

A Comprehensive Sourcebook
for Effective Systems and
Network Management

UNIX
Administration

© 2002 by CRC Press LLC

This new book series presents the latest research and technological
developments in the field of internet and multimedia systems and applications.
We remain committed to publishing high-quality reference and technical
books written by experts in the field.

If you are interested in writing, editing, or contributing to a volume in
this series, or if you have suggestions for needed books, please contact
Dr. Borko Furht at the following address:

Dr. Borko Furht, Director
Multimedia Laboratory

Department of Computer Science and Engineering
Florida Atlantic University

777 Glades Road
Boca Raton, FL 33431 U.S.A.

E-mail: borko@cse.fau.edu

INTERNET and COMMUNICATIONS

© 2002 by CRC Press LLC

CRC PR ESS
Boca Raton London New York Washington, D.C.

A Comprehensive Sourcebook
for Effective Systems and
Network Management

Bozidar Levi

UNIX
Administration

© 2002 by CRC Press LLC

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2002 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1351-1

Library of Congress Card Number 2002017438
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Levi, Bozidar.
 UNIX administration : a comprehensive sourcebook for effective systems and network management / by

Bozidar Levi.
p. cm. -- (Internet and data comunications series

Includes bibliographical references and index.
ISBN 0-8493-1351-1 (alk. paper)
1. Operating systems (Computers) 2.UNIX System V (Computer file) I. Title. II. Series.

QA76.76.O63 L4853 2002
005.4’82—dc21 2002017438
 CIP

1351disclaimer Page 1 Thursday, April 18, 2002 1:56 PM

© 2002 by CRC Press LLC

Preface

Unix Administration: A Comprehensive Sourcebook for Effective Systems and Network Manage-
ment attempts to make UNIX essential and network administrative topics more accessible
to a wide audience, including both academic and professional users. The selected book
title fully reflects this idea: to present UNIX administration in a comprehensive way and
enable effective systems and network management based on the presented text.

To achieve this goal, the book gives equal weight to UNIX systems and network concepts
and their practical implementations. During the many years that I have worked as a
computer hardware designer and programmer, and most recently as a UNIX administrator,
I have tackled many practical UNIX and network problems. Working for different employ-
ers, I faced real-life situations in an academic environment, in the financial industry and
the retail industry, and on the Internet. At the same time, while teaching at New York
University and Columbia University, I met many novices in this field and learned an
optimal and quick way to teach UNIX administration. This accumulated knowledge and
experience have helped me to select UNIX topics that are of the utmost relevance to
successful administration, and those topics served as the basis for this book. Some add-
itional UNIX topics, significant from a historical point of view, or necessary for an overall
presentation of UNIX administration, are also included. In concert, they create a logical
and comprehensive text, easy to read and follow. It is impossible to say that everything
existing in the UNIX administration arena is covered here — it would be impossible to
put it all in a single book. However, the principal and most important UNIX administrative
topics that make a complete UNIX administration environment and a sufficient base for
overall UNIX management are fully explored.

UNIX was developed in two different environments: academic and industrial. Conse-
quently, two main UNIX platforms, Berkeley UNIX (also known as Berkeley Software
Distribution — BSD UNIX) and System V UNIX (also known as AT&T UNIX) have
emerged. Both platforms have coexisted for many years, continuing to develop and pro-
mote UNIX. Simultaneously, many vendors started to develop their own UNIX flavors by
trying to adopt the best from the two main platforms. Today we see a number of vendor-
specific UNIX flavors, all based on these two main platforms. In most cases, it is even
difficult to evaluate which platform is prevailing — each flavor is simply a hybrid of both
platforms, often bringing something new and specific to the UNIX market. However, upon
looking further at specific UNIX segments — for example, file system management,
printing, accounting, etc. — one is more easily able to describe them as mostly Berkeley-
like, or System V-like.

Networking, which appeared later, at a time when UNIX had already developed into
quite a mature product, merged very efficiently into both UNIX platforms and virtually
eliminated their differences in the network area. The TCP/IP protocols became a network
standard, while UNIX provided the main underlying layer of core network services. The
net effect was that UNIX network administration is more or less uniform among many
existing UNIX flavors, although far from identical. Differences in kernels, available com-
mands, and some other details do make a difference in some cases.

This book basically follows a historical UNIX path, i.e., it addresses UNIX administration
with an eye to the two main UNIX platforms, Berkeley and System V. For easier conceptual
understanding of administrative topics, Berkeley UNIX seems more convenient. This is

TOC.fm Page v Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

probably the case, because it was primarily developed in academia. By following that
pattern for each individual UNIX topic, the Berkeley platform is discussed first and
afterward its System V counterpart. A practical implementation of a specific UNIX topic
is accomplished through many real-life examples from different vendor-specific UNIX
flavors. Now, at the start of a new millennium, Solaris, HP-UX, Linux, and AIX and SGI
IRIX are the most dominant flavors, and thus, this book mainly addresses them. SunOS,
as a dominant UNIX flavor for many years, is also occasionally quoted, especially because
SunOS is a typical representive of Berkeley UNIX, and is still widely in use. In combination,
the book is an instrumental source of the information needed to learn UNIX administration
and efficiently perform the most essential and network-related UNIX administrative tasks.

This book presents a reliable UNIX administration reference book for practical UNIX
implementation. However, it could be easily used for educational purposes, as a textbook,
due to its education-related organization, conceptual clarifications, as well as an appro-
priate selection of administrative topics. Not many books of this kind are on the market
that are so diverse and detailed oriented at the same time. Many practical examples and
specific administrative procedures, logically connected to theoretical issues, strongly sup-
port the educational significance of this book.

UNIX Administration Sourcebook started as handouts prepared for the course "UNIX
System Administration" at NYU’s School of Continuous and Professional Studies and has
been in full use for quite some time with very encouraging feedback from students. During
this time, a number of text improvements and updates have been made, until this version
was reached. UNIX is changing continually (supposedly always better) and this text
presents an up-to-date version organized in a logical and comprehensive way. It can be
easily used by beginners, as well as experienced administrators.

There are many books related to UNIX systems and network administration, and they
all contribute to this complex arena in some way. This book contains elements that make
it different from others:

• The comprehensive organization and presentation of the text
• The condensed explanation of concepts and their practical implementations

• The inclusion of both UNIX systems and network administration, in full detail
• The choice of crucial administrative topics and their full coverage

• The discussion of the most common UNIX flavors
• The text is self-sufficient for successful administration on a daily basis

• The coverage of all basic and many advanced UNIX administrative topics
• The coverage of X window system, a complex administrative topic almost always

excluded from UNIX administration books

• Up-to-date text with coverage of the latest main UNIX flavors and releases
• Usefulness as a reference book as well as a textbook

• A careful selection of relevant examples based on many years of professional
experience in this field

• And last but not least, many years use of the initial book text in a handout form
demonstrates high usability of the text by students and professionals.

The book consists of four parts: UNIX Administration, Network Administration, Sup-
plemental UNIX Topics, and Case Studies. A total of 82 figures fully support the existing
text. Such an organization is logical, comprehensive, and easy to read.

TOC.fm Page vi Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

UNIX Administration covers essential UNIX administration and contains 13 chapters.
The first three chapters are an introduction to the UNIX operating system, an overview
of a certain number of selected UNIX topics important for the administration, and an
overview of the UNIX administration itself. The remaining chapters cover UNIX system
startup and shutdown, detailed UNIX filesystem management and layout, user account
management and system security, logging and printing subsystems, terminals, system
backup and recovery, and time-related UNIX facilities. In combination they provide suf-
ficient material for a successful “out-of-network” UNIX administration, which can also be
called stand-alone UNIX administration.

Network Administration covers network-related UNIX administration and contains
eight chapters. The first two chapters present an introduction to networking and, more
specifically, to TCP/IP networks. Other chapters cover the main network services: domain
name system (DNS), network information system (NIS), network filesystem (NFS), UNIX
remote commands and secure shell, electronic mail, and the most common network appli-
cations such as telnet and ftp. Selected network topics present core network services with
which each networked UNIX system has to comply.

Supplemental UNIX Topics covers several more subjects, which, by implementing cer-
tain criteria, make UNIX administration complete. These administrative topics are often
handled separately, out of basic UNIX administration. Four chapters include X window
system, kernel reconfiguration, modems and related UNIX facilities, and intranet technol-
ogies. X windowing, with its quite complex administration, is almost always handled
separately, as well as most of the advanced intranet technologies.

Finally, Case Studies are presented in three chapters on subjects extremely important to
practical UNIX implementation: UNIX installation, disk space upgrade, and several emer-
gency situations that every UNIX administrator should expect to face at some point. Most
administrators have experienced a need to bypass a “forgotten root password,” and while
this routine bypassing task varies among different flavors, the general hints presented can
be helpful in any case.

Finally, I would like to point out that during many years of active UNIX administration,
I was always thinking how nice it would be to have a single book in front of me, which
together with standard UNIX online documentation (UNIX manual pages) would be
sufficient for effective usual daily systems and network management. This book is a
response to that idea.

Dr. Bozidar Levi
New York City

October 2001

TOC.fm Page vii Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

About the Author

Dr. Bozidar Levi is an electronics engineer by education, a hardware designer and pro-
grammer by evocation, and an UNIX administration expert by profession. He received
his education at the University of Belgrade, Yugoslavia, and was awarded B.S., M.S., and
Ph.D. degrees in electronics and computer science. Dr. Levi joined Belgrade’s Pupin
Institute and had a successful career path from a junior associate to a top senior scientist,
dealing with many challenging projects — mostly as a project leader. A majority of the
devices and equipment he designed are still operational worldwide.

UNIX was a logical continuation of Dr. Levi’s rich and extensive IT background. He has
focused with enthusiasm and strength on system and network administration issues.
Again, Dr. Levi made a full circle by working in academia (Hunter College of the City
University of New York), in the financial industry (New York Stock Exchange), retail
industry (J. Crew), and currently the Internet (Linkshare Corporation). Such a wide work-
ing range has resulted in accumulated administrative expertise and experience.

Dr. Levi has also fully exercised his educational mission: first by teaching at the Uni-
versity of Belgrade, and now at Columbia and New York University. His teaching has
always been a rational balance between theory and practice, with strong emphasis on real-
life problems. Many of his former students are employed as IT professionals in various
industrial and non-industrial segments nationwide. UNIX Administration: A Comprehensive
Sourcebook for Effective Systems and Network Management is an extended and updated version
of his UNIX administration course syllabi, which are appreciated and highly rated by his
students. The book merges the required theoretical background with the practical needs
for a successful UNIX administration in almost any environment.

Dr. Levi has also appeared as an author or co-author in more than 60 published and
presented articles and papers and has received several awards for excellence and
achievement.

TOC.fm Page ix Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

Contents

Section I UNIX Administration

1 UNIX — Introductory Notes
1.1 UNIX Operating System
1.2 User’s View of UNIX
1.3 The History of UNIX

1.3.1 Berkeley Standard Distribution — BSD UNIX
1.3.2 System V or ATT UNIX

1.4 UNIX System and Network Administration
1.4.1 System Administrator’s Job
1.4.2 Computing Policies
1.4.3 Administration Guidelines

1.4.3.1 Legal Acts
1.4.3.2 Code of Ethics
1.4.3.3 Organizations
1.4.3.4 Standardization

1.4.4 In This Book

2 The UNIX Model — Selected Topics
2.1 Introduction
2.2 Files

2.2.1 File Ownership
2.2.2 File Protection/File Access

2.2.2.1 Access Classes
2.2.2.2 Setting a File Protection
2.2.2.3 Default File Mode
2.2.2.4 Additional Access Modes

2.2.3 Access Control Lists (ACLs)
2.2.4 File Types

2.2.4.1 Plain (Regular) File
2.2.4.2 Directory
2.2.4.3 Special Device File
2.2.4.4 Link
2.2.4.5 Socket
2.2.4.6 Named Pipe
2.2.4.7 Conclusion

2.3 Devices and Special Device Files
2.3.1 Special File Names
2.3.2 Special File Creation

2.4 Processes
2.4.1 Process Parameters

2.4.1.1 Process Types
2.4.1.2 Process Attributes

TOC.fm Page xi Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

2.4.1.3 File Descriptors
2.4.1.4 Process States

2.4.2 Process Life Cycles
2.4.2.1 Process Creation
2.4.2.2 Process Termination

2.4.3 Process Handling
2.4.3.1 Monitoring Process Activities
2.4.3.2 Destroying Processes
2.4.3.3 Job Control

3 UNIX Administration Starters
3.1 Superuser and Users

3.1.1 Becoming a Superuser
3.1.2 Communicating with Other Users
3.1.3 The su Command

3.2 UNIX Online Documentation
3.2.1 The man Command
3.2.2 The whatis Database

3.3 System Information
3.3.1 System Status Information

3.3.1.1 The uname Command
3.3.1.2 The uptime Command
3.3.1.3 The dmesg Command

3.3.2 Hardware Information
3.3.2.1 The HP-UX ioscan Command
3.3.2.2 The Solaris prtconf Command
3.3.2.3 The Solaris sysdef Command

3.4 Personal Documentation
3.5 Shell Script Programming

3.5.1 UNIX User Shell
3.5.2 UNIX Shell Scripts

3.5.2.1 Shell Script Execution
3.5.2.2 Shell Variables
3.5.2.3 Double Command-Line Scanning
3.5.2.4 Here Document
3.5.2.5 Few Tips

4 System Startup and Shutdown
4.1 Introductory Notes
4.2 System Startup

4.2.1 The Bootstrap Program
4.2.2 The Kernel Execution
4.2.3 The Overall System Initialization

4.2.3.1 rc Initialization Scripts
4.2.3.2 Terminal Line Initialization

4.2.4 System States
4.2.5 The Outlook of a Startup Procedure
4.2.6 Initialization Scripts

4.3 BSD Initialization
4.3.1 The BSD rc Scripts
4.3.2 BSD Initialization Sequence

TOC.fm Page xii Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

4.4 System V Initialization
4.4.1 The Configuration File /etc/inittab
4.4.2 System V rc Initialization Scripts
4.4.3 BSD-Like Initialization

4.5 Shutdown Procedures
4.5.1 The BSD shutdown Command
4.5.2 The System V shutdown Command
4.5.3 An Example

5 UNIX Filesystem Management
5.1 Introduction to the UNIX Filesystem
5.2 UNIX Filesystem Directory Organization

5.2.1 BSD Filesystem Directory Organization
5.2.2 System V Filesystem Directory Organization

5.3 Mounting and Dismounting Filesystems
5.3.1 Mounting a Filesystem

5.3.1.1 The mount Command
5.3.2 Dismounting a Filesystem
5.3.3 Automatic Filesystem Mounting
5.3.4 Removable Media Management

5.4 Filesystem Configuration
5.4.1 BSD Filesystem Configuration File
5.4.2 System V Filesystem Configuration File
5.4.3 AIX Filesystem Configuration File
5.4.4 The Filesystem Status File

5.5 A Few Other Filesystem Issues
5.5.1 Filesystem Types
5.5.2 Swap Space — Paging and Swapping
5.5.3 Loopback Virtual Filesystem

5.6 Managing Filesystem Usage
5.6.1 Display Filesystem Statistics: The df Command
5.6.2 Report on Disk Usage: The du Command
5.6.3 Report on Disk Usage by Users: The quot Command
5.6.4 Checking Filesystems: The fsck Command

6 UNIX Filesystem Layout
6.1 Introduction
6.2 Physical Filesystem Layout

6.2.1 Disk Partitions
6.2.2 Filesystem Structures
6.2.3 Filesystem Creation

6.2.3.1 The mkfs Command
6.2.3.2 The newfs Command
6.2.3.3 The tunefs Command

6.2.4 File Identification and Allocation
6.2.4.1 Index Node (inode)
6.2.4.2 File Allocation

6.2.5 Filesystem Performance Issues
6.2.5.1 File Storage vs. File Transfer
6.2.5.2 Reserved Free Space

TOC.fm Page xiii Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

6.3 Logical Filesystem Layout
6.3.1 Logical Volume Manager — AIX Flavor
6.3.2 Logical Volume Manager — HP-UX Flavor
6.3.3 Logical Volume Manager — Solaris Flavor
6.3.4 Redundant Array of Inexpensive Disks (RAID)
6.3.5 Snapshot

6.3.5.1 The Volume Snapshot
6.3.5.2 The Filesystem Snapshot

6.3.6 Virtual UNIX Filesystem
6.4 Disk Space Upgrade

7 User Account Management
7.1 Users and Groups

7.1.1 Creation of User Accounts
7.1.2 User Database — File /etc/passwd
7.1.3 Group Database — File /etc/group
7.1.4 Creating User Home Directories
7.1.5 UNIX Login Initialization

7.1.5.1 Intialization Template Files
7.1.5.2 User Login Initialization Files
7.1.5.3 Systemwide Login Initialization Files
7.1.5.4 Shell Initialization Files
7.1.5.5 Setting the Proper Ownership

7.1.6 Utilities to Create User Accounts
7.2 Maintenance of User Accounts

7.2.1 Restricted User Accounts
7.2.2 Users and Secondary Groups
7.2.3 Assigning User Passwords
7.2.4 Standard UNIX Users and Groups
7.2.5 Removing User Accounts

7.3 Disk Quotas
7.3.1 Managing Disk Usage by Users

7.4 Accounting
7.4.1 BSD Accounting
7.4.2 System V Accounting
7.4.3 AIX-Flavored Accounting

8 UNIX System Security
8.1 UNIX Lines of Defense

8.1.1 Physical Security
8.1.2 Passwords
8.1.3 File Permissions
8.1.4 Encryption
8.1.5 Backups

8.2 Password Issues
8.2.1 Password Encryption
8.2.2 Choosing a Password
8.2.3 Setting Password Restrictions
8.2.4 A Shadowed Password

8.2.4.1 Usual Approach
8.2.4.2 Other Approaches

TOC.fm Page xiv Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

8.3 Secure Console and Terminals
8.3.1 Traditional BSD Approach
8.3.2 The Wheel Group
8.3.3 Secure Terminals — Other Approaches

8.4 Monitoring and Detecting Security Problems
8.4.1 Important Files for System Security
8.4.2 Monitoring System Activities
8.4.3 Monitoring Login Attempts

8.4.3.1 The su Log File
8.4.3.2 History of the Root Account
8.4.3.3 Tracking User Activities

9 UNIX Logging Subsystem
9.1 The Concept of System Logging

9.1.1 The syslogd Daemon
9.2 System Logging Configuration

9.2.1 The Configuration File /etc/syslog.conf
9.2.2 Linux Logging Enhancements
9.2.3 The logger Command
9.2.4 Testing System Logging

9.3 Accounting Log Files
9.3.1 The last Command
9.3.2 Limiting the Growth of Log Files

10 UNIX Printing
10.1 UNIX Printing Subsystem

10.1.1 BSD Printing Subsystem
10.1.1.1 The lpr, lpq, and lprm Commands
10.1.1.2 The lpd Daemon
10.1.1.3 Managing the BSD Printing Subsystem

10.1.2 System V Printing Subsystem
10.1.2.1 The lp, lpstat, and cancel Commands
10.1.2.2 The lpsched Daemon
10.1.2.3 Managing the System V

Printing Subsystem
10.2 Printing Subsystem Configuration

10.2.1 BSD Printer Configuration and the Printer
Capability Database
10.2.1.1 The /etc/printcap File
10.2.1.2 Setting the BSD Default Printer
10.2.1.3 Spooling Directories
10.2.1.4 Filters
10.2.1.5 Linux Printing Subsystem

10.2.2 System V Printer Configuration and the Printer
Capability Database

10.2.2.1 The Printer Database Directory Hierarchy
on System V

10.2.2.2 Setting the System V Default Printer
10.2.3 AIX Printing Facilities

TOC.fm Page xv Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

10.3 Adding New Printers
10.3.1 Adding a New Local Printer

10.3.1.1 Adding a Local BSD Printer
10.3.1.2 Adding a Local Linux Printer
10.3.1.3 Adding a Local System V Printer

10.3.2 Adding a New Remote Printer
10.3.2.1 Adding a Remote BSD Printer
10.3.2.2 Adding a Remote Linux Printer
10.3.2.3 Adding a Remote System V Printer

10.4 UNIX Cross-Platform Printer Spooling
10.4.1 BSD and AIX Cross-Printing
10.4.2 Solaris and BSD Cross-Printing
10.4.3 Third-Party Printer Spooling Systems

11 Terminals
11.1 Terminal Characteristics

11.1.1 BSD Terminal Subsystem
11.1.1.1 BSD Terminal Line Initialization
11.1.1.2 The BSD termcap Database

11.1.2 System V Terminal Subsystem
11.1.2.1 System V Terminal Line Initialization
11.1.2.2 The System V terminfo Database

11.1.3 Terminal-Related Special Device Files
11.1.4 Configuration Data Summary

11.2 The tset, tput, and stty Commands
11.2.1 The tset Command
11.2.2 The tput Command
11.2.3 The stty Command

11.3 Pseudo Terminals
11.4 Terminal Servers

12 UNIX Backup and Restore
12.1 Introduction

12.1.1 Media
12.2 Tape-Related Commands

12.2.1 The tar Command
12.2.2 The cpio Command
12.2.3 The dd Command
12.2.4 The mt Command
12.2.5 Magnetic Tape Devices and Special Device Files

12.3 Backing Up a UNIX Filesystem
12.3.1 Planning a Backup Schedule

12.4 Backup and Dump Commands
12.4.1 The SVR3 and SVR4 backup Commands
12.4.2 The fbackup Command
12.4.3 The dump/ufsdump Command
12.4.4 A Few Examples

12.5 Restoring Files from a Backup
12.5.1 The restore Commands

12.5.1.1 The SVR3 restore Command

TOC.fm Page xvi Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

12.5.1.2 The restore/ufsrestore Command
12.5.1.3 Interactive Restore

12.5.2 The frecover Command
12.5.3 Restoring Multiple Filesystems Archived

on a Single Tape
12.6 Tape Control

13 Time-Related UNIX Facilities
13.1 Network Time Distribution

13.1.1 The NTP Daemon
13.1.2 The NTP Configuration File

13.2 Periodic Program Execution
13.2.1 The UNIX cron Daemon
13.2.2 The crontab Files
13.2.3 The crontab Command
13.2.4 Linux Approach

13.3 Programs Scheduled for a Specific Time
13.3.1 The UNIX at Utility

13.4 Batch Processing
13.4.1 The UNIX batch Utility

Section II Network Administration

14 Network Fundamentals
14.1 UNIX and Networking
14.2 Computer Networks

14.2.1 Local Area Network (LAN)
14.2.1.1 CSMA/CD Networks
14.2.1.2 Token Passing Networks

14.2.2 Wide Area Network (WAN)
14.3 A TCP/IP Overview

14.3.1 TCP/IP and the Internet
14.3.2 ISO OSI Reference Model
14.3.3 TCP/IP Protocol Architecture

14.4 TCP/IP Layers and Protocols
14.4.1 Network Access Layer
14.4.2 Internet Layer and IP Protocol

14.4.2.1 Internet Protocol (IP)
14.4.4.2 Internet Control Message Protocol (ICMP)

14.4.3 Transport Layer and TCP and UDP Protocols
14.4.3.1 User Datagram Protocol (UDP)
14.4.3.2 Transmission Control Protocol (TCP)

14.4.4 Application Layer

15 TCP/IP Network
15.1 Data Delivery

15.1.1 IP Address Classes
15.1.2 Internet Routing

15.1.2.1 The route Command

TOC.fm Page xvii Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

15.1.2.2 Dynamic Routing
15.1.2.3 The gated Daemon

15.1.3 Multiplexing
15.1.3.1 Protocols, Ports, and Sockets
15.1.3.2 UNIX Database Files

15.2 Address Resolution (ARP)
15.2.1 The arp Command

15.3 Remote Procedure Call (RPC)
15.3.1 The portmapper Daemon
15.3.2 The /etc/rpc File

15.4 Configuring the Network Interface
15.4.1 The ifconfig Command
15.4.2 The netstat Command

15.5 Super Internet Server
15.5.1 The inetd Daemon

15.5.1.1 The inetd Configuration
15.5.2 Further Improvements and Development

15.5.2.1 Extended Super Server xinetd

16 Domain Name System
16.1 Naming Concepts

16.1.1 Host Names and Addresses
16.1.2 Domain Name Service (DNS)

16.1.2.1 Domains and Subdomains
16.1.3 Host Database Files

16.1.3.1 The Local Host Table — /etc/hosts
16.1.3.2 Aliases
16.1.3.3 Maintaining the /etc/hosts File

16.2 UNIX Name Service — BIND
16.2.1 BIND Configuration
16.2.2 Resolvers

16.2.2.1 Configuring a Resolver
16.2.2.2 Other Resolver Parameters

16.2.3 Name Servers
16.2.3.1 The named Daemon

16.3 Configuring named
16.3.1 BIND Version 4.X.X

16.3.1.1 The Configuration File /etc/named.boot
16.3.1.2 Standard Resource Records
16.3.1.3 The Resource Record Files

16.3.2 BIND Version 8.X.X
16.3.2.1 Subdomains and Parenting

16.4 Using nslookup
16.4.1 The nslookup Interactive Mode
16.4.2 A Few Examples of nslookup Usage

17 Network Information Service (NIS)
17.1 Purpose and Concepts
17.2 NIS Paradigm

17.2.1 yp Processes

TOC.fm Page xviii Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

17.2.2 To Create an NIS Server
17.2.2.1 Set the NIS domain
17.2.2.2 Set the Master Server
17.2.2.3 Set the Slave Server
17.2.2.4 Start NIS Service

17.2.3 To Create an NIS Client
17.2.4 NIS Domain Name
17.2.5 Databases/NIS Maps

17.2.5.1 The /etc/netgroup File
17.3 NIS Management

17.3.1 yp Commands
17.3.2 Updating NIS Maps

17.3.2.1 The make Utility and NIS
17.3.3 Troubleshooting
17.3.4 Security Issues
17.3.5 A Few NIS Stories

17.3.5.1 Too Large an NIS Group
17.3.5.2 Invalid Slave Server
17.3.5.3 Change of the NIS Domain Name

17.4 NIS vs. DNS
17.4.1 The /etc/nsswitch.conf File
17.4.2 Once upon a Time

18 Network File System (NFS)
18.1 NFS Overview

18.1.1 NFS Daemons
18.2 Exporting and Mounting Remote Filesystems

18.2.1 Exporting a Filesystem
18.2.1.1 The exportfs and share Commands
18.2.1.2 The Export Configuration File
18.2.1.3 The Export Status File

18.2.2 Mounting Remote Filesystems
18.2.2.1 The showmount Command
18.2.2.2 The mount Command and the Filesystem

Configuration File
18.3 Automounter

18.3.1 The Automount Maps
18.3.1.1 An Example

18.4 NFS — Security Issues

19 UNIX Remote Commands
19.1 UNIX r Commands

19.1.1 The rlogin Command
19.1.2 The rcp Command
19.1.3 The remsh (rsh) Command

19.2 Securing the UNIX r Commands
19.2.1 The /etc/hosts.equiv File
19.2.2 The $HOME/.rhosts File
19.2.3 Using UNIX r-Commands — An Example

TOC.fm Page xix Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

19.3 Secure Shell (SSH)
19.3.1 SSH Concept

19.3.1.1 RSA Authentication
19.3.1.2 The ssh Client
19.3.1.3 The sshd Daemon

19.3.2 SSH Configuration
19.3.3 SSH Installation and User Access Setup

19.3.3.1 Setup of the ssh Client
19.3.3.2 Root Access
19.3.3.3 Individual User Access

19.3.4 SSH — Version 2

20 Electronic Mail
20.1 E-mail Fundamentals

20.1.1 Simple Mail Transport
Protocol (SMTP)

20.1.2 The MTA Program sendmail
20.1.2.1 The sendmail Daemon
20.1.2.2 The sendmail Command
20.1.2.3 Other sendmail Constituents

20.2 Sendmail Configuration
20.2.1 The sendmail.cf File

20.2.1.1 Macro and Class Definitions
20.2.2 Rulesets and Rewrite Rules

20.2.2.1 The Ruleset Sequence
20.2.2.2 The Ruleset 0

20.2.3 Creating the sendmail.cf File
20.3 The Parsing of E-mail Addresses

20.3.1 Rewriting an E-mail Address
20.3.2 Pattern Matching
20.3.3 Address Transformation

20.4 Testing sendmail Configuration
20.4.1 Testing Rewrite Rules
20.4.2 The sendmail -bt Command
20.4.3 The Debugging Level
20.4.4 Checking the Mail Queue

20.5 Mail User Agents
20.5.1 The Mail Program and .mailrc File

20.5.1.1 Starting mail
20.5.1.2 Sending E-mail Messages
20.5.1.3 Reading E-mail Messages
20.5.1.4 Mail Subcommands
20.5.1.5 Forwarding E-mail Messages
20.5.1.6 Variables

20.5.2 POP and IMAP
20.5.2.1 Post Office Protocol (POP)
20.5.2.2 Internet Message Access Protocol

(IMAP)
20.5.2.3 Comparing POP vs. IMAP

TOC.fm Page xx Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

21 UNIX Network Support
21.1 Common UNIX Network Applications

21.1.1 Telnet
21.1.1.1 Telnet Commands

21.1.2 FTP
21.1.2.1 FTP Commands
21.1.2.2 FTP Auto-Login
21.1.2.3 Anonymous FTP

21.1.3 Finger
21.2 Host Connectivity

21.2.1 The ping Command
21.2.2 The traceroute Command

Section III SUPPLEMENTAL UNIX TOPICS

22 X Window System
22.1 An Introduction to the X Window System

22.1.1 The Design of X11
22.1.2 The X Administration Philosophy
22.1.3 Window Managers

22.2 The X Display Managers
22.2.1 xdm/dtlogin Concepts
22.2.2 xdm Configuration Files

22.2.2.1 Customizing xdm
22.2.3 CDE Configuration Files
22.2.4 Vendor-Specific X Flavors — a Configuration Example

22.3 Access Control and Security of X11
22.3.1 XDMCP Queries
22.3.2 The Xaccess File
22.3.3 Other Access Control Mechanisms

22.4 The User X Environment
22.4.1 Components of the xdm-Based User X Environment
22.4.2 Components of the CDE User X Environment
22.4.3 Window Manager Customizations

22.4.3.1 Motif Window Manager (mwm)
22.4.3.2 CDE Window Manager (dtwm)

22.4.4 The Shell Environment
22.5 Miscellaneous

22.5.1 Other Startup Methods
22.5.2 A Permanent X11 Installation
22.5.3 A Few X-Related Commands

23 Kernel Reconfiguration
23.1 Introduction to Kernel Reconfiguration
23.2 Kernel Configuration Database
23.3 BSD-Like Kernel Configuration Approach

23.3.1 Basic Configuration Entries
23.3.2 The BSD-Like Kernel Configuration Procedure
23.3.3 The config Command

TOC.fm Page xxi Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

23.4 Other Flavored Kernel Reconfigurations
23.4.1 HP-UX 10.x Kernel Configuration
23.4.2 Solaris 2.x Kernel Configuration
23.4.3 Linux Kernel Configuration

24 Modems and UUCP
24.1 Introduction to Modems

24.1.1 UNIX and Modems
24.2 UNIX Modem Control

24.2.1 Terminal Lines and Modem Control
24.2.2 Modem-Related UNIX Commands

24.2.2.1 The cu Command
24.2.2.2 The tip Command

24.3 Third-Party Communication Software
24.3.1 C-Kermit

24.4 Introduction to UUCP
24.4.1 How Does UUCP Work?
24.4.2 UUCP Versions
24.4.3 UUCP Chat-Transfer Session

24.5 UUCP Commands, Daemons, and Related Issues
24.5.1 The Major UUCP Commands

24.5.1.1 The uucp Command
24.5.1.2 The uux Command

24.5.2 The UUCP Daemons
24.5.2.1 The uucico Daemon
24.5.2.2 The uuxqt Daemon
24.5.2.3 The uusched Daemon
24.5.2.4 The uucpd Daemon

24.5.3 The UUCP Spool Directories and Files
24.6 Configuring a UUCP Link

24.6.1 Serial Line-Related Issues
24.6.2 UUCP Configuration Files

24.6.2.1 The UUCP Systems Data
24.6.2.2 The UUCP Devices Data
24.6.2.3 Other Configuration Data

24.7 UUCP Access and Security Consideration
24.7.1 Additional Security in BNU UUCP
24.7.2 Additional Security in Version 2 UUCP

25 Intranet
25.1 Introduction to Intranet

25.1.1 Intranet vs. Internet
25.1.2 Intranet Design Approach

25.2 Intranet Front-End Services
25.2.1 Firewalls

25.2.1.1 Firewall Techniques
5.2.1.2 Firewall Types

25.2.1.3 Firewall Implementation
25.2.1.4 Problems and Benefits

TOC.fm Page xxii Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

25.2.2 Viruswalls
25.2.2.1 Computer Viruses and Other Malicious Codes
25.2.2.2 The Viruswall Implementation

25.2.3 Proxy Servers
25.2.3.1 Application Proxies
25.2.3.2 SOCKS Proxies

25.2.4 Web Services
25.2.5 Other External Services

25.3 Inside the Intranet
25.3.1 Network Infrastructure and Desktops
25.3.2 Internal Services

25.3.2.1 Dynamic Host Configuration Protocol (DHCP)
25.3.3 Virtual Private Network (VPN)
25.3.4 UNIX and Not-UNIX Platform Integration

Section IV CASE STUDIES

26 UNIX Installation
26.1 Introductory Notes
26.2 UNIX Installation Procedures

26.2.1 HP-UX Installation
26.2.2 Solaris Installation
26.2.3 Linux Installation

26.3 Supplemental Installations
26.3.1 Supplemental System Software

26.3.1.1 Installation of Sun Enterprise (Veritas)
Volume Manager 2.5

26.3.1.2 Installation of Veritas FileSystem 3.X
26.3.1.3 Two Pseudo-Installation Scripts
26.3.1.4 Installation of Optional HP-UX Software

26.3.2 Patches
26.3.2.1 Solaris Patch Installation
26.3.2.2 HP-UX Patch Installation

27 Upgrade Disk Space
27.1 Adding a Disk

27.1.1 New Disk on the Solaris Platform
27.1.2 New Disk on the SunOS Platform
27.1.3 New disk on the HP-UX Platform

27.2 Logical Volume Manager Case Study
27.2.1 LVM on the HP-UX Platform
27.2.2 LVM on the Solaris Platform

28 UNIX Emergency Situations
28.1 Introductory Notes
28.2 Lost Root Password

28.2.1 Solaris and Lost Root Password
28.2.2 HP-UX and Lost Root Password

TOC.fm Page xxiii Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

28.3 Some Special Administrative Situations
28.3.1 Solaris Procedure to Create an Alternate Boot Partition
28.3.2 Solaris Recovery of the Failed Mirrored Boot Disk
28.3.3 HP-UX Support Disk Usage
28.3.4 HP-UX Procedure to Synchronize a Mirrored

Logical Volume
28.3.5 HP-UX Support Tape and Recovery of Root Disk

Recommended Reading

TOC.fm Page xxiv Thursday, April 18, 2002 7:02 PM

© 2002 by CRC Press LLC

1
UNIX — Introductory Notes

1.1 UNIX Operating System

UNIX is a popular time-sharing operating system originally intended for program devel-
opment and document preparation, but later widely accepted for a number of implemen-
tations. UNIX is today’s most ubiquitous multi-user operating system, with no indication
of any diminishment in the near future. Today, when a period of several years represents
the lifetime of many successful IT products, UNIX is still considered the most stable and
the most secure operating system on the market, three decades after its appearance. Of
course, during 30 years of existence UNIX has changed a great deal, adapting to new
requirements; it is hard to compare today’s modern UNIX flavors with initial (now obsolete)
UNIX versions. In fact, these changes and adaptations are unique to the UNIX operating
system; no other operating system has so successfully evolved, time and again, to meet
modern needs. The concept and basic design of UNIX deserve the credit for this remarkable
longevity, as they provide the necessary flexibility for the permanent changes required to
make UNIX suitable for many new applications.

UNIX, like any other operating system, is an integrated collection of programs that
act as links between the computer system and its users, providing three primary
functions:

1. Creating and managing a filesystem (sets of files stored in hierarchical-structured
directories)

2. Running programs

3. Using system devices attached to the computer

UNIX was written in the C computer language, with careful isolation and confinement
of machine-dependent routines, so that it might be easily ported to different computer
systems. As a result, versions of UNIX were available for personal computers, workstations,
minicomputers, mainframes, and supercomputers. It is somewhat curious to note that
portability was not a design objective during UNIX development; rather, it came as a
consequence of coding the system in a higher-level language. Upon realizing the import-
ance of portability, the designers of UNIX confined hardware-dependent code to a few
modules within the kernel (coded in assembler) in order to facilitate porting.

The kernel is the “core” of the UNIX operating system. It provides services such as a file-
system, memory management, CPU scheduling, and device I/O for programs. Typically,

© 2002 by CRC Press LLC

the kernel interacts directly with the underlying hardware; therefore, it must be adapted
to the unique machine architecture. However, there were some implementations of UNIX
in which the kernel interacted with another underlying system that in turn controlled the
hardware. The kernel keeps track of who is logged in, as well as the locations of all files;
it also accepts and enables instruction executions received from the shell as the output of
interpreted commands. The kernel provides a limited number (typically between 60 and
200) of direct entry points through which an active process can obtain services from the
kernel. These direct entry points are system calls (also known as UNIX internals). The actual
machine instructions required to invoke a system call, along with the method used to pass
arguments and results between the process and the kernel, vary from machine to machine.

The machine-dependent parts of the kernel were cleverly isolated from the main kernel
code and were relatively easy to construct once their purpose had been defined. The
machine-dependent parts of the kernel include:

• Low-level system initialization and bootstrap
• Fault, trap, interrupt, and exception handling

• Memory management: hardware address translation
• Low-level kernel/user mode process context switching

• I/O device drivers and device initialization code

The rest of the UNIX kernel is extremely transportable and is largely made up of the
system call interface from which application programs request services.

An early implementation of the UNIX kernel consisted of some 10,000 lines of C code
and approximately 1000 lines of assembler code. These figures represent some 5 to 10%
of the total UNIX code. When the original assembler version was recoded in C, the size
and execution time of the kernel increased by some 30%. UNIX designers reasoned that
the benefits of coding the system in a higher-level language far outweighed the resulting
performance drawback. These benefits included portability, higher programmer productivity,
ease of maintenance, and the ability to use complex algorithms to provide more sophis-
ticated functions. Some of these algorithms could hardly have been contemplated if they
were to be coded in assembly language.

UNIX supports multiple users on suitable installations with efficient memory-management
and the appropriate communication interfaces. In addition to local users, log-in access and
file transfer between UNIX hosts are also granted to remote users in the network
environment.

Virtually all aspects of device independence were implemented in UNIX. Files and I/O
devices are treated in a uniform way, by means of the same set of applicable system calls.
As a result, I/O redirection and stream-level I/O are fully supported at both the
command-language and system-call levels.

The basic UNIX philosophy, to process and treat different requests and objects in a uniform
and relatively simple way, is probably the key to its long life. In a fast-changing environment
in which high-tech products become obsolete after a few years, UNIX is still in full
operational stage, three decades after its introduction. UNIX owes much of its longevity
to its integration of useful building blocks that are combinable according to current needs
and preferences for the creation of more complex tools. These basic UNIX blocks are
usually simple, and they are designed to accomplish a single function well. Numerous
UNIX utilities, called filters, can be combined in remarkably flexible ways by using the
facilities provided by I/O redirection and pipes. This simple, building-block approach is
obviously more convenient than the alternative of providing complex utilities that are
often difficult to customize, and that are frequently incompatible with other utilities.

© 2002 by CRC Press LLC

y

UNIX’s hierarchical filesystem helps facilitate the sharing and cooperation among users
that is so desirable in program-development environment. A UNIX filesystem (or filesystem,
as it has become known) spans volume boundaries, virtually eliminating the need for
volume awareness among its users. This is especially convenient in time-sharing systems
and in a network environment.

The major features of UNIX can be summarized as:

• Portability
• Multi-user operation

• Device independence
• Tools and tool-building utilities

• Hierarchical filesystem

1.2 User’s View of UNIX

UNIX users interact with the system through a command-language interpreter called the
shell. A shell is actually what the user sees of the system; the rest of the operating system
is essentially hidden from the user’s eyes. A UNIX shell (or shells, because there are different
command-interpreters) is also a programming language suitable for the construction of
versatile and powerful command files called shell scripts. The UNIX shell is written in
the same way as any user process, as opposed to being built into the kernel. When a user
logs into the system, a copy of the corresponding shell is invoked to handle interactions
with the related user. Although the shell is the standard system interface, it is possible to
invoke any user-specific process to serve in place of the shell for any specific user. This
allows application-specific interfaces to coexist with the shell, and thus provide quite
different views and working environments for users of the same system.

All programs invoked within the shell start out with three predefined files, specified by
corresponding file descriptors. By default the three files are:

1. Standard input — normally assigned to the terminal (console) keyboard
2. Standard output — normally assigned to the terminal (console) display

3. Error output — normally assigned to the terminal (console) display

The shell fully supports:

• Redirection — Since I/O devices and files are treated the same way in UNIX, the
shell treats the two notions as files. From the user’s viewpoint, it is easy to
redefine file descriptors for any program, and in that way replace attached
standard input and output files; this is known as redirection.

• Pipes — The standard output of one program can be used as standard input in
another program by means of pipes. Several programs can be connected via
pipes to form a pipeline. Redirection and piping are used to make UNIX utilities
called filters, which are used to perform complex compound functions.

• Concurrent execution of the user programs — Users may indicate their intention
to invoke several programs concurrently by placing their execution in the

© 2002 by CRC Press LLC

“background” (as opposed to the single “foreground” program that requires
full control of the display). This mode of operation allows users to perform
unrelated work while potentially lengthy operations are being performed in
the background on their behalf.

Since UNIX was primarily intended for program development, it offers several editors,
compilers, symbolic debuggers, and utilities. Other useful program development facilities
of UNIX include a general-purpose macro-processor, M4, that is language-independent,
and the MAKE program, which controls creation of other large programs. MAKE uses
a control file (or description file) called MAKEFILE, which specifies source file dependencies
among the constituent modules of a program. It identifies modules that are possibly out
of date (by checking the last program update), recompiles them, and links them into a new
executable program.

A much more elaborate system for large programming projects, called Source Code
Control System — SCCS, is also available under UNIX. Although SCCS was designed to
assist production of complex programs, it can also be used to manage any collection of
text files. SCCS basically functions as a well-managed library of major and minor revisions
of program modules. It keeps track of all changes, the identity of the programmers, and
other information. It provides utilities for rolling back to any previous version, displaying
complete or partial history of the changes made to a module, validation of modules, and
the like. A complex implementation of SCCS evolved into a simpler version named
Revision Control System — RCS, which is more suitable to manage text files. RCS provides
most of the SCCS functionality in a simpler and more user friendly way.

Users generally have restricted access to the UNIX filesystem; however, they are fully
authorized in their home directories, where they can create their own subdirectories and
files. This restricted-access approach is necessary to protect the system from intended and
unintended corruption, while still allowing users to have full control over their own
programs.

Filesystem protection in UNIX is accomplished by assigning ownership for each file and
directory that is created. At creation, the access modes for the three access classes (user-
owner, group-owner, and others) are also specified. Within each access class, three separate
permissions are specified: for reading, writing, and execution of the file. Since everything
in UNIX is a file (or is file-like), this simple protection scheme is widely implemented
throughout the whole operating system, making UNIX security and protection very efficient.

Finally, UNIX is extremely well suited for networking. One of the reasons for UNIX’s
enormous popularity and wide implementation lies in its inherent network-related
characteristics. UNIX facilitates most network functions in such a way that it can appear
the network has been designed expressly for the UNIX architecture. The truth is that UNIX
and modern networks have been developed independently, with UNIX preceding modern
network architecture by a decade. The reason UNIX handles networking so well is simple:
UNIX’s flexible internal organization and structure allow an almost perfect union between
the UNIX and network environments.

1.3 The History of UNIX

Ken Thompson (later joined by Dennis Ritchie) wrote the first version of UNIX at Bell Labs
in the late 1960s. Everything started with MULTICS (MULTiplexed Information and Com-
puting System), at that time the joint venture project between GE, AT&T Bell Laboratories,

© 2002 by CRC Press LLC

y

and MIT. The next phase was the project UNICS (UNiplex Information and Computing
System), which was created by some of the people from the MULTICS project (Ken Thompson,
Dennis Ritchie, and Rudd Canaday). UNICS was an assembly language, single-user system
for the DEC PDP-7, which at that time was the most popular minicomputer. Soon the system
had been enhanced to support two users. The name UNICS was later changed to UNIX.

After a major rewriting in C and porting to the DEC PDP-11 family of computers, UNIX
was made available to users outside of AT&T. At the time, AT&T was banned from selling
computing equipment by the U.S. antitrust law, and so was forced to release UNIX practic-
ally for free. Favorable licenses for educational institutions were instrumental in the adop-
tion of UNIX by many universities. Soon the mutual benefits for both the academic users
and UNIX itself became obvious. The leader was the University of Berkeley, which adopted
UNIX and tailored it significantly. UNIX also became commercially available from AT&T,
together with several other variants of the system provided by other vendors. Two versions
of UNIX emerged as the main UNIX platforms, with a number of “flavors” between them.

1.3.1 Berkeley Standard Distribution — BSD UNIX

BSD originated at the University of Berkeley in California and is also known as
Berkeley UNIX. Since the 1970’s more BSD-based UNIX releases have been derived
from version 4.3 BSD, which for a long time was a dominant version in the university
and engineering communities. At the same time, the even older version of 4.2 BSD
UNIX is still in use in some commercial implementations. The evolution of BSD is
illustrated in Figure 1.1.

Sunsoft (later Sun Microsystems) was most successful at bringing UNIX into the
commercial world with its SunOS, which was originally based on SVR4 UNIX, but with
many incorporated improvements of BSD. SunOS 4.1.x (mostly referred to only as SunOS)
is actually the best-known representative of the mostly BSD UNIX. The word “mostly”
indicates a number of SunOS features that did not originate in the Berkeley version of
UNIX. SunOS also introduced many new features (NIS, NFS, etc) that later became overall
standards in the UNIX community. In the 1990s, Sun Microsystems changed this very
successful UNIX version with the next generation version SunOS 5.x, better known as
Solaris. The new version presented a significant shift from BSD UNIX toward System V
UNIX. SunOS continues to exist thanks to many operating commercial installations. It
survived “Year 2000 syndrome” and still is supported by Sun Microsystems.

1.3.2 System V or ATT UNIX

System V was derived from an early version of System III developed at AT&T Bell Labs,
which is why it is also known as ATT UNIX. For a long time, the best-known versions
were Release 3 — SVR3.x and Release 4 — SVR4.x. SVR4 attempted to merge older UNIX
versions (SVR3 and 4.2 BSD) into a new more powerful UNIX system; the attempt was
not a complete success, although its overall contribution has been significant. Certain steps
in the development of System V UNIX during this period are illustrated in Figure 1.2.

Later on, many vendors accepted System V UNIX as a base for their own, vendor-specific
UNIX flavors, like: IRIX by Silicon Graphics Inc., HP-UX by Hewlett-Packard, AIX by
IBM, or Solaris 2.x by Sun Microsystems. However, it is not fair to classify all of these
vendor-specific UNIX flavors as the System V UNIX. Such a statement sounds quite biased.
Each vendor-specific flavor includes elements from both main UNIX platforms, so we can
talk about mostly BSD, or mostly ATT UNIX flavors. It is even better to talk about BSD
or ATT implementations in some segments of vendor-specific UNIX flavors.

© 2002 by CRC Press LLC

In the 1980s Richard Stallman started development of a C compiler for UNIX. He then
started the Free Software Foundation — FSF, also known as GNU (GNU stands for “Gnu
is Not Unix”). FSF just as it did when it started, manages many free pieces of UNIX-related
software, such as GNU C compiler (GCC) and emacs.

4.4 BSD

3 BSD
(1978–1979)

4.0 BSD
(1979–1980)

4.1 BSD
(1980–1981)

4.1a BSD
(1981–1982)

4.1c BSD
(1982–1983)

4.2 BSD
(1984)

4.3 BSD
(1987)

4.3 BSD Tahoe
(1988–1989)

Fifth Edition
(1973)

Sixth Edition
(1976)

1 BSD
(1977)

2 BSD
(1978)

First Edition
(1969)

Seventh Edition
(1978)

FIGURE 1.1
The development of BSD UNIX.

© 2002 by CRC Press LLC

y

UNIX development in the last decade has been characterized by many vendor-specific
UNIX flavors on the market. It is difficult to consider them as part of two main UNIX
platforms. Each vendor tried to take the best from each of the main UNIX platforms to
make a flavor better than the other vendors. In that light we can focus on, and talk about,
development within individual flavors. And each of these flavors does have a certain
impact on the overall trends in the UNIX development.

In its early days, UNIX was primarily run on high and mid-range computers,
minicomputers, and relatively powerful workstations (by that time’s standards). The
appearance of microcomputers presented a new challenge for UNIX. Microsoft wrote a
version of UNIX for microcomputer-based systems. Called XENIX, it was licensed to the
Santa Cruz Operation and was closest to System V UNIX. It was later renamed SCO UNIX;
later still it merged with Unixware. Other commercial versions also became available, like

System III (1982):
Named pipes

The run queue

System V (1983):
Hash tables

Buffer and inode caches
Semaphores

Shared memory
Message queues

System V Release 2 (1984):
Record and file locking

Demand paging
Copy on write

System V Release 3 (1987):
Inter Process Communication (IPC)

Remote File Sharing (RFS)
Enhanced signal operations

Shared libraries
File System Switch (FSS)

Transport Layer Interface (TLI)
STREAMS communication facility

System V Release 4 (1989):
Real time processing support
Process scheduling classes
Enhanced signal processing

Dynamically allocated data structures
Extended open file facilities

Virtual Memory management (VM)
Virtual File System capabilities (VFS)

Berkeley Fast File System (UFS)
Enhanced STREAMS

Preemptive kernel
File system quotas

Driver Kernel Interface facility (DKI)

FIGURE 1.2
The development of ATT UNIX.

© 2002 by CRC Press LLC

Unixware, and even Solaris for x86. However, the main contributor in this area of
microcomputer-based UNIX is Linux, a freeshare UNIX available to anyone who wants to
try to work in the UNIX arena. Sometimes UNIX for microcomputers is classified as the
third UNIX platform. We will treat different UNIX versions for minicomputers as different
UNIX flavors related to one of the two main UNIX platforms.

In 1993, Linus Travalds released his version of UNIX, called Linux. Linux was a complete
rewrite, originally for Intel 80386 architecture. Linux was quickly adopted and “ported”
to some other architectures (including Macintosh and PowerPC); currently there are ports
of LINUX for practically every single 32- and 64-bit machine available.

Today it is very difficult to differentiate between microcomputers and workstations;
the boundaries between them are indistinct. Tremendous IT development has made
very powerful IT resources available at low prices. This burst of activity had a very
positive impact on UNIX, too — the number of installed UNIX sites rose dramatically,
more people were involved in UNIX, and new application areas were conquered. The
best example of this IT booming is the Internet, which primarily relies on UNIX-based
servers. A thorough knowledge of UNIX has become a prerequisite for any real success
in IT.

Figure 1.3 presents the main stages of the UNIX genealogy, showing mutual impacts
among the different stages and within and out of the discussed UNIX platforms. For
a fuller picture, this figure should continue with the list of today’s available UNIX
flavors presented in Figure 1.4. (Note: Figure 1.4 is only a partial list of the many
UNIX flavors currently in use, and in no way indicates the extent of the individual
flavor’s usage.)

Seventh Edition

BSD

System III

SVR2

SVR34.2 BSD

SVR4

MP-based
UNIX

4.3 BSDSunOS

4.4 BSD

Solaris

Many UNIX
Flavors

(see Fig. 1.4)

FIGURE 1.3
UNIX genealogy.

© 2002 by CRC Press LLC

y

1.4 UNIX System and Network Administration

Organizations that rely on computing resources to carry out their mission have always
depended on systems administration and systems administrators. The dramatic increase
in the number and size of distributed networks of workstations in recent years has created
a tremendous demand for more, and better trained, systems administrators. Understanding

UNIX Flavor Hardware Platform

386BSD i386+
AIX RS6000, PowerPC
A/UX Macintosh
BSD different hardware
BSD/OS i486+
BSD/386 i386+
BSDI x86
ConvexOS Convex
Digital UNIX Alpha
DGUX Data General
DolphinOS i486
FreeBSD Pentium
HP-UX HP HPPA
IRIX SGI Indy; Mips-R8000
Linux Slackware i486+; Sparc
Linux RedHat i486+; Sparc; HP; IBM
Linux Suse i486+; Sparc
Linux Turbolinux i486+; Sparc
Linux Debian i486+
Linux 4.0 Alpha
Linux/Mach3 Macintosh; PowerPC
Linux/m68k Mac68k
Mach3 Mips
Mach3/Lites i386+
Machten/m68k Mac68k
NCR Unix NCR S40
NetBSD Pentium; Spark; Mac68k, Alpha
OpenBSD x86; Mac68k
NextSTEP Motorola
OSF/1 Alpha
Sequent i386+
SCO Unix i386+
SINIX Mips R4000
Solaris Sparc, i386+
Sony NEWS-OS Mac68k
SunOS Sparc, Sun3
SysV different hardware
Ultrix Mips
Unicos Cray C90
Unixware i386+

FIGURE 1.4
UNIX flavors.

© 2002 by CRC Press LLC

of the profession of systems administration on the part of employers, however, has not
kept pace with the growth in the number of systems administrators or with the growth
in complexity of system administration tasks. Both at sites with a long history of using
computing resources and at sites into which computers have only recently been introduced,
system administrators sometimes face perception problems that present serious obstacles
to their successfully carrying out their duties.

Systems administration is a widely varied task. The best systems administrators are
generalists: they can wire and repair cables, install new software, repair bugs, train users,
offer tips for increased productivity across areas from word processing to CAD tools,
evaluate new hardware and software, automate a myriad of mundane tasks, and increase
work flow at their site. In general, systems administrators enable people to exploit computers
at a level that gains leverage for the entire organization.

Employers frequently fail to understand the background that systems administrators
bring to their task. Because systems administration draws on knowledge from many fields,
and because it has only recently begun to be taught at a few institutions of higher
education, systems administrators may come from a wide range of academic backgrounds.
Most get their skills through on-the-job training by apprenticing themselves to a more
experienced mentor. Although the system of informal education by apprenticeship has
been extremely effective in producing skilled systems administrators, it is poorly understood
by employers and hiring managers, who tend to focus on credentials to the exclusion of
other factors when making personnel decisions.

System administrators are the professionals that provide specific services in the system
software arena. These professionals are often known by their acronym SYSADMIN. A system
administrator performs various tasks while taking care of multiple, often heterogeneous,
computer systems in an attempt to keep them operational. When computer systems are
connected to the network, which is almost always the case today, the system administration
also includes network-related duties.

UNIX administrators are part of the larger family of the system administrators. Their
working platform is UNIX, and it caries many specific elements that make this job unique.
UNIX is a powerful and open operating system. As with any other software system, it
requires a certain level of customization (we prefer the term “configuration”) and
maintenance at each site where it is implemented. To configure and maintain an operating
system is a serious business; in the case of UNIX it can be a tough and sometimes
frustrating job. Why is UNIX so demanding? Here are some observations:

• A powerful system means there are many possibilities for setting the system
configuration.

• An open system results in permanent upgrades with direct impacts on admin-
istrative issues.

• UNIX is implemented at the most mission critical points, where a downtime is
not allowed.

• Networking presents a new challenge, but also a new area of potential problems.

• Different UNIX flavors bring additional system administration difficulties.

Networking in particular, with its many potential external failures, can affect a UNIX
system significantly. Periodical global network degradation (too high of a load, low
throughput, or even breaks in communication) can cause complex problems and bring a
lot of headaches. It is easy to be misguided in tracing a problem, and to be looking for
the source of troubles at the wrong place. Usually at such times everyone is looking to
the UNIX people for a quick solution. The only advice is: “Be ready for such situations.”

© 2002 by CRC Press LLC

y

As a matter of fact, system and network administration are relatively distinct duties,
and sometimes they are even treated separately. However, it is very common to look at
system and network administration as two halves of the same job, with the same individuals
or team responsible for both. It is fair to say that the term network administration is strictly
related to the computer system as part of the network, and remains within the network
service boundaries required for the computer functioning in the network environment. It
does not cover core network elements like switches, bridges, hubs, routers, and other
network-only devices. Nevertheless, the basic understanding of these topics also could
make overall administration easier.

So to get to the heart of the topic, let us start with a brief discussion of the administrator’s
role, duties, guidelines, policies, and other topics that make up the SYSADMIN business.
Most of the paragraphs that follow are not strictly UNIX related, although our focus
remains on UNIX systems and network administration.

1.4.1 System Administrator’s Job

Understanding system administrators’ background, training, and the kind of job per-
formance to be expected is challenging; too often, employers fall back into (mis)using the
job classifications with which they are familiar. These job classification problems are
exacerbated by the scarcity of job descriptions for systems administrators. One frequently
used misclassification is that of programmer or software engineer. Production of code is
the primary responsibility of programmers, not of the systems administrator. Thus, sys-
tems administrators classified as programmers often receive poor evaluations for not being
“productive” enough. Another common misclassification is the confusion of systems
administrators with operators. Especially at smaller sites, where systems administrators
themselves have to perform many of the functions normally assigned to operators at larger
sites, system administrators are forced to contend with the false assumption they are
nonprofessional technicians. This, in turn, makes it very difficult for systems administra-
tors to be compensated commensurate with their skill and experience.

The following text lists the main elements that describe the system administrator’s job
at various levels. The basic intention is to describe the core attributes of systems admin-
istrators at various levels of job performance, and to address site-specific needs or special
areas of expertise that a systems administrator may have.

Generally, as for many other professions, system administrators are classified regarding
their background and experience into several categories:

• Novices

• Required background: 2 years of college or equivalent post-high-school educa-
tion or experience

• Desirable background: a degree or certificate in computer science or a related
field. Previous experience in customer support, computer operations, system
administration, or another related area; motivated to advance in the profession

• Duties: performs routine tasks under the direct supervision of a more experienced
system administrator; acts as a front-line interface to users, accepting trouble
reports and dispatching them to appropriate system administrators

• Junior

• Required background: 1 to 3 years system administration experience

• Desirable background: a degree in computer science or a related field, familiarity
with networked/distributed computing environment concepts (for example,

© 2002 by CRC Press LLC

can use the route command, add a workstation to a network, and mount
remote filesystems); ability to write scripts in some administrative language
(Tk, Perl, a shell); programming experience in any applicable language

• Duties: administers a small site alone or assists in the administration of a
larger system; works under the general supervision of a system administrator
or computer systems manager

• Intermediate/Advanced

• Required background: three to five years’ systems administration experience

• Desirable background: a degree in computer science or a related field; significant
programming background in any applicable language

• Duties: receives general instructions for new responsibilities from supervisor;
administers a midsized site alone or assists in the administration of a larger
site; initiates some new responsibilities and helps to plan for the future of the
site/network; manages novice system administrators or operators; evaluates
and/or recommends purchases; has strong influence on purchasing process

• Senior

• Required background: more than five years previous systems administration
experience

• Desirable background: a degree in computer science or a related field; extensive
programming background in any applicable language; publications within
the field of system administration

• Duties: designs/implements complex LAN and WANs; manages a large site
or network; works under general direction from senior management;
establishes/recommends policies on system use and services; provides
technical lead and/or supervises system administrators, system programmers,
or others of equivalent seniority; has purchasing authority and responsibility
for purchase justification

This is a general job classification and description for potential UNIX administrators. It
can easily vary from one site to another, especially regarding official job titles. A number
of other skills could also be considered:

• Interpersonal and communication skills; ability to write proposals or papers, act
as a vendor liaison, make presentations to customer or client audiences or
professional peers, and work closely with upper management

• Ability to solve problems quickly and completely; ability to identify tasks that
require automation and automate them

• A solid understanding of a UNIX-based operating system, including paging and
swapping, inter-process communication, devices and what device drivers do,
filesystem concepts (inode, superblock), and use of performance analysis to tune
systems

• Experience with more than one UNIX-based operating system; with sites running
more than one UNIX-based operating system; with both System V and BSD-based
UNIX operating systems; with non-UNIX operating systems (for example, MS-DOS,
Macintosh OS, or VMS); and with internetworking UNIX and other operating
systems (MS-DOS, Macintosh OS, VMS)

• Programming experience in an administrative language (shell, Perl, Tk);
extensive programming experience in any applicable language

© 2002 by CRC Press LLC

y

• Networking skills — a solid understanding of networking/distributed computing
environment concepts, principles of routing, client/server programming, and
the design of consistent networkwide filesystem layouts; experience in
configuring network filesystems (for example, NFS, RFS, or AFS), in network
file synchronization schemes (for example, rdist and track), and in configuring
automounters, license managers, and NIS; experience with TCP/IP networking
protocols (ability to debug and program at the network level), with non-TCP/IP
networking protocols (for example, OSI, Chaosnet, DECnet, Appletalk, Novell
Netware, Banyan Vines), with high-speed networking (for example, FDDI, ATM,
or SONET), with complex TCP/IP networks (networks that contain routers), and
with highly complex TCP/IP networks (networks that contain multiple routers
and multiple media); experience configuring and maintaining routers and main-
taining a sitewide modem pool/terminal servers; experience with X terminals
and with dial-up networking (for example, SLIP, PPP, or UUCP); experience at
a site that is connected to the Internet, experience installing/configuring DNS/
BIND; experience installing/administering Usenet news, and experience as post-
master of a site with external connections

• Experience with network security (for example, building firewalls, deploying
authentication systems, or applying cryptography to network applications); with
classified computing; with multilevel classified environments; and with host
security (for example, passwords, uids/gids, file permissions, filesystem integ-
rity, use of security packages)

• Experience at sites with over 1000 computers, over 1000 users, or over a terabyte
of disk space; experience with supercomputers; experience coordinating multiple
independent computer facilities (for example, working for the central group at
a large company or university); experience with a site with 100% uptime require-
ment; experience developing/implementing a site disaster recovery plan; and
experience with a site requiring charge-back accounting

• Background in technical publications, documentation, or desktop publishing

• Experience using relational databases; using a database SQL language; and
programming in a database query language; previous experience as a database
administrator

• Experience with hardware: installing and maintaining the network cabling in
use at the site, installing boards and memory into systems; setting up and
installing SCSI devices; installing/configuring peripherals (for example, disks,
modems, printers, or data acquisition devices); and making board-level and
component-level diagnosis and repairing computer systems

• Budget responsibility, experience with writing personnel reviews and ranking
processes; and experience in interviewing/hiring

Do not be afraid of this long list of additional requirements. Nobody expects UNIX
systems and network administrators to be Supermen. UNIX administration is a normal
job that is demanding but definitely doable.

To end this discussion, here is a joke about UNIX administrators. Consider the similarities
between Santa Claus and UNIX administrators:

• Santa is bearded, corpulent, and dresses funny.

• When you ask Santa for something, the odds of receiving what you wanted are
infinitesimal.

© 2002 by CRC Press LLC

• Santa seldom answers your mail.
• When you ask Santa where he gets all the stuff he has, he says, “Elves make it for me.”

• Santa does not care about your deadlines.
• Your parents ascribed supernatural powers to Santa, but did all the work themselves.

• Nobody knows who Santa has to answer to for his actions.
• Santa laughs entirely too much.

• Santa thinks nothing of breaking into your HOME.
• Only a lunatic says bad things about Santa in his presence.

1.4.2 Computing Policies

A successful system administration requires a well-defined framework. This framework
is described by the corresponding computing policies within the organization where the
administration is provided. There are no general computing policies; they are always site
specific. Drafting computing policies, however, is often a difficult task, fraught with legal,
political, and ethical questions and possibly consequences. There are a number of related
issues: why a site needs computing policies; what a policy document should contain, who
should draft it, and to whom it should apply. There is no a unique list of all possible rules.
Each computing site is different and needs its own set of policies to suit specific needs.
The goal of this section is to point out the main computing policies that directly influence
the system administration. This is not possible without addressing security and overall
business policies as they relate to computing facilities and their use.

Good computing policies include comprehensive coverage of computer security.
However, the full scope of security, overall business, and other policies goes well beyond
computer use and sometimes may be better addressed in separate documents. For example,
a comprehensive security document should address employee identification systems,
guards, building structure, and other such topics that have no association with computing.
Computing security is a subset of overall security as well as a subset of overall computing
policy. If there are separate policy documents, they should refer to each other as
appropriate and should not contain excessive redundancy. Redundancy leaves room for
later inconsistencies and increases the work of document maintenance.

The system administrator policy usually is not completely separated from the user
policy. In practice there are few if any user policies from which a system administrator
needs to be exempt. System administrators are users and should be held accountable to
te same user policy as everyone else in the use of their personal computer accounts. System
administrators (and any other users with “extended” system access) have additional usage
responsibilities and limitations regarding that extended access, i.e., extra powers via
groups or root. The additional policies should address the extended access. Further, know-
ledge of policies governing how staff members perform their duties (e.g. how frequently
backups are done) is essential to the users. All the information on the operation of the
computing facility should be documented and available to both the end users and the
support staff to prevent confusion and redundancy as well as enhance communication.
The policy documents should be considered as a single guide for the users and the support
staff alike. We intentionally used the words “computing policies” in the plural; it is hard
to talk about a unique overall policy that could cover everything needed.

System administration is a technical job. System administrators are supposed to accom-
plish certain tasks, to implement technical skills to enforce certain decisions based
on certain rules. In other words, the system administrator should follow a specific

© 2002 by CRC Press LLC

y

administrative procedure to accomplish the needed task. A system administrator is not
supposed to make nontechnical decisions, nor dictate the underlying rules. It is important
to have feasible procedures, and in that sense, the administrator’s opinion could be
significant. But the underlying rules must be primarily based on existing business-driven
computing policies.

At the end of the day, we reach the point of asking: “Will a SYSADMIN really have
strictly defined procedures in the daily work that will make the administration job easier;
especially, would these procedures be in written form?” The most probable answer regarding
procedures will be negative. There are usually multiple ways to accomplish a certain
administrative task because system configurations are changing (just think about different
UNIX flavors, or new releases, or network changes). However this is not the case with
computing policies; they are usually general enough to last a longer time.

We already mentioned that the computing policies are business related. They are dif-
ferent in academia than in industry; they are different in the financial industry than in the
retail industry, or in the Internet business. They are, at least for a moment, always internal
and stay in the boundaries of a college, university, or company. So they can differ by
moving from one place to another. Still there are many common elements and we will try
to address them.

Security policy — Definitely the most important policy, a good security policy is the
best guarantee for uninterrupted business. Clear guidance in that direction is extremely
important. Requests for Comments (RFCs) that present standards for new technologies
also addressed this important issue. The RFC-2196 named “Site Security Handbook,”
a 75-page document written in 1997 by IETF (Internet Engineering Task Force), suggests
the need for internal security documents as guidelines for:

• Purchasing of hardware and software

• Privacy protection
• Access to the systems

• Accountability and responsibility of all participants
• Authentication rules

• Availability of systems
• Maintenance strategy (internal vs. outsourcing)

Policy toward users — Users are main players in the ongoing business, but they must
obey certain rules, and they do not have to have unrestricted access to all available
resources. It is crucial to define the following user rights and responsibilities:

• Who is an eligible user

• Password policy and its enforcement
• Mutual relationship among users

• Copyright and license implementation
• Downloading of software from Internet

• Misusing e-mail
• Disrupting services

• Other illegal activities

© 2002 by CRC Press LLC

Policy toward privileged users — The primary audience for this policy is SYSADMIN
and other privileged users. These users have unrestricted access to all system resources
and practically unlimited power over the systems. The policy addresses:

• Password policy and its enforcement

• Protection of user privacy
• License implementation

• Copyright implementation
• Loyalty and obedience

• Telecommuting
• Monitoring of system activities

• Highest security precaution and checkup
• Business-time and off-business-time work

Emergency and disaster policies — Good policies mean prevention and faster recoveries
from disaster situations. They are essential to maintain system availability and justify spending
an appropriate amount of time to protect against future disastrous scenarios. Data are priceless,
and their loss could be fatal for overall business. Emergency and disaster policies include:

• Monitoring strategies
• Work in shifts

• Tools
• Planning

• Distribution of information (pager, beepers, phones)
• Personnel

Backup and recovery policy — This is a must for each system — in the middle of
disastrous situations, there is no bargaining regarding the need for backup. However, the
level and frequency of implemented backup vary and are business related. Generally the
policy should address the following issues:

• Backup procedures
• Backup planning

• Backup organization
• Storage of backup tapes

• Retention periods
• Archiving

• Tools
• Recovery procedures

Development policy — This policy should address the need for permanent development
and upgrading of the production systems. Today continual development of the IT infra-
structure is essential for overall business growth; however, the development should not
endanger basic production. In that light, the focus should be on:

• Development team

• Planning

© 2002 by CRC Press LLC

y

• Support
• Testing

• Staging
• Cutting new releases

• Fallback

System administration will be easier if more computing policies are covered and
elaborated internally and if more of the corresponding procedures are specified. It sounds
strange, but less freedom in doing something usually makes the job easier. Unfortunately
(or maybe fortunately) this is mostly the case only for large communities with strong IT
departments that have been running for years. The majority of medium-size and small
companies do not have, or have only rudimentary, specified procedure. The system admin-
istrator often does have freedom in enforcing listed policies. This freedom in action
increases the administrator’s responsibility, but also enhances the creativity in the work
(that is why we used the word “fortunately” earlier).

1.4.3 Administration Guidelines

This section provides some additional system administration-related information.

1.4.3.1 Legal Acts
Computer network and UNIX are quite young, but they have significantly affected all
spheres of human life. Today the Internet is strongly pushing ahead to replace, or at least
to alter, many traditional pieces of economic infrastructures: the telecommunication industry,
the entertainment industry, the publishing industry, the financial industry, postal services,
and others. All kinds of middleman services, such as travel agencies, job agencies, book
sellers, and music retainers, are also dramatically changing. Business-to-business (B2B)
links are growing, providing an efficient mechanism to merge customers and merchants
and make our online shopping easier. The full list of all affected businesses would be very,
very long.

Such a huge area of human activities also opened up possibilities for misuse, fraud,
theft, and other kinds of crimes. While the technological and financial capabilities have
fully supported booming information technologies, legal infrastructure seems to stay far
below our real needs. In many cases even when the perpetrator is caught, actual conviction
is very difficult under the current laws. Recent cases involving very destructive viruses
that cost businesses millions of dollars stayed in limbo even though the perpetrators were
known. The case against “Napster Music Community,” relating to music copyrights, was
closed after a long time and was only partially successful.

At this moment we have only a few legal acts in this area, covering only several
computer-crime-related topics, and sometimes those not even effectively. Definitely they
do not constitute a sufficient legal framework, and further improvements and expansions
are necessary.

The existing legal acts are:

• The Federal Communication Privacy Act

• The Computer Fraud and Abuse Act
• The No Electronic Theft Act

• The Digital Millenium Copyright Act

© 2002 by CRC Press LLC

A pending problem in the implementation of the listed legal acts, as well as others that
will presumably come in the future, lies in the fact that even if the corresponding laws
exist in the United States, they do not exist in many other countries. Because of the global
nature of the Internet and its presence in countries worldwide, it is very difficult to enforce
any court decision.

1.4.3.2 Code of Ethics

The lack of general legal guidance, and often the lack of clear internal administration rules
and procedures, presents new challenges in the system administrator’s job. More freedom
in doing the job also means more chances for wrongdoing. Under such circumstances, an
extremely responsible attitude of the administrators toward all these challenges is very
important. System administrators, regardless of their title and whether or not they are
members of a professional organization, are relied upon to ensure proper operation,
support, and protection of the computing assets (hardware, software, networking, etc.).
Unlike problems with most earlier technologies, any problem with computer assets may
negatively impact millions of users worldwide — thus such protection is more crucial
than equivalent roles within other technologies. The ever-increasing reliance upon
computers in all parts of society has led to system administrators having access to more
information, particularly information of critical importance to the users, thus increasing
the impact that any wrongdoing may have. It is important that all computer users and
administrators understand the norms and principles to be applied to the task. At the end
of the day, we come to the informal set of behavioral codes known as the code of ethics
that each administrator should be aware of. A code of ethics supplies these norms and
principles as canons of general concepts. Such a code must be applied by individuals,
guided by their professional judgment, within the confines of the environment and situation
in which they may be. The code sets forth commitments, responsibilities, and requirements
of members of the system administration profession within the computing community.

The basic purposes of such a code of ethics are:

• To provide a set of codified guidelines for ethical directions that system admin-
istrators must pursue

• To act as a reference for construction of local site acceptable-use policies

• To enhance professionalism by promoting ethical behavior
• To act as an “industry standard” reference of behavior in difficult situations, as

well as in common ones

• To establish a baseline for addressing more complex issues

This code is not a set of enforceable laws, or procedures, or proposed responses to
possible administrative situations. It is also not related to sanctions or punishments as
consequences of any wrongdoing. A partial overview of one proposal for the code of ethics
follows:

Code 1: The integrity of a system administrator must be beyond reproach — System
administrators must uphold the law and policies as established for the systems
and networks they manage, and make all efforts to require the same adherence
from the users. Where the law is not clear, or appears to be in conflict with their
ethical standards, system administrators must exercise sound judgment and are
also obliged to take steps to have the law upgraded or corrected as is possible
within their jurisdiction.

© 2002 by CRC Press LLC

y

Code 2: A system administrator shall not unnecessarily infringe upon the rights of
users — System administrators will not exercise their special powers to access
any private information other than when necessary to their role as system
managers, and then only to the degree necessary to perform that role, while
remaining within established site policies. Regardless of how it was obtained,
system administrators will maintain the confidentiality of all private information.

Code 3: Communications of system administrators with all whom they may come in
contact shall be kept to the highest standards of professional behavior — System
administrators must keep users informed about computing matters that might
affect them, such as conditions of acceptable use, sharing and availability of
common resources, maintenance of security, occurrence of system monitoring,
and any applicable legal obligations. It is incumbent upon the system adminis-
trator to ensure that such information is presented in a manner calculated to
ensure user awareness and understanding.

Code 4: The continuance of professional education is critical to maintaining currency
as a system administrator — Since technology in computing continues to make
significant strides, a system administrator must take an appropriate level of
action to update and enhance personal technical knowledge. Reading, study,
acquiring training, and sharing knowledge and experience are requirements to
maintaining currency and ensuring the customer base of the advantages and
security of advances in the field.

Code 5: A system administrator must maintain an exemplary work ethic — System
administrators must be tireless in their effort to maintain high levels of quality
in their work. Day to day operation in the field of system administration requires
significant energy and resiliency. The system administrator is placed in a position
of such significant impact upon the business of the organization that the required
level of trust can only be maintained by exemplary behavior.

Code 6: At all times system administrators must display professionalism in the
performance of their duties — All manner of behavior must reflect highly upon
the profession as a whole. Dealing with recalcitrant users, upper management,
vendors, or other system administrators calls for the utmost patience and care
to ensure that mutual respect is never at risk.

1.4.3.3 Organizations
There are several UNIX and system administration related organizations, support groups,
and conferences. Following are just a few words about the best known ones.

1.4.3.3.1 USENIX

USENIX is the advanced computing systems association. This was originally a nonprofit
membership organization for those individuals with an interest in UNIX, UNIX-related,
and other modern operating systems. Since 1975 the USENIX association has brought
together the community of engineers, system engineers, system administers, scientists,
and technicians. All of these people have been working on the cutting edge of the com-
puting world. The USENIX conferences have become the meeting grounds for presenting
and discussing new and advanced information on developments from the computing
systems. USENIX is dedicated to sharing ideas and experiences of those working with
UNIX and other advanced computing systems. USENIX members are dedicated to solving
problems with a practical bias, fostering research that works, communicating with both
research and innovation, and providing critical thought.

© 2002 by CRC Press LLC

USENIX supports its members’ professional and technical development through a variety
of ongoing activities, including:

• Member benefits
• Annual technical and system administration conferences, as well as informal,

specific-topic conferences

• A highly regarded tutorial program
• Student programs that include stipends to attend conferences, low student

membership fees, best paper awards, scholarships, and research grants

• Online library with proceedings from each USENIX conference
• Participation in various IEEE and Open Group standards efforts

• International programs
• Cosponsorship of conferences by foreign technical groups

• Prestigious annual awards which recognize public service and technical excellence
• Membership in the Computing Research Association and the Open Group

• SAGE, a Special Technical Group (STG) for system administrators

1.4.3.3.2 System Administrators Guild — SAGE

At the moment the System Administrators’ Guild, known by its acronym SAGE, is a
Special Technical Group (STG) of the USENIX Association. It is organized to help advance
computer systems administration as a profession, establish standards of professional excel-
lence and recognize those who attain them, develop guidelines for improving technical
capabilities, and promote activities that advance the state of the art of the community.
SAGE members are also members of USENIX.

Since its inception in 1992, SAGE has grown immensely and has matured into a stable
community of system administration professionals. Organization management has been
codified and stabilized. As an USENIX STG, reviews by USENIX are scheduled periodically,
principally for assessing continued viability. SAGE’s viability has not been an issue for some
time — quite the opposite, the growth of SAGE has exceeded reasonable expectations and
those of USENIX as a whole. At this point in SAGE’s development, it is prudent for both
SAGE and USENIX to review organizational structures, their relationships, and future
developments. To that end, the SAGE executive committee reviewed the existing mission
statement, its relevance for the present and the future, and the future interests and projects
as they relate to that mission. While the existing SAGE Charter and Mission Statement
are still relevant, the following text was adopted as a working draft that better expresses
its current nature and future:

The System Administrators Guild is an international professional organization for people involved
in the practice, study, and teaching of computer and network system administration. Its principal
roles are:

• To always understand and satisfy the needs of system administrators so as to provide them with
products and services that will help them be better system administrators

• To empower system administrators through information, education, relationships, and resources that
will enrich their professional development and careers

• To advance the thought, application, and ethical practice of system administration

© 2002 by CRC Press LLC

y

As SAGE grows, the majority of its members will be professionals who are not currently involved
with SAGE. This will come as a result of the growing awareness of SAGE, different certification
programs, and other future projects.

The SAGE executive committee, the USENIX board of directors, and USENIX staffs have
discussed how to meet the growing needs of SAGE. At this time, there are ideas that these needs
may be better met by changing SAGE from a USENIX internal STG to a sister organization
established as an independent nonprofit entity. If this process continues as expected, this tran-
sition could be implemented soon. The SAGE executive committee to be elected will become the
initial board of directors of SAGE. The precise legal structure and implementation details are yet
to be determined.

In this plan, SAGE will continue to serve its members with the benefits with which they have
become accustomed. SAGE member services and information will move to a more electronic
community model. SAGE will publish its own newsletter while SAGE news will continue to be
available as before. LISA will continue to be cosponsored by USENIX and SAGE. SAGE will also
sponsor new conferences and programs to reach out to the broader system and network adminis-
tration community. All the assets of USENIX used exclusively by SAGE will be transferred to the
independent SAGE organization, including intellectual property, inventory, and current operating
funds. SAGE will then operate independently from USENIX. The LISA conference will continue
without change, being operated by USENIX and cosponsored by SAGE. The responsibility for all
current and pending SAGE projects will also be transferred. Membership in USENIX and SAGE
will be decoupled such that a person can become a member of SAGE without having to become
a USENIX member. However, SAGE and USENIX will continue to provide close cooperation and
mutual benefits to their members.

1.4.3.3.3 Conferences

One of the ongoing activities of USENIX and SAGE is to organize UNIX and UNIX
administration-related annual and ad hoc conferences. The big events for system administra-
tors include the general conference LISA, which is organized every year during the fall or
the winter. For example, LISA ’02 is scheduled for November 2002 in Philadelphia, PA.
LISA stands for Large Installation System Administration.

LISA is more than just an exchange of technical topics. This is also the place where many
system administration issues are generated, including essential ones for the sysadmin
community. For example, the initial idea for an independent SAGE was born and presents
the state of the discussions as of LISA 2000.

1.4.3.4 Standardization
There are no explicit standards regarding UNIX administration. There are no standards
regarding system administration generally. Anyhow, administrators are obliged to follow
a strict set of rules to make the system function properly. These rules were, and are,
determined by the OS designers. Although they are not official standards, they have an
even stronger impact on the system administration; otherwise a system will not work at
all. The problem is, at least in case of the UNIX administration, different administrative
rules exist for different UNIX flavors. It makes our lives more difficult, and any standard-
ization in that way will be well received by the administrators.

In the UNIX and network arena there are significant efforts toward standardization.
There are several standards bodies, both formal and informal. Each body has different
rules for membership, voting, and clout. From a system administration standpoint,
two significant bodies are: IETF (Internet engineering task force) and POSIX (portable
operating system interfaces). Especially POSIX has contributed a lot in the area of UNIX

© 2002 by CRC Press LLC

standardization, making also a corresponding ground for its uniform and more standard-
ized administration.

1.4.3.4.1 POSIX

The POSIX standardization effort used to run by the POSIX standards committee. During
a major overhaul of the names and numbers used to refer to this project, the IEEE Portable
Application Standards Committee (PASC) came into being. So currently the POSIX stand-
ards are written and maintained by PASC.

POSIX is the term for a suite of applications program interface standards to provide for
the portability of source code applications where operating systems services are required.
POSIX is based on the UNIX operating system (UNIX is registered trademark adminis-
trated by the Open Group), and is the basis for the Single UNIX Specification (SUS) from
the Open Group. Although it is essentially based on UNIX (and the kernels services), it
covers much more than just UNIX (Windows NT can be made to be POSIX compliant).

POSIX is intended to be one part of the suite of standards (a “profile”) that a user
might require of a complete and coherent open system. This concept is developed in
IEEE Std. 1003.0–1994: Guide to the POSIX Open System Environment. The joint revision
to POSIX and the Single UNIX Specification, involving the IEEE PASC committee, ISO
Working Group WG15, and the Open Group (informally known as the Austin Group),
is underway. More information, including draft specifications, can be found at the Austin
Group Web site.

The PASC continues to develop the POSIX standards. In accordance with a synchron-
ization plan adopted by the IEEE and ISO/IEC JTC1, many of the POSIX standards become
international standards shortly after their adoption by the IEEE. Therefore, these standards
are available in printed form from both IEEE and ISO, as well as from many national
standards organizations. Approved standards can also be purchased from the IEEE in
electronic (PDF) format. The IEEE also publishes Standards Interpretations for many of
the standards (more details are available at IEEE Web site).

Cooperation among IEEE, the Open Group (X/Open), and ISO is now underway for
the common UNIX/POSIX standard. Everybody can participate in the process (see the
Austin Group Web site). A revision of the whole suite of UNIX and POSIX standards is
going on. The plan is to make just one document, based on the UNIX 98 Single UNIX
Specification, and the same document will serve as the standard in all three of the
participating organizations. It is not clear, though, whether the name on the standard will
be UNIX or POSIX.

POSIX System Interface standards cover those functions that are needed for applications
software portability in general purpose, real time, and other applications environments.
Many of the extensions and options within the POSIX system interface standards reflect
the ongoing focus on more demanding applications domains such as embedded real time,
etc. Interfaces that require administration privileges, or that create security risks are not
included. The POSIX work consists of:

• System interface specifications for C, ADA, and FORTRAN
• Shell and utility specification

• System administration specifications for software installation, user administra-
tion, and print management

• Test methods: general methods, for system interfaces, and for shell and utilities

• Profiles documents: guide to POSIX-based profiles (concepts); supercomputing
application environment, real-time application environment, multiprocessing
environment, and general purpose or “traditional” environment

© 2002 by CRC Press LLC

y

The POSIX shell and utility standards define tools that are available for invocation by
applications software, or by a user from a keyboard. The system administration interfaces
are targeted at areas where consistency of interfaces between systems is important to
simplify operations for both users and systems operators. The POSIX test methods describe
how to define test methods for interfaces such as those in the POSIX suite of standards.
The explicit test methods for the system interface and shell and utilities standards apply
the approach defined in the overview to these specific documents.

1.4.4 In This Book

This text covers related issues for both system administration and network administration
on a UNIX platform. This is a challenging (but doable) task, given the many different
UNIX platforms and flavors. To make the terminology simpler, we will use the term UNIX
Administration to address both UNIX systems and network administration; the
administration personnel we will call UNIX administrators. This will not make UNIX
administration easier, nor it will simplify our task; however, it could help to clarify some
of the topics under discussion.

UNIX systems administration related issues are:

• System startup and shutdown
• User and group accounts management

• System resources management
• Filesystems

• System quotas
• System security

• Backup and restoration of the system
• Automating routine tasks

• Printing and spooling system
• Terminals and modem handling

• Accounting
• System performance tuning

• System customization — kernel reconfiguration

UNIX network administration related issues are:

• Network interface and connectivity
• Data routing

• Data multiplexing
• Network security

• Domain name service
• Network information service — NIS

• Network filesystem — NFS
• UNIX remote commands

• Network applications (telnet, FTP, etc)
• Remote printing

© 2002 by CRC Press LLC

• Electronic mail
• UUCP

• X windowing

Despite many promises, wishes, advertisements, and attempts to standardize UNIX, the
differences among existing UNIX favors are not negligible. The differences exist in UNIX
implementations, but the main differences are seen in the UNIX administration. This text
attempts to cover most of the UNIX administrative topics on both the BSD and System V
(ATT) UNIX platforms. This is primarily achieved through brief theoretical explanations
of certain topics, and the selective presentation of related examples from the different
UNIX flavors. Assuming the basic knowledge of UNIX and shell programming, the pre-
sented material should be sufficient per se for a successful UNIX and network adminis-
tration. To clarify certain operational details, UNIX online documentation (manual pages
available on every UNIX platform) is also supposed.

© 2002 by CRC Press LLC

2
The UNIX Model — Selected Topics

2.1 Introduction

UNIX administration presents a complex job that requires certain skills to be accomplished
successfully. These skills range from a basic knowledge of computer hardware, operating
systems, and programming techniques, up to ethics, psychology, and social behavior. It
supposes a responsible approach to very challenging problems, and a readiness for a nonstop
follow-up of everything done. An administrator usually covers many different systems
(different hardware, different configurations, different software, different purposes), and
each of those systems is the “baby” that requires a certain amount of attention, and the
administrator must pay that attention.

Of course the level of the required skills varies; it would be wrong to expect that an
UNIX administrator (especially a successful one) has to graduate in each of the listed
fields to be able to respond to all administrative demands. However, it is true that some
of the required skills need more than just a basic knowledge; mostly these are strictly
UNIX-related skills. Nobody can fight with UNIX administrative challenges without being
familiar with the UNIX operating system, the UNIX commands and how to use them. An
even deeper expertise in UNIX internals could be very instrumental in an easier UNIX
administration. Script programming is another fighting arena. An average UNIX admin-
istration time consists of 75 to 80% of shell programming, and only the rest is a manual
administration from the keyboard.

Some selected UNIX topics are briefly discussed in this chapter to point out the most
important issues for a successful UNIX administration. A certain level of knowledge of
the discussed topics is still supposed — this chapter is simply trying to highlight the
needed background for a comprehensive UNIX administration. The chapter should refresh
the reader’s memory and push ahead to consider all holes in the reader’s knowledge and
understanding of discussed issues. Another purpose is to present in one place most of the
relevant UNIX fundamentals needed for better understanding of different administrative
tasks. The reader is also advised to look into other literature for more detailed descriptions,
if necessary. The terminology used is common in the UNIX community.

To help readers better understand the material, a number of examples and figures
illustrate the discussed UNIX topics.

© 2002 by CRC Press LLC

2.2 Files

In UNIX everything is a file, or rather, file-like — this makes file issues central to UNIX.
What does this really mean? A file is a collection of data, or, better, a sequence of bytes, stored
in a memory or on a disk. A file can be a program that can be executed. When such a program
is running, it creates a process. Therefore, a file lies in the origin of every process. On
UNIX each device is also described by a file — these are called special device files, but are
still file-like entities. Even users on UNIX are file related, as they have associated attributes
(such as what they are allowed access to) that are specified in a file-like way.

UNIX has a hierarchical tree-structured directory organization known collectively as the
filesystem (or filesystem). The base of this tree is the root directory with the special name
“/” (the slash character). In UNIX all user-available disk space is integrated into a single
directory tree under /, so the physical disk unit (the disk drive itself) where a file resides
is not a part of the UNIX file specification.

We already mentioned that a file is a sequence of bytes. Such a sequence could be a newly
created user’s program, written text, acquired data, or a program that is a part of the operating
system itself. Many files are understandable by users, but a number of files (mostly binary
executable files) are machine-interpretable only. All files, no matter what their purpose, must
be stored somewhere and uniquely identified within the system. A disk is the most common
medium to store files, and files are identified by inodes within accessible disk space. The kernel
handles information about inodes and maintains and updates the corresponding inode table
(the inode table is laid out when a filesystem is created and its size and location do not change).
We will discuss those issues in more detail later.

UNIX file access is restricted and determined by file ownership and the protection
settings on the file itself. A user and a group own each file; correspondingly, the file’s
access rights for the user and group owners, as well as for others, (those who do not
belong to the owners) are explicitly specified.

2.2.1 File Ownership

Files have two owners: user and group, which are decoupled and nondependent. The file’s
user-owner could actually be outside of the group that owns the very same file. Such
flexibility enables full UNIX scalability to exclude certain members of the user-owner’s
group and treat them as others.

Information about a file’s ownership and permissions is kept in the file’s index node,
better known by its short name inode. UNIX does not allow direct managing of index
nodes; indirect management is provided through a certain number of commands that
handle specific segments of the index nodes. A brief overview of the most common of
these commands follows.

The long form of the ls command is used to display the ownership of a file or a directory,
with a slightly different meaning of options for System V and BSD UNIX:

ls-l System V
ls-lg BSD

The system response looks like:

drwx------ 2 bjl mail 24 Mar 24 13:19 Mail
-rw-rw-rw- 1 bjl users 20 May 2 13:26 modefile1

© 2002 by CRC Press LLC

-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile2
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile3

The file ownerships are presented in the third column (for a user-owner), and fourth
column (for a group-owner). In this example, all files (modefiles 1, 2, and 3) are owned by
the user bjl and the group users.

Ownership of a newly created file is determined in the following way:

• The user-owner is the user who has created the file

• The group-owner is:
• Same as the group-owner for the directory where the new file was created

(for BSD)

• Same as the group to which the user who created the file belongs (for System V)

Please note that this rule only applies to newly created files; once a file is created, its
ownership can be arbitrarily modified.

The chown command is used to change the user ownership of a file or a directory:

chown newowner filename(s)

where:
newowner A user name, or user-ID (UID)
filename A file name in the current directory, or a full-path file name (if multiple files

are specified, they are separated by a space)

Directories are treated in the same way as files; to change the user ownership of a directory
itself, type the command:

chown newowner directoryname(s)

where:
newowner A user name, or user-ID (UID)
directoryname A subdirectory name in the current directory, or a full-path directory

name (if multiple directories are specified, they are separated by a space).

However, to change the user ownership of a directory and all subdirectories and files
within it, the chown command should be used recursively (the option -R):

chown -R newowner directoryname(s)

(The command arguments are the same as those in the previous example.)

Who is authorized to change the user ownership?

user-owner of the file, or root (System V)

root only (BSD)

Please note that on the System V platform, if the original user-owner transfers user-
ownership to another user, it can only be transferred back to the original user-owner by
the new user who now owns the file, or by root. Also, such a change of ownership is

© 2002 by CRC Press LLC

restricted: some access rights cannot be transferred to the new user (we will discuss this
issue in more details later).

Generally, each recursive command must be accomplished extremely carefully; the
started command does not stay within the specified directory; it is propagated toward
all existing subdirectories, files in these subdirectories, subsequent subdirectories, and
so on, until the very end of the directory hierarchy (could be very, very deep). If
implemented in the root directory, each recursive command affects every single file in
the system.

Try to remember an unpleasant event when an administrator wanted to change
recursively the owner for a certain directory (of course the administrator did that as
the superuser). The administrator typed in the command and started to specify the
full pathname of the directory; unfortunately the administrator hit unintentionally the
[Enter] key too early, just after the leading “/” (slash character) of the directory path
was typed. The disastrous command: chown -R newuser / was issued, causing recur-
sive changes of many system files, and soon a collapse of the system. The only solution
was to reinstall and restore the system from a backup (if such a backup is available
at all).

The chgrp command is used to change the group ownership of a file or a directory:

chgrp newgroup filename(s)/directoryname(s)

where:
newgroup A group name, or a group-ID (GID)
filename A file name in the current directory, or a full-path file name
directoryname A subdirectory name in the current directory, or a full-path directory

name (multiple names are separated by a space)

To change the group ownership of a directory, and all subdirectories and files within it,
the chgrp command should be used recursively (the option -R):

chgrp -R newgroup directoryname(s)

Who is authorized to change the group ownership?

user-owner of the file, or root

Originally, the BSD UNIX allowed simultaneous changes of the file’s user and group
ownership, using the same chown command in the following way:

chown newowner.newgroup filename(s)

chown -R newowner.newgroup directoryname

where:
newowner A user name, or an UID
newgroup A group name, or a GID
filename A file name in the current directory or a full-path file name
directoryname A subdirectory name in the current directory, or a full-path directory

name

© 2002 by CRC Press LLC

Today, most modern UNIX flavors (whether BSD- or System V-derived) accept this
useful idea and allow the same simultaneous change, with slightly different syntax:

chown newowner:newgroup filename(s)
chown -R newowner:newgroup directoryname

Instead of a dot (.) that was originally used as a separator between the new user and
group name, now the colon (:) is introduced.

For a better understanding, a few examples follow:
Let’s start with a long listing of a directory (the logged-in user is bjl):

$ ls -l
drwx------ 2 bjl mail 24 Mar 24 13:19 Mail
-rw-rw-rw- 1 bjl users 20 May 2 13:26 modefile1
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile2
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 2106 May 2 13:31 ses1.tmp

The user can change the user and group owners for certain files:

$ chown dubey modefile1

$ chgrp other modefile2

$ ls -l
drwx------ 2 bjl mail 24 Mar 24 13:19 Mail
-rw-rw-rw- 1 dubey users 20 May 2 13:26 modefile1
-rw-rw-rw- 1 bjl other 20 May 2 13:30 modefile2
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 2106 May 2 13:31 ses1.tmp

And then regains the group ownership of the changed file modefile2:

$ chgrp users modefile2

Regaining user ownership of the changed file modefile1 is not as simple; the logged-in user
bjl doesn’t own this file anymore, and only the new owner or the superuser can reassign
user ownership to bjl. Supposing that switching to root is possible (in most cases it is not
possible, only administrators know the root password that is always required to become
the superuser):

$ su

Password: ********

chown bjl modefile1

ls -l
total 8
drwx------ 2 bjl mail 24 Mar 24 13:19 Mail
-rw-rw-rw- 1 bjl users 20 May 2 13:26 modefile1
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile2
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 2106 May 2 13:31 ses1.tmp

© 2002 by CRC Press LLC

2.2.2 File Protection/File Access

First, let us introduce the terminology we will use to identify access rights to a certain
file. We will use three different terms that are related to the very same issue: file protection,
file access, and file permissions. These three terms are mutually related, and their use is
primarily dependent upon the angle from which we are viewing the issue. Though file
access and file permissions are directly proportional, and we often use the composite term
access permissions (more file permissions permit wider access to the file), file access and
file protection are inversely proportional (a higher file protection requires more restricted
file access). Finally, they are all known as the file mode.

Every file has a set of permission bits that determine who has access to the file, and the
type of access they have. UNIX supports three types of file access:

Access File Meaning Directory Meaning

Read (r) View file contents Search directory contents (ls)
Write (w) Alter file contents Alter directory contents (rm)
Execute (x) Run executable file Make it the current directory (cd) for a search

Notes: (x) is sometimes identified as “execute/search” access right; For a script file execution, r and x access
permissions are required (each line in the script must be read to be executed).

The following table lists the permissions required to perform some of the most common
UNIX commands.

Minimum Access Required

Command On File Itself On Directory File ls in Comments

cd /home/username N/A x
ls /home/username none r
ls -s /home/username none rx A file size determination requires a

logical move to the directory itself to
search the content of the inode of the
specified file

cat filename r x
cat >> filename w x
filename x (if binary) x
filename rx (if script) x
rm filename w xw w permission for a file is not a requirement

(but an additional confirmation will be
required); w permission for a directory is
mandatory (removing a file means altering
the directory)

Notes: It is important to understand the difference between a simple ls command, and any other, more elabo-
rated ls command (with an option that requires a search of the file’s inode). Simple listing of the directory
means just to read the content of the directory; options require information from the inode of the specified
file.

2.2.2.1 Access Classes

UNIX defines three basic classes of access to files, for which permissions can be specified
separately:

User access (u) Access granted to the user-owner of the file
Group access (g) Access granted to members of the group that owns the file

© 2002 by CRC Press LLC

Other access (o) Access granted to everyone else (except root)
All classes (a) Access granted to everyone (includes all three classes)

The access classes independently specify file modes for different categories (classes) of
users. The long format (the “-l” option) of the ls command is used to display the file mode
— see the previous example. The first column in the listing, a set of letters and hyphens,
represents a file mode; the file mode includes three triplets for the three access classes u,
g, and o. This is illustrated in the following table:

File Type User Access (u) Group Access (g) Other Access (o)

Position 1 2 3 4 5 6 7 8 9 10
Letter - r w x r w x r w x
Read access + + +
Write access + + +
Execute access + + +

Note: The first letter (or hyphen) in a line (the leftmost position) represents a file type.

2.2.2.2 Setting a File Protection
We have already discussed myriad terms to refer to file protection; UNIX simply refers to
a file protection as file mode. In UNIX parlance, to set file permissions means to change
a file mode; for that purpose, the UNIX chmod command is used:

chmod access-string filename(s)

where
access-string Includes:

Access class: u, g, o, or a
Operator: +, -, or =
Permissions: r, w, or x

filename File name in the current directory, or the full-path file name (multiple files
are separated by a space).

Multiple access classes and/or permissions could be also simultaneously specified.
The recursive chmod command is also supported, for example:

chmod -R go-rwx /home/username

This command will change the file mode of all files and subdirectories beneath the
directory /home/username. It will deny any kind of access for group and other, and the user
access will remain unchanged.

This example specifies the file mode, using what is called symbolic mode notation.
Alternatively, the absolute, or numeric, mode notation could be also used. The difference
between the two is shown below:

user group other Access classes
r w x r – x r-- Symbolic mode
1 1 1 1 0 1 1 0 0 Convert to binary

 7 5 4 Convert to digit
754 The corresponding absolute (numeric) mode

© 2002 by CRC Press LLC

The command to set this particular file mode is:

chmod 754 filename

Access rights for a certain user are strictly determined by the individual permissions
within the related class. It means that UNIX first determines where the user belongs – is
that the user-owner, a member of the group-owner, or any other user. Once it is done, only
the related file’s access class is checked and accordingly a needed access to the file granted
or denied. There is no a gradual top-down access class checkup in the cases when an user
belongs to multiple classes (an user-owner could also be a member of the group-owner, and
definitely belongs to others). Here is an example:

The user is bjl; the long listing for the text file textfile is:

$ ls -l testfile
-rw-r--r-- 1 bjl users 15 Jul 6 20:49 textfile
With the following content:
$ cat textfile
#
This is just a test file
#

Let us deny read access to the user-owner bjl:
$ chmod u-r testfile
$ ls -l testfile
--w-r--r -- 1 bjl users 15 Jul 6 20:49 textfile

And try to read the file again:
$ cat textfile
cat: textfile: Permission denied

However, the file can be modified
$ echo “# This is added text” >> textfile
$ echo “#” textfile

Besides the fact that user bjl is the owner of the file textfile and a member of the group
users, as well as that read permission is granted to the group users and to all others,
the file cannot be opened for reading. The file’s owner, user bjl, can modify or delete
the file (there is the w permission), but the file cannot be read. To overcome this “unusual
situation,” the owner has to change the file mode, and make the file readable.

$ chmod 644 testfile
$ ls –l testfile
-rw-r--r-- 1 bjl users 15 Jul 6 20:49 textfile
$ cat textfile
#
This is just a test file
This is added text
#
The same is valid for a group-owner toward group permissions.

2.2.2.3 Default File Mode

The default file mode determines file permissions for newly created files. Once a file
is created, the file mode can be changed as desired. UNIX is quite flexible regarding
default file mode — there is a coded system setting, and a possibility for a program

© 2002 by CRC Press LLC

setting. First of all, the usual system default file modes for directories and files are
different:

• For a directory rwxrwxrwx, i.e., all permissions are granted

• For a file rw-rw-rw-, i.e., the execute permissions are initially denied

However, do not be surprised if some specific UNIX flavors or even UNIX releases
behave differently.

The program setting of the default file mode is always adjusted toward a system setting,
and a specified permission can only be denied (never granted); it means only a more
restrictive default file mode can be dynamically created. Pay attention that this is related
to the default file mode only; the chmod command, or renaming and copying files, are
not restricted in that way.

The command umask is used for that purpose. Upon the command execution, all newly
created files in the new environment will be automatically set according to the new default
file mode. The umask command itself uses numeric notation to specify the default file
mode, but in a slightly different way than the chmod command. The umask command
sets permissions to be inhibited (masked out) when a file is created — it denies permis-
sions. The implemented numeric notation should be an octal complement to the numeric
notation of the desired file mode. Old UNIX releases supposed only the numeric notation;
modern UNIX flavors allow also the use of the symbolic notation. It is highly recom-
mended to stay familiar with the numeric notation (it works always and everywhere).

For example, to have a default file mode same as the file mode “754” in the previous
example:

777 All access granted

− 754 Desired access granted
023 Masked out access for default mode

The corresponding command is umask 023.

2.2.2.4 Additional Access Modes

We have discussed common file permissions, which are quite self-explanatory (read
and write are obvious) and relatively easy to use. Some confusion is possible with
respect to the execute (x) permission on a directory, but once we accept execution as
a condition to “search the directory -> cd,” everything seems to be reasonable; that is
why it is also known as execute/search permission. However, the three file permissions
(r, w, and x) are far from sufficient to cover all file permission needs in UNIX, and
consequently UNIX has to support additional access modes. These additional access
modes are listed below:

Code Name Meaning

t sticky bit Keep executable image in memory after exit (memory resident program)
s set UID (SUID) Set process user ID on execution (will be discussed in greater detail)
s set GID (SGID) Set process group ID on execution (will be discussed in greater detail)
l file locking Set mandatory file locking on r/w for this file (originally System V)

When using the ls -l command, SUID and SGID access bits are displayed in the position
of “x access” for the corresponding access class (SUID in the user class, SGID in the group
class); the sticky bit is displayed in the position of x access for the class “others.”

© 2002 by CRC Press LLC

SUID and SGID are extremely important and are very sensitive issues from the system
security standpoint. Normally, when an executable file (a program) is invoked, and the
corresponding process created, the access rights to system resources of such a process
(known as a process’s effective IDs: EUID and EGID) are related to the user and group
who started the program execution (known as the process’s real IDs: RUID and RGID).
However, if SUID or SGID access is set on an executable file, access to system resources
is based upon the file’s user or group owner rather than on the real user who started the
program execution. This means, for example, for an executable file owned by the root,
regardless of who has started its execution, the program will be executed in the same way
as if the superuser had invoked it. (We will discuss this issue in more detail later by
addressing process attributes.)

SUID and SGID, as well as a sticky bit, are supposed to be implemented primarily on
executable files; however, they could be implemented on any file, as well as on a directory.
In such a case, they have different meanings. Here is a summary:

Set Bit File or Directory Meaning

SUID Executable file Effective user ID on execution (EUID) is equal to the file user owner’s ID
SUID Nonexecutable file None

or directory
SGID Executable file Effective group ID on execution (EGID) is equal to the file group owner’s ID
SGID Nonexecutable file Enable mandatory locking of the file
SGID Directory Opposite semantic in propagation of the group ownership; BSD behaves like

System V, and vice versa
Sticky Executable file Memory resident program
Sticky Nonexecutable file Memory resident file (system’s paging is skipped, as in swap files)
Sticky Directory Deletion of files in the directory is restricted only to the owner of the directory,

or of the file itself

The aforementioned chmod command is used to set additional file modes. Both symbolic
and absolute (numeric) notations are supported; however, on some UNIX platform only
the symbolic mode notation can be used to clear an SGID bit on a directory.

The symbolic notation uses the letter s, together with a corresponding access class to
set/clear additional access bits:

chmod u+s filename Set SUID on filename

chmod g+s filename Set SGID on filename

chmod o+s filename Set sticky bit on filename

Alternately, the minus sign (−) is used to clear additional access bits.
An additional, fourth triplet was introduced for the numeric notation; it corresponds to

SUID | SGID | sticky, and can be presented numerically, like any other triplet. This additional
triplet is the leading one, positioned in front of the other three triplets, and the leading digit
in the 4-digit numeric notation identifies it. The 3-digit numeric notation is still valid; UNIX
simply assumes 0 for additional access bits (there is no need for a leading zero).

The following example should make this clear; it presents the procedure to change a
file mode.

The login user is bjl; the current long listing of an arbitrary directory shows:

$ ls -l
drwx------ 2 bjl mail 24 Mar 24 13:19 Mail
-rw-rw-rw- 1 bjl users 20 May 2 13:26 modefile1

© 2002 by CRC Press LLC

-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile2
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 322 May 2 13:31 ses1.tmp

The user wants to change the file mode for certain files (the symbolic notation is
implemented):

$ chmod u+x modefile1
$ chmod g−w+x modefile2 modefile3
$ ls -l
drwx------ 2 bjl mail 24 Mar 24 13:19 Mail
-rwxrw-rw- 1 bjl users 20 May 2 13:26 modefile1
-rw-r-xrw- 1 bjl users 20 May 2 13:30 modefile2
-rw-r-xrw- 1 bjl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 322 May 2 13:31 ses1.tmp

The required changes in file modes are shown in the new long listing of the directory.
Now let us set SUID and SGID on certain files:

$ chmod u+s modefile1
$ chmod g+s modefile2
$ ls -l
drwx------ 2 bjl mail 24 Mar 24 13:19 Mail
-rwsrw-rw- 1 bjl users 20 May 2 13:26 modefile1
-rw-r-srw- 1 bjl users 20 May 2 13:30 modefile2
-rw-r-xrw- 1 bjl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 322 May 2 13:31 ses1.tmp

Pay attention to the displayed position of SUID and SGID bits (they overwrite x permission).
Finally, let us return to the initial file modes:

$ chmod 666 modefile1 modefile2 modefile3
drwx------ 2 bjl mail 24 Mar 24 13:19 Mail
-rw-rw-rw- 1 bjl users 20 May 2 13:26 modefile1
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile2
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 322 May 2 13:39 ses1.tmp

Note that SUID and SGID were cleared also; in this case (this is HP-UX flavor), implemented
numeric notation works.

On the System V platform, a user-owner can change the file’s ownership. Practically, it
means that a user-owner can give the file to another user, also transferring owner access
rights to the new owner. If the SUID or SGID bit is set on the file, such a change of file
ownership could be a potential security problem. It would be very easy to create a
particularly nasty scenario that would affect the new owner. Just imagine a simple script
that purges the home directory of the new owner, and can be triggered by everybody
(there is x permission for others). Once the script ownership was modified, and supposing
the SUID is set, whoever starts the script’s execution will appear as the new owner — i.e.,
the targeted home directory will really be purged (very unpleasant!).

© 2002 by CRC Press LLC

Obviously System V UNIX has to protect itself from such unwelcome surprises. Let us
see how in the next example:

Three test files are created by the user bjl: testfile1, testfile2, and testfile3.

$ ls -l
-rw-r----- 1 bjl users 0 May 27 15:07 testfile1
-rw-r----- 1 bjl users 0 May 27 15:07 testfile2
-rw-r----- 1 bjl users 0 May 27 15:07 testfile3

The SUID and SGID are set by the user-owner (numeric notation is used):

$ chmod 4777 testfile1
$ chmod 2777 testfile2
$ chmod 4640 testfile3
$ ls -l
-rwsrwxrwx 1 levi users 0 May 27 15:07 testfile1
-rwxrwsrwx 1 levi users 0 May 27 15:07 testfile2
-rwSr----- 1 levi users 0 May 27 15:07 testfile3

The “set IDs” hide existing “x access bits” in the corresponding access classes. To make
the hidden bit recognizable, the low case letter “s” is displayed if both bits “set ID” and
“x access bit” are set, and capital letter “S” is displayed if only “set ID” bit is set (pay
attention, not for all UNIX flavors). In this example, the file testfile3 is not an executable
file. (In that light, SUID on this file does not make a lot of sense, but it is still a good
illustration of the previous point.)
The file ownership is now changed by the user-owner:

$ chown dubey testfile1 testfile2 testfile3
$ ls-l
-rwxrwxrwx 1 dubey users 0 May 27 15:07 testfile1
-rwxrwxrwx 1 dubey users 0 May 27 15:07 testfile2
-rw-r----- 1 dubey users 0 May 27 15:07 testfile3

What happened? We can see that the “set IDs” have not been transferred to the new
owner. Simply, if the file ownership was changed by the user-owner for files in which
SUID and SGID were set, the file modes would also change — SUID and SGID are not
transferable to another user; only the superuser can make it. (Anyhow, the superuser
can make whatever it wants.)
Now, let us return everything to the initial state; since the user bjl does not own the
files anymore, it will be done by the superuser. First switch to the superuser account:

$ su
Password: ********
chown bjl testfile1 testfile2 testfile3
su bjl
$ chmod 640 testfile1 testfile2
$ ls -l
-rw-r----- 1 bjl users 0 May 27 15:07 testfile1
-rw-r----- 1 bjl users 0 May 27 15:07 testfile2
-rw-r----- 1 bjl users 0 May 27 15:07 testfile3

Note that a switch to the superuser (root) account always requires the root password,
while the switch from the superuser to some other user account does not. A superuser
already has full control over the system, including all user accounts.

© 2002 by CRC Press LLC

2.2.3 Access Control Lists (ACLs)

File access permissions originate from the early days of UNIX, and they provide enough
flexibility in accessing UNIX resources (objects) to meet most daily needs. This approach
was made even more flexible by introducing secondary groups as desired, and by grouping
individual users on a per need basis. Nevertheless, the continual development and growth
in the implementation of UNIX as a platform for different applications required an even
more selective approach. Modern UNIX flavors introduced Access Control Lists (ACLs)
to respond to new demands.

ACLs are a key enforcement mechanism of discretionary access control (DAC), used to
specify access to files by users and groups more selectively than with traditional UNIX
mechanisms. ACLs permit or deny access to a list of users, groups, or combinations thereof.
ACLs are supported as a superset of the UNIX operating system DAC mechanism for
files, directories, and devices.

An access control list is a set of (user.group, mode) entries associated with a file that specify
permissions for all possible user-ID/group-ID combinations. An entry in an ACL specifies
access rights for one user and group combination. Three bits in an ACL entry represent
read, write, and execute-search permissions. These permissions coexist with the traditional
mode bits associated with every file in the filesystem.

An individual ACL entry could be considered restrictive or permissive depending on the
context. Restrictive entries deny a user and/or group access that would otherwise be
granted by less specific base or optional ACL entries. Permissive entries grant a user and/or
group access that would otherwise be denied by less specific base or optional ACL entries.

The right to alter ACL entries is granted to file (object) owners and to privileged users.
Privileged users are superusers and members of certain privileged groups.

For a better understanding of the relationship between ACLs and traditional file permissions,
let us consider the following file and its permissions:

Permissions User Group Filename

-rwxr-xr-- bjl admin datafile
The file owner is: bjl
The file’s group is: admin
The name of the file is: datafile
The file owner permissions are: rwx
The file group permissions are: r-x
The file other permissions are: r--

When a file is created, three base access control list entries are mapped from the file’s
access permission bits to match the file’s owner and group and its traditional permission
bits. The three base ACL entries are:

1. Base ACL entry for the file’s owner: (uid.%, mode)

2. Base ACL entry for the file’s group: (%.gid, mode)
3. Base ACL entry for other users: (%.%, mode)

The basic form of an ACL entry is (user.group, mode). user and group can be repre-
sented by names or ID numbers; mode is represented by a letter (r, w, and x if the
corresponding access is granted, or dash “- ”if the access is denied). Two special symbols
may also be used:

1. % symbol, representing no specific user or group
2. @ symbol, representing the current file owner or group

© 2002 by CRC Press LLC

ACLs are superimposed on the file’s traditional permissions; however, managing ACLs
does not affect the traditional file mode. There is no way to change the traditional file
permissions by using ACL-specific commands (the opposite is not true because base ACL
entries are synchronized with the traditional file permissions). Both the traditional UNIX
command chmod and ACL-specific commands may be used to change base ACL entries.

Optional ACL entries contain additional access control information, which the privileged
user can set with the available ACL-specific commands to further allow or deny file access.
Up to 13 additional user/group combinations may be specified. For example, the following
optional ACL entries could be associated with the presented file datafile:

(mhr.admin, rwx) Grant read, write, and execute access to user mhr in group admin

(mnm.%, ---) Deny any access to user mnm in no specific group (any group)

ACL entries are unique; there can only be one (user.group, mode) entry for any pair of
user and group values; one (user.%, mode) entry for a given value of user; one (%.group,
mode) entry for a given value of group; and one (%.%, mode) entry for each file.

There are several UNIX commands to manage ACLs, and they are all UNIX-flavor
specific. Although they all have essentially the same mission, they have different command
names. We will focus on Solaris-specific ACL commands.

The getfacl command is available on Solaris to display discretionary file information:

getfacl [-ad] filename(s)

where
option -a Display the filename, owner, group, and file’s ACL
option -d Display the filename, owner, group, and default file’s ACL (if it exists)
no option Display the filename, owner, group, file’s ACL, and default file’s ACL (if it exists)
filename The filename in the current directory, or full-path filename. (multiple

filenames are separated by a space; a blank line separates displayed ACLs)

A few examples (the selected file is /etc/vfstab):

$ getfacl /etc/vfstab

file: /etc/vfstab # The first three lines specify the filename, user-owner
and group owner; they start with pound sign (“#”).

owner: root

group: other

user::r-- # Permissions for user-owner (because the second field
is empty).

group::r-- #effective:r -- # Permissions for group owner (because the second field
is empty).

mask:r-- # Maximum permissions allowed to any user except
user-owner, and to any group (including group owner);
they restrict the permissions specified in other entries.

other:r-- # Permissions granted to others.

In order to indicate when the group class permission bits restrict an ACL entry, an
additional string “#effective:” specifies the actual permissions granted in the same
line of the restricted entry; the string is separated by a tab character.

© 2002 by CRC Press LLC

$ cd /etc

$ getfacl vfstab

file: vfstab # This is the same command as in the previous example,
except that the relative filename was specified.

owner: root

group: other

user::r--

group::r-- #effective: r--

mask:r--

other:r--

$ getfacl -a vfstab

file: vfstab # For this file, the “option –a” and “no options” display
the same output because there is no default ACL.

owner: root

group: other

user::r--

group::r-- #effective: r--

mask:r--

other::r--

$ getfacl -d vfstab

file: vfstab # Only the first three lines are displayed because there
is no default ACL.

owner: root

group: other

The Solaris setfacl command is available to modify an ACL for a file or files. Two forms
of the command may be used:

setfacl [-r] [-s | -m | -d] acl_entries filename(s)
setfacl [-r] [-f] acl_file filename(s)

where
option -r Recalculates the permissions for the file’s group class entry (known as the

mask entry). These permissions are ignored and replaced by the maximum
permissions needed for the file group class, to grant access to any
additional user, owning group, and additional group entries in the ACL.
The permissions for these entities remain unchanged.

option -s Sets the ACL to the entries specified on the command line; all
old ACL entries are removed and replaced with the newly specified
ACL.

option -m Adds one or more new ACL entries, and/or modifies one or more existing
ACL entries; when modified, the specified permissions will replace the
current permissions.

option -d Deletes one or more ACL entries; the file owner, owning group, and
others may not be deleted. Deleting an ACL entry does not necessarily

© 2002 by CRC Press LLC

have the same effect as removing all permissions from the entry by
modifying the entry itself (an ACL entry superimposes on traditional file
permissions).

option -f Sets the ACL to the entries contained within the file named acl_file on the
command line (see acl_ file); the same constraints on specified entries in
the acl_file hold as with -s option.

acl_entries One or more comma-separated ACL entries of the following format (all
entries are not applicable for all options):

u[ser]::operm | perm
u[ser]:uid:operm | perm
g[roup]::operm | perm
g[roup]:gid:operm | perm
m[ask]:operm | perm
d[efault]:u[ser]::operm | perm
d[efault]:u[ser]:uid:operm | perm
d[efault]:g[roup]::operm | perm
d[efault]:g[roup]:gid: operm | perm
d[efault]:m[ask]:operm | perm
d[efault]:o[ther]:operm | perm

Where perm is a permissions string composed of the letters r(read),
w(write), and x(execute); the dash (-) may be specified as a place holder.
operm is an octal representation of the above permissions, 7 -> all
permissions (rwx), 0 -> no permissions (---)

uid is a login name or user ID; for user-owner is empty
gid is a group name or group ID; for group-owner is empty
acl_file The file that contains ACL entries; an ACL entry is specified as a single

line. Comments are permitted and they start with pound sign (#). The file
can be created as an output of the getfacl command.

2.2.4 File Types

We mentioned earlier that in UNIX everything is a file, or is file-like. Given what we
now know about file ownership and file mode, perhaps it is more appropriate to say
that in UNIX everything is “dressed like a file.” This means everything appears like a
file, but there are still differences in the file content and the way the file is managed and
processed.

These differences result in different kinds of files, or in UNIX terminology, different file
types. The type of a file determines how the file will be handled.

The long listing of the ls -l command also displays the file type; a leading single letter,
or hyphen, in the leftmost position of the first column in the listing that presents the file
mode, identifies a file type. The file type is identified in the following way:

- Plain (regular) file
d Directory

c Character special file
b Block special file

l Symbolic link
s Socket

p Named pipe

© 2002 by CRC Press LLC

Here is an example:

$ ls-l
drwx------ 2 bjl mail 24 Mar 24 18:19 Mail
-rwxrw-rw- 1 bjl users 20 May 2 18:26 file1
lrwxrwxrwx 1 bjl users 20 May 2 18:28 file2 -> /usr/local/bin/file2

Three different file types are displayed: a regular file (-), a directory (d), and a symbolic
link (l). A brief summary of file types follows.

2.2.4.1 Plain (Regular) File

A plain file is just a sequence of bytes: a data file, an ASCII file, a binary data file, executable
binary program, etc. In most cases when we talk about files, we are thinking of plain files.
They are identified by the hyphen (-) in the long listing of a directory they reside in.

2.2.4.2 Directory
A binary file, a directory is a list of the files within it (including any subdirectories). Entries
are filename-inode pairs. In UNIX each file is identified by an inode (an official name is
index node). For simplicity, we will assume that an inode fully specifies the file, and that
by knowing the inode, UNIX actually knows everything about the file itself (ownership,
mode, type, other properties, contents, location on the disk) except its name. The directory
relates the filename with the file itself; the filename-inode pairs that make a content of a directory
itself actually establish this relationship. Although it might seem odd to a beginner, UNIX
can find a filename only in the corresponding directory. If a directory is corrupted, all of
its filenames can be easily lost, while the corresponding files remain unchanged and
unnamed.

The special entries “.” and “..” (single and double dots) refer to the directory itself
and its parent directory, respectively. A directory in its long listing is identified with the
letter d.

2.2.4.3 Special Device File

A special device file is used to describe the attached I/O device. UNIX accesses devices
via their special files. In UNIX, device drivers themselves (software interfaces that control
the devices) are part of the kernel, and can be accessed by using certain system calls (UNIX
internals). A special device file is a kind of pointer to the corresponding device driver
within the kernel; it is a very simple file that contains two pointers: major and minor
numbers. The major number points to the device class, while the minor number points to
the individual device within the class.

All special device files reside in the directory /dev (and its subdirectories on System V).
There are two groups of special device files: block device files and character device files.

2.2.4.3.1 Block Device File

I/O operations are provided through a group of buffers; the system maintains a buffer
pool for all block devices. The block device is accessed in fixed-size blocks. Physically, the
high-speed data transfer is realized using a DMA mechanism (direct memory access data
transfer). The letter b in the long listing of a directory identifies the block device files. The
following disk-related block device files are examples of block device files: /dev/disk0a or
/dev/dsk/c1d1s5.

© 2002 by CRC Press LLC

2.2.4.3.2 Character Device File

Nonbuffered I/O operations are provided via a character or raw device. Physically, the
data transfer is performed through a registered data exchange between the device and its
controller. Character devices include all devices that do not fit the block I/O transfer. The
letter c in the long listing of a directory identifies the character device files. The following
disk related raw device files are examples of character special files: /dev/rdisk0a or
/ dev/rdsk/c1d1s5.

2.2.4.4 Link

A link is a mechanism that allows multiple filenames to refer to a single file on a disk,
i.e., a single inode. There are two kinds of links: hard links and symbolic links.

2.2.4.4.1 Hard Link

A hard link associates two or more filenames with an inode; each inode keeps a record
of a number of linked filenames. Only when all filenames are deleted will the file itself
also be deleted, and the corresponding inode released and returned as free for new file
assignments. Strictly speaking, a hard link is not a separate file type; each hard link
represents an already existing file with an additional filename. The only way to identify
mutually hard-linked filenames is to list a directory or directories by using the “ls -i”
command and check for identical inode numbers. The “-i” option displays, beside the
filename, the inode number for each displayed file in the listed directory.

Hard links always remain within the same filesystem; simply, inodes cannot be shared
between filesystems, and two hard links are always associated with the same inode. A hard
link never creates a new file; it only attaches a new filename to the existing file. This means
that a hard link only presents a new entry in a directory, a new record about a filename-
inode pair.

To create a hard link use the ln command:

ln myfile hardlink

This command will create a new entry in the current directory named hardlink paired
with the same inode number as myfile. There are no hard links for directories; it would
be too confusing and dangerous for the system.

2.2.4.4.2 Symbolic Link

A symbolic link is a pointer file to another file elsewhere in the overall hierarchical
directory tree. By creating a symbolic link, a new small file is also created; this new file
contains the full-path filename of the linked file. There is no restriction on the use of
symbolic links; they span filesystem boundaries independently of the origin of the linked
file. Symbolic links are very common (this cannot be said for hard links); they are easy to
create, easy to maintain and easy to see. The letter l in the long listing of a directory
identifies them; a linked file is also displayed in a visually comprehensive way (see
previous example for file types).

To create a symbolic link use also the ln command (with the option -s):

ln -s myfile symlink

This command creates another file named symlink in the current directory with a
separate inode (since this is a completely new file) that points to the file myfile. Both
types of links are presented in Figure 2.1. Let me explain it in more detail.

© 2002 by CRC Press LLC

For an existing file named myname, which is determined by the inode (index node) N1,
both links are created. The hard link hardlink is another name for the file myfile, and it
corresponds to the same inode N1. The symbolic link symlink represents another file
determined by the inode N2; its contents point to the file myfile.

What will happen if the file myfile is deleted? Actually, only the filename “myfile” will
be deleted; the file itself remains with its other name hardlink (the file content remains
unchanged). The symbolic link symlink is now broken; it points nowhere (there is no
more referenced file myfile).

What will happen if another file named myfile is created in the same directory? This is
a brand new file, determined by the new index node N3 and unrelated to the existing file
hardlink, which continues to exist as a different file. However, the file symlink is now
linked with the new file myname, and it continues to point to the newly created file myfile.

2.2.4.5 Socket
A special type of file used for interprocess communication on a single system or between
different systems; sockets enable connection between processes. There are several kinds of

B1 B2

B1 B2B3

B1 B2

points to the new file myfile

now points nowhere

Note:
N – Index node
B – Data blocks

N1 N2

myfile hardlink symlink

N1 N2

myfile hardlink symlink

N3

N1 N2

myfile hardlink symlink

(A) (B)

(C)

Hard and symbolic links are created
for the file:myfile

The file myfile is deleted

Another file myfile is created

points to the file myfile

FIGURE 2.1
Hard and symbolic links.

© 2002 by CRC Press LLC

sockets, and most of them are involved in network communications. UNIX domain sockets
are local ones, used in local interprocess communication; they are referenced as filesystem
objects. Sockets are created by the use of a special system call, “socket”, but can be treated in
a similar way as other files (using the same system calls). However, a socket can be read or
written only by processes directly involved in the connection. For example, printing systems,
X windowing, or error system logging use sockets. Sockets were originally developed in BSD
and later included in System V. The most probable place to find sockets is the /tmp directory.

2.2.4.6 Named Pipe
Another mechanism, originated in System V, to facilitate interprocess communication; the
named pipe presents a FIFO (first-in first-out) element in this communication. The output
of one process becomes an input to another process. Named pipes are very useful when
a large amount of data is involved in the interprocess communication; sometimes some
application, and even OS restrictions could be bypassed by using the named pipe.

UNIX provides the command mknod pipename p to create a named pipe pipename. The
same command is used to create special device files and we will return to this command
later. The trailing character “p” specifies the named pipe. Pay attention this is slightly
different from the usual UNIX way in specifying the command option. In the long listing
of a directory the leading letter p identifies named pipes. Again the most probable place
for named pipes is the /tmp directory.

2.2.4.7 Conclusion
Independent of a file type, the file must be mounted before it can be accessed. Mounting
is a special UNIX process of bringing online a storage device (primarily a disk) that keeps
the files, making the files accessible and their contents readable. Only mounted files
become visible and can be searched, found, and processed. We will cover mounting in
full details in Chapters 5 and 6.

All listed file types have different natures. They are created with file-type specific UNIX
commands, but other UNIX commands are mostly applicable on all file types. The output
of the same UNIX command can be different depending on the file types, but the command
itself would work. For example, the command:

cat filename

will display the contents of the file filename. But if filename is a symbolic link, the
command will display the contents of the linked file.

The common bond between all file types is the relationship of the file ownership and
the file mode. This relationship is fundamental to all UNIX platforms, and this is one of
the main issues that make UNIX so reliable and flexible in the constantly changing
environment.

2.3 Devices and Special Device Files

A device is a dedicated piece of hardware that provides a particular function within the
computer system. A device itself can be located internally or externally. Regardless of the
location, devices are treated equally within their classes.

© 2002 by CRC Press LLC

A device driver is a program that manages the system’s interaction with a particular
device; it presents a needed interface to translate between the hardware commands under-
stood by the device, and the kernel. Such a system structure keeps UNIX reasonably
hardware-independent.

Device drivers are parts of the kernel; they are not user processes. However, they can
be accessed both from within the kernel and from the user space. User-level access is
provided through special device files. The kernel transforms operations on these special
files into calls to the driver code.

Special device files are also called device special files. Independent of their naming, these
files are really special and different than regular files. Their mission is special in the UNIX
paradigm. We will use both names arbitrarily, or even simply special files.

Special device files are mapped to devices via two pointers: major and minor device
numbers. These numbers are stored in the inode for a particular special file. The major
device number identifies a device driver for a specific class of devices (a single driver can
be used for a number of devices of the same type); the minor device number is a parameter
within the specified device driver.

Each device driver has routines for performing necessary functions in its interaction
with the device. These basic functions are: probe, attach, open, close, read, reset, stop,
select, strategy, dump, psize, write, timeout, interrupt processing, and i/o control (ioctl). The
addresses of these functions for each driver (independent of the character and block
devices) are stored in the jump table inside the kernel. The major device number indexes
the jump tables; this is provided through another table known as device switch table.
Briefly, the mapping is performed in the following way: the major device number points
to the corresponding entry in the device switch table. The minor device number is passed
as a parameter to the relevant function in the device driver. The device driver is free
to interpret the minor number as it sees fit, although in most cases it uses it as a port
number (as is the case when a single driver controls multiple devices of the same
type). As soon as the kernel catches the reference, it looks up the appropriate function
name in the driver’s jump table and transfers control to it. To perform a device-specific
operation that does not have a direct analog in the filesystem model (for example,
ejecting a floppy disk), the ioctl system call is used to transfer a request directly into
the driver.

This treatment of devices in a file-like way is one of the fundamental design elements
that make UNIX so powerful. Just as the proven solutions for files’ ownership, mode,
access rights, and protection have been implemented in the case of devices, the same has
been done with user commands as well. Meanwhile, existing differences in command
interpretations were maintained. We will see what this all means in the following example
of the copy command:

cp /path1/filename1 /path2/filename2

This command will copy the contents of the file /path1/filename1 to the file named
/path2/filename2, effectively overwriting the file if it already existed, or creating the
file if it did not.

However, the command:

cp /path1/filename1 /dev/console

will copy the file /path1/filename1 to the file /dev/console which is the special file for the
physical console terminal. The contents of the file /path1/filename1 will be displayed on

© 2002 by CRC Press LLC

the console screen. As we can see, special files allow I/O operations to be performed with
regular interactions among UNIX files.

It is convenient to implement a device driver as an abstraction, even when there is no
actual device for it to control. Such devices are known as pseudo-devices; for example,
pseudo-TTY (assigned as PTY) is used to communicate with users over a network. From
a higher-level software point of view, a pseudo-device looks like a regular device; conse-
quently, preexisting software is transparent, allowing immediate use without the need for
any modification.

2.3.1 Special File Names

By convention, special files are kept in the /dev directory. On large systems there may be
hundreds of devices, including pseudo-devices. On System V (ATT) flavors, special files
are hierarchically organized, with separate subdirectories for different device types: disk,
tape, terminal, pseudo-terminal, etc. On BSD platforms, /dev is a flat directory containing
all of the special files.

Special file naming is different among different UNIX flavors; however, some common
rules are recognized. The following table presents the usual naming algorithms for disk-related
special files:

Unfortunately, the implemented rules are very restricted and are usually valid only
for the specific flavor; naming procedures vary among flavors within the same UNIX
platform.

2.3.2 Special File Creation

To create a special file, UNIX provides the mknod command, which has the following
syntax:

mknod filename type major minor

where
filename A name of the special file to be created
type A type of the special file to be created

c — for a character (row) type special file
b — for a block type special file
p — for a named pipe (FIFO)

major A major device number (decimal or octal)
minor A minor device number (decimal or octal)

BSD System V

File name /dev/rdisk0d /dev/rdsk/c1d0s2
Access mode /dev/rdisk0d /dev/rdsk/c1d0s2
Device type /dev/rdisk0d /dev/rdsk/c1d0s2
Drive /dev/rdisk0d /dev/rdsk/c1d0s2
Disk partition /dev/rdisk0d /dev/rdsk/c1d0s2
Controller /dev/rdsk/c1d0s2

© 2002 by CRC Press LLC

Special files are very small and simple files; they contain only two numbers (major and
minor number), which are pointers to corresponding device drivers within the kernel.
Only the superuser can create a special device file.

Both BSD and System V flavors often include some kind of utility program to create
and install special files; usually this is a script based on mknod commands. One such
script is makedev that originates from SunOS 4.1.x.

UNIX administrators like script utilities. First these scripts make their jobs easier. But
the scripts are also very instructive. We can read them and learn precisely how the utility
works and fully understand what happens behind the scenes. We can discover many of
the UNIX secrets that are so useful in its daily administration.

Special files are special by nature, but they are dressed like regular files. Several years
ago one student raised the questions: “Are the ownership and permissions of special files
uniform over all UNIX platforms? Their purposes are the same — is there any regularity?
How do you recreate a lost special device file?”

Despite the fact that these questions are very logical, there is no simple response.
Ownership and mode of special files vary among different UNIX flavors, as do special
file names. A very brief review of several UNIX flavors made several years ago easily
proved this. Things are not changed nowadays. The ownership and mode of the /dev
directory and reviewed same-purpose special files are presented for several UNIX
flavors.

SunOS
ls -lg / | grep dev
11 drwxr-sr-x 2 bin staff 11264 May 16 09:24 dev/

ls -lg /dev
total 13
0 crw--w---- 1 root wheel 0, 0 May 26 14:52 console
0 crw-r----- 1 root kmem 3, 1 Mar 19 1993 kmem
0 crw-r----- 1 root kmem 3, 0 Mar 19 1993 mem
0 srwxrwxrwx 1 root staff 0 May 16 09:24 printer
0 crw-rw-rw- 1 root staff 21, 16 Jun 11 1993 ptyq0
0 crw-rw-rw- 1 root staff 30, 1 Mar 19 1993 rmt1
0 crw-r----- 1 root operator 17, 0 Jan 20 14:58 rsd0a
0 brw-r----- 1 root operator 7, 0 Sep 22 1993 sd0a

.

ULTRIX
ls -lg / | grep dev
drwxr-xr-x 4 root system 12800 May 27 10:23 dev

ls -lg /dev
total 46
crw--w---- 1 operator tty 0, 0 May 27 13:01 console
crw-r----- 1 root kmem 3, 1 May 14 15:18 kmem
crw-r----- 1 root kmem 3, 0 Aug 7 1992 mem
srwxrwxrwx 1 root system 0 May 27 10:23 printer
crw-rw-rw- 1 root system 21, 16 May 27 13:09 ptyq0
brw------- 1 root system 23, 0 Mar 22 1993 ra0a
crw-rw-rw- 1 root system 36, 8 Mar 22 1993 rmt0h

.

© 2002 by CRC Press LLC

HP-UX
$ ls -l / | grep dev
drwxr-xr-x 13 root root 30 72 May 26 09:51 dev

$ ls -l /dev
total 42
crw--w--w- 1 root sys 0 0x000000 May 26 09:51 console
crw-rw-rw- 1 root sys 24 0x203010 Dec 13 16:31 hil1
crw-r----- 1 bin sys 3 0x000001 Dec 13 16:31 kmem
crw-r--r-- 1 lp bin 11 0x206002 May 26 15:32 lp_panlaser
crw-r----- 1 bin sys 3 0x000000 Dec 13 16:31 mem
crw-rw-rw- 1 root other 16 0x000010 Dec 13 17:14 ptyq0
crw-rw-rw- 1 root sys 23 0x203000 Dec 13 16:31 rhil

.

IRIX
$ ls -l / | grep dev
drwxr-xr-x 10 root sys 358 4 May 16 08:59 dev

$ ls -l /dev
total 87
crw--w--w- 3 root sys 58, 0 May 25 14:33 console
brw------- 1 root sys 22, 71 Mar 31 1993 disk2
crw-r----- 1 root sys 1, 1 May 27 1993 kmem
crw-r----- 1 root sys 1, 0 May 27 1993 mem
srwx------ 1 root lp 0 May 16 08:59 printer
crw------- 1 root sys 22, 71 Sep 20 1993 rdisk2
crw-rw-rw- 3 root sys 23, 192 Nov 8 1993 tape
crw--w--w- 2 root sys 0, 1 Sep 10 1992 ttyd1

.

It is very easy to conclude that there is no uniformity among different UNIX flavors
— naming, ownerships, and file modes are different. What to do if a special file is
accidentally lost? Do we have to remember them all?

The only logical answer is to search for help within the same UNIX flavor. For example,
to look up the same special files on another same-flavor UNIX system (if applicable). Other
options are to check vendor documentation, or use other flavor-related sources (call
technical support, newsgroups, Internet, etc.).

2.4 Processes

A process is a single program that is running in its virtual address space. The process
should be distinct from a job or a command, which may be composed of many processes
working together to perform a specific task. One of the main administrative tasks is to
manage UNIX processes. In this section we will cover main process-related topics.

2.4.1 Process Parameters

This is a brief reminder about process parameters. We will start with the process types
and main process attributes. Full understanding of process attributes is crucial for certain

© 2002 by CRC Press LLC

administrative activities, as well as for the system security. Other discussed issues are file
descriptors attached to a process and process states.

2.4.1.1 Process Types

The three distinct types of processes are:

Interactive processes — Interactive processes are initiated and controlled by a
terminal session; they run in the foreground attached for the standard input
STDIN (in a terminal session STDIN corresponds to the terminal) or in the
background. Job control (which originated in BSD) allows a foreground process
to be sent to the background and vice versa.
Batch processes — Processes not associated with a terminal; these are explicitly
submitted to a batch queue and executed with a lower priority in sequential order,
primarily at off-peak times. Originally, batch processing was not very thoroughly
developed on UNIX platforms, but third-party vendors have improved it. Batch
processing is very convenient for non-urgent, long-lasting data processing such
as iterative calculations and the like.

Daemons — Server background processes, usually initiated at the system boot
time, which continue running as long as the system is up. Daemons perform differ-
ent system-related tasks; they wait in the background until some process requires
their service.

2.4.1.2 Process Attributes

There are many attributes associated with UNIX processes. The following paragraphs
discuss the major attributes.

Process ID (PID) — The PID is a unique identifying number used to refer to the
process. It is an integer assigned by the kernel when the process was created
and cannot be changed for the lifetime of the process. Crucial for process hand-
ling, a process is always identified by its PID.

Parent process ID (PPID) — The PPID is the PID of the parent process, which
is the process that was directly involved in the creation of the new process. The
PPID is not unique, because the same parent process could have a number of
child processes. The PPID cannot be changed during the lifetime of the process.
Real and effective user ID (RUID and EUID) — The real user ID (RUID) is the
UID of the user who started the process; the effective user ID (EUID) is the UID
used to determine the user access rights of the process to system resources
(objects). The relationship between the two user ID attributes is: RUID = EUID,
except if the SUID access mode was set on the program that created the process,
and then EUID corresponds to the owner UID of the program (see also the File
Permissions section of the text).

Real and effective group ID (RGID and EGID) — The real group ID (RGID) is the
GID of the group of the user who started the process; the effective group ID
(EGID) is the GID used to determine the group access rights of the process to
system resources (objects). The relationship between the two group ID attributes
is: RGID = EGID, except if the SGID access mode was set on the program that
created the process, and then EGID corresponds to owner GID of the program
(see also the File Permissions section of the text).

© 2002 by CRC Press LLC

Process group ID (PGID)—The process group ID (PGID) identifies the process
group that the process belongs to; typically, multiple processes are members of
the same process group and they share the same PGID. The PGID is the PID of
the process group leader; this is usually the initial parent process. Unlike PID
and PPID, which cannot be changed during the life of the process, PGID is under
program control and can be changed by the corresponding system call (as is the
case with job control). PGIDs are important in the processing of signals in inter-
process communications. For example: the invoked shell is the process group
leader for all subsequent commands that are members of the created process
group; once the user logs out and terminates the shell, all currently running
related processes will also terminate.
Control terminal (TTY) — The control terminal is the terminal (or pseudo-
terminal) associated with the created process — the terminal that the process
was started from.

Terminal group ID (TGID) — The terminal group ID (TGID) is the PID of the
process group leader that opened the terminal, which is typically the login shell.
The TGID identifies the control terminal (TTY) for a process group, i.e., the
terminal associated with a process. The TGID is important for job control.
Current working directory (CWD) — The current working directory (CWD)
defines the starting point for all relatively specified pathnames (filenames that
do not begin with the “/” character).

Nice number — A number indicating the process priority relative to other pro-
cesses. Generally, a lower nice number means a higher priority; this is true also
when the nice numbers are in the range −20 to +20 (lower number in this case
means more negative).

2.4.1.3 File Descriptors

File descriptors are integers used to identify files that have been attached to a process and
opened for I/O. Modern UNIX systems provide more than 20 different files to be opened
for a process. File descriptors 0, 1, and 2 are associated with the standard input (a keyboard),
standard output (a screen), and a standard error (a screen also), respectively; they are, by
default, attached to a newly created process. UNIX provides an easy method of I/O
redirection by simple replacement of the input, output, and error files. In the case of sockets,
the descriptors are called socket descriptors.

2.4.1.4 Process States

The existence of a process does not automatically mean it is eligible to receive and consume
CPU time. There are multiple process execution states, as discussed in the following text.

Runnable — The process is ready to execute whenever there is CPU time available.
Sleeping — The process is waiting for a specific event to occur, or for some resource to

become available. Interactive processes and daemons spend most of their time sleeping,
waiting for terminal input or a network connection.

Stopped — The process is suspended and forbidden to run as the result of a received
STOP signal; it can be restarted if it receives a CONT signal.

Zombie — The process is trying to die; another common term is defunct.
Swapped — The process is removed from the system main memory to a disk (more

precisely, a process image is removed). This occurs when the competition for memory is
intense, a lack of available memory for new processes is obvious, and regular memory

© 2002 by CRC Press LLC

paging is unable to solve the problem efficiently. Strictly speaking, swapped is not a true
process state, because a swapped process can be in one of the previously mentioned states:
sleeping, stopped, or even runnable.

2.4.2 Process Life Cycles

Each process is living as long as the corresponding program is running. Process life cycles
vary in range from “extremely short” up to “indefinitely” like for daemons (or better to
say “as long as the system lives”). Process starts with its creation and lasts until terminated
(program exit upon its completion) or forced to quit.

2.4.2.1 Process Creation
In UNIX a new process is created with the fork system call. An existing process, a parent
process, makes a copy of itself into the address space of a child process. From the user’s
point of view, the child process is an exact duplicate of the parent process, except for two
values: the PID and the parent PID. The fork system call returns the child PID to the parent
process and “zero” to the child process (thus, a program can determine whether it is the
parent or the child process). The fork system call involves three main steps:

1. Allocating and initializing a new structure for the child process

2. Duplicating the context of the parent process for the child process
3. Scheduling the child process to run

The memory organization and layout associated with a UNIX process contains three
memory segments called:

1. Text segment A shared read-only segment that includes program code
2. Data segment A private read-write segment divided into initialized and

uninitialized data parts (the uninitialized part is also known as
“block started symbol” (BSS))

3. Stack segment A private read-write segment for system and process related data

There are two modes of the fork operation:

1. A process makes a copy of itself to handle another task; this is typical for network
server daemons.

2. A process wants to execute another program. Since the only way to create a
new process is through the fork operation, the process first makes a copy of
itself and then the child process issues an exec system call to execute a new
program.

In the later case, the fork is followed shortly thereafter by an exec system call that
overlays the address space (text and data segments) of the child process with the contents
of the new executable. Such a procedure is also known as fork-and-exec. A new program
replaces the contents of the parent process in the address space of the child process but
in the same parent’s environment. In this way all global environment variables, standard
input/output/error, and priority are kept unchanged.

© 2002 by CRC Press LLC

The ultimate ancestor for every process on a UNIX platform is the process with PID 1,
named init and created by the system kernel during the boot procedure. The init process
presents a starting point in the chain of process creations; it creates a number of other
processes based on fork-and-exec. Among the many created processes are one or more getty
processes, assigned to existing terminal lines. Their main duty is to keep the system from
unauthorized login attempts; they protect the system from potential intruders, and from
the damage they can cause to the system.

This is illustrated in Figure 2.2. Different stages of the creation of involved processes
are presented, assuming four existing terminal lines.

Four getty processes have been forked-and-exec by the init process. Each getty process is
taking care of one terminal line. Since a user attempts to access the system via a terminal
line (more precisely via an attached terminal), getty will exec another program login to
supply a login prompt, and to authenticate the user (it will look up the user’s login and
password data in the file /etc/passwd); this is shown in the figure for the second terminal
line. Upon login, it checks the user’s password and sets the user ID, group ID, and working
directory. It will exec the user’s shell (specified in the user’s password entry in the /etc/
passwd file). In the figure this is the case with the third terminal line, and the exec-ed shell
is Bourne shell sh. In the next step, a user executes any command from the shell command
line, as the presented ls command on the fourth terminal line. The shell sh forks its copy
and then execs the program (command) ls. All presented process IDs are generally speci-
fied; however, please note that only fork creates a new child process with a new process ID.

init
(PID=nn)

getty
(PID=nn)

init
(PID=mm)

getty
(PID=mm)

login
(PID=mm)

exec exec

exec

init
(PID=jj)

getty
(PID=jj)

login
(PID=jj)

exec

exec

/bin/sh
(PID=jj)

exec

init
(PID=kk)

getty
(PID=kk)

login
(PID=kk)

exec

exec

/bin/sh
(PID=kk)

exec

/bin/sh
(PID=ii)

/bin/ls
(PID=ii)

exec

fork

init
(PID=1)

forkfork

forkfork

Waiting for users

A user has entered
his/her login name

The login shell is
started

The command "ls"
is invoked

FIGURE 2.2
UNIX process creation (fork and exec).

© 2002 by CRC Press LLC

2.4.2.2 Process Termination
A process terminates either voluntarily through an exit system call, or involuntarily as
the result of a received signal. In either case, termination of a process causes a status code
to be returned to its parent process. The process then cleans and closes all process-related
resources:

• It cancels any pending timers.

• It releases virtual memory resources.
• It closes open descriptors.

• It handles stopped or traced child processes.

After completing those tasks the process can “die,” i.e., it can be deleted from the kernel
process table.

2.4.3 Process Handling

UNIX system administration involves dealing with processes on a regular basis. Monitor-
ing a UNIX system primarily means monitoring running processes. Any change in the
configuration usually requires restart of the corresponding daemons. And occasionally a
certain process has to be restarted or destroyed. Handling processes is one of the main
tasks in maintaining a UNIX system. Every UNIX administrator very quickly becomes
familiar with these issues. This is less true for a job control, which is also mentioned at the
end of this section. All together, the text that follows is a “good appetizer” — just for the start.

2.4.3.1 Monitoring Process Activities

Monitoring the processes running on the system is highly recommended; this is the best way
to get a good sense of what normal system activity is like: what programs are run, how long
they run, who runs them, and so on. In addition, when a problem on a system is encountered,
the first step to figure out what the problem could be is to check the status of running processes.
You can discover a lot from a simple cross-view of the status of the processes running on your
system at a certain time. Such a routine procedure is also very important for system security,
because any unusual system activity can be noticed and quickly stopped.

The UNIX ps (process status) command lists the characteristics of running processes;
the format of the command is:

ps [options]

Basic options are explained in the following text. Unfortunately, there are certain differ-
ences in command options between the two main UNIX platforms, BSD and System V.

2.4.3.1.1 BSD Flavored ps Command

The ps command displays the status of currently running processes; without any options
specified only the processes that are running with the effective user’s ID and those that
are attached to a controlling terminal are shown. Additional categories of processes can
be added to the display using certain options:

• -a option Includes processes that are not owned by the user who issues the
command itself; displays all processes attached to the control terminal

© 2002 by CRC Press LLC

• -x option Includes processes without control terminals; when both -a and -x
are specified, ps displays processes owned by anyone, with or with-
out a control terminal

• -r option Restricts the list of displayed processes to the running processes:
runnable processes, those in page wait, or those in short-term noninter-
ruptible waits

• -l option Displays a long listing with many additional fields; gives a full
picture of each displayed process

• -u option Displays a user-oriented listing with additional user-related fields

In its standard format, ps displays:

• The process ID, in the PID column

• The control terminal (if any), in the TT column
• The CPU time used by the process so far, including both user and system time,

in the TIME column

• The state of the process, in the STAT column
• An indication of the COMMAND that is running

Here is an example:

$ ps -ax
PID TT STAT TIME COMMAND
0 ? D 0:07 swapper
1 ? IW 0:00 /sbin/init -
2 ? D 0:00 pagedaemon

2087 p1 S 0:00 -csh (csh)
2091 p1 R 0:00 ps -ax
1996 p2 IW 0:00 -sh (csh)

The long listing (option -l) and the user-oriented (option -u) formats are different, as
seen in the following examples (only the first six lines in the listing are displayed):

ps -aux | head -6
USER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND
bjl 2905 30.8 3.3 228 476 p1 R 09:29 0:00 ps -aux
bjl 2906 7.7 1.4 40 200 p1 S 09:29 0:00 head -6
root 2 0.0 0.0 0 0 ? D May16 0:00 pagedaemon
bald 2499 0.0 0.0 36 0 co IW May23 6:23 telnet rs01-ch
root 85 0.0 352 0.0 0 ? IW May16 0:36 in.named

ps -alx | head -6
F UID PID PPID CP PRI NI SZ RSS WCHAN STAT TT TIME COMMAND
80003 0 0 0 0 -25 0 0 0 runout D ? 0:41 swapper
20088000 0 1 0 0 5 0 52 0 child IW ? 0:00 /sbin/init -
80003 0 2 0 0 -24 0 0 0 child D ? 0:00 pagedaemon
88000 0 54 1 0 1 0 68 0 select IW ? 0:29 portmap
88000 0 59 1 0 1 0 120 0 select IW ? 5:40 ypserv

The meaning of the columns in the listings is given below; the letters “u” and “l” indicate
the options user and long; “all” stands for both.

© 2002 by CRC Press LLC

Column Meaning

USER (u) The user name of the process owner
UID (l) The user ID of the process owner
PID (all) The process ID of the process
PPID (l) The process ID of the parent process
%CPU (u) Percentage of the CPU this process used in the previous minute
%MEM (u) Percentage of real memory this process is using
PRI (l) The priority of the process
NI (l) NICE value; used in priority computation
RSS (all) Resident set size (real memory size) in KB
SZ (u) The combined size of the data and stack segment in KB
WCHAN (l) The event for which the process is waiting or sleeping
START (u) Starting time of the process (if created this day) or the date otherwise
TT (all) The controlling terminal for the process
TIME (all) The CPU time (both user and system) the process has consumed
COMMAND (all) The command name and its arguments
STAT (all) The state of the process given as a sequence of four letters:

First letter: R = runnable D= short-term wait for disk
S = sleeping (<20 sec) I = sleeping (>20 sec)
T = stopped Z = zombie
P = page wait

Second letter: W = swapped out > = memory soft limit exceeded
Third letter: N = reduced priority < = raised priority
Fourth letter: Indicates some special process treatment

F (l) Flags associated with the process and presented in hexadecimal notation
(up to 8 hex. numbers). A number of flags describe the process in more detail.
For a flag specification consult manual pages.

The most common format of the BSD-flavored ps command is:

ps -aux

The output of this command is an extensive listing of process-related data sufficient for
most administrative needs.

2.4.3.1.2 System V (AT&T) Flavored ps Command

The ps command displays the status of currently running processes; without any options,
only the processes associated with the current terminal are displayed. The basic options
are:

• -e option Displays all processes
• -f option Produces a full listing, including the process start time

• -l option Displays a long listing with many additional fields

The regular output of this command is a so-called “short” listing (as opposed to the full
or long listing). A short listing contains only the user and process IDs (including parent
process ID), terminal identifier, start and cumulative execution time, and the command
name. An example of the short listing for all processes follows:

$ ps -e
UID PID PPID C STIME TTY TIME COMMAND
root 0 0 0 Dec 31 ? 0:05 swapper
root 1 0 0 11:23:17 ? 0:00 init

© 2002 by CRC Press LLC

root 2 0 0 11:23:16 ? 0:00 vhand

dubey 1550 1549 0 08:40:13 ttys0 0:00 -sh
bjl 1618 1591 10 09:25:59 ttys1 0:00 ps -ef

A full or long listing displays many additional pieces of information:

$ ps -ef | head -6
F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME COMD
3 S root 0 0 0 128 20 1e0568 0 Dec 31 ? 0:06 swapper
1 S root 1 0 0 168 20 2056540 54 7ffe6000 May 16 ? 0:00 init
3 S root 2 0 0 128 20 2056480 0 1ee3d0 May 16 ? 0:01 vhand
3 S root 3 0 0 128 20 20564c0 0 1ec4d4 May 16 ? 0:00 statdaemon
3 S root 7 0 0 128 20 2056500 0 1e8dc0 May 16 ? 0:00 unhash-

daemon

$ ps -l | head -5
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME COMD
1 S 201 9444 9443 0 158 20 2151100 52 350c1c ttys1 0:00 sh
1 S 0 9443 106 0 154 20 2151a40 17 221728 ttys1 0:00 telnetd
1 R 201 9473 9472 7 179 20 20d7f40 17 ttys1 0:00 ps
1 S 201 9472 9444 4 154 20 2151680 6 3300e4 ttys1 0:00 head

The column headings and the meaning of the columns in a ps listing are given below;
the letters “f”and “l” indicate the option (full or long) that causes the corresponding
heading to appear; “all” means that the heading always appears. Note that these two
options determine only which information would be displayed for a process; they do not
determine the processes to be listed.

Column Meaning

F (l) Flags (octal and additive) associated with the process:
0 = swapped 1 = in core
2 = system process 4 = locked in core (e.g., for I/O)

10 = traced by another process 20 = another tracing flag
S (l) The state of the process:

0 = nonexistent S = sleeping
W = waiting R = running
I = intermediate Z = terminated
T = stopped X = growing

UID (f, l) The real user ID number of the process owner; the login name is printed under the
-f option

PID (all) The process ID of the process; it is possible to kill a process if you know this datum
PPID (f, l) The process ID of the parent process
C (f, l) Processor utilization for scheduling
PRI (l) The priority of the process; higher numbers mean lower priority
NI (l) Nice value; used in priority computation
ADDR (l) The memory address of the process, if resident; otherwise, the disk address
SZ (l) The size in blocks of the core image of the process
WCHAN (l) The event for which the process is waiting or sleeping; if blank, the process is running
STIME (f) Starting time of the process. The starting date is printed instead if the elapsed time

is greater than 24 hours
TTY (all) The controlling terminal for the process
TIME (all) The cumulative execution time for the process (reported in the form “min:sec”)
COMD (all) The command name; the full command name and its arguments are printed under

the -f option. This field is renamed COMMAND except when the -l option is specified

© 2002 by CRC Press LLC

The most common format of the System V flavored ps command is:

ps -ef

The full listing provides all the process-related data we need for a successful
administration.

2.4.3.2 Destroying Processes

The UNIX kill command will eliminate a process entirely:

kill [-signal] pid

where
signal Signal to be sent to the process (default: signal #15 = TERM)
pid Process identification number (PID)

A signal is optional. BSD allows the user to specify either the signal number or its
symbolic name. System V requires the signal to be specified numerically.

