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PREFACE

Explain the significance of the following sequence:
un, dos, tres, quatre, cinc, sis, set, vuit, nou, deu, ...

— RICHARD P. STANLEY, Enumerative Combinatorics (1999)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. And those carefully-checked volumes,
alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make it both interesting and authoritative, as far as it goes. But the
field is so vast, I cannot hope to have surrounded it enough to corral it completely.
Therefore I beg you to let me know about any deficiencies you discover.

To put the material in context, this is Section 7.2.1.6 of a long, long chapter
on combinatorial algorithms. Chapter 7 will eventually fill three volumes (namely
Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will
begin with a short review of graph theory, with emphasis on some highlights
of significant graphs in the Stanford GraphBase, from which I will be drawing
many examples. Then comes Section 7.1, which deals with the topic of bitwise
manipulations. (I drafted about 60 pages about that subject in 1977, but
those pages need extensive revision; meanwhile I’ve decided to work for awhile
on the material that follows it, so that I can get a better feel for how much
to cut.) Section 7.2 is about generating all possibilities, and it begins with
Section 7.2.1: Generating Basic Combinatorial Patterns — which, in turn, begins
with Section 7.2.1.1, “Generating all n-tuples,” Section 7.2.1.2, “Generating all
permutations,” ..., Section 7.2.1.5, “Generating all set partitions.” (Readers
of the present booklet should have already looked at those sections, drafts of
which are available as Pre-Fascicles 2A, 2B, 3A, and 3B.) The stage is now set
for the main contents of this booklet, Section 7.2.1.6: “Generating all trees.”
Then will come Section 7.2.1.7, about the history of combinatorial generation.
Section 7.2.2 will deal with backtracking in general. And so it will go on, if all
goes well; an outline of the entire Chapter 7 as currently envisaged appears on
the taocp webpage that is cited on page ii.

iii



iv PREFACE

Even the apparently lowly topic of tree generation turns out to be surpris-
ingly rich, with ties to Sections 1.2.3, 1.2.6, 1.2.9, 2.2.1, 2.3, 2.3.1, 2.3.2, 2.3.3,
2.3.4.1,2.34.2,23.4.4,234.5,2.34.6,24,4.6.1,5.1.1, 5.1.3, 5.1.4, 5.2.1, 5.3.4,
6.2.1, 6.2.2, 6.2.3, and 6.4 of the first three volumes. I strongly believe in building
up a firm foundation, so I have discussed this topic much more thoroughly than
I will be able to do with material that is newer or less basic. To my surprise, I
came up with 124 exercises, even though — believe it or not —1I had to eliminate
quite a bit of the interesting material that appears in my files.

Some of the things presented are new, to the best of my knowledge, although
I will not be at all surprised to learn that my own little “discoveries” have been
discovered before. Please look, for example, at the exercises that I've classed as
research problems (rated with difficulty level 46 or higher), namely exercises 17,
76, 89, 101, 102, and 109; I’ve also implicitly posed additional unsolved questions
in the answers to exercises 34, 37, 46, 59, and 103. Are those problems still open?
Please let me know if you know of a solution to any of these intriguing questions.
And of course if no solution is known today but you do make progress on any of
them in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to receive credit for
things that have already been published by others, and most of these results are
quite natural “fruits” that were just waiting to be “plucked.” Therefore please
tell me if you know who deserves to be credited, with respect to the ideas found
in exercises 13, 15, 25, 27(e), 28(e), 29, 31, 36, 37, 42, 47, 54, 55, 60(c), 72, 74,
75, 77, 78, 80, 82, 110, 112-119, 122, 123, and the remarks about D’ — D" and
D* in answer 108. Has anybody published the concept of “prepostorder” or its
equivalent?

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
09 July 2004



PREFACE A%

A note on notation. At the beginning of Chapter 7 I'll define some operations
on graphs for which many different notations are presently rampant. My current
plan is to say that, if G is a graph on the vertices U = {u1,...,u;,} and if H is
a graph on the vertices V = {vy,...,v,}, then:

e G+ H is the sum, aka juxtaposition, of G and H: It has the m 4+ n vertices
U UV and the edges of G and H.

e G + H is the cosum, aka join, of G and H, namely the complement of the
juxtaposition of their complements. (Thus its edges are those of G and H,
plus all u; — vg.)

e G x H is the Cartesian product of G and H: It has the mn vertices U x V;
its edges are (u,v) — (v',v) when u — ' in G, and (u,v) — (u,v') when
v—u' in H.

e GO H is the direct product, aka conjunction, of G and H: Again its vertices
are U x V, but its edges are (u,v) — (v',v’) if and only if u— u' in G and
v—u' in H.

e (G® H is the strong product of G and H: As its symbol implies, it combines
the edges of G x H and G & H.

e There also are coproducts, analogous to the cosum.



0 COMBINATORIAL ALGORITHMS (F4A)

Just as in a single body there are pairs of individual members,
called by the same name but distinguished as right and left,
so when my speeches had postulated the notion of madness,
as a single generic aspect of human nature,

the speech that divided the left-hand portion

repeatedly broke it down into smaller and smaller parts.

— SOCRATES, Phadrus 266A (c.370 B.C.)

7.2.1.6. Generating all trees. We’ve now completed our study of the classical
concepts of combinatorics: tuples, permutations, combinations, and partitions.
But computer scientists have added another fundamental class of patterns to
the traditional repertoire, namely the hierarchical arrangements known as trees.
Trees sprout up just about everywhere in computer science, as we’ve seen in
Section 2.3 and in nearly every subsequent section of The Art of Computer
Programming. Therefore we turn now to the study of simple algorithms by
which trees of various species can be exhaustively explored.

First let’s review the basic connection between nested parentheses and for-
ests of trees. For example,

12 345 678 9 a b cd e f
CODCCO)CCO OO O I (1)
12 34 5 678 9 a b cdef
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illustrates a string containing fifteen left parens ‘(’ labeled 1, 2, ..., £, and fifteen
right parens ‘)’ also labeled 1 through f; gray lines beneath the string show how
the parentheses match up to form fifteen pairs 12, 21, 3f, 44, 53, 6a, 78, 85, 97,
a6, b9, ce, db, ed, and fc. This string corresponds to the forest

in which the nodes are @, @, @, ceey @ in preorder (sorted by first coor-
dinates) and @, @, @, cey @ in postorder (sorted by second coordinates).

If we imagine a worm that crawls around the periphery of the forest,

seeing a ‘(" whenever it passes the left edge of a node and a ‘)’ whenever it passes
a node’s right edge, that worm will have reconstructed the original string (1).
The forest in (2) corresponds, in turn, to the binary tree

via the “natural correspondence” discussed in Section 2.3.2; here the nodes are
@, @, @, R @ in symmetric order, also known as inorder. The left
subtree of node @ in the binary tree is the leftmost child of @ in the forest,
or it is an “external node” [ if @ is childless. The right subtree of @ in the
binary tree is its right sibling in the forest, or [ if @ is the rightmost child in
its family. Roots of the trees in the forest are considered to be siblings, and the
leftmost root of the forest is the root of the binary tree.
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Table 1
NESTED PARENTHESES AND RELATED OBJECTS WHEN n = 4

aias ...as forest binary tree didadsds 21222324 pipapsps  cicaczca  matching

o
0000  eeee % 1111 1357 1234 0000 S
_
00  °°3 % 1102 1356 1243 ooor 4/ %
_
9\\9
OO °3° fm 1021 1347 1324 0010 {’\e
e/o
00 ° 4 J&g 1012 1346 1342 0011 {/o
o
° o
OON ! ”}E 1003 1345 1432 0012 o
G/O
oo e//9
MO0 3 Jg}h 0211 1257 2134 0100« /p
(OO) 33 J{b 0202 1256 2143 0101 J;/E/:f
. ~
OMO A @ 0121 1247 2314 0110 4\
%
(000) J&% o2 1246 2m o L
.
@//9
00N A JE% 0103 1245 2431 0l12 o
@
«»no }° Jg@gﬂ 0031 1237 3214 0120 {\\}
(oYM 0022 1236 3241 or21 4 \}
AN ~
o
«0o» & Jié 0013 1235 3421 0122 w\}
e\\é
e
(o % Jﬁ{é 0004 1234 4321 0123 :Q:
~

A string ajas...as, of parentheses is properly nested if and only if it
contains n occurrences of ‘(C and n occurrences of ‘)’, where the kth ‘(’ precedes
the kth )’ for 1 < k < n. The easiest way to explore all strings of nested paren-
theses is to visit them in lexicographic order. The following algorithm, which
considers ‘)’ to be lexicographically smaller than ‘(’, includes some refinements
for efficiency suggested by I. Semba [Inf. Processing Letters 12 (1981), 188-192]:
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Algorithm P (Nested parentheses in lexicographic order). Given an integer

n > 2, this algorithm generates all strings aqas .. . as, of nested parentheses.

P1. [Initialize.] Set agr_1 + ‘C and agg )’ for 1 < k < n; also set ag + *)’
and m < 2n — 1.

P2. [Visit.] Visit the nested string ajas...as,. (At this point a,, = ‘(’, and
ar =)’ for m < k < 2n.)

P3. [Easy case?] Set a,, + ). Thenifa, 1 =", set ap_1 < ‘C,m+ m—1,
and return to P2.

P4. [Find j.] Set j <~ m —1 and k < 2n — 1. While a; = ‘(, set a; « ),
ap < ‘C,j+<j7—1,and k < k — 2.

P5. [Increase a;.] Terminate the algorithm if j = 0. Otherwise set a; < ‘C,
m < 2n — 1, and go back to P2. |

We will see later that the loop in step P4 is almost always short: The operation

a; < ‘)’ is performed only about % times per nested string visited, on the average.
Why does Algorithm P work? Let A,, be the sequence of all strings « that

contain p left parentheses and g > p right parentheses, where (? P« is properly

nested, listed in lexicographic order. Then Algorithm P is supposed to generate

Apn, where it is easy to see that A, obeys the recursive rules

qu =) Ap(q—l)a (A(p—l)q', if 0 < b < q 7& 0’ AOO = € (5)

also Ap, is empty if p < 0 or p > ¢. The first element of A,, is )T 70 ... (),
where there are p pairs ‘()’; the last element is (P)?. Thus the lexicographic
generation process consists of scanning from the right until finding a trailing
string of the form aj...az, = )(PT')? and replacing it by O?"'"7(0) ... ().
Steps P4 and P5 do this efficiently, while step P3 handles the simple case p = 0.

Table 1 illustrates the output of Algorithm P when n = 4, together with the
corresponding forest and binary tree as in (2) and (4). Several other equivalent
combinatorial objects also appear in Table 1: For example, a string of nested
parentheses can be run-length encoded as

OB % . (O, (6)
where the nonnegative integers d;ds .. .d, are characterized by the constraints
di+dy+--+dp, <k forl1<k<mn; dy+do+--+d,=n.  (7)

We can also represent nested parentheses by the sequence zy23...z,, which
specifies the indices where the left parentheses appear. In essence, z122 ...z, is

one of the (2:) combinations of n things from the set {1,2,...,2n}, subject to
the special constraints
Z_1 < zi < 2k for 1 <k <n, (8)

if we assume that zg = 0. The z’s are of course related to the d’s:
d, = zk41 — 2 — 1 for1 <k <n. (9)

Algorithm P becomes particularly simple when it is rewritten to generate the
combinations 2723 ...z, instead of the strings ajas ...as,. (See exercise 2.)
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A parenthesis string can also be represented by the permutation pips . ..oy,
where the kth right parenthesis matches the pyth left parenthesis; in other words,
the kth node of the associated forest in postorder is the pith node in preorder.
(By exercise 2.3.2 20, node j is a descendant of node k in the forest if and only
if j < k and p; > pi, when we label the nodes in postorder.) The inversion table
ciCo .. .cn characterizes this permutation by the rule that exactly c; elements to
the right of k are less than k (see exercise 5.1.1-7); allowable inversion tables
have ¢; = 0 and

0 < cpy1 < cp+1 for 1 <k < n. (10)

Moreover, exercise 3 proves that cy is the level of the forest’s kth node in preorder
(the depth of the kth left parenthesis), a fact that is equivalent to the formula

ck =2k — 1 — z. (11)

Table 1 and exercise 6 also illustrate a special kind of matching, by which 2n
people at a circular table can simultaneously shake hands without interference.

Thus Algorithm P can be useful indeed. But if our goal is to generate all
binary trees, represented by left links l{l5...1, and right links ry7o...7,, the
lexicographic sequence in Table 1 is rather awkward; the data we need to get
from one tree to its successor is not readily available. Fortunately, an ingenious
alternative scheme for direct generation of all linked binary trees is also available:

Algorithm B (Binary trees). Given n > 1, this algorithm generates all binary
trees with n internal nodes, representing them via left links l1l5 ..., and right
links r17g...7,, with nodes labeled in preorder. (Thus, for example, node 1 is
always the root, and Iy, is either k + 1 or 0; if I; =0 and n > 1 then r; = 2.)

B1. [Initialize.] Set Iy < k+ 1 and r < 0 for 1 < k < n; also set I, < r,, « 0,
and set 1,411 < 1 (for convenience in step B3).

B2. [Visit.] Visit the binary tree represented by l1ls...l, and riry...7y.

B3. [Find j.] Set j ¢ 1. While [; = 0, set r; < 0, l; < j+ 1, and j « j + 1.
Then terminate the algorithm if j > n.

B4. [Find k and y.] Set y < ; and k < 0. While r, > 0, set k < y and y « ry.

B5. [Promote y.] If k > 0, set 74, < 0; otherwise set I; < 0. Then set r, « 7,

r; <y, and return to B2. |
[See W. Skarbek, Theoretical Computer Science 57 (1988), 153-159; step B3
uses an idea of J. Korsh.] Exercise 44 proves that the loops in steps B3 and B4
both tend to be very short. Indeed, fewer than 9 memory references are needed,
on the average, to transform a linked binary tree into its successor.

Table 2 shows the fourteen binary trees that are generated when n = 4,
together with their corresponding forests and with two related sequences: Arrays
e1€s...e, and s183 ... s, are defined by the property that node k in preorder has
ei children and s; descendants in the associated forest. (Thus sy, is the size of k’s
left subtree in the binary tree; also, s + 1 is the length of the SCOPE link in the
sense of 2.3.3—(5).) The next column repeats the fourteen forests of Table 1 in
the lexicographic ordering of Algorithm P, but mirror-reversed from left to right.
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Table 2
LINKED BINARY TREES AND RELATED OBJECTS WHEN n = 4

lilolsls Tirarars binary tree forest ejeseses s1S283s4  colex forest lsib/rchild

2340 0000 J{g@ﬂ % 1110 3210 J}}}&
0340 2000 “}E@J ° g 0110 0210 g °e 3{}}3
2040 0300 JE‘D % 2010 3010 °f° n’h
2040 3000 @Xﬂ g3 1010 1010 A° @
0040 2300 % oo g 0010 0010 E ° J{g}%
2300 0040 Jié A 1200 3200 oo 3 J}E&
0300 2040 J&x ° & 0200 0200 13 J{ED
2300 0400 J{g& > 2100 3100 ° A& ”’%x
2300 4000 A{h i 1100 2100 A !&%
0300 2400 n’m 3 0100 0100 > ﬁ’%
2000 0340 Jgﬂ“ A 3000 3000 ° “?E
2000 4300 @ A ° 2000 2000 4 Jﬁ
2000 3040 3{}}] g°° 1000 1000 A Jif“
0000 2340 J}% eooo 0000 0000 % ﬁé

And the final column shows the binary tree that represents the colex forest; it
also happens to represent the forest in column 4, but by links to left sibling and
right child instead of to left child and right sibling. This final column provides an
interesting connection between nested parentheses and binary trees, so it gives
us some insight into why Algorithm B is valid (see exercise 19).
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*Gray codes for trees. Our previous experiences with other combinatorial
patterns suggest that we can probably generate parentheses and trees by making
only small perturbations to get from one instance to another. And indeed, there
are at least three very nice ways to achieve this goal.

Consider first the case of nested parentheses, which we can represent by
the sequences 2122 ...z, that satisfy condition (8). A “near-perfect” way to
generate all such combinations, in the sense of Section 7.2.1.3, is one in which
we run through all possibilities in such a way that some component z; changes
by +1 or +2 at each step; this means that we get from each string of parentheses
to its successor by simply changing either () <+ )( or ()) < ))( in the vicinity
of the jth left parenthesis. Here’s one way to do the job when n = 4:

1357, 1356, 1346, 1345, 1347, 1247, 1245, 1246, 1236, 1234, 1235, 1237, 1257, 1256.

And we can extend any solution for n — 1 to a solution for n, by taking each
pattern zyz5 ...z, _1 and letting z,, run through all of its legal values using endo-
order or its reverse as in 7.2.1.3-(45), proceeding downward from 2n—2 and then
up to 2n — 1 or vice versa, and omitting all elements that are < z,,_;.

Algorithm N (Near-perfect nested parentheses). This algorithm visits all n-
combinations 27 ...z, of {1,...,2n} that represent the indices of left parentheses
in a nested string, changing only one index at a time. The process is controlled
by an auxiliary array g; ...g, that represents temporary goals.

N1. [Initialize.] Set z; <= 2j — 1 and g; <~ 2j —2for 1 < j <n.
N2. [Visit.] Visit the n-combination z; ...z,. Then set j + n.

N3. [Find j.] If z; = g, set g; < g; ® 1 (thereby complementing the least
significant bit), j + j — 1, and repeat this step.

N4. [Home stretch?] If g; — z; is even, set z; < z; + 2 and return to N2.

N5. [Decrease or turn.] Set t < z; — 2. If t < 0, terminate the algorithm.
Otherwise, if ¢t < zj_1, set t < t + 2[t < z;_1] + 1. Finally set z; < t and
go back to N2. 1

[A somewhat similar algorithm was introduced by D. Roelants van Baronaigien in
J. Algorithms 35 (2000), 100 107; see also Xiang, Ushijima, and Tang, Inf. Proc.
Letters 76 (2000), 169-174. F. Ruskey and A. Proskurowski, in J. Algorithms
11 (1990), 68-84, had previously shown how to construct perfect Gray codes
for all tables z; ...z, when n > 4 is even, thus changing some z; by only *1
at every step; but their construction was quite complex, and no known perfect
scheme is simple enough to be of practical use. Exercise 48 shows that perfection
is impossible when n > 5 is odd.]

If our goal is to generate linked tree structures instead of strings of paren-
theses, perfection of the z-index changes is not good enough, because simple
swaps like () <> ) ( don’t necessarily correspond to simple link manipulations. A
far better approach can be based on the “rotation” algorithms by which we were
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able to keep search trees balanced in Section 6.2.3. Rotation to the left changes
a binary tree

(4) (B)
from ©) @ to @ (w)? (12)
DR ) () W

thus the corresponding forest is changed

bom @ N dE@' »
()

“Node @ becomes the leftmost child of its right sibling.” Rotation to the right
is, of course, the opposite transformation: “The leftmost child of becomes
its left sibling.” The vertical line in (12) stands for a connection to the overall
context, either a left link or a right link or the pointer to the root. Any or all
of the subtrees a, p, or w may be empty. The ‘---’ in (13), which represents
additional siblings at the left of the family containing , might also be empty.

The nice thing about rotations is that only three links change: The right
link from @, the left link from , and the pointer from above. Rotations
preserve inorder of the binary tree and postorder of the forest. (Notice also that
the binary-tree form of a rotation corresponds in a natural way to an application
of the associative law

(ap)w = a(pw) (14)
in the midst of an algebraic formula.)

A simple scheme very much like the classical reflected Gray code for n-tuples
(Algorithm 7.2.1.1H) and the method of plain changes for permutations (Algo-
rithm 7.2.1.2P) can be used to generate all binary trees or forests via rotations.
Consider any forest on n — 1 nodes, with k roots , ceey . Then there are
k+ 1 forests on n nodes that have the same postorder sequence on the first n — 1
nodes but with node @ last; for example, when k& = 3 they are

328° 882 8. o

obtained by successively rotating . and . to the left. Moreover, at
the extremes when is either at the right or at the top, we can perform
any desired rotation on the other n — 1 nodes, because node @ isn’t in the
way. Therefore, as observed by J. M. Lucas, D. Roelants van Baronaigien, and
F. Ruskey [J. Algorithms 15 (1993), 343-366], we can extend any list of the
(n — 1)-node trees to a list of all n-node trees by simply letting node @ roam
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back and forth. A careful attention to low-level details makes it possible in fact
to do the job with remarkable efficiency:

Algorithm L (Linked binary trees by rotations). This algorithm generates all
pairs of arrays lgly ...l, and rq...7, that represent left links and right links of
n-node binary trees, where ly is the root of the tree and the links (Ix,7x) point
respectively to the left and right subtrees of the kth node in symmetric order.
Equivalently, it generates all n-node forests, where [ and ry denote the left child
and right sibling of the kth node in postorder. Each tree is obtained from its pre-

decessor by doing a single rotation. Two auxiliary arrays ky ... k,, and 0qoy ... 0,,

representing backpointers and directions, are used to control the process.

L1. [Initialize.]| Set l; - 0, rj <~ j+ 1, kj < j—1,and o < —1 for 1 < j < n;
also set lg «— 09+ 1,1, + r, + 0, k, + n—1,and o, « —1.

L2. [Visit.] Visit the binary tree or forest represented by lgly ...l, and ry...r,.
Then set j + n and p < 0.

L3. [Find j.] If 0; > 0, set m < I; and go to L5 if m # 0. If 0; < 0, set m < k;;
then go to L4 if m # 0, otherwise set p < j. If m = 0 in either case, set
0j < —0j, j < j — 1, and repeat this step.

L4. [Rotate left.] Set r,, < I;, l; < m, © < ky,, and k; < z. If x = 0, set
I, < j, otherwise set r; < j. Return to L2.

L5. [Rotate right.] Terminate if j = 0. Otherwise set I; <= 7, 7, < 7, kj < m,
z < kp. If x =0, set I, < m, otherwise set r, <~ m. Go back to L2. 1|

Exercise 38 proves that Algorithm L needs only about 9 memory references per
tree generated; thus it is almost as fast as Algorithm B. (In fact, two memory
references per step could be saved by keeping the three quantities o,, I, and k,
in registers. But of course Algorithm B can be speeded up too.)

Table 3 shows the sequence of binary trees and forests visited by Algorithm L
when n = 4, with some auxiliary tables that shed further light on the process.
The permutation q;g2g3q4 lists the nodes in preorder, when they have been
numbered in postorder of the forest (symmetric order of the binary tree); it
is the inverse of the permutation pipsopsps in Table 1. The “coforest” is the
conjugate (right-to-left reflection) of the forest; and the numbers ujusuzuy are
its scope coordinates, analogous to s1sss3s4 in Table 2. A final column shows
the so-called “dual forest.” The significance of these associated quantities is
explored in exercises 11-13, 19, 24, 26, and 27.

The links lply ...l, and rq...7r, in Algorithm L and Table 3 are not com-
parable to the links Iy ...l, and r;...7, in Algorithm B and Table 2, because
Algorithm L preserves inorder/postorder while Algorithm B preserves preorder.
Node k in Algorithm L is the kth node from left to right in the binary tree, so
lp is needed to identify the root; but node k in Algorithm B is the kth node in
preorder, so the root is always node 1 in that case.

Algorithm L has the desired property that only three links change per step;
but we can actually do even better in this respect if we stick to the preorder
convention of Algorithm B. Exercise 25 presents an algorithm that generates
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Table 3
BINARY TREES AND FORESTS GENERATED BY ROTATIONS WHEN n = 4

GENERATING ALL TREES

l011l2l3l4 1727374

10000

10003

10002

40001

40021

10023

10020

30010

40013

40123

30120

20100

20103

40102

2340

2400

4300

2300

3000

4000

3040

2040

2000

0000

0040

0340

0400

0300

kikoksks

0123

0122

0121

0120

0110

0111

0113

0103

0100

0000

0003

0023

0022

0020

binary tree forest qiq2qsqa coforest wujusuzus

N2 DN D Y S A W

o000

eog

1234

1243

1423

4123

4132

1432

1324

3124

4312

4321

3214

2134

2143

4213

o000

Zeo

0000

1000

2000

3000

3100

2100

0100

0200

3200

3210

0210

0010

1010

3010

dual

%
A

o000

ozo

all linked binary trees or forests by changing just two links per step, preserving
preorder. One link becomes zero while another becomes nonzero. This prune-
and-graft algorithm, which is the third of the three “very nice Gray codes for
trees” promised above, has only one downside: Its controlling mechanism is a bit
trickier than that of Algorithm L, so it needs about 40% more time to do the cal-
culations when we include the cost of deciding what links to change at each step.
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The number of trees. There’s a simple formula for the total number of outputs
that are generated by Algorithms P, B, N, and L, namely

1 2n 2n 2n
C g g — K
" n—|—1<n) (n) <n71>7 (15)
we proved this fact in Eq. 2.3.4.4—(14). The first few values are
n=0123 4 5 6 7 8 9 10 11 12 13
Ch=11 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900

and they are called Catalan numbers because of some influential papers written
by Eugene Catalan [Journal de math. 3 (1838), 508-515; 4 (1839), 95-99].
Stirling’s approximation tells us the asymptotic value,

4n 9 145 1155 36939 _5
/7 n3/2 ( ~ 80 T 13802 T0oan? T 3270808 T O )>; (16)
in particular we can conclude that
2
Cg;’“ _ 4%(1+%+0(%)) when [k] < 2. (17)
(And of course C,,_1/C,, is equal to (n+1)/(4n—2), exactly, by (15).) In Section
2.3.4.4 we also derived the generating function

C, =

1—-+v1—4z

C(z) = Co+Crz+Cr2® +C32° + - = 5

(18)

and proved the important formula

" C() = r (271—}-7"71) _ (2n+r71>7<2n+r71>; (10)

n+r n n n—1

see the answer to exercise 2.3.4.4 33, and CMath equation (5.70).

These facts give us more than enough information to analyze Algorithm P,
our algorithm for lexicographic generation of nested parentheses. Step P2 is
obviously performed C,, times; then P3 usually makes a simple change and goes
back to P2. How often do we need to go on to step P47 Easy: It’s the number
of times that step P2 finds m = 2n — 1. And m is the location of the rightmost
‘(’, so we have m = 2n — 1 in exactly C,,_1 cases. Thus the probability that
P3 sets m < m — 1 and returns immediately to P2 is (C,, — Cp,_1)/C, = 3/4,
by (17). On the other hand when we do get to step P4, suppose we need to set
a; < )7 and aj < ‘C exactly h — 1 times in that step. The number of cases
with A > z is the number of nested strings of length 2n that end with z trivial
pairs () ... ), namely C,,_,. Therefore the total number of times the algorithm
changes a; and ay, in step P4 is

_ Cnfl Cn72 Cl
Cn71+0n72+"'+cl — C’n,( Cn + Cn + + Cn)
1 2 1
= — 1 —_ —_
30n< +n+0<n2)>’ (20)

by (17); we have proved the claim for efficiency made earlier.

10
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For a deeper understanding it is helpful to study the recursive structure
underlying Algorithm P, as expressed in (5). The sequences 4,, in that formula
have Cp, elements, where

Cpg = Cp(g-1) T Clp-1)q, H0<p<q#0; Coo = 1; (21)

and Cpq = 0if p < 0 or p > ¢q. Thus we can form the triangular array

Coo 1

Co1 Cu 11

Co2 Cia Cx 1 2 2

Cos Ciz3 Caz Cs =13 5 5 (22)

Cos Cis Cay C3q Cy 1 4 9 14 14

005 015 025 C35 045 055 1 5 14 28 42 42

Cos Cig Cos C36 Cys Csg Cegg 1 6 20 48 90 132 132

in which every entry is the sum of its nearest neighbors above and to the left;
the Catalan numbers C,, = C},,, appear on the diagonal. The elements of this
triangle, which themselves have a venerable pedigree going back to de Moivre
in 1711, are called “ballot numbers,” because they represent sequences of p + ¢
ballots for which a running tabulation never favors a candidate with p votes over
an opponent who receives q votes. The general formula

C q*p+1<p+q) _ (p+q>7<p+q> (23)
e g+1 \ p p p-1

can be proved by induction or in a variety of more interesting ways; see exercise 39
and the answer to exercise 2.2.1-4. Notice that, because of (19), we have

Cpg = [!]C(2)77PF. (24)

When n = 4, Algorithm P essentially describes the recursion tree

because the specification (5) implies that Ay, = (A,—_1), and that
Apg =P (Ap-1)p; )P Ap-1)(p+1)> Y1 Ap-1)(p+2);
oy (Ap_1)q when 0 <p <gq. (26)
The number of leaves below node (pg) in this recursion tree is Cpq, and node

appears exactly C(,_q)(n—1-p) times on level n — 1 — p; therefore we must have

Z C(n,q)(n,l,p) Cpq = Ch, for 0 < p < mn. (27)
q

The fourteen leaves of (25), from left to right, correspond to the fourteen rows
of Table 1, from top to bottom. Notice that the entries in column cjcaczey of
that table assign the respective numbers 0000, 0001, 0010, ..., 0123 to the leaves

11
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of (25), in accord with “Dewey decimal notation” for tree nodes (but with indices
starting at O instead of 1, and with an extra 0 tacked on at the beginning).

A worm that crawls from one leaf to the next, around the bottom of the
recursion tree, will ascend and descend h levels when h of the coordinates ¢y ... ¢,
are changed, namely when Algorithm P resets the values of h ‘(’s and h ‘)’s.
This observation makes it easy to understand our previous conclusion that the
condition h > x occurs exactly C,,_, times during a complete crawl.

Yet another way to understand Algorithm P arises when we contemplate an
infinite directed graph that is suggested by the recursion (21):

Clearly Cp4 is the number of paths from to in this digraph, because
of (21). And indeed, every string of parentheses in A,, corresponds directly to
such a path, with ‘(" signifying a step to the left and ‘)’ signifying a step upward.
Algorithm P explores all such paths systematically by trying first to go upward
when extending a partial path.

Therefore it is easy to determine the Nth string of nested parentheses that
is visited by Algorithm P, by starting at node @n) and doing the following
calculation when at node (pg): If p = ¢ = 0, stop; otherwise, if N < Cp(q-1),
emit ‘)’, set ¢ < ¢ — 1, and continue; otherwise set N <— N — Cp,_1), emit
‘(’, set p + p— 1, and continue. The following algorithm [Frank Ruskey, Ph.D.
thesis (University of California at San Diego, 1978), 16 24] avoids the need to
precompute the Catalan triangle by evaluating C},, on the fly as it goes:

Algorithm U (Unrank a string of nested parentheses). Given n and N, where
1 < N < C,, this algorithm computes the Nth output ay ... as, of Algorithm P.

