fig. 36. The shape of a random 50-node forest.Of 
ourse we 
an't really draw the outlines of all those forests, sin
e thereare C50 = 1;978;261;657;756;160;653;623;774;456 of them. But with the help ofmathemati
s we 
an pretend that we've done so. The probability that w2m = 2kis C(m�k)(m+k)C(n�m�k)(n�m+k)=Cn, be
ause there are C(m�k)(m+k) ways tostart with m + k (s and m � k )s, and C(n�m�k)(n�m+k) ways to �nish with
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14 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6

Fig. 37. Lo
ations of the internal nodes in a random 50-node binary tree.n � (m+ k) (s and n� (m � k) )s. By (23) and Stirling's approximation, thisprobability is(2k + 1)2(n+ 1)(m+ k + 1)(n�m+ k + 1)� 2mm� k�� 2n� 2mn�m+ k�.�2nn �= (2k + 1)2p� ��(1� �)n�3=2 e�k2=(�(1��)n)�1 +O�k + 1n �+O�k3n2�� (29)when m = �n and n ! 1, for 0 < � < 1. The average value of w2m is workedout in exer
ise 57; it 
omes to(4m(n�m) + n)�2mm ��2n�2mn�m �
n�2nn � � 1 = 4r�(1� �)n� � 1+O(n�1=2); (30)

and it is illustrated for n = 50 as a 
urved line in Fig. 36.When n is large, worm walks approa
h the so-
alled \Brownian ex
ur-sion," whi
h is an important 
on
ept in probability theory. See, for example,Paul L�evy, Pro
essus Sto
hastiques et Mouvement Brownien (1948), 225{237;Guy Lou
hard, J. Applied Prob. 21 (1984), 479{499, and BIT 26 (1986), 17{34; David Aldous, Ele
troni
 Communi
ations in Probability 3 (1998), 79{90;Jon Warren, Ele
troni
 Communi
ations in Probability 4 (1999), 25{29; J.-F.Mar
kert, Random Stru
tures and Algorithms 24 (2004), 118{132.What is the shape of a random binary tree? This question was investigatedby Frank Ruskey in SIAM J. Algebrai
 and Dis
rete Methods 1 (1980), 43{50,and the answer turns out to be quite interesting. Suppose we draw a binary tree
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7.2.1.6 GENERATING ALL TREES 15

Fig. 38. Lo
ations of the external nodes in a random 50-node binary tree.
as in (4), with the mth internal node at horizontal position m when the nodesare numbered in symmetri
 order. If all of the 50-node binary trees are drawnin this way and superimposed on ea
h other, we get the distribution of nodepositions shown in Fig. 37. Similarly, if we number the external nodes from 0to n in symmetri
 order and pla
e them at horizontal positions .5, 1.5, : : : , n+:5,the \fringes" of all 50-node binary trees form the distribution shown in Fig. 38.Noti
e that the root node is most likely to be either number 1 or number n, atthe extreme left or right; it is least likely to be either b(n+1)=2
 or d(n+1)=2e,in the middle.As in Fig. 36, the smooth 
urves in Figs. 37 and 38 show the average nodedepths; exa
t formulas are derived in exer
ises 58 and 59. Asymptoti
ally, theaverage depth of external node m is8r�(1� �)n� � 1 +O� 1pn�; when m = �n and n!1; (31)for all �xed ratios � with 0 < � < 1, 
uriously like (30); and the average depthof internal node m is asymptoti
ally the same, but with `�1' repla
ed by `�3'.Thus we 
an say that the average shape of a random binary tree is approximatelythe lower half of an ellipse, n units wide and 4pn=� levels deep.Three other noteworthy ways to generate random en
odings of forests aredis
ussed in exer
ises 60, 61, and 62. They are less dire
t than Algorithm W,yet they have substantial 
ombinatorial interest. The �rst one begins with anarbitrary random string 
ontaining n (s and n )s, not ne
essarily nested; ea
hof the �2nn � possibilities is equally likely. It then pro
eeds to 
onvert every su
hstring into a sequen
e that is properly nested, in su
h a way that exa
tly n+ 1

15



16 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6strings map into ea
h �nal out
ome. The se
ond method is similar, but it startswith a sequen
e of n+ 1 0s and n 2s, mapping them in su
h a way that exa
tly2n + 1 original strings produ
e ea
h possible result. And the third methodprodu
es ea
h output from exa
tly n of the bit strings that 
ontain exa
tlyn� 1 1s and n+ 1 0s. In other words, the three methods provide 
ombinatorialproofs of the fa
t that Cn is simultaneously equal to �2nn �=(n+1), �2n+1n �=(2n+1),and � 2nn�1�=n. For example, when n = 4 we have 14 = 70=5 = 126=9 = 56=4.If we want to generate random binary trees dire
tly in linked form, we 
anuse a beautiful method suggested by J. L. R�emy [RAIRO Informatique Th�eorique19 (1985), 179{195℄. His approa
h is parti
ularly instru
tive be
ause it showshow random Catalan trees might a
tually o

ur \in nature," using a deli
iouslysimple me
hanism based on a 
lassi
al idea of Olinde Rodrigues [J. de Math.3 (1838), 549℄. Let us suppose that our goal is to obtain not only an ordinaryn-node binary tree, but a de
orated binary tree, namely an extended binary treein whi
h the external nodes have been labeled with the numbers 0 to n in someorder. There are (n + 1)! ways to de
orate any given binary tree; so the totalnumber of de
orated binary trees with n internal nodes isDn = (n+ 1)!Cn = (2n)!n! = (4n� 2)Dn�1: (32)R�emy observed that there are 4n� 2 easy ways to build a de
orated tree oforder n from a given de
orated tree of order n � 1: We simply 
hoose any oneof the 2n� 1 nodes (internal or external) in the given tree, say x, and repla
e itby either kn x or knx ; (33)thus inserting a new internal node and a new leaf while moving x and itsdes
endants (if any) down one level.For example, here's one way to 
onstru
t a de
orated tree of order 6:
0 ; 1 0e ; 1 2 0e e ; 1 2 0 3e e e ; 4 1 2 0 3e e e e ; 4 1 2 0 3 5e e e e e ; 4 6 1 2 0 3 5e e e e e e(34)Noti
e that every de
orated tree is obtained by this pro
ess in exa
tly one way,be
ause the prede
essor of ea
h tree must be the tree we get by striking out thehighest-numbered leaf. Therefore R�emy's 
onstru
tion produ
es de
orated treesthat are uniformly random; and if we ignore the external nodes, we get randombinary trees of the ordinary, unde
orated variety.One appealing way to implement R�emy's pro
edure is to maintain a table oflinks L0L1 : : : L2n where external (leaf) nodes have even numbers and internal(bran
h) nodes have odd numbers. The root is node L0; the left and right
hildren of bran
h node 2k � 1 are respe
tively L2k�1 and L2k, for 1 � k � n.Then the program is short and sweet:

16



7.2.1.6 GENERATING ALL TREES 17Algorithm R (Growing a random binary tree). This algorithm 
onstru
ts thelinked representation L0L1 : : : L2N of a uniformly random binary tree with Ninternal nodes, using the 
onventions explained above.R1. [Initialize.℄ Set n 0 and L0  0.R2. [Done?℄ (At this point the links L0L1 : : : L2n represent a random n-nodebinary tree.) Terminate the algorithm if n = N .R3. [Advan
e n.℄ Let X be a random integer between 0 and 4n + 1, in
lusive.Set n  n + 1, b  X mod 2, k  bX=2
, L2n�b  2n, L2n�1+b  Lk,Lk  2n� 1, and return to R2.*Chains of subsets. Now that we've got trees and parentheses �rmly in mind,it's a good time to dis
uss the Christmas tree pattern,* whi
h is a remarkableway to arrange the set of all 2n bit strings of length n into � nbn=2
� rows and n+1
olumns, dis
overed by de Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk[Nieuw Ar
hief voor Wiskunde (2) 23 (1951), 191{193℄.The Christmas tree pattern of order 1 is the single row `0 1'; and the patternof order 2 is 1000 01 11 : (35)In general we get the Christmas tree pattern of order n+ 1 by taking every row`�1 �2 : : : �s' of the order-n pattern and repla
ing it by the two rows�20 : : : �s0�10 �11 : : : �s�11 �s1 : (36)(The �rst of these rows is omitted when s = 1.)Pro
eeding in this way, we obtain for example the pattern of order 8 thatappears in Table 4 on the next page. It is easy to verify by indu
tion thati) Ea
h of the 2n bit strings appears exa
tly on
e in the pattern.ii) The bit strings with k 1s all appear in the same 
olumn.iii) Within ea
h row, 
onse
utive bit strings di�er by 
hanging a 0 to a 1.If we think of the bit strings as representing subsets of f1; : : : ; ng, with 1-bitsto indi
ate the members of a set, property (iii) says that ea
h row represents a
hain in whi
h ea
h subset is 
overed by its su

essor. In symbols, using thenotation of Se
tion 7.1, every row �1 �2 : : : �s has the property that �j � �j+1and �(�j+1) = �(�j) + 1 for 1 � j < s.Properties (i) and (ii) tell us that there are exa
tly �nk� elements in 
olumn k,if we number the 
olumns from 0 to n. This observation, together with the fa
tthat ea
h row is 
entered among the 
olumns, proves that the total number ofrows is max0�k�n �nk� = � nbn=2
�, as 
laimed. Let us 
all this number Mn.* This name was 
hosen for sentimental reasons, be
ause the pattern has a general shapenot unlike that of a festive tree, and be
ause it was the subje
t of the author's ninth annual\Christmas Tree Le
ture" at Stanford University in De
ember 2002.
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18 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6Table
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7.2.1.6 GENERATING ALL TREES 19A set C of bit strings is 
alled a 
lutter, or an \anti
hain of subsets," ifits bit strings are in
omparable in the sense that � 6� � whenever � and � aredistin
t elements of C. A famous theorem of Emanuel Sperner [Math. Zeits
hrift27 (1928), 544{548℄ asserts that no 
lutter on f1; : : : ; ng 
an have more thanMn elements; and the Christmas tree pattern provides a simple proof, be
auseno 
lutter 
an 
ontain more than one element of ea
h row.Indeed, the Christmas tree pattern 
an be used to show that mu
h moreis true. Let's note �rst that exa
tly �nk� � � nk�1� rows of length n + 1 � 2k arepresent, for 0 � k � n=2, be
ause there are exa
tly �nk� elements in 
olumn k.For example, Table 4 has one row of length 9, namely the bottom row; it alsohas �81�� �80� = 7 rows of length 7, �82�� �81� = 20 rows of length 5, �83�� �82� = 28of length 3, and �84�� �83� = 14 of length 1. Moreover, these numbers �nk�� � nk�1�appear in the Catalan triangle (22), be
ause they're equal to Ck(n�k) a

ordingto Eq. (23).Further study reveals that this Catalan 
onne
tion is not simply a 
o-in
iden
e; nested parentheses are, in fa
t, the key to a deeper understandingof the Christmas tree pattern, be
ause the theory of parentheses tells us wherean arbitrary bit string �ts into the array. Suppose we use the symbols ( and )instead of 1 and 0, respe
tively. Any string of parentheses, nested or not, 
an bewritten uniquely in the form�0) : : : �p�1)�p(�p+1 : : : (�q (37)for some p and q with 0 � p � q, where the substrings �0, : : : , �q are properlynested and possibly empty; exa
tly p of the right parentheses and q � p of theleft parentheses are \free" in the sense that they have no mate. For example,the string ) ( ( ) ) ( ) ) ( ) ) ) ) ( ( ( ( ( ( ) ( ( ) ( ) ( ( ( ) ) (38)has p = 5, q = 12, �0 = �, �1 = (())(), �2 = (), �3 = �, : : : , �12 = (()). Ingeneral, the string (37) is part of a 
hain of length q + 1,�0) : : : �q�1)�q; �0) : : : �q�2)�q�1(�q; : : : ; �0(�1 : : : (�q; (39)in whi
h we start with q free )s and 
hange them one by one into free (s. Everyrow of the Christmas tree pattern is obtained in exa
tly this manner, but using1 and 0 instead of ( and ); for if the 
hain �1 : : : �s 
orresponds to the nestedstrings �0, : : : , �s�1, its su

essor 
hains in (36) 
orrespond respe
tively to�0, : : : , �s�3, �s�2(�s�1) and to �0, : : : , �s�3, �s�2, �s�1, �. [See CurtisGreene and Daniel J. Kleitman, J. Combinatorial Theory A20 (1976), 80{88.℄Noti
e furthermore that the rightmost elements in ea
h row of the pattern|su
h as 10101010, 10101011, 10101100, 10101101, : : : , 11111110, 11111111 inthe 
ase n = 8|are in lexi
ographi
 order. Thus, for example, the fourteenrows of length 1 in Table 4 
orrespond pre
isely to the fourteen strings ofnested parentheses in Table 1. This observation makes it easy to generate therows of Table 8 sequentially from bottom to top, with a method analogous toAlgorithm P; see exer
ise 77.
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20 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6Let f(x1; : : : ; xn) be any monotone Boolean fun
tion of n variables. If � =a1 : : : an is any bit string of length n, we 
an write f(�) = f(a1; : : : ; an) for
onvenien
e. Any row �1 : : : �s of the Christmas tree pattern forms a 
hain, sowe have 0 � f(�1) � � � � � f(�s) � 1: (40)In other words, there is an index t su
h that f(�j) = 0 for j < t and f(�j) = 1for j � t; we will know the value of f(�) for all 2n bit strings � if we know theindi
es t for ea
h row of the pattern.Georges Hansel [Comptes Rendus A
ad. S
i. (A) 262 (Paris, 1966), 1088{1090℄ noti
ed that the Christmas tree pattern has another important property:If �j�1, �j , and �j+1 are three 
onse
utive entries of any row, the bit string�0j = �j�1 � �j � �j+1 (41)lies in a previous row. In fa
t, �0j lies in the same 
olumn as �j , and it satis�es�j�1 � �0j � �j+1; (42)it is 
alled the relative 
omplement of �j in the interval (�j�1 : : �j+1). Hansel'sobservation is easy to prove by indu
tion, be
ause of the re
ursive rule (36) thatde�nes the Christmas tree pattern. He used it to show that we 
an dedu
e thevalues of f(�) for all � by a
tually evaluating the fun
tion at relatively few well-
hosen pla
es; for if we know the value of f(�0j), we will know either f(�j�1) orf(�j+1) be
ause of relation (42).Algorithm H (Learning a monotone Boolean fun
tion). Let f(x1; : : : ; xn) be aBoolean fun
tion that is nonde
reasing in ea
h Boolean variable, but otherwiseunknown. Given a bit string � of length n, let r(�) be the number of the rowin whi
h � appears in the Christmas tree pattern, where 1 � r(�) � Mn. If1 � m �Mn, let s(m) be the number of bit strings in row m; also let �(m; k) bethe bit string in 
olumn k of that row, for (n+1�s(m))=2 � k � (n�1+s(m))=2.This algorithm determines the sequen
e of threshold values t(1), t(2), : : : , t(Mn)su
h that f(�) = 1 () �(�) � t�r(�)�; (43)by evaluating f at no more than two points per row.H1. [Loop on m.℄ Perform steps H2 through H4 for m = 1, : : : , Mn; then stop.H2. [Begin row m.℄ Set a (n+ 1� s(m))=2 and z  (n� 1 + s(m))=2.H3. [Do a binary sear
h.℄ If z � a+1, go to H4. Otherwise set k  �(a+z)=2�,and �  �(m; k � 1)� �(m; k)� �(m; k + 1): (44)If k � t�r(�)�, set z  k; otherwise set a k. Repeat step H3.H4. [Evaluate.℄ If f(�(m; a)) = 1, set t(m)  a; otherwise, if a = z, sett(m) a+ 1; otherwise set t(m) z + 1� f(�(m; z)).
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7.2.1.6 GENERATING ALL TREES 21Hansel's algorithm is optimum, in the sense that it evaluates f at the fewestpossible points in the worst 
ase. For if f happens to be the threshold fun
tionf(�) = ��(�) > n=2�; (45)any valid algorithm that learns f on the �rst m rows of the Christmas treepattern must evaluate f(�) in 
olumn bn=2
 of ea
h row, and in 
olumn bn=2
+1of ea
h row that has size greater than 1. Otherwise we 
ould not distinguish ffrom a fun
tion that di�ers from it only at an unexamined point. [See V. K.Korobkov, Problemy Kibernetiki 13 (1965), 5{28, Theorem 5.℄Oriented trees and forests. Let's turn now to another kind of tree, in whi
hthe parent-
hild relationship is important but the order of 
hildren in ea
h familyis not. An oriented forest of n nodes 
an be de�ned by a sequen
e of pointersp1 : : : pn, where pj is the parent of node j (or pj = 0 if j is a root); the dire
tedgraph on verti
es f0; 1; : : : ; ng with ar
s fj ! pj j 1 � j � ng will have nooriented 
y
les. An oriented tree is an oriented forest with exa
tly one root.(See Se
tion 2.3.4.2.) Every n-node oriented forest is equivalent to an (n + 1)-node oriented tree, be
ause the root of that tree 
an be regarded as the parent ofall the roots of the forest. We saw in Se
tion 2.3.4.4 that there are An orientedtrees with n nodes, where the �rst few values aren = 1 2 3 4 5 6 7 8 9 10 11 12 13 14An = 1 1 2 4 9 20 48 115 286 719 1842 4766 12486 32973 ; (46)asymptoti
ally, An = 
�nn�3=2+O(�nn�5=2) where � � 2:9558 and 
 � 0:4399.Thus, for example, only 9 of the 14 forests in Table 1 are distin
t when we ignorethe horizontal left-to-right ordering and 
onsider only the verti
al orientation.Every oriented forest 
orresponds to a unique ordered forest if we sort themembers of ea
h family appropriately, using an ordering on trees introdu
edby H. I. S
oins [Ma
hine Intelligen
e 3 (1968), 43{60℄: Re
all from (11) thatordered forests 
an be 
hara
terized by their level 
odes 
1 : : : 
n, where node jin preorder appears on level 
j . An ordered forest is 
alled 
anoni
al if the level
ode sequen
es for the subtrees in ea
h family are in nonin
reasing lexi
ographi
order. For example, the 
anoni
al forests in Table 1 are those whose level 
odes
1
2
3
4 are 0000, 0100, 0101, 0110, 0111, 0120, 0121, 0122, and 0123. The levelsequen
e 0112 is not 
anoni
al, be
ause the subtrees of the root have respe
tivelevel 
odes 1 and 12; the string 1 is lexi
ographi
ally less than 12. We 
an readilyverify by indu
tion that the 
anoni
al level 
odes are lexi
ographi
ally largest,among all ways of reordering the subtrees of a given oriented forest.T. Beyer and S. M. Hedetniemi [SICOMP 9 (1980), 706{712℄ noti
ed thatthere is a remarkably simple way to generate oriented forests if we visit them inde
reasing lexi
ographi
 order of the 
anoni
al level 
odes. Suppose 
1 : : : 
n is
anoni
al, where 
k > 0 and 
k+1 = � � � = 
n = 0. The next smallest sequen
e isobtained by de
reasing 
k, then in
reasing 
k+1 : : : 
n to the largest levels 
onsis-tent with 
anoni
ity; and those levels are easy to 
ompute. For if j = pk is theparent of node k, we have 
j = 
k�1 < 
l for j < l � k, hen
e the levels 
j : : : 
k
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22 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6represent the subtree 
urrently rooted at node j. To get the largest sequen
e oflevels less than 
1 : : : 
n we therefore repla
e 
k : : : 
n by the �rst n+1�k elementsof the in�nite sequen
e (
j : : : 
k�1)1 = 
j : : : 
k�1
j : : : 
k�1
j : : : . (The e�e
tis to remove k from its 
urrent position as the rightmost 
hild of j, then toappend new subtrees that are siblings of j, by 
loning j and its des
endantsas often as possible. This 
loning pro
ess may terminate in the midst of thesequen
e 
j : : : 
k�1, but that 
auses no diÆ
ulty be
ause every pre�x of a
anoni
al level sequen
e is 
anoni
al.) For example, to obtain the su

essor ofany sequen
e of 
anoni
al 
odes that ends with 23443433000000000, we repla
ethe �nal 3000000000 by 2344343234.Algorithm O (Oriented forests). This algorithm generates all oriented forestson n nodes, by visiting all 
anoni
al n-node forests in de
reasing lexi
ographi
order of their level 
odes 
1 : : : 
n. The level 
odes are not 
omputed expli
itly,however; ea
h 
anoni
al forest is represented dire
tly by its sequen
e of parentpointers p1 : : : pn, in preorder of the nodes. To generate all oriented trees onn+ 1 nodes, we 
an imagine that node 0 is the root.O1. [Initialize.℄ Set pk  k � 1 for 0 � k � n. (In parti
ular, this step makesp0 nonzero, for use in termination testing; see step O4.)O2. [Visit.℄ Visit the forest represented by parent pointers p1 : : : pn.O3. [Easy 
ase?℄ If pn > 0, set pn  ppn and return to step O2.O4. [Find j and k.℄ Find the largest k < n su
h that pk 6= 0. Terminate thealgorithm if k = 0; otherwise set j  pk and d k � j.O5. [Clone.℄ If pk�d = pj , set pk  pj ; otherwise set pk  pk�d + d. Return tostep O2 if k = n; otherwise set k  k + 1 and repeat this step.As in other algorithms we've been seeing, the loops in steps O4 and O5 tend tobe quite short; see exer
ise 88. Exer
ise 90 proves that slight 
hanges to thisalgorithm suÆ
e to generate all arrangements of edges that form free trees.Spanning trees. Now let's 
onsider the minimal subgraphs that \span" agiven graph. If G is a 
onne
ted graph on n verti
es, the spanning trees of Gare the subsets of n� 1 edges that 
ontain no 
y
les; equivalently, they are thesubsets of edges that form a free tree 
onne
ting all the verti
es. Spanning treesare important in many appli
ations, espe
ially in the study of networks, so theproblem of generating all spanning trees has been treated by many authors. Infa
t, systemati
 ways to list them all were developed early in the 20th 
enturyby Wilhelm Feussner [Annalen der Physik (4) 9 (1902), 1304{1329℄, long beforeanybody thought about generating other kinds of trees.In the following dis
ussion we will allow graphs to have any number of edgesbetween two verti
es; but we disallow loops from a vertex to itself, be
auseself-loops 
annot be part of a tree. Feussner's basi
 idea was very simple, yeteminently suited for 
al
ulation: If e is any edge of G, a spanning tree either
ontains e or it doesn't. Suppose e joins vertex u to vertex v, and suppose it ispart of a spanning tree; then the other n � 2 edges of that tree span the graph
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7.2.1.6 GENERATING ALL TREES 23G = e that we obtain by regarding u and v as identi
al. In other words, thespanning trees that 
ontain e are essentially the same as the spanning trees ofthe 
ontra
ted graph G= e that results when we shrink e down to a single point.On the other hand the spanning trees that do not 
ontain e are spanning treesof the redu
ed graph G n e that results when we eliminate edge e. Symboli
ally,therefore, the set S(G) of all spanning trees of G satis�esS(G) = e S(G = e) [ S(G n e): (47)Mal
olm J. Smith, in his Master's thesis at the University of Vi
toria (1999),introdu
ed a ni
e way to 
arry out the re
ursion (47) by �nding all spanning treesin a \revolving-door Gray 
ode" order: Ea
h tree in his s
heme is obtained fromits prede
essor by simply removing one edge and substituting another. Su
horderings are not diÆ
ult to �nd, but the tri
k is to do the job eÆ
iently.The basi
 idea of Smith's algorithm is to generate S(G) in su
h a way thatthe �rst spanning tree in
ludes a given near tree, namely a set of n � 2 edges
ontaining no 
y
le. This task is trivial if n = 2; we simply list all the edges.If n > 2 and if the given near tree is fe1; : : : ; en�2g, we pro
eed as follows:Assume that G is 
onne
ted; otherwise there are no spanning trees. Form G=e1and append e1 to ea
h of its spanning trees, beginning with one that 
ontainsfe2; : : : ; en�2g; noti
e that fe2; : : : ; en�2g is a near tree of G=e1, so this re
ursionmakes sense. If the last spanning tree found in this way for G= e1 is f1 : : : fn�2,
omplete the task by listing all spanning trees for G n e1, beginning with onethat 
ontains the near tree ff1; : : : ; fn�2g.For example, suppose G is the graphG = 1 23 4q r stp (48)with four verti
es and �ve edges fp; q; r; s; tg. Starting with the near tree fp; qg,Smith's pro
edure �rst forms the 
ontra
ted graphG = p = q r st1,23 4 (49)and lists its spanning trees, beginning with one that 
ontains q. This list mightbe qs, qt, ts, tr, rs; thus the trees pqs, pqt, pts, ptr, and prs span G. Theremaining task is to list the spanning trees ofG n p = 1 23 4q r st ; (50)starting with one that 
ontains fr; sg; they are rsq, rqt, qts.A detailed implementation of Smith's algorithm turns out to be quite in-stru
tive. As usual we represent the graph by letting two ar
s u! v and v ! u
orrespond to ea
h edge u���v, and we maintain lists of \ar
 nodes" to representthe ar
s that leave ea
h vertex. We'll need to shrink and unshrink the graph's
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24 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6edges, so we will make these lists doubly linked. If a points to an ar
 node thatrepresents u! v, thena� 1 points to the \mate" of a, whi
h represents v ! u;ta is the \tip" of a, namely v (hen
e ta�1 = u);ia is an optional name that identi�es this edge (and equals ia�1);na points to the next element of u's ar
 list;pa points to the previous element of u's ar
 list;and la is a link used for undeleting ar
s as explained below.The verti
es are represented by integers f1; : : : ; ng; and ar
 number v � 1 is aheader node for vertex v's doubly linked ar
 list. A header node a is re
ognizableby the fa
t that its tip, ta, is 0. We let dv be the degree of vertex v. Thus, forexample, the graph (48) might be represented by (d1; d2; d3; d4) = (2; 3; 3; 2) andby the following fourteen nodes of ar
 data:a = 0 1 2 3 4 5 6 7 8 9 10 11 12 13ta = 0 0 0 0 1 2 1 3 2 3 2 4 3 4ia = p p q q r r s s t tna = 5 4 6 10 9 7 8 0 13 11 12 1 3 2pa = 7 11 13 12 1 0 2 5 6 4 3 9 10 8The impli
it re
ursion of Smith's algorithm 
an be 
ontrolled 
onvenientlyby using an array of ar
 pointers a1 : : : an�1. At level l of the pro
ess, ar
sa1 : : : al�1 denote edges that have been in
luded in the 
urrent spanning tree; alis ignored; and ar
s al+1 : : : an�1 denote edges of a near tree on the 
ontra
tedgraph ( : : : (G=a1) : : : )=al�1 that should be part of the next spanning tree visited.There's also another array of ar
 pointers s1 : : : sn�2, representing sta
ksof ar
s that have been temporarily removed from the 
urrent graph. The topelement of the sta
k for level l is sl, and ea
h ar
 a links to its su