The signal #9 (KILL) guarantees that the process will be destroyed. When a process is
killed, it informs its parent process of its imminent termination (death), and waits for the
parent’s acknowledgment. After receiving acknowledgment, the PID of the killed process
is removed from the process table.

Normally, the default kill command is used to terminate a process without the specified
signal that corresponds to the signal #15 (TERM); such a command is also known as a soft
kill. Upon receipt of the TERM signal, the process should exit in a normal way by closing
all the resources it is using. Occasionally, a process may still exist after a soft kill command.
If this occurs, another so-called hard kill has to be applied. By executing the kill command
with the signal #9 (KILL signal), a process is forced to exit. However, this kind of process
termination is not good for the system because some system resources may remain
unclosed and still busy. A hard kill should be used only as a last resort in attempting to
terminate a process.

Processes will not terminate (die) even after being sent the KILL signal if they fall in
one of the following three categories:

1. Zombies — A process in the zombie state (presented as Z status or defunct in ps
display) is one in which all of the process’s resources have been freed, but the
parent process’s acknowledgment has not occurred. Zombies are always cleared
when the system is booted and do not affect system performance.

2. Processes waiting for unavailable NFS resources — In such a case, a kill com-
mand with signal #3 (QUIT) or #2 (INT) should be used.

3. Processes waiting for a device to complete an operation — For example, waiting
for a tape to finish rewinding.

Killing a process also kills all of its child processes that share the same process group. For
example, killing a shell usually kills all the foreground and stopped background processes
initiated from that shell, including other invoked shells. Killing a login shell is equivalent
to logging the user out. It is common for children and parents to belong to the same process
group, but this is not necessarily always true (see Job Control at the end of this section).

Although the name kill indicates that the command should destroy a process, its real
effect depends on the selected signal that is sent to the process. Sometimes the command

© 2002 by CRC Press LLC

does not destroy a process at all, and it can even do the opposite. For example, by sending
the signal CONT to a previously stopped process, the process will continue to run; you
would not think a “killed” process could be “revived.” In that light, a more appropriate
name for the command could be “send signal,” because it better describes what the
command is really doing.

The -l option is available to display a list of signal names:

$ kill -l (SunOS, Solaris)

HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE ALRM
TERM URG STOP TSTP CONT CHLD TTIN TTOU IO XCPU XFSZ VTALRM
PROF WINCH LOST USR1 USR2

$ kill -l (HP-UX)

NULL HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE
ALRM TERM USR1 USR2 CHLD PWR VTALRM PROF POLL WINCH STOP
TSTP CONT TTIN TTOU URG LOST DIL

As we can see, the order of listed signal names is not necessarily the same. Fortunately,
the most important and most often-used signals match. The list of signals with descriptions
follows.

Note: An empty Signal Number field indicates that it varies among flavors. The most important signals are
presented in bold letters.

Signal Number Signal Symbolic Name Signal Description

0 NULL No effect
1 HUP Hang-up (for daemons, force a daemon

to reread its configuration data)
2 INT Interrupt for a process
3 QUIT Quit

ILL Illegal instruction
TRAP Trace trap
ABRT ABR (IOT) trap
EMT EMT trap
FPE Arithmetic exception

9 KILL Kill — destroy a process
BUS Bus error
SEGV Segmentation fault
SYS Bad argument for a system call
PIPE Broken pipe
ALRM Alarm clock

15 TERM Soft termination — terminate a process
URG Socket in extremes
STOP Stop a process
TSTP Keyboard stop for a process
CONT Continue a stopped process
CHLD Status change for a child process
TTIN Invalid read
TTOUT Invalid write
IO IO possible on FD
XCPU CPU time limit up
XFSZ File size limit up
VTALRM Virtual time alarm
PROF Profiling time alarm
WINCH Window change
LOST Resource lost
USR1 User-defined
USR2 User-defined

© 2002 by CRC Press LLC

2.4.3.3 Job Control
A job is a collection of one or more processes that share the same process group ID. Job
control is a feature that allows multiple processes to start from a single terminal, and also
allows some control over their execution. Job control requires support from the terminal
driver, the signal mechanism, the used shell, and the underlying operating system. Job
control allows the user to have multiple jobs sharing a single terminal, to move jobs from
foreground to background and vice versa, to suspend and restart jobs, and to perform other
miscellaneous activities. A job control-compatible shell makes each child process sent to the
background a leader of its own process group. In this way, it makes a child process insen-
sitive to signals sent to the parent shell (recall that signals have an effect on all processes
within the same process group). One of the consequences is, for example, that all background
processes remain alive upon the termination of the shell (when the user logs out).

There are several job-related UNIX commands, i.e., jobs, fg, bg, which are quite com-
prehensive and easy to use. They are primarily user oriented, although they can play a
role in UNIX administration, too.

© 2002 by CRC Press LLC

3
UNIX Administration Starters

3.1 Superuser and Users

The central entity in UNIX is a file — every activity on the system represents some kind
of transaction with or between files. Consequently, administrators of UNIX systems are
expected to deal with files, including the special purpose files known as configuration
files. Configuring system functions, setting some system parameters, tuning a kernel, and
restoring a lost file, all require the appropriate access to the needed data within the file.
On the other side, system files always require privileged access. In practice, this means
that the administrator has to be a superuser on the system in order to effectively administer
the UNIX system.

3.1.1 Becoming a Superuser

On a UNIX platform, the superuser is a privileged user with unrestricted access to all files
and commands. The name of this user account is root; the account is protected with a password
as with any other user account.

There are two ways to become the superuser:

1. Log in directly as root. This is always possible from the system console; it is
recommended that you disable the direct root log-in from other terminals as
a security precaution, but this is not a requirement.

2. Switch from another user log-in account to the superuser’s account by executing
the su command.

In both cases the system will prompt for the root password. After entering the correct
password, the superuser is logged into the system and has full control over all its
resources. The root account is extremely sensitive; one wrong move can easily destroy
important files and crash the system itself. Only knowledgeable persons should enjoy
superuser status; it is very important to restrict root access only to a certain group of
people who are responsible for the system itself. Obviously UNIX administrators should
belong to this group.

© 2002 by CRC Press LLC

3.1.2 Communicating with Other Users

The UNIX administrator frequently needs to communicate with other users, mostly to
inform them of current administrative activities being performed on the system. Some
examples include instructing all logged-in users to close their files and logout on time
when a system is going to be shut down informing users when new software is installed,
or passing along any other information important for regular system operations.

Several UNIX commands are available for this purpose:

• Sending a message to the user:

write username [tty]

where
username User to whom the message is sent
[tty] Optional terminal if the user is logged in to more than one

The text of the message should be typed after the command is issued; typing Ctrl-D
(^D) terminates the command. Once the message is terminated, the shell returns the
command prompt. The typed text of the message will be displayed at the terminal screen
of the addressed user.

• Sending a message to all users

wall (stands for “write all”)

The text of the message should be typed after the command was issued; typing
Ctrl-D (^D) terminates the command. The typed text of the message will be
displayed at the terminals of all logged-in users.

• Sending the message of the day

The message of the day — “motd” — can be used to broadcast systemwide informa-
tion to all users. The file /etc/motd keeps an arbitrary message which will be dis-
played during any user’s log-in procedure. Log-in is probably the most convenient
time to catch the user’s attention, because the user is fully concentrated on the
output of the log-in procedure. That makes it an ideal time to inform users about
changes in the system, newly installed software, and so on.
Any editor can be used to edit the /etc/motd file; the default UNIX editor is “vi.”

• Sending e-mail to user(s)

E-mail is a convenient vehicle for communicating nonurgent or lengthy messages
to users. E-mail is especially convenient for informing users about automated
jobs because it is very easy, for example, to send a message about the status of
an executed job to the users from the script that ordered the execution.

3.1.3 The su Command

We already mentioned the su command when we discussed how to become the superuser.
But the su commands does more; su allows an already logged-in user to become another
user without logging out. The format of the su command is:

su [-] [username [arg…]]

© 2002 by CRC Press LLC

where
- (dash) Must be specified as the first option when the environment for the specified

user is passed along unchanged, as if this user actually logged in. Otherwise,
the environment is passed along with the exception of certain environment
variables. Please note the differences to avoid any possible confusion regard-
ing the new user environment.

username Specifies the name of the new user to whom to switch; the default user name
is root. Without a specified user name, the command will try to switch to the
superuser.

arg… One or more optional arguments to be passed to the new shell; an arg of the
form “-c cmd_string” executes the command string using the shell; an arg of
“-r” gives the user a restricted shell.

The su command requires the user to supply the appropriate password unless a switch
from the root to another user account is performed. If the password is correct, su creates
a new shell process with the characteristics of the specified user (RUID, EUID, RGID,
EGID, and supplementary groups). The new shell will be the shell specified in the username’s
passwd entry; otherwise the default Bourne shell sh will be invoked. To return to the initial
user’s account, type exit, or Ctrl-D (^D) to exit the new shell. All attempts to become su
are logged in the log file /var/adm/sulog.

A few examples follow:

• To become user bjl while retaining the previously exported environment, execute:

$ su bjl

• To become user bjl but also change the environment as if bjl had originally
logged in, execute:

$ su - bjl

• To execute commands with the temporary environment and permissions of user
bjl, type:

$ su - bjl -c command args

3.2 UNIX Online Documentation

3.2.1 The man Command

UNIX has integrated online documentation, which is available to all users and UNIX
administrators. It is very hard to imagine successful administration without the extensive
online help provided by the UNIX manual pages. Every command, every option, all system
calls, and many other details are fully documented and available whenever you need
them, and they are always flavor-specific and accurate.

The basic online version of the UNIX reference manuals is usually located under the
manual page directory /usr/man, with possible additional topics located in the other “man”
directories /dirpath/man. The environment variable $MANPATH should include all “man”
directories in a complete search of the selected manual page title; otherwise, the system
will not be able to find and display the required manual pages.

© 2002 by CRC Press LLC

UNIX manual pages are divided into a number of sections, each containing similar
topics. The basic section organization is presented in the following table:

Note: An older organizational scheme under System V is also in use.

Modern UNIX flavors introduced new sections that were usually appended to the
existing ones. It is entirely possible for the manual pages to be organized somewhat
differently on your UNIX system.

Sections reside in separate subdirectories beneath the initial “man” directory. Here is an
example from the Solaris 2.x platform:

$ ls -F /usr/man
cat-w/ man1f/ man3c/ man3r/ man4/ man7fs/ man9f/
cat./ man1m/ man3e/ man3s/ man4b/ man7i/ man9s/
man.cf man1s/ man3g/ man3t/ man5/ man7m/ manl/
man1/ man2/ man3k/ man3x/ man6/ man7p/ mann/
man1b/ man3/ man3m/ man3xc/ man7/ man9/ windex
man1c/ man3b/ man3n/ man3xn/ man7d man9e/

The UNIX man command is available to display specific manual pages. The command
has several options, but its basic format is:

man man_page_title

where
man_page_title A title we are looking for. If the specified title does not exist, or if it is

spelled incorrectly, the system informs us; otherwise the required
manual pages will be displayed, page by page.

The general format of the displayed manual pages includes the following paragraphs,
if applicable:

NAME A specified title with a brief description

SYNOPSIS A format for using the specified title
DESCRIPTION A full description of the specified title

OPTIONS Available options for the specified title
ADDITIONAL INFO Title-specific additional information such as like environment

issues, exceptions, additional explanation, etc.

EXAMPLES Examples for further explanation
FILES Title-related files

SEE ALSO Other related titles

Contents BSD section System V section

User commands 1 1
System calls 2 2
C and other library routines 3 3
Special files, device drivers, hardware 4 7
Configuration files 5 4
Games 6 6 or 1 or N/A
Miscellaneous commands 7 5
Administration commands 8 1M
Maintenance commands 8 8

© 2002 by CRC Press LLC

The following example for the title man (referring to the man command) fully documents
how to use the man command.

$ man man

MAN(1) USER COMMANDS MAN(1) NAME

man — display reference manual pages; find reference pages by keyword

SYNOPSIS

man [-] [-t] [-M path] [-T macro-package] [[section] title …]…
man [-M path] -k keyword…
man [-M path] -f filename…

DESCRIPTION

man displays information from the reference manuals. It can display complete manual
pages that you select by title, or one-line summaries selected either by keyword (-k), or
by the name of an associated file (-f).

A section, when given, applies to the titles that follow it on the command line (up to
the next section, if any). man looks in the indicated section of the manual for those
titles. section is either a digit (perhaps followed by a single letter indicating the type
of manual page), or one of the words new, local, old, or public. The abbreviations n, l, o,
and p are also allowed. If section is omitted, man searches all reference sections (giving
preference to commands over functions) and prints the first manual page it finds. If no
manual page is located, man prints an error message.

The reference page sources are typically located in the /usr/man/man? directories. Since
these directories are optionally installed, they may not reside on your host; you may
have to mount /usr/man from a host on which they do reside. If there are preformatted,
up-to-date versions in corresponding cat? or fmt? directories, man simply displays or
prints those versions. If the preformatted version of interest is out of date or missing,
man reformats it prior to display. If directories for the preformatted versions are not
provided, man reformats a page whenever it is requested; it uses a temporary file to
store the formatted text during display.

If the standard output is not a terminal, or if the “-” flag is given, man pipes its output
through cat(1V). Otherwise, man pipes its output through more(1) to handle paging and
underlining on the screen.

OPTIONS

-t man arranges for the specified manual pages to be troffed to a suitable raster output device
(see troff(1) or vtroff(1)). If both the - and -t flags are given, man updates the troffed versions
of each named title (if necessary), but does not display them.

-M path

Change the search path for manual pages. path is a colon-separated list of directories that
contain manual page directory subtrees. For example, /usr/man/u_man:/usr/man/a_man makes
man search in the standard System V locations. When used with the -k or -f options, the
-M option must appear first. Each directory in the path is assumed to contain sub-direc-
tories of the form man[1–8l-p].

© 2002 by CRC Press LLC

-T macro-package

man uses macro-package rather than the standard -man macros defined in /usr/lib/tmac/tmac.an
for formatting manual pages.

-k keyword…

man prints out one-line summaries from the whatis database (table of contents) that contain
any of the given keywords. The whatis database is created using the catman(8) command
with the -w option.

-f filename…

man attempts to locate manual pages related to any of the given filenames. It strips the
leading pathname components from each filename, and then prints one-line summaries
containing the resulting basename or names. This option also uses the whatis database.

MANUAL PAGES

Manual pages are troff(1)/nroff(1) source files prepared with the -man macro package.
Refer to man(7), or formatting documents for more information.
When formatting a manual page, man examines the first line to determine whether it
requires special processing.

Referring to Other Manual Pages

If the first line of the manual page is a reference to another manual page entry fitting the
pattern: .so man?*/sourcefile

man processes the indicated file in place of the current one. The reference must be expressed
as a pathname relative to the root of the manual page directory subtree.

When the second or any subsequent line starts with .so, man ignores it; troff(1) or nroff(1)
processes the request in the usual manner.

Preprocessing Manual Pages

If the first line is a string of the form:
\”X

where X is separated from the ” by a single SPACE and consists of any combination of
characters in the following list, man pipes its input to troff(1) or nroff(1) through the
corresponding preprocessors.

e eqn(1), or neqn for nroff
r refer(1)
t tbl(1)
v vgrind(1)

If eqn or neqn is invoked, it will automatically read the file /usr/pub/eqnchar (see eqnchar(7)).
If nroff(1) is invoked, col(1V) is automatically used.

ENVIRONMENT

MANPATH If set, its value overrides /usr/man as the default search path. (The -M flag, in
turn, overrides this value.)

© 2002 by CRC Press LLC

PAGER A program to use for interactively delivering man’s output to the screen. If not
set, ‘more -s’ (see more(1)) is used.

TCAT The name of the program to use to display troffed manual pages. If not set,
‘lpr–t’ (see lpr(1)) is used.

TROFF The name of the formatter to use when the -t flag is given. If not set, troff is used.

FILES

/usr/[share]/man root of the standard manual page directory subtree
/usr/[share]/man/man ?/* unformatted manual entries
/usr/[share]/man/cat ?/*nroffed manual entries
/usr/[share]/man/fmt ?/*troffed manual entries
/usr/[share]/man/what is table of contents and keyword database
/usr/[share]/lib/tma c/tmac.an standard -man macro package /usr/pub/eqnchar

SEE ALSO

apropos(1), cat(1V), col(1V), eqn(1), lpr(1), more(1), nroff(1), refer(1), tbl(1), troff(1), vgrind(1),
vtroff(1), whatis(1), eqnchar(7), man(7), catman(8)

NOTES

Because troff is not 8-bit clean, man has not been made 8-bit clean.
The -f and -k options use the /usr/man/whatis database, which is created by catman(8).

BUGS

The manual is supposed to be reproducible either on a photo-typesetter or on an ASCII
terminal. However, on a terminal some information (indicated by font changes, for instance)
is necessarily lost.

Some dumb terminals cannot process the vertical motions produced by the e (eqn(1))
preprocessing flag. To prevent garbled output on these terminals, when you use e also
use t, to invoke col(1V) implicitly. This workaround has the disadvantage of eliminating
superscripts and subscripts even on those terminals that can display them. CTRL-Q will
clear a terminal that gets confused by eqn(1) output.

Linux provides even more; besides this, for UNIX standard online documentation, Linux
also offers Texinfo Manual, which presents more detailed technical descriptions of related
topics. Again its use is very simple; by typing “info topic-name” the required information
about the specified topic is displayed.

3.2.2 The whatis Database

The man command is very useful for getting information on a specific title; a title could
be a command name, system call, library item, or something similar, but an existing title
must always be specified. If such a title is unknown and you are searching for the manual
pages related to a topic (but that topic is not the title itself), the whatis database has been
provided.

© 2002 by CRC Press LLC

UNIX allows you to build the whatis database, which is instrumental in finding infor-
mation about a certain topic without knowing the relevant manual page title. The whatis
database contains all of the manual page titles with a brief description of them; it primarily
resides in the /usr/man/windex file (sometimes the file name is whatis), but also in other
additional database files in the corresponding “man” directory. The command “man -k
topic_item” will search through the whatis database and display all manual page titles
that refer to the specified “topic_item.” Once the relevant title is known, the corresponding
manual pages can be displayed. For a better understanding, see the -k option in the manual
pages for the man command.

The whatis database must first be created locally; copying a database from another
system does not work because the database must be directly linked with existing manual
pages on the system where it resides. Additionally, the database should always be recre-
ated when new manual pages are added to the system; the database must integrate the
newly available titles.

The UNIX command catman-w is available to create a whatis database. It is very easy
to begin to create a database, but it takes quite a while for the process to finish. It is a good
idea to create a whatis database immediately upon UNIX installation.

Some UNIX flavors introduced new commands to create the whatis database. In Linux,
the whatis and apropos commands are available (they have almost the same appearance
as “man -k”), and the command makewhatis to create the whatis database.

3.3 System Information

UNIX administration means administering UNIX software or, more precisely, UNIX
system software. Software requires maintenance just like any other product; but
because of their complexity, software systems require a more sophisticated level of
maintenance. Among the increased requirements are highly educated and skilled
personnel who are capable of managing, upgrading, configuring, and fixing unpre-
dictable and very sophisticated problems.

Software could not exist without the corresponding computer hardware. Knowledge of
hardware can be very instrumental and helpful in UNIX system administration. At the very
least, a UNIX administrator has to be familiar with basic system hardware configuration.

In the following text, several UNIX commands of this nature will be discussed.

3.3.1 System Status Information

To begin, let us introduce a few commands useful for checking the system status.

3.3.1.1 The uname Command
The uname command prints the basic UNIX system information to the standard output
file. The displayed system data contain: hostname, operating system data, and hardware
architecture data.

The format of the command is:

uname [options]

© 2002 by CRC Press LLC

where the available options are:
-n Print the hostname (the hostname may be the name by which the system is known

to a communications network)
-s Print the operating system name (default)
-r Print the operating system release
-v Print the operating system version
-m Print the machine hardware name (architecture)
-a Print all the above information

The output of the uname -a command for several UNIX flavors is presented in the
following table:

Supposing a default system startup, Linux offers more detailed information about OS
in the file /etc/issue. By typing:

$> cat /etc/issue

Red Hat Linux release 7.0 (Guinness)
Kernel 2.2.16 on a 4-processor i686

we will definitely learn more about our Linux installation.

3.3.1.2 The uptime Command

The uptime command displays:

• The current time

• How long the system has been up (the length of time)
• Number of users

• A rough estimate of the system load over the last estimate, every 5 and 15 minutes

Here are a few examples:

uptime

6:47am up 6 days, 16:38, 1 user, load average: 0.69, 0.28, 0.17 (Solaris)
9:50am up 9 days, 34 min, 3 users, load average: 0.00, 0.00, 0.00 (SunOS)
9:38am up 9 days, 27 min, 1 user, load average: 2.07, 2.03, 2.03 (HP-UX)

3.3.1.3 The dmesg Command
The dmesg command collects system diagnostic messages; it looks in a system buffer for
recently generated messages when errors occur and forwards them to the standard output.

ULTRIX acf4 4.3 1 RISC
HP-UX apollo A.09.03 A 9000/715 2004998919 two-user license
HP-UX baltic B.10.20 A 9000/800 1293244351 two-user license
IRIX indigo1 4.0.5 06151813 IP12
SunOS patsy 4.1.3 1 sun4c
SunOS apollo 5.3 Generic sun4m sparc
SunOS aegean 5.6 Generic_105181–17 sun4u sparc SUNW,Ultra-Enterprise
AIX rs01-ch 2 3 000187963100
Linux broome 2.2.16 #2 SMP Thu Oct 12 22:32:13 GMT 2000 i686 unknown

© 2002 by CRC Press LLC

When the “-” option is used, the dmesg command incrementally generates messages that
are new since the last time it was executed.

Sometimes, existing imperfections can stay hidden and the system appears to be working
fine; in such cases the dmesg command could be very useful. However, the system error
message buffer is of a small, finite size, so there is no guarantee that all error messages
will be logged.

In the past, the dmesg command was also used to update the system log file (usually /usr/
adm/messages) by its periodic execution through the cron facility. A typical crontab entry:

/etc/dmesg - >> /usr/adm/messages

would update the system log file periodically. Today, such a task is obsolete, and an update
of the system log file is performed by the syslogd daemon (see Chapter 9).

An example follows (from the HP-UX platform):

$ dmesg
May 20 16:59
Floating point coprocessor configured and enabled.
I/O System Configuration:

Block TLB entry #8 from 0 × f5000000 to 0 × f5ffffff allocated.
HPA1991AC19 Bit-Mapped Display (revision 8.02/10) in SGC slot 0
SGC at select code 0 × 0
Built-In SCSI Single-Ended Interface at select code 0 × 20: function number 1
Built-In LAN controller found at select code 0 × 20: function number 2
HIL interface at select code 0 × 20: function number 3
Built-In RS-232C Serial Interface at select code 0 × 20: function number 4
Built-In RS-232C Serial Interface at select code 0 × 20: function number 5
Parallel port at select code 0 × 20: function number 6
Advanced Digital Audio Interface at select code 0 × 20: function number 8
System Console is on the ITE

Networking memory for fragment reassembly is restricted to 2957312 bytes
Swap device table: (start & size given in 512-byte blocks) entry
0 - auto-configured on root device; start = 869400, size = 152702
Core image of 8192 pages will be saved at: block 478283 on device 0 × 7201600

Warning: filesystem time later than time-of-day register
Getting time from filesystem

B2352A HP-UX (A.09.03.nodebug) #1: Mon Aug 30 21:05:26 MDT 1993
Memory Information:

Physical: 32768 Kbytes, lockable: 26168 Kbytes, available: 27880 Kbytes
Copyright (c) 1990–1998, Rational Software Corporation.
Covered by U.S. patent no. 5,574,898.
Other U.S. and foreign patents pending.
automountd not running, retrying
automountd OK

3.3.2 Hardware Information

It is logical to want to upgrade your UNIX system to improve its overall performance. The
first thing you need to know is the current hardware configuration of the UNIX system: how
many CPUs are installed? How much memory is used? What is the size of the disk space?
These simple questions are very common, and the UNIX administrator always addresses them.

A partial answer can be obtained with the UNIX command top. The top command lists
the top-most CPU-consuming processes. The command is extremely instrumental in
performance measurement and the tracing of potential problems. However, the command

© 2002 by CRC Press LLC

also displays basic data about the number of CPUs and memory usage, which is what we
are looking for right now. An example follows:

top
System: mekong Mon Jul 17 22:51:28 2000
Load averages: 0.91, 0.77, 0.75
199 processes: 197 sleeping, 2 running
CPU states:
CPU LOAD USER NICE SYS IDLE BLOCK SWAIT INTR SSYS
0 0.83 1.0% 0.0% 1.4% 97.6% 0.0% 0.0% 0.0% 0.0%
1 0.99 75.2% 0.0% 24.8% 0.0% 0.0% 0.0% 0.0% 0.0%
— — — — — — — — — —
avg 0.91 38.0% 0.0% 13.1% 48.8% 0.0% 0.0% 0.0% 0.0%
Memory: 49676K (40972K) real, 100316K (83172K) virtual, 196720K free Page# 1/19

CPU TTY PID USER PRI NI SIZE RES STATE TIME %WCPU %CPU COMMAND
NAME

1 q2 27047 cbw1 239 20 4740K 968K run 173:59 99.09 98.92 udt
0 ? 398 root 154 20 108K 140K sleep 1324:09 0.93 0.93 syncer
0 ? 7448 rpsc 168 20 4484K 696K sleep 35:57 0.89 0.89 udt
0 p1 8405 root 178 20 1260K 340K run 0:00 0.85 0.49 top
0 ? 6948 root 155 2 6288K 6340K sleep 28:49 0.41 0.41 lcp

It is also a good idea to try using the available system administration tools, like the HP-UX
flavored SAM, or AIX flavored SMIT. These always provide hardware-related information
among their many other menu selections. They are very well suited to this purpose,
because a search for hardware information is almost always interactive.

Otherwise, each UNIX flavor provides a different set of commands used to diagnose
the installed hardware. We will discuss some of them.

3.3.2.1 The HP-UX ioscan Command

On the HP-UX platform, the special command ioscan is available for dealing with actual
hardware. The command scans system hardware, usable I/O system devices, or kernel I/O
system data structures, as appropriate, and lists the results. For each hardware module
on the system, ioscan displays (by default) the hardware path to the hardware module,
the class of the hardware module, and a brief description of it.

By default, the ioscan command scans the system and lists all reportable hardware
found. The types of hardware reported include processors, memory, interface cards, and
I/O devices. Entities that cannot be scanned are not listed.

The ioscan command recognizes the following options:

-C class Restricts the output listing to those devices belonging to the specified
class

-d driver Restricts the output listing to those devices controlled by the specified
driver

-f Generates a full listing, displaying the module’s class, instance number,
hardware path, driver, software state, hardware type, and a brief
description

-F Produces a compact listing of fields separated by colons

© 2002 by CRC Press LLC

-H hw_path Restricts the scan and output listing to those devices connected at
the specified hardware path

-I instance Restricts the scan and output listing to the specified instance

-k Scans kernel I/O system data structures instead of the actual hardware
and lists the results

-n Lists device file names in the output; only special files in the /dev
directory and its subdirectories are listed

-u Scans and list usable I/O system devices instead of the actual hardware.
Usable I/O devices are those having a driver in the kernel and an
assigned instance number.

Some of the options require additional arguments, known as fields, which are defined
as follows:

class A device category, for example: disk, printer, or tape

instance The instance number associated with the device or card; it is a unique
number assigned to a card or device within a class

hw_path A numerical string of hardware components, noted sequentially from the
bus address to the device address; typically, the initial number is appended
by slash (“/”), to represent a bus converter (if required by the machine),
and subsequent numbers are separated by periods (”.”). Each number
represents the location of a hardware component on the path to the device.

driver The name of the driver that controls the hardware component

The following example shows a partial output of the ioscan command:

/usr/sbin/ioscan
H/W Path Class Description

bc
8 bc I/O Adapter
10 bc I/O Adapter
10/0 ext_bus GSC built-in Fast/Wide SCSI Interface
10/0.5 target
10/0.5.0 disk SEAGATE ST15150W
10/0.6 target
10/0.6.0 disk SEAGATE ST15150W
10/0.7 target
10/0.7.0 ctl Initiator
10/4 bc Bus Converter
10/4/0 tty MUX
10/4/12 ext_bus HP 28696A-Wide SCSI ID = 7
10/4/12.12 target
10/4/12.12.0 disk SEAGATE ST32550W

.

.

.
10/12/5.0 target
10/12/5.0.0 tape HP C1533A
10/12/5.2 target
10/12/5.2.0 disk TOSHIBA CD-ROM XM-5401TA
10/12/5.7 target
10/12/5.7.0 ctl Initiator

© 2002 by CRC Press LLC

3.3.2.2 The Solaris prtconf Command

On the Solaris platform, the prtconf command displays the system configuration information.
The output includes the total amount of memory and the configuration of system
peripherals formatted as a device tree.

The prtconf command has several options:
-P Includes information about pseudo devices; by default, information regarding

pseudo devices is omitted
-v Specifies verbose mode

-F Returns the device pathname of the console frame buffer, if one exists. If there
is no frame buffer, prtconf returns a non-zero exit code

-p Displays information derived from the device tree provided by the firmware
(PROM)

-V Display platform-dependent information
-D For each system peripheral in the device tree, displays the name of the device

driver used to manage the peripheral

The following example presents a partial output of the command running on a Sun4/65
series machine:

/usr/sbin/prtconf
System configuration: Sun Microsystems sun4c
Memory size: 16 megabytes
System peripherals (software nodes):
Sun 4_65

options, instance #0
zs, instance #0
zs, instance #1
fd (driver not attached)
audio (driver not attached)
sbus, instance #0
dma, instance #0
esp, instance #0
sd (driver not attached)
st (driver not attached)
sd, instance #0
sd, instance #1 (driver not attached)

.

.
le, instance #0
cgsix (driver not attached)
auxiliary-io (driver not attached)
interrupt-enable (driver not attached)
memory-error (driver not attached)
counter-timer (driver not attached)
eeprom (driver not attached)
pseudo, instance #0

10/12/6 lan Built-in LAN
10/12/7 ps2 Built-in Keyboard/Mouse
32 processor processor
34 processor processor
49 memory Memory

© 2002 by CRC Press LLC

The output of the prtconf command is highly dependent upon the version of the PROM
installed in the system. The output will be affected in potentially all circumstances.

The “driver not attached” message means that no driver is currently attached to that specific
device. In general, drivers are loaded and installed (and attached to hardware instances) on
demand and when needed, and may be uninstalled and unloaded when the device is not in use.

3.3.2.3 The Solaris sysdef Command
Another Solaris command that can be used for this purpose is sysdef. The sysdef command
outputs the current system definition in tabular form. It lists all hardware devices, as well
as pseudo devices, system devices, loadable modules, and the values of selected kernel
tunable parameters. It generates the output by analyzing the named bootable operating
system file (namelist) and extracting the configuration information from it. The default
system namelist is /dev/kmem. However, the command output is not entirely comprehen-
sive for figuring out basic hardware information; it is more suitable for kernel-related
information. This command should probably not be the first choice.

3.4 Personal Documentation

UNIX administration is a challenging job; it requires a substantial level of expertise and skills.
But UNIX administration is also a routine job, in which the tasks can only be successfully
accomplished by following the required procedures. To install UNIX, you must follow the
vendor’s instructions and recommendations; to configure an application you must strictly
obey configuration rules. There is no room for improvisation; improper settings are the main
causes of system instability and all related problems. Bugs in the software are a good excuse
for our wrongdoings, but only rarely are they the real cause of the problems we experience.

Properly configuring a system, and ensuring all of its settings are correct, is not an easy
task. Often there are plenty of small but important details that we must take care of. It is
easy to forget these small issues, especially if we only deal with them occasionally. Taking
notes on everything done to the system can be very instrumental for future work; such
notes can be the lifesaver in some critical situations. These moments are always very
stressful, and an administrator has to act quickly and accurately. There is no better advice
for that time than to follow your own, already tested and proven notes.

Many administrative tasks repeat a number of times; it is common to install the same
UNIX version on different machines, to configure hosts in the same network environment,
to set the same application software multiple times, etc. Any notes about jobs you have
done previously can be very helpful; the length of time between jobs can be large enough
that you may forget many important details.

Note by note a substantial personal documentation will be built; this is your “knowledge
database,” and it is very important for efficient work. You will always be more familiar
with your own documents than with any vendor-provided documentation. There is no
need to worry about style, syntax, or language — as long as they are explicit and complete,
you will always understand your own texts.

A key issue for successful UNIX administration is to be well organized. System admin-
istration is based on rules designed by others: different configuration files have different
formats and syntax. Each required letter, number, dot, dash, or whatever is specified must
be fully respected — there is not a great deal of freedom of choice. A UNIX administrator
cannot invent another set of configuration rules, even if the existing ones do not seem

© 2002 by CRC Press LLC

very logical or convenient. It simply will not work. Past experiences can save time and
make everything easier; copying a workable procedure is definitely more efficient than
reinvestigating something you have already done.

In most cases, UNIX administration is also a team task. It takes a number of UNIX
administrators (as well as others such as NT administrators, network administrators,
helpdesk staffers, etc.) to support large company networks. One important issue, then, is
how to make their collective work more efficient. One logical solution is to combine all
individual documentation and then make all of this documentation available to all team
members. The organization of this effort, however, is crucial.

A very efficient approach to making all system documentation available yet well orga-
nized is to put individual personal documents on the company network, creating sub-
stantial internal company site-specific documentation, and make the documentation
available to all relevant associates. By posting these documents on an internal company
Web site (if necessary even creating an internal Web site for this purpose), everyone will
be able to obtain the necessary information about any described topic. The documentation
remains open for any required update or upgrade. To prevent potential frauds, the access
to documents should be restricted to administrative personnel only.

There are third-party products that provide tools to create internal knowledge databases;
in most cases they offer other features, as well. However, they can be costly and sometimes
too complex to work with. Creating your own internal, Web-based documentation site is
simple, inexpensive, and very efficient.

3.5 Shell Script Programming

Shell programming is one of the strongest parts of the UNIX administration. This is also one
of the key elements of an overall UNIX success. UNIX administrators are in love with shell
programming. Where is this authoritative statement coming from? It is coming from the fact
that the shell programming presents an extremely powerful tool to customize and automate
your UNIX system, as well as to accomplish many manual administrative activities easier.

An intuitive and colorful graphic user interface (GUI) sounds challenging for certain
complex administrative actions. However, GUI actions remain quite hidden from us. GUI
is great as long as everything is going smoothly, but very frustrating once it starts to fail.
And what do you do when GUI is not even running because of underlying problems? Or,
how do you automate some repeated actions? Even to document needed steps in the GUI
administration is not an easy task.

A good UNIX administrator tends to pack needed administrative actions into the
corresponding shell scripts, and then to use the scripts instead. Well-written and tested
shell scripts are always working properly, even in the most critical situations when the
pressure on the UNIX administrator is always very high. There are no typos and mistyping
in the shell-script implementations nor are there incorrect command options — frequent
errors during manual procedures. Everything is happening correctly and in the fastest
possible way. Simply, shell scripts are lifesavers.

There are also many other reasons in favor of the intensive shell programming.
Time-scheduled scripts will execute successfully the same job as many times as needed,
withor without provided verbose logging, e-mailing, paging, or whatever is required.
We should spend the time only once, when we write the script, and only to use the
script later. And always when we write a script, we should have enough time, and
be doing it far from any of the pressure typical of urgent administrative actions.

© 2002 by CRC Press LLC

Shell programming is a prerequisite for good UNIX administration. It is assumed that
a UNIX administrator is familiar with shell programming. This section is not a tutorial in
shell programming. Rather it points to certain aspects of shell programming that could
be confusing for UNIX administrators (even if not beginners in this area). A thorough
shell-programming tutorial is definitely not in the scope of this book; however, these skills
are assumed throughout the pages of this book.

3.5.1 UNIX User Shell

UNIX user shell is an interface layer between the UNIX operating system and the user. It
is presented in the Figure 3.1.

There are many different UNIX shell flavors: Bourne shell sh, Korn shell ksh, C shell
csh, Bourne again shell bash, enhanced C shell tcsh, etc. Some shells are very similar — like
ksh and bash, sh is the subset of ksh — but generally they are not mutually compatible
(at least in both directions). This is important to know when a shell script is invoked.

3.5.2 UNIX Shell Scripts

Shell scripts are programs that comply with the shell programming language. Shell scripts
are not compiled programs; instead they are readable text files where each command line
is read and processed by the shell command interpreter at the time the script is executed.
Shell command interpreter processes a shell script until an erroneous command line is
encountered or until it ends. A shell command line can contain:

• Any UNIX command or command sequence
• Any shell-flavored command or statement

• Any other program or shell script
• A combination of previously listed items

Each shell has a number of its own commands and statements that actually make shell
programming so powerful. Make sure that they are very shell-specific in every sense:
syntax and action.

Input

Output
USER

UNIX
Operating
System

SHELL

FIGURE 3.1
The user’s shell layer.

© 2002 by CRC Press LLC

3.5.2.1 Shell Script Execution
A shell script (as any other program in UNIX) can be simply invoked by its name, but
the read and execute permissions for the script are required. The following example
illustrates this:

sh# cat /tmpMyScript.sh (to see content)
###########################
echo “Just a test of x permission”
###########################

sh# ls -l /tmp/MyScript.sh (to see permissions)
-rw-r--r-- 1 root root 39 Aug 21 18:27/tmp/MyScript.sh

sh# /tmp/MyScript.sh (to invoke shell script)
sh: /tmp/test4.sh: Permission denied

The script can also be invoked with an explicitly specified shell. In that case the execute
permission on the script is not mandatory. Some UNIX flavors will execute a shell script
even without read permission granted.

sh# /bin/sh /tmp/MyScript.sh

Just a test of x permission

When invoked directly, the shell script is executed in the environment of the current
user shell. The current user shell is forked, and then each command line of the shell script
is processed by the shell interpreter and executed (already discussed fork-and-exec start
of the program). If two shell flavors do not match (the shell script and the parent shell —
for example bash script is invoked in csh environment), most probably a number of errors
will be encountered for basically correct shell script.

The following examples present such situations. The arbitrary bash script named
myscript.bash is invoked in the bash and csh environment:

bash# cat /tmp/myscript.bash
######################################
Define variables
export TEXT1 = “This is a bash script myscript.bash”
export TEXT2=“Running the script myscript.bash”
#
Run the command
echo “$TEXT1”
echo “$TEXT2”
######################################

bash# /tmp/myscript.bash
This is a bash script myscript.bash
Running the script myscript.bash

bash# /bin/csh (Switch to csh)
csh# /tmp/myscript.bash
export: Command not found.
export: Command not found.
TEXT1: Undefined variable.

© 2002 by CRC Press LLC

The previous problematic situation could be skipped in two ways. First, as we mentioned
previously, the script can be invoked with explicitly specified shell:

bash# /bin/bash /tmp/myscript.bash (Here shells match)
This is a bash script myscript.bash
Running the script myscript.bash

csh# /bin/bash /tmp/myscript.bash (Here shells don’t match)
This is a bash script myscript.bash
Running the script myscript.bash

Or the shell can be implicitly specified in the script itself. The very first line in the script
of the format — #!/bin/shellname — has a special meaning. The “/bin/shellname” identifies
the full path of the desired shell, which will be invoked first and then the script executed
in this shell environment. Remember that it can be any other executable program, not
necessarily the shell. However, we are assuming a shell. Here are examples:

bash# cat /tmp/myscript1.bash
#!/ bin/bash
######################################
Define variables
export TEXT1=“This is a bash script myscript1.bash”
export TEXT2=“Running the script myscript1.bash”
#
Run the command
echo “$TEXT1”
echo “$TEXT2”
######################################

bash# /tmp/myscript1.bash
This is a bash script myscript1.bash
Running the script myscript1.bash

csh# /tmp/myscript1.bash
This is a bash script myscript1.bash
Running the script myscript1.bash

In all the examples, the current shell spawns itself or another shell, making a “parent–child
relationship” between two shells (current user’s shell and the invoked shell script). However,
a shell script can also be executed directly in the user’s shell environment. For this purpose
the shell script must be “sourced.” A special shell command is used to source the script.

source myscript.sh # for csh and csh-like shells
. myscript.sh # for ksh, bash, and Bourne shells

To source a shell script means to skip the forking of the user’s shell and to execute the
script directly in the user’s shell environment.

3.5.2.2 Shell Variables

We can define and redefine shell environment within the shell script. By invoking a new
shell script, the current shell environment is transferred and the new initial shell
environment created. Remember that this is a unidirectional transfer, from parent toward
child shell (child inherits the parent’s environment); the reverse is never possible. Regarding

© 2002 by CRC Press LLC

shell variables, only global, i.e., exported, variables could be inherited; local variables
remain always within the current shell environment, and they disappear once the shell is
terminated. This sometimes sounds very confusing for the novices in UNIX administration.

In this light we can better understand the need and purpose of the shell command:
source. If we want to define a shell environment within a single script (let us call it
environment definition script), and then share these definitions among many other shell
scripts, we must source the environment definition script. Otherwise, all definitions will
last as long as the execution of the environment definition script. The following example
illustrates that situation.

The user’s shell is Bourne shell. Variables VARA and VARB are not defined.

sh# echo $VARA # To check if $VARA is defined

sh# echo $VARB # To check if $VARB is defined

The script /tmp/myscript2.sh defines the global variables VARA and VARB:

sh# cat /tmp/myscript2.sh
Variable definitions
#################
VARA=“VariableA”
VARB=“VariableB”
Export VARA VARB
#################

Upon the script execution, variables VARA and VARB are still undefined in the user’s
shell environment. There is no way to export variables toward the parent shell environment.

sh# /tmpi/myscript2.sh # Execute the script

sh# echo $VARA # To check if $VARA is defined

sh# echo $VARB # To check if $VARB is defined

Upon the sourcing of the script variables, VARA and VARB remain defined within the
user’s shell environment.

sh# . /tmp/myscript2.sh # Source the script

sh# echo $VARA # To check if $VARA is defined

VariableA

sh# echo $VARB # To check if $VARB is defined

VariableB

The previous discussion is instrumental in understanding the user’s log-in process and
the initial definition of the user’s shell environment, which is discussed in Chapter 7.

3.5.2.3 Double Command-Line Scanning
Shell variables are often used on the shell command-lines, as a part of UNIX or shell com-
mands. Unfortunately, sometimes they can easily be misinterpreted. Simply, under certain
conditions, shell variables could be understood literally: the variable $VARA from the previous
example can be understood as “$VARA” instead of its value “VariableA.” Just think about
versatile and powerful UNIX commands (better to say UNIX utilities) like, awk, sed, or other
commands that have their own syntax somehow different from the shell syntax. This makes
a great difference and could make the use of shell variables very restricted.

© 2002 by CRC Press LLC

The shell response to this situation is the command: eval. This command allows so-called
“double command-line scanning,” where the shell variables are first processed, developed,
and then replaced for the second command-line processing. For better understanding of
this command, let us see how the shell command interpreter processes a command line
at all. This is presented in Figure 3.2 and explained in the following text.

Single quote

Not keyword

Alias

Tokenize command

Double quotes
Check quotes

No quote

Other keyword

Check 1st token

Opening keyword

Not alias

Check 1st token

Tilde expansion – substitution of home directory

Variable substitution

Command substitution

Arithmetic expression substitution

Command lookup
(built-in commands – functions – executables)

Tokenize eventually expanded text

Wildcard expansion

Run
commandeval

Syntax error

R
ea

d
ne

xt
 c

om
m

an
d

(1)

(4)

(8)

(5)

(6)

(3)

(2)

(7)

(9)

(10)

E
rr

o
rE

xp
an

d
al

ia
s

M
ak

e
ar

gu
m

en
ts

 in
to

 n
ex

t c
om

m
an

d

D
ou

bl
e

qu
ot

es

FIGURE 3.2
Shell processing of the command line.

© 2002 by CRC Press LLC

1. The command line is “tokenized,” i.e., split into its constituents: word, keywords,
IO redirectors, and semicolons, according to the separating metacharacters: space,
tab, new line,), (, <, >, \, /, and &.

2. The first token is tested if it is “a single-line unquoted keyword” (a keyword
without quotes or continuation character). Shell statements (if, while, until…) and
functions are treated as “opening keywords,” set up internally; the processing
continues with the next token.

3. The command is tested against the list of command aliases; eventual aliases are
expanded and reprocessed.

4. The substitution of an eventual user’s home directory.

5. The variable substitution for any expression with leading $. This is also the
second processing step for double-quoted tokens (steps between are skipped).

6. The command substitution for any single back-quoted expression of the form
�expression� or $(expression). The expression is executed and substituted with the
obtained result for additional processing.

7. The evaluation of the arithmetic expressions of the form $((expression)). Remember
that the double-quoted expressions are processed differently from others after
this step.

8. The eventual expanded text (as a result of the previous step processing) is now
“tokenized” according to the shell environment internal field separators (IFS).

9. The wildcard expansion of *, ? and [/] pairs, and processing of regular expression
operators.

10. The search for the command in all predefined command directories (according
to the shell $PATH or $path variable). This is also the second, and the only, step
in processing single-quoted command-line tokens.

At this point everything is ready for the command-line execution. However, if the shell
command eval was specified, another round of the command processing will be performed.
This is known as double command-line scanning.

The format of the command is: eval args where args includes the actual command itself
and command arguments. For better understanding of this command, see the following
example. The user’s shell is bash, but it does not have any specific impact on the example
(could be any other shell).

bash# VAR1=‘$VAR2’ # Define variable VAR1

bash# VAR2=‘Example’ # Define variable VAR2

bash# echo $VAR1 # Check the values of variables

$VAR2

bash# echo $VAR2

Example

bash# eval echo $VAR1 # Check the values of variables upon double scanning

Example

bash# eval echo $VAR2

Example

© 2002 by CRC Press LLC

3.5.2.4 Here Document
An extremely powerful feature of the shell programming is its Here Document. The shell
redirector of the form: “<< label” forces the input to the specified command to be the
shell’s standard input, which is read until the line that contains only “label” is reached.
It means that all script command-lines within the Here Document will not be processed by
the shell command interpreter. Instead they will be processed by the command specified
at the start of the Here Document.

Here is an example:

###
myprogram << !EOF
mycommandA
mycommandB
mycommandC
!EOF
###

This shell script command-line sequence will start the execution and transfer the further
command-line control to myprogram. Command lines that follow until the terminating
label !EOF are submitted to and strictly processed by myprogram. The specified label can
be any string, but two labels must match literally; no leading or trailing blanks on the
terminating line are allowed.

Here Document enables an unattended execution of not-shell and not-UNIX commands
within the shell script. It is used frequently for inception of SQL, FTP, and other command
sequences into the shell environment. Unfortunately Here Document does not support inter-
active procedures — simply the next command-line is submitted as soon as the previous
one is done. Generally the main disadvantage of the shell programming is its inability to
act interactively if used unattended. For this purpose Espect or Perl patches are required.

Here Document makes shell script programming easier and more powerful. For more
details see the FTP example in Chapter 21.

3.5.2.5 Few Tips

At the end of this brief overview of certain shell programming topics, few tips for using
the shell scripts:

• A shell script inherits the caller ’s environment, usually the user’s shell.
However there are no rules for the initial environment setting. Everything
defined-out-of-script is uncertain, including the search path for the implemented
commands in the script. Some good advice follows:

Define the PATH variable in the script.
Or, use the full-path command names.

• It is very common that the fully tested shell script from the command line
fails when it is run as a cron job. The reason is simple: cron environment is
reduced to several default values, usually insufficient for the successful script
execution.

• Always clean everything that the shell script creates temporarily. Each file is
owned by its creator, and remaining temporary files could be obstacle for other
script invokers.

• Pay attention to the standard and error output. The shell scripts are often running
in background either.

© 2002 by CRC Press LLC

4
System Startup and Shutdown

4.1 Introductory Notes

UNIX systems run continuously under normal circumstances. Shutting down and
powering-off a UNIX system should be done rarely, usually only when a hardware
upgrade is being performed or a system is being allocated, or occasionally when another
action requiring a system shutdown is performed. In real life, system shutdown is more
frequent, because unpredictable situations always occur.

Power-cycling a UNIX system is not the only way the system can be shut down.
Rebooting is also a familiar task for any UNIX administrator; UNIX administrators know
well how system rebooting can be healthy for overall system maintenance.

Nevertheless, keeping the UNIX system running is the most visible task of a system
administrator. If the system crashes, everyone will complain, your phone will ring constantly,
and you will find yourself anxiously trying to fix the problem and bring the system back
into production. Quickly you will learn how important the system you are in charge of
really is, and how many users depend on it. Even more important, you will learn how
crucial a smooth, fast, proper system startup can be.

This chapter covers topics related to normal UNIX system startup and shutdown pro-
cedures. Invoking a system startup and shutdown is quite simple; the main requirement
is to be the superuser on the system (an easy task for an administrator). On the other
hand, making the system behave correctly, especially during startup, requires a great deal
of knowledge and administrative skill. Proper system startup is supposed to customize
and set the myriad of existing system configuration files that will control each portion
of the UNIX system. Some of these files include system-related configuration data, but
there are also site-added applications; the bottom line is that the system should be fully
operational after any system startup.

Given the complexity of properly configuring the system startup, this chapter could
easily be located at the end of the overall text, rather than at its beginning. However,
discussing the administration of a running UNIX system without knowing how that
system came to be running seems strange; it is as though we are talking about administering
a nonexistent UNIX system. So this material remains in the beginning by design; it will
focus on the topic of global system startup and shutdown, and we will return to individual
startup and shutdown issues later, whenever it is appropriate in discussing specific UNIX
topics.

© 2002 by CRC Press LLC

From an administrative standpoint, system shutdown is the simpler procedure; at the
end of the procedure a system must terminate all running processes, dismount all filesys-
tems, and stop any other system activity. System shutdown works even if we never touch
the default shutdown procedure — or perhaps it is better to say it mostly works, because
the author of this text has witnessed a UNIX system that could not be shut down from
the command line, and the only choice was to power-cycle the system. Our administrative
task is to provide a graceful system shutdown. Everything must be stopped in a regular
way, or the administrator will have to use the brute force method of power-cycling. System
startup, on the other hand, must be done properly or the system will never come up.
Obviously, more attention should be paid to system startup, and we will spend much
more time discussing the startup procedure than the shutdown process.

System startup is often referred to as system booting. Although “booting” specifies only
one phase in the overall system startup, the two terms are commonly interchanged, as
you will see in this chapter. Strictly speaking, system startup has a broader meaning than
system booting.

All UNIX systems must be shut down in a regular way before any further action can
be taken. You should never directly power-off UNIX systems (such as DOS-based PCs);
the shutdown procedure must be implemented, otherwise disk data integrity can be
corrupted (a UNIX filesystem could be damaged). The corruption can range between
a relatively benign loss of data to heavy filesystem damage, which in the worst case
scenario can leave a system unbootable.

The two major UNIX platforms BSD and System V have different startup and shutdown
procedures, with, of course, the main differences occurring in startup. Among existing
commercial UNIX flavors, the System V approach is more common; it provides more
flexibility and some other administrative advantages. However, the BSD approach is some-
what easier to understand, and we will start our discussion with the BSD startup/shutdown
procedure. Once the startup/shutdown concept is well understood, it will be easy to
continue with the System V procedure.

4.2 System Startup

The system startup procedure is a continuous process that a UNIX system goes through,
from its initial hardware-determined stage until the final production-ready stage. However,
this unique system journey passes through several distinct phases, and each of these
phases has its specific characteristics. The startup phases, listed in the order they occur, are:

• Bootstrap program execution
• Kernel execution

• rc system initialization
• Terminal line initialization

It is easier to understand the system startup procedure when the whole process is
divided into several phases and each of the phases is analyzed separately, so this is the
approach we will take. Although each of the listed phases is equally important for successful
system startup, the system initialization phase requires the most administrative attention,
so most of the following discussion will address this phase.

© 2002 by CRC Press LLC

In each of the startup phases, the system learns enough to execute the next phase.
Each phase contributes a bit to the overall system startup. At the very beginning, the
system does not know very much; at the very end, the system is ready for multi-user
operations.

4.2.1 The Bootstrap Program

The origin of the word boot (as in, “to boot the system”) is bootstrapping, which is the
process of bringing a computer system to life and ready for use. (“Bootstrapping” is
actually the “nerd word” for starting up a computer.) The computer system itself is only
a collection of hardware resources (registers, arithmetic/logical unit, program counter,
memories, etc.) capable of executing a sequence of instructions that make a program. The
program, stored in the computer’s memory (any kind of memory: ROM, RAM, external
magnetic memory, etc.), defines the system’s activity at every moment, including its first
steps during the system startup.

An initial program, the bootstrap program, must be stored in the fast nonvolatile memory
directly accessible by a processor, or CPU (CPU stands for central processing unit and is
another term for a processor). This portion of the computer memory is known as internal
read-only memory (ROM). The execution of the bootstrap program is always automatically
initiated when the system is powered-on or when a system hardware reset is applied. It
is also initiated when the system is rebooted from the system console. Only the initial part
of the bootstrap program, the part sufficient to bring the system into a workable state to
deal with other memory types, must be stored in ROM. Once this level is achieved, the
bootstrap program execution can be continued from another nonvolatile media such as a hard
disk, a floppy disk, a tape, or a CD-ROM, or even through the network from a boot-server
(in the case of diskless workstations). For UNIX systems, regular system booting is
commonly executed from a hard disk, while first-time UNIX OS installation is performed
from a CD-ROM (not long ago, a tape was used).

The system has to learn enough from the ROM to be able to access a disk to continue
the bootstrap program, but it still assumes a simple flat data structure on the disk. A complex
disk data organization such as the UNIX filesystem data structure is still too complicated
for the system at this stage; more learning is needed to deal with a filesystem. That is why
the rest of the bootstrap program is stored in a special part of the disk known as the boot
partition (sometimes also known as the boot segment). The main characteristic of the boot
partition is its easy access and flat data structure, so the system is able to continue with
the bootstrap program execution, and further learning.

The ratio of the percentage of the bootstrap program stored in the ROM versus the disk
boot partition varied through time. In the early days of UNIX when only low capacity,
expensive ROM was available, the first part of the bootstrap program was reduced to the
bare minimum size. Today, systems include high-density ROM sufficient to store quite
sophisticated bootstrap programs; this makes boot partitions less important, although they
are still a part of every system startup.

Once the bootstrap program is completely executed, the system is knowledgeable
enough to continue with the kernel execution.

Traditionally UNIX presents the only OS running on underlying hardware; and trad-
itionally this is a proprietary hardware for that UNIX flavor. This fact makes a booting
process unique and quite straightforward. However, once PC hardware also became
common in the UNIX arena, a more flexible booting, with UNIX as one of several choices,
emerged as a preferable system characteristic. Linux is an example.

© 2002 by CRC Press LLC

On the Linux platform, the three most common booting mechanisms are:

• To boot Linux from the floppy, and leave hard drive for other OSs
• To use the Linux loader (LILO), the most common case

• To run Loadlin, an MS-DOS program that boots Linux from within DOS

What is exceptional with LILO is the possibility of configuring this loader in different
ways to match different needs; multiple-choice booting, including a non-UNIX startup, is
also possible. The configured loader should then be installed in the boot sector of the first
disk, known as MBR (master boot record). When the system is started, the PC BIOS
transfers control to MBR and triggers a corresponding LILO booting. Linux provides an
easy LILO configuration through its /etc/lilo.conf configuration file, and the command lilo
for its installation as MBR.

4.2.2 The Kernel Execution

The bootstrap program is responsible for loading the UNIX kernel into the system memory.
The kernel image, originally named unix under System V, or vmunix under BSD, is intentionally
located in the root filesystem, because the root filesystem is the first filesystem the system
mounts to access data. Mounting is a UNIX-specific procedure that makes data on the disk
accessible. (We discuss this issue in great detail in following chapters.) In the past, the kernel
image was located in the root directory for easier access, but today, it usually resides in a
separate subdirectory. We do not refer to “mounting” the kernel; we usually just say that
the kernel image was loaded into the system memory and its execution was started.

The kernel manages all system hardware; all hardware drivers are part of the kernel,
and the only OS access to the system hardware is through the kernel. Therefore the system
hardware will be available upon the completion of this phase.

Once control passes to the kernel, it prepares itself to run the system by initializing its
internal tables and completing the hardware diagnostics that are part of the boot process.
The level of diagnostics implemented varies from one UNIX flavor to another. At the very
end, the kernel verifies the integrity of the root filesystem and remounts it, and starts three
programs that create three basic processes. Two of them, named kernel processes, function
wholly within the kernel in the kernel’s privileged execution mode. They are actually
portions of the kernel itself, only “dressed” like processes for scheduling reasons.

On BSD systems, the two processes are:

1. Swapper (process #0), responsible for the “swapping” — to schedule the transfer
of whole processes between the main system memory and a mandatory swap
partition on the primary disk when system resources are low

2. Pagedeamon (process #2), responsible for supporting the memory-management
system regarding paging — a regular transfer of data in the pages between the
main system memory and the disk

On System V systems, the processes are named differently: sched for the process #0,
while the process #2 is replaced with various memory handlers.

The third process created by the system is the init process (process #1), which performs all
administrative tasks during the system startup and shutdown. The init process is an extremely
important process that enables the creation of all subsequent processes (in UNIX a process
can be created only by another parent process). The init process has the PID =1, and it is the
ancestor of all subsequent UNIX processes and the direct parent of each user’s login shell.

© 2002 by CRC Press LLC

In the case of diskless workstations, the procedure is slightly different. Obviously, the
kernel cannot be read from a nonexisting root filesystem; therefore, it must be downloaded
from the network. Further kernel activities are adapted to the diskless environment.

The kernel is quite verbose and it prints messages on the console that report on the
current execution status, total memory used and free, and some other information. However,
the information reported varies among different UNIX flavors.

4.2.3 The Overall System Initialization

The init process does the rest of the work needed to bring the system into its final stage:

• Mounting the remaining local disk partitions
• Performing some filesystem cleanup

• Bringing on major UNIX subsystems (accounting, printing, etc.)
• Setting the system’s name and time zone

• Starting the network
• Mounting remote filesystems

• Enabling user logins

4.2.3.1 rc Initialization Scripts
Most of the initialization activities are specified and carried out by means of the system
rc initialization scripts stored in the /etc directory and its subdirectories. Rc initialization
scripts are usually named in the way that they include the acronym rc as part of their
names (as a prefix, a suffix, or in a fullpath name). rc stands for run-command and basically
explains the purpose of the scripts. These mostly Bourne shell programs are organized
differently on BSD and System V platforms, although their purpose is the same. As with
any other script, rc initialization scripts are readable, so we can manage them in a very
comprehensive way. Besides that, rc scripts are sufficiently verbose during execution, and
this is a great help if the system hangs midway through the startup, or if there are any
other related problems.

Main administrative activities are related to this phase. System site-related customization
means editing the rc initialization scripts. Any system upgrade means to upgrade (or to
add) rc initialization scripts; any startup modification means to do something with rc
initialization scripts. The rest of this section exclusively addresses these issues. Afterward,
a full picture of the necessary administration in this segment should be complete.

4.2.3.2 Terminal Line Initialization
The terminal line initialization is a part of the overall system initialization; however, the
implemented initialization technique is quite different than that in the rc system initializa-
tion, which is sufficient reason to handle this topic separately. UNIX is extremely cautious
with terminal line initialization — terminal lines are “gates” to the outside world. Users
access the system via terminal lines, and the essence of UNIX existence is to serve users.

Once the initialization scripts have been executed, the system is fully operational, except
for the fact that no one can log in to the system. In order to provide login via a particular
terminal line, there must be a corresponding controlling process listening on it (usually
the getty process, but the ttymon is used on the Solaris platform). At the final initialization
phase, init spawns the getty processes to all indicated terminals and the startup procedure

© 2002 by CRC Press LLC

is completed. Today, users typically log in over a network using pseudo-terminals; however,
the getty program is still doing its job.

Terminal line initialization is fully covered in Chapter 11.

4.2.4 System States

Once the initialization activities are completed, the UNIX system enters the multi-user
mode, and users may log in to the system. But init can also place the system in single-user
mode instead of completing the initialization tasks required for multi-user mode. The
single-user mode corresponds to a functionally reduced UNIX system. In single-user
mode, a UNIX system looks very much like a personal computer. The single-user mode
is primarily dedicated to administrative and maintenance activities that require complete
control over the system. The user has all superuser privileges.

In some cases, the system will automatically enter single-user mode if there are any
problems in the boot process that the system cannot handle on its own (for example,
filesystem problems that fsck cannot fix), so the system administrator must resolve the
problem. The init simply spawns the Bourne shell on the system’s console and waits for
it to terminate before continuing with the rest of the startup sequence. Entering <CTRL-D>
or the exit command from the shell prompt can terminate the spawned single-user shell.
Once this is done, the system may continue into multi-user mode.

Single-user mode represents a minimal system startup with no daemons running, so
many UNIX facilities are disabled. Only the root filesystem is mounted (in the most
common case) and a restricted number of commands are available (commands residing
in the root filesystem). Under normal circumstances, other filesystems can be mounted by
hand to access other commands.

Single-user mode can be a security problem for a system, because full control over the
system is granted. On older UNIX systems, no password was required, but physical access
to the system was required in the single-user mode. On some systems, a front panel lock
with normal (secure) vs. maintenance (service) key positions enabled multi-user vs. single-user
mode; the system protection was the key, and only authorized personnel could acquire
the key. Modern UNIX systems usually require a root password to enter single-user mode.
None of these approaches are perfect, and all of them have some disadvantage. A request
for the root password could make difficulties under different circumstances, if the root
password was forgotten.

While the BSD flavored system could be in one of three possible states — off, single-user,
and multi-user mode — the System V platform explicitly defines a series of system states,
called run-levels designated by a one-character name. System V run-levels are flavor
dependent; an example is listed in the following table:

Run-Level Name and Uses

0 Power-down state => safe to power-off the system
1 Administrative state
s or S Single-user mode (on many systems same as 1)
2 Multi-user mode for stand-alone system
3 Multi-user mode for networked system, possibly sharing disks with other systems => via RFS,

TCP/IP, and NFS, or some other protocol
4 Unused => can be user defined locally
5 Firmware state => for maintenance and running diagnostics, and for booting from an alternate

not-root disk
6 Shutdown and reboot state => to reboot system from some running state (s, 2, 3, or 4); the system

is taken down (to run-level 0) and then rebooted back

© 2002 by CRC Press LLC

To display the current system run-level, the following command is available:

$ who -r
. run-level 3 Mar 14 11:14 3 0 S

The system was taken to run-level 3, from run-level S, via run-level 0, on March 14, at
11:14. The leading dot is by default at the beginning of the line.

On the System V platform, movement between run-levels is managed by init, and each
run-level is controlled by its own set of initialization scripts.

4.2.5 The Outlook of a Startup Procedure

UNIX systems are configured to boot automatically when powered-on. If this is not
possible, systems enter some form of the “ROM monitor mode” — a restricted ROM
resident command interpreter that enables essential diagnostics, booting, and some
other basic system activities. The ROM monitor mode is also the state that the system
enters after being shut down; in that state, a system can be safely powered off. On
some systems there is also a keystroke combination to enter this mode — for example
on Sun Microsystems systems, the key (STOP-A) followed by the specific ROM monitor
prompt “OK>.”

The ROM monitor always provides the boot command, specified as “b” or “boot,” among
the other commands it provides. Certain options sufficient to control the system startup
when problems are encountered (to boot the system from different media, into different
modes, etc.) are also provided. The default booting media is the hard disk.

On old UNIX systems, manual booting from the ROM monitor was a two-stage
procedure:

1. The boot command first loaded a boot program with a stand-alone shell (actually
a mini-operating system).

2. A second command was then issued in a stand-alone shell to load UNIX kernel.

This two-step procedure looked like this:

>b
$$ unix

Different prompts specify two steps in the boot procedure. The technology available in
the past limited the bootstrap program possibilities, which led to a more complicated
startup procedure.

Today all UNIX flavors provide a relatively verbose system startup; a number of
messages are directed to the console indicating the stage and status of the startup
procedure. It is highly recommended that you monitor the system startup on the console.
Otherwise, some trouble messages can remain undetected, which leads to a high proba-
bility for later surprises.

The startup sequences for two system user modes are presented in Figures 4.1 and 4.2.
The UNIX system named “atlas” is running Solaris 2.x.; brief comments follow.

© 2002 by CRC Press LLC

The Sun logo and first five lines are printed from the bootstrap program. These lines
list basic system configuration and identification data, as well as the kind of boot device.
The somewhat cryptic description of a boot device indicates an SCSI disk. The kernel
prints only two identification lines that include the system version and release. Other lines
are printed from initialization scripts invoked by the program init. One of the lines
indicates that the system was customized. The message that indicates the start of the HTTP
service is not a part of a regular OS installation — obviously, this site has been customized
to provide an Internet service. At the end, the login prompt is displayed upon the console
initialization.

The startup procedure includes filesystem checking, one of the most important activities
performed by the fsck utility (fsck is discussed in greater detail in Chapter 5). The
filesystem verifications are different on BSD and System V platforms. BSD checks all
filesystems on every boot; System V does not check filesystems if they were dismounted
normally when the system last went down (the fsstat command is used for this purpose),
and faster booting is enabled. Filesystem checking can result in the display of many
messages depending on the current filesystem status. If more serious filesystem corruption
is encountered, the system is left in single-user mode, and manual filesystem checking
and repair by the administrator may be required.

A single-user startup sequence is much shorter, and it includes the boot and kernel lines.
The next two lines about the network interface configuration and host’s name are printed
from corresponding initialization scripts involved in the system single-user startup.
Finally, the console is activated and the user is informed of two possibilities:

------------------------ bootstrap program starts -------------------------

SPARCstation 20 (1 X 390Z50), Keyboard Present
SUN LOGO ROM Rev. 2.19, 32 MB memory installed, Serial #7491530

Ethernet address 8:0:20:72:4f:ca, Host ID: 72724fca.

Rebooting with command:
Boot device: /iommu/sbus/espdma@f, 400000/esp@f, 800000/sd@3,0 File and args:

------------------------ bootstrap program ends, and kernel starts -------------------------

SunOS Release 5.4 Version generic [UNIX (R) System V Release 4.0]
Copyright (c) 1983-1984, Sun Microsystems, Inc.

------------------------ kernel ends, and rc initialization starts -------------------------

configuring network interfaces: le0.
Hostname: atlas
The system is coming up. Please wait.
checking ufs filesystems
/dev/rdsk/c0t2d0s6: is clean
/dev/rdsk/c0t3d0s7: is clean
/dev/rdsk/c0t2d0s0: is clean
Flushing routing table:
add net default: gateway 146.95.8.250
starting rpc services: rcpbind keyserv kerbd done.
Setting netmask of le0 to 255.255.255.0
Setting default interface for multicast: add net 244.0.0.0: gateway atlas.ph.hunter.cuny.edu
syslog service started.
Print services started.
volume management starting.
HTTP service starting.
The system is ready..

------------------------ rc initialization ends, and terminal line initialization starts -------------------------

atlas console login:

FIGURE 4.1
An illustration of a multiple-user startup sequence.

© 2002 by CRC Press LLC

1. Enter the system in single-user mode by entering the root password
2. Or continue with multi-user startup by entering [Ctrl-D]

If [Ctrl-D] is entered, the system continues with the multi-user startup, as in the previous case.

4.2.6 Initialization Scripts

Once the init process is born, the system startup is determined by a series of rc initialization
scripts which define a detailed procedure to bring the system into the multi-user mode.
This is the most common case, although other system modes (run-levels) are also possible.
These files control all custom-defined and site-dependent items (there are multiple rc
initialization scripts), and they are executed sequentially. Generally, rc initialization scripts
represent Bourne shell script files, executable at any time and on any UNIX platform. (The
Bourne shell is the default shell, and it is available at the very early system stage on every
UNIX platform.) The rc initialization scripts do not differ from any other shell script,
except at the time of their execution. (This, by the way, is why the prefix “rc” is used in
their description, as well as in the name.) However, they can also be executed from the

------------------------ bootstrap program starts -------------------------

SPARCstation 20 (1 X 390Z50), Keyboard Present
SUN LOGO ROM Rev. 2.19, 32 MB memory installed, Serial #7491530

Ethernet address 8:0:20:72:4f:ca, Host ID: 72724fca.

Rebooting with command: -s
Boot device: /iommu/sbus/espdma@f, 400000/esp@f, 800000/sd@3, 0 File and args: -s

------------------------ bootstrap program ends, and kernel starts -------------------------

SunOS Release 5.4 Version generic [UNIX (R) System V Release 4.0]
Copyright (c) 1983-1984, Sun Microsystems, Inc.

------------------------ kernel ends, and single-user rc initialization starts -------------------------

configuring network interfaces: le0.
Hostname: atlas

INIT: SINGLE USER MODE

Type Ctrl-d to proceed with normal startup,
(or give root password for system maintenance):

>>>>>>>>>>>>>> Since Ctrl-D is entered <<<<<<<<<<<<<<
 ------------------------ rc initialization continues -------------------------

INIT: New run level: 3
The system is coming up. Please wait.
checking ufs filesystems
/dev/rdsk/c0t2d0s6: is clean
/dev/rdsk/c0t3d0s7: is clean
/dev/rdsk/c0t2d0s0: is clean
Flushing routing table:
add net default: gateway 146.95.8.250
starting rpc services: rcpbind keyserv kerbd done.
Setting netmask of le0 to 255.255.255.0
Setting default interface for multicast: add net 244.0.0.0: gateway atlas.ph.hunter.cuny.edu
syslog service started.
Print services started.
volume management starting.
HTTP service starting.
The system is ready..

------------------------ rc initialization ends, and terminal line initialization starts -------------------------

atlas console login:

FIGURE 4.2
An illustration of a single-user startup sequence.

© 2002 by CRC Press LLC

command line at any time, and administrators can make full use of this opportunity: on
System V, individual function-specific initialization scripts are often used to stop and start
specific UNIX functions during regular system production. On modern UNIX platforms,
sometimes Korn shell rc initialization scripts are also included (for example, on the HP-UX
platform) which indicated the early availability of the Korn shell.

Understanding rc initialization scripts is a vital part of system administration — this is
the place for system customization. A system administrator must be familiar with these
files, their locations and, in many cases, their contents. Only then is full control over the
system startup possible, and quick corrective action can follow any problem encountered
during system boot time. Each modification in the initialization scripts must be done very
carefully with respect for the basic administrative rule: save original script files before
making any changes. If this rule is not followed, various problems can ensue.

Despite the fact that rc initialization scripts on both UNIX platforms BSD and System V
serve the same purpose, the mechanisms by which they are initiated and executed are quite
different. These differences require great attention, knowledge, and skills from system
administrators working in a heterogeneous environment, which is very common today.
Today, the System V rc approach prevails — the System V organization of the rc initialization
scripts offers more flexibility and other administrative advantages. We will discuss System
V initialization in greater detail after a quick survey of the BSD-style initialization.

4.3 BSD Initialization

4.3.1 The BSD rc Scripts

Originally, the BSD initialization was controlled only by two rc initialization scripts: /etc/rc
and /etc/rc.local. A general system initialization was supported by the /etc/rc script, while
the /etc/rc.local script referred to a local site, i.e., to issues that should be customized
(probably a more appropriate script name would be “rc.site” to avoid any possible confusion
toward the logical association with a “network-local relationship”). During system booting
to the multi-user mode, init executed the rc script, which in turn executed the rc.local
script. If a single-user boot was performed, scripts were only partially executed; the
remaining parts were executed when the single-user shell was exited.

Having only two rc initialization scripts would lead one to believe that system mainten-
ance was easy, but in fact the reality is quite the opposite. The work required for system
initialization remained the same, regardless of how many rc scripts were involved, and
huge rc script files were more difficult to manage and more vulnerable to corruption
during modification. It could be very difficult to find an appropriate control sequence,
items were often doubled, and so on.

SunOS introduced additional script files: /etc/rc.boot and /etc/rc.single. The program
init invokes first rc.boot script and from there rc.single (regardless of whether the system
is booting to single vs. multi-user mode); then the /etc/rc and /etc/rc.local files follow.

4.3.2 BSD Initialization Sequence

For a clearer picture, the block diagram of the SunOS execution sequence is presented in
Figure 4.3 (it is assumed the system is booting from the local disk). The SunOS organization
made a clear distinction between single and multiple-user modes; it was immediately
easier to follow any problems that developed in the system booting.

© 2002 by CRC Press LLC

To make system customization easier, SunOS provided a special interactive script named
/usr/etc/install/run_configure that was invoked only once, the very first time the system
was started upon the OS installation. Through the provided dialogue, the required parameters
such as: system name, time zone, date, time, and network data were entered. The system
administrator had to answer a number of questions, and new system and network data
were saved for future use. The dialogue was performed via the system console. Upon
successful completion, the program is never again invoked; subsequent modification can
be done directly in the rc scripts.

In the single-user mode, the only way to communicate with the system is via the console;
other terminals are not initialized at all. SunOS assumes that anyone who has physical
access to the console is an administrator, because from the console it is easy to gain full
control over the system. There is no additional system protection.

All rc files live in the /etc directory; this is an example from SunOS 4.1.3:

$ ls -l /etc | grep rc
-rw-r--r-- 1 root 2993 Jan 20 1996 rc
-rw-r--r-- 1 root 5476 Jun 23 1996 rc.boot
-rw-r--r-- 1 root 352 Jan 20 1996 rc.ip
-rw-r--r-- 1 root 6169 Aug 3 1997 rc.local
-rw-r--r-- 1 root 5911 Jan 20 1996 rc.local.orig
-rw-r--r-- 1 root 2172 Jan 20 1996 rc.single

We can easily recognize all of the listed files; the file rc.local was modified according to
the local (site) requirements, and the original file was saved. An exception is the file rc.ip,
which is used to start up diskless systems.

The Script File
/etc/rc.boot

The Program

init

The Script File
/etc/rc.single

The Script File
/etc/rc

The Bourne Shell
sh

< Ctrl-D >

single-user modemulti-user mode

The Script File
/etc/rc.local

The Script File
/usr/etc/install/run_configure

first-time startup

EXIT

..........

FIGURE 4.3
The execution sequence of SunOS initialization scripts.

© 2002 by CRC Press LLC

All of the listed files are excellent examples of what shell scripts should look like;
extremely skillful programmers write them, and it is a good idea to read them to learn
the art of shell programming. However, this is out of the scope of this text.

The description of the BSD system startup should be sufficient to explain how a UNIX
system is brought into an operational stage. To conclude this discussion, an additional
brief report related to this topic is presented. This report is taken directly from the manual
pages for rc files on the SunOS platform; nevertheless, there are some discrepancies
between the actual initialization scripts and this report, even though the described scripts
and manual pages belong to the very same system. This is not so unusual, and a UNIX
administrator must be prepared for such surprises. The supplied online documentation
simply does not always fully support all system changes and upgrades.

$ man rcfiles

NAME
rc, rc.boot, rc.local — command scripts for auto-reboot and daemons

SYNOPSIS
/etc/rc
/etc/rc.boot
/etc/rc.local

DESCRIPTION
rc and rc.boot are command scripts that are invoked by init(8) to perform filesystem
housekeeping and to start system daemons. rc.local is a script for commands that are
pertinent only to a specific site or client machine.

rc.boot sets the machine name and, if on SunOS 4.1.1 Rev B or later, invokes ifconfig,
which uses RARP to obtain the machine’s IP address from the NIS network. Then a
“whoami” bootparams request is used to retrieve the system’s host-name, NIS domain
name, and default router. The ifconfig and hostconfig programs set the system’s host-
name, IP address, NIS domain name, and default router in the kernel.

If coming up multi-user, rc.boot runs fsck(8) with the -p option. This “preens” the disks of
minor inconsistencies resulting from the last system shutdown and checks for serious incon-
sistencies caused by hardware or software failure. If fsck(8) detects a serious disk problem, it
returns an error and init(8) brings the system up in single-user mode. When coming up
single-user, when init(8) is invoked by fastboot(8), or when it is passed the -b flag from
boot(8S), functions performed in the rc.local file, including this disk check, are skipped.

Next, rc runs. If the system came up single-user, rc runs when the single-user shell
terminates (see init(8)). It mounts 4.2 filesystems and spawns a shell for /etc/rc.local,
which mounts NFS filesystems, runs sysIDtool (if on SunOS 4.1.1 Rev B or later) to
set the system’s configuration information into local configuration files, and starts local
daemons. After rc.local returns, rc starts standard daemons, preserves editor files, clears
/tmp, starts system accounting (if applicable), starts the network (where applicable),
and if enabled, runs savecore(8) to preserve the core image after a crash.

4.4 System V Initialization

System V organizes the initialization procedure in a more flexible, but also a more complex
way using up to three levels of initialization files. During a system startup, when init

© 2002 by CRC Press LLC

takes control from the kernel, it scans its configuration file /etc/inittab to learn what to
do next. We should recall that System V can have multiple run-levels. The file /etc/inittab
defines init’s action whenever the system enters a new level; the commands to execute at
each run-level are specified in the corresponding inittab entries. Usually, the entries are
initialization script files named rcn (where “n” is a run-level number); the scripts files
themselves are located in the directory /etc, or sometimes in /sbin (HP-UX platform). The
various rcn scripts in turn invoke other scripts that reside in the corresponding subdirec-
tories rcn.d (again, “n” represents the specified run-level). A simplified version of the
System V rebooting procedure is illustrated in Figure 4.4; the rebooting procedure first
shuts down a system (the run-level 0) and then brings a system into a normal operating
state (in this case the run-level 2).

4.4.1 The Configuration File /etc/inittab

We will start with init’s configuration file /etc/inittab; here is an example:

$ cat /etc/inittab (from Red Hat Linux, partly presented)
#
inittab This file describes how the INIT process should set up
the system in a certain run-level.
#
Default run-level. The run-levels used by RHS are:
0 — halt (Do NOT set initdefault to this)
1 — Single user mode
2 — Multi-user, without NFS (The same as 3, if you do not have networking)
3 — Full multi-user mode
4 — unused
5 — X11
6 — reboot (Do NOT set initdefault to this)
#
id:2:initdefault:
System initialization
si::sysinit:/etc/rc.d/rc.sysinit
l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2

+ + +

+ + +

+ + +

+ + +

/etc

cron

../rc2.d../rc0.d../init.d

rc0 rc2inittab

nfs.server

lp

MOUNTFS

ANNOUNCE

S01MOUNTFS

S75cron S80lpS71rpc

K28nfs.server

K00ANNOUNCE

K28nfs.serverK39lp

K40cron

rpc

FIGURE 4.4
A graphical presentation of System V rebooting.

© 2002 by CRC Press LLC

l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

Things to run in every run-level.
.
.

Each entry in the /etc/init file is of the form:

cc:states:action:process

With the following definitions of the individual fields:

cc Two-character case-sensitive label identifying the entry (some new
implementations allow up to 14 characters)

states A list of the run-levels to which the entry applies; if blank, indicates all
run-levels

action wait Start the process and wait for it to finish before going on to
the next entry for this run-level

respawn Start the process and automatically restart it when it
dies

once Start the process if it is not already running; do not wait
for it

boot Only execute entry at boot time and do not wait for it

bootwait Only execute entry at boot time and wait for it to finish
initdefault Specify the default run-level for system reboot

sysinit Use to initialize the console
off Kill the process if it is running

process The command to execute

The system scans inittab entries from the top down, checks that they belong to a current
run-level, and executes them sequentially, respecting the contents of the entry fields. Let
us analyze the previous example.

The first entry named “id” is not the executable one; this entry (determined as
“initdefault”) specifies the default run-level (here it is run-level 2) to be implemented
when the run-level is not explicitly specified by init itself. The following entry “si,”
marked as “sysinit,” must be executed first to make the console and some other initial
items operational. The specified initialization script /etc/rc.d/rc.sysinit performs many of
the “housecleaning” jobs to prepare the system for other run-level specific scripts that
will come afterward. The run-level scripts for different run-levels are specified by
subsequent inittab entries identified as l0 to l6, for the run-levels 0 to 6; this is actually
the same rc initialization script named /etc/rc.d/rc, invoked with an argument that
specifies the run-level (argument 0 to 6). The script invokes other specific “stop” and
“start” scripts needed for specific run-level initialization. This part of the /etc/inittab file
is crucial to our discussion; other inittab entries are not presented at all, and they relate
to other required general initialization tasks such as power supply control, terminal
line initialization, etc.

© 2002 by CRC Press LLC

Linux has located rc initialization scripts in a separate directory /etc/rc.d and its sub-
directories, as we see in the following example:

$ ls -l /etc/rc.d
total 18
drwxr-xr-x 2 root root 1024 May 13 12:24 init.d
-rwxr-xr-x 1 root root 1871 Oct 15 1998 rc
-rwxr-xr-x 1 root root 693 Oct 15 1998 rc.local
-rwxr-xr-x 1 root root 7165 Oct 15 1998 rc.sysinit
drwxr-xr-x 2 root root 1024 May 13 12:24 rc0.d
drwxr-xr-x 2 root root 1024 May 13 12:24 rc1.d
drwxr-xr-x 2 root root 1024 May 13 12:24 rc2.d
drwxr-xr-x 2 root root 1024 May 13 12:24 rc3.d
drwxr-xr-x 2 root root 1024 May 13 12:24 rc4.d
drwxr-xr-x 2 root root 1024 May 13 12:24 rc5.d
drwxr-xr-x 2 root root 1024 May 13 12:24 rc6.d

Besides the scripts rc, rc.sysinit, and rc.local, which are accomplishing specific tasks, other
needed scripts for particular run-levels are located in the corresponding subdirectories
rc0.d to rc6.d. The subdirectory init.d is a “depot” directory for all scripts, and it will be
explained later.

The described startup procedure is almost identical on other System V platforms; the
existing differences are mostly concentrated in the naming of the initialization scripts.
Here is another example:

cat /etc/inittab (on Solaris 2.x platform)
ap::sysinit:/ sbin/autopush -f /etc/iu.ap
fs::sysinit:/sbin/rcS >/ dev/console 2>&1 </dev/console
is:3:initdefault:
p3:s1234:powerfail:/ usr/sbin/shutdown -y -i5 -g0 >/dev/console 2>&1
s0:0:wait:/ sbin/rc0 >/dev/console 2>&1 </dev/console
s1:1:wait:/ usr/sbin/shutdown -y -iS -g0 >/dev/console 2>&1 </dev/console
s2:23:wait:/ sbin/rc2 >/dev/console 2>&1 </dev/console
s3:3:wait:/ sbin/rc3 >/dev/console 2>&1 </dev/console
s5:5:wait:/ sbin/rc5 >/dev/console 2>&1 </dev/console
s6:6:wait:/ sbin/rc6 >/dev/console 2>&1 </dev/console
fw:0:wait:/ sbin/uadmin 2 0 >/dev/console 2>&1 </dev/console
of:5:wait:/ sbin/uadmin 2 6 >/dev/console 2>&1 </dev/console
rb:6:wait:/ sbin/uadmin 2 1 >/dev/console 2>&1 </dev/console
sc:234:respawn:/ usr/lib/saf/sac -t 300
co:234:respawn:/ usr/lib/saf/ttymon -g -h -p “‘uname -n’ console login: ’’ -T sun -d /dev/console \
-l console -m ldterm,ttcompat

Briefly, the main differences regarding the previous example are: the default run-level
is #3, the system always passes through the single-user stage (the script /etc/rcS), and the
spawned console-monitoring process is ttymon, instead of getty (this issue is discussed in
greater detail in Chapter 11). Other entries are either quite similar, or they are out of the
scope of this text.

4.4.2 System V rc Initialization Scripts

As is seen from the /etc/inittab, an inittab entry points to the corresponding rc script to
be directly executed by init for the specified run-level. However, what is more important
is the part that stays hidden behind the scenes — this rc scripts invokes a series of

© 2002 by CRC Press LLC

additional scripts for specific system functions associated with the corresponding run-
level. The invoked scripts can terminate (stop) or start a specific function, whatever is
appropriate for the run-level. Sometimes the same script can be invoked twice for the
same run-level: first to stop, and then to restart a specific function (so a clean function
start is guaranteed).

We will start a more detailed analysis with one of the “directly invoked scripts,” the
script /etc/rc2 on the IRIX platform (obviously this script corresponds to run-level #2). This
script is quite typically found on other System V flavors, too. For better understanding
additional explanations are in bold.

$ cat /etc/rc2
#! /bin/sh
#Tag 0x00000f00
#ident “$Revision: 1.12 $”
#
“Run Commands” executed when the system is changing to init state 2
traditionally called “multi-user”
. /etc/TIMEZONE Setup the time zone

(source another script)
Pickup startup packages for mounts, daemons, services, etc.
set �who -r� Show run-level arguments
if [$9 = “S”] $9 corresponds to a previous state
then - was “single user mode”
echo ‘The system is coming up. Please wait.’ Display the message and . . .
BOOT=yes . . . mark the system booting
elif [$7 = “2”] $7 corresponds to a required state
then - is the state 2

This Section Invokes Individual Termination Scripts

echo ‘Changing to state 2.’
if [-d /etc/rc2.d]
then

for f in /etc/rc2.d/K* Every termination script in the directory /etc/rc2.d
is invoked with “stop” argument

{
if [-s ${f}]
then

/bin/sh ${f} stop
fi

}
fi

fi
handle local mounts specially, rather than as part of a generic rc2.d
operation, so that if the some mounts fail, we can warn the user
#
if [-f /etc/mountall] Mount filesystems
then

if /etc/mountall
then:
else

echo ‘\07Some filesystems failed to mount; may be unable to reach multiuser state’
sleep 5

fi
fi

© 2002 by CRC Press LLC

This Section Invokes Individual Start Scripts

if [-d /etc/rc2.d]
then

for f in /etc/rc2.d/S* Every initialization script in the directory /etc/rc2
is invoked with “start” argument

{
if [-s ${f}]
then

/bin/sh ${f} start
fi

}
fi
if [“${BOOT}” = “yes”]
then

stty sane tab3 2>/dev/null Set the terminal
fi
if [“${BOOT}” = “yes” -a $7 = “2”]
then

echo ‘The system is ready. Display messages
elif [$7 = “2”]
then

echo ‘Change to state 2 has been completed.’
fi

Besides a number of common run-level #2 housekeeping tasks that /etc/rc2 performs,
the individual start and termination scripts for all associated functions are also executed.
The general mechanism for installing and executing start and termination scripts is common
for all /etc/rcn files:

Filenames in rcn.d directories are of the form “[S/K]nn[init.d filename]” where S means
start this job, K means kill (terminate) this job, and nn is the relative sequence number
to terminate or start the job. When entering a state (n = S, 0, 2, 3, etc.), the rcn script
executes those scripts in the /etc/rcn.d directory that are prefixed with K followed by
those scripts prefixed with S. When executing each script in one of the /etc/rcn.d directories,
the rcn script passes a single argument. It passes the argument stop for scripts prefixed
with K and the argument start for scripts prefixed with S. There is no harm in applying
the same sequence number to multiple scripts. In this case the order of execution is
deterministic but unspecified. Guidelines for selecting sequence numbers are provided
in the README files located in the directory associated with that target state (e.g.: /etc/
rcn.d/README).

For example, when changing to init state 2 (in this case, multi-user mode with nonex-
ported network resources), the init process initiates rc2. The following steps are performed
by rc2:

1. In the directory /etc/rc2.d are scripts used to stop processes that should not be
running in state 2. The filenames are prefixed with K. Each K file in the directory
is executed in alphanumeric order when the system enters init state 2.

2. Also in the /etc/rc2.d directory are scripts used to start processes that should be
running in state 2. As in the step above, each S file is executed.

To illustrate the above, assume the arbitrary file /etc/init.d/netdaemon is a script that
will initiate networking daemons when given the argument start, and will terminate the
daemons if given the argument stop. It is linked to /etc/rc2.d/S68netdaemon, and to

© 2002 by CRC Press LLC

/etc/rc0.d/K67netdaemon. The file is executed by /etc/rc2.d/S68netdaemon start when init
state 2 is entered and by /etc/rc0.d/S67netdaemon stop when shutting the system down
(init state 0).

All scripts for individual system functions are written to accept the passed argument
stop or start, and to behave accordingly as a termination or a start script. All scripts are
located in the separate “depot directory” /etc/init.d, and they are linked to the corresponding
K and S files in the /etc/rcn subdirectories.

Let us see how this looks for the IRIX flavor:

ls -l /etc/rc*
-rwxr-xr-x 1 root sys 790 Sep 8 1992 /etc/rc0
-rwxr-xr-x 1 root sys 1440 Sep 8 1992 /etc/rc2
-rwxr-xr-x 1 root sys 444 Sep 8 1992 /etc/rc3
/etc/rc0.d:
total 10
l--------- 1 root sys 16 Sep 8 1992 K15cron -> /etc/init.d/cron
l--------- 1 root sys 16 Sep 8 1992 K18uucp -> /etc/init.d/uucp
l--------- 1 root sys 16 Sep 8 1992 K20mail -> /etc/init.d/mail

.

.
/etc/rc2.d:
total 19
l--------- 1 root sys 21 Sep 8 1992 S01MOUNTFSYS -> /etc/init.d

/MOUNTFSYS
l--------- 1 root sys 19 Sep 8 1992 S20sysetup -> /etc/init.d/sysetup
l--------- 1 root sys 16 Sep 8 1992 S21perf -> /etc/init.d/perf

.

.
/etc/rc3.d:
total 0

What can we conclude from this directory listing? The three directly invoked rc scripts
specified in the /etc/inittab file reside in the /etc directory; they are scripts rc0, rc2, and
rc3. The corresponding rcn.d subdirectories are rc0.d, rc2.d, and rc3.d (although rc3.d is
an empty subdirectory). Termination and start files in the /etc/rcn.d subdirectories are
symbolic links to the scripts located in the depot directory /etc/init.d. In that way, the
same files appear under different names, which are more appropriate for their imple-
mentation.

The listing of the depot directory /etc/init.d is:

$ ls -C /etc/init.d
MOUNTFSYS autoconfig cron mail sysetup
README bsdlpr floppy network uucp
RMTMPFILES cdromd.2 hyperchem_elm perf winattr
audio configmsg lp savecore xdm

The linked files in the /etc/rcn directories have slightly modified names; the original
filenames from the /etc/init.d directory are preceded with the letter S or K, and a two-digit
number; numbers define the sequence in which the files are listed as well as executed,
while the letters S and K classify files into two categories: start and termination scripts,
so they can be invoked differently, with the start or stop argument.

IRIX has introduced, and Linux accepted and further developed, a specific command
to handle needed rc links. Many init run-levels require a careful implementation of rc
start/stop scripts, i.e., the corresponding links toward init.d depot directory. The command

© 2002 by CRC Press LLC

chkconfig makes this job easier. So if your system is running Linux, do not forget this
possibility. If you prefer to make needed links manually, it also works.

Linux introduced one more directory level “/etc/rc.d” to confine all rc-related programs.
Another Linux specific issue is that all rc scripts use functional wrappers to handle
individual processes. A separate script /etc/rc.d/init.d/functions defines a number of functions
instrumental for conditional start or stoppage of programs. This script is sourced at the
beginning of each individual rc script defining a very convenient environment for the
system startup and shutdown, status display, and logging. Unfortunately, while such an
approach works well for this purpose, in some other cases it could fail. UNIX adminis-
trators love to use rc start/stop scripts to control running daemons — it is quite common
to recycle, stop, or restart daemons by executing rc scripts with an appropriate argument.
Functional wrappers check for possible remaining processes and, if they exist, bypass the
start of a corresponding daemon, what is correct for most situations. However, under
certain circumstances remaining processes could be “legal” until they complete their task
(like sendmail children during processing of the mail queue); unfortunately, a new daemon
would not be started.

Basically, all listed System V rc scripts provide the same functions as BSD rc scripts. This
makes sense because their task is the same: to bring the UNIX system into a workable
multi-user (or any other) state. However, they are organized in very different ways, and
must be administered accordingly. The System V approach prevails today.

The presented IRIX flavor is quite typical of the System V startup. Another example we
will discuss is the Solaris 2.x; we will primarily emphasize the differences. The long listing
of Solaris rc scripts shows:

ls -l /etc/rc*
lrwxrwxrwx 1 root root 11 Apr 4 11:16 /etc/rc0 -> ../ sbin/rc0
lrwxrwxrwx 1 root root 11 Apr 4 11:16 /etc/rc1 -> ../ sbin/rc1
lrwxrwxrwx 1 root root 11 Apr 4 11:16 /etc/rc2 -> ../ sbin/rc2
lrwxrwxrwx 1 root root 11 Apr 4 11:16 /etc/rc3 -> ../ sbin/rc3
lrwxrwxrwx 1 root root 11 Apr 4 11:16 /etc/rc5 -> ../ sbin/rc5
lrwxrwxrwx 1 root root 11 Apr 4 11:16 /etc/rc6 -> ../ sbin/rc6
lrwxrwxrwx 1 root root 11 Apr 4 11:16 /etc/rcS -> ../ sbin/rcS

What specifies the Solaris rc script files? There are seven rcn scripts, although not all of
them are specified in the /etc/inittab file. They actually reside in the directory /sbin and are
symbolically linked to the /etc directory. The corresponding rc directories are:

/etc/rc0.d:
total 34
-rwxr--r-- 3 root sys 103 Aug 3 1994 K00ANNOUNCE
-rwxr--r-- 4 root sys 318 Jul 15 1994 K20lp
-rwxr--r-- 4 root sys 388 Aug 3 1994 K42audit

.

.
/etc/rc1.d:
total 34
-rwxr--r-- 3 root sys 103 Aug 3 1994 K00ANNOUNCE
-rwxr--r-- 4 root sys 388 Aug 3 1994 K42audit

.

.
-rwxr--r-- 3 root sys 534 Aug 3 1994 S01MOUNTFSYS
/etc/rc2.d:
total 100
-rwxr--r-- 4 root sys 318 Jul 15 1994 K20lp

© 2002 by CRC Press LLC

.
-rw-r--r-- 1 root sys 1369 Aug 3 1994 README
-rwxr--r-- 3 root sys 534 Aug 3 1994 S01MOUNTFSYS

.
-rw-r--r-- 2 root other 547 Jun 16 12:15 S93httpsvc

.
/etc/rc3.d:
total 8
-rw-r--r-- 1 root sys 1708 Aug 3 1994 README
-rwxr--r-- 5 root sys 1387 Aug 3 1994 S15nfs.server
/etc/rcS.d:
total 32
-rw-r--r-- 1 root sys 2392 Aug 3 1994 README
-r-xr--r-- 2 root sys 369 Jul 16 1994 S00sxcmem
-rwxr--r-- 2 root sys 4514 Aug 3 1994 S30rootusr.sh

.

.

Not every rcn script has an associated rcn.d subdirectory (there is simply no need for
all of them; do not forget that rcn scripts can be written in a different way). Finally, the
existing start and termination files in the rcn.d subdirectories represent hard links to the
function-specific scripts residing in the depot directory /etc/init.d (this can be easily seen
by using the ls -i command to check the file’s inode numbers). Obviously, both types of
links can be equally implemented.

4.4.3 BSD-Like Initialization

The System V initialization approach dominates today, but it is hard to judge this approach
as the better one overall. Sometimes the use of a few larger script files would be more
convenient, versus the implementation of a multidirectory structure with many small
script files. This is probably the reason that some hybrid solutions have appeared; some
System V flavors made a compromise by introducing something of the BSD initialization
spirit into a System V initialization body. They avoided a more complex multilayer ini-
tialization approach, and provided one or more larger script files for any run-level, which
are directly invoked from the /etc/inittab file, or even coded in the start/stop procedures.
In this way, the System V initialization reminds us very much of the BSD one, with the
occasional exception as to how the scripts are invoked. A substantial level of flexibility is
preserved because the /etc/inittab file remains available. Such an approach characterized,
for example, the HP-UX 9.0x, or IBM AIX 3.x platforms. Today, we can even recognize
elements of such an organization in Linux.

The HP-UX 9.0x platform included only a few rc script files with almost the same names
as on the BSD platform. Some of them were even written as Korn shell scripts, which
implies the Korn shell as the default one on the system.

$ ls -l /etc/rc*
-r-xr--r-- 1 bin bin 15988 Apr 4 11:10 /etc/rc
-r--r--r-- 1 bin bin 21584 Mar 5 18:43 /etc/rc.utils
-rw-rw-rw- 1 root root 0 May 4 11:23 /etc/rcflag

This does not necessarily mean that the presented files are the only files used in the
system initialization; other files with other names can be called by these rc files. If we
take a look into the /etc/inittab file, we see a single inittab entry, named “rc” for this
purpose.

© 2002 by CRC Press LLC

$ cat /etc/inittab
init:4:initdefault:
stty::sysinit:stty 9600 clocal icanon echo opost onlcr ienqak ixon icrnl ignpar </dev/systty
brc1::bootwait:/ etc/bcheckrc </dev/console >/dev/console 2>&1 # fsck, etc.
slib::bootwait:/etc/recoversl </dev/console >/dev/console 2>&1 #shared libs
brc2::bootwait:/ etc/brc >/dev/console 2>&1 # boottime commands
link::wait:/ bin/sh -c “rm -f /dev/syscon; ln /dev/systty /dev/syscon” >/dev/console 2>&1
rc ::wait:/ etc/rc </dev/console >/dev/console 2>&1 # system initialization
powf::powerwait:/ etc/powerfail >/dev/console 2>&1 # power fail routines
lp ::off:nohup sleep 999999999 </dev/lp & stty 9600 </dev/lp
halt:6:wait:/ usr/lib/X11/ignition/shutdown.ksh \
NOTE: run-level 6 is reserved for system shutdown
cons:012456:respawn:/ etc/getty -h console console # system console
vue :34:respawn:/ etc/vuerc # VUE validation and

invocation

A similar situation was used by the AIX flavor with several more initialization script
files:

$ ls -l /etc/rc*
-r-xr-xr-- 1 bin bin 1750 Feb 10 1994 /etc/rc
-r-xr-xr-- 1 bin bin 1866 Feb 10 1994 /etc/rc.bsdnet
-rw-rwxr-- 1 root system 667 Feb 10 1994 /etc/rc.ncs
-r-xr-xr-- 1 bin bin 7680 Feb 10 1994 /etc/rc.net
-rwxr-xr-x 1 root system 2628 Jul 17 13:35 /etc/rc.nfs
-rwxr-xr-x 1 root system 1161 Feb 12 1993 /etc/rc.pci
-rwx------ 1 root system 20832 Feb 10 1994 /etc/rc.powerfail
-rwxrwxr-- 1 root system 3950 Jul 17 13:35 /etc/rc.tcpip

Most of the listed rc files are invoked directly through the inittab entries; others are called
by the invoked files, which can be seen from the /etc/inittab file:

$ cat /etc/inittab
init:2:initdefault:
brc::sysinit:/ etc/brc >/dev/console 2>&1 # phase 2 of system boot
rc:2:wait:/ etc/rc > /dev/console 2>&1 # multi-user checks
rctcpip:2:wait:/ etc/rc.tcpip >/dev/console 2>&1 # start TCP/TP daemons
rcnfs:2:wait:/ etc/rc.nfs >/dev/console 2>&1 # start NFS daemons
srcmstr:2:respawn:/ etc/srcmstr #system resource controller
cons::respawn:/ etc/getty /dev/console
cron:2:respawn:/ etc/cron #periodic (cron) daemon
qdaemon:2:once:/ bin/startsrc -sqdaemon

Linux implements three task-specific scripts: rc, rc.local, and rc.sysinit. They are located
in the rc.d directory, out of individual rcn.d subdirectories. In the Linux rc directory
structure shown earlier, the three files have special meaning. They are presented again
here.

$ ls -l /etc/rc.d
.

-rwxr-xr-x 1 root root 1871 Oct 15 1998 rc
-rwxr-xr-x 1 root root 693 Oct 15 1998 rc.local
-rwxr-xr-x 1 root root 7165 Oct 15 1998 rc.sysinit

.

.

© 2002 by CRC Press LLC

Their names strongly evoke “old-style” BSD rc organization, as does their purpose.
Correspondingly, rc.local is assumed for a site-specific customization.

4.5 Shutdown Procedures

UNIX systems are designed to run continuously. In real life, however, from time to time
it will be necessary to shut the system down (for scheduled maintenance, diagnostic
purposes, relocating the system, hardware upgrades, etc.). Before the system can be powered
off, a clean system shutdown is required; otherwise substantial system damage can occur.
The shutdown procedure consists of several steps that should be followed:

• Notify all users that the system will be shutdown at a certain time.
• Signal all users’ processes that they will be killed, allowing them time to exit

gracefully.

• Place the system into single-user mode, log off all remaining users and kill all
remaining processes.

• Ensure that filesystem integrity is maintained by completing all pending disk
updates.

Fortunately, UNIX designers have provided the shutdown command and its derivatives
to fulfill all the required steps smoothly. The only responsibility of a system administrator
is to implement the command when the system is going to be shut down.

The reboot command is also supported for a majority of UNIX flavors on both platforms.
It usually represents a renamed version of the shutdown command, although it can also
have its own options. For example, on the HP-UX platform the reboot command behaves
differently from the shutdown -r command (the -r option indicates rebooting). While the
shutdown command terminates all processes gracefully (it sends the TERM signal to
processes), the reboot command kills all processes unconditionally (it sends the KILL
signal to processes). It is highly recommended that you check the manual pages for the
availability, options, and behavior of the reboot command before using it on any UNIX
platform.

4.5.1 The BSD shutdown Command

The BSD shutdown command has the following syntax:

shutdown time message

where
time Can have one of the three forms:

now For immediate shutdown
+m For shutdown after m minutes
hh:mm For shutdown at this time on the 24-hour clock

message An announcement that is sent to all users; the message is repeated with
increased frequency as the shutdown time approaches

© 2002 by CRC Press LLC

Some BSD flavors support a nonstandard shutdown configuration file /etc/rc.shutdown.
In this case, the system administrator may place any desired command in the file, enabling
its execution at shutdown. The shutdown command also creates the file /etc/nologin, which
automatically denies any future user attempts to log in to the system, and the contents of
the file are displayed to the user. The file is deleted by the /etc/rc script during system
booting.

Several options are supported, among them:

shutdown -r Allows the system to be shut down and rebooted automatically as
soon as the system enters single-user mode(or after a default time
interval if not specified with command itself)

shutdown -f Allows the system to be shut down and quickly rebooted
automatically as soon as the system enters single-user mode (without
filesystem checking)

shutdown -h Allows the system to be shut down and halted at the point where
the power may be safely turned off

shutdown -k Performs a fake shutdown with the message sent to all users, but no
shutdown actually occurs

4.5.2 The System V shutdown Command

The System V shutdown command has the following syntax:

shutdown -gn -ilevel [-y]

where
n Number of seconds to wait for the shutdown to begin (the default value is 60 s)
level Run-level in which system should be placed:

0 — to turn off power
1 — administrative state
S — single-user mode (default)
5 — firmware state
6 — reboot to initdefault state in /etc/inittab

y Optional preanswered query for shutdown confirmation (“yes”); otherwise the
command will prompt for confirmation just before the system goes down

Older System V flavors required input to the shutdown command from the system
console. However, this could be easily bypassed by executing the command from any
terminal and redirecting the standard input to the console, with the -y option included:

shutdown -g120 -i6 -y < /dev/console > /dev/console 2>&1

To shutdown a system immediately and reboot automatically:

shutdown -g0 -i6 -y

To shutdown and halt a system (after 60 s - default time):

shutdown -i5 -y

© 2002 by CRC Press LLC

4.5.3 An Example

An example from the Solaris 2.x platform is presented to illustrate a system shutdown
process. Even though Solaris 2.x belongs to the System V category, the shutdown com-
mand is more BSD-like. Once the command to halt the system is entered, a series of
messages about the system’s behavior appears on the console until the final halt has been
reached.

$ shutdown -h now

Broadcast message from root (tty1) Thu Sep 21 10:38:59 2000 . . .

The system is going down NOW !!

Sep 21 10:39:01 getty [61] : exiting on TERM signal

halt: sending all processes the TERM signal ………………..
halt: sending all processes the KILL signal ..

Unmounting filesystems …..
Done

The system is halted

© 2002 by CRC Press LLC

5
UNIX Filesystem Management

5.1 Introduction to the UNIX Filesystem

The UNIX filesystem is the widely accepted name for UNIX’s hierarchical tree-structured
directory organization, which holds all files merged together, enabling equal access to
them regardless of their nature or type. Any file in the UNIX filesystem can be identified
by its position in the tree in two ways: by an absolute file name, a full-path file name that
starts from the root directory (represented by “/”); or by a relative file name, which is
relative to the current working directory. Since everything in UNIX is either a file or file-
like, UNIX filesystem management is one of the most important administrative tasks.
Good filesystem management is the key issue for successful UNIX administration; since
most activities are related, in some way, to the filesystems, most problems are related to
the filesystems, too. Sufficient knowledge and understanding of this topic is crucial for
administration. The purpose of the following text is to help readers better understand
UNIX filesystem issues.

The system administrator is responsible for ensuring that users have access to the files
they need, as well as for keeping those files uncorrupted and secure. Basically, admin-
istering the filesystem includes the following tasks:

• Making local and remote files available to users
• Monitoring and managing file corruption, hardware failures, and user errors

• Monitoring and preventing filesystem overloading and unrestricted file growths
• Ensuring data confidentiality by limiting file and system access

• Checking for, and correcting, filesystem corruption
• Enabling a full data restore via a well-planned backup schedule

• Connecting and configuring new storage devices when needed

Some of these tasks can be performed automatically (like checking for filesystem corruption),
while others are usually done manually on an as-needed basis. Some of these tasks are
also discussed in greater detail in other chapters.

When discussing the UNIX filesystem, two basic issues should be made clear:

1. Filesystem visibility, i.e., how the UNIX filesystem is seen by users. The admin-
istrator’s duty is to provide this visibility. We will refer to this topic as UNIX
Filesystem Directory Organization, and discuss it in this chapter.

© 2002 by CRC Press LLC

2. Filesystem layout, i.e., how the UNIX filesystem is seen by the operating
system itself, and how a selected file is found, opened, modified, or stored
within the available disk space. How this “jungle of files” functions at all,
and how to ensure that it works well at any time. We will refer to this topic
as UNIX Filesystem Layout, and discuss it in the next chapter.

As with everything in UNIX, both filesystem topics are BSD or System V colored and
the main UNIX filesystem types originate from the two basic UNIX platforms. However,
the differences between the two platforms are such that the corresponding filesystem types
are mutually incompatible. They differ in the way directories are organized, as well as in
the filesystem layout; they differ also performance-wise.

Despite differences, the filesystem layout and filesystem directory organization are
relatively independent issues, and UNIX vendors are free to select the best of each file-
system type and combine and improve them, thereby making new higher-performance
hybrid solutions. The Berkeley filesystem layout prevailed and today all UNIX vendors
implement it. The System V filesystem layout is obsolete; however, the System V filesystem
directory organization is widely implemented.

5.2 UNIX Filesystem Directory Organization

Both the BSD and the System V filesystem directory organizations will be discussed in
this chapter. We will follow the usual educational approach widely implemented in this
book, and we will start with the BSD filesystem. Originally there were very few differences
between BSD and the System V filesystem directory organizations — BSD and SVR3
(System V Release 3) were almost the same. They are referred to as the traditional UNIX
filesystem. A traditional UNIX filesystem certainly deserves to be considered first. Later
on, the SVR4 (System V Release 4) introduced several significant changes in the directory
organization that were accepted by many vendors, and which remain, with certain
improvements, up to the present time.

Generally, any directory structure can be customized and tailored for site-specific
needs. New directories can be created, and old directories can be moved or deleted.
Sometimes the actual directory tree is quite different from the initial one. However,
there are always plenty of elements to identify the basic flavor of the actual filesystem
directory structure.

5.2.1 BSD Filesystem Directory Organization

The basic directory structure of a traditional UNIX filesystem is illustrated in Figure 5.1,
which presents an idealized BSD directory tree. The directory organization of the SVR3
filesystem was quite similar, with some minor differences. Some vendors, like SunOS
and AIX, followed such filesystem organization. In examining the BSD directory
hierarchy, we will also address these UNIX flavors, and occasional differences will be
emphasized.

© 2002 by CRC Press LLC

A brief discussion and explanation of the directory organization presented in Figure 5.1
follows.

/ The root directory — The base of the filesystem’s tree structure.
All other files and directories, regardless of their physical disk
locations, are logically contained within the root directory.

/bin Command binaries — Includes executable public programs that
are part of the UNIX operating system and its utilities. Other
directories with UNIX commands are /usr/bin, and in some ver-
sions /usr/ucb; strictly for BSD commands.

/dev Device directory — Contains special files related to devices. In
BSD this is a flat directory, while in SVR3 the directory was divided
into subdirectories holding special files of a given type of devices.

/etc System configuration files and executables — Contains most of
the administration and configuration files and the executable
binaries for administrative commands (including system startup
scripts). Some administrative commands are stored in /usr/etc.

/lib Library files — For C and other programming languages. Some
library files are also stored in /usr/lib.

/mnt Mount directory — An empty directory conventionally designed
for a temporary mounting of another filesystem.

/u, /home, /users User’s home directory — Flavor-specific directory name some-
times even changed by the local site. The oldest name was /u,
later changed into /home. Another common name for this direc-
tory is users.

/tmp Temporary directory — Scratch directory available to all users.
Files in the directory should be deleted occasionally. Originally,
it was supposed to clear this directory during the system startup;
nowadays this is not a rule and it varies among UNIX flavors.

/lost+found Lost file directory — Disk errors or incorrect system shutdown
may cause files to be “lost.” They can be fully identified and

FIGURE 5.1
BSD filesystem directory organization.

/ (root dir)

spooletcadm

preserve

tmplib

man

bin ucb

include skellocal games

bin dev etc lib usr mnt u (home) tmp

mailbatchat lpdmqueuecronl news uucp uucppublic

lost+found

© 2002 by CRC Press LLC

located on the disk, but they are not listed in any directory. In
an attempt to repair the corrupted filesystem (by using the fsck
program — will be discussed later), UNIX finds these files and
puts them into this directory for later identification by users. By
default the lost+found directory exists in each filesystem; this one
belongs to the root filesystem.

/usr This directory contains a number of subdirectories for many
important parts of the UNIX system. A more detailed discussion
about these subdirectories follows.

/usr/adm Administrative directory — Home directory for the special user
adm, dedicated to “accounting.” It contains UNIX accounting
files and various system log files.

/usr/bin Command binary files and shell scripts — Public executable
programs that are part of the UNIX system (similar to /bin).

/usr/etc Additional administrative commands — In SunOS all adminis-
trative commands are stored in this directory.

/usr/lib Library directory — For public library files; contains the standard
C libraries for mathematics and I/O commands, and configuration
files for various UNIX facilities and services, and optional soft-
ware products.

/usr/ucb Original Berkeley UNIX commands — Developed at the Uni-
versity of California, Berkeley; sometimes included subdirectories
for separate file types (bin for binaries, lib for library, etc.).

/usr/tmp Temporary directory — Another depot for temporary located files.
/usr/local Local files — By convention, its subdirectory /usr/local/bin is

reserved for any public executable programs developed on that
system.

/usr/includes Include files — Contains C-language header files which define
the C programmer’s interface to standard system features and
program libraries. The directory /usr/include/sys contains OS-
included files.

/usr/skel Skeleton directory — Contains default template files to be custom-
ized and used at the site, like the users’ initialization (dot) files
to be copied into a user’s home directory.

/usr/man Manual pages directory — Contains online documentation of
the UNIX reference manuals, divided into subdirectories for
each section of the manual. It contains several man# subdirec-
tories holding the raw source for the manual pages in that sec-
tion, and the cat# subdirectories holding the processed versions
(sometimes cleared to save a space).

/usr/games UNIX game collections — Often removed by administrators.
/usr/preserve Preserve directory — Old-fashioned directory to store files.
/usr/spool Spooling directory — Contains subdirectories for UNIX sub-

systems that provide different kinds of spooling services, such as:
./at for time-scheduled jobs
./cron for batch jobs
./batch for batch jobs
./mail, and ./mqueue for the email subsystem

© 2002 by CRC Press LLC

./news for news

./lpd for the printing subsystem

./uucp, and ./uucppublic for the UUCP subsystem

Some UNIX flavors, for example, SunOS or AIX, introduced more /usr subdirectories
(which are not presented in Figure 5.1), like:

/usr/5bin Executables for System V — In SunOS, stores executables for System
V-specific commands; over time the name was changed to /usr/sbin.

/usr/lpp Licensed program products — In AIX, optional products are stored
in this directory; in particular, the subdirectory /usr/lpp/bos holds
information about the current OS release.

5.2.2 System V Filesystem Directory Organization

The UNIX filesystem directory organization described next was introduced with the SVR4
(System V Release 4). We will refer to it as the System V filesystem. The basic directory
organization is presented in Figure 5.2. Today, this is the prevailing directory organization,
sometimes slightly modified by UNIX vendors.

When comparing the directory structures presented in Figures 5.1 and 5.2, certain
organizational changes can be seen. System V reorganized the traditional UNIX filesystem
in several ways:

• The /dev directory has been changed. Instead of a flat directory, a number of
new subdirectories dedicated to specific devices were added: ./dsk for disks,
./term for terminals, ./mt for magnetic tapes, ./pts for pseudo-terminals, as well
as ./SA for the device-related system administration utilities.

/ (root dir)

binmtdsk

include

libucb

sbin

term share

pts

man

SA game

sbin dev etc tmp usr mnt home var

maillpat spoolpreservecronl news uucp

uucppublic

bkup

rc2.d

rc3.drc.d

Init.d

rc1.d

rc0.ddefault skel

uucplp

lost+found

FIGURE 5.2
System V filesystem directory organization.

© 2002 by CRC Press LLC

• The new directories /sbin and /usr/sbin were introduced; the new names reflected
System V binaries. Executable files were moved out of the /etc and /usr/etc
directories. The contents of /bin were moved to /usr/bin, and the /bin and /usr/etc
ceased to exist. However, many UNIX flavors set up symbolic links toward the
old locations, so the commands may seem to be in both places.

• Virtually all system configuration files were placed in the /etc directory, organized
in the slightly different way. New subdirectories were created to store files in
a more appropriate way (./default for template configuration files, ./bkup for
backup configuration files, ./skel for site-customized configuration files). In
particular, the system rc startup files have been organized in a more flexible
way: a separate depot subdirectory for start and stop scripts named ./init.d and
subdirectories for each system run-level, ./rcn.d were introduced.

• Certain types of static data files (like manual pages, fonts, spelling data, etc.)
were stored in the subdirectories under /usr/share. It was supposed to share these
files among a group of networked systems, eliminating the need for separate
copies on each system (the name share reflected that idea).

• A new top-level directory /var was introduced to hold the volatile spooling
directories, formerly placed in /usr/spool. The idea was this: if /var represents a
separate filesystem that keeps dynamic data, then the root filesystem can remain
relatively static after initial system setup. This is an important step toward full
support for “read-only” (RO) system disks. However, this very good idea is still
far from its practical implementation. SunOS also used the /var directory.

• The /lib directory was moved into /usr/lib.

5.3 Mounting and Dismounting Filesystems

At first glance, it can seem that the directories of filesystems presented in Figures 5.1 and
5.2 reside in a single place, in a single storage device. The filesystem directory organization
gives no indication of disk devices or disk space boundaries. The directory tree simply
continues over directories and subdirectories in a continuous fashion until the very last
file in the tree.

Administrators must be aware that their filesystems could be spread over multiple disk
devices. As a matter of fact, this is the most common scenario. The actual filesystem layout
is determined by the filesystem configuration, and the configuration data must be well
known to the operating system. The filesystem configuration data defines “break points”
in the overall UNIX filesystem directory structure by establishing relationships between
particular parts of the directory tree and the implemented disk space, i.e., the corresponding
disk devices.

The advantages of merging all files into a single hierarchically organized overall UNIX
filesystem tree structure are numerous. Identifying each file in the tree simply by its
position in the tree, independently of its real physical location, makes the filesystem much
easier to use. Anyone who has ever installed and reinstalled software in a different
filesystem environment would appreciate such a concept very much.

A strict relationship between the filesystem directory organization and the filesystem
physical layout, although hidden from the user, does exist. Otherwise, the UNIX filesystem
could not work at all. In UNIX, this relationship is established in a simple and flexible
way: each filesystem must be mounted before it can be used.

© 2002 by CRC Press LLC

Mounting is the process that makes a disk’s contents available to the system, merging
them into an overall filesystem directory tree. Dismounting is the process that breaks
established logical ties and makes the disk’s contents unavailable. Both processes play
important roles in the UNIX system. Mounting and dismounting are performed on the
level of a filesystem that belongs to the particular disk’s space, which is defined as an
individual storage unit (storage entity). This could be a partition, or a whole disk,
or lately even several disks together. Each such filesystem has its own hierarchical,
directory-tree based file structure and all individual filesystem’s attributes. We will refer
to such an individual filesystem as a partition’s filesystem, or simply as a filesystem. We
are using the term partition, although another term, volume, would be more appropriate.
The term partition has been perfectly serviceable in the past, when disks were partitioned
into smaller parts, and the corresponding partitions were used as basic storage units to
create filesystems. But today it is quite common to combine several disks into an
equivalent storage entity known as a volume. Although it could sound confusing and
somehow inappropriate to say that a partition consists of several disks, to keep every-
thing simple, we will continue to use “partition” (at least until we learn more about
volumes).

Mounting enables the merging of all these partitions’ filesystems into a single overall
UNIX filesystem. A filesystem can be arbitrarily mounted and dismounted — that is, it
can be connected to any point, or disconnected from the overall UNIX filesystem at will.
The only exception is the root filesystem, which is always mounted by the system itself in
the root directory, and, while the system is up, cannot be dismounted.

5.3.1 Mounting a Filesystem

Mounting a UNIX filesystem does more than merely make its data available. Mounting
eliminates all device boundaries, making the filesystem device-independent (a very important
feature in software installation and implementation). Figure 5.3 illustrates the relationship
between disk partitions (as basic storage units) with the associated filesystems and with
the overall UNIX filesystem.

The root filesystem resides in the first partition of the root disk (the first disk — Disk
#1), which is accessible via a special device file /dev/dsk/c1d0s0 (the naming of special device
files can be different among different UNIX flavors). Mounting a root filesystem establishes
a logical connection between the special device file /dev/dsk/c1d0s0 and a mounting point
for the root filesystem in the overall UNIX hierarchical directory tree. For the root filesystem,
the mounting point must be the root directory “/,” and the mounting itself must be
performed during the system startup (booting). A mounted root filesystem cannot be
dismounted as long as the system lives.

To mount a new filesystem, the corresponding mounting point (or, as we prefer to
say, mount-point) is required. A mount-point must be an accessible directory in the
already mounted directory hierarchy. It explains why the mounting of the root filesystem
must be done during the system startup, as well as why the root filesystem must live
as long as the UNIX system itself. The mounting of the root filesystem happens when
no hierarchical directory structure exists at all. Obviously it can be performed only by
the system itself. In addition, dismounting of the root filesystem would be fatal for the
system because the complete UNIX filesystem would be lost without chances for a
recovery. A filesystem cannot be accessed if its mount-point is not accessible, and the
root filesystem is the beginning of everything. However, once the root filesystem is
available, a number of new mount-points can be created and designated to mount other
filesystems.

© 2002 by CRC Press LLC

In Figure 5.3, the root filesystem contains several empty directories: /usr, /var, /home,
and /project designated to merge other filesystems (any mount-points can easily be added
by creating a new directory). While the first three listed filesystems are standard ones
(please make clear that they are not mandatory as separate filesystems — they could be
part of the root filesystem), the fourth one is very site-specific. This example illustrates
a special case where two additional disk partitions (named project and docs) are dedicated
to keep specific project-related data, and only the project filesystem is supposed to be
mounted onto the root filesystem. In any case all partition sizes and mount-points are
arbitrary, and they fully reflect flexibility in creating an overall UNIX filesystem. In this
example, partitions’ filesystems are located in disks and partitions that can be accessed
via the special device files presented in Table 5.1.

An additional partition of the disk #1 (as it can be seen in the Figure 5.3), identified
with /dev/dsk/c1d0s1 is dedicated to the swap partition. While the swap partition is crucial
for the operating system, it is not an integral part of the UNIX filesystem and that is why
it is not included in this discussion.

Four filesystems, usr, var, home, and project, are merged into the root filesystem, while
the fifth one, docs, is merged into the project filesystem. This means that the project
filesystem must be mounted before the docs filesystem. Additionally, the project filesystem
contains the empty directory ./docs (/project/docs after the project filesystem is mounted)
as a mount-point for the docs filesystem.

(root dir) /

dev etc tmpbin

project var usrhome

applicsdocs

app1

app2

appn

doc1

doc2

docn

bin

locall

man

lib

adm

spool

log

mail

bjl

lpl

ibl

mis

/var /usr swap root
c1d0s5 c1d0s3 c1d0s1 c1d0s0

 /project /home
/dev/dsk/c1d1s5 /dev/dsk/c1d1s0

 /project/docs
 /dev/dsk/c1d2s2

Disk #3 Disk #2 Disk #1

FIGURE 5.3
Mounting filesystems.

© 2002 by CRC Press LLC

Please note that there is no necessary connection (even by convention) between
a mount-point for a specific filesystem and a particular disk partition and its associated
special device file. The collection of files in a disk partition can be mounted in any directory
in an already accessible filesystem. Once the partition’s filesystem is mounted, its top-level
directory will take the name of its mount-point. At the same time, the top-level directory
of a mounted partition’s filesystem replaces the mount-point directory. As a side effect,
the eventual files that could reside in the mount-point directory (if it was not empty) will
disappear once the new filesystem is mounted. These data can no longer be seen and
accessed, but they are not erased or overwritten. They remain unchanged but hidden for
future use; they will reappear once the filesystem is dismounted. Obviously, it is highly
recommended to select empty directories for the mount-points. Otherwise, disk space
taken by such files will be wasted — the files cannot be accessed, nor used, but they still
take up disk space.

A filesystem can only be mounted in one place at one time; that is, a special device file
may only designate one mount-point in the directory tree. However, one filesystem can
have another filesystem as a subtree within it.

The previous discussion was related to the local filesystems — the filesystems that reside
in local disks. This is not necessarily always the case; UNIX also supports remote disks.
Nevertheless, at this time we will only focus on the local filesystems, and the discussion
in this chapter will primarily address these issues.

5.3.1.1 The mount Command

The mount command must be used to mount a filesystem. This is a regular UNIX com-
mand that can be invoked from the command line or a script at any time. However, the
command is so crucial for the system that the security precautions require strict superuser
privileges for its execution. Even the SUID bit (discussed in Section 2.2.2.2.4) doesn’t work
in the case of the mount command; if SUID is set, the system will simply reject execution
of the command. Any security risk must be avoided, and SUID always carries a bit of it.

The generic format for the mount command is:

mount [key-options] block-special-file mount-point

The mount command attaches a named filesystem, identified by block-special-file, to
the overall filesystem hierarchy at an existing directory, identified by mount-point. A
number of options are available.

mount maintains a table of mounted filesystems in the filesystem status file, usually named
/etc/mnttab, or /etc/mtab. If invoked without an argument, mount displays the contents of this

TABLE 5.1

Filesystem Locations and Special Device Files

Note: Filesystems are usually named by their mount-points; this convention is
implemented here.

Filesystem Special Device File Disk and Partition Mount-Point

usr /dev/dsk/c1d0s3 disk #1 - part. #3 /usr
var /dev/dsk/c1d0s5 disk #1 - part. #5 /var
home /dev/dsk/c1d1s0 disk #2 - part. #1 /home
project /dev/dsk/c1d1s5 disk #2 - part. #5 /project
docs /dev/dsk/c1d2s2 disk #3 - whole disk /project/docs

© 2002 by CRC Press LLC

table. If invoked with a single argument, either block-special-file or mount-point only, mount
searches the filesystem configuration file (usually named /etc/vfstab, or /etc/fstab) for a matching
entry, and mounts the specified filesystem in the specified directory.

The key-options can be generic ones, valid for all filesystem types, or specific for the
different filesystem types. The following are the most common options:

-p Print the list of mounted filesystems in a format suitable for
use in the filesystem configuration file.

-a Stands for all. Attempt to mount all the filesystems described
in the filesystem configuration file. If a type argument is
specified with the -t option, mount all file systems of that
type. Some UNIX platforms have a special mount command
for this purpose.

-f Fake a filesystem status entry (in the filesystem status file /etc/
mtab, or /etc/mnttab), but do not actually mount any filesystem.

-n Mount a filesystem without making an entry in the filesystem
status file.

-v Verbose. Display messages indicating each filesystem being
mounted.

-t type Specify a file system “type” (see the later text about filesystem
types).

-r Mount the specified file system read-only, even if the config-
uration entry specifies that it is to be mounted read-write.
Physically write-protected and read-only filesystems
should be mounted read-only. Otherwise errors occur when
the system attempts to update access times, even if no write
operation is attempted.

-o FS-specific-options Specify the filesystem-specific options — a comma-separated
list of options valid for the corresponding filesystem type
(see the text about filesystem types).

The following list shows the common options for most local UNIX filesystems.

Options Meaning

defaults Use all default options.
rw / ro Read/write, or read-only; the default is rw.
suid / nosuid SUID execution allowed, or not allowed; the default is suid.
grpid Create files with BSD semantics for the propagation of the group ID. Under this option,

files inherit the GID of the directory in which they are created, regardless of the directory’s
SGID bit.

noauto Do not mount the filesystem automatically, only explicitly (ignore option -a).
remount A filesystem mounted read-only can be remounted read-write (used in conjunction with rw).
intr / nointr Allow, or do not allow, keyboard interrupts to terminate a process that is waiting for an

operation on a locked filesystem; the default is intr.
quota / noquota Filesystem usage limits are enforced, or are not enforced; the default is noquota.
rq Read-write with quota turned on (equivalent to rw,quota).
largefiles / nolargefiles Attempt to enable or disable the creation of files greater than 2GB in size; the filesystem

must be created especially to support large files. The default is nolargfiles.

Note: It is highly recommended that you check the manual pages for the mount command before attempting
to implement it.

© 2002 by CRC Press LLC

A few examples of how to use the mount command follow; the presented situations are
hypothetical.

• To mount the local filesystem /dev/xy0g in the directory /usr:

mount /dev/xy0g /usr

• To mount the hfs filesystem /dev/dsk/c1d2s0 in the directory /home:

#mount -t hfs /dev/dsk/c1d2s0 /home

• To fake an entry for nd root:

mount -ft 4.2 /dev/nd0 /

• To list the filesystems that are currently mounted:

mount

• To mount all ufs file systems:

mount -at ufs

• To save the current mount state:

mount -p > /etc/vfstab

5.3.2 Dismounting a Filesystem

Dismounting is the reverse process of mounting. Every mounted filesystem can be
dismounted (except the root filesystem). When system shutdown is required, before the
system stops entirely, all filesystems are dismounted. This is actually the only situation
when the root filesystem is dismounted.

The umount command is used to dismount a filesystem. Using the command is somewhat
easier than mounting; you simply type:

umount name

where
name is either the name of the mounted filesystem’s special file or the name of the

mount-point, i.e., the directory at which the filesystem is mounted

The single argument is sufficient for full identification of the mounted filesystem. The
umount command looks in the filesystem status file /etc/mnttab (or, /etc/mtab) for another
argument. If a specified name cannot be found, it simply means there is no need for
dismounting because the specified filesystem is not mounted at all.

umount supports the same options as the mount command. Online UNIX documentation
often presents both commands in the same manual pages.

A few examples:

• To dismount the filesystem /dev/dsk/c1d2s0 mounted at /home:

umount /dev/dsk/c1d2s0 or
umount /home

• To dismount all filesystems described in the filesystem status file /etc/mtab:
umount -a (Pay attention that the root filesystem can never be dismounted.)

© 2002 by CRC Press LLC

A filesystem can be dismounted only if it is not busy. A filesystem is busy as long as
any running process is requiring any resource within the filesystem. For example, when
a user changes a directory within a certain filesystem (by executing the cd command),
that filesystem becomes busy, and the superuser cannot dismount it. The only way to
dismount a busy filesystem is to first make it free by destroying all related running
processes. Once all processes release the filesystem, it can be dismounted. For example,
to dismount the /home filesystem (supposing it as a separate filesystem), all users must
log out.

Releasing a busy filesystem is not a simple task. It is not always easy to determine which
processes are associated with the filesystem. The fuser command could be instrumental
in this case:

fuser [option] fsname

where
fsname The name of the filesystem, specified as a special device file (recommended)

or a mount directory
option w/o option Lists all involved processes, identified by their PIDs

-u Lists all involved processes; the login user name is added in
parentheses besides the PIDs

-k Destroys all involved processes and makes the filesystem free

The -k option of the fuser command is dangerous, and must be used with extreme
caution; for example, “fuser -k /home” will kick-out all logged-in users from the system.

5.3.3 Automatic Filesystem Mounting

Regardless of its form, once the filesystem configuration file is set up, mounting may take
place automatically. The following commands, depending on the implemented UNIX
flavor, will mount all filesystems specified in the filesystem configuration file.

mount -a Mostly for BSD flavors

$ mountall Mostly for System V flavors
$ mount all For AIX

Once the filesystem configuration file is specified properly, even the mount command
can work with a single argument (either the mount-point or the special device file name)
specified on the command line. Another argument is read and taken from the filesystem
configuration file. This is a good opportunity to check newly specified filesystem config-
uration entries, and to avoid potential surprises once the system is rebooted.

5.3.4 Removable Media Management

Mounting and dismounting can be performed manually or automatically (in the sense
that a single command can be used simultaneously for multiple filesystems). However,
a command itself must always be invoked by a user or from a script. This means that each
time a floppy disk or a CD-ROM is used a user must mount and/or dismount a filesystem
residing on the medium. This can be frustrating for many users, but this is the way things
work on many UNIX systems.

© 2002 by CRC Press LLC

Modern UNIX versions, like Solaris 2.x, introduced a special daemon, a media (volume)
management daemon, to manage an automatic mounting and dismounting of removable
media filesystems. The daemon permanently monitors devices like floppy drives or CD-ROM
drives and provides an appropriate action as soon as a medium (disk) has been inserted
into a corresponding device; it also ejects a medium if requested by the user. The name
for the daemon on Solaris 2.x is vold:

$ ps -ef | grep -v grep | grep vold

root 200 1 80 Sep 28 ? 0:01 /usr/sbin/ vold

The vold daemon is started during the system startup, and it lives as long as the system
itself. In the presented example, the running program is /usr/sbin/vold and the process ids
are PID=200 and PPID=1 (the parent process init, as for all daemons). Solaris uses the
term volume instead of medium, which explains the name of the daemon.

The vold daemon takes care of all replaceable mountable devices. It automatically
mounts newly inserted volumes (media), assuming a single predefined mount-point for
each volume (medium) of the same device. There is no need for any additional action.
Users can simply insert floppy or CD-ROM disks and use them.

The media (volume) management daemon vold is often referred to as a volume manager.
This can be quite confusing, because the name volume manager is commonly used on
different UNIX platforms to identify the logical volume manager — the suite of programs
that manage logical volumes, in a new approach in the management and handling of
available disk space. Instead of dealing with disk units as physical entities, they can be
logically grouped and treated as logical entities. The logical volume manager will be dis-
cussed in greater detail later.

5.4 Filesystem Configuration

Mounting and dismounting filesystems is seldom performed manually; the mount com-
mand (or several mount commands) is executed automatically at system boot time. How
does the system know which filesystems have to be mounted? Obviously, the required
configuration data must be available to the system during its startup. The information
about all filesystems, for use by the mount and other relevant commands, is stored in the
filesystem configuration file. The name and form of this file vary slightly between UNIX
flavors. The variations originated in the traditional BSD and System V UNIX systems, and
the two versions will be presented separately. Even though the BSD-type filesystem is the
dominant one today, we will address both BSD and System V types of filesystem config-
uration files.

5.4.1 BSD Filesystem Configuration File

The BSD-style filesystem configuration file /etc/fstab was, and still is, used by many UNIX
flavors: SunOS 4.1.x, HP-UX 10.20, IRIX, Linux, etc. Here is an example from SunOS:

$ cat /etc/fstab
/dev/sd0a / 4.2 rw 1 1
/dev/sd0h /home 4.2 rw 1 3

© 2002 by CRC Press LLC

/dev/sd0g /usr 4.2 rw 1 2
/dev/fd0 /pcfs pcfs rw,noauto 0 0
indigo1:/indigo1 /indigo1 nfs rw,bg,intr,hard 0 0
hcprophet:/hcprophet /hcprophet nfs rw,bg,hard,intr 0 0
rs01-ch:/home/2gig/rsxx-ch /rsxx-ch nfs rw,bg,hard,intr 0 0

The first three entries define three local 4.2. type filesystems: root, usr, and home, in the
partitions a, h, and g, of the same disk sd0. This used to be a very common filesystem
configuration when disk space was quite expensive. The fourth entry defines a floppy
drive (pcfs filesystem type). The last three lines define three NFS filesystems. To mount
remote NFS filesystems, different syntax and options should be implemented; this will be
discussed in another chapter.

This filesystem configuration file does not include any swap-related entry. The system
obviously has used only the primary swap partition, the partition b at the disk sd0,
identified by the special device file /dev/sd0b. If it is not specified otherwise, the system
by default mounts the primary swap partition. However, as we mentioned earlier, modern
UNIX versions require swap configuration entries.

An example on Linux platform:

$> cat /etc/fstab
/dev/sda1 / ext2 defaults 1 1
/dev/sda5 /home ext2 defaults 1 2
/dev/sda8 /log ext2 defaults 1 2
/dev/sda7 /tmp ext2 defaults 1 2
/dev/sda2 /usr ext2 defaults 1 2
/dev/sda3 /var ext2 defaults 1 2
none /proc proc defaults 0 0
/dev/sda6 swap swap defaults 0 0

Linux displays swap partitions, including the primary one. Most UNIX flavors today
follow this approach — it is always better to see, than to guess about, the system config-
uration. However, the presented proc filesystem could be confusing. This configuration
entry is Linux specific — proc is a quasi-filesystem which allows an easy access to handle
kernel parameters by using regular UNIX commands. Although it is primarily read-only,
some kernel parameters could even be modified in that way.

In the SunOS example an entry for a local filesystem has the form:

block-special-file mount-point type opts dump-freq pass-number

The fields have the following meanings:

block-special-file The name of a special block device file where the filesystem
resides

mount-point The directory at which to mount the filesystem

type The filesystem type; here the implemented values are:

4.2 For local partitions
nfs For volumes mounted remotely via NFS
pcfs For DOS formatted floppy diskettes

These could also be:

swap For swap partition
ignore For the mount command to ignore this line

© 2002 by CRC Press LLC

opts The field consists of one or more options, separated by commas.
These are the usual mount options for a specified filesystem
type, determined by the type field. For ignore type entries, this
field is ignored. For swap type entries, this field should be sw.
If the file’s type is 4.2, the options field may include the follow-
ing keywords, separated by commas:

rw Read-write filesystem
ro Read-only filesystem

suid The SUID access mode permitted
nosuid The SUID access mode not permitted

quota Quotas may be placed in effect
noquota Quotas not in use

dump-freq A decimal number indicating the frequency with which this
filesystem should be backed up. A value of 1 means every day,
2 means every other day, and so on. This field should be 0 for
swap devices.

pass-number A decimal number indicating the order in which fsck should
check the filesystems. The number 1 indicates that the filesys-
tem should be checked first, 2 indicates that the filesystem
should be checked second, and so on. The root filesystem must
have a pass-number of 1. All other filesystems should have
higher numbers. For optimal performance, two filesystems that
are on the same disk drive should have different numbers;
however, filesystems on different drives may have the same
number, letting fsck check the two filesystems in parallel. The
number should be 0 for a swap device.

5.4.2 System V Filesystem Configuration File

Since SVR4, the filesystem configuration file has been named /etc/vfstab to reflect the newly
used term virtual; this name is still the most common today. An example from Solaris 2.6
follows.

$ cat /etc/vfstab
#
device device mount FS fsck mount
to mount to fsck point type pass at boot options
#
/proc - /proc proc - no -
fd - /dev/fd fd - no -
swap - /tmp tmpfs - yes -
/dev/dsk/c0t3d0s0 /dev /rdsk/c0t3d0s0 / ufs 1 no -
/dev/dsk/c0t3d0s6 /dev /rdsk/c0t3d0s6 /usr ufs 1 no -
/dev/dsk/c0t3d0s7 /dev /rdsk/c0t3d0s7 /export/home ufs 2 yes -
/dev/dsk/c0t3d0s1 - - swap - no -
/dev/dsk/c0t2d0s0 /dev /rdsk/c0t2d0s0 /applic ufs 3 yes -
/dev/dsk/c0t2d0s6 /dev /rdsk/c0t2d0s6 /software ufs 4 yes -
/dev/dsk/c0t2d0s1 - - swap - no -

© 2002 by CRC Press LLC

Changes in the file’s syntax are visible when the two main UNIX filesystem configuration
files are compared, but the structure and contents of the file remain essentially identical.
The configuration file on Solaris includes a header, which identifies each entry field and
makes the file easier to read. Other modifications include: partitions are specified with
both block and character (raw) special device files, for the filesystem mounting and
checking, respectively; the entry for nonsystem-critical filesystems can be bypassed during
system startup (system critical filesystems are always mounted, regardless of what is
specified in the “mount at boot” field); and there is no more useless backup-related data.

According to the filesystem configuration file, this system contains two local disks. The
first disk c0t3d0 (this is the way Solaris identifies disks, by controller#/target#/disk#) with
three partitions (root, usr, and export/home), as well as the primary swap partition; the second
disk c0t2d0 contains two partitions (applic and software) and the second swap partition.
Partitions are mounted into the corresponding directories with the same names. Based on
the naming scheme, the second disk seems to be added later.

Please note that the disk identification used here is not a generic one; the identification
is very hardware dependent (based on the disk controller, interface, and many other
factors). In the preceding example, the implemented disks are SCSI disks occupying SCSI
addresses #3 and #2.

Typically, an entry in the /etc/vfstab file has the format:

blk-spfile char-spfile mount-point type fsck-pass automount? opts

where
blk-spfile Block special file (to be used by mount)
char-spfile Character special file (to be used by fsck)
mount-point Directory at which to mount the filesystem
type Filesystem type. The possible values are:

ufs (efs) For a BSD-style filesystem
nfs For volumes mounted remotely via NFS
s5 For a System V-like filesystem

fsck-pass A decimal pass-number indicating the order in which fsck should
check the filesystems. 1 indicates that the filesystem should be
checked first, 2 if it’s to be checked second, and so on. The root file-
system must have a pass-number of 1. All other filesystems should
have higher numbers. Again, for optimal performance, filesystems
on the same disk drive should have different numbers; however,
filesystems on different drives may have the same number, allow-
ing fsck to check the two filesystems in parallel.

automount? The keyword yes or no, indicating whether the filesystem is to be
automatically mounted by the mountall command

opts The field consists of one or more options, separated by commas.
The options field may include the following keywords:

rw Read-write filesystem
ro Read-only filesystem
rq Read-write filesystem with disk quotas in effect
suid The SUID access mode permitted
nosuid The SUID access mode not permitted

HP-UX 9.0x renamed the filesystem configuration file into /etc/checklist; HP-UX 10.x
named it back to /etc/fstab, but made a corresponding link for this unusual name to keep

© 2002 by CRC Press LLC

it compatible with the previous releases. Regardless of what the file name was, its contents
remained essentially the same. The next example is from HP-UX 9.0x. Starting with HP-UX
9.04, the logical volume manager (LVM) became a part of the HP-UX installation, so the
logical volume can replace the partitions presented here.

$ cat /etc/checklist
/dev/dsk/c201d6s0 / hfs rw,quota 0 1 769 16409
#/dev/dsk/c201d6s0 ….. swap end,pri= 0 0 0 16408 0
/dev/dsk/c201d5s0 /disk2 hfs rw,suid, 0 2 16408 0
/dev/dsk/c201d5s0 ….. swap end,pri=1 0 0 16408 31484
/dev/dsk/c201d2s0 /cdrom cdfs ro,suid, 0 0 0

Two hard disks, d6 and d5, containing a single partition and a swap partition and a CD-ROM
disk, d2, are specified; HP-UX assumes only one partition on a disk, with or without
a swap partition (this is discussed in greater detail in Chapter 27). The entry for the first
swap partition is commented out, but this does not affect performance, because the system
always mounts the primary swap partition by default.

The next example is IRIX related. IRIX is a primarily System V flavored version of UNIX,
which uses the slightly modified BSD-style /etc/fstab file (only local filesystem entries are
presented):

$ cat /etc/fstab
/dev/root / efs rw,raw=/dev/rroot 0 0
/dev/usr /usr efs rw,raw=/dev/rusr 0 0
/dev/dsk/dks0d2s7 /hom e efs rw,raw=/dev/dsk /dks0d2s7,fsc k 0 0
/dev/dsk/dks0d3s7 /dis k3 efs rw,raw=/dev/dsk /dks0d3s7,fsc k 0 0

.

.

The implemented filesystem type is IRIX-flavored “efs.”

5.4.3 AIX Filesystem Configuration File

AIX has a completely different approach to filesystem configuration (as well as to a number
of other issues). AIX has introduced a journaled filesystem, jfs, which is its standard
filesystem type. The configuration data are specified in two filesystem configuration files:
/etc/filesystems and /etc/vfs, both very AIX-specific. Here is an example:

$ cat /etc/filesystems
* @(#)filesystems @(#)29 1.18 com/cfg/etc/filesystems, bos, bos320
*
* This version of /etc/filesystems assumes that only the root file system
* is created and ready. As new file systems are added, change the check,
* mount, free, log, vol, and vfs entries for the appropriate stanza.
/:

dev = /dev/hd4
vfs = jfs
log = /dev/hd8
mount= automatic
check = false
type = bootfs
vol = root
free = true

© 2002 by CRC Press LLC

/usr:
dev = /dev/hd2
vfs = jfs
log = /dev/hd8
mount = automatic
check = false
type = bootfs
vol = /usr
free = false
.
.

/home:
dev = /dev/lv00
vfs = jfs
log = /dev/loglv01
mount = true
check = true
options = rw
account = false
. . .
. . .

A filesystem is confined to a logical volume. All of the information about the filesystem
is centralized in the /etc/filesystems file. Most of the filesystem maintenance commands
take their defaults from this file. The file is organized into “stanzas” which are named as
the filesystems are named; their contents are attribute-value pairs, which specify the
characteristics of the corresponding filesystems.

The /etc/filesystems file serves two purposes:

1. It documents the layout characteristics of the filesystems.

2. It frees the person who sets up the filesystem from having to enter and remember
items such as the device where the filesystem resides, because this information
is defined in the file.

Each stanza names the directory where the filesystem is normally mounted. The filesystem
attributes specify all of the parameters of the filesystem. The attributes currently used are:

account Used by the dodisk command to determine the filesystems to be
processed by the accounting system. This value can be either True or
False.

boot Used by the mkfs command to initialize the boot block of a new filesystem.
This specifies the name of the load module to be placed into the first
block of the filesystem.

check Used by the fsck command to determine the default filesystems to
be checked. The True value, enables checking while the False value
disables checking. If a number, rather than the True value, is specified, the
filesystem is checked in the specified pass of checking. Multiple-pass
checking, described in the fsck command, permits filesystems on different
drives to be checked in parallel.

dev Identifies, for local mounts, either the block special file where the filesys-
tem resides or the file or directory to be mounted. System management
utilities use this attribute to map filesystem names to the corresponding
device names. For remote mounts, it identifies the file or directory to be
mounted.

© 2002 by CRC Press LLC

mount Used by the mount command to determine whether this filesystem
should be mounted by default. The possible values of the mount attribute
are:

automatic Automatically mounts a filesystem when the system is
started. For example, the root filesystem line is the
“mount=automatic” attribute. This means that the root
filesystem mounts automatically when the system is
started. The True value is not used so that mount all does
not try to mount it, and umount all does not try to
dismount it. Also, it is not the same as the False value
because certain utilities, such as the ncheck command,
normally avoid filesystems with a False value for the
mount attribute.

False This filesystem is not mounted by default.

readonly This filesystem is mounted as read-only.

True This filesystem is mounted by the mount all command. It
is dismounted by the umount all command. The mount all
command is issued during system initialization to automat-
ically mount all such filesystems.

nodename Used by the mount command to determine which node
contains the remote filesystem. If this attribute is not
present, the mount is a local mount. The value of the node-
name attribute should be a valid node nickname. This value
can be overridden with the mount -n command.

size Used by the mkfs command for reference and to build the filesystem.
The value is the number of 512-byte blocks in the filesystem.

type Used to group related mounts. When the mount -t string command is
issued, all of the currently dismounted filesystems with a type attribute
equal to the string parameter are mounted.

vfs Specifies the type of mount. For example, “vfs=nfs” specifies that the
virtual filesystem being mounted is an NFS filesystem.

vol Used by the mkfs command when initializing the label on a new file-
system. The value is a volume or pack label using a maximum of six
characters.

log The device to which log data is written as this filesystem is modified.
This is only valid for journaled filesystems.

The asterisk (*) is the comment character used in the /etc/filesystems file. Also, the
“default” stanza can be introduced to specify default attributes valid in each of the stanzas
if not otherwise specified, as in the following example:

* Filesystem information
default:

vol = “AIX”
mount = false
check = false

/:
dev = /dev/hd4
vol = “root”

© 2002 by CRC Press LLC

mount = automatic
check = true
log = /dev/hd8
…etc.

The purpose of the second file /etc/vfs is different. This is a generic file that defines
filesystem types. Here is a self-explanatory example from the very same AIX system:

$ cat /etc/vfs
@(#)vfs @(#)77 1.20 com/cfg/etc/vfs, bos, bos320
#
this file describes the known virtual file system implementations.
format: (the name and vfs_number should match what is in <sys/vmount.h>)
The standard helper directory is /etc/helpers
#
Uncomment the following line to specify the local or remote default vfs.
%defaultvfs jfs nfs
#
name vfs_number mount_helper fil sys_helper

cdrfs 5 none none
jfs 3 none /sbin /helpers/v3fshelper
nfs 2 /sbin/helpers /nfsmnthelp none remote

5.4.4 The Filesystem Status File

The filesystem configuration file defines the configuration that the system is trying to
achieve. A configuration entry does not necessarily mean that the appropriate mount
attempt will be successful; there are many reasons that can cause mounting to fail. For
example, for all removable media, a mount attempt will fail if a volume was not loaded
into the device (floppy drive, CDROM drive, etc.), not to mention a broken disk or
corrupted filesystem. Even after a successful mounting, the filesystem could be automatically
or manually dismounted. Briefly, the real filesystem status does not necessarily match with
the configuration requirements.

The system automatically maintains a separate table of its current filesystem status. This
table is updated always when any filesystem is mounted or dismounted. The table is an
ASCII readable file that can be manually modified; of course, manual modification is not
recommended except as a last resort to fix an obvious error. Two file names are common
for the filesystem status file: /etc/mnttab and /etc/mtab; both names reflect the file’s purpose
as a mounted filesystem table.

The filesystem status file contains a table of all filesystems currently mounted by the
mount command. The umount command removes entries from this file. The file contains
an entry (a line of information) for each mounted filesystem, which is structurally
identical to the contents of the filesystem configuration file. The entry format varies
slightly among UNIX flavors, just as the filesystem configuration entries do. A typical
entry looks like:

fsname dir type opts freq passno

where
fsname A filesystem name
dir A mount-point directory
type A filesystem type
opts Are comma-separated filesystem options

© 2002 by CRC Press LLC

freq A number indicating backup strategy for the filesystem
passno A number indicating the fsck order for the filesystem

The content of the /etc/mtab file on SunOS is presented to illustrate the previous
information:

cat /etc/mtab
/dev/sd0a / 4.2 rw,dev=0700 1 1
/dev/sd0g /usr 4.2 rw,dev=0706 1 2
/dev/sd0h /home 4.2 rw,dev=0707 1 3
indigo1:/indigo1 /indigo1 nfs rw,bg,intr,hard,dev= 8200 0 0
hcprophet:/hcprophet /hcprophet nfs rw,bg,hard,intr,dev= 8203 0 0

This is the filesystem status file for the same system for which the filesystem config-
uration file /etc/fstab was shown earlier. If we compare the two files, and assume the
filesystems were mounted automatically during the system startup, we can conclude:

• All local filesystems are mounted.
• The floppy diskette was not inserted at the startup time, so the pcfs filesystem

is not mounted.

• One of the nfs filesystems is not mounted, obviously because a connection with
the remote host “rs01-ch” was not established at that time (it is a logical to
speculate that the remote host was not reachable, although there could be a
number of other reasons for mounting to fail).

5.5 A Few Other Filesystem Issues

For a better understanding of UNIX filesystems, let us make a brief overview of several
other filesystem issues. The most intriguing issue is how many different UNIX filesystems
exist. We will try to describe the actual situation in this area. We will also address another
extremely important topic related to the UNIX, the topic that affects both the operating
system itself and disk usage. This is swap space and its usage on a UNIX platform — this
time from the angle of the UNIX filesystem organization. Finally, a more detailed description
of one pseudo filesystem is presented, just to clarify mysteries around these filesystem
types.

5.5.1 Filesystem Types

The filesystem type is determined by “a logical organization of the filesystem within the
storage entity,” or more specifically, by the filesystem layout. The filesystem layout will
be elaborated in greater detail in the next chapter.

Different filesystem types are mutually incompatible. Each filesystem type has a different
organization and allows a different approach to its system data and existing files. This
does not mean that different filesystem types cannot coexist within the same UNIX imple-
mentation; it means that the OS has to support all of the implemented filesystem types.

The core of each filesystem is its superblock, a collection of filesystem tables, index
nodes, and other system data that uniquely identify the filesystem. Creating a filesystem

© 2002 by CRC Press LLC

primarily means creating the superblock; differences in the superblocks (structure, contents,
layout, etc.) literally determine the filesystem differences.

Nowadays vendor-specific UNIX filesystems are dominant. The typical System V
filesystem type, known as s5, has practically disappeared. The superior BSD-like filesys-
tems prevailed, with many additions and improvements introduced by different vendors.
Currently, the most common local UNIX filesystem type, supported by a number of UNIX
vendors, is ufs (UNIX filesystem). However, many other flavor-specific filesystem types
are also in use:

• hfs On the HP-UX platform

• efs On the IRIX platform
• ext2 On Linux platform

• jfs Journaled filesystem, introduced by AIX, but also implemented on
other platforms. jfs has some advantages; it is more robust in the face of
filesystem corruption because a journal of filesystem activities
enables a rollback of incomplete transactions to maintain filesystem data
consistency

• 4.2 An improved filesystem introduced with BSD 4.2 UNIX, and widely used
on the SunOS platform (a real ancestor of the ufs filesystem)

• vxfs Veritas filesystem, an improved journaled filesystem version with a number
of beneficial filesystem characteristics

Other implemented local filesystem types are:

• afs Andrew filesystem, provides some additional flexibility, especially
regarding remote filesystem sharing

• hsfs High Sierra filesystem, typical for CD-ROM media

• cdfs CD-ROM filesystem
• pcfs PC filesystem (FAT filesystem), implemented for DOS-formatted floppy

diskettes

• cachefs Cache filesystem, allows use of local disk space to cache frequently-used
data from a CD-ROM or a remote filesystem

There are also a number of specific, pseudo filesystem types supported by different
UNIX flavors:

• tmpfs Temporary filesystem, a temporary file storage in memory that swaps
to bypass the overhead of writing into a disk

• lofs Loopback filesystem, a virtual filesystem to approach files using
different pathnames (it is discussed in more details later in this section)

• tfs Translucent filesystem, allows mounting of a filesystem on top of existing
files (mount-point does not have to be an empty directory)

• swapfs Swap filesystem, used by the kernel to manage swap space
• proc Process access filesystem, allows access to active processes and their

images

• specfs Special filesystem, allows access to the special device files

© 2002 by CRC Press LLC

Besides the listed local filesystem types, supported remote filesystem types are:

• nfs Network filesystem, widely used on all UNIX platforms
• rfs Remote file share filesystem, typical for System V and barely in use

• autofs Automount filesystem, an NIS-based automounted NFS filesystem

Some of the listed types are barely in use, while others are widely used. This relatively
long list also is not, by any means, a complete list. In this chapter we will discuss strictly
local UNIX filesystems; network filesystems will be discussed separately.

We mentioned earlier the swap partition and its crucial role on the UNIX platform. The
swap partition definitely deserves more than this brief statement. A more detailed overview
follows.

5.5.2 Swap Space — Paging and Swapping

UNIX systems require an appropriate swap space available for regular activities; otherwise,
they cannot function normally and they crash immediately. The swap space is provided
as a separate swap partition, and is sometimes several partitions (for primary and additional
swap partitions).

UNIX systems use a virtual memory approach to access required programs and data.
Virtual memory space consists of the physical memory space (known as system memory)
and the corresponding disk space where programs and data actually reside. However,
program execution and data processing are performed from the system memory only;
therefore special techniques are required to provide the data needed from the system
memory at the right time. This is the only task (but it is an extremely difficult task) of a
specialized subsystem known as a memory management system (MMS). This task is crucial
for system performance. The system memory is continuously updated and synchronized
with the disk, and programs and data are transferred in both directions. The transfer is
performed in “pages,” and a page is the basic unit in the data transfer.

In UNIX a part of the disk space is reserved as an extension of the system memory for
temporary storage while the OS keeps track of processes that require more system memory
than is available. This temporary depot is known as a swap space. When the OS recognizes
the need, swap space is used for paging and swapping.