U1l. [Initialize.] Set ¢ « nand m «+ p + c«+ 1. Whilep < n,set p+ p+1
and ¢ <+ ((4p — 2)e)/(p + 1).
U2. [Done?] Terminate the algorithm if ¢ = 0.

U3. [Go up?] Set ¢ < ((¢+1)(¢g—p)c)/((¢+p)(g—p+1)). (At this point we

have 1 <N <c¢=Cpgand ¢/ = Cpq_1y.) N < ¢, set g q—1,c+ ¢,
G < ‘), m < m+ 1, and return to U2.

U4d. [Goleft] Set p+p—1,c+c—, N« N, am <« ‘C,m<+ m+1,
and return to U3. |

Random trees. We could choose a string ajas...as, of nested parentheses
at random by simply applying Algorithm U to a random integer N between 1

12
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and C,,. But that idea isn’t really very good, when n is bigger than 32 or so, be-
cause C), can be quite large. A simpler and better way, proposed by D. B. Arnold
and M. R. Sleep [ACM Trans. Prog. Languages and Systems 2 (1980), 122-128],
is to generate a random “worm walk” by starting at @n) in (28) and repeatedly
taking leftward or upward branches with the appropriate probabilities. The
resulting algorithm is almost the same as Algorithm U, but it deals only with
nonnegative integers less than n? +n + 1:

Algorithm W (Uniformly random strings of nested parentheses). This algo-
rithm generates a random string ajas ... as, of properly nested (s and )s.

W1. [Initialize.] Set p < ¢ + n and m + 1.
W2. [Done?] Terminate the algorithm if ¢ = 0.

W3. [Go up?] Let X be a random integer in the range 0 < X < (¢+p)(g—p+1).
X< (g+1)(g—p),set g qg—1, am < ’, m + m+ 1, and return
to W2.

W4. [Go left.] Set p+p—1, ayp < (", m < m+ 1, and return to W3. |

A worm’s walk can be regarded as a sequence wowy . .. ws,, where w,, is the
worm’s current depth after m steps. Thus, wg = 0; w,, = w,,_1 + 1 when a,, =
‘C; Wy = W1 —1 when a,, = *)’; and we have w,, > 0, wa,, = 0. The sequence
wowy . .. wzg corresponding to (1) and (2) is 0121012321234345432321232343210.
At step W3 of Algorithm W we have g+ p=2n+1—m and ¢ — p = Wy, _1.

Let’s say that the outline of a forest is the path that runs through the points
(m, —wy,) in the plane, for 0 < m < 2n, where wpw; ... ws, is the worm walk
corresponding to the associated string aq ... as, of nested parentheses. Figure 36
shows what happens if we plot the outlines of all 50-node forests and darken each
point according to the number of forests that lie above it. For example, wq is
always 1, so the triangular region at the upper left of Fig. 36 is solid black.
But wy is either 0 or 2, and 0 occurs in Cyg9 ~ Csp/4 cases; so the adjacent
diamond-shaped area is a 75% shade of gray. Thus Fig. 36 illustrates the shape
of a random forest, analogous to the shapes of random partitions that we’'ve seen
in Figs. 30, 31, and 35 of Sections 7.2.1.4 and 7.2.1.5.

Fig. 36. The shape of a random 50-node forest.

Of course we can'’t really draw the outlines of all those forests, since there
are Cyo = 1,978,261,657,756,160,653,623,774,456 of them. But with the help of
mathematics we can pretend that we’ve done so. The probability that wa,, = 2k
is C(m,k)(erk)C(n,m,k)(n,erk)/Cn, because there are C(p_k)(m+r) Ways to
start with m + &k (s and m — k )s, and C,_py—k)(n—m+k) Ways to finish with

13
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Fig. 37. Locations of the internal nodes in a random 50-node binary tree.

n—(m+k) (sand n — (m — k) )s. By (23) and Stirling’s approximation, this
probability is

it ) (o) /)

= g e (o () vo(R)

when m = 0n and n — oo, for 0 < § < 1. The average value of ws,, is worked
out in exercise 57; it comes to

2m\ /2n—2m
(4m("*m)+")< )( - ) 91— 6)
MZANTM 7 g = 422D 140 Y?), (30)
(2n> T
n
n
and it is illustrated for n = 50 as a curved line in Fig. 36.

When n is large, worm walks approach the so-called “Brownian excur-
sion,” which is an important concept in probability theory. See, for example,
Paul Lévy, Processus Stochastiques et Mouvement Brownien (1948), 225-237;
Guy Louchard, J. Applied Prob. 21 (1984), 479-499, and BIT 26 (1986), 17—
34; David Aldous, Electronic Communications in Probability 3 (1998), 79 90;
Jon Warren, Electronic Communications in Probability 4 (1999), 25 29; J.-F.
Marckert, Random Structures and Algorithms 24 (2004), 118-132.

What is the shape of a random binary tree? This question was investigated
by Frank Ruskey in SIAM J. Algebraic and Discrete Methods 1 (1980), 43-50,
and the answer turns out to be quite interesting. Suppose we draw a binary tree

14
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Fig. 38. Locations of the external nodes in a random 50-node binary tree.

as in (4), with the mth internal node at horizontal position m when the nodes
are numbered in symmetric order. If all of the 50-node binary trees are drawn
in this way and superimposed on each other, we get the distribution of node
positions shown in Fig. 37. Similarly, if we number the external nodes from 0
to n in symmetric order and place them at horizontal positions .5, 1.5, ..., n+.5,
the “fringes” of all 50-node binary trees form the distribution shown in Fig. 38.
Notice that the root node is most likely to be either number 1 or number n, at
the extreme left or right; it is least likely to be either |(n +1)/2] or [(n+1)/2],
in the middle.

As in Fig. 36, the smooth curves in Figs. 37 and 38 show the average node
depths; exact formulas are derived in exercises 58 and 59. Asymptotically, the
average depth of external node m is

0(1—0)n

™

1
8 71+O(—), when m = 6n and n — oo, (31)

vn
for all fixed ratios 6 with 0 < § < 1, curiously like (30); and the average depth
of internal node m is asymptotically the same, but with ‘—1’ replaced by ‘—3’.

Thus we can say that the average shape of a random binary tree is approximately
the lower half of an ellipse, n units wide and 4\/n/m levels deep.

Three other noteworthy ways to generate random encodings of forests are
discussed in exercises 60, 61, and 62. They are less direct than Algorithm W,
yet they have substantial combinatorial interest. The first one begins with an
arbitrary random string containing n (s and n )s, not necessarily nested; each
of the (2:) possibilities is equally likely. It then proceeds to convert every such
string into a sequence that is properly nested, in such a way that exactly n + 1

15
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strings map into each final outcome. The second method is similar, but it starts
with a sequence of n + 1 0s and n 2s, mapping them in such a way that exactly
2n + 1 original strings produce each possible result. And the third method
produces each output from exactly n of the bit strings that contain exactly
n —1 1s and n+ 1 0s. In other words, the three methods provide combinatorial
proofs of the fact that C,, is simultaneously equal to (2:)/(n+ 1), (2":1)/(2n+ 1),
and (,>",)/n. For example, when n = 4 we have 14 = 70/5 = 126/9 = 56/4.

If we want to generate random binary trees directly in linked form, we can
use a beautiful method suggested by J. L. Rémy [RAIRO Informatique Théorique
19 (1985), 179 195]. His approach is particularly instructive because it shows
how random Catalan trees might actually occur “in nature,” using a deliciously
simple mechanism based on a classical idea of Olinde Rodrigues [J. de Math.
3 (1838), 549]. Let us suppose that our goal is to obtain not only an ordinary
n-node binary tree, but a decorated binary tree, namely an extended binary tree
in which the external nodes have been labeled with the numbers 0 to n in some
order. There are (n + 1)! ways to decorate any given binary tree; so the total
number of decorated binary trees with n internal nodes is

D, = (n+1)C, = % = (4n —2)D,,_1. (32)

Rémy observed that there are 4n — 2 easy ways to build a decorated tree of
order n from a given decorated tree of order n — 1: We simply choose any one
of the 2n — 1 nodes (internal or external) in the given tree, say z, and replace it

by either
@ O

or : (33)
. .
thus inserting a new internal node and a new leaf while moving = and its
descendants (if any) down one level.
For example, here’s one way to construct a decorated tree of order 6:

Notice that every decorated tree is obtained by this process in exactly one way,
because the predecessor of each tree must be the tree we get by striking out the
highest-numbered leaf. Therefore Rémy’s construction produces decorated trees
that are uniformly random; and if we ignore the external nodes, we get random
binary trees of the ordinary, undecorated variety.

One appealing way to implement Rémy’s procedure is to maintain a table of
links LoLj ... Lo, where external (leaf) nodes have even numbers and internal
(branch) nodes have odd numbers. The root is node Lg; the left and right
children of branch node 2k — 1 are respectively Log_; and Log, for 1 < k < n.
Then the program is short and sweet:

16
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Algorithm R (Growing a random binary tree). This algorithm constructs the
linked representation LgLq ... Loy of a uniformly random binary tree with N
internal nodes, using the conventions explained above.

R1. [Initialize.] Set n « 0 and Lg « 0.

R2. [Done?] (At this point the links LqLj ... Ly, represent a random n-node
binary tree.) Terminate the algorithm if n = N.

R3. [Advance n.] Let X be a random integer between 0 and 4n + 1, inclusive.
Set n «— n+1,b+ Xmod2, k + |X/2|, Lan_p < 2n, Loy 144 < Ly,
Ly < 2n — 1, and return to R2. |

*Chains of subsets. Now that we’ve got trees and parentheses firmly in mind,
it’s a good time to discuss the Christmas tree pattern,* which is a remarkable
way to arrange the set of all 2™ bit strings of length n into ( ny/l%) rows and n+1
columns, discovered by de Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk
[Nieuw Archief voor Wiskunde (2) 23 (1951), 191-193].

The Christmas tree pattern of order 1 is the single row ‘0 1’; and the pattern

of order 2 is
10

00 01 11 ° (35)
In general we get the Christmas tree pattern of order n + 1 by taking every row
‘o1 09 ... og of the order-n pattern and replacing it by the two rows
o0 ... 040
010 o011 ... 0511 o041 ° (36)

(The first of these rows is omitted when s = 1.)
Proceeding in this way, we obtain for example the pattern of order 8 that
appears in Table 4 on the next page. It is easy to verify by induction that

i) Each of the 2" bit strings appears exactly once in the pattern.
ii) The bit strings with & 1s all appear in the same column.
iii) Within each row, consecutive bit strings differ by changing a 0 to a 1.

If we think of the bit strings as representing subsets of {1,...,n}, with 1-bits
to indicate the members of a set, property (iii) says that each row represents a
chain in which each subset is covered by its successor. In symbols, using the
notation of Section 7.1, every row o1 03 ... 05 has the property that o; C 044
and v(ojy1) =v(oj)+1for 1 <j<s.

Properties (i) and (ii) tell us that there are exactly () elements in column k,
if we number the columns from 0 to n. This observation, together with the fact
that each row is centered among the columns, proves that the total number of
rows is maXo<k<n (Z) = (Ln72J)’ as claimed. Let us call this number M,,.

* This name was chosen for sentimental reasons, because the pattern has a general shape
not unlike that of a festive tree, and because it was the subject of the author’s ninth annual
“Christmas Tree Lecture” at Stanford University in December 2002.

17



18 COMBINATORIAL ALGORITHMS (F4A)

Table 4

7.2.1.6

THE CHRISTMAS TREE PATTERN OF ORDER 8

10000000

01000000

00100000

00010000

00001000

00000100
00000010
00000000 00000001

10100000

10010000

10001000

10000100
10000010
10000001

11000000

01010000

01001000

01000100
01000010
01000001

01100000

00101000

00100100
00100010
00100001

00110000

00010100
00010010
00010001

00011000
00001010
00001001
00001100
00000101
00000110
00000011

10101000

10100100
10100010
10100001

10110000

10010100
10010010
10010001

10011000
10001010
10001001
10001100
10000101
10000110
10000011

11001000

11000100
11000010
11000001

11010000

01010100
01010010
01010001

01011000
01001010
01001001
01001100
01000101
01000110
01000011

11100000

01100100
01100010
01100001

01101000
00101010
00101001
00101100
00100101
00100110
00100011

01110000
00110010
00110001
00110100
00010101
00010110
00010011
00111000
00011001
00011010
00001011
00011100
00001101
00001110
00000111

10101010
10101001
10101100
10100101
10100110
10100011
10110010
10110001
10110100
10010101
10010110
10010011
10111000
10011001
10011010
10001011
10011100
10001101
10001110
10000111
11001010
11001001
11001100
11000101
11000110
11000011
11010010
11010001
11010100
01010101
01010110
01010011
11011000
01011001
01011010
01001011
01011100
01001101
01001110
01000111
11100010
11100001
11100100
01100101
01100110
01100011
11101000
01101001
01101010
00101011
01101100
00101101
00101110
00100111
11110000
01110001
01110010
00110011
01110100
00110101
00110110
00010111
01111000
00111001
00111010
00011011
00111100
00011101
00011110
00001111

10101011

10101101
10101110
10100111

10110011

10110101
10110110
10010111

10111001
10111010
10011011
10111100
10011101
10011110
10001111

11001011

11001101
11001110
11000111

11010011

11010101
11010110
01010111

11011001
11011010
01011011
11011100
01011101
01011110
01001111

11100011

11100101
11100110
01100111

11101001
11101010
01101011
11101100
01101101
01101110
00101111

11110001
11110010
01110011
11110100
01110101
01110110
00110111
11111000
01111001
01111010
00111011
01111100
00111101
00111110
00011111

10101111

10110111

10111011

10111101
10111110
10011111

11001111

11010111

11011011

11011101
11011110
01011111

11100111

11101011

11101101
11101110
01101111

11110011

11110101
11110110
01110111

11111001
11111010
01111011
11111100
01111101
01111110
00111111

10111111

11011111

11101111

11110111

11111011

11111101
11111110
01111111 11111111

18
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A set C of bit strings is called a clutter, or an “antichain of subsets,” if
its bit strings are incomparable in the sense that o € 7 whenever o and 7 are
distinct elements of C. A famous theorem of Emanuel Sperner [Math. Zeitschrift
27 (1928), 544 548] asserts that no clutter on {1,...,n} can have more than
M, elements; and the Christmas tree pattern provides a simple proof, because
no clutter can contain more than one element of each row.

Indeed, the Christmas tree pattern can be used to show that much more
is true. Let’s note first that exactly (Z) — (kfl) rows of length n + 1 — 2k are
present, for 0 < k < n/2, because there are exactly (:) elements in column k.
For example, Table 4 has one row of length 9, namely the bottom row; it also
has (?) — (S) = 7 rows of length 7, (g) — (?) = 20 rows of length 5, (g) — (8) =28

2
of length 3, and (i) - (2) = 14 of length 1. Moreover, these numbers () — (,",)
appear in the Catalan triangle (22), because they’re equal to Cr(n—r) according

to Eq. (23).

Further study reveals that this Catalan connection is not simply a co-
incidence; nested parentheses are, in fact, the key to a deeper understanding
of the Christmas tree pattern, because the theory of parentheses tells us where
an arbitrary bit string fits into the array. Suppose we use the symbols ( and )
instead of 1 and 0, respectively. Any string of parentheses, nested or not, can be
written uniquely in the form

ag) ... ap_1) oy (apyr ... (ay (37)

for some p and ¢ with 0 < p < g, where the substrings «y, ..., a4 are properly
nested and possibly empty; exactly p of the right parentheses and g — p of the
left parentheses are “free” in the sense that they have no mate. For example,

the string
YO OO CCCCCO) OO ) (38)

hasp=5,¢=12, a0 =€, a1 = (OQO)OQ, a2 = O, a3 =¢€, ..., a1 = (O). In
general, the string (37) is part of a chain of length ¢ + 1,

ap) .. g1 g, @g) ... ag_2) g1 (g, ..., agla ... (ag, (39)

in which we start with g free )s and change them one by one into free (s. Every
row of the Christmas tree pattern is obtained in exactly this manner, but using

1 and 0 instead of ( and ); for if the chain o7 ... o5 corresponds to the nested
strings ap, ..., as_1, its successor chains in (36) correspond respectively to
ag, ..., as_3, s 2(as_1) and to ag, ..., @s_3, a5 2, as_1, €. [See Curtis

Greene and Daniel J. Kleitman, J. Combinatorial Theory A20 (1976), 80 88.]

Notice furthermore that the rightmost elements in each row of the pattern —
such as 10101010, 10101011, 10101100, 10101101, ..., 11111110, 11111111 in
the case n = 8 —are in lexicographic order. Thus, for example, the fourteen
rows of length 1 in Table 4 correspond precisely to the fourteen strings of
nested parentheses in Table 1. This observation makes it easy to generate the
rows of Table 8 sequentially from bottom to top, with a method analogous to
Algorithm P; see exercise 77.
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Let f(z1,...,%,) be any monotone Boolean function of n variables. If o =
aj...an is any bit string of length n, we can write f(o) = f(a1,...,a,) for
convenience. Any row o7 ... o4 of the Christmas tree pattern forms a chain, so
we have

0 < flo) < -+ < f(os) < 1. (40)

In other words, there is an index ¢ such that f(o;) =0 for j < t and f(o;) =1
for j > t; we will know the value of f(o) for all 2" bit strings o if we know the
indices t for each row of the pattern.

Georges Hansel [Comptes Rendus Acad. Sci. (A) 262 (Paris, 1966), 1088—
1090] noticed that the Christmas tree pattern has another important property:
If 0.1, 0;, and 041 are three consecutive entries of any row, the bit string

o = 0j-1©0; ® i (41)

lies in a previous row. In fact, 0; lies in the same column as o, and it satisfies

oj-1 C 0} C 0j41; (42)
it is called the relative complement of ¢; in the interval (o;_1..0,41). Hansel’s
observation is easy to prove by induction, because of the recursive rule (36) that
defines the Christmas tree pattern. He used it to show that we can deduce the
values of f(co) for all o by actually evaluating the function at relatively few well-
chosen places; for if we know the value of f(07}), we will know either f(o;_1) or
f(oj+1) because of relation (42).

Algorithm H (Learning a monotone Boolean function). Let f(x1,...,x,) be a
Boolean function that is nondecreasing in each Boolean variable, but otherwise
unknown. Given a bit string o of length n, let 7(o) be the number of the row
in which o appears in the Christmas tree pattern, where 1 < r(o) < M,. If
1 <m < M, let s(m) be the number of bit strings in row m; also let x(m, k) be
the bit string in column k of that row, for (n+1—s(m))/2 < k < (n—1+s(m))/2.
This algorithm determines the sequence of threshold values t(1), ¢(2), ..., t(My,)
such that

flo)y=1 <« wv(o)2t(r(0)), (43)
by evaluating f at no more than two points per row.
H1. [Loop on m.] Perform steps H2 through H4 for m =1, ..., M,; then stop.
H2. [Begin row m.] Set a « (n+ 1 — s(m))/2 and z + (n — 1+ s(m))/2.

H3. [Do a binary search.] If z < a+1, go to H4. Otherwise set k + L(a+z)/2J ,
and

Ifk > t(r(a)), set z < k; otherwise set a < k. Repeat step H3.

H4. [Evaluate.] If f(x(m,a)) = 1, set t(m) < a; otherwise, if a = z, set
t(m) < a+ 1; otherwise set t(m) + z+ 1 — f(x(m,2)). 1
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Hansel’s algorithm is optimum, in the sense that it evaluates f at the fewest
possible points in the worst case. For if f happens to be the threshold function

flo) = [v(o) > n/2], (45)

any valid algorithm that learns f on the first m rows of the Christmas tree
pattern must evaluate f(o) in column [n/2] of each row, and in column |n/2|+1
of each row that has size greater than 1. Otherwise we could not distinguish f
from a function that differs from it only at an unexamined point. [See V. K.
Korobkov, Problemy Kibernetiki 13 (1965), 5-28, Theorem 5.]

Oriented trees and forests. Let’s turn now to another kind of tree, in which
the parent-child relationship is important but the order of children in each family
is not. An oriented forest of n nodes can be defined by a sequence of pointers
P1-..Pn, where p; is the parent of node j (or p; = 0 if j is a root); the directed
graph on vertices {0,1,...,n} with arcs {j — p; | 1 < j < n} will have no
oriented cycles. An oriented tree is an oriented forest with exactly one root.
(See Section 2.3.4.2.) Every n-node oriented forest is equivalent to an (n 4 1)-
node oriented tree, because the root of that tree can be regarded as the parent of
all the roots of the forest. We saw in Section 2.3.4.4 that there are A,, oriented
trees with n nodes, where the first few values are

n=12345 6 7 8 9 10 11 12 13 14

; 6
A, =112 4 9 20 48 115 286 719 1842 4766 12486 32973 ' (46)

asymptotically, A,, = ca™n3/2 +O(a"n 5/?) where a ~ 2.9558 and ¢ ~ 0.4399.
Thus, for example, only 9 of the 14 forests in Table 1 are distinct when we ignore
the horizontal left-to-right ordering and consider only the vertical orientation.

Every oriented forest corresponds to a unique ordered forest if we sort the
members of each family appropriately, using an ordering on trees introduced
by H. I. Scoins [Machine Intelligence 3 (1968), 43-60]: Recall from (11) that
ordered forests can be characterized by their level codes ¢; ... c,, where node j
in preorder appears on level c;. An ordered forest is called canonical if the level
code sequences for the subtrees in each family are in nonincreasing lexicographic
order. For example, the canonical forests in Table 1 are those whose level codes
c1caczeq are 0000, 0100, 0101, 0110, 0111, 0120, 0121, 0122, and 0123. The level
sequence 0112 is not canonical, because the subtrees of the root have respective
level codes 1 and 12; the string 1 is lexicographically less than 12. We can readily
verify by induction that the canonical level codes are lexicographically largest,
among all ways of reordering the subtrees of a given oriented forest.

T. Beyer and S. M. Hedetniemi [SICOMP 9 (1980), 706 712] noticed that
there is a remarkably simple way to generate oriented forests if we visit them in
decreasing lexicographic order of the canonical level codes. Suppose ¢y ...c¢, is
canonical, where ¢, > 0 and cx41 = - -+ = ¢, = 0. The next smallest sequence is
obtained by decreasing cy, then increasing ci1 ... ¢, to the largest levels consis-
tent with canonicity; and those levels are easy to compute. For if j = pg is the
parent of node k, we have c; = c; —1 < ¢; for j <1 <k, hence the levels¢; ... cx
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represent the subtree currently rooted at node j. To get the largest sequence of
levels less than ¢; ... ¢,, we therefore replace ¢, . . . ¢,, by the first n+1—k elements
of the infinite sequence (¢;...cx_1)> = ¢j...ck—1¢j...ck—1¢j ... (The effect
is to remove k from its current position as the rightmost child of j, then to
append new subtrees that are siblings of j, by cloning 7 and its descendants
as often as possible. This cloning process may terminate in the midst of the
sequence c;...cg—1, but that causes no difficulty because every prefix of a
canonical level sequence is canonical.) For example, to obtain the successor of
any sequence of canonical codes that ends with 23443433000000000, we replace
the final 3000000000 by 2344343234.

Algorithm O (Oriented forests). This algorithm generates all oriented forests
on n nodes, by visiting all canonical n-node forests in decreasing lexicographic
order of their level codes c¢; ...c,. The level codes are not computed explicitly,
however; each canonical forest is represented directly by its sequence of parent
pointers pq ...p,, in preorder of the nodes. To generate all oriented trees on
n + 1 nodes, we can imagine that node 0 is the root.

O1. [Initialize.] Set py + k — 1 for 0 < k < n. (In particular, this step makes
po nonzero, for use in termination testing; see step O4.)

O2. [Visit.] Visit the forest represented by parent pointers p; ...py,.
03. [Easy case?] If p,, > 0, set p,, < p,,, and return to step O2.

O4. [Find j and k.] Find the largest k¥ < n such that py # 0. Terminate the
algorithm if k£ = 0; otherwise set j < py and d + k — J.

O5. [Clone.] If py_q = p;, set py < p;; otherwise set py < pr_q + d. Return to
step O2 if k = n; otherwise set k < k + 1 and repeat this step. |

As in other algorithms we’ve been seeing, the loops in steps O4 and O5 tend to
be quite short; see exercise 88. Exercise 90 proves that slight changes to this
algorithm suffice to generate all arrangements of edges that form free trees.

Spanning trees. Now let’s consider the minimal subgraphs that “span” a
given graph. If G is a connected graph on n vertices, the spanning trees of G
are the subsets of n — 1 edges that contain no cycles; equivalently, they are the
subsets of edges that form a free tree connecting all the vertices. Spanning trees
are important in many applications, especially in the study of networks, so the
problem of generating all spanning trees has been treated by many authors. In
fact, systematic ways to list them all were developed early in the 20th century
by Wilhelm Feussner [Annalen der Physik (4) 9 (1902), 1304-1329], long before
anybody thought about generating other kinds of trees.

In the following discussion we will allow graphs to have any number of edges
between two vertices; but we disallow loops from a vertex to itself, because
self-loops cannot be part of a tree. Feussner’s basic idea was very simple, yet
eminently suited for calculation: If e is any edge of G, a spanning tree either
contains e or it doesn’t. Suppose e joins vertex u to vertex v, and suppose it is
part of a spanning tree; then the other n — 2 edges of that tree span the graph
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G / e that we obtain by regarding u and v as identical. In other words, the
spanning trees that contain e are essentially the same as the spanning trees of
the contracted graph G / e that results when we shrink e down to a single point.
On the other hand the spanning trees that do not contain e are spanning trees
of the reduced graph G\ e that results when we eliminate edge e. Symbolically,
therefore, the set S(G) of all spanning trees of G satisfies

S(G) = eS(G /) U S(G\e). (47)

Malcolm J. Smith, in his Master’s thesis at the University of Victoria (1999),
introduced a nice way to carry out the recursion (47) by finding all spanning trees
in a “revolving-door Gray code” order: Each tree in his scheme is obtained from
its predecessor by simply removing one edge and substituting another. Such
orderings are not difficult to find, but the trick is to do the job efficiently.

The basic idea of Smith’s algorithm is to generate S(G) in such a way that
the first spanning tree includes a given near tree, namely a set of n — 2 edges
containing no cycle. This task is trivial if n = 2; we simply list all the edges.
If n > 2 and if the given near tree is {e1,...,e, 2}, we proceed as follows:
Assume that G is connected; otherwise there are no spanning trees. Form G/ e;
and append e; to each of its spanning trees, beginning with one that contains
{ea,...,en—2}; notice that {es, ..., e,_2} is a near tree of G /ey, so this recursion
makes sense. If the last spanning tree found in this way for G /ey is f1 ... fn_2,
complete the task by listing all spanning trees for G \ e;, beginning with one
that contains the near tree {fi,..., fn_2}.

For example, suppose G is the graph

¢ =0 =@ (48)

with four vertices and five edges {p, ¢, r, s,t}. Starting with the near tree {p, ¢},
Smith’s procedure first forms the contracted graph

1,2) s
G/p = q]r =@ (49)
Bt
and lists its spanning trees, beginning with one that contains ¢q. This list might
be gs, qt, ts, tr, rs; thus the trees pgs, pqt, pts, ptr, and prs span G. The
remaining task is to list the spanning trees of

S
a\vr = 0 e, (50)
g @3yt
starting with one that contains {r, s}; they are rsq, rqt, gts.

A detailed implementation of Smith’s algorithm turns out to be quite in-
structive. As usual we represent the graph by letting two arcs u — v and v — u
correspond to each edge u — v, and we maintain lists of “arc nodes” to represent
the arcs that leave each vertex. We’ll need to shrink and unshrink the graph’s
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edges, so we will make these lists doubly linked. If a points to an arc node that
represents u — v, then

a @ 1 points to the “mate” of a, which represents v — u;
to is the “tip” of a, namely v (hence t,g1 = u);
i, 18 an optional name that identifies this edge (and equals i,q1);
ng points to the next element of u’s arc list;
Ppe points to the previous element of u’s arc list;
and [, is a link used for undeleting arcs as explained below.

The vertices are represented by integers {1,...,n}; and arc number v — 1 is a
header node for vertex v’s doubly linked arc list. A header node «a is recognizable
by the fact that its tip, t4, is 0. We let d,, be the degree of vertex v. Thus, for
example, the graph (48) might be represented by (di,ds, ds, ds) = (2,3, 3,2) and
by the following fourteen nodes of arc data:

a=0 1 2 3 4 5 6 7 8 9 10 11 12 13
t,=0 0 0 0 1 2 1 3 2 3 2 4 3 4
lg = p p q q r r s s t t
ng=5 4 6 10 9 7 8 0 131112 1 3 2
po=17 111312 1 0 2 5 6 4 3 9 10 8

The implicit recursion of Smith’s algorithm can be controlled conveniently
by using an array of arc pointers a;i...a,_1. At level [ of the process, arcs
aj ...a;_1 denote edges that have been included in the current spanning tree; a;
is ignored; and arcs a;yj . ..a,_1 denote edges of a near tree on the contracted
graph (...(G/a1)...)/a;_1 that should be part of the next spanning tree visited.

There’s also another array of arc pointers sj...s,_o, representing stacks
of arcs that have been temporarily removed from the current graph. The top
element of the stack for level [ is s;, and each arc a links to its successor, [,
(which is 0 at the bottom of the stack).

An edge whose removal would disconnect a connected graph is called a
bridge. One of the key points in the algorithm that follows is the fact that we
want to keep the current graph connected; therefore we don’t set G «+ G\ e
when e is a bridge.

Algorithm S (All spanning trees). Given a connected graph represented with
the data structures explained above, this algorithm visits all of its spanning trees.
A technique called “dancing links,” which we will discuss extensively in
Section 7.2.2.1, is used here to remove and restore items from and to doubly
linked lists. The abbreviation “delete(a)” in the steps below is shorthand for the

pair of operations
Np, < Na, Pn, < Daj (51)

similarly, “undelete(a)” stands for

Dn, < a, Ny, < a. (52)
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S1. [Initialize.] Set a;...a,_1 to a spanning tree of the graph. (See exercise 94.)
Alsoset z < 0,1+ 1,and s1 < 0. If n =2, set v + 1, e + ng, and go to S5.

S2. [Enter level I.] Set e + ajy1, u ¢ to, and v < tog1. If d, > d,,, interchange
v uand set e < e@ 1.