essor, la(whi
h is 0 at the bottom of the sta
k).An edge whose removal would dis
onne
t a 
onne
ted graph is 
alled abridge. One of the key points in the algorithm that follows is the fa
t that wewant to keep the 
urrent graph 
onne
ted; therefore we don't set G  G n ewhen e is a bridge.Algorithm S (All spanning trees). Given a 
onne
ted graph represented withthe data stru
tures explained above, this algorithm visits all of its spanning trees.A te
hnique 
alled \dan
ing links," whi
h we will dis
uss extensively inSe
tion 7.2.2.1, is used here to remove and restore items from and to doublylinked lists. The abbreviation \delete(a)" in the steps below is shorthand for thepair of operations npa  na; pna  pa ; (51)similarly, \undelete(a)" stands forpna  a; npa  a: (52)
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7.2.1.6 GENERATING ALL TREES 25S1. [Initialize.℄ Set a1 : : : an�1 to a spanning tree of the graph. (See exer
ise 94.)Also set x 0, l 1, and s1  0. If n = 2, set v  1, e n0, and go to S5.S2. [Enter level l.℄ Set e al+1, u te, and v  te�1. If du > dv, inter
hangev $ u and set e e� 1.S3. [Shrink e.℄ (Now we will make u identi
al to v by inserting u's adja
en
y listinto v's. We also must delete all former edges between u and v, in
luding eitself, be
ause su
h edges would otherwise be
ome loops. Deleted edges arelinked together so that we 
an restore them later in step S7.) Set k  du+dv ,f  nu�1, and g  0. While tf 6= 0, do the following: If tf = v, delete(f),delete(f � 1), and set k  k � 2, lf  g, g  f ; otherwise set tf�1  v.Then set f  nf and repeat these operations until tf = 0. Finally set le  g,dv  k, g  v � 1, npf  ng, png  pf , pnf  g, ng  nf , and al  e.S4. [Advan
e l.℄ Set l  l + 1. If l < n � 1, set sl  0 and return to S2.Otherwise set e nv�1.S5. [Visit.℄ (The 
urrent graph now has only two verti
es, one of whi
h is v.)Set an�1  e and visit the spanning tree a1 : : : an�1. (If x = 0, this is the�rst spanning tree to be visited; otherwise it di�ers from its prede
essor bydeleting x and inserting e.) Set x e and e ne. Repeat step S5 if te 6= 0.S6. [De
rease l.℄ Set l  l � 1. Terminate the algorithm if l = 0; otherwise sete al, u te, and v  te�1.S7. [Unshrink e.℄ Set f  u � 1, g  v � 1, ng  npf , png  g, npf  f ,pnf  f , and f  pf . While tf 6= 0, set tf�1  u and f  pf . Then setf  le, k  dv; while f 6= 0 set k  k + 2, undelete(f � 1), undelete(f),and set f  lf . Finally set dv  k � du.S8. [Test for bridge.℄ If e is a bridge, go to S9. (See exer
ise 95 for one wayto perform this test.) Otherwise set x  e, le  sl, sl  e; delete(e) anddelete(e� 1). Set du  du � 1, dv  dv � 1, and go to S2.S9. [Undo level l deletions.℄ Set e  sl. While e 6= 0, set u  te, v  te�1,du  du + 1, dv  dv + 1, undelete(e� 1), undelete(e), and e le. Returnto S6.The reader is en
ouraged to play through the steps of this algorithm on a smallgraph su
h as (48). Noti
e that a subtle 
ase arises in steps S3 and S7, if u'sadja
en
y list happens to be
ome empty. Noti
e also that several short
uts wouldbe possible, at the expense of a more 
ompli
ated algorithm; we will dis
uss su
himprovements later in this se
tion.*Series-parallel graphs. The task of �nding all spanning trees be
omes espe-
ially simple when the given graph has a serial and/or parallel de
omposition. Aseries-parallel graph between s and t is a graph G with two designated verti
es,s and t, whose edges 
an be built up re
ursively as follows: Either G 
onsists ofa single edge, s��� t; or G is a serial superedge 
onsisting of k � 2 series-parallelsubgraphs Gj between sj and tj , joined in series with s = s1 and tj = sj+1 for
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26 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.61 � j < k and tk = t; or G is a parallel superedge 
onsisting of k � 2 series-parallel subgraphs Gj between s and t joined in parallel. This de
omposition isessentially unique, given s and t, if we require that the subgraphs Gj for serialsuperedges are not themselves serial superedges, and that the subgraphs Gj forparallel superedges are not themselves parallel.Any series-parallel graph 
an be represented 
onveniently as a tree, with nonodes of degree 1. The leaf nodes of this tree represent edges, and the bran
hnodes represent superedges, alternating between serial and parallel from levelto level. For example, the tree Aa B Db C e f g
 d (53)

orresponds to the series-parallel graphs and subgraphs

A = 
db ea
f g ; B = 
db e ; C = 
d ; D = f g ; (54)if the top node A is taken to be parallel. Edges are named in (54), but notverti
es, be
ause edges are of prime importan
e with respe
t to spanning trees.Let's say that a near tree of a series-parallel graph between s and t is a setof n � 2 
y
le-free edges that do not 
onne
t s to t. The spanning trees andnear trees of a series-parallel graph are easy to des
ribe re
ursively, as follows:(1) A spanning tree of a serial superedge 
orresponds to spanning trees of all itsprin
ipal subgraphs Gj ; a near tree 
orresponds to spanning trees in all but oneof the Gj , and a near tree in the other. (2) A near tree of a parallel superedge
orresponds to near trees of all its prin
ipal subgraphs Gj ; a spanning tree 
or-responds to near trees in all but one of the Gj , and a spanning tree in the other.Rules (1) and (2) suggest the following data stru
tures for listing the span-ning trees and/or near trees of series-parallel graphs. Let p point to a node in atree like (53). Then we de�netp = 1 for serial superedges, 0 otherwise (the \type" of p);vp = 1 if we have a spanning tree for p, 0 if we have a near tree;lp = pointer to p's leftmost 
hild, or 0 if p is a leaf;rp = pointer to p's right sibling, wrapping around 
y
li
ally;dp = pointer to a designated 
hild of p, or 0 if p is a leaf.If q points to the rightmost 
hild of p, its \right sibling" rq equals lp. And if qpoints to any 
hild of p, rules (1) and (2) state thatvq = � vp; if q = dp;tp; if q 6= dp. (55)
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7.2.1.6 GENERATING ALL TREES 27(For example, if p is a bran
h node that represents a serial superedge, we musthave vq = 1 for all but one of p's 
hildren; the only ex
eption is the designated
hild dp. Thus we must have a spanning tree for all of the subgraphs that werejoined serially to form p, ex
ept for one designated subgraph in the 
ase that wehave a near tree for p.)Given any setting of the designated-
hild pointers dp, and given any value0 or 1 for vp at the root of the tree, Eq. (55) tells us how to propagate valuesdown to all of the leaves. For example, if we set vA  1 in the tree (53), andif we designate the leftmost 
hild of ea
h bran
h node (so that dA = a, dB = b,dC = 
, and dD = f), we �nd su

essivelyva=1, vB =0, vb=0, vC =1, v
=1, vd=0, ve=1, vD =0, vf =0, vg =1. (56)A leaf node q is present in the spanning tree if and only if vq = 1; hen
e(56) spe
i�es the spanning tree a
eg of the series-parallel graph A in (54).For 
onvenien
e, let's say that the 
on�gs of p are its spanning trees ifvp = 1, its near trees if vp = 0. We would like to generate all 
on�gs of theroot. A bran
h node p is 
alled \easy" if vp = tp; that is, a serial node is easyif its 
on�gs are spanning trees, and a parallel node is easy if its 
on�gs arenear trees. If p is easy, its 
on�gs are the Cartesian produ
t of the 
on�gs of its
hildren, namely all k-tuples of the 
hildren's 
on�gs, varying independently; thedesignated 
hild dp is immaterial in the easy 
ase. But if p is uneasy, its 
on�gsare the union of su
h Cartesian k-tuples, taken over all possible 
hoi
es of dp.As lu
k would have it, easy nodes are relatively rare: At most one 
hild ofan uneasy node (namely the designated 
hild) 
an be easy, and all 
hildren of aneasy node are uneasy unless they are leaves.Even so, the tree representation of a series-parallel graph makes the re
ursivegeneration of all its spanning trees and/or near trees quite straightforward andeÆ
ient. The operations of Algorithm S|shrinking and unshrinking, deletingand undeleting, bridge dete
tion|are not needed when we deal with series-parallel graphs. Furthermore, exer
ise 99 shows that there is a pleasant way toobtain the spanning trees or near trees in a revolving-door Gray 
ode order, byusing fo
us pointers as in several algorithms that we've seen earlier.*Re�nements of Algorithm S. Although Algorithm S provides us with a simpleand reasonably e�e
tive way to visit all spanning trees of a general graph, itsauthor Mal
olm Smith realized that the properties of series-parallel graphs 
an beused to make it even better. For example, if a graph has two or more edges thatrun between the same verti
es u and v, we 
an 
ombine them into a superedge;the spanning trees of the original graph 
an then be obtained readily from thoseof the simpler, redu
ed graph. And if a graph has a vertex v of degree 2, so thatthe only edges tou
hing v are u���v and v���w, we 
an eliminate v and repla
ethose edges by a single superedge between u and w. Furthermore, any vertex ofdegree 1 
an e�e
tively be eliminated, together with its adja
ent edge, by simplyin
luding that edge in every spanning tree.After the redu
tions in the pre
eding paragraph have been applied to a givengraph G, we obtain a redu
ed graph Ĝ having no parallel edges and no verti
es
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28 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6of degrees 1 or 2, together with a set of m � 0 series-parallel graphs S1, : : : , Sm,representing edges (or superedges) that must be in
luded in all spanning treesof G. Every remaining edge u���v of Ĝ 
orresponds, in fa
t, to a series-parallelgraph Suv between verti
es u and v. The spanning trees of G are then obtainedas the union, taken over all spanning trees T of Ĝ, of the Cartesian produ
tof the spanning trees of S1, : : : , Sm and the spanning trees of all Suv for edgesu���v in T , together with the near trees of all Suv for edges u���v that are inĜ but not in T . And all spanning trees T of Ĝ 
an be obtained by using thestrategy of Algorithm S.In fa
t, when Algorithm S is extended in this way, its operations of repla
ingthe 
urrent graph G by G=e or G n e typi
ally trigger further redu
tions, as newparallel edges appear or as the degree of a vertex drops below 3. Therefore itturns out that the \stopping state" of the impli
it re
ursion in Algorithm S,namely the 
ase when only two verti
es are left (step S5), never a
tually arises:A redu
ed graph Ĝ either has only a single vertex and no edges, or it has at leastfour verti
es and six edges.The resulting algorithm retains the desirable revolving-door property ofAlgorithm S, and it is quite pretty (although about four times as long as theoriginal); see exer
ise 100. Smith proved that it has the best possible asymptoti
running time: If G has n verti
es, m edges, and N spanning trees, the algorithmvisits them all in O(m+ n+N) steps.The performan
e of Algorithm S and of its souped-up version Algorithm S0
an best be appre
iated by 
onsidering the number of memory a

esses thatthose algorithms a
tually make when they generate the spanning trees of typi
algraphs, as shown in Table 5. The bottom line of that table 
orresponds tothe graph plane miles (16; 0; 0; 1; 0; 0; 0) from the Stanford GraphBase, whi
hserves as an \organi
" antidote to the purely mathemati
al examples on theprevious lines. The random multigraph on the penultimate line, also fromthe Stanford GraphBase, 
an be des
ribed more pre
isely by its oÆ
ial namerandom graph (16; 37; 1; 0; 0; 0; 0; 0; 0; 0). Although the 4 � 4 torus is isomorphi
to the 4-
ube (see exer
ise 7.2.1.1{17), those isomorphi
 graphs yield slightly dif-ferent running times be
ause their verti
es and edges are en
ountered di�erentlywhen the algorithms are run.In general we 
an say that Algorithm S is not too bad on small examples,ex
ept when the graph is quite sparse; but Algorithm S0 begins to shine whenmany spanning trees are present. On
e Algorithm S0 gets warmed up, it tendsto 
rank out a new tree after every 18 or 19 mems go by.Table 5 also indi
ates that a mathemati
ally-de�ned graph often has asurprisingly \round" number of spanning trees. For example, D. M. Cvetkovi�
[Srpska Akademija Nauka, Matemati
heski Institut 11 (Belgrade: 1971), 135{141℄ dis
overed, among other things, that the n-
ube has exa
tly22n�n�1 1(n1) 2(n2) : : : n(nn) (57)of them. Exer
ises 104{109 explore some of the reasons why that happens.
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7.2.1.6 GENERATING ALL TREES 29Table 5RUNNING TIME IN MEMS NEEDED TO GENERATE ALL SPANNING TREESm n N Algorithm S Algorithm S0 � per treepath P10 9 10 1 794 � 473 � 794.0 473.0path P100 99 100 1 9,974 � 5,063 � 9974.0 5063.0
y
le C10 10 10 10 3,480 � 998 � 348.0 99.8
y
le C100 100 100 100 355,605 � 10,538 � 3556.1 105.4
omplete graph K4 6 4 16 1,213 � 1,336 � 75.8 83.5
omplete graph K10 45 10 100,000,000 3,759.58 M� 1,860.95 M� 37.6 18.6
omplete bigraph K5;5 25 10 390,625 23.43 M� 8.88 M� 60.0 22.74�4 grid P4�P4 24 16 100,352 12.01 M� 1.87 M� 119.7 18.75�5 grid P5�P5 40 25 557,568,000 54.68 G� 10.20 G� 98.1 18.34�4 
ylinder P4�C4 28 16 2,558,976 230.96 M� 49.09 K� 90.3 19.25�5 
ylinder P5�C5 45 25 38,720,000,000 3,165.31 G� 711.69 G� 81.7 18.44�4 torus C4�C4 32 16 42,467,328 3,168.15 M� 823.08 M� 74.6 19.44-
ube P2�P2�P2�P2 32 16 42,467,328 3,168.16 M� 823.38 M� 74.7 19.4random multigraph 37 16 59,933,756 3,818.19 M� 995.91 M� 63.7 16.616 
ities 37 16 179,678,881 11,772.11 M� 3,267.43 M� 65.5 18.2
A general quasi-Gray 
ode. Let's 
lose this se
tion by dis
ussing something
ompletely di�erent, yet still related to trees. Consider the following hybridvariants of the two standard ways to traverse a nonempty forest:Prepostorder traversal Postpreorder traversalVisit the root of the �rst tree Traverse the subtrees of the �rstTraverse the subtrees of the �rst tree, in prepostordertree, in postpreorder Visit the root of the �rst treeTraverse the remaining trees, Traverse the remaining trees,in prepostorder in postpreorderIn the �rst 
ase, every tree of the forest is traversed in prepostorder, with its root�rst; but the subtrees of those roots are traversed in postpreorder, with roots
oming last. The se
ond variant is similar but with `pre' and `post' inter
hanged.And in general, prepostorder visits roots �rst on every even-numbered level ofthe forest, but visits them last on the odd-numbered levels. For example, theforest in (2) be
omesk1k2 k3k5k4 k11k6k7 k9k8

k10 k15k12 k13k14 (58)
when we label its nodes in prepostorder.
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30 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6Prepostorder and postpreorder are not merely 
uriosities; they're a
tuallyuseful. The reason is that adja
ent nodes, in either of these orders, are alwaysnear ea
h other in the forest. For example, nodes k and k+1 are adja
ent in (58)for k = 1, 4, 6, 8, 10, 13; they are separated by only one node when k = 3, 12, 14;and they're three steps apart when k = 2, 5, 7, 9, 11 (if we imagine an invisiblesuper-parent at the top of the forest). A moment's thought proves indu
tivelythat at most two nodes 
an possibly intervene between prepostorder neighbors orpostpreorder neighbors|be
ause postpreorder(F ) always begins with the rootof the �rst tree or its leftmost 
hild, and prepostorder(F ) always ends with theroot of the last tree or its rightmost 
hild.Suppose we want to generate all 
ombinatorial patterns of some kind, andwe want to visit them in a Gray-
ode-like manner so that 
onse
utive patternsare always \
lose" to ea
h other. We 
an form, at least 
on
eptually, the graph ofall possible patterns p, with edges p���q for all pairs of patterns that are 
lose toea
h other. The following theorem, due to Milan Sekanina [Spisy P�r��rodov�ede
k�eFakulty University v Brn�e, No. 412 (1960), 137{142℄, proves that a pretty goodGray 
ode is always possible, provided only that we 
an get from any pattern toany other in a sequen
e of short steps:Theorem S. The verti
es of any 
onne
ted graph 
an be listed in a 
y
li
 order(v0; v1; : : : ; vn�1) so that the distan
e between vk and v(k+1) mod n is at most 3,for 0 � k < n.Proof. Find a spanning tree in the graph, and traverse it in prepostorder.Graph theorists traditionally say that the kth power of a graph G is thegraph Gk whose verti
es are those of G, with u���v in Gk if and only if there's apath of length k or less from u to v in G. Thus they 
an state Theorem S mu
hmore su

in
tly, when n > 2: The 
ube of a 
onne
ted graph is Hamiltonian.Prepostorder traversal is also useful when we want to visit the nodes of atree in loopless fashion, with a bounded number of steps between stops:Algorithm Q (Prepostorder su

essor in a triply linked forest). If P points to anode in a forest represented by links PARENT, CHILD, and SIB, 
orresponding toea
h node's parent, leftmost 
hild, and right sibling, this algorithm 
omputes P'ssu

essor node, Q, in prepostorder. We assume that we know the level L at whi
hP appears in the forest; the value of L is updated to be the level of Q. If P happensto be the �nal node in prepostorder, the algorithm sets Q � and L �1.Q1. [Pre or post?℄ If L is even, go to step Q4.Q2. [Continue postpreorder.℄ Set Q SIB(P). Go to Q6 if Q 6= �.Q3. [Move up.℄ Set P PARENT(P) and L L� 1. Go to Q7.Q4. [Continue prepostorder.℄ If CHILD(P) = �, go to Q7.Q5. [Move down.℄ Set Q CHILD(P) and L L+ 1.Q6. [Move down if possible.℄ If CHILD(Q) 6= �, set Q CHILD(Q) and L L+1.Terminate the algorithm.
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7.2.1.6 GENERATING ALL TREES 31Q7. [Move right or up.℄ If SIB(P) 6= �, set Q  SIB(P); otherwise set Q  PARENT(P) and L L� 1. Terminate the algorithm.Noti
e that, as in Algorithm 2.4C, the link PARENT(P) is examined only ifSIB(P) = �. A 
omplete traversal is really a worm walk around the forest,like (3): The worm \sees" the nodes on even-numbered levels when it passesthem on the left, and it sees the odd-level nodes when it passes them on the right.EXERCISES1. [15 ℄ If a worm 
rawls around the binary tree (4), how 
ould it easily re
onstru
tthe parentheses of (1)?2. [20 ℄ (S. Zaks, 1980.) Modify Algorithm P so that it produ
es the 
ombinationsz1z2 : : : zn of (8) instead of the parenthesis strings a1a2 : : : a2n.x 3. [23 ℄ Prove that (11) 
onverts z1z2 : : : zn to the inversion table 
1
2 : : : 
n.4. [20 ℄ True or false: If the strings a1 : : : a2n are generated in lexi
ographi
 order,so are the 
orresponding strings d1 : : : dn, z1 : : : zn, p1 : : : pn, and 
1 : : : 
n.5. [15 ℄ What tables d1 : : : dn, z1 : : : zn, p1 : : : pn, and 
1 : : : 
n 
orrespond to thenested parenthesis string (1)?x 6. [20 ℄ What mat
hing 
orresponds to (1)? (See the �nal 
olumn of Table 1.)7. [16 ℄ (a) What is the state of the string a1a2 : : : a2n when Algorithm P terminates?(b) What do the arrays l1l2 : : : ln and r1r2 : : : rn 
ontain when Algorithm B terminates?8. [15 ℄ What tables l1 : : : ln, r1 : : : rn, e1 : : : en, and s1 : : : sn 
orrespond to the ex-ample forest (2)?9. [M20 ℄ Show that the tables 
1 : : : 
n and s1 : : : sn are related by the law
k = [s1� k � 1℄ + [s2� k � 2℄ + � � �+ [sk�1� 1℄:10. [M20 ℄ (Worm walks.) Given a string of nested parentheses a1a2 : : : a2n, let wjbe the ex
ess of left parentheses over right parentheses in a1a2 : : : aj , for 0 � j � 2n.Prove that w0 + w1 + � � �+ w2n = 2(
1 + � � �+ 
n) + n.11. [11 ℄ If F is a forest, its 
onjugate FR is obtained by left-to-right mirror re
e
tion.For example, the fourteen forests in Table 1 are, , , , , , , , , , , , ,and their 
onjugates are respe
tively, , , , , , , , , , , , ,as in the 
olex forests of Table 2. If F 
orresponds to the nested parentheses a1a2 : : : a2n,what string of parentheses 
orresponds to FR?12. [15 ℄ If F is a forest, its transpose FT is the forest whose binary tree is obtainedby inter
hanging left and right links in the binary tree representing F . For example,the transposes of the fourteen forests in Table 1 are respe
tively, , , , , , , , , , , , , .What is the transpose of the forest (2)?13. [20 ℄ Continuing exer
ises 11 and 12, how do the preorder and postorder of alabeled forest F relate to the preorder and postorder of (a) FR? (b) FT ?
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32 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6x 14. [21 ℄ Find all labeled forests F su
h that FRT = FTR.15. [20 ℄ Suppose B is the binary tree obtained from a forest F by linking ea
h nodeto its left sibling and its rightmost 
hild, as in exer
ise 2.3.2{5 and the last 
olumn ofTable 2. Let F 0 be the forest that 
orresponds to B in the normal way, via left-
hildand right-sibling links. Prove that F 0 = FRT , in the notation of exer
ises 11 and 12.16. [20 ℄ If F and G are forests, let FG be the forest obtained by pla
ing the trees of Fto the left of the trees of G; also let F jG = (GTFT )T . Give an intuitive explanationof the operator j, and prove that it is asso
iative.17. [M46 ℄ Chara
terize all unlabeled forests F su
h that FRT =FTR. (See exer
ise 14.)18. [30 ℄ Two forests are said to be 
ognate if one 
an be obtained from the other byrepeated operations of taking the 
onjugate and/or the transpose. The examples in ex-er
ises 11 and 12 show that all forests on 4 nodes belong to one of three 
ognate 
lasses:� ; � � � � � ;� � � � � :Study the set of all forests with 15 nodes. How many equivalen
e 
lasses of 
ognateforests do they form? What is the largest 
lass? What is the smallest 
lass? What isthe size of the 
lass 
ontaining (2)?19. [28 ℄ Let F1, F2, : : : , FN be the sequen
e of unlabeled forests that 
orrespondto the nested parentheses generated by Algorithm P, and let G1, G2, : : : , GN bethe sequen
e of unlabeled forests that 
orrespond to the binary trees generated byAlgorithm B. Prove that Gk = F RTRk , in the notation of exer
ises 11 and 12. (Theforest FRTR is 
alled the dual of F ; it is denoted by FD in several exer
ises below.)20. [25 ℄ Re
all from Se
tion 2.3 that the degree of a node in a tree is the number of
hildren it has, and that an extended binary tree is 
hara
terized by the property thatevery node has degree either 0 or 2. In the extended binary tree (4), the sequen
e ofnode degrees is 2200222002220220002002202200000 in preorder; this string of 0s and 2sis identi
al to the sequen
e of parentheses in (1), ex
ept that ea
h `(' has been repla
edby 2, ea
h `)' has been repla
ed by 0, and an additional 0 has been appended.a) Prove that a sequen
e of nonnegative integers b1b2 : : : bN is the preorder degreesequen
e of a forest if and only if it satis�es the following property for 1 � k � N :b1 + b2 + � � �+ bk + f > k if and only if k < N:Here f = N � b1 � b2 � � � � � bN is the number of trees in the forest.b) Re
all from exer
ise 2.3.4.5{6 that an extended ternary tree is 
hara
terized by theproperty that every node has degree 0 or 3; an extended ternary tree with n internalnodes has 2n + 1 external nodes, hen
e N = 3n + 1 nodes altogether. Design analgorithm to generate all ternary trees with n internal nodes, by generating theasso
iated sequen
es b1b2 : : : bN in lexi
ographi
 order.x 21. [26 ℄ (S. Zaks and D. Ri
hards, 1979.) Continuing exer
ise 20, explain how togenerate the preorder degree sequen
es of all forests that have N = n0+ � � �+nt nodes,with exa
tly nj nodes of degree j. Example: When n0 = 4, n1 = n2 = n3 = 1, andt = 3, and the valid sequen
es b1b2b3b4b5b6b7 are1203000; 1230000; 1300200; 1302000; 1320000;2013000; 2030010; 2030100; 2031000; 2103000;2130000; 2300010; 2300100; 2301000; 2310000;3001200; 3002010; 3002100; 3010200; 3012000;3020010; 3020100; 3021000; 3100200; 3102000;3120000; 3200010; 3200100; 3201000; 3210000:
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7.2.1.6 GENERATING ALL TREES 33x 22. [30 ℄ (J. Korsh, 2004.) As an alternative to Algorithm B, show that binary trees
an also be generated dire
tly and eÆ
iently in linked form if we produ
e them in 
olexorder of the numbers d1 : : : dn�1 de�ned in (9). (The a
tual values of d1 : : : dn�1 shouldnot be 
omputed expli
itly; but the links l1 : : : ln and r1 : : : rn should be manipulatedin su
h a way that we get the binary trees 
orresponding su

essively to d1d2 : : : dn�1 =000 : : : 0, 100 : : : 0, 010 : : : 0, 110 : : : 0, 020 : : : 0, 001 : : : 0, : : : , 000 : : : (n�1).)x 23. [25 ℄ (a) What is the last string visited by Algorithm N? (b) What is the lastbinary tree or forest visited by Algorithm L? Hint: See exer
ise 40 below.24. [22 ℄ Using the notation of Table 3, what sequen
es l0 l1 : : : l15, r1 : : : r15, k1 : : : k15,q1 : : : q15, and u1 : : : u15 
orrespond to the binary tree (4) and the forest (2)?x 25. [30 ℄ (Pruning and grafting.) Representing binary trees as in Algorithm B, designan algorithm that visits all link tables l1 : : : ln and r1 : : : rn in su
h a way that, betweenvisits, exa
tly one link 
hanges from j to 0 and another from 0 to j, for some index j.(In other words, every step removes some subtree j from the binary tree and pla
es itelsewhere, preserving preorder.)26. [M31 ℄ (The Kreweras latti
e.) Let F and F 0 be n-node forests with their nodesnumbered 1 to n in preorder. We write F < F 0 (\F 
oales
es F 0") if j and k aresiblings in F whenever they are siblings in F 0, for 1 � j < k � n. Figure 39 illustratesthis partial ordering in the 
ase n = 4; ea
h forest is en
oded by the sequen
e 
1 : : : 
nof (9) and (10), whi
h spe
i�es the depth of ea
h node. (With this en
oding, j and kare siblings if and only if 
j = 
k � 
j+1; : : : ; 
k�1.)