Paging is when individual memory segments, or pages, are moved to or from the swap
area in an ordered way. When free memory space is low, portions of processes (primarily
data segments within the process address space) are moved into the swap space to free
system memory. The data segments are selected to be moved if they have not been
referenced recently (different criteria can be implemented, but the most common is
LRU — least recently used). When the running process tries to reference the data segment
that has been transferred to the swap space, a page fault occurs and the process is
suspended until the required data pages are returned into the system memory. A page
fault occurs normally when a program is started for the first time; then the required pages
must be brought from the disk.

The swap space is mostly organized as a flat partition, which reduces the overhead and
enables faster page transfer, both in and out. This is not a necessity, but it increases the
transfer efficiency. However, the existence of a swap space is a requirement; the swap
space can be thought of as an extension of the system memory, and there is no operating
system to operate without a system memory.

The additional swap partition improves system performances, but it is not mandatory.
Certain UNIX versions enable the use of a swap file (also known as a paging file) within

© 2002 by CRC Press LLC

a regular filesystem, which serves the same purpose as a swap partition. It is important to
note that the use of a swap file instead of a swap partition will not save any disk space — the
required swapping area must be provided in any case, and it stays the same, independent
of its “formal” organization. The main advantage of the swap file is that it can be created
at any time, while the swap partition must be created in advance; its disadvantage is the
time overhead in its use. To create a swap file, a special UNIX command, mkfile, is available
on many platforms (for example, on the SunOS platform).

Swapping occurs during a heavy workload, when memory shortage becomes critical,
and the OS lacks the needed time to perform regular paging. When swapping, the kernel
moves complete processes (including all associated code and data segments) to the swap
area. The processes are chosen if they are not expected to run for a while. Unfortunately,
it is often nearly impossible to make a perfect selection. When the process is run again it
must be copied back into the system memory from the swap space. If such a transfer has
to be performed repeatedly, the system performance drops sharply until the system stabilizes
and continues with regular paging. The system simply spends more time doing process
image and data transfer between the memory and swap areas than it spends running the
same processes.

While paging represents normal system activity, swapping is an undesired event.
Performance-wise, it is preferable for swapping to never occur. Unfortunately, in real life
such situations are unavoidable. The best way to prevent swapping is to increase the system
memory. Today, huge system memory space is quite common and the need for swapping
is drastically reduced; swapping happens only occasionally, or perhaps even never.

The size of the swap space should be larger than the system memory. Theoretically, the
need for swapping the complete system memory could arise. Therefore, if the system
memory is upgraded, a new swap partition should also be added (unless the primary
swap partition has already been sized for future memory upgrades).

The swap space is also used as a dump space. In an emergency the system could dump
a complete memory image into the swap space (known as a memory core). This is an
additional reason to have a swap space larger than the memory itself. In the case of a dump
space, the requirements are even greater: the available space must be contiguous — at
a dump time no overhead is allowed, and the copying of the memory into the swap partition
must be simple and fast. In this case, an additional swap partition does not work; only a
contiguous increase of the existing primary partition helps. Unfortunately, this demand often
cannot be met; a more painful yet realistic solution is to rebuild the complete system.

Solaris 2.x went one step further by introducing the swapfs filesystem. Today, memory is
not very expensive, and therefore huge system memory is not rare; new UNIX implemen-
tations frequently have GBs sized system memory. Under these circumstances, swap space
can be expanded to include a part of the system memory besides the usual disk-based swap
area. Then pages can be swapped from the system memory to the memory-based swap area,
thereby actually staying within the system memory. The only question, then, is how the
system would tell the difference between regular and swapped pages; this is the task of the
swapfs filesystem. Anonymous swapped pages are named by swapfs and handled appro-
priately. There is no need for a literal copying of pages within memory; simply, pages stay
where they were, but are marked as swapped. Swapped pages requested by the system are
released for regular use. Therefore, everything happens as it would in typical swapping,
except much, much faster; the system performance benefit is obvious. Please note that the
phrases “a swapped page” and “to swap a page” do not necessarily refer to the swapping
process; they have been also used to identify a page in the swap area and the process of
transferring a page into the swap area, as a part of the regular paging procedure.

As the need for system memory increases, swapfs makes more space by backing
swapped pages into the disk-based swap area (swap partition). The worst-case scenario

© 2002 by CRC Press LLC

is a well-known swap structure: physical memory is used as system memory, and the
swap area is restricted to the swap partition. As soon as more room has been made in the
memory, a swap space can expand in that way.

Such a flexible approach implies that all swap partitions, including the primary one, should
be mounted through entries in the filesystem configuration file. Otherwise, there is no need
for a default primary swap configuration entry; it is already well known to the system.

5.5.3 Loopback Virtual Filesystem

Modern UNIX versions introduced a more flexible way to merge individual filesystems
into the overall UNIX hierarchical filesystem. Initially, UNIX filesystems could be handled
only as complete partitions; this meant that only a complete filesystem within a partition
could be merged by mounting the top-most directory from the partition’s filesystem onto
the mount-point (supposedly an empty directory within the overall UNIX filesystem). It
also meant that to access any file within a partition, a long trip from the starting partition’s
point was often required. The requested long pathname could be accepted, but for a
number of applications, doing so required a careful selection of the filesystem’s mount-
point. In some cases symbolic links could help in skipping a part of the path, thereby
reaching the needed data using a corresponding shortcut. However, a real advantage
would be to mount the same filesystem in different ways — such flexibility would be
quite an improvement.

A new approach was introduced, known as the loopback filesystem (lofs). Once the
filesystem is mounted in the usual way, lofs allows new, virtual filesystems to be created,
which provide access to existing files using alternate pathnames. Once the virtual filesys-
tem is created, other filesystems can be mounted within it without affecting the original
filesystem. At the same time, filesystems that are subsequently mounted onto the original
filesystem continue to be visible to the virtual filesystem. The new filesystem type lofs
requires a slightly modified treatment by the OS; however, all of the filesystem’s issues
remain transparent.

The idea for lofs came from the network filesystem (nfs), which will be discussed later
in Chapter 18. If something could be implemented through the network, obviously it could
be implemented locally, too. Instead of a network interface, the local loopback interface
should be used, and that is the origin of the filesystem’s name.

An example from HP-UX 10.20 follows. The corresponding lofs entries in the filesystem
configuration file /etc/fstab are presented:

$ cat /etc/fstab (partially presented, here)
.

/dev/vg01/lvol10 /files vxfs rw,suid,delaylog,datainlog 0 2
/files/export/share/ud /usr/ud lofs defaults 0 0
/files/export/home /home lofs defaults 0 0
/files/export/home /users lofs defaults 0 0
/files/tmp /tmp lofs defaults 0 0

The first line defines how the initial (original) filesystem is mounted (the type, vxfs, will
be discussed later); the filesystem resides in the logical volume lvol10 (which will also be
discussed later); and it is mounted into the /files directory. Other lines define how to remount
parts of the very same filesystem (of type lofs). Please note that the first column that normally
identifies the logical volume, or partition, where the filesystem lives, now identifies a starting
point of the part of the filesystem we want to remount. The last two columns (arguments
for fsck and backup) obviously do not apply in this situation, so they are 0.

© 2002 by CRC Press LLC

How are the systems mounted? Here is the partial report of the mount command:

$ mount (partially presented too)
.
.

/files on /dev/vg01/lvol10 delaylog on Sat May 16 23:30:37 1998
/usr/ud on /files/export/share/ud defaults on Sat May 16 23:31:10 1998
/users on /files/export/home defaults on Sat May 16 23:31:10 1998
/tmp on /files/tmp defaults on Sat May 16 23:31:10 1998
/home on /files/export/home defaults on Sat May 16 23:31:10 1998

The lines presented here correspond to those presented earlier in the filesystem
configuration file /etc/fstab. It is clear to see that the system was rebooted on Saturday,
May 16, 1998.

5.6 Managing Filesystem Usage

Once a filesystem is configured and mounted properly, users can start to use files. This is
the purpose of the filesystem’s existence. Using filesystems also means consuming appro-
priate disk space. Not only users do this; the system also consumes disk space on a regular
basis because a number of system log files grow continuously. Incorrect filesystem usage
can also corrupt the filesystem itself, making it inaccessible. The worst-case scenario is a
complete collapse and crash of the system.

Filesystems require a great deal of maintenance during their lifetimes. Primary activities are
closely related to disk space usage, and we will mainly focus on that topic. To manage disk
space a corresponding tool is needed; UNIX provides the necessary tools in a set of commands
that are sufficient for successful management. The main commands in this group are:

df To display filesystem statistics
du To report on disk usage

quot To report disk usage by users

The fsck command is used to check filesystems, and will also be discussed.

5.6.1 Display Filesystem Statistics: The df Command

The df command produces a report that describes the filesystems, the total capacities, and
the amount of free space available, all displayed in 1kB blocks. If a filesystem, or a file,
or a directory within a filesystem is specified as an argument, the report refers only to the
corresponding filesystem.

The two usual flavors of the df command (Berkeley and System V) generate different
reports. A typical BSD report displays:

df
Filesystem Kbytes used avail capacity Mounted on
/dev/sd0a 30191 10596 16576 39% /
/dev/sd0g 220010 173838 24171 88% /usr
/dev/sd0h 764758 243088 445195 35% /home

© 2002 by CRC Press LLC

rs01-ch:/home/2gig/rsxx-ch 2031616 1854268 177348 91% /rsxx-ch
hcprophet:/hcprophet 18875 7449 9538 44% /hcprophet

This output reports the status of existing filesystems, starting with the root disk partition,
and then other mounted disk partitions. Each line of the report shows:

• The filesystem name

• The total filesystem capacity in Kbytes
• The number of Kbytes in use

• The number of Kbytes available (free)
• The percentage of the filesystem’s storage currently in use

• The filesystem mounting point

It sounds impossible, but the displayed percentage can be sometimes larger than 100%
(the maximum value can reach 111%). How can this be? To increase transfer efficiency,
10% of the available filesystem space is sacrificed as fragmented disk space; however, the
superuser can use this space if needed. So the full filesystem size is 90% of the total size
(but 100% for df), and under such circumstances the filesystem can appear to be overfilled.
We will return to the “10% reserved disk space” later.

This example was from SunOS 4.1.3, which supports the BSD form of the df command.
Some UNIX flavors, like HP-UX, support both command types; to distinguish between
them, the BSD type is renamed bdf. Here is an example from HP-UX 10.20:

$ bdf
Filesystem Kbytes used avail %used Mounted on
/dev/vg00/lvol1 91669 58532 23970 71% /
/dev/vg00/lvol7 319125 252427 34785 88% /var
/dev/vg00/lvol6 350997 294527 21370 93% /usr
/dev/vg00/lvol5 99669 23060 66642 26% /tmp
/dev/vg00/lvol4 251285 189044 37112 84% /opt

The logical volume manager (LVM) is a standard part of the HP-UX 10.20 and creates
the needed special device files for existing logical volumes.

To get the report about index nodes (this is actually a numerical report about files), use
df -i (the -i option refers to index nodes):

df -i
Filesystem iused ifree %iused Mounted on
/dev/sd0a 1217 13887 8% /
/dev/sd0g 13130 100150 12% /usr
/dev/sd0h 10726 374426 3% /home
rs01-ch:/home/2gig/rsxx-ch* * * /rsxx-ch
mvaxgr:1DUB1: * * * /mvaxgr/disku2
hcprophet:/hcprophet * * * /hcprophet

The System V df command produces a different report. This example is from Solaris 2.6:

$ df
/ (/dev/dsk/c1t0d0s0): 1488210 blocks 290743 files
/proc (/proc): 0 blocks 2866 files
/dev/fd (fd): 0 blocks 0 files
/altboot (/dev/dsk/c1t0d0 s3): 384464 blocks 98556 files

© 2002 by CRC Press LLC

/tmp (swap): 1122128 blocks 30843 files
/files (/dev/md/dsk/d10): 1334502 blocks 344191 files

This example is from HP-UX 10.20:

$ df
/opt (/dev/vg00/lvol4): 74224 blocks 36311 i-nodes
/tmp (/dev/vg00/lvol5): 133284 blocks 15592 i-nodes
/usr (/dev/vg00/lvol6): 42740 blocks 44762 i-nodes
/var (/dev/vg00/lvol7): 69570 blocks 35897 i-nodes
/ (/dev/vg00/lvol1): 47940 blocks 11893 i-nodes

The report includes:

• The filesystem mount point
• The special file name

• The number of blocks (block=512 bytes)
• The number of inodes, i.e., files in use

The percentage field, with the used space represented as a percentage of the total space,
is missing from the generic System V df report. However, this is the most used, and
possibly the most valuable, piece of information generated by the BSD-type command.
Some vendors, therefore, provide a special option for this purpose. On Solaris 2.x, the
option -k in effect converts the existing df command into the Berkeley style one.

$ df -k
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c1t0d0s0 1280786 536681 740904 43% /
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
/dev/dsk/c1t0d0s3 192241 9 192040 1% /altboot
swap 565480 4416 561064 1% /tmp
/dev/md/dsk/d10 4211882 3544631 625133 86% /files

A frequent run of the df command is strongly recommended. This is an efficient way
to prevent the filesystem from being overfilled. Typically, the administrator should be
warned when 90% of the filesystem is in use. Please note that fulfilled system-critical
filesystems (root, /usr/, /var) can be fatal for the system. It is a good idea to automate the
monitoring of filesystem statistics by periodically running the df command. Combined
with an automatically generated warning e-mail, or a paging of the administrator, this
can be a very efficient early warning method and could prevent more serious system
problems. Some system administrators put the df command in the root’s login scripts to
be executed as each administrator logs into the system.

5.6.2 Report on Disk Usage: The du Command

The df command is useful in detecting possible problems related to the filesystem status
and size. If there are problems, appropriate action is required. The action is quite simple: the
filesystem must be purged of unnecessary files to make more room. On the other hand,
having a clear idea of what should be done does not mean it can be done easily. Deciding
which candidates should be purged without affecting users, installed software, and in

© 2002 by CRC Press LLC

some cases the system itself is a challenge. In addition, the solution must actually provide
relief: instead of deleting hundreds of small files, it is a much better idea to remove a few
larger files. The du command can help with this important task.

The du command summarizes disk usage; it recursively reports the amount of disk space
used by all files and subdirectories within a specified directory, listed on a per-subdirectory
basis. Disk usage is reported in blocks (block size varies among systems); BSD uses 1KB
blocks, while System V uses 512-byte blocks. Otherwise, there are no differences between
the versions. A typical du reports look like:

Berkeley style — SunOS

du /home/bjl
3753 /home/bjl/ncsa
376 /home/bjl/email
47 /home/bjl/publdoc
266 /home/bjl/ftp/drivers

.

.
11476 /home/bjl

System V style — HP-UX 10.x or Solaris 2.x

$ du /users/bjl
8 /users/bjl/current
18 /users/bjl//sessions
42 /users/bjl/.elm
2 /users/bjl/Mail

. . .

. . .
342 /users/bjl

Obviously there is no difference between two UNIX platforms. For each subdirectory,
all of the files and subdirectories that belong are presented, as well as a separate line
indicating the total amount of disk space occupied by this subdirectory. The last line
presents the total usage for the specified directory. Often, this report can be inordinately
long and tedious; a report with several hundred lines is obviously hard to use. By
specifying the -s option, only the total amount of disk space that a directory and its contents
occupy is displayed, while the subdirectories and files are skipped:

du -s /home/bjl

11476 /home/bjl

$ du -s /users/bjl

342 /users/bjl

This command can be piped with others to obtain different reports, with subdirectories
sorted by different criteria (size, reverse size, etc.).

An extremely convenient way to use the command is “du -s *;” the report will include
the size of each file and the total size of each subdirectory within the current directory
only. This can be very useful in tracking the change in the size of a filesystem and in
determining the cause of any sudden increase in size. By starting from the mount-point
directory of the oversized filesystem, we can browse through large associated subdirectories
until we reach the file, or files, that caused a sudden change in the size of the filesystem.

© 2002 by CRC Press LLC

Once the cause is detected, corrective action can be implemented. For a better understanding,
just follow this example:

$ bdf /var
Filesystem kbytes used avail %used Mounted on
/dev/vg00/lvol6 524288 462700 51387 90% /var

The /var filesystem has reached the critical size (supposing 90% as a critical size) and
should be checked and cleared. To efficiently discover potential offenders, we have to find
large subdirectories and files and check whether we can remove or resize them. We will
start to browse from the filesystem mount-point, in this case /var.

$ cd /var

$ du -s *
0 X11
585562 adm
2 dt
0 lost+found
36 mail
1292 opt
186746 patches
914 preserve
1886 sam
122656 spool
10 statmon
392 stm
10900 tmp
78 yp
.
.

The adm directory seems to be oversized. So, the next step is:

$ cd adm

$ du -s *
3038 btmp
18 cron
32254 debug
7264 diag
40 ftmp.cron.log
4 inetd.sec
1914 lp
4598 maillog
2 netstat_data
1642 nettl.LOG00
50 sulog
300892 sw
221550 syslog
52 vtdaemonlog
980 wtmp
.
.

The file syslog is the system log file; the OS permanently logs into the file after the system
startup. It seems to be unusually large (larger than 100 MB). By checking its contents,

© 2002 by CRC Press LLC

we will quickly see many old useless log records that can be deleted from the file.
Since resizing the file (preserving only those records from the last two months), the /var
filesystem appears to be doing fine.

$ bdf /var

Filesystem kbytes used avail %used Mounted on

/dev/vg00/lvol6 524288 360000 154087 70% /var

5.6.3 Report on Disk Usage by Users: The quot Command

Another command related to disk usage is quot, which summarizes filesystem ownership.
The quot command reports the number of 1KB blocks used by each of the users in
a specified filesystem. Only the superuser can execute this command, because it accesses
the disk special files. The command syntax is:

quot [options] block-special-file

where
block-special-file The filesystem block special file
options The usual filesystem related options

An example:

$ quot /dev/sd0h
/dev/sd0h (/home):
68456 pam
29154 mindy
23693 george
11466 bjl
.
.
353 root
6 bin

5.6.4 Checking Filesystems: The fsck Command

A filesystem can be corrupted by any number of things: operator errors, hardware failures,
etc. The fsck command (it stands for filesystem check) checks the filesystem’s consistency,
reports any encountered problems, and optionally tries to repair them (sometimes such
repairs can cause minor data loss). The fsck command interactively repairs inconsistent
filesystem conditions.

fsck can encounter the following filesystem problems:

• One block belonging to several files (inodes)
• Blocks marked as free but in use

• Blocks marked as used but free
• Incorrect link counts in inodes, indicating missing or excess directory entries

• Incorrect directory sizes
• Inconsistencies between inode size value and the amount of data blocks referenced

in the address field

© 2002 by CRC Press LLC

• Illegal blocks (e.g., system tables) within files
• Inconsistent data in the filesystem’s tables

• Lost files (nonempty inodes that fully identify files not listed in any directory) —
fsck places these orphaned files in the filesystem directory named lost+found
(each filesystem has its own lost+found directory), so they can be recognized later
by owners and reused; the name assigned to a lost file corresponds to the inode
number

• Illegal or unallocated numbers in directories

On BSD, the fsck command is run automatically on boots and reboots. On System V,
fsck is run at boot time on nonroot filesystems only if they have not been dismounted
cleanly, i.e., if the system crashed. A manual run of the fsck command is needed only
occasionally: at boot, when fsck’s automatic mode cannot fix all encountered problems,
after creating a new filesystem (although it is a good idea to reboot the system upon
filesystem creation, if possible), and under a few other circumstances. Nevertheless,
a system administrator should understand how the fsck command works to be able to
quickly recognize abnormal situations.

The syntax of the fsck command is:

fsck [options] spec_ file

where
spec_file The name of the filesystem’s special file
options Available options:

-n | -N Answer no to all prompts, and list problems but do not repair them
-y | -Y Answer yes to all prompts (Be careful when using this option! It repairs

all damage regardless of the severity!)
-p Preens the filesystem and performs noninteractive repairs that do

not change any file’s contents
-b nn Use an alternate superblock located at nn-th block
-m Perform a sanity check only — do not repair
-q Quiet mode; removes nonreferenced named pipes and reconstructs

the free list without comment
-f Force filesystem checking regardless of the superblock status
-F type Specify a filesystem type to be fsck-ed
-V Echo, but do not execute, the command; verify and validate a com-

mand line

The fsck command runs faster on character special files. However, the block device
must be used for the root filesystem. If the filesystem is not specified, the fsck command
checks all filesystems listed in the filesystem configuration file (/etc/fstab, or /etc/vfstab);
this happens at boot time. Under AIX, the checking of filesystems is determined in the
filesystem configuration file /etc/filesystems (if the keyword check is true for a corresponding
filesystem).

Normally, the fsck command runs with -p option, i.e., it silently fixes the following
problems:

• Link counts in inodes too large
• Missing blocks in the free list

• Blocks in the free list and also in files

© 2002 by CRC Press LLC

• Incorrect counts in the filesystem’s table
• Nonreferenced zero-length files deleted

• Lost files placed in the filesystem’s lost+found directory, and named by their
inode number

More serious errors will be handled with a prompt for confirmation.
If fsck modifies any filesystem, it will display the message:

*** FILESYSTEM WAS MODIFIED ***

If the root filesystem is modified, an additional message also appears:

*** REBOOT UNIX ***

or

***** REMOUNTING ROOT FILESYSTEM ****

When modifications happen during a boot procedure, the reboot, or remount, is initiated
automatically. If the fsck has been executed from the command line on the root filesystem,
then the reboot command has to be started manually, too:

reboot -n

The -n option is very important to prevent previous execution of the sync command,
which flushes the output buffers and might, under these circumstances, recorrupt the
filesystem (the only case when the system is rebooted without sync-ing the disks).

An example (from the Apollo workstation and HP-UX):

$ fsck -y
fsck: /dev/dsk/c201d6s0: root file system
continue (y/n)? y
** /dev/dsk/c201d6s0
** Last Mounted on/
** Root file system
** Phase 1 — Check Blocks and Sizes
** Phase 2 — Check Pathnames
** Phase 3 — Check Connectivity
** Phase 4 — Check Reference Counts
FREE INODE COUNT WRONG IN SUPERBLK
FIX? yes
** Phase 5 — Check Cyl groups
SUMMARY INFORMATION (SUPER BLOCK SUMMARIES) BAD
BAD CYLINDER GROUPS
FIX? yes
** Phase 6 — Salvage Cylinder Groups
21806 files, 0 icont, 296674 used, 128312 free (1472 frags, 15855 blocks)
***** MARKING FILE SYSTEM CLEAN *****
***** FILE SYSTEM WAS MODIFIED *****
***** REBOOT HP-UX; DO NOT SYNC (USE reboot -n) *****

It is not the end of the world to have messages about filesystem inconsistencies during
system startup. As long as the fsck command can fix them, sometimes even in several
attempts, everything will be fine. However, it can be very upsetting if fsck fails; the failure

© 2002 by CRC Press LLC

usually indicates a more serious filesystem problem, frequently, a hardware-related problem
that requires a more radical approach. The fsck command can resolve many logical
inconsistencies, but it cannot repair a broken disk.

fsck is a very time-consuming command; for a large filesystem, a complete check can
take a while. This is why filesystems that were cleanly dismounted during system shutdown
are skipped — they will have no problems and checking them is a waste of the time. Also,
the journaled filesystem (the jfs type) is the most robust with regards to corruption; if it is
corrupted, the recovery is much faster. The price paid for such robustness is additional
overhead in the filesystem use; the online journaling of filesystem transactions requires
more resources and time.

© 2002 by CRC Press LLC

6
UNIX Filesystem Layout

6.1 Introduction

In Chapter 5 we discussed the UNIX filesystem primarily from the user standpoint. UNIX
users create, read, write, and purge files. And this is correct — UNIX filesystems exist to
make the files accessible to users. But there is a lot of work behind the scenes to fulfill
this logical requirement. This part is done by the UNIX system itself, and it is mostly
hidden from the users. But UNIX administrators must be aware of this fact and should
understand this process. Everybody knows that files reside on disk. They are saved
somewhere, and when we need them, we get them. But how it works is more mysterious.

We use the term filesystem layout to explain how the files are organized within the
available disk space. UNIX files cannot exist out of the UNIX filesystems. UNIX
filesystem is the vehicle to organize storage resources in a usable way. The filesystem
merges files in a hierarchical way and enables their physical storage, as well as access
to the stored files when needed. This is always true, independent of the filesystem type
and organization.

The filesystem layout is the main topic discussed in this chapter. A thorough under-
standing of filesystem layout is extremely important for successful filesystem management.
Once this important topic is understood, many other UNIX issues will become automat-
ically clear. Filesystem management is crucial for overall UNIX administration. This cannot
be overstated. Just remember what we said earlier: on UNIX everything is a file or file-like.
Files are in the center of UNIX. Consequently managing the files is the core of UNIX
administration.

Disk space can vary in size, type, characteristics, and even location (a remote disk space
can be used, just as the local one), and UNIX must respond to all possible situations. The
total disk space is usually partitioned into smaller storage entities convenient for more
flexible use, and a separate UNIX filesystem is created in each storage entity. To make the
created filesystem visible to users, an additional step is required: it must be merged with
other filesystems in an overall UNIX directory hierarchy, which we will address as “an
overall UNIX filesystem.” Strictly speaking the overall UNIX filesystem is not a filesystem
per se, rather this is a set of merged filesystems ready for use.

UNIX filesystems are organized on two levels: physical and logical. Physical layout
directly reflects the filesystem organization within a storage entity. It takes care of files’
parameters and maps them into corresponding hardware parameters of the storage entity.
However, the UNIX filesystem can be organized and managed in a more sophisticated
way within a virtual (logical) storage space that is built around physical entities. A new

© 2002 by CRC Press LLC

level of abstraction was introduced to make filesystem organization more flexible and
powerful.

Logical layouts of a storage space and its physical counterpart do not have to be
necessarily the same. A logical storage can be spread over a part of a disk, over a whole
disk, or as in today’s modern UNIX flavors, over several disks. Nearly any combination
of multiple partitions of multiple disks can be combined performance-wise in an extremely
powerful way. Of course, a precise mapping of the logical storage to the physical storage
counterpart is crucial. Once this bidirectional relationship is firmly established, UNIX can
manage files on a logical level only.

Logical storage entities are known as logical volumes, and the corresponding system
software for their management is known as logical volume manager (LVM). Logical
volumes appeared at the moment when the disk technology reached the point where disk
size, speed, and price stopped to be issues. LVM is a relatively new UNIX topic; for most
of the UNIX flavors it is still an optional piece of software. The traditional physical
partitioning of disks and their usage is still dominant, but the situation is changing
rapidly.

We will use the general term data to refer to the system and user data stored on the
disk. User data is the real data kept in files within the filesystem; system data is the data
needed to identify and manage the user data. The system data presents a necessary
overhead, but from the system standpoint this data is crucial for managing the filesystem.

The data block is the smallest data unit. Each UNIX file consumes one or more blocks.
If all the file’s blocks are known, the file itself can be easily managed. An additional step
to identify the sequence of blocks that make the file is required. This is exactly why we
organize files into a filesystem. We can look to the filesystem as a kind of umbrella that
covers files and provides mechanisms for their use; system data keeps information needed
for their accurate identification and allocation.

6.2 Physical Filesystem Layout

In our attempt to fully understand the filesystem layout, we will follow the traditional
path in managing disk space. There are a few good reasons for such an approach: it is
still prevailing in use; it is always easier to start with less complex issues and then go
toward more complex ones; and the strongest argument — behind any logical structure
is a physical layout that can never be bypassed. At the very end, each file must be
physically stored in the magnetic disk media.

Disks have cylinders: concentric circles within the disk’s plates that are farther divided
into tracks, or segments (we will use the term track). Data is always stored in blocks that
are spread over the disk space; the block can be located in any track. Each track contains
a well-defined number of blocks (usually 512 blocks). Each block is uniquely identified
by the block number. The disk controller knows how to allocate each block specified by
its number within the whole disk space. Block allocation means mapping the block number
into the disk geometry (to the corresponding cylinder and track and a block in the track).
Once a block is allocated, it can easily be accessed and processed.

Disks cannot be used directly from shelves; they must be prepared for data storage. In
UNIX terminology, it means the physical filesystem layout must be properly defined and
put in the operation. In this section we will address main issues related to the physical
filesystem layout. They are grouped around:

© 2002 by CRC Press LLC

y y

• Disk partitions — the way to specify a storage entity for the usage
• Filesystem structures — mechanisms to manage data on the disk

• File identification and allocation — the way to identify and access files on the disk
• Performance-related issues — how to improve the performances of the filesystem

This section partially refers to Chapter 2, especially in the part about special device files.

6.2.1 Disk Partitions

For a long time the basic UNIX filesystem storage entity was a disk partition. This simply
involved partitioning of the magnetic disk into several smaller pieces suitable for additional
processing. You can compare this to putting filing cabinets (here partitions) within a filing
closet (the disk) in an office. It is the first step to take, but still the cabinets are not prepared
to store the files. Some items are still not ready; drawers and their inventories are not yet
prepared. We just decided and specified the size of the storage space.

In the past, disk space was expensive. Organizing a disk into smaller pieces (partitions)
benefited the system in a number of ways. The smaller partition contained a smaller
filesystem that offered more flexibility in organizing the UNIX tree hierarchy. The small
filesystem was more robust with regards to possible filesystem corruption. Many
filesystem-related commands could run faster on a smaller filesystem (like backup, fsck,
etc.). And it is easier to manage smaller filesystems.

Both UNIX platforms, BSD and System V, organized disks around fixed-size partitions (but
different partitions had different sizes). UNIX treated disk partitions as independent devices;
each of them was accessed as if it were a physically separate disk — consequently, the terms
partition and disk could be used alternatively. One physical disk might be divided into several
partitions, or be configured with only one partition. In the past disk, partitions were usually
defined in advance by the OS. Thus they offered few division schemes. The number of parti-
tions was fixed, while their size could be specified. Imagine that only a predetermined number
of filing cabinets could go into the filing closet, but you could decide the size of each cabinet.

Typically each disk was divided into multiple partitions: eight partitions for BSD and
ten for System V, with some overlapping of the partitions. Simple BSD disk partition
schemes are presented in Figure 6.1.

Eight different partitions might be defined for a disk, named by the letters a to h; a partition
could be skipped if its size was 0. The c partition comprised the entire disk, including the
forbidden (inaccessible) area. The g partition overlapped with the d, e, and f partitions.
It was not possible to use them all simultaneously, since some of them included the same
disk space — for example, either partitions d through f or the partition g could be accessed.
Actually, this disk layout offered three different ways of using the disk: divided into four
partitions, or six partitions, or to use the whole disk. Each partition might hold a filesystem,
or it could be used as a swap partition. The OS offered this flexibility — from today’s point
of view it was not much, but it was adequate to manage everything in a decent way.

The swap partition plays a special role in each UNIX system. UNIX memory manage-
ment system (MMS) requires the dedicated disk space for normal paging and swapping.
Recall the discussion of these issues from Chapter 5:

• Paging presents a regular exchange of data pages between the system memory and
disk. Paging is an ordered process based on certain performance-related criteria.

• Swapping presents an emergency situation when the system encounters a significant
lack of the memory space and a lack of time to do that in an ordered way.
Swapping is an irregular process and performance-wise it should never happen.

© 2002 by CRC Press LLC

The swap partition is used as a “raw” partition. The complex filesystem structures would
only make the swapping slower. Swap partition must be used in the simplest possible
way and this is the “flat organization” provided by the MMS itself. Briefly, the swap
partition does not know and does not care about UNIX filesystem.

A logical question arises: Why does a disk-partitioning scheme have to be defined in
advance, and why in such a strict way? Why was the decision about partitioning not left
to the system administrator? Supposedly the UNIX designers wanted to make this sensitive
and relatively tough administrative task easier to handle; less flexibility makes things
simpler. But to fully understand such an approach, perhaps a closer look into the very
early stages of UNIX systems is needed.

In the early days of UNIX development, a number of disk control functions were
determined on the hardware level, so the first disk controllers were quite restricted in the
way they managed disk partitions; even the partition sizes were hardwired within the
controller hardware. So at the time partition schemes were established, there were not a
lot of choices. Since then, with the development of the technology, things have changed
and most of the disk-related issues have been shifted into the software (or sometimes the
firmware). To keep the new UNIX systems compatible with the old ones, the slightly
modified “old partition scheme” continued to exist. The partition size can be specified
arbitrarily, and in that way the number of partitions. It makes the partition scheme
sufficiently flexible even for today’s standards. By simply assigning its size to zero, a partition
could be skipped, and any partition combination become viable. At the same time, the required
special device files for the selected partitions already exist, and all needs seem to be met.

The partition scheme presented in Figure 6.1 was, and still is, implemented by Sun
Microsystems. It was used by SunOS and is now used by Solaris. Despite the fact that
today we can combine multiple disks (or partitions) in larger logical volumes, this partition
scheme remains useful and used.

a
b
h

a
b
h
d
e
f

g

c

a b h d e f

a b h

c

g

Inaccessible disk area

Cylinder N
(edge)

Cylinder 0
(center)

Cylinder 0
(center)

Cylinder N
(center)

FIGURE 6.1
Simple BSD disk partitioning.

© 2002 by CRC Press LLC

y y

UNIX accesses any disk partition through the corresponding special device file (see
Chapter 2). A special device file is a pointer to the disk driver within the kernel (in UNIX
all device drivers are part of the kernel). It is essential that the kernel supports imple-
mented disk interface; otherwise the disk cannot be used at all. You should not worry
about that because UNIX fully supports all usual disk interfaces, and the kernel has been
built properly during the UNIX installation.

Most UNIX flavors provide some kind of tool to create disk partitions (the format utility
on Solaris and SunOS, SAM on HP-UX, SMIT on AIX, etc.). This tool automatically creates
the required special device files in the /dev directory. A special device file can be created
also manually: the UNIX mknod command is available. Its usage is trivial, only two
arguments are required: the major and minor device number. Sometimes other front-end
commands, or scripts, can also be available.

6.2.2 Filesystem Structures

Disk partitioning per se will not allow you to start to use the specified disk space. UNIX
files cannot be stored directly in such “raw” storage entities. UNIX files can only reside
within the UNIX filesystems. Imagine again a filing closet in the office. At this point,
number and sizes of cabinets are decided, but each drawer in the cabinet is still missing
file holders, bars, labels, and other needed accessories. It is time now to think about these
details; otherwise, we will not be able to organize the filing system for our papers.

Similarly, a UNIX filesystem has to be created in each disk partition before we can start
to use it for our UNIX files. When a filesystem is built in UNIX, certain system data
structures are written into the reserved system part of the partition. This system data
uniquely defines the physical layout of the filesystem. Its main task is to provide correct
allocation of UNIX files within this partition. Filesystems are mutually separated; each
filesystem has its own independent system data structures. A single file cannot be shared
between two filesystems, i.e., two partitions.

The most important filesystem data structure is the superblock. The superblock is a set of
tables that contain important information about the filesystem such as its label, size, and
a list of index nodes, better known by the shorter name inodes. The superblock determines
the filesystem type, and all incompatibilities among different filesystems (including
between different UNIX filesystem types — see Chapter 5) are caused by the superblock
differences. UNIX can use a specific filesystem only if knows how to read the filesystem
superblock; without this understanding the disk is a compilation of senseless and useless
data blocks.

A visual depiction of the BSD and System V filesystem layouts are presented in Figure
6.2. The Berkeley filesystem layout included some additional information about file-
systems like the cylinder group block, while System V included certain additional dynamic
information about current free space. However, the main difference was that Berkeley
filesystems originally spread multiple superblock copies over the available disk space. If
a superblock is damaged, the filesystem becomes useless. It was a good idea to keep several
superblock copies separately. If one copy is damaged, the Berkeley system automatically
switches to another.

Through the years, the Berkeley filesystem proved to be faster and more robust, and pro-
vided better performance. Eventually the traditional System V (known as the s5 filesystem)
became obsolete. System V release 4 discontinued with s5 filesystem and switched to the
Berkeley filesystem. Additional filesystem development continues to evolve among the
specific UNIX flavors. Today all filesystems have roots in the Berkeley version; the s5
filesystem disappeared. The filesystems are identified by different names: 4.2, ufs, efs, hfs,

© 2002 by CRC Press LLC

ext2, jfs, vxfs; they are mutually incompatible despite the fact that they all belong to the
UNIX family of filesystems. The prevailing type in use is ufs, which stands for UNIX
filesystem. Even if the filesystem name is the same, some incompatibilities among different
UNIX vendors are quite possible. Throughout this text we will steer clear of flavor-specific
details and elaborate on common filesystem issues.

Another data structure, presented in Figure 6.2, is the single boot-block area reserved
at the beginning of the filesystem. This area contained the bootstrap program that brings
the UNIX system into operation. However, a boot block area is active only if a filesystem
is bootable, i.e. if it is on the root filesystem. This filesystem structure is crucial for the
system startup, but not for the rest of this chapter. That is why it is just mentioned here.
We discussed booting of the system and the bootstrap program in Chapter 4.

6.2.3 Filesystem Creation

The discussed filesystem structures, including the superblock, are the result of the procedure
known as to create a filesystem. In the UNIX terminology, we say to make a filesystem.
UNIX provides several commands to deal with filesystems, and often additional user-friendly
character-based or GUI tools. We will focus on the related UNIX commands available on
all UNIX flavors. UNIX sees storage entities (at the moment we talk about disk partitions)
through the corresponding special device files. Remember that storage entities are accessible
through both types of special device files (character/raw and block special device files).

Boot block Boot block

Superblock Superblock

Cylinder group

Inode

Inode

Data
blocks

Data

blocks

Data
blocks

etc.

Berkeley filesystem
(ufs)

SVR4 filesystem
(s5)

Superblock

Cylinder group

repeated

repeated

FIGURE 6.2
The filesystem layout.

© 2002 by CRC Press LLC

y y

6.2.3.1 The mkfs Command
This the basic UNIX command for this purpose. It offers the most flexibility; practically
all filesystem parameters could be specified. For most cases, however, the default specifi-
cation should be appropriate. The format of the command is:

mkfs [options] char-spec-file size [operands]

where
options Generic or filesystem type specific options
char-spec-file The character special file for the corresponding disk partition
size The size of filesystem in 512-byte blocks
operands Optional arguments for a fine-tuning of the filesystem parameters such

as a number of inodes to create (the default is one inode for every 2 KB
of disk space), a primary block size, a fragment size, free disk space
threshold, and others

The mkfs command is a versatile command that enables flexible creation of the filesystem;
myriad of options and operands specify many details of the created filesystem. It checks
for dependencies among specified parameters to prevent any wrongdoing. The command
varies slightly among different vendor’s flavors.

6.2.3.2 The newfs Command

Another (BSD-style) front-end command, newfs, can also be used to create a filesystem.
This command actually invokes the mkfs command but with a number of predefined
filesystem parameters. It is much easier to work with this command, and the author
recommends its use whenever possible. The format of the newfs command is:

newfs [options] char-spec-file

where
options Generic, filesystem-type specific, and mkfs-related options
char-spec-file Raw (character) special file for the corresponding disk partition

Remember that most of the filesystem-related commands require character special
device files to identify the storage entity (here the disk partition).

Some UNIX flavors maintain a special disk description file that facilitates the use of this
command. The usual file /etc/disktab contains description entries for each disk that can be
used. Each description entry is uniquely named and fully defines a partitioned disk.
Usually several entries describe the same disk with different partitioning schemes. Simply
by referring to an entry, all of the necessary filesystem parameters can be obtained. This
makes the use of the newfs command trivial:

newfs char-spec-file disk-name

where
char-spec-file Raw (character) special file for the corresponding disk partition
disk-name The name of the entry specified in the disk description file /etc/disktab

HP-UX (version 9) used such an approach. The main disadvantage was that required
disktab entries could not include all available disk models. Simply, newer disk models

© 2002 by CRC Press LLC

appeared after the file installation cannot be included. This led to a frequent patching of
the disk description table, which could be annoying. HP-UX (version 10) retained the disk
description file for backward compatibility but switched to the new type of the newfs
command: one that is not dependent on the disk description table.

6.2.3.3 The tunefs Command

UNIX also provides the command tunefs to tune (adjust) the created filesystem. The
command can modify dynamically certain filesystem parameters. It is not unusual to
realize after some time that the created filesystem does not optimally match your needs.
The used filesystem cannot be easily recreated; in most cases it is almost impossible. This
command is the UNIX response for that purpose.

Some UNIX flavors provide other filesystem specific commands, for example, a command
to extend the size of a filesystem.

6.2.4 File Identification and Allocation

Another popular term for the filesystem creation is formatting the disk (or partition). In the
PC world this is the only official term. In UNIX context, formatting literally means to
create filesystem structures only, primarly the superblock. The created filesystem itself is
absolutely empty — there is no single-user data in it. To compare with the filing closet
and cabinets in the office: all drawers are now equipped with needed accessories; carriers
and holders are there, as well as empty labels for easy identification of documents. These
accessories take up some available space in the cabinets, but without them it would be
very hard to file our papers.

The UNIX counterpart for the mentioned accessories is the superblock. The superblock
contains the filesystem structures (system data) needed for user data management. All
superblock structures are free and ready for use. The superblock consumes a certain
amount of the storage space to keep its system data.

Keeping in mind the previous discussion, it becomes clear:

• Why once we reformat (create a filesystem) a disk or partition we lose all
previously stored data. It does not mean that this data was purged. All stored
data blocks remain unchanged, but the new superblock is now created. All
system data in the old superblock was erased. UNIX does not know how to
find this data.

• Why there is a difference in the size between unformatted and formatted
storage space. The superblock data must also be saved in the very same
storage space.

Let us see now in more detail how the UNIX filesystem identifies and allocates files
within the corresponding storage space. It is worthwhile to mention that we are still
staying within the physical filesystem layout boundaries.

6.2.4.1 Index Node (inode)

The most important individual entity in the filesystem superblock is the inode. Inode
is a shorter, more convenient, name for the index node. Each file in the filesystem is
completely described by its inode. An inode includes all of the file’s relevant data
except the file name. File names are contained in the directory where the files reside.

© 2002 by CRC Press LLC

y y

The content of each directory includes the file names with the references to the
corresponding inodes. In this way, UNIX is able to find any file by scanning the file’s
directory until the file name matches. Afterward only the corresponding inode is used
to access the file on the disk. A file can have several different names because several
file names can be referenced to the same inode. They can appear in the same or different
directories, but must remain in the same filesystem. These references are known as
hard links (see Chapter 2).

An inode contains around 200 bytes, enough space to uniquely identify a file. An inode
structure is presented in Figure 6.3.

The first part of the inode contains all information about the file. Most of the information
we know from the long file listing (the ls -l command). UNIX opens and reads the inode,

The type and access mode for the file

The file's owner (user and group)

The time that file was last read and

written and the inode was last updated

The size of the file in bytes

The total number of physical blocks

used by the file

The number of references

to the file (links)

Direct pointers for the 12 first
data blocks used by the file

The single indirect pointer to a single
indirect block of pointers to data blocks

used by the file

The double indirect pointer to a double
indirect block of pointers to data blocks

used by the file

The triple indirect pointer to a triple
indirect block of pointers to data blocks

used by the file

FIGURE 6.3
The inode structure.

© 2002 by CRC Press LLC

and learns about the file’s type, ownership, and permissions. Based on this information,
UNIX knows how to proceed with the file itself. Do not forget that UNIX processes
different file types in a different way.

Once we are familiar with the contents of an inode, many of the already discussed issues
become clear — for example, why hard links are restrained to the same filesystem, or
where the system finds information for long listing of files, or how the fsck command can
check and even fix problems in the filesystem, and many others.

The inode number, starting from one and increasing, identifies an inode. An identified
inode must be allocated in the disk space before it can be used by the system. To allocate
an inode is easy, because each inode is well defined within the superblock and the
superblock is always stored in the reserved disk space well known to the system.

6.2.4.2 File Allocation

It is much tougher job to locate a file in the disk space. A file can contain an arbitrary
number of data blocks, from a single block up to a huge number of blocks. These blocks
could be spread over the whole disk space. Again this is the inode that precisely allocates
the file itself. The second part of the inode contains a number of direct and indirect pointers
to point to the location of each data block that belongs to this file. For most UNIX flavors
the pointers are 32 bits long (4B), and we will assume that length in the discussion that
follows.

An inode can directly point to as many as 12 data blocks consumed by the file.
Assuming the block size of 4 KB (or 8 KB), this means a file as large as 48 KB (or 96 KB)
is directly accessible. For larger files, indirect pointers must be used. A single indirect
block contains additional pointers: a 4 KB block contains up to 1 K pointers, while a 8 KB
block contains up to 2 K pointers. A double indirect block contains, or, better to say,
points to, millions of new pointers. And finally a triple indirect pointer can be used in
the case of extremely large files. If a file is very small, the file data is stored directly in
the inode. Figure 6.4 illustrates how this allocation mechanism works.

A 32-bit (4 B) pointer can uniquely identify one block among as many as 4 G (4 billion)
blocks. This is, simply, the address capability of a 32-bit pointer. More precisely, assuming
a block size of 4 KB (or 8 KB), the maximum size of the reachable disk space (i.e., the
filesystem) is, respectively, 4 G × 4 KB = 16 TB (or 4 G × 8 KB = 32 TB). Beyond that size, the
block must be increased (16 KB or more) during the filesystem creation. This is one of
the options of the mkfs command. (By the way, UNIX checks all specified options and,
in the case of an inappropriate option value, cancels the command execution.) However,
disk blocks could be smaller than in this example, and they would still be correct —
today’s disk sizes are still in the range of several dozens GB.

The presented inode structures illustrate very well a typical UNIX filesystem. It
does not mean necessarily that each UNIX flavor implements the same inode struc-
tures, primarily regarding the number of direct and indirect pointers. Differences
cause incompatibilities, but in general, issues discussed here are valid over all UNIX
platforms.

6.2.5 Filesystem Performance Issues

Once the filesystem is in place, UNIX starts to use the same filesystem very intensively.
Thus the filesystem efficiency is very important for an overall UNIX behavior. Throughout

© 2002 by CRC Press LLC

y y

all these years, the UNIX filesystem has been developed and improved significantly. Some
of the improvements have been integrated into the filesystem itself. Other optional issues
have been left to UNIX administrators to be implemented on an as-needed basis. We will
address a few filesystem performance issues.

1st direct pointer

2nd direct pointer

3rd direct pointer

12th direct pointer

Single indirect pointer

Double indirect pointer

Triple indirect pointer

inode
administrative

information ...

...

...

...

...

...

...

...

...

...

2048

2048

2048

2048

2048

2048

2048

2048
2048

2048

2048

2048

2048

2048

2048

12 blocks

Single
indirect
block

Double
indirect
block

Triple
indirect
block

2K blocks

4M blocks

8G blocks

...

...

...

inode The max. number of pointers for a single
file is : (12 + 2K + 4M +8G) > 8G .

...

However, 32-bit pointer can point only

up to 4G blocks (w/o fragmentation) .

FIGURE 6.4
File layout on a disk.

© 2002 by CRC Press LLC

6.2.5.1 File Storage vs. File Transfer
A disk block is the basic unit of data that the filesystem manages. Data are always
transferred, written and read in blocks. Thus the block size determines:

• The storage efficiency — blocks cannot be used partially for data storage, regardless
of the actual size of the data to be stored

• The data transfer efficiency (i.e., I/O throughput) — larger blocks cause smaller
overhead in the data transfer

Two performance issues are related differently toward the block size. A large block size
increases transfer efficiency, but decreases storage efficiency.

The original System V filesystem supported block sizes of 512 B and 1 KB, or sometimes
2 KB. The Berkeley filesystem supported 4, 8, 16, 32, or 64 KB. The difference in the block
size was obvious. To avoid wasting disk space, the Berkeley-style filesystem introduced
“block fragmentation”: each block could be split into 2, 4, or typically 8 fragments. Block
fragments could then be used separately to store data from different files. The transfer
efficiency remained unchanged because a whole block was still used in the transfer of
data. However, the storage efficiency was improved because a block, partially used by
one file, could be shared with other files. At the end, each disk block is fully utilized. Of
course nothing is free. The price paid for this storage improvement is the need to identify
individual block fragments within a specific block. Earlier, it was enough to identify only
the block; now the block fragments are also in play. The concept of block fragmentation
is presented in Figure 6.5.

In this example, a hypothetical 25 KB large file was located in the three 8 KB blocks and
one 1 KB block fragment. Upon a change in the file size to 51 KB, the file will consume six
8 KB blocks and three block fragments. In both cases, the remaining block fragments will
be used for other files, so the wasted space is minimized.

8K block

8K block

8K block

8K block

8K block

8K block

8K block

8K block

8K block

1K fragment

25 KB file 51 KB file

Free 1K fragments

1K fragment Free 1K fragments

FIGURE 6.5
Berkeley-style filesystem: Blocks and fragments.

© 2002 by CRC Press LLC

y y

6.2.5.2 Reserved Free Space
File transfer efficiency can be improved by the introduction of the 10% filesystem free
space. We briefly mentioned the 10% free space in Chapter 5 regarding the command df.
We elaborate on this issue in more detail here.

The disk space always tends to be fragmented. The filesystem content is changing
dynamically, old files are deleted and new files created. Upon the filesystem creation, the
empty disk space will be quickly filled with data. Normally the filesystem tries to keep
all file blocks together, so the access to the file could be faster. But the files are also deleted,
and many gaps in the disk space remain after the file blocks are removed. This is known
as disk fragmentation.

These gaps are reused, and reused, but the fragmentation of the overall disk space
through time is unavoidable. Fragmented space requires more time to store and access
files. Simply, the time spent in seeking and transferring chaotically allocated small chunks
of the file blocks is much larger than if the blocks are allocated in larger chunks. Statistically,
if 10% of the available storage space is sacrificed and not used, the performance benefits
can be significant. This space is already badly fragmented and too “expensive” to be used.
The remaining space offers more contiguous space for faster file allocation.

Remember that this free space is dynamically allocated and is changing through time.
It always contains the most fragmented storage space in that point of time. (In addition,
this 10% of space remains a forbidden zone only for users. Superuser and high-priority
processes are still allowed to use that space.) The basic assumption is that these processes
are beyond introduced restrictions. Those are system-related processes and should not be
interrupted despite expected low-performance behavior of the system.

There is an odd consequence of this implementation. Occasionally the df-k command can
report filesystem consumption larger than 100%. Although it could be quite confusing, it is
still normal system behavior. Your system will not crash soon. It also does not mean that
your data will spill over the edges of your disk. It simply means that 10% of reserved free
space of this filesystem was also used by a superuser. A literally completely full filesystem
reports 111% of space in use, and after that even a superuser identity cannot help more.

The 10% free filesystem space was introduced in the Berkeley UNIX. It has to be specified
when the filesystem is created. It can be disabled at any time during the life of the
filesystem. The reserved space can be returned for regular use at any time. The opposite
is not possible: there is no way to introduce the 10% free space in an existing filesystem.
If needed, the filesystem must be recreated, whatever it takes.

6.3 Logical Filesystem Layout

The physical approach to managing disk space is easier to understand, but it carried a
number of restrictions caused by the disk hardware itself: How to overcome the finite size
of a disk unit? What to do when the maximum size of the filesystem is below that needed?
How to provide redundancy? And many other issues needed to improve overall system
performances. The problem was especially acute in the management of large databases.

A solution was found in a different, logical approach in managing disk space. Existing
physical storage entities (partitions and disks) could be combined and presented as arbi-
trary large logical storage entities. They then appear simply as storage entities to the
operating system. The obvious benefits of such an approach are its inherent flexibility and
increased capabilities.

© 2002 by CRC Press LLC

For a better understanding of the terminology, here are a few introduction notes. Generally,
the term physical refers to a real situation — what something physically looks like. The
term logical refers to the way something is presented to the users. The relationship between
physical and logical entities must be strictly defined and established. Once this bidirectional
relationship is done, further management can be completely shifted to the logical layer.
The required division of the storage space continues over the logical entities in the almost
identical way we have already discussed. Of course, in real life everything is mapped
back to physical entities, because they are the real providers of the needed storage space.
The basic logical entity was named the logical volume (although this name is not used
explicitly on all UNIX platforms). The most common name for the whole suite is the
logical volume manager (LVM).

UNIX vendors do not have a uniform approach regarding the LVM. There are several
mutually incompatible versions designed by different manufacturers. We cannot even
discuss BSD-like and System V-like versions; simply, the LVM appeared much later. LVM
is a new, vendor-flavored product. This section briefly covers three LVM versions: AIX,
HP-UX, and Solaris. It should be sufficient to help us become familiar with this important
topic. However, it is fair to mention that the third-party vendor VERITAS is probably the
leading designer in this field. As a matter of fact, VERITAS also contributed a great deal
to all three of the versions examined.

The terminology used by the different vendors is also very vendor-specific. The same
entities are named in different ways, making a complete description quite confusing.
Unfortunately, issues that are already complex enough sometimes sound even more
complicated due to the naming ambiguities.

6.3.1 Logical Volume Manager — AIX Flavor

AIX started early the trend toward a logical approach to disk treatment. Since AIX 3.1,
physical volumes (correspond to the physical partition) were divided into a large number
of relatively small disk chunks (by default their size was 4 MB). They were called physical
partitions, but we will use the term disk chunks to avoid any possible confusion with
physical disk partitioning. These disk chunks are the starting point in building other disk
entities.

First, a logical partition (in IBM terminology) or a logical chunk has to be created. A logical
chunk is the basic, smallest data storage unit for users. It corresponds to the single, double,
or triple physical chunks. Multiple physical chunks can store the same, mirrored data.
Storage of the same data on several physical locations significantly increases the reliability
of the filesystem. Defined logical chunks are then used to create other logical entities.
Although the logical chunks are presented continuously to the users, in reality their
physical chunks could be discontinuous, expended, or replicated.

Each physical volume is associated and identified with the appropriate special device file.
Several physical volumes can be combined into a single volume group, which is then handled
as a unique logical entity. To make it clear, a volume group can be compared to the physical
disk unit, but now not restricted to the single disk drive. In that way, an equivalent large
logical disk can include several physical disks. It can now be processed as a single large
unit instead of multiple smaller units. Therefore, all restrictions related to the limited size
of a single disk have been overcome.

Once the volume group was created it could be divided (partitioned) into several smaller
logical volumes. The new entity can be compared to the already known disk partition. But
a single logical volume can be spread over several physical volumes that make the same
volume group. It can occupy an arbitrary number of logical chunks (correspondingly, a number

© 2002 by CRC Press LLC

y y

of physical chunks) on any of those physical volumes. This possibility of using disk chunks
in an arbitrary way brought a new level of flexibility, and presented a big advantage over
the traditional UNIX approaches. This situation is presented in Figure 6.6.

The LVM provides the necessary physical-to-logical mapping (and vice versa) and
handles filesystems. Although very complex mapping and processing is going on, every-
thing is hidden from the users. They simply use the available storage units.

For a better understanding of the new virtual entities, we will try to establish some
functional relationships between AIX logical entities and the corresponding storage entities
in the traditional UNIX approach:

AIX Traditional UNIX approach

Physical volume Disk/partition (as an accessible physical entity)
Disk chunk (partition) None
Logical chunk (partition) None
Volume group Disk (as a storage space)
Logical volume Partition

Available physical volumes (disks) are:

Disk 1 Disk 2 Disk 3

Created volume group is:

vg00

Created logical volumes are:

lv00

lv03

lv01

lv02

FIGURE 6.6
AIX data storage organization.

© 2002 by CRC Press LLC

AIX introduced new commands and utilities to work with the newly introduced entities:

• For volume groups
mkvg Create a new volume group (from one or more physical disks)

varyonvg Activate a created volume group

varyoggvg Deactivate a created volume group

extendvg Add a new disk to an existing volume group

chvg Change certain volume group characteristics

reducevg Remove a disk from an existing volume group

importvg Add an existing volume group to the system data base

exportvg Remove an existing volume group from the system data base

• For logical volumes
mklv Create a logical volume

extendlv Increase the size of a logical volume

chlv Change certain logical volume characteristics

lslv List data about logical volumes

rmlv Delete an existing logical volume

The existing AIX menu-driven SMIT utility (system management interface tool) also supports
LVM in managing storage resources.

Once logical volumes are defined and created, we should proceed with the filesystem
creation. This procedure is more or less the same as we have discussed. There is an AIX
version of the well-known UNIX command mkfs, as well as the AIX-specific front-end
command crfs (an AIX counterpart to the usual UNIX command newfs). Other UNIX
commands to manage filesystems are also available.

AIX introduced a new filesystem named journaled filesystem (jfs), as its default
filesystem. In the jfs each data transaction in the filesystem is temporarily recorded
until its successful completion. It explains the origin of the name for the filesystem:
a journaling is associated with each data transaction. If the transaction fails, old data
can easily be restored from the journal. The jfs is more robust but also more expensive
— an overhead in processing is related to the continuous journaling.

6.3.2 Logical Volume Manager — HP-UX Flavor

The LVM is a standard subsystem for managing disk space on the HP-UX platform. It
started with HP-UX 9.04 and continues with HP-UX 10.x and HP-UX 11.x releases. With
the optional support software, it offers other value-added features such as striping, or
mirroring, or high availability. LVMs allow the user to consider the disks, also known
as physical volumes (PVs), as a pool of data storage consisting of equal-sized physical
extends (PEs — the default size is 4 MB). One or more PVs are grouped into volume
groups (VGs), which then represent the basic unit of the data storage. VGs can be
subdivided into virtual disks, called logical volumes (LVs). An LV consists of an arbitrary
number of logical extends (LEs) — each LE corresponds to one PE (or several PEs, if

© 2002 by CRC Press LLC

y y

mirroring is implemented). An LV can span a number of PVs, or it can represent only
a portion of a single PV. Once created, the LVs can be treated just like the disk partitions.
LVs could be assigned to the filesystems, used as swap or dump devices, or used for
the raw access.

In that light, a functional relationship between HP-UX LVM entities and the traditional
UNIX ones is:

LVM provides a number of specific commands to create, display, and manage LV
entities:

• To manage LVs

lvchange Change LV characteristics
lvcreate Create an LV in a VG

lvdisplay Display information about LVs
lvextend Increase space (mirrors) for LVs

lvlnboot Prepare root, swap, and dump LV
lvrmboot Remove an LV link to root, swap, or dump partition

lvmigrate Migrate root filesystem from a partition to an LV
lvreduce Decrease number of PEs allocated to LV

lvremove Remove LVs from VG
lvmerge Merge two LVs into one VG

lvsplit Split mirrored LV into two LVs
lvsync Synchronize stale mirrors in an LV

• To manage VGs

vgchange Set VG availability
vgcreate Create VG

vgdisplay Display information about VGs
vgexport Export a VG and associated LVs

vgextend Extend a VG by adding physical volumes
vgimport Import a VG into the system

vgreduce Remove PV from a VG
vgremove Remove VG from the system

vgscan Scan PVs for VGs
vgcfgbackup Backup the VG configuration data

vgcfgrestore Restore the VG configuration from backed-up data
vgsync Synchronized stale LV mirrors in VGs

HP-UX Standard UNIX approach

Physical volume Disk/partition (as an accessible physical unit)
Physical extend None
Logical extend None
Volume group Disk (as a storage space)
Logical volume Partition

© 2002 by CRC Press LLC

• To manage PVs
pvchange Change PV characteristics

pvcreate Create (initialize) PVs for use in volume group
pvdisplay Display information about PVs

pvmove Move allocated PEs between PVs

The basic steps in using LVM include:

1. Identify the disks to be used, and create corresponding PVs — create an LVM data
structure on each specified disk:

pvcreate /dev/rdsk/c0t0d0 (a selected disk is identified by the device file c0t0d0)

2. Create a new VG — create a corresponding special device file and collect all PVs
for the new VG (the supposed name vg01):

mkdir /dev/vg01

mknod /dev/vg01/group c 64 0x03000 (the minor number for a VG must be
unique among all VGs on the system)

vgcreate /dev/vg01 /dev/dsk/c0t0d0 (supposedly the VG includes a single PV)

vgdisplay -v /dev/vg01 (to check the newly created VG)

3. Create LVs within the created VG:

lvcreate -L 100 -n lvol1 /dev/vg01 (100 MB LV named lvol1)

LVM creates two special device files for each created LV: the block device file
/dev/vg01/lvol1, and the character (raw) device file /dev/vg01/rvol1.

lvdisplay /dev/vg01/lvol1 (to check the newly created LV)

If there are more LVs, this step should be repeated:

lvcreate -L 500 -n lvol2 /dev/vg01 (500 MB LV named lvol2)
lvcreate -L 200 -n lvol3 /dev/vg01 (200 MB LV named lvol3)

.

4. Any operation typical for the disk partition is also allowed on the LV. To use an
LV to hold a filesystem, the corresponding filesystem must be created and
mounted:
newfs /dev/vg01/rlvol1

mkdir /mnt_dir1

mount /dev/vg01/lvol1 /mnt_dir1

HP-UX flavored LVM is discussed in greater detail in the case study in Chapter 27.

6.3.3 Logical Volume Manager — Solaris Flavor

A powerful, versatile, and up-to-date volume manager came with Sun Enterprise Volume
Manager — VxVM on the Solaris 2.x platform. The original VERITAS Volume Manager is
licensed to Sun Microsystems and is delivered as either optional or standard software
(depending on the system configuration). VxVM builds virtual devices called volumes on
top of physical disks in an extraordinarily flexible way. Volumes are composed of other

© 2002 by CRC Press LLC

y y

VM objects that can be manipulated to make different volume configurations: to optimize
performance, to provide redundancy, and to perform backup. To achieve this goal, VxVM
introduced some new virtual objects.

VxVM manages the following physical and logical objects:

• Physical disk and partition, in the standard UNIX sense.

• VM disk — assigned to one or more physical partitions (or more precisely, to one
or more physical partitions under VxVM control).

• Disk group — a collection of VM disks that share a common configuration.

• Subdisk — a basic logical unit to allocate disk space; a set of contiguous disk
blocks. VM disks can be divided into one or more subdisks (similar to the division
of physical disks into partitions).

• Plexe — a new logical entity that consists of one or more subdisks, organized in
way that can provide concatenation, striping, mirroring, or RAID-5; (plexes are
also referred to as mirrors).

• Volume — a logical disk device that appears to the filesystem as a physical
partition, but does not have the physical limitations. A volume can consist of as
many as 32 plexes, with one or more subdisks; the corresponding special device
file identifies the volume. An arbitrary number of plexes within a volume, and
the arbitrary way plexes are organized, resulted in different data storages: volumes
handle single data copies, mirroring, striping, combined, or RAID-5.

The relationship between VxVM objects is presented in Figure 6.7.

Disk01-01

Disk01-02

Vol01-01

VOL01

Volume (V)

Disk01-01

Disk01-02c0t0d0s2

VM Disk (D)
Physical Disk (PD)

DISK01
c0t0d0

Subdisks

Plexe

Disk02-01

Vol02-01

VOL02

Volume (V)

Disk02-01
c1t0d0s2

VM Disk (D)
Physical Disk (PD)

DISK02
c1t0d0

Subdisk

Plexe

Disk Group

Partition

FIGURE 6.7
Relationship between VxVM objects.

© 2002 by CRC Press LLC

Let us try to establish a functional relationship between VxVM objects and the traditional
UNIX ones:

VxVM provides several kinds of user support tools to manage disk space. First, a suite of
versatile VM commands is provided to accomplish any VM request. Second, a character-based,
user friendly administration tool vxdiskadm enables an easy-to-use interface to manage
disks. And finally, an attractive GUI visual administrator vxva presents a drag-and-drop
tool for handling physical and logical entities.

The usual procedure to manage attached physical disks is:

1. Initialize all physical disks — put disks under VM control and make corresponding
VM disks. For each disk:

vxdisksetup -i disk_device_file

2. Create a disk group with the first disk in it:

vxdg init dg_name vmdisk_name = disk_device_file

3. Extend a disk group with other disks:

vxdg -g dg_name adddisk vmdisk_name = disk_device_file

4. Create a volume within a disk group (including a volume layout):

vxassist -g dg_name -U fsgen make volume_name size layout = options
disk_device_file(s)

5. Mirror a created volume (if requested):

vxassist -g dg_name mirror volume_name layout = options disk_device_file(s)

6. Create a filesystem in the volume and mount it into a selected directory:

newfs /dev/vx/rdsk/dg_name/volume_name

mkdir /mount_dir

mount /dev/vx/rdsk/dg_name/volume_name /mount_dir

VxVM fully supports all of the steps necessary to accomplish the requested task. At the
very end, the filesystems have to be created in the volumes and then mounted to be used.

The same task can be accomplished in more steps by creating subdisks and plexes separ-
ately. This has to be done if there are some special requests.

VxVM pays special attention to the boot disk and the root and swap partitions. VxVM
is coming after UNIX installation, and the initial disk configuration is based on the
traditional UNIX approach. Putting blank disks under VM control is much easier than to
handle preexisting filesystems, especially crucial ones like the root filesystem and the swap
partition (also /usr and /var, if they were created as separate filesystems). The special

VxVM Standard UNIX Approach

Physical disk Disk (as an accessible physical unit)
Partition Disk partition
VM disk None — assigned partitions
Disk group Disk (as a storage space)
Subdisk None — disk blocks
Plexe None
Volume Partition

© 2002 by CRC Press LLC

y y

procedure to put preexisting filesystems under VM control is known as encapsulation,
and VxVM also fully supports its implementation.

VxVM offers needed commands to deal with introduced entities:

vxdg Handle disks and disk groups with a number of options (subcommands)
vxassist Handle disks with a number of options (subcommands)
vxdisksetup Initialize physical disks
vxmake Create VM objects
vxplex Handle plexes
vxsd Perform subdisk operations
vxprint Print display VM information
vxtrace Trace kernel VM related activities
vxrecover Recover VM entities
vxinfo Identify volumes
vxstat Print volume statistics
vxvol Handle volumes

Some of the listed commands are utilities with many options, or rather subcommands,
to fulfill different VM tasks.

Solaris-flavored LVM is also discussed in greater detail in the case study in Chapter 27.

6.3.4 Redundant Array of Inexpensive Disks (RAID)

A Redundant Array of Inexpensive Disks (RAID) is a disk array setup, which enables the
combined storage units to be used for storing duplicated (mirrored) data. The mirroring
allows regeneration of the data in case of disk failures.

There are several levels of RAID:

• RAID-0: Although it does not provide redundancy, striping is often referred to
as a form of RAID, known as RAID-0. Striping is a technique of mapping data
so that the data is interwoven among more physical disks. It offers a high data
transfer rate and high I/O throughput, because simultaneous data access across
multiple disks can be performed.

• RAID-1: Mirroring is a form of RAID known as RAID-1. Mirroring uses equal
amounts of disk capacity to store the original data and its mirror. It provides
redundancy of data and offers protection against data loss in the event of physical
disk failure.

• RAID-0+1: Striping combined with mirroring is known as RAID-0 + 1. It merges
RAID-0 and RAID-1, providing redundancy and efficient access to data.

• RAID-1+0: Mirroring combined with striping is known as RAID-1 + 0. It merges
RAID-1 and RAID-0, providing better redundancy and equally efficient access
to data as RAID-0 + 1. Remember that for this RAID configuration mirroring is
provided before striping, so multiple disk failures in different disk groups can
still be handled.

• RAID-2: Not widely implemented, RAID-2 uses bitwise striping across disks
and uses additional disks to hold Hamming code check bits.

• RAID-3: Uses a parity disk to provide redundancy. RAID-3 stripes data across
all but one of the disks in the array, which is then used for the parity bit.

© 2002 by CRC Press LLC

• RAID-4: Represents a modified version of RAID-3 to overcome synchronization
problems when data is accessed across multiple disks. By increasing the stripe
unit size, a majority of I/O operations can be located on a single disk without
the need for synchronized simultaneous access to multiple disks. However, it
still uses a separate parity disk to store redundant parity information. It is not
widely implemented.

• RAID-5: Represents an improved version of RAID-4, and it is practically imple-
mented. Instead of using a separate parity disk, the parity data are also striped
across all disks; the data stripes and parity stripes could be found on all disks.
In case of a disk failure, the lost data can be recovered. RAID-5 provides the
performance of RAID-0 + 1, but in a more economical way.

For all the options stated here, RAID-1 + 0 is probably the superior one. This is also the
most expensive one, and not supported by older volume managers and disk arrays.

6.3.5 Snapshot

LVM provides a flexible way to store and manage data. But it offers also a solution for
the pending problem of the online backups. Each backup must guarantee the full consist-
ency of the data, and a valid data recovery is possible only from the consistently backed-
up data. In real life, the contents of volumes are changing permanently as long as the
volumes are in use. The existing data is modified or purged, and new data is written
nonstop. This is the purpose of the UNIX systems — to provide an enduring execution
of application programs that always deal with data. If data is changing during the backup,
which always takes a reasonable amount of time, the required data consistency cannot be
achieved. At least it cannot be guaranteed. This is a big problem in the case of database
backup. Inconsistently backed database files are corrupted and useless.

A solution to this problem was found in taking a data snapshot and then making the
backup. Original data is mirrored before the start of a backup, and then backed as the
“frozen” mirrored data. In the meantime, the access to the original data remains unrestricted.
The online backup can then ensue.

The idea of performing a snapshot (a very quick copying) of the dynamic data is similar
to the concept of taking a photograph of a moving object. Once the data is snapped, we
can then make a time-consuming backup of its mirror — mirrored data is reliably
consistent — it does not change. The only requirement is the prevention of any data change
during the snapshot, which is easily met thanks to the short snapshot time period. LVM
makes this approach feasible. There are two types of snapshots: the volume and the
filesystem snapshot.

6.3.5.1 The Volume Snapshot

The volume snapshot is provided on the volume level, regardless of the upper-level data
structures. The procedure is relatively simple: the snapstart operation creates a write-only
backup in a separate volume, which gets attached to and synchronized with the original,
snapped volume. Synchronized means that the original volume is mirrored to the newly
attached backup volume. The synchronization takes some time, especially in the case of
large volumes. However, in this period all activities on the system are continuing normally,
without any restrictions. The end of the synchronization procedure is signified by a change
in the snapshot mirror status, known as the snapdone state. Once the backup volume is
synchronized with the snapped volume, it is ready to be used as a “snapshot mirror.”

© 2002 by CRC Press LLC

y y

The synchronized snapshot mirror continues to be updated until it is detached. The
detachment can be schedule for any convenient time. The snapshot volume, an image of
the snapped volume, will be created in that moment. The detachment itself represents the
snapshot of the volume. The previous synchronization is only an unavoidable process
required for a successful snapshot. The snapshot typically takes a very short time, and
during this brief period the use of the system should be strictly controlled and any change
of the volume content prevented. Once the detachment is done, the content of the created
snapshot volume remains unchanged as long as this volume lives.

The main disadvantage of the volume snapshot is that the size of the snapshot volume
must be the same or larger than the snapped volume. The same snapshot volume can be
used to mirror multiple volumes at different times, but the required long-time synchron-
ization actually restricts its multiple usage. The synchronization itself always takes a great
deal of time: each volume block must be updated (mirrored) regardless of whether it was
changed or not. Even the unused blocks in the volume are mirrored.

6.3.5.2 The Filesystem Snapshot
The advanced VxFS filesystem (Vx origins from VERITAS) provides a mechanism for
taking a snapshot image of a mounted filesystem, which can then be used for a backup.
The snapshot filesystem is an exact image of the original snapped filesystem — it is a duplicate
read-only copy. The snapshot is a consistent view of the filesystem “snapped” at the point
in time when the snapshot was made. Afterward all further data processing is referred to
the snapshot filesystem.

The basic idea is the following: Why copy (mirror) all filesystem blocks? The majority
of blocks don’t change frequently. It is enough to copy only the old content of the blocks
that have been changed since the snapshot was activated (started). These old contents are
known as before-images. And a before-image has to be copied only once when the block
was changed for the first time. In that way, a pool of consistent data that corresponds to
the moment when the snapshot was started (we prefer to say “was taken”) is preserved.
It resides partially in the original (snapped) filesystem (all unchanged data blocks) and
partially in the snapshot filesystem (all saved before-images). Keeping in mind the limited
lifetime of a snapshot filesystem (it exists as long as the backup is going on), the expected
number of modified blocks is much smaller than the total number of active blocks in the
filesystem. Statistically the value of 10 to 15% seems to be sufficient during the highest
level of system activity.

The benefits of the filesystem snapshot are obvious: a required snapshot filesystem (and
the belonging volume) is much smaller than the original one, and there is no need for
time-consuming volume synchronization. However, the implemented filesystem type has
to support the filesystem snapshot. A snapshot filesystem is presented in Figure 6.8.

The snapshot filesystem contains four parts:

1. The superblock, a copied, slightly modified superblock of the regular (snapped)
filesystem.

2. The bitmap, which contains one bit for every block of the snapped filesystem;
initially, all bitmap entries are zero.

3. The blockmap, which contains one entry for each block of the snapped filesystem;
initially all entries are zero. When a before-image is copied from the snapped
filesystem, the appropriate entry is set to the block number on the snapshot
filesystem; this is the local block allocation table.

4. The data blocks, which contain before-images copied from the snapped filesystem
upon their first change.

© 2002 by CRC Press LLC

The snapshot procedure starts with the mounting of an empty volume and the creation
of the snapshot filesystem for the mounted snapped filesystem. As the first step, the
superblock of the snapped filesystem is copied into the snapshot filesystem. After that, the
visibility of the data in the snapped filesystem could be easily maintained through this
superblock. All processes now access the snapped filesystem through the snapshot superblock
rather than its own. The bitmap and blockmap are also initialized. The snapshot filesystem
handles read requests by simply finding the data on the snapped filesystem and returning
it to the requesting process. In the case of an inode update or a write request for any block
(for example, block #N) of the snapped filesystem, the before-image of the block #N is
first taken (the block is read and copied into the snapshot filesystem) and afterward the
snapped filesystem is updated. The bitmap entry for the block #N is changed from its
initial value 0 to 1, indicating the taken before-image of the data block #N. The blockmap
entry for the block #N is also changed from its initial value 0, to the actual block number
in the snapshot filesystem where the before-image was copied.

Any subsequent read request for the block #N in the snapshot filesystem will be provided
after checkup of the corresponding bitmap entry, and consequently by reading data locally,
from the block indicated by the blockmap entry instead of the snapped filesystem. Sub-
sequent writes to the block #N in the snapped filesystem do not result in additional copies
to the snapshot filesystem, since the before-image needs to be saved only once, the first
time the block was changed.

To start a filesystem snapshot, the mount command is used. It is fair to say this is a modified
version of this command compatible with the implemented filesystem type. It is specified by
the special option “snapof=…” that also includes a snapshot volume. The snapshot filesystem
exists as long as it is mounted, and during this period its superblock controls the snapped
filesystem too. By dismounting the snapshot filesystem, the snapshot process is terminated.

For example, the following command creates a snapshot filesystem and mounts it into
the /snapdir directory:

mount -F vxfs -o snapof = /dev/volgr/fsvol /dev/volgr/snapvol /snapdir

where
-F vxfs Defines the VxFS filesystem
-o snapof = /dev/volgr/fsvol Defines the mounted filesystem to be snapped
/dev/volgr/snapvol Defines the snapshot filesystem
/snapdir Defines a mount-point for the snapshot filesystem

(other options are also possible)

Super-Block

Bitmap

Blockmap

Data Blocks

FIGURE 6.8
The snapshot filesystem structure.

© 2002 by CRC Press LLC

y y

To terminate a snapshot, simply dismount the snapshot filesystem:

umount /snapdir

In the meantime, regular UNIX commands could be implemented on the snapshot and
snapped filesystems without any restrictions. However, never forget the real nature of
a snapshot filesystem — sometimes the command outputs could be very odd and
confusing. For example, the df -k command implemented on the snapshot filesystem
will show the size of the snapped filesystem. So, do not be confused when the snapshot
filesystem is ten times larger than the actual size of the volume in which it was created.
Simply, the df command sees the snapshot filesystem through the superblock of the
snapped filesystem.

6.3.6 Virtual UNIX Filesystem

The diversity of the various UNIX filesystems and their mutual incompatibilities make
their simultaneous use almost impossible. UNIX faces a challenge as to how to handle
different UNIX filesystems at the same time and enables users to access their files at any
time. A logical solution is to make access to files independent of their type. This would
allow the users to carry out operations on a file without restrictions. It could be even
extended to the not-UNIX filesystems.

Such a flexible filesystem is known as virtual filesystem (VFS), but full implementation
remains in theory only. A needed flexibility is supposed to be achieved on the implemen-
tation of the filesystem independent vnode. The underlying mechanism of each vnode
operation is, however, always dependent upon the filesystem type associated with the file
being referenced by the vnode. In other words, the system must know very well how to
handle the corresponding filesystem type. Thus, to perform an operation on a file, the
kernel must provide mechanisms that allow the execution of a filesystem-type-dependent
function to carry out an operation without knowing what that function is called or what
it does. For users everything remains transparent — they can access any filesystem without
knowing anything about its type. Since the kernel is independent of the filesystem type
or construction, it is also flexible enough to accommodate nonUNIX filesystems such as
NT, OS2, Mac, and DOS.

Despite the fact that it sounds great, the real need for VFS implementations is very
questionable. Who really needs multiple UNIX filesystem types on the local drives? It sounds
nice to disconnect a huge disk drive from the Solaris box, connect to the Linux box, and
immediately have access to all data. But how often do we do something like that? VFS is
another layer in the kernel, and another layer means more overheads in communication
with the disk. No one wants that either. Cross-management of different-type files on the
UNIX platform is already solved in an ordered way. Applications that deal with files on
remote systems like: ftp, rcp, scp, and nfs are already fully implemented and proved. They
read, write, and transfer files without any problem. Network-based backup and restore can
also handle different types of files. And what is the most important, all UNIX flavors fully
support filesystem types implemented on portable media like floppy and CD-ROM disks.

vnode does not have anything common with inode except that the names sound similar.
These are two completely different concepts, with different purposes. vnode is mostly
unknown to UNIX administrators and is not even mentioned in system administration books.
There are at least two good reasons for that. The first reason was discussed earlier, while
the second one is based on the assumption that VFS will not require any administration —
everything should work well automatically. Despite that, VFS is briefly discussed here.

© 2002 by CRC Press LLC

6.4 Disk Space Upgrade

Once a shortage of a disk space becomes evident on the system and all other possibilities
have been exhausted, the only real solution is to add a new disk. Today, disks are cheap,
and to make such a decision is easy. However, the full price of additional disk space
includes other elements besides the disk price itself. In the past additional expenses have
been mostly shadowed by the high disk price. Some elements worth consideration are:

• The room available for disks — internal or external

• Hardware compatibility — implemented disk interface. On the UNIX platform,
SCSI interface is very common, but remember that single-ended SCSI is not
compatible with the differential one, or it could be a wide SCSI, or…. Also, is
there a slot available on the existing SCSI controller? And so on.

• The work on the disk installation and putting it into the operation

• Maintenance, including backup and other long-term disk-related jobs

Each of these elements has its specific price. In most cases, this price is higher than the
initial price of the disk itself.

Adding a new disk is a very routine task. There is not a lot of freedom in the practical
implementation, but it is good to fully understand each of the required steps. Unfortu-
nately, almost every UNIX platform provides a different tool to implement these steps.

We have already discussed some of these steps. This time we will only list them. Steps
traditionally required to add a disk, independent of the UNIX platform (even independent
of the UNIX itself), may be summarized as:

• Disk formatting (also known as low, or hard, formatting) to establish the track
layout onto the contiguous magnetic media of the disk plates

• Disk partitioning to establish one or more independent storage entities within
the disk for further processing

• Filesystem creation (also known as soft formatting) to make disk partitions available
for data storage.

The LVM requires a few more steps before filesystem creation. UNIX systems require
some additional steps at the end to merge newly created filesystems into the overall UNIX
tree hierarchical filesystem.

Today, manufacturers of disks also perform the hard formatting of the disks. There are
many reasons for this first step to be performed by the manufacturers themselves; the
number of tracks varies among the inner and outer disk cylinders, and an appropriate
hard formatting requires the sophisticated tools. While we can skip the first step now, the
other steps must be provided. Unfortunately, the required procedures vary among UNIX
vendors. In Chapter 27, a few case studies about the most popular UNIX flavors are
presented. Similar procedures can be implemented on other UNIX platforms.

© 2002 by CRC Press LLC

7
User Account Management

7.1 Users and Groups

Managing user accounts is an important and unavoidable administrative duty. The overall
system administration will often be evaluated by the way the user accounts are managed.
Users participate in a UNIX system through their accounts: they navigate through their
environment, work from their terminals, use their favorite commands, and do their jobs
in their way. They want to control their resources and restrict access to them by others;
however, they also want to reach all available resources. This is a profile of an average
user on an UNIX system.

UNIX systems exist to be used by users; making users happy is one of the primary
administrative tasks, because happy users make for a happy administrator. The advice is very
simple: manage user accounts properly, be tough when necessary and flexible at other times,
and pay special attention to security issues, or you could experience a lot of headache later.

From the system’s standpoint, a user is not necessarily an individual. A user is any
entity capable of executing programs or own files. The UNIX concepts of ownership and
access privileges involve a number of system entities. These entities may be other computer
systems, they may be particular system functions that run automatically, or they may be
a group of people with similar functions. In most cases, however, a user is a particular
individual who can log-in, edit files, run programs, and otherwise make use of the system.

Each user has a username (also known as a loginname) that uniquely identifies the user.
A system recognizes a user by the user’s identification number (UID), which is assigned
by the system administrator at the time the user’s account is created. The administrator
also assigns each new user to at least one group (a group is a collection of users who
generally share similar functions). Each group has a group identification number (GID),
which serves the same purpose as the UID on the user level. Together, the user’s UID
and GID determine the user’s credentials, i.e., the access rights a user has to files and
other system resources.

Basic user account information is stored in the /etc/passwd file — this is the master user’s
database for all users on the system. The /etc/passwd file is an ASCII text file, readable by
everyone on the system; this general file readability is required for regular system operations.
Each user is described by a single entry in the file; each entry is a single line of information.
Similarly, information about groups are stored in the file /etc/group. These two files contain
comprehensive information about any user in the system, regardless of the user’s origin.
Both files are public information; everyone may read them, but only the superuser is
allowed to modify them.

© 2002 by CRC Press LLC

7.1.1 Creation of User Accounts

You must create a new user account to add a new user to the system. User account creation
is a routine procedure that consists of several mutually related steps; most of these steps
are mandatory, but a few are optional. The required procedure consists of:

• Assigning a username, a user ID number, and a primary group to the user

• Entering this data in the system user database (the /etc/passwd file) and, if
required, in any secondary password file

• Assigning a password to the new account

• Setting other user account parameters in use on the system, such as password
aging, account expiration date, and other resource limits

• Creating a home directory for the user

• Placing initialization files in the home directory
• Setting the new user ownership to the home directory and initialization files

• Adding the user to any other facilities in use such as the disk quotas system
• Defining any secondary group membership for the user in the system group file,

/etc/group

• Performing any other site-specific initialization tasks
• Testing the new account

Basically, adding a new user means adding a new entry into the /etc/passwd file. This
may be done by simply editing the file using any editor (on the UNIX platform the common
editor is vi), or on BSD systems using the special editing command vipw (vi password
file). However, all UNIX systems provide some kind of utility for this purpose, a specific
front-end command (sometimes a script, but usually a program) that performs efficient,
accurate creations of new user accounts. On many UNIX systems, user account manage-
ment is also a standard part of the existing general system administration tools (such as
SAM on HP-UX platform, or SMIT on AIX platform). All of these tools/utilities create
new user accounts by automatically performing the previously listed steps; of course, the
administrator must supply the required personal data for the user. These utilities check
the supplied data and update the system user and group databases.

Preexisting tools provide a general approach to user account creation; however, any site-
specific requirements will call for additional administration. Quite often, system admin-
istrators make their own private utilities to perform site-specific functions in managing user
accounts. Usually these are homemade scripts (shell, expect, perl, etc.).

Even though the use of existing utilities is highly recommended, the following text has
a more basic approach. For educational purposes, the next section of the text goes through
the gradual creation of a user account, step by step from the command line. First, though,
let us see what the system user and group databases look like.

7.1.2 User Database — File /etc/passwd

The master user configuration file is /etc/passwd; every user on the system must be specified
in this file. A user is identified by an entry of the following form:

name:encrypted-passwd:UID:GID:user information:home-directory:shell

© 2002 by CRC Press LLC

The entry is a single line with multiple fields separated by colons; blank spaces are legal
only in the user information field. The meanings of the fields are:

Field Meaning

name The username assigned to the user. Usernames are not private or secure information; they
should be easy to remember; older UNIX flavors restricted the name length to a maximum
of eight characters, and it is advisable to keep them within that length.

encrypted-passwd The user’s encrypted password (readable encrypted text). An empty field means no
password is required to log in to the system (which is not legal and represents a security
hole); an asterisk (:*:) in the field prevents anyone from logging into the system; the field
cannot be edited, a password can be assigned only by using the passwd command.

UID The user identification number. Each user must have a unique UID; it is good idea to assign
UIDs sequentially starting from 100; UIDs less than 100 are conventionally used for system
accounts.

GID Determines the user’s primary group membership. GID corresponds to a group
identification number assigned to a group in the file /etc/group; GIDs less than 10 are
conventionally used for system groups.

user information Usually contains the user’s full name; the e-mail subsystem and commands like finger use
this information; a space is a legal character in the field; other identification data, such as
the address or phone number, are also common.

home-directory The user’s home directory; when a user logs into the system, this will be the initial working
directory.

shell The program that UNIX will use as a command interpreter for the user; whenever the user
logs in, UNIX will automatically execute this program. The common shells are /bin/sh
(Bourne shell), /bin/csh (C shell) or /bin/ksh (Korn shell) – shells can be located in other
directories, like /usr/bin, or /sbin; other shells are also legal; if the field is empty the default
is the Bourne shell. Other programs can also be specified instead of a shell; often an
application is automatically started once the user logs in; for example, for the user uucp the
uucp program /usr/lib/uucp/uucic is specified; another example is a “restricted user account”
when a restricted shell is started.

There are no significant differences between the /etc/passwd files on the main UNIX
platforms BSD and System V. As examples, two /etc/passwd files are presented for the SunOS
and HP-UX flavors, respectively. As can be seen, their format and syntax are identical.

cat /etc/passwd
root:RolQOmj217Vrc:0:1:Operator:/:/bin/sh
daemon:*:1:1::/:
sys:*:2:2::/:/bin/csh
bin:*:3:3::/bin:

.

.
nmruser:HfeLluXTpXxnI:1200:20:NMR User:/ home/nmruser:/ bin/csh
fstall:1vLPSqJDArJOs:1203:20::/usr/people/fstall:/ bin/csh
bjl:KVrJDBQT8fHOY:1212:20:B.J.L.:/usr/people/bjl:/ bin/csh

$ cat /etc/passwd
root:PykAP9Za4p0NA:0:3::/:/ bin/sh
daemon:*:1:5::/:/ bin/sh
bin:*:2:2::/ bin:/ bin/sh

.

.
bjl:3Zd496cM81jD6:201:20:B. J. L.,Rm. 1225N,(212) 123-4567,:/users/bjl:/bin/ksh
vasili:wUjuhw6avV2P.:202:20:V. F.,Fordham University,,:/users/vasili:/bin/ksh
dhuang:d5DtupN0TE.ak:204:20:D. Huang,Wayne State University,,:/users/huang:/bin/ksh
gdubey:btRPE2WDC/S5.:206:20:G. D.,Rm. 1246N,(212) 123-7654,:/users/gdubey:/bin/ksh

© 2002 by CRC Press LLC

The first part of the /etc/passwd file specifies system entities (please note the asterisk in
the password field), while the second part contains individual user login accounts. As it
can be seen, encrypted passwords are readable but their contents are senseless; however,
from the system security standpoint, the fact that the encrypted passwords could be read
is a security risk. We will return to this issue later.

7.1.3 Group Database — File /etc/group

The master group specification file is the file /etc/group. The file specifies all existing groups
on the system. To add a new group, you add a new one-line entry to the file. Each group
on the system is specified by a single entry of the form:

group-name:*:GID:additional-users

The /etc/group entries are similar to the /etc/passwd entries. An entry consists of multiple
fields separated by a colon (“:”). The fields have following meaning:

Field Meaning

group-name A name identifying the group.
* The second field is an artifact of earlier UNIX versions. It is unused and is usually filled with

an asterisk.
GID The group’s identification number. By convention, standard UNIX groups have consecutive

numbers beginning with 0.
additional-users A list of users and other groups that will have access to this group’s files (as a secondary

group). Commas must separate users’ names in the list.

An example of the /etc/group file is presented here:

cat /etc/group
root:*:0:
nogroup:*:65534:
daemon:*:1:
kmem:*:2:

.
staff:*:10:
other:*:20:
patsyusers:*:30:
mvaxuser:*:60:root,pam,tbw,eda,shew,sweeny,varley,mindy,levi,he,\
\quigley,modest,sim,ralph,yin,baldwin,george

7.1.4 Creating User Home Directories

Upon adding a user entry to the /etc/passwd file, the system administrator must create an
appropriate home directory for the user. User directories are usually located in a separate
filesystem, dedicated to users. Most common names for directories holding users’ filesystems
are: /home, /users, or /u.

User home directories are named by the usernames (however, this is not a requirement).
A user directory is a regular directory owned by the user, so to create a user home directory,
as with any other directory, the mkdir command is used:

© 2002 by CRC Press LLC

mkdir /home/username

where
home A common starting directory for individual users’ home subdirectories
username The user’s name, usually the same as the name of the user account

Even when the home directory has been created, our job is not yet complete. The
directory itself has to be populated with required user-specific data, primarily related and
needed for a proper user login procedure. The next paragraphs address this topic.

7.1.5 UNIX Login Initialization

Upon the creation of the user home directory, the next step is to provide the appropriate
initialization data to set the user shell environment. Otherwise the whole login procedure
could be compromised, and the user unable to deal with the UNIX system at all. UNIX
initialization files (or better say scripts, because they are really shell scripts) define the
initial individual environment for a successful start of the specified shell once the user
has logged in. They are also known as user startup files. The login procedures follow
different patterns depending on the specified user’s shell in the /etc/passwd file. Assuming
the common UNIX shells, (Bourne, C, and Korn) when a user logs in to the system, the
following UNIX initialization files will be executed (actually, the listed files will be sourced)
after successful authentication:

User’s Shell Sequence of Sourced Initialization Files

Bourne shell /etc/profile $HOME/.profile
C shell /etc/.login ~ /.cshrc ~ /.login
Korn shell /etc/profile $HOME/.profile $HOME/.kshrc

Bourne Again Shell — bash is a default shell on the Linux platform. Basically, bash and
ksh are very similar, almost identical in their implementation. So the discussion that
follows related to ksh is also relevant to bash. However, differences in naming of initial-
ization files exist, but the files themselves are easily recognizable. For example, a sequence
of bash initialization files is: /etc/bash_profile, $HOME/.bash_profile, and $HOME/.bashrc.

Please note that among the listed UNIX initialization files, some are strictly login
initialization files, while others are shell initialization files. Also, the order of their execution
(sourcing) varies for different shells. Most of the files are hidden files (with a leading dot
in the filename), and they can be seen only if the ls -a command is used. The listed
filenames are the common names, and some differences among UNIX flavors are possible.
The three listed shells are not the only possible shells; these are only the most common
shells, and they are discussed in this section. The syntax implemented to identify the user
home directory corresponds to the actual shell.

The first login initialization file to be executed lives in the /etc directory and represents
a systemwide login initialization file; it is used to set a default environment for all users
on the system. Only the administrator can manage these files. Other, individual (personal)
initialization files reside in the user’s home directory. The initialization files are shell scripts
and they are sourced in the standard input stream of the specified login shell. The login
initialization files .profile and .login are executed at the user’s login; the shell initialization
files .cshrc and .kshrc are executed every time a new shell is spawned. The files are owned
by the users and may be customized by the users themselves.

© 2002 by CRC Press LLC

7.1.5.1 Initialization Template Files
The administrator’s duty is not only to manage the systemwide initialization files; the adminis-
trator must also create template initialization files for the required default personal initialization
and store them in a standard location, the skeleton directory. Usually this is the directory
/usr/skel, or /etc/skel, although the directories can vary among the different UNIX flavors. On
most systems these “proto-files” already exist upon UNIX installation and are ready for imme-
diate use; often only small site-specific modifications will be required. The common names
for template files do not include a leading period, i.e., the names are profile, login, and
cshrc (again, these names are not mandatory, so a number of other names are legal and used).

Therefore, to create a user’s initialization files, it is sufficient to copy them from the
skeleton directory into the user home directory:

$ cp /usr/skel/profile /home/username/.profile

$ cp /usr/skel/login /home/username/.login

$ cp /usr/skel/cshrc /home/username/.cshrc

Copying multiple initialization files for new accounts is recommended because it enables
the use of different shells; however, if a user is restricted to using one shell exclusively,
only the corresponding file/files should be copied.

To illustrate the differences between template filenames and their locations among the
various UNIX platforms, a few UNIX flavors are presented:

• HP-UX 10.xx /etc/skel/.profile
/etc/skel/.login
/etc/skel/.cshrc

• HP-UX 9.0x /etc/d.profile
/etc/d.login
/etc/d.cshrc

• Solaris 2.x /etc/skel/local.profile
/etc/skel/local.login
/etc/skel/local.cshrc

• Linux Red Hat /etc/skel/.bash_profile (Linux assumes a user shell: bash)

Depending on how the system is used, several other initialization files may also be of
interest. For example, many editors have their own startup files (such as .exrc for the vi
editor), the e-mail agent has an initialization file named .mailrc, the X window client utilizes
several files for personal customization (.Xdeafults, .dtprofile, even the complete startup
subdirectory $HOME/.dt exists), and other third-party software often relies on similar
hidden initialization files. The C shell also supports a .logout file, which contains commands
to be executed when the user logs out. The file is an ideal place to look if an ordered
shutdown of any application is required. Under certain circumstances, all these files should
also be copied when a new user account is created.

7.1.5.2 User Login Initialization Files
The user login initialization files .login and .profile perform tasks that need to be executed
upon login, such as:

• Setting the search path

• Setting the default file protection (the umask command)

© 2002 by CRC Press LLC

• Setting the terminal type and initializing the terminal
• Setting other environment variables

• Performing other site-specific customization functions

Login initialization files are not UNIX-platform dependent — they are shell dependent.
The best way to understand the files is by analyzing several real examples. We will start
with the C shell login initialization file .login. The content of one real user login file .login
on the HP-UX platform is (additional comments are printed in bold):

cat /home/bjl/.login (The file lives in the user’s home directory)
@(#) $Revision: 64.2 $
#
Default user .login file (/bin/csh initialization)
Set up the default search paths:
setenv path=(/bin/usr/bin/usr/contrib/bin/usr/local/bin.)
#set up the terminal Setting a user terminal as a “HP terminal”
eval �tset -s -Q -m ‘:?hp’� (actually the user makes the decision about the terminal)
stty erase “^H” kill “^U” intr “^C” eof “^D” susp “^Z” hupcl ixon ixoff tostop
tabs
Set up shell environment:
set noclobber Prevent file overwriting
set history=20 Peep the track about 20 last commands

Once the user has logged in, the search command path, user terminal, and a few
other environment variables are defined. Terminal initialization is an important login
function; an improperly defined terminal can completely disable user interaction with
the system.

Please note that the C shell login initialization file is executed after the C shell is spawned,
i.e., the C shell initialization file .cshrc has been already executed. However, while the
.cshrc file can be executed many more times within the same login session, the .login file
is executed only once. This fact can be important in setting the environment (only global
variables will be inherited by the newly spawned shells).

The contents of a real Korn/Bourne shell login initialization file .profile (again on HP-UX)
follow:

$ cat /users/bjl /.profile
@(#) $Revision: 66.1 $ The systemwide profile script file has been

previously executed!
#
Default user .profile file (/bin/sh initialization).
Set up the terminal: Setting a terminal

eval �tset -s -Q -m ‘:?hp’ �
stty erase “^H” kill “^U” intr “^C” eof “^D”
stty hupcl ixon ixoff
tabs

Set up the search paths:
PATH=$PATH:. The current directory is also included
export PATH

Set up the shell environment:
set -u All unset variables are treated as errors

Set up the shell variables:
EDITOR=vi
export EDITOR

© 2002 by CRC Press LLC

We have called the file .profile a Korn/Bourne shell login initialization file. This is true
since the script syntax matches the Bourne shell; the Bourne shell is a subset of the Korn
shell, and any Bourne shell script can also be executed by the Korn shell. However, the
Bourne shell cannot interpret a Korn shell-specific command, and the script execution
would fail. This means that if the .profile file has been written as a Bourne shell script it
will work for both shells; otherwise it will fail for the Bourne shell. A potential confusing
point can be the way the global environment variables are exported; the Korn shell allows
you to define and export a variable in a single command line, while the Bourne shell
requires two command lines: one to define a variable and the other to export the defined
variable. Obviously, to avoid any possible confusion, strict implementation of Bourne
scripts is recommended.

In the case of the Korn shell, after the execution of the .profile file another K shell
initialization file (usually named as .kshrc) can be also executed; this is a good place to
locate all Korn shell-specific items, and to make the .profile file acceptable for both shells.

7.1.5.3 Systemwide Login Initialization Files
The systemwide login initialization files are executed before the user’s personal initialization
files, and they are ideal places to set the default systemwide environment for each
individual user. Even though the user login and shell initialization files can later be used
to modify the user environment, the execution of the systemwide files cannot be bypassed.
This file sets a number of variables, such as the search path PATH, timezone TZ, e-mail
file locations, and/or default file permissions; usually it also generates important messages
related to all users, among others the message of the day — motd.

For Bourne and Korn shell users, the systemwide initialization file is /etc/profile; pay
attention to the file name, it is not a hidden file. An example follows (from the HP-UX
platform):

$ cat /etc/profile
@(#) $Revision: 70.1 $
Default (example of) system-wide profile file (/bin/sh initialization).
This should be kept to the bare minimum every user needs.
trap “” 1 2 3 # ignore HUP, INT, QUIT now.
PATH=/bin/posix:/bin:/usr/bin:/usr/contrib/bin:/usr/local/bin # default path
MANPATH=/usr/man:/usr/contrib/man:/usr/ local/man # default path

if [-r /etc/src.sh]
then

. /etc/src.sh # set the time zone
unset SYSTEM_NAME

else
TZ=MST7MDT # change this for local time
export TZ

fi
if [“$TERM” = “”] # if term is not set, set the

default terminal; to bemodified
later by the user

then
TERM=hp # the default terminal type

fi
export PATH MANPATH TERM

set erase to ^H
stty erase “^H” # to erase use “backspace”

Set up the shell environment:
trap “echo ‘logout’” 0 # on exit from the shell print

“logout”

© 2002 by CRC Press LLC

This is to meet legal requirements…
cat /etc/copyright # print license agreement
if [-r /etc/motd]
then

cat /etc/motd # the message of the day
fi
if [-f /bin/mail]
then

if mail -e # notify if mail
then

echo “You have mail.”
fi

fi
if [-f /usr/bin/news]
then

news -n # notify if new news
fi
if [-r /tmp/changetape] # might wish to delete this
then

echo “\007\nYou are the first to log in since backup:”
echo “Please change the backup tape.\n”
rm -f /tmp/changetape

fi
trap 1 2 3 # leave defaults in user environment

The /etc/profile file can only be managed by the administrator; users can only modify
their own environment, with no impact on the other users.

For C shell users, the usual systemwide initialization file is /etc/.login; however, on some
platforms this name can be different. For example, on the HP-UX platform the systemwide
initialization file is /etc/csh.login. A real example follows:

$ cat /etc/csh.login
@(#) $Revision: 74.1 $
Default (example of) system-wide profile file (/usr/bin/csh initialization).
This should be kept to the bare minimum every user needs.
default path for all users.
set path=(/usr/bin /usr/ccs/bin /usr/contrib/bin)

.

.
set prompt=“[\!] %”
default MANPATH
setenv MANPATH /usr/share/man:/usr/contrib/man:/usr/local/man
if (-r /etc/TIMEZONE) then

setenv TZ �/usr/bin/sh -c ‘. /etc/TIMEZONE ; echo $TZ’� # set the TZ variable
else

setenv TZ MST7MDT # change this for local time
endif
if (! $?TERM) then # if TERM is not set, use the

default
setenv TERM hp

endif
This is to meet legal requirements…
cat /etc/copyright # copyright message
Miscellaneous shell-only actions:
if (-f /etc/motd) then

cat /etc/motd # message of the day
endif
if (-f /usr/bin/mail) then

mail -e # notify if mail

© 2002 by CRC Press LLC

if ($status == 0) echo “You have mail.”
endif

if (-f /usr/bin/news) then
news -n # notify if new news

endif
if (-r /tmp/changetape) then # you might wish to delete this

echo
echo “You are the first to log in since backup:”
echo “Please change the backup tape.\n”
rm -f /tmp/changetape

endif

Obviously, the presented C shell login initialization file very closely resembles the
Korn/Bourne shell login initialization file /etc/profile. This is logical, considering the
two files provide the same function on the same UNIX platform for two different users’
shells.

7.1.5.4 Shell Initialization Files

The C shell has introduced a special shell initialization file to set the same environment
whenever a new C shell is started; a logical name for the file was selected: .cshrc. Following
this example, other shells, including the Korn shell, have adopted a similar approach.
Whenever a new shell is invoked, the shell initialization file is sourced, including the first
time when a user logs into the system. Since a shell initialization file is always executed
when a new shell is spawned, the local variables defined in the file behave like the global
ones. However, appending new entries to an existing variable (for example, adding a new
directory to the command search path) can result in an undesired multiplication of the
same entry in the variable. Although this does not create a problem, such a situation
should be avoided.

For the C shell, since the shell is started before the actual execution of the user .login
file, the file .cshrc is executed before the .login file. The Korn shell follows POSIX standards
and optionally executes the .kshrc file after the user .profile file; even the filename .kshrc is
optional and can be defined arbitrarily (we will return to this later).

A new shell is always started whenever the user logs in to the system. However, an
arbitrary new shell can be started at any time from the current shell from the command
line, or whenever a user executes any UNIX command not built into the shell or invokes
a shell script or another executable program. The primary tasks of a shell initialization
file are:

• To set shell variables

• To set a prompt
• To define command aliases (alternate names for commands)

An example of a user’s C shell initialization file follows (from Solaris 2.x):

cat /home/bjl /.cshrc
#
Default user .cshrc file (/bin/csh initialization).
Usage: Copy this file to a user’s home directory and edit it to
customize it to taste. It is run by csh each time it starts up.
#
Set up default command search path:
(For security, this default is a minimal set.)
set path=(/bin /usr/bin)

© 2002 by CRC Press LLC

Set up C shell environment:
if ($?prompt) then # shell is interactive

set history=20 # previous commands to remember
set savehist=20 # number to save across sessions
set system=�hostname� # name of this system
set prompt = “$system \!:” # command prompt
Sample alias:
alias h history
More sample aliases, commented out by default:
alias dir ls
alias m more

.

.
endif
.
.

The presented .cshrc file defines additional environment variables, a system prompt,
and command aliases and redefines the search path. There is no need to export the defined
variables (the setenv vs. the set shell command); the file is executed whenever the C shell
is invoked.

The Korn shell supports an optional shell initialization file, usually named .kshrc. This
file must be defined within the user .profile file (although the /etc/profile file can be also
used). This is done implicitly by the variable ENV; if the variable is set to an existing
readable script file (there is no need for it to be executable), the script file will be sourced
whenever a new Korn shell is invoked. A possible required .profile sequence to set an
optional Korn shell initialization file is:

.

shell = �basename $SHELL�

if [“$shell” = “ksh”]

then

ENV = $HOME/.kshrc

fi
.

Obviously the ENV variable could be set to some other value, or even not set at all (then
the Korn shell would behave like the Bourne shell). However, it is strongly recommended
that you use the usual and expected filename .kshrc. Also, it is a good idea to put the
previous command sequence into the systemwide login initialization file /etc/profile, to
avoid possible modification by the user.

An example of the .kshrc file follows (from Solaris 2.x):

$ cat /home/bjl/.kshrc
@(#)kshrc
###
#
File: kshrc Version: 1.1.0
#
Description: sourced by each new ksh, via ENV
Default location: /etc/skell
#
###
#

© 2002 by CRC Press LLC

Set default file permission mode
umask 022
USER=�whoami�
OS=�uname -s�
Set/extend the command search path
TST=‘expr $PATH : “.*/usr/ucb”’
if [“$TST” = 0] ; then

PATH=$PATH:/usr/ucb
fi
unset TST
MAIL=/usr/mail/$USER
#
###===###

Set prompt to user preference # This part sets the user prompt according to the user’s
prompt initialization file “.prompt”

if [-z “$PROMPTCODE”] ; then
if [-r $HOME/.prompt] ; then

PROMPTCODE=“‘cat $HOME/.prompt’”
else

PROMPTCODE = 1
fi
export PROMPTCODE

fi
if [“$USER” = “root”] ; then

SHELLCHR=‘#’
else

SHELLCHR=‘$’
fi
case $PROMPTCODE in

‘0’)
PS1=“$SHELLCHR”
;;

‘2’)
PS1=“{�pwd�:!} ”
;;

‘3’)
PS1=“ �whoami� $SHELLCHR”
;;

‘4’)
PS1=“ �hostname� $SHELLCHR”
;;

‘5’)
PS1=“C:�pwd�>”
;;

‘6’)
PS1=${USER}@�hostname�:’${PWD}’“>”
;;

*)
PS1=“{$USER@�hostname�:!}”
;;

esac
###===###

#
Remove old .history files
if [! -d $HOME/.history] ; then
mkdir $HOME/.history
fi
find $HOME/.history -mtime +2-exec rm -f {} \; > /dev/null 2>&1
#

© 2002 by CRC Press LLC

Save history in a different file for each window
HISTFILE=$HOME/.history/sh. $$
#
Set aliases
alias ls=‘ls -F’

The .kshrc file sets the individual environment for a logged-in user. Among other variables,
this program sets the user’s command prompt in an extremely flexible way; a user can
select from seven different prompt options by setting the prompt initialization file
$HOME/.prompt. The prompt initialization file is not so common; it is more common to
set the user’s prompt directly within the usual user’s initialization files. However, this
example illustrates the high degree of flexibility provided by UNIX to initialize the user’s
environment.

7.1.5.5 Setting the Proper Ownership

Finally, once the appropriate initialization files are copied to the user’s home directory,
the appropriate ownership for the home directory and copied files must be set for the
new user, or the user’s login attempt could fail. Do not forget, an administrator who
possesses the superuser credentials creates a user account. This is much more than an
average user would ever be able to do.

The available UNIX commands to change the directory and file ownership should
be applied for this purpose. Originally, the BSD platform allows the recursive imple-
mentation of the chown command with a simultaneous change of the user and group
ownership:

$ chown -R username.groupname /home/username

Modern UNIX flavors, independently of their prevailing platform characteristics, allow
a simultaneous recursive change of the user and group ownership, with the colon (:) as a
separating character (e.g., Solaris 2.x, or HP-UX 10.20, or Linux):

$ chown -R username:groupname /home/username

Otherwise it can be done in two steps:

$ chown -R username /home/username

$ chgrp -R groupname /home/username

Another possibility is to implement the find command (with the corresponding -exec
option):

$ find /home/username -exec chown username {}\; -exec chgrp groupname {}\;

7.1.6 Utilities to Create User Accounts

The complete procedure to create a new user’s account has been elaborated; obviously,
a great deal of work is required, so it is easy to miss something. It is also obvious that the
creation procedure is strictly defined and is an ideal candidate for automation. This
automation has been done since the early days of UNIX.

Among the many UNIX flavors, there are (or rather, there were) a number of utilities
(commands) for this purpose. For example, old fashioned System V flavors provided the

© 2002 by CRC Press LLC

passmgmt command (with the needed options) to manage password files; ULTRIX provided
adduser (as well as the removeuser and addgroup utilities); SunOS 4.1.x provides the
script utility add_user (we will return to this script); AIX provides the mkuser command;
and there are many more. The existing general UNIX administration tools, like SAM on
the HP-UX platform or SMIT on the AIX platform, always include a user account
management section.

Today useradd is the prevailing utility to administer new user accounts among existing
UNIX flavors (Solaris, HP-UX, Linux, etc.); a number of options and instructions for using
the utility are described in the existing manual pages. In the sense that it has options (and
is described in the manual pages), this program behaves as any other UNIX command.
The useradd utility was introduced a long time ago, with SVR4, and became a standard
UNIX tool.

A list of the useradd options can be seen in this example from Red Hat Linux:

$ useradd -?

useradd: invalid option -- ?

usage: useradd [-u uid [-o]] [-g group] [-G group,…]

[-d home] [-s shell] [-c comment] [-m [-k template]]

[-f inactive] [-e expire mm/dd/yy] [-p passwd] [-n] [-r] name

useradd -D [-g group] [-b base] [-s shell] [-f inactive] [-e expire mm/dd/yy]

name corresponds to the user’s login name, and the listed options are:

Option Description

-D Display default values
-u uid Specifies the UID; -o option allows duplicated values
-g group Specifies an existing group name or GID for the primary group
-G group,… Specifies secondary groups by the group name or GID
-d home Specifies the home directory
-s shell Specifies the user’s shell
-c comments Specifies information about the user
-m Creates a new home directory if one does not exist
-k template Specifies a skeleton directory with template initialization files
-f inactive Specifies a number of days for an account to be inactive
-e mm/dd/yy Specifies an expiration date for an account
-p passwd Specifies a password
-n Creates a group with the same name as the user (Linux specific)
-r Specifies a system account (Linux specific)
-b base Specifies the default base home directory

Note: All listed options are not available for all UNIX flavors; password-related options, in particular, are often
excluded from this utility.

The use of the useradd utility is well documented, self-explanatory, and easy; obviously,
system administrators are encouraged to use this tool.

Unfortunately, we can only guess at what is going on behind the scenes of the execution
of such a utility. The utility useradd is a compiled executable program, designed for
a specific purpose and was never intended to be an educational example in the user
account management. To get an idea of what the utility is exactly doing and how it is
doing it at all, we will return to the SunOS 4.1.x platform that has provided a corresponding
script program: user_add . UNIX administration and script programming are

© 2002 by CRC Press LLC

complementary — as soon as we reach a script program related to an administrative issue,
we have a greater chance to understand the issue itself.

The script utility add_user assumes six arguments (all arguments are self-explanatory):
username, UID, GID, “full user’s name,” homedirectory, and usershell.

The script itself is presented in part; although the script was originally well commented,
more comments (printed in bold) have been added for further clarity.

cat /usr/etc/install/add_user
#!/ bin/sh
@(#)add_user 1.9 SMI
#
add user script for use with sys-config
arguments: uname uid gid fullname homedir shell
#
======= This part includes general script issues =======

and defines specific functions and some variables
myname=�basename $0� #Extract the portion “add_user” from the full script

#name /usr/etc/add_user (the argument $0 is the
#script itself)

===
check for root #Only superuser is eligible to add a new

user
if [“ �whoami�x” != “root”x]; then

echo “You must be root to do $myname!”
exit 1

fi
check for number of args #The script must be invoked with six

defined #arguments
if [$# -ne 6]; then

echo “${myname}: invalid number of arguments”
echo “ usage: ${myname} uname uid gid\“fullname\”homedir shell”
exit 1

fi
put args into named variables
uname=$1
uid=$2
gid=$3
fullname=$4
homedir=$5
shell=$6
checks for validity of arguments
check uid #First 10 uids and gids are reserved for

#system entities
if test $uid -lt 10 ; then

echo “uid: uid must be greater than 10 and less than 60000”
exit 1

elif test $uid -gt 60000 ; then
echo “uid: uid must be greater than 10 and less than 60000”
exit 1

fi
check gid

.

.
check shell #shell must exist
if test ! -x $shell ; then

echo “$shell: the program does not exist or is not executable”
exit 1

fi
check homedir #check for an existing home directory

© 2002 by CRC Press LLC

check if homedir already exists
if [-f ${homedir}]; then

echo “${myname}: WARNING: a file named \“${homedir}\” already exists”
echo “and is NOT a directory, NOT setting up user account”
exit 1

fi
if [-d ${homedir}]; then

echo “${myname}: WARNING: home directory \“${homedir}\” already exists”
echo “ no files copied, NOT setting up user account”
exit 1

fi
check if all but last path of homedir exits
dir=�shdirname $homedir� #Extract the home directory name
if test ! -d $dir ; then

echo “$dir: does not exist or is not a directory”
exit 1

fi
check if $homedir is local #Extract a local filesystem name

(a special device file) from the output of
the df command

dfout=�df $dir | (read aline; read aline; echo $aline)�
case $dfout in

/dev*) ;; # $dir is on local machine
*) echo “$dir: is not on local machine”

exit 1;;
esac
create a null /etc/passwd entry
first check if one already exists #Checking for username
if grep -s “^${uname}:” ${Passwd} ; then

echo “${myname}: ERROR: ${uname} aleady in ${Passwd}”;
exit 1;

fi
check if uid already exists #Checking for UID
if grep -s “.*:.*:${uid}:” ${Passwd} ; then

echo “uid: ERROR: ${uid} already in ${Passwd}”;
exit 1;

fi
=> Everything is OK!
=> Create an entry with no password for the /etc/passwd file
=> Emulate editor command sequence: “insert text, write to file, quit”
pwent=“${uname}:: ${uid}:${gid}:${fullname}:${homedir}:${shell}”
XXX should we use tmp file and rename it?
(echo ‘$’ ;

echo ‘i’ ;
echo “${pwent}” ;
echo ‘.’ ;
echo ‘w’ ;
echo ‘q’) | ed -s ${Passwd} > /dev/null

#Check is the entry written into the /etc/passwd file
if grep -s “^${uname}:” ${Passwd} ; then

:
else

echo “${myname}: ERROR: password entry didn’t go to ${Passwd}”;
exit 1;

fi
make the home directory
/bin/mkdir ${homedir}
/usr/etc/chown ${uname} ${homedir} #change user and group ownership
/bin/chgrp ${gid} ${homedir}
add default user startup files #copy initialization files …
cp /usr/lib/Cshrc ${homedir}/.cshrc

© 2002 by CRC Press LLC

cp /usr/lib/Login ${homedir}/.login
cp /usr/lib/.sunview ${homedir}/.sunview
cp /usr/lib/.rootmenu ${homedir}/.rootmenu
/usr/etc/chown -R ${uname} ${homedir} #change user and group ownership
/bin/chgrp -R ${gid} ${homedir}
if ok, exit 0
exit 0

7.2 Maintenance of User Accounts

Once a user’s account is created, the user may start using the system. The user has all
rights in the user’s own directory, and all privileges with regard to the user’s files; for
other files, a user’s rights are quite restricted. A user may execute most UNIX commands
and use the system in the typical way. However, a user is very limited in performing
administrative tasks on the system, unless they are directly and exclusively related to the
user’s account. An administrator must be extremely careful in giving more privileges to
a user, if such demands exist at all; otherwise, a user could compromise the system
intentionally or unintentionally. When a system is corrupted, intent is not an issue; the
issue is to recover the system.

The fact that a user has enough privileges to use the system in a normal way does not
mean that the administrator’s duties regarding the users’ account are over once the account
has been created. As with the system itself, user accounts also need to be managed. First,
monitoring user activities is highly recommended. A number of systemwide issues can
be resolved through such monitoring; sometimes troubling, even disastrous, situations
can be avoided and many problems prevented in time. In some sense, such preventive
monitoring and maintenance can improve the use of the system.

Another issue to contend with is the need to test and sometimes to recreate a user’s
environment. Although environment customization is supposed to be done by the user,
sometimes it is better if the system administrator does this; often, users are not knowledgeable
enough to perform this task. By using the su - username command (please note the hyphen
character), the superuser can switch to a user account and create a real user environment;
it is just the same as when the user logs into the system, except password verification is
not required for the superuser. It is extremely useful to have the user’s credentials while
debugging the user’s account.

The need to add a user to some other UNIX facilities in use at a specific site is also
possible. Additional administrative activities can also be required in, for example, assigning
disk quotas, defining mail aliases, setting print queue access, etc.

7.2.1 Restricted User Accounts

Some users are allowed only restricted use of the system. One example of a possible
restriction on user access is a user who has access only to execute a single application
program. Such demands are addressed by a captive account. In this case, the application
program itself replaces the UNIX shell that usually enables full use of the system. Entries
for these restricted users must be created in the /etc/passwd file, or existing entries must
be modified. Once the login process for such a user is successfully completed, the specified
application program begins to execute; once the program is completed, the user will
automatically be logged out.

© 2002 by CRC Press LLC

Unfortunately, not all programs can be used in this way; if the program requires inter-
active use (for example, input of a variable is required) then sometimes simply using the
program instead of the login shell will not work. UNIX provides a restricted shell to address
such demands.

A restricted shell, specified as rsh, represents a modified version of a regular shell in
which some of the “dangerous” UNIX commands are disabled (the term dangerous should
be read considering the alternative, unrestricted use of the shell). This means that the cd
(change directory) command is disabled, as are other commands designed to take the user
out of the current directory. In this way, a user stays only in the home directory, has
a restricted number of available UNIX commands sufficient to perform a specific job, but
does not have the usual control over the system.

Another possible way to keep a user within the application is to execute the application
program within the user login initialization file. Such an approach could be easier to
manage (a specific user environment can be set first, and then the application started),
but is more difficult to keep secure; a user could try to find a bypass during the login
procedure to reach the shell.

7.2.2 Users and Secondary Groups

Assigning users to an additional group, or even several groups, is a very common task.
Only the user’s primary group is defined in the /etc/passwd file; membership in additional
groups, known as secondary groups, is specified in the group file /etc/group. There is no
difference between primary and secondary groups regarding group ownership and access
permissions; the only difference between them is the way they are specified (the /etc/passwd
file versus the /etc/group file). The BSD platform has never distinguished between primary
and secondary groups (except for accounting purposes); however, the System V platform
originally allowed a user to have only one active group and to switch to the other group
using the newgrp command. The BSD approach is prevailing today.

The groups command can be used to display group membership:

groups username Lists groups that username belongs to
groups Lists all user’s groups

Alternatively, the id command that lists all of a user’s identification data could also be used:

$ id -g username Lists groups that username belongs to

$ id -g Lists groups that the user who invokes the command belongs to

7.2.3 Assigning User Passwords

All user accounts must have passwords; a password protects the system from intruders.
It is up to the user to select the password, but some rules must be respected. It is primarily
in the user’s best interest to have an unbreakable password — the password maintains
the user’s data and privacy. No compromises regarding password issues should be
allowed.

The superuser (root) may use the passwd command to assign an initial password for a
user account. When used for this purpose, the command takes the relevant user’s name
as its argument:

© 2002 by CRC Press LLC

$ passwd username Will assign a password for the user with the name username; to
avoid typos in specifying the new password, the system prompts
for the password twice.

The same command may be used at any time to change a user’s password, should this
ever be necessary (for example, if a user forgets the password).

Password management and system security are very important UNIX issues, and they
have been improved very much throughout the lifetime of UNIX. While in the past only
some System V flavors supported the passwd -f option, which expires a password, forcing
the user to change it at the next login, today the passwd command is a versatile command
that supports a number of options. However, this is a topic for the section on UNIX
security in Chapter 8.

A user can also change his own password. By using the passwd command (without
any argument) the user starts the procedure for the password change. The user will first
be prompted for the old password, (as a security precaution), and then twice for the
new one.

7.2.4 Standard UNIX Users and Groups

All UNIX flavors predefine several standard users and groups. User names and group
names are mutually independent and have no inherent relationship, even when the same
name is used. Although the user and group names are arbitrary, and can vary among
different UNIX platforms and flavors, there are some standard users and groups. A list
of some of them, with brief descriptions, follows. This list is far from complete; these are
simply a few common user and group system entities. Some discrepancies, especially
regarding entry descriptions, are also possible.

The standard UNIX users are:

User UID Comments

root 0 The superuser has unrestricted access to all aspects of the system; most administrative activities
must be performed by the superuser

daemon 1 Used to execute system server processes; only exists to own these processes and the associated
files, and to guarantee that they execute with the appropriate file access permission

bin 2 Owns some executables
sys 3 Owns some system files
adm 4 Typically owns the accounting files
uucp 5 An old-fashioned UNIX-to-UNIX copy subsystem account; the user that owns the uucp tools

and files
operator A user with read-only access to the entire filesystem and write access as a normal user; for

system operators who need to do backup, initiate system shutdown, and perform some other
administrative functions

nobody - 2 Account primarly used by NFS; nowadays also by browsers; UID = - 2 appears in the /etc/passwd
file as a very large integer (UIDs are presented as unsigned data type numbers)

These accounts are seldom used for login (except root), so their passwords are
consequently disabled in the password field in the /etc/passwd file (or in the /etc/shadow
file — to be discussed in Chapter 8).

© 2002 by CRC Press LLC

The standard UNIX groups are:

Group GID Comments

root 0 In principle, a highly privileged group that own’s system-related files and directories
daemon This group exists to own spooling directories /usr/spool/* and programs responsible for

transferring files. The spooling directories are temporary resting places for files that are
waiting to be printed, to be transferred by uucp, or to be processed by some other subsystem.
Owning these programs and directories provides additional security — they are not public,
so no individual user can access them directly. Spooling programs use the SGID access mode,
and users can only manipulate the files in these directories in ways allowed by the programs
themselves

kmem 2 The BSD-like special group that owns some system programs needed to read kernel memory
directly (like ps and pstat)

sys System V-like, this group is the same as the BSD-like group kmem
tty This group owns special files connected to terminals; it controls access to the terminals
others Group that may be used to own user-related resources
users

7.2.5 Removing User Accounts

The system’s users are constantly changing; new users are added, and some old users
may stop using the system. There are many reasons: students are graduating and
leaving college, employees are moving to other companies, a worker is no longer
involved in a particular project. Administrators must therefore be ready to remove user
accounts.

Removing a user account sounds very simple: remove the corresponding user entry in
the /etc/passwd file, and delete the user’s home directory. It is not always so simple, though;
the full removal of a user from the system can sometimes be a very tricky job and requires
a careful approach.

However, disabling a user account is really very easy, and sometimes quite sufficient.
It is also recommended to start the removal of a user account by first disabling it. Simply
changing the user’s encrypted password in the /etc/passwd file to an asterisk will effectively
deactivate a user’s account. This method prevents file ownership problems that can crop
up when a username is deleted.

When more drastic action is required, UNIX flavors usually offer utilities to remove
users from the system, similar to the ones employed to add users to the system; some
flavors even provide built-in commands for this purpose. Unfortunately, the automatic
removal of a user’s files from the system could be risky, so there is always a lot to be done
by hand.

When removing a user from the system, a number of issues should be considered:

• Removing the user’s mail files
• Removing the user from the mail aliases (the file /usr/lib/aliases), or redefining

the alias to send mail to someone else

• Removing pending print requests
• Performing any other site-specific termination activities that may be appropriate

Users frequently interact with UNIX systems, but there are other ways a user’s requests
and jobs could be submitted. Time-related UNIX utilities provide this function:

© 2002 by CRC Press LLC

cron Enables the submission of a user’s jobs for periodic execution
at Enables the submission of a user’s jobs for execution at specific (usually off-

peak) times

batch Enables the submission of a user’s jobs for execution at off-peak times,
when the system is less busy

Removing a user account also includes making sure the user has not left any pending
cron, at, or batch jobs in the system.

7.3 Disk Quotas

Disk space shortages are a very common problem on all systems. Often some users use
the available disk space in an inappropriate way, storing and keeping everything on the
system. In a multi-user environment such behavior is intolerable. The UNIX disk quota
facility allows an administrator to limit the amount of filesystem storage that a user may
consume. If quotas are enabled, the OS will maintain separate quotas for each user’s disk
space and the total number of files the user owns on a filesystem. Originally a BSD facility,
the disk quota is common today in all UNIX flavors.

There are two distinct types of quotas: a hard limit and a soft limit. A user is never allowed
to exceed the hard limit; the user will receive a message that the quota has been exceeded,
and any more data storage will be refused. The soft limit may be exceeded only temporarily,
for a limited period of time; in such cases a user will receive a warning message, but the
OS grants additional storage if requested. The warning will be repeated as long as the
user does not reduce the disk usage, or the limited warning period expires. If either
happens, at this point the OS will react as it would in the case of a hard-limit violation.

7.3.1 Managing Disk Usage by Users

The system administrator must decide which filesystems need quotas (a disk quota is
implemented on the filesystem level); usually, candidates are filesystems where users reside
(/home, /users, etc.). Once the decision is made, setting the disk quota requires several
steps. The first step is to modify the entry for the selected filesystem in the filesystem
configuration file /etc/fstab (or /etc/vfstab); the option which defines the quota (usually quota,
or rq) must be set, and the filesystem remounted. Next, a file named quotas (owned and
writeable only by the superuser) must be created in the top-level directory of the filesystem
for which the disk quota has been established, as in the following example:

$ cd /fs-top-dir # /fs-top-dir corresponds to the to the top-most directory of
the selected filesystem, i.e., the filesystem mount-point

$ touch quotas # create an empty file “quotas” (a mandatory filename)
$ chmod 600 quotas # make it read-write-only for the superuser

At this point, the general issues concerning disk quota are resolved; now, it is time to
set the users’ quota limits. This must be done individually for each user, and the limits
may be determined arbitrarily among the different users. The edquota command is available
to establish filesystem quotas (this is the only program available to edit quotas, and it

© 2002 by CRC Press LLC

invokes the standard editor — vi by default). The command can be used for a single user,
or simultaneously for more users:

edquota username(s)

The edquota command will create the hard and soft limits for the specified user and the
corresponding filesystem. Each user is specified by one line of the form:

fs /fsname blocks (soft=10000, hard=12000) inodes (soft=0, hard=0)

The disk space (determined by blocks) and the maximum number of user’s files (determined
by inodes) can be limited; a 0 value indicates no limits.

The edquota command has several options:

-t Edit the time limits for filesystems (time limits are set on filesystems, not users);
the default value is usually seven days

-p To copy quota settings between users, for example:
edquota -p username1 username2 username3 etc.

means copy quota settings from the user username1 to other users: username2,
username3, etc.

After all quota limits are defined, the quotaon command must be used to enable the
disk quota facility (some systems enable quota checking automatically with filesystem
mounting). Alternatively, the quotaoff command is used to disable quota checking.

The quotacheck command is available to check the consistency of the file quotas for the
specified filesystem with the current actual disk usage. Finally, the repquota command is
available to report the current quotas for the specified filesystem. An example follows:

repquota -av
/dev/dsk/c201d6s0 (/):

Block limits File limits
User used soft hard timeleft used soft hard timeleft
bjl -- 140 10000 12000 73 0 0
vasili -- 121 10000 12000 63 0 0
ggu -- 1025 10000 12000 140 0 0
park-- 5 10000 12000 5 0 0
dubey -- 7836 20000 23000 790 0 0
mdb -- 77 10000 12000 13 0 0
xut -- 837 10000 12000 44 0 0
aizin -- 69 10000 12000 12 0 0

This report refers to the brand new HP-UX workstation, which had only a few active
users at that time.

7.4 Accounting

UNIX provides versatile process accounting. The accounting subsystem records statistics
about each process that is running on the system; it records process RUID (i.e., the UID

© 2002 by CRC Press LLC

of the user who started the process) and the system resource usage. It is designed
primarily for tracking the system resource usage so users can be charged accordingly.
However, the recorded data can also be used efficiently for other purposes, like some
types of system performance and security monitoring.

The accounting subsystems on the two major platforms, BSD and System V, are
different, although both are based on the very same concept. This accounting concept
is simple: perform a fast recording of the necessary raw data, and later a slower
processing of the recorded data. While the first part, the recording of raw data, is quite
similar on the two UNIX platforms, the data processing and output methods and data
formatting are very different. Besides that, on the BSD platform the accounting is
enabled by default; this means the administrator must prevent the accounting if it is
not desired. On the System V platform, the accounting is initially disabled and must
be set by the administrator if needed. Enabling and disabling of the accounting is
provided through the system rc initialization, although it can be done also from the
command line.

A special system entity (a system user) adm manages accounting; all accounting-related
resources (programs, directories, and files) are owned by adm. When accounting is
enabled, the kernel records raw process data to a binary data file that resides in the home
directory of adm:

For BSD and SunOS: /usr/adm/acct and /var/adm/acct

For System V and AIX: /var/adm/pacct and /usr/adm/pacct

Recorded raw data about processes include:

• Image name
• CPU time used

• Time the process started
• Associated UID and GID

• Memory usage
• Number of characters read and written

• Number of disk I/O blocks read and written
• Initiating TTY

• Various associated flags

Additional accounting data are stored in files:

• /etc/utmp A binary log file containing data about currently logged-in users

• /usr/adm/wtmp A binary log file that records each login and logout
• /usr/adm/lastlog A database containing the date and time of the last login for

each user

The three listed files originate in, and are a part of the accounting subsystem;
however, they became standard files for almost any UNIX flavor, containing important
data about login/logout activity on the system. Some UNIX commands rely on these
data.

© 2002 by CRC Press LLC

7.4.1 BSD Accounting

Accounting is enabled by default on the BSD platform; this means the appropriate startup
command sequence is included in the system initialization rc script /etc/rc:

if [-f /usr/adm/acct]; then

accton /usr/adm/acct; echo -n ‘accounting’ > /dev/console

fi

The accton command starts (enables) accounting when an accounting file (a destination
for raw data recording) is specified as its argument. If there is no argument, this command
disables accounting. Obviously, the only condition to start accounting is the existence of
the raw accounting file /usr/adm/acct.

Accounting is a continuous recording of data, and the accounting file grows steadily.
To control the growth of the accounting file /usr/adm/acct, periodic file processing and
resizing are required. The tool for this is the sa command (program); sa processes recorded
raw data and merges processed data into the standard summary file /usr/adm/savacct or
the user-based summary file /usr/adm/usracct (option -m).

Here is an example of how to use the sa command:

accton # temporarily disable accounting
cd /usr/adm # move to the accounting directory
mv acct acct.tmp # rename the accounting data file
touch acct # recreate a zero-size accounting file
accton acct # re-enable accounting
sa -s acct.tmp > /dev/null # merge data into the standard summary file “savacct” with all

generated reports discarded
rm -f acct.tmp # delete the temporary accounting file

A similar script could be created and periodically executed via the cron facility (cron is
covered later in the Chapter 13).

The accounting data should be saved and processed before a system shutdown. The
accounting shutdown procedure must be provided on time. However, in the event of
a system crash, special steps must be taken: all accounting records must be manually
closed, saved, and processed before accounting is restarted. The procedure essentially
includes the same command sequence as in the previous example, but it must be accom-
plished before the system reaches a multi-user state. Practically, it means that during
system booting, accounting startup has to be completed before the execution of the rc
initialization script /etc/rc; if the system crashed earlier, everything has been done in the
single-user mode.

The aforementioned command sa includes a number of options; this is a versatile
program that can process recorded accounting data in a number of ways. For the proper
use of the sa command, the existing manual pages should be consulted.

Another useful tool is the ac program, which reports on user contact time. It relays data
in the file /usr/adm/wtmp, containing records on users’ logins and logouts. The ac program
also provides a number of options.

7.4.2 System V Accounting

The System V accounting subsystem is more powerful and versatile than the BSD one.
System V uses an automated accounting system, and it includes a suite of commands,

© 2002 by CRC Press LLC

shell scripts, and C programs designed for accounting purposes; together they offer a great
deal of flexibility.

We briefly describe how System V accounting works. As is common for accounting,
the related directories are /usr/adm or /var/adm; and, as is common for System V, there is
a dedicated directory hierarchy structure starting with /usr/adm/acct (instead of the indi-
vidual files typical in BSD). Three additional subdirectories are fiscal, nite, and sum.

The three directories provide:

/usr/adm/acct/fiscal Keeps reports by fiscal period (usually monthly) and old
binary fiscal period summary files

/usr/adm/acct/nite Keeps daily binary summary files; daily process
accounting records; raw disk accounting records; and
status, error log, and lock files

/usr/adm/acct/sum Keeps daily binary and current fiscal period cumulative
summary files and daily reports

Several other files are of special interest:

/var/adm/pacct Previously described binary data file in which the kernel
writes raw data

/var/adm/acct/wtmp Previously described binary log file that records each
login and logout attempt

/var/adm/acct/nite/diskacct A raw disk usage data file

/var/adm/fee A file to store additional charge records specified by
the administrator, using the chargefee command;
these are extra charges for special services not covered
by the accounting system

A simplified flow chart of processed data in the System V accounting subsystem is
presented in Figure 7.1.

The kernel (some of the available commands could also be used) enters initial data in
the raw data files; these data are then processed by a series of utilities, producing several
intermediate binary summary files. At the end, there are final ASCII reports suitable for
use by the system administrator. Any step in the data processing could be performed
manually, but with the cron facility everything can be handled automatically. Accounting
utilities and other related commands such as runacct, acctmerg, prdaily, and monacct live
in the directory /usr/lib/acct. (on HP-UX 10.xx this is the /usr/sbin/acct directory):

$ ls -C /usr/lib/acct (Solaris 2.x)
acctcms acctmerg chargefee monacct ptelus.awk utmp2wtmp
acctcon accton ckpacct nulladm remove wtmpfix
acctcon1 acctprc closewtmp prctmp runacct
acctcon2 acctprc1 dodisk prdaily shutacct
acctdisk acctprc2 fwtmp prtacct startup
acctdusg acctwtmp lastlogin ptecms.awk turnacct

Daily and cumulative summary files, as well as report files, are specified by the cor-
responding self-explanatory names; in the case of report files, ddmm corresponds to the
date (day and month).

© 2002 by CRC Press LLC

The last step is to enable the accounting subsystem. This means the accounting should
start at the system booting. The administrator performs the following steps to enable
accounting (in Linux there is one more directory level /etc/rc.d):

• Checks the rc start/stop script acct for the accounting subsystem in the /etc/initd.d
directory, and creates the file if it does not exist

• Creates the symbolic link in the /etc/rc2.d directory (assuming the run level 2
corresponds to the multi-user mode): /etc/rc2.d/S22acct -> /etc/init.d/acct. The startup
script should initiate accounting

acct/
sum/
tacct

acct/
sum/
rprt*

acctmerg

login

monacct

chargefeedodiskUNIX kernelinit

runacct & al.

prdaily

acct/
fiscal/
fiscrpt*

acct/
sum/
cms

acct/
sum/
tact*

acct/
nite/

dayacct

acct/
sum/

loginlog

acct/
sum/

daycms

acct/
nite/

diskacct
feepacctwtmpFiles with

raw data

Files with
daily data

Files with
cumulative

 data

Reports

FIGURE 7.1
System V accounting subsystem.

© 2002 by CRC Press LLC

• Creates the symbolic link in the /etc/rc0.d directory: /etc/rc0.d/K22acct -> /etc/init.d/acct.
The stop script should invoke the shutacct command to shutdown accounting

• Adds the necessary crontab entries for various accounting utilities for the users
adm and root (often, these entries already exist, and will only need to be activated)

Once these steps are completed, the accounting subsystem will start at the system
booting.

For a better understanding of the start/stop procedure, the previously mentioned script
files for Solaris 2.x flavor are presented here in part.

$ cat /etc/init.d/acct
#!/ sbin/sh
Copyright (c) AT&T
All Rights Reserved
state=$1
.
.
case $state in
‘start’)

.

.
echo “Starting process accounting”
/usr/lib/acct/startup
;;

‘stop’)
echo “Stopping process accounting”
/usr/lib/acct/shutacct
;;

esac

The main parts of the start/stop procedure are the programs: /usr/lib/acct/startup and
/usr/lib/acct/shutacct. Both programs are scripts, as seen here:

$ cat /usr/lib/acct/startup
#!/ sbin/sh
Copyright (c) AT&T
All Rights Reserved
“startup (acct) - should be called from /etc/rc whenever system is brought up”
PATH=/usr/lib/acct:/usr/bin:/usr/sbin
acctwtmp “acctg on” /var/adm/wtmp
turnacct switch
“clean up yesterday’s accounting files”
rm -f /var/adm/acct/sum/wtmp*
rm -f /var/adm/acct/sum/pacct*
rm -f /var/adm/acct/nite/lock*

Solaris provides the turnacct command to start or stop accounting, depending on the
attached argument. This command replaces the BSD accton command.

The script to shutdown accounting is:

$ cat /usr/lib/acct/shutacct
#!/ sbin/sh
Copyright (c) AT&T
All Rights Reserved
“shutacct [arg] - shuts down acct, called from /usr/sbin/shutdown whenever system is taken down”
“arg added to /var/wtmp to record reason, defaults to shutdown”

© 2002 by CRC Press LLC

PATH=/usr/lib/acct:/usr/bin:/usr/sbin
_reason=${1-“acctg off”}
acctwtmp “${_reason}” /var/adm/wtmp
turnacct off

7.4.3 AIX-Flavored Accounting

On the AIX platform, the following steps are required to set the accounting subsystem:

• As the superuser, execute the nulladm procedure (program) to ensure that each
involved file has the proper access permission code 664.

• Update the file /usr/lib/acct/holidays that contains the timetable for the accounting
system.

• Turn on process accounting in the rc initialization script file /etc/rc — activate
the line /usr/etc/acc/startup.

• Specify the filesystems covered by the accounting subsystem; in the filesystem
configuration file /etc/filesystems, check for an entry account=true in the stanza
for each related filesystem.

• Enable printer usage accounting by adding the stanza acctfile=/usr/adm/qacct
in the /etc/qconfig file.

• Schedule daily and monthly accounting, and fiscal summaries for automatic
execution, using the cron facility — modify the file /usr/spool/cron/crontabs/adm.

• Set the environment variable PATH in the systemwide profile file to include
/usr/lib/acct.

© 2002 by CRC Press LLC

8
UNIX System Security

8.1 UNIX Lines of Defense

System security is an extremely important issue, especially today, when computer sys-
tems are networked and directly exposed to an unknown number of intruders. UNIX
designers could not anticipate such extensive development of computer technologies,
but they have paid significant attention to system security and have provided a decent
level of basic system protection. Standard UNIX offered two basic ways to prevent
security problems:

1. Passwords were designed to prevent unauthorized users from obtaining access
to the system at all.

2. File permissions were designed to allow access to the various commands, files,
programs, and system resources only to designated individuals or groups of
authorized users.

On a stand-alone system, which is isolated from the external world, this approach was
sufficient. On a system connected to the network, however, which communicates with
other known and unknown computer systems, everything is more complex and there are
additional risks. For example, under some circumstances network access can bypass the
regular password authentication procedures, so the system may be only as secure as the
other “trusted” systems on the network.

Passwords and file permissions are certainly useful and necessary, but they should
be only a part of an overall security strategy for the system itself, based upon its needs
and potential threats. Various lines of defense may be set to protect the system; each
of them should be seriously considered, and most of them are relatively easy to
implement.

We will discuss the most common types of system defense. Although all of them are
not exclusive to UNIX, they can certainly be used in UNIX systems. Some of them are
part of the generic UNIX security and others are optional, but they are all widely imple-
mented across all UNIX platforms.

The UNIX security features we will discuss here are not perfect. There are third-party
add-on security packages available on the market for sites that require a higher level of
security, but they are out of the scope of this text.

© 2002 by CRC Press LLC

8.1.1 Physical Security

The first line of defense is the physical access to the UNIX system (the computer itself).
From today’s point of view, users do not need physical access to the system at all. They
can use the system extensively without being physically near it. Visual contact between
a user and the system is not a condition for successful communication (however, this is
not the rule for successful system administration).

Some of the most common issues related to the physical security of the system are:

• Preventing theft and vandalism by locking the door or locking the equipment
to a table or desk

• Restricting access to the system console and computer itself. To prevent the
system from crashing and rebooting to the single-user mode (which is an unse-
cured system mode), lock the key in the secure key position (if applicable) and
keep the key safe

• Controlling environmental factors such as power supply, air conditioning, and
fire protection as much as possible

• Restricting (or monitoring) access to other parts of the system (terminals,
modems, network facilities, and printers) to prevent vandalism on these exposed
parts (which is a frequent problem)

• Restricting access to backup tapes, in particular, to protect system data

8.1.2 Passwords

If an unauthorized individual gains physical access to the system, user authentication is
the next line of defense; a password keeps the system closed off, preventing unauthorized
users to access the system’s files (programs and data). One weakness of passwords is that
if someone breaks into an account by finding out its password, the intruder has all the
rights and privileges of the legitimate user.

There are a variety of methods for adding additional stumbling blocks if a password is
broken, such as:

• Secondary authentication programs, which require additional input before grant-
ing access to the system

• Dialup passwords, which act as a second password when logging in via a
modem

• Enhanced network authentication systems (like Kerberos) designed to protect
networked systems and fileservers; some of these systems are very complex to
install and maintain

• Additional authentication-based security identification devices (tokens) synchron-
ized with the system

The system administrator must be sure that all available measures for system protection
are implemented before the decision is made to upgrade a system’s security. In doing this,
special attention should be paid to the password-related files. It is crucial that each entry
in these files includes an encrypted password or asterisk. Entries with empty password
fields are extremely dangerous for the system and they represent large security holes in
the system’s defenses.

© 2002 by CRC Press LLC

8.1.3 File Permissions

The next line of defense against an undesired intruder into the system is the file
protection. Properly set file permissions can prevent many potential security problems.
Any success in breaking into the system through the password’s defense line is
worthless if the protected files the intruder is interested in cannot be reached. Breaking
into a user account means access is still restricted from most system resources that
require high priority user ’s credentials. The most vulnerable aspects of file protection
are the SUID and SGID access modes, because they very often enable superuser’s
access rights.

Some UNIX flavors provide additional ways to limit nonroot users’ access to various
system resources. Disk quotas, system resource limits, and printer and batch queue
access restrictions protect computer subsystems from unauthorized use. A number of
different attackers, which attempt to overwhelm systems by completely consuming
their resources, present a permanent threat. They carry different names: bacteria, rabbits,
locusts, viruses, worms, and Trojan horses but their intentions are the same.

8.1.4 Encryption

There is one hope against a complete loss of security if the root account is compromised:
encryption. For some types of data files, encryption can be a fourth line of defense,
providing protection against cracked root and other privileged accounts. Encryption
involves a transforming of the original file (the plain or clear text) using mathematical
functions or techniques. Encryption can protect data stored in the files under certain
circumstances:

• Someone breaking into the system (typically as the root) and copying the data

• Someone stealing the disk, or backup tapes (or floppies), or the computer itself
in an effort to get the data

• Someone acquiring the files via a network

Encryption can protect data from being read by unauthorized people, but it cannot
prevent their corruption. It cannot prevent an intruder from deleting the data.

Most encryption algorithms use some sort of key as part of the transformation, and the
same key is needed to decrypt the file later. The simplest kinds of encryption algorithms
use external keys that function much like passwords; more sophisticated ones use part of
the input data as a portion of the key.

UNIX provides a simple encryption program crypt, using an old encryption scheme
that is relatively easy to break; crypt implements a one-rotor machine designed along the
lines of the German Enigma, but with a 256-element rotor. Methods of attack on such
machines are quite well known. Encryption and decryption are based on the implemented
key as an argument that selects a particular transformation. The overall security is based
primarily on the choice of the key and its vulnerability (keep in mind, the implemented key
is visible during the encryption procedure). The encryption could be made a little more
secure by running the program multiple times on the same file.

Many UNIX flavors offer the Data Encryption Standard (DES) encryption subsystem as
an optional product. DES is generally regarded as very secure, although rumors flourish
about supposed built-in weaknesses. DES encrypted files are believed to be breakable, but
only at great CPU-time expense.

© 2002 by CRC Press LLC

8.1.5 Backups

Backups provide the final line of defense against some kinds of security problems and
system disasters. Stolen, deleted, and corrupted data can only be recovered from the
backup. A good backup scheme will almost always enable you to restore the system to
something near its state at any arbitrary point in time; a worst-case scenario would be to
recreate the system on entirely new hardware.

Backups provide protection against data loss and filesystem damage only in conjunction
with frequent system monitoring designed to detect security problems quickly. Otherwise,
a problem might not be discovered for some time. If this occurs, then backups will simply
save the corrupted system state, making it necessary to go back weeks or even months to
a known “clean” system state and restore by hand newer versions of files not affected by
the corruption. In such a case, system recovery could be very hard work; nevertheless,
system recovery is still possible.

8.2 Password Issues

Passwords play a crucial role in UNIX system protection; most UNIX systems are as secure
as the implemented password policy. There are no compromises in the password policy;
all available administrative tools are legal and recommended to enforce appropriate password
implementation. This is an extremely sensitive administration issue, and a more detailed
overview of password related issues follows.

8.2.1 Password Encryption

A password should never appear in its original form (often known as a clear password);
the system handles only the encrypted passwords. A written clear password is an immediate
security risk because a potential intruder can use it at any time. Only the users themselves
should know their clear passwords. Today, the usual method of remote login to the system
through the network involves a transfer of a password during user authentication; this
makes the system more vulnerable to attackers, because it is possible to sniff and catch
the user password on the network. Obviously, networking has introduced one more level
of security risk, and we must handle this problem appropriately.

UNIX provides a decent generic password encryption that is compliant with the Data
Encryption Standard (DES); it is based on a one-way hashing encryption algorithm with
multiple variations intended to increase security and frustrate any use of hardware
implementations of a password search. Only the first eight characters of the clear password
are used; the rest are ignored. Another input argument is a salt (also known as a seed):
a two-character string chosen from lower-case letters, capital letters, numbers, and dot
and slash characters (“.” and “/”). The salt is used to perturb the hashing algorithm in
one of 4096 different ways, after which the password is used as the key to repeatedly
encrypt a selected constant string. The final output is a unique encrypted password with
its first two characters equal to the input salt.

The implemented one-way encryption algorithm makes decryption of the encrypted
password impossible (although the salt is known from the encrypted password). The
only way to break an encrypted password is to try with many guessed original
passwords and by implementing the known DES encrypting algorithm to search for

© 2002 by CRC Press LLC

a matching encrypted password. This is exactly how the system performs password
authentication during the login process.

UNIX provides the passwd command to generate an encrypted password based on the
original supplied password and the time-related salt generated in that instant; the
encrypted password is then saved in the password file (originally /etc/passwd; today /etc/
shadow). In that way, the system knows about the salt to be used in future password
authentication, as well as the encrypted password that should be matched.

From the security standpoint, any attempt to break a password without knowing the
encrypted password is hopeless. However, by knowing the saved encrypted password
(the salt and the encrypted password itself), breaking the password becomes more
promising, although it promises to be a difficult, time-consuming job, with no guarantee
of success. This is why the UNIX password encryption was characterized as “decent” at
the beginning of this section: it is breakable, but it is extremely difficult to do so.

Obviously, the encrypted password should be hidden to increase system security
and should be known only to the authentication subsystem. We will return to this
issue later.

8.2.2 Choosing a Password

Passwords are used to prevent unauthorized people from accessing user accounts and
the system in general. Even with the implemented password encryption algorithm,
a password should be hard to guess. This means the first step of choosing a password
is crucial from the system security standpoint. Generally, a password must be a
nonobvious combination of letters and numbers, never directly related to the user.
There are some rules that should be respected in choosing an appropriate password.
We will start with the items that should be avoided as passwords:

• Any part of the user’s name, or the name of any member of the user’s extended
family (even a grandmother’s maiden name is much easier to find out than you
might think)

• Numbers that are significant to you, or to a person significant to you: SSN, car
license, phone number, birthdates, etc.

• The name of something important to you, like your favorite food, recording
artist, movie, TV character, place, etc.; the same goes for people, places, and
things you hate

• Any names, numbers, people, places, or other items associated with your company
or institution or its products

• English words spelled correctly, especially if they appear in online dictionaries; the
spell command can be used to check if a word appears in the UNIX online dictionary

• The names of famous people, places, things, fictional characters, movies, TV
shows, songs, slogans, and the like

• Published password examples

Avoiding the listed items makes it harder for someone to figure out a user’s password
and break into the user account using a brute force trial and error method. Also,
be aware that there are a number of commercial and homemade programs to break
passwords. Once the encrypted password is known, the original password will be
very quickly broken.

© 2002 by CRC Press LLC

Simple modifications of any of these bad passwords, created by adding a single additional
character, spelling it backward, or permuting letters, are still bad passwords and should
be avoided. It does not take a password-guessing program very long to try all combinations
of adding one character, reversing, and permuting.

Passwords that use two or more of the following modifications to ordinary words are
usually good choices:

• Embedding one or more extra characters, especially symbol and control characters

• Misspelling it

• Concatenating two or more words or parts of words

• Interleaving two or more words

Modern UNIX flavors require passwords chosen by users to conform to certain rules,
usually including being at least six characters long, including at least two alpha characters
and one numeric or special character, and having at least three characters different from
the previous password (when a password is changed). The superuser generally is not
required to adhere to these rules.

Some general recommendations about passwords and system security are:

• The root password should be changed regularly.

• Users should be encouraged to keep their password secret and to choose passwords
that are hard to guess.

• There should be no unprotected accounts on the system. This includes accounts
without passwords, and still active accounts of users who have left, protected
by their original passwords.

• Finally, it is a good idea to restrict the length range for the password; eight
characters for the maximum length is a good choice; longer passwords could be
typed in, but any extra characters are ignored.

8.2.3 Setting Password Restrictions

Breaking a password is a time-consuming job; good UNIX administration makes this job
even more difficult. One of the ways to accomplish this is to force users to follow the
established guidelines for safer passwords. These criteria are primarily related to the
password time restrictions (known as password aging) and the password contents.

A periodic change of the password is an important step in password protection against
attackers. A broken password is useless for an intruder if the password was changed after
the break. However, no one likes to change passwords; once a user becomes familiar with
the password it can be difficult to change it and learn a new one. Modern UNIX flavors,
however, provide mechanisms whereby users can be forced to make these changes. An
administrator can specify a maximum password lifetime (to force a user to change passwords
after a certain period of time), minimum password time (to force a user to keep a new
password for a certain period of time), the minimum password length, and sometimes other
parameters. Setting a minimum and maximum password lifetime is referred to as specifying
the password aging.

Old-fashioned UNIX flavors were not as concerned about password restrictions; this
concept came later with other security improvements, when experiences in UNIX usage
taught UNIX designers about existing real-life security challenges.

© 2002 by CRC Press LLC

On UNIX platforms, restrictions are introduced by using the passwd command with
various options. A few options, not necessarily supported by all UNIX flavors, are:

Option Meaning Example

-f Force the user to change the password on the next login passwd -f username
-n Specify a minimum password life time (the password passwd –n1 username

cannot be changed during this time)
-x Specify a maximum password time (the password must passwd –x158 username

be changed after this time) password aging may vary
between 1 and 158 days

-l Lock a password so the user cannot login passwd -l username

Password aging is a questionable issue. Too-frequent password changes could be
counterproductive. It is easy to forget a new password, and it could be a new burden for
the administrator (only the superuser can change a user’s forgotten password).

The administrator should carefully consider how many of the available restrictions
should be used on a specific system. Imposing too many password restrictions, sometimes
pejoratively called password fascism, tends to be very unpopular among users and carries
some hidden disadvantages. Obviously, all aspects of setting password restrictions should
be seriously considered before any final decision is made. Luckily, UNIX is sufficiently
flexible to meet almost any need.

8.2.4 A Shadowed Password

The /etc/passwd file has general read permission, so the file may be read by everyone (any
logged-in user, or any process). Although the password portion of the file is encrypted,
it is visible at any time by anyone. This visibility of the encrypted password increases the
possibility of breaking the password. To increase security, modern UNIX flavors split the
data in the /etc/passwd file into two files; all security-relevant information is removed from
the /etc/passwd file and stored in a separate file with access restricted only to the superuser
and members of a selected group. This file is known as a shadowed password file, and
its name and entries vary from one UNIX flavor to another. The format of the file is similar
to the /etc/passwd file, but each entry includes only password-related data for a specified
user (the first field in the entry specifies the username). Password-related data include the
encrypted password, time of the last modification, password aging data, and other addi-
tional data (some of the existing fields are reserved for future use).

8.2.4.1 Usual Approach
Keeping password-related data hidden is a significant security improvement, and makes
any potential intruder’s job much more difficult and the system itself more secure. We
will elaborate on the shadowed password file implementation through a few examples.

On Solaris 2.x the shadowed password file is named /etc/shadow:

ls -l /etc/passwd /etc/shadow

-rw-r--r-- 1 root sys 818 Aug 31 10:35 /etc/passwd

-r-------- 1 root sys 454 Sep 1 10:34 /etc/shadow

As can be seen, only the superuser can read the shadowed password file. Root access is
required to find any encrypted password. If an intruder already has root access privileges,

© 2002 by CRC Press LLC

there is no need to bother with encrypted passwords at all, because the system is already
defenseless.

The contents of the two files are:

$ cat /etc/passwd
root:x:0:1:0000-Admin(0000):/root:/sbin/sh
daemon:x:1:1:0000-Admin(0000):/:
bin:x:2:2:0000-Admin(0000):/usr/bin:

.
levi:x:100:1:Bozidar Levi:/home/levi:/sbin/sh
gale:x:102:1:Gale Pedowitz:/home/gale:/sbin/sh
vxs:x:105:1:Veronika Simonian:/home/vxs:/sbin/sh

.

.

The password field in the /etc/passwd file is marked by “x”, indicating to the system the
need to check the shadowed password file for the encrypted password.

$ cat /etc/shadow
root:MhdqjkrWmdlTg:6445::::::
daemon:NP:6445::::::
bin:NP:6445::::::

.
levi:ALCVtjei5TBd.:9226::::::
gale:wNd1hPIAY6A1A:9399::::::
vxs:vDjsPUF7k3cwc:9384::::::

.