S3. [Shrink e.] (Now we will make u identical to v by inserting u’s adjacency list
into v’s. We also must delete all former edges between u and v, including e
itself, because such edges would otherwise become loops. Deleted edges are
linked together so that we can restore them later in step S7.) Set k + d,+d,,
f < ny,_1, and g < 0. While ¢; # 0, do the following: If ¢y = v, delete(f),
delete(f @ 1), and set k < k — 2, I < g, g < f; otherwise set tyg1 + v.
Then set f <— ny and repeat these operations until £ = 0. Finally set [, < g,
dy <k, g v—1,ny. < ng, P, < Pf, Pn; < g, Ng < Ny, and a; < e.

S4. [Advance I.] Setl < 1+ 1. Ifl < n—1, set s; 0 and return to S2.
Otherwise set e <+ ny,_1.

S5. [Visit.] (The current graph now has only two vertices, one of which is v.)
Set a,_1 < e and visit the spanning tree ay ...a,—1. (If x = 0, this is the
first spanning tree to be visited; otherwise it differs from its predecessor by
deleting z and inserting e.) Set < e and e < n.. Repeat step S5 if ¢, # 0.

S6. [Decrease l.] Set | < 1 — 1. Terminate the algorithm if [ = 0; otherwise set
e ap, u—te, and v < tegr-

S7. [Unshrink e.] Set f <= u —1, g < v —1, ng < np,, Pn, < g, np, «— f,
Pn; < f, and f < pp. While ty # 0, set tyg1 < u and f < pyr. Then set
f <+ le, k + dy; while f # 0 set k < k + 2, undelete(f & 1), undelete(f),
and set f < lf. Finally set d, < k —d,,.

S8. [Test for bridge.] If e is a bridge, go to S9. (See exercise 95 for one way
to perform this test.) Otherwise set x < e, l. < s;, 5; < e; delete(e) and
delete(e ® 1). Set d,, + d,, — 1, d,, + d,, — 1, and go to S2.

S9. [Undo level | deletions.] Set e < s;. While e # 0, set u  te, v + togi,
dy < dy + 1, d, + d, + 1, undelete(e @ 1), undelete(e), and e < I.. Return
to S6. |

The reader is encouraged to play through the steps of this algorithm on a small
graph such as (48). Notice that a subtle case arises in steps S3 and S7, if u’s
adjacency list happens to become empty. Notice also that several shortcuts would
be possible, at the expense of a more complicated algorithm; we will discuss such
improvements later in this section.

*Series-parallel graphs. The task of finding all spanning trees becomes espe-
cially simple when the given graph has a serial and/or parallel decomposition. A
series-parallel graph between s and t is a graph G with two designated vertices,
s and t, whose edges can be built up recursively as follows: Either G consists of
a single edge, s—t; or G is a serial superedge consisting of k > 2 series-parallel
subgraphs G; between s; and t;, joined in series with s = sy and t; = s;4; for
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1 < j < kand ty =t; or G is a parallel superedge consisting of k > 2 series-
parallel subgraphs G; between s and ¢ joined in parallel. This decomposition is
essentially unique, given s and £, if we require that the subgraphs G; for serial
superedges are not themselves serial superedges, and that the subgraphs G; for
parallel superedges are not themselves parallel.

Any series-parallel graph can be represented conveniently as a tree, with no
nodes of degree 1. The leaf nodes of this tree represent edges, and the branch
nodes represent superedges, alternating between serial and parallel from level
to level. For example, the tree

(A

@~ (B D)

(53)
®© © @ @
() @
corresponds to the series-parallel graphs and subgraphs
f 9
A= D=o—o—, (54)

if the top node A is taken to be parallel. Edges are named in (54), but not
vertices, because edges are of prime importance with respect to spanning trees.

Let’s say that a near tree of a series-parallel graph between s and ¢ is a set
of n — 2 cycle-free edges that do not connect s to t. The spanning trees and
near trees of a series-parallel graph are easy to describe recursively, as follows:
(1) A spanning tree of a serial superedge corresponds to spanning trees of all its
principal subgraphs G; a near tree corresponds to spanning trees in all but one
of the G;, and a near tree in the other. (2) A near tree of a parallel superedge
corresponds to near trees of all its principal subgraphs G; a spanning tree cor-
responds to near trees in all but one of the G;, and a spanning tree in the other.

Rules (1) and (2) suggest the following data structures for listing the span-
ning trees and/or near trees of series-parallel graphs. Let p point to a node in a
tree like (53). Then we define

t, = 1 for serial superedges, 0 otherwise (the “type” of p);

vp = 1 if we have a spanning tree for p, 0 if we have a near tree;
l, = pointer to p’s leftmost child, or 0 if p is a leaf;

rp = pointer to p’s right sibling, wrapping around cyclically;

d, = pointer to a designated child of p, or 0 if p is a leaf.

If ¢ points to the rightmost child of p, its “right sibling” r, equals [,,. And if ¢
points to any child of p, rules (1) and (2) state that

vp, if ¢ = dp;
vg =

t,, ifq# dy. (55)
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(For example, if p is a branch node that represents a serial superedge, we must
have v, = 1 for all but one of p’s children; the only exception is the designated
child d,. Thus we must have a spanning tree for all of the subgraphs that were
joined serially to form p, except for one designated subgraph in the case that we
have a near tree for p.)

Given any setting of the designated-child pointers d,, and given any value
0 or 1 for v, at the root of the tree, Eq. (55) tells us how to propagate values
down to all of the leaves. For example, if we set v4 + 1 in the tree (53), and
if we designate the leftmost child of each branch node (so that d4a = a, dg = b,
dc = ¢, and dp = f), we find successively

va=1,vp=0,v,=0,vc=1,v.=1,v3=0,ve=1,vp =0, vy =0, vy, =1. (56)

A leaf node ¢ is present in the spanning tree if and only if v, = 1; hence
(56) specifies the spanning tree aceg of the series-parallel graph A in (54).

For convenience, let’s say that the configs of p are its spanning trees if
vp = 1, its near trees if v, = 0. We would like to generate all configs of the
root. A branch node p is called “easy” if v, = t,; that is, a serial node is easy
if its configs are spanning trees, and a parallel node is easy if its configs are
near trees. If p is easy, its configs are the Cartesian product of the configs of its
children, namely all k-tuples of the children’s configs, varying independently; the
designated child d, is immaterial in the easy case. But if p is uneasy, its configs
are the union of such Cartesian k-tuples, taken over all possible choices of dp,.

As luck would have it, easy nodes are relatively rare: At most one child of
an uneasy node (namely the designated child) can be easy, and all children of an
easy node are uneasy unless they are leaves.

Even so, the tree representation of a series-parallel graph makes the recursive
generation of all its spanning trees and/or near trees quite straightforward and
efficient. The operations of Algorithm S—shrinking and unshrinking, deleting
and undeleting, bridge detection are not needed when we deal with series-
parallel graphs. Furthermore, exercise 99 shows that there is a pleasant way to
obtain the spanning trees or near trees in a revolving-door Gray code order, by
using focus pointers as in several algorithms that we’ve seen earlier.

*Refinements of Algorithm S. Although Algorithm S provides us with a simple
and reasonably effective way to visit all spanning trees of a general graph, its
author Malcolm Smith realized that the properties of series-parallel graphs can be
used to make it even better. For example, if a graph has two or more edges that
run between the same vertices u and v, we can combine them into a superedge;
the spanning trees of the original graph can then be obtained readily from those
of the simpler, reduced graph. And if a graph has a vertex v of degree 2, so that
the only edges touching v are u— v and v — w, we can eliminate v and replace
those edges by a single superedge between v and w. Furthermore, any vertex of
degree 1 can effectively be eliminated, together with its adjacent edge, by simply
including that edge in every spanning tree.

After the reductions in the preceding paragraph have been applied to a given
graph G, we obtain a reduced graph G having no parallel edges and no vertices
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of degrees 1 or 2, together with a set of m > 0 series-parallel graphs Sy, ..., Sp,
representing edges (or superedges) that must be included in all spanning trees
of G. Every remaining edge u — v of G corresponds, in fact, to a series-parallel
graph S, between vertices u and v. The spanning trees of G are then obtained
as the union, taken over all spanning trees T of é, of the Cartesian product
of the spanning trees of Sy, ..., S, and the spanning trees of all Sy, for edges
u—w in T, together with the near trees of all Suv for edges u— v that are in
G but not in T. And all spanning trees T of G can be obtained by using the
strategy of Algorithm S.

In fact, when Algorithm S is extended in this way, its operations of replacing
the current graph G by G /e or G\ e typically trigger further reductions, as new
parallel edges appear or as the degree of a vertex drops below 3. Therefore it
turns out that the “stopping state” of the implicit recursion in Algorithm S,
namely the case when only two vertices are left (step S5), never actually arises:
A reduced graph G either has only a single vertex and no edges, or it has at least
four vertices and six edges.

The resulting algorithm retains the desirable revolving-door property of
Algorithm S, and it is quite pretty (although about four times as long as the
original); see exercise 100. Smith proved that it has the best possible asymptotic
running time: If G has n vertices, m edges, and NV spanning trees, the algorithm
visits them all in O(m + n + N) steps.

The performance of Algorithm S and of its souped-up version Algorithm S’
can best be appreciated by considering the number of memory accesses that
those algorithms actually make when they generate the spanning trees of typical
graphs, as shown in Table 5. The bottom line of that table corresponds to
the graph plane_miles(16,0,0,1,0,0,0) from the Stanford GraphBase, which
serves as an “organic” antidote to the purely mathematical examples on the
previous lines. The random multigraph on the penultimate line, also from
the Stanford GraphBase, can be described more precisely by its official name
random_graph(16,37,1,0,0,0,0,0,0,0). Although the 4 x 4 torus is isomorphic
to the 4-cube (see exercise 7.2.1.1 17), those isomorphic graphs yield slightly dif-
ferent running times because their vertices and edges are encountered differently
when the algorithms are run.

In general we can say that Algorithm S is not too bad on small examples,
except when the graph is quite sparse; but Algorithm S’ begins to shine when
many spanning trees are present. Once Algorithm S’ gets warmed up, it tends
to crank out a new tree after every 18 or 19 mems go by.

Table 5 also indicates that a mathematically-defined graph often has a
surprisingly “round” number of spanning trees. For example, D. M. Cvetkovié¢
[Srpska Akademija Nauka, Matematicheski Institut 11 (Belgrade: 1971), 135-
141] discovered, among other things, that the n-cube has exactly

92" n-11(1) 9(3) . (%) (57)

of them. Exercises 104—109 explore some of the reasons why that happens.
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Table 5
RUNNING TIME IN MEMS NEEDED TO GENERATE ALL SPANNING TREES
m n N Algorithm S Algorithm S’ per tree
path Pip, 9 10 1 794 u 473 794.0 473.0
path Pigo 99 100 1 9,974 5,063 p 9974.0 5063.0
cycle Cip 10 10 10 3,480 998 1 348.0 99.8
cycle Cip0 100 100 100 355,605 p 10,538 1 3556.1 105.4
complete graph K4 6 4 16 1,213 p 1,336 75.8  83.5
complete graph Ki0 45 10 100,000,000 3,759.58 My 1,860.95 My 37.6  18.6
complete bigraph K55 25 10 390,625 23.43 Muy 8.88 My  60.0 22.7
4x4 grid PaxPy, 24 16 100,352 12.01 Mu 1.87 Mp 119.7  18.7
5x5 grid PsxPs 40 25 557,568,000 54.68 Gu 10.20 Gp 98.1 183
4x4 cylinder P,xCy 28 16 2,558,976 230.96 Mp 49.09 Ky 90.3  19.2

5x5 cylinder PsxCs 45 25 38,720,000,000 3,165.31 G 711.69 G  81.7 18.4
4x4torus CyxCy 32 16 42,467,328 3,168.15 My 823.08 My 74.6  19.4
dcube PaxPyxPyx Py 32 16 42,467,328 3,168.16 My  823.38 Mp  74.7 194
random multigraph 37 16 59,933,756 3,818.19 My  995.91 Mpu  63.7  16.6

16 cities 37 16 179,678,881 11,772.11 My 3,267.43 My 65.5  18.2

A general quasi-Gray code. Let’s close this section by discussing something
completely different, yet still related to trees. Consider the following hybrid
variants of the two standard ways to traverse a nonempty forest:

Prepostorder traversal Postpreorder traversal
Visit the root of the first tree Traverse the subtrees of the first
Traverse the subtrees of the first tree, in prepostorder

tree, in postpreorder Visit the root of the first tree
Traverse the remaining trees, Traverse the remaining trees,

in prepostorder in postpreorder

In the first case, every tree of the forest is traversed in prepostorder, with its root
first; but the subtrees of those roots are traversed in postpreorder, with roots
coming last. The second variant is similar but with ‘pre’ and ‘post’ interchanged.
And in general, prepostorder visits roots first on every even-numbered level of
the forest, but visits them last on the odd-numbered levels. For example, the
forest in (2) becomes

(58)

when we label its nodes in prepostorder.
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Prepostorder and postpreorder are not merely curiosities; they’re actually
useful. The reason is that adjacent nodes, in either of these orders, are always
near each other in the forest. For example, nodes k and k+1 are adjacent in (58)
for k =1, 4, 6, 8, 10, 13; they are separated by only one node when k = 3, 12, 14;
and they’re three steps apart when k=2, 5, 7, 9, 11 (if we imagine an invisible
super-parent at the top of the forest). A moment’s thought proves inductively
that at most two nodes can possibly intervene between prepostorder neighbors or
postpreorder neighbors— because postpreorder(F') always begins with the root
of the first tree or its leftmost child, and prepostorder(F') always ends with the
root of the last tree or its rightmost child.

Suppose we want to generate all combinatorial patterns of some kind, and
we want to visit them in a Gray-code-like manner so that consecutive patterns
are always “close” to each other. We can form, at least conceptually, the graph of
all possible patterns p, with edges p — ¢ for all pairs of patterns that are close to
each other. The following theorem, due to Milan Sekanina [Spisy Prirodovédecké
Fakulty University v Brné, No. 412 (1960), 137-142], proves that a pretty good
Gray code is always possible, provided only that we can get from any pattern to
any other in a sequence of short steps:

Theorem S. The vertices of any connected graph can be listed in a cyclic order
(vo,v1,...,vp1) so that the distance between vy and v(j41) mod n i at most 3,
for 0 <k < n.

Proof. Find a spanning tree in the graph, and traverse it in prepostorder. |

Graph theorists traditionally say that the kth power of a graph G is the
graph GF whose vertices are those of G, with u — v in G¥ if and only if there’s a
path of length & or less from u to v in G. Thus they can state Theorem S much
more succinctly, when n > 2: The cube of a connected graph is Hamiltonian.

Prepostorder traversal is also useful when we want to visit the nodes of a
tree in loopless fashion, with a bounded number of steps between stops:

Algorithm Q (Prepostorder successor in a triply linked forest). If P points to a
node in a forest represented by links PARENT, CHILD, and SIB, corresponding to
each node’s parent, leftmost child, and right sibling, this algorithm computes P’s
successor node, Q, in prepostorder. We assume that we know the level L at which
P appears in the forest; the value of L is updated to be the level of Q. If P happens
to be the final node in prepostorder, the algorithm sets Q <~ A and L < —1.

Q1. [Pre or post?] If L is even, go to step Q4.
Q2. [Continue postpreorder.] Set Q + SIB(P). Go to Q6 if Q # A.
Q3. [Move up.] Set P < PARENT(P) and L + L — 1. Go to QT.
Q4. [Continue prepostorder.] If CHILD(P) = A, go to Q7.
Q5. [Move down.] Set Q +— CHILD(P) and L + L + 1.

N

Q6. [Move down if possible.] If CHILD(Q) # A, set Q < CHILD(Q) and L < L+1.
Terminate the algorithm.
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Q7. [Move right or up.] If SIB(P) # A, set Q + SIB(P); otherwise set Q +
PARENT(P) and L +— L — 1. Terminate the algorithm. |

Notice that, as in Algorithm 2.4C, the link PARENT(P) is examined only if
SIB(P) = A. A complete traversal is really a worm walk around the forest,
like (3): The worm “sees” the nodes on even-numbered levels when it passes
them on the left, and it sees the odd-level nodes when it passes them on the right.

EXERCISES

1. [15] If a worm crawls around the binary tree (4), how could it easily reconstruct
the parentheses of (1)7

2. [20] (S. Zaks, 1980.) Modify Algorithm P so that it produces the combinations
2122 ...2n of (8) instead of the parenthesis strings aiaz ... azn.

3. [23] Prove that (11) converts z122 ...z, to the inversion table cica .. .cn.

4. [20] True or false: If the strings a;...a2, are generated in lexicographic order,
so are the corresponding strings di ...dn, 21...2n, P1...Pn, and c1...cCn.

5. [15] What tables di...dn, 21...2n, P1...Pn, and ci1...cn, correspond to the
nested parenthesis string (1)?

6. [20] What matching corresponds to (1)7 (See the final column of Table 1.)

7. [16] (a) What is the state of the string a1as . .. a2, when Algorithm P terminates?
(b) What do the arrays l1l2 . ..l, and 7172 . .. 7, contain when Algorithm B terminates?

8. [15] What tables ly...l,, T71...7p, €1...€p, and s1...s, correspond to the ex-
ample forest (2)7

9. [M20] Show that the tables c1...c, and s1...s, are related by the law
Cr = [.912]{2—1]-1—[.‘322]6—2]-1—-"-1—[8167121}.

10. [M20] (Worm walks.) Given a string of nested parentheses aias...azn, let w;
be the excess of left parentheses over right parentheses in ajasz...a;, for 0 < 5 < 2n.
Prove that wo + w1 + - -+ + w2n = 2(c1 + -+ - + ¢n) + 1.

11. [11] If Fis a forest, its conjugate F¥ is obtained by left-to-right mirror reflection.
For example, the fourteen forests in Table 1 are

eeeo, oei’ 0107 OA’ o E, ioe, I i’ A°7 A, ‘/&, E o’ f\’ X]’ %

and their conjugates are respectively

0000’ ZGO’ OIO’ AO’ E 0’ OGZ’ Z g’ °A7 A’ %7 o E’ Q’ k7 %
as in the colex forests of Table 2. If F' corresponds to the nested parentheses aias ... azn,

what string of parentheses corresponds to FE?

12. [15] If F is a forest, its transpose FT is the forest whose binary tree is obtained
by interchanging left and right links in the binary tree representing F'. For example,
the transposes of the fourteen forests in Table 1 are respectively

%, k, b’ 4’ A./ E 07 AQ, i i, o E, OA, Ieo, eie, oog, 0000.
What is the transpose of the forest (2)7

13. [20] Continuing exercises 11 and 12, how do the preorder and postorder of a
labeled forest F' relate to the preorder and postorder of (a) F7? (b) FT?
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» 14. [21] Find all labeled forests F' such that F*T = FTR,

15. [20] Suppose B is the binary tree obtained from a forest F' by linking each node
to its left sibling and its rightmost child, as in exercise 2.3.2-5 and the last column of
Table 2. Let F’ be the forest that corresponds to B in the normal way, via left-child
and right-sibling links. Prove that F' = FET in the notation of exercises 11 and 12.

16. [20] If F and G are forests, let F'G be the forest obtained by placing the trees of F'
to the left of the trees of G; also let F' | G = (GTFT)T. Give an intuitive explanation
of the operator |, and prove that it is associative.

17. [M46] Characterize all unlabeled forests F such that F7 = FT. (See exercise 14.)

18. [80] Two forests are said to be cognate if one can be obtained from the other by
repeated operations of taking the conjugate and/or the transpose. The examples in ex-
ercises 11 and 12 show that all forests on 4 nodes belong to one of three cognate classes:

eoooxi; £X001X100X§0X0§X&§
Iixo&,°x°°&,x/}xzkx°1°.
Study the set of all forests with 15 nodes. How many equivalence classes of cognate

forests do they form? What is the largest class? What is the smallest class? What is
the size of the class containing (2)?

19. [28] Let Fi, F», ..., Fn be the sequence of unlabeled forests that correspond
to the nested parentheses generated by Algorithm P, and let Gi, G2, ..., Gn be
the sequence of unlabeled forests that correspond to the binary trees generated by
Algorithm B. Prove that G), = F{¥T%, in the notation of exercises 11 and 12. (The
forest FETE is called the dual of F; it is denoted by F'® in several exercises below.)

20. [25] Recall from Section 2.3 that the degree of a node in a tree is the number of
children it has, and that an extended binary tree is characterized by the property that
every node has degree either 0 or 2. In the extended binary tree (4), the sequence of
node degrees is 2200222002220220002002202200000 in preorder; this string of 0s and 2s
is identical to the sequence of parentheses in (1), except that each ‘(' has been replaced
by 2, each ‘)’ has been replaced by 0, and an additional 0 has been appended.
a) Prove that a sequence of nonnegative integers b1bz...bn is the preorder degree
sequence of a forest if and only if it satisfies the following property for 1 < k < N:

b1 +ba+---+b+f >k if and only if k < N.

Here f = N — by — ba — --- — by is the number of trees in the forest.

b) Recall from exercise 2.3.4.5-6 that an extended ternary tree is characterized by the
property that every node has degree 0 or 3; an extended ternary tree with n internal
nodes has 2n 4 1 external nodes, hence N = 3n + 1 nodes altogether. Design an
algorithm to generate all ternary trees with n internal nodes, by generating the
associated sequences b1bs ... by in lexicographic order.

» 21. [26] (S. Zaks and D. Richards, 1979.) Continuing exercise 20, explain how to
generate the preorder degree sequences of all forests that have N = ng+ - - - +n; nodes,
with exactly n; nodes of degree j. Ezample: When no = 4, ny = na = nz = 1, and
t = 3, and the valid sequences b1b2b3bsbsbsbr are

1203000, 1230000, 1300200, 1302000, 1320000, 2013000, 2030010, 2030100, 2031000, 2103000,
2130000, 2300010, 2300100, 2301000, 2310000, 3001200, 3002010, 3002100, 3010200, 3012000,
3020010, 3020100, 3021000, 3100200, 3102000, 3120000, 3200010, 3200100, 3201000, 3210000.
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» 22. [30] (J. Korsh, 2004.) As an alternative to Algorithm B, show that binary trees
can also be generated directly and efficiently in linked form if we produce them in colex
order of the numbers d; . ..d,—1 defined in (g). (The actual values of d; .. .dn—1 should
not be computed explicitly; but the links I3 ...[, and r;...r, should be manipulated
in such a way that we get the binary trees corresponding successively to didsa . ..d,—1 =
000...0, 100...0, 010...0, 110...0, 020...0, 001...0, ..., 000...(n—1).)

23. [25] (a) What is the last string visited by Algorithm N? (b) What is the last
binary tree or forest visited by Algorithm L? Hint: See exercise 40 below.

v

24. [22] Using the notation of Table 3, what sequences lols . ..l15, 71 ... 715, k1 .. . k15,
q1...q15, and uy ... u15 correspond to the binary tree (4) and the forest (2)?

» 25. [30] (Pruning and grafting.) Representing binary trees as in Algorithm B, design
an algorithm that visits all link tables !y ...[l, and rq ...7, in such a way that, between
visits, exactly one link changes from j to 0 and another from 0 to j, for some index j.
(In other words, every step removes some subtree j from the binary tree and places it
elsewhere, preserving preorder.)

26. [MS31] (The Kreweras lattice.) Let F and F' be n-node forests with their nodes
numbered 1 to n in preorder. We write F Kk F' (“F coalesces F'”) if j and k are
siblings in F' whenever they are siblings in F', for 1 < j < k < n. Figure 39 illustrates
this partial ordering in the case n = 4; each forest is encoded by the sequence c; ...cn
of (9) and (10), which specifies the depth of each node. (With this encoding, j and k
are siblings if and only if ¢; = ¢ < ¢jg1,...,Ch—1.)

Fig. 39. The Kreweras lattice of order 4. Each forest is represented by
its sequence of node depths cicaczcs in preorder. (See exercises 26-28.)

a) Let IT be a partition of {1,...,n}. Show that there exists a forest F', with nodes
labeled (1,...,n) in preorder and with

j =k (modulo IT) <= j is a sibling of k in F,
if and only if I1 satisfies the noncrossing property
i<j<k<landi=kand j=1[ (modulo IT) implies ¢=j =k =1 (modulo IT).

b) Given any two n-node forests F' and F’, explain how to compute their least upper
bound F'V F’, the element such that F K G and F' K G if and only if FV F' K G.
c) When does F' cover F with respect to the relation K? (See exercise 7.2.1.4-55.)
d) Show that if F' covers F, it has exactly one less leaf than F'.
e) How many forests cover F, when node k has e children for 1 < k < n?
) Using the definition of duality in exercise 19, what is the dual of the forest (2)?

33



34 COMBINATORIAL ALGORITHMS (F4A) 7.2.1.6

g) Prove that F  F’ holds if and only if F'P x FP. (Because of this property, dual
elements have been placed symmetrically about the center of Fig. 39.)
h) Given any two n-node forests F' and F’, explain how to compute their greatest
lower bound F' A F'; that is, GK F and GK F' if and only if Gk F R F'.
1) Does this lattice satisfy a semimodular law analogous to exercise 7.2.1.5-12(f)?
» 27. [M33] (The Tamari lattice.) Continuing exercise 26, let us write F' - F' if the
jth node in preorder has at least as many descendants in F’ as it does in F, for all j.

In other words, if F' and F' are characterized by their scope sequences s; ...s, and
81 ...y as in Table 2, we have F 4 F' if and only s; < s for 1 < j < n. (See Fig. 40.)

3210

3200 ¢
$ 3010

0011 ¢4
1010

0010 ¢ 0100 &
¥ 1000

0000

(b)

Fig. 40. The Tamari lattice of order 4. Each forest is represented by
its sequences of (a) node depths and (b) descendant counts, in preorder.
(See exercises 26—28.)

a) Show that the scope coordinates min(sy,s}) min(sy,s5)...min(s,,s)) define a
forest that is the greatest lower bound of F' and F'. (We denote it by F L F'.)
Hint: Prove that s;...sy, corresponds to a forest if and only if 0 < k < s; implies
Sj+k + k < sj, for 0 < j < n, if we define sg = n.

) When does F' cover F in this partial ordering?

) Prove that F - F' if and only if F'® 4 FP. (Compare with exercise 26(g).)

) Explain how to compute a least upper bound, F T F’, given F and F’.

e) Prove that F K F' in the Kreweras lattice implies F'  F' in the Tamari lattice.

) True or false: FAF' 4 F L F'.

) True or false: FY F'K F T F'.

) What are the longest and shortest paths from the top of the Tamari lattice to the
bottom, when each forest of the path covers its successor? (Such paths are called
mazimal chains in the lattice; compare with exercise 7.2.1.4-55(h).)

28. [M26] (The Stanley lattice.) Continuing exercises 26 and 27, let us define yet
another partial ordering on n-node forests, saying that F C F' whenever the depth
coordinates c; ...c, and ci ...c, satisfy ¢; < ¢ for 1 < j < n. (See Fig. 41).

a) Prove that this partial ordering is a lattice, by explaining how to compute the

greatest lower bound FNF' and least upper bound FUF' of any two given forests.

b) Show that Stanley’s lattice satisfies the distributive laws

FN(GUH)=(FNG)U(FNH), FU(GNH)=(FUG)N(FUH).
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0011 I 0101 I 0110
[ < X ]

Fig. 41. The Stanley lattice of order 4. Each

forest is represented by its sequence of node
depths in preorder. (See exercises 26—28.)

c) When does F’ cover F in this lattice?

d) True or false: F C G if and only if FE C GE.

e) Prove that F C F' in the Stanley lattice whenever F < F' in the Tamari lattice.
29. [HM31] The covering graph of a Tamari lattice is sometimes known as an “associa-
hedron,” because of its connection with the associative law (14), proved in exercise
27(b). The associahedron of order 4, depicted in Fig. 40, looks like it has three square
faces and six faces that are regular pentagons. (Compare with Fig. 23 in exercise

7.2.1.2-60, which shows the “permutahedron” of order 4, a well-known Archimedean
solid.) Why doesn’t Fig. 40 show up in classical lists of uniform polyhedra?

30. [M26] The footprint of a forest is the bit string fi ... f, defined by

fi = [node j in preorder is not a leaf].

o

If F has footprint fi ... fn, what is the footprint of FP? (See exercise 27.)

How many forests have the footprint 101011011111100001010100010110007
Prove that f; = [d; =0], for 1 < j < n, in the notation of (6).

Two elements of a lattice are called complementary if their greatest lower bound
is the bottom element while their least upper bound is the top element. Show that
F and F' are complementary in the Tamari lattice if and only if their footprints
are complementary, in the sense that f]...fr_1 = f1... fa_1.

=3

o0

o
N NG AN

» 31. [M28] A binary tree with n internal nodes is called degenerate if it has height n—1.

a) How many n-node binary trees are degenerate?

b) We’ve seen in Tables 1, 2, and 3 that binary trees and forests can be encoded by
various n-tuples of numbers. For each of the encodings ¢i...¢n, d1...dn, €1...6€n,
ki...kn,P1...Pn, S1...8n, U1...Un, and 21 ...2zn, explain how to see at a glance
if the corresponding binary tree is degenerate.

¢) True or false: If F is degenerate, so is F'”.

d) Prove that if F and F' are degenerate, so are FAF' = F 1L F' and FVF' = FTF'.

> 32. [M30] Prove that if F - F', there is a forest F" such that for all G we have
F'1G = F ifandonlyif FA4GHF".
Consequently the semidistributive laws hold in the Tamari lattice:

F1G=F1H implies F1(GTH)=F LG;
FTG=FTH implies FT(GLH)=FTAQG.
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> 33. [M27] (Permutation representation of trees.) Let o be the cycle (12 ... n).
a) Given any binary tree whose nodes are numbered 1 to n in symmetric order, prove
that there is a unique permutation A of {1,...,n} such that, for 1 < k < n,

kX, if kX < k; koX, if kol > k;

0, otherwise; 0, otherwise.

LLINK[A] = { RLINK[K] = {
Thus A neatly packs 2n link fields into a single n-element array.

b) Show that this permutation A is particularly easy to describe in cycle form when
the binary tree is the left-sibling/right-child representation of a forest F. What is
the cycle form of A(F') when F' is the forest in (2)7

¢) Find a simple relation between A(F) and the dual permutation A\(FP).

d) Prove that, in exercise 26, F’' covers F if and only if A(F') = (j k) A\(F), where
j and k are siblings in F'.

e) Consequently the number of maximal chains in the Kreweras lattice of order n
is the number of ways to factor an n-cycle as a product of n — 1 transpositions.
Evaluate this number. Hint: See Eq. 1.2.6-(16).