00000001 00100011 001201000101011001110112 012001210122 0123

Fig. 39. The Kreweras latti
e of order 4. Ea
h forest is represented byits sequen
e of node depths 
1
2
3
4 in preorder. (See exer
ises 26{28.)a) Let � be a partition of f1; : : : ; ng. Show that there exists a forest F , with nodeslabeled (1; : : : ; n) in preorder and withj � k (modulo �) () j is a sibling of k in F ;if and only if � satis�es the non
rossing propertyi < j < k < l and i � k and j � l (modulo �) implies i � j � k � l (modulo �).b) Given any two n-node forests F and F 0, explain how to 
ompute their least upperbound F _F 0, the element su
h that F < G and F 0 < G if and only if F _F 0 < G.
) When does F 0 
over F with respe
t to the relation <? (See exer
ise 7.2.1.4{55.)d) Show that if F 0 
overs F , it has exa
tly one less leaf than F .e) How many forests 
over F , when node k has ek 
hildren for 1 � k � n?f) Using the de�nition of duality in exer
ise 19, what is the dual of the forest (2)?
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34 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6g) Prove that F < F 0 holds if and only if F 0D < FD. (Be
ause of this property, dualelements have been pla
ed symmetri
ally about the 
enter of Fig. 39.)h) Given any two n-node forests F and F 0, explain how to 
ompute their greatestlower bound F ^ F 0; that is, G< F and G< F 0 if and only if G< F ^ F 0.i) Does this latti
e satisfy a semimodular law analogous to exer
ise 7.2.1.5{12(f)?x 27. [M33 ℄ (The Tamari latti
e.) Continuing exer
ise 26, let us write F a F 0 if thejth node in preorder has at least as many des
endants in F 0 as it does in F , for all j.In other words, if F and F 0 are 
hara
terized by their s
ope sequen
es s1 : : : sn ands01 : : : s0n as in Table 2, we have F a F 0 if and only sj � s0j for 1 � j � n. (See Fig. 40.)0123
0012

0112
01010001

0122
0011

0121 0111
01200010 0110 01000000(a)

3210
0210

3010
10100010

3200
0200

3100 3000
21000100 2000 10000000(b)Fig. 40. The Tamari latti
e of order 4. Ea
h forest is represented byits sequen
es of (a) node depths and (b) des
endant 
ounts, in preorder.(See exer
ises 26{28.)a) Show that the s
ope 
oordinates min(s1; s01)min(s2; s02) : : :min(sn; s0n) de�ne aforest that is the greatest lower bound of F and F 0. (We denote it by F ? F 0.)Hint: Prove that s1 : : : sn 
orresponds to a forest if and only if 0 � k � sj impliessj+k + k � sj , for 0 � j � n, if we de�ne s0 = n.b) When does F 0 
over F in this partial ordering?
) Prove that F a F 0 if and only if F 0D a FD . (Compare with exer
ise 26(g).)d) Explain how to 
ompute a least upper bound, F > F 0, given F and F 0.e) Prove that F < F 0 in the Kreweras latti
e implies F a F 0 in the Tamari latti
e.f) True or false: F ^ F 0 a F ? F 0.g) True or false: F _ F 0 < F > F 0.h) What are the longest and shortest paths from the top of the Tamari latti
e to thebottom, when ea
h forest of the path 
overs its su

essor? (Su
h paths are 
alledmaximal 
hains in the latti
e; 
ompare with exer
ise 7.2.1.4{55(h).)28. [M26 ℄ (The Stanley latti
e.) Continuing exer
ises 26 and 27, let us de�ne yetanother partial ordering on n-node forests, saying that F � F 0 whenever the depth
oordinates 
1 : : : 
n and 
01 : : : 
0n satisfy 
j � 
0j for 1 � j � n. (See Fig. 41).a) Prove that this partial ordering is a latti
e, by explaining how to 
ompute thegreatest lower bound F \F 0 and least upper bound F [F 0 of any two given forests.b) Show that Stanley's latti
e satis�es the distributive lawsF \ (G [H) = (F \G) [ (F \H); F [ (G \H) = (F [G) \ (F [H):
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7.2.1.6 GENERATING ALL TREES 35

00000001 001000110012 01000101 011001110112 0120012101220123
Fig. 41. The Stanley latti
e of order 4. Ea
hforest is represented by its sequen
e of nodedepths in preorder. (See exer
ises 26{28.)
) When does F 0 
over F in this latti
e?d) True or false: F � G if and only if FR � GR.e) Prove that F � F 0 in the Stanley latti
e whenever F a F 0 in the Tamari latti
e.29. [HM31 ℄ The 
overing graph of a Tamari latti
e is sometimes known as an \asso
ia-hedron," be
ause of its 
onne
tion with the asso
iative law (14), proved in exer
ise27(b). The asso
iahedron of order 4, depi
ted in Fig. 40, looks like it has three squarefa
es and six fa
es that are regular pentagons. (Compare with Fig. 23 in exer
ise7.2.1.2{60, whi
h shows the \permutahedron" of order 4, a well-known Ar
himedeansolid.) Why doesn't Fig. 40 show up in 
lassi
al lists of uniform polyhedra?30. [M26 ℄ The footprint of a forest is the bit string f1 : : : fn de�ned byfj = [node j in preorder is not a leaf ℄:a) If F has footprint f1 : : : fn, what is the footprint of FD? (See exer
ise 27.)b) How many forests have the footprint 10101101111110000101010001011000?
) Prove that fj = [dj =0℄, for 1 � j < n, in the notation of (6).d) Two elements of a latti
e are 
alled 
omplementary if their greatest lower boundis the bottom element while their least upper bound is the top element. Show thatF and F 0 are 
omplementary in the Tamari latti
e if and only if their footprintsare 
omplementary, in the sense that f 01 : : : f 0n�1 = �f1 : : : �fn�1.x 31. [M28 ℄ A binary tree with n internal nodes is 
alled degenerate if it has height n�1.a) How many n-node binary trees are degenerate?b) We've seen in Tables 1, 2, and 3 that binary trees and forests 
an be en
oded byvarious n-tuples of numbers. For ea
h of the en
odings 
1 : : : 
n, d1 : : : dn, e1 : : : en,k1 : : : kn, p1 : : : pn, s1 : : : sn, u1 : : : un, and z1 : : : zn, explain how to see at a glan
eif the 
orresponding binary tree is degenerate.
) True or false: If F is degenerate, so is FD.d) Prove that if F and F 0 are degenerate, so are F ^F 0 = F?F 0 and F _F 0 = F>F 0.x 32. [M30 ℄ Prove that if F a F 0, there is a forest F 00 su
h that for all G we haveF 0 ?G = F if and only if F a G a F 00:Consequently the semidistributive laws hold in the Tamari latti
e:F ?G = F ?H implies F ? (G>H) = F ?G;F >G = F >H implies F > (G?H) = F >G:
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36 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6x 33. [M27 ℄ (Permutation representation of trees.) Let � be the 
y
le (1 2 : : : n).a) Given any binary tree whose nodes are numbered 1 to n in symmetri
 order, provethat there is a unique permutation � of f1; : : : ; ng su
h that, for 1 � k � n,LLINK[k℄ = � k�; if k� < k;0; otherwise; RLINK[k℄ = � k��; if k�� > k;0; otherwise.Thus � neatly pa
ks 2n link �elds into a single n-element array.b) Show that this permutation � is parti
ularly easy to des
ribe in 
y
le form whenthe binary tree is the left-sibling/right-
hild representation of a forest F . What isthe 
y
le form of �(F ) when F is the forest in (2)?
) Find a simple relation between �(F ) and the dual permutation �(FD).d) Prove that, in exer
ise 26, F 0 
overs F if and only if �(F 0) = (j k)�(F ), wherej and k are siblings in F .e) Consequently the number of maximal 
hains in the Kreweras latti
e of order nis the number of ways to fa
tor an n-
y
le as a produ
t of n � 1 transpositions.Evaluate this number. Hint: See Eq. 1.2.6{(16).34. [M25 ℄ (R. P. Stanley.) Show that the number of maximal 
hains in the Stanleylatti
e of order n is (n(n� 1)=2)!=(1n�13n�2 : : : (2n� 5)2(2n� 3)1).35. [HM37 ℄ (D. B. Tyler and D. R. Hi
kerson.) Explain why the denominators of theasymptoti
 formula (16) are all powers of 2.x 36. [M25 ℄ Analyze the ternary tree generation algorithm of exer
ise 20(b). Hint:There are (2n+ 1)�1�3nn � ternary trees with n internal nodes, by exer
ise 2.3.4.4{11.x 37. [M40 ℄ Analyze the Zaks{Ri
hards algorithm for generating all trees with a givendistribution n0, n1, n2, : : : , nt of degrees (exer
ise 21). Hint: See exer
ise 2.3.4.4{32.38. [M22 ℄ What is the total number of memory referen
es performed by Algorithm L,as a fun
tion of n?39. [22 ℄ Prove formula (23) by showing that the elements of Apq in (5) 
orrespond toYoung tableaux with two rows.40. [M22 ℄ (a) Prove that Cpq is odd if and only if p & (q + 1) = 0, in the sense thatthe binary representations of p and q+1 have no bits in 
ommon. (b) Therefore Cn isodd if and only if n+ 1 is a power of 2.41. [M21 ℄ Show that the ballot numbers have a simple generating fun
tionPCpqwpzq.x 42. [M22 ℄ How many unlabeled forests with n nodes are (a) self-
onjugate? (b) self-transpose? (
) self-dual? (See exer
ises 11, 12, 19, and 26.)43. [M21 ℄ Express Cpq in terms of the Catalan numbers hC0; C1; C2; : : : i, aiming fora formula that is simple when q � p is small. (For example, C(q�2)q = Cq � Cq�1.)x 44. [M27 ℄ Prove that Algorithm B makes only 8 23 +O(n�1) referen
es to memory perbinary tree visited.45. [M26 ℄ Analyze the memory referen
es made by the algorithm in exer
ise 22. Howdoes it 
ompare to Algorithm B?46. [M30 ℄ (Generalized Catalan numbers.) Generalize (21) by de�ningCpq(x) = Cp(q�1)(x) + xq�pC(p�1)q(x); if 0 � p � q 6= 0; C00(x) = 1;and Cpq(x) = 0 if p < 0 or p > q; thus Cpq = Cpq(1). Also let Cn(x) = Cnn(x), so thathC0(x); C1(x); : : : i = h1; 1; 1+x; 1+2x+x2+x3; 1+3x+3x2+3x3+2x4+x5+x6; : : : i:
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7.2.1.6 GENERATING ALL TREES 37a) Show that [xk℄Cpq(x) is the number of paths from pq to 00 in (28) that havearea k, where the \area" of a path is the number of re
tangular 
ells above it.(Thus an L-shaped path has the maximum possible area, p(q � p) + �p2�.)b) Prove that Cn(x) = PF x
1+���+
n = PF xinternal path length(F ), summed over alln-node forests F .
) If C(x; z) =P1n=0 Cn(x)zn, show that C(x; z) = 1 + zC(x; z)C(x; xz).d) Furthermore, C(x; z)C(x; xz) : : : C(x; xrz) =P1p=0 Cp(p+r)(x)zp.47. [M27 ℄ Continuing the previous exer
ise, generalize the identity (27).48. [M28 ℄ (F. Ruskey and A. Proskurowski.) Evaluate Cpq(x) when x = �1, and usethis result to show that no \perfe
t" Gray 
ode for nested parentheses is possible whenn � 5 is odd.49. [17 ℄ What is the lexi
ographi
ally millionth string of 15 nested parenthesis pairs?50. [20 ℄ Design the inverse of Algorithm U: Given a string a1 : : : a2n of nested paren-theses, determine its rank N � 1 in lexi
ographi
 order. What is the rank of (1)?51. [M22 ℄ Let �z1�z2 : : : �zn be the 
omplement of z1z2 : : : zn with respe
t to 2n; in otherwords, �zj = 2n� zj , where zj is de�ned in (8). Show that if �z1�z2 : : : �zn is the (N +1)stn-
ombination of f0; 1; : : : ; 2n � 1g generated by Algorithm 7.2.1.3L, then z1z2 : : : znis the (N � �nN + 1)st n-
ombination of f1; 2; : : : ; 2ng generated by the algorithm ofexer
ise 2. (Here �n denotes the nth Kruskal fun
tion, de�ned in 7.2.1.3{(60).)52. [M23 ℄ Find the mean and varian
e of the quantity dn in Table 1, when nestedparentheses a1 : : : a2n are 
hosen at random.53. [M28 ℄ Let X be the distan
e from the root of an extended binary tree to theleftmost external node. (a) What is the expe
ted value of X, when all binary trees withn nodes are equally likely? (b) What is the expe
ted value of X in a random binarysear
h tree, 
onstru
ted by Algorithm 6.2.2T from a random permutation K1 : : :Kn?(
) What is the expe
ted value of X in a random degenerate binary tree, in the senseof exer
ise 31? (d) What is the expe
ted value of 2X in all three 
ases?54. [HM29 ℄ What are the mean and varian
e of 
1 + � � �+ 
n? (See exer
ise 46.)55. [HM33 ℄ Evaluate C 0pq(1), the total area of all the paths in exer
ise 46(a).56. [M23 ℄ (Renzo Sprugnoli, 1990.) Prove the summation formulam�1Xk=0 CkCn�1�k = 12Cn + 2m� n2n(n+ 1)�2mm ��2n� 2mn�m �; for 0 � m � n.57. [M28 ℄ Express the sums Sp(a; b) =Pk�0 � 2aa�k�� 2bb�k�kp in 
losed form for p = 0,1, 2, 3, and use these formulas to prove (30).58. [HM34 ℄ Let tlmn be the number of n-node binary trees in whi
h external node mappears at level l when the external nodes are numbered from 0 to n in symmetri
order. Also let tmn = Pnl=1 ltlmn, so that tmn=Cn is the average level of externalnode m; and let t(w; z) be the super generating fun
tionXm;n tmnwmzn = (1+w)z + (3+4w+3w2)z2 + (9+13w+13w2+9w3)z3 + � � � :Prove that t(w; z) = (C(z) � wC(wz))=(1� w) � 1 + zC(z)t(w; z) + wzC(wz)t(w; z),and dedu
e a simple formula for the numbers tmn.
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38 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.659. [HM29 ℄ Similarly, let Tlmn 
ount all n-node binary trees in whi
h internal nodemappears at level l. Find a simple formula for Tmn =Pnl=1 lTlmn.x 60. [M26 ℄ (Balan
ed strings.) A string � of nested parentheses is atomi
 if it hasthe form (�0) where �0 is nested; every nested string 
an be represented uniquely as aprodu
t of atoms �1 : : : �r. A string with equal numbers of left and right parenthesesis 
alled balan
ed ; every balan
ed string 
an be represented uniquely as �1 : : : �r whereea
h �j is either an atom or a 
o-atom (the reverse of an atom). The defe
t of abalan
ed string is half the length of its 
o-atoms. For example, the balan
ed string( ( ) ) ) ( ( ( ) ) ) ) ) ) ( ( ) ( ( ( ) ) ( ( ( ) ) ( ( )has the fa
tored form �1�2�3�4�5�6�7�8 = �1�R2 �3�R4 �R5 �6�R7 �8, with four atomsand four 
o-atoms; its defe
t is j�2�4�5�7j=2 = 9.a) Prove that the defe
t of a balan
ed string is the number of indi
es k for whi
h thekth right parenthesis pre
edes the kth left parenthesis.b) If �1 : : : �r is balan
ed, we 
an map it into a nested string by simply reversingits 
o-atoms. But the following mapping is more interesting, be
ause it produ
esunbiased (uniformly random) nested strings from unbiased balan
ed strings: Letthere be s 
o-atoms �i1 = �Ri1 , : : : , �is = �Ris . Repla
e ea
h 
o-atom by (; thenappend the string )�0is : : : )�0i1 , where �j = (�0j). For example, the string aboveis mapped into �1(�3((�6(�8)�07)�05)�04)�02, whi
h just happens to equal thestring (1) illustrated at the beginning of this se
tion.Design an algorithm that applies this mapping to a given balan
ed string b1 : : : b2n.
) Also design an algorithm for the inverse mapping: Given a nested string � =a1 : : : a2n and an integer l with 0 � l � n, 
ompute a balan
ed string � = b1 : : : b2nof defe
t l for whi
h � 7! �. What balan
ed string of defe
t 11 maps into (1)?x 61. [M26 ℄ (Raney's Cy
le Lemma.) Let b1b2 : : : bN be a string of nonnegative integerssu
h that f = N � b1 � b2 � � � � � bN > 0.a) Prove that exa
tly f of the 
y
li
 shifts bj+1 : : : bN b1 : : : bj for 1 � j � N satisfythe preorder degree sequen
e property in exer
ise 20.b) Design an eÆ
ient algorithm to determine all su
h j, given b1b2 : : : bN .
) Explain how to generate a random forest that has N = n0 + � � �+ nt nodes, withexa
tly nj nodes of degree j. (For example, we obtain random n-node t-ary treesas a spe
ial 
ase of this general pro
edure when N = tn + 1, n0 = (t � 1)n + 1,n1 = � � � = nt�1 = 0, and nt = n.)62. [22 ℄ A binary tree 
an also be represented by bit strings (l1 : : : ln; r1 : : : rn), wherelj and rj tell whether the left and right subtrees of node j in preorder are nonempty.(See Theorem 2.3.1A.) Prove that if l1 : : : ln and r1 : : : rn are arbitrary bit stringswith l1 + � � � + ln + r1 + � � � + rn = n � 1, exa
tly one 
y
li
 shift (lj+1 : : : ln l1 : : : lj ;rj+1 : : : rnr1 : : : rj) yields a valid binary tree representation, and explain how to �nd it.63. [16 ℄ If the �rst two iterations of R�emy's algorithm have produ
ed 1 2 0e e , whatde
orated binary trees are possible after the next iteration?64. [20 ℄ What sequen
e of X values in Algorithm R 
orresponds to the de
oratedtrees of (34), and what are the �nal values of L0L1 : : : L12?65. [38 ℄ Generalize R�emy's algorithm (Algorithm R) to t-ary trees.
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7.2.1.6 GENERATING ALL TREES 3966. [21 ℄ A S
hr�oder tree is a binary tree in whi
h every nonnull right link is 
oloredeither white or bla
k. The number Sn of n-node S
hr�oder trees isn = 0 1 2 3 4 5 6 7 8 9 10 11 12Sn = 1 1 3 11 45 197 903 4279 20793 103049 518859 2646723 13648869for small n. For example, S3 = 11 be
ause the possibilities are :(White links are \hollow"; external nodes have also been atta
hed.)a) Find a simple 
orresponden
e between S
hr�oder trees with n internal nodes andordinary trees with n+ 1 leaves and no nodes of degree one.b) Devise a Gray 
ode for S
hr�oder trees.67. [M22 ℄ What is the generating fun
tion S(z) =Pn Snzn for S
hr�oder numbers?68. [10 ℄ What is the Christmas tree pattern of order 0?69. [20 ℄ Are the Christmas tree patterns of orders 6 and 7 visible in Table 4, possiblyin slight disguise?x 70. [20 ℄ Find a simple rule that de�nes, for every bit string �, another bit string �0
alled its mate, with the following properties: (i) �00 = �; (ii) j�0j = j�j; (iii) either� � �0 or �0 � �; (iv) �(�) + �(�0) = j�j.71. [M21 ℄ Let Mtn be the size of the largest possible set S of n-bit strings with theproperty that, if � and � are members of S with � � � , then �(�) < �(�) + t. (Thus,for example, M1n =Mn by Sperner's theorem.) Find a formula for Mtn.x 72. [M28 ℄ If you start with a single row �1 �2 : : : �s of length s and apply the growthrule (36) repeatedly n times, how many rows do you obtain?73. [15 ℄ In the Christmas tree pattern of order 30, what are the �rst and last elementsof the row that 
ontains the bit string 011001001000011111101101011100?74. [M26 ℄ Continuing the previous exer
ise, how many rows pre
ede that row?x 75. [HM23 ℄ Let (r(n)1 ; r(n)2 ; : : : ; r(n)n�1) be the row numbers in whi
h the Christmas treepattern of order n has n� 1 entries; for example, Table 4 tells us that (r(8)1 ; : : : ; r(8)7 ) =(20; 40; 54; 62; 66; 68; 69). Find formulas for r(n)j+1 � r(n)j and for limn!1 r(n)j =Mn.76. [HM46 ℄ Study the limiting shape of the Christmas tree patterns as n!1. Doesit, for example, have a fra
tal dimension under some appropriate s
aling?77. [21 ℄ Design an algorithm to generate the sequen
e of rightmost elements a1 : : : anin the rows of the Christmas tree pattern, given n. Hint: These bit strings are
hara
terized by the property that a1 + � � �+ ak � k=2 for 0 � k � n.78. [20 ℄ True or false: If �1 : : : �s is a row of the Christmas tree pattern, so is��Rs : : : ��R1 (the reverse sequen
e of reverse 
omplements).79. [M26 ℄ The number of permutations p1 : : : pn that have exa
tly one \des
ent"where pk > pk+1 is the Eulerian number 
n1� = 2n�n� 1, a

ording to Eq. 5.1.3{(12).The number of entries in the Christmas tree pattern, above the bottom row, is the same.a) Find a 
ombinatorial explanation of this 
oin
iden
e, by giving a one-to-one 
or-responden
e between one-des
ent permutations and unsorted bit strings.b) Show that two unsorted bit strings belong to the same row of the Christmas treepattern if and only if they 
orrespond to permutations that de�ne the same Ptableau under the Robinson{S
hensted 
orresponden
e (Theorem 5.1.4A).
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40 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.680. [30 ℄ Say that two bit strings are 
on
ordant if we 
an obtain one from the othervia the transformations 010 $ 100 or 101 $ 110 on substrings. For example, thestrings 011100$ 011010$ 010110$ 010101$ 011001l l100110$ 100101$ 101001$ 110001are mutually 
on
ordant, but no other string is 
on
ordant with any of them.Prove that strings are 
on
ordant if and only if they belong to the same 
olumnof the Christmas tree pattern and to rows of the same length in that pattern.81. [M30 ℄ A bi
lutter of order (n; n0) is a family S of bit string pairs (�; �0), wherej�j = n and j�0j = n0, with the property that distin
t members (�; �0) and (�; � 0) of Sare allowed to satisfy � � � and �0 � � 0 only if � 6= � and �0 6= � 0.Use Christmas tree patterns to prove that S 
ontains at most Mn+n0 string pairs.x 82. [M26 ℄ Let E(f) be the number of times Algorithm H evaluates the fun
tion f .a) Show that Mn � E(f) �Mn+1, with equality when f is 
onstant.b) Among all f su
h that E(f) =Mn, whi
h one minimizesP� f(�)?
) Among all f su
h that E(f) =Mn+1, whi
h one maximizesP� f(�)?83. [M20 ℄ (G. Hansel.) Show that there are at most 3Mn monotone Boolean fun
tionsf(x1; : : : ; xn) of n Boolean variables.x 84. [HM27 ℄ (D. Kleitman.) Let A be an m�n matrix of real numbers in whi
h every
olumn v has length kvk � 1, and let b be an m-dimensional 
olumn ve
tor. Prove thatat most Mn 
olumn ve
tors x = (a1; : : : ; an)T , with 
omponents aj = 0 or 1, satisfykAx� bk < 12 . Hint: Use a 
onstru
tion analogous to the Christmas tree pattern.85. [HM35 ℄ (Philippe Golle.) Let V be any ve
tor spa
e 
ontained in the set ofall real n-dimensional ve
tors, but 
ontaining none of the unit ve
tors (1; 0; : : : ; 0),(0; 1; 0; : : : ; 0), : : : , (0; : : : ; 0; 1). Prove that V 
ontains at most Mn ve
tors whose
omponents are all 0 or 1; furthermore the upper bound Mn is a
hievable.86. [15 ℄ If (2) is regarded as an oriented forest instead of an ordered forest, what
anoni
al forest 
orresponds to it? Spe
ify that forest both by its level 
odes 
1 : : : 
15and its parent pointers p1 : : : p15.87. [M20 ℄ Let F be an ordered forest in whi
h the kth node in preorder appears onlevel 
k and has parent pk, where pk = 0 if that node is a root.a) How many forests satisfy the 
ondition 
k = pk for 1 � k � n?b) Suppose F and F 0 have level 
odes 
1 : : : 
n and 
01 : : : 
0n, respe
tively, as wellas parent links p1 : : : pn and p01 : : : p0n. Prove that, lexi
ographi
ally, 
1 : : : 
n �
01 : : : 
0n if and only if p1 : : : pn � p01 : : : p0n.88. [M20 ℄ Analyze Algorithm O: How often is step O4 performed? What is the totalnumber of times pk is 
hanged in step O5?89. [M46 ℄ How often does step O5 set pk  pj?x 90. [M27 ℄ If p1 : : : pn is a 
anoni
al sequen
e of parent pointers for an oriented forest,the graph with verti
es f0; 1; : : : ; ng and edges fk ��� pk j 1 � k � ng is a free tree,namely a 
onne
ted graph with no 
y
les. (See Theorem 2.3.4.1A.) Conversely, everyfree tree 
orresponds to at least one oriented forest in this way. But the parent pointers011 and 000 both yield the same free tree ; similarly, 012 and 010 both yield .
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7.2.1.6 GENERATING ALL TREES 41The purpose of this exer
ise is to restri
t the sequen
es p1 : : : pn further so thatea
h free tree is obtained exa
tly on
e. We proved in 2.3.4.4{(9) that the number ofstru
turally di�erent free trees on n+1 verti
es has a fairly simple generating fun
tion,by showing that a free tree always has at least one 
entroid.a) Show that a 
anoni
al n-node forest 
orresponds to a free tree with a single 
entroidif and only if no tree in the forest has more than bn=2
 nodes.b) Modify Algorithm O so that it generates all sequen
es p1 : : : pn that satisfy (a).
) Explain how to �nd all p1 : : : pn for free trees that have two 
entroids.91. [M37 ℄ (Nijenhuis and Wilf.) Show that a random oriented tree 
an be generatedwith a pro
edure analogous to the random partition algorithm of exer
ise 7.2.1.4{47.92. [15 ℄ Are the �rst and last spanning trees visited by Algorithm S adja
ent, in thesense that they have n� 2 edges in 
ommon?93. [20 ℄ When Algorithm S terminates, has it restored the graph to its original state?94. [22 ℄ Algorithm S needs to \prime the pump" by �nding an initial spanning treein step S1. Explain how to do that task.95. [26 ℄ Complete Algorithm S by implementing the bridge test in step S8.x 96. [28 ℄ Analyze the approximate running time of Algorithm S when the given graphis simply (a) a path Pn of length n� 1; (b) a 
y
le Cn of length n.97. [15 ℄ Is (48) a series-parallel graph?98. [16 ℄ What series-parallel graph 
orresponds to (53) if A is taken to be serial?x 99. [30 ℄ Consider a series-parallel graph represented by a tree as in (53), togetherwith node values that satisfy (55). These values de�ne a spanning tree or a near tree,a

ording as vp is 1 or 0 at the root p. Show that the following method will generateall of the other 
on�gs of the root:i) Begin with all uneasy nodes a
tive, other nodes passive.ii) Sele
t the rightmost a
tive node, p, in preorder; but terminate if all nodes arepassive.iii) Change dp  rdp , update all values in the tree, and visit the new 
on�g.iv) A
tivate all uneasy nodes to the right of p.v) If dp has run through all 
hildren of p sin
e p last be
ame a
tive, make node ppassive. Return to (ii).Also explain how to perform these steps eÆ
iently. Hints: To implement step (v),introdu
e a pointer zp; make node p passive when dp be
omes equal to zp, and at su
htimes also reset zp to the previous value of dp. To implement steps (ii) and (iv), usefo
us pointers fp analogous to those in Algorithms 7.2.1.1L and 7.2.1.1K.100. [40 ℄ Implement the text's \Algorithm S0" for revolving-door generation of allspanning trees, by 
ombining Algorithm S with the ideas of exer
ise 99.101. [46 ℄ Is there a simple revolving-door way to list all nn�2 spanning trees of the
omplete graph Kn? (The order produ
ed by Algorithm S is quite 
ompli
ated.)102. [46 ℄ An oriented spanning tree of a dire
ted graph D on n verti
es, also knownas a \spanning arbores
en
e," is an oriented subtree of D 
ontaining n � 1 ar
s. Thematrix tree theorem (exer
ise 2.3.4.2{19) tells us that the oriented subtrees having agiven root 
an readily be 
ounted by evaluating an (n� 1)� (n� 1) determinant.Can those oriented subtrees be listed in a revolving-door order, always removingone ar
 and repla
ing it with another?
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42 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6x 103. [HM39 ℄ (Sandpiles.) Consider any digraph D on verti
es V0, V1, : : : , Vn with eijar
s from Vi to Vj , where eii = 0. Assume that D has at least one oriented spanningtree rooted at V0; this assumption means that, if we number the verti
es appropriately,we have ei0 + � � � + ei(i�1) > 0 for 1 � i � n. Let di = ei0 + � � � + ein be the totalout-degree of Vi. Put xi grains of sand on vertex Vi for 0 � i � n, and play thefollowing game: If xi � di for any i � 1, de
rease xi by di and set xj  xj + eij forall j 6= i. (In other words, pass one grain of sand from Vi through ea
h of its outgoingar
s, whenever possible, ex
ept when i = 0. This operation is 
alled \toppling" Vi,and a sequen
e of topplings is 
alled an \avalan
he." Vertex V0 is spe
ial; instead oftoppling, it 
olle
ts parti
les of sand that essentially leave the system.) Continue untilxi < di for 1 � i � n. Su
h a state x = (x1; : : : ; xn) is 
alled stable.a) Prove that every avalan
he terminates in a stable state after a �nite number oftopplings. Furthermore, the �nal state depends only on the initial state, not onthe order in whi
h toppling is performed.b) Let �(x) be the stable state that results from initial state x. A stable state is
alled re
urrent if it is �(x) for some x with xi � di for 1 � i � n. (Re
urrentstates 
orrespond to sandpiles that have evolved over a long period of time, afternew grains of sand are repeatedly introdu
ed at random.) Find the re
urrentstates in the spe
ial 
ase when n = 4 and when the only ar
s of D areV1 ! V0; V1 ! V2; V2 ! V0; V2 ! V1; V3 ! V0; V3 ! V4; V4 ! V0; V4 ! V3:
) Let d = (d1; : : : ; dn). Prove that x is re
urrent if and only if x = �(x+ t), wheret is the ve
tor d� �(d).d) Let ai be the ve
tor (�ei1; : : : ;�ei(i�1); di;�ei(i+1); : : : ;�ein), for 1 � i � n;thus, toppling Vi 
orresponds to 
hanging the state ve
tor x = (x1; : : : ; xn) tox � ai. Say that two states x and x0 are 
ongruent, written x � x0, if x � x0 =m1a1+ � � �+mnan for some integers m1, : : : , mn. Prove that there are exa
tly asmany equivalen
e 
lasses of 
ongruent states as there are oriented spanning treesin D, rooted at V0. Hint: See the matrix tree theorem, exer
ise 2.3.4.2{19.e) If x � x0 and if both x and x0 are re
urrent, prove that x = x0.f) Prove that every 
ongruen
e 
lass 
ontains a unique re
urrent state.g) IfD is balan
ed, in the sense that the in-degree of ea
h vertex equals its out-degree,prove that x is re
urrent if and only if x = �(x+ a), where a = (e01; : : : ; e0n).h) Illustrate these 
on
epts when D is a \wheel" with n spokes: Let there be 3n ar
s,Vj ! V0 and Vj $ Vj+1 for 1 � j � n, regarding Vn+1 as identi
al to V1. Finda one-to-one 
orresponden
e between the oriented spanning trees of this digraphand the re
urrent states of its sandpiles.i) Similarly, analyze the re
urrent sandpiles when D is the 
omplete graph on n+1verti
es, namely when eij = [i 6= j ℄ for 0 � i; j � n. Hint: See exer
ise 6.4{31.x 104. [HM21 ℄ If G is a graph on n verti
es fV1; : : : ; Vng, with eij edges between Vi andVj , let C(G) be the matrix with entries 
ij = �eij + Æijdi, where di = ei1 + � � �+ ein isthe degree of Vi. Let us say that the aspe
ts of G are the eigenvalues of C(G), namelythe roots �0, : : : , �n�1 of the equation det(�I�C(G)) = 0. Sin
e C(G) is a symmetri
matrix, its eigenvalues are real numbers, and we 
an assume that �0 � �1 � � � � � �n�1.a) Prove that �0 = 0.b) Prove that G has exa
tly 
(G) = �1 : : : �n�1=n spanning trees.
) What are the aspe
ts of the 
omplete graph Kn?
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7.2.1.6 GENERATING ALL TREES 43105. [HM37 ℄ Continuing exer
ise 104, we wish to prove that there is often an easyway to determine the aspe
ts of G when G has been 
onstru
ted from other graphswhose aspe
ts are known. Suppose G0 has aspe
ts �00, : : : , �0n0�1 and G00 has aspe
ts�000 , : : : , �00n00�1; what are the aspe
ts of G in the following 
ases?a) G = G0 is the 
omplement of G0. (Assume that e0ij � [i 6= j ℄ in this 
ase.)b) G = G0 +G00 is the sum (juxtaposition) of G0 and G00.
) G = G0 �+G00 is the 
osum (join) of G0 and G00.d) G = G0�G00 is the Cartesian produ
t of G0 and G00.e) G = L(G0) is the line graph of G0, when G0 is a regular graph of degree d0 (namelywhen all verti
es of G0 have exa
tly d0 neighbors, and there are no self-loops).f) G = G0 G00 is the dire
t produ
t (
onjun
tion) of G0 and G00, when G0 is regularof degree d0 and G00 is regular of degree d00.g) G = G0 G00 is the strong produ
t of regular graphs G0 and G00.x 106. [HM37 ℄ Find the total number of spanning trees in (a) an m� n grid Pm � Pn;(b) an m� n 
ylinder Pm �Cn; (
) an m� n torus Cm �Cn. Why do these numberstend to have only small prime fa
tors? Hint: Show that the aspe
ts of Pn and Cn 
anbe expressed in terms of the numbers �kn = 4 sin2 k�2n .107. [M24 ℄ Determine the aspe
ts of all 
onne
ted graphs that have n � 5 verti
esand no self-loops or parallel edges.108. [HM40 ℄ Extend the results of exer
ises 104{106 to dire
ted graphs.109. [M46 ℄ Find a 
ombinatorial explanation for the fa
t that (57) is the number ofspanning trees in the n-
ube.x 110. [M27 ℄ Prove that if G is any 
onne
ted multigraph without self-loops, it has
(G) >p(d1 � 1) : : : (dn � 1)spanning trees, where dj is the degree of vertex j.111. [05 ℄ List the nodes of the tree (58) in postpreorder.112. [15 ℄ If node p of a forest pre
edes node q in prepostorder and follows it inpostpreorder, what 
an you say about p and q?x 113. [20 ℄ How do prepostorder and postpreorder of a forest F relate to prepostorderand postpreorder of the 
onjugate forest FR? (See exer
ise 13.)114. [15 ℄ If we want to traverse an entire forest in prepostorder using Algorithm Q,how should we begin the pro
ess?115. [20 ℄ Analyze Algorithm Q: How often is ea
h step performed, during the 
om-plete traversal of a forest?x 116. [28 ℄ If the nodes of a forest F are labeled 1 to n in prepostorder, say that node kis lu
ky if it is adja
ent to node k + 1 in F , unlu
ky if it is three steps away, andordinary otherwise, for 1 � k � n; in this de�nition, node n + 1 is an imaginarysuper-root 
onsidered to be the parent of ea
h root.a) Prove that lu
ky nodes o