.

Each entry in the /etc/shadow file has the form:

username:password:lastchg:min:max:warn:inactive:expire:flag

where:
username The user’s login name
password The encrypted password (NP indicates non-login accounts)
lastchg The date of the last change (modification), also encrypted
min The minimum number of days between changes
max The maximum number of days the password is valid
warn The number of days before a user is warned
inactive The number of days of allowed inactivity
expire An absolute date when the login expires
flag Reserved for a future use

Obviously, it is possible to perform very fine adjustments for each user’s password. In
this example, a majority of the password options have not even been implemented.

8.2.4.2 Other Approaches

The next example is from ULTRIX 4.3. This example is primarily interesting because it shows
a slightly different approach to the same problem (Digital’s ULTRIX 4.3 is an obsolete UNIX
flavor now). In ULTRIX the name of the shadowed password file was /etc/auth.

© 2002 by CRC Press LLC

ls -lg /etc/passwd /etc/auth

-rw-r--r-- 1 root system 186340 Sep 7 13:57 /etc/passwd

-rw-r----- 1 root authread 88621 Sep 8 11:45 /etc/auth

Here a special, untypical group “authread” was introduced for authentication purposes. Only
members of this group and the superuser had access to the shadowed file.

The password fields in the regular /etc/passwd file were marked by the asterisk (*):

cat /etc/passwd | grep “lev”

levya:*:10694:1030:levya:/home2/math/levya:/bin/csh

levitm:*:11246:1030:levitm:/home2/math/levitm:/bin/csh

levi:*:11540:2020:levi:/home3/instructors/ levi:/bin/csh

An asterisk in the password field indicated that the password-related data were located
in the shadowed file /etc/auth. This could be somewhat confusing, given the earlier
suggestion of how to disable login access for an active user’s account; obviously for this
flavor the asterisk had a different meaning.

The format of an entry in the /etc/auth file was:

UID:password:lastchg:min:max:accmask:count:auditID:auditctrl:auditmask

where:
UID The user’s ID
password The encrypted password
lastchg The time of the last change (modification)
min The minimum number of sec required between changes
max The maximum period of time the password is valid
accmask Special user’s account parameters
count The count of unsuccessful login attempts
auditID The identifier used in generating audit records
auditctrl The control in generating audit records
auditmask The mask to determine which events will be audited

On the AIX platform, the following files contain password relevant data:

/usr/bin/passwd The passwd command

/etc/passwd Contains user IDs, user names, home directories, login shell, and
finger information

/etc/security/passwd Contains encrypted passwords and security information

The format of the /etc/passwd file is typical, with the only difference being that an asterisk
(*) in the “password field” indicates an invalid password (no one can login), while an
exclamation point (!) points to the password-related data in the /etc/security/passwd file
(this is a common and normal situation).

A password must be specified in accordance with the password rules in the
“pw_restrictions stanza” of the configuration file: /etc/security/login.cfg, which includes:

min_alpha The minimum number of alphabetic characters

min_other The minimum number of other characters

© 2002 by CRC Press LLC

min_diff The minimum number of characters in the new password that are
not in the old password — this is not positional; if the new password
is abcd and the old password is edcb, the number of different char-
acters is 1

max_repeats The maximum number of times a single character can be used in
a password

min_age The minimum age at which a password can be changed measured
in weeks

max_age The maximum age of a password. After this age the password must
be changed. This value is measured in weeks

If a user entry in the /etc/security/passwd file is tagged with the NOCHECK flag, the user
password does not have to meet the password restrictions. If this flag is ADMIN, then
only the superuser can change the password. When the superuser changes a user password,
the user’s entry in the /etc/security/passwd file is tagged with the ADMCHG flag, and this
password must be changed the next time the user logs in.

Only 7-bit ASCII characters are supported in the passwords. Only the first 8 characters
of a password are significant.

Access to the /etc/security directory is granted only to the superuser and the group
“security.” Besides the mentioned files login.cfg and passwd, several other files reside in
this directory:

• /etc/security/mkuser.default Contains default attributes for new users

• /etc/security/group Contains extended attributes of groups
(besides the /etc/group file)

• /etc/security/user Contains extended attributes of users

• /etc/security/environ Contains environment attributes of users
• /etc/security/limits Contains process resource limits of users

Obviously, the AIX platform provides extremely versatile tools to manage users’ passwords.

8.3 Secure Console and Terminals

One of the ways to protect a system is to restrict the ways a superuser logs in; if superuser
access to the system is restricted to specific system peripherals, then an additional level
of security is introduced, making everything more difficult for an intruder. This idea
originated in the BSD platform where direct superuser login to the system is allowed
only from a console and terminals that are declared secure. Otherwise, only regular users
may login directly (the term directly refers to the regular authentication procedure of
entering the login name); afterwards a user may switch to the superuser account, if so
authorized. In this way system security is increased, because it is easy to monitor secure
consoles and terminals. For other terminals, at least two passwords must be supplied
to reach superuser status. In addition the use of the su command is always logged by
the system and the information is stored in the system log file (usually /var/adm/messages)
with precise data about the time and the username of any su command. If necessary, it
is easy to follow who became a superuser and how and when.

© 2002 by CRC Press LLC

System V originally did not care about secure terminals; by default all terminals were
secure. However, new releases introduced different mechanisms to control superuser login
access; System V vendors accepted the concept of “secure terminals.”

8.3.1 Traditional BSD Approach

On the BSD platform, the terminal line configuration file /etc/ttys defines secure terminals
(this file corresponds to the /etc/ttytab file on SunOS). Both files are presented in greater
detail in Chapter 11. The file lists all available system terminals. There must be an entry
for every terminal port in use and arbitrary entries for unused ones. A terminal line entry
has four fields:

terminal-port command terminal-type status

Each field is explained in the following table.

Field Meaning

terminal-port The name of the special file in /dev that communicates with the line.
command The command that init should execute to monitor this terminal line.

getty For terminals and modems
none To not create a monitoring process

terminal-type The name of the terminal type described in /etc/termcap; the TERM variable will be set to
this value at login.

status Zero or more keywords, separated by spaces:
on Line is enabled
off Line is disabled and the entry ignored
secure Allow superuser (root) logins
window = cmd ⇒ init should run cmd before the command specified in the field

command

A secure terminal is specified by the keyword secure in the status field for its entry. It
is recommended to specify only the system console as secure, and never to give secure
status to any modem or network terminals.

8.3.2 The Wheel Group

To become a superuser upon login on a nonsecure terminal means two passwords must be
used: first the user password to login into a user account, and then the root password to
switch to the superuser account. From security standpoint this is already quite an improvement.
Generally, a switch to the superuser account can be accomplished from any user account.

By using the wheel group, the number of users who may execute the switch to root can
be restricted to only the members of this group. Members of the wheel group must be
specified in the /etc/group file. In this way, the most sensitive security issue, superuser status
(user root), is additionally protected; only specific users (one or more administrators) may
become the superuser from any given terminal.

8.3.3 Secure Terminals — Other Approaches

HP-UX 10.x introduced the file /etc/securetty, which defines secure terminals that allow
direct superuser login. Usually, this is the console. Here is an example:

cat /etc/securetty

console

© 2002 by CRC Press LLC

Solaris 2.x introduced the directory /etc/default that includes a number of files to define
the default system behavior. Among them, the file /etc/default/login defines the login rules,
including the secure terminals:

ls -l /etc/default
total 26
-r--r--r-- 1 bin bin 12 Jan 8 15:08 cron
-r--r--r-- 1 bin bin 10 Jan 8 15:08 fs
-r--r--r-- 1 root sys 367 Jan 8 15:08 inetinit
-r--r--r-- 1 root sys 462 Jan 8 15:27 init
-r--r--r-- 1 root sys 678 Jan 8 15:08 kbd
-r--r--r-- 1 root sys 1251 Jan 9 17:26 login
-r--r--r-- 1 root sys 74 Jan 8 15:08 passwd
-r--r--r-- 1 root sys 819 Jan 9 17:26 su
-r--r--r-- 1 root sys 609 Oct 30 1996 sys-suspend
-r--r--r-- 1 root sys 526 Jan 8 15:08 tar
-r--r--r-- 1 root sys 16 Jan 8 15:08 utmpd

The contents of the file are (pay particular attention to the CONSOLE section):

$ cat /etc/default /login
#ident “@(#)login.dfl 1.7 93/08/20 SMI” /* SVr4.0 1.1.1.1 */
#
Set the TZ environment variable of the shell.
#
#TIMEZONE = EST5EDT
Set the HZ environment variable of the shell.
#
HZ = 100
ULIMIT sets the file size limit for the login. Units are disk blocks.
The default of zero means no limit.
#
#ULIMIT = 0
##
If CONSOLE is set, root can only log in on that device.
Comment this line out to allow remote login by root.
#
CONSOLE = /dev/co nsole
###
PASSREQ determines if login requires a password.
PASSREQ = YES
ALTSHELL determines if the SHELL environment variable should be set
ALTSHELL = YES
PATH sets the initial shell PATH variable
PATH = /usr/dt/bin:/ usr/openwin/bin:/ usr/ucb/:/ share/local/bin
SUPATH sets the initial shell PATH variable for root
SUPATH = /sbin:/ usr/sbin:/ usr/dt/bin:/usr/ope nwin/bin:/ usr/bin:/ usr/ucb/:/ share/local/bin
TIMEOUT sets the number of seconds (between 0 and 900) to wait before
abandoning a login session.
#TIMEOUT = 300
UMASK sets the initial shell file creation mode mask. See umask(1).
#UMASK = 022
SYSLOG determines whether the syslog(3) LOG_AUTH facility should be used
to log all root logins at level LOG_NOTICE and multiple failed login
attempts at LOG_CRIT.
SYSLOG = YES

© 2002 by CRC Press LLC

8.4 Monitoring and Detecting Security Problems

8.4.1 Important Files for System Security

Some important files for the system security are listed in Table 8.1.

TABLE 8.1

Important Files for the System Security

Description Files

Root account initialization files: /.profile, /.kshrc, /.cshrc, /.login, /.logout
Other root initialization files: /.forward, /.mailrc, /.exrc, /.netrc (see note)
Systemwide initialization files: /etc/profile, /etc/.login, /etc/csh.login, /etc/login
Host equivalency related files: /etc/hosts.equiv, /.rhosts (see note)
File permissions on device files: /dev/*
cron and at files: /usr/spool/cron/crontabs/*, /usr/spool/cron/at/*
All dialup related files: /etc/dialup, /etc/d_passwd, /etc/remote …
Default system settings: /etc/default/*
Filesystem configuration: /etc/fstab, /etc/vfstab, /etc/checklist (HP-UX), /etc/filesystems (AIX)
Exported (shared) filesystem for NFS: /etc/exports, /etc/dfs/share, /etc/dfs/sharetab
User and group configuration: /etc/passwd, /etc/group. /etc/shadow, /etc/security/* (AIX)
Network related files: /etc/hosts, /etc/protocols, /etc/services, /etc/netgroup, /etc/networks
Internet super daemon configuration: /etc/inetd.conf
FTP related files: /etc/ftpusers, /etc/shells, $HOME/.netrc
System logging configuration: /etc/syslog.conf
System startup files: /etc/init.d/*, /etc/rc.config.d/*, /sbin/init.d/* (HP-UX)
System initialization (System V): /etc/inittab
E-mail related files: /etc/mail/sendmail.cf, /etc/mail/sendmail.fc, /etc/mail/aliases, /etc/aliases
Accounting log files: /usr/adm/*, /var/adm/*, etc.
UUCP related files: /usr/lib/uucp/*, /etc/uucp/*
Login related raw databases: /var/adm/wtmp, /var/adm/utmp, /var/adm/btmp, /etc/wtmp, /etc/utmp, etc.
All SUID and SGID files: wherever the files might be

Note: Specified files are dependent on the implemented UNIX platform, flavor and release; some discrepancies
are possible.

An administrator should be familiar with the correct ownership and protection of these
files. Unfortunately, the correct ownership varies between BSD and System V. It is
recommended to automate the monitoring and checking of these files by making
a corresponding script that will be periodically (for example, daily) started by the cron
facility. Many of the listed files are log files that permanently grow and have a tendency
to overload the filesystems they live in; certain rotating scripts could prevent such
undesired events.

The following script is presented as an example. It will check the size of specified files,
prevent their uncontrolled growth, keep the last two versions of the files, and e-mail the
administrator when any action is taken.

$ cat /usr/local/bin/check_logfiles.ksh
#!/ bin/ksh
#
Purpose: To monitor the current status of log files and prevent
their uncontrolled growth. Once a log file limit was reached
the log file is copied into filename.old and zero-ed.
#

© 2002 by CRC Press LLC

The list of files to be monitored is given in the file ListofFiles
Each line specifies a file and its limit value:
=============================
Full-path filename Limit [KB]
#
/var/adm/wtmp 500 KB
/var/adm/btmp 200 KB
.
.
#
Set environment
TXT = /tmp/MFtxt # temp. text file
HOST = �hostname� # name of the host
MAILTO = sysadmin # email address
LBIN = /usr/local/bin # local directory
LIST = ${LBIN}/ListofFiles # list of files to check
BIN = /usr/bin # bin directory
#
Prepare email header
${BIN}/echo “\n�${BIN}/date�:” > $TXT
${BIN}/echo “Checking the size of log files:” >> $TXT
${BIN}/echo “\n =======================================” >>$TXT
set -A LSA �cat $LIST | awk ‘{print $2}’� # extract limits from the list
I = 0 # reset counter
ML = “NO” # reset email flag
for FILE in �cat $LIST | awk ‘{print $1}’� # extract files from the list
do

LS = ${LSA[$I]}
FS = �${BIN}/ls -l $FILE | /bin/awk ‘{print $5}’� # extract the file size in Bytes
SZ = $LS
LS = �expr $LS * 1000� # limit size in Bytes
if [$FS -gt $LS]; then # check the file size vs limit

${BIN}/cp -p ${FILE}.old ${FILE}.older # copy *.old −−> *.older
${BIN}/cp -p $FILE ${FILE}.old # copy * −−> *.old
${BIN}/cat /dev/null $FILE # resetting the file to zero
${BIN}/echo “\nThe log file \“$FILE\” is larger than ${SZ}KB !” >> $TXT
${BIN}/echo “The log file \“$FILE\” copied into \“${FILE}.old\” and resized!” >> $TXT
${BIN}/echo “\n===” >> $TXT
ML = “YES” # set email flag

fi
I = �expr $I + 1� # increment counter
done
Check if anything has been done
if [“$ML” = “YES”]; then

${BIN}/mailx -s “${HOST}: Log File Check and Resize!” $MAIL TO <$TXT # send email
fi
${BIN}/rm $TXT > /dev/null 2 > & 1 # delete temp. text file
< ----------------------- This is the end of the script ----------------------------------

8.4.2 Monitoring System Activities

Running monitoring processes on the system is another way to minimize system security
risks. This should be done periodically, sometimes even several times a day. In this way,
you get a good sense of what constitutes “normal” system activity (which programs are
running, how long they run, and who runs them, etc.), and it makes it easier to recognize
any unusual activity.

© 2002 by CRC Press LLC

The ps command lists the characteristics of running system processes. To display all
running processes in a useful form, the format of the command is:

Note: The ps command was discussed in detail in Chapter 2.

8.4.3 Monitoring Login Attempts

Sometimes an intruder’s attempts to break into the system can be detected in time if login
attempts are monitored (especially unsuccessful ones). Of course, the superuser account is
of special interest, because a break into the superuser account could be fatal.

8.4.3.1 The su Log File
All UNIX versions provide mechanisms for logging all attempts by users to become the
superuser. Such log files can be very instrumental in tracking down potential problems
caused by root actions; at least we can figure out later who the superuser was at the time.
Depending on the implemented UNIX platform, the log files can be located differently
(generally, log files are specified in the /etc/syslog.conf file, which are discussed later in
Chapter 9); a few examples are presented.

On the BSD platform (usually the file /usr/adm/messages):

cat /usr/adm/messages
.
.

May 9 09:57:53 patsy named[82]: zoneref: Masters for secondary zone 95.146.in-addr.arpa unreachable
May 9 10:02:53 patsy named[82]: zoneref: Masters for secondary zone hunter.cuny.edu unreachable
May 9 10:22:10 patsy su: ‘su root’ succeeded for george on /dev/ttyp2
May 9 10:22:35 patsy named[82]: reloading nameserver
May 12 15:34:24 patsy su: ‘su root’ succeeded for levi on /dev/ttyp2

.

.

On the System V platform (usually the file /usr/adm/sulog). On Solaris 2.x the file
/etc/default/su specifies where status messages from the su command will be stored.

$ cat /usr/adm/sulog
.
.

SU 04/07 15:48 + ttyq11 baldwin-root
SU 04/11 14:41 + ttyq0 levi-root
SU 04/12 13:56 + ttyq0 root-levi
SU 04/12 14:55 + ttyq0 franck-gargiulo

.
SU 05/02 12:00 + console root-lp
SU 05/10 10:46 + ttyq0 baldwin-root
SU 05/12 16:15 + ttyq2 levi-root

.

.

ps -ax (BSD)
ps -ef (System V)

© 2002 by CRC Press LLC

8.4.3.2 History of the Root Account
A simple way to retain some information about superuser activity is to enable a root
history mechanism (the C and Korn shell allow the history) through the superuser’s login
initialization files. For example, for the C shell:

set history = 200

set savehist = 200

A list of the last 200 commands will be saved in the file /.history.

8.4.3.3 Tracking User Activities
Other UNIX commands are also available for tracking what users have been doing in the
system. They can sometimes track down the cause of a security problem. Some of these
commands are:

Command UNIX versions Displays information on:

last BSD, System V, AIX User login sessions – based on the wtmp file
lastcomm BSD, System V, AIX All commands executed (by user and TTY) – based on the pacct file
acctcom System V, AIX All commands executed (by user and TTY)
acctcms System V, AIX All commands executed (by time of day)

All of the commands listed find their information in the system accounting files; in the
past, to use these commands, the accounting subsystem had to be running. Today, the
wtmp file is a standard raw log file independent of the running accounting subsystem.

Generally, if accounting is activated on the system, the possibilities for tracking users
and system activities are higher. This makes sense, given the basic idea of accounting,
which is to collect more data on how and by whom a system is used.

© 2002 by CRC Press LLC

9
UNIX Logging Subsystem

9.1 The Concept of System Logging

UNIX provides a flexible and configurable logging mechanism. The logging can be site-
customized to fulfill a wide range of requirements with regard to the volume and level
of the logging of system messages. Continuous system logging is provided primarily to
enable later analysis of the system behavior when the system encounters problems. Appro-
priate system logging is essential on every UNIX system. A side effect of such continuous
logging is the permanent growth of the number of log files, which requires attention by
the system administrator.

System logging originated with BSD UNIX, and today is widely accepted on all
UNIX platforms. The system message logger runs as a special daemon syslogd that
collects messages sent by various system processes and routes them to the defined
logging destinations. The syslogd daemon is started at boot time, and its behavior is
defined by its configuration file /etc/syslog.conf. A flexible syslogd configuration allows
the administrator to choose from a wide range of system logging options from no
logging at all to very verbose logging. The logging can also be tuned and changed
throughout the lifetime of the system, enabling different levels of logging according
to actual needs.

This logging flexibility is achieved by specifying three different logging issues:

1. What to log, by selecting a logging facility that indicates a subsystem (a suite
of processes) that generates a log message.

2. How to log, by selecting a logging level that indicates a severity, or priority level,
of the generated message to be logged.

3. Where to log, by selecting a logging destination which indicates an action to be
taken to log a generated message. The generated message can be logged in a
local file, forwarded to the console or users, or forwarded to a remote logging
system for further processing.

The available logging facilities are:

user User processes
kern The kernel

© 2002 by CRC Press LLC

mail The mail system
daemon System daemons, such as telnetd, ftpd, etc.

auth The authentication (authorization) system: login, su, getty, etc.
lpr The printer spooling system: lpr, lpc, etc.

cron The cron/at facility: crontab, at, cron, etc.
local 0–7 Reserved for local use

mark For timestamp messages produced internally by the syslogd daemon
news Reserved for the USENET network news system

uucp Reserved for the UUCP system
* An asterisk indicates all facilities except for the mark facility

The defined severity (priority) levels (the highest levels are at the top) are:

emerg For panic conditions, such as catastrophic failures
alert For conditions that should be corrected immediately, such as a corrupted

DB

crit For warnings about critical conditions, such as hardware device errors
err For other errors

warning For warning messages
notice For conditions that are not error conditions, but may require special

handling

info For informational messages
debug For messages that are normally used only when debugging a program

none Do not log messages; use only in combination with other levels

The listed facilities and severity levels will be discussed further when we return to the
system-logging configuration.

The monitoring and detection of the listed conditions for when a corresponding message
should be generated are not a part of the logging subsystem itself; rather, messages are
generated within processes themselves and redirected toward the syslogd daemon for
appropriate logging. A special device file/dev/log is used for the interprocess commu-
nication with the syslogd daemon, which is continuously listening for generated
messages. Once a message is received, the syslogd daemon acts according to the
specified configuration data related to the logging facility, the message severity level,
and the logging destination.

From the system logging standpoint, the syslogd daemon is a core of the overall logging
procedure, and it deserves to be discussed in greater detail.

9.1.1 The syslogd Daemon

The syslogd daemon logs all system messages; it reads and forwards system messages to
the appropriate log files and/or users, depending upon the severity (priority) level of the
message and the system facility from which the message originates. The configuration
file/etc/syslog.conf specifies where messages are forwarded. In addition, the syslogd
daemon periodically generates and logs mark (timestamp) messages (mark-interval is

© 2002 by CRC Press LLC

specified in minutes; the default is 20 minutes) at an “info” logging priority level; this
facility is identified as mark in the /etc/syslog.conf file. The presence of the mark messages
in the log files is proof of the daemon’s activity: the syslogd daemon is alive, active, and
ready to log any received error or other message.

Only one syslogd daemon can be running at one point in time; an attempt to start
another daemon will fail. To check for the syslogd process:

$ ps -ef | grep syslogd | grep -v grep

root 532 1 0 Apr 30 ? 0:05 /usr/sbin/syslogd

The syslogd daemon can be started with several options:

/usr/sbin/syslogd [-d] [-D] [-f configfile] [-m markinterval] [-p path]

where the options are:
-d Turn on debugging. This option should only be used interactively

and not in the start-up script.
-D Prevent the kernel from directly printing its messages on the system

console. In this case syslogd is responsible for routing all kernel
messages.

-f configfile Specify an alternate configuration file.
-m markinterval Specify the interval, in minutes, between mark messages.
-p path Specify an alternative special log device file instead of /dev/log.

The syslogd daemon reads its configuration file when it starts up, and again whenever
it receives an HUP signal (the signal #1), at which time it also rereads the configuration
file, and then opens only the log files that are listed in the file.

Typical rc start/stop sequences to start/stop the syslogd daemon are:

case “$1” in

‘start’)
if [-f /etc/syslog.conf -a -f /usr/sbin/syslogd]; then

echo “syslog service starting.”
if [!-f /var/adm/messages]
then

cp /dev/null /var/adm/messages
fi
/usr/sbin/syslogd 1>/dev/console 2>&1

fi
;;

‘stop’)
[!-f /etc/syslog.pid]&& exit 0
syspid = ‘cat /etc/syslog.pid’
if [“$syspid” -gt 0]; then

echo “Stopping the syslog service.”
kill -15 $syspid 2>&1 | /usr/bin/grep -v “no such process”

fi
;;

*)
echo “Usage: /etc/init.d/syslog { start | stop }”
;;

esac

© 2002 by CRC Press LLC

This start sequence assumes /var/adm/messages for the system log file.
As the syslogd daemon is started, it creates the file /etc/syslog.pid (or /var/run/syslog.pid

on some platforms) if possible, containing its process identifier (PID). This file can be
useful in handling the running syslogd daemon afterwards. For example, the command

$ kill -HUP �cat /etc/syslogd.pid�

will recycle the daemon, i.e., to force the syslogd daemon to reread its configuration file.

9.2 System Logging Configuration

Configuring the system logging means configuring the syslogd daemon, and to configure
the syslogd daemon means setting the appropriate configuration file /etc/syslog.conf.
Please pay attention to the configuration file name: although the daemon name is syslogd,
the configuration file name is syslog.conf (there is no letter “d” in the filename).

9.2.1 The Configuration File /etc/syslog.conf

The configuration file /etc/syslog.conf contains all of the data necessary to fully specify the
logging process provided by the system log daemon, syslogd. When started, or recycled,
the syslogd daemon preprocesses this file through the m4 preprocessor to obtain the correct
information for certain log files. By introducing the additional ifdef macro statement that
yields one of multiple possible conditional outcomes, m4 preprocessing makes the configu-
ration even more flexible. The syslogd daemon first verifies that the host is aliased as
“loghost”; if the address of the loghost is the same as one of the addresses of the host
system, this system is defined as the loghost. The idea of the loghost is to enable a different
level of logging according to the defined logging mission of the actual system; it also
enables the creation of the “logging server” and a centralized collection of logging
messages from multiple hosts on the same network. The syslogd daemon first checks the
/etc/hosts file for the loghost address, and then it looks in DNS or NIS (discussed in
Chapters 16 and 17).

The /etc/syslog.conf file contains an arbitrary number of configuration entries needed to
fully define the system logging. Blank lines are ignored, and lines for which the first
nonwhite character is a “#” are treated as comments.

A logging configuration entry is composed of two TAB-separated fields:

selector action

Or more specifically:

facility.level [; facility.level] [. . .] destination [, destination] [. . .]

The selector field contains a semicolon-separated list of priority specifications of the
form:

facility.level [; facility.level]

© 2002 by CRC Press LLC

where

facility — the subsystem sending the message to:
user User processes

kern The kernel
mail The mail system

daemon System daemons
auth The authentication (authorization) system

lpr The printer spooling system
cron The cron/at facility

local 0–7 Reserved for local use
mark For internal timestamp messages

news Reserved for the USENET network news system
uucp Reserved for the UUCP system

* All facilities except for the mark facility

Level — the severity (priority) level of the message:
emerg For panic conditions such as catastrophic failures

alert For conditions that should be corrected immediately
crit For warnings about critical conditions

err For other errors
warning For warning messages

notice For nonerror notices
info For informational messages

debug For messages during debugging (very verbose logging)
none Do not log messages

Please note that an entry is a logging of all messages from the specified facility, with
the severity (priority) level equal, or higher than the specified one. In that sense, the level
debug indicates the logging of all generated messages from a specified facility. Linux
introduced the characters “ = ” and “!” that, used as a prefix to the specified severity level,
change its basic meaning. The character “ = ” indicates this severity level only, while “!”
negates the entry by indicating except this severity level and higher. However, this enhancement
remains Linux specific only.

The message logging is active only for specified entries; nonspecified facilities within
the configuration file (not included in any configuration entry) are simply ignored by the
syslogd daemon. In that sense, the level none should be combined with other facilities
and severity levels for a more accurate and condensed specification of a logging selector;
for example:

“*.debug;mail.none”

will send all messages except mail messages to the specified destination.

© 2002 by CRC Press LLC

The action field contains a comma-separated list of the logging destinations (where to
forward the messages for logging):

destination The file, device, username, or hostname to forward messages to;
values for this field can have one of four forms:

1. A filename, beginning with a leading slash, which indicates that messages
specified by the selector are to be written to the specified file (the file will be
opened in the append mode).

2. The name of a remote host, prefixed with an @, as in @hostname, which
indicates that messages specified by the selector are to be forwarded to the
syslogd daemon on the dedicated remote system. The hostname loghost is an
alias given to the system that is supposed to be the logging server. Every
system is supposed to be the loghost by default, which is defined in the local
/etc/hosts file. It is also possible to specify one system on a network to be a
loghost by making the appropriate host name entries in the local/etc/hosts
files over included systems, or in DNS, or NIS. The usual way to configure
the syslogd daemon on a loghost is: if the local machine is designated to be
a loghost, then logging messages are written to the appropriate files; otherwise,
they are sent to the remote loghost on the network.

3. A comma-separated list of usernames, which indicates that messages specified
by the selector are to be forwarded to the specified users if they are logged in.

4. An asterisk (*), which indicates that messages specified by the selector are to
be forwarded to all logged-in users.

A few examples:

• To log all mail subsystem messages except the debug ones, and all notice (or
higher) messages into the file /var/log/notice:
*.notice;mail.info /var/log/notice

• To log all critical messages into the file /var/log/critical:
*.crit /var/log/critical

• To forward all kernel messages and 20-minute marks onto the system console:
kern,mark.debug /dev/console

• To forward kernel messages of err (error) severity level, or higher, to the system
named “hostname”:
kern.err @hostname

• To forward emergency messages to all users who are currently logged in to the system:
*.emerg *

• To inform the users “root” and “operator” (if currently logged in) of any alert
and emergency messages:
*.alert root,operator

Two typical configuration files are shown next. The first example (Solaris 2.x) corres-
ponds to a system with higher logging requirements; the configuration data are processed
by the preprocessor m4, and depending on the actual system logging status (if the system
is the loghost, or not: LOGHOST =YES or NO), the system logging configuration is defined.

© 2002 by CRC Press LLC

$ cat /etc/syslog.conf
#ident ”@ (#)syslog.conf 1.4 /* Solaris 2.x */
#
syslog configuration file.
#
This file is processed by m4 so be careful to quote (‘’) names
that match m4 reserved words. Also, within ifdef’s, arguments
containing commas must be quoted.
#
*.err;kern.notice;auth.notice /dev/console
*.err;kern.debug;daemon.notice;mail.crit /var/adm/messages
*.alert; kern.err;daemon.err operator
*.alert root
*.emerg *
if a non-loghost machine chooses to have authentication messages
sent to the loghost machine, un-comment out the following line:
#auth.notice ifdef(‘LOGHOST’, /var/log/authlog, @loghost)
mail.debug ifdef(‘LOGHOST’, /var/log/syslog, @loghost)
#
non-loghost machines will use the following lines to cause “user”
log messages to be logged locally.
ifdef(‘LOGHOST’, ,
user.err /dev/console
user.err /var/adm/messages
user.alert ‘root, operator’
user.emerg *
)

Briefly, the first section defines unconditionally:

• Forwarding to the system console all messages of a severity level equal to or
higher than “err,” and kernel and authentication messages greater than level
“notice”

• Logging in the /var/adm/messages file all messages of a severity level equal to or
higher than “err,” except for kernel, daemon, and mail messages where the
threshold severity level is defined differently

• The messages to forward to the defined user operator (if defined on the system
at all, and if the user is logged in at the time)

• Forwarding the alert and emergency messages to the superuser (if logged in)

• Forwarding the emergency messages to all logged-in users

The next section (entries are presented in bold) defines a conditional logging configuration.
The m4 macro statement:

ifdef(‘LOGHOST,’VAR1,VAR2)

generates the output VAR1, or VAR2 depending on the status of the LOGHOST.
For example:

mail.debug ifdef(‘LOGHOST,’ /var/log/syslog, @loghost)

specifies the file /var/log/syslog as a logging destination for all mail messages if the system
is the loghost, and if it is not, forwards messages to the remote loghost.

© 2002 by CRC Press LLC

Please note that the similar configuration entry for the authentication subsystem is
commented out, and first should be activated (uncommented).

The last section, again the m4 preprocessor ifdef macro, has an output only if the local
system is not the loghost; otherwise this part is ignored (an empty ifdef output). If active,
user’s processes are joined to all other processes specified in the first part of the configu-
ration file (some UNIX platforms distinguish user’s processes from all other processes).
The bottom line in both cases is the same, because defined user processes are already
covered by the first part of the configuration file (user processes are not excluded from
all processes).

The second example (HP-UX 10.20) is easier to understand and still quite adequate for
many implementations; however, it provides only local logging:

$ cat /etc/syslog.conf
@(#) $Revision: 74.1 $
#
syslogd configuration file.
#
See syslogd(1M) for information about the format of this file.
#
mail.debug /var/adm/syslog/mail.log
*.info;mail.none /var/adm/syslog/syslog.log
*.alert /dev/console
*.alert root
*.emerg;user.none *

The last entry illustrates the meaning of the none level, which defines the following:
Send system panic messages from all processes, except from users’ processes, to all logged-in
users!

9.2.2 Linux Logging Enhancements

Linux has introduced few improvements into logging subsystem. Linux’s logging sub-
system supports sending of log messages to named pipes as well as to log files. But the
main enhancements are configuration related.

In the configuration file /etc/syslog.conf few new configuration characters are intro-
duced:

• “space” as a separating character

• “ = ” to prefix a priority level and indicate this priority level only (eliminates
higher levels from logging)

• “!” to prefix a priority level and negate its meaning; it excludes this and
higher priority levels from logging, specifying logging of only lower priority
levels

To protect syslogd daemon from potential network intruders, new options -r and -h are
introduced; they control daemon behavior toward accepting and forwarding log messages
between hosts in the network. The daemon must be started appropriately if the cor-
responding network related logging is supposed.

Although listed logging enhancements could be disputed, under certain circumstances
their implementation could be handy.

© 2002 by CRC Press LLC

9.2.3 The logger Command

UNIX provides the logger command, which is an extremely useful command to deal
with system logging. The logger command sends logging messages to the syslogd
daemon, and consequently provokes system logging. This means we can check (from
the command line at any time) the syslogd daemon and its configuration. The command
itself can also be a part of a user program/script to generate necessary operational logging
messages.

The logger command provides a method for adding one-line entries to the system log
file from the command line. One or more message arguments can be entered with options
on the command line, in which case each of them is logged immediately. If an optional
message is not specified, either an optional file specified with the -f option or the standard
input is added to the log.

The format of the command is:

logger [-i] [-f file] [-p priority] [-t tag] [message] . . .

Where the available options and operands are:
-f filename Use the contents of file filename as the message to log.
-i Log the process ID of the logger process with each line.
-p priority Enter the message with the specified priority (specified selector entry); the

message priority can be specified numerically, or as a facility.level pair. The
default priority is user.notice.

-t tag Mark each line added to the log with the specified tag.
message The string arguments whose contents are concatenated together in the

specified order, separated by the space (a quoted message presents
a single string argument).

9.2.4 Testing System Logging

It is a good idea to test the system logging after it has been configured and the syslogd
daemon has been recycled. The logger command allows efficient and detailed logging
testing. Here is an example from the HP-UX 10.20 system; it is named black and has the
following configuration:

$ cat /etc/syslog.conf
This is the /etc/syslog.conf file
#
#
Time marks
mark.info /var/log/syslog
mark.info /var/log/debug
Message passing
*.info;mail.none;mail.crit /var/log/syslog
*.debug;mail.none /var/log/debug
mail.info /var/log/maillog
Some local screams
*.emerg *
Now send everything “important” to a centralized host
mark.info @loghost
*.info;mail.none @loghost
mail.crit @loghost
#

© 2002 by CRC Press LLC

We will test the mail subsystem, or, to use the system logging terminology, the mail
facility. All entries in the configuration file relevant to the mail logging are printed in
bold. The system is configured to enable logging of all mail log messages above the info
level in the /var/log/maillog file; this includes everything except debug messages. Critical-
level and above mail messages are also logged in the system log file /var/log/syslog (besides
many other system messages), and they are sent to the remote loghost, as well. Further
processing and logging of the sent messages is defined by the logging configuration file
/etc/syslog at the remote system. Finally, all emergency (panic) messages are sent to all
logged-in users.

The user bjl has issued a sequence of the logger command from the command line with
different logging options and test messages. The syslogd daemon should catch all generated
messages and forward them into corresponding logging files, according to the actual
logging configuration.

$ logger -p mail.debug “Testing mail.debug”

$ logger -p mail.info “Testing mail.info”

$ logger -p mail.notice “Testing mail.notice”

$ logger -p mail.warning “Testing mail.warning”

$ logger -p mail.err “Testing mail.err”

$ logger -p mail.crit “Testing mail.crit”

$ logger -p mail.alert “Testing mail.alert”

$ logger -p mail.emerg “Testing mail.emerg”

Next, we check the local log files:

$ cat /var/log/maillog | grep Testing
May 11 16:57:38 black bjl: Testing mail.info
May 11 16:58:04 black bjl: Testing mail.notice
May 11 16:58:23 black bjl: Testing mail.warning
May 11 16:58:39 black bjl: Testing mail.err
May 11 16:58:54 black bjl: Testing mail.crit
May 11 16:59:12 black bjl: Testing mail.alert
May 11 16:59:29 black bjl: Testing mail.emerg

Simultaneously, the panic (emerg) message was sent to all logged-in users:

Message from syslogd@black at Tue May 11 16:59:29 1999 . . .

black bjl: Testing mail.emerg

As expected, all test messages have been logged in the /var/log/maillog file except the
debug message; the emergency message was also sent, and displayed, on the terminals of
all logged-in users.

$ cat /var/log/syslog
.
.

May 11 16:00:19 black syslogd: restart
May 11 16:03:42 black inetd[964]: Rereading configuration
May 11 16:03:42 black inetd[964]: bootps/udp: Deleted service

© 2002 by CRC Press LLC

May 11 16:03:42 black inetd[964]: Configuration complete
May 11 16:14:32 black -- MARK --
May 11 16:34:32 black -- MARK --
May 11 16:45:21 black syslogd: restart
May 11 16:54:32 black -- MARK --
May 11 16:58:54 black bjl: Testing mail.crit
May 11 16:59:12 black bjl: Testing mail.alert
May 11 16:59:29 black bjl: Testing mail.emerg
May 11 17:14:32 black -- MARK --

.

.

Only the section of the interest in the huge /var/log/syslog file is presented; the mail
messages (higher than the level: crit) are presented in bold. Pay attention to the MARK
messages generated by the syslogd daemon, in which logging is defined by the entry:

“mark.info /var/log/syslog”

Generated mail log messages are also forwarded to the loghost for remote logging; this
is the Solaris 2.6 system. Consequently, the loghost’s /etc/syslog.conf configuration file
defines the way these messages will be locally logged. The loghost process receives remote
messages in the same way as locally generated ones. The following syslog.conf entries at
the loghost are related to the mail messages, and define their logging:

*.err;kern.debug;daemon.notic;mail.crit /var/adm/messages

mail.debug /var/log/maillog

Checking the log files on the loghost:

$ cat /var/adm/messages | grep black | grep mail

May 11 16:58:54 black.logview.com bjl: Testing mail.crit

May 11 16:59:12 black.logview.com bjl: Testing mail.alert

May 11 16:59:29 black.logview.com bjl: Testing mail.emerg

Only mail log messages received with a level higher than crit are logged in the /var/
adm/messages file. However, all received mail log messages are logged in the loghost’s file
/var/log/maillog, because the lowest logging level is defined as debug (however, the
debug mail message was not sent from the host black, because of the local logging
configuration):

$ cat /var/log/maillog | grep black | grep “Testing mail”

May 11 16:57:38 black.logview.com bjl: Testing mail.info

May 11 16:58:04 black.logview.com bjl: Testing mail.notice

May 11 16:58:23 black.logview.com bjl: Testing mail.warning

May 11 16:58:39 black.logview.com bjl: Testing mail.err

May 11 16:58:54 black.logview.com bjl: Testing mail.crit

May 11 16:59:12 black.logview.com bjl: Testing mail.alert

May 11 16:59:29 black.logview.com bjl: Testing mail.emerg

© 2002 by CRC Press LLC

9.3 Accounting Log Files

Up to now, we have discussed generic UNIX system logging. However, if the accounting
subsystem is active on the system, a number of accounting-related log files provide useful
logging information. The accounting is generally based on system usage statistics, and
reliable statistics require continuous system monitoring and frequent data logging. The
files were discussed from a system security standpoint. Here we focus strictly on their
logging characteristics.

Among different accounting log files, the most significant files are /var/adm/utmp
and /var/adm/wtmp from the system logging point of view. Accounting binary log files
include raw data related to the user login/logout events: utmp refers to actual login
sessions, while wtmp contains historical login/logout data; obviously, special attention
should be paid to the file wtmp, because it grows continuously. Some platforms, like HP-UX,
introduce one more file btmp to keep data about bad login attempts separate.

A set of UNIX commands is available to manage these binary files: login, who, write,
last, etc. The fwtmp command provided on the HP-UX platform will convert a file’s
raw data into ASCII data, suitable for further processing. If corrupted, these files could
interfere with the regular login procedure; in most cases, a simple removal and
recreation of files helps. On the HP-UX platform, another command wtmpfix is also
provided for this situation.

9.3.1 The last Command

The last command displays login and logout information about users and terminals. It looks
in the /var/adm/wtmp file (which records all logins and logouts) for information about a user,
a terminal, or any group of users and terminals. The format of the command is:

last [-n number | -number] [-f filename] [name | tty] . . .

The trailing arguments specify the names of users or terminals of interest. If multiple
arguments are given, the data applicable to any of the arguments is printed. For
example, the command: last root console lists all of root’s sessions, as well as all
sessions on the console terminal. The displayed sessions of the specified users and
terminals are listed starting from the most recent session first, indicating the times at
which the session began, the duration of the session, and the terminal on which the
session took place. The last command also indicates whether the session is continuing
or was cut short by a reboot.

By default all logged data about sessions are displayed in the reverse order. The option
-n number, or simply -number can be used (number corresponds to the desired number of
sessions to be presented) to restrict the display to a certain number of last user’s sessions.

The option -f filename enables the specification of log file other than the default
file /var/adm/wtmp.

The system automatically logs information about each system reboot and addresses
them to the pseudo-user reboot. Thus, the command:

last reboot

will give an indication of the mean time between reboots.

© 2002 by CRC Press LLC

9.3.2 Limiting the Growth of Log Files

Log files grow continuously. This is the nature of the logging process; new logging data
are appended onto preexisting ones. If left unattended, the number of system log files will
grow without limit, and if a verbose logging is configured, the file growth under some
circumstances could be dramatic. Log files tend to consume disk space and bring
a filesystem to a point that could endanger it. This is primarily a problem for the /var
filesystem — most often it is a separate filesystem and the usual location for a majority
of system log files (directory /var/adm, or /var/log).

The significance of and the need for regular system logging is beyond question; in
a critical moment, the log files could be the only source of information available to
trace a problem. System logging is a requirement and has to be active on every system.
However, you must monitor the growth of system log files; the system administrator
is responsible for reaping any needed data from these files and keeping the files to a
reasonable size.

The major offenders include:

• The various system log files in /var/adm (or /usr/logs), which may include sulog,
messages, and other files determined in the system logging configuration file
/etc/syslog.conf, or sometimes determined in the /etc/default directory (on some
flavors, default values are defined in this directory).

• Accounting files in the directory /var/adm (or sometimes /usr/adm), especially
files wtmp and acct (BSD) or pacct (System V).

• On some UNIX flavors, default subsystem log files originated from different
UNIX facilities, such as cron, printing subsystem, uucp subsystem, etc. The usual
names and locations include:

/usr/spool/lp/log Printing log file (BSD)
/usr/spool/lp/logs/lpsched Changes to printer status (System V)

/usr/spool/lp/logs/requests Individual print requests (System V)
/usr/lib/cron/log cron log file

/usr/sbin/cron.d/log cron log file (SVR4)
/usr/spool/uucp/LOGFILE BNU uucp log file

/usr/spool/uucp/SYSLOG Version 2 uucp subdirectories
/usr/spool/uucp/LOG* (each contains multiple log files)

There are several approaches to control the growth of system log files:

• The easiest way is to truncate them by hand when they become too large. This is
only possible for ASCII log files. To reduce a file to zero length, use a command like:
$ cp /dev/null /usr/adm/sulog

or
$ cat /dev/null > /usr/adm/sulog

Copying the null device onto the file is preferable to removing the file because
in some cases the subsystem will not recreate the log file if it does not exist.

• Use the tail command to retain a small part of the current logging information
(the most recent one), as in the following example:

$ cd /usr/adm

$ tail -100 sulog > sulog.tmp

© 2002 by CRC Press LLC

$ cp sulog.tmp sulog

$ rm sulog.tmp

The 100 last lines of the sulog file will be retained.
• Keep several old versions of a log file in the system by periodically deleting the

oldest one, renaming the current one, and then recreating it. The appropriate
command sequence is:

$ cd /usr/adm

$ cp -p messages.old2 messages.old3

$ cp -p messages.old messages.old2

$ cp -p messages messages.old

$ cat /dev/null > messages

The last three versions of the log file /usr/adm/messages are preserved for the eventual
need to trace some events in the past. It should to be sufficient if any problem occurs,
while it also keeps disk space consumption at an acceptable level (although there is no
guarantee for individual log file sizes). Such an approach is ideal for automatic periodic
execution, perhaps at the beginning of each month, so the logging within the last 3 months
is always available. Some UNIX flavors integrate this approach in the startup procedure,
i.e., the corresponding rc startup script saves and resizes the system log file /usr/adm/
messages in an almost identical way. Under regular conditions, this works very well, but
if there are several consecutive system boots, the complete logging from the previous
periods could be lost. Other approaches are, of course, possible. One homemade solution,
the check_logfiles.ksh script, is presented in Chapter 8.

© 2002 by CRC Press LLC

10
UNIX Printing

10.1 UNIX Printing Subsystem

Printing is a very important issue on any UNIX platform, and is important to the job of
system administration, as well. Every user on the system expects quick, reliable, high-quality
printing at any time. Many users evaluate a system’s performance primarily on its printing
capabilities, so this is one of the most sensitive issue from the user standpoint.

As expected, UNIX offers two basic flavors of printing systems: BSD and System V.
Unfortunately, the differences between these two flavors are quite significant, making
them mutually incompatible. Neither flavor is more commonly used than the other; both
are used widely. Some platforms even support both flavors, but the majority of UNIX
systems integrate one of the two available UNIX printing subsystems.

Before we continue with a more detailed description of the two printing subsystems,
let us first define the terminology used for this topic. The common term printing subsystem
(or sometimes even printing system) identifies the entire suite of all printing related items
(primarily software, but also hardware items) that effectively enable and provide printing
on an arbitrary UNIX platform. Often, a printing subsystem is also identified as a spooling
subsystem or printer spooling subsystem. While the first alternative name is too general
(spooling is not only related to printing — it can also refer to e-mailing and other queued
message subsystems), the second term seems to be quite appropriate. Nevertheless, the
spooling subsystem in most cases refers just to the printing. In the following text, we will
try to use the more comprehensive terms among the available ones.

Except for the existing differences between the BSD and System V printing
subsystems, the concept of printing in both cases is quite similar. A printing subsystem
consists of:

• User commands — Required to initiate printing. A user specifies the file to print,
the print device to print it on (if there is more than one device), and other
mandatory and optional details. The common terminology to identify an invoked
printing is also different: on BSD they are called print jobs, on System V, print
requests.

• Queues — To store and sequentially process print jobs (print requests). In its simplest
form, a queue is a line of print jobs/requests waiting to use a specified print device.

• Spooling directories — To hold pending print jobs (print requests). On BSD, the
entire file to be printed is copied in the spooling directory; on System V, by

© 2002 by CRC Press LLC

default only a small print request file is generated, while the file to be printed
is accessed in its original location at the proper time when printing actually occurs.

• Server processes — Printing daemons that transfer a print job (a print request)
from the spooling directory to the specified printing device.

• Administrative commands — Print-related administrative commands to start and
stop the printing subsystem or specific printers, and to manage queues and
individual print jobs (print requests).

A functional diagram of a printing subsystem (with indicated differences between BSD
and System V) is presented in Figure 10.1.

Once a user (or a user’s process, invokes a printing, the print command performs the following:

• It looks in the printer database for necessary printing-related data such as the
spooling directory and other printing arguments.

• It creates a print job (a print request for System V printing subsystem) and puts
a corresponding control and data file (cf and df) in a printing queue in the
corresponding spooling directory, and if it is a BSD printing subsystem, copies
the file to be printed into the spooling directory.

• It notifies the print daemon about the started printing procedure.

The print daemon provides the actual printing:

• It looks in the printer database for necessary printer-related data for the started
print job/request.

• It checks the status of the corresponding printer.
• It completes the printing procedure by sending the file to the printer for printing.

The start of printing and the actual printing do not necessarily coincide; a delay between
the two actions is quite possible, and such delays can vary significantly, depending on the
actual printer status, the volume of required printing, the queue length, and other factors.
Generally, the physical printing is performed slowly, and sometimes the delays can be
quite annoying.

PRINTER

DATABASE

Spooling Directory

Print
command

Print
daemon

File to be
printed

Printer
special
device

file

User executes

A look-up for a

spooling directory

puts a print job/request and
a copy of a file (BSD only) keeps a control file - cf*,

and a data files - df*)

A look-up for a printer

and other relevant data

notifies the print daemon

sends print data(for each print job/request

FIGURE 10.1
Functional diagram of a printing subsystem.

© 2002 by CRC Press LLC

10.1.1 BSD Printing Subsystem

The BSD UNIX system maintains multiple printers on local and/or remote sites, and
multiple print queues. It can be adopted to support different types of printers. It began
as a standard “line-printer spooling subsystem,” but very soon it added laser printers,
raster-printers, and other printing devices. Today the BSD printing subsystem represents
a collection of five programs and several files:

lpr Adds a print job to a print queue by copying the file into its spooling
directory. A print job is assigned a job ID number when it is submitted,
and this number is used to refer to the print job in subsequent
commands. The name of the command originates from “line-printer,”
the most advanced printer in the early days of UNIX.

lpq Lists jobs that are currently in the print queues.

lprm Removes jobs from the print queues. Users may remove only their
own jobs, but the superuser may remove any print job.

lpd The printer daemon, responsible for sending data from the spooling
directory to a printer (i.e., printing device).

lpc The administrative interface to the printing subsystem.
/etc/printcap The printer configuration file, which contains entries describing each

printer on the system. The standard template version includes
a number of the most common printers, which an administrator can
then customize for a specific system. Usually, entries are commented-
out, so the administrator should activate (remove the comment
markers from) all needed entries in the file. Sometimes minor adjust-
ments are required.

10.1.1.1 The lpr, lpq, and lprm Commands

The lpr command is available to activate the printing of a printable file:

lpr -Pprinter printfile

where
-P Option to select a printer for this printing
printer The name of the selected printer
printfile The name of the file to be printed

Please note that there is no space between the -P option and the printer name (some
UNIX platforms allow this). If the -P option is missing, the default printer is selected.
The default printer is defined in the printer configuration file /etc/printcap, as are all
other printers.

The lpq command is available to check the current status of a print queue, i.e. to list the
contents of the queue:

lpq -Pprinter

where
-P Option to select a printer
printer The name of the selected printer the queue belongs to

© 2002 by CRC Press LLC

If the -P option is missing, the default printer is selected.
A few examples:

lpq –Ppp (post-script printer pp)
no entries

or

lpq (default local printer)
no entries

The lprm command is available to remove individual print jobs:

lprm -Pprinter jobs-to-remove

where
-P Option to select a printer
printer The name of the selected printer jobs to remove from
jobs-to-remove A list of job IDs

A list of usernames for whom to remove all jobs
A single hyphen to remove all jobs (only if superuser)

The lprm command identifies print jobs by their IDs (obtained with the lpq command);
obviously, the lpq command should be issued before the lprm command is used.

10.1.1.2 The lpd Daemon
lpd is the BSD printer spooling daemon; it sends data stored in the spooling directory to
a printer to be printed. The lpd daemon is started by the corresponding rc start script
during system startup. Please note that some UNIX platforms might have a commented
rc startup sequence for the printer spooling daemon; the comment markers must be
removed from the corresponding lines when the first printer is attached to the system. If
they are not removed, the lpd daemon will not be invoked with each subsequent system
booting.

The lpd daemon works in the logical space between users and printers; this complex
task often involves unpredictable conditions that must be handled accordingly. Occa-
sionally, the lpd daemon gets hung. The main symptom of this hung state is a queue
filled with jobs but not printing any of them. In this case, the old daemon should be
killed and a new one started. The command sequence is shown in the following example:

$ ps -aux | grep lpd | grep -v grep

root 208 0.0 0.2 1536 32 ? I 0:00 /usr/lib/lpd

$ kill -9 208

$ /usr/lib/lpd

10.1.1.3 Managing the BSD Printing Subsystem
The “line-printer control utility,” lpc is available to perform most administrative tasks
connected with the BSD spooling subsystem. The lpc utility includes a number of internal
commands (subcommands) required to handle such printer-related tasks as: shutting a

© 2002 by CRC Press LLC

printer down for maintenance, displaying a printer’s status, and manipulating jobs in
print queues. To invoke the lpc utility, simply type:

lpc

lpc>

lpc is now running and issues its own prompt. The available internal lpc commands are:

status printer Displays the status of the line printer daemon and queue for the
specified printer.

abort printer Immediately terminates any printing in progress and disables all
printing on the specified printer. The job stays in the queue and
its printing will continue as soon as the printer is restarted (with
the start command).

stop printer Stops all printing on the specified printer after the current job has
finished. New jobs can be added to the queue with the lpr
command, but they will not be printed until the printer is started
again. This command is very useful when the time comes to add
or replace the printer’s supplies (paper, ribbon, etc.).

start printer Restarts printing on the specified printer after an abort or stop
command.

disable printer Prevents users (except the superuser) from putting new jobs into
a specified printer’s queue. Existing jobs continue to print, so this
command is useful when a printer needs to be turned off.

enable printer Allows users to spool jobs to the queue again, restoring normal
operation after the disable command is issued.

down printer Stops printing and disables the queue for a specified printer (its
action is equal to disable plus stop).

up printer Enables the queue and starts printing on the specified printer (its
action is equal to enable plus start).

If the specified printer is “all,” the command itself is forwarded to every printer on the system.

10.1.2 System V Printing Subsystem

The System V spooling subsystem has the following major components:

• User commands:
lp Initiates print requests (equivalent to lpr on BSD)

lpstat Lists print queue contents (equivalent to lpq on BSD)
cancel Cancels a pending print request (equivalent to lprm on BSD)

When a user submits a print request, it is assigned a unique request ID that is
used to identify it thereafter; request IDs usually consist of the printer name and
a request number.

• The spooling daemon lpsched, responsible for carrying out print requests by
sending data to the appropriate printer.

© 2002 by CRC Press LLC

• A suite of administrative commands (accept, reject, enable, disable, lpadmin,
lpmove, lpusers) usually stored in the directory /usr/lib. It is a good idea to add
this directory to the root’s command search path, which makes sense, because
administrative printing commands require superuser privileges.

• Spooling directories in /usr/spool/lp/request for each printer, named by the printer
name. Only the print request information is stored in the corresponding direc-
tory; by default, the actual file to print is not copied. Thus, changing or deleting
a file before it is printed affects the final output. The lp option -c can be used to
force the copying of the file to the spooling area when it is submitted for printing.

10.1.2.1 The lp, lpstat, and cancel Commands

Print requests are sent to the queue for a destination, which can be either a specific printer
(including the default one), or a device class (a group of the same type of printers). A device
class provides the mechanism to group similar printing devices and declare them to be
equivalent to, and substitutable for, one another. Printing is performed on the first available
device in the class — for example, class laser can include all of the compatible laser printers
on the system. All of the devices within a device class share a single queue.

The lp command places a print request into a queue, either for a specific device or
a device class:

lp [options] file-name

where
file-name The name of the file to be printed.
options Many options are available, but -d printer specifies the printer (queue) for

printing; if this is missing the default printer is used.

The lpstat command will provide status information on current printing queues and
devices:

lpstat options

The lpstat command is more versatile than its BSD counterpart; there are a number of
options that make this command a printing monitoring tool. The command will monitor
not only the print queue status, but can handle printers themselves, as well.

The lpstat options are:

Option Meaning

-a [list] Display the acceptance status of the destinations for output requests for printers and classes
specified in the list

-c [list] Display the members of the classes specified in the list
-o [list] Display print requests; the list may include request IDs, printer names, and class names
-p [list] Display the current status of the printers specified in the list
-u [list] Display the status of all jobs belonging to the users specified in the list
-v [list] Display the name of printers and the pathnames of the associated devices
-s Summary; display all classes and their members and all printers and their associated devices
-t Display all status information (reports everything)
-d Display the default printer destination
-r Display the status of the printer spooling daemon

Note: “list” specifies one or more comma separated printing entities.

© 2002 by CRC Press LLC

g

Here is an example: a number of printers, mostly remote ones, are defined on the HP-UX
10.20 printing-client system. The partial lpstat summary report on printers and their special
device files presented below includes local printers (indicated in bold letters), and other
remote printers.

$ lpstat -s
system default destination: lp26

device for lp1: /dev/null

remote to: lp31 on ps3.printview.com

device for lp26: /dev/null

remote to: lp26 on ps3.printview.com

device for lp29: /dev/null

remote to: lp29 on printhost.printview.com

device for foxy: /dev/null

remote to: LF1 on foxip.printview.com

device for poprt3: /dev/tty3 => local printer

device for poprt8: /dev/tty8 => local printer

device for wprt1: /dev/null

remote to: LF1 on wprip.printview.com

device for xerox: /dev/null

remote to: xerox on ps5.printview.com
.

.

A partial report on the printers’ current status (for the same printers in the previous
report) is:

$ lpstat -p
printer foxy is idle. enabled since Nov 30 11:17

fence priority : 0

printer poprt3 disabled since Mar 12 16:46 -

reason unknown

fence priority : 0

printer poprt3 is idle. enabled since Mar 15 11:45

fence priority : 0

printer wprt1 is idle. enabled since May 6 14:47

fence priority : 0

printer xerox is idle. enabled since May 14 05:41

fence priority : 0

printer lp26 is idle. enabled since Aug 26 12:38

fence priority : 0

printer lp1 is idle. enabled since Jan 27 10:44

fence priority : 0

printer lp29 is idle. enabled since Nov 24 14:12

fence priority : 0
.

.

Finally, the lpstat -t command reports on everything. However, if there are a large
number of attached printers (and especially if some remote printers are down), the com-
mand itself can take a long time to execute. In critical situations, when every second counts,
it may be preferable to manually cancel pending print requests.

© 2002 by CRC Press LLC

A system administrator may cancel any pending print request with the command:

cancel request-id(s)

or

cancel destination

where

request-id(s) The ID(s) of the job/jobs to be canceled (even if they are currently
printing)

destination The name of the queue for which all jobs should be canceled

Solaris 2.x even supports the lpr command, this time adjusted to the System V LP
environment. This means that the command is serviced by the lpsched daemon (there is
no lpd daemon or printcap database). The -s option makes the command behave like the
System V version: it does not copy the file to be printed into the spooling directory.

10.1.2.2 The lpsched Daemon

The printer spooling daemon lpsched is responsible for carrying out print requests by
sending data to the appropriate printer/printers. It is also known as the print service
daemon. The lpsched daemon under System V is actually the equivalent to the lpd daemon
under BSD. The daemon is invoked during the system booting and is permanently
running, waiting for new print requests to be stored in the spooling queues.

Each printing-related administrative action requires the lpsched daemon to temporarily
shut down and restart. The special lpshut command was introduced to make this simpler;
the lpsched daemon can be stopped with lpshut command.

10.1.2.3 Managing the System V Printing Subsystem
There is no System V equivalent to the BSD lpc utility; instead, a number of individual
administrative printing-related commands are available. Together they form an extremely
powerful and versatile suite of high-level commands to provide full control over the
administration of various printing issues. The System V printing subsystem configuration
also fully relies on these administrative commands. While the BSD printing subsystem
requires a direct access to and interaction with printing-related configuration data/files,
on System V all that is somewhat hidden from the administrator, and provided by these
front-end administrative commands. We will return to these issues later.

For example, the System V printing subsystem enables the user to move a pending print
request between print queues (i.e., printers) with the special command lpmove (there is
no BSD equivalent):

lpmove request-id(s) new-printer To move some print requests
lpmove old-printer new-printer To move all print requests

where
request-id(s) The ID(s) of the print request/requests to be moved
new-printer The name of the new printer (queue) to move print requests
old-printer The name of an old printer (queue) where print requests are pending

© 2002 by CRC Press LLC

g

Another command pair, accept and reject, may be used to permit and inhibit spooling
to a print queue; both accept a list of destinations as their argument. With the -r option,
reject may specify a reason for denying requests, which will be displayed to users attempt-
ing to send new jobs to that queue.

The enable and disable commands are used to control the status of a specified printing
device (printer).

The “master” printing-related administrative command is lpadmin. This command
is so powerful that it is even more appropriate to refer to it as an administrative tool,
a set of joined commands invoked through different lpadmin options. This is the
“magic” command for managing all printing devices in the System V printing
subsystem.

The lpadmin command is used to manage printers and destination classes. It defines
and modifies the characteristics of printer devices and classes. All these administrative
tasks are important for the printing subsystem and require full support by the lpsched
daemon; any possible problem can be skipped with this command, but only when the
lpsched daemon has been stopped. Once the daemon is restarted, it has learned about
the new configuration.

The lpadmin command is a powerful tool in managing printing devices. The online
manual pages contain a complete explanation of all available options for this command.
Here, only some of options are listed and briefly discussed.

• To set the default destination:

lpadmin -d printer_name

where
printer_name The name of the printer or device class

• To place a printer into a class (if the class does not exist it is created):

lpadmin -p printer_name -c class_name

where
printer_name The name of the printer
class_name The name of the class

• To remove a printer from a class:

lpadmin -p printer_name -r class_name

• To restrict (or even deny) access to destinations to specific users (by default, all
users are allowed to use any destination):

lpadmin -p printer_name -u ‘allow:user_list’
lpadmin -p printer_name -u ‘deny:user_list’

where
user_list List of users with restricted access to printer print_name; users in the list are

separated by commas. Each user in the list is specified in the form: host!user-
name, where host is the name of the host, and username indicates the user on
that host (a missing host corresponds to the local system). The keyword all

© 2002 by CRC Press LLC

corresponds to all users, or all hosts. If an allow list exists, the access is allowed
only to users in the list.

• Finally, the lpadmin command is used to add a new printer (local or remote) to
the system, as well as to remove a printer from the system. We will discuss this
important administrative task later.

It is important to remember that the proper use of the lpadmin command involves
shutting down the lpsched daemon, and reinvoking it afterward.

10.2 Printing Subsystem Configuration

10.2.1 BSD Printer Configuration and the Printer Capability Database

The BSD and System V printing subsystems perform the same job, but in a different way.
At first they seem similar, but once we reach the subject of configuring them, their
differences become more apparent. While System V relies on existing front-end adminis-
trative commands (such as the lpadmin command), the BSD printing subsystem is mostly
administered through the corresponding printer capability database using the usual UNIX
tools and skills — in other words, by manual editing of the necessary configuration data.
The next few paragraphs focus on these topics.

Printer configuration requires a clear understanding of the administration procedure,
and there are many steps involved before the procedure is complete. System administra-
tors, however, are quite happy with this approach, because it involves editable ASCII
configuration data with full control of the configuration itself, easy scripting, and an easy
multiplication of the printing configuration over multiple systems.

10.2.1.1 The /etc/printcap File
The master printer configuration database is contained in the /etc/printcap file. This file
lists all devices serviced by the BSD printer spooling subsystem. A more precise descrip-
tion of the file would be “printer capability database,” which the name stands for. UNIX
systems are usually shipped with a standard version of the /etc/printcap file (the template
file), which describes most of the printers that could be used on the system. Each printer
type is described by one printcap entry, which consists of a sufficient number of printcap
fields describing different printer characteristics. Upon its installation, the entries can be
commented-out; the system administrator should configure /etc/printcap by activating the
proper entries for the implemented printers. Sometimes minor modifications of entries
are required, though in most cases the entries match existing printers. The /etc/printcap file
includes other printer configuration data necessary for successful printing, as well as data
related to the printer characteristics, making it a true master printer configuration file.

The lpd daemon reads the printer-related data from the /etc/printcap file on an as-needed
basis. This means any configuration change will be effective immediately, and there is no
need to reinvoke the daemon itself (as would be the case for the majority of daemons).

Here is an example of a /etc/printcap file:

$ cat /etc/printcap
Printer Capability Data Base

© 2002 by CRC Press LLC

g

#

Modified on Feb. 2, 1998 by the System Administrator

#

Entry for HP LaserJet IV printer

0|lp|lj4|hplj|ljiv|ascii|HP LaserJet 4: \

:mx#0:\

:ms=-parity,-cstopb,-clocal,cread,ixon,ixoff,-opost:\

:lp=/dev/ttya:sd=/usr/spool/laserjet:br#9600:\

:fc#0777:fs#06021:sb:sh:xc#07737:x s#040:\

:lf=/usr/adm/lpd-errs:of=/usr/lib/hplaserjet:

#

Entry for HP plotter (for future use)

#5|HP|hp plotter|HP Plotter:\

:lp=/dev/ccplot:\

:of=/usr/spool/spff:\

:xn=146.95.1.3:\

:xp=6:\

:pl#0:\

:lf=/usr/adm/errorlog:\

:sh:\

:ff=^[.Y:fo:tr=PG;:

#

##POSTSCRIPT laser printer

pp|pp|PostScript|postscript:\

:lp=/dev/ppplot:\

:of=/usr/spool/spff:\

:xn=146.95.1.3:\

:xp=2:\

:lf=/usr/adm/errorlog:\

:sh:

#

Remote printers on the microVAX computer (MVAXGR)

#

10|prvax|vx|vax|sys$print|decwriter| line printer:\

:lp=:rm=mvaxgr:sd=/ usr/spool/lpd/vax:lf=/usr/ adm/lpd-errs:\

:rp=sys$print:

11|lsvax|laser|sys$lspr|lsprinter| laser printer:\

:lp=:rm=mvaxgr:sd=/usr/spool/lpd/vax:lf=/usr/ adm/lpd-errs:\

:rp=sys$lspr:

.

.

#

#Remote printers on RISC computers (RS01CH and RS09CH)

#

15|exrisc|rs09ch|ex| ex printer:\

:lp=:rm=rs09ch:sd=/usr/spool/lpd/risc:lf=/usr/adm/lpd-errs:\

:rp=ex:

16|psrisc|rs01ch|ps|postscript| ps printer:\

:lp=:rm=rs01ch:sd=/usr/spool/lpd/risc:lf=/usr/adm/lpd-errs:\

:rp=ps:

.

© 2002 by CRC Press LLC

.

#

Printer for SGI

20|lsv:\

:lp=:rm=mvaxgr:sd=/ usr/spool/lpd/sgi:lf=/usr/ adm/lpd-errs:\

:rp=sys$lspr:

The /etc/printcap is a simplified version of the termcap database (discussed in Chapter 11),
adapted to fully describe printers. The printer spooling subsystem accesses the printcap
file every time it is used, allowing dynamic addition and deletion of a printer’s data.

The basic rules for creating a printcap entry are:

• The lines beginning with # (a number sign) are comments, and are not active lines.
• Each entry can have an arbitrary number of items (fields) separated by colons

(:); an entry can continue from one line to another using the usual UNIX contin-
uation backslash character (\) at the end of a line.

• Each printer is often identified by multiple names; the names are arbitrary and
are the names available to that user on the system. The first name is, by convention,
a number; the second given name is the most common abbreviation for the printer,
and the last name should be the long name fully identifying the printer. The second
name should contain no blanks; the last name may contain blanks for readability.
A vertical line (the pipe character “|”) separates the printers’ names, and at least
one of the names should be easy to use: short, logical, and easy to remember.

• The default printer is identified by the generic name lp, appended to its other
names; this will be explained in greater detail later. The BSD printing commands
supports a -P printer option to explicitly determine the destination printer.

• The remaining fields describe the printer’s capabilities (characteristics), resources,
and its use.

All capabilities in the printcap file are specified by two-character codes, and may be of
three possible types:

Boolean Capabilities, which, if they appear in a field, indicate that the printer has
some particular feature. Boolean capabilities are simply written in an
entry’s fields between the “:” characters. In the capability table that
follows, they are indicated by the word “bool” in the type column.

Numeric Capabilities that supply information such as baud-rates, number of lines
per page, etc. Numeric capabilities are specified by the word “num” in
the type column of the capabilities table that follows. Numeric capabilities
are identified by the two-character capability code with the trailing “#”
character followed by the numeric value. The following example is a numeric
entry stating that this printer should run at 1200 baud: “:br#1200:”

String Capabilities that specify a sequence that should be used to perform
particular printer operations, for example, a cursor motion. String valued
capabilities are specified by the word “str” in the type column of the
capabilities table that follows. String valued capabilities are identified by
the two-character capability code with the trailing “=” sign, followed by
a string up to the next colon “:”. For example, “:rp=spinwriter:” is a sample
entry stating that the remote printer is named spinwriter.

© 2002 by CRC Press LLC

g

The table of various capabilities (in alphabetic order) follows; the most common capa-
bilities are presented in bold.

10.2.1.2 Setting the BSD Default Printer
The system default printer is defined by the generic name lp within the /etc/printcap file.
The entry for the default printer should have attached lp to one, or more of its valid names,
and only one entry can have such a name. Otherwise, the default printer will not be
defined properly, and the first defined default entry within the file will be interpreted as

Name Type Default Description

af str NULL Name of accounting file
br num none If lp is a tty, set the baud rate
cf str NULL Cifplot data filter
df str NULL TeX data filter (DVI format)
du str 0 User ID of user “daemon”
fc num 0 If lp is a tty, clear flag bits
ff str “\f” String to send for a form feed
fo bool false Print a form feed when device is opened
fs num 0 Like “fc” but set bits
gf str NULL Graph data filter (plot(3X) format)
hl bool false Print the burst header page last
ic bool false Driver supports (nonstandard) ioctl to indent printout
if str NULL Name of input/communication filter (created per job)
lf str “/dev/console” Error logging file name
lo str “lock” Name of lock file
lp str “/dev/lp” Device name to open for output
mc num 0 Maximum number of copies
ms str NULL List of terminal modes to set or clear
mx num 1000 Maximum file size (in BUFSIZ blocks), zero = unlimited
nd str NULL Next directory for list of queues (unimplemented)
nf str NULL Ditroff data filter (device independent troff)
of str NULL Name of output/banner filter (created once)
pc num 200 Price per foot or page in hundredths of cents
pl num 66 Page length (in lines)
pw num 132 Page width (in characters)
px num 0 Page width in pixels (horizontal)
py num 0 Page length in pixels (vertical)
rf str NULL Filter for printing FORTRAN style text files
rg str NULL Restricted group, only members of group allowed access
rm str NULL Machine name for remote printer
rp str “lp” Remote printer name argument
rs bool false Restrict remote users to those with local accounts
rw bool false Open printer device read/write instead of write-only
sb bool false Short banner (one line only)
sc bool false Suppress multiple copies
sd str “/var/spool/lpd” Spool directory
sf bool false Suppress form feeds
sh bool false Suppress printing of burst page header
st str “status” Status file name
tc str NULL Name of similar printer; must be last
tf str NULL Troff data filter (C/A/T phototypesetter)
tr str NULL Trailer string to print when queue empties
vf str NULL Raster image filter
xc num 0 If lp is a tty, clear local mode bits
xs num 0 Like “xc” but set bits

© 2002 by CRC Press LLC

the default destination. In the past, the local printer accessed via the special file /dev/lp
was usually assumed to be the default one; however, the default printer could be any local
or remote printer (lp could be assigned to any entry in the file). It is not mandatory to
specify a default printer at all, in fact. Obviously, none of the existing printers can be
regularly named “lp”; otherwise BSD printing subsystem will assume this printer for the
default one. Such a restriction does not present a real problem in the implementation.

Individual users can specify their own default printers with the PRINTER environment
variable. The default printer is usually the most used printer, and the only benefit of using
the default printer is the shorter printing commands (since there is no need for the -P
option). All other printing characteristics are defined in the printcap file in the same way
as for other printers.

10.2.1.3 Spooling Directories
The spooling directory holds files destined for a particular printer until the lpd daemon
can process them for printing. Spooling directories are conventionally subdirectories
located in /usr/spool or /var/spool. Each printer has to have a defined spooling directory;
otherwise, the printing will be disabled.

The spooling directory is defined within the printer’s printcap entry in the /etc/printcap
file. The field:

sd=/usr/spool/dir_name Defines the spooling directory for the corresponding
printer

All spooling directories must be owned by the user daemon, and the group daemon, with
the access mode 755 (drwxr-xr-x). Such a protection scheme gives the necessary write access
to files that have been spooled, forcing users to use the printer spooling system and preventing
anyone from deleting someone else’s pending files, or otherwise abusing the system.

For example, to create a new spooling directory named /usr/spool/newprinter when the new
printer newprinter is added to the system, the following commands should be executed:

cd /usr/spool

mkdir newprinter

chown daemon.daemon newprinter (original BSD syntax)

chmod 755 newprinter

ls -ld

drwxr-xr-x 2 daemon daemon 2048 May 12 11:15 newprinter

The location of spooling directories varies among BSD UNIX flavors (for example, the
common location of the spooling directory on SunOS was /var/spool).

10.2.1.4 Filters
The UNIX “piping” ability is widely implemented in the printing subsystem. A number
of filters can be inserted in sequence in print job processing; these filters match printing
files with printers. This approach provides the maximum possible flexibility in printing
and makes the printing subsystem independent of the implemented printers. Quite simply,
all required matching and any necessary adjustment of any specific printer characteristic
becomes programmable. Filters are usually shell script files, and they are specified within
the printer capability database in the /etc/printcap file. Most of the filters are correlated

© 2002 by CRC Press LLC

g

with the options of the print command lpr; a corresponding filter provides the necessary
preprocessing of data to fulfill the option’s requirements. However, two filters are the
most common: if — the input filter — and of — the output filter. Their names often cause
confusion, because the filters are used in an almost identical way: they are called by the
daemon when a print job is sent to a printer (in that sense they are both output filters for
the daemon, or input filters for a printing device).

When a user does not specify a filter-related option, either the if or of filter will be used.
There are three cases of the corresponding printcap entry in the /etc/printcap database worth
examining:

1. If the field if occurs, but no of field exists, the if filter will be called every time any
print job is sent to the print device.

2. If the field of occurs, but no if field exists, the lpd daemon will call the of filter once
for all print jobs in a queue and send them en masse to the print device.

3. If both fields if and of exist, the of filter will be used to send the banner page, while
the if filter will be called for every print job separately.

It is highly recommended that a system administrator use if filters, because they are
much easier to debug; of filters can be very confusing.

One of the common problems related to printing is the so-called staircase effect in the
printing. What is the staircase effect? The character pair CRLF (carriage-return/line-feed)
is a common way to terminate each line of text, because old mechanical teletypes required
a carriage return before shifting to a new line. UNIX continued this traditional text
treatment. However, in a DOS text file, each line of text is terminated with a LF (line-feed)
character only, assuming an automatic insertion of the CR (carriage-return) character. If
such a file reaches the UNIX environment unchanged, from the UNIX standpoint, the file
is corrupted and incomplete. Taken literally, this text file printed on an ASCII device will
start each line below the end of the previous line. This is known as the staircase effect.

In today’s heterogeneous system environment, transfer of files between UNIX and
non-UNIX platforms is quite common (for added confusion, on the Apple/Macintosh
platform each line of the text is terminated with CR character only), and situations
such as the staircase effect are quite possible. The commands unix2dos and dos2unix
(sometimes named ux2dos, and dos2ux) are available on the UNIX platform to correct
transferred files.

This pending problem can also be fixed by providing the appropriate data filtering during
printing. Some printers can be set to treat the single LF character as the (LF + CR) pair, while
others cannot. In the later case, one solution is to create an appropriate input shell script
filter, which will convert each line of text before printing. Below we will see two possible
solutions, tested on the Linux platform. These examples are written for the bash shell (Bourne
Again Shell) and the Panasonic KX-P4411 laser printer.

A shell script input filter that adds a CR character at the end of each line can be
created:

#!/bin/sh

if [“$1” = -l];then
cat

else
sed -e s/$/^M

/
fi
The “echo -ne” assumes that /bin/sh is really bash
echo -ne \\f

© 2002 by CRC Press LLC

Let us name the file crlf-if1. The test of the first argument “$1” allows a bypass of the
insertion of CR when the lpr -l command is used; otherwise, the CR character is inserted
at the end of each line using the sequential editor sed (“^M” is a CR character, edited by
vi as “CTRL-v CTRL-m”). At the end of the file, the “form-feed” is sent to print the last
page properly.

Alternatively, the printer itself can be controlled by an external escape sequence that
sets the way the printer handles LF character (it treats the LF character as two joint
characters, CR+LF). For the implemented PANASONIC printer, the escape sequence is:
“ESC &k2G.” A simple filter that uses the echo -ne command to send this sequence at the
start of printing could be:

#!/bin/sh
Filter for HP printer to treat LF as CRLF
The “echo -ne” assumes that /bin/sh is really bash
echo -ne \\033“&k2G”
cat
echo -ne \\f

Let us name this file crlf-if2, and copy both filter files in the /usr/lib/filters directory:

ls -l /usr/lib/filters/crlf-in*
-rwxr-xr-x 1 root daemon 128 Dec 14 16:25 crlf-if1
-rwxr-xr-x 1 root daemon 147 Dec 16 09:22 crlf-if2

Both filters are workable, but remember that the second filter is printer dependent (it
can be slightly different on another printer). Finally, the /etc/printcap file should be updated
appropriately.

The corresponding entries in the /etc/printcap file are presented:

cat /etc/printcap
Copyright (c) 1983 Regents of the University of California.
All rights reserved.
@(#)etc.printcap 5.2 (Berkeley) 5/5/88
#
Generic printer:
lp|Generic:\
:lp=/dev/lp1:sd=/usr/spool/lp1:sh:
typical remote printer entry
#

.

.
#
PANASONIC Partner jet
pan|pancrlf|panasonic|KX-P4410:\

:lp=/dev/lp1:\
:sd=/usr/spool/lp1:\
:mx#0:\
:sh:\
:if=/usr/lib/filters/crlf-if1:\
:lf=/usr/spool/lp1/pan-err:\
:tr:

#
HP Laser jet plus
ljet|hplp|hpj|HP Laserjet:\

:lp=/dev/lp1:\
:sd=/usr/spool/lp1:\

© 2002 by CRC Press LLC

g

:mx#0:\
:sh:\
:if=/usr/lib/filters/crlf-if2:\
:lf=/usr/spool/lp1/ hp-err:

#
.
.

The arbitrarily named “logical” printers (“logical” because both point to the same physical
printer) pan and ljet can easily use both of the above filters.

10.2.1.5 Linux Printing Subsystem

The Linux printing subsystem presents a fairly vanilla BSD implementation. There are
some minor differences toward a typical BSD printing subsystem, and we will focus on
them. The printer configuration database is located in the /etc/printcap file which is empty
upon the system installation. To add a printer, or printers, Linux provides the X-based
graphical tool printtool which automates editing of the /etc./ printcap file; Linux strongly
recommends the use of this tool, instead of any manual modification. Basically, the usage
of printtool is easy, friendly, and straightforward. The only disadvantage is a required
X-server support, and relatively restricted number of printers that the tool handles. For
other printers, we can always manually edit the configuration data. Several comprehensive
interactive window-levels address the most common printer types, and in most cases the
tool is sufficient. Printtool is illustrated in Figure 10.2.

Linux requires a defined default printer; if a default printer is not explicitly specified
by the lp name, the first printer listed in the /etc/printcap file becomes the default one.
There are also some other Linux syntax-specific issues that we will talk more about in the
paragraphs that follow about local and remote printers.

10.2.2 System V Printer Configuration and the Printer Capability Database

We have already mentioned that the System V printing subsystem includes the versatile
and powerful administrative command lpadmin, which can be used to manage many
printing configuration issues. The lpadmin command configures LP spooling systems to
describe printers, classes, and devices. It is used to add and remove printing destinations,
change membership in classes, change devices for printers, change printer interface pro-
grams, and change the system default destination.

However, this does not mean the lpadmin command is a magic solution for any printing
need or problem. It is very helpful in defining and setting the printing resources, but the
printing configuration must be saved after the initial setting to be available to the system
when needed. It is important to understand the lpadmin background — what happens
behind the scenes, hidden from users, and even hidden from the system administrators,
for successful administration of the System V printing subsystem.

10.2.2.1 The Printer Database Directory Hierarchy on System V

The System V printer capability database is organized differently from BSDs. Instead of
a huge single database file (the BSD /etc/printcap file), in System V there is a printing-
related directory hierarchy, or even hierarchies. The core of this hierarchy is the /usr/spool/lp
directory (or /var/spool/lp, for some flavors) and the /etc/lp (regardless of the name of the
directory, the corresponding links provide uniform access to the data).

© 2002 by CRC Press LLC

Let us examine the directory hierarchy. The lpadmin command helps the system admin-
istrator handle the printer capability database for different printer models (types). Model
interface programs are supplied, and installed, with the LP software. These are shell
procedures, C programs, or other executable programs that interface between the lpsched
daemon and printing devices; using the BSD terminology, they are filters for printing on
different printers. The standard LP software should include model programs for existing
standard printers; the printer vendors should supply less-common models’ files. All
printer model files reside in the directory /usr/spool/lp/model. Models should have 644
permission set if owned by lp and bin, or 664 permission if owned by bin and bin. Model
file names must not exceed 14 characters.

Model programs are important when a new printer is added to the system; the lpadmin
command relies on model programs (the lpadmin -m option) to establish an appropriate
interface program for proper future printing on the new printer. Adding new printers
could be quite painful without these programs, and could require advanced system admin-
istration skills. If only minor modifications are needed, one way around this quandary
could be the creation of a new model program by modifying a copy of an existing model.
In general, though, it is not easy to deal with model programs this way.

FIGURE 10.2
Linux graphical tool printtool.

© 2002 by CRC Press LLC

g

Model programs are scripts, i.e., readable ASCII files. Unfortunately, this is not the case
with all printing related files; there are a number of binary files that can only be handled
with the available LP front-end commands.

A brief trip through the /usr/spool/lp hierarchy can provide a better understanding of
the System V printing subsystem. Here is an example from the HP-UX platform:

ls -F /usr/spool/lp
FIFO cmodel/ interface/ model/ qstatus sinterface /
SCHEDLOCK default log oldlog receive/ smodel/
cinterface/ fonts/ lpd. log outputq request/
class/ info member/ pstatus seqfile

ls -C /usr/spool/lp/model
HPGL1 dumb hp2560 hp2934a laserjet
HPGL2 dumbplot hp2563a h p33440a laserjetIIISi
HPGL2.cent fonts hp2564b hp33447a paintjet
PCL1 hp2225a hp2565a hp3630a postscript
PCL2 hp2225d hp2566b hp7440a quietjet
PCL3 hp2227a hp2567b hp7475a rmodel
PCL4 hp2228a hp256x.cent hp7550a ruggedwriter
clustermodel hp2235a hp2631g hp7570a thinkjet
colorpro hp2276a hp2684a hp7595a
deskjet hp2300–1100L hp2686a hp7596a
draftpro hp2300–840L hp2932a hpC1208a

Model programs correspond to all printer models that can be attached and used on the
system. This does not mean that they all are active. Only certain model files take part in
creating other active files named “interface” files that reside in the directory /usr/spool/lp/
interface. Interface files are directly involved in the printing process and are important for
printers currently in use. In most cases, but not all, these files are direct copies of the
corresponding model files.

For example:

ls -l /usr/spool/lp/interface
total 36
-rwxr-xr-x 1 lp lp 18416 Mar 30 14:31 panlaser

Only one printer is attached to this system, and it has a site-specific name panlaser. The
administrator named this particular printer, and the choice was quite logical since it was
a Panasonic Laser Printer (please note that the choice of the printer name is arbitrary, but
once the printer was installed, users must use this name). It easy to conclude from an
inspection of the interface file that the file is a renamed copy of the model file laserjet
(obviously, this Panasonic laser printer is compatible with the HP Laserjet printer).

On Solaris 2.x a majority of the LP related files reside in the /var/spool/lp and /etc/lp
directories:

$ ls -l /var/spool/lp
total 18
-rw-rw-r-- 1 lp lp 0 Sep 28 09:25 SCHEDLOCK
drwxrwxr-x 2 lp lp 512 Apr 4 1995 admins
lrwxrwxrwx 1 root root 23 Apr 4 1995 bin -> ../../../ usr/lib/lp/bin
drwxrwxr-x 4 lp lp 512 Sep 21 15:24 fifos
lrwxrwxrwx 1 root root 13 Apr 4 1995 logs -> ../../ lp/logs
lrwxrwxrwx 1 root root 25 Apr 4 1995 model -> ../../../ usr/lib/lp/model

© 2002 by CRC Press LLC

drwxrwxr-x 3 lp lp 512 Apr 4 1995 requests
drwxrwxr-x 2 lp lp 512 May 9 12:20 system
lrwxrwxrwx 1 root root 23 Apr 4 1995 temp -> /var/spool/lp/tmp/atlas
drwx--x--x 4 lp lp 512 Apr 4 1995 tmp

$ ls -l /etc/lp
total 24
-rw-rw-r-- 1 lp lp 2141 Apr 4 1995 Systems
drwxrwxr-x 2 lp lp 512 Apr 4 1995 alerts
drwxrwxr-x 2 lp lp 512 Apr 4 1995 classes
drwxr-xr-x 2 lp lp 512 Apr 4 1995 fd
drwxrwxr-x 2 lp lp 512 Apr 4 1995 forms
drwxrwxr-x 2 lp lp 512 May 9 13:09 interfaces
lrwxrwxrwx 1 root root 17 Apr 4 1995 logs -> ../../ var/lp/logs
lrwxrwxrwx 1 root root 17 Apr 4 1995 model -> /usr/lib/lp/model
drwxrwxr-x 2 lp lp 512 May 9 13:09 printers
drwxrwxr-x 2 lp lp 512 Apr 4 1995 pwheels

10.2.2.2 Setting the System V Default Printer
We should again use the mighty lpadmin command to set a systemwide default printer.
The command:

$ lpadmin -d hplj6dp

will set the printer named hplj6dp as the default one. Any previously set default printer
will no longer be the default, and the new default printer become active.

To check a system for the default printer, use the command:

$ lpstat -d

The default printer data is stored in the file /usr/spool/lp/default.

10.2.3 AIX Printing Facilities

AIX has a different approach to the printing facility: printing is serviced by the spooler
daemon qdaemon, which is the background server for handling all kinds of queues.
qdaemon responds to the enq program, which enqueues print jobs and transfers all of
the arguments necessary for proper printing. The front-end print commands are lpr, lp,
and qprt, which submit print jobs to the spooler daemon via the enq program. On the
other side, qdaemon invokes the printer backend program to manage a print job: to
initialize a printer, provide filtering, generate a header, etc. Finally, the printer I/O backend
piobe command, the print job manager, is called.

AIX introduces a bit more flexibility, and a great deal of complexity into printing, but
the System Management Interface Tool (SMIT) provides a relatively easy-to-use and user-
friendly way to administer it.

Programs that administer printing work with virtual printers — sets of attributes that
define a specific software “view” of real printers. A user submitting a print job always
specifies (directly or indirectly) a particular print queue for the print job. The print request
can also specify a particular virtual printer; otherwise, the spooler will select the first
available virtual printer associated with the print queue (in the case of multiple associated
virtual printers, they are all treated as equals).

© 2002 by CRC Press LLC

g

A real printer is the printer hardware attached to a serial or parallel port at a unique
hardware device address. The kernel communicates with it and provides an interface with
a corresponding virtual printer (however, the kernel is not aware of the concept of virtual
printers). The SMIT can and should be used to add a real and a virtual printer (although
the commands mkdev and mkvirprt can do the same job).

Multiple virtual printers can use the same real printer, but only one real printer (and
one queue) can be associated with each virtual printer.

The attribute values used by the printer backend program reside in colon files in the
Predefined and Customized Databases subdirectories: /usr/lpd/pio/predef and /usr/lpd/pio/custom
(an AIX example):

$ ls -l /usr/lpd/pio
total 56
drwxrwxr-x 2 root printq 512 Sep 22 15:48 burst
lrwxrwxrwx 1 root system 25 Sep 22 14:31 custom -> /var/spool/lpd/

pio/custom
lrwxrwxrwx 1 root system 22 Sep 22 14:31 ddi -> /var/spool/lpd/pio/ddi
drwxrwxr-x 2 root printq 1024 Sep 22 16:34 etc
lrwxrwxrwx 1 root system 24 Sep 22 14:31 flags -> /var/spool/lpd/pio/flags
drwxrwxr-x 2 root printq 512 Sep 22 16:34 fmtrs
drwxrwxr-x 2 root printq 512 Sep 22 14:39 fonts
drwxrwxr-x 2 root printq 2048 Sep 22 16:34 predef

When a new virtual printer is added, the predefined attribute values for the particular
printer type and data stream type are copied to create a customized set of attributes for
the virtual printer (they can be further customized manually). Two database directories
are presented in an example from AIX:

$ ls -l /usr/lpd/pio/predef
total 912
-rw-rw-r-- 1 root printq 4978 Oct 18 1992 2380.asc
-rw-rw-r-- 1 root printq 5794 Jul 19 1993 2390.asc
-rw-rw-r-- 1 root printq 2598 Oct 12 1993 4019.ps

.

.
-rw-rw-r-- 1 root printq 2345 Aug 5 1993 dp2665.ps
-rw-rw-r-- 1 root printq 4500 Oct 15 1993 hplj-2.pcl
-rw-rw-r-- 1 root printq 4892 Dec 2 1993 hplj-3.pcl
-rw-rw-r-- 1 root printq 2351 Aug 5 1993 hplj-3.ps
-rw-rw-r-- 1 root printq 5182 Mar 15 1994 hplj-3si.pcl
-rw-rw-r-- 1 root printq 2595 Jul 19 1993 hplj-3si.ps
-rw-rw-r-- 1 root printq 5266 Apr 17 1994 hplj-4.pcl
-rw-rw-r-- 1 root printq 2644 Apr 17 1994 hplj-4.ps

.

.

$ ls -l /var/spool/lpd/pio/custom
total 8
-rw-rw-r-- 1 root printq 2367 Oct 2 09:45 ps:lp0

File names in the predefined database are of the form PrinterType.DataStreamType. For
instance, “hplj-4.ps” indicates a Hewlett Packard Laser Jet series 4 with a Post Script. File
names in the customized database are of the form QueueName:QueueDeviceName, given
by the administrator; as in lp0:ps.

© 2002 by CRC Press LLC

All attribute values in the database colon files are character strings, regardless of whether
they represent strings, integers or Boolean. An attribute value can contain embedded
references to other attribute values, and can be dynamically determined.

$ cat /var/spool/lpd/pio/custom/ps:lp0
:056:__FLG::
:466:_1::!
:467:_2::!

.
:030:_L::+
:046:_X::IBM-850
:050:_Z::!

.
:063:_a::0
:083:_p::%?%G_2%t%{1}%e%{0}%;%?%G_z%t%{1}%e%{0}%;%+%?%{2}%=%t7%e - 10%;
:090:_s::Courier
:093:_u::1
:100:_w::80
:107:_z::0
:060:__SYS::
:321:sh::%Ide/pioburst %F[H] %Idb/H.ps | %Ide/pioformat -@%Idd/%Imm -!%Idf/piofpt %f[jJ]

.
:274:ia::test “$PIOTITLE” != %I@1 && BFLAG=” -b $PIOTITLE “;/usr/bin/enscript %?%CX%t%f[X]%e -
X%I_X%; -p- -q%?%G_2%t -2%;%?%G_z%t -r%;%?%G_3%t - G%;%?%G_1%t%e -B%;%?%G_L%t%e -c%;
%?%Ch%t%fbh%e%?%L_h% t -b‘%I_h’%e $BFLAG %;%; -L%G_l%d -f%?%Cs%t%f!s%e%I_s%;%G_p%d -
%?%G_1%t-F%Iw7%G_p%d%;%?%G_4%t -g%;%?%G_5%t -o%;%?%L_f%t%e - %I@1%; | %Iis

.
:269:fn::/usr/bin/psc%is
:270:fp::/bin/pr -l%G_l%d -w%G_w%d%F[h] %I@1%ia
:331:mL::PostScript Printer

.

.

The customized ps:lp0 file is a copy of the predefined hplj-4.ps file; in this case, the
implemented post-script printer is actually the Hewlett Packard LaserJet Series 4 post-
script printer.

Each attribute is specified by an entry with five fields:

msg_catalog_ID:msg_number:attribute_name::attribute_value

where:
msg_catalog_ID Identifies the message catalog where the attribute description is

stored. It can be an empty field and then the catalog is defined as the
name of the colon file with the extension “cat.”

msg_number Identifies the message index in the catalog that contains the descrip-
tion of the attribute.

attribute_name The unique name of the attribute. Alphanumeric characters and
underscore (_) are permitted; longer names correspond to comments.

null-string An empty field for future use.
attribute_value Specifies the value of the attribute (zero to 1000 characters). Embed-

ded references and logic for dynamically defined attribute values can
be included (which generally provides an extremely powerful way to
specify an attribute).

© 2002 by CRC Press LLC

g

Obviously the attribute value string can be a very complex expression used in the
communication between the print job manager (the piobe command) and the device driver
interface program (the pioout command).

10.3 Adding New Printers

Adding a new printer onto a system is a common, unavoidable administrative task,
and the system administrator must be familiar with this procedure. The following text
covers printing subsystem flavors BSD and System V for both local and remote printers.

10.3.1 Adding a New Local Printer

10.3.1.1 Adding a Local BSD Printer
To add a new local printer to a BSD system, several steps must be performed:

• Physically connect a printer to the computer (parallel or serial connection).

• For serial line printers, create or modify an entry in the terminal line configur-
ation file /etc/ttys, or /etc/ttytab on SunOS (this will be discussed in greater detail
in Chapter 11). The entries should have status off, type unknown, and the key-
word none in the command field.

• If this is the first printer on the system, verify that the part of the rc scripts to
start the lpd daemon is active.

• Add an entry for the printer to the /etc/printcap file. If the new printer is of the
same type as an existing one, the entry for the existing printer can be copied and
then modified to the new values:
• The printer name, in the name field of the entry (multiple names are allowed)

• The special device file, in the field “:lp= … :”; this field identifies the hardware
connection of the local printer, which is the system address of the correspond-
ing special device file

• The spooling directory, in the field “:sd= … :”

• An accounting file, in the field “:af= … :” if accounting is active
• An error log file, in the field “:lf= … :”

• Other fields remain unmodified for the same type of printer
• If the new printer is the first of its type on the system, then the lines for corres-

ponding entries in the /etc/printcap file should be commented-out and edited.
Printer vendors often provide printcap entries for their products.

• Create the corresponding spooling directory for the printer.
• Create the corresponding printer accounting file (if required, and given the

printer name “newprinter”):

touch /usr/adm/lp_acct/newprinter

chown daemon /usr/adm/lp_acct/newprinter

chmod 755 /usr/adm/lp_acct/newprinter

© 2002 by CRC Press LLC

Note: On some platforms (such as SunOS) the printer account directory could be
/var/adm/lp_acct.

• If the new printer should be the default printer on the system, append “lp”
to the printer’s name and remove “lp” from the entry of the previous default
printer.

• Start the printer and its queue (given the printer name newprinter):

lpc up newprinter

• Test the new printer by spooling a short message for printing. An effective way
to do this is:

banner “Testing” “of” “newprinter” | lpr -Pnewprinter

An attractive, banner-style, message should be printed.

The following example illustrates a printcap entry for a local HP LaserJet5 printer,
connected to the serial port specified by the special device file /dev/ttya; all names are
arbitrary. The previously discussed fields are printed in bold.

Entry for HP LaserJet IV printer named newprinter

newprinter|lj5|hplj5|ljv|HP LaserJet 5: \

:lp=/dev/ttya:sd=/usr/spool/newprinter:\

:lf=/usr/adm/newprinter.log:\
:ms=-parity,-cstopb,-clocal,cread,ixon,ixoff,-opost:\

:fc#0777:fs#06021:sb:sh:xc#07737:xs#040:\

:mx#0:br#9600:of=/usr/lib/hplaserjet:

10.3.1.2 Adding a Local Linux Printer

To add a Linux printer, we use the available Linux printtool utility (it is recommended,
but not mandatory). In the following example we see how the /etc/printcap file looks like
after adding a local printer lp1 by using this tool.

$ cat /etc/printcap
#
Please don’t edit this file directly unless you know what you are doing!
Be warned that the control-panel printtool requires a very strict format!
Look at the printcap(5) man page for more info.
#
This file can be edited with the printtool in the control-panel.
##PRINTTOOL3## LOCAL laserjet 300 × 300 letter {} LaserJet Default {}
lp1|lplocal:\

:sd=/var/spool/lpd/lp1:\
:mx#0:\
:sh:\
:lp=/dev/lp1:\
:if=/var/spool/lpd/lp1/filter:

From the listed printcap entry, it can be seen that the printer lp1 has an alternative name
lplocal. It is connected to the parallel port /dev/lpl, as well as the names of the spooling
directory and input filter. Other printing parameters are related to the maximum job size

© 2002 by CRC Press LLC

g

and print header. The specified filter file is one among available printer-filters located in
the corresponding filter depot directory. It is easy to conclude by listing the filter file itself:

$ ls -l /var/spool/lpd/lp1|grep filter

lrwxrwxrwx 1 root root 44 Feb 5 20:10 filter -> /usr/lib/rhs/rhs-printfilters//master-filter

When a single Linux printer is specified, this printer is automatically the default one;
there is no need to label this printer with the additional name lp.

10.3.1.3 Adding a Local System V Printer
In System V, the administrative command lpadmin -v is used to add a new local printer.
The option “-v” specifies a local printer and requires as argument the corresponding
special device file. When a new printer is added to the system, the following information
must be supplied:

lpadmin -pnewprinter -vspecial_file interface_option

where
newprinter The name of the new printer.
special_file The full pathname of the special file through which the system will

communicate with the new printer.
interface-options Includes several possible options.
-m model Specify a printer by the existing model type. The corresponding

model program from the /usr/spool/lp/model directory is copied into
the /usr/spool/lp/interface directory (or on some platforms, /var/spool/lp).

-e oldprinter Copy oldprinter’s interface file; oldprinter must be an existing
printer.

-i interface_path Specify the full pathname of the printer interface file, introduced for
this purpose.

The “-e” option is the easiest to implement when the same, already tested and proven
interface from an existing printer is used for the new printer. The “-m” option is also easy
to implement if a standard, well-known model program defines the new printer.

Creating a new custom-designed interface program (the “-i” option) can be a hard job;
an interface program (often a script, but not necessarily a script) can be very complex. By
convention, the program takes the following arguments:

$1 job ID

$2 username

$3 job title

$4 number of copies

$5 printer-specific options

$6 files to be printed

When it is invoked, the interface program standard output is redirected to the printer,
and the program arguments can be processed in an arbitrary number of ways for different
printing scenarios.

© 2002 by CRC Press LLC

The simplest possible interface program is:

This is the simplest LP interface
It ignores most initial arguments, and
prints the file as it is.
#
#!/ bin/sh
cat $6 2>&1

The lpsched daemon must be shut down during printer installation and reinvoked
afterward. It is recommended that you test the new printer after installation:

$ banner “Testing” “of” “newprinter” | lp -d newprinter

10.3.2 Adding a New Remote Printer

Both printer spooling subsystems allow remote printing. A destination printer could be
a part of another remote UNIX system or an individual network printer that supports
UNIX-style printing (basically the TCP/IP and the corresponding type of the printing
subsystem). UNIX does not differentiate between remote and network printers, it simply
treats a network printer as a single printer on a remote system. This is a logical approach
because a network printer is identified within the network in the same way as any other
remote UNIX system.

Remote printing corresponds to the server/client model, where a client is a UNIX system
in which the remote printer is defined, and where users use this printer; this is the origin
of a printing request. A client requests a printing service, which is provided at another
remote system, known as a print server (may not be a UNIX system).

10.3.2.1 Adding a Remote BSD Printer
The BSD printing subsystem defines remote printers, as any other printers, through its
printer capability database in the /etc/printcap file. A remote printer requires a printcap
entry slightly different from that of a local printer. It is important to understand that:

• A number of printer characteristics are determined on the server side, where the
printer is local; the client has no influence on these predefined printer charac-
teristics, and corresponding printcap entries are meaningless and automatically
outposted.

• New printcap entries, specific for remote printing, were introduced and they
must be used.

• The remote destination has to be known to the system, as does the way to reach
the destination. In other words, the system must be properly connected to the
network.

• The print server has to support BSD printing.

In the already presented section of the /etc/printcap file, several printcap entries refer to
the remote printers. We will analyze one of them:

16|psrisc|rs01ch|ps|postscript| ps printer:\

:lp=:rm=rs01ch:sd=/usr/spool/lpd/risc:lf=/usr/adm/lpd-errs:\

:rp=ps:

© 2002 by CRC Press LLC

g

The name of the remote printer is psrisc (Postscript printer on the RS6000 system);
alternative names are possible.

• The empty “:lp=:” field shows that this entry describes a remote printer (remember,
for a local printer this field specifies a corresponding special device file).

• The field “:rm=rs01ch:” indicates the destination system for remote printing (on
a remote machine). It can be specified with the valid DNS name of the system
(in this case, “rs01ch”) or its IP address (DNS and IP addressing are discussed
in Chapters 15 and 16).

• The field “:rp=ps:” holds the name of the target remote printer on the remote
system (in this case, “ps”). This name must match the name of the corresponding
local printer on the remote system.

These three fields are mandatory for the proper definition of a remote printer. It is a
good idea to define several more fields that strictly define printing issues on the client
side, such as:

• The field “:sd=/usr/spool/lpd/risc:” specifies the spooling directory (in this case
“/usr/spool/lpd/risc”). It is recommended that you use the printer name as a spool-
ing subdirectory.

• The field “:lf=/usr/adm/lpd-errs:” specifies the error log file. A single log file may
be defined for multiple printers.

The entry does not contain any specific details about the remote printer other than its
name. The needed information is specified in the /etc/printcap file on the remote system
(if the remote system is a BSD UNIX system at all), or in another appropriate way.

On the printer server side, very little administration is required. Assuming the selected
remote printer already exists as a local printer there, the server’s /etc/printcap file remains
unmodified. However, to allow users from a client system to access and print on the print
server, the client system itself must be specified as a trusted system; the hostname of the
client system must be included in the server’s /etc/hosts.equiv file (this is discussed in
Chapter 19), or in the server’s /etc/hosts.lpd file (the structure of this file is the same as the
/etc/hosts.equiv). Otherwise, remote print requests from the client system will be refused.

10.3.2.2 Adding a Remote Linux Printer
Although Linux is mainly BSD compliant in the printing segment, there are some odds
we have to mention. Of course, use of the available printtool utility is again recommended.
Supposing we are adding two more remote printers on the Linux system we have already
discussed, two more /etc/printcap entries have been specified afterward:

##PRINTTOOL3## REMOTE POSTSCRIPT 600 ×600 letter {} PostScript Default 1

lp02|testlp:\
:sd=/var/spool/lpd/lp02:\
:mx#0:\
:rm=ls-printer2:\
:rp=lp02:\
:lpd_bounce=true:\
:sh:\
:if=/var/spool/lpd/lp02/filter:

© 2002 by CRC Press LLC

##PRINTTOOL3## REMOTE lj4dith 600×600 letter {} LaserJet4dither Default {}
lp01:\

:sd=/var/spool/lpd/lp01:\
:mx#0:\
:sh:\
:rm=ls-printer1:\
:rp=lp01:\
:lpd_bounce=true:\
:if=/var/spool/lpd/ lp01/filter:

Two added remote printers are local printers on remote machines ls-printer2 and
ls-printer1 (actually they are network printers identified by these names); this is specified
within the usual “rm=” fields. What is unusual is the lack of the expected BSD config-
uration field “lp=;” Linux simply assumes a remote printer except if it is not explicitly
specified as the local one. Other fields are the known ones, or their variations.

10.3.2.3 Adding a Remote System V Printer
The basic concept of remote System V printing is the same as with BSD: the client/server
model and the required local setting of printers on the server side remain the same.
However, setting remote printers on the client side is different, and again the powerful
lpadmin command is used. Three arguments are required to appropriately set a remote
printer: a printer name on the client side, a print server (a remote machine) name, and a remote
printer name (the name of a local printer on the server side). The lpadmin command provides
corresponding options for these arguments. Unfortunately, the use of the command is not
uniform among System V flavors — different “lpadmin options” are available for this
purpose. We will consider two of them: Solaris 2.x and the HP-UX flavor.

10.3.2.3.1 Setting a Remote Printer on Solaris 2.x

lpadmin -p printer-name -s remsystem-name!remprinter-name

where
printer-name Name selected to designate the remote printer
remsystem-name Name of the remote system that should provide printing (in versions

up to Solaris 2.6, must be listed in the /etc/lp/Systems file)
remprinter-name Local name of the printer on the remote system

The /etc/lp/Systems file contains a list (table) of all associated remote systems and printers.
The lpsystem command is available to update the file. We will discuss this issue later in
more detail, as a part of cross-platform printing.

10.3.2.3.2 Setting a Remote Printer on HP-UX

The HP-UX platform is consistent regarding this issue within releases HP-UX 9.0x, HP-UX
10.xx, and HP-UX 11.xx.

lpadmin -pprinter-name -ormremsystem-name -orpremprinter-name

where
printer-name Name selected to designate the remote printer
remsystem-name Name of the remote system that should provide printing
remprinter-name Local name of the printer on the remote system

© 2002 by CRC Press LLC

g

The HP-UX approach is more flexible; it enables several printing issues besides a remote
printer to be set, like specifying the commands to cancel requests to remote printers and
to obtain the status of requests to remote printers. Specifying the corresponding “cancel”
and “status” models provides these functions, so when the cancel and lpstat commands
for remote printers are used, they refer to defined models. The template models are
supplied with the LP software residing on the /usr/spool/lp/cmodel and /usr/spool/lp/smodel
directories, and they should be sufficient for most implementations.

The corresponding lpadmin options to set remote cancel and status models are:

lpadmin -ocmrcmodel rcmodel is the remote cancel model
lpadmin -osmrsmodel rsmodel is the remote status model

Let us see what the template cancel and status models look like:

ls -l /usr/spool/lp/cmodel

total 2

-r--r--r-- 1 bin bin 107 Dec 2 1993 rcmodel

cat /usr/spool/lp/cmodel/rcmodel

#!/ bin/sh

/* @(#) $Revision: 66.1 $ */

This model is for remote cancel operation.

/usr/lib/rcancel $*

ls -l /usr/spool/lp/smodel

total 2

-r--r--r-- 1 bin bin 107 Dec 2 1993 rsmodel

cat /usr/spool/lp/smodel/rsmodel

#!/ bin/sh

/* @(#) $Revision: 66.1 $ */

This model is for remote status operation.

/usr/lib/rlpstat $*

Both models are scripts and rely on special commands (rcancel and rlpstat) provided by
HP-UX to deal with remote printers. If you execute the usual printing-related commands
for remote printers:

cancel -premprinter print-requests

or

lpstat -premprinter

instead of the expected cancel and lpstat commands, the corresponding rcancel and rlpstat
commands will be executed.

© 2002 by CRC Press LLC

10.4 UNIX Cross-Platform Printer Spooling

We have discussed BSD and System V printing subsystems in great detail; however,
besides the fact that they are very different from one another, they are also mutually
noncompatible. Incompatibility can be a serious obstacle in providing the unique print
service on a multiplatform environment. UNIX vendors treat this problem differently (if
they do at all); some UNIX flavors include both versions of printer spooling subsystems
as standard parts of the UNIX distribution, while others provide specific filters, programs,
commands, or utilities to bridge two subsystems. We will discuss a few cases.

10.4.1 BSD and AIX Cross-Printing

AIX supports BSD-like remote printing; the BSD-like daemon lpd is running on the system
and monitoring port 515 for incoming remote print requests. In a sense, AIX supports the
BSD printer spooling subsystem; the /etc/hosts.lpd or /etc/hosts.equiv files define trusted
systems from which remote printing is allowed.

However, this is not sufficient for successful cross-printing; incoming print jobs must
be additionally filtered as appropriate. Special BSD filters exist for this purpose.

ls -l /usr/lib/lpd
total 5504

.

.
-r-xr-x--- 1 root printq 2601 Jul 16 1994 aixlong
-r-xr-x--- 1 root printq 2797 Jul 16 1994 aixshort
-r-xr-x--- 1 root printq 3229 Jul 16 1994 aixv2long
-r-xr-x--- 1 root printq 3189 Jul 16 1994 aixv2short
-r-xr-xr-x 1 bin bin 3394 Jul 16 1994 attlong
-r-xr-xr-x 1 bin bin 2983 Jul 16 1994 attshort
-r-xr-x--- 1 root printq 4654 Jul 16 1994 bsdlong
-r-xr-x--- 1 root printq 3867 Jul 16 1994 bsdshort

.

.

Different filtering methods should be applied when remote print requests are received
from other AIX systems, from System V (AT&T) systems, or from BSD systems. The
corresponding administration is performed through the SMIT tool.

10.4.2 Solaris and BSD Cross-Printing

Solaris 2.x introduced the special lpsystem command to register remote systems with the
print service; the command handles the master file for remote printing /etc/lp/Systems and
defines requested parameters to control communication with remote systems (parameters
such as type, retry and timeout). The type parameter defines the remote system as one of
two types: “s5” (System V-like, or Solaris-like, which is default), or “bsd” (BSD-like). The
format of the command is:

lpsystem [-t type] [-T timeout] [-R retry] [-y “comment”] remote_system_name

© 2002 by CRC Press LLC

g

remote_system_name is the name of the remote system from/to which print jobs can be
received/sent. If it is a plus sign (“+”), then anonymous client support is enabled. If the
“bsd” type is defined, then cross-platform printing is selected.

Other options of the lpsystem command enable the user to print out a description of
the parameters associated with a specific system, to remove an entry associated with a
system, and other miscellaneous functions.

The remaining steps to enable remote printing are the same as in the case of single-
platform spooling, which we have already discussed.

Let us look at a practical example of remote printing setup. We want to provide remote
printing on a default printer connected to the specific PC (of course, this PC is a separate
host on the network, and Windows-based BSD-like remote printer and spooler daemons
are running on it). The first step is to execute the command:

$ lpsystem -t bsd -R 1 levi
levi has been added # this was the system response

The command defines BSD-like printing on the remote PC-host named levi. The new
entry is automatically added into the /etc/lp/Systems file for a new remote host; although
the file is an ASCII one, do not use editors to modify it. We will check the file (it is well
commented, so additional explanations are not needed):

$ cat /etc/lp/Systems
#
#ident “@(#)Systems 1.6 93/03/19 SMI” /* SVr4.0 1.2 */
#
The following “#VERSION=” keyword is neccessary.
#VERSION=1
#
LP Spooler System Information
#
Format (same line separated by “:”)
#
System-name
The name of the remote system.
#
System-password
The remote systems password (encrypted) for using our local LP services.
(Currently unused. Reserved for security version.)
#
Reserved
Must be a “-”
#
system-type (s5|bsd)
The type of the remote system.
s5: implies an SVR4.0 machine AND SVR4.0 lp (network independent)
communication protocol.
bsd: implies TCP/IP network communication AND BSD lpd specific communication
protocol. (This is used ONLY if the remote system is connected to the
local system via TCP/IP AND it is a BSD OS.
#
Reserved
Must be a “-”
#
timeout (minutes)

© 2002 by CRC Press LLC

“n” == never timeout
“0” == do not wait for work
>0 == wait for work
Default: Never
#
retry (minutes)
“n” == do not retry if connection is dropped.
“0” == retry immediately if connection is dropped.
>0 == retry every N minutes until timeout.
Default: 10 minutes
#
Reserved
Must be a “-”
#
Reserved
Must be a “-”
#
Comment
#
NOTE: Unused fields must contain a dash except for the password field which should contain an “x” and the

comment field which can be blank.
#
Example:
Kepler:x:-:s5:-:n:10:-:-:SVR4.0 OS
fubar:x:-:bsd:10:n:-:-:BSD OS
Galileo:x:-:s5:-:30:10:-:-:
#
If the first field (i.e. the System Name) contains a “+”, then *all* incoming connections will be established,
regardless of whether or not there’s an entry here for the remote system! This will reduce your maintenance when
you have a number of clients, and you don’t really care about restricting your printer. Conceivably a print
server could just contain a single entry of the following form for both BSD and SVR4 clients:
±:x:-:s5:-:n:10:-:-:Allow all connections
#########
#
±:x:-:s5:-:n:10:-:-:Allow all connections
levi:x:-:bsd:-:n:1:-:-:Local printer on PC

The first entry is the default one and it allows System V remote printing from/to all
hosts in the network. Sometimes it is a good idea to move out this line with the command:

$ lpsystem -r +
Removed “+” # this is the system response

The second entry is our contribution; it defines BSD printing on the remote host “levi.”
To list current remote printing possibilities:

$ lpsystem -l
System: +
Type: s5
Connection timeout: never
Retry failed connections: after 10 minutes
Comment: allow all connections
System: levi
Type: bsd
Connection timeout: never
Retry failed connections: after 1 minutes
Comment: local printer on PC

© 2002 by CRC Press LLC

g

The next step is to define the remote printer: the name of the printer for users and a
real printer’s name on the remote system.

$ lpadmin -p local -s levi!default

The new printer is identified as “local” (the name is arbitrary, but once defined users must
use it to identify this specific printer). The remote printer name “default” is used here to denote
the default PC printer (in this case there is a single printer connected to the PC).

Two more steps are required to enable the defined printer. The following two commands
should be executed at the end of the process:

$ accept local

$ enable local

Please note that starting with Solaris 2.6, the lpsystem command and the /etc/lp/Systems
file are becoming obsolete.

10.4.3 Third-Party Printer Spooling Systems

Generally, UNIX provides a decent printer spooling subsystem independent of the specific
flavor of the given system. It works well, it is flexible enough, and it is fully supported
and well documented. However, in administering it, you will soon see occasional strange
printing-related behaviors, unexpected problems with printers, hangs of the printing
daemon, and difficulties in maintaining printing queues. During production hours, fixing
these problems can be quite painful.

These problems left a market open for third parties to develop better printer spooling
software, and several solutions came into being, including third-party software (for
example, EasySpooler by the Seay Systems, Inc.) and UNIX vendor-specific optional
software (like HP-UX JetAdmin software). This software offers a more reliable, more stable,
and easier-to-use printing environment. Of course, additional burdens are also placed on
the system administrator, who must be familiar with the new software. The full benefits
of the additional (or optional) software are achieved only if this software is configured
and maintained appropriately.

From the user standpoint, the use of the printing subsystem must be completely trans-
parent; users should not be aware of underlying printing software, they simply need to
be able to print. From the administration standpoint, however, it is crucial to have a
reliable, stable, and easy to maintain printing subsystem. Though there are no “universal
formulas” to make any specific decision in creating such a subsystem, it seems that the
generic UNIX printing subsystem is quite sufficient for a print client, while under some
circumstances, it is worth considering third-party printer spooling software for a print
server. In any case, the final decision is up to the system administrator or the administra-
tion team responsible for the actual system.

© 2002 by CRC Press LLC

11
Terminals

11.1 Terminal Characteristics

Terminals have been common devices in the communication between users and UNIX
systems for a very long time. The modus vivendi for each UNIX system is to provide services
to users, so from the very early days of its development, UNIX has paid full attention to
terminals as vehicles for users to log into the system. Evidence of this attention can be
seen in many UNIX administration issues, primarily by the fact that the system guarantees
an immediate respawning of the eventually killed getty process which controls each
connected terminal. A terminal connection is too valuable for UNIX to allow it to be lost;
a connected terminal without an attached getty process cannot function properly, so the
getty process can never die. We will discuss this topic and other terminal-related issues
in this Chapter.

While terminals were, in the past, the only way for the system to communicate with
users, today they are used only sporadically, primarily for the system console. All major
communication with users is now performed through the network. Does this mean that
terminals are obsolete? Well, this statement is partially true for terminal units themselves;
however, the UNIX concept of communicating with users via terminals remains. The
appropriate adaptation was needed: pseudo-terminals, “logical terminals” that behave
like real terminals without having a corresponding physical unit, replace the old terminals.
We will also address pseudo-terminals in this Chapter.

Terminals are connected with the computer over serial lines and are accessed, like all
other devices in UNIX, by the corresponding special device files. Modems are treated in
almost the same way as terminals.

As with many other issues, UNIX manages terminals in two major ways; again we will
address two platforms: BSD and System V (or AT&T). The two approaches are quite
different; they rely on different configuration files, they are based on different terminal
capability databases, and sometimes they use different administrative commands. On the
other hand, they also overlap in many aspects, and through their development, some of the
administrative commands have become common for both platforms.

11.1.1 BSD Terminal Subsystem

Although most of the UNIX flavors that support BSD terminal subsystem are old-
fashioned platforms, sometimes even obsolete ones (or on their way to becoming obsolete),

© 2002 by CRC Press LLC

we will start with the BSD terminal subsystem. Obsolescence is generally true for terminals
as input/output devices, with the exception of the console. In any case, it is difficult to
discuss this topic without going back to the earlier days of UNIX, when terminals were
a part of every UNIX system. However, there is no doubt about the educational benefits
of discussing the BSD terminal subsystem; it explains the continuity in the UNIX develop-
ment and makes it easier to understand the System V approach to terminals.

11.1.1.1 BSD Terminal Line Initialization
Terminals are connected to a system via terminal lines. To make a system available to users,
the terminal lines must be initialized and put into operational mode during the system startup.

The terminal line initialization is a regular part of the startup procedure to bring the
system into multi-user mode. Originally, on the BSD system, init, the process #1, first
spawns a shell during the system startup to interpret the commands in the initialization
script /etc/rc. Once the script /etc/rc is successfully completed, init forks a copy of itself
for each terminal device that is specified for use in the terminal line configuration file
/etc/ttys. Copies of the init program then invoke (by the exec system call) other system
programs specified by the corresponding terminal line entries in the configuration file;
usually, this was the /etc/getty program. The getty program is responsible for opening
and initializing the terminal line; it sets the initial parameters for a terminal line and
establishes the type of terminal attached to the line. The getty program can be directed to
accept connections at a variety of baud rates. The getty’s actions are driven by another
configuration file /etc/gettytab, known as the terminal line definition file. The whole
procedure, as well as a terminal initialization, is illustrated in Figure 11.1.

A good BSD representative is SunOS 4.1.x, which uses a slightly modified initialization
procedure; besides some changes in rc initialization scripts, it also renamed the terminal
line configuration file into /etc/ttytab. However, the purpose and initialization steps
remained the same.

Port; command; type;

Terminal Line
Configuration File:

/etc/ttys (ttytab)

Program
getty

Program

init

Terminal

line

look-up

look-up

pointer

User's shell

User is
logged-in*

USER

Database to define terminal
speed, login message, etc.

Terminal Line Definition
File: /etc/gettytab

Terminal Type
Capability Database

/etc/termcap

TERM
variable

Login shell
script file

(.profile / .login)

FIGURE 11.1
BSD terminal line and terminal initialization. *Note: The login procedure and password checking authentication
are not presented.

© 2002 by CRC Press LLC

The getty program waits for a user to log into the system, but the getty program invokes
another authentication program /bin/login to complete the login procedure.

We will examine, in greater detail, the structures of the terminal line configuration and
definition files. Both types of terminal line configuration files, /etc/ttys and /etc/ttytab, are
presented below:

cat /etc/ttys
@(#)ttys 6.1 (ULTRIX)

#

name getty type status comments

#

console “/etc/getty std.9600” vt100 on secure # console terminal

tty00 “/etc/getty std.9600” vt100 off nomodem # direct connect tty

tty01 “/etc/getty std.9600” vt100 off nomodem # direct connect tty
.
.

ttyd0 “/etc/getty std.9600” vt100 off shared secure # modem line

ttyp0 none network secure
.
.

ttyvf none network secure

cat /etc/ttytab
@(#)ttytab 1.7 SMI (SunOS 4.1.3)

#

name getty type status comments

#

console “/usr/etc/getty cons8” sun on local secure

ttya “/usr/etc/getty std.9600” unknown off local

ttyb “/usr/etc/getty std.9600” unknown off local

tty00 “/usr/etc/getty std.9600” unknown off local
.
.

tty0f “/usr/etc/getty std.9600” unknown off local

ttyp0 none network off
.

ttyTf none network off

Both configuration files list all available system terminals; both files are partially shown
here. The file has to include an entry for every terminal port in use, and may have entries
for unused ports. Each entry has four fields:

terminal-port command terminal-type status

where
terminal-port The name of the special device file in the /dev directory that corresponds

to the line. All serial peripherals (RS-232), such as terminals, serial
printers, and modems have a port name of the form “ttynn,” where
“nn” is a two-digit hexadecimal number. Virtual terminal devices
(pseudo terminals) are also listed.

© 2002 by CRC Press LLC

command The command that init should execute to monitor this terminal line:
getty For terminals and modems
none Do not create a monitoring process

terminal-type The name of a terminal type described in /etc/termcap; the TERM variable
will be set to this value at login. Alternatively, the field could contain a
keyword to be used by user initialization files or the tset command:
network Used for virtual terminal devices over the network
unknown Used for lines without a specific attached terminal

(includes modem lines)
dialup Another type used for modem lines
plugboard Used for a board that allows different terminal cables to

be swapped
status Zero or more keywords, separated by spaces:

on Line is enabled, and command will be run by init
off Line is disabled, and the entry ignored
secure Allow direct root logins
window=cmd init should run cmd before the one in the field command

The files also list virtual terminals, better known as pseudo terminals; they are widely
used to establish network connections to the system, which is the prevailing mechanism
today for users to log in to the system. From the examples presented above, it can be seen
that only the console is used locally; all other connections are provided over a network,
or modem, using different terminals unknown in the time of terminal line initialization.
Terminals will identify themselves once the sessions have been established.

It is interesting to note that SunOS 4.3.x, to preserve compatibility with older-style
software that might still explicitly require the configuration file under the original name
“/etc/ttys,” also maintained another configuration file with that name. The file /etc/ttys was
derived from the actual terminal line configuration file /etc/ttytab by the program init
during the system startup.

This file looked like:

cat /etc/ttys
12console

02ttya

02ttyb

02tty00
.
.

Each entry in this auxiliary configuration file described, in a condensed way, the corres-
ponding entry in the /etc/ttytab file. The format of an entry was:

on-flag|speed|dev-name (All fields follow one another with no space
between; here the presented “|” character is
only to indicate fields, and it does not exist in
a real entry.)

where
on-flag Specifies the entry is active (on). On/off correspond to 1/0

© 2002 by CRC Press LLC

speed Specifies a baud-rate of the line:
0 automatic baud-rate selection
f 1200 Baud
6 2400 Baud
2 9600 Baud
5 dial-in 1200

dev-name Specifies a special device file on the /dev directory

Today, this file has only historical value. Let us return to the terminal line configuration
file /etc/ttytab. When reading this file, one can see that the getty program is invoked with an
argument that actually points to another entry in the terminal line definition file /etc/gettytab.
Each entry in the file /etc/gettytab describes one class of terminals. The entry is accessed
every time the getty program is started.

cat /etc/gettytab
#
@(#)gettytab 1.11 SMI; from UCB 5.7
#
Copyright (c) 1980 Regents of the University of California.
All rights reserved. The Berkeley software License Agreement
specifies the terms and conditions for redistribution.
#
Most of the table entries here are just copies of the
old getty table, it is by no means certain, or even likely,
that any of them are optimal for any purpose whatever.
Nor is it likely that more than a couple are even correct
#
The default gettytab entry, used to set defaults for all other
entries, and in cases where getty is called with no table name
default:\

:ap:lm=\r\n%h login\72 :sp#9600: The field “lm” stands for login message, and it specifies the
displayed prompt; here, the default login prompt is: “hostname
login:”. This field can be combined with another field “im”
(initial message).

#
This is a new entry to internationalize the console. It needs to be
8 bit clean so that ISO 8859 characters can be displayed without
the window system.
cons8:\

:p8:lm=\r\n%h login\72 :sp#9600:
#
Fixed speed entries
The “std.NNN” names are known to the special case
portselector code in getty, however they can
be assigned to any table desired.
The “NNN-baud” names are known to the special case
autobaud code in getty, and likewise can
be assigned to any table desired (hopefully the same speed).
#
a|std.110|110-baud:\

:nd#1:cd#1:uc:sp#110:
.
.

2|std.9600|9600-baud:\
:sp#9600:

#

© 2002 by CRC Press LLC

Dial in rotary tables, speed selection via ‘break’
d1200|Dial-1200:\

:nx=d150:fd#1:sp#1200:
#
Odd special case terminals

.

.

This file is a kind of simplified database that describes terminal lines. There is a default
terminal class, default, which is used to set global defaults for all classes; it is read first,
and then the entries for the selected class are read and they override particular settings.
The file layout and the syntax and meaning of individual fields in the file are the same
as in the termcap database, a description of which follows.

11.1.1.2 The BSD termcap Database

UNIX programs are written to be independent of the characteristics of any particular kind
of terminal; they call a standard manipulation library, which is then responsible for inter-
facing to actual terminals. Such libraries serve to map general terminal characteristics and
functions to the specific character sequences required to perform them on any specific
terminal.

While the actual terminals are indicated in the terminal line configuration file (ttys, or
ttytab), or by users who indicate what kind of terminal they are using by setting TERM
environment variable, the terminal definitions are stored in a separate database on the
system. For the BSD terminal subsystem, the database is known as the termcap database
(this stands for “terminal capabilities”), and it is contained in the huge ASCII file /etc/termcap.
The /etc/termcap file contains a large number of entries that fully describe different ter-
minals. It is important to notice that only terminals described in the termcap database can
be implemented; otherwise the system does not know how to handle terminals that are
not described.

Some third-party software, and sometimes even a part of the system software, is based
on the termcap terminal capability database. This software requires an appropriate termcap
file, even when running on the System V UNIX platforms that provide a different kind
of terminal capability database known as terminfo. This is sufficient reason for some
System V UNIX flavors to include this file as a standard part of their installation. For
example, Solaris 2.x provides the file /etc/termcap as a link to the file /usr/share/lib/termcap,
which is an exact copy of the termcap database on SunOS 4.1.x; most of the dates in the
comments are from as long as twenty years ago.

$ ls -l /etc | grep termcap (Solaris)
lrwxrwxrwx 1 root root 24 May 28 1998 termcap -> ../ usr/share/lib/termcap

Similarly, Linux provides an updated /etc/termcap file; even the getty program uses this
file (i.e., the termcap terminal database), while other screen-based programs use the
terminfo terminal database. For example, on Red Hat Linux Rel. 5.2 (Apollo):

$ ls -l /etc | grep term

-rw-r--r- - 1 root root 434898 Sep 10 1998 termcap

In both cases, the /etc/termcap file includes a complete parallel terminal database (both
platforms, Solaris and Linux, resemble System V-flavored UNIX in this area, so the primary
terminal database is terminfo).

© 2002 by CRC Press LLC

For a better idea of what the termcap database looks like, here is a part of it:

$ cat /etc/termcap

#
Termcap source file @(#)termcap.src 1.33 SMI; from UCB 5.28
Please mail changes to (arpanet): termcap@berkeley
#
....
....
Mu|sun|Sun Microsystems Workstation console:\ This is a console

:am:bs:km:mi:ms:pt:li# 34:co# 80:cl= ^L:cm=\E[%i%d;%dH:\
:ce=\E[K:cd=\E[J:\
:so=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:rs=\E[s:\
:md=\E[1m:mr=\E[7m:me=\E[m:\
:al=\E[L:dl=\E[M:im=:ei=:ic=\E[@:dc=\E[P:\
:AL=\E[%dL:DL=\E[%dM:IC=\E[%d@:DC=\E[%dP:\
:up=\E[A:nd=\E[C:ku=\E[A:kd=\E[B:kr=\E[C:kl=\E[D:\
:k1=\E[224z:k2=\E[225z:k3=\E[226z:k4=\E[227z:k5=\E[228z:\
:k6=\E[229z:k7=\E[230z:k8=\E[231z:k9=\E[232z:

....

....
#
This file describes capabilities of various terminals, as needed by
software such as screen editors. It does not attempt to describe
printing terminals very well, nor graphics terminals. Someday.
See termcap(5) in the Unix Programmers Manual for documentation.
#
Conventions: First entry is two chars, first char is manufacturer,
second char is canonical name for model or mode.
Third entry is the one the editor will print with “set” command.
Last entry is verbose description.
Others are mnemonic synonyms for the terminal.
#
Terminal naming conventions:
Terminal names look like <manufacturer> <model> - <modes/options>
Certain abbreviations (e.g. c100 for concept100) are also allowed
for upward compatibility. The part to the left of the dash, if a
dash is present, describes the particular hardware of the terminal.
The part to the right can be used for flags indicating special ROM’s,
extra memory, particular terminal modes, or user preferences.
All names are always in lower case, for consistency in typing.
#
The following are conventionally used flags:
rv Terminal in reverse video mode (black on white)
2p Has two pages of memory. Likewise 4p, 8p, etc.
w Wide - in 132 column mode.
pp Has a printer port which is used.
na No arrow keys - termcap ignores arrow keys which are
actually there on the terminal, so the user can use
the arrow keys locally.
#
. . .
. . .
Comments in this file begin with # - they cannot appear in the middle
of a termcap entry. Individual entries are commented out by
placing a period between the colon and the capability name.
#
This file is to be installed with an editor script (reorder)
that moves the most common terminals to the front of the file.

© 2002 by CRC Press LLC

If the source is not available, it can be constructed by sorting
the above entries by the 2 char initial code.

....
....
d: DEC (DIGITAL EQUIPMENT CORPORATION) These are DEC terminals
#
Note that xn glitch in vt100 is not quite the same as concept, since
the cursor is left in a different position while in the weird state
(concept at beginning of next line, vt100 at end of this line) so
all versions of vi before 3.7 don’t handle xn right on vt100.
I assume you have smooth scroll off or are at a slow enough baud
rate that it doesn’t matter (1200? or less). Also this assumes
that you set auto-nl to “on”, if you set it off use vt100-nam below.
#
Since there are two things here called vt100, the installer can make
a local decision to make either one standard “vt100” by including
it in the list of terminals in reorder, since the first vt100 in
/etc/termcap is the one that it will find. The choice is between
nam (no automatic margins) and am (automatic margins), as determined
by the wrapline switch (group 3 #2). I personally recommend turning
on the bit and using vt100-am, since having stuff hammer on the right
margin is sort of hard to read. However, the xn glitch does not occur
if you turn the bit off.
#
I am unsure about the padding requirements listed here. I have heard
a claim that the vt100 needs no padding. It’s possible that it needs
padding only if the xon/xoff switch is off. For UNIX, this switch
should probably be on.
#
The vt100 uses rs and rf rather than is/ct/st because the tab settings
are in non-volatile memory and don’t need to be reset upon login.
You can type “reset” to get them set.
#
d0|vt100|vt100-am|vt100am |dec vt100:\

:do=^J:co#80:li#24:cl=50\E[;H\E[2J:sf=5\ED:\
:le=^H:bs:am:cm=5\E[%i%d;%dH:nd=2\E[C:up=2\E[A:\
:ce=3\E[K:cd=50\E[J:so=2\E[7m:se=2\E[m:us=2\E[4m:ue=2\E[m:\
:md=2\E[1m:mr=2\E[7m:mb=2\E[5m:me=2\E[m:is=\E[1;24r\E[24;1H:\
:rf=/usr/share/lib/tabset/vt100:\
:rs=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h:ks=\E[?1h\E=:ke=\E[?1l\E>:\
:ku=\EOA:kd=\EOB:kr=\EOC:kl=\EOD:kb=^H:\
:ho=\E[H:k1=\EOP:k2=\EOQ:k3=\EOR:k4=\EOS:pt:sr=5\EM:vt#3:xn:\
:sc=\E7:rc=\E8:cs=\E[%i%d;%dr:

dp|vt100-np|vt100 with no padding (for psl games):\
:cl=\E[H\E[2J:sr=\EM:cm=\E[%i%d;%dH:nd=\E[C:up=\E[A:\
:ce=\E[K:cd=\E[J:so=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:\
:md=\E[1m:mr=\E[7m:mb=\E[5m:me=\E[m:tc=vt100:

d1|vt100-nam|vt100nam|vt100 w/no am:\
:am@:xn@:\
:is=\E\E[?3l\E[?4l\E[?5l\E[?7l\E[?8h:ks=\E[?1h\E=:ke=\E[?1l\E>:\
:tc=vt100-am:

....

....
END OF TERMCAP

Only part of the /etc/termcap file is presented. We have focused on the entries for DEC
VT100 type terminals, as they are very common (VT100 is presented in bold). The termcap

© 2002 by CRC Press LLC

entries are very similar to the printcap entries which present in many cases simplified
versions of termcap entries.

The first line in the entry is a series of names and aliases for the terminal; any of them
(if they do not contain spaces) could be used as the value of the TERM environment
variable. The remainder of the entry is a colon-separated series of capability codes and
values. There are several kinds of capabilities:

• Data about the terminal — For example, the am code says that the terminal can
automatically wrap long output strings onto multiple lines on the terminal
screen. (Some other codes describe how many columns the terminal screen has
(80), or how many lines it has (24), and so on.)

• The sequence of characters to send to the terminal to get it to perform some action —
The codes indicate what ESCAPE sequence is required to perform some action
on the terminal, for example, to move the cursor to some position (the ESCAPE
character is abbreviated \E).

• The sequence of characters emitted when a special key is pressed — These codes hold
the sequence for the special keys on the terminal (the ESCAPE character is
abbreviated \E).

There are three types of capability:

1. Boolean capabilities — Consist of a capability name with no argument; for example,
the aforementioned am for automatic wrapping

2. Numeric capabilities — Consist of a capability name, a sharp sign (#), and a
number; for example, co#80 says that the terminal has 80 columns

3. String capabilities — Consist of a capability name, an equal sign (=), and a string
(a command sequence); for example, up=^K specifies that the sequence CTRL-
K will move the cursor up one line

Once a terminal is described in the termcap database, each time a reference is made to
the terminal, the system addresses the database, searches for a corresponding entry, and
learns about its capabilities. The local environment variable TERMCAP can be introduced
and set to the values of the terminal capabilities to make this process faster, so the repeated
browsing of the termcap database can be skipped.

11.1.2 System V Terminal Subsystem

The System V approach to terminal configuration and initialization is quite different from
that of the BSD terminal subsystem. The bottom line, though, is the same: to initialize
terminal lines and terminals themselves. It is the details that are different: file names, their
structures and layouts, and even process names. A schematic of System V terminal line
and terminal initialization is presented in Figure 11.2.

11.1.2.1 System V Terminal Line Initialization

System startup on System V is partially controlled by the system run-level initialization
file (table) /etc/inittab; this is actually the configuration file for the init process which
manages the system startup in the last phase, including the initialization of terminal lines.

© 2002 by CRC Press LLC

Consequently, the configuration entries for the System V terminal line initialization are
included in the /etc/inittab file. Two examples (HP-UX and Solaris) follow:

$ cat /etc/inittab (HP-UX platform)
init:4:initdefault:
stty::sysinit:stty 9600 clocal icanon echo opost onlcr ienqak ixon icrnl ignpar </dev/systty

.

.
cons:123456:respawn:/ usr/sbin/getty console console # system console
vue :4:respawn:/usr/vue/bin/vuerc # VUE invocation
ttp1:234:respawn:/usr/sbin/getty-h tty0p1 9600
ttp2:234:respawn:/usr/sbin/getty-h tty0p2 9600
ttp3:234:respawn:/usr/sbin/getty-h tty0p3 9600
ttp4:234:respawn:/usr/sbin/getty-h tty0p4 9600
ttp5:234:respawn:/usr/sbin/getty-h tty0p5 9600
To activate the corresponding terminal lines, these entries should be commented-out.

$ cat /etc/inittab (Solaris 2.x platform)
ap::sysinit:/sbin/autopush -f/etc/iu.ap
fs::sysinit:/sbin/rcS >/dev/console 2>&1 </dev/console
is:3:initdefault:
s0:0:wait:/sbin/rc0 off >/dev/console 2>&1 </dev/console
s1:1:wait:/sbin/shutdown -y -iS -g0 >/dev/console 2>&1 </dev/console

.
co:234:respawn:/usr/lib/saf/ttymon -g -h -p “‘uname -n’ console login:” -T sun \

-d/dev/console -l console -m ldterm,ttcompat
.

In both examples there are no defined terminal lines in the configuration file; literally,
there are no terminals connected to the systems. The only terminal represented is the
console, which is connected to the serial terminal port and included in the /etc/inittab

device; command;others

System Run-Level
Initialization File

/etc/inittab

Program
getty

Program

init

Terminal

line

look-up

look-up

pointer

User's shell

User is
logged-in*

USER

Database to define terminal
speed, login message, etc.

Terminal Line Definition
File: /etc/gettydefs

Terminal Type
Capability Database

/etc/terminfo/?/*

TERM
variable

Login shell
script file

(.profile / .login)

FIGURE 11.2
System V terminal line and terminal initialization. *Note: Login procedure and password checking authentication
are not presented.

© 2002 by CRC Press LLC

configuration file. Any other terminal line would be defined in the same way. The console
entries define the programs to be invoked to initialize terminal lines.

While the getty program exists on the HP-UX platform to initialize terminal lines, on the
Solaris platform another program is renamed ttymon (to preserve compatibility with previous
versions, the getty program also exists as a symbolic link to the ttymon program).

The common name for the terminal line definition file is /etc/gettydefs, and the getty
program looks there for the terminal line settings. On the Solaris platform, the file is
renamed /etc/ttydefs to match the new program name ttymon.

Despite differences in file naming, the purpose of the files is the same, and the Solaris
file has almost the same contents as the BSD terminal subsystem:

$ cat /etc/gettydefs (HP-UX)
@(#) $Revision: 66.2 $
Default gettydefs file, see gettydefs(4).
#
The entries below allow the following sequences, changing # each time a BREAK is received:
1200 -> 2400 -> 4800 -> 9600 -> 300 [repeats]

1200 # B1200 HUPCL IGNPAR PARENB ICRNL IXON OPOST ONLCR CS7 CREAD ISIG ICANON ECHO
ECHOK PARENB ISTRIP IXANY TAB3

B1200 SANE CS7 PARENB ISTRIP IXANY TAB3 HUPCL
#login: #2400 #next to try: 2400 Baud!

2400 # B2400 HUPCL IGNPAR PARENB ICRNL IXON OPOST ONLCR CS7 CREAD
ISIG ICANON ECHO ECHOK PARENB ISTRIP IXANY TAB3

B2400 SANE CS7 PARENB ISTRIP IXANY TAB3 HUPCL
#login: #4800 #next to try: 4800 Baud!

4800 # B4800 HUPCL IGNPAR PARENB ICRNL IXON OPOST ONLCR CS7 CREAD
ISIG ICANON ECHO ECHOK PARENB ISTRIP IXANY TAB3

B4800 SANE CS7 PARENB ISTRIP IXANY TAB3 HUPCL
#login: #9600 #next to try: 9600 Baud!

9600 # B9600 HUPCL IGNPAR PARENB ICRNL IXON OPOST ONLCR CS7 CREAD
ISIG ICANON ECHO ECHOK PARENB ISTRIP IXANY TAB3

B9600 SANE CS7 PARENB ISTRIP IXANY TAB3 HUPCL
#login: #300 #next to try: 300 Baud!

300 # B300 HUPCL IGNPAR PARENB ICRNL IXON OPOST ONLCR CS7 CREAD
ISIG ICANON ECHO ECHOK PARENB ISTRIP IXANY TAB3

B300 SANE CS7 PARENB ISTRIP IXANY TAB3 HUPCL
#login: #1200 #to try 1200 Baud again!

#
This entry is for high speed modems. Most of these tend to always
communicate to the cpu at 19200, regardless of the connection speed.
19200 # B19200 HUPCL50.0 pt IGNPAR PARENB ICRNL IXON OPOST ONLCR CS7 CREAD ISIG

ICANON ECHO ECHOK PARENB ISTRIP IXANY TAB3
B19200 SANE CS7 PARENB ISTRIP IXANY TAB3 HUPCL
#login: #19200

#
This entry is used for the console
console # B9600 SANE CLOCAL CS8 ISTRIP IXANY TAB3 HUPCL

B9600 SANE CLOCAL CS8 ISTRIP IXANY TAB3 HUPCL
#Console Login: #console
.
.

Each entry in the /etc/gettydefs file has the format:

entry-label#initial-settings# final-settings#login-prompt#next-label

where
entry-label Identifies the entry; it is used in the /etc/inittab file for reference
initial-settings Specifies the termio I/O control codes that getty will initialize the line

© 2002 by CRC Press LLC

final-settings Specifies the termio I/O control codes to be set before turning control over
to the login program

login-prompt Specifies the prompt that getty will display
next-label Specifies the entry-label to be used instead, if the current attempt is

broken (BREAK-key, noise, etc.). In that way, the linked list of entries
can be created to enable automatic switching to other entries, for exam-
ple to change the terminal line baud-rate (as is the case in the presented
/etc/gettydefs file)

The other file /etc/ttydefs looks like:

$ cat /etc/ttydefs (Solaris)
VERSION=1
38400:38400 hupcl:38400 hupcl::19200
19200:19200 hupcl:19200 hupcl::9600
9600:9600 hupcl:9600 hupcl::4800

.
auto:hupcl:sane hupcl:A:9600

.
console:9600 hupcl opost onlcr:9600::console
console1:1200 hupcl opost onlcr:1200::console2

.
contty:9600 hupcl opost onlcr:9600 sane::contty1
contty1:1200 hupcl opost onlcr:1200 sane::contty2

11.1.2.2 The System V terminfo Database

The terminfo database is the System V equivalent to the BSD termcap database. The basic
difference between the two databases is that terminfo is a compiled database that consists
of a series of binary files describing terminal capabilities. Each entry is a separate binary
file in the /usr/lib/terminfo directory hierarchy in the subdirectory named for the first letter
of its name. For example, the terminfo entry for a vt100 is stored in the file /usr/lib/terminfo/
v/vt100. The terminfo entries are compiled from source code vaguely similar to termcap
entries. Such an approach improves efficiency, but at the price of accessibility.

The terminfo database had the advantage of being developed with the working model of
the termcap database already in place. A critical analysis of the existing termcap capabilities
made it easier to make decisions about terminfo capability needs, including capability improve-
ments. Nevertheless, it is unfair to say that the terminfo database is better than the termcap
database, especially because both databases continue to be developed. Simply, each database
provides needed data about terminal characteristics on the corresponding UNIX platform.

The System V terminfo directory hierarchy can easily be seen with a simple listing of
the basic terminfo directory: /usr/lib/terminfo.

ls -C /usr/lib/terminfo

1 3 5 7 9 C G X b d f h j l n p r t v x z

2 4 6 8 A D H a c e g i k m o q s u w y

All listed items are subdirectories, which can be seen from:

ls -l /usr/lib/terminfo
total 100
dr-xr-xr-x 2 bin bin 1024 Mar 5 18:28 1
dr-xr-xr-x 2 bin bin 2048 Mar 5 18:28 2

© 2002 by CRC Press LLC

. . .
dr-xr-xr-x 2 bin bin 1024 Mar 5 18:28 x
dr-xr-xr-x 2 bin bin 1024 Mar 5 18:28 y
dr-xr-xr-x 2 bin bin 1024 Mar 5 18:28 z

A separate binary file defines each terminal:

ls -CF /usr/lib/terminfo/v
vc103 vc415 vi300-ss vt100-bot-s vt100-top -s vt125
vc203 vi200 vi550 vt100 -nam vt100-w vt132
vc303 vi200-f viewpoint vt100-nam-w vt100- w-am vt220
vc303-a vi200-ic virtual vt100-nav vt100-w -nam vt220-am
vc403a vi200-rv visual vt100-nav-w vt100-w -nav vt320
vc404 vi200-rv-ic vitty vt100-np vt100am vt320-am
vc404-na vi300 vk100 vt100-s vt100nam vt50
vc404-s vi300-aw vt100 vt100-s-bot vt100s vt50h
vc404-s-na vi300-rv vt100-am vt100-s-top vt100w vt52

The System V terminal subsystem provides a corresponding tool to manage binary
terminfo files; several commands are available for manipulating terminfo entries:

tic Compile terminfo source
infocmp List source for a compiled terminfo entry (sometimes named the untic

command)

A number of commands are also available for converting between terminfo and termcap
entries:

infocmp -C List the equivalent termcap entry for a compiled terminfo entry; i.e., trans-
late from terminfo to termcap

captoinfo Translate a termcap entry into terminfo source

Please note that the conversion (translation) is never perfect, and some discrepancies
are always possible.

The following example will illustrate the use of these commands. Our task is to create
a new terminfo entry for a modified vt100 terminal; we will name this terminal “vt100mod.”
The implemented platform is Solaris 2.6.

In the first step, we will convert one of the existing vt100-related terminfo entries into a
termcap entry, which then can easily be modified (termcap entries are ASCII, while terminfo
entries are binary files); there is no need to create the entry from scratch. The available
vt100-related entries are:

$ ls -l /usr/share/lib/terminfo/v | grep vt100
-rw-r--r-- 2 bin bin 1493 Jul 16 1997 vt100
-rw-r--r-- 2 bin bin 1493 Jul 16 1997 vt100-am
-rw-r--r-- 2 bin bin 1554 Jul 16 1997 vt100-bot-s
-rw-r--r-- 1 bin bin 1490 Jul 16 1997 vt100-nam

.

.
-rw-r--r-- 1 bin bin 1424 Jul 16 1997 vt100am
-rw-r--r-- 1 bin bin 1426 Jul 16 1997 vt100nam
-rw-r--r-- 1 bin bin 1480 Jul 16 1997 vt100s
-rw-r--r-- 1 bin bin 1416 Jul 16 1997 vt100w

© 2002 by CRC Press LLC

We will pick up “vt100” and convert it into the corresponding termcap entry:

$ infocmp -C vt100 > /tmp/vt100mod

$ cat /tmp/vt100mod
Reconstructed via infocmp from file: /usr/share/lib/terminfo/v/vt100
vt100|vt100-am|dec vt100 (w/advanced video):\

:am:mi:ms:xn:xo:bs:pt:\
:co#80:li#24:\
:DO=\E[%dB:LE=\E[%dD:RI=\E[%dC:UP=\E[%dA:ae=^O:as=^N:\
:cd=50\E[J:ce=3\E[K:cl=50\E[H\E[J:cm=5\E[%i%d;%dH:\
:cs=\E[%I%d;%dr:ct=\E[3g:ho=\E[H:k0=\EOy:k1=\EOP:\
:k2=\EOQ:k3=\EOR:k4=\EOS:k5=\EOt:k6=\EOu:k7=\EOv:\
:k8=\EOl:k9=\EOw:kb=\b:kd=\EOB:ke=\E[?1l\E:kl=\EOD:\
:kr=\EOC:ks=\E[?1h\E=:ku=\EOA:nd=2\E[C:\
:r2=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h:rc=\E8:sc=\E7:\
:se=2\E[m:so=2\E[1;7m:sr=5\EM:st=\EH:ue=2\E[m:\
:up=2\E[A:us=2\E[4m:

The file was edited and modified, respecting the rules for termcap entries:

$ vi /tmp/vt100mod
This terminal present the modified version of the vt100
Was reconstructed by using “infocmp -C vt100”
#
Reconstructed via infocmp from file: /usr/share/lib/terminfo/v/ vt100
#
vt100mod|vt100-am-mod|dec vt100 modified (w/advanced video):\

:am:mi:ms:xn:xo:bs:pt:\
:co#132:li#24:\
:DO=\E[%dB:LE=\E[%dD:RI=\E[%dC:UP=\E[%dA:ae=^O:as=^N:\
:cd=50\E[J:ce=3\E[K:cl=50\E[H\E[J:cm=5\E[%i%d;%dH:\
:cs=\E[%i%d;%dr:ct=\E[3g:ho=\E[H:k0=\EOy:k1=\EOP:\
:k2=\EOQ:k3=\EOR:k4=\EOS:k5=\EOt:k6=\EOu:k7=\EOv:\
:k8=\EOl:k9=\EOw:kb=\b:kd=\EOB:ke=\E[?1l\E>:kl=\EOD:\
:kr=\EOC:ks=\E[?1h\E=:ku=\EOA:nd=2\E[C:\
:r2=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h:rc=\E8:sc=\E7:\
:se=2\E[m:so=2\E[1;7m:sr=5\EM:st=\EH:ue=2\E[m:\
:up=2\E[A:us=2\E[4m:

Minor modifications were performed: comments, names, and column number. To make
a corresponding terminfo entry, this modified termcap entry must be first converted into a
terminfo source entry and then compiled:

$ captoinfo /tmp/vt100mod > /tmp/vt100.ti

captoinfo: obsolete 2 character name ‘vt’ removed.
synonyms are: ‘vt100mod|vt100-mod|dec vt100 mod’

The ASCII source terminfo entry file /tmp/vt100mod.ti was created in addition to the
displayed message:

$ cat /tmp/vt100mod.ti
This terminal present the modified version of the vt100
Was reconstructed by using “infocmp -C vt100”
#
Reconstructed via infocmp from file: /usr/share/lib/terminfo/v/vt100
#

© 2002 by CRC Press LLC

vt100mod|vt100-mod|dec vt100 mod,
am, mir, msgr, xenl, xon,
cols#132, lines#24,
bel=^G, clear=\E[H\E[J$<50>, cr=\r,
csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cub1=\b,
cud=\E[%p1%dB, cud1=\n, cuf=\E[%p1%dC, cuf1=\E[C$<2>,
cup=\E[%i%p1%d;%p2%dH$<5>, cuu=\E[%p1%dA,
cuu1=\E[A$<2>, ed=\E[J$<50>, el=\E[K$<3>, home=\E[H,
ht=\t, hts=\EH, ind=\n, kbs=\b, kcub1=\EOD,
kcud1=\EOB, kcuf1=\EOC, kcuu1=\EOA, kf0=\EOy,
kf1=\EOP, kf2=\EOQ, kf3=\EOR, kf4=\EOS, kf5=\EOt,
kf6=\EOu, kf7=\EOv, kf8=\EOl, kf9=\EOw, rc=\E8,
ri=\EM$<5>, rmacs=^O, rmkx=\E[?1l\E>, rmso=\E[m$<2>,
rmul=\E[m$<2>, rs2=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h,
sc=\E7, smacs=^N, smkx=\E[?1h\E=, smso=\E[1;7m$<2>,
smul=\E[4m$<2>, tbc=\E[3g,

Pay attention to the different syntax of two entries (files). Finally, the terminfo entry for
the modified vt100 terminal can be compiled:

$ tic -v /tmp/vt100mod.ti

Working in /usr/share/lib/terminfo

Created v/vt100mod

Linked v/vt100-mod

The tic command informed us of two new terminfo entries: “vt100mod” and “vt100-mod”
(although the file “vt100-mod” that corresponds to the alternate entry name is the link) in
the /usr/share/lib/terminfo/v directory:

$ ls -C /usr/share/lib/terminfo/v
v5410 vi200 viewpoint-90 vt100-nam vt100mod
v90 vi200-f virtual vt100-nam-w vt100nam
vanilla vi200-ic visual vt100-nav vt100s
vc103 vi200-rv visual50 vt100-nav-w vt100w
vc203 vi200-rv-ic vitty vt100-np vt102
vc303 vi300 vk100 vt100-s vt125
vc303-a vi300-aw vs100 vt100-s-bot vt132
vc403a vi300-rv vs100s vt100-s-top vt220
vc404 vi300-ss vt-102 vt100-top-s vt50
vc404-na vi50 vt-61 vt100-w vt50h
vc404-s vi550 vt100 vt100-w-am vt52
vc404-s-na vic vt100-am vt100-w-nam vt61
vc415 vic20 vt100-bot-s vt100-w-nav vt61.5
venix viewpoint vt100-mod vt100am

Or, to see more details about new entries:

$ ls -l /usr/share/lib/terminfo/v | grep vt100
-rw-r--r-- 2 bin bin 1493 Jul 16 1997 vt100
-rw-r--r-- 2 bin bin 1493 Jul 16 1997 vt100-am
-rw-r--r-- 2 bin bin 1554 Jul 16 1997 vt100-bot-s
-rw-r--r-- 2 root other 1267 May 21 17:19 vt100-mod

.

.

© 2002 by CRC Press LLC

-rw-r--r-- 2 root other 1267 May 21 17:19 vt100mod
-rw-r--r-- 1 bin bin 1426 Jul 16 1997 vt100nam
-rw-r--r-- 1 bin bin 1480 Jul 16 1997 vt100s
-rw-r--r-- 1 bin bin 1416 Jul 16 1997 vt100w

The new entries (files) have been created by the root, so there is a difference in the files’
ownership (it can be changed at any time, although it is not necessary); compared to the
initial entry “vt100,” there is also a difference in the size and file timestamps, which was
expected.

Any modification of a terminfo entry must be done very carefully. The original version
of an entry should be saved as a backup, and it is highly recommended that you use
a slightly different name for the new entry until its testing is complete.

The method presented above is not the only way to create a new terminfo entry. A terminfo-
like source ASCII entry can be directly obtained with the command infocmp -I, and there
is no need to deal with a termcap-like entry at all. However, the purpose of the previous
example is to demonstrate how to perform an eventual termcap/terminfo conversion.

11.1.3 Terminal-Related Special Device Files

The special device files that correspond to the serial lines vary between UNIX flavors;
they usually have names of the form /dev/ttyn (n is a single or two digit number), where
n refers to the line number, and starts from 0. Directly connected terminals were/are
accessed via these special files. The special file /dev/console refers to the system console
device. Originally, the SVR4 terminal-related special device files resided in the directory
/dev/term, and had names corresponding to their line numbers (for example: /dev/term/14);
there were often also links to the ttyn-type names.

The special file /dev/tty (no suffix) serves a special purpose. It is a synonym for each
process controlling TTY; it can be used to ensure output goes to the terminal, regardless
of any I/O redirection.