34. [M25] (R. P. Stanley.) Show that the number of maximal chains in the Stanley
lattice of order n is (n(n — 1)/2)!/(1"7'3"~2...(2n — 5)*(2n — 3)').

35. [HM37] (D. B. Tyler and D. R. Hickerson.) Explain why the denominators of the
asymptotic formula (16) are all powers of 2.

v

36. [M25] Analyze the ternary tree generation algorithm of exercise 20(b). Hint:
There are (2n +1)7! (3:) ternary trees with n internal nodes, by exercise 2.3.4.4 11.

» 37. [M40] Analyze the Zaks Richards algorithm for generating all trees with a given
distribution ng, n1, na, ..., n; of degrees (exercise 21). Hint: See exercise 2.3.4.4-32.
38. [M22] What is the total number of memory references performed by Algorithm L,
as a function of n?

39. [22] Prove formula (23) by showing that the elements of Apq in (5) correspond to
Young tableaux with two rows.

40. [M22] (a) Prove that Cp, is odd if and only if p & (¢ + 1) = 0, in the sense that
the binary representations of p and g+ 1 have no bits in common. (b) Therefore C,, is
odd if and only if n 4+ 1 is a power of 2.

41. [M21] Show that the ballot numbers have a simple generating function ) Cpqw?z?

v

42. [M22] How many unlabeled forests with n nodes are (a) self-conjugate? (b) self-
transpose? (c) self-dual? (See exercises 11, 12, 19, and 26.)

43. [M21] Express Cpq in terms of the Catalan numbers (Co,C1,Ca,...), aiming for
a formula that is simple when ¢ — p is small. (For example, C(q_2)q = Cq — Cq—1.)

v

44. [M27] Prove that Algorithm B makes only 8% +0(n™") references to memory per
binary tree visited.

45. [M26] Analyze the memory references made by the algorithm in exercise 22. How
does it compare to Algorithm B?

46. [M30] (Generalized Catalan numbers.) Generalize (21) by defining
Cpg(#) = Cpg—1)(2) + 2" PCpn)q(@), HO0<p<q#0; Coo(z) = 1;
and Cpq(z) =0if p < 0 or p > g; thus Cpq = Cpq(1). Also let Cp(z) = Chn(z), so that

_ 2,3 2 3 4,5, .6
0 ) et - ) ) 3 ) s/t
(Co(z),C1(z) y=(1,1,142,1+2z+2"+2°,14+3x+32" +3z" + 22" + 2" + =z )
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a) Show that [z"] Cpq(x) is the number of paths from to in (28) that have
area k, where the “area” of a path is the number of rectangular cells above it.

(Thus an L-shaped path has the maximum possible area, p(q — p) + (g))

b) Prove that Cy,(z) = Y.zt Fen = 37 ginternalpathlensth(F) ©oymmed over all
n-node forests F'.
c) If C(x,2) =372, Cn(x)2", show that C(z,2z) =1+ 2C(x, 2)C(x, 22).
d) Furthermore, C(z,2)C(z,22)...C(2,272) = -2 Cp(pir)(2) 27,
47. [M27] Continuing the previous exercise, generalize the identity (27).

48. [M28] (F. Ruskey and A. Proskurowski.) Evaluate Cpq(z) when z = —1, and use
this result to show that no “perfect” Gray code for nested parentheses is possible when
n > 5 is odd.

49. [17] What is the lexicographically millionth string of 15 nested parenthesis pairs?

50. [20] Design the inverse of Algorithm U: Given a string a1 ... a2, of nested paren-
theses, determine its rank N — 1 in lexicographic order. What is the rank of (1)?

51. [M22] Let Z1Z;...Z, be the complement of 2125 ... z, with respect to 2n; in other
words, z; = 2n — z;, where z; is defined in (8). Show that if 2125 ... 2, is the (N + 1)st
n-combination of {0,1,...,2n — 1} generated by Algorithm 7.2.1.3L, then z12z2...2x
is the (N — kn N + 1)st n-combination of {1,2,...,2n} generated by the algorithm of
exercise 2. (Here k, denotes the nth Kruskal function, defined in 7.2.1.3—(60).)

52. [M23] Find the mean and variance of the quantity d,, in Table 1, when nested
parentheses a; . ..az2n are chosen at random.

53. [M28] Let X be the distance from the root of an extended binary tree to the
leftmost external node. (a) What is the expected value of X, when all binary trees with
n nodes are equally likely? (b) What is the expected value of X in a random binary
search tree, constructed by Algorithm 6.2.2T from a random permutation K; ... K,?
(c) What is the expected value of X in a random degenerate binary tree, in the sense
of exercise 317 (d) What is the expected value of 2X in all three cases?

54. [HM29] What are the mean and variance of ¢ + -+ - + ¢, ? (See exercise 46.)
55. [HM33] Evaluate Cp,(1), the total area of all the paths in exercise 46(a).
56. [M23] (Renzo Sprugnoli, 1990.) Prove the summation formula

m—1

CrCrn_i_r = 1C' +2m;n<2m)(2n72m)7 for 0 <m <n.

Pt 27" " oan(n+ 1)\ m n—m

57. [M28] Express the sums S,(a,b) =3, (%) (bibk) kP in closed form for p = 0,

1, 2, 3, and use these formulas to prove (30).

58. [HM34] Let timn be the number of n-node binary trees in which external node m
appears at level | when the external nodes are numbered from 0 to n in symmetric
order. Also let t;un = Zlnzl ltimn, so that tmn/C, is the average level of external
node m; and let ¢(w, z) be the super generating function

Z tmnw™z" = (14w) z + (3+4w+3w?) 2% + (9+13w+13w’+9uw?)2° + - -

Prove that t(w, z) = (C(2) — wC(wz))/(1 — w) — 1 + 2C(2)t(w, 2) + wzC(wz)t(w, 2),
and deduce a simple formula for the numbers ¢,,n.
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59. [HM29] Similarly, let Timy, count all n-node binary trees in which internal node m
appears at level . Find a simple formula for Tp,n = >, I Timn.

v

60. [M26] (Balanced strings.) A string a of nested parentheses is atomic if it has
the form (a’) where ' is nested; every nested string can be represented uniquely as a
product of atoms a1 ...a,. A string with equal numbers of left and right parentheses
is called balanced; every balanced string can be represented uniquely as f; ... [, where
each (3; is either an atom or a co-atom (the reverse of an atom). The defect of a
balanced string is half the length of its co-atoms. For example, the balanced string

COICCOIII)COCCO) CCO)) O

has the factored form B; 8838485868788 = arofazalfafagafas, with four atoms
and four co-atoms; its defect is |azauasaz|/2 = 9.
a) Prove that the defect of a balanced string is the number of indices k for which the
kth right parenthesis precedes the kth left parenthesis.
b) If B1...0B, is balanced, we can map it into a nested string by simply reversing
its co-atoms. But the following mapping is more interesting, because it produces
unbiased (uniformly random) nested strings from unbiased balanced strings: Let

there be s co-atoms §;, = aﬁ, vy Bi, = af—i. Replace each co-atom by (; then
append the string )oj, ...)aj,, where o = (a;v). For example, the string above

is mapped into a; (as((ag(ag)ah)as)al)ab, which just happens to equal the

string (1) illustrated at the beginning of this section.

Design an algorithm that applies this mapping to a given balanced string b; . . . bay.
c) Also design an algorithm for the inverse mapping: Given a nested string a =

ai ...az, and an integer [ with 0 < [ < n, compute a balanced string 8 = b1 ... ban

of defect ! for which 8+ «. What balanced string of defect 11 maps into (1)7

> 61. [M26] (Raney’s Cycle Lemma.) Let biba ...bn be a string of nonnegative integers
such that f = N —b;y — by — -+ — by > 0.

a) Prove that exactly f of the cyclic shifts bj11...bnb1...b; for 1 < j < N satisfy
the preorder degree sequence property in exercise 20.

b) Design an efficient algorithm to determine all such j, given b1bs ...bN.

c) Explain how to generate a random forest that has N = ng + - - - + n; nodes, with
exactly n; nodes of degree j. (For example, we obtain random n-node t-ary trees
as a special case of this general procedure when N =tn+ 1, no = (t — 1)n + 1,
ny=---=n;_1 =0, and ns = n.)

62. [22] A binary tree can also be represented by bit strings (l1...ln,71...75), where
l[; and 7; tell whether the left and right subtrees of node j in preorder are nonempty.
(See Theorem 2.3.1A.) Prove that if I;...l, and ry...r, are arbitrary bit strings
with Iy +---+ln + 71+ -+ 7 = n — 1, exactly one cyclic shift (lj41...lnl1...1;,
Tj41...TnT1...7;) yields a valid binary tree representation, and explain how to find it.

Q
63. [16] If the first two iterations of Rémy’s algorithm have produced , what
decorated binary trees are possible after the next iteration?

64. [20] What sequence of X values in Algorithm R corresponds to the decorated
trees of (34), and what are the final values of LoL1...L12?

65. [38] Generalize Rémy’s algorithm (Algorithm R) to t-ary trees.

38



v

v

v

7.2.1.6 GENERATING ALL TREES 39

66. [21] A Schréider tree is a binary tree in which every nonnull right link is colored
either white or black. The number S,, of n-node Schroder trees is

n=01213 4 5 6 7 8 9 10 11 12
S,=11 3 11 45 197 903 4279 20793 103049 518859 2646723 13648869

for small n. For example, S3 = 11 because the possibilities are

T T T s

(White links are “hollow”; external nodes have also been attached.)

a) Find a simple correspondence between Schroder trees with n 1nternal nodes and

ordinary trees with n + 1 leaves and no nodes of degree one.
b) Devise a Gray code for Schroder trees.

67. [M22] What is the generating function S(z) = > Snz" for Schréoder numbers?
68. [10] What is the Christmas tree pattern of order 0?
69. [20] Are the Christmas tree patterns of orders 6 and 7 visible in Table 4, possibly
in slight disguise?
70. [20] Find a simple rule that defines, for every bit string o, another bit string o’
called its mate, with the following properties: (i) o' = o; (ii) |¢'| = |o|; (iii) either
o Co' ora' Coj(iv) v(o) +v(a") = o]
71. [M21] Let M., be the size of the largest possible set S of n-bit strings with the
property that, if o and T are members of S with o C 7, then v(7) < v(o) + t. (Thus,
for example, My,, = M,, by Sperner’s theorem.) Find a formula for M.
72. [M28] If you start with a single row o1 o2 ... o5 of length s and apply the growth
rule (36) repeatedly n times, how many rows do you obtain?
73. [15] In the Christmas tree pattern of order 30, what are the first and last elements
of the row that contains the bit string 0110010010000111111011010111007

74. [M26] Continuing the previous exercise, how many rows precede that row?

75. [HM23] Let (r{™,7{™ ..., ")) be the row numbers in which the Christmas tree
pattern of order n has n — 1 entries; for example, Table 4 tells us that (r (8), RV Tgs)) =

(20, 40, 54, 62, 66, 68, 69). Find formulas for {7 — (" and for lim, e r\"/M,.

76. [HM/6] Study the limiting shape of the Christmas tree patterns as n — oo. Does
it, for example, have a fractal dimension under some appropriate scaling?

77. [21] Design an algorithm to generate the sequence of rightmost elements a ... an
in the rows of the Christmas tree pattern, given n. Hint: These bit strings are
characterized by the property that a1 +---+ar > k/2 for 0 < k < mn.

78. [20] True or false: If o1 ... o, is a row of the Christmas tree pattern, so is
R .. GE (the reverse sequence of reverse complements).

79. [M26] The number of permutations p;...p, that have exactly one “descent”
where pr. > pr41 is the Eulerian number <71’> = 2" —n —1, according to Eq. 5.1.3-(12).
The number of entries in the Christmas tree pattern, above the bottom row, is the same.
a) Find a combinatorial explanation of this coincidence, by giving a one-to-one cor-
respondence between one-descent permutations and unsorted bit strings.
b) Show that two unsorted bit strings belong to the same row of the Christmas tree
pattern if and only if they correspond to permutations that define the same P
tableau under the Robinson—-Schensted correspondence (Theorem 5.1.4A).
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80. [30] Say that two bit strings are concordant if we can obtain one from the other
via the transformations 010 <> 100 or 101 < 110 on substrings. For example, the
strings

011100 <+ 011010 ¢+ 010110 ++ 010101 <> 011001

7 7

100110 < 100101 <+ 101001 <+ 110001

are mutually concordant, but no other string is concordant with any of them.
Prove that strings are concordant if and only if they belong to the same column
of the Christmas tree pattern and to rows of the same length in that pattern.

81. [M30] A biclutter of order (n,n') is a family S of bit string pairs (o,0’), where
|o| = n and || = n', with the property that distinct members (o,0') and (r,7') of S
are allowed to satisfy 0 C 7 and ¢’ C 7/ only if 0 # 7 and o' # 7'.

Use Christmas tree patterns to prove that S contains at most M, string pairs.

82. [M26] Let E(f) be the number of times Algorithm H evaluates the function f.
a) Show that M, < E(f) < My41, with equality when f is constant.
b) Among all f such that E(f) = M, which one minimizes ) _ f(o)?
c) Among all f such that E(f) = My,1, which one maximizes ) f(o)?

83. [M20] (G.Hansel.) Show that there are at most 3™~ monotone Boolean functions
f(z1,...,zn) of n Boolean variables.

84. [HM27] (D. Kleitman.) Let A be an m X n matrix of real numbers in which every
column v has length ||v]| > 1, and let b be an m-dimensional column vector. Prove that
at most M,, column vectors z = (az,...,a,)", with components a; = 0 or 1, satisfy
[|[Az — b|| < % Hint: Use a construction analogous to the Christmas tree pattern.

85. [HM35] (Philippe Golle.) Let V be any vector space contained in the set of
all real n-dimensional vectors, but containing none of the unit vectors (1,0,...,0),
(0,1,0,...,0), ..., (0,...,0,1). Prove that V contains at most M, vectors whose
components are all 0 or 1; furthermore the upper bound M,, is achievable.

86. [15] If (2) is regarded as an oriented forest instead of an ordered forest, what
canonical forest corresponds to it? Specify that forest both by its level codes ¢ ... c15
and its parent pointers p; ...pis.

87. [M20] Let F be an ordered forest in which the kth node in preorder appears on
level ¢ and has parent px, where pr = 0 if that node is a root.

a) How many forests satisfy the condition ¢, = p for 1 < k < n?

b) Suppose F and F' have level codes c; ...c, and cj...c;,, respectively, as well
as parent links p;...p, and p}...p,. Prove that, lexicographically, c;...c, <
ci...c, if and only if py ...pn < pi...ph.

88. [M20] Analyze Algorithm O: How often is step O4 performed? What is the total
number of times py is changed in step O57

89. [M46] How often does step O5 set pr < p;?

90. [M27] If py...pn is a canonical sequence of parent pointers for an oriented forest,
the graph with vertices {0,1,...,n} and edges {k — pr | 1 < k < n} is a free tree,
namely a connected graph with no cycles. (See Theorem 2.3.4.1A.) Conversely, every
free tree corresponds to at least one oriented forest in this way. But the parent pointers
011 and 000 both yield the same free tree }«; similarly, 012 and 010 both yield .
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The purpose of this exercise is to restrict the sequences pj ...p, further so that
each free tree is obtained exactly once. We proved in 2.3.4.4—(g) that the number of
structurally different free trees on n+ 1 vertices has a fairly simple generating function,
by showing that a free tree always has at least one centroid.

a) Show that a canonical n-node forest corresponds to a free tree with a single centroid
if and only if no tree in the forest has more than |n/2] nodes.

b) Modify Algorithm O so that it generates all sequences ps . ..p, that satisfy (a).

c) Explain how to find all p; ... p, for free trees that have two centroids.

91. [M37] (Nijenhuis and Wilf.) Show that a random oriented tree can be generated
with a procedure analogous to the random partition algorithm of exercise 7.2.1.4 47.

92. [15] Are the first and last spanning trees visited by Algorithm S adjacent, in the
sense that they have n — 2 edges in common?

93. [20] When Algorithm S terminates, has it restored the graph to its original state?

94. [22] Algorithm S needs to “prime the pump” by finding an initial spanning tree
in step S1. Explain how to do that task.

95. [26] Complete Algorithm S by implementing the bridge test in step S8.

96. [28] Analyze the approximate running time of Algorithm S when the given graph
is simply (a) a path P, of length n — 1; (b) a cycle C,, of length n.

97. [15] Is (48) a series-parallel graph?
98. [16] What series-parallel graph corresponds to (53) if A is taken to be serial?

99. [80] Consider a series-parallel graph represented by a tree as in (53), together
with node values that satisfy (55). These values define a spanning tree or a near tree,
according as vp is 1 or 0 at the root p. Show that the following method will generate
all of the other configs of the root:
i) Begin with all uneasy nodes active, other nodes passive.
ii) Select the rightmost active node, p, in preorder; but terminate if all nodes are
passive.
iii) Change d, < rq,, update all values in the tree, and visit the new config.
iv) Activate all uneasy nodes to the right of p.
v) If dp has run through all children of p since p last became active, make node p
passive. Return to (ii).
Also explain how to perform these steps efficiently. Hints: To implement step (v),
introduce a pointer z,; make node p passive when d, becomes equal to z,, and at such
times also reset z, to the previous value of d,. To implement steps (ii) and (iv), use
focus pointers f, analogous to those in Algorithms 7.2.1.1L and 7.2.1.1K.

100. [40] Implement the text’s “Algorithm S'” for revolving-door generation of all
spanning trees, by combining Algorithm S with the ideas of exercise 99.

101. [46] Is there a simple revolving-door way to list all n" 2 spanning trees of the

complete graph K,,? (The order produced by Algorithm S is quite complicated.)

102. [46] An oriented spanning tree of a directed graph D on n vertices, also known
as a “spanning arborescence,” is an oriented subtree of D containing n — 1 arcs. The
matrix tree theorem (exercise 2.3.4.2-19) tells us that the oriented subtrees having a
given root can readily be counted by evaluating an (n — 1) X (n — 1) determinant.

Can those oriented subtrees be listed in a revolving-door order, always removing
one arc and replacing it with another?
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» 103. [HM39] (Sandpiles.) Consider any digraph D on vertices Vo, Vi, ..., V;, with e;;
arcs from V; to V;, where e;; = 0. Assume that D has at least one oriented spanning
tree rooted at Vp; this assumption means that, if we number the vertices appropriately,
we have ejo + -+ + eji—1) > 0 for 1 < i< n. Let di = ejo + -+ + e;n be the total
out-degree of V;. Put x; grains of sand on vertex V; for 0 < ¢ < n, and play the
following game: If x; > d; for any ¢ > 1, decrease z; by d; and set z; < z; + e;; for
all j # 4. (In other words, pass one grain of sand from V; through each of its outgoing
arcs, whenever possible, except when 7 = 0. This operation is called “toppling” V;,
and a sequence of topplings is called an “avalanche.” Vertex V; is special; instead of
toppling, it collects particles of sand that essentially leave the system.) Continue until
z; < d; for 1 <4 < n. Such a state x = (z1,...,2y,) is called stable.

a) Prove that every avalanche terminates in a stable state after a finite number of
topplings. Furthermore, the final state depends only on the initial state, not on
the order in which toppling is performed.

b) Let o(z) be the stable state that results from initial state z. A stable state is
called recurrent if it is o(z) for some z with z; > d; for 1 < i < n. (Recurrent
states correspond to sandpiles that have evolved over a long period of time, after
new grains of sand are repeatedly introduced at random.) Find the recurrent
states in the special case when n = 4 and when the only arcs of D are

V1—>VE], Vl—)Vz,‘/z—)Vo,‘/z—)Vl,‘/:;—)Vo., V3—>V21, V4—>VE], V4—)V3.

c) Let d = (d1,...,dn). Prove that z is recurrent if and only if z = o(z + t), where
t is the vector d — o(d).

d) Let a; be the vector (—e;1,...,—e;i—1),di, —€i(it1)s-- -1 —€in), for 1 < i < ny
thus, toppling V; corresponds to changing the state vector z = (z1,...,zn) to
x — a;. Say that two states = and z’ are congruent, written z = 2', if ¢ — 2’ =
miai 4+ - - -+myay, for some integers mq, ..., m,. Prove that there are exactly as
many equivalence classes of congruent states as there are oriented spanning trees
in D, rooted at V. Hint: See the matrix tree theorem, exercise 2.3.4.2-19.

e) If x = 2’ and if both z and z' are recurrent, prove that z = z'.

f) Prove that every congruence class contains a unique recurrent state.

g) If D is balanced, in the sense that the in-degree of each vertex equals its out-degree,
prove that x is recurrent if and only if x = o(z + a), where a = (eo1,. .., €on).

h) Tllustrate these concepts when D is a “wheel” with n spokes: Let there be 3n arcs,
V; = Vo and V; <> Vj4q for 1 < j < n, regarding V,,41 as identical to V5. Find
a one-to-one correspondence between the oriented spanning trees of this digraph
and the recurrent states of its sandpiles.

i) Similarly, analyze the recurrent sandpiles when D is the complete graph on n + 1
vertices, namely when e;; = [i# j] for 0 < i,j < n. Hint: See exercise 6.4 31.

> 104. [HM21] If G is a graph on n vertices {V1,...,V,,}, with e;; edges between V; and

V;, let C(G) be the matrix with entries c;; = —e;; + d;;di, where d; = e;1 + -+ -+ €in is
the degree of V;. Let us say that the aspects of G are the eigenvalues of C(G), namely
the roots ap, ..., @n_1 of the equation det(al —C(G)) = 0. Since C(G) is a symmetric
matrix, its eigenvalues are real numbers, and we can assume that ag < a1 < -+ < an_1.

a) Prove that ap = 0.

b) Prove that G has exactly ¢(G) = a1 ... an—1/n spanning trees.

¢) What are the aspects of the complete graph K,?
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105. [HM37] Continuing exercise 104, we wish to prove that there is often an easy
way to determine the aspects of G when G has been constructed from other graphs

whose aspects are known. Suppose G’ has aspects g, ..., al,,_; and G” has aspects
ag, ..., a5 what are the aspects of G in the following cases?
a) G = G’ is the complement of G'. (Assume that e}; < [i# j] in this case.)
b) G=G' + G" is the sum (juxtaposition) of G’ and G".
c) G =G+ G" is the cosum (join) of G’ and G".
d) G=
) G

G’ x G" is the Cartesian product of G’ and G".

L(G") is the line graph of G', when G’ is a regular graph of degree d' (namely
when all vertices of G’ have exactly d' neighbors, and there are no self-loops).

f) G = G'&G" is the direct product (conjunction) of G' and G"', when G’ is regular
of degree d' and G" is regular of degree d".

g) G = G' ® G" is the strong product of regular graphs G’ and G".

€

106. [HM37] Find the total number of spanning trees in (a) an m x n grid P, X Py;
(b) an m x n cylinder Pp, X Cy; (c) an m X n torus Cp, X C,. Why do these numbers
tend to have only small prime factors? Hint: Show that the aspects of P, and C,, can
be expressed in terms of the numbers oy, = 4 sin? 12”

107. [M24] Determine the aspects of all connected graphs that have n < 5 vertices
and no self-loops or parallel edges.

108. [HM/40] Extend the results of exercises 104-106 to directed graphs.

109. [M46] Find a combinatorial explanation for the fact that (57) is the number of
spanning trees in the n-cube.

110. [M27] Prove that if G is any connected multigraph without self-loops, it has

G) > V1) (dn— 1)
spanning trees, where d; is the degree of vertex j.

111. [05] List the nodes of the tree (58) in postpreorder.

112. [15] If node p of a forest precedes node g in prepostorder and follows it in
postpreorder, what can you say about p and ¢?

113. [20] How do prepostorder and postpreorder of a forest F' relate to prepostorder
and postpreorder of the conjugate forest F®? (See exercise 13.)

114. [15] If we want to traverse an entire forest in prepostorder using Algorithm Q,
how should we begin the process?

115. [20] Analyze Algorithm Q: How often is each step performed, during the com-
plete traversal of a forest?

116. [28] If the nodes of a forest F' are labeled 1 to n in prepostorder, say that node k
is lucky if it is adjacent to node k + 1 in F', unlucky if it is three steps away, and
ordinary otherwise, for 1 < k < n; in this definition, node n + 1 is an imaginary
super-root considered to be the parent of each root.
a) Prove that lucky nodes occur only on even-numbered levels; unlucky nodes occur
only on odd-numbered levels.
b) Show that the number of lucky nodes is exactly one greater than the number of
unlucky nodes, unless n = 0.

117. [21] How many n-node forests contain no unlucky nodes?
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118. [M28] How many lucky nodes are present in (a) the complete t-ary tree with
(t* —1)/(t—1) internal nodes? (b) the Fibonacci tree of order k, with Fj; — 1 internal
nodes? (See 2.3.4.5 (6) and Fig. 8 in Section 6.2.1.)

119. [21] The twisted binomial tree Ty, of order n is defined recursively by the rules

To =o, THZN 0 } "7} for n > 0.
15 T e Ty

(Compare with 7.2.1.3—(21); we reverse the order of children on alternate levels.) Show
that prepostorder traversal of T), has a simple connection with Gray binary code.

120. [22] True or false: The square of a graph is Hamiltonian if the graph is connected
and has no bridges.
121. [M32] (F.Neuman, 1964.) The derivative of a graph G is the graph G obtained
by removing all vertices of degree 1 and the edges touching them. Prove that, when T
is a free tree, its square T contains a Hamiltonian path if and only if its derivative has
no vertex of degree greater than 4 and the following two additional conditions hold:

i) All vertices of degree 3 or 4 in T lie on a single path.

ii) Between any two vertices of degree 4 in T there is at least one vertex that has

degree 2 in T

122. [31] (Dudeney’s Digital Century puzzle.) There are many curious ways to obtain
the number 100 by inserting arithmetical operators and possibly also parentheses into
the sequence 123456789. For example,

100=14+2%x34+4x5-6+74+8x9=(14+2-3-4)x(5—-6—-7—-8-9)
=((1/((2+3)/4—-5+6)) x7T+8)x 9
a) How many such representations of 100 are possible? To make this question

precise, in view of the associative law and other algebraic properties, assume
that expressions are written in canonical form according to the following syntax:

(expression ) — (number) | (sum) | ( product ) | ( quotient )

(sum) — (term) + (term) | (term) — (term) | (sum) + (term) | {sum) — {term)
(term ) — (number ) | ( product ) | { quotient )

(product ) — (factor) x (factor) | ( product) x (factor) | ({quotient)) x (factor)
(quotient ) — (factor )/{factor) | { product )/(factor) | ({ quotient ))/{ factor)
(factor ) — (number) | ({sum ))

(number ) — (digit)

The digits used must be 1 through 9, in that order.
b) Extend problem (a) by allowing multidigit numbers, with the syntax

(number ) — (digit) | (number )(digit )

For example, 100 = (1/(2 — 3 4+ 4)) x 567 — 89. What is the shortest such
representation? What is the longest?
c) Extend problem (b) by also allowing decimal points:

(number ) — (digit string) | .( digit string)
(digit string) — (digit) | ( digit string )(digit )

For example, 100 = (.1 — 2 — 34 x .5)/(.6 — .789), amazingly enough.
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123. [21] Continuing the previous exercise, what are the smallest positive integers
that cannot be represented using conventions (a), (b), (c)?

(a)

Fig. 42. “Organic” illustrations of binary trees.

» 124. [40] Experiment with methods for drawing extended binary trees that are in-
spired by simple models from nature. For example, we can assign a value v(z) to each
node z, called its Horton-Strahler number, as follows: Each external (leaf) node has
v(z) = 0; an internal node with children (I, r) has v(z) = max(v(l), v(r))+[v(l) =v(r)].
The edge from internal node z to its parent can be drawn as a rectangle with height
h(v(z)) and width w(v(z)), and the edge rectangles with children (I,7) can be offset by
angles O(v(l(z)),v(r(x))), —0(v(r(z)),v(l(z))), for certain functions h, w, and 6. The
examples in Fig. 42 show typical results when we choose w(k) = 3 + k, h(k) = 18k,
O(k, k) =30° 6(5,k) = (k+1)/7) x 20° for 0 < k < j, and 0(j.k) = ((k — 7)/k) x 30°
for 0 < j < k; the roots appear at the bottom. Part (a) of Fig. 42 is the binary tree (4);
part (b) is a random 100-node tree generated by Algorithm R; part (c) is the Fibonacci
tree of order 11, which has 143 nodes; and part (d) is a random 100-node binary search
tree. (The trees in parts (b), (c), and (d) clearly belong to different species.)
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SECTION 7.2.1.6

1. Tt could “see” a left parenthesis at the left of every internal node and a right
parenthesis at the bottom of every internal node. Alternatively, it could associate right
parentheses with the external nodes that it encounters except for the very last [];
see exercise 20.

2. Z1. [Initialize.] Set 2z < 2k — 1 for 0 < k < n. (Assume that n > 2.)
Z2. [Visit.] Visit the tree-combination z122 ... zn.
Z3. [Easy case?] If zn—1 < zn — 1, set zn « 2z, — 1 and return to Z2.
ZA4. [Find j.] Set j «+ n—1and z, < 2n—1. While zj_1 = z; — 1, set z; + 25— 1
and j «+j— 1.
Z5. [Decrease z;]. Terminate the algorithm if j = 1. Otherwise set z; + z; — 1
and go back to Z2. |

3. Label the nodes of the forest in preorder. The first zx — 1 elements of a; ... a2,
contain k — 1 left parentheses and zp — k right parentheses. So there is an excess of
2k —1—zy, left parentheses over right parentheses when the “worm?” first reaches node k;
and 2k — 1 — 2, is the level (or depth) of that node.

Let g1 ... ¢gn be the inverse of p1 ... pn, so that node k is the gxth node in postorder.
Since k occurs to the left of j in p;...p, if and only if gr < g;, we see that ci is the
number of nodes j that precede k in preorder but follow it in postorder, namely the
number of ancestors of k; again, this is the level of k.

Alternative proof: We can also show that both sequences 21 ...z, and ¢ ... c, have
essentially the same recursive structure as (5): Zpg = (Zp(g—1) +17), 1(Z(p-1)q +177")
when 0 < p < ¢; and Cpq = Cpy—1), (¢—P)Cp—1)q- (Consider the mate of the last,
next-to-last, etc., left parenthesis.)

Incidentally, the formula ‘cy4+1 + dx = cx + 17 is equivalent to (11).

4. Almost true; but dy...d, and z1 ...z, occur in decreasing order, while p1...p,
and ¢y ... ¢, are increasing. (This lexicographic property for a sequence of permutations
P1...pn is not automatically inherited from lexicographic order of the corresponding
inversion tables ci ... cn; but the result does hold for this particular class of p1 ... pn.)