ur only on even-numbered levels; unlu
ky nodes o

uronly on odd-numbered levels.b) Show that the number of lu
ky nodes is exa
tly one greater than the number ofunlu
ky nodes, unless n = 0.117. [21 ℄ How many n-node forests 
ontain no unlu
ky nodes?
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44 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6118. [M28 ℄ How many lu
ky nodes are present in (a) the 
omplete t-ary tree with(tk�1)=(t�1) internal nodes? (b) the Fibona

i tree of order k, with Fk+1�1 internalnodes? (See 2.3.4.5{(6) and Fig. 8 in Se
tion 6.2.1.)119. [21 ℄ The twisted binomial tree ~Tn of order n is de�ned re
ursively by the rules~T0 = ; ~Tn = ~TR0 ~TR1 ~TRn�1: : :0 1 n� 1 for n > 0:(Compare with 7.2.1.3{(21); we reverse the order of 
hildren on alternate levels.) Showthat prepostorder traversal of ~Tn has a simple 
onne
tion with Gray binary 
ode.120. [22 ℄ True or false: The square of a graph is Hamiltonian if the graph is 
onne
tedand has no bridges.121. [M32 ℄ (F. Neuman, 1964.) The derivative of a graph G is the graph G(0) obtainedby removing all verti
es of degree 1 and the edges tou
hing them. Prove that, when Tis a free tree, its square T 2 
ontains a Hamiltonian path if and only if its derivative hasno vertex of degree greater than 4 and the following two additional 
onditions hold:i) All verti
es of degree 3 or 4 in T (0) lie on a single path.ii) Between any two verti
es of degree 4 in T (0), there is at least one vertex that hasdegree 2 in T .x 122. [31 ℄ (Dudeney's Digital Century puzzle.) There are many 
urious ways to obtainthe number 100 by inserting arithmeti
al operators and possibly also parentheses intothe sequen
e 123456789. For example,100 = 1 + 2� 3 + 4� 5� 6 + 7 + 8� 9 = (1 + 2� 3� 4)� (5� 6� 7� 8� 9)= ((1=((2 + 3)=4� 5 + 6))� 7 + 8)� 9 :a) How many su
h representations of 100 are possible? To make this questionpre
ise, in view of the asso
iative law and other algebrai
 properties, assumethat expressions are written in 
anoni
al form a

ording to the following syntax:h expression i ! hnumber i j h sum i j hprodu
t i j h quotient ih sum i ! h term i+ h term i j h term i � h term i j h sum i+ h term i j h sum i � h term ih term i ! hnumber i j h produ
t i j h quotient ihprodu
t i ! h fa
tor i � h fa
tor i j hprodu
t i � h fa
tor i j (h quotient i)� h fa
tor ih quotient i ! h fa
tor i=h fa
tor i j hprodu
t i=h fa
tor i j (h quotient i)=h fa
tor ih fa
tor i ! hnumber i j (h sum i)hnumber i ! hdigit iThe digits used must be 1 through 9, in that order.b) Extend problem (a) by allowing multidigit numbers, with the syntaxh number i ! hdigit i j hnumber ihdigit iFor example, 100 = (1=(2 � 3 + 4)) � 567 � 89. What is the shortest su
hrepresentation? What is the longest?
) Extend problem (b) by also allowing de
imal points:hnumber i ! hdigit string i j :hdigit string ihdigit string i ! hdigit i j hdigit string ihdigit iFor example, 100 = (:1� 2� 34� :5)=(:6� :789), amazingly enough.
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7.2.1.6 GENERATING ALL TREES 45123. [21 ℄ Continuing the previous exer
ise, what are the smallest positive integersthat 
annot be represented using 
onventions (a), (b), (
)?

(a) (b)

(
)

(d)Fig. 42. \Organi
" illustrations of binary trees.x 124. [40 ℄ Experiment with methods for drawing extended binary trees that are in-spired by simple models from nature. For example, we 
an assign a value v(x) to ea
hnode x, 
alled its Horton{Strahler number, as follows: Ea
h external (leaf) node hasv(x) = 0; an internal node with 
hildren (l; r) has v(x) = max(v(l); v(r))+[v(l)= v(r)℄.The edge from internal node x to its parent 
an be drawn as a re
tangle with heighth(v(x)) and width w(v(x)), and the edge re
tangles with 
hildren (l; r) 
an be o�set byangles �(v(l(x)); v(r(x))), ��(v(r(x)); v(l(x))), for 
ertain fun
tions h, w, and �. Theexamples in Fig. 42 show typi
al results when we 
hoose w(k) = 3 + k, h(k) = 18k,�(k; k) = 30Æ, �(j; k) = ((k+ 1)=j)� 20Æ for 0 � k < j, and �(j; k) = ((k� j)=k)� 30Æfor 0 � j < k; the roots appear at the bottom. Part (a) of Fig. 42 is the binary tree (4);part (b) is a random 100-node tree generated by Algorithm R; part (
) is the Fibona

itree of order 11, whi
h has 143 nodes; and part (d) is a random 100-node binary sear
htree. (The trees in parts (b), (
), and (d) 
learly belong to di�erent spe
ies.)
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46 ANSWERS TO EXERCISES 7.2.1.6SECTION 7.2.1.61. It 
ould \see" a left parenthesis at the left of every internal node and a rightparenthesis at the bottom of every internal node. Alternatively, it 
ould asso
iate rightparentheses with the external nodes that it en
ounters|ex
ept for the very last ;see exer
ise 20.2. Z1. [Initialize.℄ Set zk  2k � 1 for 0 � k � n. (Assume that n � 2.)Z2. [Visit.℄ Visit the tree-
ombination z1z2 : : : zn.Z3. [Easy 
ase?℄ If zn�1 < zn � 1, set zn  zn � 1 and return to Z2.Z4. [Find j.℄ Set j  n�1 and zn  2n�1. While zj�1 = zj �1, set zj  2j�1and j  j � 1.Z5. [De
rease zj ℄. Terminate the algorithm if j = 1. Otherwise set zj  zj � 1and go ba
k to Z2.3. Label the nodes of the forest in preorder. The �rst zk � 1 elements of a1 : : : a2n
ontain k � 1 left parentheses and zk � k right parentheses. So there is an ex
ess of2k�1�zk left parentheses over right parentheses when the \worm" �rst rea
hes node k ;and 2k � 1� zk is the level (or depth) of that node.Let q1 : : : qn be the inverse of p1 : : : pn, so that node k is the qkth node in postorder.Sin
e k o

urs to the left of j in p1 : : : pn if and only if qk < qj , we see that 
k is thenumber of nodes j that pre
ede k in preorder but follow it in postorder, namely thenumber of an
estors of k; again, this is the level of k.Alternative proof: We 
an also show that both sequen
es z1 : : : zn and 
1 : : : 
n haveessentially the same re
ursive stru
ture as (5): Zpq = (Zp(q�1)+1p), 1(Z(p�1)q +1p�1)when 0 � p � q; and Cpq = Cp(q�1), (q�p)C(p�1)q. (Consider the mate of the last,next-to-last, et
., left parenthesis.)In
identally, the formula `
k+1 + dk = 
k + 1' is equivalent to (11).4. Almost true; but d1 : : : dn and z1 : : : zn o

ur in de
reasing order, while p1 : : : pnand 
1 : : : 
n are in
reasing. (This lexi
ographi
 property for a sequen
e of permutationsp1 : : : pn is not automati
ally inherited from lexi
ographi
 order of the 
orrespondinginversion tables 
1 : : : 
n; but the result does hold for this parti
ular 
lass of p1 : : : pn.)5. d1 : : : d15 = 02 0 0 2 0 0 1 0 3 2 0 1 0 4; z1 : : : z15 = 12 5 6 7 10 11 12 14 15 19 22 23 25 26;p1 : : : p15 = 21 5 4 8 10 9 7 11 6 13 15 14 12 3; 
1 : : : 
15 = 01 0 1 2 1 2 3 3 4 2 1 2 2 3.6. Mat
h up the parentheses as usual; then simply 
url the string upand around until a2n be
omes adja
ent to a1, and noti
e that thedistin
tion between left and right parentheses 
an be re
onstru
tedfrom the 
ontext. Letting a1 
orrespond to the bottom of the 
ir
le,as in Table 1, yields the diagram shown. [A. Errera, M�emoires dela Classe S
i. 8Æ, A
ad. Royale de Belgique (2) 11, 6 (1931), 26 pp.℄7. (a) It equals ))() : : : (); setting a1  `(' will restore the initialstring. (b) The initial binary tree (from step B1) will have been restored,ex
ept that ln = n+ 1.8. l1 : : : l15 = 2 0 4 5 0 7 8 0 10 0 0 13 0 15 0; r1 : : : r15 = 3 0 0 6 0 12 11 9 0 0 0 0 14 0 0;e1 : : : e15 = 1 0 3 1 0 2 2 0 1 0 0 2 0 1 0; s1 : : : s15 = 1 0 12 1 0 5 3 0 1 0 0 3 0 1 0.9. Node j is an an
estor of node k if and only if sj + j � k. (As a 
onsequen
e, wehave 
1 + � � �+ 
n = s1 + � � �+ sn.)10. If j is the index zk of the kth left parenthesis, we have wj = 
k + 1 and wj0 = 
k,where j0 is the index of the mat
hing right parenthesis.
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7.2.1.6 ANSWERS TO EXERCISES 4711. Swap left and right parentheses in a2n : : : a1 to get the mirror image of a1 : : : a2n.12. The mirror re
e
tion of (4) 
orresponds to the forestk12 k21k3f k44 k53k6a k78 k85k97 ka6kb9k
e kdbked kf

;

but the signi�
an
e of transposition is 
learer, forest-wise, if we draw right-sibling andleft-
hild links horizontally and verti
ally, then do a matrix-like transposition:k12k21 k3fk44k53 k6ak78k85 k97ka6
kb9 k
ekdb kedkf


k12 k21k3f k44 k53k6a k78 k85k97 ka6kb9k
e kdbked kf
13. (a) By indu
tion on the number of nodes, we have preorder(FR) = postorder(F )Rand postorder(FR) = preorder(F )R.(b) Let F 
orrespond to the binary tree B; then preorder(F ) = preorder(B)and postorder(F ) = inorder(B), as noted after 2.3.2{(6). Therefore preorder(FT ) =preorder(BR) = postorder(B)R has no simple relationship to either preorder(F ) orpostorder(F ). But postorder(FT ) = inorder(BR) = inorder(B)R = postorder(F )R.14. A

ording to answer 13, postorder(FRT ) = preorder(F ) = preorder(B) when F
orresponds naturally to B; and postorder(FTR) = preorder(FT )R = postorder(B).Therefore the equation FRT = FTR holds if and only if F has at most one node.15. If FR 
orresponds naturally to the binary tree B0, the root of B0 is the root of F 'srightmost tree. The left link of node x in B0 is to the leftmost 
hild of x in FR, whi
his the rightmost 
hild of x in F ; similarly, the right link is to x's left sibling in F .Note: Sin
e B 
orresponds naturally to FRT, answer 13 tells us that inorder(B) =postorder(FRT ) = postorder(FR)R = preorder(F ).16. The forest F jG is obtained by pla
ing the trees of F below the �rst node of G inpostorder. Asso
iativity follows be
ause F j(GjH) = (HTGTFT )T = (F jG)jH. Noti
e,in
identally, that postorder(F jG) = postorder(F )postorder(G), and that F j (GH) =(F jG)H when G is nonnull.17. Any nonnull forest 
an be written F = (G j �)H, where � denotes the 1-node forest;then FR = HR(GR j �) and FT = (HT j �)GT . In parti
ular we 
annot have FR = FTunless H is the null forest �, sin
e the �rst tree of HR 
an't be HT j � ; and G mustthen also be �. Furthermore F = FT if and only if G = HT . In that 
ase we 
annotalso have FR = FRT unless G = �; the �rst tree of GTR would otherwise have morenodes than G itself.
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48 ANSWERS TO EXERCISES 7.2.1.6It appears to be true that we 
annot have FRT = FTR unless F = FR. Underthat assumption, FRT = FTR if and only if F and FT are both self-
onjugate. DavidCallan has dis
overed two in�nite families of su
h forests, with parameters i; j; k � 0:
F = i i

ij ;
FT = ii ij ; or F =

i i
i i

i ii i
k
j

j j
j

; FT =
i

i i ii i
i i
j jkj j

:

(In these examples, i = 2, j = 3, and k = 5.) Are there any other 
ases?18. The C15 = 9;694;845 forests are partitioned into 20,982 
lasses. The largest isa 
y
le of length 58,968, one of whose elements is ((()(()))())()((()(())())())().The shortest are six two-element 
lasses (
orresponding to exer
ise 17), 
onsisting of()()()()()()()()()()()()()()(); ()()()()((()()()()()))()()()();()()()(((((()()()())))))()()(); ()()((((((((()()()))))))))()();()((()())((()(())()))(()()))(); ()(((((((((((()())))))))))))();and their transposes. The somewhat strange strings (((((((())))))))()()()()()()(),()()()()()()()(((((((()))))))), and (((((((()()()()()()()()))))))) ea
h havewedge-shaped binary trees and form a unique 
lass of size 3. The path that runs from()((()(()()))(())((()())()))() to ((()())(()())(())(()())(()())) has 3120 el-ements, one of whi
h is (2). A

ording to the 
onje
ture in answer 19, the shortestpossible 
y
le has length 6; when n = 15 there are 66 su
h 
y
les. (The next-shortest
y
le, whi
h is unique, has length 10 and in
ludes ()(()()())()((((())()))((()))).)19. The transformation from Fj to Fj+1 by Algorithm P 
an be paraphrased as follows:\Find the last node in preorder, say x, that has a left sibling, say y. Remove x fromits family and make it the new rightmost 
hild of y. And if x < n, 
hange all of x'sdes
endants x+ 1, : : : , n into trivial one-node trees."The transformation that takes FRj into FRj+1 
an therefore be stated as follows,if we re
all that the kth node of Fj in preorder is the kth-from-last node of FRj inpostorder: \Find the �rst node in preorder, say x, that has a right sibling, say y.Remove x from its family and make it the new leftmost 
hild of y. And if x < n,
hange all of x's des
endants x+ 1, : : : , n into trivial one-node trees."Similarly, we 
an paraphrase the transformation from Gj to Gj+1 that is spe
i�edby Algorithm B: \Find j, the root of the leftmost nontrivial tree; then �nd k, itsrightmost 
hild. Remove k and its des
endants from j's family, and insert them betweenj and j's right sibling. Finally, if j > 1, make j and its siblings all 
hildren of j � 1,and j � 1 a 
hild of j � 2, et
."When this transformation 
hanges the left-sibling/right-
hild representation fromGRTj to GRTj+1 (see exer
ise 15), it turns out to be identi
al to the transformation thattakes FRj to FRj+1 in the left-
hild/right-sibling representation. Therefore GRTj = FRj ,be
ause this identity 
learly holds when j = 1.
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7.2.1.6 ANSWERS TO EXERCISES 49(It follows that the sequen
e of tables e1 : : : en�1 for the binary trees generatedby Algorithm B is exa
tly the sequen
e of tables dn�1 : : : d1 for the parenthesis stringsgenerated by Algorithm P; this phenomenon is illustrated in Tables 1 and 2.)The forest FRTR is 
alled the dual of F ; see exer
ise 26(f). Several symmetriesbetween lists of forests have been explored by M. C. Er, Comp. J. 32 (1989), 76{85.20. (a) This assertion, whi
h generalizes Lemma 2.3.1P, is readily proved by indu
tion.(b) The following pro
edure is, in fa
t, almost identi
al to Algorithm P:T1. [Initialize.℄ Set b3k�2  3 and b3k�1  b3k  0 for 1 � k � n; also set b0  bN  0 and m N � 3, where N = 3n+ 1.T2. [Visit.℄ Visit b1 : : : bN . (Now bm = 3 and bm+1 : : : bN = 0 : : : 0.)T3. [Easy 
ase?℄ Set bm  0. If bm�1 = 0, set bm�1  3, m m� 1, and go to T2.T4. [Find j.℄ Set j  m � 1 and k  N � 3. While bj = 3, set bj  0, bk  3,j  j � 1, and k  k � 3.T5. [In
rease bj .℄ Terminate the algorithm if j = 0. Otherwise set bj  3, m N �3,and return to T2.[See S. Zaks, Theoreti
al Comp. S
i. 10 (1980), 63{82. In that arti
le, Zaks pointedout that it is even easier to generate the sequen
e z1 : : : zn of indi
es j su
h that bj = 3,using an algorithm virtually identi
al to the answer to exer
ise 2, be
ause a valid ternarytree 
ombination z1 : : : zn is 
hara
terized by the inequalities zk�1 < zk � 3k � 2.℄21. For this problem we 
an essentially 
ombine Algorithm P with Algorithm 7.2.1.2L.We shall assume for 
onvenien
e that nt > 0 and n1 + � � �+ nt > 1.G1. [Initialize.℄ Set l  N . Then for j = t, : : : , 2, 1 (in this order), do the followingoperations nj times: Set bl�j  j, bl�j+1  � � �  bl�1  0, and l  l � j.Finally set b0  bN  
0  0 and m N � t.G2. [Visit.℄ Visit b1 : : : bN . (At this point bm > 0 and bm+1 = � � � = bN = 0.)G3. [Easy 
ase?℄ If bm�1 = 0, set bm�1  bm, bm  0, m m� 1, and return to G2.G4. [Find j.℄ Set 
1  bm, bm  0, j  m � 1, and k  1. While bj � 
k, setk  k + 1, 
k  bj , bj  0, and j  j � 1.G5. [In
rease bj .℄ If bj > 0, �nd the smallest l � 1 su
h that bj < 
l, and inter
hangebj $ 
l. Otherwise, if j > 0, set bj  
1 and 
1  0. Otherwise terminate.G6. [Reverse and spread out.℄ Set j  k and l  N . While 
j > 0, set b l�
j  
j ,l l � 
j , and j  j � 1. Then set m N � 
k and go ba
k to G2.This algorithm assumes that N > n1+2n2+ � � �+ tnt. [See SICOMP 8 (1979), 73{81.℄22. Note �rst that d1 
an be in
reased if and only if r1 = 0 in the linked representation.Otherwise the su

essor of d1 : : : dn�1 is obtained by �nding the smallest j with dj > 0and setting dj  0, dj+1  dj+1 + 1. We may assume that n > 2.K1. [Initialize.℄ Set lk  k + 1 and rk  0 for 1 � k < n; also set ln  rn  0.K2. [Visit.℄ Visit the binary tree represented by l1l2 : : : ln and r1r2 : : : rn.K3. [Easy 
ases?℄ Set y  r1. If y = 0, set r1  2, l1  0, and return to K2.Otherwise if l1 = 0, set l1  2, r1  r2, r2  l2, l2  0, and return to K2.Otherwise set j  2 and k  1.K4. [Find j and k.℄ If rj > 0, set k  j and y  rj . Then if j 6= y � 1, set j  j + 1and repeat this step.
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50 ANSWERS TO EXERCISES 7.2.1.6K5. [Shu�e subtrees.℄ Set lj  y, rj  ry, ry  ly, and ly  0. If j = k, go to K2.K6. [Shift subtrees.℄ Terminate if y = n. Otherwise, while k > 1, set k  k � 1, j  j�1, and rj  rk. Then while j > 1, set j  j�1 and rj  0. Return to K2.(See the analysis in exer
ise 45. Korsh [Comp. J. 48 (2005), 488{497℄ has shown thatthis algorithm 
an be extended in an interesting way to t-ary trees; and he has alsofound an eÆ
ient t-ary generalization of Algorithm B.)23. (a) Sin
e zn begins at 2n � 1 and goes ba
k and forth Cn�1 times, it ends at2n � 1 � (Cn�1 mod 2), when n > 1. Furthermore the �nal value of zj is 
onstant forall n � j. Thus the �nal string z1z2 : : : is 1 2 5 6 9 11 13 14 17 19 : : : , 
ontaining allodd numbers < 2n ex
ept 3, 7, 15, 31, : : : .(b) Similarly, the preorder permutation that 
hara
terizes the �nal tree is 2k 2k�1: : : 1 3 5 6 7 9 10 : : : , where k = blgn
. Forestwise, node 2j is the parent of 2j�1 nodesf2j�1; 2j�1 + 1; : : : ; 2j � 1g, for 1 < j � k, and the trees f2k + 1; : : : ; ng are trivial.Note: If Algorithm N is restarted at step N2 after it has terminated, it will generatethe same sequen
e, but ba
kwards. Algorithm L has the same property.24. l0 l1 : : : l15 = 20 1 0 3 0 0 6 5 0 8 0 0 12 11 4; r1 : : : r15 = 015 0 10 7 0 0 9 0 14 13 0 0 0 0;k1 : : : k15 = 00 2 2 4 5 5 4 8 4 10 11 11 10 2; q1 : : : q15 = 21 15 4 3 10 8 5 7 6 9 14 11 13 12; andu1 : : : u15 = 12 3 1 0 0 5 0 3 1 0 0 1 0 1 0. (If nodes of the forest F are numbered in post-order, kj is the left sibling of j; or, if j is the leftmost 
hild of p, kj = kp. Statedanother way, kj is the parent of j in the forest FTR. And kj is also j� 1�un+1�j , thenumber of elements to the left of j in q1 : : : qn that are less than j.)25. Taking a 
ue from Algorithms N and R, we want to extend ea
h (n� 1)-node treeto a list of two or more n-node trees. The idea in this 
ase is to make n a 
hild ofn� 1 in the binary tree at the beginning and the end of every su
h list. The followingalgorithm uses additional link �elds pj and sj , where pj points to the parent of j in theforest, and sj points to j's left sibling or to j's rightmost sibling if j is the leftmost inits family. (These pointers pj and sj are, of 
ourse, not the same as the permutationsp1 : : : pn in Table 1 or the s
ope 
oordinates s1 : : : sn in Table 2. In fa
t s1 : : : sn is thepermutation � of exer
ise 33 below.)M1. [Initialize.℄ Set lj  j+1, rj  0, sj  j, pj  j�1, and oj  �1 for 1 � j � n,ex
ept that ln  0.M2. [Visit.℄ Visit l1 : : : ln and r1 : : : rn. Then set j  n.M3. [Find j.℄ If oj > 0, set k  pj and go to M5 if k 6= j � 1. If oj < 0, set k  sjand go to M4 if k 6= j � 1. If k = j � 1 in either 
ase, set oj  �oj , j  j � 1,and repeat this step.M4. [Transfer down.℄ (At this point k is j's left sibling, or the rightmost member ofj's family.) If k � j, terminate if j = 1, otherwise set x pj , lx  0, z  k, andk  0 (thereby deta
hing node j from its parent and heading for the top level).But if k < j, set x  pj + 1, z  sx, rk  0, and sx  k (thereby deta
hingnode j from k and going down a level). Then set x  k + 1, y  sx, sx  z,sj  y, ry  j, and x j. While x 6= 0, set px  k and x rx. Return to M2.M5. [Transfer up.℄ (At this point k is j's parent.) Set x  k + 1, y  sj , z  sx,sx  y, and ry  0. If k 6= 0, set y  pk, rk  j, sj  k, sy+1  z, and x j;otherwise set y  j � 1, ly  j, sj  z, and x j. While x 6= 0, set px  y andx rx. Return to M2.
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7.2.1.6 ANSWERS TO EXERCISES 51Running time notes: We 
an argue as in exer
ise 44 that step M3 
osts 2Cn+3(Cn�1+� � �+C1) mems, and that steps M4 and M5 together 
ost 8Cn�2(Cn�1+ � � �+C1), plustwi
e the number of times x rx. The latter quantity is diÆ
ult to analyze pre
isely;for example, when n = 15 and j = 6, the algorithm sets x rx exa
tly (1; 2; 3; 4; 5; 6)times in respe
tively (45; 23; 7; 9; 2; 4) 
ases. But heuristi
ally the average number oftimes x  rx should be approximately 2 � 2j�n when j is given, therefore about(2Cn � (Cn � Cn�1)� (Cn�1 � Cn�2)=2� (Cn�2 � Cn�3)=4� � � � )=Cn � 8=7 overall.Empiri
al tests 
on�rm this predi
ted behavior, showing that the total 
ost per treeapproa
hes 265=21 � 12:6 mems as n!1.26. (a) The 
ondition is 
learly ne
essary. And if it holds, we 
an uniquely 
onstru
t F :Node 1 and its siblings are the roots of the forest, and their des
endants are de�nedindu
tively by non
rossing partitions. (In fa
t, we 
an 
ompute the depth 
oordinates
1 : : : 
n dire
tly from �'s restri
ted growth sequen
e a1 : : : an: Set 
1  0 and i0  0.For 2 � j � n, if aj > max(a1; : : : ; aj�1), set 
j  
j�1 + 1 and iaj  
j , otherwiseset 
j  iaj .)(b) If � and � 0 satisfy the non
rossing 
ondition, so does their greatest 
ommonre�nement � _� 0, so we 
an pro
eed as in exer
ise 7.2.1.5{12(a).(
) Let x1, : : : , xm be the 
hildren of some node in F , and let 1 � j < k � m.Form F 0 by removing xj+1, : : : , xk from their family and reatta
hing them as 
hildrenof xj+1 � 1, the rightmost des
endant of xj .(d) Obvious, by (
). Thus the forests are ranked from bottom to top by the numberof nonleaf nodes they 
ontain (whi
h is one less than the number of blo
ks in �).(e) Exa
tlyPnk=0 ek(ek�1)=2, where e0 = n�e1�� � ��en is the number of roots.(f) Dualization is similar to the transposition operation in exer
ise 12, but we useleft-sibling and right-
hild links instead of left-
hild and right-sibling, and we transposeabout the minor diagonal:k12k21 k3fk44k53 k6ak78k85 k97ka6
kb9 k
ekdb kedkf