There are also other terminal devices in /dev that are used for indirect login sessions via
a network or windowing system; these are called pseudo-terminal devices. They can also
be easily recognized in the BSD terminal line configuration files /etc/ttys, or /etc/ttytab
presented earlier; simply, the getty process is not associated with these devices. We will
discuss pseudo terminals later.

11.1.4 Configuration Data Summary

The configuration and definition files relevant to terminal lines are different between the
two main UNIX platforms, as well as between different UNIX flavors. Proper terminology
can help somewhat in managing terminal configuration.

• On BSD platform, the following configuration files are used for terminal lines:

/etc/ttys Terminal line configuration file
/etc/ttytab SunOS terminal line configuration file
/etc/gettytab Terminal line definition file
/etc/termcap Terminal type capability database

• On System V platform, the following configuration files and directories are used
for terminal lines:

© 2002 by CRC Press LLC

/etc/inittab System initialization configuration file
/etc/gettydefs Terminal line definition file
/etc/ttydefs Solaris terminal line definition file
/usr/lib/terminfo/?/ * Terminal type capability database

11.2 The tset, tput, and stty Commands

11.2.1 The tset Command

In UNIX, the type of the terminal to be used must be defined before communication with
a user can commence. A terminal type can be set in several different ways. Assuming
a BSD terminal approach, the type can be set through the terminal line configuration file
ttys, or ttytab, or a user can set the terminal type by the TERM environment variable, or
a terminal could be set with the tset command. However, only the tset command can be
used to initialize the terminal itself.

Those two functions, setting a terminal type and initializing the terminal itself, overlap
in some nonobvious ways and can be confusing for users and system administrators. Let
us examine how the tset command works (tset stands for “terminal set”):

• If no arguments are specified and the environment variable TERM is already set,
tset uses the value of TERM to determine the terminal type.

• If no arguments are specified and the environment variable TERM is not set,
then tset uses the value specified in the /etc/ttytab or /etc/ttys files (BSD only).

• If a terminal type is specified as an argument, that argument is used as the
terminal type, regardless of the value of the environment variable TERM.

• The -m (map) option allows a fine degree of control in cases where the terminal
type may be ambiguous: for example, if the user logs in over different types of
terminal lines (sometimes on a dialup, sometimes over a network, sometimes
on a hardwired line). If the -m option was specified, tset would ask the user for
the currently used terminal type, and the user could respond accordingly. For
example:

$ tset -m “:?vt100”

TERM = (vt100)

will prompt the user for a terminal type, assuming vt100. If the user hits Enter, tset
will use vt100 as the terminal type; otherwise the user can enter any other actual
terminal type, and tset will accept it.

To prompt for and set the TERM variable in a user’s login files (.profile or .login), tset is
often used because it accomplishes this task so well. The user can specify the TERM
variable through tset, or generic entries can be mapped from the terminal line config-
uration file:

setenv TERM �tset - -Q -m “:?vt100”� # Can be implemented in the .login file;

$ TERM=�tset - -Q -m “:?vt100”�; export TERM # Can be implemented in the .profile file.

© 2002 by CRC Press LLC

Given the “-” option, tset displays a value that it determines for the terminal type. The -Q
(quiet) option causes tset to suppress the displaying of messages it normally sends regarding
the values set for the “Erase” and “Kill” characters.

The TERMCAP environment variable can also be set with tset. When used this way, the
entire extracted termcap entry corresponding to the terminal type named in the TERM
variable becomes the value of the TERMCAP variable. This allows programs to start up
more quickly since they do not need to search the termcap database file. The eval shell
command is commonly used to provide this functionality, because it forces double com-
mand scanning and an appropriate variable replacement:

eval �tset -sQ -m “:?vt100”�

The -s option causes tset to invoke a series of shell commands to set the TERM and
TERMCAP variables accordingly (TERMCAP is set to the actual contents of the appro-
priate termcap entry).

The main purpose of the tset command is to initialize the terminal itself. It outputs an
initialization string defined in the terminal’s termcap entry, which should set the terminal
to a reasonable state. When done, it displays a message such as:

Erase is control-H

Kill is control-X

or whatever else these characters are set to. This message can be skipped with the -Q
option.

The real effect of the initialization string that is sent to a terminal now depends only on
the terminal itself. If everything is defined properly, a terminal should be initialized (reset)
and ready for use.

The tset command originates from the BSD platform, but exists today in both versions
of UNIX, BSD, and System V, albeit with slightly different executions.

11.2.2 The tput Command

The tput command is the System V counterpart to tset and is used with the terminfo
capability database, but it does not have tset’s ability to determine the terminal type. By
default, tput assumes that a user is using the terminal type specified by the TERM variable.
To override the value of TERM, another terminal type can be specified with the -T option,
for example:

$ tput -Tvt100

However, the tput command can also manage terminals:

$ tput init

$ tput reset

The command issues the initialization string, or the reset string, as they are defined in the
corresponding terminfo entries. If no reset entry is defined, tput issues the initialization
string instead, and the command acts exactly like tput init.

© 2002 by CRC Press LLC

The tput command enables easy control of displayed data, and it can be used within
scripts to facilitate flexible and powerful data presentation. For example:

$ tput clear # To clear the terminal screen

$ tput cup 0 0 # To move the cursor to the home position

$ tput cup 23 4 # To move the cursor to row 23, column 4

The tput command echoes (sends) the specified screen-control sequence compatible with
the already specified terminal. The same can be done from the shell script.

Highlighting displayed text is the most popular use of the tput command. The so-called
“stand-out mode” of the screen enables highlighting of the subsequent text in the current
line on the screen, as long as the mode is on. By turning the stand-out screen mode on
and off, a specified line of the text or character strings can be emphasized (highlighted)
from the other text. The tput command:

$ tput smso # Set stand-out mode on

$ tput rmso # Reset stand-out mode (set stand-out mode off)

The following script illustrates this capability in greater detail:

$ cat /tmp/mso_example.ksh
#!/ bin/ksh
This is the script: “/tmp/mso_example.ksh”
This is an example how to use the screen mode “stand-out” (mso)
Defining variables HI to set “mso”, and LO to reset “mso”
HI=‘tput smso’
LO=‘tput rmso’
#
The following line will be highlighted; pay attention to the ${HI} and ${LO}
echo “\n”
echo “${HI}This line is highlighted!${LO}”
#
The following line illustrates how to highlight a specified parts of the line
echo “\n”
echo “This is an ${HI}example${LO} of how to highlight a specified ${HI}part of the text${LO} !”
echo “\n”

Upon execution, the script will display (letters printed in bold are highlighted):

$ /tmp/mso_example.ksh

This line is highlighted!
This is an example of how to highlight a specified part of the text!
$ <= The system prompt appears at the end of the script’s execution.

11.2.3 The stty Command

The stty command is used to specify generic terminal and terminal line characteristics.
While the tset command performs a complete type-specific terminal initialization, stty
sets individual terminal characteristics. The command syntax is:

stty option [value]

© 2002 by CRC Press LLC

where the most common options are:

Note: Not all options require a value.

The stty command may also be used to display the current terminal settings, for example:

$ stty -a
speed 9600 baud; line = 0; susp <undef>; dsusp <undef>
rows = 24; columns = 80
intr = ^C; quit = ^\; erase = ^H; kill = ^U; swtch <undef>
eof = ^D; eol = ^@; min = 4; time = 0; stop = ^S; start = ^Q
parenb -parodd cs7 -cstopb hupcl -cread -clocal -loblk -crts
-ignbrk brkint ignpar -parmrk -inpck istrip -inlcr -igncr icrnl -iuclc
ixon -ixany ixoff -rtsxoff -ctsxon -ienqak
isig icanon iexten -xcase echo echoe echok -echonl -noflsh
opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel -tostop

On the BSD platform the same command has the format:

$ stty everything

The displayed data could be different from that specified in the termcap or terminfo
databases. While the termcap and terminfo databases provide generic information about
a terminal type (befitting all terminals of a given type), stty provides information about
the current setting for a specified terminal.

The most common character to set with stty setting is the “erase” character. When logging
from different places, a user can sometimes face the problem of which key to use to erase
the last entered character (the most common are the “Backspace,” “Delete,” or “Control-
Backspace” keys). The preferred erase character can be set from the command line on any
type of terminal, simply by typing:

$ stty erase [desired erase key]

The erase character will be set appropriately and can be used in the familiar way.

Option Meaning Example

n Baud-rate 9600
rows n Lines on the screen rows 36
columns n Columns on the screen columns 80
erase c Set the delete previous character to c erase ^h
kill c Set the erase command character to c kill ^u
intr c Set the interrupt character to c intr ^c
eof c Set the end-of-file character to c eof ^d
susp c Set the suspend job character to c susp ^z
lnext c Set the literal next character to c lnext ^v
werase c Set the word erase character to c werase ^w
reprint c Set the reprint line character to c reprint ^r
oddp Enable odd parity oddp
evenp Enable even parity evenp
-parity No parity is generated or detected -parity
markp Enable mark parity markp
cstopb Use two stop bits cstopb
-cstopb Use one stop bit -cstopb
sane Reset many options to reasonable settings sane

© 2002 by CRC Press LLC

The stty command can be used to set the erase character separately in the user’s login
script, .profile, or .login to avoid such surprises:

.

To set “Backspace” as the erase character

stty erase ^H

. . . .

If vi is used to edit the login script, the sequence “^v,^h” (Ctrl-v, Ctrl-h) should be typed
to specify “^H” (Ctrl-H).

11.3 Pseudo Terminals

While terminal issues are a normal part of UNIX administration, terminals as physical
devices belong to the past. With the exception of the console, which is still very common
at most UNIX sites, terminals are quite rare today, especially those connected to a UNIX
system via serial terminal lines. Networking is a more efficient and beneficial way to
communicate with a UNIX system.

The switch from serial terminal lines to networks required a corresponding UNIX
adaptation to the new environment; the whole user login and authentication procedure
had been based on user access via terminals. The logical approach was to preserve this
concept as much as possible, and a logical consequence of this preservation was the
introduction of pseudo terminals.

A pseudo terminal is, as the name implies, a logical terminal that behaves like a regular
terminal, except it does not include a physical device. Internally (within UNIX), it is seen
as any other terminal; externally, it provides a needed interface (including the necessary
data conversion) to the new environment.

The corresponding kernel-based driver supports a pseudo terminal, which consists
of a pair of character devices: a master, or control pseudo device, and a slave pseudo
device. The slave device provides an interface to application processes identical to the
one specified in the terminal database (termcap or terminfo). Unlike regular terminals,
the slave device does not have a hardware device behind it; instead, it has another
process manipulating it through the master half of the pseudo terminal. Thus anything
written on the master device is given to the slave device as an input, and anything
written on the slave device is presented as input on the master device, as presented
in Figure 11.3.

Pseudo terminal functions

Slave side Master side

Application
Processes

Server
Process

FIGURE 11.3
The pseudo terminal.

© 2002 by CRC Press LLC

Application processes treat pseudo terminals as regular terminals, without knowing
anything about what is happening behind the scenes; for getty, login, and shell, this is
just a terminal. On the master side a network-related server process adapts the network-
based data transfers into terminal-based serial data transfers. The bottom line is preestab-
lished terminal-based communication without any real terminal involvement.

The master side of a pseudo terminal has the device name /dev/pty[p-s]n. Examples
include ptyp0, ptyq3, ptyr5, or ptys2. The original name on System V was (and still is)
/dev/ptc/n.

The slave side of a pseudo terminal (also known as a virtual terminal) has the device
name /dev/tty[p-s]n; for example: ttyp0, ttyq3, ttyr5, or ttys2. The original System V name
was and is /dev/pts/n, n is a single hexadecimal digit. The slave pseudo terminal provides
a TTY-like interface to user (application) processes. The two parts work in pairs, each
having the same device number n.

The tty command displays the special device file used for any login session; it always
displays the slave pseudo terminal. For example, the user bjl has opened a telnet session
and logged into a system named patsy:

$ telnet patsy
SunOS UNIX (patsy)
Login: bjl
Password: ++++++++
Last login: Mon May 17 10:21:30 from atlas.ph.hunter.cuny.edu
SunOS Release 4.1.3 (PATSY) #1: Tue May 18 13:59:37 EST 1999

To check for the terminal through which this connection was established (in this case
a pseudo terminal) use this command:

$ tty

/dev/ttyp2

The tty command displays the slave device of a pseudo terminal pair. This makes sense,
given that the slave side is visible to the application and to user programs.

New UNIX flavors have introduced another, similar command, pty, to check for the
master device of a pseudo terminal pair currently in use, as seen here:

$ pty

/dev/ptyp2

Selection of a pseudo terminal to establish a user telnet session is out of the user’s
control. The server process picks up one of the pseudo devices available at the time and
establishes the required telnet connection, i.e., session. All pseudo terminals are inter-
changeable, and there is no advantage or disadvantage in using any given pseudo terminal.

Pseudo terminal availability is a condition for a new user’s connection (telnet or any
other kind of user’s session); if there is no free pseudo terminal, the UNIX system will
refuse the requested user connection.

The total number of pseudo terminals limits the maximum number of simultaneous
connections to the system. This number is usually sufficiently large with respect to other
system characteristics, and it is more likely that a system will hit limits due to other system
restrictions. Nevertheless, if the total number of pseudo terminals could cause a problem,
additional pseudo terminals should be created; all UNIX flavors provide tools to create
special device files, including pseudo devices.

© 2002 by CRC Press LLC

11.4 Terminal Servers

Networks have put terminals out of business; the huge pool of existing terminals suddenly
became obsolete. Terminal servers were introduced to prolong the use of the existing
equipment in the new networked environment. A terminal server is a dedicated system
that enables the connection of multiple old fashioned local terminals onto the network.

A terminal is connected to the terminal server via a serial line, in the same way terminals
used to be connected directly to the computer system. The terminal server is connected
to the network, and provides a mapping of each of its local serial lines into an IP address;
in this way each connected terminal can appear as a networked device (IP addressing is
discussed in Chapter 15). Of course, a terminal server should also convert each local serial
terminal session into an appropriate telnet session with the host UNIX system. Groupings
of terminals around one or more terminal servers enable more efficient connections to the
host system. The benefits are obvious: idle but usable equipment can be reactivated, large
lengths of cabling are not needed, and optimal locations for terminals can be selected —
all thanks to relatively cheap terminal servers.

Another very useful implementation of terminal servers is somewhat unorthodox. Given
a site with multiple UNIX systems and other computing facilities (a very common case,
since almost every computer center can be described this way), multiple serial console
lines from multiple computer systems can be connected to the terminal server. Each
connected system console will be identified by an IP address, and remote access to the
system consoles will be enabled. This arrangement could be extremely useful when per-
forming regular system maintenance and administration. There is no need for physical
access to the system consoles, no need to switch from one console to another, and every-
thing can be accomplished from a single location in a more comfortable and efficient way.
In fact, there is really no need even for a physical console device itself, though a single
remote terminal can now emulate a number of local consoles.

© 2002 by CRC Press LLC

12
UNIX Backup and Restore

12.1 Introduction

We live in a computer age. We use computers and they help us, but we also rely on
them. And the worthiest part of any computer is the data; data is priceless, and often
irreplaceable. UNIX systems are no exception to this rule. In UNIX systems, data live
in files, and files live in filesystems, so discussing data means discussing files and
filesystems. Readers familiar with databases know that data may also live in database
spaces other than filesystems.

Users know very well the importance of their files. The files may be the results of users’
hard work over several years; often, the significance of the files cannot be measured in
the usual way. They are simply invaluable. On the other hand, every user knows that,
sometimes, data is lost. These losses have many causes: users may delete their own files
accidentally, a bug can cause a program to corrupt its data file, a hardware failure may
ruin an entire disk, and so on. The damage resulting from these losses can be minor (in
the best case scenario) or it can be very expensive and disastrous harm. Experience teaches
us to prepare for the worst outcomes.

One of a system administrator’s primary responsibilities is to plan and implement a
regular backup system to protect users from such unpleasant surprises by saving all of
the important files on the system. It is also the administrator’s responsibility to monitor
and confirm that backups are performed in a timely manner, and that backed-up files are
stored safely and securely.

Files can be backed up or archived. A backup is the process of copying files onto
another media, while archiving is moving files onto another media (the usual media
is a tape). Data compression is used in both cases, and in both cases data can be
restored if necessary. The difference is that archiving removes files from the live system
as they are archived, while a backup keeps the live system unchanged. Generally,
UNIX commands do not differentiate between the two procedures; this task is dele-
gated to the backup/archive utilities. This session primarily addresses backup, except
where specified otherwise.

The term archive is also used to identify a backup media that contains the saved data,
regardless of the type of media that was implemented. This terminology can cause
confusion, but it is used frequently.

Finally, archiving data raises the question of data consistency during a backup.
Obviously, only consistently archived data is of any use; keeping and reusing inconsistent

© 2002 by CRC Press LLC

data is pointless and can cause many problems. Therefore, any modification of the data
must be prevented during a backup; i.e., access to the files must be prohibited. This
precaution led to the long-standing recommendation to backup only dismounted file-
systems (so nobody can modify files), but this practice means bringing the system into
single-user mode during the backup. Such a drastic limitation of the system does not work
for most real-life UNIX systems, and so most system administrators ignore this recom-
mendation. The calculated risk of backing up data from mounted filesystems is balanced
by several factors:

• System activity is usually very low during a backup (backups are commonly
performed at night or some other time when there are no users on the system).

• Standard filesystems have a huge number of relatively small files and any given
file’s backup time is a small fragment of the total filesystem’s backup time.
Consequently, the probability that a file could be modified in the small period
of time when it is being backed up is extremely low.

• Even if a file were to be corrupted during archiving, the file could simply be
excluded from that backup, and the probability that the same file would be
affected during the next backup is almost nonexistent.

• Finally, in the worst-case scenario, even such a loss of a single file is not a tragedy
or a disaster from the system standpoint, because the primary candidates for
that kind of corruption are usually files in the spooling directory such as
continually active e-mail, or something similar.

These statistically based assumptions work in many cases, especially for regular UNIX
filesystems. However, once we shift into the issue of databases, data consistency becomes
crucial and no chances can be taken. Database backups require stable, static conditions,
which requires alternate approaches. One of these is volume and filesystem snapshots, which
is discussed in Chapter 6.

12.1.1 Media

Magnetic tape is the most suitable media for a backup; magnetic tape was actually invented
for this purpose. The nature of backing up perfectly matches the economical sequential
data storage magnetic tape provides. Although magnetic tape is not the only backup media
available, it is the most widely used, and is the standard backup media for almost any
UNIX installation.

There are a number of different types of magnetic tapes available for backups, so
selecting the most appropriate type can sometimes be a difficult task. It was simpler in
the past, when 9-track tape was the only convenient media available for backing up data.
Today, the situation has changed and many suitable magnetic tapes are available; backups
can be performed faster and safer. A brief summary of the available choices follows:

• 9-track tape The old (and today obsolete) medium. However, 9-track
tape has been used for a very long time, and 9-track tape
drives have been installed almost everywhere, so it was
easy to move tapes from one system to another and from
one site to another. The 9-track tape technology was
quite reliable and reasonably fast, but rather expensive.
Tapes were bulky, and their capacity was not too large —

© 2002 by CRC Press LLC

roughly 150 MB at the highest density. From today’s
standpoint, with huge disk space common, such an
extremely small tape capacity sounds odd, but it worked
in the past. Unfortunately, even given the small size of
old disks, unattended backup was not often possible
because new tape reels had to be mounted (loaded) during
the backup. A night operator’s shift was almost a
necessity. Today, 9-track tape drives exist (if they are
used at all), primarily to restore some long-ago
archived data.

• 1/4 in. cartridge tape This tape cartridge is known as QIC. For some time it
was the medium of choice for UNIX workstations.
The tapes were very reliable and the tape drives were
reasonably inexpensive, so they became standard equip-
ment for most workstations. The tapes are much smaller
than the 9-track ones, with almost the same capacity (150
MB cartridges are also known as QIC 150). The troubles
with backing up the larger disks still persisted, but it
was much easier to store and keep them.

• 8 and 4 mm tape The new video technology has found its place in this
field, revolutionizing the backup approach itself. Small
in size, the tapes come in 8 mm and 4 mm, and they
have an extremely large capacity: initially 2 GB, followed
by 8 GB DDS-2 tapes, and today’s DDS-3 tapes with an
incredible capacity of 12 GB (even up to 24 GB with
compression). They have become the ideal media for
unattended backups for a number of implementations.
Several filesystems can be backed up overnight. Today,
4 mm tapes are very common and are almost a standard
device on any UNIX system. The only disadvantage is
that these tapes are more sensitive to heat than other
storage media.

• DLT tape An extremely high-density and high-capacity medium.
With the capacity of 35 GB (with compression up to 70
or more GB) a DLT tape is suitable for the backup of
large databases. Today, it is a very common medium for
a large volume backup.

• Robotics devices A number of different robotics devices (tape changers,
juke boxes, etc.) are widely used today. They enable flex-
ible, unattended backups within large computer
networks, with automatic mounting and dismounting of
requested tapes. Equipped with bar code readers, they
can fulfill various backup demands.

• Floppy disk A floppy disk drive is a well-known, cheap, and reliable
device. However, the capacity of a floppy disk is extremely
small, and it cannot be a reasonable backup option; an aver-
age filesystem backup can easily use several hundred
diskettes. A floppy drive can efficiently be used to back
up a few files.

© 2002 by CRC Press LLC

12.2 Tape-Related Commands

UNIX provides a complete suite of commands designed for data archival. The commands
range from those suitable to save a single file, several files, and a directory structure, up
to those commands for an elaborate backup of a complete filesystem/filesystems. Of
course, the reverse process is also covered: corresponding commands for data restoration/
recovery are also available. All these commands are also widely implemented within the
available UNIX backup/archive/restore tools, forming powerful and sophisticated vehicles
for handling this unavoidable UNIX task.

Originally, all these UNIX commands were tape related, i.e., tape was assumed to be
the archive media. We will discuss most of the UNIX commands of this type, which are
divided into two basic groups:

1. Tape-related commands, designed to backup and restore individual files to/from
a magnetic tape

2. Filesystem-related commands, designed for more elaborated archival/restoration

The UNIX commands belonging to the first group are generally available on almost all UNIX
platforms; these include tar and cpio, and the dd command. In addition, the mt command is
available to control the tape itself (rewinding, erasing, retention, etc.). The listed commands
overlap in some respects, but each of the commands has a specific mission, unique to the
command itself. There are other, flavor-specific commands as well (for example, bar on SunOS,
or tcio on HP-UX) — they will not be covered in this text.

12.2.1 The tar Command

The tar command saves and restores files to and from archive media, usually a tape, but
also any other media, such as floppy disks or others. The tar command can also be used
to copy files to other files. The origin of the name tar is tape archiving, which obviously
describes the nature of this command. It saves files, a kind of compression is applied, and
a single archive file is created. When it restores files, tar decompresses them and returns
them to their original forms.

The syntax of the tar command is:

tar key[options] [filenames]

where
filenames The files on the specified directory, or the name of the file
key[option] Determines what action the tar command will take

The list of key and additional options follows:

Key Function

r Append filenames to an existing archive (does not work on most tapes)
x Extract filenames from the archive; if a directory is specified, it is recursively extracted
t Print the names of the specified files each time they occur in archive and extract them
u Add filenames to the archive only if they are not already there or if they are modified in the meantime
c Create a new archive and write filenames to it, destroying any existing files

© 2002 by CRC Press LLC

Option Function Modifier

number Selects the tape or disk drive with the number; if missing, the default drive is selected
b number Specifies the blocking factor for archive records; the default is 20 (for standard input it is always 1)
h Forces tar to follow symbolic links as if they were normal files and directories, otherwise, tar archives

only a path of the linked file or directory
v Causes tar to display the name of each of the files it reads or writes
w Displays the action to be performed on each file and waits for confirmation
f argument Causes tar to use the device or file specified by the argument instead of the default one, standard

input or output is specified by a hyphen (-)
l Causes tar to display a message if there is a problem
m Causes tar to set the current time rather than original one (when extracting)
k number Specifies the size of archive as number kB (min. 250)
e Prevents files from being split across backup volumes (tapes or floppies). If a file does not fit, tar

prompts for a new volume; this option can only be used together with the k option

Note: All options can be used without the usual hyphen (-); however, most UNIX flavors allow also the use of
the hyphen. The reference directory is the current directory. This is not a complete list, other options are
also possible — check the manual pages.

Default values are usually defined in a separate file, such as /etc/default/archive or /etc/default/tar.
The tar command is very popular among UNIX administrators; they like this command

and use it frequently. The main reasons for this popularity are:

• It is an easy to use and flexible command.

• It preserves file ownership and mode (if it is used by the superuser).
• It compresses data, creating a single archive file.

• The tar command can both “tar”(archive) and “untar” (extract) data.

The tar command is often used to transfer files or directory hierarchies from one place
to another, especially in a networked environment. The selected files are first “tar-ed,” then
transferred as a single archive file to the destination, and at the end “untar-ed.” Besides
the fact that it is easier to handle and copy a single file, tar also preserves files’ ownership,
modes, and time stamps. Tar also handles symbolic links (on most UNIX platforms there
is the option to copy a link or follow a link and copy a linked file).

Pay attention that untar-ing is always performed in the reverse way from the original tar-ing.
This means that archived files with absolute pathnames can be extracted only into their original
locations; extracting such files to other locations requests extraordinary skills (and the use of the
chroot command, which is definitely not recommended for novices). However, archived files
with relative pathnames can be extracted into an arbitrary reference directory. The GNU flavor
of the tar command even allows an arbitrary extraction of files archived with absolute pathnames.

In most cases the use of the tar command involves the following command options:

• To tar data (create an archive):
tar -cvf /dev/rmt/mt_device files_to_tar

• To list the archive (tar-ed data):
tar -tvf /dev/rmt/mt_device

• To untar (extract) all tar-ed data:
tar -xvf /dev/rmt/mt_device

• To untar (extract) selected tar-ed data:
tar -xvf /dev/rmt/mt_device files_to_untar

© 2002 by CRC Press LLC

Using the v (verbose) option to show exactly what tar is doing is recommended. Some-
times, it can take quite a while for the command to terminate, and it is always good to
know what happens in the meantime.

12.2.2 The cpio Command

The cpio command copies files into and out of archives for storage, moving, and backups.
Archives can be ordinary files, directories, or backup media such as tape or floppy disks.
cpio has several advantages over the tar command:

• It can back up arbitrary sets of files.
• It can back up special device files and so is suitable for full system backups on

small systems.

• It packs data on tape significantly more efficiently than tar.
• On restore, it skips over bad spots on the tape while tar dies in such cases.

cpio takes its input from the standard input (i.e., keyboard), not from files specified as
arguments. It waits for input (names of files typed in one line) terminated by CTRL-D.

The cpio command can be used in three different ways, defined by three different generic
formats. Each format uses different required options that cannot be combined. There are
additional options that can be used in all three command formats. The syntax is:

cpio -o [acBv]

cpio -i [option] [pattern]

cpio -p [option] directory

The required and additional options have the following meaning:

Required Options Meaning

-o [option] Causes cpio to read a list of file names from its standard input and combine them into
an archive file, which it prints as its standard output (copy out)

-i [option] [pattern] Causes cpio to retrieve files specified by pattern (? and * are legal) from an archive created
with cpio -o; these files are then copied to the current directory

-p [option] directory Causes cpio to read a list of ordinary files from its standard input and copy them to the
specified directory

Additional Options Meaning

a Resets access times of input files after they are copied
c Writes the header information in ASCII characters for portability to other

machines
d Creates directories as needed; used when directories are specified to be copied
f Copies only files not matched by pattern
l Creates links to files in the new directories instead of copying them (if possible)
m Does not change modification time of files when copying them
r Allows files to be renamed as they are copied; cpio waits for a new name
t List the names of the input files without copying them
u Pushes cpio to overwrite files if they already exist (ordinarily, cpio does not copy files if

they already exist)
v Prints a list of the files being copied

© 2002 by CRC Press LLC

The cpio command is usually combined (piped) with other UNIX commands to perform
a requested command sequence (often within scripts). The manual use of the command
(from the command line) is not very convenient, but still workable. The need to handle
special device files makes this command unavoidable. Here are a few examples:

• To archive all files, starting in the current directory and continuing with subsequent
subdirectories, onto the magnetic tape (identified by the tape device file 0m):

find . -print | cpio -o > /dev/rmt/0m

• To copy all files in the directory /dir1 into /dir2:

ls /dir1 | cpio -p /dir2

Although it works for any directory, the example is used primarily to copy special device files:

ls /dev/dir1 | cpio -p /dev/dir2

The d option is required if the directory dir2 does not already exist.

12.2.3 The dd Command

The dd command converts and copies files with various data formats; it copies a specified input
file to a specified output with possible conversions. The standard input and output are used by
default. The input and output block size may be specified to take advantage of raw physical I/O.

The format of the dd command is:

dd [option=value]…

The options are:

if=name Input file is taken from name; standard input is default
of=name Output file is taken from name; standard output is default
ibs=n Input block size n bytes (default is 512)
obs=n Output block size n bytes (default is 512)
bs=n Set both input and output block size, superseding ibs and obs

cbs=n Conversi on buffer size
skip=n Skip n input records before starting copy
files=n Copy n input files before terminating (makes sense only when the input

is a magnetic tape or similar device)
seek=n Seek n records from beginning of output file before copying. This option

generally only works with magnetic tapes and raw disk files and is otherwise
usually useless if the explicit output file was named with the of option

count=n Copy only n input records
conv=… Specify a conversion (EBCDIC, ASCII, etc.)

After completion, dd reports the number of whole and partial input and output blocks.
A few examples are:

• To read an EBCDIC tape, with blocked ten 80-byte EBCDIC card images per
record, into the ASCII file filename:

$ dd if=/dev/rmt0 of=filename ibs=800 cbs=80 conv=ascii, lcase

© 2002 by CRC Press LLC

• To write the file filename to a 3.5-inch floppy and read from the floppy into a file
filename, respectively:

$ dd if=filename of=/dev/rfd0c bs=9k

$ dd if=/dev/rfd0c of=filename bs=9k

• This command can be used to figure out the actual size of a raw disk partition
or a logical volume, for example:

$ dd if=/dev/vg00/lvol5 of=/dev/null bs=2k

51200+0 records in
51200+0 records out

In this example, the complete logical volume lvol5 was copied into null device
(nowhere); the reported number of input and output records for the defined block size of
2K determines the total raw volume size of 102.4 MB. Be careful in using this command,
because a reverse selection of the input and output file would have a completely different
meaning: it will erase the contents of the volume.

12.2.4 The mt Command

The mt command controls a magnetic tape drive. It can be used to position a tape at a
particular place, so it is very useful when multiple filesystems/files are archived on
a single tape. The command syntax is:

mt [-t tapename] command…[count]

Or on some UNIX platforms (like Solaris 2.x):

mt [-f tapename] command…[count]

If tapename is not specified, the environment variable TAPE is used. If TAPE does not
exist, mt uses the default device (on Solaris, /dev/rmt/0). tapename refers to a raw tape
device. By default, mt performs the requested operation once; specify count to perform
multiple operations. The available commands are listed below. Only as many characters
as are required to uniquely identify a command need be specified.

mt supports the following internal commands:

eof Write count EOF marks at the current position on the tape, (weof).

fsf Forward space over count EOF marks. The tape is positioned on the
first block of the file.

fsr Forward space count records.

bsf Back space over count EOF marks. The tape is positioned on the begin-
ning-of-tape side of the EOF mark.

bsr Back space count records.

nbsf Back space count files. The tape is positioned on the first block of the
file; this is equivalent to {count+1} bsf ’s followed by one fsf.

asf Absolute space to count file number; this is equivalent to a rewind
followed by a fsf count. For the eom commands, count is ignored.

© 2002 by CRC Press LLC

eom Space to the end of recorded media on the tape. This is useful for
appending files onto previously written tapes.

rewind Rewind the tape.

offline Rewind the tape and take the drive unit off-line by unloading the tape,
(rewoffl).

status Print status information about the tape unit.

retention Rewind the cartridge tape completely, then wind it forward to the end
of the reel and back to beginning-of-tape to smooth out tape tension.

erase Erase the entire tape.

12.2.5 Magnetic Tape Devices and Special Device Files

All tape-related commands deal with magnetic tape drives via corresponding special
device files. The command specifies the device file, which then provides the requested
operation with the tape drive. Once the operation is completed, the tape is usually
rewound. To properly understand tape device files, a bit of history can be instructive. In
the past, only low density and small capacity tapes were available, so it was necessary to
use a number of tape volumes to backup a complete system. A multivolume backup also
included the rewinding of the tape volumes once the desired transaction was completed.
The easiest way to provide this unavoidable rewinding was to delegate this task to the
device file; rewinding was performed automatically before the device file was closed.

The new technology brought new demands. High density and large capacity tapes enable
the archival of many files, directories, and/or filesystems on a single tape, so there is no need
for a multivolume backup. In fact, today the opposite exists; often, multiple filesystems must
be archived on the same medium. The fact that a tape was rewound automatically when the
archiving was completed became an obstacle; a new command always started from the begin-
ning of the tape, so everything previously stored was overwritten.

That is why modified, “nonrewinding” device files have been introduced; they provide
everything contained in the original device files except for the rewinding at the end, and
usually they carry an additional “n” in their names (as a prefix or a suffix).

The permanent improvements in tape density were addressed in a similar way — new,
modified device files handle the new higher density tapes.

Let us see what this means in practice. On Solaris 2.x (which is System V-like), all tape
device files reside in the subdirectory /dev/rmt.

$ ls -C /dev/rmt

0 0bn 0cb 0cn 0hb 0hn 0lb 0ln 0mb 0mn 0u 0ubn

0b 0c 0cbn 0h 0hbn 0l 0lbn 0m 0mbn 0n 0ub 0un

This is an example from the SunSparc20 workstation with a single 4mm DDS2 tape
drive. Each device file is identified by:

/dev/rmt/ <unit number> [<density>][<BSD behavior>][norewind>]

where
<density> Is identified by the letters l, m, h, u, and c for low, medium, high, ultra,

and compressed, respectively

© 2002 by CRC Press LLC

<BSD behavior> By the letter b
<norewind> By the letter n

Tape device files can be identified in a similar way on other systems.

12.3 Backing Up a UNIX Filesystem

Filesystem-related UNIX backup/restore commands enable the handling of large, complex
volume data archiving in a relatively simple way. This is especially important if a system crash
occurs, when fast filesystem recovery (primarily of the root filesystem) is extremely significant.
Besides the commands themselves, some UNIX platforms provide other backup/restore tools
(mostly shell script based, which makes it easy to understand what they are doing and how)
for the same purpose. We will discuss many of them. However, before starting with the
commands/tools, a few words about planning the process of a successful data archival.

12.3.1 Planning a Backup Schedule

Performing regular backup is essential for system data security. It is a good idea to assume
that the next time you use the system, all system disks will have crashed and the only
available files to restore are those you had backed up previously. Keeping such a catas-
trophe in mind will make it obvious what needs to be backed up and how often. Backups
are convenient for accidentally deleted files, but they are also essential in the event of
serious hardware failures or other disasters; all hardware has a finite lifetime, and failures
are always possible.

Therefore, planning is an important part of the backup process. In planning a backup
schedule, several factors need to be taken into account:

• What files are critical to the users on this system?
• Where are these files located? Are they isolated in a single filesystem, for

example?

• How often do these files change?
• How quickly would they need to be restored in the event of damage or loss?

• How often are the relevant filesystems available for backup? (Ideally, backups
should not be performed on mounted filesystems.)

• What kinds of media are available for backups?

For example, if the system supports a large ongoing development project, it can be
assumed that the files change frequently and should be backed up often. On the other
hand, if the only volatile file on the system is a large database, its filesystem might need
to be backed up more often than the other filesystems on the system.

In performing backups, a system administrator invests time in the present to prevent
future losses. The time required for any backup schedule must be weighed against the
potential losses if the files are needed but are not available.

Strictly speaking, a filesystem should be dismounted before a backup is performed
(except for the root filesystem). This means that the system should be placed in single-
user mode. However, this recommendation is rarely followed; in practice, backups are

© 2002 by CRC Press LLC

almost always performed on mounted filesystems. Consequently, any file modified while
the backup is in progress may not be backed up correctly.

The simplest backup scheme is to copy a whole disk to a tape. This type of full backup is
time consuming, and restoring a single filesystem from a large set of tapes is inconvenient; if
the files do not change frequently, it can be a waste of time. On the other hand, if the files are
changing very rapidly, then even daily full backups might be reasonable. In any case, a periodic
full backup is recommended (once per month, biweekly, or once per week).

Another approach is incremental backup; in an incremental backup, a system copies
only those files that have been changed since the previous backup. The concept of a backup
level to distinguish different backup types is often used; each backup type has an assigned
level number. By definition:

Level 0 Full backup
Level 1 Backup of all files that have changed since the last full backup

Level 2 Backup of all files that have changed since the last level 1 backup
Level 3 Backup of all files that have changed since the last level 2 backup

Level 4 Backup of all files that have changed since the last level 3 backup

and so on.
This approach and the concept of numeric backup levels are generally valid for any

UNIX system, but they are only fully supported by BSD-style backup commands.
A typical backup strategy usually includes a full backup at the beginning of the

determined backup period, and then several incremental backups during that period. As
examples, two schemes are presented:

The Backup Period One Week

Monday Level 1 backup (incremental backup to the last full backup)
Tuesday Level 1 backup (incremental backup to the last full backup)
Wednesday Level 1 backup (incremental backup to the last full backup)
Thursday Level 1 backup (incremental backup to the last full backup)
Friday Level 0 backup (full backup)

The Backup Period One Month

First Monday of each month Level 0 backup (full backup)
All other Mondays Level 1 backup (total incremental to the last level 0)
Tuesday Level 2 backup (daily incremental to the previous level 1)
Wednesday Level 2 backup (daily incremental to the previous level 1)
Thursday Level 2 backup (daily incremental to the previous level 1)
Friday Level 2 backup (daily incremental to the previous level 1)

The main criterion for planning a backup schedule is how the system is used. The most
used portions of the filesystem may need to be backed up more often than the other parts;
for example, the root filesystem with standard UNIX programs and files that rarely change
does not require frequent backup. Some parts of the system, like the /tmp directory, need
never be backed up. Sometimes, additional filesystems can be created; they might need
to be backed up often, or very rarely, or never at all.

The full backup should be performed whenever significant changes are made to the
system, regardless of the current backup schedule. This might be one of the few times
that the root filesystem gets backed up.

© 2002 by CRC Press LLC

The worst part of doing backups is sitting around waiting for them to finish; this will
often feel like wasted time. Unattended backups solve this problem for some sites. If the
backup will fit on a single tape, and new technologies enable it, then the tape can be put in
the drive and the backup performed during the night. In the morning the operator simply
has to pick up and label the tape. However, unattended backups can be a security risk;
nontrusted users with physical access to the tape drive may cause a problem.

12.4 Backup and Dump Commands

Despite the fact that system backups have always been one of the main issues in the
administration of any software system, there is no uniform approach for handling this
task in UNIX. Rather, the opposite is true: there are many different approaches. More
specifically, there are many different utilities and commands (mostly flavor- and release-
based) that address data backup and restoration. The following text is an attempt to at
least briefly specify and present some of them.

12.4.1 The SVR3 and SVR4 backup Commands

First, a quick look into the history: backups under System V went through several phases
before arriving at today’s process. SVR3 provided the backup command, which was really
an interface to the cpio command. It could perform a full or an incremental backup of the
filesystem, or backup a list of files, or user’s home directories, to either a tape or a floppy
disk. Today, the command itself is obsolete. The syntax of this backup command was:

backup [options]

The options specified the action to be performed, as seen in the following table.

Options Meaning

-c Complete (full) backup
-p Partial (incremental) backup
-f file_list Backup the specified files (place the list in quotes)
-u user Back up all files under user’s home directory
-d spec_file Specify backup target device (a character special file)
-t The specified device is a tape device (default is floppy)
-h List the dates of the last incremental and full backup

A few examples:

$ backup -c -t -d /dev/rmt/c0s0 # The full backup to the first tape drive;

$ backup -p # The incremental backup to the default
floppy drive

(/dev/rdsk/f05h);

$ backup -u username -d /dev/rdsk/f03h # Copy all files under user username’s home

directory to a high density 3–1/2” floppy
drive.

© 2002 by CRC Press LLC

SVR4 introduced an improved backup tool — a highly sophisticated and powerful
backup utility that enabled administrators to implement and manage an arbitrarily elab-
orate backup plan. It enabled automation of most backup tasks (except physical mounting
of tapes). On the other hand, it was more complex than absolutely necessary for some
systems. Unfortunately, we cannot talk about a uniquely accepted and implemented
backup utility — each System V flavor had some peculiarities. For example, on SGI IRIX
even the name of the utility was abbreviated and modified into /usr/sbin/bru, the Backup
and Restore Utility, to point out its inherent restore capabilities.

A typical example of a SVR4 backup utility is the one that existed on HP-UX 9.0x.
Although HP-UX 9.0x is a more-or-less obsolete UNIX flavor today, the backup utility can
be used to provide an understanding of different backup/restore issues. First, it is a shell
script that could be easily read and understood; second, it is based primarily on the find
and cpio UNIX commands, with which administrators should be familiar.

Briefly, the backup scheduling was controlled by the configuration file /etc/archivedate (on
some UNIX systems the file was /etc/bkup/bkreg.tab). The configuration file defined each
participating filesystem in the backup, a backup schedule, destinations, and other information.

The format of the command to start a backup is:

/etc/backup [-A] [-archive] [-fsck]

The -A option suppressed warning messages regarding optional access control list
entries. Normally, a warning message was printed for each file having optional access
control list entries.

The -archive option caused backup to save all files, regardless of their modification
date, and then update /etc/archivedate using the touch command. backup sent a prompt
when a new tape needed to be loaded and continued, if there was no more room on the
current tape. However, the prompting did not occur if backup had been run from cron.

The -fsck option caused backup to start a filesystem consistency check (without correction)
once the backup was complete. For correct results, it was important that the system had been
effectively single-user while fsck was running (with the corresponding filesystem dis-
mounted), especially if -fsck was allowed to automatically fix whatever inconsistencies it
found. backup itself did not ensure that the system was in single-user mode.

The script /etc/backup could be customized, and several local values were available for
customization:

backupdirs Specified which directories to back up recursively (usually /, which meant
all directories)

backuplog The name of the file where start and finish times, block counts, and error
messages were logged

archive The name of the file whose date was the date of the last archive

remind The name of the file that was checked by /etc/profile to remind the next
logged-in person to change the backup tape

outdev Specified the output device for the backed-up files

fscklog The name of the file where start and finish times and fsck output was
logged

In all cases, the output from backup utility was a normal cpio archive file.
For data recovery, it is important to note that backup creates archive tapes with all files

and directories specified relative to the root directory. Consequently, data recovery should

© 2002 by CRC Press LLC

be invoked from the root directory with recovered files’ directory path names specified
relative to the root directory (/).

12.4.2 The fbackup Command

HP-UX 10.x introduced a new flavor of the backup command, this time renamed fbackup.
The command itself is a powerful replacement for previous backup commands/utilities,
a combination of the best characteristics of the backup and dump commands. fbackup
enables a file/directory related backup, with an optional selection to overcome filesystem
boundaries. In this way a partial backup of a single filesystem could be done, as well as
a complete backup of several filesystems.

The command itself was designed to allow backups while the system is in use by
providing the capability to retry an active file. However, when absolute consistency in a
full backup is important, the corresponding filesystem should be dismounted, or the
system placed in a single-user mode.

The fbackup command has the following form:

fbackup options-arguments

where
options-arguments A list of options with corresponding arguments

Note: Files and directories to be backed up are defined as arguments, or are a list defined
as an argument.

Selected options are immediately followed by corresponding arguments (if the arguments
are requested) in a comprehensive way. The most common options are:

Option Meaning

c Specifies a configuration file for the backup (an argument), unless the default configuration is used
i Includes a filename or a directory name for the backup (an argument), and can be repeated many times
e Excludes a filename or a directory name from the backup (an argument), and can be repeated many

times
g Specifies a “graph-file” (an argument), which is a list of included and excluded filenames/dirnames
f Identifies the backup device to be used instead of the default /dev/rmt/0m (an argument)
n Cross NFS mount-points (by default fbackup does not cross)
l Includes specified LOFS files and directories (by default it does not)
s Follows symbolic links (by default it does not)
v Verbose (otherwise fbackup works silently)
u Updates the backup database
0–9 Specifies the backup level (0 is a full backup)
I Also writes the “index” (the list of backed-up files) in the file specified as an argument (by default it

is written only into the tape/volume)
V Also writes the “volume header” in the file specified as an argument (by default it is written only into

the tape/volume)
R Continues (restarts) an interrupted backup

Note: There are more options that make fbackup more powerful and flexible.

The following script illustrates how the command can be used. The script provides a full
backup of data defined in the graph file, a list of backed-up files is created in the index file,
and the corresponding logging is provided.

© 2002 by CRC Press LLC

$ cat /usr/local/fbackup/bin/fbackup.full
#!/bin/sh

#
#**

#

MT_DEVICE=/dev/rmt/0m

GRAPH_FILE=/usr/local/fbackup/graph/graph.full

INDEX_FILE=/usr/local/fbackup/index/index.full

LOG_FILE=/usr/local/fbackup/log/fbackup.log.�date +%a�

mt -t $MT_DEVICE rewind

echo “�date�: Fbackup started” > $LOG_FILE

/etc/fbackup -f $MT_DEVICE/dev/rmt/0m -0 -u -v -g $GRAPH_FILE -I $INDEX_FILE >> $LOG_FILE

echo “�date�: Fbackup finished.” >> $LOG_FILE

#

#**

#

12.4.3 The dump/ufsdump Command

Originally a BSD-type command, the dump command is the most common filesystem-
related UNIX backup command. Some flavor-colored variations of the command exist
among different UNIX platforms, including modified command names on some
System V versions: ufsdump or even ufsbackup. Despite the discrepancies in the
names, the two commands dump and ufsdump behave the same (or almost the same).
We will call the command dump/ufsdump, just to emphasize their common functions
and similar behavior.

dump/ufsdump keeps track of when it last saved each filesystem and the level at which
the filesystem was saved. This information is stored in the file /etc/dumpdates. A typical
entry in this file is:

/dev/disk2e 2 Sun May 8 13:14:56 1998

This entry indicates the filesystem /dev/disk2e was last backed up on Sunday, May 8,
1998, and it was level 2 backup. If the filesystem cannot be found in this file, it can be
assumed that it was not backed up.

Here is a real example (from a still-active ULTRIX system):

$ cat /etc/dumpdates
/dev/rrz0a 0 Tue Sep 20 00: 38:28 1998

/dev/rrz0h 0 Tue Sep 20 00: 39:53 1998

/dev/rrz1h 0 Tue Sep 20 01: 12:35 1998

/dev/rrz2h 0 Tue Sep 20 01: 37:19 1998

/dev/rra35c 0 Tue Sep 20 02: 25:42 1998

/dev/rra34c 0 Mon Apr 19 16: 02:51 1997

/dev/rrz0a 9 Fri Sep 23 05: 48:50 1998

/dev/rrz0h 9 Fri Sep 23 05: 52:44 1998

/dev/rrz1h 9 Fri Sep 23 06: 08:55 1998

/dev/rrz2h 9 Fri Sep 23 06: 12:54 1998

/dev/rra35c 9 Fri Sep 23 06: 19:45 1998

© 2002 by CRC Press LLC

The file /etc/dumpdates must exist before the dump/ufsdump command is performed,
and it must be owned by the user root (the best way to create the file the first time using
touch /etc/dumpdates).

The general form of the dump command is:

dump options arguments special_file

or, alternatively:

ufsdump options arguments special_file

where
options A list of options to be used for this backup
arguments A list of arguments corresponding to these options; not all options require

arguments
special_file A block special file corresponding to the mounted filesystem to be backed

up (on some systems a character special file is requested)

The dump/ufsdump command should be used carefully. Options and corresponding
arguments are specified within two separate lists, but the list of arguments must strictly
correspond, in order and in number, to the list of options requiring arguments. Failing to
observe this rule could have disastrous effects and consequences, including destroying
the filesystem. It is highly recommended that you create shell scripts that will automatic-
ally invoke dump/ufsdump commands with proper options and arguments to avoid human
errors.

Special attention should be paid to the following two issues in using dump/ufsdump:

1. The filesystem to be backed up should always be the last item on the command
line. If a tape drive specification accidentally follows the disk drive specification,
the filesystem could be corrupted because dump will backup the tape onto the disk.

2. If the tape drive specification is missing, the backup will be performed assuming
the default values. On some systems, it is necessary to select the density on the
tape drive’s front panel in addition to specifying the correct special device file
(dump can unexpectedly run out of tape).

At the end the universal advice: check the manual pages for each individual command
flavor, because there may be differences in their use.

The important dump/ufsdump options are:

Option Meaning

0–9 The numbers 0–9 indicate the level number of the backup. Given any level n, dump will search /etc
/dumpdates for an entry reporting the last level n-1 filesystem backup (or lower). dump then backs up
all files that have been changed since this date. If n is zero, or there is no record in /etc/dumpdates,
dump/ufsdump will back up the complete system. The default value for the level option is 0
(complete backup).

b This option requires an argument, which specifies the blocking factor for tape writing (default is
20 blocks per write, for cartridge 126 blocks per write). A block is 512 bytes.

c Indicates a cartridge instead of the standard half-inch reel; sets another set of default arguments.
d This option requires an argument, which specifies the tape density in bpi (bits per inch): 1600 bpi for

1/2” tape, 1000 bpi for QIC, 54,000 bpi for 8mm tape. If the option is omitted, the default is 1600 BPI.
f This option requires an argument, which specifies another dump medium instead of the default tape

drive (it can be a file or another device).

© 2002 by CRC Press LLC

s This option requires an argument, which specifies the size of the backup tape in feet The argument
does not correspond literally to the tape size, so the values for different tapes must be read. If the
option is omitted, the default is 2300-foot tape.

t This option requires an argument, which specifies the number of tracks for a cartridge tape (60MB QIC
has 9 tracks; 150MB QIC has 18 tracks).

u If dump finishes successfully, this option updates its history file /etc/dumpdates.
W This option asks dump/ufsdump to report which filesystems need to be backed up, without taking

any action. It reads /etc/dumpdates and /etc/fstab to determine what filesystems need backups. If this
option is present, dump/ufsdump will ignore all other options, except for the dump level.

Here are some argument values that produce satisfactory results on a number of typical
tape drives. Note that individual options can be in any order; however, the position of
each argument depends on the relative position of each option.

The dump/ufsdump command is used in the following way:

$ dump 2usfd 2300 /dev/rmt1 6250 /dev/disk1d # Performs a level 2 backup on
the filesystem accessed via /dev/
disk1d, using a 9-track 2300 foot
long (s) tape drive /dev/rmt1 at
6250 BPI density (d), then updates
the file /etc/dumpdates (u).

$ dump 3usdf 2300 6250 /dev/rmt20 /dev/disk1d # Performs a level 3 backup on the
filesystem accessed via /dev/
disk1d using the 9-track 2300 foot
long (s) tape drive /dev/rmt20 at
6250 BPI density (d), then updates
the file/etc/dumpdates (u).

$ dump 1usdf 1422 /dev/rfd0a /dev/rsd0g # Performs a level 1 backup on
the filesystem accessed via /dev/
rsd0g to a floppy drive/dev/rfd0a
on a Sun system, then updates
the file /etc/dumpdates.

$ dump 4Wd 6250 /dev/disk1d # Does not back up any filesystem.
It will print a complete list of
all filesystems indicating the
last time each filesystem was
backed up, the level at which it
was backed up, and whether or
not it needs to be backed up at
level 4 (when the W option is
specified, all other options but the
level number are ignored).

Tape Command (partial)

60MB QIC dump cdst 1000 425 9…
150 QIC dump cdst 1000 700 18…
1/2” tape dump dsb 1600 2300 126…
2GB 4mm tape dump dsb 54000 6000 126…

© 2002 by CRC Press LLC

12.4.4 A Few Examples

Two real examples, one from Sun OS 4.1.x (as a BSD representative) and the other from
Solaris 2.x (as a System V representative), follow. Both UNIX flavors originate from the
same manufacturer, Sun Microsystems, and both examples are related to the backup of
multiple filesystems on a single magnetic tape. In the first example, two filesystems are
dumped to the 150 MB 1/4 inch cartridge (QIC-150). In the second example, five filesys-
tems are dumped to the 2GB 4mm DAT tape. The BSD-like commands dump and ufsdump
are used, respectively. In both cases an appropriate Bourne shell script has been created
to perform the backup. In that way the possibility for any mistake was eliminated, because
the scripts were tested and verified previously. The complete backup procedure has been
logged in the file named “dumpit.log.”

Here is the corresponding script, named “backup_system,” on Solaris 2.x:

$ cat /usr/local/bin/backup_system
#!/ bin/sh

#

The sh script to dump filesystems on ATLAS

(This is Solaris 2.6 UNIX and “ufsdump” is used).

The filesystems on two disk drives

(c0t3d0s3 and c0t2d0s3) are backed-up.

#

echo “Backing all filesystems on ATLAS on:” >/tmp/dumpit.log

date >> /tmp/dumpit.log

echo “ ” >> /tmp/dumpit.log

#

echo “Verifying the tape drive…” >> /tmp/dumpit.log

/bin/mt -f /dev/rmt/0 status >> /tmp/dumpit.log 2>&1

#

echo “Rewinding the tape…” >> /tmp/dumpit.log

/bin/mt -f /dev/rmt/0 rewind >> /tmp/dumpit.log 2>&1

echo “ ” >> /tmp/dumpit.log

#

echo “Starting system backup…” >> /tmp/dumpit.log

echo “Dumping root filesystem…” >> /tmp/dumpit.log

/usr/sbin/ufsdump 0ubf 96 /dev/rmt/0n /dev/rdsk/c0t3d0s0 >> /tmp/dumpit.log 2>&1

echo “ ” >> /tmp/dumpit.log

echo “Dumping /usr filesystem…” >> /tmp/dumpit.log

/usr/sbin/ufsdump 0ubf 96 /dev/rmt/0n /dev/rdsk/c0t3d0s6 >> /tmp/dumpit.log 2>&1

echo “ “ >> /tmp/dumpit.log

echo “Dumping /home filesystem…” >> /tmp/dumpit.log

/usr/sbin/ufsdump 0ubf 96 /dev/rmt/0n /dev/rdsk/c0t3d0s7 >> /tmp/dumpit.log 2>&1

echo “ ” >> /tmp/dumpit.log

echo “Dumping /applic filesystem…” >> /tmp/dumpit.log

/usr/sbin/ufsdump 0ubf 96 /dev/rmt/0n /dev/rdsk/c0t2d0s0 >> /tmp/dumpit.log 2>&1

echo “ ” >> /tmp/dumpit.log

echo “Dumping /software filesystem…” >> /tmp/dumpit.log

/usr/sbin/ufsdump 0ubf 96 /dev/rmt/0n /dev/rdsk/c0t2d0s6 >> /tmp/dumpit.log 2>&1

echo “ ” >> /tmp/dumpit.log

#

echo “Rewinding the tape…” >> /tmp/dumpit.log

© 2002 by CRC Press LLC

/bin/mt -f /dev/rmt/0 rewind >> /tmp/dumpit.log 2>&1

echo “ ” >> /tmp/dumpit.log

#

echo “Backup is done!” >> /tmp/dumpit.log

echo “Backup is done!”

#

The corresponding log file /tmp/dumpit.log is:

$ cat /tmp/dumpit.log
Backing all filesystems on ATLAS on:

Tue Nov 7 16:37:35 EST 1998

Verifying the tape drive…

Archive Python 4mm Helical Scan tape drive:

sense key(0 × 0) = No Additional Sense residual=0 retries=0

file no = 0 block no = 0

Rewinding the tape…

Starting system backup…

Dumping root filesystem…

DUMP: Writing 48 Kilobyte records

DUMP: Date of this level 0 dump: Tue Nov 07 16:37:36 1998

DUMP: Date of last level 0 dump: the epoch

DUMP: Dumping /dev/rdsk/c0t3d0s0 (atlas:/) to /dev/rmt/0n.

DUMP: Mapping (Pass I) [regular files]

DUMP: Mapping (Pass II) [directories]

DUMP: Estimated 168074 blocks (82.07MB).

DUMP: Dumping (Pass III) [directories]

DUMP: Dumping (Pass IV) [regular files]

DUMP: 167998 blocks (82.03MB) on 1 volume at 624 KB/sec

DUMP: DUMP IS DONE

DUMP: Level 0 dump on Tue Nov 07 16:37:36 1998
.

.

Rewinding the tape…

Backup is done!

The script on SunOS has an identical structure; the only difference is that the dump
command (instead of ufsdump), is applied, as follows:

$ cat /usr/local/bin/dump_system
#!/ bin/sh

#

The csh script to dump / and /usr filesystems

(this is level 0 dump to the QIC 150 tape)

.

.

echo “Dumping root filesystem…” >> /tmp/dumpit.log

/usr/etc/dump 0cdstfu 1000 700 18 /dev/nrst0 /dev/sd0a >> /tmp/dumpit.log 2>&1

echo “ ” >> /tmp/dumpit.log

echo “Dumping usr filesystem…” >> /tmp/dumpit.log

/usr/etc/dump 0cdstfu 1000 700 18 /dev/nrst0 /dev/sd0g >> /tmp/dumpit.log 2>&1

© 2002 by CRC Press LLC

echo “ ” >> /tmp/dumpit.log

.

.

The corresponding log file /tmp/dumpit.log is:

$ cat /tmp/dumpit.log
Wed Nov 1 16:43:38 EST 1998

Backing root and usr filesystems

Verifying the drive…

Archive QIC-150 tape drive:

sense key(0 × 0) = no sense residual = 0 retries = 0

file no = 0 block no = 0

Rewinding the tape…

Starting backup…

Dumping root filesystem…

DUMP: Date of this level 0 dump: Wed Nov 1 16:43:42 1998

DUMP: Date of last level 0 dump: the epoch

DUMP: Dumping /dev/rsd0a (/) to /dev/nrst0

DUMP: mapping (Pass I) [regular files] DUMP: mapping (Pass II) [directories]

DUMP: estimated 13278 blocks (6.48MB) on 0.05 tape(s).

DUMP: dumping (Pass III) [directories]

DUMP: dumping (Pass IV) [regular files]

DUMP: level 0 dump on Wed Nov 1 16:43:42 1998

DUMP: Tape rewinding

DUMP: 13262 blocks (6.48MB) on 1 volume

DUMP: DUMP IS DONE

Dumping usr filesystem…

DUMP: Date of this level 0 dump: Wed Nov 1 16:45:00 1998

DUMP: Date of last level 0 dump: the epoch

DUMP: Dumping /dev/rsd0g (/usr) to /dev/nrst0

DUMP: mapping (Pass I) [regular files] DUMP: mapping (Pass II) [directories]

DUMP: estimated 275898 blocks (134.72MB) on 0.96 tape(s).

DUMP: dumping (Pass III) [directories]

DUMP: dumping (Pass IV) [regular files]

DUMP: 21.60% done, finished in 0:18

DUMP: 43.98% done, finished in 0:12

DUMP: 66.08% done, finished in 0:07

DUMP: 87.82% done, finished in 0:02

DUMP: level 0 dump on Wed Nov 1 16:45:00 1998

DUMP: Tape rewinding

DUMP: 275898 blocks (134.72MB) on 1 volume

DUMP: DUMP IS DONE

Rewinding the tape…

Backing is done!

The log files /tmp/dumpit.log on both systems report on the backup procedures, step by step
— partially because of the echo lines in the scripts, and partially because of the verbose nature
of the dump and ufsdump commands themselves. We will analyze them in greater detail.

Pay attention to the bold DUMP message “Tape rewinding” in the second log file.
Although the “no-rewind” device file /dev/nrmt0 was selected, the dump command

© 2002 by CRC Press LLC

informs us of the tape rewinding at the end of each individual filesystem’s dump. It is
easy to verify, though, that this has not really happened; dump just misinformed us. Why?

In the search for an answer, we should recall the discussion about the tape device files.
In the past, when the dump command was created, it was logical to assume a tape rewind
at the end of a filesystem’s dump. No one assumed multiple filesystem backups on the same
tape. The opposite problem existed: a single filesystem dump required multiple tape volumes.
Consequently, a corresponding message was a logical part of the command itself, although a
device driver itself performed the rewinding independently. Today, there is no need for the
tape to rewind, but this message remains, even when the “no rewind” device is used.

Checking the first log file, we see the confusing DUMP message about tape rewinding
does not exist anymore. The ufsdump command was introduced later, and all previous
bugs were fixed.

Another example illustrates the archiving of users’ data, in this case the experimental nuclear
magnetic resonance (NMR) data. Users keep data in a separate /data subdirectory in their home
directories; all such data should be periodically compressed and saved on a QIC-150 tape.

Again, an appropriate script file backup_data.sh has been created; here, the tar command
was used for archiving data (there is no need for a complete filesystem backup). The
implemented directories and file names correspond to this actual case. (The comments
have been placed in bold type to make them more legible.)

$ cat /usr/CM/CMcoms/backup_data.sh
#!/ bin/sh

#

To use type the command:

/usr/CM/CMcoms/backup_data

The log file is: /home/backup_data.log

To check the tape type: tar -tf /dev/rst0

#

dir of accounts to be backed-up

cd /home

Preventive initial remove of used files

rm backup_data.log 2>/dev/null

rm dirs 2>/dev/null

rm nmrusers 2>/dev/null

#

Specify user home directories

ls > dirs

Extracting data directories of NMR users

for dir in ‘cat dirs’

do

if [-d $dir/data]; then

echo “$dir/data;” >> nmrusers

fi

done

#

Archiving users/data to tape

date >> /home/backup_data.log

echo “Pay attention that the tar command is using!” >> /home/backup_data.log

echo “ ” >> /home/backup_data.log

© 2002 by CRC Press LLC

tar -cvf /dev/rst0 /home/nmrusers >> /home/backup_data.log

#

Deleting temporary files

rm /home/dirs

rm /home/nmrusers

12.5 Restoring Files from a Backup

All the backup facilities previously discussed have corresponding file restoration facilities.
Central among them is the restore command. Similarly to the dump command, restore
also originated from the BSD UNIX, but eventually found its place on System V platforms
too. Again, sometimes it has the alternate name ufsrestore, but it is functionally the same.

12.5.1 The restore Commands

Like backup, there are several implementations of the restore command; or rather the restore
command varies among different UNIX versions and releases. A brief review follows.

12.5.1.1 The SVR3 restore Command

Another brief historical review: the SVR3 restore command is the complement to the
described SVR3 backup command. It is obsolete, and the only reason to mention it here
is for its educational purpose, to show the continuity in its use. The SVR3 restore command
had the following format:

restore options file_list

where
file_list List of files to be restored. Wildcards are allowed in quotes.
options One or more applicable options.

The options were

Option Meaning

-c Restore all files (a complete restoration)
-i List contents of tape/diskette (can be used to verify backups)
-o Overwrite existing files when restoring (by default existing files are not restored)
-d res_dev Specify device res_dev to restore from
-t Indicate that res_dev is a tape device

Here are a few examples:

restore -c # Restore all files from the diskette in the default floppy drive

© 2002 by CRC Press LLC

restore -d /dev/rmt/c0s0 -t -o “/home/username/data/*.dat”

Restore selected files *.dat from the directory /home/username/data from a
tape in the first tape drive, overwriting existing files

12.5.1.2 The restore/ufsrestore Command

The BSD-style restore command retrieves files from backup tapes made with the BSD-
style dump command. The command is also supported by other UNIX flavors, including
some SVR4 versions (sometimes renamed ufsrestore). The restore/ufsrestore command
can restore a single file, multiple files, directories, or entire filesystems. To restore an entire
filesystem, the sequence of different level backups must be respected: first the most recent
full dump (level 0), than level 1 backup, and so on. Therefore, to restore a filesystem as a
whole, a system administrator may wish to create and mount a clean, empty filesystem,
make the current working directory the directory where this filesystem is mounted, and
then use the restore/ufsrestore command to read the backup tapes into this directory.

If the filesystem is restoring from a complete (level 0) dump, plus one or more incre-
mental dumps, all files which have been deleted after a level 0 backup will be restored
again; incremental dumps do not keep track of deleted files.

After any full restoration, the full (level 0) backup should be redone to ensure consistency
between inode numbers on the disk(s) and tape(s). The dump/ufsdump command copies
inode numbers, while the restore/ufsrestore command assigns inode numbers sequen-
tially as files are restored.

The restore/ufsrestore command has the following form:

restore options arguments [files_and_dirs]

Or, alternatively

ufsrestore options arguments [files_and_dirs]

where
options A list of options
arguments A list of arguments corresponding to selected options
files_and_dirs A list of files and directories to be retrieved from the tape: if omitted,

the default is the entire tape

As with the dump/ufsdump command, the order of the options and corresponding
arguments is extremely important.

The most important options are:

Option Meaning

r Read and restore the entire tape
R Resume a partially completed restoration operation
x Extract all files and directories listed and restore them in the current directory. Each file must have a

complete path name relative to the root directory of the filesystem being restored(for example, to restore
the file /a/b/c/filename from the dump of the /a filesystem, the file b/c/filename must be specified

t Type the names of the listed files and directories on the tape
f The corresponding argument is the name of the file or device (specified by the special file) holding the

dump. If omitted, the default is the tape mounted on the default tape drive
h If a name in the files_and_dirs list is a directory, only the empty directory should be restored, not the

files that are within it
i Enter interactive mode

© 2002 by CRC Press LLC

12.5.1.3 Interactive Restore
The whole restoration procedure is much simpler once the interactive restore mode (the
restore/ufsrestore command with the i option) has been entered. Once invoked, a restore
menu appears, providing a user-friendly environment convenient for a comprehensive
dialogue. A system administrator can scan the contents of the tape, choose files for
extraction, reselect files, and perform other activities. The restore procedure is controlled
by a number of designated restore commands (subcommands). The quit command is
available to quit the interactive restore mode. The interactive restore mode is illustrated
below (the example is from HP-UX 10.20).

$ /usr/sbin/restore -ibf 96 /dev/rmt/0mn # Enter interactive restore mode.

restore > help # Display help report.
Available commands are:

ls [arg] - list directory

cd arg - change directory

pwd - print current directory

add [arg] - add ‘arg’ to list of files to be extracted

delete [arg] - delete ‘arg’ from list of files to be extracted

extract - extract requested files

setmodes - set modes of requested directories

quit - immediately exit program

what - list dump header information

verbose - toggle verbose flag (useful with “ls”)

help or ‘?’ - print this list
. . .

If no ‘arg’ is supplied, the current directory is used

restore > what # List the tape header.

Dump date: Wed Mar 10 13:36:38 1999

Dumped from: the epoch

Level 0 dump of / on apollo :/dev/vgoo/lvol1

Label: none

restore > ls # List the root directory (on the tape).

.:

X11/ mail/ preserve/ statmon/ yp/

adm/ ncs rbootd/ stm/

export/ news/ run/ tmp/

log/ opt/ sam/ uucp/

lost+found/ ppl/ spool/ vue/

restore > cd adm # Change the current tape directory.

restore > ls # List the new directory (on tape).

./ adm:

.sh_history lp/ streams/

OLDsulog nettl.LOG00 sulog

acct/ new._ACL sw/

automount.log new._OWNER syslog/

btmp new._PROD_DFLT_ACL utmp

cron/ ptydaemonlog wtmp

diag/ rc.log wtmpx

dumpdates rpc.lockd.log

eisa/ rpc.statd.log

© 2002 by CRC Press LLC

restore > cd lp # Change the current tape directory.

restore > ls # List the new directory (on tape).

./ adm/lp:

log oldlog

restore >cd .. # Change to the previous directory (on the tape)

restore > add btmp # Select files to be restored; files are not

restore > add utmp restored until extract is entered

restore > add wtmp

restore > ls # Re-list the directory (on the tape);

./adm: Selected files are marked with an asterisk.

.sh_history lp/ streams/

OLDsulog nettl.LOG00 sulog

acct/ new._ACL sw/

automount.log new._OWNER syslog/

*btmp new._PROD_DFLT_ACL *utmp

cron/ ptydaemonlog *wtm p

diag/ rc.log wtmpx

dumpdates rpc.lockd.log

eisa/ rpc.statd.log

restore > add cron # Select a directory to be restored

restore > ls # Relist the directory (on the tape)

./adm:

.sh_history lp/ streams/

OLDsulog nettl.LOG00 sulog

acct/ new._ACL sw/

automount.log new._OWNER syslog/

*btmp new._PROD_DFLT_ACL *utmp

*cron/ ptydaemonlog *wtmp

diag/ rc.log wtmpx

dumpdates rpc.lockd.log

eisa/ rpc.statd.log

restore > delete btmp # Cancel one of the selected files and remove the
file from the extract list

restore > ls # Relist the directory (on the tape)

./ adm:

.sh_history lp/ streams/

OLDsulog nettl.LOG00 sulog

acct/ new._ACL sw/

automount.log new._OWNER syslog/

btmp new._PROD_DFLT_ACL *utmp

*cron/ ptydaemonlog *wtmp

diag/ rc.log wtmpx

dumpdates rpc.lockd.log

eisa/ rpc.statd.log

restore > extract # Restore selected files and directory. It takes a
while to restore selected data from the tape into
the current directory.

restore > quit # Exit the interactive restore.

$

© 2002 by CRC Press LLC

12.5.2 The frecover Command

frecover is the HP-UX 10.x restore alternative for the fbackup command. Even the usual
name restore was modified. This command recovers data that have been previously
“fbacked-up.” frecover selectively recovers files.

The frecover command has the following form:

frecover functions-arguments options-arguments

where
functions-arguments A list of functions that define command activities, with corres-

ponding arguments
options-arguments A list of options with corresponding arguments (if requested)

Files and directories to be recovered from the tape can be specified as arguments, or can
be a list specified as an argument.

Selected functions and options are immediately followed by the corresponding arguments,
if the arguments are requested. The most common functions and options are:

Function Meaning

r Reads and recovers a complete fbackup contents to its original location (intended to recover full and
incremental backups)

x Extracts specified files and directories (recursively, unless the h option is implemented). Ownership,
mode, and time are preserved (unless the A option is specified)

I Extracts only the “index” from the tape/volume (the list of fbackup-ed files on the tape/volume) and
writes to the file defined as an argument

V Extracts only the “volume header” from the tape/volume and writes into the file defined as an
argument

R Continues an interrupted recovery

Option Meaning

c Specifies a configuration file for the recovery (an argument)
i Includes a filename or a directory name to be extracted (an argument), could be repeated many

times
e Excludes a filename or a directory name from being extracted (an argument), could be repeated many

times
g Specifies a “graph-file” (an argument) — a list of included and excluded filenames/directory names
f Identifies the backup device to be used instead of the default /dev/rmt/0m (an argument)
v Verbose — otherwise frecover works silently
h Prevents a recursive extraction of selected directories
X Recovers files relative to the current directories; normally files are recovered to their absolute path

name

Note: There are additional options that make frecover more powerful and flexible.

The frecover command can be used from the command line, but the large number of
options and arguments makes such an approach very difficult in practice. It is more
convenient to use a homemade script that includes the frecover command. Here is an
example; requested recover data are passed as arguments, and logging is provided out of
the script.

© 2002 by CRC Press LLC

$ cat /usr/local/frecover/bin/frecover_data
#!/ usr/bin/ksh
This is the script frecover_data
Purpose: to support frecover in background with logging
GRF=$1 # Graph file (what to recover);
MTD=$2 # Tape drive (where to recover from);
REF=$3 # Referent directory to recover data;
SFX=$4 # Type of recovery;
frecover options:
r - recover into original locations
x - extract (recover) data specified by “-g”
X - recover data relative to the current directory
o - recover (overwrite) data irrespectively to the age
v - verbose mode
g - data to be recovered specified in the graph file $GRF
f - specifies the tape drive $MTD
cd $REF
echo “�date�: frecover started…”
if [“$SFX” = “FULL”]; then
/etc/frecover -rov -f $MTD
else
/etc/frecover -xovX -g $GRF -f $MTD
fi
echo “�date�: frecover completed.”
#
echo “�date�: tape rewinding started…”
/usr/bin/mt -t $MTD rewind
echo “�date�: tape rewinding completed.”

12.5.3 Restoring Multiple Filesystems Archived on a Single Tape

In the case of multiple filesystems archived on a single tape, each filesystem can be restored
separately by using the previously described restore command. Before the start of a
filesystem’s restoration, the tape itself must be positioned at the beginning of the corres-
ponding filesystem’s archive. This requires iterative use of the mt command, followed by
the restore command, with an appropriate selection of the “rewind” and “no rewind”
device files. A system administrator wrote the following README file, and it describes
the restore procedure on a Solaris 2.x system for filesystems archived by the script
“backup_system” discussed earlier (see examples for backup and dump). Solaris 2.x sup-
ports the ufsrestore command, which is equivalent to the restore command on other UNIX
platforms. This means that the procedure presented here could be implemented on any
other UNIX platform by simply replacing the ufsrestore with the restore command.

Let us see the README file:

$ cat /etc/RESTORE_SYSTEM.README
#

To restore a filesystem from a backup tape with multiple
filesystem’s archives
(the tape was backed-up by the script “backup_system”)

A regular (not-Berkeley style) tape device /dev/rmt/0 is assumed
Each individual filesystem was backed-up by the command:
ufsdump 0ubf 96 /dev/rmt/0n /dev/rdsk/cXtXdXsX
#

© 2002 by CRC Press LLC

Rewind the tape:
mt -f /dev/rmt/0 rewind
#
The first filesystem on the tape is the root filesystem
For interactive restoring type:
ufsrestore ibf 96 /dev/rmt/0n
Then use the appropriate restore commands.
Since the “quit” ufsrestore sub-command is issued, the tape is
placed on the start of the next archived filesystem, because
the not-Berkeley style “norewind” device /dev/rmt/0n was used.
If the “rewind” device was used:
ufsrestore ibf 96 /dev/rmt/0
the tape would automatically rewind to the begginning of the tape.
#
To skip a filesystem on the tape, type:
mt -f /dev/rmt/0n fsf 1
(you must be sure about previous tape position)
#
To stay on the same filesystem, use the “norewind” device
and after the “quit” ufsrestore sub-command, type:
mt -f /dev/rmt/0n bsf 2
#
To reach the k-th filesystem on the tape, type:
mt -f /dev/rmt/0 rewind
mt -f /dev/rmt/0n fsf {k-1}
#
To return (skip back) “k” filesystems on the tape, type:
mt -f /dev/rmt/0n bsf {k+1}
#
For an interactive restore type:
ufsrestore ibf 96 /dev/rmt/0n
then use an appropriate ufsrestore sub-commands.
#
WARNING: If the “rewind” device file is used, the tape will
always rewind when the operation is completed, nevertheless
what kind of the operation was requested; for instance,
the command: “mt -f /dev/rmt/0 fsf 3” is senseless
#

12.6 Tape Control

Assuming the use of the regular (not-Berkeley style) “no rewind” device file, proper
forward and backward moving of a tape still seems a little confusing. To understand this
better, we should also recall that there are two types of mt device files: Berkeley and
regular (non-Berkeley, also known as AT&T style), and they behave differently. This means
that the same set of tape-related commands would handle a tape differently depending
on the type of the tape device file selected. The trailing letter “b” in the device filename
identifies Berkeley-style devices, so it is very easy to distinguish between the two types
of tape devices.

The system works in the following way (assuming non-Berkeley style devices):

• At the end of a recording on a tape (performed by dump, tar, or other) an EOF
pointer is automatically appended after the backup record.

• Any movement of the tape is referenced by those EOF pointers.

© 2002 by CRC Press LLC

• A tape always stops at the first block that follows a designated EOF pointer
(a tape forwards just after the closest EOF pointer), whatever the direction of the
previous tape movement was.

• The mt command, which is used to move a tape, refers to a number of EOF
pointers, determined by its count option, to be skipped in any direction (every
EOF pointer on the way is counted).

That is why the command:

mt -f /dev/rmt/0n bsf 1

does not change a tape’s position.
The graphical presentation in Figure 12.1 should contribute to a better understanding

of this issue.

Record Record Record Record
EOF EOF EOF EOF

. . .
This is an arbitrary tape layout with multiple dumped records

Record Record Record Record
EOF EOF EOF

. . .
This is a tape position after rewinding: "mt -t /dev/rmt/0n rewind"

Record Record Record Record

EOF

EOF EOF EOF
. . .

This is a tape position after the command: "restore if /dev/rmt/0n"

Record Record Record Record
EOF EOF EOF

. . .
This is a tape position after the next command: "restore if /dev/rmt/0n"

Record Record Record Record
EOF EOF EOF

. . .
This is a tape position after the next command: "restore if /dev/rmt/0n"

Record Record Record Record
EOF EOF EOF

. . .
This is a tape position after the next command: "mt -t /dev/rmt/0n bsf 2"

Record Record Record Record
EOF EOF EOF

. . .
This is a tape position after the next command: "mt -t /dev/rmt/0n bsf 1"

Record Record Record Record
EOF EOFEOF

. . .
This is a tape position after the next command: "mt -t /dev/rmt/0n fsf 2"

Record Record Record Record
EOF EOF EOF

. . .
This is a tape position after the next command: "mt -t /dev/rmt/0n bsf 4"

Note: The "no rewind" regular device file /dev/rmt/0n was used.
On some UNIX platforms the command: "mt -f /dev/rmt/0n ..." could be used.

FIGURE 12.1
Tape control — regular (AT&T-style) tape device.

© 2002 by CRC Press LLC

The Berkeley-style tape devices behave differently in that during tape movement, the
tape remains in its actual position without forwarding to the closest EOF pointer. This
small difference requires modified control of the tape during the restore procedure.
This is presented in Figure 12.2.

Record Record Record Record
EOF EOF EOF EOF

. . .
This is an arbitrary tape layout with multiple dumped records

Record Record Record Record
EOF EOF EOF

. . .
This is a tape position after rewinding: "mt -t /dev/rmt/0bn rewind"

Record Record Record Record

EOF

EOF EOF EOF
. . .

This is a tape position after the command: "restore if /dev/rmt/0bn"

Record Record Record Record
EOF EOF EOF

. . .
This is a tape position after the commands: "restore if /dev/rmt/0bn” and "mt –t /dev/rmt/0bn fsf 1”

Record Record Record Record
EOF EOF EOF

. . .

Record Record Record Record
EOF EOF EOF

. . .
This is a tape position after the next command: "mt -t /dev/rmt/0bn bsf 2"

Record Record Record Record
EOF EOF EOF

. . .
This is a tape position after the next command: "mt -t /dev/rmt/0bn fsf 1"

Record Record Record Record
EOF EOFEOF

. . .
This is a tape position after the next command: "mt -t /dev/rmt/0bn fsf 2"

Record Record Record Record
EOF EOF EOF

. . .
This is a tape position after the next command: "mt -t /dev/rmt/0bn bsf 4"

Note: The "no rewind" regular device file /dev/rmt/0bn was used.
On some UNIX platforms the command: "mt -f /dev/rmt/0bn ..." could be used.

Record Record Record Record
EOF EOF EOF

. . .
This is a tape position after the command: "mt –t /dev/rmt/0bn fsf 1"

This is a tape position after the commands: "restore if /dev/rmt/0bn” and "mt –t /dev/rmt/0bn fsf 1”

FIGURE 12.2
Tape control — Berkeley-style tape device.

© 2002 by CRC Press LLC

13
Time-Related UNIX Facilities

13.1 Network Time Distribution

UNIX supports the distribution of an accurate time throughout the network. This means
that each host in the overall network is synchronized to a selected timeserver, or servers,
which transmit a reference clock time to the time client hosts. A reference clock will
generally (though not always) be a radio time code receiver that is synchronized to a source
of standard time such as NIST in the U.S., or NRC in Canada. The time distribution is
based on the network time protocol (NTP), currently version 4 which is fully compliant
with version 3 standard, defined by Request for Comments RFC 1305, and compatible
with previous versions 2 and 1, defined by RFC 1119 and RFC 1059. The computation
done in the protocol is fully provided in fixed-point arithmetic, and together with the
clock adjustment code, brings a high precision that maintains accuracy comparable with
even the most precise external time sources.

13.1.1 The NTP Daemon

A special NTP daemon, named xntpd, is responsible for maintaining a UNIX system’s
time-of-day; it is also known as the time server. The time server provides the time
service, or acts as a time client. We will use the term the xntpd daemon (or the NTP
daemon), just to avoid any possible confusion. The xntpd daemon works in compliance
with Internet standard time servers; it follows the distributed reference time. The xntpd
daemon exits (collapses) if the difference in the system time and the reference time is
more than 1000 sec; otherwise, it slowly brings the system time in line with the
distributed reference time.

The NTP daemon reads its configuration file /etc/ntp.conf (or /etc/inet/ntp.conf, as on
Solaris 2.x) at the startup time, and learns its duties. If any configuration change has
been made, the daemon must be restarted. The daemon can be configured to act strictly
as a time client by specifying appropriate configuration entries, which means it will
only synchronize its own system’s time, or it will act as a potential time server. The term
potential is used to emphasize the fact that even when the local xntpd daemon is willing
and ready to transfer the reference time over the network, the NTP daemons running
on other hosts decide if they will use the offered service. This concept will be clearer
once we explain basic configuration entries.

© 2002 by CRC Press LLC

The xntpd daemon is not mandatory on every system. It is easy to determine if it is running
on your system by executing the command (as in this example, from HP-UX 10.20):

$ ps -ef | grep ntp | grep -v grep

root 1284 1 0 Feb 25 ? 5:27 /usr/sbin/xntpd

Or, on Solaris 2.x:

$ ps -ef | grep ntp | grep -v grep

root 956 1 0 Mar 08 ? 0:03 /usr/lib/inet/xntpd

The NTP daemon is started only if the configuration file is set appropriately. Here is the
partial rc startup sequence on Solaris 2.6 from the /etc/init.d/xntpd rc script:

‘start’)

Only start if there is a config file

if [-r /etc/inet/ntp.conf] ; then

ARGS=�cat /etc/inet/ntp.conf | /usr/bin/nawk ‘…..’�

.

.

If [! -z “$ARGS”]

then

wait until date is close before starting xntpd

(/usr/sbin/ntpdate $ARGS ; sleep 2 ; /usr/lib/inet/xntpd)&

else

/usr/lib/inet/xntpd

fi

fi

;;

This sequence is a part of the case statement. The way the xntpd daemon is started
depends on the existence and contents of the configuration file. The start script lives in
the /etc/rc2.d directory:

$ ls -l /etc/rc2.d | grep xntpd

203745 -rwxr--r-- 4 root sys 1266 Jul 16 1997 S74xntpd

It is also the hard link to the rc script in the /etc/init.d depot directory:

$ ls -l /etc/init.d | grep xntpd

203745 -rwxr--r-- 4 root sys 1266 Jul 16 1997 xntpd

13.1.2 The NTP Configuration File

The configuration file determines the behavior of the xntpd daemon; we will identify it
as NTP configuration file. The NTP configuration file should be administered and set
correspondingly for each specific site. The existing self-explanatory template file and
manual pages should be sufficient for ensuring successful time daemon setting. Four
crucial configuration entries are possible to define the basic behavior of the xntpd daemon:

© 2002 by CRC Press LLC

• peer The local time daemon operates in “symmetric active” mode. It can be
synchronized to the specified remote time daemon (the time daemon
on the specified remote host). In addition, the specified remote time
daemon can also be synchronized by this local time daemon. Such
a configuration can be implemented to prevent various failure
scenarios and to provide a choice for a better time source.

• server The local time daemon operates in “client” mode. It can only be
synchronized to the specified remote time daemon. This is a strictly
client mode; please note that the corresponding time server is
selected by the client configuration. It is assumed that the selected
remote time daemon provides the time service.

• broadcast The local time daemon operates in “broadcast” mode. The local time
daemon sends periodic broadcast messages to clients at a specified
address, usually a broadcast address on a local network.

• fudge The support of the reference clock, used to configure reference clocks
in special ways.

Configuration entries are explained in more detail within the presented template
configuration file (this file is found on HP-UX platform, although NTP is not flavor-colored
at all). The example configuration files that follow are also part of the template file.

$ cat /etc/ntp.conf.example
Sample XNTP Configurations File
#
Use “peer”, “server” and “broadcast ” statements to specify various time server to be used
and/or time services to be provided.
#
Peer: The peer statement specifies that the given host is to be polled in “symmetric active” mode.
The syntax is :
peer addr [key #] [version #] [minpoll interval_in_sec] [prefer]
peer 128.116.64.3 key 2001 version 2
#
Server: The server statement causes polling to be done in client mode rather than symmetric
active. It is an alternative to the peer command above. Which you use depends on what
you want to achieve. The syntax is:
server addr [key #] [version #] [minpoll interval_in_sec] [prefer]
server 128.8.10.1 key 2000 minpoll 6 prefer
#
Broadcast: The broadcast statement tells it to start broadcasting time
out one of its interfaces. Syntax is:
broadcast addr [key #] [version #] [minpoll interval_in_sec]
broadcast 128.100.49.255 # [key n] [version n]
#
Fudge: Reference clock support which can be used to configure reference clocks
in special ways. The syntax is:
fudge 127.127.t.u [time1] [time2] [stratum #] [refid #] [flag1 – flag4]
fudge 127.127.26.1 time1 -0.930 # use one “fudge” line only
127.127.t.u identifies a clock (see Local clock)
#
broadcastclient: It tells the daemon whether it should attempt to sync to broadcasts or not
(default no)
broadcastclient yes # or no
#
broadcastdelay: It configures in a default round-trip delay to use for
broadcast time (in seconds). The default is 0.008 second.
broadcastdelay 0.008

© 2002 by CRC Press LLC

#
Presion: The default is -6. Unless there is a good reason to do so, this
value should not be changed from the default value.
precision -6
#
Drift file: Put this in a directory which the daemon can write to. No symbolic links
allowed, either.
driftfile /etc/ntp.drift
#
authenticate: It configures us into strict authentication mode (or not). The default is no.
authenticate yes # or no.
#
authdelay: It is the time (in seconds) it takes to do an NTP encryption on this host.
AUTHDELAY
#
trustedkey: The keys defined here are used when authenticate is on. We only trust (and sync to)
peers who know and use these keys.
trustedkey 1 3 4 8
#
keys: It specifies the file which holds the authentication keys.
keys /etc/ntp.keys
#
controlkey: It indicates which key is to be used for validating mode 6 write variables commands.
If this isn’t defined, no mode 6 write variables commands can be done on the xntpd.
controlkey 65534
#
restrict: This option places restrictions on one or more systems. This is implemented as a sorted
address-and-mask list, with each entry including a set of flags which define what a host
matching the entry *can’t* do. The syntax is :
restrict address [mask numeric mask] [flag]
The flags are:
ignore - ignore all traffic from host
noserve - don’t give host any time (but let him make queries?)
notrust - give the host time, and let it queries, but don’t sync to it.
noquery - host can have time, but can not make queries
nomodify - allow the host to make queries except those which are actually run-time
configuration commands.
ntpport - Makes matches for this entry only if the source port is 123.
#
The matching machines can be servered time, but they will be restricted to make
non-modifying queries
restrict 129.140.0.0 mask 255.255.0.0 notrust nomodify
#
Ignore all packets from host 15.1.15.1
restrict 15.1.15.1 ignore
#
Restrict 35.1.1.0 to query only
restrict 35.1.1.0 mask 255.255.255.0 noserve nomodify
#
Take time from the 128.116.64.3, but don’t let it query
restrict 128.116.64.3 noquery
#
statdir: Indicates the full path of the directory where statistics files should be created:
statsdir /var/tmp/ntp
#
statistics: Enables writing of statistics records: loopstats/peerstats.
statistics loopstats
statistics peerstats
#
filegen: Configures the ways to generate the statistic file set. It provides a mean for handling files
that are continously growing during the lifetime of a server. The syntax is :

© 2002 by CRC Press LLC

filegen statsname [file filename] [type typename] [link/nolink] [enable/disable]
filegen loopstats file loopstat type week link
filegen peerstats file loopstat type week link
#
Local clock: Allows the server to synchronize to its own clock.
server 127.127.1.1
fudge 127.127.1.1 stratum 10 # show poor quality
#
Reference clocks are specified with an “invalid” ip address 127.127.t.u
-“t” is an integer denoting the clock type
-“u” indicates the type-specific unit number
Spectracom Netclock/2 clocks : synchronize to netclock/2 which receives WWVB.
server 127.127.3.x # PSTI 1010/1020 WWV Clock
server 127.127.4.1 # Spectracom Netclock/2 WWVB or GPS receiver /dev/wwvb1
server 127.127.5.x # Kinimetric Truetime 468-DC GOES receiver
server 127.127.9.x # MX4200 GPS receiver
server 127.127.10.x # Austron 2201A GPS Timing Receiver
server 127.127.11.x # Kinemetrics Truetime OM-DC OMEGA Receiver
server 127.127.12.x # KSI/Odetecs TPRO-S IRIG-B / TPRO-SAT GPS
server 127.127.13.x # Leitch: CSD 5300 Master Clock System Driver
server 127/127.15.x # TrueTime GPS/TM-TMD
server 127.127.16.x # Bancomm GPS/IRIG Ticktock
server 127.127.17.x # Datum Programmable Time System
server 127.127.18.x # NIST Modem Time Service
server 127.127.23.x # PTB Modem Time Service
server 127.127.24.x # USNO Modem Time Service
server 127.127.26.1 # HP GPS receiver /dev/hpgps1
#
#
Example configurations ===
#
NTP configuration file (ntp.conf)
baldwin.udel.edu (128.4.1.24)
#
This illustrates the use of an external clock with the local clock
driver, as well as a multicast server. The prefer keyword on the
local clock driver declares an external clock and that the time of
this server should not be wiggled by an NTP peer, unless the
external clock comes unstuck. Note the use of the multicast group
ID assigned to NTP, 224.0.1.1, which identifies this as a multicast
server rather than a broadcast one. The other NTP peers are known
stratum-1 chimes intended as backup should the external clock croak.
#
peer 127.127.1.0 prefer # KSI/Odetics TPRO IRIG interface
fudge 127.127.1.0 stratum 0 refid GPS
broadcast 224.0.1.1 key 6 ttl 127
peer 128.4.1.1 # rackety.udel.edu (Sun4c/40 IPC)
peer 128.4.1.4 # barnstable.udel.edu (Sun4c/65 SS1 +)
peer 128.4.1.2 # mizbeaver.udel.edu (Bancomm bc700LAN)
peer 128.4.1.20 # pogo.udel.edu (Sun4c/65 SS1 +)
#
Miscellaneous stuff
enable auth monitor # enable the good stuff
driftfile /etc/ntp.drift # path for drift file
statsdir /baldwin/ntpstats/ # directory for statistics files
filegen peerstats file peerstats type day enable
filegen loopstats file loopstats type day enable
filegen clockstats file clockstats type day enable
#
Authentication stuff
keys /usr/local/bin/ntp.keys # path for keys file

© 2002 by CRC Press LLC

trustedkey 3 4 5 6 14 15 # define trusted keys
requestkey 15 # key (7) for accessing server variables
controlkey 15 # key (6) for accessing server variables
authdelay 0.000163 # authentication delay (SPARC4c/40 IPC MD5)
#
==
#
NTP configuration file (ntp.conf)
bearegard.udel.edu (128.4.1.23)
#
server pogo.udel.edu # stratum 1 nearby
server 127.127.18.1
fudge 127.127.18.1 time1 .0035
phone atdt913034944774 atdt913034944785 atdt913034944774
phone atdt913034944812 atdt913034948497 atdt913034948022
#
Miscellaneous stuff
enable auth monitor # enable the good stuff
driftfile /etc/ntp.drift # path for drift file
statsdir /beauregard/ntpstats/ # directory for statistics files
filegen peerstats file peerstats type day enable
filegen loopstats file loopstats type day enable
filegen clockstats file clockstats type day enable
#
Authentication stuff
keys /usr/local/etc/ntp.keys # path for keys file
trustedkey 3 4 5 6 14 15 # define trusted keys
requestkey 15 # key (7) for accessing server variables
controlkey 15 # key (6) for accessing server variables
authdelay 0.000163 # authentication delay (SPARC4c/40 IPC MD5)
#
==
#
More examples of NTP configuration files follow.
.
.
#

There is no need for additional comments after such an elaborate template file. However,
let us see a few NTP client examples:

$ cat /etc/ntp.conf (HP-UX)
Configured using SAM by root on Thu Nov 20 15:02:29 1998
Sample XNTP Configurations File
#
server ntphost.scps.nyu.edu version 3 prefer
####################################

$ cat /etc/inet/ntp.conf (Solaris)
The ntp.conf file ###
#
server tick.usno.navy.mil prefer
server tock.usno.navy.mil
#
enable auth monitor
driftfile/var/ntp/ntp.drift
statsdir/var/ntp/ntpstats/
filegen peerstats file peerstats type day enable

© 2002 by CRC Press LLC

filegen loopstats file loopstats type day enable
filegen clockstats file clockstats type day enable

$ cat /etc/inet/ntp.conf (Solaris)
@(#)ntp.client 1.2 99/11/09 SMI
#
/etc/inet/ntp.client
An example file that could be copied over to /etc/inet/ntp.conf; it
provides a configuration for a client host that passively waits for a server to
provide NTP packets on the ntp multicast net. A broadcast/multicast client
can automatically discover remote servers, compute one-day delay correction
factors and configure itself. No need for specific configuration data.
multicastclient 224.0.1.1
####################################

$ cat /etc/ntp.conf (Linux)
@(#)ntp.client 1.2 99/11/09 SMI
#
/etc/inet/ntp.client
An example file that could be copied over to /etc/inet/ntp.conf; it
provides a configuration for a client host that passively waits for a server
to provide NTP packets on the ntp multicast net.
multicastclient 224.0.1.1
#
This is a ntp client configuration
Listed ntp servers are stratum2 and located in NY
They are open for public access
server sundial.columbia.edu prefer
server ntp1.magenet.com prefer
server ntp0.cornell.edu

This file saves a drift calculation (it takes almost a day),
so it makes a start of xntpd daemon faster driftfile
/var/ntp/ntp.drift

13.2 Periodic Program Execution

In UNIX the need for periodic program execution is a real demand. Primarily, it is a good
idea to try to automate many administrative tasks, enabling their automatic periodic
executions. A typical example is an unattended backup, which usually occurs at night,
outside of normal business hours. Automation offers many advantages over performing
the same tasks manually from the command line, such as:

• Greater reliability — Tasks are performed the same way every time. Correct and
complete performance is guaranteed by the fact that the very same program has
already been run a number of times without any problems.

• Guaranteed regularity — Tasks can be performed according to whatever sched-
ule seems appropriate and need not depend on anyone’s availability presence.

• Enhanced system efficiency — Time-consuming or resource-intensive tasks can
be performed during off-hours.

In UNIX, automation is accomplished via shell scripts and by the cron daemon.

© 2002 by CRC Press LLC

13.2.1 The UNIX cron Daemon

Periodic program execution is provided by the UNIX cron facility, serviced by the cron
daemon (also known as the clock daemon). The cron daemon actually handles all jobs
scheduled for time-specific, periodic executions. Periodic program executions are specified
by crontab entries, which are stored in the system’s cron schedule files. Programs scheduled
to be executed at a specific time, or simply at any convenient time, are identified by the
spooled jobs in the cron spooling directory. The cron daemon checks for time-scheduled
jobs and acts accordingly.

A typical rc sequence to start the cron daemon during the system startup is:

#
Checking for already running cron daemon

pid= �/usr/bin/ps -e | /usr/bin/grep cron | /usr/bin/sed -e ’s/^ *//’ -e ’s/ .*/ /’�

case $1 in

‘start’)

if [“${pid}” = “”]

then

/usr/bin/rm -f /etc/cron.d/FIFO

if [-x /usr/sbin/cron]

then

/usr/sbin/cron

fi

fi

;;

#

and so on …

If the cron daemon is not already running, it will be started by a preventive housekeeping
facility. The only condition is that the corresponding executable program /usr/sbin/cron
exists, which it always does.

The cron daemon must be configured; appropriate configuration is actually required
only for jobs scheduled for periodic execution. For jobs scheduled for a single execution,
there is no need for any administration; they should simply be submitted into corresponding
queues for execution.

On a typical BSD platform there is a single cron configuration file named /usr/lib/crontab
(or sometimes, /usr/lib/crontab.local). This is an ASCII file and may be modified by any text
editor; however, superuser privileges are required. The system administrator must per-
form, cron scheduling. After modification the cron daemon must be reinvoked (recycled
by the signal HUP) to activate newly created entries. It is much easier, and recommended,
that you use the existing crontab command, which is designed for this purpose (this
command will be described later).

On System V platforms (but also on SunOS), any user may add her own entries to the
cron schedule. The entries known as crontab entries are stored in separate files for each of
the users, in the directory /usr/spool/cron/crontabs (or /var/spool/cron/crontabs); users’ crontab
files are named by the user login names (including roots).

For example, on SunOS 4.3.1:

$ ls -C /var/spool/cron/crontabs

baldwin levi pam root

© 2002 by CRC Press LLC

On Solaris 2.6:

$ ls -C /usr/spool/cron/crontabs

espinosa informix lp oracle root sybase

On HP-UX 10.20:

$ ls -C /usr/spool/cron/crontabs

informix opgarpac root rscala

These examples show how easy it is to recognize users’ personal crontab files.
On System V, the configuration variable CRONLOG should be set to “YES” in the

/etc/default/cron file to keep a log of the cron activity. From the SVR4 release on, the common
location for the log file is /usr/sbin/cron.d/log (in the past it was the file /usr/lib/cron/log).
Logging is automatic in BSD, and there is no CRONLOG variable.

A frequent way to use the cron facility for regular administrative tasks is through a series
of scripts designed to run periodically: every night, once a week, or/and once a month. For
example, one scenario for daily, weekly, and monthly scripts could be:

• Daily:
• Remove junk files, more than three days old, from the /tmp directory

• Run accounting summary commands (if accounting is enabled on the system)
• Run calendar

• Rotate log files cycled daily
• Take a snapshot of the system with the df and ps commands

• Perform a daily security monitoring
• Weekly:

• Remove old junk files
• Rotate log files cycled weekly

• Rebuild the manual page database
• Run fsck -n to list any disk problems

• Monthly:
• List files not accessed that month

• Produce monthly accounting reports (if accounting is enabled on the system)
• Rotate log files cycled monthly

Additional site-dependent activities may be taken into consideration on any particular
system.

The cron facility can also be used for periodic time-limited tasks. Once the desired period
expires, the crontabs entry can be disabled or removed; the cron daemon must be reconfigured
for a new job schedule. Unfortunately, this must be done manually, because crontabs entries
are inclusive (multiple specified conditions work like an OR function, not an AND function).

The use of the cron facility can be restricted on a per-user basis. Two administrative
files in the directory /usr/lib/cron (on some platforms, such as Solaris 2.x, the directory
is /etc/cron.d) named cron.allow and cron.deny are available to explicitly define users who
can or cannot schedule cron-jobs. These files function in the same way as other time-related
jobs, and a detailed description can be found in the following text.

© 2002 by CRC Press LLC

13.2.2 The crontab Files

A crontab file (the global crontab file on BSD, or a user’s crontab file on System V and SunOS)
contains crontab entries, which direct the cron daemon to run commands at specified
intervals. Each one-line entry has the following format:

mins hrs day-of-month month weekday username cmd (BSD)
mins hrs day-of-month month weekday cmd (System V)

No spaces are allowed in the fields, except in the last cmd field. The first five fields
specify the point in time when the cron daemon should invoke the command specified
in the cmd field.

Field Meaning Range

mins The minutes after the hour 0–59
hrs The hours of the day 0–23 (0 = midnight)
day-of-month The day within a month 1–31
month The month of the year 1–12
weekday The day of the week 1–7 (1 = Monday) BSD

0–6 (0 = Sunday) System V

Note: An entry in any of the fields could be a single number, a pair of numbers separated by a dash (indicating
a range), a comma-separated list of numbers and ranges, or a wildcard (an asterisk).

The cmd field can be a UNIX command or a group of commands, properly separated
with a semicolon, a script, or any executable program. The entire entry could be arbitrarily
long, but it must be a single physical line in the file.

For example, the crontabs entry:

30 11 31 12 * /etc/wall%Happy New Year!%Let’s make next year great!

runs the wall command at 11:30 a.m. on December 31, sending the following text to all users:

Happy New Year!
Let’s make next year great!

If the command contains a percent sign (%), cron will use any text following this sign as
standard input for cmd; additional percent signs can be used to subdivide this text into lines.

Other examples:

0,15,30,45 * * * * (echo -n ‘’; date; echo “”) >/dev/console

displays the date on the console terminal every 15 minutes (commands are grouped
between parentheses in order to redirect their output as a group).

0 0 * * * find / -name “*.bak” -type f -atime + 7 -exec rm {} \;

runs the find command every day at midnight to remove all .bak files not accessed in the
last seven days.

© 2002 by CRC Press LLC

0 2 * * * /bin/sh /usr/adm/ckpwd 2>&1 | mail root

runs the shell script ckpwd every day at 2:00 a.m. and redirects standard output and
standard error to mail it to the root (the shell is specified explicitly as Bourne shell).

Below is a real superuser’s crontab file (please note the plural form of the directory name
“crontabs” where the file lives):

$ cat /usr/spool/cron/crontabs/root

15 3 * * * find / -name .nfs* -mtime + 7 -exec rm -f {} \; -o -fstype nfs -prune

5 4 * * 6 /usr/lib/newsyslog >/dev/null 2>&1

15 4 * * * find /var/preserve/ -mtime + 7 -a -exec rm -f {} \;

The following is specified by those crontab entries:

• Every day at 3:15 a.m., run the find command to remove all .nfs files not modified
in the last seven days, but skip the nfs filesystem.

• Every Sunday at 4:50 a.m., run the /usr/lib/newsyslog script (to update and store
system messages for this week) with disabled standard output and error.

• Every day at 4:15 a.m., run the find command to remove all files not modified
in the last seven days starting from the directory /var/preserve/.

The crontab file could be quite complex. Here is one example (it is well-commented, so
there is no need for additional explanations):

$ cat /usr/spool/cron/crontabs/root
$Revision: 1.26 $

#
The root crontab can be used to perform accounting data collection and and clean up.

Format of lines: #min hour day mo month daywk cmd

#
Remove old trash

0 5 * * * find / -local -type f ‘(’ -name core -o -name dead.letter ‘)’ -atime + 7 -mtime + 7 -exec rm -f ‘{}’ ‘;’

Remove old sendmail mail files

2 5 * * * find /usr/spool/mqueue -local -type f -mtime + 30 -exec rm -f ‘{}’ ‘;’

Remove old rwhod files

2 5 * * * find /usr/spool/rwho -local -type f -mtime + 7 -exec rm -f ‘{}’ ‘;’

Remove old vi/ex ‘preserved’ files

3 5 * * * find /usr/preserve -local -type f -atime + 30 -mtime + 30 -exec rm -f ‘{}’ ‘;’

Rotate the logs

1 1 * * 0 umask 033;cd /usr/lib/cron;if test -s log && test “�wc -c log�” -ge 10240; then mv -f log OLDlog;
touch log; killall 1 cron; fi

1 1 * * 0 umask 077;cd /usr/adm;if test -s sulog && test “�wc -c sulog�” -ge 10240; then mv -f sulog OLDsulog;
touch sulog; fi

1 1 * * 0 umask 033;cd /usr/adm;if test -s SYSLOG && test “�wc -c SYSLOG �” -ge 10240; then mv -f SYSLOG
oSYSLOG; touch SYSLOG; killall 1 syslogd; fi

2 1 * * 0 umask 033;cd /etc; if test -s wtmp && test “�wc -c wtmp�” -ge 10240; then mv -f wtmp OLDwtmp;
touch wtmp; if test -s xwtmp; then mv -f xwtmp OLDxwtmp; touch xwtmp; fi; fi

12 4 * * * sh /usr/spool/lp/etc/lib/log.rotate

#
If this machine is running NIS and it’s a slave server, the following

© 2002 by CRC Press LLC

commands keep the NIS databases up-to-date.

7 9 * * * if /etc/chkconfig yp; then find /usr/etc/yp -type f -name ‘xfr.*’ -mtime + 1 -exec rm -f ‘{}’ ‘;’ ; fi

8 * * * * if test -x /usr/etc/yp/ypxfr_1ph; then /usr/etc/yp/ypxfr_1ph; fi

9 9,15 * * * if test -x /usr/etc/yp/ypxfr_2pd; then /usr/etc/yp/ypxfr_2pd; fi

10 9 * * * if test -x /usr/etc/yp/ypxfr_1pd; then /usr/etc/yp/ypxfr_1pd; fi

#

If this machine is a NIS master, ypmake will rotate the log file

and ensure that the databases are pushed out with some regularity.

It is best to not build and push the databases at the same time the

commands above on slave servers are pulling the databases.

0,17,30,45 * * * * if /etc/chkconfig ypmaster && /etc/chkconfig yp && test -x /usr/etc/yp/ypmake;
then /usr/etc/yp/ypmake; fi

#

dodisk does the disk accounting

0 2 * * 4 if /etc/chkconfig acct; then /usr/lib/acct/dodisk > /usr/adm/acct/nite/disklog; fi

#

Reorganize file systems

0 3 * * 0 if test -x /usr/etc/fsr; then /usr/etc/fsr; fi

#

This is for accounting

0 2 * * 4 /usr/lib/acct/dodisk

13.2.3 The crontab Command

The crontab command manages a user’s crontab file. The command schedules jobs
assigned to the individual user, to be executed automatically by cron. There is no need
for superuser privileges to manage users’ crontab files; individual users can manage their
own crontab files, including root. The command always refers to the crontab file owned by
the user who invoked its execution.

The format has two basic forms:

1. crontab filename To create or replace a crontab file by copying the specified
file or standard input if the filename is omitted. The crontab
file lives in the directory /usr/spool/cron/crontabs and has the
same name as the effective user name.

2. crontab option Where the option could be one of these three:
-l Display (list) the user’s crontab file.

-e Edit the user’s crontab file, or create an empty file if the crontab
file does not exist. Once the edit is complete, the file will be
copied into the crontabs directory as the user’s crontab file.

-r Remove the user’s crontab file from the crontabs directory.

The command is extremely useful for activating individual users’ crontab files without
needing to manage the cron daemon itself. However, it must be used carefully — the
superuser can manage individual users’ crontab files only by “su”-ing into the user’s
account. Be aware of the common mistake of activating a user’s crontab entries by executing
the crontab command as the superuser:

crontab username

© 2002 by CRC Press LLC

Instead of activating the user’s crontab file, the root crontab file will be overwritten by
the user’s crontab file (specified by “username”) and activated; the previous root crontab
entries will be lost (which can be a serious problem if a backup copy does not exist).

After execution of the command, the system will respond with the following message
(or a similar message; this message is from the HP-UX system):

warning: commands will be executed using /usr/bin/sh

This message warns that crontab entries, unless they explicitly refer to other shells, should
match Bourne shell “sh”; otherwise the execution could fail.

For small modifications of the crontab files, it is recommended that you use the crontab
-e command option (as the corresponding user, of course). The command invokes the
default editor (usually, the vi editor), to modify the user’s crontab file. Once the file is
modified and saved and the editor closed, the cron daemon will be automatically recycled;
there is no need for any additional action.

13.2.4 Linux Approach

Among all UNIX flavors, Linux has improved and developed cron facility up the level
that surpasses real administrative needs. Linux fully supports cron facilities that exist on
the System V platform. That means everything we have already said about cron
configuration, as well as cron-related UNIX commands, is also true of the Linux cron
facility. However, Linux offers much more.

Linux has introduced the file /etc/crontab which provides another scheduling table for
periodic system tasks; in that way Linux has made cron closer to other UNIX configuration
topics that do have their configuration files in the /etc directory. Additionally Linux has
even introduced a separate /etc/cron.d subdirectory for posting of programs for periodic
execution; Linux cron is searching for programs in this directory.

The implemented syntax for newly introduced scheduled entries corresponds to BSD
format. This makes /etc/crontab work for any user. Remember, the format of an entry in
the /etc/crontab file is:

mins hrs day-of-month month weekday username cmd

Besides the usual cron entries, Linux cron also understands entries that define the
environment for the execution of the specified cron commands. The predefined environment
makes cron entries more versatile, with a possibility of executing cron entries in an
environment different from the default one.

And last but not least, Linux has introduced a number of configurable flavor-specific
cron-related commands. The behavior of commands relies on their sophisticated
configuration files or, in many cases, on hierarchically organized configuration directories
(similar to the rc directory structure in the case of the system startup/shutdown).

Having all that in mind, Linux has built an extremely powerful and flexible cron facility,
with the possibility for scheduling periodic tasks in multiple ways. Upon Linux installation,
most routine periodic tasks for system maintenance are already scheduled through the
/etc/crontab file and corresponding specific commands. However, it does not demand in
any way that an administrator use the /etc/crontab file for personal needs. For users
themselves, a usual System V approach is assumed.

The elaborated Linux cron has one disadvantage. The cron facility complains about
errors by generating an e-mail message to the owner of the cron job. For Linux it could

© 2002 by CRC Press LLC

be quite challenging to determine where this error message is coming from. Many con-
figuration options require many checkups, which sometimes makes this task difficult.

For a better understanding of the previous discussion, let us see a few examples.

• First, to list the crontab file and the cron.d subdirectory:

$> ls -l /etc | grep cron
drwxr-xr-x 2 root root 1024 Nov 30 17:30 cron.d
-rw-r--r-- 1 root root 385 Jan 16 20:46 crontab

• Then to see the contents of the /etc/crontab file:

$> cat /etc/crontab
SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/
run-parts
01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly

The first several entries define the environment for the execution of listed commands.
This is Linux specific; other flavors would complain about those lines. The second part
consists of “run-parts entries,” which are also a Linux invention. The format of the entries
themselves is known, but the listed command run-parts is new — this command executes
all individual programs that live in the referred subdirectories. In this case:

$> ls -l /etc/cron.*
/etc/cron.daily:
total 5
-rwxr-xr-x 1 root root 276 Aug 4 2000 0anacron
-rwxr-xr-x 1 root root 51 Aug 15 2000 logrotate
-rwxr-xr-x 1 root root 402 Aug 23 15:56 makewhatis.cron
-rwxr-xr-x 1 root root 99 Dec 18 17:15 slocate.cron
-rwxr-xr-x 1 root root 221 Oct 5 20:41 tmpwatch
/etc/cron.hourly:
total 0
/etc/cron.monthly:
total 1
-rwxr-xr-x 1 root root 278 Aug 4 2000 0anacron
/etc/cron.weekly:
total 2
-rwxr-xr-x 1 root root 277 Aug 4 2000 0anacron
-rwxr-xr-x 1 root root 399 Aug 23 15:56 makewhatis.cron

The listed programs will be executed on an hourly, daily, weekly, or monthly basis,
depending on the subdirectory where they live. Some programs could be additionally
configured through their configuration files, like logrotate and anacron, which makes the
cron facility even more powerful, but also more complex. Especially, logrotate has its own
configuration file /etc/logrotate.conf and additional configuration data in the subdirectory
/etc/logrotate.d, as can be seen from the following:

$> ls -l /etc/logrotate.*
-rw-r--r-- 1 root root 542 Aug 15 2000 /etc/logrotate.conf
/etc/logrotate.d:

© 2002 by CRC Press LLC

total 2
-rw-r--r-- 1 root root 145 Aug 23 23:18 linuxconf
-rw-r--r-- 1 root root 763 Sep 14 18:00 syslog

Similarly, the program anacron has its own configuration table:

$> ls -l /etc/anacron*
-rw-r--r-- 1 root root 370 Aug 4 2000 /etc/anacrontab

Obviously Linux has gone deeper in this segment than other UNIX flavors. Whether
such a sophisticated cron mechanism is really necessary is another issue. Cron is a scheduler,
and all UNIX flavors support this facility. Linux does it in a more complex way — it is
also fair to say, in a more powerful way.

13.3 Programs Scheduled for a Specific Time

As we mentioned earlier, the cron daemon also checks for jobs scheduled for execution
at a specific time. These jobs are known as at-jobs — the name fully reflects the nature
of the job itself. The at utility is available to schedule an at-job for execution; a new at-job
can be created using the at utility, and submitted into the special queue (also known as
the queue a) for execution at the specified time.

At-jobs do not require a great deal of administration. Users can be restricted in the use
of the at utility, i.e., their ability to schedule an at-job can be limited. The /usr/lib/cron/
at.allow and /usr/lib/cron/at.deny files provide this discretion. Users can be explicitly per-
mitted to use at if their names appear in the file /usr/lib/cron/at.allow; only those users
included in the file are allowed to use the utility. If the file does not exist, the file /usr/lib/
cron/at.deny is checked for explicitly denied users. If neither file exists, only a process with
superuser privileges is allowed to submit a job. If only the at.deny file exists and is empty,
global usage is permitted. Both files rely on an entry line with the user name for each of
the specified users.

What does it look like on a live system? On Solaris 2.6, for example, it looks like this:

$ ls -l /usr/lib/cron
lrwxrwxrwx 1 root root 16 May 28 1998 /usr/lib/cron -> ../../etc

Obviously, the directory /usr/lib/cron is the link to the directory /etc/cron.d, so the corres-
ponding at allow/deny files can be reached with either path. On this system, only the
at.deny file exists:

$ ls -l /etc/cron.d | grep “at”
-rw-r--r-- 1 root sys 45 May 28 1998 at.deny

The file has the following contents:

$ cat /etc/cron.d/at.deny

daemon
bin
smtp
nuucp

© 2002 by CRC Press LLC

listen
nobody
noaccess

The listed users are denied the ability to use the at utility; these are nonindividual users,
system entities, that literally cannot submit any at-job.

The at-jobs are submitted to the a queue for execution. There are two additional queues
reserved for special jobs: the b queue is reserved for batch-jobs, and the c queue is reserved
for cron-jobs. New queues can be created, but they must be named by lower-case letters
(except the already-taken letters a, b, and c). This can be done by using the -q option of
the at utility.

The queue characteristics are described in the /etc/lib/cron/queuedefs file (or the /etc/
cron.d/queuedefs file). Each queue is identified by a corresponding entry of the form:

q.[njobj][nicen][nwaitw]

where
q The name of the queue (terminated by the “.”)
njob The maximum number of jobs that can run simultaneously (terminated by

the letter “j”)
nice The nice value to give to all jobs in the queue (terminated by the letter “n”)
nwait The number of seconds to wait before rescheduling a job that was deferred because

more than njob jobs were already running (terminated by the letter “w”)

By default, only the reserved queues a and b are described. Here is the queuedefs file on
Solaris 2.6:

$ cat /etc/cron.d/queuedefs

a.4j1n

b.2j2n90w

Please note that the schedule batch-jobs are running with lower priority, the nice
value is 2.

13.3.1 The UNIX at Utility

The at utility reads commands from the standard input and groups them together into
an at-job to be executed at a later, specified time. The format of the at utility is:

at [option] [operand]

command #1

command #2

.

[Cntrl-D]

where the main options are:

-c, -k, or -s Specifies the C shell, Korn shell, or Bourne shell to be used to execute
an at-job.

© 2002 by CRC Press LLC

-f file Specifies the path of the file to be used as the source of the at-job,
instead of the standard input.

-l Reports specified at-jobs, if any, or all at-jobs scheduled for the
invoking user.

-m Sends an e-mail to the invoking user upon the completion of the
at-job. Standard output and error of the at-job are also e-mailed
unless they are redirected elsewhere.

-q queuename Specifies the queue to schedule a job for submission. Queues are
identified with lowercase letters, but the reserved queues are: a for
at-jobs, b for batch jobs, and c for cron-jobs.

-r at-job-id Removes the at-jobs specified by the at-job-id operand.

-t timespec Submits a job to be run at the time specified by the timespec operand.

The operands are:

at-job-id Identifies a scheduled at-job

timespec Submit the at-job to be run at the date and time specified. All timespec
operands are concatenated and then interpreted.

The time can be specified as:

hours One- or two-digit number

hours:minutes Four-digit number (specified as AM or PM, or default as a 24-hour
clock time)

midnight Indicates the time 12:00 AM (00:00)

noon Indicates the time 12:00 PM (12:00)
now Indicates the current day and time, i.e., an immediate run

The date can be specified as:

date In the form Mar 27, 2001

today Indicates the current day
tomorrow Indicates the day following the current day

increment The optional increment is a number preceded by the + sign and suffixed
by one of the following: minutes, hours, days, weeks, month, or years.

not specified Today is assumed.

A few examples follow:

• To write a sorted contents of the file /home/bjl/Data.raw into the file /home/bjl/
Data.sorted tomorrow at 10:30 am, and to send an e-mail upon completion:
$ at -m 2030 tomorrow

cd /home/bjl

sort < Data.raw > Data.sorted

[Ctrl-D]

© 2002 by CRC Press LLC

• An at-job can be invoked within the same at-job to self-reschedule a job, although
a crontab entry is more appropriate for such work. This “daily data processing”
script named Data.daily will run every day:
#!/bin/ksh

This is the script /usr/local/bin/Data.daily.

It provides a needed daily data processing.

Once it is started, the script runs every day

#

at now tomorrow < /usr/local/bin/Data.daily

A sequence of commands for data processing

.

.
The end of the script

Once the script is invoked, it schedules its immediate execution, as well as execution
the next day. The next day it is repeated, and so on…

• The “Here Document” is very convenient for scheduling an at-job in a ksh script:
#!/bin/ksh

.

.

#

To schedule the at-job for Mar. 29, this year, at 10:00 pm
at 10 pm Mar 29 << !EOF

The sequence of commands
.

.

!EOF

The at-job was scheduled

#

13.4 Batch Processing

Batch processing is a special way to run nonurgent but long-lasting and CPU-intensive
programs. Such programs can run at off-peak times, when a system is not busy with the
execution of other higher priority programs. Off-peak time is usually during the night,
when it is not too convenient for users to start their programs. The batch utility provides
a way to execute the programs submitted with a lower priority at any off-peak time, giving
the system a chance to balance its CPU loading.

A job scheduled by the batch utility is known as a batch-job; it is equivalent to an at-job
that is submitted into the b queue for an immediate run with lower priority. Therefore, the
at utility can be also used to schedule a batch-job:

$ at -q b -m now

However, it is more convenient to use the given batch utility for batch processing, and
this is the usual method on the UNIX platform.

© 2002 by CRC Press LLC

From a system standpoint, batch processing is a very useful and economical method of
program execution. System administrators should encourage users to utilize it. Even
though the batch utility is easy to use, users often do not know very much about this
possibility. Sometimes they create an additional burden on the CPU at the most critical
times, provoking an unnecessary substantial degradation in system performance.

Batch processing can also be an economical way to perform a number of administrative
tasks.

13.4.1 The UNIX batch Utility

The generic form of the batch utility is:

$ batch

command #1

command #2

.

[Ctrl-D]

The batch utility reads the standard input until the terminating EOF character [Ctrl-D]
from the keyboard. It then submits the entered command sequence into the batch queue
for immediate execution with a low priority. The command entered could be any UNIX
command, a script, any executable program, or a combination thereof.

The “Here Document” is also the most convenient way to implement the batch utility in
shell script programming, as in the following example:

#!/bin/ksh

.

#

To schedule the batch-job

batch << !EOF

The sequence of commands

.
!EOF

The batch-job was scheduled

#

© 2002 by CRC Press LLC

14
Network Fundamentals

14.1 UNIX and Networking

One of the greatest advantages of the UNIX system is its inherent network-related structure.
From its very beginnings, UNIX included a number of network-based characteristics that
made it quite different from other existing operating systems. At a time when network
technologies were in the very early stages, UNIX already provided certain network services
and powerful tools to cope with network issues between remote hosts. From a network
standpoint, the concept of UNIX was so well done that it allowed an easy integration of
UNIX into network technologies. It is even more appropriate to say that UNIX and
networking merged, making UNIX the core operating system in the new emerging
network environment. Today, even after so many years of intensive commercial use, UNIX
is still far from being considered an obsolete operating system. UNIX was the first com-
mercially successful and available network-oriented OS, and UNIX’s use in networked
environments was perhaps the biggest factor leading to the end of the supremacy of
mainframe computers and gigantic OSs. Despite its advancing age, UNIX is still the leading
OS, offering more than any other OS alone, and permanently keeping pace with newcomers.

The primary advantages of UNIX are its openness and flexibility, which make it suitable
for almost any kind of upgrade. Most of these upgrades were made in the network arena,
which makes sense, given the incredible advances in the field of networking. However,
this flexibility and UNIX’s ability to integrate so many changes only prove the sound
conceptual approach that UNIX designers had while creating UNIX.

Regardless of where the credit should go, UNIX’s main contribution to the overall
development of computer technologies was, and still is, in networking; it is fair to say
that the network-oriented UNIX concept practically enabled the tremendous growth of
networking technologies.

Networks have grown so prolifically because they provide an important service: to share
information among users. Computers generate and process information that is often
useless unless it is shared among a group of people; the network is the vehicle that enables
data to be easily shared. Once a computer has been networked, users will likely not want
to return to an isolated system. Such a trend does not stop at the local level; forming
a local network and cooperating with neighboring computers lead to global, worldwide
networking. Today, this global network is known under the generic name Internet, which
is named after what was once the worlds largest experimental network.

Computer networking has brought new challenges and duties to system administrators.
It is not enough to simply maintain the systems; the network requires a great deal of

© 2002 by CRC Press LLC

ongoing work. This issue is very important, because it affects not only a single system,
but also other systems on the network. A familiarity with basic theoretical issues will
make this job easier, and that is the purpose of this chapter and those following.

14.2 Computer Networks

A computer network is a communication system that connects end computers, usually
referred to as hosts. The hosts can range in size from small microcomputers to the largest
supercomputers. From a network point of view, a host is any machine participating in
network communication, independent of its basic function and configuration (single-
user or multi-user, general purpose systems, dedicated servers, terminals, any kind of
client, etc.).

14.2.1 Local Area Network (LAN)

A Local Area Network (LAN) is the network that connects hosts that are close together,
typically within the same room, on the same floor, in a single building, or in a few
neighboring buildings; really, any network in which the computers are no more than a
few miles apart. Special modulation techniques can be implemented thanks to the small
distances involved, thereby providing extremely high-speed data transmission, i.e., a high
network capacity. Consequently, network throughput is also high, making possible large
volume data transfer through the network.

Maintaining network traffic within a LAN with an arbitrary number of participating
hosts and with a variable network load (the actual volume of data to be transmitted within
the network) is obviously not a simple task. A number of different techniques have been
developed to accomplish this, but only a few of them have led to widespread practical
implementation after their experimental phase. Today, two basic types of LANs are in use:
CSMA/CD and Token Passing networks.

Network configuration also varies independently of network type. Although those two
issues are partially related, for the moment we will treat them separately. Two basic
network topologies are common: bus and ring topologies (see Figure 14.1, a & b).

Bus structured LANs provide access to the common medium of all participating hosts
simultaneously — a network configuration where each host can forward data directly to
any other host, or rather, where each host can listen to any other host while it transmits
data. The physical network configuration can be different: strictly bus-like; radial with a
central hub; a tree structured with repeaters, bridges, amplifiers; etc. However, one condition
must be fulfilled: direct bidirectional logical connection between any two hosts that share
the same LAN must be provided.

Ring structured LANs integrate all participating hosts into a single physical ring in such
a way that each host communicates only with two neighboring hosts — it receives data
only from the preceding host, and it transmits data only to the succeeding host. To provide
data transmission between two nonadjacent hosts, all hosts in between must take part in
the transmission; a host in the ring retransmits data designated to the other hosts and
keeps its own data. The closer distance among neighboring hosts enables faster data
transmission in the ring, making them suitable for many applications. Isolated commu-
nication between adjacent hosts makes possible multiple, simultaneous, independent traffic
in different parts of the ring, increasing the effective network throughput.

© 2002 by CRC Press LLC

14.2.1.1 CSMA/CD Networks

The name stands for Carrier Sense Multiple Access/Collision Detect, which actually
describes the nature of the network itself. All hosts sense a modulated carrier on the
network media, which means the network is busy, i.e., some of the hosts are transmitting
data. When there is no carrier (the network is idle), a host can transmit its data (if such
a need exists at all), making the network busy and preventing other hosts from starting
their transmission. However, multiple hosts can access the network and try to start
a transmission simultaneously (a host does not know anything about other hosts’ needs
and intentions), causing collisions on the network and corruption of transmitted data (its
own, as well as other hosts’ data). Each of the involved hosts recognizes a data collision
easily and quickly, and stops the started transmission. Each of those hosts will retry the
interrupted data transmission after a random time interval; a random delay should
decrease the probability for repeated collisions among the same hosts, and increase the
chances for each of them to access the idle network and transmit pending data. Of course,
in the meantime, other new hosts can also try to transmit their data and enter to compete
for access to the network. After some time, each of them will succeed in its attempt
to reach the network, and data will be transmitted. However, this time is stochastic,
and there is no guarantee for a deterministic response time, although practically it works
very well.

CSMA/CD LANs are known as stochastic, or random, networks, due to their nature.
They are also known as contention type networks, because the participating hosts compete
to access the network. The best known CSMA/CD LAN, as well as the most popular and
most widely used one, is the Ethernet; often, the whole suite of CSMA/CD networks is
referred as Ethernet-like LANs. The basic Ethernet operates at 10 Mbps (million bits per
second), so it is sometimes incorrectly identified as 10 Mbit LAN. Its successor, Fast

Host Host Host

Host

Host

Host

HostHost

Host

Host

Host

Host

Host

(a) Bus Structure

(b) Ring Structure

FIGURE 14.1
Bus topologies.

© 2002 by CRC Press LLC

Ethernet, operates at 100 Mbps. The specified network speed represents the network
capacity (the maximum speed at which data can be transmitted), not the effective speed
at which real data are transmitted; the effective data transmission speed is always lower
because of unavoidable collisions in the network. Network throughput is always lower
than network capacity.

On a CSMA/CD LAN, it is typical that an increase in the network load (the total actual
demands for data transmission by participating hosts) over some threshold causes a
significant decrease in the network throughput. Obviously, collision time increases signi-
ficantly due to the repeated attempts of multiple hosts to transmit their data. CSMA/CD
networks become practically inoperable at a load over 80% of the network capacity;
repeated collisions prevent data transmission at all.

CSMA/CD networks are very easy to implement. Traffic control is distributed and the
implemented algorithm is very simple: each host arbitrates when a network is available
and adopts its transmission to the actual situation. Adding or removing a host to/from
the LAN is simple, because there is no need for any specific action. The only requirement
for CSMA/CD networks is regarding their topologies; these LANs must be “bus-like”
networks, i.e., each host must be able to directly reach another participating host (to listen
to all other hosts).

The CSMA/CD technology is dominant today. The drawback of deterministic access to
the network can easily be overcome by designing the network correspondingly: the max-
imum traffic load within a LAN should be kept below the network capacity. There are a
number of techniques to accomplish this; primary among them are network bridging and
subnetting.

14.2.1.2 Token Passing Networks

A Token Passing LAN is a local computer network in which a uniquely defined data pattern,
called a token, travels continuously through the network, passing from one host to another.
Only the host that currently possesses the token has “the right” to transmit data (if the need
exists at all), and its data transmission is terminated by the token, which passes the “right
to talk” to another host. If there is no data to transmit, the host retransmits the token alone,
preserving the continuous token circulation in the network. The token size and the time
needed for a token transmission are constant; consequently, the network throughput is
independent of the network load. The network response time is deterministic; the worst-case
scenario determines its guaranteed value.

Control of token passing is more complex. A “logical ring” must be provided to keep
up the repeated sequential token passing from one host to another, but keeping the logical
ring operable is not an easy task (the token could be lost or doubled, or something else
could happen). A special procedure is required to add a host to or to remove a host from
the network. This is especially true in the case of the bus network structure. It is much
easier to handle networks with ring topology; the token circulation is preserved by the
network structure itself.

Depending on the implemented network topologies, Token Passing LANs are divided
into Token Bus and Token Ring networks. Token Bus LANs have disappeared from the
network arena due to the complexities of their control, but Token Ring LANs are widely
used. Physical rings automatically provide the “logical ring” required for token passing;
each host in the ring receives data from the preceding host, and transmits data to the
succeeding host (each host knows and communicates with two neighboring hosts only,
regardless of who they are). Inserting a new host into the ring is not a problem; removing
a host means simply bypassing its previous connection. All these characteristics have
contributed to the wide implementation of this type of LAN.

© 2002 by CRC Press LLC

14.2.2 Wide Area Network (WAN)

Local area networks have revolutionized data transmission, and a number of new tech-
nologies for fast data transmission have been developed and implemented. An enormous
quantity of data (unimaginable in the past) has become available through networking,
promoting distributed data processing. Processing resources, and power, could be spread
over the network and used more efficiently. Therefore, a distributed environment and the
long-held dream of “the processors pool” that could handle incoming requests in an
optimal way has become a reality.

Despite all of their advantages, LANs can only connect computers that are geogra-
phically close. How could two computers on two sides of a city communicate, or two
computers in two distant cities, or states, or even continents? LAN technologies are not
very useful in these cases, and more traditional and expensive telecommunication tech-
niques must be implemented. If two distant LANs are connected with a fast link, all
participating hosts “think” that they share an equivalent fast computer network, regardless
of what the actual distance between those hosts is. In this fashion, we now have a Wide
Area Network (WAN), as seen in Figure 14.2. In WANs there is always more traffic between
neighboring hosts within the same LAN than among distant ones (because many hosts
run strictly local network applications); this means that the inter-LAN link could be even
slower than LANs themselves, while WAN throughput remains acceptable.

WANs are widely used, and they are constantly evolving. Today, numerous WANs are
connected into a unique worldwide WAN, a global computer network known as the
Internet. Multiplying LANs within WANs had two positive effects: it decreased the costs

H H

H G

H

H

G

LAN #3

LAN #n

LAN #4

LAN #1
LAN #2

H

G

Host

Router (Gateway)

FIGURE 14.2
Wide area network.

© 2002 by CRC Press LLC

of the requested links (which became shorter and were shared among more participating
LANs) and provided alternative routes to reach any host in the network.

However, the problem of reaching a distant host in a network still had to be solved.
Special addressing mechanisms to uniquely identify each host in the WAN were imple-
mented, and appropriate routing algorithms to transmit/retransmit data in the network
were developed. Special, dedicated hosts, known as routers have become a part of each
LAN, with their only mission to route data toward distant LANs and hosts.

There are many different LANs currently in use, and they are often mutually incompatible:
different media, modulation techniques, protocols, etc. (just compare Ethernet and Token-Ring
LANs for a look at the variety possible). However, such different and incompatible LANs
often need to be connected together. Therefore, special devices to overcome such incom-
patibility must be implemented, and in the case of protocol conversion, these devices are
known as gateways.

The terms gateway and router are often used interchangeably, mostly because gateways
also provide routing services. However, the two terms are not interchangeable — routing
and protocol conversions are two independent concepts, and they are not necessarily
complementary.

14.3 A TCP/IP Overview

The common thread that ties the enormous Internet community together is TCP/IP network
software. The name TCP/IP refers to an entire suite of data communication protocols that
define how different types of computers talk to each other. The suite gets its name from
two of the protocols that belong to it: the transmission control protocol (TCP) and the
Internet protocol (IP). Although there are a number of other protocols in the suite, TCP
and IP are the best known.

In 1969 the Defense Advanced Research Projects Agency (DARPA) started a research and
development project to create an experimental packet switching network. This network
was named ARPANET, and was built to explore techniques for providing robust, reliable,
and vendor-independent data communications. The project outputs far surpassed all
expectations, and a number of modern data communication techniques were developed,
or at least conceptually solved. The experimental ARPANET was so successful that many
of the organizations attached to it began to use it for their daily needs. In 1975 the
ARPANET was converted from an experimental network to an operational one, and the
responsibility for administering the network was given to the Defense Communications
Agency (DCA), later renamed the Defense Information System Agency (DISA). However, the
development of ARPANET did not stop once the network became operational; the basic
TCP/IP protocols were developed after ARPANET was operational.

In 1983 the TCP/IP protocols were adopted as MIL standards, and all hosts (computers)
connected to the network were required to convert to the new protocols. To ease this
conversion, DARPA funded an expert team to implement TCP/IP in BSD UNIX, thus
beginning the marriage of UNIX and TCP/IP and their triumphant, long-lasting journey.
BBN (Bolt, Beraneck and Newman), was chosen to facilitate the implementation. The company,
located in Boston, MA, was well known in the field of acoustics. As it was located close
to MIT (the Massachusetts Institute of Technology), it attracted talented MIT graduates
and very quickly gained a strong reputation in computer technologies. The project was a
real success and was completed extraordinarily well. Today’s Internet fully relies on the
solutions introduced by BBN.

© 2002 by CRC Press LLC

UNIX itself also contributed to the development of inter-computer communication.
Besides the TCP/IP protocols used primarily to communicate throughout the local area
network and more widely, UNIX also provides UUCP for communication with remote,
isolated computer sites.

14.3.1 TCP/IP and the Internet

In 1983, about the same time TCP/IP was adopted as a standard, the term Internet came
into common usage. ARPANET was divided into MILNET, the unclassified part of the
DDN (Defense Data Network), and a new, smaller ARPANET. The term Internet was used
to refer to the entire network. In 1990, ARPANET formally passed out of existence, but the
Internet continued its growth, and today is greater then ever, encompassing a huge number
of networks worldwide. The growth of the Internet has brought many new organizations
into the network.

The name Internet was originally used only for the network built upon the Internet
Protocol. Today, Internet is used to refer to an entire class of networks, mutually connected
by a common TCP/IP protocol, making them a single worldwide logical network. The
term internet (lowercase i) is also often used as a generic name to describe any collection
of separate physical networks, interconnected by a common protocol.

Because TCP/IP is required for an internet connection, the large number of diverse
organizations on the network became familiar with the TCP/ IP suite and developed
many new applications based on these protocols. In the UNIX community, the internet
protocols are used for any kind of networking, even for local area networking not
connected to the larger Internet. The most common (but not the only) way to use TCP/IP
for the communication between neighboring sites is over a local Ethernet on the physical
layer.

There is one important administrative issue related to TCP/IP. The standardization of
TCP/IP resulted in only minor differences among UNIX flavors and versions, so the set
of available network-related commands and tools, as well as configuration files, on both
basic UNIX platforms — BSD and System V — is basically the same.

14.3.2 ISO OSI Reference Model

Network data communications require that each participant in the communication strictly
respect a previously specified set of rules. This is the only way that one computer can
understand another. In data communication these sets of rules are called protocols. The
term protocol is not a new linguistic creation specific to data communication; it was
borrowed from diplomacy, another field of human activity. Protocols are formal rules of
behavior; in international relations, protocols minimize the problems caused by cultural
differences when various nations work together. By agreeing to a common set of rules
that are widely known and independent of any nation’s customs, diplomatic protocols
minimize misunderstandings; everyone knows how to act and how to interpret the actions
of others. Similarly, when computers communicate, it is necessary to define a set of rules
to govern their communications.

An architectural model developed by the International Standards Organization (ISO) is
frequently used to describe the structure and function of data communication protocols.
This architectural model, called the Open System Interconnect (OSI) Reference Model, provides
a common reference for discussing communication issues. The terms defined by this model
are well understood and widely used in the data communication community, and it is
difficult to discuss data communications without using OSI’s terminology.

© 2002 by CRC Press LLC

The ISO OSI Reference Model contains seven layers that define the functions of data
communication subsystems. Each layer of the OSI model represents a set of functions
performed when data is transferred between cooperating applications across an intervening
network. The OSI model is presented in Figure 14.3; each layer is identified by its name
and a short functional description. In Figure 14.3 we see that the model is like a pile of
building blocks stacked one upon another; often this structure is called a stack or a protocol
stack.

A layer does not define a single protocol; it defines data communication functions that
may be performed by any number of protocols. Therefore, any layer may contain multiple
protocols, each providing a service suitable for the functions of that layer. For example,
at the Application Layer there are a number of network application protocols (a file transfer
protocol, an electronic mail protocol, a telnet protocol, etc.).

Layers communicate among themselves. Every protocol (on any layer) communicates
with its peer; a peer is an implementation of the same protocol in the equivalent layer on
a remote system (for example, the file transfer protocol on a remote site is the peer of the
local file transfer protocol). It is necessary for peer layer communications to be standardized
for a successful data communication. In the abstract, each protocol is only concerned with
communicating with its peer; it does not care about the layer above or below it. However,
the peer layers do not communicate directly; real data flow is different from a logical one.
The upper layers rely on the lower layers to transfer the data over the underlying network.
Data is passed down the stack from one layer to the next, until it is transmitted over the
network by the physical layer protocols (physical layer defines a way, or rather, the ways,

APPLICATION LAYER

Network-related application programs

PRESENTATION LAYER
Standardization of data presentation

to the applications

SESSION LAYER
Management of sessions between

applications

TRANSPORT LAYER

End-to-end error detection and correction

NETWORK LAYER
Management of connections across

the network

DATA LINK LAYER
Reliable data delivery

Includes LLC and MAC sub-layers

PHYSICAL LAYER
Physical characteristics of

the network media

FIGURE 14.3
The ISO OSI reference model.

© 2002 by CRC Press LLC

in which data are modulated and transmitted over communication media). On the other
side, at the remote end, the data is passed up the stack to the peer layer, i.e., receiving
application. The individual layers do not need to know how the layers above and below
them function; they only need to know how to pass data to them. This is presented in
Figure 14.4.

By splitting the data communication into a number of layers and isolating communica-
tion functions in different layers, the impact of technological changes on the entire protocol
suite is minimized. It also makes the data communication system open for upgrades and
extremely flexible in implementation. There are also some other advantages: it is very easy
to replace an entire layer with a new (hopefully better) one without any impact on the
other layers. The only disadvantage is the unavoidable overhead in data processing during
the journey through the layers, but considering the benefits, this does not present a serious
problem.

Figure 14.4 also shows how physical communication between two hosts on different
subnets is provided (in this case Host A on one subnet, and Host B on another subnet).
As we can see, the reference model for a router contains only three low-level layers; that
is what the router cares about to route data in the network. Higher layers are completely
ignored. A router does not check transport, session, presentation, or application data at
all — they are simply routed unchanged.

A brief description of the ISO OSI model from a network data communication standpoint
follows:

Application Layer This layer is the level of the protocol hierarchy where the
user-accessed network processes reside. This includes all of the
processes that users interact with directly, as well as other
processes at this level of which users are not necessarily aware.
This is actually the layer that is continuously upgraded; each
new network application specifies a new application-specific
protocol to be managed by this layer.

PHYSICAL

DATA

NETWORK

TRANSPORT

SESSION

PRESENTATION

APPLICATION

PHYSICAL

DATA

NETWORK

PHYSICAL

DATA

NETWORK

TRANSPORT

SESSION

PRESENTATION

APPLICATION

Host A Host B

Router

Peer Layer Communication

Subnet Subnet

Physical Communication Physical Communication

FIGURE 14.4
Data communication between OSI layers.

© 2002 by CRC Press LLC

Presentation Layer This layer provides standard data presentation routines. In the
exchange of data, the cooperating applications must agree on
how data is represented.

Session Layer This layer manages the sessions (connections) between
cooperating applications.

Transport Layer This layer guarantees that the receiving site gets the data
exactly as it was sent, i.e., it ensures the completeness of the
data transportation.

Network Layer This layer manages connections across the network and isolates
the upper layer protocols from the details of the underlying
network. It handles the addressing and delivery of data.

Data Link Layer This layer handles a reliable delivery of data across the underling
network. The layer is basically divided into two sublayers:

Logical Link Control (LLC), the hardware independent sublayer
Media Access Control (MAC), the hardware dependent sublayer

Physical Layer This layer defines the characteristics of the network interface
hardware needed to carry the data transmission signal. Details
such as voltage levels, number and location of interface pins,
signal modulation, and so on, are specified here. Ethernet stan
dard IEEE 802.3 is an example.

It is not mandatory for each layer to exist in any practical implementation. Unnecessary
layers can be skipped, as in the case of the router in Figure 14.4. It has the same effect as
when several layers are joined together into one layer.

14.3.3 TCP/IP Protocol Architecture

The ISO OSI Reference Model presents the most common way to describe protocol archi-
tecture. The International Standard Organization established the model, and it assists in
the implementation of any inter-computer communication technology. In that light, the
OSI model could be used also to fully describe TCP/IP protocols. However, sometimes it is
easier and more convenient to use other, simpler protocol models to describe (or rather,
to understand) specific protocols; noncrucial layers for specific protocols could be ignored.
For example, for an easier understanding of TCP/IP protocols, another architectural model
that more closely matches the structure of TCP/IP is more appropriate. This model is
known as the Four Layer TCP/IP Architectural Model and is presented in Figure 14.5.

The model provides a pictorial representation of the layers in the TCP/IP protocol hierarchy.
Data is processed in the same way as in the ISO OSI model, except that fewer layers take
part in its processing. Data is passed down or up the protocol stack when it is being sent
to or received from a network. The flow of data is represented in Figure 14.6.

Each layer in the stack adds control information to ensure proper delivery. This control
information is called a header, because it is placed in front of data to be transmitted. Each
layer treats all of the information it receives from the layer above as data and places its
own header in front of that information. The addition of delivery information at every
layer is called encapsulation.

When data is received the opposite occurs. Each layer strips off its header and checks it
before passing the data on to the layer above. Therefore each layer treats the information
it receives from the lower layer as both a header and data.

© 2002 by CRC Press LLC

The TCP/IP protocol stack does not include the physical layer, i.e., the stack does not
treat physical network itself. However, the lowest layer depends on the implemented
physical network.

Each layer has its own independent data structures, compatible with data structures
in the neighboring layers. Conceptually this is not mandatory, but a strictly defined
interface between layers implies such compatibility; otherwise, it would be more
difficult to build the interface. Still, each layer has its own terminology to describe
data structures. Figure 14.7 shows the terms used by different layers of TCP/IP to refer
to the data being transmitted based on the two most common transport layer protocols:
TCP and UDP.

APPLICATION LAYER
Network-related application programs

HOST-TO-HOST TRANSPORT LAYER
End-to-end data delivery

INTERNET LAYER
Datagrams and data routing

NETWORK ACCESS LAYER

Access to physical network

PHYSICAL LAYER
Network media

(not included in the TCP/IP model)

FIGURE 14.5
The four-layer TCP/IP protocol architecture.

D A T ATransport Header

D A T A

D A T A

D A T A

Transport Header

Transport Header

Internet Header

Internet HeaderNetwork Header

Application Layer

Transport Layer

Internet Layer

Network Access Layer

Physical Layer – Network Media

R
ec

ei
vi

ng
 D

at
a

S
en

di
ng

 D
at

a

FIGURE 14.6
Data flow through the TCP/IP protocol stack.

© 2002 by CRC Press LLC

14.4 TCP/IP Layers and Protocols

Most of the information about TCP/IP protocols is published in documents known as
Requests for Comments (RFC). RFCs contain the latest versions of the specifications of all
standard TCP/IP protocols. The style and contents of these documents are much less rigid
than most standard documents of this type; RFCs contain a wide range of information,
and they are not limited to the formal specification of data communication protocols. All
RFCs are available on the Internet.

In the text that follows, an overview of the function of each TCP/IP layer is presented.

14.4.1 Network Access Layer

The network access layer is the lowest layer of the TCP/IP protocol hierarchy. The protocols
in this layer provide data delivery to the other devices on a directly attached network.
This layer defines how to use the network to transmit an IP datagram. It must know the
details of the underlying network (addressing scheme, packet structure, etc.) to be able to
correctly format the data being sent to the network. If compared to the ISO OSI model,
this layer encompasses the functions of its three lower layers.

The TCP/IP design hides most of the network access layer’s functions from users. As
new hardware technologies appear, new network access protocols must be developed so
TCP/IP can use the new hardware. Consequently, there are many access protocols — one
for each physical network standard.

Functions performed in this layer include encapsulation of IP datagrams into the frames
to be transmitted by the network, and mapping of IP addresses to the physical addresses
used by the network itself. One of TCP/IP’s strengths is its addressing scheme, which

H3

Application Layer

Physical Layer – Network Media

H2H1H3H2H1

H3H2H3H2

H3H3

D A T A

Transport Layer

Internet Layer

Network Access Layer

D A T A

D A T AD A T A

D A T AD A T A

D A T AD A T A

UDP TCPLAYER

datagram datagram

frame frame

segment packet

stream message

FIGURE 14.7
Data structures in the TCP/IP protocol stack.

© 2002 by CRC Press LLC

uniquely identifies every host on the global network. This IP address may be converted
(mapped) into whatever address is appropriate for the implemented local area network
(LAN) over which the datagram is physically transmitted.

Protocols in this layer often appear as a combination of device drivers and related programs.
The modules that are identified with network device names usually encapsulate and
deliver and receive data to and from the network, while separate programs perform related
functions such as address mapping.

14.4.2 Internet Layer and IP Protocol

The Internet layer is a layer above the network access layer in the protocol hierarchy. The
best-known protocols in this layer are: Internet protocol (IP) and Internet Control Message
Protocol (ICMP).

14.4.2.1 Internet Protocol (IP)
The most important protocol in this layer is the Internet protocol, better known as the IP.
IP is the core of TCP/IP, and it provides the basic packet delivery service on which TCP/IP
networks are built. All protocols in the layers above and below the Internet layer are
dependent in some way on the IP to deliver data. All incoming and outgoing TCP/IP
data flows deal with IP, regardless of their real destinations.

IP functions include:

• Defining the datagram, which is the basic unit of transmission in the TCP/IP
network

• Defining the Internet addressing scheme

• Moving data between the layer below, the network access layer, and the layer
above, the host-to-host transport layer

• Routing datagrams to remote hosts

• Performing fragmentation and reassembly of datagrams

IP is a connectionless protocol. This means that IP does not exchange control informa-
tion, known as handshaking, to establish an end-to-end connection before transmitting
data. Rather, the opposite is true: connection-oriented protocols perform handshaking
with the remote system to verify that a connection is established before data trans-
mission starts (see more details later about TCP and in Figure 14.11). IP relies on
protocols in other layers to establish the connection if they require connection-oriented
service.

IP is also an unreliable protocol because it contains no error detection and recovery code.
Of course, this does not mean that reliable data delivery cannot be based on IP, it only
means that IP does not check to ensure the data was correctly received at the remote system.

TCP/IP protocols transmit data over the network in packets. A packet contains a block
of data to be transferred, as well as the full information that identifies the destination of
a packet itself. Each packet travels over the network independently of any other packet.
Long data structures are divided into packets for transfer over the network and reassem-
bled at the receiving end.

The datagram is the packet format defined by IP, and it is presented in Figure 14.8. The
first five or six 32-bit words (the sixth word is optional) form the header. The header length
is specified in the field IHL (Internet Header Length). The header contains all the information

© 2002 by CRC Press LLC

necessary to identify and deliver the datagram. The source and destination addresses are
crucial for delivery; they are the IP addresses of the source and destination hosts in the
network. Two hosts in the communication mostly do not reside in the same subnet (local
area network), so datagrams may travel through many network devices until they reach
their destinations.

The Total Length field determines the length of a data part of the datagram (and should
be decreased by IHL). Sometimes, when traveling through different networks, datagrams
must be further divided into smaller packets (because of the network type they are passing
through). This procedure is called fragmentation, and corresponding identification infor-
mation is also included in the datagram header.

14.4.2.2 Internet Control Message Protocol (ICMP)

The Internet Control Message Protocol (ICMP) is an integral part of the Internet layer, and
it uses the IP datagram delivery facility to send its messages. ICMP performs the following
functions for TCP/IP:

• Flow control

• Detection of unreachable destinations
• Redirection of routes

• Checking of remote hosts (supports the ping command)

ICMP protocol is widely used to check connectivity with designated remote hosts.
Because it resides in the Internet layer, it automatically excludes all higher layers from its
communication and points to underlying layers for any possible connectivity problem.
The special command ping is used for this purpose (it completely relies on ICMP) to check
if the remote host is “alive,” i.e., does the required connection between two hosts exist.
Once a “pinging” goes in both directions, we can look for communication problems at
higher layers.

 Version IHL Type of Service Total Length

 I d e n t i f i c a t i o n Flags Fragmentation Offset

 Time to Live Protocol Header Checksum

 S o u r c e A d d r e s s

 D e s t i n a t i o n A d d r e s s

 O p t i o n s Padding

D A T A

IP
 H

ea
de

r2

1

3

4

5

6

4 bytes = 32 bits

FIGURE 14.8
IP datagram format.

© 2002 by CRC Press LLC

14.4.3 Transport Layer and TCP and UDP Protocols

The host-to-host transport layer is above the Internet layer and is usually shortened to
transport layer. The two most important protocols in this layer are transmission control
protocol (TCP) and user datagram protocol (UDP). TCP provides reliable data delivery service
with end-to-end error detection and correction. UDP provides low-overhead, connection-
less datagram delivery service. Both protocols deliver data between the application layer
and the Internet layer. Application programmers can choose whichever service is more
appropriate for their specific applications, and both protocols are widely used. Although
the whole protocol suite got the name TCP/IP, it does not mean at all that the TCP protocol
is more important than the UDP protocol.

14.4.3.1 User Datagram Protocol (UDP)
UDP gives application programs direct access to a datagram delivery service (similar to
IP); this allows applications to exchange messages over the network with a minimum of
protocol overhead. UDP is an unreliable, connectionless datagram protocol. The basic UDP
data block (actually for UDP the correct term should be packet or message) is presented in
Figure 14.9. The UDP header contains only two 32-bit words. The first word includes the
16-bit source port and destination port numbers, which define applications; the second word
includes the datagram length and a checksum. A very short header minimizes the protocol
overhead.

There are a number of good reasons to choose UDP as a data transport service:

• If the amount of data being transmitted is small, the overhead of creating
connections and ensuring reliable delivery may be greater than the work of
retransmitting the entire data set.

• Many applications fit a “query - response” model, so reliable data delivery is already
ensured by the applications themselves.

• Many applications provide their own techniques for reliable data delivery, so
imposing another layer of acknowledgment would be redundant.

14.4.3.2 Transmission Control Protocol (TCP)

TCP is a reliable, connection-oriented, byte-stream protocol, where reliability is achieved by
a mechanism called Positive Acknowledgment with Retransmission (PAR). Data are

 S o u r c e P o r t D e s t i n a t i o n P o r t

 L e n g t h C h e c k s u m

D A T A
U

D
P

 H
ea

de
r

2

1

4 bytes = 32 bits

FIGURE 14.9
UDP message format.

© 2002 by CRC Press LLC

resent if a positive acknowledgment for already sent data is not received. A basic header
for a data block (for TCP the correct term should be segment) is presented in Figure 14.10.
Each segment contains a checksum that the recipient uses to verify that the segment is
undamaged. If the transmission is OK, the recipient sends a positive acknowledgment back
to the sender; if the segment is damaged, the recipient discards it. After an appropriate
time-out period, the sender retransmits any segment for which a positive acknowledgment
is missing.

Connection-oriented protocol means that TCP establishes a logical end-to-end connection
between the two hosts that communicate in a procedure known as a handshake. The
handshake is an exchange of the control information between two end points to establish
a dialogue before data is transmitted. TCP indicates the control function of a segment by
setting the appropriate bit in the Flags field in the header segment. TCP used a so-called
three-way handshake in which three segments are exchanged. The handshake procedure is
presented in the Figure 14.11.

 S o u r c e P o r t D e s t i n a t i o n P o r t

 S e q u e n c e N u m b e r

 A c k n o w l e d g m e n t N u m b e r

 Offset Reserved Flags W i n d o w

 C h e c k s u m U r g e n t P o I n t e r

 O p t i o n s Padding

D A T A

T
C

P
 H

ea
de

r2

1

3

4

5

6

4 bytes = 32 bits

FIGURE 14.10
TCP segment format.

SYN, ACK

SYN

Wide Area Network
(Internet)

Host A
Host B

Data Transfer
Upon Acknowledge

ACK, Data …

FIGURE 14.11
Three-way handshake.

© 2002 by CRC Press LLC

Finally, a byte-stream protocol means that each TCP segment presents a multiple-byte
data stream.

As a transport protocol, TCP is also responsible for a proper delivery of data received
from the Internet layer to the correct application. A 16-bit number in the source port
and destination port fields in the header segment identify applications. To pass data
correctly to and from the application layer is an important part of what the transport layer
services do.

14.4.4 Application Layer

The application layer is at the top of the TCP/IP protocol architecture. Everything mentioned
for the ISO OSI Application Layer is also valid here. There are many different application
protocols, and most of them provide user services. This is the layer under continuous
upgrade, and new services are frequently added to this layer. The application layer fully
relies on the three underlying layers for data delivery.

Some of the best-known application protocols are:

• TELNET The network terminal protocol, which provides remote login access over
the network

• FTP The file transfer protocol, which provides interactive file transfer over
the network

• SMTP The simple mail transfer protocol, which provides electronic mail delivery

The application protocols listed here are primarily user oriented. The other system-
oriented applications (services) widely in use are:

• Domain name service (DNS) Also called name service, to convert (map) host
names assigned to the network devices into
the appropriate IP addresses and vice versa

• Routing information protocol (RIP) To exchange routing information
• Network file system (NFS) To share files between various hosts on the

network

• Network information service (NIS) To centralize the administration over a group
of hosts on the network

Some applications require user interaction, like telnet or ftp, while others run hidden
from users, like RIP, DNS, NFS, or NIS. Nevertheless, UNIX administrators must know a
great deal about all of them.

Figure 14.12 shows the hierarchy of TCP/IP protocols in an imaginary system. The
relationship between different layer protocols is presented. It is assumed that the system
is connected to the Ethernet-type network.