5. dy...d15=020020010320104; 21...215=12567101112141519222325 26;
p1...p15 =215481097116131514123;¢1...c15 =010121233421223.

6. Match up the parentheses as usual; then simply curl the string up
and around until az, becomes adjacent to a;, and notice that the
distinction between left and right parentheses can be reconstructed
from the context. Letting a; correspond to the bottom of the circle, I
as in Table 1, yields the diagram shown. [A. Errera, Mémoires de
la Classe Sci. 8°, Acad. Royale de Belgique (2) 11,6 (1931), 26 pp.]

7. (a) It equals )) () ... (); setting a1 + ‘C will restore the initial
string. (b) The initial binary tree (from step B1) will have been restored,
except that [, =n+ 1.

8 l1...1:i5=204507801000130150; 71 ...75 =30060121190000 140 0;
e1...e;5=103102201002010;51...515=1012105301003010.

9. Node j is an ancestor of node k if and only if s; + 7 > k. (As a consequence, we
have c1 + -+ cn =581+ + sn.)

10. If j is the index 2 of the kth left parenthesis, we have w; = cx + 1 and wj;» = cg,
where j' is the index of the matching right parenthesis.
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11. Swap left and right parentheses in azy, . ..a1 to get the mirror image of a; ... azn.

12. The mirror reflection of (4) corresponds to the forest

but the significance of transposition is clearer, forest-wise, if we draw right-sibling and
left-child links horizontally and vertically, then do a matrix-like transposition:

13. (a) By induction on the number of nodes, we have preorder(F%) = postorder(F)%

and postorder(F®) = preorder(F)¥.

(b) Let F' correspond to the binary tree B; then preorder(F) = preorder(B)
and postorder(F) = inorder(B), as noted after 2.3.2-(6). Therefore preorder(FT) =
preorder(B®) = postorder(B)® has no simple relationship to either preorder(F) or
postorder(F). But postorder(F”) = inorder(B®) = inorder(B)" = postorder(F)*.
14. According to answer 13, postorder(F®T) = preorder(F) = preorder(B) when F
corresponds naturally to B; and postorder(F™?) = preorder(F” )" = postorder(B).
Therefore the equation FFT = FTE holds if and only if F has at most one node.

15. If FE corresponds naturally to the binary tree B’, the root of B’ is the root of F’s
rightmost tree. The left link of node z in B’ is to the leftmost child of z in F®, which
is the rightmost child of x in F'; similarly, the right link is to z’s left sibling in F'.
Note: Since B corresponds naturally to F*7, answer 13 tells us that inorder(B) =
postorder(F%T) = postorder(FT)® = preorder(F).
16. The forest F' | G is obtained by placing the trees of F' below the first node of G in
postorder. Associativity follows because F|(G|H) = (H'GTFT)T = (F|G)|H. Notice,
incidentally, that postorder(F | G) = postorder(F')postorder(G), and that F' | (GH) =
(F' | G)H when G is nonnull.

17. Any nonnull forest can be written F' = (G|-)H, where - denotes the 1-node forest;
then FF = H®(G®|.) and FT = (HT | )GT. In particular we cannot have F = FT
unless H is the null forest A, since the first tree of HE can’t be HT | -; and G must
then also be A. Furthermore F = F7 if and only if G = H”. In that case we cannot
also have FE = FET ynless G = A; the first tree of GT® would otherwise have more
nodes than G itself.
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It appears to be true that we cannot have FET = FTE ynless F = FE. Under
that assumption, FFT = FT® if and only if F and FT are both self-conjugate. David
Callan has discovered two infinite families of such forests, with parameters i, j, k > 0:

o o o o (0 o
J

(In these examples, i = 2, j = 3, and k = 5.) Are there any other cases?

18. The Ci5 = 9,694,845 forests are partitioned into 20,982 classes. The largest is
a cycle of length 58,968, one of whose elements is (((O)(()))O))OQOCCOCOIOIOD) Q.

The shortest are six two-element classes (corresponding to exercise 17), consisting of

0000000000000 OO0, O000OOOOONOOOQO,
OO0 CCOOOOINNOOO, OO CCCCCCCCO 00NN OO,
OCOOICCOCOIONCOONO, O CCCCCCCCCC 3333333301 O,

and their transposes. The somewhat strange strings ((CCCCCOINMIMINN OO OO OO O,
OO0O0O0OOOCCCCCCdIINNIII, and CCCCLCCCOOOOOONONOIN)) each have
wedge-shaped binary trees and form a unique class of size 3. The path that runs from
OCOCOONEMELOOIONO to CCOOICOOICOICOOICOO)) has 3120 el-
ements, one of which is (2). According to the conjecture in answer 19, the shortest
possible cycle has length 6; when n = 15 there are 66 such cycles. (The next-shortest
cycle, which is unique, has length 10 and includes O () OO ()) O (CCCOYOI (O )

19. The transformation from Fj to Fjj11 by Algorithm P can be paraphrased as follows:
“Find the last node in preorder, say z, that has a left sibling, say y. Remove z from
its family and make it the new rightmost child of y. And if x < n, change all of z’s
descendants z + 1, ..., n into trivial one-node trees.”

The transformation that takes FjR into Fj}j_l can therefore be stated as follows,
if we recall that the kth node of F; in preorder is the kth-from-last node of FjR in
postorder: “Find the first node in preorder, say x, that has a right sibling, say y.
Remove z from its family and make it the new leftmost child of y. And if z < n,
change all of x’s descendants « + 1, ..., n into trivial one-node trees.”

Similarly, we can paraphrase the transformation from G; to G4 that is specified
by Algorithm B: “Find j, the root of the leftmost nontrivial tree; then find k, its
rightmost child. Remove k and its descendants from j’s family, and insert them between
7 and j’s right sibling. Finally, if j > 1, make j and its siblings all children of j — 1,
and j — 1 a child of 7 — 2, etc.”

When this transformation changes the left-sibling/right-child representation from
GJRT to G]Rfl (see exercise 15), it turns out to be identical to the transformation that
takes F]-R to Fﬁ_l in the left-child /right-sibling representation. Therefore G’JRT = FjR,
because this identity clearly holds when j = 1.
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(It follows that the sequence of tables e;...e,—1 for the binary trees generated
by Algorithm B is exactly the sequence of tables d,,_1...d; for the parenthesis strings
generated by Algorithm P; this phenomenon is illustrated in Tables 1 and 2.)

The forest FR™® is called the dual of F; see exercise 26(f). Several symmetries
between lists of forests have been explored by M. C. Er, Comp. J. 32 (1989), 76 85.
20. (a) This assertion, which generalizes Lemma 2.3.1P, is readily proved by induction.

(b) The following procedure is, in fact, almost identical to Algorithm P:

T1. [Initialize.] Set bsp—2 < 3 and bzr—1 <« bar < 0 for 1 < k < n; also set by +

by < 0 and m < N — 3, where N = 3n + 1.

T2. [Visit.] Visit by...by. (Now by, = 3 and bm41...08 =0...0.)
T3. [Easy case?] Set by < 0. If byy—1 = 0, set bm—1 < 3, m < m — 1, and go to T2.
T4. [Find j.] Set j < m —1 and k + N — 3. While b; = 3, set b; « 0, by, + 3,

j<j—1,and k< k- 3.

T5. [Increase b;.] Terminate the algorithm if 7 = 0. Otherwise set b; < 3, m < N — 3,

and return to T2. |

[See S. Zaks, Theoretical Comp. Sci. 10 (1980), 63 82. In that article, Zaks pointed
out that it is even easier to generate the sequence z; ... 2z, of indices j such that b; = 3,
using an algorithm virtually identical to the answer to exercise 2, because a valid ternary
tree combination z1 ...z, is characterized by the inequalities zx—1 < zx < 3k — 2.]

21. For this problem we can essentially combine Algorithm P with Algorithm 7.2.1.2L.
We shall assume for convenience that n; > 0 and ny + -+ +ns > 1.

G1. [Initialize.] Set [ <~ N. Then for j = ¢, ..., 2, 1 (in this order), do the following
operations n; times: Set b;_; < j, bi—j41 ¢ -+ < bj_1 < 0, and | < [ — j.
Finally set bg < by < co < 0 and m «+ N — t.

G2. [Visit.] Visit by ...bn. (At this point b, > 0 and b1 = --- = by =0.)

G3. [Easy case?] If b—1 = 0, set bjn—1 < bm, bm < 0, m < m — 1, and return to G2.

G4. [Find j.] Set ¢1 < b, by < 0, 7 < m — 1, and k <+ 1. While b; > ci, set
k< k+1,ct < bj,bj < 0,and j < 57— 1.

G5. [Increase bj;.] If b; > 0, find the smallest [ > 1 such that b; < ¢;, and interchange
b; <> ¢;. Otherwise, if j > 0, set b; < ¢1 and ¢ < 0. Otherwise terminate.

G6. [Reverse and spread out.] Set j <— k and | <~ N. While ¢; > 0, set b;—., + c;j,
l+1—cj,and j < 7 — 1. Then set m <~ N — ¢} and go back to G2. |

This algorithm assumes that N > ni +2ns +- - -+ tn;. [See SICOMP 8 (1979), 73-81.]

22. Note first that di can be increased if and only if 71 = 0 in the linked representation.

Otherwise the successor of d; .. .dp—_1 is obtained by finding the smallest j with d; > 0

and setting d; < 0, dj+1 < dj4+1 + 1. We may assume that n > 2.

K1. [Initialize.] Set Iy + k+ 1 and 74, < 0 for 1 < k < n; also set I,  r, < 0.

K2. [Visit.] Visit the binary tree represented by lil2...l, and ri72...75.

K3. [Easy cases?] Set y < ri. If y = 0, set 71 « 2, Iy + 0, and return to K2.
Otherwise if [y = 0, set I3 < 2, r1 < r2, 72 < l2, I3 + 0, and return to K2.
Otherwise set 7 < 2 and k < 1.

K4. [Find j and k.] If r; > 0, set k < jand y  r;. Thenif j £y —1,set j+ j+1
and repeat this step.
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K5. [Shuffle subtrees.] Set l; <y, rj ¢ ry, 7y < ly, and I, < 0. If j = k, go to K2.

K6. [Shift subtrees.] Terminate if y = n. Otherwise, while k > 1, set k + k— 1, j «
j—1,and rj < ri. Then while j > 1, set j <~ j—1 and r; < 0. Return to K2. 1|

(See the analysis in exercise 45. Korsh [Comp. J. 48 (2005), 488-497] has shown that
this algorithm can be extended in an interesting way to t-ary trees; and he has also
found an efficient t-ary generalization of Algorithm B.)

23. (a) Since zn begins at 2n — 1 and goes back and forth C,_; times, it ends at
2n —1 — (Cp—1 mod 2), when n > 1. Furthermore the final value of z; is constant for
all n > j. Thus the final string z12z2... 181256 9 11 13 14 17 19 ..., containing all
odd numbers < 2n except 3, 7, 15, 31, ....

(b) Similarly, the preorder permutation that characterizes the final tree is 2¢ 287*
...13567910..., where k = |lgn|. Forestwise, node 27 is the parent of 277! nodes
{2971 2971 4 1,...,29 — 1}, for 1 < j <k, and the trees {2 +1,... n} are trivial.

Note: If Algorithm N is restarted at step N2 after it has terminated, it will generate
the same sequence, but backwards. Algorithm L has the same property.

24. lply... 115 =201030065080012114; r;...75 = 0150107009014130000;
ky...kis=0022455484101111102; ¢1...q15 =211543108576914111312; and
up...us = 1231005031001010. (If nodes of the forest F are numbered in post-
order, k; is the left sibling of j; or, if j is the leftmost child of p, k; = k,. Stated
another way, k; is the parent of j in the forest F77. And k; is also j — 1 — un41_j, the
number of elements to the left of j in g1 ...¢n that are less than j.)

25. Taking a cue from Algorithms N and R, we want to extend each (n — 1)-node tree
to a list of two or more n-node trees. The idea in this case is to make n a child of
n — 1 in the binary tree at the beginning and the end of every such list. The following
algorithm uses additional link fields p; and s;, where p; points to the parent of j in the
forest, and s; points to j’s left sibling or to j’s rightmost sibling if j is the leftmost in
its family. (These pointers p; and s; are, of course, not the same as the permutations
Pp1...pn in Table 1 or the scope coordinates si ...s, in Table 2. In fact s1 ... sy is the
permutation A of exercise 33 below.)

Ma1. [Initialize.] Set l; < j+1,7; + 0,5 + j,pj < j—1,andoj + —1for1 < j < mn,
except that [, < 0.

MZ2. [Visit.] Visit 1 ...l, and 71 ...7r,. Then set j < n.

M3. [Find j.] If 0 > 0, set k < p; and go to M5 if k # j — 1. If 0; < 0, set k <+ s;
and go to M4 if k # j — 1. If kK = j — 1 in either case, set 0; < —o0;, j < 7 — 1,
and repeat this step.

MA4. [Transfer down.] (At this point k is j’s left sibling, or the rightmost member of
j’s family.) If k > j, terminate if j = 1, otherwise set z < p;, l, + 0, z < k, and
k < 0 (thereby detaching node j from its parent and heading for the top level).
But if k < j, set © < p; + 1, z < sz, 7, < 0, and s, < k (thereby detaching
node j from k and going down a level). Then set z < k+ 1, y « sz, sz « z,
Sj <y, ry < j, and x < j. While z # 0, set p, < k and = < r,. Return to M2.

MS5. [Transfer up.] (At this point k is j’s parent.) Set z < k+ 1, y « s, z < Sa,
Sg < y,and ry < 0. If K #0, set y ¢ pr, i < J, Sj < k, Sy+1 < 2z, and = < j;
otherwise set y <— j — 1,1y < j, s; < z, and = < j. While = # 0, set p, < y and
T < 7. Return to M2. |
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Running time notes: We can argue as in exercise 44 that step M3 costs 2Cy, +3(Crn—1+
-+ C4) mems, and that steps M4 and M5 together cost 8C,, —2(Cy,_1+---+C4), plus
twice the number of times z < r,. The latter quantity is difficult to analyze precisely;
for example, when n = 15 and j = 6, the algorithm sets z < r, exactly (1,2, 3,4,5,6)
times in respectively (45,23,7,9,2,4) cases. But heuristically the average number of
times = < 7 should be approximately 2 — 29~ when j is given, therefore about
(2Cn — (Cn — Cnfl) — (Cnfl — Cnfz)/Q — (Cnfz — Cnfg)/4 — e )/Cn ] 8/7 overall.
Empirical tests confirm this predicted behavior, showing that the total cost per tree
approaches 265/21 &~ 12.6 mems as n — oo.

26. (a) The condition is clearly necessary. And if it holds, we can uniquely construct F':
Node 1 and its siblings are the roots of the forest, and their descendants are defined
inductively by noncrossing partitions. (In fact, we can compute the depth coordinates
c1 . ..cn directly from IT’s restricted growth sequence a; ...an: Set ¢; + 0 and g < 0.
For 2 < j < n, if a; > max(a1,...,a; 1), set ¢; < ¢;_1 4+ 1 and i4, < c¢;, otherwise
set ¢j < 1a;.)

(b) If IT and II’ satisfy the noncrossing condition, so does their greatest common
refinement 7T V IT', so we can proceed as in exercise 7.2.1.5-12(a).

(c) Let z1, ..., Tm be the children of some node in F, and let 1 < j < k < m.
Form F' by removing x 41, ..., T from their family and reattaching them as children
of 41 — 1, the rightmost descendant of z;.

(d) Obvious, by (c). Thus the forests are ranked from bottom to top by the number
of nonleaf nodes they contain (which is one less than the number of blocks in IT).

(e) Exactly Y°;'_,ex(ex —1)/2, where eg = n—ey —- - - — ey is the number of roots.

(f) Dualization is similar to the transposition operation in exercise 12, but we use
left-sibling and right-child links instead of left-child and right-sibling, and we transpose
about the minor diagonal:

(“Right” links now point downward. Notice that j is the rightmost child of k in F' if
and only if j is the left sibling of k in FP. Preorder of FP reverses the preorder of F,
just as postorder of FT reverses postorder of F.)

(g) From (f) we can see that F’ covers F if and only if FP covers F'P. (Therefore
FP has n+1 — k leaves if F has k.)

(h) FRF' = (FP v F'P)P,

(i) No. If it did, equality would necessarily hold, by duality. But, for example,
0101 A 0121 = 0000 and 0101 V¥ 0121 = 0123, while leaves(0101) + leaves(0121) #
leaves(0000) + leaves(0123).

[Noncrossing partitions were first considered by H. W. Becker in Math. Mag. 22
(1948), 23-26. G. Kreweras proved in 1971 that they form a lattice; see the references
in answer 2.3.4.6-3.]
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27. (a) This assertion is equivalent to exercise 2.3.3-19.

(b) If we represent a forest by right-child and left-sibling links, preorder cor-
responds to inorder of the binary tree (see exercise 2.3.2 5), and s; is the size of
node j’s right subtree. Rotation to the left at any nonleaf of this binary tree decreases
exactly one of the scope coordinates, and the amount of decrease is as small as possible
consistent with a valid table s; ... s,. Therefore F’ covers F if and only if F is obtained
from F' by such a rotation. (Rotation in the left-child /right-sibling representation is
similar, but with respect to postorder.)

(c) Dualization preserves the covering relation but exchanges left with right.

(d) FTF' = (FP L F'P)P. Equivalently, as noted in exercise 6.2.3-32, we can
independently minimize the left-subtree sizes.

(e) The covering transformation in answer 26(c) obviously makes s; < s’ for all j.

(f) True, because FAF' K FAF LF' and FAF' K F' 4F L F'.

(g) False; for example, 0121 ¥ 0122 = 0123 and 0121 T 0122 = 0122. (But we do
have F T F' 4 F v F', by taking duals in (f).)

(h) The longest path, of length (;)7 repeatedly decreases the rightmost nonzero s;
by 1. The shortest, of length n — 1, repeatedly sets the leftmost nonzero s; to 0.

Answer 6.2.3-32 gives many references to the literature of Tamari lattices.

28. (a) Just compute min(cq,cy)...min(c,,c),) and max(cy,cy)...max(c,,cy), be-
cause C1 ...Cp is a valid sequence if and only if c; =0 and ¢; <¢cj_1+1for 1 <j < n.
(b) Obvious because of (a). Note: The elements of any distributive lattice can be

represented as the order ideals of some partial ordering. In the case of Fig. 41,
that partial ordering is shown at the right, and a similar triangular grid with /Q\
sides of length n — 2 yields Stanley’s lattice of order n.

(c) Take a node k of F' that has a left sibling, j. Remove k from its family and
place it as a new right child of j, followed by its former children as new children of j;
the former children of k retain their own descendants. (This operation corresponds
to changing )( to () in a nested parenthesis string. Thus a “perfect” Gray code
for parentheses corresponds to a Hamiltonian path in the cover graph of Stanley’s
lattice. Exactly 38 such paths exist when n = 4, namely (8,6,6,8,4,6) from 0123 to
(1001,0010,0012, 0100, 0111, 0120) respectively.)

(d) True, because the cover relation in (c) is left-right symmetric. (We have
F C F' if and only if w; < w) for 0 < j < 2n, where the worm depths w; are defined
in exercise 10. If wg ... wa, is the worm walk of F', its reverse way, ...wp is the worm
walk of FE. Notice that the cover relation changes just one coordinate wj. One can
compute F N F' and F U F' by taking min and max of the w’s instead of the ¢’s.)

(e) See exercise 9. (Thus F L F' C F N F', etc., as in exercise 27(f).)

Notes: Stanley introduced this lattice in Fibonacci Quarterly 13 (1975), 222-223.
Since three important lattices are defined on the same elements, we need three notations
for the different orderings; the symbols K, 4, and C adopted here are intended to be
reminiscent of the names of Kreweras, Tamari, and Stanley (who is Crensu in Russia).

29. If we paste six regular pentagons together, we get 14 vertices whose coordinates
after suitable rotation and scaling are respectively
P1010 = Poooo = P3000 = Pa1o0 = (—1, \/572/45);
Poo1o = P3100 = (¢_2a \/§¢7 0);  Pso10 = Poroo = (0,0,2);  P3z10 = Pozoo0 = (2,0,2/);
Po210 = Pa200 = (\/57 \/ga 0);  P1ooo = P3000 = (_¢2a \/§/¢:0)§
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here (z,y,z)" means (z,—y,z) and (z,y,2)” means (z,y,—z). But then the three
4-edged “faces” are not squares; in fact, they don’t even lie in a plane.

(One can however get a similar-looking solid, with true squares but irregular
pentagons, by gluing together two suitable tetrahedra and lopping off the three glued-
together corners. Alternative sets of coordinates for the associahedron, of substantial
mathematical interest but less appealing to the eye, are discussed by Giinter Ziegler in
his Lectures on Polytopes (New York: Springer, 1995), example 9.11.)

30. (a) fn_1...f10, because internal node j in symmetric order has a nonempty right
subtree if and only if internal node j + 1 in symmetric order has an empty left subtree.

(b) In general if the footprint were 1710911 P2tigaztl — qprtloartl we would
want to count all binary trees whose nodes in symmetric order have the specification
RPPNL"BRPPNL®B... RP* NLI%, where B means “both subtrees are nonempty,”
R means “the right subtree is nonempty but not the left,” L means “the left subtree
is nonempty but not the right,” and N means “neither subtree is nonempty.” This

number in general is
(p1+q1)<pz+qz> (pk+Qk)C
Ca k—1,
P D2 Pk

and in particular it is (75%) (%) (1) (%57) (%57) (°£0) (52) (%) (1) Co = 200200,

(c) d;j = 0 if and only if ¢;11 > ¢;, by exercise 3.

(d) In general, the footprint of F L F'is f1 ... fu A fi... fn, by exercise 27(a); the
footprint of F T F'is fi ... fo, V fi... fn, by (a) and exercise 27(d).

[The fact that complements always exist in the Tamari lattice is due to H. Lakser;
see G. Gratzer, General Lattice Theory (1978), exercise 1.6.30.]

31. (a) 2"7!; see exercise 6.2.2-5.

(b) er < -+ < e diy, ...y dnc1 < 1; €5 > 0 implies e + -+ e, = n — 7;
kivi <kj+1;,p1 < - <pj >+ > pp for some j; s; > 0 implies s; = n — j;
Uy > -+ > Upj Zj+1 < zj +2. (Other constraints, which apply in general, whittle down
the number of possibilities to 2" ! in each case. For example, u ... u, must be a valid
sequence of scope coordinates.)

(c) True in only n cases out of 2" 7. (But FT is degenerate.)

(d) The degenerate forest with footprint fi... f, has ¢j41 = ¢; + f;. Elements
j < k are siblings if and only if f; = fj4+1 = -+ = fr—1 = 0. Thus if F" is the
degenerate forest with footprint fy...f, A fi...fn, then F” < F and F" K F'; hence
F'« FAF' A F LF'. And we also have F L F' 4 F" by (b). A similar argument
proves that 'V F' = F'T F' is the degenerate forest with footprint fy ... f, V fi... fn.

Thus, when the Kreweras and Tamari lattices are restricted to degenerate forests,
they become identical to the Boolean lattice of subsets of {1,...,n —1}. [This result,
in the case of Tamari lattices, is due to George Markowsky, Order 9 (1992), 265-290,
whose paper also shows that Tamari lattices enjoy many further properties.]

32. Suppose F and F' have scope coordinates s;...s, and sj...s,. Call index j
frozen if s; < s} or j = 0. We want to specify the values of the frozen coordinates and
maximize the others. Let so = n, and for 0 < k < n let

sy =s; —k+37, wherej=max{i|0<i<k, iisfrozen, and i+ s; > k}.

Since s < s; — (k — j) whenever 0 < k — j < s;, we have s}, > s,, with equality when
k is frozen.
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The scopes sgsY ...sn correspond to a valid forest according to the condition of
exercise 27(a). Forif k> 0and 0 <1< sy =s;—k+jand sy, =5 —k—14j, we
have sy, +1 < sy if 0 < j' — j < s;, because s;s + j' — j < s; in that case. And we
can’t have j > j' or j' > j + s;, because j + s; > k+1> j'.

Let F'"' be a forest with scopes satisfying s, < s}’ < sj. Then min(s}, s}’) = sg,
because s, = s} when k is frozen, otherwise s, = s}.

Conversely, if F'" is a forest with F' L F"' = F, we must have s, < s}’ < s.
For s’ < sr would imply s’ < sj,. And if k is minimal with s’ > s}, we have
sy = s; —k+ j for some frozen j with 0 < j < k and j+s; > k. Then s}’ > s; implies

kE— 7 <5 hences) +k—j< s;”. If j < k we have 59” < s;' = s;, a contradiction.

But j = k] implies min(s},’, s},) > sj.

To get the first semidistributive law, apply this principle with F' replaced by F L G
and F' replaced by F'; then the hypotheses F 4 G 4 F" and F 4 H 4 F" imply that
F A GTH - F". The second semidistributive law follows by taking duals in the first.

(Ralph Freese suggests calling F"' the pseudo-complement of F' over F.)

33. (a) Let kA = LLINK[k] if LLINK[k] # O, otherwise RLINK[k — 1] if k # 1, otherwise
the root of the binary tree. This rule defines a permutation because kA = j if and only
if k = parent(j) + [ is a right child], or k¥ = 1 and j is the root. Also kA > k when
LLINK[k] = 0 and ko)X < k when RLINK[k] = 0. [For a generalization to t-ary trees,
see P. H. Edelman, Discrete Math. 40 (1982), 171 179.]

(b) Using the representation of (2) in answer 26(f), we see that A(F') is (31)(2)
(1264)(5)(117)(1413)(98)(15)(10) in that case. In general the cycles are the families
of the forest, in decreasing order within each cycle; nodes are numbered in preorder.
[See Dershowitz and Zaks, Discrete Math. 62 (1986), 215-218.]

(¢) M(FP) = poXp, where p is the “flip” permutation (1n)(2n—1)..., because the
dual forest interchanges LLINK <> RLINK and flips the preorder numbering.

(d) The cycle breakup (z; zx)(z1...Tm) = (T1..-TjTht1 -+ Tm)(Tjt1...Tk) COI-
responds to answer 26(c).

(e) By (d), each covering path corresponds to a factorization of (n ... 21). Let
qn denote the number of such factorizations. Then we have the recurrence ¢g; = 1 and
qn = 7;11 (n—1) (7:12) qi1qn—1, because there are n — I choices with k — j5 = [ by which
the first transposition breaks the cycle into parts of sizes [ and n — [, then (7:12) ways
to interleave the subsequent factors. The solution is g, = n" "2, because

n—1 n—1
n—1\,_1 n—i-l _ 1. n—1 -1 n—1-1
(", ) -0 =1m (" ) e+ -
1=1 =1
. (gg+y)n71 7yn71 _ o n—1
B — Sl

[See J. Dénes, Magyar Tudomédnyos Akadémia Matematikai Kutaté Intézetének
Kozleményei 4 (1959), 63-70. Tt is natural to seek a correspondence between factoriza-
tions and labeled free trees, since there also happen to be n"~2 of the latter. Perhaps
the simplest is the following, given (12...n) = (z1y1) ... (Tn-1Yyn—1) where z; < y;:
Suppose the cycle containing z; and y; in (z;y;) ... (®n-1Yn-1) is (21 ... 2Zm), where
21 < -+ < zZm. I y; = 2m, let aj = z1, otherwise let a; = min{z; | z; > z;}. Then one
can show that a; ...an,—_1 is a “wake-up sequence” for parking n — 1 cars, and exercise
6.4-31 connects it to free trees.]
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34. Each covering path from bottom to top is equivalent to a Young tableau of shape
(n—1,mn—2,...,1), so we can use Theorem 5.1.4H. (See exercise 5.3.4-38.)

[The enumeration of such paths in Tamari lattices remains mysterious; the relevant
sequence is 1, 1, 2, 9, 98, 2981, 340549, ... ]

35. Multiply by n + 1, then see AMM 97 (1990), 626-630.

36. We might as well generalize to t-ary trees for arbitrary ¢ > 1, by making obvious
amendments to steps T1 T5. Let C',(Lt) be the number of t-ary trees with n internal

nodes; thus C, = C{? and C{Y) = ((t—Dn+1)"1(""). If h of the degrees b; are

n

changed between visits, we have h > z in C’ffl cases. So the easy case occurs with

probability 1 — C’ffil/C,(f) ~ 1—(t—1)"""/t", and the average number of times b; < 0
in step T4 is (C:’ll +-- +C{”)/Cﬁf) ~ (t=1)"7Y(# = (t=1)'"1), or 4/23 when t = 3.

()
(p—1)q
when 0 < (¢t —1)p < g # 0, generalizing (5). The number of such degree sequences,

Indeed, we can also study the t-ary recursive structure A,(,Z) =0 AS()(FI), tA

C’éf}, satisfies the recurrence (21) except that CI(,Z) =0 whenp<Oor (t—1)p > q. The
general solution is

—(t-1)p+1/p+gq p+q p+q
o = L) < () (),

and we have CT(:') = Cr(f()
as shown at the right.

(t—1)n)" The triangle for ¢ = 3 begins

I e L T e T T WSSO S e

0O Ut W
[
[\

37. The basic lexicographic recursion for all such forests is 18 ég
25 55 55
A(no,n1,...,mt) = 0A(no — 1,n1,...,n4), 33 88 143
1A(no,n1 —1,...,m¢), ..., tA(no,n1,...,nt — 1)
when ng > nz 4+ 2ng + - - + (t—1)ns and nq, ..., ng > 0; otherwise A(no,n1,...,n¢) is

empty, except that A(0,...,0) = € is the sequence consisting of the empty string alone.
Step G1 computes the first entry of A(no,...,n:). We want to analyze five quantities:

C, the number of times G2 is executed (the total number of forests);
E, the number of times G3 goes to G2 (the number of easy cases);
K, the number of times G4 moves some b; into list ¢;

L, the number of times G5 compares b; with some ¢;;

7, the number of times G5 sets c¢; < 0.

Then the loop in step G6 sets bl,cj < cjatotalof K — Z —n; —--- — ng times.

Let n be the vector (ng,ni,...,n:), and let e; be the unit vector with 1 in
coordinate position j. Let |n| = no +n1 +---+ n; and ||n|| = n1 + 2n2 + -+ + tns.
Using this notation we can rewrite the basic recurrence above in the convenient form

A(n) = 0A(n—eo), 1A(n —e1), ..., tA(n — e) when |n| > ||n]|.