k12k21

k3f
k44k53
k6ak78k85k97ka6 kb9
k
ekdbkedkf


(\Right" links now point downward. Noti
e that j is the rightmost 
hild of k in F ifand only if j is the left sibling of k in FD . Preorder of FD reverses the preorder of F ,just as postorder of FT reverses postorder of F .)(g) From (f) we 
an see that F 0 
overs F if and only if FD 
overs F 0D . (ThereforeFD has n+ 1� k leaves if F has k.)(h) F ^ F 0 = (FD _ F 0D)D.(i) No. If it did, equality would ne
essarily hold, by duality. But, for example,0101 ^ 0121 = 0000 and 0101 _ 0121 = 0123, while leaves(0101) + leaves(0121) 6=leaves(0000) + leaves(0123).[Non
rossing partitions were �rst 
onsidered by H. W. Be
ker in Math. Mag. 22(1948), 23{26. G. Kreweras proved in 1971 that they form a latti
e; see the referen
esin answer 2.3.4.6{3.℄
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52 ANSWERS TO EXERCISES 7.2.1.627. (a) This assertion is equivalent to exer
ise 2.3.3{19.(b) If we represent a forest by right-
hild and left-sibling links, preorder 
or-responds to inorder of the binary tree (see exer
ise 2.3.2{5), and sj is the size ofnode j's right subtree. Rotation to the left at any nonleaf of this binary tree de
reasesexa
tly one of the s
ope 
oordinates, and the amount of de
rease is as small as possible
onsistent with a valid table s1 : : : sn. Therefore F 0 
overs F if and only if F is obtainedfrom F 0 by su
h a rotation. (Rotation in the left-
hild=right-sibling representation issimilar, but with respe
t to postorder.)(
) Dualization preserves the 
overing relation but ex
hanges left with right.(d) F > F 0 = (FD ? F 0D)D. Equivalently, as noted in exer
ise 6.2.3{32, we 
anindependently minimize the left-subtree sizes.(e) The 
overing transformation in answer 26(
) obviously makes sj � s0j for all j.(f) True, be
ause F ^ F 0 < F a F ? F 0 and F ^ F 0 < F 0 a F ? F 0.(g) False; for example, 0121 _ 0122 = 0123 and 0121> 0122 = 0122. (But we dohave F > F 0 a F _ F 0, by taking duals in (f).)(h) The longest path, of length �n2�, repeatedly de
reases the rightmost nonzero sjby 1. The shortest, of length n� 1, repeatedly sets the leftmost nonzero sj to 0.Answer 6.2.3{32 gives many referen
es to the literature of Tamari latti
es.28. (a) Just 
ompute min(
1; 
01) : : :min(
n; 
0n) and max(
1; 
01) : : :max(
n; 
0n), be-
ause 
1 : : : 
n is a valid sequen
e if and only if 
1 = 0 and 
j � 
j�1 + 1 for 1 < j � n.(b) Obvious be
ause of (a). Note: The elements of any distributive latti
e 
an berepresented as the order ideals of some partial ordering. In the 
ase of Fig. 41,that partial ordering is shown at the right, and a similar triangular grid withsides of length n� 2 yields Stanley's latti
e of order n.(
) Take a node k of F that has a left sibling, j. Remove k from its family andpla
e it as a new right 
hild of j, followed by its former 
hildren as new 
hildren of j;the former 
hildren of k retain their own des
endants. (This operation 
orrespondsto 
hanging )( to () in a nested parenthesis string. Thus a \perfe
t" Gray 
odefor parentheses 
orresponds to a Hamiltonian path in the 
over graph of Stanley'slatti
e. Exa
tly 38 su
h paths exist when n = 4, namely (8; 6; 6; 8; 4; 6) from 0123 to(1001; 0010; 0012; 0100; 0111; 0120) respe
tively.)(d) True, be
ause the 
over relation in (
) is left-right symmetri
. (We haveF � F 0 if and only if wj � w0j for 0 � j � 2n, where the worm depths wj are de�nedin exer
ise 10. If w0 : : : w2n is the worm walk of F , its reverse w2n : : : w0 is the wormwalk of FR. Noti
e that the 
over relation 
hanges just one 
oordinate wj . One 
an
ompute F \ F 0 and F [ F 0 by taking min and max of the w's instead of the 
's.)(e) See exer
ise 9. (Thus F ? F 0 � F \ F 0, et
., as in exer
ise 27(f).)Notes: Stanley introdu
ed this latti
e in Fibona

i Quarterly 13 (1975), 222{223.Sin
e three important latti
es are de�ned on the same elements, we need three notationsfor the di�erent orderings; the symbols <, a , and � adopted here are intended to bereminis
ent of the names of Kreweras, Tamari, and Stanley (who is Stenli in Russia).29. If we paste six regular pentagons together, we get 14 verti
es whose 
oordinatesafter suitable rotation and s
aling are respe
tivelyp1010 = p�0000 = p�3000 = p��2100 = (�1;p3; 2=�);p0010 = p�3100 = (��2;p3�; 0); p3010 = p�0100 = (0; 0; 2); p3210 = p�0200 = (2; 0; 2=�);p0210 = p�3200 = (p5;p3; 0); p1000 = p�2000 = (��2;p3=�; 0);
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7.2.1.6 ANSWERS TO EXERCISES 53here (x; y; z)� means (x;�y; z) and (x; y; z)� means (x; y;�z). But then the three4-edged \fa
es" are not squares; in fa
t, they don't even lie in a plane.(One 
an however get a similar-looking solid, with true squares but irregularpentagons, by gluing together two suitable tetrahedra and lopping o� the three glued-together 
orners. Alternative sets of 
oordinates for the asso
iahedron, of substantialmathemati
al interest but less appealing to the eye, are dis
ussed by G�unter Ziegler inhis Le
tures on Polytopes (New York: Springer, 1995), example 9.11.)30. (a) �fn�1 : : : �f1 0, be
ause internal node j in symmetri
 order has a nonempty rightsubtree if and only if internal node j+1 in symmetri
 order has an empty left subtree.(b) In general if the footprint were 1p10q1+11p2+10q2+1 : : : 1pk+10qk+1, we wouldwant to 
ount all binary trees whose nodes in symmetri
 order have the spe
i�
ationRp1NLq1BRp2NLq2B : : : RpkNLqk , where B means \both subtrees are nonempty,"R means \the right subtree is nonempty but not the left," L means \the left subtreeis nonempty but not the right," and N means \neither subtree is nonempty." Thisnumber in general is �p1 + q1p1 ��p2 + q2p2 � : : :�pk + qkpk �Ck�1;and in parti
ular it is �1+01 ��0+00 ��1+01 ��5+35 ��0+00 ��0+00 ��0+20 ��0+00 ��1+21 �C8 = 240240.(
) dj = 0 if and only if 
j+1 > 
j , by exer
ise 3.(d) In general, the footprint of F ?F 0 is f1 : : : fn ^ f 01 : : : f 0n, by exer
ise 27(a); thefootprint of F > F 0 is f1 : : : fn _ f 01 : : : f 0n, by (a) and exer
ise 27(d).[The fa
t that 
omplements always exist in the Tamari latti
e is due to H. Lakser;see G. Gr�atzer, General Latti
e Theory (1978), exer
ise I.6.30.℄31. (a) 2n�1; see exer
ise 6.2.2{5.(b) 
1 � � � � � 
n; d1, : : : , dn�1 � 1; ej > 0 implies ej + � � � + en = n � j;kj+1 � kj + 1; p1 � � � � � pj � � � � � pn for some j; sj > 0 implies sj = n � j;u1 � � � � � un; zj+1 � zj +2. (Other 
onstraints, whi
h apply in general, whittle downthe number of possibilities to 2n�1 in ea
h 
ase. For example, u1 : : : un must be a validsequen
e of s
ope 
oordinates.)(
) True in only n 
ases out of 2n�1. (But FT is degenerate.)(d) The degenerate forest with footprint f1 : : : fn has 
j+1 = 
j + fj . Elementsj < k are siblings if and only if fj = fj+1 = � � � = fk�1 = 0. Thus if F 00 is thedegenerate forest with footprint f1 : : : fn ^ f 01 : : : f 0n, then F 00 < F and F 00 < F 0; hen
eF 00 < F ^ F 0 a F ? F 0. And we also have F ? F 0 a F 00 by (b). A similar argumentproves that F _F 0 = F >F 0 is the degenerate forest with footprint f1 : : : fn _ f 01 : : : f 0n.Thus, when the Kreweras and Tamari latti
es are restri
ted to degenerate forests,they be
ome identi
al to the Boolean latti
e of subsets of f1; : : : ; n� 1g. [This result,in the 
ase of Tamari latti
es, is due to George Markowsky, Order 9 (1992), 265{290,whose paper also shows that Tamari latti
es enjoy many further properties.℄32. Suppose F and F 0 have s
ope 
oordinates s1 : : : sn and s01 : : : s0n. Call index jfrozen if sj < s0j or j = 0. We want to spe
ify the values of the frozen 
oordinates andmaximize the others. Let s0 = n, and for 0 � k � n lets00k = sj � k + j; where j = maxfi j 0 � i � k, i is frozen, and i+ si � kg.Sin
e sk � sj � (k � j) whenever 0 � k � j � sj , we have s00k � sk, with equality whenk is frozen.
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54 ANSWERS TO EXERCISES 7.2.1.6The s
opes s000s001 : : : s00n 
orrespond to a valid forest a

ording to the 
ondition ofexer
ise 27(a). For if k � 0 and 0 � l � s00k = sj � k+ j and s00k+l = sj0 � k� l+ j0, wehave s00k+l + l � s00k if 0 � j0 � j � sj , be
ause sj0 + j0 � j � sj in that 
ase. And we
an't have j > j0 or j0 > j + sj , be
ause j + sj � k + l � j0.Let F 000 be a forest with s
opes satisfying sk � s000k � s00k . Then min(s0k; s000k ) = sk,be
ause sk = s00k when k is frozen, otherwise sk = s0k.Conversely, if F 000 is a forest with F 0 ? F 000 = F , we must have sk � s000k � s00k .For s000k < sk would imply s000k < s0k. And if k is minimal with s000k > s00k , we haves00k = sj � k+ j for some frozen j with 0 � j � k and j+ sj � k. Then s000j � sj impliesk � j � s000j , hen
e s000k + k � j � s000j . If j < k we have s000j � s00j = sj , a 
ontradi
tion.But j = k implies min(s000k ; s0k) > sk.To get the �rst semidistributive law, apply this prin
iple with F repla
ed by F?Gand F 0 repla
ed by F ; then the hypotheses F a G a F 00 and F a H a F 00 imply thatF a G>H a F 00. The se
ond semidistributive law follows by taking duals in the �rst.(Ralph Freese suggests 
alling F 00 the pseudo-
omplement of F 0 over F .)33. (a) Let k� = LLINK[k℄ if LLINK[k℄ 6= 0, otherwise RLINK[k � 1℄ if k 6= 1, otherwisethe root of the binary tree. This rule de�nes a permutation be
ause k� = j if and onlyif k = parent(j) + [j is a right 
hild℄, or k = 1 and j is the root. Also k� � k whenLLINK[k℄ = 0 and k�� � k when RLINK[k℄ = 0. [For a generalization to t-ary trees,see P. H. Edelman, Dis
rete Math. 40 (1982), 171{179.℄(b) Using the representation of (2) in answer 26(f), we see that �(F ) is (3 1)(2)(12 6 4)(5)(11 7)(14 13)(9 8)(15)(10) in that 
ase. In general the 
y
les are the familiesof the forest, in de
reasing order within ea
h 
y
le; nodes are numbered in preorder.[See Dershowitz and Zaks, Dis
rete Math. 62 (1986), 215{218.℄(
) �(FD) = ����, where � is the \
ip" permutation (1n)(2n�1) : : : , be
ause thedual forest inter
hanges LLINK$ RLINK and 
ips the preorder numbering.(d) The 
y
le breakup (xj xk)(x1 : : : xm) = (x1 : : : xjxk+1 : : : xm)(xj+1 : : : xk) 
or-responds to answer 26(
).(e) By (d), ea
h 
overing path 
orresponds to a fa
torization of (n : : : 2 1). Letqn denote the number of su
h fa
torizations. Then we have the re
urren
e q1 = 1 andqn =Pn�1l=1 (n� l)�n�2l�1�qlqn�l, be
ause there are n� l 
hoi
es with k � j = l by whi
hthe �rst transposition breaks the 
y
le into parts of sizes l and n� l, then �n�2l�1� waysto interleave the subsequent fa
tors. The solution is qn = nn�2, be
ausen�1Xl=1�n� 1l �l l�1(y � l)n�1�l = limx!0 n�1Xl=1�n� 1l �(x+ l)l�1(y � l)n�1�l
= limx!0 (x+ y)n�1 � yn�1x = (n� 1)yn�1:[See J. D�enes, Magyar Tudom�anyos Akad�emia Matematikai Kutat�o Int�ezet�enekK�ozlem�enyei 4 (1959), 63{70. It is natural to seek a 
orresponden
e between fa
toriza-tions and labeled free trees, sin
e there also happen to be nn�2 of the latter. Perhapsthe simplest is the following, given (1 2 : : : n) = (x1 y1) : : : (xn�1 yn�1) where xj < yj :Suppose the 
y
le 
ontaining xj and yj in (xj yj) : : : (xn�1 yn�1) is (z1 : : : zm), wherez1 < � � � < zm. If yj = zm, let aj = z1, otherwise let aj = minfzi j zi > xjg. Then one
an show that a1 : : : an�1 is a \wake-up sequen
e" for parking n� 1 
ars, and exer
ise6.4{31 
onne
ts it to free trees.℄
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7.2.1.6 ANSWERS TO EXERCISES 5534. Ea
h 
overing path from bottom to top is equivalent to a Young tableau of shape(n� 1; n� 2; : : : ; 1), so we 
an use Theorem 5.1.4H. (See exer
ise 5.3.4{38.)[The enumeration of su
h paths in Tamari latti
es remains mysterious; the relevantsequen
e is 1, 1, 2, 9, 98, 2981, 340549, : : : :℄35. Multiply by n+ 1, then see AMM 97 (1990), 626{630.36. We might as well generalize to t-ary trees for arbitrary t � 1, by making obviousamendments to steps T1{T5. Let C(t)n be the number of t-ary trees with n internalnodes; thus Cn = C(2)n and C(t)n = ((t � 1)n + 1)�1�tnn �. If h of the degrees bj are
hanged between visits, we have h � x in C(t)n�x 
ases. So the easy 
ase o

urs withprobability 1�C(t)n�1=C(t)n � 1� (t� 1)t�1=tt, and the average number of times bj  0in step T4 is (C(t)n�1+ � � �+C(t)1 )=C(t)n � (t�1)t�1=(tt� (t�1)t�1), or 4/23 when t = 3.Indeed, we 
an also study the t-ary re
ursive stru
ture A(t)pq = 0A(t)p(q�1), t A(t)(p�1)qwhen 0 � (t � 1)p � q 6= 0, generalizing (5). The number of su
h degree sequen
es,C(t)pq , satis�es the re
urren
e (21) ex
ept that C(t)pq = 0 when p < 0 or (t�1)p > q. Thegeneral solution isC(t)pq = q � (t�1)p+ 1q + 1 �p+ qp � = �p+ qp �� (t�1)�p+ qp� 1�;and we have C(t)n = C(t)n((t�1)n). The triangle for t = 3 beginsas shown at the right.
111 11 21 3 31 4 71 5 12 121 6 18 301 7 25 55 551 8 33 88 14337. The basi
 lexi
ographi
 re
ursion for all su
h forests isA(n0; n1; : : : ; nt) = 0A(n0 � 1; n1; : : : ; nt);1A(n0; n1 � 1; : : : ; nt); : : : ; t A(n0; n1; : : : ; nt � 1)when n0 > n2 + 2n3 + � � �+ (t�1)nt and n1, : : : , nt � 0; otherwise A(n0; n1; : : : ; nt) isempty, ex
ept that A(0; : : : ; 0) = � is the sequen
e 
onsisting of the empty string alone.Step G1 
omputes the �rst entry of A(n0; : : : ; nt). We want to analyze �ve quantities:C, the number of times G2 is exe
uted (the total number of forests);E, the number of times G3 goes to G2 (the number of easy 
ases);K, the number of times G4 moves some bi into list 
;L, the number of times G5 
ompares bj with some 
i;Z, the number of times G5 sets 
1  0.Then the loop in step G6 sets bl�
j  
j a total of K � Z � n1 � � � � � nt times.Let n be the ve
tor (n0; n1; : : : ; nt), and let ej be the unit ve
tor with 1 in
oordinate position j. Let jnj = n0 + n1 + � � � + nt and knk = n1 + 2n2 + � � � + tnt.Using this notation we 
an rewrite the basi
 re
urren
e above in the 
onvenient formA(n) = 0A(n� e0); 1A(n� e1); : : : ; t A(n� et) when jnj > knk.Consider the general re
urren
e relationF (n) = f(n) + � tXj=0 F (n� ej)�[jnj > knk℄;
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56 ANSWERS TO EXERCISES 7.2.1.6with F (n) = 0 whenever the ve
tor n has a negative 
omponent. If f(n) = [jnj=0℄,then F (n) = C(n) is the total number of forests. Answer 2.3.4.4{32 tells us thatC(n) = (jnj � 1)! (jnj � knk)n0!n1! : : : nt! = tXj=0 (1� j)� jnj � 1n0; : : : ; nj�1; nj � 1; nj+1; : : : ; nt�;generalizing the formula for C(t)pq in answer 26 (whi
h is the 
ase n0 = (t� 1)q+ 1 andnt = p). Similarly, we obtain re
urren
es for the other quantities E(n), K(n), L(n),and Z(n) needed in our analysis by 
hoosing other kernel fun
tions f(n):f(n) = [jnj = n0 + 1 and n0 > knk℄ yields F (n) = E(n);f(n) = [jnj > n0 ℄ yields F (n) = E(n) +K(n);f(n) = [jnj = knk+ 1℄ yields F (n) = C(n) +K(n)� Z(n);f(n) =P1�j<k�t nj [nk> 0℄ yields F (n) = L(n):The symboli
 methods of exer
ise 2.3.4.4{32 do not seem to yield qui
k solutionsto these more general re
urren
es, but we 
an readily establish the value of C � E bynoting that bm +m < N in step G2 if and only if the previous step was G3. ThereforeC(n)� E(n) = tXj=1C(n� fj); where fj = ej � (j�1)e0 ;this sum 
ounts the subforests in whi
h n1+ � � �+ nt, the number of internal (nonleaf)nodes, has de
reased by 1. Similarly we 
an letC(x)(n) =XfC(n� i1f1 � � � � � itft) j i1 + � � �+ it = xgbe the number of subforests having n1 + � � �+ nt � x internal nodes. Then we haveK(n)� Z(n) = jnjXx=1C(x)(n);a formula analogous to (20), be
ause k � [bj =0℄ � x � 1 in step G5 if and onlyif bm�x > 0 and bm�x+1 � � � � � bm. Su
h preorder degree strings are in one-to-one 
orresponden
e with the forests of C(x)(n) if we remove bm�x+1 : : : bm and anappropriate number of trailing 0s from the string b1 : : : bN .From these formulas we 
an 
on
lude that the Zaks{Ri
hards algorithm needsonly O(1) operations per forest visited, whenever n1 = n2 + � � � + nt + O(1), be
auseC(n� fj)=C(n) = njnj�10 =(jnj � 1) j � 1=4 +O(jnj�1) when j > 1. Indeed, the valueof K is quite small in nearly all 
ases of pra
ti
al interest. However, the algorithm 
anbe slow when n1 is large. For example, if t = 1, n0 = m + r + 1, and n1 = m, thealgorithm essentially 
omputes all r-
ombinations of m+ r things; then C(n) = �m+rr �and K(n) � Z(n) = �m+rr+1 � = 
(mC(n)) when r is �xed. [To ensure eÆ
ien
y inall 
ases, we 
an keep tra
k of trailing 1s; see Ruskey and Roelants van Baronaigien,Congressus Numerantium 41 (1984), 53{62.℄Exa
t formulas for K, Z, and (espe
ially) L do not seem to be simple, but we 
an
ompute those quantities as follows. Say that the \a
tive blo
k" of a forest is the right-most substring of nonzero degrees; for example, the a
tive blo
k of 302102021230000000is 2123. All permutations of the a
tive blo
k o

ur equally often. Indeed, let D(n)denote the sum of \trailing zeros(�)� 1" over all preorder degree strings � for forests
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7.2.1.6 ANSWERS TO EXERCISES 57of spe
i�
ation n. Then a blo
k with n0j o

urren
es of j for 1 � j � t is a
tive inexa
tly D(n� n01f1 � � � � � n0tft) + [n01 + � � �+ n0t=n1 + � � �+ nt ℄ 
ases. For example,given the string 3021020000, we 
an insert 21230000 in three pla
es to obtain a forestwith a
tive blo
k 2123. The 
ontributions to K and L when the a
tive blo
k is 
ushleft (not pre
eded by any 0s) 
an be 
omputed as in exer
ise 7.2.1.2{6, namelyk(n) = w(en1(z) : : : ent(z)); l(n) = w�en1(z) : : : ent(z) X1�i<j�t(ni � zri(z))rj(z)�in the notation of that answer. Analogous 
ontributions o

ur in general; thereforeK(n) = k(n)+XD(n�n0)k(n0); L(n) = l(n)+XD(n�n0)l(n0); Z(n) =XD(n�n0);summed over all ve
tors n0 su
h that n0j � nj for 1 � j � t and jn0j � kn0k = jnj � knkand n01 + � � �+ n0t � n1 + � � �+ nt � 2.It remains to determine D(n). Let C(n; j) be the number of forests of spe
i�
ationn = (n0; : : : ; nt) in whi
h the last internal node in preorder has degree j. Then we haveC(n) = tXj=1C(n; j) and C(n+e1; 1) = C(n+e2; 2) = � � � = C(n+et; t) = C(n)+D(n):From this in�nite system of linear equations we 
an dedu
e that C(n) +D(n) isn2Xi2=0 : : : ntXit=0(�1)i2+���+it� i2 + � � �+ iti2; : : : ; it �C(n+ (1+i2+ � � � +it)e1 � i2f2 � � � � � itft):Simpler expressions would of 
ourse be desirable, if they exist.38. Step L1 obviously uses 4n+2 mems. Step L3 exits to L4 or L5 exa
tly Cj �Cj�1times with a parti
ular value of j; therefore it 
osts 2Cn+3Pnj=0(n� j)(Cj�Cj�1) =2Cn +3(Cn�1 + � � �+C1 +C0) mems. Steps L4 and L5 jointly 
ost a total of 6Cn � 6.Therefore the entire pro
ess involves 9 +O(n�1=2) mems per visit.39. A Young tableau of shape (q; p) and entries yij 
orresponds to an element of Apqthat has left parens in positions p + q + 1 � y21, : : : , p + q + 1� y2p and right parensin positions p+ q + 1� y11, : : : , p+ q + 1� y1q. The hook lengths are fq + 1; q; : : : ; 1;p; p�1; : : : ; 1gnfq�p+1g; so Cpq = (p+q)!(q�p+1)=(p!(q+1)!) by Theorem 5.1.4H.40. (a) Cpq = �p+qp �� �p+qp�1� � �p+qp � + �p+qp�1� = �p+q+1p � (modulo 2); now use exer
ise1.2.6{11. (b) By Eq. 7.1{(00) we know that �(n& (n+ 1)) = �(n+ 1)� 1.41. It equals C(wz)/(1�zC(wz)) = 1/(1�z�wzC(wz)) = (1�wC(wz))/(1�w�z),where C(z) is the Catalan generating fun
tion (18). The �rst of these formulas, C(wz)+zC(wz)2+z2C(wz)3+� � � , is easily seen to be equivalent to (24). [See P. A. Ma
Mahon,Combinatory Analysis 1 (Cambridge Univ. Press, 1915), 128{130.℄42. (a) Elements a1 : : : an determine an entire self-
onjugate nested string a1 : : : a2n,and there are Cq(n�q) possibilities for a1 : : : an having exa
tly q right parentheses. Sothe answer is bn=2
Xq=0 Cq(n�q) = bn=2
Xq=0 ��nq �� � nq � 1�� = � nbn=2
�:(b) Exa
tly C(n�1)=2 [n odd℄, be
ause a self-transpose binary tree is determined by itsleft subtree. And (
) has the same answer, be
ause F is self-dual if and only if FR isself-transpose.
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58 ANSWERS TO EXERCISES 7.2.1.643. Cpq = Cq � �q�p�11 �Cq�1 + � � � =Pq�pr=0(�1)r�q�p�rr �Cq�r, by indu
tion on q � p.44. The number of mems between visits is 3j � 2 in step B3, h+ 1 in step B4, and 4in step B5, where h is the number of times y  ry . The number of binary trees withh � x, given j and x, is [zn�j�x�1℄C(z)x+3 when j < n, be
ause we get su
h trees byatta
hing x+3 subtrees below j+x+1 internal nodes. Setting x = 0 tells us that a givenvalue of j o

urs C(n�j�1)(n�j+1) = Cn+1�j � Cn�j times, using (24) and exer
ise 43.ThusP j over all binary trees is n+Pnj=1(Cn+1�j �Cn�j)j = Cn+Cn�1 + � � �+C1.Similarly, P(h + 1) is Pn�1j=1 Pn�j�1x=0 C(n�j�x�1)(n�j+1) = Pn�1j=1 C(n�j�1)(n�j+2) =Pnj=1(Cn�j+2� 2Cn�j+1) = Cn+1� (Cn+Cn�1+ � � �+C0). So overall, the algorithm
osts Cn+1+4Cn+2(Cn�1+ � � �+C1)+O(n) = (26=3� 10=(3n)+O(n�2))Cn mems.45. Ea
h of the easy 
ases in step K3 o