The main purpose of this chapter is to get a basic idea about networking. Being familiar
with the TCP/IP protocol stack and basic layer functions is very instrumental in per-
forming daily UNIX network administration. Our task will be significantly easier if we
fully understand how things work in this amazing network environment known as the
Internet.

© 2002 by CRC Press LLC

FTP
RFC-959

TELNET
RFC-854

SMTP
RFC-821

TCP
RFC-793

NIS
RFC-1057

RIP
RFC-1058

DNS
RFC-1035

UDP
RFC-768

NFS
RFC-1094

 IP ICMP
RFC-791 RFC-792

EGP
RFC-904

ARP
RFC-826

IP over
Ethernet
RFC-894

IEEE 802.3
CSMA/CD

Ethernet

FIGURE 14.12
The hierarchy of TCP/IP protocols.

© 2002 by CRC Press LLC

15
TCP/IP Network

15.1 Data Delivery

Two basic steps must be completed to deliver data successfully between two Internet
participants. First, it is necessary to transmit the data across the network to the appropriate
host. Second, the data has to be transmitted within that host to the appropriate user or
process. TCP/IP uses three schemes to accomplish these tasks:

1. Addressing IP addresses uniquely identify each host on the entire internet;
TCP/IP relies on IP addressing to deliver data to the correct host
on the network.

2. Routing The Internet consists of many interconnected networks; different
networks are connected over routers (gateways). Routing means
to forward data to the correct network (or subnetwork) via an
appropriate router (gateway).

3. Multiplexing Protocol numbers and port numbers identify how to deliver data
to the correct software module within the host.

15.1.1 IP Address Classes

The Internet protocol (IP) moves data between hosts in the form of datagrams. Each datagram
is delivered to the host identified by a 32-bit IP address located in the Destination Address
field in the datagram header.

An IP address contains a network part and a host part, but the format of these parts
is not uniformly determined; the number of address bits used to identify the network
and the number used to identify the host vary according to the class of the address. The
three address classes are class A, class B, and class C. By examining the first few bits of
an address, IP software can quickly determine the address’s class and, therefore, its
structure. Figure 15.1 illustrates how the address structure varies with an address class.
It presents three address’s classes in three arbitrary IP address examples. The rules for
address classes are:

• If the first address bit is 0, this is the address of a class A network; the next seven
bits identify the network itself, and the remaining 24 bits identify the host in
that network. There are fewer than 128 class A network addresses and 16 million

© 2002 by CRC Press LLC

hosts’ addresses available in each network (a certain number of network
addresses are reserved for special purposes).

• If the first two bits are 10, this is the address of a class B network; the next 14
bits identify the network, and the remaining 16 bits identify the host in that
network. There are slightly more than 16,000 class B network addresses and more
than 64,000 hosts’ addresses available in each network.

• If the first two bits are 11, this is the address of a class C network; the next 22
bits identify the network, and the last 8 bits identify the host in that network.
There are more than 4 million class C network addresses with 256 hosts’
addresses available (actually this number is lower, because the host’s address 0
is reserved to identify the network itself, and the address 255 is the network
broadcast address). The C class addresses that start with the first three bits 111
are reserved for special purposes, which means 2 million class C network
addresses are available for general use.

IP addresses are written as four-decimal numbers separated by dots (periods). Each of
the four numbers is between 0 and 255, and identified by one byte in the 32-bit address.
Keeping in mind the previous division of address classes, the first decimal number fully
indicates the address’s class:

• Fewer than 128 Class A address

• Between 128 and 191 Class B address
• Greater than 191 Class C address

 0

Class A IP Address Example: 26.104.0.19

8 network bits 24 host bits

 1

Class B IP Address Example: 146.95.8.250

16 network bits 16 host bits

 1

Class C IP Address Example: 192.178.102.1

24 network bits 8 host bits

 0

 1 0

Subneting:

C+3 = 27 network bits + 5 host bits
C+4 = 28 network bits + 4 host bits

FIGURE 15.1
IP address structure.

© 2002 by CRC Press LLC

Not all network and host addresses are available for general use. Class C addresses
greater than 223 are reserved for special purposes, and certain class A addresses are also
reserved, for instance,

1. network 0 Default route, to simplify the routing information that IP must handle.

2. network 127 Loopback address, to allow the local host to be addressed in the
same manner as a remote host. This address is very important
in configuring the host.

Please note that among all classes, the hosts’ address 0 is reserved to identify the network
itself, and the highest address within the network is reserved as a broadcast address (to
propagate broadcast messages to all hosts in the network).

IP addresses are often called hosts’ addresses. This is very common, but is not correct.
IP addresses are assigned to the network interfaces, not the systems themselves. Any
router (gateway), is always connected to more than one network and contains more
network interfaces; consequently, it has more than one IP address associated with the
same system (host), and a different IP address for each of the networks it is connected
to. Similarly, multihome hosts have multiple network interfaces and multiple associ-
ated IP addresses; their main task is not routing, but to improve system and network
performance.

The IP addressing scheme is designed to make routing easy; it is network-oriented.
The disadvantage of this approach is that many hosts’ addresses among all classes are
not used within the corresponding networks and have no chance to be used elsewhere,
either. Given today’s enormous network growth, the need for new addresses has
reached the saturation point. The lack of IP addresses is obvious, and the question is
how long they will be available at all. The new proposal for 132-bit IP addressing is
under consideration; the main problem is how to keep the necessary compatibility
with the current IP addressing system and the millions of already installed and active
networks and hosts worldwide.

In the meantime, the intranet has become a workable solution. Intranets are isolated
internet-type networks that use an arbitrary IP addressing scheme, so IP addresses
can be repeated among different intranets. All addresses in an intranet are hidden
from the Internet; they are strictly internal to the intranet, and the whole intranet
appears to the Internet as a single or a few IP addresses only. Address mapping and
the required isolation are provided by special systems known as proxy servers and
firewalls; they also protect the intranet from external intruders. The basic network
services are fully provided and are transparent to intranet users; users see the system
as being a part of the Internet itself (the intranet is fully discussed in Chapter 25).

It is assumed that each IP address of any class belongs to one local network; at the very
least, a host understands that another host with the same network-part IP address shares
the same local network. If that is literally true, then it means that the class A IP address
defines a LAN with 4 million participating hosts (it is very hard to imagine the data traffic
within such a network); obviously, a huge number of available host’s IP addresses cannot
be used in that way.

One solution to this problem is known as subnetworking (also referred as subnetting).
A given IP address of a certain class can be divided into multiple IP address subclasses,
each of them defining a separate subnetwork (there are no technological differences
between a network and a subnetwork; the two terms are used only to identify their mutual
relationship). Subnetting means expanding the network part of an IP address by some
address bit of the host’s address part.

© 2002 by CRC Press LLC

While a host can easily figure out an IP address class that its own IP address belongs
to, subnetting is arbitrary and the host has no information about it. For that purpose, the
so-called netmask has been introduced. A netmask specifies how many address bits in an
IP address correspond to the network part; by default the netmask matches the corres-
ponding IP address class. To be operational, subnetting requires that you modify the host’s
netmask (actually, netmasks are, like IP addresses, associated with network interfaces, so
a host could have multiple netmasks).

Netmasks are specified in a way very similar to IP addresses; a netmask is a 32-bit
number that contains all ones for the network part, and all zeros for the host part. In the
same way as an IP address, it is also represented by four decimal numbers separated by
dots (periods); each of the four numbers is between 0 and 255 and identified by one byte
in the 32-bit netmask.

The reason for subnetting is not only because too many hosts’ addresses remain
unused; subnetting improves network performance by making data transmission
faster. Data transmission is faster because every machine on an IP network (or sub-
network) sees all of the traffic on the network. Those packets that are addressed to a
specific host are received, and those that are not are bypassed. Therefore, if there are
fewer actual hosts on a network (or a subnet), then each host on that network has less
traffic to monitor. Subnetting decreases the network load (a smaller number of hosts
compete on the same subnetwork), and separate the network traffic into local traffic
within the subnetwork, and network-wide traffic; the net effect is an increase in the
network throughput. The price to be paid is that for each subnetwork a new router
must be added.

It is quite common to subnet class C networks, too. To describe subnets verbally, some-
times we identify them by specifying subclasses of IP addresses; for example, “C+3,” or
“C+4.” This is shown in Figure 15.1. Keeping in mind that the class A IP address contains
a 24-bit network address part, class B IP addresses have a 16-bit network address part, and
class C IP address have an 8-bit network address part, the meaning of the presented subnet-
work identifications should be clear.

15.1.2 Internet Routing

In traditional internet structures, routing was centralized around so-called core gateways.
This model quickly became obsolete and useless. It was replaced by the newly feasible
decentralized routing model, which is based on co-equal collections of autonomous systems
called routing domains. Routers (also known as gateways) in different routing domains
exchange routing information between themselves, do their processing for themselves, and
choose the best routes.

The two terms router and gateway are widely used to identify the same routing devices.
Strictly speaking, a gateway provides more functionality; besides routing, it also converts
protocols among networks (for example, Ethernet to Token Ring and vice versa). In the
following text the terms are used interchangeably.

Routers route data between local networks, but all devices in the network, including
hosts, must make some routing decisions as well. The host itself, in fact, always makes
the very first routing decision. For most hosts, the routing decision is simple:

• If the destination host is on the local network, the data is delivered directly to
the destination host.

• If the destination host is on a remote network, the data is forwarded to a local
router (gateway), for further delivery.

© 2002 by CRC Press LLC

Because routing is network oriented, IP makes routing decisions based on the network
portion of the IP address (determined by the corresponding netmask). By checking the
network bits of the destination address, the IP module determines whether the designated
host belongs to the same network, or not. This is done with simple logical operations
between the destination address, network mask, and host’s address (network mask has all
network bits equal to 1, which is instrumental in extracting the network portion of the
hosts’ addresses).

After determining the destination network, the IP module looks for this network in
the local routing table. Datagrams are routed toward their destination as directed by the
routing table. The routing table may be static (built during the system startup), or dynamic,
continuously updated by routing protocols. However, the decision is always based on
a simple table lookup.

The netstat -[n]r command will display the current routing table (the listed option r
specifies the routing table, while the option n specifies numerical data representation;
otherwise, data are represented symbolically whenever possible). Here are examples from
the SunOS/Solaris and HP-UX flavors, respectively:

netstat -nr
Routing tables

Destination Gateway Flags Refcnt Use Interface

127.0.0.1 127.0.0.1 UH 1 730 lo0

198.61.16.0 146.95.1.15 UG 0 0 le0

default 146.95.1.15 UG 1 1575 le0

198.61.17.0 146.95.1.15 UG 0 0 le0
.

.

148.84.0.0 146.95.1.15 UG 0 26 le0

149.4.0.0 146.95.1.15 UG 0 0 le0

128.228.0.0 146.95.1.15 UG 0 500 le0

146.95.0.0 146.95.1.11 U 30 129465 le0

$ netstat -nr
Routing tables

Destination Gateway Flags Refs Use Interface

127.0.0.1 127.0.0.1 UH 0 66 lo0

default 146.95.1.15 UG 0 4444 lan0

146.95 146.95.8.31 U 3 58052 lan0

Obviously, the format of the routing table is essentially universal and independent of the
UNIX flavor. Also, we can see that the first routing table includes too many unnecessary
entries that point to the same router; three entries (as seen in the second example) are
sufficient when a single router is available. Many entries in the first example are the result
of the dynamic routing; the system is trying to specify optimal routes based on available
routers in the network. Obviously, the only possible output must be the very same router.
In other words, there is no need for dynamic routing if there is no alternative router in
the network; “static routing” covers all possible routing scenarios. A larger routing table
only takes more time, without any visible benefits (except some statistical data could be
collected). If multiple routers are available, then dynamic routing makes a lot of sense,
and should be implemented.

© 2002 by CRC Press LLC

The routing table contains following fields:

Field Meaning

Destination The destination network or host.
Gateway The router (gateway) to use to reach the specified destination.
Flags The flags describe certain characteristics of this route. The possible flag values are:

U Indicates that the route is up and operational.
H Indicates this is the route to a specific host.
G Indicates the route uses a gateway.
D Indicates that this route was added because of an ICMP redirect.

When a system learns of a route, it adds the route to the table.
Refcnt Shows the number of times the route has been referenced to establish a connection.
Use Shows the number of packets transmitted via this route.
Interface The name of the network interface used by this route.

Most entries in the presented routing tables refer to the designated networks and are
identified numerically (by their IP addresses). The entry 127.0.0.1 is the loopback route
for the local host. The entry default is for the default route and the specified router is the
default router (the default gateway). The default route is always used when there is no
another entry that points to the specified designated host or network.

How does the system know about a default route? Simply, the default router must be
explicitly specified and appended to the routing table. As opposed to many configuration
data, where the corresponding configuration files can be edited, there is no way to edit
the routing table. The special UNIX command route must be used for this purpose.

The route command can be used from the command line at any moment, and it will
immediately alter the routing table; however, each manual modification will be lost upon
the next system reboot. In order for the route command to act during normal system
startup, it must be a part of a corresponding rc script that enables initial setting of the
routing table; this is provided in different ways for different UNIX flavors.

The following example should illustrate a possible command string for this purpose:

.
The network interface is defined using the ifconfig command
.
Initialize network routing.
The route(1m) command manipulates the network routing tables.

.
/etc/route add default 146.95.8.250 1

adds default network destination to the routing table indicating
a correspondence between that destination and the gateway,
and specifying the number of hops to the gateway as 1.

.

In this example, the default router is explicitly specified within the rc startup script.
Although it does work this way, specifying the default router within a separate file sounds
more appropriate; at least future changes in the network configuration seem to be more
logical. On the SunOS/Solaris platform the /etc/defaultrouter file keeps the necessary default
routing data, which is read during system startup.

15.1.2.1 The route Command

The route command is used to manipulate the routing table manually; root privileges are
required to use it. It supports two subcommands:

© 2002 by CRC Press LLC

add To add a route
delete To delete a route

The generic command format is:

/etc/route [-f] [-n] add [net | host] destination gateway [count]

/etc/route [-f] [-n] delete [net | host] destination gateway [count]

The command arguments are:

-f Specifies the forcible deletion (flushing) of all entries in the routing
table that defines the remote host for a gateway.

-n Specifies a numerical printout of any host and network address (in
“dot” notation), except for the default network address.

net or host Specifies the type of destination address; could be net for “network”
or host for “individual host” (this is default value if omitted).

destination Specifies a destination system where the packet will be routed. It can
be either a host name, a network name, an IP address (in “dot”
notation), or the keyword default, which signifies the wildcard gateway
route.

gateway Specifies the gateway (router) through which the destination is
reached; can be either a host name or an IP address (in “dot” notation).

count An integer that indicates whether the gateway is a remote host (>0) or
a local host (= 0; this is default value).

15.1.2.2 Dynamic Routing

The routing tables presented here correspond to the situation in which a single router is
available; the host’s routing decision for all out-of-network traffic is limited to the only available
router. There is no choice between alternative routes to forward data, so the static routing
algorithm is quite appropriate. Static routing assumes that, once defined (during the system
booting), a routing table remains unchanged and valid throughout the system’s lifetime.

It is recommended that you implement static routing whenever only one router exists in
the local network, which is the most common case. A bit of processor time (which the system
always needs) can be saved, as there is no useless routing calculation involved when the
output is already known. However, many systems use dynamic routing even under such
conditions (as in the first example presented). Nothing is fundamentally wrong with that;
the system will work properly. But it is fair to say that no real need exists for a dynamic
routing when a single router is available. The only “pro” argument is that such a system is
already prepared for any eventual network upgrades (which in most cases never happen).

A single router in the local network is not acceptable in some network implementations,
because a broken router completely isolates the whole network. Introducing a second
router could solve this problem. The second router is not only the alternative to a broken
first router; two routers can share the routing tasks, making the overall network performance
better. In that case we have dynamic routing.

Dynamic routing assumes a permanent adaptation of the routing table to current network
conditions; it also assumes that the optimal routing decision is always made. How can this
highly desirable goal be achieved? A separate process, the gated daemon, is dedicated to this
task and runs continuously. There are also other routing daemons, but gated is the most
common, and it is a part of the UNIX distribution. The gated daemons running on different

© 2002 by CRC Press LLC

remote hosts communicate with one another to update information about the network status;
the final output is an updated routing table for each individual host.

15.1.2.3 The gated Daemon

Gated is a routing daemon that handles the routing information protocol (RIP), border
gateway protocol (BGP), exterior gateway protocol (EGP), and HELLO routing protocol.
The gated process can be configured to perform all of these specified routing protocols,
or any combination of them.

The generic command line is:

gated [-c] [-n] [-t trace_option] [-f config_file] [trace_file]

The daemon’s arguments are:

-c Parse the configuration file for syntax errors and then exit; related
to tracing

-n Do not modify the kernel’s routing table; used for testing gated
configurations

-ttrace_option Enable trace flags on startup; see manual pages for details
-f config_file Use an alternate configuration file; by default, gated uses /etc/gated.conf

trace_file Trace file in which to place trace information

The gated daemon must be started during the system booting through a corresponding rc
initialization script, as in the following example (this rc startup script is the Korn shell script):

if [-x /etc/gated]; then
/etc/gated -f /etc/gated.conf && /bin/echo “gated daemon started”

else
/bin/echo “Couldn’t execute /etc/gated”

fi

The only condition required to start the gated daemon is the existence of the corresponding
executable program; the rest is done with messages sent to console. The configuration file
is /etc/gated.conf, which is used to tune the daemon’s behavior. Here is an example:

$ cat /etc/gated.conf
redirect yes;
rip quiet
static {

default gateway 146.95.8.249 preference 150;
};

This configuration file specifies:

• redirect ICMP (Internet control message protocol) messages, i.e., controls routing
table changes based on ICMP

• quiet specifies that no RIP packets are to be generated
• static defines a static route through the second gateway (the first gateway is

defined in the corresponding rc startup script)

This example is just to get a basic idea of what the /etc/gated.conf file can look like. There
are a number of ways to configure the gated daemon.

© 2002 by CRC Press LLC

15.1.3 Multiplexing

Once data is routed through the network and delivered to a specified designated host,
the remaining task is to deliver this data to the correct user or process on the host. As data
moves up or down the layers of the TCP/IP protocol stack, some mechanism is needed
to deliver the data to the correct protocol in each layer, step by step, and at the end the
data will reach the correct application. The implemented mechanism is based on the
following:

• When sending data, the system must be able to combine data from many applications
into a few transport protocols, and from the transport protocols into the Internet
protocol. Combining many sources of data into a single data stream is calling
multiplexing.

• Data arriving from the network must be demultiplexed, i.e., divided for delivery to
multiple processes. To accomplish this, IP uses protocol numbers to identify transport
protocols, and the transport protocols use port numbers to identify applications.

Some protocol and port numbers are reserved to identify so-called well-known services.
Well-known services are standard network protocols (such as telnet or ftp) that are
commonly used throughout the network. The protocol and port numbers allocated to
well-known services are documented in the RFCs documents. UNIX specifies protocol
and port numbers in a few simple text database files.

15.1.3.1 Protocols, Ports, and Sockets

A protocol number is a single byte in the IP datagram header (the third word — the
protocol field). The value in the field identifies the protocol in the layer above IP, the
transport layer, to which the data should be passed. UNIX specifies protocol numbers in
the /etc/protocols file.

After IP passes incoming data to the corresponding transport protocol, the transport
protocol passes the data to the correct application process. Port numbers identify application
processes, which are also called network services. A port number is a 16-bit number in
the header of the UDP packet (message) or TCP segment. The destination port number (in the
destination port field) identifies the application protocol that is to receive the data; the source
port number (in the source port field) identifies the application protocol that sent the data.
UNIX specifies port numbers in the /etc/services file.

Well-known ports are standardized port numbers that enable remote hosts to know
which port to connect to for a particular network service. This simplifies the connection
process because both the sender and the recipient know in advance how and where to
establish connection. For example, all systems that offer telnet offer it on port 23. The data
flow through the TCP/IP protocol stack in this case is presented in Figure 15.2.

However, the question is what to do when multiple users and multiple processes request
the same service simultaneously. This situation can be handled only by using dynamically
allocated ports, as seen in Figure 15.3.

The source host has requested the telnet service from the designated host. The source
host randomly generated the source port number for the user who initiated this request
(port 3408 in this case) and sent out the TCP segment with this source port number; the
destination port number is 23 (the well-known service for telnet). The destination host has
received the sent TCP segment on its port 23 and responded back to the remote host’s
destination port 3408. A network-wide unique connection has been established.

© 2002 by CRC Press LLC

Protocol: 6

Destination: 146.95.8.11

Source IP Address

Destination Port: 23Source Port

IP Header

TCP Header

Port 23

Protocol 6

IP address 146.95.8.11

Physical Layer Header IP Header TCP Header TELNET Header D A T A ...

Data Flow through the Network

Internet Protocol

TCP

(Application Layer)

Physical Layer Header

TELNET Header

D A T A

TELNET

FIGURE 15.2
Protocol and port numbers.

Intranet

3408.23

3408.23

23.3408

23.3408

Source Destination

FIGURE 15.3
Dynamically allocated port numbers.

© 2002 by CRC Press LLC

A combination of an IP address and a port number is called a socket. A socket uniquely
identifies a single network process throughout the entire Internet. Sometimes the terms
socket and port number are used interchangeably; well-known services are often referred as
well-known sockets. However, this is not correct and should be avoided.

15.1.3.2 UNIX Database Files
UNIX database files store all of the protocol and port numbers that the system needs.
These files are uniform among different UNIX flavors. We will discuss them with examples
from SunOS/Solaris and HP-UX.

The /etc/protocols file — The /etc/protocols file is a simple table containing the protocol
names and the protocol numbers associated with those names. The format of the table is
a single entry per line; each entry consists of the official protocol name separated by white
space from the protocol number; the protocol number is separated by white space from the
alias (if any exists) for the protocol name, and comments begin with the # symbol.

$ cat /etc/protocols (SunOS/Solaris)
@(#)protocols 1.9 90/01/03 SMI
#
Internet (IP) protocols
This file is never consulted when the NIS are running
#
ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol
igmp 2 IGMP # internet group multicast protocol
ggp 3 GGP # gateway-gateway protocol
tcp 6 TCP # transmission control protocol
pup 12 PUP # PARC universal packet protocol
udp 17 UDP # user datagram protocol

$ cat /etc/protocols (HP-UX)
@(#)$Header: protocols,v 1.7.109.1 91/11/21 12:02:15 kcs Exp $
@(#)protocols5.1 (Berkeley) 4/17/89
#
This file contains information regarding the known protocols
used in the DARPA Internet.
#
The form for each entry is:
<official protocol name> <protocol number> <aliases>
Note: The entries cannot be preceded by a blank space.
Internet (IP) protocols
ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol
ggp 3 GGP # gateway-gateway protocol
tcp 6 TCP # transmission control protocol
egp 8 EGP # exterior gateway protocol
pup 12 PUP # PARC universal packet protocol
udp 17 UDP # user datagram protocol
hmp 20 HMP # host monitoring protocol
xns-idp 22 XNS-IDP # Xerox NS IDP
rdp 27 RDP # “reliable datagram” protocol

The /etc/services file — The other database file, /etc/services, is very similar (in its format)
to the /etc/protocols file. Each single-line entry starts with the official name of the service,
separated by white space from the port number/protocol name pair associated with that
service. The port numbers are paired with transport protocol names, because different

© 2002 by CRC Press LLC

transport protocols may use the same port number. An optional list of aliases for the official
service name may be also provided, and comments start with the # symbol.

$ cat /etc/services
#
@(#)services 1.16 90/01/03 SMI
#
Network services, Internet style
This file is never consulted when the NIS are running
#
tcpmux 1/tcp # rfc-1078
echo 7/tcp
echo 7/udp

.
ftp 21/tcp
telnet 23/tcp
smtp 25/tcp mail
time 37/tcp timserver
time 37/udp timserver
name 42/udp nameserver
whois 43/tcp nicname # usually to sri-nic
domain 53/udp
domain 53/tcp
hostnames 101/tcp hostname # usually to sri-nic
sunrpc 111/udp
sunrpc 111/tcp
#
Host specific functions
#
tftp 69/udp
rje 77/tcp
finger 79/tcp

.
pop-2 109/tcp # Post Office
uucp-path 117/tcp
nntp 119/tcp usenet # Network News Transfer
ntp 123/tcp # Network Time Protocol
NeWS 144/tcp news # Window System
#
UNIX specific services
#
these are NOT officially assigned
#
exec 512/tcp
login 513/tcp
shell 514/tcp cmd # no passwords used
printer 515/tcp spooler # line printer spooler

.

.

15.2 Address Resolution (ARP)

The designated IP address and the routing table are the cornerstones in forwarding a data-
gram to a specific physical network. However, when a datagram travels across a network,
it must obey the physical layer protocols used by that network. The physical layer does

© 2002 by CRC Press LLC

not understand the IP addressing scheme; it only respects its own addressing and its own
rules. To make everything operational, one of the basic tasks of the network access layer
of the TCP/IP stack is to map IP addresses into appropriate physical network addresses.

The most common physical local network is the Ethernet network (often used as a generic
name for all CSMA/CD networks). The Ethernet network has its own addressing scheme,
with Ethernet addresses to identify each Ethernet interface device connected to the network.
An Ethernet address (often specified as a MAC address; MAC stands for the media access
control sublayer in the data link layer of the ISO OSI Reference Model) should not be
mistaken for an Internet IP address; these are two completely different addressing schemes.

Six two-digit hexadecimal numbers separated by a colon (:) specify an Ethernet address.
A unique Ethernet address is assigned to each Ethernet network interface, hardwired or
firmwired during its manufacture. Consequently, the Ethernet address remains hidden
from users and is outside of any administrative control. However, currently some vendors
put Ethernet addressing under program control, also allowing local programming of
physical Ethernet addresses.

The protocol that performs IP address mapping to the physical Ethernet address is
known as the address resolution protocol (ARP), and it belongs to the network access layer.
The ARP software maintains a table of IP addresses translated into Ethernet addresses.
ARP itself builds the table dynamically and automatically. When ARP receives a request
to translate an IP address, it first checks if the specified IP address is already in the table.
If the IP address is found, ARP returns the corresponding Ethernet address to the requesting
software. If the address is not found in the table, ARP broadcasts an Ethernet query to all
hosts on the local Ethernet network, asking the host with the corresponding IP address
to reply with its Ethernet address.

Please note that the requested IP address must be a directly reachable IP address of the
host, or a router on the local network (otherwise data delivery is not possible). Note also
that Ethernet addresses cannot go over the boundaries of the local network. Both the
broadcasted Ethernet query and the requested IP address remain in the local network.
Each host in the local network is familiar with its own IP and Ethernet addresses, and the
queried host will respond with its Ethernet address.

The received response is then cached in the ARP table. Even though the ARP table is
dynamically updated, the static entries can be also created; there is a way to specify specific
Internet/Ethernet address pairs and keep them unmodified in the table (the -s option of
the arp command).

All cached data are kept in the ARP table for only a certain period of time (the “time-out
period,” which lasts for a few seconds); once the time-out period expires, the corresponding
entry is deleted. Once an entry is deleted, ARP must query for the very same data as if it
had never been in the table. Permanent ARP table updating makes the ARP procedure
independent of the changes in the network; otherwise, a simple replacement of a broken
network card would not be possible (an Ethernet address is a part of the network interface,
so by replacing the network interface card, another Ethernet address is automatically
associated with the corresponding IP address).

15.2.1 The arp Command

The arp command displays and controls the contents of the IP-to-Ethernet address
translation table used by the ARP protocol. Several forms of the command are available:

arp [-d] hostname
arp -s hostname ethaddr [temp] [pub] [trail]

© 2002 by CRC Press LLC

arp -a
arp -f filename

where with no options, arp displays the current ARP entry for hostname. The options are:
-a Display all of the current ARP entries by reading the table from the kernel.
-d Delete an entry for hostname.
-s Create an ARP entry for hostname with the Ethernet address ethaddr. The entry will

be permanent unless the temp option is given in the command. If the pub option is
given, the entry will be published; for instance, this system will respond to ARP
requests for hostname even though the hostname is not its own. The trail option
indicates that trailer encapsulations may be sent to this host.

-f Read the file named filename and set multiple entries in the ARP table; entries in the
file should be of the form:

hostname ethaddr [temp] [pub] [trail]

with the argument meanings as given above, under the -s option.

Here are two examples:

arp -a (SunOS/Solaris)
hcprophet (146.95.1.2) at 8:0:20:0:9b:4d
rs01-ch (146.95.1.21) at 2:60:8c:2f:48:db
? (146.95.6.73) at 0:0:89:0:3e:4
bjl.ph.hunter.cuny.edu (146.95.8.11) at 0:0:1d:a:e5:6c
pegasus.hunter.cuny.edu (146.95.1.12) at 8:0:20:1f:39:46
denboer.ph.hunter.cuny.edu (146.95.8.12) at 0:0:1d:b:53:e2
default (146.95.1.15) at 0:0:0:0:8b:8b
indigo1.ch (146.95.6.15) at 8:0:69:6:b4:84

$ arp -a (HP-UX)
levi.ph.hunter.cuny.edu (146.95.8.11) at 0:0:1d:a:e5:6c ether
pegasus.hunter.cuny.edu (146.95.1.12) at 8:0:20:1f:39:46 ether
denboer.ph.hunter.cuny.edu (146.95.8.12) at 0:0:1d:b:53:e2 ether
hcgate1.hunter.cuny.edu (146.95.1.15) at 0:0:0:0:8b:8b ether
physpc1.ph.hunter.cuny.edu (146.95.8.28) at 0:0:1d:b:45:6a ether

15.3 Remote Procedure Call (RPC)

Remote Procedure Call (RPC) provides a mechanism for a host to make a procedure call
that appears to be a part of the local process, while it is really executed on another, remote
host in the network. The net effect is the impression that everything is executing strictly
locally, although the requested resources are far apart and can be reached only through
the network. Typically, the host on which the procedure call is executed has resources that
are not available on the calling host. This distribution of computing services imposes
a client/server relationship on the two hosts: the host owning the resource is a server for
that resource, and the calling host becomes a client that needs access to the resource.

Procedure is a relatively closed program entity used in C programming, with well-defined
input and output. It is very common to call a procedure from some other program to complete

© 2002 by CRC Press LLC

a certain task. Originally the calls were placed locally, and we used the term local procedure
calls to identify them. Networking introduced a new distributed environment that offered to
extend existing local applications over several remote hosts. The procedure was a logical choice
for such an extension. By replacing the local procedure call with an equivalent remote
procedure call, the rest of the application could remain more or less unchanged and still
operational. Sun Microsystems recognized this idea, and the remote procedure call (RPC)
became a standard used in networking; sometimes it is even referred to as “Sun RPC.”
Figure 15.4 illustrates the difference between local and remote procedure calling.

RPC uses a request-and-reply communication model; the client and the server processes
communicate by means of two stubs, one for the client and one for the server. A stub is
the communication interface that implements the RPC protocol and specifies how messages
are exchanged. Instead of executing the procedure on the local host, the RPC bundles up
the arguments passed to the procedure into a network datagram. The RPC client creates
a session by locating the appropriate server and sending the datagram to a process on the
server that can execute the RPC. On that server, the arguments are unpacked, the server
responds to the request, packages the result (if any), and sends it back to the client. On
the client side, the reply is converted into a “return value” for the procedure call, and the
calling application is reentered as if a local procedure is completed. This means that from
an application point of view, it is not known if a local or a remote procedure call was
executed.

Client Stub

network
interface

Server Stub

network
interface

Client

calling
procedure

Server

called
procedure

Client

calling
procedure

Server

called
procedure

Local Area Network

Local
Procedure

 Call

Remote
Procedure

 Call
(RPC)

FIGURE 15.4
Local and remote procedure calling.

© 2002 by CRC Press LLC

RPC services may be built on either TCP or UDP transport protocols, although most
are UDP-oriented. The reason is because RPC services are mostly centered on short-lived
requests. Using UDP forces the RPC to contain enough context information for its execution,
independent of any other RPC request, since UDP packets may arrive in any order, if at
all. The client may also specify a time-out period in which the remote call must be
completed. Various actions can be taken if a server does not reply in the predefined time
interval; the action taken depends on the application itself.

Once the concept of RCP is clear, the next logical question is: When should RCP be
implemented? Does each network-based application rely on RPC, and what is a benefit
of using an RPC? The following statement could help to explain these matters. A number
of new network applications were created once networking become widely implemented;
these applications were designed from scratch, respecting all network restrictions, speci-
fications, and standards. These applications were run only in the distributed network
environment. On another side, a number of existing local applications had to be extended
and adapted to the new distributed environment. These applications were designed in a
different way, they were locally oriented, and sometimes came from different host plat-
forms; however, they had something in common: they were and are using local procedure
calls in interprocess communications. The easiest way to extend them to the distributed
environment and to keep full compatibility with the local environment has been to make
procedures to circumvent the problem — to provide an appropriate program interface to
adapt local applications to the network environment, and to keep local program charac-
teristics intact. Thus the remote procedure call (RCP) was born.

RPC services are usually connectionless UDP-oriented services, because RPC requests
do not require the creation of a long-lived network connection between the client and the
server. The client communicates with the server (sends its request and receives a reply)
in a connectionless fashion. However, RPC can also run over TCP, in a connection-oriented
fashion. The TCP protocol may be used with RPC services whenever a large amount of
data needs to be transferred (for example, NIS uses UDP, but it switches to TCP whenever
it needs to transfer entire database to remote hosts).

RPC servers are generally started during system booting and run as long as the system
is up. An efficient RPC operation cannot tolerate the time overhead caused by the start
of a new server process when such a service is required. As a result, RPC servers are
single-treated, i.e., there is one server process for the RPC service, and it executes remote
requests from the client one at a time. To achieve better performance, two or more copies
of the same RPC server may be started during the system startup, but each server still
handles only one request at a time. There may be many clients of the RPC server, but their
requests wait in the RPC server queue and are processed in the order in which they are
received.

Instead of using preassigned ports, RPC service numbers designate RPC servers. The
file /etc/rpc contains a list of RPC servers and their program numbers. This approach brings
the additional flexibility to implement site-specific RCP based applications; RPC service
numbers can be locally customized without any impact on remote hosts.

15.3.1 The portmapper Daemon

An application may contain many procedures; for example, the NFS contains more than
a dozen procedures, one for each filesystem operation (“read block,” “write block,” “create
file,” etc.). However, RPC services still must use TCP/UDP port numbers to fit the underlying
protocols. The mapping of RPC program numbers to port numbers is handled by the
portmap daemon (named portmapper).

© 2002 by CRC Press LLC

When an RPC server is initialized, it registers its service with the portmapper, telling it
which port it will listen on for incoming requests. An RPC client contacts the portmapper
on the server side to learn the port number used by the RPC server; or the client may ask
the portmapper to call the server indirectly on its behalf. This is presented in Figure 15.5.
In either case, the RPC call from a client to a server must be made with the portmapper
running. Without a running portmapper, all serving RPC-based applications are effectively
stopped.

The port number where an RPC client can find portmapper is specified in the /etc/services file:

cat /etc/services | grep rpc
portmap 111/udp sunrpc # SUN Remote Procedure Call
portmap 111/tcp sunrpc #

15.3.2 The /etc/rpc File

The file /etc/rpc contains the RPC service (program) number database; these are readable
entries with the following information:

<name of server for the RPC program> <RPC program number> <Aliases>

Items are separated by any number of blanks and/or tab characters. A pound sign (#)
indicates the beginning of a comment, and characters up to the end of the line are not
interpreted by the routines that search the file.

The partial contents of the /etc/rpc file are presented:

cat /etc/rpc
#
rpc 1.19 12/27
#
portmapper 100000 portmap sunrpc

RPC Client
Program

RPC Server
Program

M

Portmapper

I need server M

Go to port m

P
or

t m

I need your service

Client Host Server Host

R
P

C
 s

er
ve

r
M

 r
eg

is
te

rs
 w

ith
 P

or
tm

ap
pe

r
po

rt
 n

um
be

r
“m

”
at

 w
hi

ch
 it

 li
st

en
s

fo
r

cl
ie

nt
’s

 r
eq

ue
st

s

C
lie

nt
 n

ee
ds

 S
er

ve
r

M
.

It
fir

st
 c

on
su

lts
P

or
tm

ap
pe

r
fo

r
th

e
se

rv
er

’s
 p

or
t n

um
be

r
an

d
th

en
 a

dd
re

ss
es

 th
e

se
rv

er
 it

se
lf.

OK, here it is!

FIGURE 15.5
The RPC client/server communication.

© 2002 by CRC Press LLC

rstatd 100001 rstat rup perfmeter
rusersd 100002 rusers
nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount
ypbind 100007
walld 100008 rwall shutdown

.

.
ypxfrd 100069 ypxfr
pcnfsd 150001

We have already mentioned that Sun Microsystems were the first to develop the RPC;
the developed version was known as ONC RPC (ONC stands for open network comput-
ing). Simultaneously, certain RPC-related tools and specialized commands were intro-
duced. One of them is the rpcinfo command, which reports RPC information; it makes
an RPC call to an RPC server and reports on its findings. The command has a number of
options. The following example shows all of the RPC services registered on the local
machine.

rpcinfo -p
program vers proto port
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper
100004 2 udp 660 ypserv
100004 2 tcp 661 ypserv
100004 1 udp 660 ypserv
100004 1 tcp 661 ypserv
100069 1 udp 662 ypxfrd
100069 1 tcp 664 ypxfrd
100007 2 tcp 1024 ypbind
100007 2 udp 1027 ypbind
.
.
100068 2 udp 1044
100068 3 udp 1044
100083 1 tcp 1026

15.4 Configuring the Network Interface

An important strength of TCP/IP is its flexible use of different physical networks for the
physical data transfer. Independently of the implemented physical layer, whether the host
is connected to Ethernet, or Token Ring, or any other network, or even connected via a
serial link, TCP/IP works the same way. Such flexibility, however, requires corresponding
attention by the administrator; a single type of network interface is easier to manage than
several different types. In addition, several different network interfaces can be used
simultaneously, as in the case of multihome hosts connected to more than one network.
In any case, independent of the type of the implemented network interface, an IP address
is always assigned to each of the active network interfaces, and each network interface
must be configured properly before its use. Today the prevailing network interface is
Ethernet, and in the following discussion we will focus on this type of network.

© 2002 by CRC Press LLC

Two UNIX commands are very instrumental in handling network interfaces:

1. The ifconfig command, to configure network interface
2. The netstat command, to show network-related data

15.4.1 The ifconfig Command

The ifconfig command sets, or checks, configuration values for network interfaces. It is
used to set the IP address, the subnet mask, and the broadcast address for each interface. The
format of the command is:

ifconfig interface ipaddress netmask mask broadcast address

The command arguments are shown in the following table:

Argument Meaning

interface The name of the network interface to be configured.
ipaddress The IP address assigned to this interface. Enter an address as either an IP address (in dotted

numerical form) or as a hostname; if the hostname is given, ifconfig must resolve the
hostname - IP address. During system startup, ifconfig is usually executed before DNS is
running, so the hostname must exist in /etc/hosts file. SunOS/Solaris uses the
/etc/hostname.ifname file for this purpose (where ifname is the name of the interface).

netmask mask The subnet mask for this interface. The mask value depends on the subnet (local network)
address class (for example, 255.255.0.0 for class B, or 255.255.255.0 for class C); it could be
also specified in the/etc/netmasks file.

broadcast address The broadcast address for the network is defined by the address value; the default broadcast
address network IP address, with all bits in the host part (determined by the netmask), is
set to 1.

Each network interface must be configured before its use, and this task can be accomplished
from the command line. However, to provide a proper setting during system startup, the
ifconfig command is always included in the corresponding rc initialization script.

The ifconfig command can also be used to check already-configured network interfaces,
individually or all at once. Here are a few examples:

ifconfig le0 (SunOS/Solaris)
le0: flags=63<UP,BROADCAST,NOTRAILERS,RUNNING>

inet 146.95.1.11 netmask ffff0000 broadcast 146.95.0.0

ether 8:0:20:8:1e:f2

ifconfig lo0
lo0: flags=49<UP,LOOPBACK,RUNNING>

inet 127.0.0.1 netmask ff000000

ifconfig -a
le0: flags=63<UP,BROADCAST,NOTRAILERS,RUNNING>

inet 146.95.1.11 netmask ffff0000 broadcast 146.95.0.0

ether 8:0:20:8:1e:f2

lo0: flags=49<UP,LOOPBACK,RUNNING>

inet 127.0.0.1 netmask ff000000

© 2002 by CRC Press LLC

$ ifconfig lan0 (HP-UX)
lan0: flags=63<UP,BROADCAST,NOTRAILERS,RUNNING>

inet 146.95.8.31 netmask ffff0000 broadcast 146.95.255.255

$ ifconfig lo0
lo0: flags=1049<UP,LOOPBACK,RUNNING>

inet 127.0.0.1 netmask ff000000

When used to check the status of an interface, the ifconfig command displays two
output lines. The first line shows the interface name and the flags that define the interface’s
characteristics; the flags are displayed as both a numeric value and a set of keywords. The
meanings of the flag keywords in the previous examples are:

UP The interface is enabled for use.
BROADCAST The interface supports broadcast, which means it is connected to

the network that support broadcast (in these cases Ethernet).

NOTRAILER The interface does not support trailer encapsulation. Some systems
(such as SunOS) completely ignored this possibility and never used it.

RUNNING The interface is operational.

LOOPBACK The interface supports local loopback.

The second line of the ifconfig output displays information that directly relates to
TCP/ IP. The meanings of the keywords used are:

inet Keyword inet is followed by the IP address assigned to this interface.
netmask Keyword netmask is followed by the subnet mask written in hexadecimal

format. The mask specifies valid address bits of the network (subnetwork)
part of the IP address assigned to the interface.

broadcast Keyword broadcast is followed by the broadcast address assigned to this
interface. The system figures out the broadcast address as the maximal
available IP address within the defined network (subnetwork).

15.4.2 The netstat Command

The netstat command displays the contents of various network-related data in
a variety of formats, depending on the options specified. The command has the
following syntax:

netstat [options] [system] [core]

where
options One or more options preceded by a hyphen (-); some options require addi-

tional arguments
system Allows a substitute for the default, which is the kernel (such as /vmunix)
core Allows a substitute for the default, which is the special file /dev/kmem

There are a number of options, some of which are shown in the following table (some
options require an additional argument):

© 2002 by CRC Press LLC

Option Meaning

-a Displays the state of all sockets. Without any option passive sockets used by server processes are not
displayed.

-i Displays the state of network interfaces that have been auto-configured.
-I interface Displays information about the specified interface.
-g Displays multicast information for network interfaces.
-p protocol Displays statistics for the specified protocol. The recognized protocols are: tcp, udp, ip, icmp, igmp,

arp, and probe.
-n Displays network addresses numerically (as numbers). By default, hostnames are presented

symbolically, if possible.
-r Displays the routing tables. When the s option is also present, it displays routing statistics instead.
-v Displays additional routing information. When -v is used with the -r option, the network masks in

the route entries are also displayed; this applies only to the -r option.
-s Displays statistics for all protocols.

We have already discussed the use of the netstat command to display hosts’ routing
tables; now let us see how its usage relates to the network interfaces.

The netstat -i[n] should be used to check the status of all available network interfaces
(the optional n determines the way to present the addresses, numerically or symbolically).
An example (SunOS/Solaris) follows:

netstat -in
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
le0 1500 146.95.0.0 146.95.1.11 992048 0 96835 0 389 0
lo0 1536 127.0.0.0 127.0.0.1 36501 0 36501 0 0 0

netstat -i
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
le0 1500 146.95.0.0 patsy 992092 0 96851 0 389 0
lo0 1536 loopback localhost 36509 0 36509 0 0 0

The displayed fields have the following meanings:

Field Meaning

Name The name field shows the actual name assigned to this interface. This is the name that identifies an
interface when the ifconfig command is used. An asterisk (*) in this field indicates that the interface
is not enabled (is not up).

Mtu The maximum transmission unit field shows the longest frame (packet) that can be transmitted by
the interface without fragmentation. The Mtu is displayed in bytes.

Net/Dest The network/destination field shows the network or the destination host to which this interface
provides access. This field contains a network address derived from the IP address of the interface
and the subnet mask. If a point-to-point link is configured, this field contains a remote host address.
If the symbolical address presentation is required, this field contains the corresponding name (when
the name can be resolved from the address).

Address The address field shows the IP address or the name assigned to this interface.
Ipkts The input packets field shows how many packets this interface has received.
Ierrs The input errors field shows how many damaged packets this interface has received.
Opkts The output packets field shows how many packets were sent out by this interface.
Oerrs The output errors field shows how many of the packets caused an error condition.
Collis The collisions field shows how many Ethernet collisions were detected by this interface.

Ethernet collisions are a normal condition typical for all CSMA/CD networks and are caused
by traffic contention. This field is not applicable to non-Ethernet (non-CSMA/CD) interfaces.

Queue The packets queued field shows how many packets are in the queue, waiting to be transmitted over
this interface. Normally it is zero.

© 2002 by CRC Press LLC

The example above is typical for almost any SunOS/Solaris workstation; two network
interfaces are identified: le0 and lo0:

le0 A lance Ethernet interface defined by a corresponding device statement in the
kernel configuration file.

lo0 The loopback interface, which every TCP/IP system has, and which is mandatory,
defined in the kernel configuration file. On most systems this is part of the default
configuration, and is configured automatically.

The next example is for the HP-UX flavor. The command output is almost the same,
with different names for the network interfaces:

$ netstat -in
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ni0* 0 none none 0 0 0 0 0
ni1* 0 none none 0 0 0 0 0
lo0 4608 127 127.0.0.1 2221 0 2221 0 0
lan0 1500 146.95 146.95.8.31 958064 36687 62446 0 4

$ netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ni0* 0 none none 0 0 0 0 0
ni1* 0 none none 0 0 0 0 0
lo0 4608 loopback localhost 2221 0 2221 0 0
lan0 1500 146.95 apollo.ph. 958118 36687 62462 0 4

The only difference is that the queue field is omitted (in any case, the normal value in
this field is zero). Of course, names, addresses, and numbers have different values, ni0
and ni1 interfaces are disabled.

The netstat command is also instrumental in displaying the status of sockets. The
display for each socket shows the local and remote addresses, the send and receive
queue sizes (in bytes), the send and receive windows (in bytes), and the internal state
of the protocol.

The symbolic format normally used to display socket addresses is either hostname.port
when the name of the host is specified, or network.port if a socket address specifies
a network but no specific host. If the network or hostname for an address is not known
(or if the -n option is specified), the numerical network address is shown. Unspecified, or
wildcard, addresses and ports appear as “*”.

The possible state values for TCP sockets are as follows:

CLOSED Closed, the socket is not being used.
LISTEN Listening for incoming connections.

SYN_SENT Actively trying to establish connection.
SYN_RECEIVED Initial synchronization of the connection is under way.

ESTABLISHED Connection has been established.
CLOSE_WAIT Remote shutdown, waiting for the socket to close.

FIN_WAIT_1 Socket closed, shutting down connection.
CLOSING Closed, then remote shutdown, awaiting acknowledgment.

LAST_ACK Remote shutdown, then closed, awaiting acknowledgment.

© 2002 by CRC Press LLC

FIN_WAIT_2 Socket closed, waiting for shutdown from remote.
TIME_WAIT Wait after close for remote shutdown retransmission.

The following example illustrates the use of the netstat command for this purpose; the
host name is “garp.” Only active sockets are presented.

$ netstat -a
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 garp.690 delft.scps.com.32771 TIME_WAIT
tcp 0 0 garp.686 delft.scps.com.32771 TIME_WAIT
tcp 0 205 garp.telnet ink2.spcs.com.1047 ESTABLISHED
tcp 0 0 garp.nprodsoc garp.4108 ESTABLISHED
tcp 0 0 garp.4108 garp.nprodsoc ESTABLISHED
tcp 0 0 garp.telnet daloia.scps.com.1095 ESTABLISHED
tcp 0 0 garp.telnet park.scps.com.1038 ESTABLISHED
tcp 0 0 *.printer *.* LISTEN
tcp 0 0 garp.nprodsoc *.* LISTEN
tcp 0 0 *.2458 *.* LISTEN
tcp 0 0 *.* *.* CLOSED
tcp 0 0 *.querix *.* LISTEN

.

.

If no options, or only the -n option is specified, netstat displays the status of active
sockets only.

15.5 Super Internet Server

15.5.1 The inetd Daemon

A huge number of different processes run on any UNIX system. Many of them are run
continuously, and we usually identify them as daemons. Some daemons are configured into
the kernel and are invoked with the kernel execution; others are explicitly started during the
system startup through the corresponding initialization rc scripts. However, UNIX also pro-
vides one special daemon with the primary task of starting other daemons, or rather, other
network server processes (because the started processes run as long as their services are
required). This daemon is known as the super-daemon, or the super-server; its name is inetd.

The basic idea behind the inetd daemon was this: instead of continuously running many
network server processes as daemons, with each of them listening for incoming client
requests for its service, run a single daemon which will listen for incoming client requests
and invoke the corresponding network server process on an as-needed basis. The super-server
inetd is started during the system startup; when started, inetd reads its configuration data
from the /etc/inetd.conf file to learn about the server processes it should support. Once
started, inetd continues to listen for configured network services as long as the system
lives, or until the super-server is reconfigured.

15.5.1.1 The inetd Configuration

Obviously, inetd requires a certain level of administration, although the default configuration
seems to be sufficient in most cases. The inetd daemon is actually very flexible and easy to

© 2002 by CRC Press LLC

configure. Occasionally, an entry could be deleted or added into the configuration file
/etc/inetd.conf to remove or add a new service.

Here is an example of the inetd configuration file:

$ cat /etc/inetd.conf
Configured using SAM by root on Mon Dec 13 22:17:00
##
@(#)$Header: inetd.conf,v 1.20.193.2 bazavan Exp $
#
Inetd reads its configuration information from this file upon execution
and at some later time if it is reconfigured.
#
A line in the configuration file has the following fields separated by
tabs and/or spaces:
#
service name as in /etc/services
socket type either “stream” or “dgram”
protocol as in /etc/protocols
wait/nowait only applies to datagram sockets, stream
sockets should specify nowait
user name of user as whom the server should run
server program absolute pathname for the server inetd will execute
server program args. arguments server program uses as they normally are
starting with argv[0] which is the name of the server.
#
See the inetd.conf(4) manual page for more information.
##
ARPA/Berkeley services
ftp stream tcp nowait root /etc/ftpd ftpd -l
telnet stream tcp nowait root /etc/telnetd telnetd
#
Before uncommenting the “tftp” entry below, please make sure
that you have a “tftp” user in /etc/passwd. If you don’t
have one, please consult the tftpd(1M) manual entry for
information about setting up this service.
tftp dgram udp wait root /etc/tftpd tftpd
#bootps dgram udp wait root /etc/bootpd bootpd
#finger stream tcp nowait bin /etc/fingerd fingerd
login stream tcp nowait root /etc/rlogind rlogind
shell stream tcp nowait root /etc/remshd remshd
exec stream tcp nowait root /etc/rexecd rexecd
#
Other HP-UX network services
printer stream tcp nowait root /usr/lib/rlpdaemon rlpdaemon -i
#
inetd internal services
daytime stream tcp nowait root internal
daytime dgram udp nowait root internal
time stream tcp nowait root internal
time dgram udp nowait root internal

.
#
rpc services, registered by inetd with portmap
Do not uncomment these unless your system is running portmap!
rpc stream tcp nowait root /usr/etc/rpc.rexd 100017 1 rpc.rexd
rpc dgram udp wait root /usr/etc/rpc.rstatd 100001 1–3 rpc.rstatd

.
pop stream tcp nowait root /usr/local/etc/popper popper
pop2 stream tcp nowait root /usr/local/etc/popper popper

.

© 2002 by CRC Press LLC

The generic format of an inetd.conf entry is:

name type protocol wait-status uid server arguments

The fields in the inetd.conf entry are:

Field Meaning

name The name of a service, as listed in the /etc/services file.
type The type of data delivery service used, also called socket type:

stream The TCP byte stream delivery service.
dgram The UDP packet (datagram) delivery service.
raw The direct IP datagram service.

protocol The name of a protocol, as listed in the /etc/protocols file.
wait-status The value for this field:

wait inetd waits for the daemon to release the socket, before it begins to listen for more requests
nowait inetd can immediately begin to listen for more requests on that socket
Generally, datagram-type daemons require “wait,” and stream-type daemons require “nowait.”

uid The user name under which the daemon runs (usually root).
server The full pathname of the daemon started by inetd. For some small services, the value of this field

can be “internal,” because it is more efficient for inetd to perform such services internally than to
start an external daemon.

arguments These are any command-line arguments that should be passed to the daemon when it is started.

When an entry is added into the /etc/inetd.conf file, special attention should be paid
that all entered data are well defined. Does the executable program of the added service
reside in the specified path? Is the service name listed appropriately in the /etc/services
file? inetd must know precisely the port number for where to listen for incoming requests
for a new service. The protocol name must also be listed appropriately in the /etc/protocols
file, etc.

Some of the entries in the presented /etc/inetd.conf file are commented; obviously, the
corresponding services are disabled. (There is no need to delete an entry, it is sufficient
simply to comment the entry out). It is common to disable services that carry any potential
security risk, for example: tftp, or finger. On some systems, even very popular applications
such as telnet and ftp could be disabled.

15.5.2 Further Improvements and Development

The super-server inetd is fully utilized on every UNIX platform. However, many new
network client/server applications bypass the super-server and provide their own self-running
daemons on the server side. The main reasons are an unavoidable time-overhead in invoking
the application through the inetd daemon and the possible overload of the super-server
for very busy applications. The side effect was that inetd did not grow as expected (by
“grow” it means the area of its responsibility), remaining more or less the same in size
since it was introduced.

Another disadvantage with the original super-server is that inetd is supporting mostly
old-fashioned applications (maybe a more appropriate term is early UNIX applications) that
existed at the time when UNIX merged with TCP/IP network. Despite the fact that these
applications are very useful and still widely in use, many of them are considered insecure
and not usable in an open network environment. A quick look into a common inetd
configuration shows that its entries range from old-fashioned insecure applications like
Trivial File Transfer Protocol (disabled by default) via remote UNIX commands that are

© 2002 by CRC Press LLC

considered security risks, to the Telnet and FTP, which use clear text in password authentica-
tion. All together many security holes exist within supported network services. Currently it
is not unusual to configure super-server inetd with almost all configuration entries in the
/etc/inetd.conf file commented out, i.e., disabled. Most of today’s listed inetd services have
more secure replacements based on mechanisms that carry less risk in implementation.
They are also mostly inetd independent, like secure shell SSH and its derivatives scp, sftp,
slogin etc.). Obviously, under these circumstances inetd is not busy at all.

However, often we need a specific “discriminated” application and we are ready to
accept the security risk because of its usage. Modern UNIX flavors addressed this problem
by introducing an additional layer known as “access control facility for Internet services”
between inetd and the application itself. Instead of invoking an application directly, inetd
invokes another “wrapper program” tcpd which provides additional checkup of received
request, and then starts the application itself. The basic concept is quite simple — two
files are assocoated with tcpd to configure a flexible checkup of eligible requests for specific
services. Files /etc/hosts.allow and /etc/hosts.deny enable a selective approach to each of the
listed services regarding the eligible hosts that requests are coming from. By default,
everything is allowed (as “old good inetd “ has done), but by modifying these files,
different scenarios are possible. Obviously by restricting an access to the certain application
only from certain hosts, the security risks could be dramatically reduced, while a needed
service is provided.

This idea originates from Linux. However, the following example is from Solaris 2.8 (also
known as Solaris 8). Several new (or better, modified) inetd.conf entries are presented in bold:

$ cat /etc/inetd.conf
#
#ident “@(#)inetd.conf 1.44 SMI” /* SVr4.0 1.5 */
#
Configuration file for inetd(1M). See inetd.conf(4).
#

.

.
IPv6 and inetd.conf
By specifying a <proto> value of tcp6 or udp6 for a service, inetd will
pass the given daemon an AF_INET6 socket. The following daemons have
been modified to be able to accept AF_INET6 sockets
ftp telnet shell login exec tftp finger printer
and service connection requests coming from either IPv4 or IPv6-based
transports. Such modified services do not normally require separate
configuration lines for tcp or udp. For documentation on how to do this
for other services, see the Solaris System Administration Guide.
#
You must verify that a service supports IPv6 before specifying <proto> as
tcp6 or udp6. Also, all inetd built-in commands (time, echo, discard,
daytime, chargen) require the specification of <proto> as tcp6 or udp6
#
The remote shell server (shell) and the remote execution server
(exec) must have an entry for both the “tcp” and “tcp6” <proto> values.
#
Ftp and telnet are standard Internet services.
#
ftp stream tcp6 nowait root /usr/sbin/ tcpd in.ftpd
telnet stream tcp6 nowait root /usr/sbin/tcpd in.telnetd
#
Shell, login, exec, comsat and talk are BSD protocols.
shell stream tcp nowait root /usr/sbin/tcpd in.rshd
shell stream tcp6 nowait root /usr/sbin/tcpd in.rshd

© 2002 by CRC Press LLC

login stream tcp6 nowait root /usr/sbin/tcpd in.rlogind
exec stream tcp nowait root /usr/sbin/ tcpd in.rexecd
exec stream tcp6 nowait root /usr/sbin/tcpd in.rexecd

.

.

Besides the introduced /usr/sbin/tcpd program, some of the presented entries relay on
IPv6 tcp6 protocol which will most probably replace tcp in the future. However, tcp6 is
not in any way related to our previous discussion. For better understanding of tcp6
protocol, please read the comments in the presented /etc/inetd.conf file.

The following two files are very pertinent to our discussion; files hosts.allow and
hosts.deny live in the /etc directory and specify hosts granted or denied for certain service.

cd /etc

ls -l | grep “hosts.[ad]”
-rw-r--r-- 1 root other 90 Apr 6 20:00 hosts.allow
-rw-r--r-- 1 root other 9 Jan 25 23:44 hosts.deny

cat hosts.allow
in.ftpd: 212.35.1.51

in.rshd: 212.35.71.97

in.rexecd: 212.35.71.97

in.rlogind: 212.35.71.97

cat hosts.deny
ALL: ALL

In this example, all services are denied for all hosts, except:

• FTP for the host “212.35.1.51”

• remote login, remote copy, and remsh for the host “212.35.71.97”

A host can be identified by its host name or IP address.

15.5.2.1 Extended Super Server xinetd
Linux (Red Hat 7.0) introduced a new, more versatile “extended super-server” named
xinetd. The extended super-server is a powerful replacement for inetd — xinetd performs
the same functions as inetd, except it is doing that in a better way. Among many improve-
ments, xinetd has access control mechanisms, extensive logging capabilities, and the ability
to make services available based on time and can place limits on the number of servers
that can be started. Having all that in mind, it is realistic to expect that other UNIX flavors
would follow Linux, and that xinetd will become a common daemon on UNIX platform
in the future.

The extended super-server is also more flexible in its implementation. While the basic
concept of the super-server configuration remained preserved, everything is organized in
a more efficient way, making an overall configuration even easier. Individual configuration
inetd entries are replaced with corresponding xinetd files that allow more detailed
configuration specification. And on the top of the configuration hierarchy is the “master”
configuration file /etc/xinetd.conf. As the name xinetd resembles the old super-server, the
same concept is in place for the configuration file. The new configuration syntax is slightly
different and is adapted to new requirements, but it is also self-explanatory and easy to

© 2002 by CRC Press LLC

learn. In other words it is very easy to switch from the old super-server inetd and
administer the extended super-server xinetd.

We will exercise the new configuration through an example on Linux 7.0 platform. The
master configuration file is:

$ cat /etc/xinetd.conf
#
Simple configuration file for xinetd
#
Some defaults, and include /etc/xinetd.d/
defaults
{

instances = 60
log_type = SYSLOG authpriv
log_on_success= HOST PID
log_on_failure = HOST RECORD

}
includedir /etc/xinetd.d

The /etc/xinetd.conf file defines global default values that could be overwritten in each
individual configuration file if needed. However, the key directive is “includedir” which
specifies the location of configuration files for all implemented services. By commenting-out
the directive, all services could be disabled, and then even the daemon xinetd will exit.
By simple move-in /move-out of the specific configuration file toward the listed directory,
the corresponding service will be enabled or disabled. And finally, each configuration file
provides additional space for tuning.

Let us see the contents of the directory in this specific case:

$ ls –l /etc/xinetd.d
total 12
drwxr-xr-x 2 root root 1024 Jan 9 21:44 excludedir
-rw-r--r-- 1 root root 289 Oct 17 17:13 echo
-rw-r--r-- 1 root root 303 Oct 17 17:13 echo-udp
-rw-r--r-- 1 root root 361 Mar 22 23:29 rexec
-rw-r--r-- 1 root root 361 Jul 21 20:23 rlogin
-rw-r--r-- 1 root root 414 Jul 21 20:08 rsh
-rw-r--r-- 1 root root 321 Oct 17 17:13 time
-rw-r--r-- 1 root root 308 Oct 17 17:13 time-udp

Only listed services, i.e., services that have listed configuration files in this directory,
are supported; and they are supported if they are explicitly enabled within the files
themselves. Not-listed services are definitely disabled. However, to disable or enable a
certain listed service, it is easier to move the “enabled” configuration file into the sub-
directory ./ excludedir (this subdirectory was created later, and its name is arbitrary), and
back if we need the service again. In this example:

$ ls –l /etc/xinetd.d/excludedir
total 1
-rw-r--r-- 1 root root 289 Jul 18 20:07 telnet

Obviously, telnet is the service that we can expect to activate later. Instead of deleting
its configuration file, it is moved from the xinetd.d directory, and it remains ready for any
future use.

© 2002 by CRC Press LLC

Finally, here is an example of how the configuration files look:

$ cat telnet
default: on
description: The telnet server serves telnet sessions; it uses \
unencrypted username/password pairs for authentication.
service telnet
{

flags = REUSE
socket_type = stream
wait = no
user = root
server = /usr/sbin/in.telnetd
log_on_failure += USERID
disable = no

}

The listed entries within the configuration file are very comprehensive, and they actually
correspond to the already existing fields in the inetd entries, except for new functional
extensions introduced by the extended superserver xinetd.

© 2002 by CRC Press LLC

16
Domain Name System

16.1 Naming Concepts

Once a kernel is configured for TCP/IP (the current UNIX default setting), the network
interface is set properly, and the routing table is established, the system is ready for a
network communication. A number of extremely useful network applications and services
are available so that the system may benefit from the network configuration. In the past,
UNIX considered networking an option; today, networking is an integral part of any UNIX
installation. Networking and network-based applications are booming today; however, it
is not realistic to expect each network service to be a default part of UNIX. The UNIX
philosophy is to remain open to all newcomers, and, thanks to this concept and other
related issues, UNIX is supporting networking very well. UNIX is actually the main
supporting platform for most network services.

The significance of different network applications and services varies; some network
services are conditio sine qua non for other network services, while other services are
optional, and are used only by a very small segment of the UNIX community. Some
network applications are important from an administration point of view, and we will
refer to those network services as the core network services.

Core network services are usually an integral part of each modern UNIX installation,
and we will focus on them. Among all the core network services, perhaps the most
important one is the name service.

16.1.1 Host Names and Addresses

Each UNIX system on the network is uniquely identified by at least one IP address, and
this is sufficient for systems. The machines understand these addresses very well, and
they communicate among themselves without any problem. In fact, they only understand
the numerical IP addresses. However, it is not very convenient for users, who are human
beings, to use numerical IP addresses (four not-logically related numbers), although there
are no restrictions. For example, a user wishing to telnet to the host with IP address
128.124.128.14 can do that by entering the following command:

telnet 128.122.128.14

And it will work well.

© 2002 by CRC Press LLC

But when a user wishes to telnet to many different hosts, it would be quite hard to
remember all of the required IP addresses. Users are accustomed to using another iden-
tification mechanism, names, to identify someone or something. The name service, officially
named Domain Name Service (DNS), also known as Domain Name System helps in
implementing this mechanism in network communications. It is much easier for a user to
establish the above telnet session using the following command:

telnet acf4.nyu.edu

And it will also work well.
DNS is basically a distributed database of host information, which, besides host names and

IP addresses, also includes some other useful information about hosts on the network.
DNS makes this information available to all hosts, i.e., all users, on the network whenever
they need it. By keeping data consistent and updated, the DNS database prevents any
ambiguities on the network.

16.1.2 Domain Name Service (DNS)

The development of DNS followed the development of the Internet itself. In the beginning,
when the network (ARPANET at that time) was a small friendly community of a few
hundred hosts, a centralized host database that consisted of a single file called HOSTS.TXT
could contain all of the required information about the hosts on the network. The file held
a name-to-address mapping for each host existing at that time and has been maintained by
the Network Information Center. The data were distributed from a single host named SRI-NIC.
Every host updated its local host database, the /etc/hosts file, from the centralized host
database, by copying all data and deleting entries not attractive for that particular site.
However, the centralized host database could not support the rapid network growth, and
the scheme quickly became unworkable, mostly because of the following simple reasons:

• Network traffic and processor load at the host SRI-NIC became unbearable.

• Name collisions became very frequent (SRI-NIC did not have authority over host
names, only over IP addressing, so anyone could add a host with a conflicting
name and break the whole scheme).

• Maintaining consistency among the increasing number of hosts became a very
difficult task (just imagine the job with the millions of hosts on the network
today).

Clearly, a new approach was needed. In 1984 RFCs 882 and 883 were released, defining
new naming concepts (done by Paul Mockapetris) based on the distributed DNS database.
The structure of the DNS database is very similar to the structure of a UNIX filesystem.
Each unit of data in the database is indexed by a name, which is a path in a large inverted
tree called the domain name space (or DNS space), shown in Figure 16.1.

The tree can branch any number of ways at each intersection point, called a node. The top-
level node is called the root domain, and it is null labeled “ “ (but it is written as a single
dot “.”). Each node can be labeled with a label up to 63 characters long (the dot, underscore,
and space characters are not allowed). The full domain name of any node in the tree is
the sequence of labels on the path from that node toward the root (“up the tree,” which is
opposite to the UNIX filesystem where the direction is “down the tree” since the root is at
the bottom in UNIX, not at the top). The labels in the full domain name are separated by

© 2002 by CRC Press LLC

dots. The trailing dot for root can be omitted. However, the fully qualified domain name
(FQDN), also called the absolute domain name, includes this trailing dot. The root domain
name is represented as a single dot.

For example:

acf4.nyu.edu Full domain name for the host acf4

acf4.nyu.edu. Fully-qualified domain name (absolute domain name) for the
host acf4

. Root domain name

At first, this seems confusing: full names vs. fully-qualified names? In some ways it is
confusing, but fortunately the different forms of names have no significant influence in
real implementations. Both names identify the same host (node) uniquely; applications
just treat them in slightly different ways. To make the use of domain names easier,
applications permit the use of shorter name versions, usually relative to a default domain,
which is then automatically appended by the application itself (of course, the default
domain must be predefined). If the absolute name is implemented, there is no need to
append anything; the absolute name determines the node’s complete domain name.

DNS requires that sibling nodes (nodes that are children of the same parent node) be
named uniquely (repeated names are not allowed). This restriction guarantees a domain
name uniquely defines a single node in the domain tree. This is not a real limitation, since
it is implied only on the sibling nodes, not among all nodes in the tree, and the sibling
nodes are supposed to be under the same administration.

bin usr

bin etclocal

etc

bin

home

etc

/UNIX filesystem

DNS database

edu govcom org

“ “

FIGURE 16.1
The structure of the DNS space.

© 2002 by CRC Press LLC

16.1.2.1 Domains and Subdomains
A domain is simply a subtree of the domain name space. A domain’s domain name is the
same as the domain name of the starting (root) node of this subtree. This is presented in
Figure 16.2. Any domain can be a part of another domain, and any domain name can be
a part of another domain name, as well. Hosts are a part of the domain, too, but hosts are
also domains; their domain names point to the individual hosts themselves. A domain
contains all the hosts whose domain names are within this domain.

The hosts and the domain are related logically, often by organizational affiliation, and
not necessarily by the location, network, or hardware type. Theoretically, hosts from the
same domain can be located in different countries, or even continents; hosts’ domain
names are not even related to their IP addresses. In real life, though, relating the two is
highly favorable and can make future administration much easier.

A domain inside the domain is often called a subdomain. Although a subdomain is
a domain per se and can contain subdomains of its own, using this term makes it easier
to explain the hierarchical structure of the domain name space (it recalls the relationship
between a directory and subdirectories in the directory tree hierarchy).

The top-level domains are directly under the root domain. There are two basic types of
top-level domains: geographic and organizational.

Geographic domains have been set aside for each country in the world and are identified
by a two-letter code, for example:

uk United Kingdom

ca Canada
au Australia

us United States (this is actually rarely used for hosts within the United States)

edu
milcom

nyu uclamit

is5
scps

edu domain

is5.nyu.edu domain

nyu.edu domain

“ “

FIGURE 16.2
The domains.

© 2002 by CRC Press LLC

The top-level domains within the United States are organizational, i.e., membership in
a domain is based on the type of organization. The top-level domains belonging to this
category are:

com Commercial organizations
edu Educational institutions

gov Government agencies
mil Military organizations

net Network support organizations
org Organizations that do not fit in any of the above, such as nonprofit organizations

int International organizations
info New, recently introduced top-level domain of general nature

The Network Information Center (NIC) had the authority to allocate domains. An official
application to the NIC must be submitted to obtain a domain. The NIC’s approval meant
that a new domain is registered and it granted complete authority over the domain. Any
registered domain had the authority to divide its domain into subdomains arbitrarily, without
consulting the NIC. The decision to add additional subdomains is completely up to the
local network administrator. Currently, NIC authority has moved to other organizations,
but we will continue to refer to NIC as a central authorization body.

An address assignment is in some ways similar to a domain assignment. The NIC assigns
a network address (or several addresses) corresponding to the domain, and the network
administrator for the domain may assign subnet addresses and host addresses belonging
to the assigned network. The NIC is the central authority that delegates power and
distributes control over names and addresses to individual organizations. Once that
authority has been delegated, the individual organization is responsible for managing the
names and addresses it has been assigned.

The parallel between subnet and subdomain assignments is only verbal; subnets and
subdomains must not be linked, although sometimes such links could make the admin-
istration easier. A subdomain may contain information about hosts from several different
networks. Creating a new subnet does not require the creation of a new subdomain, and
vice versa.

16.1.3 Host Database Files

The basic function of the name service is to enable the host’s domain name to be mapped
to its IP address, and in this way, to make inter-host communication possible. Independently
of how the name service is organized for a particular site, the information must be stored
somewhere, making a corresponding host database available to the host itself at any time.
The corresponding host database files are also called host tables.

16.1.3.1 The Local Host Table — /etc/hosts
The local host table (the word local should be understood as internal; the data always refer
to the network) is a simple text file that associates IP addresses with host names. This
table is in the file /etc/hosts. Each entry line in the host table has the following format:

ipaddress hostname aliases

© 2002 by CRC Press LLC

where
ipaddress IP address of the host
hostname Domain name of the host
aliases One or more aliases (alternative names) for this host

An example of the /etc/hosts file is:

cat /etc/hosts
------------------------ /etc/hosts ------------------------
#
Sun Host Database
#
If the NIS is running, this file is only consulted when booting
#
127.0.0.1 localhost
146.98.1.15 default gateway
#
146.98.1.2 hcprophet
146.98.1.4 mvaxgr
146.98.1.11 patsy mailhost loghost
146.98.6.15 indigo1.ch indigo1
146.98.1.21 rs01-ch
146.98.1.22 rs02-ch
. . .
. . .
#
Email relay (gateway)
128.228.1.2 cunyvm.cuny.edu ddn-gateway
Campus email relay
146.98.8.31 apollo.ph.myschool.scps.edu apollo.ph apollo
##
Other locations
146.98.2.71 everest
. . .
. . .
###
Other departments
146.98.1.111 mathsci
146.98.14.14 genectr.myschool.scps.edu genectr #rcmi smtp gateway
. . .
. . .

One entry assigns the address 127.0.0.1 to the host name localhost. As we already know, the
class A network address 127 is reserved for the loopback network. This host address is a special
address used to designate the loopback address of the local host. The special addressing
convention allows the host to address itself in the same way as it addresses any remote host,
using the same IP address on any host, which obviously makes the implemented software
simpler. It also reduces network traffic because the local host address is associated with
a loopback device that loops data back to the host before it is sent out to the network.

Although the local host table has been superseded by DNS, it is still required and used
for the following reasons:

• All systems must have a small host table containing the name and address
information of the host itself and sometimes of the important hosts on the local
network. This table is used during the initial system startup, when DNS is not
running (DNS is started in the last phase of the system startup). The /etc/hosts

© 2002 by CRC Press LLC

file must include entries for the host itself, the localhost, the gateways, and depend-
ing on the implemented network services, the servers on the local network.

• Sites that use NIS (Network Information System) use the host table as input to
the NIS host database. Even when NIS is used in conjunction with DNS, most
NIS sites create a complete NIS host database that has an entry for every host
on the network belonging to the NIS domain. The corresponding /etc/hosts file
must exist on the master NIS server.

• Very small sites sometimes use the host table. If there are few local hosts and
there is no need to communicate with remote sites, then there is little advantage
in using DNS.

• Some sites run old software that cannot use DNS; if they cannot be upgraded,
these sites have to use the host table. For example, old SunOS versions did
not support DNS if NIS was not running. In this case the /etc/hosts file must
be maintained.

An exception is Linux which eliminated a need for the /etc/hosts file entirely. However,
it is still recommended to maintain the file itself for a backward compatibility; Linux does
not use the file /etc/hosts, but still needs to get and keep host data somewhere; in Linux
this is the file /etc/sysconfig/network. Here is an example:

$> cat /etc/sysconfig/network
NETWORKING=yes
FORWARD_IPV4=false
HOSTNAME=broome
DOMAINNAME=scps.nyu.edu
GATEWAY=128.122.71.65

Presented domain data is related to the NIS domain (see Chapter 17 to learn about NIS);
however, in this case DNS and NIS domain names match.

16.1.3.2 Aliases

Aliases provide alternate host names, alternate spellings, and shorter host names. They
are painless solutions for host name changes.

They also fit well for such generic host names, as loghost, mailhost, lprhost, or dumphost.
Some programs are written to direct their output to whichever host has been given
a certain generic name. In this way, by assigning the appropriate generic host name as an
alias, the output of such programs can be forwarded to any host on the network.

For example, loghost is a special host name used by the syslog daemon, syslogd. Program
syslog will direct its output to the host with the alias loghost; of course, in most cases this
is the alias for the local host itself.

16.1.3.3 Maintaining the /etc/ hosts File

Today, the local host database (the /etc/hosts file) is almost obsolete. In the past, however,
one of the most basic and frequently performed administrator’s tasks was to maintain
and update these data; it was crucial for proper network communication. The source host
database provided by the NIC was, and still is, available, but before the data could be
used they had to be transferred, selected, and stored appropriately, according to a very
specific procedure.

© 2002 by CRC Press LLC

16.1.3.3.1 Handling the NIC Host Table — A Journey into the Past

The Network Information Center (NIC) maintained a large table of Internet hosts called
the NIC host table. The table was stored in the host nic.ddn.mil in the file netinfo/hosts.txt.
Hosts included in the table are called registered hosts. Most of those host names are from
the period when DNS was not yet implemented. Today the host table is changed only in
special circumstances.

The NIC host table is no longer used for online host name IP address mapping, but
some useful information about the registered hosts can still be obtained. Sometimes,
especially when creating local configuration files, some of that information is sorely
missed.

The NIC host table contains three types of entries: network records, gateways records, and
host records. Each entry (i.e., each record) begins with a keyword that identifies the record
type, followed by an IP address and one or more names, and some additional information.
The format of the netinfo/hosts.txt records is shown in Figure 16.3. Some of the included
information is no longer used.

The NIC netinfo/hosts.txt file can be retrieved interactively using FTP. However, on BSD
systems the gettable command was specifically designed for this purpose. By using:

gettable nic.ddn.mil The large NIC host table would be transferred to the local
host; this should be put in a temporary working directory
(such as /tmp).

The htable command should be used to convert NIC host table records into UNIX-
compliant entries. Three files are then created: hosts, networks, and gateways. The htable
command looked for three other files localhosts, localnetworks, and localgateways, which
should have been previously edited to include the local data. If some of those files are
missing, the htable command will create an empty related file. If they exist, the NIC
hosts.txt data were appended to local data. The created files are very large and contain
thousands of lines, so their practical use is questionable. Finally, the newly created files
should be moved to the /etc directory and the transferred NIC hosts.txt file and temporary
working directory deleted.

NET:146.95.0.0:NETWORKNAME:

HOST:16.1.2.95:HOSTNAME.DOMNAME:HWMODEL:OS:SERVICES:

GATEWAY:16.1.1.1,19.0.32.1:GWNAME.DOMNAME:HWMODEL:OS:SERVICES:

keyword

keyword

keyword

network address

host address

gateway addresses

network name

host name

gateway name gateway info

host info

/etc/hosts

/etc/networks

not used

not used

FIGURE 16.3
NIC netinfo /hosts.txt records.

© 2002 by CRC Press LLC

The whole command sequence could be:

$ cd /tmp

$ mkdir hostsdir # Create the /tmp/hostsdir directory.

$ cd hostdir # Make /tmp/hostsdir the working directory.

$ vi localhosts # Create local data.

$ vi localnetworks # Create local data.

The localgateways file can be ignored; the NIC hosts.txt file does
not include data to update the /etc/gateways file.

$ gettable nic.ddn.mil # Transfer the NIC hosts.txt file.

Connection to nic.ddn.mil

Host table received

Connection to nic.ddn.mil closed
$ htable hosts.txt # Make the hosts and networks files, and empty the gateways file.

Warning, no localgateways file
$ mv hosts /etc # Move to the /etc/hosts file.

$ mv networks /etc # Move to the /etc/networks file.

$ rm -R /tmp/hostsdir # Delete the working directory /tmp/hostsdir.

Most of the previously discussed issues are no longer current. The gateway records are
ignored, and the host records are not needed because today DNS provides host name
information. Only the network records still provide some kind of useful information.
The /etc/networks file is used to map network addresses to network names, so UNIX
network-related commands and utilities can report in a more comprehensive and friendly
way (for example, the netstat -r report will include network names instead of IP addresses).
The file can be created from the NIC hosts.txt file, but this is a very time-consuming job.

NIC produced the file netinfo/networks.txt, which includes only networks records, in order
to make the procedure faster. This file should be transferred via anonymous ftp from
nic.ddn.mil into a local working directory, and then the command htable networks.txt
should be used. The created files hosts and gateways should be discarded, and the file
networks moved to the /etc directory. If you ever decide to implement this painful and
unnecessary procedure to transfer related data, you will learn very quickly how beneficial
DNS really is.

16.2 UNIX Name Service — BIND

In UNIX, the Berkeley Internet Name Domain (BIND) software implements DNS. BIND is
client /server software. The client side of BIND is called resolver — it generates the recursive
queries for domain name information that are sent to the known name server. Recursive
query means that the addressed name server must do everything in its power to deliver
a finite answer to the resolver.

The name server is the program that stores information about the domain name space.
In the distributed host database system, the name server generally has complete information
about the part of the domain space called a zone. The zone is delegated to the name server,
and it keeps so-called authoritative data about that part of the domain space. The resolver’s
query, however, can request data about the host outside of the server’s zone. In that case
the addressed name server itself must ask another server for the help. Inter-server
communication continues until the positive answer is received or the time-out occurs.

© 2002 by CRC Press LLC

Every queried server responds with authoritative data if they are within its zone, or with
nonauthoritative data previously stored in its cache, or with some additional information
that could lead to success more quickly.

Figure 16.4 illustrates that situation. In this example My resolver is looking for an
arbitrary Internet host: zeus.olymp.ellada.org. The starting point in this search presents
a recursive query that My resolver is sending to known zone name server:
ns.myschool.edu. Obviously, it is hard to believe that the zone server, which is an authori-
tative name server for the resolver’s zone only, would be able to respond immediately
to the posted query. Nevertheless, the server will first check its cached data, and if there
is no requested information cached, will continue its search by addressing one of the
known root name server for help. With each step that follow, the queried server learns
more, and finally it will reach an authoritative name server for the requested zone
olymp.ellada.org that must respond positively to the query. A finite response doesn’t
always mean the host’s IP address; it also could confirm that such a host doesn’t exist
at all.

Domain: “ “
Name server:
ns.internic.net

Domain: org
Name server:

ns1.org

Domain: ellada.org
Name server:
ns2.ellada.org

Domain: olymp.ellada.org
Name server:

ns3.olymp.ellada.org

D
o

m
ai

n
:

m
ys

ch
o

o
l.e

d
u

N
am

e
se

rv
er

:
ns

.m
ys

ch
oo

l.e
du

Please ip address for
zeus.olymp.ellada.org

Please ip address for
zeus.olymp.ellada.org

Please ip address for
zeus.olymp.ellada.org

Please ip address for
zeus.olymp.ellada.org

I don’t know, check at
ns1.org

I don’t know, check at
ns2.ellada.org

I don’t know, check at
ns3.olymp.ellada.org

Here is the ip address:
128.37.118.145

My resolver

an
sw

er

re
cu

rs
iv

e
qu

er
y

FIGURE 16.4
The sequence in the domain name resolution.

© 2002 by CRC Press LLC

From the described procedure it is obvious that:

• A resolver must know at least one name server.
• A name server must know at least one root name server.

• A distributed host database must also include data about name servers for
appropriate zones.

Data received (by a name server) about any host or name server out of its authority is
stored locally (cached) for some time period (defined by the data’s time-to-live argument —
TTL is usually set to one day). The next time the same name resolution is queried, the
appropriate cached data will be read locally almost immediately.

16.2.1 BIND Configuration

BIND can be configured to run in several different ways. The common BIND configurations
are:

• Resolver-only systems
• Name servers:

• Primary name servers
• Secondary name servers

• Special name servers, like caching-only servers, forwarders, etc.

16.2.2 Resolvers

A resolver is always present in a networked system. Locally, a resolver is responsible for domain
name-to-address mapping. Any network application running on the system and requesting a
name service addresses internally to the resolver. The BIND resolver is the “stub”
resolver — the resolver is implemented as a library, and it is linked into the application itself.

The resolver sends a new recursive query to the name server, which means that the final
answer is expected. Therefore, the resolver temporarily shifts its duty to the queried name
server. The name server can be the local or external (remote) one. In principle, resolver-
to-name server communication is independent of the name server’s location, although
local communication is much faster. If a name server is not running locally, we have the
resolver-only system.

A resolver can be configured to address to several name servers (instead of only one);
this is important if the name server is going down or cannot be reached by the resolver.
In such cases, the resolver queries name servers sequentially until it succeeds. Once it
sends a query, the resolver waits for an answer until time-out occurs. Then it retries with
its query following the configured name server list.

The time-out period for each retry depends of the number of configured name servers;
the basic algorithm is very simple:

• Up to four retries are provided.
• The initial time-out is 5 sec.

• For each retry, the time-out period is doubled and then divided by the number
of the name servers.

© 2002 by CRC Press LLC

In this way, the total time-out period is kept in essentially the same range and is
independent of the number of name servers. An example for one, two, and three configured
name servers is presented:

16.2.2.1 Configuring a Resolver

Configuring the resolver is a relatively simple task. The resolver requires only a few
parameters to be configured. The basic resolver parameters are:

• name server IP address(es) The IP addresses of name servers that resolvers may query;
at least one name server must be defined. If more
name servers are defined, they are queried in the
order they appear in the file until the name resolution
succeeds.

• domain name The default domain name which is automatically
appended to the relative host domain name; in this
way short host name versions inside the specified
domain are allowed, and they are treated properly.
Not only the specified domain name is appended, but
also all derived domain name combinations (by
excluding the leading subdomain, until the top-level
domain is reached).

Some UNIX flavors eventually introduced other resolver parameters that made resolver
configuration more powerful and flexible. Some of these parameters remained strictly
flavor-specific; however, a number of them became standard in later BIND releases,
supported by most UNIX flavors. They will be discussed later.

Some of the flavor specific directives are:

• forwarder(s) The IP address of the forwarder(s), the caching-only server for the
off-site host domain name service

• hostorder Specifies the order for the host name lookup between DNS, NIS,
and the local /etc/hosts file

There are two ways to handle resolver configuration: either use the default configuration
or create a custom configuration.

The default resolver configuration involves slightly less overhead time because the
resolver does not have to read a configuration file (a configuration file is read each time
an application uses the resolver). However it can be used only if the name server daemon
named is also running on the very same system. The default configuration assumes:

Name Servers Configured

Retry 1 Name Server 2 Name Servers 3 Name Servers

1st 2nd 1st 2nd 3rd

0 5s 5s 5s 5s 5s 5s
1 10s 5s 5s 3s 3s 3s
2 20s 10s 10s 6s 6s 6s
3 40s 20s 20s 13s 13s 13s

Total 75s 80s 81s

© 2002 by CRC Press LLC

• The local host is used as the default name server.
• The default domain name is derived from the string returned by the hostname

command, and then the leading subdomain (the part before first dot) is removed.

A custom configuration is mandatory if the system is not running the named daemon, or
if the domain name cannot be derived from the hostname command. This is also the
recommended resolver configuration even when previous conditions exist, because it
enables every system to be configured in the optimal way.

The resolver configuration file is /etc/resolv.conf; this is the text file, and it can be edited
using any editor (for example vi). Any file modification is effective immediately, without
any need for additional action. There is no corresponding resolver process (daemon); in
that sense, this configuration file is processed directly each time the name service is
requested. A few examples follow.

cat /etc/resolv.conf for the resolver-only SunOS 4.1.3 system
; ------------------------- /etc/resolv.conf ---------------------------
;
domain myschool.scps.edu
;
nameserver 146.98.1.12 ; pegasus.myschool.scps.edu
nameserver 146.98.1.17 ; orion.myschool.scps.edu
nameserver 128.228.1.10 ; acme.ucc.cuny.edu
;

cat /etc/resolv.conf for name server SunOS 4.1.3 system
; ------------------------- /etc/resolv.conf ---------------------------
;
domain myschool.scps.edu
;
nameserver 127.0.0.1 ; the host itself (localhost interface)
nameserver 146.98.1.12 ; pegasus.myschool.scps.edu
nameserver 128.228.1.10 ; acme.ucc.cuny.edu
;

cat /etc/resolv.conf for the resolver-only IRIX system
;
;Default domain to append to names
domain myschool.scps.edu
;
;This is name server host
nameserver 146.98.1.12 ;pegasus.mys chool.scps.edu
nameserver 146.98.1.17 ;orion.mysch ool.scps.edu
nameserver 128.228.1.10 ;acme.ucc.c uny.edu
nameserver 147.225.1.2 ;nis.ans.net
;
hostresorder local bind

Two universally supported entries are:

1. nameserver The name servers are queried in the order that they appear in the
file. If the local host is one of the name servers, the generic local
host address 127.0.0.1 is used.

2. domain The entry defines the default domain name to be appended to the
relative host names (if specified without a trailing dot). The other
domain name combinations are also queried.

© 2002 by CRC Press LLC

The presented entry hostorder is UNIX flavor-specific, and is obsolete. In this example
it defines the order of how the host names will be resolved: first by looking into the local
/etc/hosts configuration file and then using DNS (BIND). Although all new UNIX releases
support this approach (name resolution among DNS, NIS, or the local host database), it
is provided in a different way, by using the /etc/nsswitch.conf file (this is discussed in
Chapter 17, along with other NIS issues).

Unfortunately, some BIND releases did not work properly on all UNIX platforms. For
example, SunOS required that NIS be implemented, or it would ignore DNS. BIND 4.8.1
did not properly support local host address 127.0.0.1; appropriate patches were provided.
Later BIND releases overcame these problems.

16.2.2.2 Other Resolver Parameters

Two basic resolver directives, domain and nameserver, are universally supported and are
sufficient to fully configure the resolver. However, additional resolver parameters introduced
later improved overall resolver characteristics, primarily by making it more flexible. The
additional resolver parameters and the corresponding directives to specify them are:

• search The list of the domain names to append to the relative host name,
similar to the domain directive, except that it can take multiple
domains as arguments; mutually exclusive with the domain direc-
tive (BIND 4.8.3 and later versions).

• sortlist Specifies preferable resolver network numbers if multiple IP
addresses are received as a response to a query. The resolver will
sort received addresses appropriately, for example:

sortlist 128.44.23.0/255.255.255.0

specifies the subnetted class B network 128.44.23.0 (identified by
the mask 255.255.255.0 separated by the slash “/”); if the whole
network is specified there is no need for a mask (BIND 4.9.3 and
later).

• options ndots Specifies the number of dots “.” an argument must have in it so
that the resolver will look for it before applying the search list
(BIND 4.9.3 and later).

• options debug Turns on debugging output in the resolver (BIND 4.9.3 and later).

• ; and # Specify comment lines in the resolver configuration file; comments
with # have been allowed since BIND 4.9.3.

The default search algorithm was also changed with the release of BIND 4.9.3; the
domain directive specifies the default search list. The default search list originally included
the default domain and each of its parent domains with two or more labels. For each
relative host name (host name without a trailing dot), first a full domain is appended,
then its parent domain, then the next parent domain, and so on until the last two labels.
The single last label is never appended. The host name is looked up as is after the search
list is applied, and then only if the host name contains at least one dot. A search is
terminated as soon as a positive response to the resolver query has been obtained.

With BIND 4.9.3, the default search list includes only the default domain; in addition,
the search list is applied after the host name is tried as is. Obviously, the search directive
should be used for more detailed searching.

© 2002 by CRC Press LLC

16.2.3 Name Servers

Several BIND configuration options exist for the name server software. The basic ones are
discussed in the following paragraphs.

Primary name server — A primary name server is the authoritative source for all inform-
ation about a specific domain, i.e., zone. It loads the domain information from locally
maintained data files that are built by the network administrator. The zone file contains
the most accurate information about a piece of the domain hierarchy over which this
server has authority. This is the master server for its domain, because it can answer any
related query with full authority.

Secondary name server — A secondary name server transfers a complete set of domain
information from the primary name server and stores it as local files. This transfer is called
a zone file transfer. This is also the master server for its domain; by strictly following a primary
name server and keeping a complete copy of all domain information, the secondary server
can answer queries about that domain with authority.

Caching-only name server — Name server software is running on the system, but no
database is kept locally. It learns the answer to every name server query from some remote
server and caches it locally. This means that a caching-only server only looks for external
help the first time; after that it is ready to support with nonauthoritative answers. This
self-learning procedure leads relatively quickly to the large local cached database. All
name servers use cached information in this manner, but a caching-only server depends on
this technique for all of its name server information.

Forwarder — The forwarder is a special type of caching-only server. A separate name
server to resolve off-site host names can be configured to limit the off-site DNS traffic. In
that case, all resolvers forward queries related to off-site hosts to this particular server,
which then responds from its cached database, or continues alone to query other off-site
servers. Soon a respectable off-site host database can be cached, enabling the on-site
resolution of the off-site host names.

16.2.3.1 The named Daemon

Name server software consists of the name server daemon, named, and a number of
appropriate configuration files. A brief description of named follows:

named is the Internet domain name server. Resolver libraries use it to provide access to
the Internet distributed naming database (Requests for Comments RFC 1034 and RFC 1035
are available for more details). The default configuration file is /etc/named.boot, i.e., /etc/
named.conf. If the daemon is started with no arguments, named reads the default config-
uration file for any initial data; afterward, it continues to listen for queries on a privileged
port.

The usual name for the program is named, though Sun systems (Solaris 2.x and SunOS
4.1.x) use the name in.named (which stands for Internet name daemon). We will discuss the
name daemon named by primarily addressing the Solaris 2.x platform. This is a sufficiently
general approach, and the possible differences among UNIX flavors are marginal.

The Solaris command to start the daemon is:

/usr/etc/in.named [-d level] [-p port] [[-b] bootfile]

where
-d level Print debugging information; level is a number indicating the level of

messages printed
-p port Use port as the port number, rather than the standard port number
-b bootfile Use bootfile as the configuration file instead of /etc/named.boot

© 2002 by CRC Press LLC

The main issue related to the named daemon is its configuration, more specifically the
/etc/named.boot file (this is the old name for the configuration file). We will talk about the
named configuration later.

Besides the configuration file, other named-related files of interest are:

/etc/named.pid The process ID
/var/tmp/named.run Debug output

/var/tmp/named_dump.db Dump of the name server’s database

The named daemon is started during the system booting only if the system is configured
as a name server (of any kind), i.e., it contains the basic name server configuration file
/etc/named.boot. The corresponding rc script sequence is:

if [-f /usr/etc/in.named -a -f /etc/named.boot]; then

in.named; echo -n ‘named’

fi

Once the name server daemon is started, it writes its PID in the /etc/named.pid file. Any
later change in the name server configuration requires the daemon to be recycled. The
easiest way to do that is:

kill -HUP ‘cat /etc/named.pid’

The named daemon logs errors into the system log file (for SunOS/Solaris the /usr/adm/
messages file), so this file could be checked when any modification is made. Other log files
can be used for debugging purposes (these were listed earlier). Once named is running
properly, other utilities are available to make sure it is working correctly.

16.3 Configuring named

Configuring the named daemon is a complex task. The complete set of named config-
uration files contains:

/etc/named.boot

/etc/named.conf This is the master DNS server configuration file. For a long time
its name was named.boot, lately changed into the more appropriate
name named.conf (since version 8). The file is crucial for named
daemon configuration — practically everything is specified within
this file. First, it specifies the name server type; then it sets named
parameters and points to the sources of domain database
information used by the server. The sources could be strictly local
files (for the primary server), or transferred data from remote
servers. Regardless of data origin, the names and locations of files
where the data are kept are specified here.

named.hosts The zone file that maps host names to IP addresses.

© 2002 by CRC Press LLC

named.in-addr The zone file for the reverse domain that maps IP addresses to host
names.

named.local The file used to locally resolve the loopback address.

named.cache The file that points to the root domain servers.

Note: The names of the zone files could be different for some real system. They are always explicitly specified
in /etc/named.boot (/etc/named.conf) file. Here listed names sound logical, but they are arbitrary and will
be used in the text that follows for educational purposes only.

16.3.1 BIND Version 4.X.X

We will discuss named configuration by having in mind earlier BIND releases — up to
version 4. Such an approach is sufficiently general, and all differences introduced by newer
BIND releases (actually they start with version 8) will be completely covered in later
sections.

16.3.1.1 The Configuration File /etc/named.boot

Let us start with an arbitrary example for the secondary server:

cat /etc/named.boot
;------------------------------/etc/named.boot----------------------------
;
directory /var/named/xferd
;
;type domain source host file
;
secondary myschool.scps.edu 146.98.1.12 named.hosts
secondary 98.146.in-addr.arpa 146.98.1.12 named.in-addr
primary 0.0.127.in-addr.arpa named.local
cache . named.cache
;

The file points the named daemon to all sources of DNS information. One of these
sources is the remote primary name server; others are local files in the specified
directory /var/named/xferd. Some of the files, such as named.hosts and named.in-addr, should
be transferred from the primary name server, while the files named.local and named.cache are
the primary source of information and have to be created locally (a source host is not specified).

The possible configuration directives (configuration statements) in the configuration file
named.boot are summarized hereafter; a number of appropriate arguments are assigned to
each of the implemented configuration directives.

Directive Function Arguments

directory Defines a directory for all subsequent file references A directory name
primary Declares the server as primary for the specified zone A domain name and a file name
secondary Declares the server as secondary for the specified zone A domain name, a primary server IP address,

and a file name
cache Points to the cache file (root domain servers) “.” (the root domain name) and a file name
forwarders Lists servers to which queries are forwarded A forwarder name
slave Forces the server to only use the forwarders

© 2002 by CRC Press LLC

Let us analyze the presented /etc/named.boot file in greater detail. First, its existence
ensures that the named daemon is invoked during the system startup, and the system is
able to run the name service. The reference directory is /var/named/xferd, and file paths in
all other entries are appended to it. The specified directory name in the previous example
could be an arbitrary one. However, in this example, which addresses a secondary name
server, the specified name has a meaning — the directory /var/named/xferd reminds us that
the residing host database is actually transferred from the primary name server. The
remaining content specifies the system as the secondary name server for the domain (zone)
myschool.scps.edu. The host database should be transferred from the primary name server
146.98.1.12 and stored in the file /var/namedxferd/named.hosts (as it is specified in the entries
under the secondary and directory directives). It is also the secondary name server for the
reverse domain 98.146.in-addr.arpa, with the same primary server and stored data in the
file /var/named/xferd/named.in-addr. However, this server is the primary server for the local
loop zone, and appropriate data could be found in the file /var/named/xferd/named.local.
Remember that this is the case with any name server; the primary source for local loop
data is always the host itself. Finally, data about root name servers are written in the file
/var/named/xferd/named.cache.

The primary name server is configured in a similar way, but the entries under secondary
directives are replaced with primary directives. The configuration file for the corresponding
primary server could be:

cat /etc/named.boot
;------------------------------/etc/named.boot----------------------------
;
directory /var/named/zone
;
; type domain source host file
;
primary myschoolrscps.edu named.hosts
primary 98.146.in-addr.arpa named.in-addr
primary 0.0.127.in-addr.arpa named.local
cache . named.cache
;

Even the names of the data files are the same; however, the referenced source directory
is slightly renamed to reflect better the server’s mission (again this is an arbitrary move).
However, the appropriate data files named.hosts and named.in-addr for this zone must be
created from scratch — simply they are the primary and the only authoritative source of
information for these zones.

The same system can be the primary name server for certain zones, and the secondary
name server for others (in some ways every secondary server works like this — it is the
primary server for the reverse local loop domain). Obviously only one primary name
server can exist for a zone, but there can be a number of secondary servers. The secondary
name servers for the same zone communicate with the corresponding primary name
server, keeping their databases updated. All communication issues are defined by the
primary server for a zone and written in the header of the appropriate data file. A data
file is automatically transferred to all secondary servers at the beginning, and when it has
been modified (this is known as a zone-transfer).

16.3.1.2 Standard Resource Records
The previously discussed named.boot file is the configuration file for the named daemon.
All other referred data files (named.hosts, named.in-addr, named.local, and named.cache) store

© 2002 by CRC Press LLC

domain name database information. They all have the same basic format and use the same
type of records; those records are known as standard resource records (RR). BIND defines,
in RFC 1033, the following RR types:

RR Text Name RR Type Function

Start of authority SOA Marks the beginning of a zone’s data and defines parameters that affect
the entire zone

Name server NS Identifies a domain’s name server
Address A Converts a host name to an IP address
Pointer PTR Converts an IP address to a host name
Mail exchange MX Identifies where to deliver e-mail for a given host’s domain name
Canonical name CNAME Defines an alias host name
Host information HINFO Describes a host’s hardware and OS
Well-known services WKS Advertises host’s network services

The format of a resource record is:

name ttl IN type data

where
name The name of DNS object the RR references; it can be an individual host, or an

entire domain. The name is relative to the current domain unless it ends with
a dot; if a name is omitted, the RR applies to the last named object.

ttl Time-to-live defines the length of time, in seconds, that the information in this
RR should be kept in the cache. Usually it is omitted and the default minimal
value set for the entire zone is applied.

IN An Internet class of the RR
type Identifies the RR type (according to the previous table)
data The information specific to the RR type:

SOA A list of appropriate parameters for the zone
NS A name server domain name
A An IP address
PTR A host domain name
CNAME An alias host name
MX A mail exchange host name
HINFO Abbreviated hardware and OS descriptions
WKS A list of implemented network services, etc.

16.3.1.3 The Resource Record Files
Individual RR files are discussed in more detail in this section.

16.3.1.3.1 The named.hosts File

The named.hosts file contains most of the domain information. This file converts host names
to IP addresses. Obviously A records are prevailing, but the file also contains NS, MX,
CNAME, and other records. This file only exists on the primary name server. All other
servers get this information from the primary server.

© 2002 by CRC Press LLC

The named configuration file points to this file, together with the domain for which
the file contains authoritative data. The file named.hosts is presented in the following
example:

cat /var/named/named.hosts
; /var/named/named.hosts
;
; (for last update see the serial of the SOA record)
; ==
; NAME TTL CLASS TYPE RDATA
; ==
;
@ IN SOA pegasus.myschool.scps.edu.sajhc.myschool. scps.edu. (

9906091 ; Serial - corresponds to update date
3600 ; Refresh every 1 hour
600 ; Retry every 10 minutes
2419200 ; Expire after 4 weeks
86400) ; Default min. TTL value of 1 day

;
IN NS pegasus.myscool.scps.edu.
IN NS orion.myschool.scps.edu.
IN NS acme.ucc.cuny.edu.
IN NS nis.ans.net.
IN NS ns.ans.net.
IN NS cunixd.cc.columbia.edu.

;
; loopback
loopback IN A 127.0.0.1
localhost IN CNAME loopback
;
; ***************************************
; ***************************************
; ** MY SCHOOL **
; ***************************************
; ***************************************
;
$ORIGIN myschool.scps.edu.
pegasus IN A 146.98.1.12

IN HINFO “Sun” “SunOS”
IN MX 10 pegasus

patsy IN A 146.98.1.11
IN HINFO “Sparc1” “SunOS”
IN MX 10 patsy

mvaxgr IN A 146.98.1.4
IN HINFO “VAX” “VMS”
IN MX 10 mvaxgr.myschool.scps.edu.

hcgate1 IN A 146.98.1.15
IN HINFO “CISCO” “MGS”

;
;
$ORIGIN ph.myschool.scps.edu.
; Physics and Astronomy
;
bjl IN A 146.98.8.11

IN HINFO “PC” “DOS”
bjlnote IN A 146.98.8.22

IN HINFO “ZNOTE” “DOS”
;

.

© 2002 by CRC Press LLC

The named.hosts file begins with an SOA record. The @ sign refers to the last previously
defined domain (here, in the named.boot file), which is still the actual one. A few NS records
follow, defining name servers for this domain. The rest are A records (predominantly),
HINFO records, and MX records; other records could also be included.

The SOA record defines very important file parameters:

• Serial number of the file — every time the file is updated the serial should be increased

• Refresh time — the time period in seconds that secondary servers must query the
primary server for possible changes (update) of the file

• Retry time — the time period in seconds that the secondary server must retry its
query if the previous one did not succeed

• Expire time — the time period in seconds that the database is considered as the
actual one after the primary name server has stopped running and does not
respond to any query

• Minimum TTL — default time-to-live of records stored in the cache

It is extremely important to increase the serial number after any update of the named.hosts
file. For secondary name servers, this is the only sign that the file has been updated. When
querying the primary server, a secondary server actually checks the current serial of the
file; after comparing this value with the serial of the file’s copy that it already keeps, the
decision about the file’s transfer is made. Obviously any file update without a serial
number increase is useless, because it will not be spread toward secondary servers.

It can be useful to implement the current date as the serial number for a current file
update, in order to continue the increasing order of the sequence of serials. A serial is
a 32-bit number (up to 4 billion), so even the full date is acceptable. An example is
presented for the update done on May 23, 2000:

2000052302 (The last two digits are a daily version — the second version for this day)

16.3.1.3.2 The named.local File

The only purpose of the named.local file is to convert the IP address 127.0.0.1 (the loopback
address) into the generic name localhost. This is the zone file for the reverse domain
0.0.127.in-addr.arpa. Because all systems use the same loopback address, this file is
identical on every server. Also, every server has authority over its loopback address; every
server is the primary server for its loopback address.

The named.local file is shown below:

cat /var/named/named.local
; ------------------------------- /var/named/named.local -------------------------------
;
@ IN SOA patsy.myschool.scps.edu. sajhc.cunyvm.myschool.scps.edu. (

9704065 ; serial
10800 ; refresh every 3 hours

3600 ; retry every 1 hour
1209600 ; expire after 2 weeks

86400) ; default min. TTL value of 1 day
;

IN NS pegasus.myschool.scps.edu.
1 IN PTR localhost.
;

© 2002 by CRC Press LLC

16.3.1.3.3 The named.cache file

This is the cache initialization file for every server that maintains a cache of domain data;
it contains the information needed to begin building such a domain when the name server
starts. The named.cache file contains the names and addresses of the root servers. An
example of named.cache file is presented:

cat /var/named/named.cache
; ------------------------------- /var/named/named.cache -------------------------------
;
; @(#)root.cache 1.15 (Berkeley) 89/09/18
;
. 99999999 IN NS NS.NIC.DDN.MIL.

99999999 IN NS NS.NASA.GOV.
99999999 IN NS TERP.UMD.EDU.
99999999 IN NS KAVA.NISC.SRI.COM.
99999999 IN NS AOS.ARL.ARMY.MIL.
99999999 IN NS NIC.NORDU.NET.
99999999 IN NS C.NYSER.NET.
99999999 IN NS NS.INTERNIC.NET.

;
;
;
;
; Root domain servers adresses
;
NS.NIC.DDN.MIL. 99999999 IN A 192.112.36.4
NS.NASA.GOV. 99999999 IN A 128.102.16.10

99999999 IN A 192.52.195.10
TERP.UMD.EDU. 99999999 IN A 128.8.10.90
KAVA.NISC.SRI.COM. 99999999 IN A 192.33.33.24
AOS.ARL.ARMY.MIL. 99999999 IN A 128.63.4.82

99999999 IN A 192.5.25.82
NIC.NORDU.NET. 99999999 IN A 192.36.148.17
C.NYSER.NET. 99999999 IN A 192.33.4.12
NS.INTERNIC.NET. 99999999 IN A 198.41.0.4
;

The file contains only NS and A records. The root domain is indicated by a single dot.
First, a set of NS records identifies the name servers for the root domain, and then a set
of A records defines the IP addresses for those root name servers. Traditionally, TTL is
set to the largest possible value 99999999 (the root servers are never removed from the
cache).

Although the root name servers do not change often, it is recommended that you
periodically check the accuracy of these data. An accurate list of root servers is available
via anonymous ftp from NIC.DDN.MIL host, in the file netinfo/root-servers.txt.

16.3.1.3.4 The Reverse Domain File: named.in-addr

The named.in-addr file is very similar in structure to the named.local file. Both files translate
IP addresses into host names, so both include PTR records. However, while named.local
translates only one address, the loopback address, the named.in-addr file contains
authoritative data for the entire zone. First, let us see what a reverse domain really is.

The reverse domain maps numeric IP addresses into host domain names; this is the
reverse of the normal process, which converts domain names to IP addresses, so this is
the origin of the name itself. To keep the same hierarchical naming concept, which is
down-to-up, i.e., from the host name via the subnetwork and network to the top-level

© 2002 by CRC Press LLC

domain name, each host’s IP address should be reversed. The only problem is that the
reversed IP address of one host could be the IP address of another host. To ensure proper
interpretation of the reversed IP address, the suffix IN-ADDR.ARPA is introduced. In this
way a new top-level domain IN-ADDR.APRA is created, and this is the reverse domain.
Any “IP address-like” domain name that belongs to the reverse domain (with the trailing
in-addr.arpa name) represents the reverse IP address of a unique host. It can be uniquely
translated only to the appropriate host domain name.

Here is an example of the reverse domain file named.in-addr:

cat /var/named/named.in-addr
;
; /var/named/named.in-addr
;
; (for last update see the serial of the SOA record)
; ==
; NAME TTL CLASS TYPE RDATA
; ==
;
@ IN SOA pegasu s.myschool.scps.edu.sajhc.cunyvm.cuny.edu. (

9906191 ; Serial — correspons to update date
3600 ; Refresh every 1 hour
600 ; Retry every 10 minutes
2419200 ; Expire after 4 weeks
86400) ; Default min. TTL value of 1 day

;
IN NS pegasus.myschool.scps.edu.
IN NS orion.myschool.scps.edu.
IN NS acme.ucc.cuny.edu.
IN NS nis.ans.net.
IN NS ns.ans.net.
IN NS cunixd.cc.columbia.edu.

;
$ORIGIN 1.98.146.in-addr.arpa.
4 IN PTR mvaxgr.myschool.scps.edu.
11 IN PTR patsy.myschool.scps.edu.
12 IN PTR pegasus.myschool.scps.edu.
15 IN PTR hcgate1.school.scps.edu.
;
;
$ORIGIN 2.98.146.in-addr.arpa.
71 IN PTR everest.school.scps.edu.
73 IN PTR kilimanjaro.school.scps.edu.
;
;
$ORIGIN 8.98.146.in-addr.arpa.
11 IN PTR bjl.ph.school.scps.edu.
22 IN PTR bjlnote.ph.school.scps.edu.
;
;

The named.in-addr file in this example is the zone file for the 98.146.in-addr.arpa domain.
This file is created only on the primary name server (the same as for the named.hosts file)
and then transferred to all secondary name servers. Like all zone files, it starts with the
SOA record, with the @ sign in the named field as the reference to the current domain
defined in the named.boot file, which points to this file as the zone file. The SOA record
was explained when we discussed the named.hosts file.

© 2002 by CRC Press LLC

The NS records follow the SOA record, just as in the named.hosts file. Other records are
different; these are PTR records. The PTR records provide IP address-to-host name con-
versions.

16.3.2 BIND Version 8.X.X

In the previous text we discussed a number of DNS issues, keeping in mind earlier (but
still prevailing) versions of BIND up to BIND 4.9.X; these versions we simply call BIND
4.X.X. However, the permanent development of network technologies has had an impact
on DNS, too. The new 8.1.2 version of BIND has brought a number of significant changes
in the DNS configuration (in some ways, the huge shift in the version number also reflected
the level of the newly introduced changes).

First, the DNS configuration file /etc/named.boot is renamed /etc/named.conf — a logical
change to follow the usual UNIX naming pattern for configuration files. The main change,
though, was in the configuration file syntax, and we will briefly elaborate on these changes.
It is also important to note that all changes are related only to the contents of the configuration
file /etc/named.conf; the corresponding DNS database files remain, at least for the moment,
unchanged.

In BIND 4.X.X, comments in the configuration file were the same as in the database files —
they started with a semicolon and finished at the end of the line. For example:

; This line is the comment

In BIND 8.X.X, three types of comments are applicable:

/* This line is the comment */ C-style comments
// This line is the comment C++-style comments

This line is the comment Shell-style comments

The old style comment (from BIND 4.X.X) that starts with a semicolon is no longer
allowed; the meaning of the semicolon is completely different, as it is now used to end
a configuration statement.

Now knowing how to distinguish comments from the configuration data, the BIND
8.X.X named.conf files for the already presented name servers (see the corresponding BIND
4.X.X named.boot files on the previous pages), now have the following contents.

For the secondary name server:

cat /etc/named.conf
// ------------------------------/etc/named.conf----------------------------
// The BIND 4.X.X entry “directory /var/named/xferd” becomes
options {

directory “/var/named/xferd”;
// Additional options could be placed here

};
// BIND 4.X.X entries of the type: “type domain source host file”
// are specified with the following BIND 8.X.X entries
// The entry “secondary myschool.scps.edu 146.98.1.12 named.hosts”
zone “myschool.scps.edu” in {

type slave;
file “named.hosts”;
masters { 146.98.1.12; };

};

© 2002 by CRC Press LLC

// The entry “secondary 98.146.in-addr.arpa 146.98.1.12 named.in-addr”
zone “98.146.in-addr.arpa” in {

type slave;
file “named.in-addr”;
masters { 146.98.1.12; };

};
// The entry “primary 0.0.127.in-addr.arpa named.local”
zone “0.0.127.in-addr.arpa” in {

type master;
file “named.local”;

};
// The entry “cache . named.cache”
zone “.” in {

type hint;
file “named.cache”;

};

For the primary name server:

cat /etc/named.conf
// ------------------------------/etc/named.conf----------------------------
// The BIND 4.X.X entry “directory /var/named/zone” becomes
options {

directory “/var/named/zone”;
// Additional options could be placed here

};
// BIND 4.X.X entries of the type: “type domain source host file”
// are specified with the following BIND 8.X.X entries
// The entry “primary myschool.scps.edu named.hosts”
zone “myschool.scps.edu” in {

type master;
file “named.hosts”;

};
// The entry “primary 98.146.in-addr.arpa named.in-addr”
zone “98.146.in-addr.arpa” in {

type master;
file “named.in-addr”;

};
// The entry “primary 0.0.127.in-addr.arpa named.local”
zone “0.0.127.in-addr.arpa” in {

type master;
file “named.local”;

};
// The entry “cache . named.cache”
zone “.” in {

type hint;
file “named.cache”;

};

These two examples show how the previously specified BIND 4.X.X configuration
entries are converted into new BIND 8.X.X configuration data. At the same time, full
compatibility is preserved and all database files remain unchanged. However, BIND 8.X.X
offers much more than a simple data syntax conversion; it has introduced a number of
new configuration data that are making DNS more powerful and flexible in implementa-
tion. We will briefly list all BIND 8.X.X features; some of them are inherited from BIND
4.X.X.

© 2002 by CRC Press LLC

BIND 8.X.X Description

acl Creates a named “address-match-list” that could be used in specifying
options

include Inserts the specified file at the point that the include statement is
encountered

key Defines a key ID which can be used in a server statement to associate an
authentication method

logging Defines the logging behavior
options Sets up global options as:

directory pathname To specify a referent starting location for other configuration data
named-xfer pathname To specify a location of the transferred DNS database
dump-file pathname To specify a file to dump data
pid-file pathname To specify a file to store the PID of the named daemon
statistics-file pathname To specify a file to dump statistics
auth-nxdomain yes/no To control the authentication method
fake-iquery yes/no To allow a fake name resolution
fetch-glue yes/no To control a cache build-up
multiple-cnames yes/no To allow an alias to be specified multiple times
notify yes/no To control an automatic notifying of secondary name servers upon DNS

database changes
recursion yes/no To specify recursive or nonrecursive name server
forward only/first To specify a forwarder-only name server
forwarders ip-addr; ip-addr;… To forward off-site DNS queries to specified server/servers
check-names To control the way a check of valid hostnames is provided:

(master/slave/response) (warn/fail/ignore)
allow-query address-match-list To restrict queries to certain IPaddress zones
allow-transfer address-match-list To prevent unauthorized zone transfer
listen-on port address-match-list To support “two name servers in one”
query-source address To control the source of incoming queries:

(ip-addr/*) (port/*)
max-transfer-time-in number To limit the duration of a zone transfer
transfer-format To control the format of zone transfers to improve efficiency:

(one-answer/many-answers)
transfers-in number To limit the total number of initiated zone transfers
transfer-per-ns number To limit the number of zone transfers initiated per name server
coresize size-spec To change the core size limit
datasize size-spec To change the data segment size limit for the named daemon
files size-spec To change the open files limit
stacksize size-spec To change the stack segment limit for the named daemon
cleaning-interval number To change the cleaning interval of staled entries (default 60 min)
interface-interval number To change the interval of scanning internal host’s network interfaces

(default 60 min)
statistics-interval number To change the frequency to dump statistics into the statistics file
topology address-match-list To favor specified name servers on certain networks over others

server Defines the characteristics to be associated with this name server
(it overrides the options statement):

bogus yes/no To prevent querying of a specific server
transfers number To limit the total number of initiated zone transfers
transfer-format To control the format of zone transfers to improve efficiency

(one-answer/many-answers)
zone Defines the zones maintained by the name server

(it overrides the options statement):
domain-name To specify a domain type: (in/hs/hesoid/chaos), in -> internet
type To specify a zone authority: (master/slave/stub/hint), master -> primary,

slave -> secondary, hint -> root zone “.”
file pathname To specify the name of the database file
masters (ip-addr; ip-addr; …) To specify the primary server /servers for the zone
check-names (warn/fail/ignore) To control the way the check of valid host names is provided
allow-update address-match-list To prevent unauthorized zone update

© 2002 by CRC Press LLC

allow-transfer address-match-list To prevent unauthorized zone transfer
max-transfer-time-in number To limit the duration of a zone transfer
notify yes/no To control the automatic notification of secondary name servers upon DNS

database changes
also-notify (ip-addr; ip-addr;…) To control the automatic notification of specified name servers upon DNS

database changes

Some of the listed BIND 8.X.X features also existed in the BIND 4.X.X version; their
configuration format is now changed. However, a majority of them are new and were
introduced in the BIND 8.X.X version.

16.3.2.1 Subdomains and Parenting
Once a domain reaches a certain size, the need to distribute the management of parts of
the domain to various organizational units can become a reality. This need could also exist
for other, nontechnical requirements, primarily for business-related reasons. In that case,
the domain would be divided into a certain number of “child” subdomains, and this
procedure is known as parenting.

Good parenting involves a sensible delegation of the new subdomains to create new
zones. A corresponding relationship between the name servers for the parent and child
zones is also assumed. Simply put, each child zone must be advertised within the parent
zone; otherwise, nobody will know there is a new child zone. The parent-child zone
relationship is actually the core of DNS, and we already pointed to this requirement for
a successful name service; everything starts from the root name servers that are the top-parents
within DNS space.

This process is slightly easier to administer if the same administration team handles
both the parent and child zones. However, if different organizations are involved, a certain
level of coordination among them is required; otherwise parenting will fail.

We already know that there are basically two different types of zones: one for a
hostname-to-IP address lookup, and one for a reverse IP address-to-hostname lookup
(these are known as in-addr.arpa zones). The administration of the two zone types is
independent. As a matter of fact, DNS will even function for most applications even if
the in-addr.arpa zone is not set properly (many applications do not check hostnames for
reverse IP addresses).

Generally, it is easier to administer the first zone type; there are no serious restrictions
in handling them:

• There is no explicit limit in the number of participating hosts.

• The subdomain and host name rules are so flexible that it is easy to adapt to current
parenting needs.

• Participating hosts can belong to different subnetworks (IP subdomains).

This is not the case with the second zone type, where:

• A restricted number of hosts could belong to the zone. For example, the in-addr.arpa
zone for each Class C IP address can have up to 254 hosts (the address 0 identifies
the network, and 255 is the broadcast address).

• There is not a lot of freedom in in-addr.arpa naming; practically everything is
predefined.

© 2002 by CRC Press LLC

• The hosts within certain in-addr.arpa zones can be split among different domains
that belong to different organizations, and are administered by different people.
It is very common today to assign only a portion of the available IP addresses
within the network to a certain customer — this is basically how ISP organizations
(Internet service providers) work.

While the same team usually administers the parenting and delegation of hostnames
(which always means an easier coordination of required activities), it is almost a rule that
someone else manages the parent in-addr.arpa zone (today this is usually your ISP). The
consequence is that in real life, the hostnames-to-IP address administration is usually done
satisfactorily, while the in-addr.arpa administration is trickier and can be more difficult.
In the following text, we will focus on parenting from the standpoint of the in-addr.arpa
administration and try to make this topic more clear through corresponding examples.

Originally, each in-addr.arpa zone covered one Class IP address; this also meant that the
size and subnetting possibilities varied among the Class A, B, and C IP zones. Obviously,
larger in-addr.arpa zones offer more possibilities for subnetting; they can be subnetted on
an “octet” or “non-octet” boundary. Class C networks can be subnetted only on a non-octet
boundary.

To subnet a Class B network on an octet boundary means to create Class C sized
subnetworks, with a network mask 255.255.255.0, i.e., 24 network bits and 8 host bits. For
example, the Class B network 146.98.0.0 (also identified as 146.95/16; the network IP
address is left of the slash character, and the number of network bits is to the right) can
be subnetted between the third and fourth octet of the IP address. Newly created subnetworks
can be assigned to a different organizational unit (division, or department, or etc.). For
example, one such subnetwork is 146.98.8.0 (alternatively identified as 146.98.8/8) and
could be delegated to another DNS administration team for maintenance.

Subnetting on an octet boundary is easier to administer, because the corresponding
in-addr.arpa zone can be uniquely identified in a condensed way; in the previous example,
the zone “8.98.146.in-addr.arpa” uniquely identified all hosts within that subdomain. It is
enough to advertise the new name server in the parent zone “98.146.in-addr.arpa” to
delegate this zone to the new name server. The following entries in the parent zone specify
new name servers ns1.ph.school.scps.edu, and ns2.ph.school.scps.edu:

8.98.146.in-addr.arpa 86400 IN NS ns1.ph.myschool.scps.edu.

8.98.146.in-addr.arpa 86400 IN NS ns2.ph.myschool.scps.edu.

This means that the authoritative answers for this zone can be obtained from the new name
servers, and not from the name servers that handle the parent zone “98.146.in-addr.arpa.” Of
course, the new name servers must be set as a primary and a secondary server for the new
zone; this situation assumes the appropriate setup of the configuration file named.boot
(BIND 4.X.X), or named.conf (BIND 8.X.X) and the corresponding database file.

Subnetting on a non-octal boundary requires more administrative work, simply because
we cannot specify all subnetted hosts within a single standard in-addr.arpa entry; subnetted
hosts are now split among multiple in-addr.arpa zones and maintained by different name
servers. The issue is how to extract certain hosts from the standard in-addr.arpa zone, put
them into the new nonstandard in-addr.arpa zone, and delegate the DNS administration
to the new name servers.

Let us suppose a Class C network 193.95.110.0 (alternately, 193.95.110/24) is subnetted
in such a way that IP addresses in the range of 193.95.110.16 to 193.95.110.47 form a separate
zone. The problem is that we cannot put these hosts in any widely known and under-
standable standard in-addr.arpa zone that will uniquely identify just those hosts, and then

© 2002 by CRC Press LLC

handle such a zone; the smallest in-addr.arpa zone corresponds to the Class C network,
and we need only a portion of that. How do we provide an appropriate name service that
will reflect the naming and maintenance by those who own and use the hosts in that
address range?

Basically, there are three ways to solve this problem:

1. The first way is to leave the DNS administration within the parent zone and
coordinate the subdomain DNS policy with the parent zone administration team;
in practice this could be quite annoying, especially if frequent DNS changes are
expected.

2. The second way is to delegate each in-addr.arpa name within this range in the
parent zone to the new name servers. This works, but sometimes it can be a very
time-consuming job. It means, in our example, to specify the following entries
in the parent zone “110.95.193.in-addr.arpa”:

16.110.95.193.in-addr.arpa. 86400 IN NS ns1.unixadm.com.

16.110.95.193.in-addr.arpa. 86400 IN NS ns2.unixadm.com.

17.110.95.193.in-addr.arpa. 86400 IN NS ns1.unixadm.com.

17.110.95.193.in-addr.arpa. 86400 IN NS ns2.unixadm.com.

And so on for other in-addr.arpa names in the specified range until the last one…
47.110.95.193.in-addr.arpa. 86400 IN NS ns1.unixadm.com.

47.110.95.193.in-addr.arpa. 86400 IN NS ns2.unixadm.com.

Besides that, the new name servers ns1.unixadm.com and ns2.unixadm.com must
be set, and configured for each individual IP address listed in the parent zone.

3. The third way is the recommended one. The only way to group specified in-addr.arpa
names into a new nonstandard in-addr.arpa zone is to make them aliases to the
new in-addr.arpa names that belong to the new nonstandard in-addr.arpa zone. To
accomplish this, the new in-addr.arpa names should be attached as canonical
names to the existing ones. Once this is done, we can treat the new nonstandard
in-addr.arpa zone as any other standard in-addr.arpa zone; the new zone can then
be delegated to the new name servers.

In our example, we will introduce the new nonstandard in-addr.arpa zone
“16-47.110.95.193.in-addr.arpa” and delegate to the new name servers ns1.unixadm.com.
and ns2.unixadm.com.:

16-47.110.95.193.in-addr.arpa. 86400 IN NS ns1.unixadm.com.

16-47.110.95.193.in-addr.arpa. 86400 IN NS ns2.unixadm.com.

Also, the new in-addr.arpa names that are parts of the newly introduced in-addr.arpa zone
should be attached as canonical names:

16.110.95.193.in-addr.arpa. IN CNAME 16.16-47.110.95.193.in-addr.arpa.

17.110.95.193.in-addr.arpa. IN CNAME 17.16-47.110.95.193.in-addr.arpa.

18.110.95.193.in-addr.arpa. IN CNAME 18.16-47.110.95.193.in-addr.arpa.

.

.

47.110.95.193.in-addr.arpa. IN CNAME 47.16-47.110.95.193.in-addr.arpa.

© 2002 by CRC Press LLC

The new name servers ns1.unixadm.com and ns2.unixadm.com must also be
set; however, their configuration is quite standard, and the newly introduced zone
“16-47.110.95.193.in-addr.arpa” is treated as any other standard in-addr.arpa zone.

The selected name for the new in-addr.arpa zone is arbitrary; it is recommended that it
be a logical one, but this is not a requirement. However, the same name must be used in
the parent zone and the new name servers.

16.4 Using nslookup

nslookup is a debugging tool provided as part of the BIND software package. It allows
anyone to directly query name servers and retrieve any of the information known to the
DNS. It is very helpful for determining if the servers are running correctly. A brief review
of nslookup follows.

nslookup is a program to query Internet domain name servers. If a name server is not
configured, nslookup uses NIS (if NIS is configured). Otherwise the local host table,
/etc/hosts, is used.

nslookup has two modes: interactive and noninteractive. Interactive mode allows the
user to query a name server for information about various hosts and domains, or to print
a list of hosts in the domain. Noninteractive mode is used to query a name server for
information about one host or domain.

The format of the nslookup command is:

nslookup [-option …] [-[server]]

Interactive mode is entered in the following cases:

• No arguments are given
• The first argument is a hyphen (-). The optional second argument is a host name

or Internet address of a name server.

Noninteractive mode is used when the name of the host to be looked up is given as the
first argument. The optional second argument is a host name or Internet address of a name
server.

Unfortunately, nslookup uses its own libraries, which are different from resolver librar-
ies. This means that under some circumstances, a name resolution output could be different
when using nslookup from the result when resolver is used. In other words, a testing of
DNS could be successful, while the name service does not work properly.

16.4.1 The nslookup Interactive Mode

A number of nslookup subcommands are available in the interactive mode. When entering
into the interactive mode, nslookup responds with information about the current default
server and with the prompt (>). Subcommands can be interrupted at any time by using
the interrupt character. To exit, type Ctrl-D (EOF) or type exit. To treat a built-in command
as a host name, precede it with an escape character (\). An unrecognized subcommand
is interpreted as a host name.

© 2002 by CRC Press LLC

The most important subcommands are:

host [server] Look up information for host using the current default server or
using server if specified. If host is an Internet address and the query type is A or
PTR, the name of the host is returned. If host is a name and does not have a trailing
period, one or more domains are appended to the name. Answers from a name
server’s cache are labeled “nonauthoritative.”
server domain or lserver domain Change the default server to domain. lserver uses
the initial server to look up information about domain while server uses the current
default server.
root Changes the default server to the server for the root of the domain name
space. The name of the root server can be changed with the set root command.

ls [option] domain [> filename] or ls [option] domain [>> filename] List the information
available for domain, optionally creating or appending to filename. The default output
contains host names and their Internet addresses. option can be one of the following:

Option Meaning

-t querytype Lists all records of the specified type.
-a Lists aliases of hosts in the domain.
-d Lists all records for the domain.
-h Lists CPU and operating system information for the domain.
-s Lists well-known services of hosts in the domain.
help or ? Prints a brief summary of commands.
exit Exits the program.
set keyword [= value] This command is used to change state information that affects the nslookups.

Valid keywords are:
all Prints the current values of the various options to set. Information about the

current default server and host is also printed.
class=value Change the query class to one of:

IN The Internet class (default)
CHAOS The Chaos class
HESIOD The MIT Athena, Hesiod class
ANY Wildcard (any of the above)

nodebug Turn debugging mode on. More information is printed
debug about the packet sent to the server and the resulting answer (default = nodebug).
nod2 Turn exhaustive debugging mode on. Essentially all fields
d2 of every packet are printed (default = nod2).
nodefname If set, append the default domain name to a single-
defname component nslookup request (default = defname).
domain=name Change the default domain name to name. The default domain name is

appended to an nslookup request. (Default = value from hostname, /etc/
resolv.conf or LOCALDOMAIN).

noignore Ignore truncation errors (default = noignore).
ignore
type=value Change the type of information returned from a query to:
querytype=value A Host’s Internet address

CNAME Canonical name for an alias
HINFO Host CPU and operating system type
MX Mail exchanger
NS Name server for the named zone
PTR Host name if the query is an Internet address, otherwise the

pointer to other information
SOA Start of authority record
TXT Text information
WKS Well-known service description
ANY All types of data

© 2002 by CRC Press LLC

If the lookup request was not successful, an error message is printed. Possible errors are:

Time-out The server did not respond to a request after a certain
amount of time.

No response from server No name server is running on the server machine.

No records The server does not have resource records of the current
query type for the host, although the host name is valid.

Nonexistent domain The host or domain name does not exist.

Connection refused Connection was refused.
Network is unreachable The connection to the name server could not be made

at the present time.

Server failure The name server found an internal inconsistency in its
database and could not return a valid answer.

Refused The name server refused to service the request.

Format error The name server found that the request packet was not
in the proper format.

16.4.2 A Few Examples of nslookup Usage

Let us see a few examples. The default domain is myschool.scps.edu and it is determined
by the /etc/resolve.conf file on the host that provided the lookup. The first name server
defined in this very same file is pegasus.myschool.scps.edu, which is the primary name
server for this domain.

$ nslookup

Default Name Server: pegasus.myschool.scps.edu # The default data type is A.

Address: 146.98.1.12

> patsy # Look up the host’s address.

Name Server: pegasus.myschool.scps.edu

Address: 146.98.1.12

Name: patsy.myschool.scps.edu

Address: 146.98.1.11

port=value Change the default TCP/UDP name server port to value (default = 53).
norecurse Tell the name server to query other servers if it does not
recurse have the information (default = recurse).
retry=number Set the number of retries to number. When a reply to a request is not received

within a certain amount of time (which can be changed with set timeout),
the timeout period is doubled and the request is re-sent. The retry value
controls how many times a request is re-sent before giving up (default = 4).

root=host Change the name of the root server to host. This affects the root command
(default = ns.nic.ddn.mil).

nosearch
search

If the nslookup request contains at least one period but does not end with a
trailing period, append the domain names in the domain search list to the
request until an answer is received (default = search).

srchlist=name1/name2/ Change the default domain name to name1 and the do-main search list to name1,
name2, etc. A maximum of six names separated by slashes (/) can be specified.

timeout=number Change the initial timeout interval for waiting for a reply to number seconds.
Each retry doubles the timeout period (default = 5 seconds).

© 2002 by CRC Press LLC

> apollo.ph # Look up the host’s address.

Name Server: pegasus.myschool.scps.edu

Address: 146.98.1.12

Name: apollo.ph.myschool.scps.edu

Address: 146.98.8.31

> apollo.ph. # Look up the host’s address.

Name Server: pegasus.myschool.scps.edu # (absolute host’s name)

Address: 146.98.1.12

*** pegasus.myschool.scps.edu can’t find apollo.ph.: Non-existent domain

>set type=ptr # Shift to another data type (PTR).

> 146.98.8.31 # Look up the host’s name.

Name Server: pegasus.myschool.scps.edu

Address: 146.98.1.12

31.8.98.146.in-addr.arpa name = apollo.ph.myschool.scps.edu

>set type=ns # Shift to another data type (NS).

>myschool # Look up the domain name servers.

Name Server: pegasus.myschool.scps.edu

Address: 146.98.1.12

myschool.scps.edu nameserver = pegasus.myschool.scps.edu

myschool.scps.edu nameserver = orion.myschool.scps.edu

myschool.scps.edu nameserver = acme.ucc.cuny.edu

myschool.scps.edu nameserver = nis.ans.net

myschool.scps.edu nameserver = ns.ans.net

myschool.scps.edu nameserver = cunixd.cc.columbia.edu

pegasus.myschool.scps.edu internet address = 146.98.1.12

orion.myschool.scps.edu internet address = 146.98.1.17

acme.ucc.cuny.edu internet address = 128.228.1.10

nis.ans.net internet address = 147.225.1.10

ns.ans.net internet address = 192.103.63.100

cunixd.cc.columbia.edu internet address = 128.59.40.142

>set type=soa # Shift to another data type (SOA).

>myschool # Look up the zone SOA record.

Name Server: pegasus.myschool.scps.edu

Address:146.98.1.12

myschool.scps.edu

origin = pegasus.myschool.scps.edu

mail addr = sajhc.cunyvm.cuny.edu

serial = 9406091

refresh = 3600 (1 hour)

retry = 600 (10 min)

expire = 2419200 (28 days)

© 2002 by CRC Press LLC

minimum ttl = 86400 (1 day)

>server orion # Shift to another name server.

Name Server: orion.myschool.scps.edu # The data type is SOA.

Address: 146.98.1.17

> myschool # Look up the zone SOA record.

Name Server: orion.myschool.scps.edu

Address: 146.98.1.17

myschool.scps.edu

origin = pegasus.myschool.scps.edu

mail addr = sajhc.cunyvm.cuny.edu

serial = 9406091

refresh = 3600 (1 hour)

retry = 600 (10 min)

expire = 2419200 (28 days)

minimum ttl = 86400 (1 day)

>exit (or Ctrl-D)

$

A great deal of very useful information can be obtained with the nslookup utility, such
as hosts’ names, IP addresses, a list of name servers for domains, etc. The last two lookups
of the zone SOA records for myschool.scps.edu domain are especially interesting. The host
pegasus.myschool.scps.edu is declared the primary name server for this domain, and the
host orion.myschool.scps.edu the secondary name server. Identical serial numbers in both
SOA records indicate that the host databases in the name servers are equals, i.e., the
secondary name server orion follows the primary name server pegasus.

nslookup can be used in many other ways to look up DNS data, as well as to perform
very sophisticated debugging.

© 2002 by CRC Press LLC

17
Network Information Service (NIS)

17.1 Purpose and Concepts

Networking has led to the introduction of an enormous number of different network
applications, which in turn has brought new qualities to computer use. The single host
environment has been replaced by multiple hosts, which offer their resources to users and
create an almost unrestricted working environment. However to make and maintain such
a working environment, a certain level of administration is required; otherwise, everything
becomes useless.

Multiple hosts in the network present multiple administrative points and require more
attention and work to be provided. Can you imagine the network with several hundred
computers in it and a new user account to be opened on each of them; or maybe a deletion
or modification?

The Network Information Service (or System) - NIS, initially known as the Yellow
Pages, is an administrative database that enables a central control over a group of
hosts (computers) that belong to the same, so-called NIS domain. NIS converts import-
ant administrative files into a database that can be queried over the network. This
ensures that all hosts in the NIS domain have access to the very same administrative
databases, which can then be centrally maintained. In NIS terminology, the databases
are called NIS maps; they are all created at the single host, the NIS master server, and
made accessible through the network to all hosts in the NIS domain — the NIS clients.
Any modification of an administrative file at the NIS master server can be easily
transferred to an NIS map, and immediately made transparent to all other hosts. Since
the number of NIS hosts could be very large, the benefit of a centralized administration
is obvious: instead of repeating the same administrative task dozens, or even hun-
dreds, of times, everything has to be done only once. The consistency of the data is
guaranteed and achieved in an optimal way. In addition, a sufficient flexibility in
administering individual hosts is preserved; NIS enables a selective approach to all
administrative issues.

NIS is Sun Microsystems’ “baby,” and it was a very successful product, first implemented
on the SunOS platform. Despite some inherent security problems, other UNIX vendors
quickly adopted NIS. Today NIS is a standard part of any UNIX installation. Sun Micro-
systems later released a new version of the Network Information System, known as NIS+.
This was a new product for the same purpose, but definitely a different software package.
The basic idea has been to improve the older product with the preserved compatibility.
Unfortunately things do not always happen as expected. The new product has not been

© 2002 by CRC Press LLC

so successful, and Solaris is practically the only UNIX flavor that implemented it. Neither
of the main UNIX players followed this path. Chances for some future comeback of NIS+
are also cumbersome. Today it seems that another product, LDAP, is the most serious
candidate to replace NIS.

LDAP stands for Lightweight Directory Access Protocol and presents a project to provide
global directory services over the Internet in an easier way. The idea is to obtain different
types of information from distributed databases spread all over the Internet (like e-mail
addresses, phone numbers, etc.). Each “individual” LDAP server would manage its own
database about its own community. Individual servers will then be hierarchically
merged, making needed information accessible worldwide. The concept of LDAP is
quite close to the DNS concept; this is not strange, bearing in mind their similarities
and the fact that DNS has been going on so successfully for quite a long time. LDAP
was specified in the RFC-1777. LDAP mechanisms could also be used to distribute
administrative data, of course in a slightly more restrictive way. The existing RFC-2307
with the title “An Approach for Using LDAP as a Network Information Service” indicates
such a tendency.

This chapter will focus strictly on NIS. An NIS domain contains a selected number of
hosts, and it is built on the client-server model. An NIS server is a host that contains NIS
maps; NIS clients are hosts that query information from these maps. Servers are further
divided into master and slave servers. The master server is the true single owner of the
databases, and the only one responsible for their modification and distribution to the slave
servers — this process is known as pushing NIS maps. Slave servers are optional. All NIS
servers, master and slave, are equal in providing NIS service to individual NIS clients.
They keep the same administrative data, and a client simply addresses the closest server,
whatever this server is, with a query for the needed data (an NIS map).

The client-server model does not mean a strict division of hosts to the exclusive
client-hosts versus server-hosts. The model is intended to separate client and server
processes that could communicate through the network, but also locally; the client and
a server process can run on the same host. This is a usual pattern for almost all network
services, including NIS. Although the server-only NIS host is possible, it happens very
rarely; usually the NIS client process is also running on the same host. However, NIS
client-only hosts are very common and they represent a majority of the hosts in an
NIS domain.

Each individual NIS host must be configured appropriately for the NIS service; once
this is done, all future centralized administration is performed through the NIS master
server. The needed flexibility in NIS can be achieved at the client side by a selective
adjustment of the client-specific exceptions. The local administrative data on each NIS
client could be fully replaced with the NIS maps, but the maps can also be appended to
the local data. In that case, a client first looks up local data and then queries an NIS server
for the information.

With the distinction between NIS servers and clients firmly established, each UNIX
system fits into the NIS scheme in one of the following ways:

• Client only — Generally the most common NIS configuration, typical for any
UNIX hosts whether it is a desktop workstation or a powerful server of any
kind. An NIS client queries an NIS server for needed information and
correspondingly receives queried information.

• Server only — The host that handles client NIS queries, but it does not use NIS
for its own operations. It can be useful when a server has to provide global
information (like password data or similar) to a number of NIS clients, but

© 2002 by CRC Press LLC

security concerns prohibit the server from using these same data. Server-only
configuration is extremely rare and it is not recommended.

• Client and server — The same host functions as an NIS server and as an
NIS client; its management is streamlined with that of other client-only
hosts.

An NIS domain is presented in Figure 17.1.
NIS provides the concept of domain to allow an administrator to set different policies

for different UNIX hosts. Actually a domain is a set of NIS maps, and the maps enforce
a certain administrative policy. In principle, a client can belong to several different domains
and refer toward any map from any of those domains. However in real life this is not
a frequent case — mostly a host looks up data from one set of NIS maps, i.e., UNIX host
is assigned to a single “default NIS domain.”

17.2 NIS Paradigm

This section will address the main aspects of NIS: processes that make NIS operational,
main NIS players (servers and clients), and NIS domain and databases. NIS is extremely
useful and helpful in UNIX administration. For UNIX users it is completely transparent
and invisible.

NIS
Master Server

"The Truth"

NIS
Slave Server

NIS
Slave Server

NIS
Client

NIS
Client

NIS
Client

NIS
Client

NIS
Client

NIS Map
Transfers

NIS
Requests

FIGURE 17.1
An NIS domain: NIS master, slaves, and clients. Note: The Network Information Service (NIS) was formerly
known as Sun Yellow Pages (YP). The functionality of the two remains the same; only the name has changed.
The name Yellow Pages is a registered trademark in the United Kingdom of British Telecommunications plc, and
may not be used without permission.

© 2002 by CRC Press LLC

17.2.1 yp Processes

Let us see how to put an NIS host into motion. Basic NIS management involves setting
NIS on the servers and enabling NIS on the client hosts. Enabling is always an easy job,
while setting requires more skills. The server setting includes three main steps:

1. Set a new NIS environment and identify the master and slave servers.
2. Start the ypserv daemon, which makes a system act as an NIS server.

3. Add new slave servers when the growth of the NIS domain reaches a point of
needing more server bandwidth.

Enabling an NIS client requires two main steps:

1. Adapt the client’s administrative files to the NIS environment so the client can
benefit from NIS.

2. Start the ypbind daemon, which allows the client to make NIS queries from the
“chosen” server. The algorithm to choose a server is trivial: the client sends
a broadcast query for available servers and bind to the first one that has
responded to the query. The established relationship remains valid as long as the
NIS communication between two hosts exists.

Two basic yp daemons define NIS activities on the host (the prefix yp originates from the
initial name for the service yellow pages, which was later changed to NIS). The ypserv
daemon runs on an NIS server, the ypbind daemon runs on an NIS client, and both
daemons run on an NIS server-and-client host. The daemons must be started during the
system startup (booting) if other required conditions are fulfilled. They can be invoked
manually from the command line also, but the manual start is supposed only the first
time upon the NIS installation and during the testing.

A typical rc startup sequence for the NIS looks like:

.
dname = �domainname�
if [“$dname” -a -d /var/yp]; then

echo “NIS domainname is $dname”
echo -n “starting NIS services:”
if [-f /usr/etc/ypserv -a -d /var/yp/$dname]; then

ypserv; echo -n ‘ypserv’
Master NIS server runs the XFR daemon
otherwise should be commented-out
ypxfrd; echo -n ‘ypxfrd’

fi
.
NIS client runs the YPBIND daemon (most common case)
otherwise should be commented-out (very rare case)
ypbind; echo -n ‘ypbind’
.

fi

What are the requirements to start the yp daemons? First, this is the defined NIS
domain, which is easily tested in the first line; the command domainname will return
the name of the NIS domain and set the variable $dname appropriately. The following
if statement provides the rest if the host belongs to the NIS domain. The daemons ypserv
and ypxfrd will be invoked only if the NIS-related directory /var/yp/$dname exists —

© 2002 by CRC Press LLC

this is the directory where the NIS database is kept (the existence of NIS database
indicates the role of the host as an NIS server). Otherwise, the host is NIS client-only
and the client daemon ypbind is started. By commenting certain lines in the rc script, it
is possible to adjust the startup sequence for the master server, as well as a server-only
host.

The ypserv is the NIS server daemon and it is running on every server-host; the ypxfrd
daemon enables a push of NIS maps from the master server to slave servers and it runs
on the master server. NIS maps should be pushed from the master server to slave servers
always when changes occur; otherwise changes will not be properly propagated through
NIS domain. A periodic pushing could also be scheduled through the cron facility
independently of the actual map changes. However, to overcome any possible gap
between two scheduled map transfers and changes of those maps, it is a good idea to
push updated NIS maps from master to slave servers immediately upon their modifica-
tion. NIS software supports such an approach and provides the needed tool for that
purpose; it is based on the standard UNIX make utility and the provided description file
/var/yp/Makefile that could be easily customized for specific server’s needs. We will return
to this topic later.

17.2.2 To Create an NIS Server

The presented rc startup procedure assumes the NIS domain was already set, independently
of the nature of the host itself. However, the procedure to set NIS for the first time is
slightly different. An NIS master server should be created first, then NIS slave servers,
and finally NIS clients. Pay attention that only one master server for the NIS domain can
exist. So let us start with the NIS master server. We will follow the creation procedure
performed from the command line:

17.2.2.1 Set the NIS domain

Execute the domainname command, with the name of the NIS domain as its argument:

domainname NISdomain

where
NISdomain should be an actual name of the NIS domain.

17.2.2.2 Set the Master Server
Execute the command:

/full-pathname/ypinit -m

The ypinit command is not in the usual command search path (for the obvious reason
of preventing its accidental execution), so the full command pathname must be specified.
Depending on the UNIX flavor, the common directories where the command lives are
/usr/etc/yp or /usr/sbin. The command interactively creates the domain subdirectory
/var/yp/NISdomain and then builds a complete set of NIS maps based on the local “/etc
files.” Keep in mind that /etc files on the master server fully define the NIS maps and in
that way fully determine NIS policies. An example of how to create the NIS master server

© 2002 by CRC Press LLC

follows (the host is named NISmaster and everything happens on the Solaris 2.x platform —
the procedure is interactive and the entered responses are presented in bold-italic):

$ /usr/sbin/ypinit -m
In order for NIS to operate successfully, we have to construct a list of the NIS servers. Please continue to
add the names for YP servers in order of preference, one per line. When you are done with the list, type a
<control D> or a return on a line by itself.

next host to add: NISmaster
next host to add: NISslave
next host to add: [Enter another hostname]
next host to add: [Enter another hostname]
next host to add: [Hit Enter key]

The current list of yp servers looks like this:
NISmaster
NISslave
another slave server name
another slave server name
Is this correct? [y/n: y] y
Installing the YP database will require that you answer a few questions.
Questions will all be asked at the beginning of the procedure.
Do you want this procedure to quit on non-fatal errors? [y/n: n] n
OK, please remember to go back and redo manually whatever fails. If you don’t, some part of the system
(perhaps the yp itself) won’t work.
The yp domain directory is /var/yp/NISdomain
Can we destroy the existing /var/yp/NISdomain and its contents? [y/n: n] y There will be no further questions.
The remainder of the procedure should take 5 to 10 minutes.
Building /var/yp/NISdomain/ypservers…
Running /var/yp /Makefile…
updated passwd
updated group
updated hosts
updated ethers
updated networks
updated rpc
updated services
updated protocols
updated netgroup
updated bootparams
updated aliases
updated publickey
updated netid
updated netmasks
updated timezone
updated auto.master
updated auto.home
updated auto.direct
updated auto.share
updated locale
NISmaster has been set up as a yp master server without any errors.
If there are running slave yp servers, run yppush now for any data bases which have been changed. If there
are no running slaves, run ypinit on those hosts which are to be slave servers.

The first created map is “ypservers,” which includes the names of all NIS servers for this
NIS domain, based on the host names entered by the administrator during the master
server creation. This map is crucial for an update of the NIS databases on the slave servers,
because it contains a list of the registered slave servers. It is assumed that at this moment
the specified slave servers are not yet running NIS; if they are, it is a good idea to recreate
them as the slave servers. Also, ypinit does not check for other possible master servers

© 2002 by CRC Press LLC

in the same NIS domain, it is up to the administrator to ensure that multiple master servers
are not created.

Once ypinit -m finishes, the NIS service should be started manually by issuing the
ypserv command; the rc startup script can also be used, everything needed for the proper
script execution should be there).

17.2.2.3 Set the Slave Server
Execute the command:

/full-pathname/ypinit -s NISmaster

where NISmaster is the name of the master server.
Here is an example (the host is named NISslave and the implemented platform is again

Solaris 2.x; the entered responses are presented in bold-italic):

$ /usr/sbin/ypinit -s NISmaster
Installing the YP database will require that you answer a few questions.
Questions will all be asked at the beginning of the procedure.
Do you want this procedure to quit on non-fatal errors? [y/n: n] n
OK, please remember to go back and redo manually whatever fails. If you don’t, some part of the system (perhaps
the yp itself) won’t work.
The yp domain directory is /var/yp/NISdomain
Can we destroy the existing /var/yp/NISdomain and its contents? [y/n: n] y
There will be no further questions. The remainder of the procedure should take a few minutes, to copy the data
bases from NISmaster.
Transferring locale.byname…
Transferring auto.share…
Transferring auto.direct…
Transferring auto.home…
Transferring auto.master…
Transferring timezone.byname…
Transferring netmasks.byaddr…
Transferring netid.byname…
Transferring publickey.byname…
Transferring mail.byaddr…
Transferring mail.aliases…
Transferring bootparams…
Transferring netgroup.byhost…
Transferring netgroup.byuser…
Transferring protocols.byname…
Transferring services.byservicename…
Transferring services.byname…
Transferring rpc.bynumber…
Transferring networks.byaddr…
Transferring networks.byname…
Transferring ethers.byname…
Transferring netgroup…
Transferring ethers.byaddr…
Transferring hosts.byaddr…
Transferring hosts.byname…
Transferring group.bygid…
Transferring group.byname…
Transferring passwd.byuid…
Transferring protocols.bynumber…
Transferring ypservers…
Transferring passwd.byname…
NISslave’s nis data base has been set up without any errors.

© 2002 by CRC Press LLC

The newly created slave server will pull NIS data from the master server and store its
own copies of the maps; the slave server must be included in the ypservers map, otherwise
the master server will reject the transfer of maps. If a new slave server is not included in
the map (it is realistic situation, because the new slave server could be added later), the
ypservers map on the master server must be re-edited. How can an NIS map be re-edited?

The ypservers map cannot be re-edited literally. NIS maps are not ASCII files and their
contents are odd and noncomprehensive; they are in the ndbm format that is not readable
at all, but is very convenient for fast machine searching. Each NIS map is built (for better
understanding, we can say compiled) from a corresponding source ASCII file. Re-editing
an NIS map means to re-edit its source file and then recompile the map itself. For the
most part, the source files are usually configuration /etc files on the master server. However,
in the case of the NIS map ypservers, there is no corresponding source file at all; this map
has been built based on the supplied data during the master server creation. Consequently
to re-edit this map is a tricky business. One possible approach is:

First, the old contents of the ypservers map must be dumped into an arbitrary temporary
file:

$ ypcat -k ypservers > /tmp/ypservers

Keep in mind that the ypcat command dispalys the map contents in a comprehensive
ASCII format. Then, edit the ASCII file /tmp/ypservers and add a new slave server:

$ vi /tmp/ypservers

Finally, make the new ypservers map based on the re-edited /tmp/ypservers file (the
implemented UNIX utility makedbm provides the needed map compilation):

$ cat /tmp/ypservers | /usr/sbin/makedbm - /var/yp/�domainname�/ypservers

The new slave server is now included into the ypservers map, and the master server will
treat it correspondingly. The master server uses the ypservers map to identify registered
slave servers for NIS databases pushing. NIS clients do not base their binding to the slave
servers on this map; clients do not check servers for eligibility, they simply trust servers.
This means that even if this map is not propagated after an update, it will not affect overall
NIS behavior. But this also means, that a not-registered slave server could be accepted by
clients as the eligible one, which is a security risk.

The ypcat command is used to read the contents of the NIS maps; its -k option
(which prints each value with the preceding associated key) is required in the case of the
ypservers map.

17.2.2.4 Start NIS Service
Finally, when ypinit -s finishes, the NIS service should be started manually by initiating
the ypserv daemon (simply by issuing the ypserv command, or ypstart command, or even
the corresponding rc start script for NIS).

17.2.3 To Create an NIS Client

The procedure presented here is the traditional, and still the prevailing, approach for the
majority of UNIX flavors in creating an NIS client; some modern UNIX flavors could
require a slightly different procedure to accomplish the same task. Both approaches are
addressed within the presented steps.

© 2002 by CRC Press LLC

1. Make sure that local /etc files on the client host (primarily /etc/passwd and /etc/group)
include the NIS marker “+” as the last entry. The “+” marker indicates that the NIS
map should be appended to the local configuration file; otherwise, the local config-
uration data will be ignored. Remember that modern UNIX flavors could handle
this request differently, primarily through the /etc/nsswitch.conf file (we will discuss
this issue later).

2. Afterward, execute the domainname command to set the NIS domain name:

domainname NISdomain.

where NISdomain is the name of the NIS domain.
3. Finally, start the ypbind daemon, which is responsible for locating the closest

NIS server and maintaining the binding with the chosen server (the NIS rc startup
script can be used instead).

17.2.4 NIS Domain Name

We see that a host understands that it belongs to a certain NIS domain if it can locally
extract the name of the NIS domain, that is, if the NIS domain is set on this host. There
is no list of valid or invalid domain names, so any extracted name is accepted as valid;
an NIS domain could simply be set (with any extracted name) or unset (there is no
extracted name). The host will accept that name and look up the corresponding NIS
server/servers. The NIS domain name is an arbitrary name, but it is a good idea to use
some logical names (not because of the NIS hosts — for machines there are no senseless
names; mostly because of us, to understand NIS organization more easily). There was an
opinion in the past that some advantages exist if this name matches the DNS domain
name. I have never figured-out any advantage of that kind, except that in the past some
network applications could be confused if these names were different; but those times are
far behind us. In most cases it is not even possible do match NIS and DNS domain names.

The NIS domain name is set by the domainname command, and it is usually saved in
the file /etc/defaultdomain). For example, to set the name of the NIS domain to NISdomain,
and then check out later, the following command sequence can be used:

$ domainname NISdomain

$ domainname

NISdomain

$ cat /etc/defaultdomain (on Solaris, HP-UX, SunOS …)
NISdomain

Bear in mind that this is not the case for every UNIX flavor. Sometimes the specified
NIS name is not even saved in any file — rather it is kept in the memory. For the permanent
NIS setting, another supposed file must be manually edited, and by reading that file during
the startup, the system learns about NIS and keeps it in the memory. This is the case on
Linux, and the mention file is /etc/sysconfig/network — entry DOMAINNAME.

Unfortunately, these files or entries are misinterpreted as the DNS domain name; sometimes
administrators make the mistake and even try to set DNS in that way. It only confuses
the system, which now recognizes itself as an NIS client in a not-existing NIS domain.
Remember, in DNS there is no an explicit location for the DNS domain name; this is
indirectly specified within the /etc/resolv.conf file (directive domain or search).

© 2002 by CRC Press LLC

17.2.5 Databases/NIS Maps

The NIS maps are the central issues of the Network Information Service; they are propagated
through the network and accessed by each host in the NIS domain. NIS maps contain
administrative data generated on the single place (master server) but spread over the
network and used by all clients. Clients use these maps exclusively or combined with
their own local administrative data; NIS maps can replace (local data are completely
ignored) or be appended to the local data. Basically the client’s search for needed data is
terminated once the match is accomplished. Originally, when maps were appended, local
data had priority over maps. Modern UNIX flavors could reverse this default search; they
allow users to customize the search pattern within the /etc/nsswitch.conf file. We will discuss
this approach later; for the moment, we will follow the traditional approach.