Consider the general recurrence relation

Fn) = )+ (3 Fn=e)lInl > ],
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with F'(n) = 0 whenever the vector n has a negative component. If f(n) = [|n|=0],
then F'(n) = C(n) is the total number of forests. Answer 2.3.4.4-32 tells us that

Oty = LD ) 5yl 0

nolnl!...nf,! =0 .,n]-_l,njfl,nj_H,...,

generalizing the formula for C{Y in answer 26 (which is the case no = (t —1)g+ 1 and
ny = p). Similarly, we obtain recurrences for the other quantities E(n), K(n), L(n),
and Z(n) needed in our analysis by choosing other kernel functions f(n):

f(n) =[In] =no + 1 and ng > ||n||] yields F(n) = E(n);

Fm) = [Jnl > o] yields  F(n) = E(n) + K(n):

Fn) = ([l = lln]l + 1] yields  F(n) = O(n) + K(n) — Z(n);
f(n) =301 ches ilne > 0] yields F(n) = L(n).

The symbolic methods of exercise 2.3.4.4 32 do not seem to yield quick solutions
to these more general recurrences, but we can readily establish the value of C — F by
noting that b, + m < N in step G2 if and only if the previous step was G3. Therefore

Cln) = E(n) =3 C(n=f;),  where f; =e; = (j=1)eo;

this sum counts the subforests in which nq + - - - + n¢, the number of internal (nonleaf)
nodes, has decreased by 1. Similarly we can let

") =>{C(n —irfr — —icf) i+ +ir = 2}
be the number of subforests having ni + - - - + ny — x internal nodes. Then we have

In|

K(n)—Z(n) = C™(n)

a formula analogous to (20), because k — [b;=0] > z > 1 in step G5 if and only
if bpp—e > 0 and bpm—_g41 > -+ > by, Such preorder degree strings are in one-to-
one correspondence with the forests of C’(z)(n) if we remove by,—z41...b, and an
appropriate number of trailing 0s from the string by ...bxy.

From these formulas we can conclude that the Zaks—Richards algorithm needs
only O(1) operations per forest visited, whenever n; = na + --- + ny + O(1), because
C(n— f;)/C(n) =n, no /(\n\ —1)2 <1/44 0O(|n|™") when j > 1. Indeed, the value
of K is quite small in nearly all cases of practical interest. However, the algorithm can
be slow when n; is large. For example, if ¢t = 1, no = m +r + 1, and n1 = m, the
algorithm essentially computes all r-combinations of m + r things; then C'(n) = (m”)

and K(n) — Z(n) = (T_H) = Q(mC(n)) when r is fixed. [To ensure efficiency in
all cases, we can keep track of trailing 1s; see Ruskey and Roelants van Baronaigien,
Congressus Numerantium 41 (1984), 53-62.]

Exact formulas for K, Z, and (especially) L do not seem to be simple, but we can
compute those quantities as follows. Say that the “active block” of a forest is the right-
most substring of nonzero degrees; for example, the active block of 302102021230000000
is 2123. All permutations of the active block occur equally often. Indeed, let D(n)

denote the sum of “trailing zeros(8) — 1”7 over all preorder degree strings 3 for forests

56
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of specification n. Then a block with n} occurrences of j for 1 < j < ¢ is active in
exactly D(n —nif; — - —nif,) +[ni + - +ni=n; +-- +n,] cases. For example,
given the string 3021020000, we can insert 21230000 in three places to obtain a forest
with active block 2123. The contributions to K and L when the active block is flush
left (not preceded by any 0s) can be computed as in exercise 7.2.1.2-6, namely

B) = w(en, (2) ovem (), 1) = w(em () cem(2) 3 (mi = 21i(2))15(2))

1<i<j<t

in the notation of that answer. Analogous contributions occur in general; therefore
K(n) = k(n)+» D(n—n")k(n'), L(n) = (n)+» D(n—n")i(n'), Z(n) = D(n-n'),

summed over all vectors n’ such that n} <n; for 1 < j <tand |n'| —||n'|| = |n| —||n||
and nj + - +np <ng+--+n, —2.

It remains to determine D(n). Let C'(n;j) be the number of forests of specification
n = (no,...,n:) in which the last internal node in preorder has degree j. Then we have

C(n) = ZC’(n;j) and C(n+e1;1) =C(n+ez;2)=---=C(n+es;t) = C(n)+ D(n).

j=1

From this infinite system of linear equations we can deduce that C(n) + D(n) is

n2 ng . )
3> (e (22_+ + 1t) C(n+ (14ia+ -+ +ig)er —iafo — - — it fi).
ip=0 i=0 12,51

Simpler expressions would of course be desirable, if they exist.

38. Step L1 obviously uses 4n + 2 mems. Step L3 exits to L4 or L5 exactly C; — C;_1
times with a particular value of j; therefore it costs 2C,, +3 Z;’:() (n—3)(C; —Cj_1) =
2Cn 4+ 3(Cn-1+ -+ C1 + Co) mems. Steps L4 and L5 jointly cost a total of 6C,, — 6.
Therefore the entire process involves 9 + O(n~/2) mems per visit.

39. A Young tableau of shape (q,p) and entries y;; corresponds to an element of Ay,
that has left parens in positions p+ ¢+ 1 —y21, ..., p + ¢+ 1 — y2p and right parens
in positions p+¢+1—yi1, ..., p+ g+ 1 — y14. The hook lengths are {¢+1,q,...,1,
pp—1,....1}\{g—p+1}; 50 Cpg = (p+@)!(¢—p+1)/(p!(g+1)!) by Theorem 5.1.4H.
40. (a) Cpq = (”:q) — (ZJ_”{) = (p;fq) + (zf‘{) = (p+;+1) (modulo 2); now use exercise
1.2.6-11. (b) By Eq. 7.1-(00) we know that v(n& (n+1)) =v(n+1) — 1.

41. It equals C(wz)/(1—2C(wz)) = 1/(1—z—wzC(wz)) = (1 -wC(wz))/(1—w—z),
where C(z) is the Catalan generating function (18). The first of these formulas, C(wz)+
2C(wz)*+22C(wz)3+- - -, is easily seen to be equivalent to (24). [See P. A. MacMahon,
Combinatory Analysis 1 (Cambridge Univ. Press, 1915), 128 130.]

42. (a) Elements a1 ...a, determine an entire self-conjugate nested string a; ... azn,
and there are Cy(,,_q) possibilities for a1 ... a, having exactly g right parentheses. So
the answer is

[n/2] n/2]
; Cotn—q) = qgo ((q) : <qfl)> - (Ln/2J>'

(b) Exactly C(,,—1)/2 [nodd], because a self-transpose binary tree is determined by its
left subtree. And (c) has the same answer, because F' is self-dual if and only if FT is
self-transpose.
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43. Cpg=Cq— (""" NCor1 + - =328 (=1)"("P"")Cy—r, by induction on g — p.

44. The number of mems between visits is 37 — 2 in step B3, h + 1 in step B4, and 4
in step B5, where h is the number of times y < r,. The number of binary trees with
h > z, given j and z, is [z" 977! C(2)® ™ when j < n, because we get such trees by
attaching £+ 3 subtrees below j+2z+1 internal nodes. Setting x = 0 tells us that a given
value of j occurs C(—j_1)(n—j+1) = Cnt1—j — Cn_; times, using (24) and exercise 43.
Thus Y j over all binary trees is n + Z;L:I(C,H_l,j —Cn_j)j=Cn+Cr_1+---+Ch.
Similarly, 3 (h+1) is 3277 32020 Clnmjz-n)(n—jt1) = 251 Cta—j1)(n—j+2) =
E?ZI(C’”_H_Q —2Ch—j+1) = Cnt1— (Crn + Cn—1 + - -+ Cp). So overall, the algorithm
costs Cni1 +4Cn +2(Cn_q+---+ C1) +O(n) = (26/3 —10/(3n) + O(n~?))C,, mems.
45. Each of the easy cases in step K3 occurs C,,_1 times, so the total cost of that step is
3Ch-1+8Cn_1+2(Cn—2Cpn_1) mems. Step K4 fetches r; a total of [z"ii*l] C’(z)“’2 =
C(n—i—1)n times; summing for i > 2 gives C(n_3)y(n+1) = Cnt1 — 3Cn + Cr—1 mems
altogether in that loop. Step K5 costs 6C,,—12C,,_1. Step K6 is a bit more complicated,
but one can show that the operation r; <— r is performed C,, —3Cy_1 + 1 times when
n > 2, while the operation 7; < 0 is performed C,,_; — n+ 1 times. The total number
of mems therefore comes to Cy,+1+7C, —9C,,_1+n+3 = (8.75—9.375/71—1—0(71_2))0".

Although this total is asymptotically worse than that of Algorithm B in answer 44,
the large negative coefficient of n~! means that Algorithm B actually wins only when
n > 58; and n won’t ever be that big.

46. (a) Going to the left from increases the area by q — p.

(b) The leftward steps on a path from @n) to correspond to the left parentheses
in aj...azn, and we have ¢ — p = ¢ at the kth such step.

(c) Equivalently, Cpi1(z) = Y r_,2"Cr(2)Cr_r(x). This recurrence holds be-
cause an (n + 1)-node forest F' consists of the root of the leftmost tree together with
a k-node forest F; (the descendants of that root) and an (n — k)-node forest F, (the
remaining trees), and because we have

internal path length(F') = k + internal path length(F}) + internal path length(F:).

(d) The strings of A,,4r) have the form ag)ai) ...ar—1) o, where each o is
properly nested. The area of such a string is the sum over j of the area of a; plus r—j
times the number of left parens in «;.

Notes: The polynomials Cp,(z) were introduced by L. Carlitz and J. Riordan in
Duke Math. J. 31 (1964), 371-388; the identity in part (d) is equivalent to their formula
(10.12). They also proved that

Cpal@) = S (172 =D (TP ¢ (o),

r

generalizing the result of exercise 43. From part (c) we have the infinite continued
fraction C(z,2) = 1/(1 — 2/(1 —xz/(1 —2®2z/(1 — - -)))), which G. N. Watson proved
is equal to F(z,z)/F(z,2/x), where

71)71 mnzzn

_y ( :
Fed) =2 Ta(i=a) - (1= e

see J. London Math. Soc. 4 (1929), 39 48. We have already encountered the same
generating function, slightly disguised, in exercise 5.2.1-15.
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The internal path length of a forest is the “left path length” of the corresponding
binary tree, namely the sum over all internal nodes of the number of left branches on
the path from the root. The more general polynomial

C (m y) _ Z mleft path length(T)yright path length(T)’
summed over all n-node binary trees T', seems to obey no simple additive recurrence like
the one for Cp,(z) = Cpn(z,1) studied in this exercise; but we do have Cp11(z,y) =
>k z"Cy(z,y)y" " Cn_r(x,y). Therefore the super generating function C(z,y,z) =
> n Cn(z,y) 2" satisfies the functional equation C(z,y, z) = 1+2C(z,y,22)C(z, y,yz).
(The case x = y was considered in exercise 2.3.4.5-5.)

47. Cn(z) =3, m(q;p)Cm(m)C(n,q)(n,l,p)(m) for 0 <p<n.

48. Let C(z) = C(—1,2) in the notation of exercise 46, and let C(2)C(—z) = F(2?).
Then C(z) = 1+ 2F(2?) and C(—z2) = 1 — 2zF(z%); so F(z) = 1 — zF(z)?, and
F(2) = C(—2). Tt follows that Cpe(—1) = [2°] C(=22)(@"P/21(1 4 2C(=22))la-Peven]
which is (—1)®/2C(,/2)(q/2-1)[peven] when q is even, (—=1)?/2.C|,/2/|4/2) When g is
odd. A perfect Gray code through the strings of Apq can exist only if |Cpq(—1)| < 1,
because the associated graph is bipartite (see Fig. 41); |Cpq(—1)| is the difference
between the sizes of the parts, because each perfect transposition changes ¢1 +-- -+ ¢,

by *+1.
49. By Algorithm U with n=15 and N=10%, it is ) () Q) ((CO O (CCCOYON).

50. Make the following changes to Algorithm U: In step Ul, also set r <~ 0. In step
U3, test if a,, = *)’ instead of testing if N < ¢’. In step U4, set r < r + ¢ instead of
N < N — . And omit the assignments to a., in steps U3 and U4.

The string in (1) turns out to have rank 3141592. (Who knew?)

51. By Theorem 7.2.1.3L, N = (an) + (nzfl) +---+ (21"); hence Kk, N = ( Z1 ) + ( 2 ) +

n—1 n—2
o4 (20"), since z, > 1. Now note that N — k, N is the rank of 2125 ... 2z,, because of
(23) and exercise 50. (For example, let z1 ...z4 = 1256, which has rank 6 in Table 1.
Then z;...24 = 7632, N = 60, and k460 = 54. Notice that N is fairly large, because

z1 = 2n — 1; Fig. 27 shows that %, N usually exceeds N when N is smaller.)

52. The number of trailing right parentheses has the same distribution as the number
of leading left parentheses, and the sequence of nested strings that begin with ‘(*¥)’ is
(k)A(n,k)(n,l). Therefore the probability that d, = k is C(,,—g)(n—1)/Cn. We find

> (3) o = g((2nn_l1k) (6

k=0
2n 2n
- _ —
(n-l—t) <n+t+1) (n=t)(n+1)

using Eq. 1.2.6—(25), and it follows that the mean and variance are respectively equal
to 3n/(n+2) =3-6/(n+2) and 2n(2n®* —n—1)/((n+2)*(n+3)) =4+ 0(n"'). [The
moments of this distribution were first calculated by R. Kemp in Acta Informatica 35
(1998), 17-89, Theorem 9. Notice that ¢, = d,, — 1 has essentially the same behavior.]
53. (a) 3n/(n+2), by exercise 52. (b) H,, by exercise 6.2.2-7. (¢) 2—27", by induction.

(d) Any particular (but fixed) sequence of left or right branches has the same
distribution of steps before a leaf is encountered. (In other words, the probability that
a node with Dewey binary notation 01101 occurs is the same as the probability that
00000 occurs.) Thus if X = k with probability px, each of the 2% potential nodes on
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level k is external with probability pr. The expected value . 2%pi, is therefore the
expected number of external nodes, namely n + 1 in all three cases. (One can of course
also verify this result directly, with pr = C(,_x)(n—1)/Cn in case (a), pr = [;ﬂ /n! in
case (b), and pp = 27+ ="l in case (c).)

Notes: The average path length turns out to be ©(y/n), O(logn), and O(n) in
these three cases; thus it is longer when the expected time to hit a leaf is shorter! The
reason is that ubiquitous “holes” near the root force other paths to be long. Case (a)
has an interesting generalization to t-ary trees, when py = C((;)_k)((t_l)n_l)/cﬁlt) in the

notation of answer 36. Then the mean distance to a leaf is (t+ 1)n/((¢t — 1)n+ 2), and
it is instructive to prove via telescoping series that

tn
Zt Cl iy —mn) = <n>

54. Differentiating with respect to x we have

C'(z,2) = 2C'(z,2)C(z,22) + 2C(z, 2)(C'(z, 22) + 20, (z, 22)),
where C)(z,2) denotes the derivative of C(x,2) with respect to z. Thus C'(1,2) =
22C"(1,2)C(2) +22C(2)C’(2); and since C'(z) = C(2)? +220( )C'(z) we can solve for
C'(1, z), obtaining 2°C(2)3/(1 —22C(z))?. Therefore Y (c1+---+cn) =[] C'(1,2) =
22"~ — 1(3n 4 1)Ch, in agreement with exercise 2.3.4.5-5. Similarly we find

St = 4100 = (SO (01) (e

Thus the mean and variance are 7\/;”3/2 +0O(n) and (2 — %)na/2 + O(n), respectively.
55. Differentiating as in answer 54, and using the formulas of exercises 46(d) and

5.2.1-14 together with [2"] C(2)"/(1 — 4z) = 22"+" — =127 (2nH9), yields

C(z)" T =2C(z)"+C(z)"* + (r—l—l) C(z)TJ’l—C(z)T)
1—4z 2 V1—4z
:(T+1)<22p+r_1_<2p+r+1) Tif - ]<2p+y)) +<r;1)<2p_+r).

p—1

= 1) (1)

56. Use 1.2.6-53(b). [See BIT 30 (1990), 67-68.]

57. 2So(a,b) = (3*) (¥) + (*¢73") by 1.2.6-(21). Exercise 1.2.6-53 tells us that

B GEGE e s ()0

therefore 251 (a,b) = (%) (%) 2%. And since b°Sy(a,b) — Spt2(a,b) = Sp(a,b— 1), we

find 252 (a, b) = (23121’) #’ 2S3(a, b) = () (b)a2bz/(a—|—b)g. Formula (30) follows
by setting a = m, b =n —m, and Cz_i)(atk) = (z{zk) - (172;71).

Similarly, the average of wam—11i8 ;< (2k—1)Cim—k)(m+k-1)Cln—m—k+1)(n—m+k)
divided by C,, namely B
253(m,n+1-—m) — Sa(m,n+1-m) _ m(n+l—m) <2m) (2n+272m)/<2n) .

m(n+1-m)C, N n m n+l-m n
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[R. Kemp, BIT 20 (1980), 157-163; H. Prodinger, Soochow J. Math. 9 (1983), 193-196.]

58. Summing over cases in which the left subtree has k internal nodes, we have

m—1 n—1
timn = [l=m=n=0]+ Z Crta—1)(m—k—1)(n—k—1) + Z Cr—1-kt—1)ymk-
k=0 k=m

Thus the triple generating function t(v,w,z) =3, . timnv'w™z" satisfies
t(v,w,2) =14+ vwzC(wz)t(v,w, z) + v2C(z)t(v, w, 2);
and the analogous linear relation for t(w,z) = 0t(v,w,2)/0v|,=1 follows, because

t(l,w,2) =32 S _ Chw™2™ = (C(2) —wC(wz))/(1—w) and 2C(2)? = C(z) — 1.
Algebraic manipulation now yields

C(z) +wC(wz) = (1+w) 2wC(2)C(wz) C(z) —wC(wz)

1 —w)?z (1 —w)? 1—w

t(w,z) =

and we obtain the formula tmn = (m +1)Cry1 — 23 1L o(m — k) CrxCnr — Cn. Now

m—1

3 (k+1)CiCr_1_p = ﬂ<2m>(2n*2m>

2n\ m n—m
k=0

can be proved as in exercise 56, and it follows that

Zm) <2n - 2m> (2m(—+7-71—£(12)n(;j7;1)+ 1)

[P. Kirschenhofer, J. Combinatorics, Information and System Sciences 8 (1983), 44-60.
For higher moments and generalizations, see W. J. Gutjahr, Random Structures and
Algorithms 3 (1992), 361-374; A. Panholzer and H. Prodinger, J. Statistical Planning
and Inference 101 (2002), 267-279. Note that the generating function (v, w, z) yields

tmn:2( — Ch, for 0 <m < n.

m n-—m

l
timn = Z (k)C(m—k)(m—l)C(n—m—l+k)(n—m—1)-
k
Using the fact that Zk (':) Cin-t)yim-1) = Cn—r)(m+r) when m > 1, we obtain the
formula tpy, +Cn = 3, (k+1)Clm—r)(m—1)Cn—m)(n—m+k+1), & sum that can therefore
(surprisingly) be expressed in closed form.]

59. T'(w,z) = W —wzC(2)C(wz)+2C(2)T(w, z) + wzC(wz) T (wz)
w((C()+C(ws)—2) /= — (14w)C(z) Clws) — (1-w)(C(z)~C(w2)))
(1 —w)? '

Hence Trmn = tmn — 9 p—p, CkCn—r. [Is there a combinatorial proof?] And

Ton =

(Zm) <2n+2—2m) dm(n+1-m)+n+1 lan ¢, for1<m<n.
n+l1-m

m 2n+1)(n+2) 2

60. (a) It is the number of right parentheses in co-atoms. (Therefore it is also the
number of k for which war—1 < 0 in the associated “worm walk.”)
(b) For convenience let d(‘C’) = +1 and d()’) = —1.

A1. [Initialize.] Set i + j «+ 1 and k + 2n.
A2. [Done?] Terminate the algorithm if j > k. Otherwise set a; < ‘(, j < j + 1.
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A3. [Atom?] If b; = ), set s < —1, i < i+ 1, and go to A4. Otherwise set s < 1,
1< 1+ 1, and while s > 0set aj < b;, j < j+1, s+ s+d(b;), 1 + i+ 1. Return
to A2.

Ad4. [Co-atom.] Set s « s+d(b;). Then if s < 0, set ar < b;, k+ k—1,7+ i+ 1, and
repeat step A4. Otherwise set a < ‘), k< k—1,7 « ¢+1, and return to A2. |

(c) The defect-11 inverse of (1) is (())) ((()))I)) (O CCO) (())) (((. In general
we find it by locating the subscript m just before the lth-from-last right parenthesis, and
the indices (ug,vo), ..., (us—1,vs—1) of matching parentheses such that u; < m < v;.

I1. [Initialize.] Set ¢ <= j ¢~ s 0, k <~ m < 2n, and up < 2n + 1.
I2. [Scan right to left.] If ar = ), go to I3; if ar = ‘(’, go to I4; if k = 0, go to I5.

I3. [Process a ‘)] Setrj <« k,j« j+1l,c+c+1. Ifc=1,set m+ k—1, s« j,
and us < k. Then decrease k by 1 and return to 12.

I4. [Process a ‘(’.] (At this point the left parenthesis a; matches the right parenthesis
ar;_,.) Set j < j—1. If r; > m, set u; < k and v; < r;. Then decrease k by 1
and return to 12.

I5. [Prepare to permute.] Set ¢ < j < 1, k < 2n, and ¢ < 0.

16. [Permute.] While j # uc, set b; < aj, i < i+1, j + j+1. Then terminate if ¢ = s;
otherwise set b; < ‘)’, 1< i+ 1, 7 < j+ 1. While k # v., set b; < ag, 1 < i+ 1,
k< k—1. Thenset b; < ‘C,1 < i+1, k< k—1, c + c+1, and repeat step 16. |

Notes: The fact that exactly C, balanced strings of length 2n have defect [, for
0 <1 < n, was discovered by P. A. MacMahon [Philosophical Transactions 209 (1909),
153-175, §20], then rediscovered by K. L. Chung and W. Feller [Proc. Nat. Acad. Sci.
35 (1949), 605-608], using generating functions. A simple combinatorial explanation
was found subsequently by J. L. Hodges, Jr. [Biometrika 42 (1955), 261 262], who
observed that if 8 ..., has defect [ > 0 and if 8; = off is its rightmost co-atom, the
balanced string 87 ...8; 1 (Bryq --- B,) ;F has defect I — 1 (and this transformation is
reversible). The efficient mapping in the present exercise is similar to a construction of
M. D. Atkinson and J.-R. Sack [Information Processing Letters 41 (1992), 21-23].

61. (a) Let ¢;j =1 —b;;thus¢; <1,c1 4+ -+ cn = f, and we must prove that
cir+e+--+e < f if and only if k< N

holds for exactly f cyclic shifts. We can define c; for all integers j by letting cj+n = c;.
Let us also define ¥; for all j by letting ¥g = 0 and ¥; = ¥;_1 + ¢;; then X N =
¥;+ ft,and X1 < 3;+1. It follows that for each integer x there is a smallest integer
j = j(x) such that ¥; = z. Moreover, j(z) < j(z + 1); and j(z + f) = j(z) + N. Thus
the desired condition holds if and only if we shift by j(z) mod N forz =1, 2, ..., or f.
(The history of this important lemma is discussed in answer 2.3.4.4-32.)

(b) Start with [ < m < s + 0. Then for Kk =1, 2, ..., N (in this order) do the
following: Set s < s+ 1 —by; and if s > m, set m < s, j; < k, and [ « (I + 1) mod f.
The answers are jo, ..., jf—1, by the proof in part (a).

(c) Start with any string bibs ...bnx containing n; occurrences of j for 0 < 5 < ¢.
Apply a random permutation to this string, then apply the algorithm of part (b).
Choose randomly between (jo,...,jf—1) and use the resulting cyclic shift as a preorder
sequence to define the forest.

[See L. Alonso, J. L. Rémy, and R. Schott, Algorithmica 17 (1997), 162-182, for
an even more general algorithm.|
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62. Bit strings (I1...ln,71...7,) are valid if and only if by ... b, is valid in exercise 20,
where b; = I; + r;. Therefore we can use exercise 61. [See J. F. Korsh, Information
Processing Letters 45 (1993), 291 294.]

64. X = 2k + b where (k,b) = (0,1), (2,1), (0,0), (5,1), (6,0), (1,1); eventually
LoL;...L12=5113407981610122.

65. See A. Panholzer and H. Prodinger, Discrete Mathematics 250 (2002), 181-195;
M. Luczak and P. Winkler, Random Structures and Algorithms 24 (2004), 420 443.

66. (a) “Shrink” the white edges, merging the nodes that they connect. For example,

are the ordinary trees that correspond to the eleven Schrider trees depicted for n = 3.
Under this correspondence a left link means, “here is a child”; a white right link means,
“look here for more children”; a black right link means, “here’s the last child.”

(b) Mimic Algorithm L, but between rotations use an ordinary Gray binary code
to run through all color patterns of whatever right links are present. (The case n = 3
has, in fact, been illustrated in the example.)

Note that Schroder trees also correspond to series-parallel graphs, as in (53). They
do, however, impose an order on the edges and/or superedges that are joined in parallel;
so they correspond more precisely to series-parallel graphs as embedded in the plane
(and with edges and vertices unlabeled, except for s and t).

67. S(z) =1+ 25(2)(1+ 2(S(z) — 1)), because 1+ 2(S(z) — 1) enumerates the right
subtrees; therefore S(z) = (14 2z — V1 — 6z + 22)/(4z).

Notes: We’ve seen Schroder numbers in exercise 2.3.4.4 31, where G(z) = 25(z);
and in exercise 2.2.1-11, where b,, = 25,,_1 for n > 2 and where we found the recurrence
(n—1)S, = (6n — 3)Sn—1 — (n — 2)S,,_2. They grow asymptotically as explored in
exercise 2.2.1 12. A triangle of numbers S,4, analogous to (22), can be used to generate
random Schroder trees. These numbers satisfy

Spa = Sp(a—1) + Sp—1)g + Sp-2)¢ +++* + S0q = Sp(g-1) + 2S(p-1)¢ — Sp—1)(a-1)
S (D) =) ) - () ()
_a-ptl ok — - 2
q+1 ;} p—k k ;) p—k k p—k—-1/)\k-1

= [wP2?] S(wz2)/(1 — 2S(wz));

the double generating function on the last line is due to Emeric Deutsch. Many
other properties of Schrioder trees are discussed in Richard Stanley’s Enumerative
Combinatorics 2 (1999), exercise 6.39.

68. A single row that contains only the empty string e. (The general rule (36) for
going from n — 1 to n converts this row into ‘0 1’, the pattern of order 1.)

69. The first (g) = 20 rows are the Christmas tree pattern of order 6, if we ignore the
‘10’ at the beginning of each string. The pattern of order 7 is a bit more difficult to see;
but there are (;) = 35 rows in which the leftmost entry begins with 0. Disregard the
rightmost string in all such rows, and ignore the 0 at the beginning of each remaining
string. (Other answers are also possible.)
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70. If o appears in column k of the Christmas tree pattern, let o’ be the string in
column n — k of the same row. (If we think of parentheses instead of bits, this rule
takes the mirror reflection of the free parentheses in the sense of answer 11, by (39).)

71. M,y is the sum of the t largest binomial coefficients (2), because each row of the
Christmas tree pattern can contain at most ¢ elements of S, and because we do get
such a set S by choosing all strings o with (n —¢)/2 < v(o) < (n+t—1)/2. (The

formula
n
M= >, (k)
n—t<2k<n+t—1
is about as simple as possible; however, special formulas like M), = My+1 hold for

small ¢, and we also have My, = 2" for t > n.)

72. You get M, , the same number as in the previous exercise. In fact, one can prove
by induction that there are exactly (nfk) — (kfs) rows of length s +n — 2k > 0.

73. 011001001000000000100101001100, 111001011011111111101101011100; see (38).

74. By the lexicographic property, we want to count the number of rows whose right-
most elements have the respective forms 0%2°, 10%2%, 11027, 111000%2*, 11100100%>22,
111001010%2*, 11100101100%*°, 111001011010%'%, 1110010110110%'7, ..., namely all
30-bit strings that precede 7 = 111001011011111111101101011100.

If 6 has p more 1s than 0s, the number of Christmas tree rows ending with %™ is
the same as the number of rows ending with 17+™; and this is M, 1)n, by exercise 71,
because all such rows are the n-step descendants of the starting row ‘07 0P~ 11 ... 1P’

Consequently the answer is Mo(29) + Mi(28) + Maa7) + Miy(24) + -+ - + M(12)3 +

Maays = 3oty Mak-1-2)(n=0) = 0+ (33) + (32) + (33) + (73) +- - -+8+4 = 84867708,

where (z1,...,221) = (1,2,3,6,...,27,28) is the sequence of places where 1s occur in 7.
75. We have r§") = M, _», because row r§”) is the bottom descendant of the first

row in (33). We also have r§1)1 — rj(n) = Mjtn-1-j) — M(j—1)(n—2—5) = M(j+1)(n—2—7)

by the formula in answer 74, because the relevant sequence zi ...z,_1 for row 7"5") is
1701" 179, Therefore, since M;, /M, — j for fixed j as n — oo, we have
(n) j
T J .
. i E j+2
8, kz_l gt~ L g

And we’ve also implicitly proved that Y7 My gy = Mpqp1 — 1.
76. The first (2") elements of the infinite sequence

n

@ = 1313351313351335355713133513133513353557131335133535571335355735575779. ..

are the row sizes in the pattern of order 2n; this sequence QQ = g1¢2qs ... is the unique
fixed point of the transformation that maps 1 — 13 and n +— (n—2)nn(n+2) for odd
n > 1, representing two steps of (36).

Let f(z) = limsup,,_, . s([zMy])/n for 0 < & < 1. This function apparently
vanishes almost everywhere; but it equals 1 when z has the form (q1 + --- + ¢q;)/2",
because of answer 72. On the other hand if we define g(z) = limp_ oo s([zM,])/V/n,
the function g(z) appears to be measurable, with fol g(z)dz = /m, although g(z) is
infinite when f(z) > 0. (Rigorous proofs or disproofs of these conjectures are solicited.)

77. The hint follows from (39), by considering worm walks; so we can proceed thus:
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X1. [Initialize.] Set a; < 0 for 0 < j < n; also set < 1. (In the following steps we
will have 2 = 1+ 2(as + -+ - + a,).)