urs Cn�1 times, so the total 
ost of that step is3Cn�1+8Cn�1+2(Cn�2Cn�1) mems. Step K4 fet
hes ri a total of [zn�i�1℄C(z)i+2 =C(n�i�1)n times; summing for i � 2 gives C(n�3)(n+1) = Cn+1 � 3Cn + Cn�1 memsaltogether in that loop. Step K5 
osts 6Cn�12Cn�1. Step K6 is a bit more 
ompli
ated,but one 
an show that the operation rj  rk is performed Cn� 3Cn�1+1 times whenn > 2, while the operation rj  0 is performed Cn�1 � n+ 1 times. The total numberof mems therefore 
omes to Cn+1+7Cn�9Cn�1+n+3 = (8:75�9:375=n+O(n�2))Cn.Although this total is asymptoti
ally worse than that of Algorithm B in answer 44,the large negative 
oeÆ
ient of n�1 means that Algorithm B a
tually wins only whenn � 58; and n won't ever be that big.46. (a) Going to the left from pq in
reases the area by q � p.(b) The leftward steps on a path from nn to 00 
orrespond to the left parenthesesin a1 : : : a2n, and we have q � p = 
k at the kth su
h step.(
) Equivalently, Cn+1(x) = Pnk=0 xkCk(x)Cn�k(x). This re
urren
e holds be-
ause an (n + 1)-node forest F 
onsists of the root of the leftmost tree together witha k-node forest Fl (the des
endants of that root) and an (n � k)-node forest Fr (theremaining trees), and be
ause we haveinternal path length(F ) = k + internal path length(Fl) + internal path length(Fr):(d) The strings of Ap(p+r) have the form �0)�1) : : : �r�1)�r where ea
h �j isproperly nested. The area of su
h a string is the sum over j of the area of �j plus r� jtimes the number of left parens in �j .Notes: The polynomials Cpq(x) were introdu
ed by L. Carlitz and J. Riordan inDuke Math. J. 31 (1964), 371{388; the identity in part (d) is equivalent to their formula(10.12). They also proved thatCpq(x) = Xr (�1)rxr(r�1)�(q�p2 )�q � p� rr �xCq�r(x);generalizing the result of exer
ise 43. From part (
) we have the in�nite 
ontinuedfra
tion C(x; z) = 1/(1� z/(1� xz=(1� x2z=(1� � � � )))), whi
h G. N. Watson provedis equal to F (x; z)=F (x; z=x), whereF (x; z) = 1Xn=0 (�1)n xn2zn(1� x)(1� x2) : : : (1� xn) ;see J. London Math. So
. 4 (1929), 39{48. We have already en
ountered the samegenerating fun
tion, slightly disguised, in exer
ise 5.2.1{15.
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7.2.1.6 ANSWERS TO EXERCISES 59The internal path length of a forest is the \left path length" of the 
orrespondingbinary tree, namely the sum over all internal nodes of the number of left bran
hes onthe path from the root. The more general polynomialCn(x; y) =Xxleft path length(T )yright path length(T );summed over all n-node binary trees T , seems to obey no simple additive re
urren
e likethe one for Cnn(x) = Cn(x; 1) studied in this exer
ise; but we do have Cn+1(x; y) =Pk xkCk(x; y)yn�kCn�k(x; y). Therefore the super generating fun
tion C(x; y; z) =Pn Cn(x; y)zn satis�es the fun
tional equation C(x; y; z) = 1+zC(x; y; xz)C(x; y; yz).(The 
ase x = y was 
onsidered in exer
ise 2.3.4.5{5.)47. Cn(x) =Pq x(q�p2 )Cpq(x)C(n�q)(n�1�p)(x) for 0 � p < n.48. Let �C(z) = C(�1; z) in the notation of exer
ise 46, and let �C(z) �C(�z) = F (z2).Then �C(z) = 1 + zF (z2) and �C(�z) = 1 � zF (z2); so F (z) = 1 � zF (z)2, andF (z) = C(�z). It follows that Cpq(�1) = [zp℄C(�z2)d(q�p)=2e(1 + zC(�z2))[q�p even℄,whi
h is (�1)(p=2)C(p=2)(q=2�1)[p even℄ when q is even, (�1)bp=2
Cbp=2
bq=2
 when q isodd. A perfe
t Gray 
ode through the strings of Apq 
an exist only if jCpq(�1)j � 1,be
ause the asso
iated graph is bipartite (see Fig. 41); jCpq(�1)j is the di�eren
ebetween the sizes of the parts, be
ause ea
h perfe
t transposition 
hanges 
1+ � � �+ 
nby �1.49. By Algorithm U with n=15 and N=106, it is ()(()())(((()())))((((())()))).50. Make the following 
hanges to Algorithm U: In step U1, also set r  0. In stepU3, test if am = `)' instead of testing if N � 
0. In step U4, set r  r + 
0 instead ofN  N � 
0. And omit the assignments to am in steps U3 and U4.The string in (1) turns out to have rank 3141592. (Who knew?)51. By Theorem 7.2.1.3L, N = ��z1n �+� �z2n�1�+ � � �+��zn1 �; hen
e �nN = � �z1n�1�+� �z2n�2�+� � �+ ��zn0 �, sin
e �zn � 1. Now note that N � �nN is the rank of z1z2 : : : zn, be
ause of(23) and exer
ise 50. (For example, let z1 : : : z4 = 1256, whi
h has rank 6 in Table 1.Then �z1 : : : �z4 = 7632, N = 60, and �460 = 54. Noti
e that N is fairly large, be
ause�z1 = 2n� 1; Fig. 27 shows that �nN usually ex
eeds N when N is smaller.)52. The number of trailing right parentheses has the same distribution as the numberof leading left parentheses, and the sequen
e of nested strings that begin with `(k)' is(k)A(n�k)(n�1). Therefore the probability that dn = k is C(n�k)(n�1)=Cn. We �ndnXk=0�kt �C(n�k)(n�1) = nXk=0��2n� 1� kn� 1 �� �2n� 1� kn ���kt �= � 2nn+ t�� � 2nn+ t+ 1� = C(n�t)(n+t)using Eq. 1.2.6{(25), and it follows that the mean and varian
e are respe
tively equalto 3n=(n+2) = 3�6=(n+2) and 2n(2n2�n�1)=((n+2)2(n+3)) = 4+O(n�1). [Themoments of this distribution were �rst 
al
ulated by R. Kemp in A
ta Informati
a 35(1998), 17{89, Theorem 9. Noti
e that 
n = dn � 1 has essentially the same behavior.℄53. (a) 3n=(n+2), by exer
ise 52. (b)Hn, by exer
ise 6.2.2{7. (
) 2�2�n, by indu
tion.(d) Any parti
ular (but �xed) sequen
e of left or right bran
hes has the samedistribution of steps before a leaf is en
ountered. (In other words, the probability thata node with Dewey binary notation 01101 o

urs is the same as the probability that00000 o

urs.) Thus if X = k with probability pk, ea
h of the 2k potential nodes on
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60 ANSWERS TO EXERCISES 7.2.1.6level k is external with probability pk. The expe
ted value Pk 2kpk is therefore theexpe
ted number of external nodes, namely n+1 in all three 
ases. (One 
an of 
oursealso verify this result dire
tly, with pk = C(n�k)(n�1)=Cn in 
ase (a), pk = �nk�=n! in
ase (b), and pk = 2�k+[k=n℄ in 
ase (
).)Notes: The average path length turns out to be �(pn ), �(log n), and �(n) inthese three 
ases; thus it is longer when the expe
ted time to hit a leaf is shorter! Thereason is that ubiquitous \holes" near the root for
e other paths to be long. Case (a)has an interesting generalization to t-ary trees, when pk = C (t)(n�k)((t�1)n�1)=C(t)n in thenotation of answer 36. Then the mean distan
e to a leaf is (t+1)n=((t� 1)n+2), andit is instru
tive to prove via teles
oping series thatXk tkC(t)(n�k)((t�1)n�1) = � tnn �:54. Di�erentiating with respe
t to x we haveC 0(x; z) = zC 0(x; z)C(x; xz) + zC(x; z)(C 0(x; xz) + zC0(x; xz));where C0(x; z) denotes the derivative of C(x; z) with respe
t to z. Thus C 0(1; z) =2zC 0(1; z)C(z)+z2C(z)C 0(z); and sin
e C 0(z) = C(z)2+2zC(z)C 0(z) we 
an solve forC 0(1; z), obtaining z2C(z)3=(1�2zC(z))2. ThereforeP(
1+ � � �+ 
n) = [zn℄C 0(1; z) =22n�1 � 12 (3n+ 1)Cn, in agreement with exer
ise 2.3.4.5{5. Similarly we �ndX(
1 + � � �+ 
n)2 = [zn℄C 00(1; z) = �5n2 + 19n+ 66 ��2nn �� �1 + 3n2 �4n:Thus the mean and varian
e are 12p�n3=2+O(n) and ( 56 � �4 )n3=2+O(n), respe
tively.55. Di�erentiating as in answer 54, and using the formulas of exer
ises 46(d) and5.2.1{14 together with [zn℄C(z)r=(1� 4z) = 22n+r �Prj=1 2r�j�2n+jn �, yieldsC 0p(p+r)(1) = [zp℄�(r+1)z2C(z)r+31� 4z + �r+12 �zC(z)r+2p1� 4z �= [zp℄�(r+1)C(z)r+1�2C(z)r+C(z)r�11� 4z + �r+12 �C(z)r+1�C(z)rp1� 4z �
= (r+1)�22p+r�1��2p+r+1p ��r�1Xj=1 2r�1�j�2p+jp ��+ �r+12 ��2p+rp�1 �:56. Use 1.2.6{53(b). [See BIT 30 (1990), 67{68.℄57. 2S0(a; b) = �2aa ��2bb �+ �2a+2ba+b � by 1.2.6{(21). Exer
ise 1.2.6{53 tells us thataXk=a�m� 2aa� k�� 2bb� k�k = (m+ 1)(a+ b�m)� 2am+ 1�� 2ba+ b�m�;therefore 2S1(a; b) = �2aa ��2bb � aba+b . And sin
e b2Sp(a; b)� Sp+2(a; b) = Sp(a; b� 1), we�nd 2S2(a; b) = �2a+2ba+b � ab2a+2b�1 ; 2S3(a; b) = �2aa ��2bb �a2b2=(a+b)2. Formula (30) followsby setting a = m, b = n�m, and C(x�k)(x+k) = � 2xx�k�� � 2xx�k�1�.Similarly, the average of w2m�1 isPk�0(2k�1)C(m�k)(m+k�1)C(n�m�k+1)(n�m+k)divided by Cn, namely2S3(m;n+1�m)� S2(m;n+1�m)m(n+1�m)Cn = m(n+1�m)n �2mm ��2n+2�2mn+1�m �.�2nn �� 1:
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7.2.1.6 ANSWERS TO EXERCISES 61[R. Kemp, BIT 20 (1980), 157{163; H. Prodinger, Soo
how J. Math. 9 (1983), 193{196.℄58. Summing over 
ases in whi
h the left subtree has k internal nodes, we havetlmn = [l=m=n=0℄ + m�1Xk=0 Ckt(l�1)(m�k�1)(n�k�1) + n�1Xk=mCn�1�kt(l�1)mk:Thus the triple generating fun
tion t(v;w; z) =Pl;m;n tlmnvlwmzn satis�est(v; w; z) = 1 + vwzC(wz)t(v;w; z) + vzC(z)t(v;w; z);and the analogous linear relation for t(w; z) = �t(v; w; z)=�v jv=1 follows, be
auset(1; w; z) =P1n=0Pnm=0 Cnwmzn = (C(z)�wC(wz))=(1�w) and zC(z)2 = C(z)�1.Algebrai
 manipulation now yieldst(w; z) = C(z) + wC(wz)� (1 + w)(1� w)2z � 2wC(z)C(wz)(1� w)2 � C(z)� wC(wz)1� w ;and we obtain the formula tmn = (m+ 1)Cn+1 � 2Pmk=0(m� k)CkCn�k � Cn. Nowm�1Xk=0 (k + 1)CkCn�1�k = m2n�2mm ��2n� 2mn�m �

an be proved as in exer
ise 56, and it follows thattmn = 2�2mm ��2n� 2mn�m � (2m+ 1)(2n� 2m+ 1)(n+ 1)(n+ 2) � Cn; for 0 � m � n.[P. Kirs
henhofer, J. Combinatori
s, Information and System S
ien
es 8 (1983), 44{60.For higher moments and generalizations, see W. J. Gutjahr, Random Stru
tures andAlgorithms 3 (1992), 361{374; A. Panholzer and H. Prodinger, J. Statisti
al Planningand Inferen
e 101 (2002), 267{279. Note that the generating fun
tion t(v; w; z) yieldstlmn =Xk � lk�C(m�k)(m�1)C(n�m�l+k)(n�m�1):Using the fa
t that Pk �kr�C(n�k)(m�1) = C(n�r)(m+r) when m � 1, we obtain theformula tmn+Cn =Pk(k+1)C(m�k)(m�1)C(n�m)(n�m+k+1), a sum that 
an therefore(surprisingly) be expressed in 
losed form.℄59. T (w; z) = w(C(z)�C(wz))(1� w) � wzC(z)C(wz)+zC(z)T (w; z) + wzC(wz)T (wz)= w((C(z)+C(wz)�2)=z � (1+w)C(z)C(wz)� (1�w)(C(z)�C(wz)))(1� w)2 :Hen
e Tmn = tmn �Pnk=m CkCn�k. [Is there a 
ombinatorial proof?℄ AndTmn = �2mm ��2n+2�2mn+1�m �4m(n+1�m) + n+ 12(n+ 1)(n+ 2) � 12Cn+1 � Cn; for 1 � m � n.60. (a) It is the number of right parentheses in 
o-atoms. (Therefore it is also thenumber of k for whi
h w2k�1 < 0 in the asso
iated \worm walk.")(b) For 
onvenien
e let d(`(') = +1 and d(`)') = �1.A1. [Initialize.℄ Set i j  1 and k  2n.A2. [Done?℄ Terminate the algorithm if j > k. Otherwise set aj  `(', j  j + 1.
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62 ANSWERS TO EXERCISES 7.2.1.6A3. [Atom?℄ If bi = `)', set s  �1, i  i + 1, and go to A4. Otherwise set s  1,i i+1, and while s > 0 set aj  bi, j  j+1, s s+ d(bi), i i+1. Returnto A2.A4. [Co-atom.℄ Set s s+d(bi). Then if s < 0, set ak  bi, k  k�1, i i+1, andrepeat step A4. Otherwise set ak  `)', k  k�1, i i+1, and return to A2.(
) The defe
t-11 inverse of (1) is (()))((())))))(()((())(()))(((. In generalwe �nd it by lo
ating the subs
riptm just before the lth-from-last right parenthesis, andthe indi
es (u0; v0), : : : , (us�1; vs�1) of mat
hing parentheses su
h that uj � m < vj .I1. [Initialize.℄ Set 
 j  s 0, k  m 2n, and u0  2n+ 1.I2. [S
an right to left.℄ If ak = `)', go to I3; if ak = `(', go to I4; if k = 0, go to I5.I3. [Pro
ess a `)'.℄ Set rj  k, j  j + 1, 
  
 + 1. If 
 = l, set m  k � 1, s  j,and us  k. Then de
rease k by 1 and return to I2.I4. [Pro
ess a `('.℄ (At this point the left parenthesis ak mat
hes the right parenthesisarj�1 .) Set j  j � 1. If rj > m, set uj  k and vj  rj . Then de
rease k by 1and return to I2.I5. [Prepare to permute.℄ Set i j  1, k  2n, and 
 0.I6. [Permute.℄ While j 6= u
, set bi  aj , i i+1, j  j+1. Then terminate if 
 = s;otherwise set bi  `)', i i+ 1, j  j + 1. While k 6= v
, set bi  ak, i i+ 1,k  k�1. Then set bi  `(', i i+1, k  k�1, 
 
+1, and repeat step I6.Notes: The fa
t that exa
tly Cn balan
ed strings of length 2n have defe
t l, for0 � l � n, was dis
overed by P. A. Ma
Mahon [Philosophi
al Transa
tions 209 (1909),153{175, x20℄, then redis
overed by K. L. Chung and W. Feller [Pro
. Nat. A
ad. S
i.35 (1949), 605{608℄, using generating fun
tions. A simple 
ombinatorial explanationwas found subsequently by J. L. Hodges, Jr. [Biometrika 42 (1955), 261{262℄, whoobserved that if �1 : : : �r has defe
t l > 0 and if �k = �Rk is its rightmost 
o-atom, thebalan
ed string �1 : : : �k�1(�k+1 : : : �r)�0Rk has defe
t l� 1 (and this transformation isreversible). The eÆ
ient mapping in the present exer
ise is similar to a 
onstru
tion ofM. D. Atkinson and J.-R. Sa
k [Information Pro
essing Letters 41 (1992), 21{23℄.61. (a) Let 
j = 1� bj ; thus 
j � 1, 
1 + � � �+ 
N = f , and we must prove that
1 + 
2 + � � �+ 
k < f if and only if k < Nholds for exa
tly f 
y
li
 shifts. We 
an de�ne 
j for all integers j by letting 
j�N = 
j .Let us also de�ne �j for all j by letting �0 = 0 and �j = �j�1 + 
j ; then �j+Nt =�j+ft, and �j+1 � �j+1. It follows that for ea
h integer x there is a smallest integerj = j(x) su
h that �j = x. Moreover, j(x) < j(x+ 1); and j(x+ f) = j(x) +N . Thusthe desired 
ondition holds if and only if we shift by j(x) modN for x = 1, 2, : : : , or f .(The history of this important lemma is dis
ussed in answer 2.3.4.4{32.)(b) Start with l  m  s  0. Then for k = 1, 2, : : : , N (in this order) do thefollowing: Set s s+ 1� bk; and if s > m, set m s, jl  k, and l (l+ 1) mod f .The answers are j0, : : : , jf�1, by the proof in part (a).(
) Start with any string b1b2 : : : bN 
ontaining nj o

urren
es of j for 0 � j � t.Apply a random permutation to this string, then apply the algorithm of part (b).Choose randomly between (j0; : : : ; jf�1) and use the resulting 
y
li
 shift as a preordersequen
e to de�ne the forest.[See L. Alonso, J. L. R�emy, and R. S
hott, Algorithmi
a 17 (1997), 162{182, foran even more general algorithm.℄
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7.2.1.6 ANSWERS TO EXERCISES 6362. Bit strings (l1 : : : ln; r1 : : : rn) are valid if and only if b1 : : : bn is valid in exer
ise 20,where bj = lj + rj . Therefore we 
an use exer
ise 61. [See J. F. Korsh, InformationPro
essing Letters 45 (1993), 291{294.℄63. 3 1 2 0e e e 1 2 0 3e e e 3 1 2 0e e e 1 3 2 0e e e 1 3 2 0e e e 1 2 0 3e e e 1 3 2 0e e e 1 2 3 0e e e 1 2 3 0e e e 1 2 0 3e e e64. X = 2k + b where (k; b) = (0; 1), (2; 1), (0; 0), (5; 1), (6; 0), (1; 1); eventuallyL0L1 : : : L12 = 5 11 3 4 0 7 9 8 1 6 10 12 2.65. See A. Panholzer and H. Prodinger, Dis
rete Mathemati
s 250 (2002), 181{195;M. Lu
zak and P. Winkler, Random Stru
tures and Algorithms 24 (2004), 420{443.66. (a) \Shrink" the white edges, merging the nodes that they 
onne
t. For example,
are the ordinary trees that 
orrespond to the eleven S
hr�oder trees depi
ted for n = 3.Under this 
orresponden
e a left link means, \here is a 
hild"; a white right link means,\look here for more 
hildren"; a bla
k right link means, \here's the last 
hild."(b) Mimi
 Algorithm L, but between rotations use an ordinary Gray binary 
odeto run through all 
olor patterns of whatever right links are present. (The 
ase n = 3has, in fa
t, been illustrated in the example.)Note that S
hr�oder trees also 
orrespond to series-parallel graphs, as in (53). Theydo, however, impose an order on the edges and/or superedges that are joined in parallel;so they 
orrespond more pre
isely to series-parallel graphs as embedded in the plane(and with edges and verti
es unlabeled, ex
ept for s and t).67. S(z) = 1 + zS(z)(1 + 2(S(z)� 1)), be
ause 1 + 2(S(z)� 1) enumerates the rightsubtrees; therefore S(z) = (1 + z �p1� 6z + z2 )=(4z).Notes: We've seen S
hr�oder numbers in exer
ise 2.3.4.4{31, where G(z) = zS(z);and in exer
ise 2.2.1{11, where bn = 2Sn�1 for n � 2 and where we found the re
urren
e(n � 1)Sn = (6n � 3)Sn�1 � (n � 2)Sn�2. They grow asymptoti
ally as explored inexer
ise 2.2.1{12. A triangle of numbers Spq, analogous to (22), 
an be used to generaterandom S
hr�oder trees. These numbers satisfySpq = Sp(q�1) + S(p�1)q + S(p�2)q + � � �+ S0q = Sp(q�1) + 2S(p�1)q � S(p�1)(q�1)= q�p+1q+1 pXk=0� q+1p�k��p�1k �2k = pXk=0�� qp�k��p�1k �� � qp�k�1��p�1k�1��2k= [wpzq ℄S(wz)=(1� zS(wz));the double generating fun
tion on the last line is due to Emeri
 Deuts
h. Manyother properties of S
hr�oder trees are dis
ussed in Ri
hard Stanley's EnumerativeCombinatori
s 2 (1999), exer
ise 6.39.68. A single row that 
ontains only the empty string �. (The general rule (36) forgoing from n� 1 to n 
onverts this row into `0 1', the pattern of order 1.)69. The �rst �63� = 20 rows are the Christmas tree pattern of order 6, if we ignore the`10' at the beginning of ea
h string. The pattern of order 7 is a bit more diÆ
ult to see;but there are �73� = 35 rows in whi
h the leftmost entry begins with 0. Disregard therightmost string in all su
h rows, and ignore the 0 at the beginning of ea
h remainingstring. (Other answers are also possible.)
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64 ANSWERS TO EXERCISES 7.2.1.670. If � appears in 
olumn k of the Christmas tree pattern, let �0 be the string in
olumn n � k of the same row. (If we think of parentheses instead of bits, this ruletakes the mirror re
e
tion of the free parentheses in the sense of answer 11, by (39).)71. Mtn is the sum of the t largest binomial 
oeÆ
ients �nk�, be
ause ea
h row of theChristmas tree pattern 
an 
ontain at most t elements of S, and be
ause we do getsu
h a set S by 
hoosing all strings � with (n � t)=2 � �(�) � (n + t � 1)=2. (Theformula Mtn = Xn�t�2k�n+t�1�nk�is about as simple as possible; however, spe
ial formulas like M(2)n = Mn+1 hold forsmall t, and we also have Mtn = 2n for t > n.)72. You get Msn, the same number as in the previous exer
ise. In fa
t, one 
an proveby indu
tion that there are exa
tly � nn�k�� � nk�s� rows of length s+ n� 2k � 0.73. 011001001000000000100101001100, 111001011011111111101101011100; see (38).74. By the lexi
ographi
 property, we want to 
ount the number of rows whose right-most elements have the respe
tive forms 0�29, 10�28, 110�27, 111000�24, 11100100�22,111001010�21, 11100101100�19, 111001011010�18, 1110010110110�17, : : : , namely all30-bit strings that pre
ede � = 111001011011111111101101011100.If � has p more 1s than 0s, the number of Christmas tree rows ending with ��n isthe same as the number of rows ending with 1p�n; and this is M(p+1)n, by exer
ise 71,be
ause all su
h rows are the n-step des
endants of the starting row `0p 0p�11 : : : 1p '.Consequently the answer is M0(29) +M1(28) +M2(27) +M1(24) + � � � +M(12)3 +M(13)2 =P21k=1M(2k�1�zk)(n�zk) = 0+�2814�+�2714�+�2713�+�2412�+ � � �+8+4 = 84867708,where (z1; : : : ; z21) = (1; 2; 3; 6; : : : ; 27; 28) is the sequen
e of pla
es where 1s o

ur in � .75. We have r(n)1 = Mn�2, be
ause row r(n)1 is the bottom des
endant of the �rstrow in (33). We also have r(n)j+1 � r(n)j = Mj(n�1�j) �M(j�1)(n�2�j) = M(j+1)(n�2�j)by the formula in answer 74, be
ause the relevant sequen
e z1 : : : zn�1 for row r(n)j is1j01n�1�j . Therefore, sin
e Mjn=Mn ! j for �xed j as n!1, we havelimn!1 r(n)jMn = jXk=1 k2k+1 = 1� j + 22j+1 :And we've also impli
itly proved that Pnk=0Mk(n�k) =Mn+1 � 1.76. The �rst �2nn � elements of the in�nite sequen
eQ = 1313351313351335355713133513133513353557131335133535571335355735575779 : : :are the row sizes in the pattern of order 2n; this sequen
e Q = q1q2q3 : : : is the unique�xed point of the transformation that maps 1 7! 13 and n 7! (n�2)nn(n+2) for oddn > 1, representing two steps of (36).Let f(x) = lim supn!1 s(dxMne)=n for 0 < x � 1. This fun
tion apparentlyvanishes almost everywhere; but it equals 1 when x has the form (q1 + � � � + qj)=2n,be
ause of answer 72. On the other hand if we de�ne g(x) = limn!1 s(dxMne)=pn,the fun
tion g(x) appears to be measurable, with R 10 g(x) dx = p�, although g(x) isin�nite when f(x) > 0. (Rigorous proofs or disproofs of these 
onje
tures are soli
ited.)77. The hint follows from (39), by 
onsidering worm walks; so we 
an pro
eed thus:
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7.2.1.6 ANSWERS TO EXERCISES 65X1. [Initialize.℄ Set aj  0 for 0 � j � n; also set x  1. (In the following steps wewill have x = 1 + 2(a1 + � � �+ an).)X2. [Corre
t the tail.℄ While x � n, set ax  1 and x x+ 2.X3. [Visit.℄ Visit the bit string a1 : : : an.X4. [Easy 
ase?℄ If an = 0, set an  1, x x+ 2, and return to X3.X5. [Find and advan
e aj .℄ Set an  0 and j  n� 1. Then while aj = 1, set aj  0,x x�2, and j  j�1. Stop if j = 0; otherwise set aj  1 and go ba
k to X2.78. True, by (39) and exer
ise 11.79. (a) List the indi
es of the 0s, then the indi
es of the 1s; for instan
e, the bit stringin exer
ise 73 
orresponds to the permutation 1 4 5 7 8 10 11 12 13 20 23 25 29 30 2 36 9 14 15 16 17 18 19 21 22 24 26 27 28.(b) Using the 
onventions of (39), the P tableau has the indi
es of left parenthesesand free parentheses in its top row, other indi
es in the se
ond row. Thus, from (38),P = 1 2 3 6 8 9 11 12 13 14 15 16 17 18 19 21 22 24 26 27 284 5 7 10 20 23 25 29 30 :[See K.-P. Vo, SIAM J. Algebrai
 and Dis
rete Methods 2 (1981), 324{332, for ageneralization to 
hains of submultisets.℄80. This 
urious fa
t is a 
onsequen
e of exer
ise 79 together with Theorem 6 in theauthor's paper on tableaux; see Pa
i�
 J. Math. 34 (1970), 709{727.81. Suppose � and �0 belong respe
tively to 
hains of length s and s0 in the Christmastree patterns of order n and n0. At most min(s; s0) of the ss0 pairs of strings in those
hains 
an be in the bi
lutter. Furthermore, be
ause of (39), those ss0 pairs of stringsa
tually 
onstitute exa
tly min(s; s0) 
hains in the Christmas tree pattern of ordern + n0, when they are 
on
atenated. Therefore the sum of min(s; s0) over all pairs of
hains is Mn+n0 , and the result follows. We have in
identally proved the nonobviousidentity Xj; k min(m+ 1� 2j; n+ 1� 2k)Cj(m�j)Ck(n�k) = Mm+n:Notes: This extension of Sperner's theorem was proved independently by G. Katona[Studia S
i. Math. Hungar. 1 (1966), 59{63℄ and D. J. Kleitman [Math. Zeits
hrift 90(1965), 251{259℄. See Greene and Kleitman, J. Combinatorial Theory A20 (1976),80{88, for the proof given here and for further results.82. (a) There is at least one evaluation in ea
h row m; there are two if and onlyif s(m) > 1 and the �rst evaluation yields 0. Thus if f is identi
ally 1, we get theminimum,Mn; if f is identi
ally 0, we get the maximum,Mn+Pm[s(m)> 1℄ =Mn+1.(b) Let f(�(m;n=2)) = 0 in the Cn=2 
ases where s(m) = 1; otherwise letf(�(m;a)) = 1, where a is de�ned by the algorithm. When n is odd, this rule impliesthat f(�) is always 1; but when n is even, f(�) = 0 if and only if � is �rst in its row.(To see why, use the fa
t that the row 
ontaining �0j in (41) always has size s � 2.)This fun
tion f is indeed monotoni
; for if � � � and if � has a free left parenthesis,so does � . For example, in the 
ase n = 8 we havef(x1; : : : ; x8) = x8 _ x6x7 _ x4x5(x6 _ x7) _ x2x3(x4(x5 _ x6 _ x7) _ x5(x6 _ x7)):(
) In these 
ir
umstan
es (45) is the solution for all n.
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66 ANSWERS TO EXERCISES 7.2.1.683. At most 3 out
omes are possible in step H4| in fa
t, at most 2 when s(m) = 1.[See exer
ise 5.3.4{31 for sharper bounds; in the notation of that exer
ise, there areexa
tly Æn + 2 monotone Boolean fun
tions of n Boolean variables.℄84. For this problem we partition the 2n bit strings into Mn blo
ks instead of 
hains,where the strings f�1; : : : ; �sg of ea
h blo
k satisfy kA�Ti � A�Tj k � 1 for i 6= j; thenat most one bit string per blo
k 
an satisfy kA�T � bk < 12 .Let A0 denote the �rst n� 1 
olumns of A, and let v be the nth 
olumn. Supposef�1; : : : ; �sg is a blo
k for A0, and number the subs
ripts so that vTA0�T1 is theminimum of vTA0�Tj . Then rule (36) de�nes appropriate blo
ks for A, be
ause we havekA(�i0)T � A(�j0)Tk = kA(�i1)T �A(�j1)Tk = kA0�Ti � A0�Tj k andkA(�j1)T � A(�10)T k2 = kA0�Tj + v � A0�T1 k2= kA0(�j � �1)T k2 + kvk2 + 2vTA0(�j � �1)T � kvk2 � 1:[And more is true; see Advan
es in Math. 5 (1970), 155{157. This result extends atheorem of J. E. Littlewood and A. C. O�ord, Mat. Sbornik 54 (1943), 277{285, who
onsidered the 
ase m = 2.℄85. If V has dimension n�m, we 
an renumber the 
oordinates so that(1; 0; : : : ; 0; x11; : : : ; x1m)(0; 1; : : : ; 0; x21; : : : ; x2m)... ... . . . ... ... ...(0; 0; : : : ; 1; x(n�m)1; : : : ; x(n�m)m)is a basis, with none of the row ve
tors vj = (xj1; : : : ; xjm) entirely zero. Let vn�m+1 =(�1; 0; : : : ; 0), : : : , vn = (0; 0; : : : ;�1). Then the number of 0{1 ve
tors in V is the num-ber of 0{1 solutions to Ax = 0, where A is the m� n matrix with 
olumns v1, : : : , vn.But this quantity is at most the number of solutions to kAxk < 12 min(kv1k; : : : ; kvnk),whi
h is at most Mn by exer
ise 84.Conversely, the basis with m = 1 and xj1 = (�1)j�1 yields Mn solutions. [Thisresult has appli
ation to ele
troni
 voting; see Golle's Ph.D. thesis (Stanford, 2004).℄86. First reorder the 4-node subtrees so that their level 
odes are 0121 (plus a 
on-stant); then sort larger and larger subtrees until everything is 
anoni
al. The re-sulting level 
odes are 0 1 2 3 4 3 2 1 2 3 2 1 2 0 1, and the parent pointers are0 1 2 3 4 3 2 1 8 9 8 1 12 0 14.87. (a) The 
ondition holds if and only if 
1 < � � � < 
k � 
k+1 � � � � � 
n for some k,so the total number of 
ases is Pk �n�1n�k� = 2n�1.(b) Note that 
1 : : : 
k = 
01 : : : 
0k if and only if p1 : : : pk = p01 : : : p0k; and in su
h
ases, 
k+1 < 
0k+1 if and only if pk+1 < p0k+1.88. Exa
tly An+1 forests are visited, and Ak of them have pk = � � � = pn = 0.Therefore O4 is performed An times; and pk is 
hanged Ak+1 � 1 times in step O5, for1 � k < n. Step O5 also 
hanges pn a total of An � 1 times. The average number ofmems per visit is therefore only 2+3=(��1)+O(1=n) � 3:534, if we keep pn in a register.[See E. Kubi
ka, Combinatori
s, Probability and Computing 5 (1996), 403{417.℄89. If step O5 sets pn  pj exa
tly Qn times, it sets pk  pj exa
tly Qk + Ak+1 �Ak times, for 1 < k < n, be
ause every pre�x of a 
anoni
al p1 : : : pn is 
anoni
al.We have (Q1; Q2; : : : ) = (0; 0; 1; 2; 5; 9; 22; 48; 118; 288; : : : ); and one 
an show thatQn =Pd�1P1�
<n=d�1 a(n�
d)(n�
d�d), where ank is the number of 
anoni
al parentsequen
es p1 : : : pn with pn = k. But these numbers ank remain mysterious.
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7.2.1.6 ANSWERS TO EXERCISES 6790. (a) This property is equivalent to 2.3.4.4{(7); vertex 0 is the 
entroid.(b) Let m = bn=2
. At the end of step O1, set pm+1  0, and also p2m+1  0 ifn is odd. At the end of step O4, set i j and while pi 6= 0 set i pi. (Then i is theroot of the tree 
ontaining j and k.) At the beginning of step O5, if k = i +m andi < j, set j  i and d m.(
) If n is even, there are no bi
entroidal trees with n+1 verti
es. Otherwise �ndall pairs (p01 : : : p0m; p001 : : : p00m) of 
anoni
al forests on m = bn=2
 nodes, with p01 : : : p0m �p001 : : : p00m; let p1 = 0, pj+1 = p0j + 1, and pm+j+1 = (p00j +m+ 1)[p00j > 0℄ for 1 � j � m.(Two in
arnations of Algorithm O will generate all su
h sequen
es. This algorithm forfree trees is due to F. Ruskey and G. Li; see SODA 10 (1999), S939{S940.)91. Use the following re
ursive pro
edure W (n): If n � 2, return the unique n-nodeoriented tree. Otherwise 
hoose positive integers j and d so that a given pair (j; d)is obtained with probability dAdAn�jd=((n� 1)An). Compute random oriented treesT 0  W (n�jd) and T 00  W (d). Return the tree T obtained by linking j 
lones of T 00to the root of T 0. [Combinatorial Algorithms (A
ademi
 Press, 1975), Chapter 25.℄92. Not always. [R. L. Cummins, in IEEE Trans. CT-13 (1966), 82{90, proved thatthe graph of S(G) always 
ontains a 
y
le; see also C. A. Holzmann and F. Harary,SIAM J. Applied Math. 22 (1972), 187{193. But their 
onstru
tions are unsuitable foreÆ
ient 
omputation, be
ause they require foreknowledge of the parity of the sizes ofintermediate results.℄93. Yes. Step S7 undoes step S3; step S9 undoes the deletions of step S8.94. For example, we 
an use depth-�rst sear
h, with an auxiliary table b1 : : : bn:i) Set b1 : : : bn  0 : : : 0, then v  1, w 1, b1  1, and k  n� 1.ii) Set e nv�1. While te 6= 0, do the following substeps:a) Set u te. If bu 6= 0, go to substep (
).b) Set bu  w, w  u, ak  e, k  k � 1. Terminate if k = 0.
) Set e ne.iii) If w 6= 1, set v  w, w  bw, and return to (ii). Otherwise report an error: Thegiven graph was not 
onne
ted.We 
ould a
tually terminate as soon as substep (b) redu
es k to 1, sin
e Algorithm Snever looks at the initial value of a1. But we might as well test for 
onne
tivity.95. The following steps perform a breadth-�rst sear
h from u, to see if v is rea
hablewithout using edge e. An auxiliary array b1 : : : bn of ar
 pointers is used, whi
h shouldbe initialized to 0 : : : 0 at the end of step S1; we will reset it to 0 : : : 0 again.i) Set w  u and bw  v.ii) Set f  nu�1. While tf 6= 0, do the following substeps:a) Set v0  tf . If bv0 6= 0, go to substep (d).b) If v0 6= v, set bv0  v, bw  v0, w  v0, and go to substep (d).
) If f 6= e� 1, go to step (v).d) Set f  nf .iii) Set u bu. If u 6= v, return to step (ii).iv) Set u te. While u 6= v, set w  bu, bu  0, u w. Go to S9 (e is a bridge).v) Set u te. While u 6= v, set w bu, bu  0, u w. Then set u te again and
ontinue step S8 (e is not a bridge).Two qui
k heuristi
s 
an be used before starting this 
al
ulation: If du = 1, then e isobviously a bridge; and if lle 6= 0, then e is obviously a nonbridge (be
ause there's an-other edge between u and v). Su
h spe
ial 
ases are dete
ted readily by the breadth-�rst
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68 ANSWERS TO EXERCISES 7.2.1.6sear
h, yet experiments by the author indi
ate that both heuristi
s are de�nitely worth-while. For example, the test on lle typi
ally saves 3% or so of the total running time.96. (a) Let ek be the ar
 k � 1 ! k. The steps in answer 94 set ak  en+1�k forn > k � 1. Then at level k we shrink en�k, for 1 � k < n � 1. After visiting the(unique) spanning tree en�1 : : : e2en, we unshrink en�k and dis
over qui
kly that it isa bridge, for n � 1 > k � 1. Thus the running time is linear in n; in the author'simplementation it turns out to be exa
tly 102n� 226 mems for n � 3.However, this result depends 
riti
ally on the order of the edges in the initialspanning tree. If step S1 had produ
ed \organ-pipe order" su
h asen=2+1 en=2 en=2+2 en=2�1 : : : en�1 e2in positions a2 : : : an�1 when n is even, the running time would have been 
(n2),be
ause 
(n) of the bridge tests would ea
h have taken 
(n) steps.(b) Now ak is initially en�k for n > k � 1, where e1 is the ar
 n ! 1. Thespanning trees visited, when n � 4, are respe
tively en�2 : : : e1en, en�2 : : : e1en�1,en�2 : : : e2en�1en, en�2 : : : e3en�1ene1, : : : , en�1ene1 : : : en�3. Following the treeen�2 : : : ek+2en�1ene1 : : : ek the 
omputations move down to level n � k � 3 and upagain, for 0 � k � n� 4; the bridge tests are all eÆ
ient. Thus the total running timeis quadrati
 (in the author's version, exa
tly 35:5n2 + 7:5n� 145 mems, for n � 5).In
identally, Pn is board (n; 0; 0; 0; 1; 0; 0) in the notation of the Stanford Graph-Base, and Cn is board (n; 0; 0; 0; 1; 1; 0); the SGB verti
es are named 0 through n� 1.97. Yes, when fs; tg is f1; 2g, f1; 3g, f2; 3g, f2; 4g, or f3; 4g, but not f1; 4g.
98. A0 = a b
 de fg ; this is the \dual planar graph" of the planar graph A.(The near trees of A0 are 
omplements of the spanning trees of A, and vi
e versa.)99. The stated method works, by indu
tion on the size of the tree, for essentially thesame reasons that it worked for n-tuples in Se
tion 7.2.1.1|but with the additionalproviso that we must su