The following table lists NIS maps with brief explanations about their nature:

NIS Map Source Integration Description

ypservers NIS servers names Replace The list of NIS servers
bootparams /etc/bootparams Append Boot server names for diskless nodes
ethers.byname /etc/ehters Replace Used by RARP
ethers.byaddr /etc/ehters Replace Used by RARP
group.byname /etc/group Append Groups in the NIS domain
group.bygid /etc/group Append Groups in the NIS domain
hosts.byname /etc/hosts Replace Host database
hosts.byaddr /etc/hosts Replace Host database
mail.aliases /etc/aliases Append E-mail aliases
mail.byaddr /etc/aliases Append E-mail aliases
netgroup.byhost /etc/netgroup Replace Groups of hosts and users
netgroup.byuser /etc/netgroup Replace Groups of hosts and users
netid.byname UID & GID info Derived Data derived from group, password, and hosts files;

includes user-group data
netmasks.byaddr /etc/netmasks Replace Networks and netmasks data
networks.byaddr /etc/natworks Replace Network names and IP addresses
networks.byname /etc/natworks Replace Network names and IP addresses
passwd.byname /etc/passwd Append User login data
passwd.byuid /etc/passwd Append User login data
protocols.bynumber /etc/protocols Replace Protocol names and numbers
protocols.byname /etc/protocols Replace Protocol names and numbers
rpc.bynumber /etc/rpc Replace RPC numbers
services.byname /etc/services Replace Service names

Note: Two NIS maps, ypservers and netgroup, are strictly NIS related; for netgroup the corresponding source
files must be created. Other custom-made maps can be also created.

The NIS map column lists existing NIS maps. Occasionally there are two maps for the
same administrative purpose; the two maps contain the same data sorted in different
ways, appropriate for a fast data search based on the corresponding search-key.

The Source column lists the source data files for the corresponding NIS maps. These
are mostly well-known administrative (configuration) /etc files.

The Integration column specifies whether an NIS map fully replaces the corresponding
source file (the data in the file are ignored), or if it is appended to the file (first the file is
read, and then the NIS map if the data was not found).

The Description column gives a brief description of the corresponding NIS map.
The NIS maps live only on NIS servers; for the supposed NIS domain named

NISdomain they are located in the directory /var/yp/NISdomain. Here is an example
(Solaris 2.x):

© 2002 by CRC Press LLC

$ ls -C /var/yp/‘domainname’
auto.direct.dir netgroup.dir
auto.direct.pag netgroup.pag
auto.home.dir netid.byname.dir
auto.home.pag netid.byname.pag
auto.master.dir netmasks.byaddr.dir
auto.master.pag netmasks.byaddr.pag
auto.share.dir networks.byaddr.dir
auto.share.pag networks.byaddr.pag
bootparams.dir networks.byname.dir
bootparams.pag networks.byname.pag
ethers.byaddr.dir passwd.byname.dir
ethers.byaddr.pag passwd.byname.pag
ethers.byname.dir passwd.byuid.dir
ethers.byname.pag passwd.byuid.pag
group.bygid.dir printers.conf.byname.dir
group.bygid.pag printers.conf.byname.pag
group.byname.dir protocols.byname.dir
group.byname.pag protocols.byname.pag
hosts.byaddr.dir protocols.bynumber.dir
hosts.byaddr.pag protocols.bynumber.pag
hosts.byname.dir publickey.byname.dir
hosts.byname.pag publickey.byname.pag
locale.byname.dir rpc.bynumber.dir
locale.byname.pag rpc.bynumber.pag
mail.aliases.dir services.byname.dir
mail.aliases.pag services.byname.pag
mail.byaddr.dir services.byservicename.dir
mail.byaddr.pag services.byservicename.pag
netgroup.byhost.dir timezone.byname.dir
netgroup.byhost.pag timezone.byname.pag
netgroup.byuser.dir ypservers.dir
netgroup.byuser.pag ypservers.pag

The format of NIS maps is known as ndbm; the ndbm format is suitable for fast machine
searching, but it is not readable; NIS maps are adopted to machines, not to human beings.
Each NIS map actually includes two files identified with the extensions “dir” and “pag.”
We will return to the ndbm format later.

Once NIS is running, references to the local administrative files are handled in two
fundamentally different ways:

1. The NIS maps replace files; local files are ignored. These include the following
files: ethers, netmasks, networks, protocols, rpc, services, and netgroup (the last
one is a special case).

2. NIS maps append to some files; the files are read first, and only if the appropriate
entry is not found will the NIS maps be queried. These include the following
files: passwd, bootparams, group, and aliases.

Traditionally to append an NIS map, the corresponding file had to include an “NIS
marker” entry as the last configuration line. This is a special entry that starts with the
plus sign (+), followed by the colon separator to make it fit the syntax of the file. The plus
sign indicates that more data can be found in the corresponding NIS map. Even for modern
UNIX flavors that handle this differently, the plus sign does no harm.

By appending an NIS map to the file, it is possible to specify local configuration data
applicable only to the specific client-host and make it different from other NIS hosts. In
this case, centralized NIS databases include global data, while needed exceptions could

© 2002 by CRC Press LLC

easily be realized through the local data. For example, certain users could be authenticated
only locally and have access only to certain hosts, not to each host in the NIS domain.

Make sure that the superuser authentication is always provided locally, independently
of the NIS settings. The root password is too sensitive an issue to be uniform all over the
network. If it were, the root password from the master server would be valid everywhere;
it would be too much!

17.2.5.1 The /etc/netgroup File

One of the first network-specific issues that NIS addressed was the so-called network group.
In the network environment, there is a real need to group and uniquely identify users
from different hosts and different parts of the network because they share something in
common; they could be involved in the same project, or share the same information space,
or whatever). NIS offered a solution in the form of the netgroup.

The NIS map netgroup was introduced, as well as the new source configuration file for
that purpose /etc/netgroup. Obviously this file has a sense only if NIS is running, and more
precisely, the file has to exist only on the master NIS server. The file specifies groups of
hosts and users that can be referenced with a single pointer — users on different hosts,
even different NIS domains, can form a netgroup and be treated together. Basically,
netgroup entries are similar to group entries on a stand-alone system, except that they are
not restricted to the single host. However, netgroup entries do not imply any owner/permission
relationship — they act strictly as pointers.

The basic format of an entry in the /etc/netgroup file is:

groupname member [member] …

where
groupname Any name assigned to a netgroup.
member An item included in the group, which can be:

Another netgroup
Individual item defined by the triple: (hostname, username,
domainname)

An omitted argument in the domainname field indicates the netgroup is
valid in the current NIS domain; a hyphen (-) in the hostname and username
fields means that no value is included.

17.3 NIS Management

Once NIS is set, it works quite well, hidden from users and in some ways even hidden
from administrators. However, as everything else, NIS also requires maintenance — check-
ing the NIS status and modifying and updating the NIS database are regular administra-
tive duties. NIS is an extremely useful network service, but sometimes NIS can cause a
lot of headaches. Usual UNIX commands cannot be efficiently used; that is why NIS has
introduced a number of new commands to handle NIS processes and maps in order to
make this management easier. Today these commands are mostly standard on every UNIX
platform. A brief survey of some useful NIS-specific commands follows.

© 2002 by CRC Press LLC

17.3.1 yp Commands

The NIS-specific commands (we will call them yp-related commands) live in several
directories, most often /bin, /usr/sbin, and /usr/lib/netsvc/yp. It is very easy to recognize these
commands; they start with the prefix yp. The following table briefly describes the com-
mands (the command layout is from Solaris 2.x; some differences are possible on other
UNIX flavors):

yp Command Description

/bin/ypcat Prints all values in an NIS map; the -k option is required for the ypservers
map:

ypcat -k ypservers

/bin/ypmatch Prints values of selected keys in an NIS map, for example to display
password data for the user “bjl”:

ypmatch bjl passwd

/bin/yppasswd Changes the login password in the NIS database without affecting local
data. It behaves very much like the regular passwd command.

/bin/ypwhich Lists which host is a current NIS server and supplies NIS services for the
host; very useful command to check the current binding of an NIS client
toward available NIS servers.

/usr/sbin/ypalias Changes aliases in the NIS database.
/usr/sbin/ypinit Builds and installs NIS databases on a master or slave NIS server (already

discussed).
/usr/sbin/yppoll Queries a specified NIS server (the default is the bound server) for

information about a specific NIS map. The information includes the time
(in seconds) when the map was built, and a master server for the map.
For example, to get information about the group map:

/usr/sbin/yppoll -h NISslave group

or

/usr/sbin/yppoll group

/usr/sbin/ypset Binds the client to a particular NIS server. It is useful for
binding an NIS client that is not on a broadcast network,
since broadcasting is a method by which the ypbind process
(a client) locates an NIS server. If ypbind is already bound
to a ypserv process, this command can have an effect only if ypbind
was started with the -ypset option that allowed a change in the current
binding (this is specific to Solaris).

/usr/lib/netsvc/yp/ypbind The NIS client process (already discussed).
/usr/lib/netsvc/yp/yppush Forces a propagation of the specified NIS map (database) from the master

server toward slave servers.
/usr/lib/netsvc/yp/ypserv The NIS server process (already discussed).
/usr/lib/netsvc/yp/ypstart Starts and stops NIS services, ypstart automatically determines the
/usr/lib/netsvc/yp/ypstop NIS configuration status of the system and starts the appropriate daemons,

and ypstop stops the NIS daemons.
/usr/lib/netsvc/yp/ypxfr Starts the transfer of an NIS map (database) from an NIS server.

The cron facility should be used for periodic execution of the command
command to keep the NIS database synchronized.

/usr/lib/netsvc/yp/ypxfr_1p erday Template scripts for a periodic start of an NIS maps (database)
/usr/lib/netsvc/yp/ypxfr_1p erhour transfer: once daily, once per hour, and twice daily.
/usr/lib/netsvc/yp/ypxfr_2p erday
/usr/lib/netsvc/yp/ypxfrd The NIS database transfer daemon (already discussed).

© 2002 by CRC Press LLC

17.3.2 Updating NIS Maps

The NIS maps update is the most frequent activity in NIS management. Each change in
configuration requires the map update and propagation; for example, when a new user
is added or when a new group is created, the corresponding NIS maps must be updated
and pushed toward all slave servers. This is a routine procedure, and often some front-end
tool is provided (sometimes even self-made) to make this routine job even easier. We will
forget about possible tools, and suppose that everything must be done from the command
line. First, any changes and map updates are always performed on the NIS master server;
once the source /etc file is modified, it is necessary to rebuild the corresponding NIS map
(the map update actually means to rebuild the map). Afterward the map is ready to be
pushed to slave servers; in that way databases on the master and slave servers remain
synchronized.

Behind the scenes the routine procedure to update and push an updated NIS map is
quite complex and requires a number of sequential steps to be executed. Each of those
individual steps could essentially be accomplished from the command line, but it will be
a real nightmare to follow the required algorithm thoroughly. However, UNIX provides
efficient engineering tool for such scenarios: this is the UNIX make command (or rather,
the make utility) that can simplify the execution of very complex algorithms to the point
of issuing only a single command, the make command itself.

It is out of the scope of this text to elaborate the make utility/command. Just to mention
briefly that make reads the description file (by default make is looking for the description
file named Makefile located in the current directory) and follows its instructions. The format
and syntax of the description file Makefile is specific but well known to the make command
itself. Each entry in the file describes (specifies) several individual steps to accomplish a
certain action; all entries together accomplish the task.

UNIX NIS software provides the needed Makefile to build NIS databases/maps; this is
the description file /var/yp/Makefile suitable for most NIS implementation. If some
domain-specific customization is required, it is not a big deal to modify this file; its content
is readable and quite comprehensive even for novices. Customization mostly means to
choose among several options, or rename or add some new NIS map.

17.3.2.1 The make Utility and NIS

With no arguments, make will try to create dbm databases for all NIS maps that are out-of-date,
and then execute yppush to notify the slave servers that there have been changes. Keep
in mind that the implemented algorithm (described by /var/yp/Makefile) includes the
comparison of timestamps of the source files and current maps to determine if the maps
are out-of-date; otherwise, it skips the map creation. The trick to force a map update is
just to modify the timestamp on the corresponding source /etc file without modifying
its content; the UNIX touch command does that.

If a map is supplied as an argument on the command line, make will update that map
alone. By typing make passwd, the password map will be created and pushed. Likewise,
make hosts and make networks will create and push the host and network maps, based
on the contents of the /etc/hosts and /etc/networks source files.

make uses three special variables: DIR, which gives the directory of the source files;
NOPUSH, which, when non-null, inhibits doing a yppush of the new database maps; and
DOM, used to construct a domain other than the master’s default domain. The default
for DIR is /etc, and the default for NOPUSH is the null string.

The /usr/sbin/makedbm command is used to create the NIS maps in the required ndbm
format; this command is invoked by the make utility. The command makedbm takes infile

© 2002 by CRC Press LLC

and converts it to a pair of files in ndbm format, namely outfile.pag and outfile.dir. Each line
of the input file is converted to a single dbm record. All characters up to the first TAB or
SPACE form the key, and the rest of the line is the data. The command understands the
continuation character “\” at the end of the line, but does not treat “#” as a comment
character. infile can be “-,” in which case the standard input is read. It also generates
a special entry with the key yp_last_modified, which is the date of infile (or the current time,
if infile is “-”).

The common options for the makedbm command are:

-l Lowercase; convert the keys of the given map to lower case,
so that host name matches, for example, can work independently
of upper or lower case distinctions.

-s Secure map; accept connections from secure NIS networks only.
-i yp input file Create a special entry with the key yp input file.

-o yp output name Create a special entry with the key yp output name.
-d yp domain name Create a special entry with the key yp domain name.

-m yp master name Create a special entry with the key yp master name. If no master
host name is specified, yp master name will be set to the local
host name.

-u dbmfilename Undo a dbm file; that is, print out a dbm file one entry per line,
with a single space separating keys from values.

makedbm requests a special “key value form” of the input file, which is different from
the existing “/etc source files.” It is very easy to write shell scripts to convert standard
source files (such as /etc/passwd) to the required key value form; a simple awk script can
make this efficiently:

#!/ bin/awk -f

BEGIN { FS = “:”; OFS = “\t”; }

{ print $1, $0 }

When implemented on the /etc/passwd file, the script will take the /etc/passwd file and
convert it to a form that can be read by makedbm to make the NIS file passwd.byname. In
that case the key is a username (the first field in the passwd entry), and the value is the
remaining line in the /etc/passwd file.

Similarly, the awk script implemented on the /etc/passwd file will take the /etc/passwd
file and convert it to a form that can be read by makedbm to make the NIS file
passwd.byuid.

#!/ bin/awk -f

BEGIN { FS = “:”; OFS = “\t”; }

{ printf (“%-10d”, $3); print $0 }

That is, the key is a userID (the third field in the passwd entry), and the value is the rest
of the line in the /etc/passwd file.

This is exactly what the make utility is doing before the makedbm command is
implemented.

© 2002 by CRC Press LLC

Once a corresponding NIS map is generated, it is pushed to NIS slave servers. The
Makefile defines each step in the execution of the make command/utility. An example
from Solaris/SunOS platform follows (the file is only partially presented):

cat /var/yp/Makefile
#
@(#)make.s cript 1.36 SMI
#
This file should reside in both /var/yp/Makefile and /usr/lib/NIS.Makefile.
It should only be executed from /var/yp.
#
==
Set the following variable to “-b” to have NIS servers use the domain name
resolver for hosts not in the current domain.
B=-b
#B= Will be discussed later!
==
DIR =/etc
DOM = �domainname�
NOPUSH = “”
ALIASES = /etc/aliases
YPDIR=/usr/etc/yp
YPDBDIR=/var/yp
YPPUSH=$(YPDIR)/yppush
MAKEDBM=$(YPDIR)/makedbm

.

.
MKALIAS=$(YPDIR)/mkalias
CHKPIPE= || (echo “NIS make terminated:” $@ 1>&2; kill -TERM 0)
k:

@if [! $(NOPUSH)]; then $(MAKE) $(MFLAGS) -k all; \
else $(MAKE) $(MFLAGS) -k all NOPUSH=$(NOPUSH);fi

all: passwd group hosts ethers networks rpc services protocols \
netgroup bootparams aliases publickey netid netmasks c2secure \
timezone auto.master auto.home auto_share
.
.

passwd.time: $(DIR)/passwd
@(awk ‘BEGIN { FS=“:”; OFS=“\t”; }/^[a-zA-Z0–9_]/{ print $$1, $$0 }’ $(DIR)/ passwd
$(CHKPIPE))\ | $(MAKEDBM) - $(YPDBDIR)/ $(DOM)/ passwd.byname;
@(awk ‘BEGIN { FS=“:”; OFS=“\t”; } /^[a-zA-Z0–9_]/{ printf(“%-10d “, $$3); print $$0 }’
$(DIR)/passwd\
$(CHKPIPE))| $(MAKEDBM) - $(YPDBDIR)/$(DOM)/passwd.byuid;
@touch passwd.time;
@echo “updated passwd”;
@if [! $(NOPUSH)]; then $(YPPUSH) -d $(DOM) passwd.byname; fi
@if [! $(NOPUSH)]; then $(YPPUSH) -d $(DOM) passwd.byuid; fi
@if [! $(NOPUSH)]; then echo “pushed passwd”; fi
group.time: $(DIR)/group

.

.
hosts.time: $(DIR)/hosts

@(sed -e “/^#/ d” -e s/#.*$$/ /$(DIR)/hosts $(CHKPIPE)) | \
($(STDHOSTS) $(CHKPIPE)) | \
(awk ‘{for (i = 2; i = NF; i++) print $$i, $$0}’ $(CHKPIPE))| \
$(MAKEDBM) $(B) -l - $(YPDBDIR)/ $(DOM)/ hosts.byname
@($(STDHOSTS) $(DIR)/ hosts $(CHKPIPE))| \
(awk ‘BEGIN { OFS=“\t”; } $$1 !~ /^#/ { print $$1, $$0 }’ $(CHKPIPE)) | \
$(MAKEDBM) $(B) - $(YPDBDIR)/ $(DOM)/ hosts.byaddr;
@touch hosts.time;

© 2002 by CRC Press LLC

@echo “updated hosts”;
@if [! $(NOPUSH)]; then $(YPPUSH) -d $(DOM) hosts.byname; fi
@if [! $(NOPUSH)]; then $(YPPUSH) -d $(DOM) hosts.byaddr; fi
@if [! $(NOPUSH)]; then echo “pushed hosts”; fi

ethers.time: $(DIR)/ ethers
.

networks.time: $(DIR)/ networks
.

services.time: $(DIR)/ services
.

rpc.time: $(DIR)/ rpc
.

protocols.time: $(DIR)/ protocols
.

netgroup.time: $(DIR)/ netgroup
.

bootparams.time: $(DIR)/ bootparams
.

aliases.time: $(ALIASES)
.

netmasks.time: $(DIR)/ netmasks
.

passwd: passwd.time
group: group.time

.

.
auto.share: auto.share.time
$(DIR)/ netid:
$(DIR)/ timezone:

As could be seen from this example, there are a number of references to files named
filename.time. These files are only used as references to the point in time when corresponding
maps were last updated. This means only source files modified after that time will be
processed; otherwise, there is no need for an update — the latest version of the map already
exists. The only interesting parts of the filename.time files are the associated timestamps; the
files themselves are zero-sized, which can be seen in the following long listing of these files:

$ ls -l /var/yp/*.time
-rw-r--r-- 1 root other 0 Jul 21 11:36 ../ aliases.time
-rw-r--r-- 1 root other 0 Jun 24 09:51 ../ auto.direct.time

. . . .

. . . .
-rw-r--r-- 1 root other 0 Jul 21 11:37 ../ passwd.time
-rw-r--r-- 1 root other 0 Jun 24 09:51 ../ protocols.time
-rw-r--r-- 1 root other 0 Jun 24 09:51 ../ publickey.time
-rw-r--r-- 1 root other 0 Jun 24 09:51 ../ rpc.time
-rw-r--r-- 1 root other 0 Jun 24 12:04 ../ services.time
-rw-r--r-- 1 root other 0 Jun 24 09:51 ../ timezone.time

17.3.3 Troubleshooting

From an administrative standpoint, NIS is a great network service; it makes overall
administration faster, easier, and most important, consistent over the whole network.
Unfortunately, in real life everything is not so smooth. Occasionally NIS can experience
unexpected problems and complications: temporary breaks in network communication
can cause unexpected behavior in the yp processes, and consequently NIS can respond in

© 2002 by CRC Press LLC

a very strange way. Some tips on checking NIS for possible problems are listed in the text
that follows.

• Use the ypcat command to check the contents of an NIS map. For example, if
a user cannot login, first check to see if the user is an eligible NIS user at all;
use the command:

ypcat passwd | grep bjl

bjl:TsVN4O2C6IFGM:1215:1001:B.J.L:/home/bjl:/bin/ksh

It will present all password data for the specified user “bjl.” The ypmatch com-
mand can also be instrumental in such situations. Make sure that the names of
the maps do not include the extensions we normally see in a listing of the
directory /var/yp/�domainname�.

• Occasionally you might need to find out which NIS server is bound to a certain
client-host; knowing the bound NIS server makes it much easier to trace any
NIS related problem. Use the ypwhich command; inappropriately bound NIS
servers can cause a lot of trouble. For example, by logging into the NIS client
and typing:

ypwhich

NISServerName

the currently bound NIS server will be shown. Is this the server you were
expecting? Is it the closest server, or is it strange that this server is bound at all?
These are questions that may arise.

• Suppose you want to switch the client toward another NIS server, or in the NIS
terminology to bind with another server. This is not an easy task. Binding is
a negotiated session between the client and the server that first responded to the
client broadcast call; a bind remains active as long as the server provides NIS
services, i.e., responds to the client’s queries. To accomplish this task, you have
to do the following:

The first step might be to stop and restart the ypbind process — the client will
probably now bind another server that we expect to be free. Let us figure out
the process ID:

ps -ef | grep ypbind | grep -v grep

root 14228 1 0 Apr 13 ? 0:05 /usr/lib/netsvc/yp/ypbind

Then stop the daemon:

kill 14228

And finally restart the daemon:

/usr/lib/netsvc/yp/ypbind

• If the result is not the one expected and the same server remains stubbornly
bound, then more drastic action is required. For example, you might temporarily
stop the ypserv daemon at the NIS server itself; obviously the client will then be
forced to bind to another server. Afterward, the ypserv daemon can be restarted.
The commands /usr/lib/netsvc/yp/ypstop and /usr/lib/netsvc/yp/ypstart are avail-
able if you ever decide on such an action. However, this could be too drastic; do
not forget that even a short stoppage of the ypserv daemon at the NIS server will
affect other clients, too.

© 2002 by CRC Press LLC

• NIS actually provides a command to set NIS binding arbitrarily; this is the
ypset command. Unfortunately, some UNIX flavors (like Solaris) restrict the
use of the command — by default the ypset command is disabled. The ypbind
daemon must be started with the -ypset option to enable the command. This
makes everything more difficult in the real life, but this possibility is worth
remembering.

• The worst-case scenario is the need to rebuild a complete NIS domain, to rebuild
a master server and all slave servers with the same or a changed configuration.
Although it sounds dramatic, an NIS rebuild is a very fast procedure and can
often be accomplished without affecting current production.

• Occasionally, you will need to force a rebuild and push of some of the NIS
maps. The simplest way is to change the timestamp of the corresponding source
file (there is no need to modify the file itself), and then to follow the usual
procedure for a map update. Of course, everything happens at the master
server, for example:

touch /etc/passwd

cd /var/yp

make passwd

17.3.4 Security Issues

NIS is an extremely helpful network service and is widely used and supported by all UNIX
flavors. However, it is also fair to say that NIS does have some inherent security holes that
make it more vulnerable to potential intruders. The NIS security drawback is so acute that
sometimes NIS is not even allowed to be considered as an option. This is the case with
networks where security is the most important issue and has the highest priority.

There is no magic formula to define the security boundaries for the safe NIS usage. This
decision remains to the designers and administrators of each individual subnetwork; there
is always a tradeoff between NIS advantages and disadvantages. The following text points
to the two major NIS-related security issues.

The first disadvantage is that NIS makes all encrypted passwords visible. Even
though NIS servers and clients hide local encrypted passwords in the /etc/shadow file,
making them invisible to potential intruders, NIS advertise them on the network. NIS
uses encrypted passwords for the authentication of NIS users, and they are transferred
over the network within the NIS passwd map — first when it is pushed to slave servers,
but also whenever an NIS client queries for the password to authenticate a specific
user.

The fact that the passwd map includes encrypted passwords also means that any user
can read the map and get this data. For example:

ypcat passwd
tthacker:aQ0mpUfu7OuGs:2889:1034:Tom Thacker:/home/tthacker:/bin/ksh
selliott:eDZUQCN5X3ylY:2873:1034:Sam Elliott:/home/selliott:/bin/ksh
lcreasey:BcJdCeqYm7O8U:2530:1034:Lean Creasey:/home/lcreasey:/bin/ksh
jjohnsto:RNJtQ/4wiaBBs:3036:1019:John Johnston:/home/jjohnsto:/bin/ksh

.

.
root:J.WEn2PxKhlbg:0:1:Operator:/:/bin/ksh

.

.

© 2002 by CRC Press LLC

This command will display all data about all NIS users, including the encrypted passwords;
even the superuser data at the master server will be posted. For an intruder, this is a good
starting point to try to break a password.

The second disadvantage is less feasible, but is still a pending security problem. We
have already mentioned that NIS binding does not include any security checkup; the
ypservers map is not even checked as a part of this procedure. An NIS client sends
a broadcast query and simply trusts to the NIS server that has first responded and
identified itself as a server for this NIS domain. The very same server continues to supply
the client host with all administrative data, including user login names and passwords;
obviously such a server has full control over this client.

Let us suppose an intruder has built a fake NIS server in your network. This server is not
in the ypservers map, but this map only restricts pushing of the data from the master server
toward slave servers. The fake server has fake maps, sufficient to break into the client host.
Once the intruder gains control of the real client host, the rest of the job becomes much easier.

It should not be easy to build a fake server in the network that you administer. Regular
checkups should prevent such attempts. But to prevent something you must first be aware
of such a possibility, and that was the purpose of this text.

17.3.5 A Few NIS Stories

17.3.5.1 Too Large an NIS Group
NIS domains cover several dozen UNIX servers and more than a thousand users. Each
user has login access to each host, but the access to certain data, i.e., certain files, is
restricted and based on the file’s group ownership. Users belong to multiple secondary
groups and accordingly can use the needed data. The master NIS server is Solaris 2.6 box,
and NIS load is properly spread over several slave servers. The problem appeared when
the size of certain secondary groups hit NIS limits.

Each secondary group is specified as a single line in the /etc/group file on the master server
(in the usual UNIX way). However, NIS cannot swallow the lines longer than 1K characters;
once the group hits the limit, the conversion into ndbm format fails. The addition of new users
into the groups and the growth of the group entries soon caused the problem — the system
could not create a group map properly. How is this inherent NIS restriction overcome?

• The first idea was to make smaller secondary groups and then merge them into one
larger group. However, UNIX does not allow specifying a group as a member of
another group; only users can be members of the group. So this idea did not work.

• Another idea was to decrease the size of the secondary groups by changing
the user’s primary group in a way to match our needs. This worked, but only
for a while. Despite the required tedious work to modify two configuration files
— /etc/passwd and /etc/group — this painful situation soon became unmanageable.
We had to look for another solution.

• Could we try with netgroup? At least we could combine multiple groups together
without restriction. But the netgroup is just a pointer, it does not own any
resource. It can work for some other situation, but not in this case.

• It seems that the only workable solution is to create multiple smaller secondary
groups with the same GID (group ID number). UNIX does not care about group
name, it looks only for GIDs. So users that belong to groups with different group
names can access the same files that are owned by the same GID; obviously
it works.

© 2002 by CRC Press LLC

The author is not delighted with this solution, but it seems to be the only one that works.
In UNIX multiple names associated with the same ID number (whether these are groups
or users) are technically feasible, but this is not a healthy approach. Under certain condi-
tions it could be quite confusing when data are displayed.

17.3.5.2 Invalid Slave Server

The NIS domain was in production for quite some time. In the meantime, several slave
servers had been added and removed from NIS. Everything appeared to be properly done.
Suddenly, users started complaining that they could not log in to one of the most important
production hosts. The funny side of this story is that some other users could log in to the
same host, and they could do their jobs without any problem. What has caused the
problem?

After some investigation on the host, the administrator realized that the bound slave
NIS server was one of the obsolete machines that used to be a slave server in the past,
but had been removed from NIS a long time ago. What happened suddenly and why was
NIS service only partially provided now?

The happy ending of this story is quite simple. When this obsolete slave server was
removed from NIS, the cleaning job was not properly and completely done. The NIS server
daemon ypserv had been stopped and the machine really ceased to provide NIS service.
The server map ypservers was also properly cleaned from the old slave server entry, so
everything seemed to be OK. This machine continued to be an NIS client. However, the
NIS database in the directory “/var/yp/ �domainname�” had never been removed; database
contents corresponded to the time when the slave server was stopped and had not been
updated afterward.

Everything was OK up to the next machine booting. Once the machine was rebooted it
recognized itself as the slave server in this NIS domain (to understand why please check
the rc startup script) and started to provide NIS service from its obsolete database. At that
moment, our host found this machine to be the most convenient NIS server and started
to use its data to, among other things, authenticate users that tried to log in. Old users
that had not changed their authentication data in the meantime did not have any problem;
new users and users that had changed passwords could not log in to the host.

So the mystery was solved — every job, including the shutdown of the NIS server, must
be completely done; otherwise…

17.3.5.3 Change of the NIS Domain Name
NIS administration is not an area of great expertise for many UNIX administrators, espe-
cially managing many of its confusing and controversial issues. This is why it is often an
interview topic when UNIX administrators apply for jobs. For example, what will be your
response to the question: “Your task is to change the NIS domain name for the production
NIS domain with, let us say, five servers and 100 clients. How will you make this? Of course
any downtime is not allowed.”

Think about the following scenario:

• Shut down master server and one of the slave servers. The remaining three slave
servers should be sufficient to continue to provide NIS services. If this is not the
case, a temporary slave server could be added, of course before the master server
has gone down (it is assumed that the procedure to add the new slave server is
known — do not forget to modify ypservers map).

© 2002 by CRC Press LLC

• Recreate master server with the new domain name and old NIS database (local
/etc files remained the same). Recreate the downed slave server for the new
domain name. This step is actually equivalent to the procedure when servers
are created the first time — simply, we are creating the new NIS domain besides
the existing one. It does not affect current clients and slave servers that are not
yet part of the new NIS domain.

• Switch a number of clients (30–40%) to the new domain; change the domain name
(the command domainname), and recycle ypbind daemon on each of the clients.

• Shut down one more slave server and recreate for the new NIS domain.
• Switch another 20% of clients to the new NIS domain.

• Repeat the procedure for remaining slave servers and clients.

At the end, the old domain name is purged and the new domain name activated.

17.4 NIS vs. DNS

The domain name system (DNS) is the dedicated global service that spans the entire Internet
with only one goal — to provide information about hosts worldwide; to be more specific, to
provide host names and IP addresses. DNS is fully discussed in Chapter 16. The Network
Information Service (NIS) is a dedicated service to provide various administrative data for a
certain number of hosts contained within the specified NIS domain; these data also include
host names and IP addresses. Obviously DNS and NIS overlap in this sphere — host names
and IP addresses for the related hosts could be managed from both places.

The logical question is, can NIS and DNS coexist peacefully? The answer is definitely
yes, but it requires additional administration. Having in mind that the local /etc/hosts files
provide also the data about host names and IP addresses, we come to the three independ-
ent sources for the same data. Who has priority? How is data synchronized? What do you
do if the same data are inconsistent? These are only few of the potential problems that
we have to handle.

17.4.1 The /etc/nsswitch.conf File

Modern UNIX flavors, like Solaris, HP-UX, or Linux, provide a special name-service-
switch configuration file /etc/nsswitch.conf, which specifies the lookup policy used to define
the order and the conditions under which various sources are queried to obtain the desired
information. The lookup policy is defined by an nsswitch-entry specified by the system
administrator; this is a text line with an understandable syntax. The following sources
(databases) are allowed to be used in the specified policy: dns (domain name system), nis
(Network Information Service), and files (local configuration files).

An nsswitch-entry must be on a single line, and includes:

info-class : src [criteria src [criteria src]]

where
info-class Refers to the class of information being queried: for example, hosts for the

host name service resolution.

© 2002 by CRC Press LLC

src Refers to a source (network database) to be queried, as stated earlier (dns,
nis, and files).

criteria Optional field containing status=action pairs enclosed in square brackets,
which represent the criteria when, and how, to query the following source.
The valid status strings are: SUCCESS, NOTFOUND, TRYAGAIN, and
UNAVAIL. The valid action strings are: continue and return — to continue
query with the next source on the line if the associated status for this action
has occurred, or to terminate the search and return any result of the last
query. Default actions are:

For SUCCESS=return
For NOTFOUND=return
For UNAVAIL=continue
for TRYAGAIN=return

The only exception is that all the actions associated with the last source in
the entry are always set to return and cannot be overridden.

The following example from HP-UX 10.20 illustrates the different policies for querying
hostname resolution:

$ cat /etc/nsswitch.conf
#
This file contains different configurations to query hostname resolution.
Comment and comment-out corresponding entries that match the required policy.
#
To use DNS first then /etc/hosts, if DNS is either not up and running, or does
not contain any answer in its database
hosts: dns [NOTFOUND=continue] files
#
To use /etc/hosts first then DNS, if /etc/hosts does not contain any answer
in its database
hosts: files [NOTFOUND=continue] dns
#
To use NIS first then /etc/hosts, if NIS is either not up and running, or does
not contain any answer in its database
hosts: nis [NOTFOUND=continue] files
#
See the Administering Internet Services Manual and the switch(4) man page
for more information on the name service switch.
#

The origin name of this file is related to the host name resolution; thus the “ns” prefix
in the file name stands for the name service. However, only one nsswitch-entry in the file
strictly addresses this issue; other entries are related to other network services and arbitrate
between NIS and local databases for the corresponding service, like in the following
example on the Linux platform:

$ cat /etc/nsswitch.conf
/etc/nsswitch.conf
#
An example Name Service Switch config file. This file shoul be sorted with the most-used
services at the beginning.
#
The entry ‘[NOTFOUND=return]’ means that the search for an entry should stop if the search
in the previous entry turned up nothing. Note that if the search failed due to some other reason
(like no NIS server responding) then the search continues with the next entry.

© 2002 by CRC Press LLC

#
Legal entries are:
nisplus or nis+ Use NIS+ (NIS version 3)
nis or yp Use NIS (NIS version 2), also called YP
dns Use DNS (Domain Name Service)
files Use the local files
[NOTFOUND=return] Stop searching if not found so far
#
Example – obey only what nisplus tells us…
services: nisplus [NOTFOUND=return] files
networks: nisplus [NOTFOUND=return] files
protocols: nisplus [NOTFOUND=return] files
#
#passwd: files nis
shadow: files nis
group: files nis
#
hosts: files dns
#
bootparams: files
ethers: files
netmasks: files
networks: files
protocols: files
rpc: files
services: files
automount: files
aliases: files
#
netgroup: nis

Obviously this host is an NIS client. However NIS is not used for host name resolution.
The presented configuration is very common for NIS clients and it includes a number of
other configuration data.

17.4.2 Once upon a Time

It was some time before the /etc/nsswitch.conf file became the final solution to this “search-
among-many” issue. In the past, UNIX flavors handled this issue differently. There were
essentially three ways to integrate NIS with DNS:

1. Run NIS without DNS, which was the default procedure. Even if DNS was
running, routines that used NIS ignored DNS unless the necessary changes had
been made.

2. Use the NIS maps first, then go to DNS for host names that were not managed
by NIS.

3. Ignore NIS for host names and use only DNS. Using DNS without NIS required
a rebuilding of the library routines that looked up host names so they no longer
made NIS library calls.

Besides these, other specific approaches floated around. For example, in DEC’s ULTRIX
OS, the order in which the local /etc/hosts file, the NIS map, and the DNS name servers
were queried for host information was specified in the /etc/svc.conf file. SGI IRIX 4.X
included the nonstandard directive hostorder in the /etc/resolv.conf file to specify the
sequence in which the hostname/IP address data would be searched.

© 2002 by CRC Press LLC

SunOS 4.1.x required an additional intervention in the /var/yp/Makefile. For DNS to have
an effect, the entries with so-called magic cookies had to be modified from their default
values:

B =-b became B = -b

B= became # B =

Unfortunately, SunOS 4.1.x also carried another surprise: if NIS was not running on the
host, then DNS would not operate properly, despite the fact that the /etc/resolv.conf file and
other local DNS related data were set up correctly. The corresponding patch was released
to overcome this problem. There were rumors at that time that this was an intentional
bug; just to favor NIS over DNS — NIS was SunOS’s invention. I never determined if it
was an intentional or unintentional bug, but I remember very well it was quite painful to
put everything in operation.

© 2002 by CRC Press LLC

18
Network File System (NFS)

18.1 NFS Overview

The Network File System (NFS) is one of the network services that have quickly gained
a leading role in the emerging networked environment. NFS allows directories and files
to be shared across a network. It is supported by virtually all UNIX flavors and many
non-UNIX platforms. Through NFS, users and programs can access files residing at remote
systems as if they were local files. In an ideal NFS environment, users neither know nor
care where files are actually located. The benefits of such an approach are obvious:

• NFS reduces local disk storage requirements because a network can store a single
copy of a directory accessible by everyone on the network.

• NFS simplifies common support tasks, because files can be updated centrally
(at the single site) and yet be available through the network.

• NFS allows users to use familiar UNIX commands to manipulate remote files
instead of learning new ones; from the user standpoint everything is fully trans-
parent.

NFS is built on the RPC protocol (remote procedure call) and imposes a client-server
relationship on the hosts that use NFS. An NFS server is a host that owns one or more
filesystems and makes them available on the network; an NFS client mounts remote
filesystems from one or more servers, and uses them in a way equivalent to local
filesystems.

There are two aspects related to system administration when using NFS: choosing a
filesystem naming and mounting scheme, and then configuring the servers and clients to
adhere to this scheme. Users themselves do not know a lot about NFS, they simply benefit
from using it.

Certain actions are required on both the server and client sides to configure NFS. NFS
has introduced new terminology to identify the required steps in the procedure itself.
On the server side, to advertise and make a filesystem available on the network is known
as to export a filesystem, or to share a filesystem (as in Solaris 2.x); on the client side, to
implement an exported filesystem is known as to mount a remote filesystem. The two
actions are complementary: nonexported filesystems cannot be mounted, and non-
mounted exported filesystems cannot be used. We will discuss these issues in greater
detail later.

© 2002 by CRC Press LLC

18.1.1 NFS Daemons

NFS requires the full support of several daemons, which perform basic server and client
NFS-related functions. Based on the RPC model and protocol, NFS includes a number of
processes involved on both sides. The NFS related daemons are:

nfsd [option] The NFS server daemon, which runs on the server side. The daemon
services the client’s NFS requests. The option specifies how many
daemons should be started; the common value is eight.

biod [option] The NFS block I/O daemon handles the client side of the NFS I/O.
The option specifies the number of daemons to be started; the common
value is eight.

rpc.lockd The NFS lock daemon, which handles file lock requests on both
sides; a client requests file locks and a server grants them.

rpc.statd The NFS status monitor daemon, which provides monitoring services
requested by the rpc.lockd daemon. More specifically, this daemon
allows locks to be reset properly after a crash. The daemon runs on
both sides: client and server.

rpc.mountd The NFS mount daemon runs on the server side and processes the
client mount requests.

The NFS-related daemons are started during the system booting, within the corresponding
initialization script files. A typical startup sequence consists of several if statements and
appropriate commands, mostly like the one presented here:

.

.
if [-f /usr/etc/biod]; then

biod 4; echo -n ‘ biod’
fi
echo ‘.’

.

.
#
if the /etc/exports file exists it becomes the nfs server
#
if [-f /etc/exports]; then

>/etc/xtab
exportfs -a
nfsd 8 & echo -n ‘nfsd’
.
rpc.mountd -n
.

fi
.
.

#
start up status monitor and locking daemon if present
#
if [-f /usr/etc/rpc.statd]; then

rpc.statd & echo -n ‘statd’
fi

© 2002 by CRC Press LLC

if [-f /usr/etc/rpc.lockd]; then
rpc.lockd & echo -n ‘lockd’

fi
.
.

In order to start any of the NFS daemons, a very logical condition must be fulfilled:
a corresponding program must exist. However, for an NFS server, an additional condition
is required: the existence of the file /etc/exports, which actually represents the NFS config-
uration file and contains information about all directories the server is exporting to its
NFS clients; otherwise the nfsd daemon will not start. If the file exists, the command
exportfs is executed; this command reads the /etc/exports file and exports specified direc-
tories. The command also lists current information in the /etc/xtab file, which is later used
by the rpc.mountd daemon. This sequence is different on Solaris because of the existing
differences in file naming and locations.

18.2 Exporting and Mounting Remote Filesystems

18.2.1 Exporting a Filesystem

To avoid any confusion in the text that follows, we will try to make things clear at the
very beginning. Two terms are used to describe an NFS server advertising and making
a filesystem available networkwide:

1. export — used by most UNIX flavors

2. share — used by Solaris 2.x

Unfortunately, this dual terminology has also had an impact on the naming of
the corresponding NFS-related files; different names are in use for files and data with
the same purpose.

We will use the term export, which has been the only term actually used for a long
time. The term share may better explain the nature of the action, but still sounds strange
to the majority of UNIX administrators. Both types of files will be simultaneously
presented.

The first step in configuring an NFS server is to determine which filesystems are to be
exported and the restrictions that will be placed on their export. Only filesystems that can
be beneficial to clients should be exported. Once selected, they have to be specified in the
/etc/exports file or, in the case of Solaris 2.x, in the /etc/dfs/dfstab file (unfortunately the
format and syntax of these files are different).

Exporting a filesystem means making the filesystem available to remote hosts. However,
the server still has full control over the exported filesystem (at least, the filesystem phys-
ically belongs to the server and resides in its local disk space), permitting access to remote
clients only in predefined ways.

It is not mandatory for an exported filesystem to match the complete server’s local
filesystem; only a part of the local filesystem can be exported. When the server exports a
filesystem, it actually refers to an arbitrary starting directory within the local filesystem,
and exports everything beneath that directory. This is presented in Figure 18.1.

© 2002 by CRC Press LLC

A filesystem exporting is performed by the UNIX command /usr/sbin/exportfs (on some
flavors, also /usr/etc/exportfs); on Solaris 2.x the equivalent command is /usr/sbin/share.
A brief description of the exportfs command follows. Although the share command (on
Solaris 2.x) does the same job, please note that some noncrucial differences among the
two commands are possible.

18.2.1.1 The exportfs and share Commands
The exportfs command makes a local directory or a filename available for mounting
over the network by NFS clients. It is normally invoked at boot time within the
corresponding rc startup script and uses information contained in the /etc/exports file
to export specified directories (which must be specified as full pathnames). The command
can also be invoked from the command line at any time to alter the list or characteristics
of exported directories and filenames (superuser privileges are required). Directories
and files that are currently exported are listed in the file /etc/xtab (on Solaris 2.x this
is the file /etc/dfs/sharetab).

The format of the exportfs command is:

/usr/sbin/exportfs [-options] [pathname]

With no options or arguments, exportfs prints out the list of directories and filenames
currently exported.

NFS Server

NFS Client

E
xp

or
te

d
to

N
F

S
 c

lie
nt

s

FS #1

FS #2

Mounted on
NFS client

FIGURE 18.1
Exporting NFS.

© 2002 by CRC Press LLC

The options are:

Once a filesystem has been exported, a new directory cannot be exported if it is either
a parent or a subdirectory of one that is currently exported and within the same local
filesystem. It would be illegal, for example, to export both /usr and /usr/local if both
directories resided in the same disk partition. In other words, already exported filesystems
cannot be extended toward a parent directory; if necessary, the filesystem must be
un-exported first, and then re-exported by referring to the parent directory instead. Export-
ing a child directory at a later time does not make sense either, because all child directories
within the same local filesystem are already exported.

The following are a few examples of the use of the command (for both the exportfs and
share commands):

• exportfs without any options lists the currently exported directories and files:

exportfs

• To export entries specified in the /etc/exports file:

exportfs -a

• To un-export all exported files and directories:

exportfs -ua

Option Meaning

-a All. Export all pathnames listed in /etc/exports.
-i Ignore the options in /etc/exports. Normally, exportfs will consult

/etc/exports for the options associated with the exported pathname.
-u Un-export the indicated pathnames (Solaris 2.x introduced the unshare

command for this purpose).
-v Verbose. Print each directory or filename as it is exported or un-exported.
-o arguments Specify a comma-separated list of optional characteristics for the

pathname being exported. args can be selected from among:
ro Export the pathname read-only. If not specified, the pathname is

exported read-write.
rw=hostname[:hostname]… Export the pathname read-mostly. Read-mostly means exported

read-only to most machines, but read-write to those specified.
If not specified, the pathname is exported read-write to all.

anon=uid If a request comes from an unknown user, use UID as the effective user
ID. Root users (UID 0) are always considered “unknown” by the NFS
server unless they are included in the “root option” below. If the client
is a UNIX system, only root users are considered “unknown.” All other
users are recognized, even if they are not in /etc/passwd; the default value
for UID is the user ID of the user “nobody.” If user “nobody” does not
exist, the value “–2” is used. Setting the value of anon to “–1” disables
anonymous access.

root=hostname[:hostname]… Give root access only to the root users from a specified hostname.
The default is for no hosts to be granted root access. This is an essential
security precaution to prevent superuser privileges over exported
filesystems by clients’ root users.

access=client[:client]… Give mount access to each client listed. A client can either be a host
name or a netgroup. Each client in the list is first looked for in the /etc/
hosts database, and then in the /etc/netgroup database. The default value
allows any machine to mount the given directory.

secure Require clients to use a more secure protocol when accessing the
directory.

© 2002 by CRC Press LLC

• To un-export all exported files and directories and print each directory or file
name as it is un-exported:

exportfs -uav

• To export /usr to the world, ignoring options in /etc/exports:
exportfs -i /usr

• To export /usr/bin and /var/adm read-only to the world:
exportfs -i -o ro /usr/bin /var/adm

• To export /usr/bin read-write only to systems black and white:
exportfs -i -o rw=black:white /usr/bin

• To export root access on /var/adm only to the system named red, and mount access
to both red and blue:

exportfs -i -o root=red, access=red:blue /var/adm

• To export (share) the /export/disk filesystem read-only:
share -F nfs -o ro /export/disk

• If share commands are invoked multiple times on the same filesystem, the last
share invocation supersedes the previous one (the options set by the last share
command replace the old options). For example, if read-write permission was
given to userA on /usr/fs1, then to give read-write permission also to userB on
the same filesystem /usr/fs1 you would do the following:

share -F nfs -o rw=userA:userB /usr/fs1

18.2.1.2 The Export Configuration File
The export configuration file /etc/exports is actually the NFS server configuration file. The
basic purpose of the file is to specify exported file systems during the startup of the NFS
service (primarily during the system booting). On Solaris 2.x, the corresponding file is
/etc/dfs/dfstab. Both files control which files and directories will be exported, which hosts
may access them, and what kind of access is allowed.

Here is an example:

cat /etc/exports
/patsy -access=hcprophet:indigo1:indigo2:mvaxgr:rs01ch:rs02ch:rs03ch
/usr/man
/etc -ro,access=gatorchem
/home -access=gatorchem

Each entry in the file has the format:

directory [-option][,option]…

where
directory Defines a filesystem (a directory structure) specified by the reference starting

directory (it can be even a single file) available for export.
option Each option specifies a condition for the export of that directory:

ro Read-only prevents clients from writing to this
directory.

rw Read-write permits clients to read and write
to this directory; a sign = with a list of clients

© 2002 by CRC Press LLC

separated by the colons can also be included.
If the list is omitted all clients are granted read-
write access.

access=hostlist Permits the mounting of this directory only to hosts
specified in the hostlist (the list of clients separated
by colons); this is necessary, otherwise all hosts on
the Internet are allowed to mount this directory.

Another example is from the Solaris 2.x platform:

$ cat /etc/dfs/dfstab
/usr/sbin/share -F nfs -o rw /var/mail
/usr/sbin/share -F nfs -o ro /usr/share/man
/usr/sbin/share -F nfs -o ro,anon=0 /files/os
/usr/sbin/share -F nfs -o rw,root=delft:aegean /files/export
/usr/sbin/share -F nfs -o rw,root=delft:aegean /files1/export
/usr/sbin/share -F nfs -o rw,root=delft:aegean /files2/export
/usr/sbin/share -F nfs -o ro /cdrom

This file contains a list of share commands to be executed during the NFS startup; it is
a part of the corresponding rc initialization script. Each entry in the list is a full command
string, just like when the command is executed from the command line.

18.2.1.3 The Export Status File
The export configuration files specify how to configure our NFS server. If everything is
set up properly, the specified configuration should also be established upon system
startup. However, there is not an absolute guarantee that this will always happen.
A hardware failure can prevent the export of the broken disk, locally nonmounted file-
systems cannot be exported, an exported filesystem can later be manually un-exported,
and so on.

The exportfs command, as well as its Solaris counterpart the share command, maintains
another file that reflects at every moment the current status of exported filesystems. This
is the /etc/xtab file, which is a system file that contains a list of currently exported directories
and files. To ensure that this file is always synchronous with current system data structures,
do not attempt to edit /etc/xtab by hand. On Solaris 2.x the file is named /etc/dfs/sharetab.
It is helpful to remember that whenever the exportfs or share command is executed
without any specified options, it reads the contents of the export status file.

The nature and format of the both files is the same. Here is an example on the Solaris 2.x
platform that corresponds to the previously presented /etc/dfs/dfstab NFS configuration file.

cat /etc/dfs/sharetab
/var/mail - nfs rw
/usr/share/man - nfs ro
/files/export - nfs rw,root=delft:aegean
/files/os - nfs ro,anon =0
/files1/export - nfs rw,root=delft:aegean
/files2/export - nfs rw,root=delft:aegean

If we carefully compare the two files, the export configuration file /etc/dfs/dfstab and
this export status file /etc/dfs/sharetab, we see that all of the specified filesystems are
exported except the /cdrom filesystem. In this case, the discrepancy is easy to explain: if
a CD-ROM disk is not inserted into the CD-ROM drive, the /cdrom filesystem cannot be
exported at all.

© 2002 by CRC Press LLC

18.2.2 Mounting Remote Filesystems

An exported filesystem cannot be used before it is mounted on the client side; mounting
an exported system means to mount and later access a remote filesystem through the
network. That is the whole idea of NFS. Technically, mounting a remote filesystem is quite
different from mounting a local one; from an administrative standpoint the differences
are minor, but from the user standpoint there is no difference at all.

18.2.2.1 The showmount Command

Before we start mounting a remote filesystem, we must decide which NFS server to use,
and which filesystems are to be exported and available from the server. Any necessary
information about the filesystems to be exported can be obtained with the showmount
command and a reference to the corresponding server. For example:

showmount -e patsy (patsy is the NFS server and it belongs to the same domain)
export list for patsy:
/patsy hcprophet,indigo1,indigo2,mvaxgr,rs01ch,rs02ch,rs03ch
/usr/share/man (everyone)
/etc gatorchem
/home gatorchem

The export list shows the NFS directories (filesystems) exported by the server patsy, as
well as their properties. In this case the list matches the previously presented export
configuration file /etc/exports. Regardless of what the list looks like, it is up to us to decide
how to mount the available remote filesystem. As in the case of local filesystems, there is
no a magic formula for this; the decision depends on many other factors.

18.2.2.2 The mount Command and the Filesystem Configuration File

Mounting a remote filesystem means attaching it to the client’s UNIX overall hierarchical
directory structure. The mounted remote filesystems are integrated into an overall directory
tree. The same mount command that mounts local filesystems is used for this purpose. The
differences are in the way the remote filesystems are identified, and some specific filesystem
properties.

We have already described the mount command in great detail. Here, only the issues
related to remote filesystems will be discussed. The format of the mount command applic-
able to remote filesystems is:

mount server-name:remote-directory local-directory [-o options]

where
server-name Identifies an NFS server
remote-directory Identifies all or part of a directory exported by that server, and must

be an absolute pathname (starting with a leading/)
local-directory Identifies the mount-point, the client’s directory where the remote-

directory will be attached to the client’s filesystem. It must be an
absolute pathname, local-directory must be created before mount is
executed, and it is very common to use server-name for the last level
name in the local-directory

© 2002 by CRC Press LLC

options One or more options applicable for NFS (though some of them are
only applicable to NFS) such as:
bg/fg If the first attempt fails, retry in background or

foreground
retry=n The number of times to retry
timeo=n Set the time-out to n tenths of second
intr Allows keyboard interrupt
soft/hard Return an error if the server does not respond or

continue to retry until the server responds

The umount command is used to dismount a mounted remote filesystem. There is no
difference in using the umount command for locally or remotely mounted filesystems.

Generally speaking, remote filesystems are treated just like any local filesystem.
The differences are in the type of the filesystem (in this case it is the nfs type), and in
some options specific to the filesystem type. Consequently, NFS filesystems could, and
should, be mounted automatically during the system startup. This means the necessary
information for mounting remote filesystems should be appended in the client’s filesystem
configuration file (usually the file /etc/fstab, or /etc/vfstab).

An example follows:

cat /etc/fstab | grep nfs
.
hcprophet:/hcprophet /hcprophet nfs rw,hard,bg,intr 0 0
patsy:/patsy /patsy nfs rw,hard,bg,intr 0 0
rs01ch:/home/2gig/rs / rs nfs rw,hard,bg,intr 0 0
mvaxgr:/export/DUB1 /mvaxgr/disku2 nfs rw,soft,bg,intr 0 0
mvaxgr:/export/DUB2 /mvaxgr/disku3 nfs rw,soft,bg,intr 0 0

Please note that only NFS-related entries are presented. The very same names in different
columns do have different meanings; for example, the first column “patsy:/patsy” identifies
the NFS server patsy and the exported directory /patsy, while the second column /patsy
identifies mount-point, which is the directory /patsy. All specified options are NFS-specific.
The last two columns “0 0” do not make a lot of sense, because filesystem checkup and
backup are always provided at the server’s side (this is the filesystem configuration file
on the client’s side).

A corresponding entry in the filesystem status file (/etc/mtab or /etc/mnttab) is auto-
matically created for each successfully mounted remote filesystem, just as it would be for
any mounted local filesystem.

18.3 Automounter

The automounter, better known as the automount, is a tool that automatically mounts
NFS filesystems when they are referenced, and dismounts them when they are no longer
needed. Maintaining remote filesystems that are permanently mounted also keeps pro-
cessor resources permanently busy, with an unavoidable impact on the system’s overall
performance. It is a good idea to mount a remote filesystem only when its data are
needed; otherwise a remote filesystem remains dismounted and the required processor

© 2002 by CRC Press LLC

resources are released for other tasks. The price we must pay for this benefit is additional
automount-related administration. Using data for the first time takes slightly longer
because the corresponding remote filesystem must be automounted. Once mounted,
the remote filesystem remains mounted as long as it is used; after a certain time of
inactivity (the usual time-out is a few minutes) the remote filesystem is automatically
dismounted.

Another benefit of using the automounter is the fact that there is no longer any need
to keep filesystem configuration data (the file /etc/fstab or /etc/vfstab) up to date by hand.
The information required for a mounting, including the NFS server, filesystem path-
names on the server, local mount points and mount options, are now part of the
automount configuration data, which are usually maintained as NIS maps. In that way,
the NIS management can also be implemented on the NFS configuration data, so a
single NIS map can be handled and spread through the network to all NFS clients.

The automounter was, and is, an integral part of the majority of UNIX flavors. A public
domain version called amd is also available; it is kernel independent and can be used on
almost any UNIX system.

There are many motivations for using the automounter:

• The filesystem configuration data (/etc/fstab and /etc/vfstab files) on every host
becomes much less complex.

• The automount maps may be maintained using NIS, thereby streamlining the
administration of mount tables for all hosts in the network the same way NIS
streamlines other information.

• The exposure to the risk of hanging a process when an NFS server crashes is
greatly reduced; the automounter dismounts all filesystems that are not in use,
removing dependencies on file servers that are not currently referenced by the
client.

• The automounter can extend the basic NFS mount protocol to find the nearest
server for replicated, read-only filesystems; in this case that server will handle
the mount requests, reducing the load on the more heavily used network hard-
ware.

An automounter is a daemon (usually named automountd) that automatically and
transparently mounts NFS filesystems as needed. It monitors attempts to access directories
that are associated with an automount map, as well as all subdirectories and files beneath
these directories. For example, on Solaris 2.x platform:

ps -ef | grep auto | grep -v grep

root 890 1 0 May 09 ? 1312:29 /usr/lib/autofs/automountd

The daemon is usually quite busy; in this example we see that the daemon at this
machine has consumed a huge chunk of CPU time.

When a corresponding directory or file is referenced (referenced to be accessed, or for
another reason), the daemon mounts the appropriate remote filesystem associated with
the referenced point. All relevant data for a successful mounting must be defined in
direct or indirect automount maps, and the corresponding remote filesystem must be
exported at the NFS server for this specific client. The bottom line is that, instead of
being permanently mounted, the exported NFS filesystem is mounted only when it is
used.

© 2002 by CRC Press LLC

The automounter interacts with the kernel in the following ways:

• It uses the automount map to locate an appropriate NFS server, the exported
filesystem, and the mount data.

• It then mounts the filesystem in a temporary location and replaces the associated
referenced mount point (the entry for the directory) with a symbolic link to the
temporary location.

• Afterward, if the filesystem is not accessed within an appropriate interval
(by default, 5 minutes), it dismounts the filesystem and removes the symbolic
link.

• If the referenced mount-point (specified directory) does not already exist, the
automounter creates it, and then removes it upon exiting.

18.3.1 The Automount Maps

The automount maps include all necessary data required for a successful automount
operation, and they can be specified as local files or NIS maps. Regarding their nature,
automount maps are divided into:

• Direct maps — Contain mapping for any number of nonrelated directories. Each
entry in the map lists a directory that is automatically mounted as needed. The
direct map as a whole is not associated with any single directory.

• Indirect maps — Specify mapping for the subdirectories to be mounted under
the directory indicated in the entry. The indirect map as a whole is associated
with the directory in the entry, providing more data related to the belonging
subdirectories.

• Included maps — The contents of another map can be included within the map;
it simply replaces a complete entry in the map. The included map is identified
by the leading “+” sign.

• Special maps — These are special cases; currently there are three such maps:
“-hosts,” “-passwd,” and “-null.”

The file /etc/auto_master is known as the master map for the automounter; it is actually
the automount configuration file, and it specifies the locations of all other automount maps.
Here is an example:

$ cat /etc/auto_master
Master map for automounter for this host
The map reflects the site configuration
#
Mount-point Map Mount-opt ions
/- auto_direct -ro
/net -hosts -rw,soft
/home auto_home -rw
/share auto_share -rw
#
This configuration is slightly different than the common one
for other clients; other clients simply includes the NIS auto_master map
(which is here commented-out)
+auto_master

© 2002 by CRC Press LLC

The automounter reads each of the entries to learn how to behave. Each entry defines
the relationship between a directory and a corresponding NFS filesystem, in a direct or
an indirect way. The entry “/-” defines direct mappings; it points to the /etc/auto_direct file
for the actual direct mappings. Often, the NIS map is used instead of presented entries.
The +auto_master refers to the NIS map “auto_master,” which spreads a unique config-
uration all over the network. However, for this host this is not the case; obviously this
host is the NIS master server.

The main candidates for the automount are the home and share filesystems — the first
one to provide the same user’s access to any machine in the network, the second one
because of its purpose (to be shared among all machines). They are fully determined
indirectly through the /etc/auto_home and /etc/auto_share files. Please note that any exported
filesystem can be controlled by an automounter; this is simply an administrative decision.
Also, the naming of the corresponding indirect automount map is not mandatory; the
map itself is specified within the auto_master configuration file. It is logical for the map’s
name to match the name of the exported remote filesystem, but it is not necessary, and
an arbitrary name for the map could be used instead.

18.3.1.1 An Example

An example of the auto_home and auto_share maps follows. The contents of two configu-
ration files are:

$ cat /etc/auto_home
Home directory map for automounter
for nis clients
The map reflects site configuration
#
+auto_home

As we can see, the /etc/auto_home file includes a single line: the NIS map auto_home
replaces all individual users’ entries, and this could be a very long list (hundreds, even
thousands of users), which should be defined only at a single host — the NIS master
server. A home directory must be defined in the usual NFS way (hostname:pathname) for
each user.

$ ypcat -k auto_home
rmargoli aegean:/files1/export/home/rmargoli
nrosenbl aegean:/files1/export/home/nrosenbl
lchristi aegean:/files1/export/home/lchristi
fhomolka aegean:/files1/export/home/fhomolka
dandjeli aegean:/files1/export/home/dandjeli

. . .

. . .
ktung aegean:/files1/export/ home/ktung
cteti aegean:/files1/export/home/cteti
ssze aegean:/files1/export/home/ssze
mlee aegean:/files1/export/home/mlee
bbae aegean:/files1/export/home/bbae
kwu aegean:/files1/export/home/kwu
cko aegean:/files1/export/home/cko

© 2002 by CRC Press LLC

Similarly, for the /etc/auto_share file:

$ cat /etc/auto_share
Shared directory map for automounter
for nis clients
The map reflects a site configuration
+auto_share

And the NIS auto_share map:

$ ypcat -k auto_share
suitespot aegean:/files1/export/share/suitespot
totalnet hunter:/files/export/share/totalnet
catalog aegean:/files1/export/share/catalog
sybase peri:/files/export/share/sybase
public aegean:/files1/export/share/public

.

.
openv mekong:/files/export/share/openv
batch aegean:/files1/export/share/batch
mail admin:/var/mail
http peri:/files/export/share/http
man aegean:/usr/man
doc aegean:/files1/export/share/doc

When any subdirectory in the directory /share is referenced, (or any of subdirectories
or files beneath) the corresponding NFS filesystem specified in the automount auto_share
map (i.e., the /etc/auto_share file or the subsequent NIS map) is temporarily mounted.
This is done automatically and is transparent to users and processes; they do not know
anything about the huge job that is accomplished before getting the required data. The
same happens if the directory /home is referenced, except that the file /etc/auto_home
and the subsequent NIS map auto_home are used instead.

The hierarchical structure of the automount configuration data provides a flexible way
to join data from different systems into a unified network-based collection of data. In that
way, each user can log in to any system, and access the same data in the same home
directory that actually resides on some other system. Simply, users are always “at home,”
regardless of where they started their login process.

A simple mapping entry takes the form:

key [-mount-options] location …

where
key The full pathname of the directory to mount when used in a direct

map, or the simple name of a directory in an indirect map
mount-options A comma-separated list of mount options
location Specifies a filesystem from which the directory/subdirectory may be

mounted. In the case of a simple NFS mount, location takes the form:
host:pathname, where:
host The name of the host from which to mount the filesystem

(if omitted, the pathname refers to the local device)
pathname The pathname of the directory to mount

© 2002 by CRC Press LLC

We have talked about indirect automount maps. Let us see how the /etc/auto_direct file
looks:

$ cat /etc/auto_direct
Direct map for automounter for nis client
The map reflects a site configuration
#
+auto_direct

Let us see the NIS auto_direct map:

$ ypcat -k auto_direct

In this case the auto_direct map is empty. Otherwise, the very same rules are implemented
as with the auto_home and auto_share maps, except that the NIS auto_direct map is empty.
Please note that the map exists, but it is empty — there is simply no need for direct
mappings at this site.

The entry:

net -host

has a special meaning; “-host” is a special map used to mount all exported filesystems
from any host that the automounter can mount (the assumed key is the host name of an
NFS server). In other words, the directory /net includes subdirectories named by the host
names of NFS servers that have exported their filesystems to this machine. Obviously,
subdirectories below are exported directories. Here is an example:

$ cd /net

$ ls -l
total 10
lrwxrwxrwx 1 root root 26 Jun 8 15:01 admin -> /tmp_mnt/net/admin
lrwxrwxrwx 1 root root 29 Jun 8 15:02 aegean -> /tmp_mnt/net/aegean
lrwxrwxrwx 1 root root 38 Jun 8 15:02 baltic -> /tmp_mnt/net/baltic
lrwxrwxrwx 1 root root 33 Jun 8 15:02 delft -> /tmp_mnt/net/delft
lrwxrwxrwx 1 root root 33 Jun 8 15:01 hunter -> /tmp_mnt/net/hunter

$ cd admin

$ ls -l
total 4
drwxrwxr-x 11 root sys 512 Jun 5 13:30 export
dr-xr-xr-x 3 root root 96 Jun 8 15:01 files2
dr-xr-xr-x 3 root root 96 Nov 12 1997 usr
dr-xr-xr-x 2 root root 96 Jun 8 15:01 var

Since we have mentioned most of the advantages of the automounter, it is fair to also
mention some of its disadvantages. When the host (where the home directories reside) is
down, users will still be able to login to other hosts, but they will not be able to reach
their home directories and data; this situation takes some time to correct. Also, don’t be
surprised when you list a directory that is a mount point for automounter, and you don’t
see the expected subdirectory; don’t forget that the automounter mounts only referenced
directories — once you reference a previously unseen directory (for example, “cd” to the
subdirectory and back), it will appear in the directory list, until it is dismounted again.

© 2002 by CRC Press LLC

Today, the automount is widely in use — it improves network performance, makes
maintenance easier, and makes the network behave as an equivalent large system. It
integrates all of the advantages of NFS and NIS, bringing them together for users’
benefits.

18.4 NFS — Security Issues

NFS and NIS are two independent services in the network environment. Their missions
are quite different: NFS is the user-oriented service, enabling the use of remote filesystem
resources locally, and NIS helps UNIX administrators accomplish the system administra-
tion through the network in a uniform and well-organized way. Obviously, the two services
can exist separately.

However, NFS requires, in some ways, that NIS also be implemented. This is not a
“must”, but is highly recommended to keep the user administrative database uniform and
consistent on all NFS clients. What is the reason for this statement?

NFS identifies users by their UID; this is not unusual on UNIX systems, but in this
specific case NFS users are coming from different client-hosts. If it happens that two
different users at two different NFS client hosts have equal UIDs (this is a very probable
situation), NFS recognizes them as the same, single user. It also means that all NFS
resources (directories, files, etc.) would be accessible, in an unrestricted way, to both users.
And this is a problem, a main drawback of NFS, and a security hole that simply eliminates
the possible use of NFS in some highly secure network environments. This situation can
easily be prevented by using NIS to administer NFS clients, and by providing conditions
for safe NFS implementation, i.e., each user has a single UID networkwide.

© 2002 by CRC Press LLC

19
UNIX Remote Commands

19.1 UNIX r Commands

This is a topic that illustrates in greater detail why UNIX is so suitable for network
implementations. UNIX designers realized long ago the significance of tightening multiple
hosts into a unique working environment, where a whole network of connected hosts
appears as an “equiva-lent host.” Such an equivalency, based on mutual trusting relation-
ships among all participating hosts, eliminates the need for individual user authentication
and enables easy and powerful local and remote processing.

If you ever had the task of handling a dozen hosts in a network, you would understand
this very well. How do you execute the same (or a similar) program efficiently on a dozen
hosts? And just imagine if you should run them every day, or every hour, or even more
frequently. What do you do if it is not a dozen hosts, but a hundred, or maybe five
hundred, or a thousand?

It is hard to imagine the efficient maintenance of hosts in a network environment without
UNIX remote commands. UNIX remote commands are the vehicles that make each host
in the network accessible in an extremely comfortable and efficient way. We will call them
UNIX r commands, according to the implemented prefix “r” in their names.

What are the UNIX r-commands? Among all available commands, UNIX also provides
a set of remote commands:

rlogin Remote login provides interactive access to remote hosts. A user can
reach a remote host through the network, log in, and perform all
activities regularly provided by the host.

rcp Remote copy allows files to be copied from or to remote systems.
Its syntax is similar to the regular copy (cp) command, except that
the file path includes the name of a remote host. It moves the
files between hosts on the network using a simple command-line
interface.

rsh (remsh) Remote shell passes a command to a remote host for execution.
Standard output and standard error from the remote execution are
returned to the local host.

The third command listed is not a single command at all; here we talk about a UNIX
shell that includes all UNIX commands. This is an extremely powerful and versatile way

© 2002 by CRC Press LLC

to execute any UNIX command (or set of commands) on a remote host, with full control
over their execution, just as if everything is happening locally.

Some UNIX flavors, like HP-UX, use remsh for “remote shell”-ing (even the verb
“remshing” is widely implemented), because rsh (also in use) could be misinterpreted for
a “restricted shell.” Although both terms are correct, the command name remsh will be
used in the text that follows.

The main advantages of using UNIX r-commands is the fact that they are used in very
familiar ways, just like any other, local UNIX command is used. However, an efficient
remshing is supposed to bypass the authentication on a remote host, and it could affect
some security issues. Bypassing the authentication is always a challenge for potential
intruders; this means everything must be set up very carefully to avoid possible security
problems. This is accomplished by establishing a so-called trusted relationship between
hosts involved in remote command execution.

Trusted hosts (another term used is equivalent hosts) establish a special mutual relation-
ship where a certain number of users, known as trusted users receive special treatment.
Once authenticated, trusted users at one host are assumed to be allowed without any
additional authentication into another trusted host. Trusted users have direct access to
remote hosts and play a central role in implementing UNIX r-commands. We will come
back to this issue later. First, a brief description of UNIX r-commands follows.

For some UNIX r-commands (more precisely, for the rlogin command) an equivalency
(trusted relationship) among the involved hosts is not mandatory — the host equivalency
only makes the command execution more efficient. If there is no equivalency, additional
authentication is required. However, a majority of UNIX r-commands will fail without
provided host equivalency.

19.1.1 The rlogin Command

A remote login session from one host to the remote host named hostname is established
by rlogin. The format of the command is:

rlogin [-option] [-l username] hostname

Hostnames are listed in the hosts database, which may be contained in the local /etc/hosts
file, the NIS database, DNS database, or a combination of these. Either official hostnames
or nicknames (aliases) may be specified in hostname (however, a host equivalency can be
implemented only when official hostnames are used).

Each remote host may have a file named /etc/hosts.equiv containing a list of trusted
hostnames with which it shares usernames. Users with the same username on both the
local and remote host may rlogin from the host listed in the remote host’s /etc/hosts.equiv
file without supplying a password.

Individual users may set up a similar private equivalence list with the file .rhosts in their
home directories. Each line in this file contains two names, a hostname and a username,
separated by a space. An entry in a remote user’s .rhosts file permits the user named
username who is logged into hostname to rlogin to the remote host as the remote user
without supplying a password.

If the name of the local host is not found in the /etc/hosts.equiv file on the remote host,
and the local username and hostname are not found in the remote user’s .rhosts file, then
the remote host will prompt for a password. Hostnames listed in /etc/hosts.equiv and .rhosts
files must be the official hostnames listed in the hosts database; nicknames (aliases) may
not be used in either of these files.

© 2002 by CRC Press LLC

19.1.2 The rcp Command

The remote file copy command to copy files between hosts is rcp. The format of the command is:

rcp [-p] filename1 filename2

rcp [-pr] filename…directory

Each filename or directory argument is either a remote file name of the form hostname:path,
or a local file name. If a filename is not a full path name, it is interpreted relative to the
home directory on hostname.

rcp does not prompt for passwords; the user who executes rcp must be the trusted user
on hostname before remote command execution is allowed. rcp also handles third-party
copies, where neither source nor target files are on the local host (copying from one to
another remote host).

Hostnames may also take the form username@hostname:filename to use username rather
than your current local user name as the username on the remote host. rcp also supports
Internet domain addressing of the remote host, so that username@host.domain:filename
specifies the username to be used, the hostname, and the domain in which that host
resides. Filenames that are not full path names will be interpreted relative to the home
directory of the user named username on the remote host.

The options are:

-p Attempt to give each copy the same modification times, access times, and
modes as the original file

-r Recursively, copy each subtree rooted at filename; in this case the destination
must be a directory

19.1.3 The remsh (rsh) Command

The remote shell command, remsh (rsh), has the following format:

remsh [-l username] [-n] hostname [command]
rsh [-l username] [-n] hostname [command]

remsh connects to the specified hostname and executes the specified command. remsh
copies its standard input to the remote command, the standard output of the remote
command to its standard output, and the standard error of the remote command to its
standard error. Interrupt, quit, and terminate signals are propagated to the remote
command; remsh normally terminates when the remote command does.

If the command is omitted, instead of executing a single command, remsh logs you in on
the remote host using rlogin.

Shell metacharacters that are not quoted are interpreted on the local host, while quoted
metacharacters are interpreted on the remote host.

Hostnames are given in the hosts database, which may be contained in the local /etc/hosts
file, the NIS database, the DNS database, or some combination of the three.

Each remote host may have a file named /etc/hosts.equiv, containing a list of trusted host-
names with which it shares usernames. Users with the same username on both the local
and remote hosts may remsh from the hosts listed in the remote host’s /etc/hosts.equiv file.

Individual users may set up a similar private equivalence list with the file .rhosts in their
home directories. Each line in this file contains two names, a hostname and a username,

© 2002 by CRC Press LLC

separated by a space. The entry permits the user named username who is logged into
hostname to use remsh to access the remote host as the remote user.

remsh will not prompt for a password if access is denied on the remote host (it simply
fails) unless the command argument is omitted (it is equivalent then to rlogin).

The options are:

-l username Use username as the remote username instead of the local username.
In the absence of this option, the remote username is the same as the
local username.

-n Redirect the input of remsh to /dev/null. This option is sometimes
needed to avoid unfortunate interactions between remsh and the shell
that invokes it.

A few examples:

• The following command appends the remote file FileonHost2.there from the host
called Host2 to the file called FileonHost2.here on the host called Host1:

Host1: remsh Host2 cat FileonHost2.there >> FileonHost2.here

• The next example appends the file FileonHost2.there on the host called Host2 to
the file FileonHost2.there.again, which also resides on the host called Host2:

Host1: remsh Host2 cat FileonHost2.there “>>” FileonHost2.there.again

The quoting of the >> sign changes the redirection of the standard output to another
file on the remote host. There is a more comprehensive way to specify this very same
command:

Host1: remsh Host2 “cat FileonHost2.there >> FileonHost2.there.again”

It is clear now that the “remshing” is completely executing at the remote host.

19.2 Securing the UNIX r Commands

The r commands bypass the usual user authentication and password verification for logins,
and that can create some security problems. That means that the setting of trusted users
and trusted hosts must be carefully performed; otherwise, it could compromise the system
security. In networks isolated from the Internet, with a relatively restricted number of
users who essentially belong to the same category of users (within the same department,
the same division, the same company, etc.), this configuration may not seem so critical.
However, never forget that improperly configured r commands can open access to the
system resources to virtually anyone in the world.

On some sites, the r commands are completely eliminated (because of security concerns);
this can be done by simply disabling (commenting out) the corresponding entries, the
/etc/inetd.conf file. Another possibility is to retain the r commands and to force them to
request passwords from all users; in this case, you would delete the /etc/hosts.equiv file,

© 2002 by CRC Press LLC

and make sure that users do not create personal .rhosts files in their home directories. This
is a less drastic solution, the rlogin command (and some parts of the remsh command)
will still work, and the regular authentication login procedure will secure the access to
the system. The only drawback is that everything that makes the r commands great will fail.

Most sites, however, like the convenience and power of the r commands and the pass-
word-free access. In such cases, correctly setting the configuration files /etc/hosts.equiv and
$HOME/.rhosts is very important (here the sh specification for the users’ home directory
$HOME is used). Free access to the system must be allowed only to the trusted users.
Basically, the users’ authentication is delegated to the remote trusted hosts; if a user is
already logged-in to the remote trusted host, then the same user is also allowed on the
local system. The system assumes that, given two identical usernames on two hosts, the
same person owns both accounts. Trusted hosts are also called equivalent hosts, and this is
the origin of the name of the hosts.equiv file.

The implemented authentication mechanism requires databases that define the trusted
hosts and the trusted users:

• /etc/hosts.equiv Defines the trusted hosts and users for the entire system
• $HOME/.rhosts Defines the trusted hosts and users for an individual user account

19.2.1 The /etc/hosts.equiv File

The /etc/hosts.equiv file defines the hosts and users that are granted r command access to the
system. But this file can also define hosts and users that are explicitly denied trusted
access. Not having the trusted access does not mean that a user does not have access to
the system at all, it just means that the user is required to supply a password.

The basic format of entries in the /etc/hosts.equiv file is:

[+ | -][hostname][username]

where
hostname The name of the “trusted” host, optionally preceded by a plus (+) sign; a +

sign used alone means “any host.” If a hostname is preceded by a minus (-)
sign, it explicitly means that the host is not an equivalent (trusted) system,
and all users from this host must always supply a password.

username The name of the “super-trusted” user on the “trusted” host who is granted
access to all user accounts without being required to provide a password
(the root account is not included). If a username is preceded by a minus (-)
sign, it means that the user is not trusted (regardless of what may be true
about the host), and must always supply a password.

Some of the specified entries are not recommended! For example, the standalone + sign
in place of a host name, which allows access from any host anywhere, is strongly discour-
aged. Also, the entry + somename will open your system to the user somename from any
host worldwide, with full rights over all user accounts. An intruder who can create the
account somename on any host can gain complete control over all user accounts on your
system.

Generally the leading + sign for hostname should be avoided, because a simple
typographical error could give a standalone plus sign (an extraneous space between +
and hostname will have this effect). Also, the /etc/hosts.equiv file should not begin with
the - sign as the first character, because it confuses some systems, though it is legal.

© 2002 by CRC Press LLC

The selection of trusted hosts is up to the system administrator, but considerable
attention should be paid to this issue.

19.2.2 The $HOME/.rhosts File

The .rhosts file grants or denies password-free r command access to a specific user’s account.
It is placed in the user’s home directory and contains entries that define the trusted hosts
and users in exactly the same way as /etc/hosts.equiv file, but only for a single user account.

This file can be useful to establish equivalence among the different account names that a
user can have on different systems. It is not always possible for a user to open accounts under
the same login name everywhere. This file enables users to skip this obstacle. By putting all
hostname-username pairs in the user’s .rhosts file, the user can use commands from those hosts
without being queried for a password (despite the differences of the usernames on those hosts).

However, the .rhosts file cannot override the hosts.equiv file. The two files are processed in
the following way: the hosts.equiv file is searched first, followed by the user’s .rhosts file, if it
exists. The first explicit match determines whether or not password-free access is allowed. If
the hosts.equiv file does not exist, however, then the .rhosts file alone determines password-free
access to the corresponding account. A system administrator should pay attention to that fact.

When a root user attempts to access a system via r commands, the hosts.equiv file is skipped,
and only the /.rhosts file is consulted (supposing “/” as a superuser’s home directory). This
allows root access to be more tightly controlled and separated from other users who can then
be configured collectively by the hosts.equiv file.

19.2.3 Using UNIX r-Commands — An Example

To better understand the advantages of using UNIX r commands in a network environment,
let us suppose the following arbitrary, but realistic, situation. Our task is to check the status
of a number of processes running on a number of hosts and to generate a corresponding
report. Let us suppose a list of hosts is given in the file /usr/local/index/HostList (each line
includes a single hostname); a list of processes in the file /usr/local/index/ProcessList (each line
includes a process name); and the report is written in the file /usr/local/logs/Report. Upon
successful completion, the report should be printed or e-mailed.

The ksh script named check_processes, owned by the user chk_oper, and executed from
the host CentralHost is supposed to do this job efficiently. The script remotely checks the
status of the listed processes on each of the listed hosts (this could be hundreds of hosts,
and hundreds of processes), and locally displays the related status messages and writes
them into the Report file. The only requirement for successful script execution is to provide
the equivalency between CentralHost and all checked hosts for the user chk_oper, who
executes the script (this can be done through the /etc/hosts.equiv file or the .rhost file in the
home directory for the user chk_oper). The script is presented below:

$ cat /usr/local/bin/check_processes
#!/bin/ksh

This is the script “check_processes”
Purpose: To check the status of listed processes at listed hosts
Input: Listed processes in the file “/usr/local/index/ProcessList”;
Listed hosts in the file “/usr/local/index/HostList”.
Output: generated report at standard output and in the file “/usr/local/logs/Report”.
could be printed on default printer and/or email to the user
#

© 2002 by CRC Press LLC

First specify variables - it is easier to work with them
PROCESSES=/usr/local/index/ProcessList
HOSTS=/usr/local/index/HostList
REPORT=/usr/local/logs/Report
ALIAS=chk_oper

The starting timestamp
echo “\n\nThe script check_processes started on �date�\n” | tee $REPORT

A single loop for all listed processes at all listed hosts
for Host in �cat $HOSTS�
do

for Process in �cat $PROCESSES�
do

echo “***” | tee -a $REPORT
echo “Checking the host \“$Host\”:” | tee -a $REPORT
remsh $Host /bin/ps -ef | eval grep “$Process” > /dev/null 2>&1
if [$? -eq 0]
then
echo “The process \“${Process}\” is running.” | tee -a $REPORT
else
echo “The process \“${Process}\” is missing.” | tee -a $REPORT
fi

done
echo “\n***” | tee -a $REPORT

done
The ending timestamp
echo “\n\nThe script \“check_processes\” completed on �date�\n\n” | tee -a $REPORT
#
To print the report (uncomment the line)
lp $REPORT
#
To email the report (uncomment the line)
mailx -s “Process Status Report” $ALIAS < $REPORT
#
To delete the report (uncomment the line)
rm $REPORT
#

This is just an example to illustrate the strength of “remshing.” The rest of the example
shows how to generate a comprehensive and effective report; of course, there are a number
of other ways to do this.

19.3 Secure Shell (SSH)

There is no doubt about the benefits of using UNIX r commands. However, even with all
of the precautions in configuring host equivalencies, remshing is considered insecure. The
reason is very simple: UNIX r commands use a clear text in communication, including the
transfer of user passwords, and it is very difficult to protect such communication from
any kind of tinkering in the network. Obviously, remsh-ing lacks additional encryption
in the communication between remote hosts that would make it fully secure.

UNIX r commands are very suitable for protected networked environments, where
cracking into the system is not the main issue. In a network behind a firewall, dedicated
to internal users and protected from external intruders, remshing is an irreplaceable tool

© 2002 by CRC Press LLC

for many applications. Such networks are known as “secure,” and there is no need for an
additional level of implemented security.

A third-party product known as Secure Shell (SSH) is intended to replace UNIX r commands
in a nonsecure networked environment; it provides secure encrypted communications
between two hosts over a nonsecure network. SSH is based on the client/server model, and
consists of the secure shell client ssh and the secure shell daemon sshd on the server side.
The two programs communicate mutually and provide basically the same service as the
UNIX r commands.

A sufficient level of security is achieved by using one of the several supported
encryption algorithms to encrypt data in the communication between the two sides,
client and server. The encryption is based on the corresponding RSA keys, known
only to the two sides in such a communication; the keys are completely hidden and
they never appear on the network. Without knowing the keys, the data decryption is
practically impossible.

SSH quickly get a substantial attention in a nonsecure network environment, and has
found a wide practical implementation. It becomes a kind of standard on UNIX platform,
and an unavoidable administrative topic. It also continues to develop and improve making
its daily usage more secure, reliable and convenient.

19.3.1 SSH Concept

SSH is based on the encryption of the messages in the network communication between
two participants. The implemented encryption algorithm is known as RSA
authentication, which is accomplished by the corresponding processes running on the
participating hosts.

19.3.1.1 RSA Authentication

RSA authentication is based on public key cryptography. The idea is to implement two
encryption keys, one for encryption and another for decryption. It is not possible (on a
human time scale) to derive the decryption key from the encryption key. The encryption
key is called the public key, because it can be given to anyone and it is not secret. The
decryption key, on the other hand, is secret, and is called the private key.

RSA authentication is based on the impossibility of deriving the private key from the public
key. The public key is stored on the server side in the user’s $HOME/.ssh/authorized_keys file.
The private key is only kept on the user’s side (local machine, laptop, or other secure storage).
When a user tries to log in, the client tells the server the public key that the user wishes
to use for authentication (it does not send the key itself, it simply points to the desired
public key that already exists on the server side). The server then checks if this public key
is admissible. If so, it generates a 256-bit random number, encrypts it with the public key,
and sends the value to the client. The client then decrypts the number with its private key,
computes a 128-bit MD5 checksum from the resulting data, and sends the checksum back
to the server (only the checksum is sent to prevent chosen-plaintext attacks against RSA).

The server computes a checksum from the correct data (the generated random number
is known only to the server) and compares the two checksums. Authentication is accepted
if the checksums match (theoretically this indicates that the client alone knows the correct
key, but for all practical purposes there is no doubt).

The RSA private key can be protected with a passphrase. The passphrase can be any string;
it is hashed with MD5 to produce an encryption key for 3DES, which is used to encrypt the
private part of the key file. With passphrase, authorization requires access to the key file and
the passphrase. Without passphrase, authorization depends only on possession of the key file.

© 2002 by CRC Press LLC

RSA authentication is the most secure form of authentication supported by this software.
It does not rely on the network, routers, domain name servers, or the client machine. The
only thing that matters is access to the private key.

All this, of course, depends on the security of the RSA algorithm itself. RSA has been
widely known since about 1978, and no effective methods for breaking it are known if it
is used properly. Care has been taken to avoid the well-known encryption pitfalls. Breaking
RSA is widely believed to be equivalent to factoring, which is a very difficult mathematical
problem that has received considerable public research. So far, no effective methods are
known for numbers bigger than about 512 bits. However, as computer speeds and factoring
methods are increasing, 512 bits can no longer be considered secure. The factoring work
is exponential, so 768 or 1024 bits are widely considered to be secure in the near future.

19.3.1.2 The ssh Client
The client ssh connects and logs into the specified remote host. The user must prove the
identity to the remote host by using one of several available methods. Initially SSH
supported the following authentication methods:

• The first method presents the host equivalency, which is basically the same as for
the UNIX r-commands (based on the /etc/hosts.equiv and $HOME/.rhosts files), with
two newly introduced alternate files /etc/shost.equiv and $HOME/.shosts. Although
the two additional shosts files have the same function as the already existing rhosts
files, they are known only to ssh; this means that they immediately eliminate
rlogin/remsh connections. This method is not normally allowed because it is not
secure; it bypasses all of the additional encryption that makes SSH secure.

• The second method consists of the authentication method based on the host
equivalency combined with RSA-based host authentication. This means that if
the login would be permitted by the files .rhosts, .shosts, /etc/hosts.equiv, or /etc/
shosts.equiv, and additionally if it can verify the client’s host key, then login is
permitted. This authentication method closes security holes due to IP spoofing,
DNS spoofing, and routing spoofing. It also assumes that rlogin/remshing is dis-
abled, because the corresponding host-equivalency related files could be in place.

• As a third authentication method, ssh supports RSA-based challenge-response
authentication, also known as pure RSA authentication. The scheme is based on
previously discussed public-key cryptography: the encryption and decryption
are done using separate keys (known only to the client and server), and it is not
possible to derive the decryption key from the encryption key.

• The fourth authentication method that ssh supports is authentication through a
TIS authentication server; the idea is to ask a separate TIS authentication server
authsrv for the user authentication data.

• Finally, the default authentication method is password-based; if other methods
fail, i.e., they are not set, the SSH server will request the user’s password to allow
user login. However, the password is always transferred encrypted (never as a plain
text).

Additional authentication methods have been introduced, and more are expected in the
future. Some of them are discussed later in this text.

The core of the SSH is the implemented RSA authentication protocol. Each user creates
a public/private key pair for authentication purposes. The server side knows the public key,
and only the user knows the private key. The file $HOME/.ssh/authorized_keys (in the user’s

© 2002 by CRC Press LLC

home directory on both sides) contains the public keys that are permitted for logging in.
During the login procedure, the ssh program indicates to the server which key pair it
would like to use for authentication. The server checks if the key is permitted, and if so,
responds with a challenge, a random number, encrypted by the indicated public key. The
challenge can only be decrypted using the proper private key. The client then decrypts
the challenge using the private key, proving that this is an eligible user to login, but without
disclosing it to the server.

When the server has accepted the user’s identity, it either executes the given command
or allows the user to log into the host and gives a normal shell on the remote host. All
communication with the remote command or shell will be automatically encrypted.

SSH provides a number of scripts and programs that makes its installation and setting
easier. Running the ssh-keygen program creates the RSA key pairs; other programs help in
automatically creating the file authorized_keys in the user’s home directory.

ssh is a secure full replacement for remsh (rsh), but ssh is not the only SSH-related client
program; two other programs that belong to the same group are:

1. scp, which copies files between hosts — a secure equivalent to the UNIX rcp. It
uses ssh for transfer and uses the same authentication and provides the same
security as ssh. Unlike rcp, scp will not fail but ask for a password if it is required.
Files to be transferred are specified in the same way as for rcp.

2. slogin, which is secure remote login — a secure equivalent to the UNIX rlogin.
It behaves the same as ssh without the specified command option and actually
is a symbolic link to the ssh program.

It is also fair to mention sftp — the secure FTP — which is a secure equivalent to the
regular file transfer FTP.

19.3.1.3 The sshd Daemon
The sshd daemon listens at the SSH server side for connections from ssh clients. It is
normally started at boot time within the corresponding rc startup script created during
the SSH installation. It forks a new daemon for each incoming connection. The forked
daemons handle key exchange, encryption, authentication, command execution, and
data exchange.

The following example is from the Solaris 2.x platform:

ps -ef | grep ssh | grep -v grep

root 1434 1 0 May 09 ? 46:28 /share/ local/bin/sshd

Each host has a host-specific RSA key (normally 1024 bits long). Additionally, when
the sshd daemon starts, it generates a server-specific RSA key (normally 768 bits long);
this key is regenerated every hour if it has been used and is never stored on a disk.

Whenever a client connects to the server, the sshd daemon sends its host and server
public keys to the client. The client compares the host key against its own database to
verify that it has not changed. In return, the client then generates a 256-bit random number;
it encrypts this random number using both keys, the host and the server ones, and sends
the encrypted generated number to the server. Both sides then start to use this random
number as a “session encryption key” for all further communication in the session; it is
the client who selects among several supported encryption algorithms (the default algo-
rithm is IDEA). Afterward an authentication dialog follows. The client tries to authenticate
itself by using one of the supported authentication methods.

© 2002 by CRC Press LLC

Upon the successful client’s authentication, a dialog for preparing the session is entered.
Once the session is established, the client requests a shell or execution of a command. The
exchange of encrypted data continues until the user program terminates and all con-
nections are closed. The server then sends the command exit status to the client and both
sides exit.

The sshd daemon can be configured using command-line options or a configuration
file; command-line options override values specified in the configuration file. If the
configuration data are changed, the sshd daemon must be recycled (forced to reread
its configuration data by sending HUP signal to the daemon).

19.3.2 SSH Configuration

SSH offers many options in its use; obviously, an appropriate configuration is required.
Both sides, server and client, must be configured properly. Even the default configuration
(which is, by the way, sufficient for most sites) involves setting the configuration file
supplied during the SSH installation.

The server configuration file is /etc/sshd_config; the file contains keyword-value pairs,
one per line. Lines starting with “#” and empty lines are treated as comments and ignored.
There are many configuration lines, and only some of them, which are included in the
following example, will be discussed.

$ cat /etc/sshd_config
###

#
File: sshd_config
#
Purpose: sshd configuration file.
#
Description: Controls the behavior of the sshd server
#
Used by: sshd
###
#
Port 22
ListenAddress 0.0.0.0
HostKey /etc/ssh_host_key
RandomSeed /etc/ssh_random_seed
ServerKeyBits 768
LoginGraceTime 600
KeyRegenerationInterval 3600
PermitRootLogin nopwd
StrictModes yes
QuietMode no
X11Forwarding yes
PrintMotd no
KeepAlive yes
SyslogFacility DAEMON
RhostsAuthentication no
RhostsRSAAuthentication no
RSAAuthentication yes
PasswordAuthentication no
PermitEmptyPasswords no
UseLogin no
FascistLogging yes
IdleTimeout 15m
CheckMail no

© 2002 by CRC Press LLC

IgnoreRhosts yes
Umask 022
#
###

Most of the configuration entries are self-explanatory; nevertheless we will briefly describe
them in the order of their appearance.

Configuration Entry Meaning

• Port Specifies the port number that sshd listens on (default is 22).

• ListenAddress Specifies the IP address of the interface where the sshd server socket
is bound (0.0.0.0 means any IP address).

• HostKey Specifies the file containing the private host key (the default is
/etc/ssh_host_key).

• RandomSeed Specifies the file containing the random seed for the server. The file
is updated regularly (the default is /etc/ssh_random_seed).

• ServerKeyBits Defines the number of bits in the server key (the minimum value
is 512, the default is 768).

• LoginGraceTime After this time in seconds the server disconnects if the user has not
successfully logged in (0 means indefinitely, the default is 600).

• KeyRegenerationInterval If the server key has been used, it is automatically regenerated after
this time period in seconds (0 means never, the default is 3600).

• PermitRootLogin Specifies whether the root can login using ssh; yes allows login with
the password authentication, while no or nopwd disables password
authentication for root (the default is yes).

• StrictModes Specifies whether ssh should check file mode and ownership of the
user’s home directory and .rhosts file before accepting login
(the default is yes).

• QuietMode Specifies if the logging in the system log is required (the default is no).

• X11Forwarding Specifies whether X11 forwarding is permitted, i.e., X session
forwarded through the encrypted channel (the default is yes).

• PrintMotd Specifies whether sshd should print message of day from the
/etc/motd file (the default is yes).

• KeepAlive Specifies whether “keepalive” messages should be sent to another
side, and is instrumental in maintaining the connection properly
(the default is yes).

• SyslogFacility Specifies the “facility” entry in the system log file for sshd logging
(the default is DAEMON).

• RhostsAuthentication Specifies whether authentication using the rhosts or /etc/hosts.equiv
files is sufficient (the default is no).

• RhostsRSAAuthentication Specifies whether rhosts and /etc/hosts.equiv authentication
combined with RSA host authentication is allowed (the default is yes).

• RSAAuthentication Specifies whether pure RSA authentication (challenge-response)
is allowed (the default is yes).

• PasswordAuthentication Specifies whether password authentication is allowed (the default
is yes).

• PermitEmptyPasswords If password authentication is allowed, it specifies whether the
server allows login to accounts with empty password fields
(the default is yes).

• FascistLogging Specifies if verbose logging is used, which violates users’ privacy
(the default is no).

• IdleTimeout Sets idle timeout limit (s, m, h, d, or w) to terminate an idle child
sshd process.

• CheckMail Specifies whether sshd should print information about new e-mail
when a user logs in (the default is yes).

© 2002 by CRC Press LLC

• IgnoreRhosts Specifies that rhosts and shosts files will not be used
in authentication, while /etc/hosts.equiv and
/etc/shosts.equiv are still in use (the default is no).

• Umask Sets default umask for sshd and its children — must be an octal
number (the default is 000).

The client configuration file is /etc/ssh_config. The file structure is the same as for the
server configuration. Here is an example:

$ cat /etc/ssh_config
###
#
File: ssh_config
Purpose: ssh client configuration file.
Description: Provides defaults for users, and the values
could be changed in per-user configuration files
or on the command line.
Directions: Configuration data is parsed as follows:
1. command line options
2. user-specific file
3. system-wide file
Any configuration value is only changed the first
time it is set. Thus, host-specific definitions
should be at the beginning of the configuration
file, and defaults at the end.
Used by: ssh, scp, slogin, sdist
#
###
#
Compression yes
CompressionLevel 9
ConnectionAttempts 3
FallBackToRsh no
ForwardAgent yes
ForwardX11 yes
GlobalKnownHostsFile /etc/ssh_known_hosts
UserKnownHostsFile /etc/ssh_known_hosts
KeepAlive yes
RhostsAuthentication no
RhostsRSAAuthentication no
RSAAuthentication yes
TISAuthentication no
PasswordAuthentication yes
UseRsh no StrictHostKeyChecking no
BatchMode no
StrictHostKeyChecking no
IdentityFile ~ /.ssh/identity

Some of the listed configuration entries are identical to those in the previously presented server
configuration file. Others are quite self-explanatory, so we will not elaborate on them separately.

19.3.3 SSH Installation and User Access Setup

Both the server and client software components need to be installed on hosts where SSH
is supposed to be used. In addition, users must each generate their own keys (private and
public) and place the public key on the remote hosts to have access to them. SSH software

© 2002 by CRC Press LLC

installation is platform specific, and more details and basic instructions can be found in
the files README and INSTALL located in the SSH package directory. A set of installation
programs and Makefiles are also available.

19.3.3.1 Setup of the ssh Client

The ssh client program should be placed in any directory included in the $PATH variable (the
directories /usr/local/bin or /share/local/bin are good choices; symbolic links are also allowed).
SSH version 1 requires two other files to work properly: /etc/ssh_config and /etc/ssh_known_hosts
(SSH version 2 substitutes the second file with the corresponding subdirectory).

ls -l /etc | grep ssh | grep -v grep
-rw-r--r-- 1 root other 1647 Aug 28 1999 ssh_config
-rw-r--r-- 1 root other 7167 Sep 15 1999 ssh_known_hosts

.

.

We have already discussed the client configuration file /etc/ssh_config; now we will focus
on the file /etc/ssh_known_hosts. It is necessary for the target host to be listed in this file;
the public key of each target host (specified in the host’s /etc/ssh_host_key.pub) should be
added to the file. Each entry is modified by prepending the host name and removing the
trailing user@host; the Perl program make-ssh-known-hosts is available for this purpose.
To illustrate what it means, here is an SSH version 1 example:

cat /etc/ssh_known_hosts
red 1024 37 3407288340532312154575772332552 …………………….…… 3300931358351036817979597
blue 1024 35 16598146735277155628901488556055 …………………….… 814526930376266985504229
green 1024 33 13292087958394603763415136614608 ……………………… 148812837934617969703913

Each public key is specified by a single line that starts with the host’s name (here red,
blue,…, green, etc.) and ends with a 1024-digit key (here only partially presented). Once
copied, the file should be owned by root, with permissions: “rw- r-- r—”.

After SSH installation, the ssh access for each individual user (including the superuser)
must be set separately. Once a user’s access is activated, the user continues to use ssh in
the same way as the UNIX r-commands.

19.3.3.2 Root Access
Assuming “/” as the superuser home directory, root on the originating host must first
generate a key that is kept in the hidden subdirectory “/.ssh”. As root, run the command:

ssh-keygen -f /.ssh/identity -N “”

The -N option specifies the passphrase; if omitted no passphrase is implemented. This
process will produce three files (file names vary among SSH versions):

1. The private key: /.ssh/identity

2. The public key: /.ssh/identity.pub

3. The random seed: /.ssh/random_seed

Target hosts to whom the superuser wishes to connect must have the active sshd daemon
and the originating root’s public key added to the file /.ssh/authorized_keys. In addition,

© 2002 by CRC Press LLC

the directories and files “/”, “/.rhosts”, “/.shosts”, and “/.ssh” must not be writable by anyone
else. Although keys could be copied from one host to another, different root keys on each
target host increase the security.

The process produces private keys with/without passphrase to protect them. A pass-
phrase increases security, but it must be typed in each time, and correspondingly must be
a part of all related scripts.

19.3.3.3 Individual User Access
Basically the procedure is more or less the same as for the superuser. Each individual user of
ssh (or scp, or slogin) must first generate needed keys that are kept in the user home directory
on the originating host (the ssh client host). To generate keys the user should execute:

ssh-keygen -f $HOME/.ssh/identity -N “”

Again the passphrase is optional. The process will produce three files in the user’s home
directory (again file names could be different):

1. The private key: $HOME/.ssh/identity

2. The public key: $HOME/.ssh/identity.pub

3. The random seed: $HOME/.ssh/random_seed

The target hosts that the user wishes to connect to must have the user’s public key
(identity.pub) added to its file $HOME/.ssh/authorized_keys. Please note that the file identity.pub
was created at the client host, and should be appended to the file authorized_keys at each
targeted server host. Assuming secure root access between two hosts has been already
established, the following script could be very instrumental in setting individual users’ access:

#!/ bin/ksh
###
#
File: UserKey
Purpose: Create a ssh key for user and add public key to the ssh server host
Directions: UserKey [-n] username hostname (-n option generates a new key)
Invoked by: root
#
###

if [“$1” = “-n”]; then
NKEY=YES
USER=$2
SHOST=$3

else
NKEY=NO
USER=$1
SHOST=$2

fi
Assumed user home directory
HOME=/home/$USER
First create remote user ssh directory
echo “\nCreate user ssh directory on $SHOST”
ssh $SHOST chmod 755 /$HOME
ssh $SHOST rm -f /$HOME/.rhosts
ssh $SHOST mkdir -p /$HOME/.ssh
ssh $SHOST chown $USER /$HOME/.ssh
ssh $SHOST chmod 755 /$HOME/.ssh

© 2002 by CRC Press LLC

Generate local and remote ssh keys (if required)
if [“$NKEY” = “YES”]; then

echo “\nGenerating local key for $USER”
su - $USER -c /usr/pkg/ssh/bin/ssh-keygen -f $HOME/.ssh/identity -N “”
echo “Generating key for $USER on $SHOST”
ssh $SHOST su - $USER -c /usr/pkg/ssh/bin/ssh-keygen -f $HOME/.ssh/identity -N “”

fi
Create the remote file authorized_keys
echo “Adding public key to $SHOST”
scp ${SHOST}:/$HOME/.ssh/identity.pub ${SHOST}:/$HOME/.ssh/authorized_keys
cat /$HOME/.ssh/identity.pub | ssh $SHOST “cat >> /$HOME/.ssh/authorized_keys”
ssh $SHOST chown $USER /$HOME/.ssh/authorized_keys
ssh $SHOST chmod 644 /$HOME/.ssh/authorized_keys
###

Such a script makes a setting of a user access to the target host very easy. The script
itself can be improved in many ways, as well.

19.3.4 SSH — Version 2

Secure shell protocol and supporting software continue to develop and improve. The
previous text, especially the part that addresses SSH configuration and access setup,
primarily refers to the initial SSH version, known as Version 1. At the moment, the latest
SSH version is Version 2, which provides a set of radical improvements over Version 1.
To make a difference between versions they are identified as SSH1 and SSH2 respectively;
the same is implemented on binaries and configuration data, they have a corresponding
suffix within their names.

SSH2 was totally rewritten and it provides:

• Better-understood and more secure protocol

• New design and new cryptography and mathematics algorithms
• An integrated secure file transfer

• Support for multiple public key algorithms, including Diffie-Hellman key exchange
• New authentication methods like Pluggable Authentication Modules (PAM),

integration with Kerberos, and usage of SecureID

New design and coding of SSH2 has also had some disadvantages; unfortunately SSH1
and SSH2 protocols are not compatible with each other. Many implemented security and
performance enhancements would not have been possible if protocol-level compatibility
with SSH1 had been retained. However, to continue to work with already installed SSH1
clients, SSH2 daemon could be configured to recognize their appearance and automatically
to invoke the SSH1 daemon to provide the requested service in the SSH1 way. Such a
solution requires both SSH installations on the same host (at the server side) and should
work well. Nevertheless, sometimes it could be even easier to upgrade all SSH1 clients to
SSH2. The new version offers much more, and it is worth it to make such a move. Even
when we talk about SSH2, we are mostly thinking of late SSH2 releases (SSH 2.3.x and
up) which provide more stable and secure connections. Otherwise, to configure everything
and make it work smoothly could be quite a hard job.

SSH2 provides an easier configuration and much better understanding between client
and server during the connection. The first time such a connection is established, client
and server exchange necessary public keys automatically and prepare everything for
future sessions. There is no more need for an explicit manual transfer of the public key

© 2002 by CRC Press LLC

to enable the communication between hosts at all; this is accomplished in an elegant way
during the first user’s attempt to access a target host. Afterward the authentication and
data transfer is accomplished in the secure way, even in a nonsecure network environment.

This is illustrated in the example that follows. User bjl on the host pink (originating
host, i.e., SSH2 client host) is trying to access the host red (target host, i.e., SSH2 server
host) for the first time. Two pieces of SSH2 software on two hosts establish the following
“first-time SSH2 handshake” dialogue:

[bjl@pink /home/ bjl]# ssh -l bjl red
Host key not found from database.
Key fingerprint:
xubis-fygos-fumon-bakyc-sogeh-gopap-hopub-bymov-ni zig-samus-huxyx
You can get a public key’s fingerprint by running
% ssh-keygen -F publickey.pub
on the keyfile.
Are you sure you want to continue connecting (yes/no)? yes
Host key saved to /home/bjl/.ssh2/hostkeys/key_22_red .pub
host key for red, accepted by bjl Sun May 06 2001 14:20:15
bjl’s password:

User’s actions are presented in bold italic. The user initiates the SSH connection, and
confirms continued connecting. For a successful secure remote login, at the end a user’s
password on the target host red must be entered. Such a dialogue happens only the first
time; once the user’s key is saved on the originating host pink, each succeeding connection
will simply require the password only. Obviously it is much easier than transferring
needed keys manually in advance for every user, and it is equally secure.

Each transferred key is saved as a separate file in the user’s home directory “./.ssh2/
keyhosts”, instead of as an entry in the single file (the case with SSH version 1). It makes
handling of this data easier and flexible. Here is an example:

ls –l /home/bjl/.ssh2/hostkeys
total 54
-rw------- 1 bjl 20 737 Sep 13 2000 key_22_red.pub
-rw------- 1 bjl 20 737 Aug 30 2000 key_22_blue.pub
-rw------- 1 bjl 20 737 Sep 13 2000 key_22_gray.pub

.

.
-rw------- 1 bjl 20 737 Aug 30 2000 key_22_green.pub

Each file contains a public key for the specified host.
Another significant SSH2 improvement is in the authentication area. Authentication

itself could be configured in many different ways, and the default one is password-based.
However, in the following text the procedure to set SSH2 “host-based authentication” will
be described. The reasons to choose this authentication method over others are very
simple. First, there are many situations when we have to escape default password authen-
tication between certain hosts and for specific users, as in the case of centralized moni-
toring, remote scripts, etc. Second, this authentication method works very well for SSH2
(what we cannot say for Version 1, and even for some early SSH2 releases).

For an easier understanding of the described procedure we will suppose the following:

• SSHSERVER is the name of the host with running sshd2 daemon, to which we
are trying to connect; the name could be full canonical host name, or short host
name if two hosts share the same DNS domain and DNS is properly set.

• ServerUser is the user name on the host SSHSERVER into which we would like
to login.

© 2002 by CRC Press LLC

• SSHCLIENT is the name of the host with running ssh2 client, where we invoke
the connection; the name could be full canonical host name, or short host name
if two hosts share the same DNS domain and DNS is properly set.

• ClientUser is the user name on the host SSHCLIENT that should be allowed to
log in to ServerUser on the host SSHSERVER.

• The needed SSH2 software is installed on both hosts SSHSERVER and SSHCLI-
ENT and individual host keys are generated on both machines (SSH2 automat-
ically generates keys upon its installation).

The procedure consists of several steps:

1. Copy the public key hostkey.pub on SSHCLIENT into SSHSERVER and rename
into “ssh-dss.pub” for this host. Execute on SSHCLIENT:

scp /etc/ssh2/hostkey.pub SSHSERVER:/etc/ssh2/knownhosts/SSHCLIENT.ssh-dss.
pub. Upon password authentication the file with the public key will be copied.

2. To avoid a possible confusion regarding implemented host names (full canonical
names vs. short host names), SSH2 could be set to use only full host names. The
entry in the sshd2 configuration file /etc/ssh2/ssh2d_config:

DefaultDomain <this dns domain name>

will force the use of full canonical host name. Obviously, we then have to also
use full host names.

3. On the host SSHSERVER, create or update the hidden file .shosts in the home
directory for the user ServerUser. The contents of this file have to include the
full host name and the name of the user allowed to log in to this account (in this
case SSCLIENT and ClientUser):

SSCLIENT ClientUser

4. On the host SSHSERVER, the sshd2 configuration must include host-based
authentication, as well as ssh2 configuration on the client side on the host
SSHCLIENT. Both configuration files SSHSERVER:/etc/ssh2/sshd2_config and
SSHCLIENT:/ etc/ssh2/ssh2_config have to have hostbased keyword in the authen-
tication entry:

AllowedAuthentication hostbased, passwd,…

Other authentication methods could be listed in the entry, but the “hostbased”
keyword has to be the first in the line. Also, the “rhosts” authentication should
be prevented; the default entry:

IgnoreRhosts no

should not be changed.

5. Each change in the sshd2 daemon configuration requires recycling of the daemon
itself:

kill -HUP �cat /var/run/sshd2.pid�

This example supposes the process ID - PID of the running sshd2 daemon is
kept in the file /var/run/sshd2.pid, which is not a must and is flavor specific.
Probably it is easier to check for the actually running daemon by executing:

ps –ef | grep sshd2

and determining the PID of the leading sshd2 daemon (keep in mind that
multiple sshd2 daemons can run simultaneously, and we are looking for the
leading one).

© 2002 by CRC Press LLC

20
Electronic Mail

20.1 E-mail Fundamentals

E-mail is probably the most attractive topic for users. Almost every user on the network
uses electronic mail (known by its acronym e-mail). Users do not know very much about
UNIX, but they like to use, and they benefit from using, e-mail. Usually this is a love-hate
relationship between users and e-mail; users love having an e-mail system, but they hate
it when it does not work. This relationship is exacerbated by the fact that only a few of
them have any idea how e-mail actually works and really understand e-mail processes.
The most common misunderstanding is to confuse e-mail with other popular network
applications, like telnet or ftp. And when the DNS issue arises during a discussion of
e-mail, the confusion is complete.

It is not so easy to explain the principles of e-mail in a few words. For starters, e-mail
can be compared to regular ground mail service, or snail mail; this is the most helpful
description that we have. If we use this analogy, though, we should also point out other
services analogous to the common network applications: telnet corresponds to the phone
service, ftp to fax service, and DNS is an operator to help to resolve name/address/phone
number relationships.

E-mail is based on several supporting programs and protocols that enable local and
networkwide e-mail service. The programs accomplish different tasks sequentially in the
e-mail generation, e-mail transfer (transportation), and e-mail delivery; the protocols
define rules for the interprogram communications.

There are two categories of e-mail programs: “mail user agents,” or MUA programs,
and “mail transport agents,” or MTA programs. An MUA agent is any number of programs
that users run to read, reply to, compose, and dispose of e-mail. These include, for example,
the original UNIX mail program /bin/mail, the Berkeley mail or its System V equivalent
mailx, and freely available programs like mush, elm, pine, and mh, as well as other
commercial programs.

An MTA agent is a program that handles mail delivery for many users and forwards
e-mail between machines. The central mail transport program, the one most used today,
is sendmail. On UNIX this is the default MTA program. Other mail programs are imple-
mented around sendmail. sendmail determines and invokes other delivery agents called
Mailers to deliver e-mail and to further transfer e-mail. This is shown in Figure 20.1.
Mailers are sometimes considered the third category of e-mail programs and named
“delivery agents,” or MDA programs. In this text mailers are treated as a part of the MTA
program.

© 2002 by CRC Press LLC

When an e-mail sent to a user arrives at its destination, it will be placed in the user’s
mailbox. A mailbox is a file, or sometimes a directory of files, where incoming e-mail is
stored. On UNIX this is a file named with the username, and by default located in the
/var/mail directory; once the received e-mail is read by the user it is transferred into another
mailbox located in the user’s home directory.

sendmail is the core of e-mail and the central administration issue for successful e-mailing.
Two sendmail programs (with the help of an appropriate mailer) provide the transfer of
e-mail from one machine to another over the network. The protocol used in the exchange
of messages is known as the SMTP protocol — simple mail transport protocol. MUA
programs make an interface between e-mail users and sendmail. From the user’s point of
view, they are the most important links in the chain — they make e-mail user-friendly,
and they are also what seem “broken” when e-mail is not working. However, the impact
of MUA programs on overall e-mail is marginal, and their significance exists mostly within
a local environment. Nevertheless, an administrator is not freed from the duty of main-
taining MUA programs, but the main administration concern is definitely focused on
sendmail. The text that follows reflects these facts.

Each e-mail message (just as in regular mail) has an envelope with the recipient’s and
sender’s addresses, and a message content that consists of a header and a body. A recip-
ient’s address is the address to which the message should be delivered. sendmail parses
and analyzes the e-mail addresses, learns of the destination, and decides where and how
to deliver it. It might not be delivered immediately to the final recipient; the “where” of
the delivery could be any host on the network able to continue with the e-mail transport.
If this is the case, sendmail does not deliver the e-mail to the host; it forwards the e-mail
to a specialized host called a mailhost, which knows how to handle e-mail very well.
This means that the generated e-mail message could be delivered directly to the recipient’s

/bin/mailx /bin/mail

/usr/local/mh

sendmail

local

ether

prog

Mail Delivery Agents (Mailers) - MDA

Mail User Agents - MUA

Mail Transport Agent
 MTA

FIGURE 20.1
The flow of e-mail through the system.

© 2002 by CRC Press LLC

host, but it could also be sent via a number of mailhosts. The route depends primarily
on the e-mail recipient’s address, but sometimes is affected by the current network
conditions.

The message content is not touched by sendmail, although the format of the header is
set within the sendmail configuration. The header contains information about who
authored the e-mail message, the intended recipient, the time of creation, the subject of
the message, delivery stamps, etc. The body is separated from the header by a blank line,
and contains the information the sender is trying to communicate (most users see
a message body as the message itself).

For many years, e-mail messages were plain ASCII text without any need for a specific
structure for message bodies. The implemented SMTP protocol was a 7-bit protocol
based on the US-ASCII character set, which limited bytes of data sent to using only low-
order 7 bits; the 8th bit has been always treated as zero. This was suitable for plain
English text, but many foreign languages (especially Asian ones), as well as binary
multimedia data (graphics, programs, audio, video, etc.) require a valid 8th bit. To
transfer this data without loss, the message must first be encoded into 7-bit data. A
solution was found in the MIME (multipurpose Internet mail extensions, specified in RFC
2045/2046) encapsulation. MIME specifies how to encode data when necessary, but it is
still the responsibility of the recipient’s MUA program to use this information appro-
priately and to display the message in a form understandable to the user.

The explosion of multimedia messages brought on the need for “real 8-bit message
transfer.” It is possible to encode messages into 7-bit transfer, but it is cumbersome
and the resulting encoded message is significantly (typically 33%) larger than the
original one. SMTP protocol has been extended to allow 8-bit transfer to meet this
need; the general extension mechanism to SMTP known as ESMTP is specified in RFC
1869, while the specific extension to allow 8-bit transfer called 8BITMIME is specified
in RFC 1652. If an MTA program cannot negotiate the proper transfer of 8-bit data, it
has either to encode the message into 7-bit data using MIME, or return the message
to the sender indicating the reason for return. MIME and ESMTP have common goals;
they were developed in conjunction with each other toward the same end. sendmail
versions 8.6 and newer support ESMTP; versions 8.7 and newer support the 8BITMIME
extension.

E-mail deliveries are generally very fast. They are measured in seconds, minutes, or
hours. Nevertheless, delivery time is not a deterministic value — there is no way to
predict the exact delivery time, because it depends on a number of issues, especially if
many mailhosts are involved in the e-mail transportation. Sometimes it can even be
measured in days (if hosts in the chain of the e-mail delivery crash, or overload, or
have network problems, etc.); an e-mail message can even be lost (fortunately, this
happens only occasionally). In that sense, the e-mail really does resemble regular
ground mail.

The central sendmail issue is “where and how” to send e-mail; sendmail parses the
e-mail recipient’s address and makes such decisions based on the rules (algorithms)
specified in its configuration file. There is no standardized algorithm, mandatory for each
e-mail site, for e-mail address parsing. It is left to the sendmail administrator to implement
the most appropriate algorithm. Several template sendmail configuration files are available
as part of any UNIX implementation to make this job easier. In fact, most of today’s UNIX
flavors provide advanced sendmail configuration templates, prepared for comprehensive
customization, which require the administrator to supply only site-specific information.
However, it is also fair to say that in some nonstandard cases such templates could be
insufficient, and a more elaborative administration could be required. We will return to
this issue once we learn about the contents of the sendmail configuration file.

© 2002 by CRC Press LLC

Among the many decisions that sendmail makes, one is to reject an e-mail message
because of an ambiguous recipient’s or sender’s address. The most common reasons for
such action is a misspelled recipient’s address which really should be rejected, but in some
rare situations even a correct address could be returned as a result of an improper sendmail
configuration (because the specified address type is not covered by the implemented
sendmail parsing algorithm) or another temporary sendmail-related problem. Do not be
surprised when an e-mail address that works when used from one host, does not work
from another. Fortunately, this does not happen often, and it can be overcome with an
appropriate sendmail configuration setting.

20.1.1 Simple Mail Transport Protocol (SMTP)

SMTP is the basic e-mail protocol. SMTP stands for simple mail transfer protocol, and it
is based on the TCP/IP suite. This is the language that sendmail understands well, and
peer communication between two involved sendmail programs is actually an exchange
of SMTP messages.

A simplified presentation of such a communication (or rather, a conversation) between
two arbitrary hosts, identified as ms1.mydomain and ms3.yourdomain, is shown in Figure
20.2. The two hosts communicate directly. The local sendmail is delivering an e-mail from
the local user me to the remote user you; it literally talks to the remote host’s sendmail
about having an e-mail message from the user me on the local host sent to the user you
on the remote host (the e-mail address is you@ms3.yourdomain). The local sendmail
conveys the sender and recipient information before it transmits the e-mail message; the
address information constitutes the envelope, and it is conveyed separately from the mes-
sage header. Only one recipient may be listed in the envelope, although the same e-mail
could be addressed to more recipients simultaneously. Any division of a “multiple-
addressed” e-mail into multiple “single-addressed” envelopes must be performed before
the address parsing; SMTP assumes a single recipient only.

To get a better look at the SMTP protocol, another example using sendmail in verbose
mode follows. The verbose mode lists the complete dialogue between the two sendmail
programs on the sender’s and recipient’s hosts. In this example the e-mail message is sent
by the sender bjl@patsy.myschool.scps.edu to the recipient mis@apollo.ph.
myschool.scps.edu; the text for the e-mail is in the file named “indata.mail”. Again, the two
hosts communicate directly (there are no relay mailhosts in the e-mail delivery).

/usr/lib/sendmail -v mis@apollo.ph.myschool.scps.edu < indata.mail
mis@apollo.ph.myschool.scps.edu… Connecting to apollo.ph.myschool.scps.edu via ether…
Trying 146.98.8.31… connected.
220 apollo.ph.myschool.scps.edu HP Sendmail (1.38.193.4/16.2) ready at Tue, 5 Jul 1998 17:06:13 -0400
>>> HELO patsy.myschool.scps.edu
250 apollo.ph.myschool.scps.edu Hello patsy.myschool.scps.edu, pleased to meet you
>>> MAIL From:<bjl@patsy>
250 <bjl@patsy>… Sender ok
>>> RCPT To:<mis@apollo.ph.myschool.scps.edu>
250 <mis@apollo.ph.myschool.scps.edu>… Recipient ok
>>> DATA
354 Enter mail, end with “.” on a line by itself
>>>.
250 Ok
>>> QUIT
221 apollo.ph.myschool.scps.edu closing connection
mis@apollo.ph.myschool.scps.edu… Sent

© 2002 by CRC Press LLC

The lines that begin with numbers and the lines that begin with >>> characters constitute
the SMTP conversation. The lines starting with >>> characters display what the sender’s
host was saying; the replies from the recipient’s host are displayed with leading numbers.

• The first two lines are messages at the sender’s host, describing what sendmail
is doing:

mis@apollo.ph.myschool.scps.edu… Connecting to apollo.ph.myschool.scps.edu
via ether… Trying 146.98.8.31… connected.

The first line shows to whom the e-mail is addressed and that the host
apollo.ph.myschool.scps.edu is on the network. The second line shows the IP address
of the recipient’s host (in this case the IP address was obtained by DNS).

• Once the sender’s sendmail has connected to the recipient’s host, it waits for the
other side to initiate further conversation. The recipient says it is ready by sending
the number 220 followed by its domain name (this is the only required information);

M
a
il
 s

e
r
v
e
r
:

m
s
1
.m

y
d

o
m

a
in

Hello ms3.yourdomain

 Mail from:

 me@ms1.mydomain

Here comes the

 message data.

Mail to:

you@ms3.yourdomain

Hello ms1.mydomain

Sender OK!

Recipient OK!

OK, message received!

M
ai

l s
er

ve
r:

m
s3

.y
o

u
rd

o
m

ai
n

Quit, bye!

Bye!

FIGURE 20.2
A simplified presentation of SMTP.

© 2002 by CRC Press LLC

the program name (usually, but not always, sendmail); and the version of that
program. It also states that it is ready and gives its local date and time.

220 apollo.ph.myschool.scps.edu HP Sendmail (1.38.193.4/16.2) ready at Tue,
5 Jul 1998 17:06:13 -0400

• Next, the sender’s sendmail sends the hello message HELO (this is not a typo);
the recipient replies with 250 and the acknowledgment that the sender’s hostname
is acceptable:

>>> HELO patsy.myschool.scps.edu
250 apollo.ph.myschool.scps.edu Hello patsy.myschool.scps.edu, pleased to
meet you

• If all has gone well so far, the sender’s sendmail sends the name of the e-mail
sender (the user on that host) from the envelope of the e-mail message; the
recipient’s sendmail accepts the sender’s name and replies with the message
starting with the number 250:

>>> MAIL From:<bjl@patsy>
250 <bjl@patsy>… Sender ok

• Next, the sender’s sendmail sends the name of the e-mail recipient (the user on
the remote host) from the envelope of the e-mail message; the recipient’s send-
mail accepts (in this case) or rejects this name (then it would reply with an error
“User unknown”). The reply starts with the number 250:

>>> RCPT To:<mis@apollo.ph.myschool.scps.edu>
250 <mis@apollo.ph.myschool.scps.edu>… Recipient ok

• After the envelope information has been sent, the sender’s sendmail attempts
to send the e-mail data (header and body combined):

>>> DATA
354 Enter mail, end with “.” on a line by itself
>>>.

The DATA message essentially tells the recipient to get ready for a data receipt;
the sent data is not displayed, and only a single dot on a line by itself is used
to mark the end of a mail message — this is a convention of the SMTP protocol.
To prevent misinterpretation of any lines in the e-mail body that could contain
a single dot, the sender’s sendmail inserts an extra dot at the beginning of any
line that begins with a dot; the recipient’s sendmail removes those extra dots.

• After the e-mail message has been successfully sent, it is confirmed by the
recipient’s sendmail. The sender’s sendmail sends QUIT to say all is done, and
the recipient’s sendmail acknowledges that it is closing the connection:

250 Ok
>>> QUIT
221 apollo.ph.myschool.scps.edu closing connection

• The last line simply confirms that the e-mail message was successfully delivered:
mis@apollo.ph.myschool.scps.edu… Sent

20.1.2 The MTA Program sendmail

The central point of a UNIX e-mail system is the MTA program sendmail; consequently
a major part of the overall text is related to sendmail, and more specifically to the sendmail
administration.

© 2002 by CRC Press LLC

20.1.2.1 The sendmail Daemon

The sendmail daemon runs nonstop on each host that is intended to fully support e-mail.
The sendmail daemon listens on port 25 and processes incoming e-mail. The daemon is
invoked during system startup from an rc initialization script file, usually executing the
following, or a similar command sequence:

if [-f /usr/lib/sendmail -a -f /etc/sendmail.cf]; then

(cd /var/spool/mqueue; rm -f nf* lf*)

/usr/lib/sendmail -bd -q1h; echo -n “ sendmail”

fi

The rc script first checks for the existence of the sendmail program and its configuration
file /etc/sendmail.cf. If both are found, the mail queue directory is checked and cleared of
any possible remained nfs or locked file found there; it is possible that the system went
down while the mail queue was being processed, so unprocessed files may have been
inadvertently left behind. They must be removed during system booting to make a place
for their reprocessing, as well as for new files.

Next, the script starts sendmail with two command line options. The option -bd tells
sendmail to run as a daemon, causing sendmail to listen nonstop to port 25 for incoming
e-mail. The -q option determines how often the mail queue is processed; for most systems
a setting of 1h (one hour) is a good choice. For larger mailhosts (mail servers) more frequent
mail queue processing could be more appropriate; 30 minutes (-q30m) or even 15 minutes
(-q15m) could be better choices. This time relates only to the mail queue processing; an
e-mail received on port 25 is processed immediately, and only if it fails to be delivered is
the e-mail put in the mail queue for later reprocessing.

The sendmail daemon runs as long as the system is alive. However, once it becomes
too busy, the sendmail daemon will spawn another daemon/daemons to help in e-mail
processing. Child daemons will exit upon completing their tasks, but the parent daemon
continues to run even if it is idle.

20.1.2.2 The sendmail Command

sendmail is actually a versatile and powerful UNIX command that can be executed from
the command line at any time. The “daemon option -bd” is only one of many possible
options. sendmail can also be invoked to complete a single job, as with any other UNIX
command; this is often done during sendmail testing and debugging.

For a better understanding of sendmail, the main program characteristics are summarized
below:

• sendmail sends a message to one or more people, routing the message over net-
works as needed. sendmail does internetwork forwarding as necessary to deliver
the message to the correct place.

• sendmail is not intended as a user interface routine; other MUA programs provide
user-friendly front ends. sendmail is used only to deliver preformatted messages.
With no flags, sendmail reads its standard input up to an EOF or a line with
a single dot, and sends a copy of the letter (message) found there to the address
listed. It determines the way to send the message based on the syntax and contents
of the addresses.

• On the sender’s side, the recipient’s address is looked up in the local aliases file
(or by using NIS), and aliased appropriately. In addition, if there is a .forward

© 2002 by CRC Press LLC

file in the recipient’s home directory, sendmail forwards a copy of each message
to the list of recipients that the file contains. Preceding the address with
a backslash can prevent aliasing. Normally, the sender is not included in alias
expansions (for example, if john sends to group, and group includes john in the
expansion, then the e-mail will not be forwarded to john).

• sendmail can route mail directly to other known hosts in a network. The list of
hosts to which mail is directly sent depends on the sendmail configuration, but
could also be maintained by certain related files.

• The format of the sendmail command is:

/usr/lib/sendmail [option]

Where some of the options are:

• sendmail is supported by the following files, which means sendmail looks for
and uses the following files:

Note: Except for /etc/sendmail.cf, the actual pathnames are all specified in /etc/sendmail.cf; the pathnames
presented here are only approximations. For new sendmail releases, the configuration file is
moved into /etc/mail/sendmail.cf.

Option Action

-bd Run as a daemon, waiting for incoming SMTP connections.
-bi Initialize the alias database.
-bm Deliver mail in the usual way (default).
-bp Print a summary of the mail queue and list all mails currently in the queue.
-bt Run in address test mode. This mode reads addresses and shows the steps in

parsing, and it is used for debugging configuration address parsing rules.
-bv Verify names only — do not try to collect or deliver a message. Verify mode is

normally used for validating users or mailing lists.
-bz Create the configuration freeze file.
-n Do not do aliasing.
-hN Set the hop count to N. The hop count is incremented every time the mail is

processed; when it reaches a limit, the mail is returned with an error message.
-q [time] Process saved messages in the queue at given intervals. If time is omitted, process

the queue once. time is given as a tagged number, where s is seconds, m is minutes,
h is hours, d is days, and w is weeks. For example, -q1h30m or -q90m would both
set the timeout to one hour thirty minutes.

-t Read message for recipients. “To:”’, “Cc:”, and “Bcc:” lines will be scanned for
people to send to, the “Bcc:” line will be deleted before transmission, and any
address in the argument list will be suppressed.

-v Verbose mode, alias expansions will be announced; SMTP dialogue presented, etc.

/etc/aliases ASCII data for alias names (alternatively /etc/mail/aliases)
/etc/sendmail.cf The configuration file
/etc/sendmail.fc The frozen configuration file v
/etc/sendmail.st Collected statistics
/usr/lib/mailhosts A list of hosts to which e-mail can be sent directly
/usr/lib/sendmail.hf The help file
/var/spool/mqueue/* Temporary files and queued mail
$HOME/.forward A list of recipients for forwarding messages (user based)
/usr/bin/mail To deliver local mail
/usr/sbin/mailx To deliver local mail (alternatively)

© 2002 by CRC Press LLC

sendmail’s processing of an incoming e-mail (regardless of whether it is coming from
a local MUA program or a remote sendmail) is based on the listed files. The significance
of the files varies, but certainly the most important file is the sendmail configuration file
/etc/sendmail.cf — this file will be discussed in greater detail later. However, some other
files, such as the global mail aliases file, personal mail forwarding files, the frozen sendmail
configuration file, as well as delivery programs, mailers, deserve some attention too. Let
us start with them.

20.1.2.3 Other sendmail Constituents

To fully respond to such a demanding task, sendmail relies on other related programs and
files, which are briefly summarized in the following material.

20.1.2.3.1 Global Mail Aliases

The global mail aliases file /etc/aliases (sometimes linked to /etc/mail/aliases) provides, on the
system level:

• Alternate names (nicknames) for individual local users

• Forwarding of mail to other hosts
• Mailing lists

The basic format of an entry in the /etc/aliases file is:

alias: recipient[, recipient, …]

where
alias The name to which the e-mail is addressed
recipient Another local user name, the name of another alias, or a full e-mail address

containing both a user name and a host name (this enables forwarding to
a remote host); additionally, it could be multiple recipients for a single alias,
which enables the use of a mailing list

Aliases are widely used to specify individual users as nicknames for special names like
postmaster, hostmaster, or root, and to deliver e-mail to the real users who do these jobs.
They can also be used to implement simplified e-mail addressing. Without them, the
concept of sendmail would definitely not be so powerful; they play a central role in e-mail
delivery within today’s Intranet networks.

An example of the aliases file follows; there is no need for additional comments.

$ cat /etc/aliases
##
Aliases can have any mix of upper and lower case on the left-hand side,
but the right-hand side should be proper case (usually lower)
#
>>>>>>>>>> The program “newaliases” will need to be run after
>> NOTE >> this file is updated for any changes to
>>>>>>>>>> show through to sendmail.
#
@(#)aliases 2.30 SMI
##

Following alias is required by the mail protocol, RFC 822
Set it to the address of a HUMAN who deals with this system’s mail problems.
Postmaster: root

© 2002 by CRC Press LLC

Alias for mailer daemon; returned messages from our MAILER-DAEMON
should be routed to our local Postmaster.
MAILER-DAEMON: postmaster

Aliases to handle mail to programs or files, eg news or vacation
decode: “|/usr/bin/uudecode”
nobody: /dev/null

Sample aliases:
Alias for distribution list, members specified here:
#staff:wnj,mosher,sam,ecc,mckusick,sklower,olson,rwh@ernie
Alias for distribution list, members specified elsewhere:
#keyboards: :include:/usr/jfarrell/keyboards.list
Alias for a person, so they can receive mail by several names:
#epa:eric
###
Local aliases below
###
The list of local aliases follows
bjl blevi

. . .

. . .

It is important to pay attention to the fact that sendmail does not use the /etc/aliases file
directly. This is an ASCII file used to edit the raw aliases data, but the modified file must
first be processed by the newaliases command (which is equivalent to the sendmail -bi
command) to create the dbm aliases files (aliases.dir and aliases.pag) used by sendmail. In
that way, a search through the aliases database is much faster.

20.1.2.3.2 Personal Mail Forwarding Files

In addition to the global e-mail forwarding provided by the /etc/aliases file, sendmail allows
individual users to define their own personal forwarding in the .forward file in their home
directories. sendmail checks for this file after using the /etc/aliases file and before making
a final mail delivery to the user. If a personal .forward file exists, sendmail respects its
directives. The format of the directives in the personal .forward file is equivalent to the
format of the /etc/aliases entries.

20.1.2.3.3 Mail Delivery Programs — Mailers

sendmail is the MTA program and it does not handle the mail delivery itself; one exception
is when the mail should be delivered over a TCP/IP network to another remote host.
Instead, sendmail invokes other programs that perform the mail delivery; these programs
are known as delivery agents, or simply Mailers. This is illustrated in Figure 20.3.

Mailers’ definitions are included in the sendmail configuration file. However, the criteria
for the selection of a mailer is not a part of the mailer’s definition; sendmail simply decides
when a mailer will be used, and supplies it with the necessary delivery data.

On the other side, the mailer’s definition supplies sendmail with the information it needs
to know how to invoke the mailer. The initial information sendmail needs includes the
name and location of the delivery program, but the complete information contains some
additional arguments. Generally, the syntax of the sendmail configuration data is quite
different from other UNIX configuration data, and we will discuss it in greater detail later.
At the moment, let us focus on the mailer’s definition specified by the “M configuration
entry” in the sendmail configuration file. Its generic form is:

M=mailer-name P=mailer-path F=mailer-flags S=send-rules R=receive-rules A=mailer-arguments

© 2002 by CRC Press LLC

where:
M= Identifies a mailer’s definition configuration entry with a symbolic name under

which sendmail recognizes the corresponding delivery agent. The symbolic name
follows the M with no intervening space.

P= Specifies the full pathname of the mailer program that performs the mail delivery.
This field should be [TCP] or [IPC] for e-mail forwarding over the TCP/IP network
performed by sendmail itself.

F= Specifies certain flags that tell sendmail more about the mailer definition. Each flag
is a single letter and is Boolean — being set or not set by being correspondingly
present or absent.

S= Specifies which rule set to use when rewriting the sender’s address (this will be
explained later).

R= Specifies which rule set to use when rewriting the recipient’s address (this will be
explained later).

A= Specifies the command-line arguments to be supplied to each corresponding mailer
program.

There is no limitation regarding the number of specified mailers; names of defined mailers
are also arbitrary. However, two mailers are mandatory: the local and prog. These mailers
must be always defined, regardless of whether they are needed or used. They enable e-mail
delivery to local users (mailer local) or to local programs (mailer prog). If they do not exist,
sendmail will not start, and it will print a corresponding error message. Obviously, other
mailers should also be defined for sendmail to function properly, but the sendmail program
itself does not strictly require them.

20.1.2.3.4 The sendmail Configuration File

This is the central sendmail issue; the configuration file fully defines sendmail’s behavior —
everything is specified within this file. The sendmail configuration file is /etc/sendmail.cf

Local
 Recipient

Program
Recipient

Network
 Recipient

Network Mailer
ether

Local Mailer
local

Program Mailer
prog

sendmail
(selects Mailer according to the Ruleset #0)

FIGURE 20.3
Sendmail vs. mailers relations.

© 2002 by CRC Press LLC

(sometimes /usr/lib/sendmail.cf and lately /etc/mail/sendmail.cf). The sendmail.cf file has
three main functions:

1. It defines the sendmail environment.
2. It rewrites addresses into the appropriate syntax for further e-mail processing.

3. It maps addresses into the instructions necessary to deliver the e-mail.

Many different configuration entries in the configuration file are required to perform
all of these functions:

• Macro definitions and option entries define the environment.
• Rewrite rules transform e-mail addresses from one format to another.

• Mailer definitions specify the programs necessary to deliver e-mail.

The syntax of these entries is terse and complex. It makes most system administrators
reluctant to even read a sendmail.cf file; only a few feel comfortable with modifying the
configuration. At the start time, sendmail reads the configuration file and learns how to
behave; for this reason, the syntax is designed to match the program needs, which is not
necessarily easy for humans to read. All configuration commands, specifications, options,
and variables are similar in that each one is only one character long, and hard to recognize
and remember. It is easy to confuse a single character command with a single character
variable. Despite that difficulty, the sendmail configuration file must be fully understood
for a successful administration.

20.1.2.3.5 The Frozen sendmail Configuration File

sendmail always reads the configuration data when it is started. A converted
dbm image of the ASCII configuration file /etc/sendmail.cf can be created to make this
reading faster. This file is called a frozen configuration file /etc/sendmail.fc (or some-
times /usr/lib/sendmail.fc). The following command must be executed to create a frozen
configuration file:

/usr/lib/sendmail -bz

Only freezing the previously modified ASCII sendmail.cf file can change the frozen
configuration file. The advantage of the frozen configuration is that sendmail will start
up faster; the disadvantage is that an additional step is needed to change the sendmail
configuration. It is easy to forget this step, but any change in the file /etc/sendmail.cf does
not impact the frozen configuration until the command sendmail -bz is executed.

The frozen sendmail configuration is frequently used, but it is not a requirement.
sendmail simply checks for the file. If the /etc/sendmail.fc frozen configuration file exists,
it is parsed; otherwise, the /etc/sendmail.fc configuration file is read.

20.2 Sendmail Configuration

Many sendmail configuration files have the same or similar structure. Most of them are
descendants of a few original template files. They are never written from scratch; several

© 2002 by CRC Press LLC

versions of templates are always included in any UNIX implementation, and new versions
can be downloaded if needed. Everything is designed to make the job easier. Usually, the
closest sendmail.cf template should be selected for the desired implementation, and then
customized. Most of the template sendmail configuration files require minor modification
to be practically implemented.

20.2.1 The sendmail.cf File

The overview of the sendmail.cf structure that follows describes several sections that
specify certain sendmail configuration entities and include functionally similar entries.
The discussed sections are taken from one of the real-life sendmail configuration files.
An already well-commented configuration file will be elaborated in greater details
in an attempt to make odd configuration entries more friendly and comprehensive.
The idea is to get a better feeling for the sendmail configuration syntax, for the sections
that should be customized, for how much administrative work needs to be done,
and especially to understand sendmail parsing algorithms and decision making
mechanisms.

The sendmail configuration file presented here is for a host that is known as a subsidiary
machine, i.e., the host that fully supports e-mail, but does not belong to the group of main
mail servers. The reason for such a selection is very logical; first, it is less complex, so it
is easier to understand the configuration entries, and second, a majority of systems belong
to this category. Let us begin!

$ cat /etc/sendmail.cf
###
SENDMAIL CONFIGURATION FILE FOR SUBSIDIARY MACHINES
#
You should install this file as /etc/sendmail.cf
if your machine is a subsidiary machine (that is, some
other machine in your domain is the main mail-relaying
machine). Then edit the file to customize it for your
network configuration.
#
See the manual “System Administration for the Sun Workstation.”
Look at “Setting Up The Mail Routing System” in the chapter on
Communications. The Sendmail references in the back of the
manual are also very useful.
#
@(#)subsidiary.mc 1.11 SMI; from UCB arpa.mc 3.25
#
--- to be continued ---

These self-explanatory introductory comments describe the file mission. Each comment
line starts with the “#” character, and it is ignored by the sendmail program itself. Before
continuing, a few more remarks on syntax:

• Each line (except comments) in the configuration file is a configuration entry.
• The very first character (a single uppercase letter) defines the type of the entry.

• The format of a configuration entry is type-dependent, but the majority of
entries are a contiguous string, in which a character’s position has a specific
meaning.

© 2002 by CRC Press LLC

• sendmail reads entries sequentially, from the beginning to the end of the file;
this is important in the case of mutually related entries such as rewrite rule
entries.

• Generally, all configuration entries can be modified (assuming adequate know-
ledge and skill), but only a few must be customized.

Now, since we are ready to properly read the configuration entries, let us continue with
the configuration file:

--------------------------------- /etc/sendmail.cf continued ---------------------------------
local UUCP connections -- not forwarded to mailhost
CV
my official hostname
Dj$w.$m
major relay mailer
DMether
major relay host
DRapollo.ph.myschool.scps.edu
CRmailhost

###
#
General configuration information
#
local domain names
#
These can now be determined from the domainname system call.
The first component of the NIS domain name is stripped off unless
it begins with a dot or a plus sign.
If your NIS domain is not inside the domain name you would like to have
appear in your mail headers, add a “Dm” line to define your domain name.
The Dm value is what is used in outgoing mail. The Cm values are
accepted in incoming mail. By default Cm is set from Dm, but you might
want to have more than one Cm line to recognize more than one domain
name on incoming mail during a transition.
Example:
DmCS.Podunk.EDU
Cm cs cs.Podunk.EDU
#
known hosts in this domain are obtained from gethostbyname() call
Dmph.myschool.scps.edu
--- to be continued ---

The sections presented above are:

Local information — Generally, local information is site-dependent and it
should be modified to correspond to the specific implementation. Some of
the local data can be generated automatically by the system itself, such as
the host and domain names, but others must be specified explicitly in the
configuration file, and then the corresponding macro and class definitions
are used.

General macros and classes — General macros and classes are used to define
general names and aliases. They include different domains and relays. Usually
the lines with generic names are already included in the configuration file, but
they should be customized correspondingly for the site.

© 2002 by CRC Press LLC

20.2.1.1 Macro and Class Definitions
For a better understanding of the presented entries, as well as others that follow, a brief
explanation of the macro and class definitions follows.

20.2.1.1.1 The Define Macro Command

The define macro command — D — defines a macro and stores a value in it. Once the
macro is defined, it can be used to provide the stored value to other sendmail.cf commands
or directly to sendmail itself (defined macros are specified by their names and the leading
“$” character. This allows sendmail configurations to be shared by many systems, simply
by modifying a few system-specific macros.

A macro name can be any single ASCII character. Lowercase letters are reserved
for sendmail’s own internal macros; user-created macros use uppercase letters as
names.

sendmail’s internal macros are:

Some of sendmail’s internal macros must be defined within the sendmail.cf file:

Note: All of the listed macros must be specified in a configuration file, but only the value
assigned to macro j is usually modified. The macro $D is user-defined.

Name Function

a Origination date in RFC 822 format
b Current date in RFC 822 format
c Hop count
d Date in UNIX (ctime) format
e SMTP entry message
f Sender “from” address
g Sender address relative to the recipient
h Recipient host
i Queue ID
j “Official” domain name for this site
l Format of the UNIX from line
n Name of the daemon (for error messages)
o Set of “operators” in addresses
p sendmail’s PID
q Default format of sender address
r Protocol used
s Sender’s host name
t Numeric representation of the current time
u Recipient user
v Version number of sendmail
w Hostname of this site
x Full name of the sender
z Home directory of the recipient

Name Value Assigned This Macro Example

e SMTP entry message De$j Sendmail $v ready at $b
j Site’s official domain name Dj$w.$D
l Format of the UNIX from line DlFrom $g $d
n Name used in error messages DnMAILER-DAEMON
o Set of operators in addresses Do.:%\@!^=/
q Default sender address format Dqg?x ($x)$.

© 2002 by CRC Press LLC

The definition of “macro q” contains a conditional: $?x ($x)$.. It tests whether “macro
x” has a value set, and if the “macro x” has been set, whether the text following the
conditional is interpreted. The constructs “$?” and “$.” specify the beginning and the end
of the conditional. This means that q is assigned the value of “macro g”, and the value of
“macro x” in the parentheses if the “macro x” is set. The conditional can be used with an
“else” construct, which is “$|”. An example explaining the full syntax of the conditional is:

$?x text1 $| text2 $.

Which is interpreted as:

if x is set (construct $?)
use text1

else (construct $|)
use text2

fi (construct $.)

Although user-defined macros can be identified by an arbitrary capital letter, it is
common to identify certain macros by the following letters:

20.2.1.1.2 The Define Class Command

Two commands, C and F, define sendmail classes. A class is an array of values. They are
used when multiple values are handled in the same way; for example, multiple names
for the local host, or a list of uucp names. Classes allow sendmail to compare against a list
of values, instead of multiple comparisons against single values. Special pattern matching
symbols are introduced for this purpose: the “$=” symbol matches any value in a class,
and the “$~” symbol matches any value not in a class.

Classes have single character names, and user-created classes use uppercase letters for
names. Class values can be defined on a single line, on multiple lines, or loaded from a file.

The C command is used to assign the class from a single or multiple lines, for example:

CVhost1 host2 host3

or

Macro Description

B Bitnet relay
C DECnet relay
D The local domain — usually not needed
E Reserved for X.400 relay
F Fax relay
H Mail hub (for mail clusters)
L Luser relay
M Masquerade (who I claim to be)
R Relay (for unqualified names)
S Smart host
U My UUCP name (if I have a UUCP connection)
V UUCP relay (class V hosts) v
W UUCP relay (class W hosts)
X UUCP relay (class X hosts)
Y UUCP relay (all other hosts)
Z Version number

© 2002 by CRC Press LLC

CVhost1 host2

CVhost3

Each new line with values in the class definition is appended to previously defined class
values.

The F command is used to load the class values from a file, for example:

Fw/etc/sendmail.cw will define the class “w” as the contents of the file /etc/sendmail.cw

A few class definitions may need to be modified in the sendmail configuration file.
These are classes related to the alias host names, to special domains for mail routing, or
some other site-dependent data.

Similarly as with macros, some of the letters are used as usual names for specific classes;
they are presented in the following table:

The configuration file continues with the Version number.

--------------------------------- /etc/sendmail.cf continued ---------------------------------
Version number of configuration file
DVSMI-4.1
--- to be continued ---

The version number is the macro V, and is defined as any other macro. It usually does
not require modification, but it can be a good idea to keep track of the changes made to
the sendmail configuration. The version number is the place to do it. Each time the
configuration is changed, the version number can be modified.

Afterward, the Standard macros (sometimes also known as Special macros) are specified:

--------------------------------- /etc/sendmail.cf continued ---------------------------------
Standard macros
name used for error messages
DnMailer-Daemon

Class Description

B Domains that are candidates for best MX lookup
E Addresses that should not seem to come from macro $M
F Hosts to forward for
G Domains that should be looked up in generic table
L Addresses that should not be forwarded to macro $R
M Domains that should be mapped to macro $M
O Operators that indicate network operations (cannot be in local names)
P Top level pseudo-domains: BITNET, DECNET, FAX, UUCP, etc.
R Domains we are willing to relay (pass anti-spam filters)
U My UUCP name (if I have a UUCP connection)
V UUCP hosts connected to relay macro $V
W UUCP hosts connected to relay macro $W
X UUCP hosts connected to relay macro $X
Y Locally connected smart UUCP hosts
Z Locally connected domain-ized UUCP hosts
. The class containing only a dot
[The class containing only a left bracketv

© 2002 by CRC Press LLC

UNIX header format
DlFrom $g $d
delimiter (operator) characters
Do.:%@!^=/ []
format of a total name
Dqg?x ($x)$.
SMTP login message
De$j Sendmail $v/$V ready at $b
--- to be continued ---

The Standard (special) macro section includes some special macros used by sendmail.
For example, the name that sendmail uses to identify itself when it returns error messages,
or the message that sendmail displays during an SMTP login. All macros are defined in
the usual way. There is no need for any modification of this section.

The Options section follows:

--------------------------------- /etc/sendmail.cf continued ---------------------------------
Options
Remote mode - send through server if mailbox directory is mounted
OR
location of alias file
OA/etc/aliases
default delivery mode (deliver in background)
Odbackground
rebuild the alias file automagically
OD
temporary file mode -- 0600 for secure mail, 0644 for permissive
OF0600
default GID
Og1
location of help file
OH/usr/lib/sendmail.hf
log level
OL9
default messages to old style
Oo
Cc my postmaster on error replies I generate
OPPostmaster
queue directory
OQ/usr/spool/mqueue
read timeout for SMTP protocols
Or15m
status file -- none
OS/etc/sendmail.s
queue up everything before starting transmission, for safety
Os
return queued mail after this long
OT3d
default UID
Ou1
--- to be continued ---

The Options section specifies all of the implemented sendmail options. A leading
uppercase letter “O” identifies each option entry; the second letter is the option name.
Occasionally, some of the options can be modified if an already defined (or default)
option does not correspond to the real situation. When options define pathnames for
needed files and directories, it is highly recommended to keep their standard locations.

© 2002 by CRC Press LLC

Besides the options defined for this specific configuration, other options are also
available:

An option could be a string, an integer, a Boolean, or a time interval. There are no user
created options; the meaning of each option is hard-coded within the sendmail program.
For options missing from the configuration file, the default values are supposed.

The configuration continues with the sections: Message precedences and Trusted
users.

--------------------------------- /etc/sendmail.cf continued ---------------------------------
Message precedences
Pfirst-class=0
Pspecial-delivery=100
Pjunk=–100

Trusted users
T root daemon uucp
--- to be continued ---

• Message precedences Assigns priority to messages entering its queue (it is
known as “message precedence;” the higher the precedence number, the greater
the precedence of the message (the default is 0). There is no need to modify this
section.

• Trusted users Defines a list of users who are trusted to override the sender
address using the mailer flag -f; could be a security problem, so it is better not
to modify it.

Option Meaning

aN Wait N min. for @:@, than rebuild the alias file
Bc Define the blank substitution character
c Queue mail for an expensive mailer
di Deliver interactively
dq Deliver during the next queue run
ee Mail error messages and return 0 status
em Mail back error messages
ep Print error messages
eq Return exit status; no error messages
ew Write back error messages
f Retain UNIX-style “From” lines
I Use the BIND (DNS) to resolve host names
i Ignore dots in incoming messages
Mxval Set macro x to val
m Send to me, too
Nnet Define the name of the home network as “net”
qn Define factor n used to decide when to queue jobs
v Run in verbose mode
Wpass Define password “pass” used for the remote debug
Xl Refuse SMTP connections if load average exceeds “l”
xl Queue messages if load average exceeds “l”
Y Deliver each queued job in separate job
yn Lower priority of a job by “n” for each recipient v
Zn Decrease a job’s priority by “n” each time it is run
zn Factor used with precedence to determine message priority

© 2002 by CRC Press LLC

The Headers section defines the format of headers that sendmail inserts into e-mail.

--------------------------------- /etc/sendmail.cf continued ---------------------------------
Format of headers
H?P?Return-Path: <$g>
HReceived: $?sfrom $s $.by $j ($v/$V) id $i; $b
H?D?Resent-Date: $a
H?D?Date: $a
H?F?Resent-From: $q
H?F?From: $q
H?x?Full-Name: $x
HSubject:
H?M?Resent-Message-Id: <$t.$i@$j>
H?M?Message-Id: <$t.$i@$j>
HErrors-To:
###########################
--- to be continued ---

Macros defined within the headers are expanded before the header is inserted; it is
unlikely to need to change the headers. For a better understanding of the header’s entries,
reread the paragraph on how the macros are defined.

The remaining sendmail configuration lines are related to Rulesets and Rewrite Rules.
This is the section that defines sendmail parsing algorithms and decision-making mech-
anisms. This is the most important part of the configuration file. We will return to this
section later.

Mailers are a separate section inserted between rulesets; mailers are defined by the M
command. We have already discussed this topic earlier, so let us see what real mailer’s
entries look like.

--------------------------------- /etc/sendmail.cf continued ---------------------------------
Local and Program Mailer specification (mandatory)
Mlocal, P=/bin/mail, F=rlsDFMmnP, S=10, R=20, A=mail -d $u
Mprog, P=/bin/sh, F=lsDFMeuP, S=10, R=20, A=sh -c $u
##
#####
Ethernet Mailer specification
#####
Messages processed by this configuration are assumed to remain
in the same domain. This really has nothing particular to do
with Ethernet - the name is historical.
Mether, P=[TCP], F=msDFMuCX, S=11, R=21, A=TCP $h
UUCP Mailer specification
Muucp, P=/usr/bin/uux, F=msDFMhuU, S=13, R=23, A=uux - -r -a$f $h!rmail ($u)
--- to be continued ---

Two mailers, local and prog, are mandatory for every sendmail configuration file. In this
case these are the program/bin/mail and Bourne shell /bin/sh. Two other defined mailers
are: ether for sendmail communication through the network (specified by [TCP]), and
uucp (program /usr/bin/uux) for UUCP delivery via phone line.

20.2.2 Rulesets and Rewrite Rules

Rulesets define rules for how to transform e-mail addresses into the format suitable for
e-mail delivery. A leading uppercase letter “S” and the ruleset number identify them.
Newer sendmail versions also allow the textual identification of a ruleset; this could make

© 2002 by CRC Press LLC

it easier to determine the purpose of the ruleset (the name usually describes the basic
function of the ruleset).

A ruleset includes one or more rewriting rules, which are individual lines (entries) that
define a specific address transformation; an empty ruleset is also allowed. A leading
uppercase letter “R” identifies rewriting rule entries. The end of a ruleset is defined by
the beginning of the next ruleset, or any other configuration entry (except a rewrite rule
entry). An input to the ruleset is an address to be parsed, and the output is the parsed
input address. A ruleset is called by sendmail directly, or by another ruleset. Rewriting
rule entries within a ruleset are processed sequentially. When empty (a ruleset without
any rewriting rule entry), it preserves an address unchanged (the input and output
addresses are equal).

Let us see what rulesets look like:

--------------------------------- /etc/sendmail.cf continued ---------------------------------
###########################
Rewriting rules
###########################

Sender Field Pre-rewriting
S1 # an empty ruleset
None needed.