X2. [Correct the tail.] While z < n, set a, + 1 and = + = + 2.
X3. [Visit.] Visit the bit string a1 ... a,.
X4. [Easy case?] If a,, = 0, set a,, < 1, z < = + 2, and return to X3.

X5. [Find and advance a;.] Set a,, + 0 and j < n—1. Then while a; =1, set a; < 0,
z < x—2,and j < j—1. Stop if j = 0; otherwise set a; <— 1 and go back to X2. 1|

78. True, by (39) and exercise 11.
79. (a) List the indices of the 0s, then the indices of the 1s; for instance, the bit string
in exercise 73 corresponds to the permutation 14 57 8 10 11 12 13 20232529302 3
69141516 17 18 19 21 22 24 26 27 28.

(b) Using the conventions of (39), the P tableau has the indices of left parentheses
and free parentheses in its top row, other indices in the second row. Thus, from (38),

316(8]9(11]12]|1
4|5|7]10|20|23|25|29|30

w

P 14]15 161718 ]19|21]22]24]26[ 27] 28]

[See K.-P. Vo, SIAM J. Algebraic and Discrete Methods 2 (1981), 324-332, for a
generalization to chains of submultisets.]

80. This curious fact is a consequence of exercise 79 together with Theorem 6 in the
author’s paper on tableaux; see Pacific J. Math. 34 (1970), 709 727.

81. Suppose o and ¢’ belong respectively to chains of length s and s’ in the Christmas
tree patterns of order n and n’. At most min(s,s’) of the ss’ pairs of strings in those
chains can be in the biclutter. Furthermore, because of (39), those ss’ pairs of strings
actually constitute exactly min(s,s’) chains in the Christmas tree pattern of order
n +n', when they are concatenated. Therefore the sum of min(s,s') over all pairs of
chains is M,, 4./, and the result follows. We have incidentally proved the nonobvious
identity

> min(m +1—2j,n 4 1 = 2k) Cj(m—j)Crin-t) = Mmin.

3k
Notes: This extension of Sperner’s theorem was proved independently by G. Katona
[Studia Sci. Math. Hungar. 1 (1966), 59-63] and D. J. Kleitman [Math. Zeitschrift 90
(1965), 251-259]. See Greene and Kleitman, J. Combinatorial Theory A20 (1976),
80-88, for the proof given here and for further results.

82. (a) There is at least one evaluation in each row m; there are two if and only
if s(m) > 1 and the first evaluation yields 0. Thus if f is identically 1, we get the
minimum, My; if f is identically 0, we get the maximum, My, + )", [s(m)>1] = Mny1.

(b) Let f(x(m,n/2)) = 0 in the C,/» cases where s(m) = 1; otherwise let
f(x(m,a)) =1, where a is defined by the algorithm. When n is odd, this rule implies
that f(o) is always 1; but when n is even, f(o) = 0 if and only if ¢ is first in its row.
(To see why, use the fact that the row containing o7 in (41) always has size s — 2.)
This function f is indeed monotonic; for if o < 7 and if o has a free left parenthesis,
so does 7. For example, in the case n = 8 we have

f({l}l, ey .’L‘g) = Ts V TreXr V {B4{B5(IL‘6 \Y .’IJ7) \Y 51)23)3(3)4(.’1)5 V Te vV {B7) vV Ts (.’116 Vv T7))

(c) In these circumstances (45) is the solution for all n.
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83. At most 3 outcomes are possible in step H4—in fact, at most 2 when s(m) = 1.
[See exercise 5.3.4-31 for sharper bounds; in the notation of that exercise, there are
exactly 6, + 2 monotone Boolean functions of n Boolean variables.]
84. For this problem we partition the 2" bit strings into M, blocks instead of chains,
where the strings {o1,...,0,} of each block satisfy [[Ao] — Aoj || > 1 for i # j; then
at most one bit string per block can satisty ||Ac” — b|| < 1.

Let A" denote the first n — 1 columns of A, and let v be the nth column. Suppose
{61,...,05} is a block for A’, and number the subscripts so that v7A’c{ is the
minimum of UTA’UJT. Then rule (36) defines appropriate blocks for A, because we have

[A(0i0)T — A(0;0)T|| = [|[A(0:1)T — A(o; 1)T]| = [|A'of — A'o] | and
1A(0; 1) — A(020)7|* = || 4’0} +v — Aoy |’
= [|A' (a5 — o) * + [[ol|* + 20" A" (05 — 01)" > [|o]* > 1.

[And more is true; see Advances in Math. 5 (1970), 155-157. This result extends a
theorem of J. E. Littlewood and A. C. Offord, Mat. Sbornik 54 (1943), 277-285, who
considered the case m = 2.]

85. If V has dimension n — m, we can renumber the coordinates so that

(1, 0, ey 0, 11, ey mlm)

(0, 1, ey 0, 21, ey mzm)

(0’ Oa RS 17 LT(n—m)ls +-> m(nfrn)'m)
is a basis, with none of the row vectors v; = (z;1,..., % m) entirely zero. Let vy_my1 =
(-1,0,...,0),...,vn = (0,0,...,—1). Then the number of 0 1 vectors in V is the num-
ber of 0—1 solutions to Az = 0, where A is the m X n matrix with columns vy, ..., v,.
But this quantity is at most the number of solutions to ||Az|| < 1 min(||v1]],...,[|val]),

which is at most M, by exercise 84.
Conversely, the basis with m = 1 and z;; = (—=1)?"! yields M, solutions. [This
result has application to electronic voting; see Golle’s Ph.D. thesis (Stanford, 2004).]

86. First reorder the 4-node subtrees so that their level codes are 0121 (plus a con-
stant); then sort larger and larger subtrees until everything is canonical. The re-
sulting level codes are 0 1 234321232120 1, and the parent pointers are
012343218981120 14.

87. (a) The condition holds if and only if ¢1 < -+ < ¢k > ckq1 > - -+ > cp for some k,
so the total number of cases is ), (Z:,lc) =21

(b) Note that ¢, ...c;, = ¢} ...c if and only if p;...p, = p}...pk; and in such
cases, ¢ 1 < Cpyq if and only if pyyy < Plys-
88. Exactly A,y1 forests are visited, and Ay of them have pp = --- = p, = 0.
Therefore O4 is performed A,, times; and pi is changed Ag41 — 1 times in step O5, for
1 <k < n. Step O5 also changes p, a total of A, — 1 times. The average number of
mems per visit is therefore only 243/(a—1)+0O(1/n) ~ 3.534, if we keep p, in a register.
[See E. Kubicka, Combinatorics, Probability and Computing 5 (1996), 403-417.]
89. If step O5 sets pn < p; exactly Qn times, it sets pr < p; exactly Qr + Axy1 —
Ay times, for 1 < k < n, because every prefix of a canonical p; ...p, is canonical.
We have (Q1,Q2,...) = (0,0,1,2,5,9,22,48,118,288,...); and one can show that
Qn = Zd21 Elga(rb/dfl G(n—cd)(n—cd—d), Where anx is the number of canonical parent
sequences pi ...pn, with p, = k. But these numbers a,r remain mysterious.
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90. (a) This property is equivalent to 2.3.4.4—(7); vertex 0 is the centroid.

(b) Let m = [n/2]. At the end of step O1, set pmy1 < 0, and also pamy1 < 0 if
n is odd. At the end of step O4, set 7 «— j and while p; # 0 set i < p;. (Then i is the
root of the tree containing j and k.) At the beginning of step O5, if k = ¢ + m and
1< j,set j < iand d<+ m.

(c) If n is even, there are no bicentroidal trees with n + 1 vertices. Otherwise find
all pairs (p} ...pm, P! - - . P ) of canonical forests on m = [n/2| nodes, with pj ...p;, >
Py P let pr = 0, pjg1 = pj + 1, and pryjp1 = (pj +m+1)[pj >0] for 1 < j < m.
(Two incarnations of Algorithm O will generate all such sequences. This algorithm for
free trees is due to F. Ruskey and G. Li; see SODA 10 (1999), S939-5940.)

91. Use the following recursive procedure W(n): If n < 2, return the unique n-node
oriented tree. Otherwise choose positive integers j and d so that a given pair (j,d)
is obtained with probability dAq A, _ja/((n — 1)A,). Compute random oriented trees
T' + W(n—jd) and T" <~ W(d). Return the tree T obtained by linking j clones of T"
to the root of T'. [Combinatorial Algorithms (Academic Press, 1975), Chapter 25.]

92. Not always. [R. L. Cummins, in IEEE Trans. CT-13 (1966), 82-90, proved that
the graph of S(G) always contains a cycle; see also C. A. Holzmann and F. Harary,
SIAM J. Applied Math. 22 (1972), 187-193. But their constructions are unsuitable for
efficient computation, because they require foreknowledge of the parity of the sizes of
intermediate results.]

93. Yes. Step S7 undoes step S3; step S9 undoes the deletions of step S8.

94. For example, we can use depth-first search, with an auxiliary table by ... b,:
i) Set by...bp «0...0,thenv <+ 1, w+«1,b; < 1,and k < n — 1.
ii) Set e < ny—1. While ¢. # 0, do the following substeps:
a) Set u + t.. If b, # 0, go to substep (c).
b) Set by < w, w « u, ar < e, k + k — 1. Terminate if £k = 0.
c) Set e « ne.
iii) If w # 1, set v < w, w < by, and return to (ii). Otherwise report an error: The
given graph was not connected.
We could actually terminate as soon as substep (b) reduces k to 1, since Algorithm S
never looks at the initial value of a1. But we might as well test for connectivity.

95. The following steps perform a breadth-first search from u, to see if v is reachable
without using edge e. An auxiliary array by . ..b, of arc pointers is used, which should
be initialized to 0...0 at the end of step S1; we will reset it to 0...0 again.
i) Set w < u and by, + v.
ii) Set f < ny—1. While ¢; # 0, do the following substeps:
a) Set v' < ts. If b,s # 0, go to substep (d).
b) If v' # v, set byr < v, by + v, w < v, and go to substep (d).
c) If f#e®d1, go to step (v).
d) Set f < ny.
iii) Set u < by. If u # v, return to step (ii).
iv) Set u + t.. While u # v, set w by, by + 0, u < w. Go to S9 (e is a bridge).
v) Set u < t.. While u # v, set w < by, by < 0, u < w. Then set u + t. again and
continue step S8 (e is not a bridge).
Two quick heuristics can be used before starting this calculation: If d,, = 1, then e is
obviously a bridge; and if I;, # 0, then e is obviously a nonbridge (because there’s an-
other edge between u and v). Such special cases are detected readily by the breadth-first

67



68 ANSWERS TO EXERCISES 7.2.1.6

search, yet experiments by the author indicate that both heuristics are definitely worth-
while. For example, the test on [;, typically saves 3% or so of the total running time.

96. (a) Let e; be the arc kK — 1 — k. The steps in answer 94 set ar < en41_k for
n >k > 1. Then at level k we shrink e, _;, for 1 < k < n — 1. After visiting the
(unique) spanning tree €,_1 ...e2en, we unshrink e, and discover quickly that it is
a bridge, for n — 1 > k > 1. Thus the running time is linear in n; in the author’s
implementation it turns out to be exactly 102n — 226 mems for n > 3.

However, this result depends critically on the order of the edges in the initial
spanning tree. If step S1 had produced “organ-pipe order” such as

€n/241€n/2€n/242€n/2-1 .- . En—-1€2

in positions as...a,_1 when n is even, the running time would have been Q(n?),
because Q(n) of the bridge tests would each have taken Q(n) steps.

(b) Now ay is initially ep,—r for n > k > 1, where e; is the arc n — 1. The
spanning trees visited, when n > 4, are respectively e,_2...€1€n, €n_2...€1€5_1,
€n—2...€2€n_1€n, €n_2...€3€n_1€n€1, ..., E€n_1€ne€1...en_3. Following the tree
€n—2...€k+26n_1€ne€1 ...€ the computations move down to level n — k — 3 and up
again, for 0 < k < n — 4; the bridge tests are all efficient. Thus the total running time
is quadratic (in the author’s version, exactly 35.5n% + 7.5n — 145 mems, for n > 5).

Incidentally, P, is board(n,0,0,0,1,0,0) in the notation of the Stanford Graph-
Base, and C,, is board(n,0,0,0,1,1,0); the SGB vertices are named 0 through n — 1.

97. Yes, when {s,t} is {1,2}, {1,3}, {2,3}, {2,4}, or {3,4}, but not {1,4}.
b f
98. A'= 2 ma ; this is the “dual planar graph” of the planar graph A.

(The near trees of A’ are complements of the spanning trees of A, and vice versa.)

99. The stated method works, by induction on the size of the tree, for essentially the
same reasons that it worked for n-tuples in Section 7.2.1.1 —but with the additional
proviso that we must successively designate each child of an uneasy node.

Leaf nodes are always passive, and they are neither easy nor uneasy; so we will
assume that the branch nodes are numbered 1 to m in preorder. Let f, = p for all
branch nodes, except when p is a passive uneasy node for which the nearest uneasy node
to its right is active; in the latter case, f, should point to the nearest active uneasy
node to its left. (For purposes of this definition, we imagine that artificial nodes 0
and m + 1 are present at the left and right, both of which are uneasy and active.)

F1. [Initialize.] Set f, < p for 0 < p < m; also set to « 1, vo < 0, and set each z, so
that Tz, = dp.

F2. [Select node p.] Set ¢ < m; then while t; = vg set ¢ < ¢ — 1. Set p < f, and
fq < g; terminate the algorithm if p = 0.

F3. [Change d,.] Set s < d,, s’ < 75, k < vy, and d,, < s'. (Now k = vy # vgr.)

F4. [Update the values.] Set g « s and vg « k@ 1. While d, # 0, set g + dy and
vg ¢ k@ 1. (Now q is a leaf that has entered the config if £ = 0, left it if £k = 1.)
Similarly, set q < s’ and v, < k. While dy # 0, set ¢ + dq and vy + k@ 1. (Now
q is a leaf that has left the config if k = 0, entered it if k = 1.)

F5. [Visit.] Visit the current config, represented by all the leaf values.
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F6. [Passivate p?] (All uneasy nodes to p’s right are now active.) If d, # zp, return
to step F2. Otherwise set z, < s, ¢ < p — 1; while t; = vy, set ¢ < ¢ — 1. (Now
q is the first uneasy node to the left of p; we will make p passive.) Set fp < fq,
fq < g, and return to F2. |

Although step F4 may change uneasy nodes to easy nodes and vice versa, the focus
pointers need not be updated, because they’re still set correctly.

100. A complete program, called GRAYSPSPAN, appears on the author’s website. Its
asymptotic efficiency can be proved by using the result of exercise 110 below.

102. If so, ordinary spanning trees can be listed in a strong revolving-door order, where
the edges that enter and leave at each step are adjacent.

Interesting algorithms to generate all the oriented spanning trees with a given
root have been developed by Harold N. Gabow and Eugene W. Myers, SICOMP 7
(1978), 280—287; S. Kapoor and H. Ramesh, Algorithmica 27 (2000), 120-130.

103. (a) Toppling increases (zo, 1, . - ., Zn) lexicographically, but does not change xo+
- -+ + . If we can topple at both V; and Vj}, either order gives the same result.
(b) Adding a grain of sand changes the 16 stable states as follows:

Given 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
4 0001 0001 0010 0011 0001 0101 0110 0111 0101 1001 1010 1011 1001 1101 1110 1111 1101
+ 0010 0010 0011 0001 0010 0110 0111 0101 0110 1010 1011 1001 1010 1110 1111 1101 1110
+ 0100 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0100 0101 0110 0111
+ 1000 1000 1001 1010 1011 1100 1101 1110 1111 0100 0101 0110 0111 1000 1001 1010 1011

The recurrent states are the nine cases with 1 + x> > 0 and z3 + 24 > 0. Notice that
repeated addition of 0001 leads to the infinite cycle 0000 — 0001 — 0010 — 0011 —
0001 — 0010 — - - -; but the states 0001, 0010, and 0011 are not recurrent.

(¢) If z = o(x + t) then also z = o(z + kt) for all k& > 0. All components
of t are positive; thus x = o(z + max(di,...,ds)t) is recurrent. Conversely, suppose
z = o(d + y), where all y; > 0; then d + y + t topples to = + ¢ and it also topples to
o(d) +y+t=d+y. Therefore o(z+1t) =o(d+y) = z.

(d) There are N = det(a;;) classes, because elementary row operations (exercise
4.6.1-19) triangularize the matrix while preserving congruence.

(e) There are nonnegative integers my, ..., m,, mi, ..., m,, such that

! ! !
r+miar + -+ mnpan, = r +myay +---+mya, = Yy, say.

For sufficiently large k, the vector y + kt topples in mq + - - - + m,, steps to x + kt, and
in mj + --- 4+ mj, steps to ' + kt. Therefore = = o(x + kt) = o(z’' + kt) = z'.

(f) The triangularization in (d) shows that z = = + Ny for arbitrary vectors y.
And toppling preserves congruence; hence every class contains a recurrent state.

(g) Since @ = a1 + -+ + a, in a balanced digraph, we have z = z 4+ a. If z is
recurrent, we see in fact that every vertex topples exactly once when x4+ a reduces to z,
because the vectors {a1,...,an} are linearly independent.

Conversely, if o(z + a) = z we must prove that z is recurrent. Let z,, = o(ma);
there must be some positive £k and m with zm4+r = 2zm. Then every vertex topples
k times when z,, + ka reduces to zm,; hence there are vectors y; = (yj1,-..,Y;jn) with
yj; > dj such that (m + k)a topples to y;. It follows that = + n(m + k)a topples to
z+yi+--Fyn,and o(z+y1 + -+ yn) = oz + n(m+ k)a) = z.

(h) Treating subscripts cyclically, the spanning trees with arcs V; — Vj for j = 44,

.., i, have n — k other arcs: V; — V;_; for ¢y < j < ¢y +q and V; — V4, for
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i1+ @1 < j < %141. The recurrent states, similarly, have z; = 2 for j =41, ..., ix, and
z; =1 for 4; < j < 4141, except that z; = 0 when j =4; + ¢; and ¢; > 0.

(i) In this case state z = (z1,..., %) is recurrent if and only if (n—z1,...,n—z,)
solves the parking problem in the hint, because ¢ = (1,...,1), and a sequence that

doesn’t get parked leaves a “hole” that stops = 4 ¢ from toppling to z.

Notes: This sandpile model, introduced by Deepak Dhar [Phys. Review Letters
64 (1990), 1613-1616], has led to many papers in the physics literature. Dhar noted
that, if M grains of sand are introduced at random, each recurrent state is equally
probable as M — oc. The present exercise was inspired by the work of R. Cori and
D. Rossin, European J. Combinatorics 21 (2000), 447-459.

Sandpile theory proves that every digraph D yields an abelian group whose
elements correspond somehow to the oriented spanning trees of D with root V5. In
particular, the same is true when D is an ordinary graph, with arcs v« — v and v — u
whenever v and v are adjacent. Thus, for example, we can “add” two spanning trees;
and some spanning tree can be regarded as “zero.” An elegant correspondence between
spanning trees and recurrent states, in the special case when D is an ordinary graph,
has been found by R. Cori and Y. Le Borgne, Advances in Applied Math. 30 (2003),
44-52. But no simple correspondence is known for general digraphs D. For example,
suppose n = 2 and (eio, €12, €20, €21) = (P, ¢, 7, 8); then there are pr 4+ ps + gr oriented
trees, and the recurrent states correspond to generalized two-dimensional toruses as in
exercise 7-00. Yet even in the “balanced” case, when p+ ¢ > s and r + s > ¢, no easy
mapping between spanning trees and recurrent states is apparent.

104. (a) If det(al — C) = 0, there is a vector & = (%1,...,2,)7 such that Cz = ax
and max(z1,...,Tn) = Tm = 1 for some m. Then a = ATy = Cmm — Zj;ém €m;Ti >
Com, — Zj;ém em; = 0. (Incidentally, a real symmetric matrix whose eigenvalues are
nonnegative is called positive semidefinite. Our proof establishes the well-known fact
that any real symmetric matrix with cpm > ‘Zﬁém ij‘ for 1 < m < n has this
property.) Thus ag > 0; and oo = 0 because C(1,...,1)T = (0,...,0)T.

(b) det(xI —C(G)) = x(x—a1) ... (x—a,_1); and the coefficient of z is (—1)"'n
times the number of spanning trees, by the matrix tree theorem:.

(c) det(al — C(K,)) = det((a — n)I + J) = (o — n)" 'a by exercise 1.2.3-36;
here J is the matrix of all 1s. The aspects are therefore 0, n, ..., n.
105. (a) If e;; = a+ bej; we have C(G) = nal —aJ 4+ bC(G"). And if C is any matrix

whose row sums are zero, the identity
det(zI 4+ yJ — 2C) = THNY on det((z/2)I — C)
x

can be proved by adding columns 2 through n to column 1, factoring out (z + ny)/z,
subtracting y/x times column 1 from columns 2 through n, then subtracting columns
2 through n from column 1. Therefore, by setting x = o —na, y =a, z =b, a = 1, and

b = —1, we find that G has the aspects 0, n — an—1, ..., n — ai. (In particular, this
result agrees with exercise 104(c) when G’ is the empty graph K,,.)
b) Sort {ag,...,a’, ;,a0,...,a, ,} into order. (An easy case, for variety.
n’/—1 n 1

(c) Here G = G' + G”, so G’s aspects are {0,n' +n",n" +ai,...,n" +al,_,,
n'+aof,...,n +a’,_;} by (a) and (b). (In particular, G is K, n when G' = K,,, and
G" =K, hence the aspects of K, , are {0, (n —1)-m, (m —1) -n, m +n}.)

(d) C(G) = I, ®C(G")+C(G")® 1,1, where I,, denotes the n x n identity matrix
and ® denotes the Kronecker product of matrices. The aspects of C(G) are {a + oy
0 <j<n,0<k<n"}; forif A and B are arbitrary matrices whose eigenvalues
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are {A1,...,Am} and {u1,..., tn}, respectively, the eigenvalues of A® I, + I, ® B
are the mn sums X\; + pg. Proof: Choose S and T so that STAS and T BT are
triangular. Then use the matrix identity (A ® B)(C ® D) = AC ® BD to show that
(SRT) (AR +Im®B)(SQT) = (STAS)®I,+Im (T BT). (In particular, repeated
use of this formula shows that the aspects of the n-cube are {(g) -0, (TIL) 2, ..., (Z) 2n},
and Eq. (57) follows from exercise 104(b).)

(e) When G is a regular graph of degree d', its aspects are a; = d’ — \j11, where

A1 > -+ > A, are the eigenvalues of the adjacency matrix A = (e;;). The adjacency
matrix of G' is A’ = BTB — d'I,,;, where B = (b;;) is the n x n’ incidence matrix with
entries b;; = [edge i touches vertex j|, and where n = n'd’/2 is the number of edges.

The adjacency matrix of G is A = BBT — 2I,,. Now we have
2" det(zI, — B'B) = mn,det(mln - BB");

this identity follows from the fact that the coefficients of det(z/— A) can be expressed in
terms of trace(A¥) for k =1, 2, ..., via Newton’s identities (exercise 1.2.9-10). So the
aspects of G are the same as those of G', plus n — n’ aspects equal to 2d’. [This result
is due to E. B. Vakhovsky, Sibirskil Mat. Zhurnal 6 (1965), 44-49; see also H. Sachs,
Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau 13 (1967), 405-412.]
(f) A= A"®A", so the aspects are {d" oj+d'aj; —ojoy |0 < j<n',0 <k <n"}
) AG) =1, A"+ A QL +A QA" =, +A)® L+ A") — I, yields
the aspects {(d" + 1)aj; + (d' + 1)ay — ofoy | 0<j<n',0<k <n'"}.
106. (a) If o is an aspect of the path P,, there’s a nonzero solution (zo, T1,...,Tnt1)
to the equations azxyr = 2zr —xk—1 — T41 for 1 < k < n, with 0 = z1 and z, = Tp41.
If we set x = cos(2k—1)6, we find 2o = z1 and 2z, — Te—1 — k41 = 2Tk — (2 c0s 20) zk;
hence 2 — 2 cos 20 = 4sin?6# will be an aspect if we choose 0 so that z, = z»41 and so
that the z’s are not all zero. Thus the aspects of P, turn out to be oon, ..., O(n—1)n-
We must have a1 ...an—1 = n, by exercise 104(b), since ¢(P,) = 1; therefore

m—1n—1

c(Pmx Pn) = [] I (cjm + oxn)-

j=1 k=1

(b, c) Similarly, if « is an aspect of the cycle C,,, there’s a nonzero solution to the
stated equations with z,, = x¢. For this case we try zr = cos2kf and find solutions
when 0 = jr/n for 0 < j < [n/2]. And z, = sin kf gives further, linearly independent
solutions for [n/2] < j < n. The aspects of C,, are therefore oon, 02n, ..., O(2n—2)n;
and we have

m—1n—1 m—1n—1
c(PnxCp)=n H H (jm + 0@ryn),  ¢(CmxCp) =mn H H (0(2jym + T(2k)n)-
j=1 k=1 j=1 k=1

Let fn(z) = (24 o1n) ... (& + o(n=1)n) and gn(z) = (£ + 020n) .- . (T + T(2n—2)n)-
These polynomials have integer coefficients; indeed, f,,(z) = Un—1(z/241) and g, (z) =
2(Tn(z/24+1)—1)/z, where Ty (x) and U, (z) are the Chebyshev polynomials defined by
T, (cos @) = cosnf and Uy (cos ) = (sin(n + 1)8)/sin . The calculation of ¢(Py, x Py)
can be reduced to the evaluation of an m x m determinant, because it is the resultant of
fm(x) with fn(—x); see exercise 4.6.1-12. Similarly, ~¢(Pm X Cn) and ——¢(Cm X Ch,)
are the respective resultants of f,(z) with ¢g,(—z) and of gm(z) with g,(—x).

Let an(z) = [\, fa(z)*™/ D thus a1 (z) = 1, as(z) = 2 + 2, as(z) = (z + 3) x
(x+1), u(z) =2 +42+2, as(x) = (2> + 52+ 5)(2® + 3z + 1), as(z) = 2® + 4z + 1,
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etc. By considering so-called field polynomials one can show that o, (z) is irreducible
over the integers when n is even, otherwise it is the product of two irreducible factors
of the same degree. Similarly, if 8n(z) = [[ 5, ga(z)*™/D it turns out that S, (z)
is the square of an irreducible polynomial when n > 3. These facts account for the
presence of fairly small prime factors in the results. For example, the largest prime
factor in ¢(Pm X Pp) for m < n < 10 is 1009; it occurs only in the resultant of as(z)
with ag(—z), which is 662913 = 32 . 73 - 1009.

107. There are (1,1,2,6,21) nonisomorphic graphs for n = (1,...,5); but we need
consider only cases with < %(Z) edges, because of exercise 105(a). The surviving cases
when n = 4 are free trees: The star is the complement of K; + K3, with aspects 0, 1,
1, 4; and Py has aspects 0, 2 — /2, 2, 2+ /2 by exercise 106. There are three free trees
when n = 5: The star has aspects 0, 1, 1, 1, 5; Ps’s aspects are 0, 2 — ¢, 3 — ¢, 1 + ¢,
2+ ¢; and the aspects of >»—— are 0, r1, 1, 72, 73, where (r1,72,73) &~ (0.52,2.31,4.17)
are the roots of z® — 72% + 13z — 5 = 0.

Finally, there are five cases with a single cycle: > is K1 T (K2 + K3), so its
aspects are 0, 1, 1, 3, 5; C5 has aspects 0, 3 — ¢, 3— ¢, 2+ ¢, 2+ ¢; D»—— has aspects
0, 1, r2, 3, r3; its complement «>— has aspects 0, 5 — r3, 2, 5 — ra, 5 — r1; and the
aspects of ,_A,_, turn out to be 0, (5 — v/13)/2, 3 — ¢, 2+ ¢, (5 +/13)/2.

108. Given a digraph D on vertices {Vi,...,V,}, let €;; be the number of arcs from V;
to V. Define C(D) and its aspects as before. Since C(D) is not necessarily symmetric,
the aspects are no longer guaranteed to be real. But if « is an aspect, so is its complex
conjugate @; and if we order the aspects by their real parts, again we find g = 0. The
formula ¢(D) = a;...an_1/n remains valid if we now interpret ¢(D) as the average
number of oriented spanning trees, taken over all n possible roots V;. The aspects of
the transitive tournament 77, whose arcs are V; — V; for 1 <1 < j < n, are obviously
0,1, ..., n—1; and those of its subgraphs are equally obvious.

The derivations in parts (a) (d) of answer 105 carry over without change. For
example, consider Ky + T3, which has aspects 0, 2, 3, 4; this digraph D has (2,4, 6,12)
oriented spanning trees with the four possible roots, and ¢(D) is indeed equal to
2:3-4/4. Notice also that the digraph ——==» is its own complement, and that it
has the same aspects as T5.

Directed graphs also admit another family of interesting operations: If D' and
D" are digraphs on disjoint sets of vertices V' and V", consider adding a arcs v’ — v"
and b arcs v — v’ whenever v’ € V' and v € V”. By manipulating determinants
as in answer 105(a), we can show that the resulting digraph has aspects {0, an" + bn',
an' +al,...;an" +al, _;,bn' +aof,...,bn’ +a!l,_,}. In the special case a = 1 and
b = 0, we can conveniently denote the new digraph by D' — D"; thus, for example,
T, = K1 = Tn—1. The digraph K,,;, - Kn, = -+ = Ky, on ni +na + -+ np,

vertices has aspects {0, m - Sm, ..., n2 - s2, (n1—1) - s1}, where s = ng + -+ + npm.
The aspects of the oriented path Q,, from V; to V,, are obviously 0, 1, ..., 1. The
oriented cycle Oy, has aspects {0,1 —w,...,1 —w" 1}, where w = €27/,

There is also a nice result for arc digraphs: The aspects of D* are obtained from
those of D by simply adding 7, — 1 copies of the number o, for 1 < k < n, where 7%
is the in-degree of V}, and oy, is its out-degree. (If 7, = 0, we remove one aspect equal
to ok.) The proof is similar to, but simpler than, the derivation in answer 2.3.4.2-21.