essively designate ea
h 
hild of an uneasy node.Leaf nodes are always passive, and they are neither easy nor uneasy; so we willassume that the bran
h nodes are numbered 1 to m in preorder. Let fp = p for allbran
h nodes, ex
ept when p is a passive uneasy node for whi
h the nearest uneasy nodeto its right is a
tive; in the latter 
ase, fp should point to the nearest a
tive uneasynode to its left. (For purposes of this de�nition, we imagine that arti�
ial nodes 0and m+ 1 are present at the left and right, both of whi
h are uneasy and a
tive.)F1. [Initialize.℄ Set fp  p for 0 � p � m; also set t0  1, v0  0, and set ea
h zp sothat rzp = dp.F2. [Sele
t node p.℄ Set q  m; then while tq = vq set q  q � 1. Set p  fq andfq  q; terminate the algorithm if p = 0.F3. [Change dp.℄ Set s dp, s0  rs, k  vp, and dp  s0. (Now k = vs 6= vs0 .)F4. [Update the values.℄ Set q  s and vq  k � 1. While dq 6= 0, set q  dq andvq  k � 1. (Now q is a leaf that has entered the 
on�g if k = 0, left it if k = 1.)Similarly, set q  s0 and vq  k. While dq 6= 0, set q  dq and vq  k � 1. (Nowq is a leaf that has left the 
on�g if k = 0, entered it if k = 1.)F5. [Visit.℄ Visit the 
urrent 
on�g, represented by all the leaf values.
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7.2.1.6 ANSWERS TO EXERCISES 69F6. [Passivate p?℄ (All uneasy nodes to p's right are now a
tive.) If dp 6= zp, returnto step F2. Otherwise set zp  s, q  p � 1; while tq = vq, set q  q � 1. (Nowq is the �rst uneasy node to the left of p; we will make p passive.) Set fp  fq,fq  q, and return to F2.Although step F4 may 
hange uneasy nodes to easy nodes and vi
e versa, the fo
uspointers need not be updated, be
ause they're still set 
orre
tly.100. A 
omplete program, 
alled GRAYSPSPAN, appears on the author's website. Itsasymptoti
 eÆ
ien
y 
an be proved by using the result of exer
ise 110 below.102. If so, ordinary spanning trees 
an be listed in a strong revolving-door order, wherethe edges that enter and leave at ea
h step are adja
ent.Interesting algorithms to generate all the oriented spanning trees with a givenroot have been developed by Harold N. Gabow and Eugene W. Myers, SICOMP 7(1978), 280{287; S. Kapoor and H. Ramesh, Algorithmi
a 27 (2000), 120{130.103. (a) Toppling in
reases (x0; x1; : : : ; xn) lexi
ographi
ally, but does not 
hange x0+� � �+ xn. If we 
an topple at both Vi and Vj , either order gives the same result.(b) Adding a grain of sand 
hanges the 16 stable states as follows:Given 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111+ 0001 0001 0010 0011 0001 0101 0110 0111 0101 1001 1010 1011 1001 1101 1110 1111 1101+ 0010 0010 0011 0001 0010 0110 0111 0101 0110 1010 1011 1001 1010 1110 1111 1101 1110+ 0100 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0100 0101 0110 0111+ 1000 1000 1001 1010 1011 1100 1101 1110 1111 0100 0101 0110 0111 1000 1001 1010 1011The re
urrent states are the nine 
ases with x1 + x2 > 0 and x3 + x4 > 0. Noti
e thatrepeated addition of 0001 leads to the in�nite 
y
le 0000 ! 0001 ! 0010 ! 0011 !0001! 0010! � � � ; but the states 0001, 0010, and 0011 are not re
urrent.(
) If x = �(x + t) then also x = �(x + kt) for all k � 0. All 
omponentsof t are positive; thus x = �(x + max(d1; : : : ; dn)t) is re
urrent. Conversely, supposex = �(d + y), where all yi � 0; then d + y + t topples to x + t and it also topples to�(d) + y + t = d+ y. Therefore �(x+ t) = �(d+ y) = x.(d) There are N = det(aij) 
lasses, be
ause elementary row operations (exer
ise4.6.1{19) triangularize the matrix while preserving 
ongruen
e.(e) There are nonnegative integers m1, : : : , mn, m01, : : : , m0n su
h thatx+m1a1 + � � �+mnan = x0 +m01a1 + � � �+m0nan = y; say:For suÆ
iently large k, the ve
tor y+ kt topples in m1 + � � �+mn steps to x+ kt, andin m01 + � � �+m0n steps to x0 + kt. Therefore x = �(x+ kt) = �(x0 + kt) = x0.(f) The triangularization in (d) shows that x � x + Ny for arbitrary ve
tors y.And toppling preserves 
ongruen
e; hen
e every 
lass 
ontains a re
urrent state.(g) Sin
e a = a1 + � � � + an in a balan
ed digraph, we have x � x + a. If x isre
urrent, we see in fa
t that every vertex topples exa
tly on
e when x+a redu
es to x,be
ause the ve
tors fa1; : : : ; ang are linearly independent.Conversely, if �(x+ a) = x we must prove that x is re
urrent. Let zm = �(ma);there must be some positive k and m with zm+k = zm. Then every vertex topplesk times when zm + ka redu
es to zm; hen
e there are ve
tors yj = (yj1; : : : ; yjn) withyjj � dj su
h that (m + k)a topples to yj . It follows that x + n(m + k)a topples tox+ y1 + � � �+ yn, and �(x+ y1 + � � �+ yn) = �(x+ n(m+ k)a) = x.(h) Treating subs
ripts 
y
li
ally, the spanning trees with ar
s Vj ! V0 for j = i1,: : : , ik have n � k other ar
s: Vj ! Vj�1 for il < j � il + ql and Vj ! Vj+1 for
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70 ANSWERS TO EXERCISES 7.2.1.6il + ql < j < il+1. The re
urrent states, similarly, have xj = 2 for j = i1, : : : , ik, andxj = 1 for il < j < il+1, ex
ept that xj = 0 when j = il + ql and ql > 0.(i) In this 
ase state x = (x1; : : : ; xn) is re
urrent if and only if (n�x1; : : : ; n�xn)solves the parking problem in the hint, be
ause t = (1; : : : ; 1), and a sequen
e thatdoesn't get parked leaves a \hole" that stops x+ t from toppling to x.Notes: This sandpile model, introdu
ed by Deepak Dhar [Phys. Review Letters64 (1990), 1613{1616℄, has led to many papers in the physi
s literature. Dhar notedthat, if M grains of sand are introdu
ed at random, ea
h re
urrent state is equallyprobable as M ! 1. The present exer
ise was inspired by the work of R. Cori andD. Rossin, European J. Combinatori
s 21 (2000), 447{459.Sandpile theory proves that every digraph D yields an abelian group whoseelements 
orrespond somehow to the oriented spanning trees of D with root V0. Inparti
ular, the same is true when D is an ordinary graph, with ar
s u! v and v ! uwhenever u and v are adja
ent. Thus, for example, we 
an \add" two spanning trees;and some spanning tree 
an be regarded as \zero." An elegant 
orresponden
e betweenspanning trees and re
urrent states, in the spe
ial 
ase when D is an ordinary graph,has been found by R. Cori and Y. Le Borgne, Advan
es in Applied Math. 30 (2003),44{52. But no simple 
orresponden
e is known for general digraphs D. For example,suppose n = 2 and (e10; e12; e20; e21) = (p; q; r; s); then there are pr + ps+ qr orientedtrees, and the re
urrent states 
orrespond to generalized two-dimensional toruses as inexer
ise 7{00. Yet even in the \balan
ed" 
ase, when p+ q � s and r + s � q, no easymapping between spanning trees and re
urrent states is apparent.104. (a) If det(�I � C) = 0, there is a ve
tor x = (x1; : : : ; xn)T su
h that Cx = �xand max(x1; : : : ; xn) = xm = 1 for some m. Then � = �xm = 
mm �Pj 6=m emjxj �
mm �Pj 6=m emj = 0. (In
identally, a real symmetri
 matrix whose eigenvalues arenonnegative is 
alled positive semide�nite. Our proof establishes the well-known fa
tthat any real symmetri
 matrix with 
mm � jPj 6=m 
mj j for 1 � m � n has thisproperty.) Thus �0 � 0; and �0 = 0 be
ause C(1; : : : ; 1)T = (0; : : : ; 0)T .(b) det(xI�C(G)) = x(x��1) : : : (x��n�1); and the 
oeÆ
ient of x is (�1)n�1ntimes the number of spanning trees, by the matrix tree theorem.(
) det(�I � C(Kn)) = det((� � n)I + J) = (� � n)n�1� by exer
ise 1.2.3{36;here J is the matrix of all 1s. The aspe
ts are therefore 0, n, : : : , n.105. (a) If eij = a+ be0ij we have C(G) = naI � aJ + bC(G0). And if C is any matrixwhose row sums are zero, the identitydet(xI + yJ � zC) = x+ nyx zn det((x=z)I � C)
an be proved by adding 
olumns 2 through n to 
olumn 1, fa
toring out (x + ny)=x,subtra
ting y=x times 
olumn 1 from 
olumns 2 through n, then subtra
ting 
olumns2 through n from 
olumn 1. Therefore, by setting x = ��na, y = a, z = b, a = 1, andb = �1, we �nd that G has the aspe
ts 0, n � �n�1, : : : , n � �1. (In parti
ular, thisresult agrees with exer
ise 104(
) when G0 is the empty graph Kn.)(b) Sort f�00; : : : ; �0n0�1; �000 ; : : : ; �00n00�1g into order. (An easy 
ase, for variety.)(
) Here G = G0 + G00, so G's aspe
ts are f0; n0 + n00; n00 + �01; : : : ; n00 + �0n0�1;n0+�001 ; : : : ; n0+�00n00�1g by (a) and (b). (In parti
ular, G is Km;n when G0 = Km andG00 = Kn, hen
e the aspe
ts of Km;n are f0; (n� 1) �m; (m� 1) � n; m+ ng.)(d) C(G) = In0
C(G00)+C(G0)
In00 , where In denotes the n�n identity matrixand 
 denotes the Krone
ker produ
t of matri
es. The aspe
ts of C(G) are f�0j +�00k j0 � j < n0; 0 � k < n00g; for if A and B are arbitrary matri
es whose eigenvalues
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7.2.1.6 ANSWERS TO EXERCISES 71are f�1; : : : ; �mg and f�1; : : : ; �ng, respe
tively, the eigenvalues of A 
 In + Im 
 Bare the mn sums �j + �k. Proof: Choose S and T so that S�AS and T�BT aretriangular. Then use the matrix identity (A 
 B)(C 
 D) = AC 
 BD to show that(S
T )�(A
In+Im
B)(S
T ) = (S�AS)
In+Im
(T�BT ). (In parti
ular, repeateduse of this formula shows that the aspe
ts of the n-
ube are f�n0��0; �n1��2; : : : ; �nn��2ng,and Eq. (57) follows from exer
ise 104(b).)(e) When G is a regular graph of degree d0, its aspe
ts are �j = d0 � �j+1, where�1 � � � � � �n are the eigenvalues of the adja
en
y matrix A = (eij). The adja
en
ymatrix of G0 is A0 = BTB � d0In0 , where B = (bij) is the n� n0 in
iden
e matrix withentries bij = [edge i tou
hes vertex j℄, and where n = n0d0=2 is the number of edges.The adja
en
y matrix of G is A = BBT � 2In. Now we havexn det(xIn0 �BTB) = xn0det(xIn �BBT );this identity follows from the fa
t that the 
oeÆ
ients of det(xI�A) 
an be expressed interms of tra
e(Ak) for k = 1, 2, : : : , via Newton's identities (exer
ise 1.2.9{10). So theaspe
ts of G are the same as those of G0, plus n� n0 aspe
ts equal to 2d0. [This resultis due to E. B. Vakhovsky, Sibirski�� Mat. Zhurnal 6 (1965), 44{49; see also H. Sa
hs,Wissens
haftli
he Zeits
hrift der Te
hnis
hen Ho
hs
hule Ilmenau 13 (1967), 405{412.℄(f) A = A0
A00, so the aspe
ts are fd00�0j+d0�00k��0j�00k j 0 � j < n0; 0 � k < n00g.(g) A(G) = In0 
A00 +A0 
 In00 +A0 
A00 = (In0 +A0)
 (In00 +A00)� In yieldsthe aspe
ts f(d00 + 1)�0j + (d0 + 1)�00k � �0j�00k j 0 � j < n0; 0 � k < n00g.106. (a) If � is an aspe
t of the path Pn, there's a nonzero solution (x0; x1; : : : ; xn+1)to the equations �xk = 2xk�xk�1�xk+1 for 1 � k � n, with x0 = x1 and xn = xn+1.If we set xk = 
os(2k�1)�, we �nd x0 = x1 and 2xk�xk�1�xk+1 = 2xk�(2 
os 2�)xk;hen
e 2� 2 
os 2� = 4 sin2� will be an aspe
t if we 
hoose � so that xn = xn+1 and sothat the x's are not all zero. Thus the aspe
ts of Pn turn out to be �0n, : : : , �(n�1)n.We must have �1 : : : �n�1 = n, by exer
ise 104(b), sin
e 
(Pn) = 1; therefore
(Pm � Pn) = m�1Yj=1 n�1Yk=1 (�jm + �kn):(b; 
) Similarly, if � is an aspe
t of the 
y
le Cn, there's a nonzero solution to thestated equations with xn = x0. For this 
ase we try xk = 
os 2k� and �nd solutionswhen � = j�=n for 0 � j < dn=2e. And xk = sin k� gives further, linearly independentsolutions for dn=2e � j < n. The aspe
ts of Cn are therefore �0n, �2n, : : : , �(2n�2)n;and we have
(Pm�Cn) = nm�1Yj=1 n�1Yk=1 (�jm + �(2k)n); 
(Cm�Cn) = mnm�1Yj=1 n�1Yk=1 (�(2j)m + �(2k)n):Let fn(x) = (x+ �1n) : : : (x+ �(n�1)n) and gn(x) = (x+ �2n) : : : (x+ �(2n�2)n).These polynomials have integer 
oeÆ
ients; indeed, fn(x) = Un�1(x=2+1) and gn(x) =2(Tn(x=2+1)�1)=x, where Tn(x) and Un(x) are the Chebyshev polynomials de�ned byTn(
os �) = 
osn� and Un(
os �) = (sin(n+ 1)�)=sin �. The 
al
ulation of 
(Pm � Pn)
an be redu
ed to the evaluation of an m�m determinant, be
ause it is the resultant offm(x) with fn(�x); see exer
ise 4.6.1{12. Similarly, 1n
(Pm �Cn) and 1mn 
(Cm �Cn)are the respe
tive resultants of fm(x) with gn(�x) and of gm(x) with gn(�x).Let �n(x) =Qdnn fd(x)�(n=d); thus �1(x) = 1, �2(x) = x+ 2, �3(x) = (x+ 3)�(x+ 1), �4(x) = x2 + 4x+ 2, �5(x) = (x2 + 5x+ 5)(x2 + 3x+ 1), �6(x) = x2 + 4x+ 1,
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72 ANSWERS TO EXERCISES 7.2.1.6et
. By 
onsidering so-
alled �eld polynomials one 
an show that �n(x) is irredu
ibleover the integers when n is even, otherwise it is the produ
t of two irredu
ible fa
torsof the same degree. Similarly, if �n(x) = Qdnn gd(x)�(n=d), it turns out that �n(x)is the square of an irredu
ible polynomial when n � 3. These fa
ts a

ount for thepresen
e of fairly small prime fa
tors in the results. For example, the largest primefa
tor in 
(Pm � Pn) for m � n � 10 is 1009; it o

urs only in the resultant of �6(x)with �9(�x), whi
h is 662913 = 32 � 73 � 1009.107. There are (1; 1; 2; 6; 21) nonisomorphi
 graphs for n = (1; : : : ; 5); but we need
onsider only 
ases with � 12�n2� edges, be
ause of exer
ise 105(a). The surviving 
aseswhen n = 4 are free trees: The star is the 
omplement of K1 +K3, with aspe
ts 0, 1,1, 4; and P4 has aspe
ts 0, 2�p2, 2, 2+p2 by exer
ise 106. There are three free treeswhen n = 5: The star has aspe
ts 0, 1, 1, 1, 5; P5's aspe
ts are 0, 2� �, 3� �, 1 + �,2+�; and the aspe
ts of are 0, r1, 1, r2, r3, where (r1; r2; r3) � (0:52; 2:31; 4:17)are the roots of x3 � 7x2 + 13x� 5 = 0.Finally, there are �ve 
ases with a single 
y
le: is K1 �+ (K2 + K2), so itsaspe
ts are 0, 1, 1, 3, 5; C5 has aspe
ts 0, 3� �, 3� �, 2 + �, 2 + �; has aspe
ts0, r1, r2, 3, r3; its 
omplement has aspe
ts 0, 5� r3, 2, 5� r2, 5 � r1; and theaspe
ts of turn out to be 0, (5�p13)=2, 3� �, 2 + �, (5 +p13)=2.108. Given a digraph D on verti
es fV1; : : : ; Vng, let eij be the number of ar
s from Vito Vj . De�ne C(D) and its aspe
ts as before. Sin
e C(D) is not ne
essarily symmetri
,the aspe
ts are no longer guaranteed to be real. But if � is an aspe
t, so is its 
omplex
onjugate ��; and if we order the aspe
ts by their real parts, again we �nd �0 = 0. Theformula 
(D) = �1 : : : �n�1=n remains valid if we now interpret 
(D) as the averagenumber of oriented spanning trees, taken over all n possible roots Vj . The aspe
ts ofthe transitive tournament Tn, whose ar
s are Vi ! Vj for 1 � i < j � n, are obviously0, 1, : : : , n� 1; and those of its subgraphs are equally obvious.The derivations in parts (a){(d) of answer 105 
arry over without 
hange. Forexample, 
onsider K1 �+T3, whi
h has aspe
ts 0, 2, 3, 4; this digraph D has (2; 4; 6; 12)oriented spanning trees with the four possible roots, and 
(D) is indeed equal to2�3�4=4. Noti
e also that the digraph is its own 
omplement, and that ithas the same aspe
ts as T3.Dire
ted graphs also admit another family of interesting operations: If D0 andD00 are digraphs on disjoint sets of verti
es V 0 and V 00, 
onsider adding a ar
s v0 ! v00and b ar
s v00 ! v0 whenever v0 2 V 0 and v00 2 V 00. By manipulating determinantsas in answer 105(a), we 
an show that the resulting digraph has aspe
ts f0; an00 + bn0;an00 + �01; : : : ; an00 + �0n0�1; bn0 + �001 ; : : : ; bn0 + �00n00�1g. In the spe
ial 
ase a = 1 andb = 0, we 
an 
onveniently denote the new digraph by D0 ! D00; thus, for example,Tn = K1 ! Tn�1. The digraph Kn1 ! Kn2 ! � � � ! Knm on n1 + n2 + � � � + nmverti
es has aspe
ts f0; nm � sm; : : : ; n2 � s2; (n1�1) � s1g, where sk = nk + � � �+ nm.The aspe
ts of the oriented path Qn from V1 to Vn are obviously 0, 1, : : : , 1. Theoriented 
y
le On has aspe
ts f0; 1� !; : : : ; 1� !n�1g, where ! = e2�i=n.There is also a ni
e result for ar
 digraphs: The aspe
ts of D� are obtained fromthose of D by simply adding �k � 1 
opies of the number �k, for 1 � k � n, where �kis the in-degree of Vk and �k is its out-degree. (If �k = 0, we remove one aspe
t equalto �k.) The proof is similar to, but simpler than, the derivation in answer 2.3.4.2{21.Histori
al remarks: The results in exer
ises 104(b) and 105(a) are due to A. K.Kelmans, Avtomatika i Telemekhanika 26 (1965), 2194{2204; 27, 2 (February 1966),56{65; English translation in Automation and Remote Control 26 (1965), 2118{2129;
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7.2.1.6 ANSWERS TO EXERCISES 7327 (1966), 233{241. Miroslav Fiedler [Cze
h. Math. J. 23 (1973), 298{305℄ introdu
edexer
ise 105(d), and proved interesting results about the aspe
t �1, whi
h he 
alledthe \algebrai
 
onne
tivity" of G. Germain Kreweras, in J. Combinatorial TheoryB24 (1978), 202{212, enumerated spanning trees on grids, 
ylinders, and toruses, aswell as oriented spanning trees on dire
ted toruses su
h as Om � On. An ex
ellentsurvey of graph aspe
ts was published by Bojan Mohar inGraph Theory, Combinatori
sand Appli
ations (Wiley, 1991), 871{898; Dis
rete Math. 109 (1992), 171{183. For athorough dis
ussion of important families of graph eigenvalues and their properties,in
luding a 
omprehensive bibliography, see Spe
tra of Graphs by D. M. Cvetkovi�
,M. Doob, and H. Sa
hs, third edition (1995).109. Perhaps there is also a sandpile-related reason; see exer
ise 103.110. By indu
tion: Suppose there are k � 1 parallel edges between u and v. Then
(G) = k
(G1) + 
(G2), where G1 is G with u and v identi�ed, and G2 is G with thosek edges removed. Let du = k + a and dv = k + b.Case 1: G2 is 
onne
ted. Then ab > 0, so we 
an write a = x+ 1 and b = y + 1.We have 
(G1) > �px+ y + 1 and 
(G2) > �pxy, where � is a produ
t over the othern� 2 verti
es; and it is easy to verify thatkpx+ y + 1 +pxy � p(x+ k)(y + k):Case 2: There are no su
h u and v for whi
h G2 is 
onne
ted. Then every multi-edge of G is a bridge; in other words, G is a free tree ex
ept for parallel edges. Inthis 
ase the result is trivial if there's a vertex of degree 1. Otherwise suppose u is anendpoint, with du = k edges u��� v. If dv > k + 1, we have 
(G) = k
(G1) > �kpxwhere dv = k+1+x, and it is easy to 
he
k that kpx >p(k � 1)(k + x) when x > 0.If dv = k we have 
(G) = k >p(k � 1)2. Finally if dv = k+1, let v0 = u, v1 = v, and
onsider the unique path v1���v2���� � ����vr where r > 1 and vr has degree greaterthan 2; only one edge joins vj to vj+1 for 1 � j < r. Again the indu
tion goes through.[Other lower bounds on the number of spanning trees have been derived by A. V.Kosto
hka, Random Stru
tures and Algorithms 6 (1995), 269{274.℄111. 2 1 5 4 11 7 9 8 6 10 15 12 14 13 3.112. Either p appears on an even level and is an an
estor of q, or q appears on an oddlevel and is an an
estor of p.113. prepostorder(FR)=postpreorder(F )R and postpreorder(FR)=prepostorder(F )R.114. The most elegant approa
h, 
onsidering that the forest might be empty, is to setthings up so that CHILD(�) points to the root of the leftmost tree, if any. Then initiatethe �rst visit by setting Q �, L �1, and going to step Q6.115. Suppose there are ne nodes on even levels and no nodes on odd levels, and thatn0e of the even-level nodes are nonleaves. Then steps (Q1, : : : , Q7) are performedrespe
tively (ne + no, no, n0e, ne, n0e, no + 1, ne) times, in
luding one exe
ution of Q6be
ause of answer 114.116. (a) This result follows from Algorithm Q.(b) In fa
t, non-ordinary nodes stri
tly alternate between lu
ky and unlu
ky,beginning and ending with a lu
ky one. Proof: Consider the forest F 0 obtained bydeleting the leftmost leaf of F , and use indu
tion on n.117. Su
h forests are pre
isely those whose left-
hild/right-sibling representation is adegenerate binary tree (exer
ise 31). So the answer is 2n�1.
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74 ANSWERS TO EXERCISES 7.2.1.6118. (a) tk�2, for k > 1; lu
kiness o

urs only near extreme leaves.(b) An interesting re
urren
e leads to the solution (Fk + 1� (k + 1) mod 3)=2.119. Label ea
h node x with the value v(x) = Pf 2k j k is an ar
 label on the pathfrom the root to xg. Then the node values in prepostorder are exa
tly the Gray binary
ode �n, be
ause exer
ise 113 shows that they satisfy re
urren
e 7.2.1.1{5.(If we apply the same value labeling to the ordinary binomial tree Tn and traverseit in preorder, we simply get the integers 0, 1, : : : , 2n � 1.)120. False: Only four of the \hollow" verti
es in the illustration 
an appearnext to the two \square" verti
es, in a Hamiltonian 
y
le; one hollow pair istherefore out of lu
k. [See H. Fleis
hner and H. V. Kronk, Monatshefte f�urMathematik 76 (1972), 112{117.℄121. Furthermore, there is a Hamiltonian path from u to v in T 2 if and only if similar
onditions hold; but we retain u and/or v in T (0) if they have degree 1, and we requirethat the path in (i) be inside the path from u to v (ex
luding u and v themselves).Condition (ii) is also strengthened by 
hanging `verti
es of degree 4' to `dangerousverti
es', where a vertex of T (0) is 
alled dangerous if it either has degree 4 or hasdegree 2 and equals u or v. The smallest impossible 
ase is T = P4, with u and v 
hosento be the non-endpoints. [�Casopis pro P�estov�an�� Matematiky 89 (1964), 323{338.℄Consequently T 2 
ontains a Hamiltonian 
y
le if and only if T is a 
aterpillar,namely a free tree whose derivative is a path. [See Frank Harary and A. J. S
hwenk,Mathematika 18 (1971), 138{140.℄122. (a) We 
an represent an expression by a binary tree, with operators at the internalnodes and digits at the external nodes. If binary trees are implemented as in Algo-rithm B, the essential 
onstraint imposed by the given grammar is that, if rj = k > 0,then the operator at node j is + or � if and only if the operator at node k is � or =.Therefore the total number of possibilities for a tree with n leaves is 2nSn�1, where Snis a S
hr�oder number; namely 10,646,016 when n = 9. (See exer
ise 66, but inter
hangeleft with right.) We 
an rather qui
kly generate them all, en
ountering exa
tly 1640solutions. Only one expression, namely 1+2=((3�4)=(5+6)� (7�8)=9), does the jobwith no multipli
ations; twenty of them, su
h as (((1� 2)=((3=4)� 5� 6))� 7+8)� 9,require �ve pairs of parentheses; only 15 require no parentheses whatever.(b) Now there are 1 +P8k=1�8k�2k+1Sk = 23;463;169 
ases, and 3365 solutions.The shortest, of length 12, was found by Dudeney [The Weekly Dispat
h (18 June1899)℄, namely 123�45�67+89; but he wasn't sure at the time that it was best. Thelongest solutions have length 27; there are twenty of them, as mentioned above.(
) The number of 
ases rises dramati
ally to 2+P8k=1�8k�4k+1Sk = 8;157;017;474,and there now are 96,504 solutions. The longest, whi
h is unique, has length 40:((((:1=(:2 + :3))=:4)=:5)=(:6 � :7))=(:8 � :9). There are �ve amusing examples su
h as:1 + (2 + 3 + 4 + 5) � 6 + 7 + 8 + :9, with seven +'s; furthermore, there are ten like(1� :2� :3� 4� :5� 6)� (7� 8� 9), with seven �'s.There is in fa
t very little prin
iple in the thing,and there is no 
ertain way of demonstratingthat we have got the best possible solution.| HENRY E. DUDENEY (1899)Notes: Marie Leske's Illustriertes Spielbu
h f�ur M�ad
hen, �rst published in 1864,
ontained the earliest known appearan
e of su
h a problem; in the eleventh edition
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7.2.1.6 ANSWERS TO EXERCISES 75(1889), the fa
t that 100 = 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8� 9 was the solution to puzzle16 in se
tion 553. See also the referen
es in exer
ise 7.2.1.1{111.Ri
hard Bellman explained in AMM 69 (1962), 640{643, how to handle thespe
ial 
ase of part (a) in whi
h the operators are restri
ted to be either + and �,without parentheses. His te
hnique of dynami
 programming 
an be used also inthis more general problem to redu
e the number of 
ases being 
onsidered. The ideais to determine the rational numbers obtainable from every subinterval of the digitsf1; : : : ; ng, having a given operator at the root of the tree. We 
an also save a gooddeal of 
omputation by dis
arding 
ases for the subintervals f1; : : : ; 8g and f2; : : : ; 9gthat 
annot lead to integer solutions. In this way the number of essentially di�erenttrees to 
onsider is redu
ed to (a) 2,747,275 
ases; (b) 6,834,708; (
) 741,167,401.Floating point arithmeti
 is unreliable in this appli
ation. But the exa
t rationalarithmeti
 routines of Se
tion 4.5.1 do the job ni
ely, never needing to work with aninteger greater than 109 in absolute value.123. (a) 2284; but 2284 = (1 + 2 � 3) � (4 + 5 � 67) � 89. (b) 6964; but 6964 =(1=:2)� 34+ 5+ 6789. (
) 14786; but 14786 = �1+ 2� (:3+ 4+ 5)� (6+ 789). [If weallow also a minus sign at the left of the expression, as Dudeney did, we a
tually obtain1361, 2758, and 85054 additional solutions to problems 120(a), (b), and (
), in
ludingnineteen longer expressions in 
ase (a) su
h as �(1�2)�((3+4)�(5�(6�7)�8)+9).With su
h an extension, the smallest unrea
hable numbers in the present problembe
ome (a) 3802, (b) 8312, and (
) 17722.℄ The total number of representable integers(positive, negative, or zero) turns out to be (a) 27,666; (b) 136,607; (
) 200,765.124. Horton{Strahler numbers originated in studies of river 
ows: R. E. Horton, Bull.Geol. So
. Amer. 56 (1945), 275{370; A. N. Strahler, Bull. Geol. So
. Amer. 63 (1952),1117{1142. Many tree-drawing ideas are explored and illustrated in a 
lassi
 paper byViennot, Eyrolles, Janey, and Arqu�es, Computer Graphi
s 23, 3 (July 1989), 31{40.
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INDEX AND GLOSSARYWhen an index entry refers to a page 
ontaining a relevant exer
ise, see also the answer tothat exer
ise for further information. An answer page is not indexed here unless it refers to atopi
 not in
luded in the statement of the exer
ise.0{1 ve
tors, 40.�, see Mems.�(x): The number of 1s (= Sideways sum).� (
ir
le ratio), as \random" example,19, 39, 59.Abelian group, 70.Adja
en
y matrix, 71.Aldous, David John, 14.Algebrai
 
onne
tivity, 73.Alonso, Laurent, 62.Analysis of algorithms, 10, 36, 40, 43, 51.An
estor, in a tree stru
ture, 4, 46, 73.Anti
hain of subsets, 19.Arbores
en
es, see Oriented trees.Ar
 digraph of a digraph, 72.Ar
himedes of Syra
use (>Arqim dh
å SurakoÔsio
), solids, 35.Arnold, David Bryan, 13.Arqu�es, Didier, 75.Aspe
ts of a graph, 42{43.Asso
iahedron, 35.Asso
iative law, 7, 32, 35, 44.Atkinson, Mi
hael David, 62.Atomi
 strings of parentheses, 38.Avalan
hes, 42.Balan
ed digraphs, 42.Balan
ed strings, 38.Ballot numbers, 11{12, 36.generalized, 36{37.table, 11.Baronaigien, see Roelants van Baronaigien.Be
ker, Harold W., 51.Bellman, Ri
hard Ernest, 75.Beyer, Wendell Terry, 21.Bi
lutters, 40.Bigraph: A bipartite graph.Binary sear
h, 20.Binary sear
h trees, 37, 45.Binary trees, 1{2, 4{10, 31{39.de
orated, 16, 38.degenerate, 35, 37, 74.drawings of, 1, 14, 15, 45, 47, 51.extended, 1, 16, 32, 37, 45.Gray 
odes for, 6{9, 33.linked, 4{9, 32.random, 16{17, 38, 45.representation of, 4, 8, 16, 36.rotations in, 7{9, 52.Binomial 
oeÆ
ient identities, 37.Binomial trees, 44, 74.

Boolean fun
tions, 20, 40.Boolean latti
es, 53.Bran
h nodes: Nonleaves, 26{27.Breadth-�rst sear
h, 67.Bridges of a graph, 24{25, 41, 44, 68, 73.Brown, Robert, see Brownian ex
ursion.Brownian ex
ursion, 14.Bruijn, Ni
olaas Govert de, 17.Cn (Catalan number), 10{12, 16, 36{37.Cn (
y
li
 graph), 41, 68, 71.Cpq (ballot number), 11{12, 36{37.Callan, Colum
ille David, 48.Canoni
al forest, 21{22, 40{41.Canoni
al form of algebrai
 expression, 44.Carlitz, Leonard, 58.Cartesian produ
t of graphs, v, 27, 43.Catalan, Eug�ene Charles, 10.Catalan numbers, 10{12, 16, 36{37.generalized, 36{37.tables, 10{11.Catalan triangle, 11{12, 19, 36{37.t-ary, 55.Caterpillar graphs, 74.Centroid of an oriented tree, 41.Chains of submultisets, 65.Chains of subsets, 17{21.Chara
teristi
 polynomial of a matrix,42, 71.Chebyshev, Pafnutii Lvovi
h (Qebyxev,Pafnuti� L~voviq), polynomials, 71.Christmas tree pattern, 17{21, 39{40, 64.Chung, Kai Lai ( ), 62.Clutters, 19.Co-atoms, 38.Coforests, 8.Cognate forests, 32.Colex order: Lexi
ographi
 from rightto left, 5, 33.Combinations, 3, 6, 49, 56.Complement of a graph, 43, 72.Complementary elements of a latti
e, 35.Complete bigraph, 70.Complete graph, 41, 42.Complete t-ary tree, 44.Complex 
onjugate, 72.Con
ordant bit strings, 40.Con�gs, 27, 41.Conjugate of a forest, 8, 31{32, 36, 43.Conjun
tion of graphs, v, 43.Conne
ted graphs, 24, 30, 44.Conne
tivity test, 67, 72.Context-free grammar, 44.76
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INDEX AND GLOSSARY 77Contra
tion of a graph, 23{25, 63.Coprodu
t of graphs, v.Cori, Robert, 70.Cosum of graphs, v, 43.Covering in a latti
e, 17, 33{36.Crossings in a set partition, 33.Cube of a graph, 30.Cummins, Ri
hard Lee, 67.Cvetkovi�
, Drago�s Mladen (Cvetkovi�,Dragox Mladen), 28, 73.Cy
le Lemma, 38.Cy
li
 graph (Cn), 41, 68, 71.Cy
li
 permutations, 36.Cy
li
 shifts, 38.Cylinder graphs, 29, 43, 73.Dan
ing links, 24.Data stru
tures for graphs, 24{26.de Bruijn, Ni
olaas Govert, 17.de Moivre, Abraham, 11.De
orated binary trees, 16, 38.Defe
t of a balan
ed string, 38.Degenerate binary trees, 35, 37, 73.Degree of a node, 32.Degree of a vertex, 24, 43.Degree one, nodes of, 26, 27, 39.verti
es of, 44, 73.D�enes, J�ozsef, 54.Depth 
oordinates 
k, 4, 21{22, 31,33, 37, 40, 51.Depth-�rst sear
h, 67.Derivative of a graph, 44.Dershowitz, Na
hum (UIAEYXC MEGP), 54.Des
endant, in a tree stru
ture, 4, 46, 73.Des
ents of a permutation, 39.Determinants, 70{72.Deuts
h, Emeri
, 63.Dewey, Melvil, notation for binary trees(due to Galton), 59.notation for trees, 12.Dhar, Deepak (dFpk Dr), 70.Diagonally dominant matrix, 70.Digital Century puzzle, 44.Digraph: A dire
ted graph.Dire
t produ
t of graphs, v, 43.Dire
ted graphs, 42{43.Dire
ted torus graphs, 73.Distributive laws, 34.Doob, Mi
hael, 73.Doubly linked lists, 24{25.Drawing a binary tree, 1, 14, 15, 45, 47, 51.Dual of a forest, 8{9, 32{34, 49.Dual of a planar graph, 68.Dudeney, Henry Ernest, 44, 74.Dy
k, Walther Franz Anton von, paths,see Nested parentheses.Dynami
 programming, 75.

e, as \random" example, 35.Easy nodes, 27, 41.Ebbenhorst Tengbergen, Cornelia van, 17.Edelman, Paul Henry, 54.Eigenvalues, 42{43, 73.Ellipses, 15.Empty graph, 70.Empty string, 63.Endo-order, 6.Endpoint of a graph, 44, 73.Equivalen
e 
lasses, 42.Er, Meng Chiau ( ), 49.Errera, Alfred, 46.Eulerian numbers, 39.Extended binary trees, 1, 16, 32, 37, 45.Extended ternary trees, 32.External nodes, 1, 15, 16, 32, 37, 45, 46.Eyrolles, Georges, 75.Fa
toring an n-
y
le, 36.Feller, Willibald (= Vilim = Willy =William), 62.Feussner, Wilhelm, 22.Fibona

i trees, 44, 45.Fiedler, Miroslav, 73.Field polynomials, 72.Fleis
hner, Herbert, 74.Flip permutations, 54.Floating point arithmeti
, 75.Fo
us pointers, 27, 41.Footprints, 35, 53.Forests, 0{75.
anoni
al, 21{22, 40{41.
ognate, 32.
onjugate of, 8, 31{32, 36, 43.dual of, 8{9, 33, 49.Gray 
odes for, 6{9, 33.oriented, 21{22, 40.outline of, 13.random, 38.representation of, seeLeft-
hild/right-siblinglinks, Nested parentheses,Right-
hild/left-sibling links.roots of, 1.shape of, 13{14.super-root of, 30, 43.transpose of, 31{32, 36.triply linked, 30{31, 40, 50.Fra
tal dimension, 39.Free parentheses, 19, 65.Free trees, 22, 40{41, 44, 54, 72, 73.Freese, Ralph Stanley, 54.Gabow, Harold Neil, 69.Galton, Fran
is, 77.Generalized Catalan numbers, 36{37.Generating fun
tions, 10, 36, 37, 39, 41, 63.Golle, Philippe, 40, 66.
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78 INDEX AND GLOSSARYGrammar, 
ontext-free, 44.Graphs, 22{30, 41{44.Gr�atzer, George, 53.Gray, Frank, 
odes, 30.binary, 44, 63.for binary trees, 6{9, 33.for 
ombinations, 6.for forests, 6{9, 33.for nested parentheses, 6, 33, 37, 52.for S
hr�oder trees, 39.for spanning trees, 23.for trees, 6{9.modular, 41.quasi-, 30.re
e
ted, 7.revolving-door, 6, 23, 27, 28, 41.Greatest lower bound, 33{34.Greene, Curtis, 19, 65.Grid graphs, 29, 43, 73.triangular, 52.Gutjahr, Walter Josef, 61.Hamilton, William Rowan, 
y
le, 74.path, 44, 52.Hamiltonian graph: A graph that 
ontainsa Hamiltonian 
y
le, 30, 44.Handshaking at a 
ir
ular table, 4, 31.Hansel, Georges, 20{21, 40.Harary, Frank, 67, 74.Hariharan, Ramesh (�U�q ����h), 69.Hedetniemi, Sarah Lee Mit
hell, 21.Hi
kerson, Dean Robert, 36.Hodges, Joseph Lawson, Jr., 62.Holzmann Poisson, Carlos Alfonso, 67.Horton, Robert Elmer, 75.Horton{Strahler number, 45.Identity matrix, 70.In-degree of a vertex, 42, 72.In
iden
e matrix, 71.Inorder (symmetri
 order), 1, 7, 8, 15,36, 37, 47, 52, 53.Internal path length, 37.Internet, ii, iii, 69.Inverse of a permutation, 8.Inversion tables, 4, 31, 46.Isthmuses, see Bridges of a graph.Janey, Ni
olas, 75.Join of graphs, v, 43.Juxtaposition of graphs, v, 43.Juxtaposition of forests, 32.kth power of a graph, 30.Kapoor, Sanjiv (s\jFv kp�r), 69.Katona, Gyula (Optim�alis Halmaz), 65.Kelmans, Alexander Kolmanovi
h(Kel~mans, Aleksandr Kol~manoviq),72.

Kemp, Rainer, 59, 61.Kirs
henhofer, Peter, 61.Kleitman, Daniel J (Isaiah Solomon),19, 40, 65.Knuth, Donald Ervin ( ), i, iv,17, 65, 68, 69.Korobkov, Vitaly Konstantinovi
h(Korobkov, Vitali�Konstantinoviq), 21.Korsh, James F., 4, 33, 50, 51, 63.Kosto
hka, Alexandr Vasilievi
h (Kostoqka,Aleksandr Vasil~eviq), 73.Kreweras, Germain, 51, 52, 73.latti
e, 33{36, 53.Krone
ker, Leopold, produ
t of matri
es, 70.Kronk, Hudson Van Etten, 74.Kruskal, Joseph Bernard, Jr., fun
tion, 37.Kruyswijk, Dirk, 17.Kubi
ka, Ewa, 66.Lakser, Harry, 53.Latti
es of trees, 33{36.Le Borgne, Yvan Fran

oise Andr�e, 70.Leaf nodes, 26, 33, 51.Least upper bound, 33{34.Left path length, 59.Left-sibling/right-
hild links, 5, 32,36, 48, 51{52.Left-
hild/right-sibling links, 1, 5, 7,30, 47, 48, 51{52.Leske, Marie, 74.Level 
oordinates 
k, 4, 21{22, 31,33, 37, 40, 51.L�evy, Paul, 14.Lexi
ographi
 order, 2{3, 19, 21, 31, 40.Li, Gang (= Kenny) ( ), 67.Line graph of a graph, 43.Linked binary trees, generation of, 4{9, 32.random, 16{17, 38.Littlewood, John Edensor, 66.Loopless algorithm, 30.Loops in a graph, 22, 25.Lou
hard, Guy, 14.Lu
as, Joan Marie, 7.Lu
ky nodes, 43{44.Lu
zak (=  Lu
zak), Malwina Joanna, 63.Mn (middle binomial 
oeÆ
ient), 17, 39{40.Ma
Mahon, Per
y Alexander, 57, 62.Mar
kert, Jean-Fran�
ois, 14.Markowsky, George, 53.Mat
hings, 4, 31.Mate of a bit string, 39.Mate of an ar
 node, 24.Matrix tree theorem, 41, 42, 70.Maximal 
hains, 34, 36.Mems (�): Memory a

esses, 28{29,36, 51, 66, 68.Mirror image, 4, 31, 47, 51, 64.MMIX 
omputer, ii.
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INDEX AND GLOSSARY 79Modular Gray 
ode for tuples, 41.Mohar, Bojan, 73.Moivre, Abraham de, 11.Monotone Boolean fun
tions, 20, 40.Morphi
 sequen
e, 64.Myers, Eugene Wimberly, Jr., 69.n-
ube, 28{29, 43, 71.Natural 
orresponden
e, 1; seeLeft-
hild/right-sibling links.Near trees, 23{28, 68.Near-perfe
t Gray 
ode for nestedparentheses, 6.Nested parentheses, 0{6, 10{13, 15{16,19, 31{32, 37, 38, 46, 52.Neuman, Franti�sek, 44.Newton, Isaa
, identities, 71.Nijenhuis, Albert, 41.Non
rossing 
hords, 4, 31.Non
rossing partitions, 33.Notational 
onventions:FD , 32.FR, FT , 31.F < F 0, F a F 0, F � F 0, 33{35, 52.G + H, G �+ H, G �H, G ÆH, G
H, v.Numbers, Catalan, iii.O�ord, Albert Cyril, 66.Optimum algorithm, 21.Order ideals, 52.Organ-pipe order, 68.Organi
 illustrations, 45.Oriented forests, 21{22, 40.Oriented spanning trees, 41{42, 72.Oriented tree numbers, table, 21.Oriented trees, 21{22, 40{42.Out-degree of a vertex, 42, 72.Outline of a forest, 13.Pn (path graph), 29, 41, 43, 68, 71, 74.Pan-digital puzzles, 44{45.Panholzer, Alois, 61, 63.Parent pointers, 21{22, 30{31, 40.Parentheses, 0{4, 6, 12{13, 15{16, 19,31{32, 38, 46, 52.Parking problem, 54, 70.Path graph (Pn), 29, 41, 43, 68, 71, 74.Path length, 60.Pendant vertex, see Endpoint.Pentagons, 35.Perfe
t Gray 
ode for nested parentheses,6, 37, 52.Permutahedron, 35.Permutation representation of binarytrees, 36.Permutations, 
y
li
, 36.des
ents of, 39.
ip, 54.inverses of, 8.

Pi (�), as \random" example, 19, 39, 59.Plain 
hanges, 7.Plato = Aristo
les, son of Ariston(Pl�twn = >Aristokl¨
 >Ar�stwno
), 0.Polish pre�x notation, see Preorderdegree sequen
e.Polyhedra, 35.Positive semide�nite matri
es, 70.Postorder, 1, 4, 7, 8, 31, 47, 51.Postpreorder, 29{31, 43.Power of a graph, 30, 44.Preorder, 1, 4, 8{9, 21, 22, 31{35, 38,40, 51, 68.Preorder degree sequen
e, 32.Prepostorder, iv, 29{31, 43{44.Prodinger, Helmut, 61, 63.Proskurowski, Andrzej, 6, 37.Prune-and-graft algorithm, 9, 33.Pseudo-
omplement in a latti
e, 54.Pun resisted, 30.q-ballot numbers, 36{37.q-Catalan numbers, 36{37.q-nomial 
oeÆ
ients, 58.Quasi-Gray 
ode, 30.Ramesh, Hariharan (�U�q ����h), 69.Random binary tree, 14{17, 38, 45.Random forest, 13{14, 38.Random oriented tree, 41.Random S
hr�oder tree, 63.Raney, George Neal, 38.Ranking, 37, 39.Rational arithmeti
, 75.Rea
hability test, 67.Re
urren
e relations, 54{56, 61, 74.Re
urrent states, 42.Re
ursion, 24.Re
ursion tree, 11.Re
ursive pro
edure, 67.Re
ursive stru
ture, 3, 11, 46, 55.Re
e
ted Gray 
ode, 7.Re
e
tion of a forest, 31, see Conjugate.Regular graph, 43.Regular polygon, 35.Relative 
omplement, 20.R�emy, Jean-Lu
, 16, 38, 62.Restri
ted growth sequen
es, 51.Resultants, 71.Revolving-door Gray 
odes, 23, 27, 28, 41.near-perfe
t, 6.strong, 69.Ri
hards, Dana S
ott, 32, 36.Right path length, 59.Right-
hild/left-sibling links, 5, 32,36, 48, 51{52.Right-sibling/left-
hild links, 1, 30,47, 48, 51{52.Riordan, John, 58.River 
ows, 75.
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80 INDEX AND GLOSSARYRobinson, Gilbert de Beauregard, 39.Rodrigues, Benjamin Olinde, 16.Roelants van Baronaigien, Dominique,6, 7, 56.Rooted unlabeled trees, see Oriented trees.Roots of a forest, 1.Rossin, Dominique Gilles, 70.Rotation latti
e, see Tamari latti
e.Rotations in a binary tree, 6{9, 52.Run-length 
oordinates dk, 2, 3, 31, 37, 49.Ruskey, Frank, 6, 7, 12, 14, 37, 56, 67.Sn (S
hr�oder number), 39.Sa
hs, Horst, 71, 73.Sa
k, J�org-R�udiger Wolfgang, 62.Sandpiles, 42, 73.S
hensted, Craige Eugene (= Ea Ea), 39.S
hott, Ren�e Pierre, 62.S
hr�oder, Ernst, numbers, 39, 74.trees, 39, 63.triangle, 63.S
hwenk, Allen John, 74.S
oins, Hubert Ian, 21.S
ope 
oordinates, 8, 34.SCOPE links, 4.Self-
onjugate forests, 36, 48.Self-dual forests, 36.Self-transpose forests, 36.Sekanina, Milan, 30.Semba, I
hiro ( ), 2.Semidistributive laws, 35.Semimodular law, 34.Series-parallel graphs, 25{28, 41, 63.Set partitions, 33.Shape of a random binary tree, 14{15.Shape of a random forest, 13{14.Shrinking an edge, 23{25, 63.Skarbek, W ladys law Kazimierz, 4.Sleep, Mi
hael Ronan, 13.Smith, Mal
olm James, 23, 24, 27, 28.So
rates, son of Sophronis
us ofAlope
e (Swkr�th
 Swfrwn�skou>Alwpek¨jen), 0.Spanning arbores
en
es, 41, see Orientedspanning trees.Spanning trees, 22{29, 41{43.enumeration of, 42{43.Spe
trum of a graph, 71, 73.Sperner, Emanuel, 19.theorem, 19, 39, 65.Sprugnoli, Renzo, 37.Square of a graph, 30, 44.Stable states, 42.Stanford GraphBase, ii, iii, 28, 68.Stanley, Ri
hard Peter, iii, 36, 52, 63.latti
e, 34{36.Star graphs, 72.Strahler, Arthur Newell, 45, 75.Strong produ
t of graphs, v, 43.

Strong revolving-door order, 69.Sum of graphs, v, 43.Super-root of a forest, 30, 43.Superedge of a graph, 25{28, 63.Symmetri
 order (inorder), 1, 7, 8, 15,36, 37, 47, 52, 53.Syntax, 
ontext-free, 44.t-ary trees, 38, 55, 60.
omplete, 44.random, 38.Tableaux, 36, 39, 55, 65.Tamari, Dov, latti
e, 34{35, 55.Tang, Changjie ( ), 6.Tengbergen, Cornelia van Ebbenhorst, 17.Ternary trees, 32, 36; see also t-ary trees.Threshold fun
tions, 21, 65.Toppling, 42.Torus graphs, 28, 29, 43, 70, 73.dire
ted, 73.Tournament digraphs, 72.Transitive tournaments, 72.Transpose of a forest, 31{32, 36.Transpositions: Cy
li
 permutationsof order 2, 36.Traversal of a binary tree, 29{31.Tree representation of a series-parallelgraph, 26, 41.Trees, 0{75.binary, 1{2, 4{10, 16, 31{39.binomial, 44, 74.Fibona

i, 44, 45.free, 22, 40{41, 44, 54, 72, 73.Gray 
odes for, 6{9.latti
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