Historical remarks: The results in exercises 104(b) and 105(a) are due to A. K.
Kelmans, Avtomatika i Telemekhanika 26 (1965), 2194-2204; 27,2 (February 1966),

56-65; English translation in Automation and Remote Control 26 (1965), 2118-2129;
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27 (1966), 233-241. Miroslav Fiedler [Czech. Math. J. 23 (1973), 298-305] introduced
exercise 105(d), and proved interesting results about the aspect ai, which he called
the “algebraic connectivity” of G. Germain Kreweras, in J. Combinatorial Theory
B24 (1978), 202212, enumerated spanning trees on grids, cylinders, and toruses, as
well as oriented spanning trees on directed toruses such as O,, X O,. An excellent
survey of graph aspects was published by Bojan Mohar in Graph Theory, Combinatorics
and Applications (Wiley, 1991), 871-898; Discrete Math. 109 (1992), 171-183. For a
thorough discussion of important families of graph eigenvalues and their properties,
including a comprehensive bibliography, see Spectra of Graphs by D. M. Cvetkovié,
M. Doob, and H. Sachs, third edition (1995).

109. Perhaps there is also a sandpile-related reason; see exercise 103.

110. By induction: Suppose there are k > 1 parallel edges between u and v. Then
¢(Q) = kc(G1) + ¢(G2), where G is G with u and v identified, and G is G with those
k edges removed. Let d, = k+ a and d, =k + b.

Case 1: G4 is connected. Then ab > 0, so we can writea =z + 1 and b=y + 1.
We have ¢(G1) > av/z + y + 1 and ¢(G2) > av/zy, where a is a product over the other

n — 2 vertices; and it is easy to verify that

kvVz+y+1+zy > /(@ +k)(y+k).

Case 2: There are no such u and v for which G3 is connected. Then every multi-
edge of G is a bridge; in other words, G is a free tree except for parallel edges. In
this case the result is trivial if there’s a vertex of degree 1. Otherwise suppose u is an
endpoint, with d, = k edges u—wv. If d, > k+ 1, we have ¢(G) = ke(G1) > aky/z
where d, = k+ 1+ z, and it is easy to check that kv/z > y/(k — 1)(k + z) when z > 0.
If d, = k we have ¢(G) = k > /(k — 1)2. Finally if d, = k+ 1, let vo = u, v1 = v, and
consider the unique path v1 — v9 — -+ — v, where r > 1 and v, has degree greater
than 2; only one edge joins v; to vj41 for 1 < j < r. Again the induction goes through.

[Other lower bounds on the number of spanning trees have been derived by A. V.
Kostochka, Random Structures and Algorithms 6 (1995), 269-274.]

111. 2154117986 1015 12 14 13 3.

112. Either p appears on an even level and is an ancestor of ¢, or ¢ appears on an odd
level and is an ancestor of p.

113. prepostorder(Ff)=postpreorder(F)® and postpreorder(F®)=prepostorder(F)%.

114. The most elegant approach, considering that the forest might be empty, is to set
things up so that CHILD(A) points to the root of the leftmost tree, if any. Then initiate
the first visit by setting Q < A, L + —1, and going to step Q6.

115. Suppose there are n. nodes on even levels and n, nodes on odd levels, and that
n., of the even-level nodes are nonleaves. Then steps (Q1, ..., Q7) are performed
respectively (n, + no, Ny, ML, Ne, Ne, N, + 1, n,) times, including one execution of Q6
because of answer 114.
116. (a) This result follows from Algorithm Q.

(b) In fact, non-ordinary nodes strictly alternate between lucky and unlucky,
beginning and ending with a lucky one. Proof: Consider the forest F' obtained by
deleting the leftmost leaf of F', and use induction on n.

117. Such forests are precisely those whose left-child/right-sibling representation is a
degenerate binary tree (exercise 31). So the answer is 2" .
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118. (a) t*72, for k > 1; luckiness occurs only near extreme leaves.
(b) An interesting recurrence leads to the solution (Fy + 1 — (k + 1) mod 3)/2.

119. Label each node z with the value v(z) = S2{2* | k is an arc label on the path
from the root to z}. Then the node values in prepostorder are exactly the Gray binary
code I'y,, because exercise 113 shows that they satisfy recurrence 7.2.1.1 5.

(If we apply the same value labeling to the ordinary binomial tree T, and traverse
it in preorder, we simply get the integers 0, 1, ..., 2" — 1.)

120. False: Only four of the “hollow” vertices in the illustration can appear
next to the two “square” vertices, in a Hamiltonian cycle; one hollow pair is
therefore out of luck. [See H. Fleischner and H. V. Kronk, Monatshefte fiir
Mathematik 76 (1972), 112 117.]

121. Furthermore, there is a Hamiltonian path from v to v in 72 if and only if similar
conditions hold; but we retain u and/or v in T if they have degree 1, and we require
that the path in (i) be inside the path from u to v (excluding u and v themselves).
Condition (ii) is also strengthened by changing ‘vertices of degree 4’ to ‘dangerous
vertices’, where a vertex of T is called dangerous if it either has degree 4 or has
degree 2 and equals u or v. The smallest impossible case is T' = P4, with u and v chosen
to be the non-endpoints. [Casopis pro Péstovani Matematiky 89 (1964), 323-338.]

Consequently T2 contains a Hamiltonian cycle if and only if T is a caterpillar,
namely a free tree whose derivative is a path. [See Frank Harary and A. J. Schwenk,
Mathematika 18 (1971), 138-140.]

122. (a) We can represent an expression by a binary tree, with operators at the internal
nodes and digits at the external nodes. If binary trees are implemented as in Algo-
rithm B, the essential constraint imposed by the given grammar is that, if r; = k& > 0,
then the operator at node j is + or — if and only if the operator at node k is x or /.
Therefore the total number of possibilities for a tree with n leaves is 2"S,,_1, where S,
is a Schréder number; namely 10,646,016 when n = 9. (See exercise 66, but interchange
left with right.) We can rather quickly generate them all, encountering exactly 1640
solutions. Only one expression, namely 1+2/((3—4)/(5+6) — (7—8)/9), does the job
with no multiplications; twenty of them, such as (((1—2)/((3/4) x5—6)) x 7+8) x 9,
require five pairs of parentheses; only 15 require no parentheses whatever.

(b) Now there are 1+ > 5_, (3) 2518y = 23,463,169 cases, and 3365 solutions.
The shortest, of length 12, was found by Dudeney [The Weekly Dispatch (18 June
1899)], namely 123 — 45 — 67 + 89; but he wasn’t sure at the time that it was best. The
longest solutions have length 27; there are twenty of them, as mentioned above.

(c¢) The number of cases rises dramatically to 2—|—Zi:1(z) 4*+18, =8,157,017,474,
and there now are 96,504 solutions. The longest, which is unique, has length 40:
((((:.1/(-2+.3))/.4)/.5)/(.6 —.7)) /(.8 — .9). There are five amusing examples such as
14+ 2+4+34+44+5)x6+7+8+.9, with seven +’s; furthermore, there are ten like
(1-2-3-4-.5-6)x(7—8-9), with seven —’s.

There is in fact very little principle in the thing,
and there is no certain way of demonstrating
that we have got the best possible solution.

— HENRY E. DUDENEY (1899)

Notes: Marie Leske’s Illustriertes Spielbuch fiir Madchen, first published in 1864,
contained the earliest known appearance of such a problem; in the eleventh edition
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(1889), the fact that 100=1+2+4+3+4+5+6+ 7+ 8 X 9 was the solution to puzzle
16 in section 553. See also the references in exercise 7.2.1.1-111.

Richard Bellman explained in AMM 69 (1962), 640 643, how to handle the
special case of part (a) in which the operators are restricted to be either + and X,
without parentheses. His technique of dynamic programming can be used also in
this more general problem to reduce the number of cases being considered. The idea
is to determine the rational numbers obtainable from every subinterval of the digits
{1,...,n}, having a given operator at the root of the tree. We can also save a good
deal of computation by discarding cases for the subintervals {1,...,8} and {2,...,9}
that cannot lead to integer solutions. In this way the number of essentially different
trees to consider is reduced to (a) 2,747,275 cases; (b) 6,834,708; (c) 741,167,401.

Floating point arithmetic is unreliable in this application. But the exact rational
arithmetic routines of Section 4.5.1 do the job nicely, never needing to work with an
integer greater than 10° in absolute value.

123. (a) 2284; but 2284 = (1 +2 x 3) x (4+ 5 x 67) — 89. (b) 6964; but 6964 =
(1/.2) x 34+ 5+ 6789. (c) 14786; but 14786 = —1+2 x (.3+4+5) x (6 + 789). [If we
allow also a minus sign at the left of the expression, as Dudeney did, we actually obtain
1361, 2758, and 85054 additional solutions to problems 120(a), (b), and (c), including
nineteen longer expressions in case (a) such as —(1—2) x ((3+4) x (5—(6—7) x8)+9).
With such an extension, the smallest unreachable numbers in the present problem
become (a) 3802, (b) 8312, and (c) 17722.] The total number of representable integers
(positive, negative, or zero) turns out to be (a) 27,666; (b) 136,607; (c) 200,765.

124. Horton Strahler numbers originated in studies of river flows: R. E. Horton, Bull.
Geol. Soc. Amer. 56 (1945), 275-370; A. N. Strahler, Bull. Geol. Soc. Amer. 63 (1952),
1117-1142. Many tree-drawing ideas are explored and illustrated in a classic paper by
Viennot, Eyrolles, Janey, and Arques, Computer Graphics 23,3 (July 1989), 31 40.

75



INDEX AND GLOSSARY

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

0-1 vectors, 40.
u, see Mems.
v(z): The number of 1s (= Sideways sum).
m (circle ratio), as “random” example,
19, 39, 59.

Abelian group, 70.
Adjacency matrix, 71.
Aldous, David John, 14.
Algebraic connectivity, 73.
Alonso, Laurent, 62.
Analysis of algorithms, 10, 36, 40, 43, 51.
Ancestor, in a tree structure, 4, 46, 73.
Antichain of subsets, 19.
Arborescences, see Oriented trees.
Arc digraph of a digraph, 72.
Archimedes of Syracuse ("Apxundng

6 Supaxodoiog), solids, 35.
Arnold, David Bryan, 13.
Arques, Didier, 75.
Aspects of a graph, 42—43.
Associahedron, 35.
Associative law, 7, 32, 35, 44.
Atkinson, Michael David, 62.
Atomic strings of parentheses, 38.
Avalanches, 42.

Balanced digraphs, 42.
Balanced strings, 38.
Ballot numbers, 11 12, 36.
generalized, 36-37.
table, 11.
Baronaigien, see Roelants van Baronaigien.
Becker, Harold W., 51.
Bellman, Richard Ernest, 75.
Beyer, Wendell Terry, 21.
Biclutters, 40.
Bigraph: A bipartite graph.
Binary search, 20.
Binary search trees, 37, 45.
Binary trees, 1-2, 4-10, 31-39.
decorated, 16, 38.
degenerate, 35, 37, 74.
drawings of, 1, 14, 15, 45, 47, 51.
extended, 1, 16, 32, 37, 45.
Gray codes for, 6-9, 33.
linked, 4 9, 32.
random, 16-17, 38, 45.
representation of, 4, 8, 16, 36.
rotations in, 7 9, 52.
Binomial coefficient identities, 37.
Binomial trees, 44, 74.
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Boolean functions, 20, 40.

Boolean lattices, 53.

Branch nodes: Nonleaves, 26-27.
Breadth-first search, 67.

Bridges of a graph, 24 25, 41, 44, 68, 73.
Brown, Robert, see Brownian excursion.
Brownian excursion, 14.

Bruijn, Nicolaas Govert de, 17.

Cr (Catalan number), 10-12, 16, 36-37.
Cr (cyclic graph), 41, 68, 71.
Cpq (ballot number), 11-12, 36-37.
Callan, Columcille David, 48.
Canonical forest, 21-22, 40—41.
Canonical form of algebraic expression, 44.
Carlitz, Leonard, 58.
Cartesian product of graphs, v, 27, 43.
Catalan, Eugéne Charles, 10.
Catalan numbers, 10-12, 16, 36-37.
generalized, 36 37.
tables, 10-11.
Catalan triangle, 11-12, 19, 36-37.
t-ary, 55.
Caterpillar graphs, 74.
Centroid of an oriented tree, 41.
Chains of submultisets, 65.
Chains of subsets, 17-21.
Characteristic polynomial of a matrix,
42, 71.
Chebyshev, Pafnutii Lvovich (Ye6pmes,
IMadnyruii JIbBoBu4), polynomials, 71.
Christmas tree pattern, 17-21, 39-40, 64.
Chung, Kai Lai (§% B 3), 62.
Clutters, 19.
Co-atoms, 38.
Coforests, 8.
Cognate forests, 32.
Colex order: Lexicographic from right
to left, 5, 33.
Combinations, 3, 6, 49, 56.
Complement of a graph, 43, 72.
Complementary elements of a lattice, 35.
Complete bigraph, 70.
Complete graph, 41, 42.
Complete t-ary tree, 44.
Complex conjugate, 72.
Concordant bit strings, 40.
Configs, 27, 41.
Conjugate of a forest, 8, 31-32, 36, 43.
Conjunction of graphs, v, 43.
Connected graphs, 24, 30, 44.
Connectivity test, 67, 72.
Context-free grammar, 44.
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Contraction of a graph, 23-25, 63.

Coproduct of graphs, v.

Cori, Robert, 70.

Cosum of graphs, v, 43.

Covering in a lattice, 17, 33-36.

Crossings in a set partition, 33.

Cube of a graph, 30.

Cummins, Richard Lee, 67.

Cvetkovié, Dragos Mladen (Ilserkosuh,
Jparom Mnanen), 28, 73.

Cycle Lemma, 38.

Cyclic graph (Ch), 41, 68, 71.

Cyclic permutations, 36.

Cyclic shifts, 38.

Cylinder graphs, 29, 43, 73.

Dancing links, 24.

Data structures for graphs, 24—-26.

de Bruijn, Nicolaas Govert, 17.

de Moivre, Abraham, 11.

Decorated binary trees, 16, 38.

Defect of a balanced string, 38.

Degenerate binary trees, 35, 37, 73.

Degree of a node, 32.

Degree of a vertex, 24, 43.

Degree one, nodes of, 26, 27, 39.

vertices of, 44, 73.

Dénes, Jozsef, 54.

Depth coordinates cg, 4, 21-22, 31,
33, 37, 40, 51.

Depth-first search, 67.

Derivative of a graph, 44.

Dershowitz, Nachum (Y>2)¢77 D1NY), 54.

Descendant, in a tree structure, 4, 46, 73.

Descents of a permutation, 39.

Determinants, 70-72.

Deutsch, Emeric, 63.

Dewey, Melvil, notation for binary trees
(due to Galton), 59.

notation for trees, 12.

Dhar, Deepak (9@ ¥T), 70.

Diagonally dominant matrix, 70.

Digital Century puzzle, 44.

Digraph: A directed graph.

Direct product of graphs, v, 43.

Directed graphs, 42-43.

Directed torus graphs, 73.

Distributive laws, 34.

Doob, Michael, 73.

Doubly linked lists, 24—25.

Drawing a binary tree, 1, 14, 15, 45, 47, 51.

Dual of a forest, 89, 32—34, 49.

Dual of a planar graph, 68.

Dudeney, Henry Ernest, 44, 74.

Dyck, Walther Franz Anton von, paths,
see Nested parentheses.

Dynamic programming, 75.
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e, as “random” example, 35.

Easy nodes, 27, 41.

Ebbenhorst Tengbergen, Cornelia van, 17.
Edelman, Paul Henry, 54.

Eigenvalues, 42—43, 73.

Ellipses, 15.

Empty graph, 70.

Empty string, 63.

Endo-order, 6.

Endpoint of a graph, 44, 73.
Equivalence classes, 42.

Er, Meng Chiau (4% B Hj), 49.

Errera, Alfred, 46.

Eulerian numbers, 39.

Extended binary trees, 1, 16, 32, 37, 45.
Extended ternary trees, 32.

External nodes, 1, 15, 16, 32, 37, 45, 46.
Eyrolles, Georges, 75.

Factoring an n-cycle, 36.
Feller, Willibald (= Vilim = Willy =
William), 62.
Feussner, Wilhelm, 22.
Fibonacci trees, 44, 45.
Fiedler, Miroslav, 73.
Field polynomials, 72.
Fleischner, Herbert, 74.
Flip permutations, 54.
Floating point arithmetic, 75.
Focus pointers, 27, 41.
Footprints, 35, 53.
Forests, 0-75.
canonical, 21-22, 40-41.
cognate, 32.
conjugate of, 8, 31-32, 36, 43.
dual of, 8 9, 33, 49.
Gray codes for, 6-9, 33.
oriented, 2122, 40.
outline of, 13.
random, 38.
representation of, see
Left-child /right-sibling
links, Nested parentheses,
Right-child /left-sibling links.
roots of, 1.
shape of, 13-14.
super-root of, 30, 43.
transpose of, 31-32, 36.
triply linked, 30-31, 40, 50.
Fractal dimension, 39.
Free parentheses, 19, 65.
Free trees, 22, 40-41, 44, 54, 72, 73.
Freese, Ralph Stanley, 54.

Gabow, Harold Neil, 69.

Galton, Francis, 77.

Generalized Catalan numbers, 36-37.
Generating functions, 10, 36, 37, 39, 41, 63.
Golle, Philippe, 40, 66.

7



78 INDEX AND GLOSSARY

Grammar, context-free, 44.
Graphs, 22-30, 41-44.
Gréatzer, George, 53.
Gray, Frank, codes, 30.
binary, 44, 63.
for binary trees, 69, 33.
for combinations, 6.
for forests, 6-9, 33.
for nested parentheses, 6, 33, 37, 52.
for Schroder trees, 39.
for spanning trees, 23.
for trees, 6-9.
modular, 41.
quasi-, 30.
reflected, 7.
revolving-door, 6, 23, 27, 28, 41.
Greatest lower bound, 33-34.
Greene, Curtis, 19, 65.
Grid graphs, 29, 43, 73.
triangular, 52.
Gutjahr, Walter Josef, 61.

Hamilton, William Rowan, cycle, 74.
path, 44, 52.

Hamiltonian graph: A graph that contains
a Hamiltonian cycle, 30, 44.

Handshaking at a circular table, 4, 31.

Hansel, Georges, 20—21, 40.

Harary, Frank, 67, 74.

Hariharan, Ramesh (7Guey angamreir), 69.

Hedetniemi, Sarah Lee Mitchell, 21.

Hickerson, Dean Robert, 36.

Hodges, Joseph Lawson, Jr., 62.

Holzmann Poisson, Carlos Alfonso, 67.

Horton, Robert Elmer, 75.

Horton—Strahler number, 45.

Identity matrix, 70.

In-degree of a vertex, 42, 72.

Incidence matrix, 71.

Inorder (symmetric order), 1, 7, 8, 15,
36, 37, 47, 52, 53.

Internal path length, 37.

Inverse of a permutation, 8.

Inversion tables, 4, 31, 46.

Isthmuses, see Bridges of a graph.

Janey, Nicolas, 75.

Join of graphs, v, 43.
Juxtaposition of graphs, v, 43.
Juxtaposition of forests, 32.

kth power of a graph, 30.

Kapoor, Sanjiv (GSF #9T), 69.

Katona, Gyula (Optimalis Halmaz), 65.

Kelmans, Alexander Kolmanovich
(Kenpmanc, Anexcannp KosbmanoBua),

72.

Kemp, Rainer, 59, 61.
Kirschenhofer, Peter, 61.
Kleitman, Daniel J (Isaiah Solomon),

19, 40, 65.
Knuth, Donald Ervin (15 & 44), i, iv,
17, 65, 68, 69.

Korobkov, Vitaly Konstantinovich
(Kopobkos, Burasmnit
Koncrantnaosn4), 21.

Korsh, James F., 4, 33, 50, 51, 63.

Kostochka, Alexandr Vasilievich (Kocrouxa,
Anekcannp Bacusibesnd), 73.

Kreweras, Germain, 51, 52, 73.

lattice, 33-36, 53.

Kronecker, Leopold, product of matrices, 70.

Kronk, Hudson Van Etten, 74.

Kruskal, Joseph Bernard, Jr., function, 37.

Kruyswijk, Dirk, 17.

Kubicka, Ewa, 66.

Lakser, Harry, 53.
Lattices of trees, 33-36.
Le Borgne, Yvan Franccoise André, 70.
Leaf nodes, 26, 33, 51.
Least upper bound, 33-34.
Left path length, 59.
Left-sibling/right-child links, 5, 32,
36, 48, 51-52.
Left-child /right-sibling links, 1, 5, 7,
30, 47, 48, 51-52.
Leske, Marie, 74.
Level coordinates ¢, 4, 21 22, 31,
33, 37, 40, 51.
Lévy, Paul, 14.
Lexicographic order, 2 3, 19, 21, 31, 40.
Li, Gang (= Kenny) (Z=4H), 67.
Line graph of a graph, 43.
Linked binary trees, generation of, 4 9, 32.
random, 16-17, 38.
Littlewood, John Edensor, 66.
Loopless algorithm, 30.
Loops in a graph, 22, 25.
Louchard, Guy, 14.
Lucas, Joan Marie, 7.
Lucky nodes, 43—44.
Luczak (= Luczak), Malwina Joanna, 63.

M,, (middle binomial coefficient), 17, 39-40.

MacMahon, Percy Alexander, 57, 62.

Marckert, Jean-Francgois, 14.

Markowsky, George, 53.

Matchings, 4, 31.

Mate of a bit string, 39.

Mate of an arc node, 24.

Matrix tree theorem, 41, 42, 70.

Maximal chains, 34, 36.

Mems (p): Memory accesses, 28—29,
36, 51, 66, 68.

Mirror image, 4, 31, 47, 51, 64.

MMIX computer, ii.
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Modular Gray code for tuples, 41.
Mohar, Bojan, 73.

Moivre, Abraham de, 11.

Monotone Boolean functions, 20, 40.
Morphic sequence, 64.

Myers, Eugene Wimberly, Jr., 69.

n-cube, 28-29, 43, 71.
Natural correspondence, 1; see
Left-child /right-sibling links.
Near trees, 23-28, 68.
Near-perfect Gray code for nested
parentheses, 6.
Nested parentheses, 0-6, 10-13, 15-16,
19, 31-32, 37, 38, 46, 52.
Neuman, Frantigek, 44.
Newton, Isaac, identities, 71.
Nijenhuis, Albert, 41.
Noncrossing chords, 4, 31.
Noncrossing partitions, 33.
Notational conventions:
FD, 32,
FER pT 31
FK F',FHF,FCF' 3335, 52.
G+H,G+H,GxH,GoH,GQ H, v.
Numbers, Catalan, iii.

Offord, Albert Cyril, 66.
Optimum algorithm, 21.

Order ideals, 52.

Organ-pipe order, 68.

Organic illustrations, 45.
Oriented forests, 21-22, 40.
Oriented spanning trees, 41-42, 72.
Oriented tree numbers, table, 21.
Oriented trees, 21-22, 40-42.
Out-degree of a vertex, 42, 72.
Outline of a forest, 13.

P,, (path graph), 29, 41, 43, 68, 71, 74.
Pan-digital puzzles, 44-45.
Panholzer, Alois, 61, 63.
Parent pointers, 21-22, 30-31, 40.
Parentheses, 04, 6, 12-13, 15-16, 19,
31-32, 38, 46, 52.
Parking problem, 54, 70.
Path graph (Pp), 29, 41, 43, 68, 71, 74.
Path length, 60.
Pendant vertex, see Endpoint.
Pentagons, 35.
Perfect Gray code for nested parentheses,
6, 37, 52.
Permutahedron, 35.
Permutation representation of binary
trees, 36.
Permutations, cyclic, 36.
descents of, 39.
flip, 54.
inverses of, 8.
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Pi (7), as “random” example, 19, 39, 59.

Plain changes, 7.

Plato = Aristocles, son of Ariston
(IIX\&rwov = "Aprotoxiiic “Aptotwvog), O.

Polish prefix notation, see Preorder
degree sequence.

Polyhedra, 35.

Positive semidefinite matrices, 70.

Postorder, 1, 4, 7, 8, 31, 47, 51.

Postpreorder, 29 31, 43.

Power of a graph, 30, 44.

Preorder, 1, 4, 8-9, 21, 22, 31-35, 38,
40, 51, 68.

Preorder degree sequence, 32.

Prepostorder, iv, 29-31, 43-44.

Prodinger, Helmut, 61, 63.

Proskurowski, Andrzej, 6, 37.

Prune-and-graft algorithm, 9, 33.

Pseudo-complement in a lattice, 54.

Pun resisted, 30.

g-ballot numbers, 36-37.
g-Catalan numbers, 36-37.
g-nomial coefficients, 58.
Quasi-Gray code, 30.

Ramesh, Hariharan (7Guay angamgesr), 69.

Random binary tree, 14-17, 38, 45.

Random forest, 13-14, 38.

Random oriented tree, 41.

Random Schroder tree, 63.

Raney, George Neal, 38.

Ranking, 37, 39.

Rational arithmetic, 75.

Reachability test, 67.

Recurrence relations, 54-56, 61, 74.

Recurrent states, 42.

Recursion, 24.

Recursion tree, 11.

Recursive procedure, 67.

Recursive structure, 3, 11, 46, 55.

Reflected Gray code, 7.

Reflection of a forest, 31, see Conjugate.

Regular graph, 43.

Regular polygon, 35.

Relative complement, 20.

Rémy, Jean-Luc, 16, 38, 62.

Restricted growth sequences, 51.

Resultants, 71.

Revolving-door Gray codes, 23, 27, 28, 41.

near-perfect, 6.
strong, 69.

Richards, Dana Scott, 32, 36.

Right path length, 59.

Right-child/left-sibling links, 5, 32,
36, 48, 51-52.

Right-sibling/left-child links, 1, 30,
47, 48, 51-52.

Riordan, John, 58.

River flows, 75.
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Robinson, Gilbert de Beauregard, 39.
Rodrigues, Benjamin Olinde, 16.
Roelants van Baronaigien, Dominique,

6, 7, 56.
Rooted unlabeled trees, see Oriented trees.
Roots of a forest, 1.
Rossin, Dominique Gilles, 70.
Rotation lattice, see Tamari lattice.
Rotations in a binary tree, 6-9, 52.

Run-length coordinates dg, 2, 3, 31, 37, 49.

Ruskey, Frank, 6, 7, 12, 14, 37, 56, 67.

Srn (Schroder number), 39.
Sachs, Horst, 71, 73.
Sack, Jorg-Riidiger Wolfgang, 62.
Sandpiles, 42, 73.
Schensted, Craige Eugene (= Ea Ea), 39.
Schott, René Pierre, 62.
Schréder, Ernst, numbers, 39, 74.
trees, 39, 63.
triangle, 63.
Schwenk, Allen John, 74.
Scoins, Hubert Tan, 21.
Scope coordinates, 8, 34.
SCOPE links, 4.
Self-conjugate forests, 36, 48.
Self-dual forests, 36.
Self-transpose forests, 36.
Sekanina, Milan, 30.
Semba, Ichiro (fili 3 — BB), 2.
Semidistributive laws, 35.
Semimodular law, 34.
Series-parallel graphs, 25-28, 41, 63.
Set partitions, 33.
Shape of a random binary tree, 14-15.
Shape of a random forest, 13—-14.
Shrinking an edge, 23-25, 63.
Skarbek, Wiadystaw Kazimierz, 4.
Sleep, Michael Ronan, 13.
Smith, Malcolm James, 23, 24, 27, 28.
Socrates, son of Sophroniscus of
Alopece (Zwxpdine Lwepwvicxov
’AXwmextifev), 0.
Spanning arborescences, 41, see Oriented
spanning trees.
Spanning trees, 22-29, 41-43.
enumeration of, 42-43.
Spectrum of a graph, 71, 73.
Sperner, Emanuel, 19.
theorem, 19, 39, 65.
Sprugnoli, Renzo, 37.
Square of a graph, 30, 44.
Stable states, 42.

Stanley, Richard Peter, iii, 36, 52, 63.
lattice, 34-36.

Star graphs, 72.

Strahler, Arthur Newell, 45, 75.

Strong product of graphs, v, 43.

Strong revolving-door order, 69.

Sum of graphs, v, 43.

Super-root of a forest, 30, 43.

Superedge of a graph, 25-28, 63.

Symmetric order (inorder), 1, 7, 8, 15,
36, 37, 47, 52, 53.

Syntax, context-free, 44.

t-ary trees, 38, 55, 60.
complete, 44.
random, 38.
Tableaux, 36, 39, 55, 65.
Tamari, Dov, lattice, 34 35, 55.
Tang, Changjie (J& % 7%), 6.

Tengbergen, Cornelia van Ebbenhorst, 17.

Ternary trees, 32, 36; see also t-ary trees.
Threshold functions, 21, 65.
Toppling, 42.
Torus graphs, 28, 29, 43, 70, 73.
directed, 73.
Tournament digraphs, 72.
Transitive tournaments, 72.
Transpose of a forest, 31-32, 36.
Transpositions: Cyclic permutations
of order 2, 36.
Traversal of a binary tree, 29-31.
Tree representation of a series-parallel
graph, 26, 41.
Trees, 0-75.
binary, 1-2, 4-10, 16, 31-39.
binomial, 44, 74.
Fibonacci, 44, 45.
free, 22, 40-41, 44, 54, 72, 73.
Gray codes for, 6-9.
lattices of, 33 36.
oriented, 21-22, 40—43.
random, 12-17, 38, 41, 45, 64.
Schroder, 39, 63.
spanning, 22-29, 41-43.
t-ary, 32, 36, 38, 55, 60.
traversal of, 29-31.
Triangular grids, 52.
Triangularizing a matrix, 69.
Triply linked forest, 30-31, 40, 50.
Trivial trees, 48.
Twisted binomial trees, 44.
Tyler, Douglas Blaine, 36.

Uneasy nodes, 27, 41.
Unit vectors, 40.
Unlabeled free trees, 22, 40, 44.

Unlabeled rooted trees, see Oriented trees.

Unlucky nodes, 43.
Unranking, 12, 37.
Unrooted trees, see Free trees.

Ushijima, Kazuo (5 & #11 3%), 6.
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Vakhovsky, Evgenii Borisovich (BaxoBckwnit,
Esrennit Bopucosnu), 71.

van Baronaigien, see Roelants van
Baronaigien.

van Ebbenhorst Tengbergen, Cornelia, 17.

Vector spaces, 40.

Viennot, Gérard Michel Frangois Xavier, 75.

Vo, Kiem-Phong, 65.
Voting, 11, 66.

Warren, Jon, 14.
Watson, George Neville, 58.
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Wheel graph, 42.

Wilf, Herbert Saul, 41.

Winkler, Peter, 63.

Worm'’s walk, 1, 12 14, 31, 46, 52, 61, 64.

Xiang, Limin (%] &), 6.
Young, Alfred, tableaux, 36, 39, 55, 65.

Zaks, Shmuel (Dpy YNmnv), 31, 32, 36, 49, 54.

Ziegler, Giinter Matthias, 53.
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