Recipient Field Pre-rewriting
S2 # an empty ruleset
None needed.
Name Canonicalization
Internal format of names within the rewriting rules is:
anything<@host.domain.domain…> anything
We try to get every kind of name into this format, except for local
names, which have no host part. The reason for the “<>” stuff is
that the relevant host name could be on the front of the name (for
source routing), or on the back (normal form). We enclose the one that
we want to route on in the <>’s to make it easy to find.
#

= = = = = = = = = = # here is the beginning of Ruleset #3

S3
handle “from:<>” special case
R$*<>$* $@@ turn into magic token

basic textual canonicalization
R$*<$+> $* $2 basic RFC822 parsing

make sure <@a,@b,@c:user@d> syntax is easy to parse -- undone later
R@$+,$+:$+ @$1:$2:$3 change all “,” to “:”
R@$+:$+ $@$>6<@$1>:$2 src route canonical

R$+:$*;@$+ $@$1:$2;@$3 list syntax
R$+@$+ $:$1<@$2> focus on domain
R$+<$+@$+> $1$2<@$3> move gaze right
R$+<@$+> $@$>6$1<@$2> already canonical

convert old-style names to domain-based names
All old-style names parse from left to right, without precedence.
R$-!$+ $@$>6$2<@$1.uucp> uucphost!user

© 2002 by CRC Press LLC

R$-.$+!$+ $@$>6$3<@$1.$2> host.domain!user
R$+%$+ $@$>3$1@$2 user%host

= = = = = = = = = = # here is the end of Ruleset #3

Final Output Post-rewriting
S4
R$+<@$+.uucp> $2!$1 u@h.uucp => h!u
R$+ $: $>9 $1 Clean up addr
R$*<$+> $* $1$2$3 defocus

###########################
Rewriting rules
#
####### A number of rewrite rules follow, but they are not presented here.
#######
--- to be continued ---

The specified rulesets and rewrite rules are the only ones that sendmail knows about
and follows. They must be sufficient for a complete and correct e-mail processing. It is
not very common to modify this part, although a deeper sendmail customization is usually
related to this section. This is also the most probable place to look if problems in the e-mail
delivery are encountered. If a modification in this section is unavoidable, it must be done
extremely carefully.

20.2.2.1 The Ruleset Sequence
We already mentioned that a ruleset could be invoked from another ruleset, or by sendmail
directly. A direct ruleset invocation is the result of the coded ruleset sequence in the
sendmail program. By default all e-mail addresses follow the same ruleset path during
their parsing. At the beginning, this path was uniform for all e-mail addresses. However,
based on the accumulated experience of the long-time usage of sendmail and increased
security demands, the default ruleset sequence has been modified and improved lately.
Since the sendmail version 8, separate default ruleset paths have been introduced in
parsing envelope and header e-mail addresses. Simply, the envelope and header addresses
could be processed in the different ways depending of the implemented delivery pro-
cedure, i.e., mailer for the processed e-mail.

This is presented in Figure 20.4. Depending of the implemented sendmail version, the
flow of the addresses through the default rulesets called directly by sendmail corresponds
to one of the two ruleset patterns.

• Each box marked by a number defines the numeric name of the corresponding
ruleset.

• S = box stands for a ruleset whose numeric name is defined by the S field in the
mailer definition. Each mailer may specify its own ruleset for mailer-specific
cleanup of the sender address before the message is delivered.

• R = box stands for a ruleset whose numeric name is defined by the R field in the
mailer definition. Each mailer may specify its own ruleset for mailer-specific
cleanup of the recipient address before the message is delivered.

• Lower case letters e and h correspond to envelope and header addresses
respectively.

© 2002 by CRC Press LLC

Rulesets can be thought of as subroutines, or functions, designed to process e-mail
addresses. They are called from mailer definitions, from individual rewrite rules, or directly
by sendmail. Five rulesets built in sendmail have special functions:

1. Ruleset 3 is the first ruleset to be applied to addresses. It converts an address to the
canonical form: local-part@host.domain. Do not forget that for quite a time the
Internet e-mail addressing concept (which is completely prevailing nowadays) has
been only one of the implemented e-mail addressing mechanisms. In such a diverse
addressing environment, it was extremely important to find some common ground.

2. Ruleset 0 is applied to the addresses used to deliver the e-mail. It is applied after
ruleset 3, and only to the recipient addresses, which are actually used for e-mail
delivery. It resolves the recipient address to the triple mailer-host-user. This is
presented in Figure 20.5.

3. Ruleset 1 is applied to all sender addresses in the message. Nowadays it is usually
an empty ruleset.

Ruleset
3

Ruleset
2

Ruleset
R=

Ruleset
1

Ruleset
S=

Ruleset
4

Ruleset
0

all addresses all addresses

recipient
address

delivery address:
the triple

(mailer,host,user)

recipient
address

sender
address

Ruleset
3

Ruleset
2

Ruleset
Re=

Ruleset
1

Ruleset
Sh=

Ruleset
4

Ruleset
0

all addresses all addresses

recipient
address delivery address:

the triple
(mailer,host,user)

recipient
address

sender
address

Ruleset
Se=

Ruleset
Rh=

Up to version V8

Version V8 and later

FIGURE 20.4
Sequence of rulesets.

© 2002 by CRC Press LLC

4. Ruleset 2 is applied to all recipient addresses in the message. Nowadays it is
usually an empty ruleset.

5. Ruleset 4 is applied to all addresses and is used to translate back internal address
formats into the initial external address formats.

There are, of course, many other rulesets specified in the sendmail configuration file.
These rulesets provide additional address processing and are called by existing rulesets
using the $>n construct, or by the sendmail according to the selected mailer upon the
ruleset 0 completion: the boxes “S” and “R” in Figure 20.4.

Besides the listed rulesets, which are hard-coded in the sendmail program, the identi-
fication of other rulesets seems to be arbitrary. A ruleset could be named arbitrarily (with
numbers, or letters, or combined), and a corresponding rewrite rule modified to call the
newly identified ruleset. However, there are some conventions in naming a ruleset, and
it is highly recommended to stay within them.

The following table lists the usual naming of rulesets for certain purposes (other than
those hard-coded in sendmail):

20.2.2.2 The Ruleset 0
A special section in the sendmail configuration file is dedicated to the ruleset 0; this is the
core ruleset for e-mail delivery. It parses the e-mail address and makes the crucial decision
of “where and how to deliver e-mail.” To make such a decision, sendmail always applied
ruleset 0 over the recipient’s e-mail address; the output must be either a decision about
the destination and the corresponding mailer, or an error.

There is even special rewrite rule syntax for ruleset 0. Ruleset 0 defines the triple (mailer,
host, user) that specifies the mail delivery program, the recipient host, and the user-
recipient. This is presented in Figure 20.5.

The special transformation syntax in ruleset 0 is:

$#mailer$@host$:user

where:
mailer Mailer name defined by the M command in the sendmail.cf file
host Hostname of the host to deliver email (could be different than the recipient

host)
user Username of the recipient user on the recipient host
$#, $@, and $: Leading constructs for these three parts respectively

Rulset # Purpose

1x Mailer rules (sender qualification)
2x Mailer rules (recipient qualification)
3x Mailer rules (sender header qualification)
4x Mailer rules (recipient header qualification)
5x, 6x, 7x Mailer subroutines (general)
8x Reserved
90 Mailtable host stripping
96 Bottom half of ruleset 3 (ruleset 6 in old sendmail)
97 Hook for recursive ruleset 0 call (ruleset 7 in old sendmail)
98 Local part of ruleset 0 (ruleset 8 in old sendmail)
99 Guaranteed null (for debugging)
Text New sendmail versions use textual ruleset naming either

© 2002 by CRC Press LLC

There is one special variant of this syntax, also used only in ruleset 0, that passes an error
message to the user:

$#error$:message

where
message Arbitrary text of the error message returned to the user.

Ruleset 0 is usually located at the end of the sendmail configuration file (although the
order of rulesets is arbitrary). We will complete the presentation of the /etc/sendmail.cf file
with this ruleset.

Note: All final decision-making rewrite rules are printed in “bold-italic”.
--------------------------------- /etc/sendmail.cf continued ---------------------------------
RULESET ZERO PREAMBLE

Ruleset 30 just calls rulesets 3 then 0.
S30
R$* $: $>3 $1 First canonicalize

R$* $@ $>0 $1 Then rerun ruleset 0

S0
On entry, the address has been canonicalized and focused by ruleset 3.
Handle special cases…..
R@ $#local $:$n handle <> form
Earlier releases special-cased the [x.y.z.a] format, but SunOS 4.1 or later
should handle these properly on input.
now delete redundant local info
R$*<$*$=w.LOCAL>$* $1<$2>$4 thishost.LOCAL
R$*<@LOCAL>$* $1<@$m>$2 host == domain gateway
R$*<$*$=w.uucp>$* $1<$2>$4 thishost.uucp
R$*<$*$=w>$* $1<$2>$4 thishost

Ruleset #0
specifies “triple”

Input recipient
address

Mailer:
$# mailer-name

Host part:
$@ host-to-send

User part:
$: user-recipient

FIGURE 20.5
Ruleset 0 resolves a triple: {mailer, host, user}.

© 2002 by CRC Press LLC

arrange for local names to be fully qualified
R$*<@$%y>$* $1<@$2.LOCAL>$3 user@etherhost

For numeric spec, you can’t pass spec on to receiver, since old rcvr’s
were not smart enough to know that [x.y.z.a] is their own name.
R<@[$+]>:$* $:$>9 <@[$1]>:$2 Clean it up, then…
R<@[$+]>:$* $#ether $@[$1] $:$2 numeric internet spec
R<@[$+]>,$* $#ether $@[$1] $:$2 numeric internet spec
R$*<@[$+]> $#ether $@[$2] $:$1 numeric internet spec

R$*<$*.> $* $1<$2>$3 drop trailing dot
R<@>:$* $@$>30$1 retry after route strip
R$*<@> $@$>30$1 strip null trash & retry

##
Machine dependent part of ruleset zero
##

resolve names we can handle locally
R<@$=V.uucp>:$+ $:$>9 $1 First clean up, then…
R<@$=V.uucp>:$+ $#uucp $@$1 $:$2 @host.uucp:…
R$+<@$=V.uucp> $#uucp $@$2 $:$1 user@host.uucp

optimize names of known ethernet hosts
R$*<@$%y.LOCAL>$* $#ether $@$2 $:$1<@$2>$3 user@host.here

other non-local names will be kicked upstairs
R$+ $:$>9 $1 Clean up, keep <>
R$*<@$+> $* $#$M $@$R $:$1<@$2>$3 user@some.where
R$*@$* $#$M $@$R $:$1<@$2> strangeness with @

Local names with % are really not local!
R$+%$+ $@$>30$1@$2 turn % => @, retry

everything else is a local name
R$+ $#local $:$1 local names
--------------------------------- the end of /etc/sendmail.cf ---------------------------------

20.2.3 Creating the sendmail.cf File

All UNIX implementations provide sendmail configuration template files for several of
the most common situations; other templates can be found on the network. Usually the
appropriate sendmail.cf file can be placed in operation by copying a corresponding template
file and performing minimal site-specific customization. Two templates, for main and
subsidiary mailhosts, are essential. The main mailhost is supposed to be a knowledgeable
mail server dedicated to this business, and a subsidiary mailhost is the prevailing sendmail
configuration that relies on another main mail server. Customizing a system as a subsidiary
mailhost is very easy. Usually it is enough to specify only the hostname of a known main
mailhost (main mail server) where external e-mail would be forward for further processing
and delivery. Sometimes it can even be done out of the sendmail.cf file itself: by appending
the alias name “mailhost” with the real hostname of the mail server (could be done in
DNS, or NIS or even /etc/hosts file). Of course, it works only if the sendmail.cf file points
to the generic entity “mailhost.”

More sophisticated configuration changes require more knowledge and skills. A manual
modification of the sendmail.cf file is always possible and doable, and it is even quite
common. However, an alternative approach to generate site-specific sendmail configur-

© 2002 by CRC Press LLC

ation files in an easier and more comprehensive way also exists. It compiles the needed
sendmail.cf file based on the specified site-specific information. All rulesets and rewrite
rules that make a dominant part of the file are automatically created. The input site-specific
data are specified in the files that terminate with the mc extension; again, a number of
template mc files are available. What makes this approach different is the fact that these
template files are small comprehensive files, and easy to modify if necessary. We will
briefly discuss the required procedure.

Template mc files are contained in the sendmail installation subdirectory cf, with an
obvious suffix .mc. They must be run through the m4 macro processor to produce
a corresponding cf configuration file. The other requirement is a preloaded description file
cf.m4. Once all of the required files are in place, the following command should be
executed:

m4 ${CFDIR}/m4/cf.m4 config.mc > config.cf

where
$CFDIR is the root of the cf directory
config.mc is the name of the template mc file
config.cf is the name of the sendmail configuration file

To make everything even easier a front-end Build script that specifies all needed compilation
steps is also available. Simply by typing:

Build config.cf

The corresponding sendmail configuration file config.cf will be created based on the
config.mc file. The file name is arbitrary, but the existence of a same-name mc file is required.

Let us examine a typical mc file:

$ cat generic-solaris2.mc
divert(-1)
#
Copyright (c) 1998 Sendmail, Inc. All rights reserved.
Copyright (c) 1983 Eric P. Allman. All rights reserved.
Copyright (c) 1988, 1993
The Regents of the University of California. All rights reserved.
#
By using this file, you agree to the terms and conditions set
forth in the LICENSE file which can be found at the top level of
the sendmail distribution.
#
This is a generic configuration file for SunOS 5.x (a.k.a. Solaris 2.x)
It has support for local and SMTP mail only. If you want to
customize it, copy it to a name appropriate for your environment
and do the modifications there.
#
divert(0)dnl
VERSIONID(‘@(#)generic-solaris2.mc 8.8 (Berkeley) 5/19/1998’)
OSTYPE(solaris2)dnl
DOMAIN(generic)dnl
MAILER(local)dnl
MAILER(smtp)dnl

sendmail uses the M4 macro processor to compile the configuration files. The most
important thing to know is that M4 is stream-based, that is, it does not understand lines.

© 2002 by CRC Press LLC

For this reason, in some places you may see the word dnl, which stands for delete through
newline; essentially, it deletes all characters starting at the dnl up to and including the next
newline character. In most cases sendmail uses this only to avoid lots of unnecessary blank
lines in the output. It could be also used to comment-out an mc entry.

Other important directives are define(A, B) which defines the macro “A” to have the
value “B”. Macros are expanded as they are read, so one normally quotes both values to
prevent expansion, for example:

define(‘SMART_HOST’, ‘smart.school.edu’)

Please note that M4 macros are expanded even in lines that appear to be comments, for
example:

See FEATURE(foo) above

This will not do what you expect, because the FEATURE(foo) will be expanded. This also
applies to:

And then define the $X macro to be the return address

because “define” is an M4 keyword. If you want to use these words, surround them with
single quotes, ‘like this’.

The following partial listing of the sendmail cf subdirectory shows few of template mc
files, and the corresponding sendmail configuration cf files (pay attention to their sizes):

$ ls -l /opt/sendmail/cf/cf
total 1548
-r-xr-xr-x 1 root other 535 Dec 29 1998 Build
-r--r--r-- 1 root other 4163 Dec 29 1998 Makefile
-r--r--r-- 1 root other 29824 Oct 21 1999 cs-solaris2.cf
-r--r--r-- 1 root other 989 Dec 29 1998 cs-solaris2.mc
-r--r--r-- 1 root other 28785 Feb 5 1999 generic-hpux10.cf
-r--r--r-- 1 root other 763 Dec 29 1998 generic-hpux10.mc
-r--r--r-- 1 root other 28787 Feb 5 1999 generic-solaris2.cf
-r--r--r-- 1 root other 787 Dec 29 1998 generic-solaris2.mc

.

.
-r--r--r-- 1 root other 29641 Oct 21 1999 mail.cs.cf
-r--r--r-- 1 root other 1250 Dec 29 1998 mail.cs.mc

Though the existing tools will help in managing sendmail configuration, a thorough
understanding and knowledge of the contents of the sendmail.cf file is crucial for a successful
sendmail administration.

20.3 The Parsing of E-mail Addresses

Rewrite rules are the core of the sendmail.cf file. Rulesets are groups of associated rewrite
rules that can be referenced by a number, or lately any alphanumeric combination. In the
Sn command syntax, n is the number that identifies the ruleset. Normally, numbers in the
range of 0 to 99 are used, but there are no restrictions on ruleset numbering. Among all

© 2002 by CRC Press LLC

rulesets, ruleset 0 is the most important. However, each ruleset contributes to a successful
address parsing and helps sendmail accomplish its basic task: to deliver e-mail.

20.3.1 Rewriting an E-mail Address

A thorough knowledge of rewrite rules is required for a full understanding of how an
address parsing is accomplished; the following text should help with this topic.

Each rewrite rule is defined by the R command. The syntax of the R command is:

Rlhs rhs comment

where
lhs Left-hand side, specifies the pattern to match the input address against.

If the matching occurs, the specified rhs over the input address is performed.
rhs Right-hand side, specifies the transformation (the rules to transform) input

address if pattern matching occurs (if lhs is true).
comment This field contains comments referring to this entry; it is ignored by

sendmail, but good comments are very important for understanding
what is happening in the line.

20.3.2 Pattern Matching

The lhs matches the input address against the pattern, and if a match is found, rewrites
the address in a new format using the rules defined in the rhs. A rule may process the
same address several times because, after being rewritten, the address is again compared
against the pattern. If it still matches, it is rewritten again. This cycle of pattern matching
and rewriting continues until the address no longer matches the pattern.

Macros, classes, literals, and special metasymbols provide the pattern matching. The
macros, classes, and literals provide the values against which the input is compared, while
the metasymbols define the rules used in matching the pattern. Some metasymbols used
for pattern matching are:

We see that all metasymbols request a match for some number of tokens. What is the
token itself? A token is a string of characters in an e-mail address delimited by an operator;
and the operators are the characters defined in the macro “o” in the sendmail.cf file.
Operators are also counted as tokens when an e-mail address is parsed.

Metasymbol Meaning

$* Match zero or more tokens
$+ Match one or more tokens
$- Match exactly one token
$=x Match any token in class x
$~x Match any token not in class x
$x Match all tokens in macro x
$%x Match any token in the NIS map named in macro x
$!x Match any token not in the NIS map named in macro x
$%y Match any token in the NIS hosts.byname map

© 2002 by CRC Press LLC

Let us examine an e-mail address and its parsing. sendmail first tokenizes the address;
for example:

bjl@patsy.myschool.scps.edu => bjl , @ , patsy , . , myschool , . , scps , . , edu

This e-mail address contains nine tokens and they are stored internally in a buffer called
workspace. When the lhs of a rule is evaluated, a corresponding pattern is also tokenized,
and then those tokens are compared to the tokens in the workspace. If both the workspace
and the lhs contain the same tokens, a match is found, and the lhs comparison is true.

Assume the pattern “$-@$+” in the lhs; after tokenizing it:

$-@$+ => $- , @ , $+

The previous address matches the pattern because:

• It has exactly one token before the @ literal, so it matches the requirement of the
$- metasymbol.

• It has an @ symbol that matches the pattern’s literal @.

• It has one or more tokens after the @ literal, so it matches the requirement of
the $+ metasymbol.

When an address matches a pattern, the corresponding strings from the address that
match the metasymbols are assigned to indefinite tokens (because they may contain
more than one token value). The indefinite tokens are identified numerically according
to their relative position in the pattern of the metasymbol that they matched. This
means that the indefinite token produced by the match of the first metasymbol is
called $1; the match of the second metasymbol is called $2; the third is $3, and so on.
The indefinite tokens created by the pattern matching can then be referenced by their
new names: $1, $2, $3, etc.

From the previous example:

$1 => bjl

$2 => patsy.myschool.scps.edu (It contains seven tokens.)

20.3.3 Address Transformation

The rhs of a rewrite rule specifies the format to use for rewriting the address, i.e., the
appropriate transformation algorithm. It is defined using the same values as for lhs: literals,
macros, and special metasymbols. Literals in the rhs are written into the new address
exactly as they appear. Macros are expanded and then written. The metasymbols perform
special functions in the transformation. Some metasymbols and their functions are:

Metasymbol Meaning

$n Substitute indefinite token n
$[name$] Substitute canonical name
$>n Call ruleset n
$@ Terminate ruleset
$: Terminate rewrite rule
$#… Special syntax (explained later)

© 2002 by CRC Press LLC

The following example demonstrates how indefinite tokens are used:

• Assume the old-fashioned input address (but very illustrative one for this
purpose) bjl@bithost.bitnet has been preliminarily processed and now is:

bjl<@bithost.bitnet>

• Assume the current rewrite rule is:
R$+<@$+.bitnet> $1%$2<@$B> Use the BITNET relay

• Assume that the macro B, which is the BITNET relay, is previously defined as
cunyvm.cuny.edu.

The complete transformation process is presented in Figure 20.6.
A brief explanation of each step in the address transformation follows:

• The address matches the pattern because it contains one or more tokens before
the literals <@ (the token bjl), and one or more tokens between literals <@, and
.bitnet> (the token bithost).

• The pattern match produces two indefinite tokens, $1 (with the value bjl) and
$2 (with the value bithost) that are used in further address transformation.

• The transformation contains the indefinite token $1, a literal %, the indefinite
token $2, a literal <@, the macro B, and a literal >.

• Keeping in mind values for the indefinite tokens $1 and $2 and the macro B, the
input address can be rewritten as:

bjl%bithost<@cunyvm.cuny.edu>

Rewrite Rule

bjl < @ bithost . bitnet >

$+ < @ $+ . bitnet >

bjl bithost

$1 % $2 < @ $B >

bjl % bithost < @ cunyvm.cuny.edu >

Address tokens

Matching pattern

Indefinite tokens upon matching

Transformation

Transformed
address

bjl<@bithost.bitnet>

R$+<@$+.bitnet> $1%$2<@$B>

bjl%bithost<@cunyvm.cuny.edu>

Input Address

Rewritten Address

FIGURE 20.6
Rewriting an address. Note: BITNET relay host $B is “cunyvm.cuny.edu”

© 2002 by CRC Press LLC

This example explains the implementation of the metasymbol $n, and the substitution
of the indefinite tokens. However, there are also other metasymbols that could be used in
the rule’s rhs:

• The $[name$] metasymbol is based on the DNS and converts a host’s nickname
or its IP address to its canonical name by passing the value name to the Name
Server for resolution.

• The $>n metasymbol calls a ruleset n and passes the address defined by the
remainder of the transformation to the ruleset n for processing, for example:

• $>9$1%$2 This transformation calls ruleset 9 (metasymbol $>9), and passes
the contents of $1, a literal %, and the contents of $2 to ruleset
9 for processing. When ruleset 9 finishes processing, it returns a
rewritten address to the calling rule. The return transformed
address is then compared again to the pattern in the calling rule.
If it still matches, ruleset 9 is called again.

• The recursion built into rewrite rules creates the possibility for infinite loops.
The $@ and $: metasymbols are used to control processing; the $@ terminates
the entire ruleset and the remainder of the transformation is the value
returned by the ruleset; the $: controls the execution of the individual rewrite
rule only once. So these two metasymbols could be used to prevent recursion
and looping.

20.4 Testing sendmail Configuration

sendmail provides powerful tools for configuration testing and debugging. These tools
are invoked from the command line using some of the many sendmail command-line
arguments (options). Testing is highly recommended after each sendmail configuration
change to verify what has been done, and to gain confidence in the new configuration.

We already discussed the case when sendmail is invoked in verbose mode (-v argument);
it displays the complete SMTP exchange and we can observe communication between
source and destination hosts. A few more useful options are presented hereafter.

20.4.1 Testing Rewrite Rules

Problems in e-mail delivery could be caused by implemented rewrite rules for address
parsing. Testing the rewrite rules can prevent many problems with e-mail delivery (and
not only delivery, but many other problems, too). Generally, testing should always be
performed before the modified configuration is put into operation.

The new frozen configuration file sendmail.fc must be created (if this file is used at all),
after testing has been performed successfully and the sendmail daemon has been recycled
or reinvoked. If reinvoked, the sendmail daemon should be restarted with the same
arguments as during system startup (the necessary command can be found in the corres-
ponding rc initialization file).

© 2002 by CRC Press LLC

20.4.2 The sendmail -bt Command

We run the sendmail -bt command from the command line to get more information about
rewrite rules. Once it is started, sendmail prompts for input using the greater than symbol
(>). At the prompt, enter a ruleset number and the e-mail address you want to test. The
address is easy to select; you can start with the most common addresses, and finish with
specific, strange, but applicable ones. Among many rulesets, ruleset 0 is an obvious can-
didate for the test. In this way you can cover nearly all of the possible cases and be sure
that your system is running properly.

Ruleset 3 is the first ruleset applied to all addresses (see Figure 20.4), and many sendmail
versions assume the same in the address test mode. No matter which ruleset is specified,
the address is first processed by ruleset 3 and then by the selected ruleset. This is not the
case with all sendmail versions. Usually, sendmail informs you whether ruleset 3 is
included by default or not before the address processing starts.

To find out which mailer is delivering the test e-mail, process a recipient address through
ruleset 0 (remember ruleset 3 could be, but might not be, called by default). It is relatively
easy to determine if everything is working correctly or not by following the messages that
sendmail displays at the start and the exit from each ruleset about the input and the output
address. It is more difficult to figure out the reason for incorrect address parsing if
something goes wrong (the syntax of rewrite rules is not very friendly), but at least an
incorrect ruleset can be identified.

In the presented example ruleset 0 was tested for three e-mail addresses, with supposedly
three different outputs for mailers. The testing was performed on the host patsy.myschool.
scps.edu; the first address is the local one, the second address belongs to the same domain
so it can be delivered directly to the final destination, and the third one is out of the
domain and its delivery is performed over a mail relay (in this case the mailhost:
mail1.scps.edu).

/usr/lib/sendmail -bt
ADDRESS TEST MODE
Enter <ruleset> <address>

> 0 bjl@patsy.myschool.scps.edu
rewrite: ruleset 3 input: “bjl” “@” “patsy” “.” “myschool” “.” “scps” “.” “edu”
rewrite: ruleset 6 input: “bjl” “<” “@” “patsy” “.” “myschool” “.” “scps” “.” “edu” “>”
rewrite: ruleset 6 returns: “bjl” “<” “@” “patsy” “.” “LOCAL” “>”
rewrite: ruleset 3 returns: “bjl” “<” “@” “patsy” “.” “LOCAL” “>”
rewrite: ruleset 0 input: “bjl” “<” “@” “patsy” “.” “LOCAL” “>”
rewrite: ruleset 30 input: “bjl”
rewrite: ruleset 3 input: “bjl”
rewrite: ruleset 3 returns: “bjl”
rewrite: ruleset 0 input: “bjl”
rewrite: ruleset 9 input: “bjl”
rewrite: ruleset 9 returns: “bjl”
rewrite: ruleset 0 returns: $# “local” $:“bjl”
rewrite: ruleset 30 returns: $# “local” $:“bjl”
rewrite: ruleset 0 returns: $# “local” $:“bjl”

> 0 bjl@apollo.ph.myschool.scps.edu
rewrite: ruleset 3 input: “bjl” “@” “apollo” “.” “ph” “.” “myschool” “.” “scps” “.” “edu”
rewrite: ruleset 6 input: “bjl” “<” “@” “apollo” “.” “ph” “.” “myschool” “.” “scps” “.” “edu” “>”
rewrite: ruleset 6 returns: “bjl” “<” “@” “apollo” “.” “ph” “.” “LOCAL” “>”
rewrite: ruleset 3 returns: “bjl” “<” “@” “apollo” “.” “ph” “.” “LOCAL” “>”

© 2002 by CRC Press LLC

rewrite: ruleset 0 input: “bjl” “<” “@” “apollo” “.” “ph” “.” “LOCAL” “>”
rewrite: ruleset 0 returns: $# “ether” $@ “apollo” “.” “ph” “.” “myschool” “.” “scps” “.” “edu”
$: “bjl” “<” “@” “apollo” “.” “ph” “.” “myschool” “.” “scps” “.” “edu” “>”

> 0 bjl@acf4.yourschool.edu
rewrite: ruleset 3 input: “bjl” “@” “acf4” “.” “yourschool” “.” “edu”
rewrite: ruleset 6 input: “bjl” “<” “@” “acf4” “.” “yourschool” “.” “edu” “>”
rewrite: ruleset 6 returns: “bjl” “<” “@” “acf4” “.” “yourschool” “.” “edu” “>”
rewrite: ruleset 3 returns: “bjl” “<” “@” “acf4” “.” “yourschool” “.” “edu” “>”
rewrite: ruleset 0 input: “bjl” “<” “@” “acf4” “.” “yourschool” “.” “edu” “>”
rewrite: ruleset 9 input: “bjl” “<” “@” “acf4” “.” “yourschool” “.” “edu” “>”
rewrite: ruleset 9 returns: “bjl” “<” “@” “acf4” “.” “yourschool” “.” “edu” “>”
rewrite: ruleset 0 returns: $# “ddn” $@ “mail1” “.” “scps” “.” “edu” $: “bjl” “<” “@” “acf4” “.” “yourschool”
“.” “edu” “>”
> ^D

The same test procedure can be implemented for other rulesets and addresses.

20.4.3 The Debugging Level

The level of information that sendmail displays during the testing can be arbitrary selected;
the sendmail command with the -d option is used for this purpose:

sendmail -dlevel

where level corresponds to the selected debugging level.
Numbers identify the debugging levels. Larger numbers correspond to higher debug-

ging levels with more detailed displayed information. Selecting a higher debugging level
does not always make it easier to determine the source of an error. The displayed data
could contain too much useless information, while the important piece becomes hidden
between all of the unimportant data.

Once selected, a debugging level remains active until the next new level (higher or
lower) is selected again.

20.4.4 Checking the Mail Queue

sendmail is also a very powerful tool for checking the mail queue. As we know, all
unprocessed e-mail requests are temporarily stored in the mail queue for later processing.
sendmail periodically reprocesses the mail queue for a certain period (the default is 5
days) before it returns an error message to the sender about undelivered e-mail; the queued
e-mail is then removed from the queue.

The command sendmail -bp displays the status of the mail queue. It is recommended
that you run this command occasionally to check for possible problems in mail queuing.
Too many pending e-mail requests are usually a sign of some sendmail-related problems.
Too many queued e-mail requests could keep sendmail daemons so busy that e-mail starts
to work improperly.

The mail queue is located in the /var/spool/mqueue directory by simply listing the directory
and counting the listed files:

ls /var/spool/mqueue | wc -l

© 2002 by CRC Press LLC

We can also conclude something about queued e-mail requests. Please note that two files
represent each e-mail request: control and a data file. A lock file is also temporarily created
during the request processing.

The command sendamil -qv is very instrumental in forcing e-mail queue processing
(the q option), and provides a verbose display of all steps in the processing (the v option).

A great deal of information about pending e-mail requests can be obtained by combining
these two commands, and this may help point out eventual problems in the sendmail
configuration.

20.5 Mail User Agents

sendmail plays the central role in the e-mail show, but it is fair to say a few words about
MUA programs, too. From the user point of view these programs are the most important
for e-mail use. We will briefly present the generic UNIX MUA program mail (the BSD
flavor, also known as Mail), later named mailx (BSD flavor /usr/ucb/mailx); its System V
counterpart mailx was almost identical. The very same program is also used as sendmail’s
local mailer for local e-mail deliveries. Obviously, using the same program as a MUA and
as a local mailer sounds very logical.

20.5.1 The Mail Program and .mailrc File

In the following text, the generic names mail and .mailrc are used to identify the most
common UNIX BSD flavored MUA program and its configuration file; some differences
in naming on some UNIX platforms are possible. mail was the first comfortable (today,
this statement is quite disputable, but in the past it was true), flexible, interactive tool for
composing, sending, and receiving e-mail messages; it included a number of mail sub-
commands for this purpose. While reading e-mail messages, mail provides a user with
commands to browse, display, save, delete, and respond to the messages. While sending
e-mail, mail allows editing and reviewing of messages being composed, and the inclusion
of text from files or other messages.

The incoming e-mail is stored in the system mailbox for each user; it is appended to
the current file contents. This is a file named after the user name in the directory /var/
spool/mail. mail normally looks in this file for incoming messages, but the environment
variable MAIL can be set to overwrite the default value, and to specify a different file.
When a user reads a message it is marked to be moved to a secondary file for storage.
This secondary file, called the mbox, is normally the file mbox in the user’s home directory.
Setting the MBOX environment variable can change this location. Messages remain in the
mbox file as read e-mail until the user deliberately removes them.

20.5.1.1 Starting mail
Once started, mail reads commands from a systemwide mail startup file (/usr/lib/Mail.rc)
to initialize certain systemwide variables; then it reads from a private mail startup file
called the .mailrc file (it is normally the file .mailrc in the user’s home directory, but this
can be changed by setting the MAILRC environment variable) for personal commands
and variable settings. Most of the mail subcommands are legal inside the mail startup
files. The most common use of the files is to set up initial display options and alias lists.
Any errors in the mail startup file cause the remaining lines in that file to be ignored.

© 2002 by CRC Press LLC

A user can invoke mail from the command line to send a message directly to a recipient
if the recipient e-mail address is included as an argument on the command line. When no
recipients appear on the mail command line, mail enters the command mode, from which
the user can read received messages. If there are no received messages, mail prints: No mail
for username and exits.

When in command mode (i.e., while reading messages), the user still can send e-mail
messages with the mail subcommands.

20.5.1.2 Sending E-mail Messages

mail is in “input mode” while a user is composing an e-mail message to send. If no subject
was specified as an argument to the mail command, a prompt for the subject is printed.
After typing in the subject line, mail enters “input mode” to accept the text of the user’s
message to be sent.

As the user types in the message, mail stores it in a temporary file. The user can enter
the appropriate tilde escape commands at the beginning of an input line to review or modify
the message. The user types a single dot (or EOF character, normally Ctrl-D) on a line by
itself to indicate that the message is ready to send. mail submits the message to sendmail
for delivery to each specified recipient.

Recipients can be local users identified by their usernames, e-mail addresses of the form
name@domain, uucp addresses of the form [host!…host!]host!username, files for which the
user has write permission, or alias groups.

20.5.1.3 Reading E-mail Messages

When the user enters command mode to read e-mail messages, mail displays a header
summary of the first several messages, followed by a prompt for one of the mail subcom-
mands listed below. The default prompt is the “&” (ampersand) character.

Messages are listed and referred to by numbers. At any time, the current message is
marked by the “>” (greater than) character in the header summary; this is the default
message for mail subcommands that require an optional list of messages (if a message
number, as an argument, is omitted).

20.5.1.4 Mail Subcommands

While in the command mode, the default subcommand is “print” (if the user terminates an
empty command line with Return, or Enter only). The help menu is available (the “?”
subcommand) for a complete list of mail subcommands. A partial list of mail subcommands
follows:

mail Subcommand Meaning

? Print a summary of commands.
alias alias name
group alias name Declare an alias for the specified names. The names are substituted when

alias is used as a recipient. This is useful in the .mailrc file.
delete [message-list] Delete specified messages from the system mailbox. If the variable

“autoprint” is set, print the message following the last message deleted.
headers [message] Print the page of headers which includes the specified message. The

“screen” variable sets the number of headers per page.
list Print all commands available. No explanation is given.
mail recipient… Mail a message to the specified recipients.

© 2002 by CRC Press LLC

print [message-list]
type [message-list] Print the specified messages. If the crt variable is set, messages longer

than the number of lines it indicates are paged through with the
command specified by the PAGER variable. The default paging
command is “more.”

reply [message-list]
respond [message-list] Send a response to the author of each message in the message-list. The

subject line is taken from the first message. If record is set to a filename,
a copy of the reply is added to that file. If the “replyall” variable is set,
the actions of reply/respond are reversed. The reply-sender command
is not affected by the “replyall” variable, but sends each reply only to
the sender of each message.

exit Exit from mail without changing the system mailbox. No messages are
saved in the mbox.

quit Exit from mail, storing messages that were read in the mbox file and
unread messages in the system mailbox. Messages that have been
explicitly saved in a file are deleted unless the variable “keepsave”
is set.

save [message-list] [filename] Save the specified messages in the named file. The file is created if it
does not exist. If no filename is specified, the file named in the MBOX
variable is used, or mbox in the user’s home directory, by default. Each
saved message is deleted from the system mailbox when mail
terminates unless the “keepsave” variable is set.

Note: mail will accept a sufficient number of leading letters of a command that uniquely identify the command itself.

20.5.1.5 Forwarding E-mail Messages

The subcommands -f and -m with a message number as an argument are available to
forward a specific message to another user (these mail subcommands are also known
as tilde-escape commands). To forward e-mail messages automatically, add a comma-
separated list of addresses for additional recipients into the .forward file in the user’s
home directory (we already discussed this possibility earlier). Please note that the
forwarding addresses must be correctly specified and valid, or the forwarded e-mail
message could “bounce.”

20.5.1.6 Variables

The behavior of mail is governed by predefined variables that are set and cleared using
the set and unset commands.

Environment variables — Values for the following variables are inherited from the shell
and read in automatically from the environment; they cannot be altered from within mail:

HOME => directory The user’s home directory.

MAIL => filename The name of the initial mailbox file to read (instead of the stand-
ard system mailbox). The default is /var/spool/mail/username.

MAILRC => filename The name of the personal startup file. The default is $HOME/
.mailrc.

Mail variables — The variables can also be initialized within the .mailrc file, or set and
altered interactively using the set command. They can also be imported from the envir-
onment (in which case their values cannot be changed within mail). The unset command
clears variables. The set command could also be used to clear a variable by prefixing the
word no to the name of the variable to be cleared.

© 2002 by CRC Press LLC

20.5.2 POP and IMAP

There are several different approaches to building a distributed e-mail infrastructure, such
as shared filesystem strategies, proprietary LAN-based protocols, the X.400 P7 protocol,
and the Internet-based protocols. Among the Internet-based protocols, the best known
and most used are Post Office Protocol (POP) and Internet Message Access Protocol
(IMAP). POP is the older and still better known protocol; IMAP offers a superset of POP,
and also provides good support for certain additional e-mail processing.

Three basic modes of remote mailbox access are in use: offline, online, and disconnected;
they are described in the RFC-1733. In the offline paradigm, e-mail is delivered to a mail
server, and a PC or MAC user periodically invokes a mail client program that connects
to the mail server and downloads all of the pending e-mail to the user’s own machine.
Thereafter, all e-mail processing is local to the client machine. Offline access mode is a kind
of store-and-forward service, intended to transfer e-mail on demand from the mail server
(the drop point for incoming e-mail) to a single destination machine. Once transferred,
e-mail messages are deleted from the mail server.

In the online paradigm, e-mail is also delivered to a mail server, but the mail client does
not copy it all at once and then delete it from the mail server. It is an interactive client-
server model, in which the client can ask the server for headers, or bodies of specified
e-mail messages, or to set certain criteria for e-mail searching, or to set certain e-mail
message flags (like “deleted” or “answered”). E-mail messages remain on the mail server
until the user explicitly removes them. A user may save messages directly on the client
machine, or save them on the server, or be given the choice of doing either.

The two paradigms reflect different requirements and styles of use, and they do not mix
very well. Offline is intended for the people who use a single client machine all the time.
It is not well suited for accessing one’s inbox of recent e-mail, or for saved-message folders
from different client machines at different times; the offline download-and-delete mail
access tends to scatter e-mail across different client computers. On the other hand, the main
advantage of offline access is that it minimizes the use of server resources and connect
time when implemented via dialup.

POP and IMAP can be seen as representatives of the two mentioned paradigms. The
two protocols are described in greater detail in the text that follows.

20.5.2.1 Post Office Protocol (POP)

Post Office Protocol (POP) is “”the language” that mail clients (predominantly PC and
Macintosh workstations) use in communication with an appropriate mail server (usually
a UNIX system). POP primarily supports offline e-mail processing. Although the limitations
of offline access have triggered interest in using POP in online mode, POP simply does
not have some of the functionality needed for a high-quality online (or disconnect) oper-
ation. Nevertheless, POP also provides a “pseudo online” mode of operation, wherein
client programs can leave e-mail on the mail server; however, its use is often dependent
on the pervasive availability of the remote filesystem protocol.

On the server side, POP is supported by the POP daemon that is waiting for requests
from surrounding clients. Actually, the super server inetd listens for incoming clients’
requests and invokes the POP daemon. The usual name for the POP daemon program is
popper, although other names are also in use (for example, on the Solaris platform the name
for the POP3 daemon is ipop3d). One logical and expected name, popd, is a regular UNIX
command and cannot be used for this purpose. In the following text the daemon’s name
popper is used.

There are two versions of POP protocols: POP-2 and POP-3 (enhanced version); they
are defined in RFC 1081, 1082, and 1939. The description of the POP-3 daemon follows.

© 2002 by CRC Press LLC

20.5.2.1.1 The popper Daemon

Popper is an implementation of the POP server that runs on a variety of UNIX systems
to manage e-mail for Macintosh and PC clients. The program was originally developed
at the University of California at Berkeley.

The format of the command to launch the program is:

/usr/etc/popper [-d] [-t tracefile]

The -d option sets the socket to debugging and turns debugging on. All debugging
information is saved using syslog. The -t tracefile option turns debugging on and saves
the trace information in tracefile (see Debugging Mode).

The POP program is available on the network: via anonymous ftp from ftp.cc.berkeley.edu;
two files in the pub directory (a compressed tar file popper.tar.Z for PC and a Macintosh
StuffIt archive in BinHex format called MacPOP.sit.hqx).

20.5.2.1.2 POP Transactions

popper is the program that is launched by inetd when it gets a service request on port 110
(the official POP port numbers are 110 for POP3 and 109 for POP2); consequently the term
POP server is more appropriate than POP daemon. The popper server initializes and verifies
that the peer client IP address is valid, and logs a corresponding warning message other-
wise. The server enters the authorization state, during which the client must correctly
identify itself by providing a valid UNIX UID and password on the server’s host machine.
No other exchanges are allowed during this state (other than a request to quit). If authen-
tication fails, a warning message is logged and the session ends. Once the user is identified,
popper changes its own user and group IDs to match that of the user and enters the
transaction state; it also makes a temporary copy of the user’s maildrop (ordinarily in /usr/
spool/mail), which is used for all subsequent transactions. These include the bulk of POP
commands to retrieve mail, delete mail, undelete mail, and so forth. A Berkeley software
extension also allows the user to submit an e-mail message (parcel) to be mailed using
the sendmail program (this extension is supported in the HyperMail client distributed
with the server). When the client quits, popper enters the final update state during which
the network connection is terminated and the user’s maildrop is updated with the (possibly)
modified temporary maildrop.

Logging — popper uses syslog to keep a record of its activities; by default, it uses logging
priority “notice” for all messages except debugging, which is logged at priority “debug.”
The default log file is /usr/spool/mqueue/POPlog, or /usr/spool/mqueue/syslog (this can be
changed, if desired).

Debugging — popper will log debugging information when the -d parameter is specified
after its invocation in the inetd.conf file. Care should be exercised in using this option since
it generates considerable output in the syslog file. Alternatively, the -t tracefile option will
place debugging information into file “tracefile” using fprintf instead of syslog.

Telnet to port 110 (or 109 if you set it up that way) to check if the POP server popper is
running on an UNIX system; for example, on a BSD UNIX host:

%> telnet bsdhost 110
Trying…
Connected to bsdhost.domain.edu.
Escape character is ‘^]’.
+OK UCB Pop server (version 1.6) at bsdhost starting.
%> quit
Connection closed by foreign host.

© 2002 by CRC Press LLC

Or, on a Solaris platform:

%> telnet sunhost 110
Trying…
Connected to sunhost.
Escape character is ‘^]’.
+OK sunhost Solstice (tm) Internet Mail Server (tm) POP3 2.0 at Sun, 3 Jan 1999 19:19:41 -0500 (EST)
%> quit
+OK BYE
Connection closed by foreign host.

Limitations — popper copies the user’s entire maildrop to the temporary directory /tmp
and then operates on that copy. If the maildrop is particularly large, or if inadequate space
is available in /tmp, then the daemon will refuse to continue and will terminate the
connection. This is important to keep in mind if huge e-mail messages are expected.

20.5.2.2 Internet Message Access Protocol (IMAP)
Internet Message Access Protocol (IMAP) is another “language” that mail clients (predom-
inantly PC and Macintosh workstations) use, this time in an interactive communication
with an appropriate mail server (usually an UNIX system). It is a method of accessing
e-mail or bulletin board messages that are kept on a mail server. IMAP was designed to
include POP capabilities and adds support for online and disconnect modes of remote
mailbox access. IMAP version 4 is defined in RFC 1730.

IMAP can also do offline mail processing, but its main functionality is in the online and
disconnect modes of operation. Essentially, IMAP was designed to permit manipulation
of remote mailboxes as if they were local to the user. Depending on the mail client’s
implementation of IMAP and the mail server administration, the user may either save
messages onto the client machine, or save them on the mail server.

IMAP is a more complex protocol to implement than POP; however, IMAP has several
advantages over POP. Key goals for IMAP include:

• Be fully compatible with Internet messaging standards, e.g., MIME.
• Allow message access and management from more than one computer.

• Allow access without reliance on less efficient file access protocols.
• Provide support for online, offline, and disconnected access modes.

• Support concurrent access to shared mailboxes.
• Client software needs no knowledge about the server’s file store format.

IMAP includes operations for creating, deleting, and renaming mailboxes; checking for
new messages; permanently removing messages; setting and clearing flags; MIME parsing
(so clients do not need to) and searching; and selective fetching of message attributes,
texts, and portions thereof for efficiency.

More specifically, IMAP allows:

• Manipulation of persistent message status flags, such as “Seen,” “Deleted,”
“Answered,” as well as user-defined flags

• Storage of messages as well as fetching them; a message from an incoming
message folder can be appended to an archive folder, or vice versa

© 2002 by CRC Press LLC

• Concurrent updates and access to shared mailboxes, which is useful when multiple
users are processing messages coming into a common inbox because changes in
mailbox states could be propagated to all concurrently active clients

• Processing of non-e-mail data, like NetNews or documents; this is very handy for
uniformly accessing different classes of information

• Offline access mode for minimum connect time and server resources; useful in
situations where the only access to the mail server is via expensive dialup
connections, and multiplatform access to the mailboxes is not needed

• Permits online performance optimization, especially over low-speed links

IMAP was originally developed in 1986 at Stanford University. However, it garnered
wide attention almost a decade later, and today IMAP is implemented in more and more
software products. It is still not as well-known as earlier-released and less-capable alter-
natives such as POP.

There is a companion protocol to IMAP, called Internet message support protocol (IMSP),
defined for user configuration management. IMSP permits the same location-independent
(multiplatform) access to personal configuration data such as address books, bookmark
lists, etc. that IMAP offers for mailboxes.

20.5.2.3 Comparing POP vs. IMAP

The basic characteristics of IMAP and POP reflect the characteristics of the online and
offline access paradigms; their differences also determine the main differences between
the two protocols. The summarized differences between the two paradigms are:

• Two distinct modes of use:
• offline = On-demand retrieval to a single client machine

• online = Interactive access to multiple mailboxes from multiple clients
• Offline paradigm advantages:

• Minimum use of connect time
• Minimum use of server resources

• Online paradigm advantages:
• Ability to use different computers at different times

• Ability to use “dataless” client machines, as in labs
• Platform-independent access to multiple mailboxes

• Tossibility of concurrent access to shared mailboxes

A brief comparison of POP and IMAP shows:

• Characteristics common to both POP and IMAP:
• Both can support offline operation

• E-mail is delivered to a shared active mail server
• New e-mail is accessible from a variety of client platform types

• New mail is accessible from anywhere in network
• Both protocols are open

• Both implementations are freely available (including source)

© 2002 by CRC Press LLC

• Clients available for PCs, MACs, and UNIX
• Commercial implementations available

• Internet oriented; no need for a SMTP gateway
• Both protocols deal with access only; both rely on SMTP to send

• Both protocols support persistent message IDs (for disconnected operation)
• POP protocol advantages:

• A simpler protocol; easier to implement
• More client software currently available

• IMAP protocol advantages:
• Manipulates persistent message status flags

• Stores messages as well as fetches them
• Can access and manage multiple mailboxes

• Supports concurrent updates and access to shared mailboxes
• Suitable for accessing non-e-mail data; e.g. NetNews or documents

• Can also use offline paradigm for minimum connect time and disk use
• Companion protocol defined for user configuration management (IMSP)

• Constructs to permit online performance optimization, especially over low-speed
links

In summary, IMAP offers advantages over POP in three areas: richer functionality in
manipulating the user’s inbox, the ability to manage mail folders other than the user’s
inbox, and primitives to allow optimization of online performance, especially when dealing
with large MIME messages.

Because there are freely available IMAP development libraries, its additional complexity
over POP should not be a significant obstacle to use. Therefore, a reasonable conclusion
is that the only advantage of POP over IMAP is that there is currently more POP software
available. However, this is changing rapidly, and IMAP’s functional advantages over POP
are nothing less than overwhelming.

© 2002 by CRC Press LLC

21
UNIX Network Support

21.1 Common UNIX Network Applications

The majority of network applications are not strictly required for the network to operate,
but they provide user services that are central to the network’s implementation; without
them, the network serves no real purpose. Many of these applications require no special
configuration. Once the UNIX system is configured properly and the network is set up
(including the setup of the Internet super daemon inetd), a number of network applications
can be used immediately; other network applications require some administration. Among
the most common network applications, we will briefly discuss three:

1. telnet The network terminal protocol, which provides remote login over the
network

2. ftp The file transfer protocol, which is used for file transfers over the network
3. finger Provides information about remote users

These applications are instrumental in daily UNIX administration. Because of their inherent
interactive nature, they are primarily used from the command line, but they can also be
a part of shell scripts and other programs.

All three applications are based on the client/server model. On the client side, the
corresponding application program is supposed to be started (from the command line,
script, or any other program) on an as-needed basis. The server side is handled by the
corresponding daemons (telnetd, ftpd, and fingerd) that are invoked by the Internet super
server (the inetd daemon) once a client request is received at the corresponding port.

None of the three applications require a lot of work to be properly set; they just need to
be enabled or disabled on the server side. These actions are provided through the inetd
configuration file /etc/inetd.conf. Since the inetd daemon and the /etc/inetd.conf file were
covered in Chapter 15, only the /etc/inetd.conf entries related to these applications are
presented in the following example:

$ cat /etc/inetd.conf
.
.

ARPA/Berkeley services

© 2002 by CRC Press LLC

ftp stream tcp nowait root /etc/ftpd ftpd -l
telnet stream tcp nowait root /etc/telnetd telnetd
finger stream tcp nowait bin /etc/fingerd fingerd

.

In this example, ftp and telnet are enabled, while finger is disabled (the entry is
commented-out and deactivated).

21.1.1 Telnet

Telnet provides a user interface to a remote system using the TELNET protocol. If telnet
is invoked without arguments, it enters command mode, indicated by its own prompt
(telnet). In this mode, it accepts and executes the “telnet commands” (these will be listed
later). When invoked with arguments, it performs an open command with those arguments.
The format of the command is:

telnet [hostname [port]]

where
hostname Is the name of the remote host
port Is the port number of the network service (application) — the default is 23

for telnet

Once a connection has been opened, telnet enters input mode. In this mode, typed text is
sent to the remote host. The input mode entered will be either “character at a time” or “line
by line,” depending on what the remote system supports. In character-at-a-time mode, most
text typed in is immediately sent to the remote host for processing. In line-by-line mode, all
text is echoed locally, and (usually) only completed lines are sent to the remote host. The
“local echo character” (initially “^E”) may be used to turn off and on the local echo (this
would mostly be used to enter passwords without the password being echoed).

While connected to a remote host, telnet command mode may be entered by typing the
telnet “escape character” (by default “^]”, which is “Ctrl-Right Bracket”). The normal
terminal editing conventions are available when in the command mode.

21.1.1.1 Telnet Commands
A number of commands are available. The command can be typed partially (only enough
letters of each command to uniquely identify it need be typed). The most frequently used
commands are:

Telnet Commands Meaning

open host [port] Open a connection to the named host. If no port number is specified, telnet will
attempt to contact a TELNET server at the default port. The host specification may
be either a host name or an IP address specified in the “dot notation.”

close Close a TELNET session and return to command mode.
quit Close any open TELNET session and exit telnet. An EOF (in command mode) will

also close a session and exit.
mode type type is either line (for line-by-line mode) or character (for character-at-a-time mode).

The remote host is asked for permission to go into the requested mode. If the remote
host is capable of entering that mode, the requested mode will be entered.

© 2002 by CRC Press LLC

status Show the current status of telnet. This includes the peer one is connected to, as well
as the current mode.

display [argument…] Display all, or some, of the set values.
? [command] Get help. With no arguments, telnet prints a help summary. If a command is specified,

telnet will print the help information only for that command.
send arguments Send one or more special character sequences to the remote host (more than one

argument may be specified at a time).
set argument value Set any one of a number of telnet variables to a specific value. The special value “off”

turns off the function associated with the variable. The values of variables may be
interrogated with the display command.

It is very common to use telnet for a login to a remote host for the purpose of doing UNIX
administration on the host. Please note that telnet uses a clear-text in communications,
including the transfer of the password, which could be a significant disadvantage in a
nonsecure environment; otherwise, it is very easy to use.

Telnet allows you to specify a port other than the default one for a TELNET session. In
that way telnet can be instrumental in checking that a port is active, i.e., whether or not
the daemon is running behind and listening on that port. There is no chance to establish
a session (telnet understands only TELNET protocol), but the daemon will respond if it
is alive. For checking purposes, that is quite sufficient.

Telnet is not suitable for shell script programming at all, because of its strictly interactive
nature including the interactive login procedure.

21.1.2 FTP

ftp is the user interface to the standard file transfer protocol (FTP). ftp transfers files to
and from a remote host (network site). On the client side, the remote host with which ftp
is to communicate may be specified on the command line. If this is done, ftp immediately
attempts to establish a connection to an FTP daemon on that host; otherwise, ftp enters
its command interpreter and waits for ftp commands from the user (these will be listed
later); it also displays the prompt ftp>.

The format of the ftp command is:

ftp [-options] [hostname]

where options may be specified at the command line, or to the command interpreter:
-d Enable debuggin.
-g Disable filename globbing.
-i Turn off interactive prompting during multiple file transfers.
-n Do not attempt “auto-login” upon initial connection. If auto-login is

enabled, ftp checks the .netrc file in the user’s home directory for an entry
describing an account on the remote machine. If no entry exists, ftp will
prompt for the login name of the account on the remote machine (the default
is the login name on the local machine), and, if necessary, prompts for
a password and an account with which to login.

-v Show all responses from the remote server, and report on data transfer
statistics. This is turned on by default if ftp is running interactively with its
input coming from the user’s terminal.

hostname The name of the remote host.

© 2002 by CRC Press LLC

21.1.2.1 FTP Commands
The most used “ftp command interpreter commands” are:

FTP Commands Meaning

! [command] Run command as a shell command on the local machine. If no command is
given, invoke an interactive shell.

ascii Set the “representation type” to “network ASCII.” This is the default type.
bell Sound a bell after each file transfer command is completed.
binary Set the “representation type” to “image.”
bye Terminate the FTP session with the remote server and exit ftp. An EOF will

also terminate the session and exit.
case Toggle remote computer file name case mapping during mget commands.

When case is on (the default is off), remote computer file names with all
uppercase letters are written in the local directory with the letters mapped
to lower case.

cd remote-directory Change the working directory on the remote machine to remote-directory.
close Terminate the FTP session with the remote server and return to the

command interpreter. Any defined macros are erased.
delete remote-file Delete the file remote-file on the remote machine.
debug [debug-value] Toggle debugging mode. If an optional debug-value is specified, it is used to

set the debugging level. When debugging is on, ftp prints each command
sent to the remote machine, preceded by the string “-->.”

dir [remote-directory] [local-file] Print a listing of the directory contents in the directory named remote-directory
and, optionally, place the output in local-file. If no directory is specified, the
current working directory on the remote machine is used. Output is sent to
the terminal if no local file is specified, or if local-file is “-.”

disconnect A synonym for (is the same as) close.
get remote-file [local-file] Retrieve the remote-file and store it on the local machine. If the local file name

is not specified, it is given the same name it has on the remote machine.
help [command] Print an informative message about the meaning of command. If no argument

is given, ftp prints a list of the known commands.
lcd [directory] Change the working directory on the local machine. If no directory is specified,

the user’s home directory is used.
ls [remote-directory] [local-file] Print an abbreviated listing of the contents of a directory on the remote

machine. If remote-directory is left unspecified, the current working directory
is used. The output is sent to the terminal if no local file is specified, or if
local-file is “-.”

mdelete [remote-files] Delete the remote-files on the remote machine.
mdir rote-files local-file Like dir, except multiple remote files may be specified. If interactive

prompting is on, ftp will prompt the user to verify that the last argument
is indeed the target local file for receiving mdir output.

mget remote-files Expand the remote-files on the remote machine and do a get for each file
name thus produced.

mkdir directory-name Make a directory on the remote machine.
mls remote-files local-file Like ls, except multiple remote files may be specified. If interactive

prompting is on, ftp will prompt the user to verify that the last argument
is indeed the target local file for receiving mls output.

mode [mode-name] Set the “transfer mode” to mode-name. The only valid mode-name is stream,
which corresponds to the default “stream” mode.

mput local-files Expand wild cards in the list of local files given as arguments and do a put
for each file in the resulting list.

open host [port] Establish a connection to the specified host FTP server. An optional port
number may be supplied, in which case ftp will attempt to contact an FTP
server at that port. If the auto-login option is on (default), ftp will also attempt
to automatically log the user in to the FTP server.

prompt Toggle interactive prompting. Interactive prompting occurs during multiple
file transfers to allow the user to selectively retrieve or store files. By default,
prompting is turned on. If prompting is turned off, any mget or mput will
transfer all files, and any mdelete will delete all files.

© 2002 by CRC Press LLC

put local-file [remote-file] Store a local file on the remote machine. If remotefile is left unspecified, the
local file name is used after processing according to any ntrans or nmap
settings in naming the remote file. File transfer uses the current settings
for “representation type,” “file structure,” and “transfer mode.”

pwd Print the name of the current working directory on the remote machine.
quit A synonym for (is the same as) bye.
recv remote-file [local-file] A synonym for (is the same as) get.
remotehelp [command-name] Request help from the remote FTP server. If a command-name is specified it

is supplied to the server as well.
rename from to Rename the file from on the remote machine as the name to.
reset Clear reply queue. This command resynchronizes command/reply

sequencing with the remote FTP server. Resynchronization may be
necessary following a violation of the FTP protocol by the
remote server.

rmdir directory-name Delete a directory on the remote machine.
send local-file [remote-file] A synonym for (is the same as) put.
sendport Toggle the use of PORT commands. By default, ftp will attempt to use a

PORT command when establishing a connection for each data transfer.
The use of PORT commands can prevent delays when performing multiple
file transfers. If the PORT command fails, ftp will use the default data port.
When the use of PORT commands is disabled, no attempt will be made to
use PORT commands for each data transfer. This is useful when connected
to certain FTP implementations that ignore PORT commands but incorrectly
indicate they have been accepted.

status Show the current status of ftp.
type [type-name] Iet the “representation type” to type-name. The valid type-names are ascii for

“network ASCII”, and binary or image for “image.” If no type is specified,
the current type is printed. The default type is “network ASCII.”

user user-name [password] [account] Identify yourself to the remote FTP server.
If the password is not specified and the server requires it, ftp will prompt
the user for it (after disabling local echo). If an account field is not
specified and the FTP server requires it, the user will be prompted for it.
If an account field is specified, an account command will be relayed to the
remote server after the login sequence is completed if the remote server
did not require it for logging in. Unless ftp is invoked with “auto-login”
disabled, this process is done automatically on initial connection to the
FTP server.

verbose Toggle verbose mode. In verbose mode, all responses from the FTP server
are displayed to the user. In addition, if verbose mode is on, statistics
regarding the efficiency of the transfer are reported when a file transfer
completes. By default, verbose mode is on if ftp’s commands are coming
from a terminal, and off otherwise.

? [command] A synonym for (is the same as) help.

Command arguments with embedded spaces may be quoted with quote (”) marks. If
any command argument that is not indicated as being optional is not specified, ftp will
prompt for that argument. Use the terminal interrupt key (usually Ctrl-C) to abort a file
transfer. Any submitted transfers will immediately be halted.

The listed set of ftp commands is only a partial list of the most common commands;
obviously, ftp provides a quite powerful set of its own commands (please note those are
not UNIX commands, although many of them share the same command name).

ftp is basically an interactive network application; however, ftp supports an “auto-login”
procedure upon initial host connection, i.e., under certain conditions the authentication
can be automatically provided. That makes ftp more suitable for shell script programming,
and it is frequently used to transfer files between remote hosts.

Another useful feature is that ftp allows “anonymous access,” an ftp account for global
read-only access. Both features will be briefly discussed.

© 2002 by CRC Press LLC

21.1.2.2 FTP Auto-Login
ftp uses login data from the hidden file .netrc located in the user’s home directory. The
file must be owned by the user and read/write only by the user; it contains data too
sensitive (like the ftp clear-text password) to be compromised by any other user. An entry
in the .netrc file fully describes one ftp login session for a specified host. ftp always consults
the file for the corresponding login data when establishing an initial contact with a host.
If there is no appropriate entry, a regular login procedure is implemented and the user is fully
authenticated; otherwise, the specified username and password are automatically submitted.

Here is an example:

$ cd /home/bjl

$ cat .netrc
machine hostname1 login username1 password letmein1
machine hostname2.domain2.com login username2 password letusin2
machine 208.208.25.153 login username3 password passme3

Three entries are presented for three hosts identified in different ways. Each entry
contains three fields, and each field consists of two subfields:

• Field #1: The directive “machine” and the hostname are specified as relative, or
with the absolute (full canonical) hostname, or numerically as its IP address.

• Field #2: The directive “login” and the loginname used to log into the ftp host
(this name is independent of the username of the owner of the .netrc file).

• Field #3: The directive “password” and the actual clear-text password used to log
into the ftp host.

Once the login procedure is provided automatically, ftp becomes quite suitable for shell
scripting. In the following example the Korn shell “Here document” is used for the FTP
session to exchange certain ASCII files between two hosts. The rest of the script is not
shown, and it could be used for different purposes, primarily for the FTP data
preprocessing and post-processing.

$ cat /home/username1/ftpscript.ksh
#!/ bin/ksh
#
Prepare FTP related variables
FTPSITE = hostname2
LOCDIR = /share/local_dir
REMDIR = /pub/remote_dir
FILETOPUT = filename1
FILETOGET = filename2
LOG = /tmp/ftpscript.log

.

.
cd $LOCDIR
ftp $FTPSITE <<EOF 1>>$LOG 2>&1
cd $REMDIR
ascii
put $FILETOPUT
get $FILETOGET
bye
EOF

.

.

© 2002 by CRC Press LLC

The Here document starts with the ftp command and terminates with the specified
termination character sequence, in this case “EOF.” The whole FTP session is recorded
(logged) in the specified log file (standard output and error are redirected into the log
file). Once the Here document is started, the Korn shell transfers control to the “ftp command
interpreter;” all lines within the Here document are strictly ftp commands and they are
executed sequentially, one after another. At the end, control is transferred back to the Korn
shell again.

As we can see, the Here document establishes an FTP session, the user authentication is
automatic (there is an entry for this session in the .netrc file), and two files are exchanged
in ASCII mode. At the end, the FTP session is closed.

Each ftp command line is executed upon the completion of the previous line, independent
of the command exit status. In this example, only by checking the log file we can determine
the status of each individual specified command.

21.1.2.3 Anonymous FTP
Anonymous ftp is an FTP session in which a user logs into the remote server using the
user name anonymous and, by convention, the real user name or e-mail address as the
password. The purpose of anonymous ftp is to enable the retrieval of publicly available
files and programs from FTP servers on the Internet. With anonymous ftp, anyone can
login without having an account on an FTP server. Of course, access to the server’s
directories is assumed to be restricted to the read-only mode.

Using the anonymous ftp service offered by a remote server is very simple. However,
setting up an anonymous ftp service on a system is more complicated. In the text that
follows, the basic steps required to build an anonymous FTP site are briefly described.

1. Add user ftp to the /etc/passwd file:
New entry: ftp:*:UID:GID:Anonymous ftp:/usr/ftp

2. Add group anonymous to the /etc/group file:
New entry: anonymous:*:GID

3. Create an ftp home directory owned by ftp that cannot be written to by anyone:
mkdir /usr/ftp
chown ftp /usr/ftp

chgrp anonymous /usr/ftp

chmod 555 /usr/ftp

4. Create a bin directory under the ftp home directory that is owned by root and that
cannot be written to by anyone. The ls program should be placed in this directory
and changed to execute-only mode (111):

mkdir /usr/ftp/bin # It is already owned by root!
chmod 555 /usr/ftp/bin
cp /bin/ls /usr/ftp/bin

chmod 111 /usr/ftp/bin/ls

5. Create an etc directory under the ftp home directory that is owned by root, and that
cannot be written to by anyone. Create special passwd and group files in this
directory with a single entry equal to the entry added to /etc/passwd and /etc/
group files, and change the mode of both files to read-only mode (444):

mkdir /usr/ftp/etc # It is already owned by root!
chmod 555 /usr/ftp/etc

© 2002 by CRC Press LLC

cat /etc/passwd | grep ftp: >/usr/ftp/etc/passwd

cat /etc/group | grep anonymous: >/usr/ftp/etc/group

chmod 444 /usr/ftp/etc/passwd /usr/ftp/etc/group

6. Create a pub directory under the ftp home directory that is owned by ftp and that is
corresponding in mode, depending on which rights will be granted to anonymous
users. Here, the read-only mode (444) is assumed:

mkdir /usr/ftp/pub

chown ftp /usr/ftp/pub

chgrp anonymous /usr/ftp/pub

chmod 444 /usr/ftp/pub

7. Check the ownership, mode, and contents of all newly created directories and files.

For most UNIX systems, the installation is complete upon completion of the listed steps,
but some UNIX flavors might require some additional procedures. Once the system is
ready, files for public use can be copied into the /usr/ftp/pub directory. They should not be
owned by ftp to prevent overwriting of the files by remote anonymous users, and their
mode must be set to 644 (or 444).

At the end, a thorough test of the installed anonymous ftp service is recommended
to ensure that the ftp server provides the desired service without providing additional
undesired ones. Anonymous ftp is a potential security risk, and it should be installed
carefully and properly.

21.1.3 Finger

By default, finger displays information about each logged-in user, including login name,
full name, terminal name, idle time, login time, and location (tty for users logged in locally,
hostname for users logged in remotely), if known. Idle time is in minutes if it is a single
integer, hours and minutes if a “:” is present, or days and hours if a d is present. The
format of the finger command is:

finger [options] name…

where the available options are:
-m Match arguments only on user name (not first or last name)
-l Force long output format
-s Force short output format
-q Force quick output format, which is similar to short format except that only the

login name, terminal, and login time are printed
-i Force “idle” output format, which is similar to short format except that only the

login name, terminal, login time, and idle time are printed
-b Suppress printing the user’s home directory and shell in a long format printout
-f Suppress printing the header that is normally printed in a non-long format printout
-w Suppress printing the full name in a short format printout
-h Suppress printing of the .project file in a long format printout
-p Suppress printing of the .plan file in a long format printout

When one or more name arguments are given, more detailed information is given for
each name specified, whether they are logged in or not. A name may be a first or last name

© 2002 by CRC Press LLC

or an account name. Information is presented in a multiline format, and includes
(in addition to the information mentioned above):

• The user’s home directory and login shell

• The time they logged in if they are currently logged in, or the time they last
logged in if they are not, as well as the terminal or host from which they logged in
and, if a terminal, the comment field in /etc/ttytab for that terminal

• The last time they received mail, and the last time they read their mail

• Any plan contained in the file .plan in the user’s home directory
• Any project on which they are working described in the file .project (also in that

directory)

If a name argument contains an at-sign, “@,” then a connection is attempted to the
machine named after the at-sign, and the remote finger daemon is queried. The data
returned by that daemon is printed.

The main drawback, and the reason that finger is often disabled, is the security risk it
carries. Why expose information about users on your system to potential intruders? Users’
accounts are main targets for every intruder, who will first try to catch a user account,
and then work on switching to some high privileged user (to root, if possible).

There is one special situation when the use of finger could be extremely valuable. When
user dial-in access is provided, as with PPP, an IP address is dynamically assigned to the
user’s machine; the same user’s machine can be identified by a different IP address at a
different time. On the other side, some applications are strictly based on the known IP
address of the session participants; for example, X windowing requires the IP address of
the X server to launch a specified application properly. Obviously, for the application to
succeed, the IP address assigned to the logged-in user must be known.

finger could help in this case. When a user logs into the host, the dynamically assigned
IP address identifies the user’s originated logical machine (please note that this logical
machine is mapped through the dial-in connection into the real machine). By finger-ing
a specified user, the information about the assigned IP address will be displayed, and this
is what an application needs for successful completion. A relatively simple script could
be made and used for the purpose of extracting the dynamically assigned IP address and
passing this address to the application for its use. This should be made clear in the
following example.

The user bjl dialed in and logged into the specific host with the intent of launching an
X-based application on the user’s PC that emulates an X terminal. The user was authen-
ticated by the remote access server rashost, which dynamically assigns one of the 16
available IP addresses to the authenticated dial-in connection; the IP address is in the
range: rashost01 - rashost16, with an appropriate DNS record.

The finger command on the host shows (only the relevant lines are presented):

$ finger
Login Name TTY Idle When Where
bjl B. J. L. pts/10 3 Sat 14:29 rashost08.example.net

.

Keeping this command output in mind, the following script will extract the assigned
DNS record (it is equivalent to an IP address) of the established dial-in connection, and
launch the desired X-based application “xnb” on the user’s PC.

© 2002 by CRC Press LLC

$ cat xnb2pc
#!/bin/ksh -p
#
This script starts XNB session at the user PC
Once the user connects via modem, and upon a
successful authentication, an ip address is assigned
to the established dial-in connection (this address varies
among different connections). To launch an XNB session
the DISPLAY variable must be defined appropriately.
The other requirement is a running Xterminal client on PC
(for example Exceed)
#
This line extracts corresponding DNS record; it cleans everything in the line in front
of the DNS record, as well as all trailling spaces
CONN = � finger | grep rashost | grep bjl | sed -n 1p | sed ‘s/^..*rashost/rashost/g ’ | sed ‘s/ *$//g’�
export DISPLAY = “${CONN}:0.0”
The DISPLAY variable is specified
Everything seems to be ready for the XNB launch
/usr/xnbpath/bin/xnb -display $DISPLAY&

21.2 Host Connectivity

In a network, the essential condition is that the connectivity between hosts must be
provided. It is obvious that without full host connectivity, none of the network applications
can be accomplished. A break in the host connectivity is a very common cause for network
application failure. Checking the host connectivity is also the most frequent, and usually
the first step, in tracing problems related with network applications.

UNIX provides a certain number of applicable commands for this purpose; two of them
are ping and traceroute.

21.2.1 The ping Command

The ping command tests whether a remote host can be reached from the system where
ping was activated. This simple function is extremely useful for testing network connec-
tions, and in determining whether further testing should be done. If ping shows that
packets can travel to the remote host and back, the problem you seek to identify might
be in the upper protocol layers; if packets cannot make the round-trip, lower protocol
layers are probably at fault.

The basic format of the ping command (some variations are possible on different
flavors) is:

ping hostname [packetsize] [count]

where
hostname The hostname or IP address of the remote host being tested.
packetsize Defines the size in bytes of the test packets. The default is 56 bytes.
count The number of packets to be sent in the test. Otherwise, ping continues to

send test packets until you interrupt it (usually with Ctrl-C); in most cases
five packets should be sufficient for a test.

© 2002 by CRC Press LLC

Here is an example, ping-ing the host acf4.nyu.edu (at the NYU campus) from the host
patsy.hunter.cuny.edu (at the Hunter College campus):

ping -s acf4.nyu.edu 56 5
PING acf4.nyu.edu: 56 data bytes
64 bytes from ACF4.NYU.EDU (128.122.128.14): icmp_seq = 0. time = 73. ms
64 bytes from ACF4.NYU.EDU (128.122.128.14): icmp_seq = 1. time = 61. ms
64 bytes from ACF4.NYU.EDU (128.122.128.14): icmp_seq = 2. time = 79. ms
64 bytes from ACF4.NYU.EDU (128.122.128.14): icmp_seq = 3. time = 89. ms
64 bytes from ACF4.NYU.EDU (128.122.128.14): icmp_seq = 4. time = 70. ms
----ACF4.NYU.EDU PING Statistics----
5 packets transmitted, 5 packets received, 0% packet loss
round-trip (ms) min/avg/max = 61/74/89

The -s option is included for the SunOS/Solaris flavors to display packet-by-packet
statistics. Other ping implementations do that by default.

If the packet loss is high, or the response time is very slow, or packets are arriving out
of order, then there could be a network problem. If this happens on a wide area network,
there is nothing to worry about. TCP/IP is designed for unreliable networks, and some
wide area networks suffer a lot of packet loss. On a local area network, however, that
indicates some trouble.

In a high throughput local network, or a network with few routing steps (also known
as “hops”), the round-trip time should be near zero; there should be no or small packet
loss, and the packet should arrive in order. If these parameters are not met, there is a
problem with the network resources. The most frequent problems are: improper cable
termination, a bad cable segment, or a bad piece of “active” hardware such as repeater,
bridge, hub, switch, or transceiver. If this is a case, further testing and searching for
problem could be directed to those areas.

When the ping testing completely fails, ping displays an error message, such as:

-unknown host The remote host cannot be resolved by name service; try to
ping with a host’s IP address to locate the problem.

-network unreachable The local system does not have a route to the remote system;
try again and after that, look at the routing table and default
gateway.

Ping-ing takes some time, especially if a designated host is not reachable; ping retries
multiple times with the host, waiting for a response until timeout occurs. This is why some
flavors also includes a “fast-ping” command /etc/fping, which tries only once and generates
a corresponding response.

The main advantage of the ping command is that it relies on lower ISO OSI model
layers (physical, data link, and network), and in that way could make a sharp distinction
between the host connectivity and problems on higher layers (transport, session, pre-
sentation, or application). ping is using ICMP protocol (Internet control message protocol),
and it makes it completely independent of the TCP/IP stack so typical for all network
applications. Briefly, ping can only address a host, and check the connectivity with the
specified host; there is no way to check an application by using ping. Sometimes you
could witness a discussion about “ping-ing a port” with an idea to check the application
itself; such a discussion is completely senseless — ping does not know anything about
a port, it simply does not know anything about higher OSI model leyers where the port
is located.

© 2002 by CRC Press LLC

21.2.2 The traceroute Command

The traceroute command is available to track routing-related problems in the network. As the
command name says, it displays the route of the probe packets sent toward the destination host.

Tracking the route that packets follow (or finding the miscreant gateway that’s discarding
the packets) can be difficult. traceroute utilizes the IP protocol TTL field (“time-to-live”) and
attempts to elicit an ICMP response from each gateway along the path to the destination host.

traceroute attempts to trace the route an IP packet would follow to the destination host
by launching UDP probe packets with a small TTL (time-to-live), and then listening for
an ICMP “time exceeded” reply from a gateway. It starts the probes with a TTL of one
(“1”) and increases by one until it gets an ICMP “port unreachable” (which means it
reached the “host”) or hits a max (the default is 30 hops). Three probes are sent at each
TTL setting and a line is displayed showing the TTL, IP address of the gateway, and round
trip time of each probe. If the probe answers come from different gateways, the address
of each responding system will be displayed. If there is no response within a 5 second
timeout interval, an asterisk (“*”) is displayed for that probe. To prevent the destination host
from processing the UDP probe packets, the destination port is set to an unlikely value.

traceroute has the format:

traceroute [options] hostname [packetlength]

where the only mandatory parameter is the name of the destination host hostname; other
parameters are optional. The default packet length is 40 bytes. A partial list of options
includes:

Option Meaning

-f first_ttl Set the initial time-to-live used in the first outgoing probe packet.
-g gateway Specify a loose source route gateway (8 maximum).
-i interface Specify a network interface to obtain the source IP address for outgoing probe packets.

This is normally only useful on a multihomed host.
-m max_ttl Set the maximum time-to-live (maximum number of hops) used in outgoing probe

packets. The default is 30 hops (the same default used for TCP connections).
-p port Set the base UDP port number used in probes (default is 33434). It is assumed that nothing

is listening on the UDP ports ranging from base to (base + nhops – 1) at the destination
host (so an “ICMP PORT_UNREACHABLE” message will be returned to terminate the
route tracing). If something is listening on a port in the default range, this option can be
used to pick an unused port range.

-s src_addr Use the following IP address (usually given as an IP address, not a hostname) as the
source address in outgoing probe packets. On multihomed hosts (with multiple
interfaces), this option can be used to force the source address to be something other than
the IP address of the interface the probe packet is sent on. If the IP address is not one of
this machine’s interface addresses, an error is returned and nothing is sent.

-t tos Set the “type-of-service” (TOS) in probe packets to the following value (the default is
zero). The value must be a decimal integer between 0 and 255. This option can be used
to see if different TOSs result in different paths. Not all values of TOS are legal or
meaningful — see the IP spec. for definitions. Useful values are probably “-t 16”
(low delay) and “-t 8” (high throughput).

-w waittime Set the time (in seconds) to wait for a response to a probe (the default is 5 seconds).
-d Enable socket level debugging.
-i Use ICMP ECHO instead of UDP datagrams.
-n Display hop addresses numerically.
-r Bypass the normal routing tables and send directly to a host on an attached network.

If the host is not on a directly attached network, an error is returned.
-v Verbose output, ensures that all received ICMP packets are listed.
-x Toggle checksums. Normally, this prevents traceroute from calculating checksums.

© 2002 by CRC Press LLC

An example follows:

$ traceroute allspice.lcs.mit.edu.
traceroute to allspice.lcs.mit.edu (18.26.0.115), 30 hops max
1 helios.ee.lbl.gov (128.3.112.1) 0 ms 0 ms 0 ms
2 lilac-dmc.Berkeley.EDU (128.32.216.1) 19 ms 19 ms 19 ms
3 lilac-dmc.Berkeley.EDU (128.32.216.1) 39 ms 19 ms 19 ms
4 ccngw-ner-cc.Berkeley.EDU (128.32.136.23) 19 ms 39 ms 39 ms
5 ccn-nerif22.Berkeley.EDU (128.32.168.22) 20 ms 39 ms 39 ms
6 128.32.197.4 (128.32.197.4) 59 ms 119 ms 39 ms
7 131.119.2.5 (131.119.2.5) 59 ms 59 ms 39 ms
8 129.140.70.13 (129.140.70.13) 80 ms 79 ms 99 ms
9 129.140.71.6 (129.140.71.6) 139 ms 139 ms 159 ms
10 129.140.81.7 (129.140.81.7) 199 ms 180 ms 300 ms
11 129.140.72.17 (129.140.72.17) 300 ms 239 ms 239 ms
12 * * *
13 128.121.54.72 (128.121.54.72) 259 ms 499 ms 279 ms
14 * * *
15 * * *
16 * * *
17 * * *
18 ALLSPICE.LCS.MIT.EDU (18.26.0.115) 339 ms 279 ms 279 ms

Note that gateways 12, 14, 15, 16, and 17 have reached timeout limits, and either do not
send ICMP “time exceeded” messages or send them with a TTL too small to reach the
originated host. There could be many different reasons for this; in this specific case it is
known that gateways 14–17 are running the MIT C Gateway code that does not send “time
exceeded” messages.

© 2002 by CRC Press LLC

22
X Window System

22.1 An Introduction to the X Window System

X Window System is a network-based software package that provides the user’s friendly
graphical interface. We will refer to X Window System shortly as X, or X11. X is based
on the client/server model, in which the X client (application program) does not directly
access the display; instead it communicates with the X server (the corresponding display
program) with the single task to control displaying. X was developed at MIT and is
maintained by a not-for-profit consortium of vendors and universities, first known as
MIT X Consortium, succeeded by X Consortium from 1993. It is a relatively highly
standardized package that runs on almost every platform; X appeared relatively late, so
it presents a compromise between needs of many vendors. The best known release is
X11R6, although version X11R5 is also widely in use. All efforts to standardize X11
culminated in the introduction of Common Desktop Environment (CDE), which had
offered the best of X11. Today, CDE is the standard part of most UNIX installations,
usually accompanied by a vendor-specific flavor of X11. CDE related X components are
easy to recognize, they always do have “dt” prefix in their names (stands for DeskTop).

X11 presents a highly flexible and configurable package; correspondingly, an adequate
administrative effort must be made to optimize X11 for the local site. Nevertheless, X11
can run with its default settings, which is sufficient for most of the implementations. We
will discuss those issues in the first part of this Chapter. Although, every client/server
model does have two sides, studying X11 practically means to study the client side; X
configuration and customization is always provided on the client host.

Today, users are very familiar with the windows environment; almost every PC provides
some version of the Microsoft Windows system. Although, MS Windows does not belong
to X11, the similarities in the use are obvious; however, the rest is quite different. Never-
theless, credit for a broader introduction of windows as a graphic, user-friendly interface
and environment actually should go to Macintosh for its contribution in this arena in the
early 1970s.

22.1.1 The Design of X11

We mentioned already that X is based on the client/server model. One important feature
of the client/server model is that client and server programs can communicate remotely,
although, they can also reside at the very same system. An X client and an X server

© 2002 by CRC Press LLC

communicate using the X Protocol, which is supported by domain sockets internally and
TCP/IP externally. Many implementations consist of X servers and X clients running on
independent remote machines, mutually connected by fast links. Links could be any kind
of distant connections within a wide area network (WAN), or mid-speed modem, or, what
is the most common, a local area network (LAN). This fact makes X ideal in a distributed
computing environment — users can open a number of windows on a number of server
machines, dealing simultaneously with a number of tasks running on a number of remote
client machines.

When an X client and an X server are running on distant machines, each of them provides
its part of the common task. The X server is a part of the user’s local display machine;
this machine could be very simple, even a single-tasking DOS-based PC. A complex part
of the common task is happening at the client side, which is usually, a powerfull, multi-
user system capable of running sophistiacted graphic applications. This feature has led to
an intensive development of low-cost X terminals, designed especially for running X
server. Using X terminals, multiple users can run graphics-intensive programs without
a need to possess their own expensive powerful machines.

The client-server terminology confuses novices in the X arena. Since the X server runs
on a local display system on the user’s desk, it is often incorrectly thought that the display
system is running an X client program. It is common to think of a server as something
that is accessed across the network (a comparison with the file servers, print servers, or
other kinds of, usually, remote servers, is almost inevitable). However, in the case of X11,
a system in front of us includes a display and a keyboard, made available to X client
application programs running on distant hosts (machines). The X server is a “display
server” — it provides the “display service” to the remote applications (clients). This is
presented in the Figure 22.1.

An X server can run any sort of bitmap graphic displays. A graphic display consists
of at least one monitor (screen), a pointing device, and a keyboard. They differ
regarding:

• Monitors different screen sizes, resolutions, color support, etc.

• Pointing devices a mouse, a trackball, a touchscreen, a lightpen, etc.
• Keyboards a keyboard layout, control sequences

The X server insulates X clients from low-level differences; it means that the X server
mediates between clients and graphic display’s hardware characteristics; it provides map-
ping between physical resources and corresponding logical identifiers.

Unfortunately, the requirement for a “configurability” could not miss the X application
itself. An X application (an X client) is generally running on a multi-user system, and
basically could display on any connected X server on the network. Consequently, there
are always dependencies and preferences that the user needs to be able to express. Two
or more users can run the same X application simultaneously from totally different
X servers; therefore, X clients need to be configurable by each individual user. This is
not an odd idea — character-based UNIX programs do the same, using appropriate
“dot” files in the user’s home directory: .mailrc, .exrc, .newsrc (even .profile, .login, and
.cshrc files could belong to this category). Different X servers may also require their own
preferences, so X clients need to be configured versus the server, also. Finally, X client
executables can run on different system platforms, system-specific defaults are also
required. Obviously, X applications should be configurable at each of the mentioned
levels (they are configured primarily via “resources variables”); we will discuss these
issues in more detail.

© 2002 by CRC Press LLC

We have mentioned an application as an X client; however, beside the application itself,
other X clients also take part actively in an X display session (briefly, an X session). First,
the X session must be started similarly to any other character-based session (for example,
login session is started by init, getty, and login programs involved — recall the login
procedure). In the early days of X11, an X session was started by a specific X startup
program, like the program xinit. Later, this task was delegated to the X display manager —
the program that enables the start of an X session by executing an appropriate user-
configurable program. For X11, the first real X display manager was the xdm program
(alternatively, an X session could be also started by the xinit command). We will return to
both issues later.

Another client program is an X window manager which provides the basic framework
for moving, resizing, and managing windows. This is the only window manager’s task,
but the crucial one for the entire X session. While in a traditional character-based world,
a session is defined by the lifetime of a user’s login shell, here it is usually the lifetime of
the window manager (in X environment, a user’s login process does not necessarily have
a terminal-like interface to connect with). The window manager is in charge of performing
the flexible and usable concept of windowing, i.e., opening a number of independent
windows on a single display, which appears to user, and behaving, as multiple parallel
independent displays. Having in mind the restricted display resources (the screen dimen-
sions, etc.), additional features such as window moving, resizing, overlapping, iconizing,
and other had to also be provided.

Wide Area Network

Mid-range Computer

Supercomputer

Workstation

X terminal

X server

X client

X client

X client

FIGURE 22.1
An X server with multiple X clients.

© 2002 by CRC Press LLC

What will be presented in a window does not depend on the window manager; it
depends only on the associated client application program, invoked through this window.
The window managers could be started independently, or together with the X client
application.

Finally, a few words about graphic user interface (GUI). The concept for a GUI originated
in the mid-1970s at Xerox’s Palo Alto Research Center, where the basic GUI elements such
as windows, a mouse, and the “point-and-click” style of software were developed. The
first commercially successful product was offered on the Apple Macintosh platform. The
“look and feel” of the Macintosh interface features multiple windows, use of a mouse
device, pop-up and pull-down menus, object and process icons, and dialogue boxes, all
of which have come to define user-friendly computing environments. Interest in GUIs has
grown steadily, especially in the UNIX marketplace where the GUI is running under X
Windows — X11 — and makes the computing platform more accessible to a wider range
of users. While X11 supplies basic graphic functionality and a networkable windowing
system, the GUI implements a particular style of interaction, a look and feel within the X11
environment.

On the UNIX platform, X clients are built using a number of programming libraries that
make X implementation easier — they insulate the programmer from the very details of
the X protocol:

• The lowest layer is Xlib, which is actually used only in cases where the direct
control of the dialogue with the X server is required.

• On top of Xlib, the X Toolkit Instrinsics, known as Xt, are built; they simplify
a graphic user interface by creating support for objects called widgets.
Widgets are basic prototypes for common GUI elements, such as scrollbars,
menus, etc., as well as other glue objects that enable complete window
implementation.

• On top of the Xt additional GUI libraries are layered, and they actually, together
with a window manager, make a full GUI support.

The three most common GUIs were provided by the Athena widgets, the OSF/Motif,
and the OPEN LOOK specifications. Each of those specifications also included the corres-
ponding window manager; fortunately, a set of conventions provides interoperability of
clients and window managers from different X-based GUIs.

Supposing that the X design is more clear now, let us summarize briefly how every-
thing works. X clients and X servers communicate mutually using the X protocol they
understand very well. This communication could be local (both the X client and X
server live on the same machine) or remote through the network. X protocol relates to
the GUI objects that are well known to both sides in the communication. Instead of
transferring large descriptions of the wanted graphic presentations, short messages that
refer to appropriate GUI elements are used. We still have the full flexibility with
preserved fast communication between a client and a server. In the worst case, when
a wanted graphic presentation is not covered by the GUI objects, a full graphic image
could be transferred; however, it happens only occasionally. Of course, the price that
must be paid is both sides in such a communication, an X client and an X server, should
support X protocol.

Benefits in using X windowing are numerous. X enables a flexible distribution of
resources within the network. The execution of an application and the interaction with
the very same application are divided, and could be arbitrary located, optimizing the
efficient use of available resources. A number of users could access simultaneously

© 2002 by CRC Press LLC

a number of applications, by making an optimal balance between processing and display-
ing resources. In the distributed computer environment, X makes a step closer to the dream
of having a whole network that appears as “a single equivalent powerful processing (computer)
system.”

22.1.2 The X Administration Philosophy

The basic philosophy that X is built on is that X provides “a mechanism, not a policy.”
This is a good approach if you have in mind future development and improvements.
However, from an administrative standpoint it makes maintenance more difficult. The
lack of strict rules and standards left vendors free to create their own rules, and X admin-
istrators without much guidance. There are many different flavors of X: the “standard”
X11 distribution maintained by the X Consortium; then various vendor-configured versions
that are derived from MIT X11 but configured for a vendor’s operating system and
proprietary look and feel. There are Open Windows, which runs on Sun platform;
DECWindows, which runs on DEC platform; AIXWindows, which runs on IBM AIX
platform; VUE (Visual User Environment), which runs on HP-UX platform; and more.
Common Desktop Environment (CDE) seems to be a successful attempt to bring a common
X platform as a standard; as far it was accepted by most of the vendors and combined
with vendor-specific X packages.

This means that X could behave differently on different UNIX platforms. An administrator
can easily realize that the system reacts differently than expected. The fact that the X
Consortium provides only the mechanism and relies on vendors to decide how to use it,
made some holes and gaps in the implementation. An administrator must be aware of
what is hidden “under the hood,” before using that. This is one of the most difficult issues
in X administration. Despite that X is supported by relatively ample documentation (the word
here is about online documentation — manual pages), to reach a right topic, sometimes
could be quite a hard job.

Nevertheless, to come out with the issue of a philosophy of X administration, it would be
that X is made to fit the needs of its users. The administrator has the responsibility to
determine the user’s need and configure X accordingly. X is installed in all sorts of
environments, from academia, via industry, to home offices with a single standalone
machine. For that reason, almost everything in X is configurable at multiple levels. The
X Display Manager can be configured in several different places, to meet practically any
need. Even the source code to X is available for those who want to create their own
workarounds. The fundamental idea is that if you do not like the way something is
working, change it.

We will continue our discussion about X having in mind the standard X distribution,
especially its CDE release. However, to copy with the CDE, an appropriate knowledge of
older X releases is required. Finally, through a number of examples we will also touch
some vendor-specific flavors (mostly HP VUE). The full understanding of the standard
X distribution is a giant step in maintaining other vendor-specific X flavors.

22.1.3 Window Managers

From the previous discussion it is obvious that window managers play a special role
among all X programs. A few relatively simple tasks in managing a window — open,
move, resize, close, pop-up, and pop-down menus — create a formidable working space
that fundamentally changed the man-machine interface. Today, the window environment
(not necessarily X windows) is a common working environment for almost every user.

© 2002 by CRC Press LLC

The original MIT window manager was the twm — Tab Window Manager. (It was the only
window manager provided in the MIT X distribution.) There are also many other window
managers distributed by vendors. One of the most popular window managers is mwm, the
Motif Window Manager which implements the OSF/Motif look and feel (OSF stands for
open system foundation); OSF/Motif also includes a complete graphic user interface. Another
popular window manager was olwm, a window manager for OPEN LOOK. Other window
managers were: swm - the Solbourne Window Manager — which can simulate both olwm
and mwm in separate modes; gwm, a public domain window manager that can simulate
mwm; and tvwm and olvwm, which present versions of twm and olwm respectively, but
they support a virtual root window. (A root window is larger than the portion visible on
the display, and it can be scrolled around to bring different sections into view.) Today, the
CDE Desktop Window Manager (dtwm) is probably the most attractive; it was based on the
OSF/Motif mwm, version 1.2.4.

Although, the administration is more or less similar for different window managers,
some discrepancies are possible. Consulting the corresponding vendor’s documentation
is always recommended. We will discuss this issue regarding the mwm, dtwm, and
occasionally, twm. Most of the examples are mwm/dtwm related.

A window manager is normally invoked through the user’s startup script when an X
session is started. However, the window manager could be also started from the command
line, as any other UNIX program. For example:

dtwm & will invoke CDE DT Window Manager in the background

FIGURE 22.2
The CDE terminal emulator dtterm supported by dtwm.

© 2002 by CRC Press LLC

The window manager gives each window its own borders and titlebar. As an example,
the dtterm window launched on the Solaris 2.6 platform (dtterm presents the client
program for the CDE-based terminal emulation) is presented in the Figure 22.2.

By moving the cursor (pointer) into the window’s titlebar, and holding down the left
mouse button, the window could be moved. By pressing small icons at the upper right
corner of the titlebar, the window could be resized or iconified. Pop-down menus are also
available to handle window, select options, and others.

Different X flavors do have different X-based terminal emulators; they are functionally
similar, but the contiguous esthetic, and sometimes functional, improvements are evident.
An older version of the X-based terminal, xterm, (launched on SunOS 4.1.3 platform) is
presented in the Figure 22.3.

The behavior of a window manager could be configured by editing its configuration files
in several ways; one of the ways is to manage the configuration file in an individual user’s
directory (for mwm the local configuration file is .mwmrc; correspondingly, for tdwm is
the .dtwmrc file, for twm the .twmrc, etc. The default behavior of the window manager at the
system level could be configured via the system.mwmrc file (for mwm), and correspondingly:
system.dtwmrc, or system.twmrc. We will discuss in more detail the window manager’s
configuration administration later in the text.

22.2 The X Display Managers

The first real X Display Manager (xdm) has been in use for quite a long time. During this
period it experienced several major changes; the last one was the introduction of the CDE

FIGURE 22.3
The X terminal emulator xterm supported by twm.

© 2002 by CRC Press LLC

Login Service Manager (dtlogin), that, de facto, replaced xdm. Although there are many
conceptual, and not only conceptual, similarities between xdm and dtlogin, they present
two different programs to provide the same basic task. Understanding one of them prac-
tically means to understand the other one as well. We will try to cover both programs;
the xdm definitely deserves such an approach. First, xdm is not yet obsolete and is still
widely in the use, and second, from an educational point of view it could be easier to
understand X topics through the xdm description. We will refer to both programs as: “xdm/
dtlog”; please be aware that the purpose of the two programs is the same, and they are
not running simultaneously.

xdm/dtlogin runs as a daemon on a host machine (the host machine is the system
where an X application lives). The program provides a way for users to log in and start
initial clients, regardless of what X server they use; this is the most common way. There
was also another way to control X session; users on many sites could log in the usual
way through a login session, and then start the X server and any clients by issuing the
xinit command. However, xinit is considered obsolete by the X Consortium, and all
necessary functionality was built into xdm (later inherited by dtlogin). xdm/dtlogin is
also an essential tool for providing an access through the network to/from X terminals.
Both programs include systemwide configuration facilities, enabling the desired default
settings.

22.2.1 xdm/dtlogin Concepts

The xdm/dtlogin program is simply an X client program, or a set of client programs,
responsible for the first and last points of the connection, control, and coordination of
the user session. For a network-connected X server, the xdm/dtlogin is working function-
ally in the way similar to the init, getty and login programs for connected ASCII terminals.

xdm/dtlogin manages a collection of X displays, both local and remote. The emergence
of X terminals guided the redesign of several parts of this system (including the xdm
program), along with the development of the X Consortium standard XDMCP (the X
Display Manager Control Protocol). It was designed to provide services necessary to run a
“session” (similar to that provided on character terminals), prompting for login/password,
and authenticating the user.

Since a user logs in, in the most general case, the X session could be started, usually,
invoking an X terminal emulation such as xterm, dtterm, or similar, and the user’s shell
spawned. As a matter of fact, everything resembles the character-based terminal environ-
ment, except the X-based session is graphically superior, and more user friendly. However,
the X terminal emulator is not a must, any X-based application could also be started, and
then the real benefits of X11 become obvious: unlimited possibilities of graphic presenta-
tion. Such an application could be launched from any host machine in the network, not
necessarily the one where the user has logged in. Having in mind the powerful UNIX
remote command executions, “remsh-ing” (recall Chapter 19), this is a routine task, proven
in many practical implementations. The whole network appears as a powerful multihost
system, with optimally distributed functions among available resources, but, from the
user’s point of view, fully integrated into a single system.

Today, in high processing intensive networks, with a huge number of users, X windows
plays an important role. Users log in to dedicated “login servers,” launch applications
from dedicated application servers, access large database servers, and interact with the
applications via the X servers, i.e., low cost X terminals. The overall effect is: users have
the feeling that everything happens in front of them — “It is amazing that such a small
X terminal can so efficiently handle such a difficult job!!!”

© 2002 by CRC Press LLC

xdm/dtlogin keeps the track of which X servers are allowed to be connected, and
negotiates and establishes such a connection (of course, the connection is the logical one).
After resetting the X server, xdm/dtlogin starts the Xsetup script to assist in setting up the
X server’s screen the user sees; it sends a graphic login widget (login box) to the X server
display, or displays. To simplify, let us suppose an X server with a single display, i.e., an
X terminal (X terminals run the X server program, and they understand very well the X
protocol). This is how, and why, a graphic login widget appears at the X terminal screen.

Since a user logs in, i.e., enters a name and password, the user is authenticated using
the same mechanism as the login program. Then xdm/dtlogin runs a series of shell scripts;
the simplified execution flow charts for two programs are presented, respectively, in the
Figures 22.4a and b.

The xdm first invokes the Xstartup script as the root, followed by the Xsession script as
the user. The starting scripts normally start all desired X clients, including one or more
terminal emulators, each of which will contain an interactive shell. Executed scripts call
other scripts to complete all necessary initial tasks.

When the session is terminated, xdm resets the X server and (optionally) restarts the
whole process. More precisely, when a user logs out (or when the “controlling” process
of the X session has been terminated), xdm runs the Xreset script to close all connections,
clean up, and resets the X terminal to a ready for log on state, displaying again the login
widget, ready for another user session.

The dtlogin manages an X session in a very similar way; existing differences will be
discussed later with other dtlogin configuration issues.

xdm/dtlog is a very ambitious program. It can be configured in a number of ways, con-
trolling logins on multiple X servers, creating customized X sessions, offering some basic
network security features, and so on. A more detailed description follows.

Pink

Login:
Password:

#!/bin/sh
load user’sresources:
xrdb $HOME/.Xresources
launch window manager twm
launch xterm:
xterm –name login

Login
authentication

xlogin box

source
Xstartup

source
Xsession

source
Xreset

source $HOME/xsession(a)

Pink

Login:
Password:

Login
authentication

xlogin box

source
Xstartup

source
Xsession

source
Xreset

source $HOME/dtsession

#!/bin/sh
exec $HOME/.dtprofile
exec ./Xsession.d/*
$ launch dthello
launch other dt clients
exec dtsession
- initialize session
- dtwm &
- launch dtterm
- maintain session
terminate session

(b)

FIGURE 22.4
(a) The xdm execution flow chart; (b) The dtlogin execution flow chart.

© 2002 by CRC Press LLC

Because the programs provide the first interface that users would see, they are designed
to be simple to use and easy to customize to the needs of a particular site. Both programs
could be started in a number of ways, i.e., they have a number of identical options.

To start the program from the command line, the format of the command is:

xdm [options] for the xdm

or

dtlogin [options] for the dtlogin

where the possible options are listed.
Note that all of the options, except -config, specify values which could also be specified

in the configuration file as resources.

Option Description

-config configuration_file Specifies a resource file which specifies the remaining configuration parameters.
This replaces the default configuration file:
for xdm /usr/lib/X11/xdm/xdm-config
for dtlogin /usr/dt/config/Xconfig

-daemon Specifies “true’’ as the value for the daemonMode resource. This makes xdm/dtlogin
close all file descriptors, disassociate the controlling terminal, and put itself in the
background when it first starts up. It is the default behavior.

-debug debug_level Specifies the numeric value for the debugLevel resource. A non-zero value causes
xdm/dtlogin to print piles of debugging statements to the terminal; it also disables
the “daemonMode” resource, forcing xdm/dtlogin to run synchronously.
(To interpret these debugging messages, a copy of the source code for the program
is almost a necessity — it is very hard to use.)

-error error_log_file Specifies the value for the “errorLogFile” resource. This file contains errors from
xdm/dtlogin as well as anything written to the “stderr” by the various scripts and
programs run during the progress of the session.

-nodaemon Specifies “false’’ for the daemonMode resource value.
-resources resource_file Specifies the value for the “resources” resource. This file is loaded to specify

configuration parameters for the authentication widget.
-server server_entry Specifies the value for the “servers” resource.
-udpPort port_number Specifies the value for the “requestPort” resource. This sets the port number to

be monitored for XDMCP requests. XDMCP uses the registered well-known udp
port 177.

-session session_ program Specifies the value for the “session” resource. This indicates the program to run when
the user has logged in as the session.

-xrm resource_specification This allows an arbitrary resource to be specified, just as most toolkit applications
(only for xdm).

xdm/dtlogin was designed to operate in a wide variety of environments, and to deter-
mine its “typical usage” is probably a misnomer. Nevertheless, this section focuses on
configuring xdm/dtlogin for a quite “typical” environment.

First, the xdm/dtlogin configuration file should be set up. For xdm, the master configur-
ation file, named xdm-config contains references to all other files. A good idea is to locate
all these files in the same directory; usually, this is /usr/lib/X11/xdm which would contain
all of the relevant files. For dtlogin, the master configuration file, named Xconfig, also
contains references to all other files. Its default location is in the directory /usr/dt/config;
however, it could take several other locations.

© 2002 by CRC Press LLC

xdm was introduced with X11R3 and had a serious problem related to X terminals that
are turned off and on again during an active X session. The problem was solved with
X11R4, introducing the XDM Control Protocol (XDMCP). XDMCP changed the concept of
a static X11 configuration into the dynamic one, where X servers and xdm are negotiating
the connection, and exchanging status messages during the session. dtlogin knows only
the concept of dynamic configuration.

xdm/dtlogin could be executed from the command line at any time; however, it was
mostly running as the daemon at the client host. The start of xdm/dtlogin became a regular
part of the rc initialization script files, and it is activated as a daemon during the system
startup.

While the concept, and the descriptions of two programs, xdm and dtlogin, match, their
configuration is slightly different. The differences are in the names of the configuration
files, their locations, as well as their contents. How to configure two programs is discussed
and presented separately.

22.2.2 xdm Configuration Files

xdm is configured through a set of editable ASCII files; the files reside usually in
the /usr/lib/X11/xdm directory and the user’s home directory. A simplified graphic
presentation of the xdm configuration is given in the Figure 22.5. Keep in mind that
the listed names are usual, but they could be renamed in the master configuration
file xdm-config.

Let us check the existing xdm files on Solaris 2.6. platform (although, on this platform
the CDE is the primary X support):

$ ls /usr/openwin/lib/X11/xdm
GiveConsole TakeConsole Xaccess Xresources Xservers
Xsession Xsetup_0 chooser xdm-config libXdmGreet.so
libXdmGreet.so.1.0

xdm-config

GiveConsole

Xsession

TakeConsole

Xsetup_0

Xresources

Xaccess

Xservers

.xsession

.Xresources

User home directoryDirectory:
/usr/lib/X11/xdm/

FIGURE 22.5
The xdm configuration files.

© 2002 by CRC Press LLC

Most of the files link to the corresponding files in /usr/openwin/lib/xdm:

$ ls /usr/openwin/lib/xdm
GiveConsole Reset StartOW Startup TakeConsole
Xaccess Xresources Xservers Xsession Xsetup_0
chooser xdm-config

The configuration files of the interest are:

xdm-config The master configuration file; it specifies all configuration files for xdm.

Xservers A list of X servers to be explicitly managed by xdm. The local display
server usually needs to be listed also.

Xaccess Configures an access control for XDMCP, specifying different behavior
according to the sort of query used (will be discussed later, with
security issues).

Xresources Resources to be loaded via xrdb (the client that loads resources
directly into the X server) by servers managed by xdm.

GiveConsole A shell script that changes the ownership of the console to the user.

TakeConsole A shell script that changes the ownership of the console back to the root.
Xsetup_0 A shell script used for display set up specific to the local console server.

Xsession The initial startup script used by each individual X session. The
script itself invokes other individual “dot” script files from the user’s
home directory: .xsession and .Xresources.

Xsetup A shell script to assist in setting up the login screen the user sees,
along with the xlogin widget.

Xstartup A shell script executed since the user logs in.
Xreset A shell script executed at the end of the session to clean up and reset

X server.

In the user’s home directory, the following files are used by xdm in its default
configuration:

$HOME/.xsession User-specific startup script executed by the systemwide Xsession
script.

$HOME/.Xresources User-specific resources read by the systemwide Xsession script if
$HOME/.xsession does not exist (otherwise, the $HOME/.xsession
script is responsible for their loading).

Additional individual files in use are:

$HOME/.xsession-errors Reports errors specific to a user’s X session — not to be edited.
$HOME/.Xauthority Machine-readable authorization codes for the user’s server —

not to be edited.

It is not mandatory that all configuration files are used and exist; the existing configur-
ation files are specified in the xdm-config file.

Here is an old, but workable, example from an Xhost running xdm; SunOS 4.1.x has
supported only xdm.

© 2002 by CRC Press LLC

cat /usr/lib/X11/xdm/xdm-config
DisplayManager.servers: /usr/lib/X11/xdm/Xservers
DisplayManager.errorLogFile: /usr/ lib/X11/xdm/xdm-errors
DisplayManager.pidFile: /usr/lib/X11/xdm/xdm-pid
DisplayManager*resources: /usr/lib/X11/xdm/Xresources
DisplayManager*session: /usr/lib/X11/xdm/Xsession
DisplayManager._0.authorize: true
DisplayManager*authorize: false

All listed files reside in the directory /usr/lib/X11/xdm; this is recommended, but not
mandatory. The next example presents the listing of this directory (the example is from
SunOS 4.1.3 which supported only xdm):

ls /usr/lib/X11/xdm
Xresources Xservers Xsession xdm-config xdm-errors xdm-pid

Another example includes several files more (Silicon Graphics, Inc., IRIX 4.x — also
supported only xdm):

$ ls /usr/lib/X11/xdm
Xlogin Xservers Xstartup xdm-errors Xreset
Xsession Xstartup-remote xdm-pid Xresources Xsession-remote
xdm-config

Additional files are supposed to support the start of a remote session, as well as the
way to log in and to reset the session; xdm-errors is the xdm error-log file, while xdm-pid
contains the xdm process ID.

22.2.2.1 Customizing xdm

Having in mind the general idea of xdm and how to get it going on, we will discuss in
more detail the way to customize xdm. These skills are transparent in the CDE envi-
ronment. To be able to customize xdm means first to understand basic configuration
files.

22.2.2.1.1 The xdm-config File

Let us start with the master configuration file xdm-config. The master configuration file
for the xdm client program, it specifies esential configuration data, i.e., all other important
files. Its syntax follows standard resource specification syntax. The keyword DisplayManager
is starting each resource entry in the file. In particular, resource specification follows one
of the three forms:

DisplayManager.variable: value This is a resource that makes sense only
when applied to xdm proper; for example,
the entry:

DisplayManager.servers: /path/filename
specifies which file should be used for listing
the X servers to be managed by xdm.

DisplayManager.DISPLAY.variable: value This is a resource that applies only to a
single display server, specified by DISPLAY;
for example, the entry:

DisplayManager._0.authorize: true
enables access control on the local server.

© 2002 by CRC Press LLC

DisplayManager*variable: value This is a generalization of the previous form.
By putting an asterisk instead of display
name (dots are also omitted), all servers not
specifically defined otherwise are specified.
Here is an example:

DisplayManager*authorize: false
DisplayManager._0.authorize:true

identifies only the local server that will use
access control.

Here is another example — the configuration file xdm-config on IRIX platform (an old,
but illustrative example):

$ cat /usr/lib/X11/xdm/xdm-config
#== === === === === === === === === === === === ===
DisplayManager.servers: /usr/lib/X11/xdm/Xservers
DisplayManager.errorLogFile: /usr/lib/X11/xdm/xdm-errors
DisplayManager.pidFile: /usr/lib/X11/xdm/xdm-pid
#== === === === === === === === === === === === ===
DisplayManager*resources: /usr/lib/X11/xdm/Xresources
DisplayManager*reset: /usr/lib/X11/xdm/Xreset
DisplayManager*authorize: off
DisplayManager*startup: /usr/lib/X11/xdm/Xstartup-remote
DisplayManager*session: /usr/lib/X11/xdm/Xsession-remote
#== === === === === === === === === === === === ===
DisplayManager._0.startup: /usr/lib/X11/xdm/Xstartup
DisplayManager._1.startup: /usr/lib/X11/xdm/Xstartup
DisplayManager._0.session: /usr/lib/X11/xdm/Xsession
DisplayManager._1.session: /usr/lib/X11/xdm/Xsession
#== === === === === === === === === === === === ===
DisplayManager._0.openTimeout: 90
DisplayManager._0.startAttempts: 1
DisplayManager._0.authFile: /usr/lib/X11/xdm/xdm-auth
DisplayManager._0.loginProgram: /usr/lib/X11/xdm/Xlogin
#== === === === === === === === === === === === ===

In this example recognize all entry formats, including the general way to start remote
X sessions. Most entries are self-explanatory (for more detailed explanations, the manual
pages are always available). We will briefly discuss some of them.

The first three entries point to the files that define X servers (i.e., X server programs),
to the log-file, and to the xdm PID file. Then, a list of entries with the asterisk following,
identifying other configuration files and data we are already familiar with.

The entries:

DisplayManager._0.startup: /usr/lib/X11/xdm/Xstartup

DisplayManager._0.session: /usr/lib/X11/xdm/Xsession

specify the program which is executed (as root) after the authentication process succeeds.
The conventional name for the script used is Xstartup (by default there is no a startup
program), and the script to be executed (as the user) to start an X session is conventionally
named Xsession (by default, the X terminal emulator /usr/bin/X11/xterm is supposed). Both
entries refer to the first local X server (#0). However, two local servers are foreseen, #0
and #1; two other entries refer to the local X server #1. Other X servers are supposed to
be remote, and they are identified by the previous entries with an asterisk.

© 2002 by CRC Press LLC

The remaining entries refer also to the local X server #0, specifying additional configur-
ation data; for example, the entries

DisplayManager._0.authFile: /usr/lib/X11/xdm/xdm-auth

DisplayManager._0.loginProgram: /usr/lib/X11/xdm/Xlogin

specify the file that is used for authentication, and the corresponding login program.
Other entries specify numeric resources that control xdm behavior when attempting to

open X server, the timeout period, and how many times the attempting process should
be repeated.

Watch for the possible appearance of the resource entry (not existing in this example)

DisplayManager.autoRescan: false

that disables the xdm to reread the configuration file on its own. By default, this entry
is “true” and the xdm is configured to reread the configuration file after the session
terminates and the files have been changed. If this entry exists after any modification of
configuration files, xdm must be recycled (re-invoked).

22.2.2.1.2 The Xservers File

The Xservers file was designed in X11R3, to define the X11 configuration staticly; it listed
all X servers to be managed by xdm. It meant that each X server had to have an appropriate
entry in the file; xdm has read the file at the startup and has learned about all existing X
servers. Since the XDMCP was introduced, the X servers (X terminals) became responsible
for querying the host for an xdm connection; the xdm connection became negotiable between
an eligible X server and xdm (eligible X servers are defined in the other configuration file
Xaccess). The consequence was that previously required data were no longer needed.
Nevertheless, the Xservers file is not obsolete; it is still used to start the X session on the
local console display which does not normally support XDMCP, as well as for old-fashioned
pre-X11R4 remote X servers that do not know about XDMCP (today it is very unlikely to
find such X servers; however…).

Here is an example:

cat /usr/lib/X11/xdm/Xservers

:0 local /usr/bin/X11/X

The only entry tells the xdm that the console display name :0 is on the local machine,
and that the command /usr/lib/X11/X should be used to start the corresponding X server;
the command is executed when xdm is started up. Usually, /usr/lib/X11/X is a symbolic
link to the actual server program (a server program is machine dependent; for example,
“Xsun” could be the corresponding program on the Sun platform). Here is an example
from Solaris 2.6, where the X server program lives in the other directory /usr/openwin/bin:

$ ls -l /usr/openwin/bin | grep “^X”

lrwxrwxrwx 1 root root 6 May 28 1998 X -> ./Xsun
-rwxr-sr-x 1 root root 903512 Jul 7 1997 Xsun

© 2002 by CRC Press LLC

For X servers that run on other XDMCP noncompliant machines, the entries are of the
form:

xthostname:0 foreign Old Pre-X11R4 XTerminal

where, “xthostname:0” specifies the machine and display where the X server is running,
and “foreign” identifies the X server as the remote (not local) one. Other fields are ignored,
i.e., treated as comments.

A logical question is: “How does an X client application know, during an X session,
how to address the appropriate X server among many eligible X servers?”. Here, X11 relies
on the UNIX environment variable DISPLAY. In a similar way as the variable TERM
identifies a character-based terminal, the DISPLAY variable identifies the X server for the
invoked X clients. If this variable is not defined (or wrongly defined), the started X client
will display an error message: Can’t open display.

Another way to identify the X server (and, indirectly to define the DISPLAY variable)
is by starting an X client program with “-display” option and specified X server.

This is, probably, the right moment to elaborate how an X server is specified; an X server
is identified by:

Hostname:DisplayNumber.ScreenNumber

where
Hostname Presents the name of the machine that provides X service (could also

be IP address), followed by colon “:”
DisplayNumber Numerically identifies a corresponding display server running on the

server machine (could be more displays), followed by dot “.”
ScreenNumber Numerically identifies a screen of the specified display (a display with

multiple screen is possible)

In real life, the most common X servers are X terminals, with a single running display
server, and a single screen. Consequently, the most common X server identification is:
hostname:0.0. Later in the text, we will return to this issue.

22.2.2.1.3 The Xresources File

The Xresources file is loaded into each individual X server as it is connected to xdm. In
that way, the X server learns about client’s resource needs and becomes ready to provide
an appropriate X service. The most important function of the Xresources file is to set
resources for clients or widgets that are run before the user actually logs in. At least, it is
necessary to load the xlogin widget (the xlogin box) since it is run before the user logs in
at all (if you are not happy about the login box appearance, this is the place to look for
a modification). The resources specified in the Xresources file are loaded by the server via
another client, the xrdb client. Here is an example:

cat /usr/lib/X11/xdm/Xresources
xlogin*login.translations: #override\

<Key>F1: set-session-argument(failsafe) finish-field()\n\
<Key>Return: set-session-argument() finish-field()

xlogin*greeting: CLIENTHOST
xlogin*borderWidth: 3
#ifdef COLOR
xlogin*greetColor: #f63
xlogin*failColor: red

© 2002 by CRC Press LLC

xlogin*Foreground: black
xlogin*Background: #fdc
#else
xlogin*Foreground: black
xlogin*Background: white
#endif

The resources starting with the string xlogin (practically all here-included resources)
are used by the xlogin box. xlogin sends the box to the display, prompting the user for a
name and password. The box also displays the actual client hostname (specified here as
“CLIENTHOST”); this could be replaced by any arbitrary greeting message string. By
editing the resource:

xlogin*greeting: “Welcome to CLIENTHOST”

the greeting message will become friendlier than just the hostname, as it used to be.
The syntax of the Xresources file is slightly different from other configuration files. The

reason is that the xrdb runs the resource file through a C preprocessor (cpp by default). It
gives extra flexibility, because the appropriate cpp commands like #ifdef, #else, and #endif
could be used; (the pound character “#” is reserved for this purpose and cannot be used
for comment lines). For comments, the bang character, “!” is used as the leading character
in the comment lines.

In the presented example, the first entry (resource) for xlogin is a translation table,
used to define how special keystrokes might be used within the client (pay attention,
the entry contains several lines terminating with the back-slash “\” which indicates
that the resource specification continues). This entry defines the F1 key as the “failsafe
key;” by pressing F1, the so-called failsafe X session is performed. In such a case, the
execution of the individual .xsession script is skipped, which could be very important
when the script is corrupted. Instead, only a single xterm window is defined (enough
to make necessary corrections). The Return key indicates the end of the password and
the start of the user ’s session.

The various colors specified here are more or less reasonable for most of the displays;
otherwise, they can be tuned. COLOR is one of the variables that is predefined in
xrdb, as well as CLIENTHOST. Colors themselves can be specified by their commonly
used names (red, black, white, etc.), or “RGB values” directly (those color resources
start with “#” character and number following it). The server translates these names
into appropriate screen color using a RGB color database (usually can be found in
/usr/lib/X11/rgb.txt). The RGB values are expressed as hexadecimal numbers, with one,
two, three, or four digits for each field (R, G, and B). Fields that have fewer than four
digits are padded out with zero’s following each digit. The hexadecimal numbers
indicate how much red (R), green (G), or blue (B) should be displayed (zero being none,
and “ffff” being on full)

22.2.2.1.4 The Xsession File

The Xsession file is the script executed since a user logs in. This is a systemwide script,
and each modification on the file must be performed extremely carefully. To customize an
individual user’s session, the $HOME/.xsession file is available. The file is pointed by the
session resource for that display in the master configuration file. We will return to this
file later, when we talk about user-specific X environment.

© 2002 by CRC Press LLC

22.2.2.1.5 The Xreset File

The Xreset file is a script that is executed after the session terminates. This script is not a
must, so most often none is provided. Sometimes, it is provided as an empty script, ready
to be customized if necessary, as in the next example:

$ cat /usr/lib/X11/xdm/Xreset
#!/bin/sh
#
Xreset
#
This program is run as root after the session terminates but
before the display is closed
#

22.2.3 CDE Configuration Files

At this point we have an idea how X works in the user’s area, and what the basic X
configuration really means. We discussed old-fashioned, but existing, and still very present
X environment, based on xdm. This knowledge is definitely transparent toward newer X
releases, like the CDE is. It will be an easy job for us to understand the CDE configuration,
and what to do to provide a desired workable cde-based X environment. Practically, all
we need is a very brief review about CDE configuration.

Let us start with the fact that during the system startup, the program dtlogin is started
as the daemon, instead of xdm. Here is an example from Solaris 2.6:

$ ps -ef | grep “/usr/dt” | grep -v “grep”

root 1111 1 0 Jan 06 ? 0:00 /usr/dt/bin/dtlogin -daemon

and HP-UX 10.20:
$ ps -ef | grep “/usr/dt” | grep -v “grep”

root 1401 1381 0 Jan 5 ? 0:00 /usr/dt/bin/dtlogin

root 1381 1 0 Jan 5 ? 0:00 /usr/dt/bin/dtrc /usr/dt/bin/dtrc

The dtlogin daemon was started within the dtrc script.
CDE configuration files live in the directory /usr/dt/config (the configuration directory

could also be /etc/dt/config — by default CDT configuration files are first checked in this
directory, and then in /usr/dt/config). The master configuration file is renamed “Xconfig”
(quite a logical choice).

$ ls -F /usr/dt/config
C/ Xreset* cmsd.conf en_US.UTF-8/ sessionexit*
Xaccess Xservers cz/ hu/ svc/
Xconfig Xsession.d/ dtlogin.rc* images/ sys.dtprofile*
Xfailsafe* Xsession.ow* dtspcdenv pl/ tr/
Xinitrc.ow Xsession.ow2* dtterm.tc ru/ xfonts/
Xpasswd* Xsetup* dtterm.ti sdtdict/
Xpasswd2* Xstartup* el/ sessionetc*

The more significant files for the discussion that follows are presented in bold. Pay
attention that files were listed with “-F” option; consequently, “*” is appended for execut-
able files and “/” for directories.

© 2002 by CRC Press LLC

The CDE configuration files are similar to the xdm configuration files; we will discuss a
few of them, so we could get the full picture about X11. Most of them are so well
commented that additional explanations are almost not needed. The presented platform
is Solaris 2.6, although the files are more or less same for all UNIX flavors. Comments in
bold are added for better understanding of scripts.

The dtlogin daemon is started during the system startup, by the dtlogin.rc scripts:

$ cat /usr/dt/config/dtlogin.rc
#!/ bin/sh
#
“@(#)dtlogin.rc.src 1.4 94/08/11
#
This version of the dtlogin.rc script can be used on the Solaris(TM)
operating system to initiate CDE tasks such as starting the dtlogin
process.
#
Common Desktop Environment
#
(c) Copyright 1993, 1994 Hewlett-Packard Company
(c) Copyright 1993, 1994 International Business Machines Corp.
(c) Copyright 1993, 1994 Sun Microsystems, Inc.
(c) Copyright 1993, 1994 Novell, Inc.
#
When placed in the /etc/rc2.d directory and named appropriately, such as
“S99dtlogin”, this script will automatically start the dtlogin window
after the Solaris(TM) system boots to its multi-user level.
#
This script is also called indirectly by the CDE dtconfig command.
mode=$1 # The argumant “start” and “stop” are used during the system startup and

shutdown, and are of the interest here; the argument “reset” is used to
recycle the dtlogin daemon, while the argument “update_printer” is used
to update printers

#
usage_error() {
echo “ $0 start (start dtlogin process)”
echo “ $0 stop (stop dtlogin process)”
echo “ $0 reset (reset dtlogin process)”
echo “ $0 update_printers (update print actions)”
echo “ ”
}

.

.
The definition of the functions “update_printers” and “login_server_pid” are skipped
case “$mode” in
‘start’)

update_printers # execute the function to update printers
if [-x /usr/dt/bin/dtlogin] ; then

/usr/dt/bin/dtlogin -daemon& # start dtlogin as a daemon
fi
;;

‘stop’)
get dtlogin pid

dtlogin_pid=‘login_server_pid’ # get the PID of the dtlogin daemon
kill dtlogin process

if [“$dtlogin_pid” != “”] ; then
/usr/bin/kill $dtlogin_pid # stop the dtlogin daemon (kill the process)

fi
;;

‘reset’)

© 2002 by CRC Press LLC

get dtlogin pid
dtlogin_pid=‘login_server_pid’ # get the PID of the dtlogin daemon

reset dtlogin process
if [“$dtlogin_pid” != “”] ; then

/usr/bin/kill -HUP $dtlogin_pid # Recycle the dtlogin daemon
(send the HUP signal)

fi
;;

‘update_printers’)
update_printers # execute the function to update printers
;;

*)
usage_error # otherwise excute the function

“usage_error”
exit 1 # (how to use the script)
;;

esac
exit 0
==

CDE master configuration file is renamed Xconfig; however, its purpose stays the same,
while its content reflects introduced changes versus xdm. In the Figure 22.6 a simplified
graphic presentation of the dtlogin configuration is given. Some of the presented files are
not necessarily listed in the Xconfig file; however, they are used by programs invoked
through this file.

Here is a real configuration file:

$ cat /usr/dt/config/Xconfig
###
#
Xconfig
#
Common Desktop Environment (CDE)

xdm-config

GiveConsole

Xsession

TakeConsole

Xsetup_0

Xresources

Xaccess

Xservers

.xsession

.Xresources

User home directoryDirectory:
/usr/lib/X11/xdm/

FIGURE 22.6
The CDE configuration files.

© 2002 by CRC Press LLC

Configuration file for the Login Manager
#
$XConsortium: Xconfig.src /main/cde1_maint/5 1995/11/30 21:58:42 montyb $
#
************** DO NOT EDIT THIS FILE **************
#
/usr/dt/config/Xconfig is a factory-default file and will be unconditionally overwritten upon
subsequent installation. Before making changes to the file, copy it to the configuration directory,
/etc/dt/config.
#
This file contains behaviour resources for the CDE DT Login Manager. It also specifies the
location of other configuration files used by the Login Manager.
#
Appearance resources for the login screen are contained in the file
specified by the “*resources” resource below.
#
Most resources can be limited to a single display by including the display name in the resource.
If the display name is not included, the resource will apply to all displays managed by the Login
Manager. When specifying the display name, replace the “:” character in the name with an
underscore “_”. If the name is fully qualified, also replace dot “.” characters with underscores.
#
Example:
Dtlogin*machine_domain_name_0*startup: /etc/dt/config/Xstartup.aa
#
For more information see the man page, Dtlogin(1X).
#
##
Dtlogin.errorLogFile: /var/dt/Xerrors
Dtlogin.pidFile: /var/dt/Xpid
##
Note: If you do not specify a full path beginning with a “/”
dtlogin will first search for the following files in
/etc/dt/config then in /usr/dt/config.
#
##
Dtlogin.accessFile: Xaccess
Dtlogin.servers: Xservers
Dtlogin*resources: %L/Xresources
Dtlogin*startup: Xstartup
Dtlogin*reset: Xreset
Dtlogin*setup: Xsetup
Dtlogin*failsafeClient: Xfailsafe

.

.
Other resource entries follow

The brief description of the CDE configuration files listed in the master configuration
file Xconfig follows; we are already more or less familiar with them.

Xservers List of displays for dtlogin to explicitely manage

Xresources Resource definitions specifying the appearance of the login screen

Xsetup Script executed as “root” prior to display of the login screen

Xstartup Script executed as “root” after a user has successfully authenticated

Xsession Script executed as the authenticated user has started the user’s session

Xfailsafe Script executed as the authenticated user has started a failsafe session

Xreset Script executed as “root” after the user’s session has exited

© 2002 by CRC Press LLC

Most of the listed CDE configuration files are like the corresponding xdm configuration
files; they are better commented, and occasionally, some improvements have been made.
Following the previous discussion related to xdm, the CDE configuration files Xservers
and Xresources are presented. While the file Xservers stayed unchanged, with the single
line that specifies the local X server (this file became almost obsolete since the introduction
of X11R4, without need for any improvement, except to be better commented), the file
Xresources got new configuration sections for more precise X tuning. Both files are originally
so well commented, that there is no need for additional explanations.

$ cat /usr/dt/config/Xservers
##
#
Xservers
#
Common Desktop Environment
#
Configuration file for all Xservers started or managed by the Login Manager
BEST TO NOT EDIT /usr/dt/config/Xservers directly.
#
/usr/dt/config/Xservers is a factory-default file and will
be unconditionally overwritten upon subsequent installation.
Before making changes to the file, should copy it to the configuration
directory, /etc/dt/config.
#
@(#)Xservers.src 1.16 96/07/21
#
##
#
This file should contain an entry to start the X window server on the
local workstation’s display.
#
If the local display has an associated character device, it should also
be specified in the line. An example is the “console” device in the
example line below. This allows Dtlogin to correctly monitor that device
when [Command Line Login] mode is selected from the login screen.
#
<HostName>:0 <class> local@console /usr/openwin/bin/X :0 <options>
#
If no character device is associated directly with the display, then
“none” should be specified.
#
<HostName>:0 <class> local@none /usr/openwin/bin /X :0 <options>
#
By default, the “:0” display is associated with the “/dev/console”
character device. If the true console on the system is not the same
as the “:0” graphics display, then the appropriate device or “none”
should be specified for the “:0” display.
#
An example need of “none” here would be a Sun system that had been
configured to direct console I/O thru a tty port instead of using
the workstation’s display.
#
If you want multiple-displays running dtlogin then make sure the
connection number matches the display name, for example.
#
<HostName>:1 local@none /usr/openwin/bin/X :1 <options>
#
This means the X-server is started on connection number “1” and the
display is connecting to the X-server on “1” through display name

© 2002 by CRC Press LLC

“LocalHost:1”.
#
If you have some X terminals connected which do not support XDMCP,
you can add them here as well. Using XDMCP is recommended over
entries in this file and should be used whenever possible.
#
Example Syntax, the items between “< >” are optional:
#
<HostName>:0 <class> local@console /usr/openwin/ bin/X :0 <options>
<HostName>:1 <class> local@none /usr/openwin/bin /X :1 <options>
XTermName:0 <class> foreign
#
A “*” in the first field of the entry for a local server
will be expanded to “<hostname>:0” by Dtlogin. This
syntax is valid only within this file.
#
* Local local@console /usr/openwin/bin/Xsun :0
#
If the display type of “local_uid” is used, a user name such as “root”
must follow in next field. In this example, by placing “root” here,
Login will start a local Xserver under the user id of “root”. On Sun
system’s this will give Xserver the ability to raise interactive
scheduling priority of a client with mouse/keyboard focus to increase
performance of the application.
#
:0 Local local_uid@console root /usr/openwin/bin/Xsun :0
#
In limited situations, the Xserver should not be run under a “root” id
for security reasons. Examples are usually specific to Xserver
extensions.
#
On Sun Xservers one example involves the Display Postscript extension.
If the DPS extension is granted access (via Xserver option line) to read
and write Unix files via the “-dpsfileops” option (see Xsun man page) it
should not be run under a “root” user id. For increaseced security,
could instead run it as the “nobody” user.
#
:0 Local local_uid@console nobody /usr/openwin/bin/Xsun :0 -dpsfileops
#
Another example of interest here for Sun’s Xserver is how to start on
two or more screens. A two screen example follows.
#
:0 Local local_uid@console root /usr/openwin/bin/X -dev /dev/fb0 -dev /dev/fb1
See the Xsun.1 and Xserver.1 man pages for additional options of
interest.
#
##

:0 Local local_uid@console root /usr/openwin/bin/Xsun :0 -nobanner

The file Xresources is shown partially, with a few fully presented sections; for others only
headers are listed, while the list of contents skipped. Be aware that this file has a different
syntax; commented lines start with “!”.

$ cat /usr/dt/config/Xresources
!!##
!!
!! Xresources
!!
!! Common Desktop Environment

© 2002 by CRC Press LLC

!! Configuration file for the Login Manager
!!
!! ************** DO NOT EDIT THIS FILE **************
!!
!! /usr/dt/config/Xresources is a factory-default file and will
!! be unconditionally overwritten upon subsequent installation.
!! Before making changes to the file, copy it to the configuration
!! directory, /etc/dt/config. You must also update the resources
!! resource in /etc/dt/config/Xconfig.
!!
!! $XConsortium: Xresources.src /main/cde1_maint/6 1995/12/01 14:04:59 rcs $
!!
!!###
!!
!! This file contains appearance and behaviour resources for the Dtlogin
!! login screen. These are designed to be read into the root window
!! property via the ‘xrdb’ program. Dtlogin will do this automatically
!! after the server is reset and will remove them before the session
!! starts.
!!
!! Dtlogin contains internal default values for all resources. To
!! override a default value, uncomment the appropriate line below and
!! supply the desired value.
!!
!! Customization hints are included at the end of this file.
!!
!!##
!! Motif visuals

.

.
!!###
!!# translations for the text field widget

.

.
!!###
!! COLORS

.

.
!!##
!! FONTS
!! labelFont button and label text
!! textFont help and error dialog text
#if WIDTH < 1024
Dtlogin*labelFont: -dt-interface system-medium-r-normal-s*-*-*-*-*-*-*-*-*:
Dtlogin*textFont: -dt-interface user-medium-r-normal-s* -*-*-*-*-*-*-*-*:
Dtlogin*greeting.fontList: -dt-interface system-medium-r-normal-xl*-*-*-*-*-*-*-*-*:
#else
Dtlogin*labelFont: -dt-interface system-medium-r-normal-l*-*-*-*-*-*-*-*-*:
Dtlogin*textFont: -dt-interface user-medium-r-normal-l* -*-*-*-*-*-*-*-*:
Dtlogin*greeting.fontList: -dt-interface system-medium-r-normal-xxl*-*-*-*-*-*-*-*-*:
#endif
!!
!!###
!! CURSOR

.

.
!!###
!! GREETING
Dtlogin*greeting.foreground: black
Dtlogin*greeting.background: #a8a8a8
Dtlogin*greeting.labelString: Welcome to %LocalHost%

© 2002 by CRC Press LLC

Dtlogin*greeting.persLabelString: Welcome %s
Dtlogin*greeting.alignment: ALIGNMENT_CENTER
!!###
!! Size of Text Input Area

.

.
!!###
!! MISC

.

.
!!###
!! LANGUAGE MENU NAME MAPPINGS

.

.
!!##
!! Session MENU NAME MAPPINGS
!! Number of desktop’s defined here for session menu

.

.
!!###
!! CHOOSER

.

.
!!###
!!
!! To disable options in dtgreet window, uncomment the appropriate
!! line below.

.

.
!!**
!! CUSTOMIZATION HINTS
!!
!! The login screen was designed to be easy to customize for a variety of
!! attributes. These include…
!!
!! 1. custom logo bitmap
!! 2. custom greeting message
!! 3. colors
!! 4. fonts
!!
!! Users may replace the default logo with a custom one of their choice.
!! Colors and fonts can be changed using the standard Motif resources for
!! the appropriate widget and/or class.
!!
!!**

22.2.4 Vendor-Specific X Flavors — a Configuration Example

All vendor-specific flavors of X do have a quite similar approach regarding their config-
uration. It is logical, bearing in mind their common starting base in X11R4; they all are
only flavored versions of the same X11. The similarity is even higher if we talk about CDE.
Historically, CDE appeared after vendor-specific X flavors, and it integrated the best of
all of them. Maybe it is fair to say that CDE resembles them, rather than the opposite.

Talking about vendor-specific flavors of X, we will mostly refer to Hewlett-Packard
Visual User Interface (VUE). Although some discrepancies are possible between vendors’
X flavors, such a generalization is quite acceptable, and correct. We will briefly check the
VUE configuration (implemented platform is HP-UX 10.20).

© 2002 by CRC Press LLC

The basic VUE configuration seems to be very similar to the CDE, even regarding file
names. The VUE configuration file is named Xconfig (as in CDE) and it configures VUE
quite deep; almost all VUE resources are defined by the file itself. The configuration files
live in the directory /usr/vue/config; its listing is presented. Some of the files are named
differently, but are still recognizable. The directory also includes systemwide configuration
files for other clients and the VUE Window Manager – vuewm.

$ ls /usr/vue/config
Xaccess Xconfig Xconfig.orig Xerrors Xfailsafe
Xpid Xreset Xresources Xservers Xsession
Xsession.test Xstartup def-actions dialogs import
panels sys.font sys.res.lite sys.resources sys.ses.lite
sys.session sys.vueprofile sys.vuewmrc types

VUE is started, during the system startup by the special “inittab entry” in the /etc/inittab file:

$ cat /etc/inittab | grep “vue”

vue :4:respawn:/ usr/vue/bin/vuerc # VUE invocation

The started program is running as a daemon:

$ ps -ef | grep “vue” | grep -v “grep”

root 1441 10 Jan 5 ? 0:00 /usr/vue/bin/vuerc /usr/vue/bin/vuerc

The structure of the configuration file Xconfig is very much like the CDE configuration
file; however, there are differences in the contents. The file is partially presented:

$ cat /usr/vue/config/Xconfig
##
###
Xconfig
###
Configuration file for the Login Manager
###
@(#)Hewlett-Packard Visual User Environment, Version 3.0
Copyright (c) Hewlett-Packard Company
###

###
This file contains behaviour resources for the HP VUE Login Manager.
It also specifies the location of other configuration files used by
the Login Manager.
###
Appearance resources for the login screen are contained in the file
specified by the “*resources” resource below.
###
Most resources can be limited to a single display by including the
display name in the resource. If the display name is not included, the
resource will apply to all displays managed by the Login Manager. When
specifying the display name, replace the “:” character in the name
with an underscore “_”. If the name is fully qualified, also replace
dot “.” characters with underscores.
###

© 2002 by CRC Press LLC

Example:
###
Vuelogin*hpaaa_cv_hp_com_0*startup: /etc/vue/config/Xstartup.aa
###
For more information see the man page, Vuelogin(1X).
###
##
Vuelogin.errorLogFile: /var/vue/Xerrors
Vuelogin.pidFile: /var/vue/Xpid
Vuelogin.accessFile: /etc/vue/config/Xaccess
Vuelogin.servers: /etc/vue/config/Xservers
Vuelogin*resources: /etc/vue/config/Xresources
Vuelogin*startup: /etc/vue/config/Xstartup
Vuelogin*session: /etc/vue/config/Xsession
Vuelogin*reset: /etc/vue/config/Xreset
Vuelogin*failsafeClient: /etc/vue/config/Xfailsafe
##
Other well commented “configuration sections” follow

.

.

Administering vendor-specific X flavors recalls our previous discussion. The concept is
the same, and configuration rules are the same, data organization is the same, and config-
uration files are almost the same. Differences are primarily in the naming of programs and
configuration files; even the names are recognizable. All X-related administrative skills are
fully transparent.

22.3 Access Control and Security of X11

22.3.1 XDMCP Queries

X is running in a network environment; it means the client host can be hypothetically
accessed by any host on the network; sometimes, with “naughty” intentions. The only
requirement for a potential intruder is to declare as an X server. Obviously, security issues
are of a special interest from an administrative standpoint.

First, let us see how a client host could be accessed at all. There are three types of queries
defined in XDMCP (X Display Manager Control Protocol) to access a client host: direct,
indirect, and broadcast. The queries originate from a remote X server (to be more clear,
in the text that follows, we will refer to a “remote X server” as an “X terminal”). The three
types of queries are presented in the Figure 22.7.

A direct query means addressing a particular client host and asking for a connection;
the running X daemon (again, we will refer to an X daemon keeping in mind both xdm
or dtlogin) could accept or deny such a request. If it accepts, the login screen is launched
on the corresponding X terminal.

An indirect query allows the X daemon on the addressed client host to decide what to
do with the query; it could respond directly to the X terminal query forward the query
to another client host, or offer a user at the X terminal a choice between multiple client
hosts. All this could be configured accordingly.

A broadcast query presents a general query throughout the network for any client host
running X daemon to respond. The first client host that responds to the query positively
makes the connection with the corresponding X terminal.

© 2002 by CRC Press LLC

22.3.2 The Xaccess File

The special file, named Xaccess, was introduced with X11R5 to allow administrators to
control how the X daemon responds to different types of queries. This file (the opposite
of its name) is not related to the host access control; all that this file controls is the eligibility
of a particular X terminal to get a login window; users still need to supply their user
names and passwords to log in to the host.

Eligible X terminals are simply listed in the Xaccess file; queries from unlisted, or
explicitly denied, X terminals are simply ignored by the X daemon, without possibility of

X server Client AWide Area Network

Client A
Login:
Password:

Direct XDMCP Query

X server

Client A

Wide Area Network

Client B
Login:
Password:

Indirect XDMCP Query

Client B

X server

Client 1

Wide Area Network

Broadcast XDMCP Query

Client 2

Client 3

Client 4

Client 5

Client 5
Login:
Password:

FIGURE 22.7
Direct, indirect, and broadcast queries.

© 2002 by CRC Press LLC

establishing an X connection. By default, in its MIT-distributed form, the Xaccess file is
configured to allow direct and broadcast connections from any X terminal.

Here is an example; pay attention, this is the CDE configuration file, so all references
in the file are toward the dtlogin daemon:

$ cat /usr/dt/config/Xaccess
##
#
Xaccess
Common Desktop Environment
#
************** DO NOT EDIT THIS FILE **************
#
/usr/dt/config/Xaccess is a factory-default file and will
be unconditionally overwritten upon subsequent installation.
Before making changes to the file, copy it to the configuration
directory, /etc/dt/config. You must also update the accessFile
resource in /etc/dt/config/Xconfig.
#
$XConsortium: Xaccess.src /main/cde1_maint/2 1995/08/30 16:21:28 gtsang $
#
##
#
This file contains a list of host names which are allowed or
denied XDMCP connection access to this machine. When a remote
display (typically an X-termimal) requests login service, Dtlogin
will consult this file to determine if service should be granted
or denied.
#
Access control file for XDMCP connections
#
To control Direct and Broadcast access:
pattern
#
To control Indirect queries:
pattern list of hostnames and/or macros …
#
To use the chooser:
pattern CHOOSER BROADCAST
or
pattern CHOOSER list of hostnames and/or macros …
#
To define macros:
%name list of hosts …
#
The first form tells dtlogin which displays to respond to itself.
The second form tells dtlogin to forward indirect queries from hosts
matching the specified pattern to the indicated list of hosts.
The third form tells dtlogin to handle indirect queries using the
chooser; the chooser is directed to send its own queries out via the
broadcast address and display the results on the terminal.
The fourth form is similar to the third, except instead of using the
broadcast address, it sends DirectQuerys to each of the hosts in the list
#
In all cases, dtlogin uses the first entry which matches the terminal;
for IndirectQuery messages only entries with right hand sides can
match, for Direct and Broadcast Query messages, only entries without
right hand sides can match.
#
Information regarding the format of entries in this file is

© 2002 by CRC Press LLC

included at the end of the file.
##
#
Entries…
* # grant service to all remote displays
The nicest way to run the chooser is to just ask it to broadcast
requests to the network – that way new hosts show up automatically.
Sometimes, however, the chooser can’t figure out how to broadcast,
so this may not work in all environments.
* CHOOSER BROADCAST #any indirect host can get a chooser
#
If you’d prefer to configure the set of hosts each terminal sees,
then just uncomment these lines (and comment the CHOOSER line above)
and edit the %hostlist line as appropriate
#
#%hostlist host-a host-b
#* CHOOSER %hostlist #
##
#
ENTRY FORMAT
#
An entry in this file is either a host name or a pattern. A
pattern may contain one or more meta characters (‘*’ matches any
sequence of 0 or more characters, and ‘?’ matches any single
character) which are compared against the host name of the remote
device requesting service.
#
If the entry is a host name, all comparisons are done using
network addresses, so any name which converts to the correct
network address may be used. For patterns, only canonical host
names are used in the comparison, so do not attempt to match
aliases.
#
Preceding either a host name or a pattern with a ‘!’ character
causes hosts which match that entry to be excluded.
#
When checking access for a particular display host, each entry is
scanned in turn and the first matching entry determines the
response.
#
Blank lines are ignored, ‘#’ is treated as a comment delimiter
causing the rest of that line to be ignored,
ex.
!xtra.lcs.mit.edu # disallow direct/broadcast service for xtra
bambi.ogi.edu # allow access from this particular display
*.lcs.mit.edu # allow access from any display in LCS
#

While the direct and broadcast queries are easy to understand and administer, the indirect
query, especially its chooser option, could be a little confusing. The Xaccess file gives an
opportunity to the administrator to configure the X daemon for a transfer of an indirect
query from an arbitrary X terminal, or a group of X terminals, to the other, specified, client
host. The chooser is presented in the Figure 22.8.

For example, the Xaccess entry:

*.scps.nyu.edu clientname.scps.nyu.edu

will forward an Indirect query from any X terminal in the scps.nyu.edu domain directly to
the client host clientname.scps.nyu.edu.

© 2002 by CRC Press LLC

Alternatively, to set the X daemon to respond to an indirect query with the Chooser Box
on the X terminal screen, offers a user the chance to choose between several displayed
client hosts. The Xaccess entry:

*.scps.nyu.edu CHOOSER client1.scps.nyu.edu client2.scps.nyu.edu client3.scps.nyu.edu

will allow the user on any X terminal in the scps.nyu.edu domain to choose the client host
between client1, client2, and client3.

Instead of a list of client hosts to choose from, the Xaccess entry:

*.scps.nyu.edu CHOOSER BROADCAST

allows the user on the X terminal to choose among all client hosts that respond to the
chooser broadcast query.

Chooser is the compiled client program; the opposite of other client programs that are
scripts, this program cannot be read; however, it could be configured via the Xresources file.

22.3.3 Other Access Control Mechanisms

The described X terminal eligibility checking, provided by the Xaccess file, is not the only
available access control; there are several other host-based and user-based access control
mechanisms. The host-based scheme involves a system file /etc/Xn.hosts and can be con-
trolled using the xhost client program. The user-based schemes involve authorization
capabilities provided by the xauth program and XDMCP protocol.

The /etc/Xn.hosts file contains a list of hosts that are allowed to access local X server n
(this file resides on the X server side). In most cases, a single local X server is running on
a particular system, so the /etc/X0.hosts file is the only important one. This file is not
included in any default configurations of X11, and it must be edited by a system admin-
istrator. This file lists all client hosts that X server can communicate with. How it works
is presented in Figure 22.9a.

X server Client A

Client 1

Client 2
Client 3

Client 4

Client 5

Wide Area Network

Chooser Box

Indirect XDMCP Query

FIGURE 22.8
The chooser.

© 2002 by CRC Press LLC

In this hypothetical example, the local X server pink:0.0 could be accessed by the host
blue.scps.edu (hosts in the same domain do not require the domain name suffix, but it is
recommended to use it), while the access is denied to the host red.scps.edu. Additional
acceptable hosts are also pink.scps.edu (the host where the X server is running), and
green.colors.com; all these hosts are specified in the /etc/X0.hosts file at the host
pink.scps.edu.

The xhost command could be used, interactively, to grant or deny access to the X server,
i.e., to modify the /etc/X0.hosts file. This could be done only since a login session was
established with the X server we want to change access to. Otherwise, such an attempt
would be rejected, and an error message displayed.

The host-based access control is insufficient for true security; it has some conceptual
drawbacks. For example, it is overridden by NIS, and any user included in the NIS password
map is granted access regardless of the host’s status. Because of that, starting with X11R4,
a user-based access control mechanism was introduced to supplement, or actually, to replace
the host-based one. A user-based access control is built into the XDMCP, but it can be used

pink

blue

Wide Area Network

Hosts:
blue.scps.edu
pink.scps.edu
green.colors.com

X server

(a)

red

X clients

Access denied

Access granted

X Client

X Server Wide Area Network

Access code:
OMIT-MAGIC-
COOKIE-15/ns…

/h
om

e/
m

is
/.X

au
th

or
ity

Access denied: ???

/h
om

e/
bj

l/.
X

au
th

or
ity

(b)

FIGURE 22.9
(a) Host-based access control; (b) User-based access control.

© 2002 by CRC Press LLC

also independently. The most common method is known under the name: MIT-MAGIC-
COOKIE-1, and will be briefly discussed. Other user-based access control mechanisms, as
XDM-AUTHORIZATION-1, or SUN-DES-1, will not be elaborated on.

The MIT-MAGIC-COOKIE-1, presented in Figure 22.9b, is the most common method,
although it is not the most secure one. If both the client host and the X server are configured
to use this method, then when a user logs in using an X daemon, a machine readable code
is put in a file called .Xauthority in the user’s home directory. This code, called a magic
cookie, is also transferred to the X server. Practically, the magic cookie presents some kind
of a “passcode” known only to a particular X server, and a particular user on a particular
host (do not read it literally — as a matter of fact, all that is hidden from the real user).

Once the magic cookie is established for that X session, each client program must present
the passcode before it is allowed to connect to the X server. The only way for a client to
get the passcode is by reading the .Xauthority file in the user’s home directory. The existing
permissions for this file are “write and read” only for its user-owner, and it means that
only client programs started by the same user can read the magic cookie. Obviously this
type of access control is based entirely on UNIX file permissions, and it is as secure as the
user’s account (protected by a password). Here is a real example:

ls -l /home/sam/.Xautority
-rw ----------- 1 sam 99 Dec 12 16:29 /home/sam/.Xauthority

cat /home/sam/.Xauthority
OMIT-MAGIC-COOKIE-15/nsO6ZzEasP1/7vcmx370MIT-MAGIC-COOKIE-15/nsO6ZzEasP1/7v

The displayed passcode does not make a lot of sense, especially because it contains
nonprinting characters that could not even be displayed.

The access control is activated through the corresponding, master configuration file, by
the authorization resource entry:

DisplayManager.DISPLAY.authorize: true

The concept of the MIT-MAGIC-COOKIE-1 supposes that all client programs have access
to the magic cookie in the .Xauthority file. This is OK, as long as the client programs are local
at the host where the user’s home directory, with the .Xauthority file, is located. However,
in the distributed processing environment, it is not a must. The solution was found with
the program xauth, which is used to propagate the magic cookie from one client host to
another. xauth extracts a user’s authorization information for the current display, copies it
to another machine, and merges it into the $HOME/.Xauthority file on the remote machine.

In the hierarchy of access controls, the user-based access control is overridden by the
host-based access control. For that reason, it is important that no host is being listed in
the host-based access list at the X server side; for any listed client host, the user-based
access control will be automatically bypassed. To check from the command line for any
client host listed, type:

xhost
access control enabled, only authorized client can connect

If a bunch of hosts are also listed afterward, they should be removed, or their users will
have access granted regardless of user-based access control (use the command “xhost -”
to remove all hosts).

© 2002 by CRC Press LLC

From an administrative point of view, user-based access control does not require any
attention; the individual .Xauthority file lives in the user’s home directory, together with
other “dot” files. The only concern is the fact that host-based access control could override
the user-based one.

22.4 The User X Environment

Up to now, we have mostly discussed X systemwide issues. Although, a good systemwide
X setting could be sufficient for relatively satisfactory X windowing, to customize an
individual user’s X environment, other configuration files are of importance. These files
are usually located in the user’s home directory and have an influence only on the
individual X sessions.

The user X environment is made up of many components; possibilities to manage it are
numerous. However, it is too complex to leave everything to a user, although it can be
treated as a personal issue. The administrator is still responsible for this segment of X,
and an approach to create a useful default environment is recommended. This is partic-
ularly done through system-wide configuration data; however, there is a lot of space also
in the user-related arena.

The user X environment is crucial for a successful X11 implementation. Users do not
know very much about a good X11 concept; they do not know about X11 flexibility and
versatily; they simply do not care about that. They know what they see in front of them,
and how they could use it. Their own look and feel is the only issue in their evaluation
of X. That is why an administrator must pay considerable attention to setting a user X
environment. The first step is to understand how X works in this area.

22.4.1 Components of the xdm-Based User X Environment

The user X session starts with the execution of the Xsession script, when the user logs
in successfully; the script is executed with the user’s credentials. Xsession checks for
user’s specific session settings in the user’s home directory (it looks for the script
.xsession) and sources them. However, if the individual .xsession script does not exist,
Xsession sets a decent systemwide default user’s X environment. This is a fair approach
that gives a chance to an administrator/user to set an arbitrary user X environment,
if such a wish exists at all. Xsession also provides the way to escape into failsafe mode
(providing a single xterm window sufficient to fix the problem) if the configuration
is corrupted in any way.

The Xsession is actually very simple script, presented here:

$ cat /usr/lib/X11/xdm/Xsession
#!/ bin/sh
case $# in
1)

case $1 in
failsafe)

exec xterm -C -fn 9 × 15bold -geometry 80 × 24 + 50 + 50
;;

esac
esac
startup=$HOME/.xsession

© 2002 by CRC Press LLC

resources=$HOME/.Xresources
if [-f $startup]; then

if [-x $startup]; then
exec $startup

else
exec /bin/sh $startup

fi
else

if [-f $resources]; then
xrdb -load $resources

fi
mwm &
xrefresh
exec xterm -fg white -bg black -fn 9 × 15bold -sb -C -geometry 107 × 24 + 25 + 501 -ls

fi

This script recognizes the eventually required failsafe mode (defined by the trans-
lation resource entries in the Xresources file) to provide an escape from the ordinary
session. In that case a single xterm window is sent to the display and the script exits.
Otherwise, the script looks for the script file .xsession in the user ’s home directory,
and if it exists, executes it. If the .xsession does not exist, this script creates a workable
X session by, first loading individual resources by the xrdb (if the file .Xresources exists
in the user ’s home directory), and then invokes the mwm window manager in the
background, followed by an xterm window.

At this point, an X session is established, and the user could continue interaction with
the X client host, with all the benefits that an X11 environment offers. Instead of X terminal
emulator, any other X-based application could be started.

Assuming the need to create an individual user X environment, there are up to three X
configuration files in the user’s home directory to be set (in addition to the standard UNIX
shell startup dot files): .xsession, .Xresources, and corresponding window manager rc file.
We already mentioned them, but now we will look at them in more detail. While the
.Xresources file could be seen as an extension of the already existing systemwide Xresources
file, the .xsession file works more as a replacement than as an extension (if the file exists,
it is the only one executed for a user X session).

The $HOME/.xsession file is the shell script that actually starts each of the applications
in a user’s startup environment. Here is an example for an arbitrary user “sam:”

cat /home/sam/.xsession
#!/ bin/sh
Add /usr/local/bin to the path for this script:
PATH=$PATH:/usr/loca/bin
export PATH
#
Set up a pattern for the root window:
xsetroot -bitmap /usr/include/X11/bitmaps/pattern1
#
Merge in user resources:
xrdb -merge $HOME/.Xresources
#
Start some applications:
xterm -title FirstWindow -g 75 × 35 + 1 + 1 &
xterm -title SecondWindow -g -1–1 &

.

.

© 2002 by CRC Press LLC

Besides others, two xterm windows are set up, one of the size 75 × 35, starting from the
upper left corner, and the second of the default size, starting from the lower right corner.

The $HOME/.Xresources file contains user-specific resource definitions. These resources
define user’s client preferences: for user’s xterm windows, a user’s favorite font, a scroll
bar, etc. Here is an example:

cat /home/sam/.Xresources
! Resource definition file.
!
! XTerm definitions:
XTerm*font:-misc-fixed-bold -r-normal--15–140–75–75-c-90-iso8859–1
XTerm*scrollBar:true
XTerm*saveLines:200

.

.

An appropriate font is set up instead of the default one, as well as a scroll bar with up
to 200 saved lines to be scrolled.

22.4.2 Components of the CDE User X Environment

The way to start an user’s session in CDE is slightly different, but more powerful and
flexible. CDE also uses the Xsession script file to initialize a user’s session; but a real job
is done by the desktop session manager, which is invoked from the .Xsession script.
The default file is /usr/dt/bin/Xsession, and could be copied into /etc/dt/config/Xsession and
customized for the systemwide user setting (correspondingly, the Xsession entry in the
CDE master configuration file Xconfig should be modified also). The CDE Xsession script:

• sources the user’s $HOME/.dtprofile file, and enables an individual user’s setting
• sources any existing script in the directory /etc/dt/config/Xsession.d

• sources any existing script in the directory /usr/dt/config/Xsession.d

• launches the desktop welcome client, dthello

• sources the setup script to search applications, dtsearchpath

• launches the help client, dthelpgen

• launches the application manager directory setup client, dtappgather

• executes the desktop session manager, dtsession

Obviously, there is a number of invoked programs, and a number of places where
a general or an individual user session could be tuned. The Xsession script is a systemwide
file, used for all users; the individual user setting could be provided through the individual
.dtprofile file, the individual .Xdefaults file (used by the session manager dtsession), and the
individual window manager configuration file. A similar approach has been implemented
in the past by some vendor-specific X flavors, and CDE adopted that for its own needs.

Let us see what the Xsession script looks like. Although it appears long, the script is
only partially presented.

$ cat /usr/dt/bin/Xsession
#!/ bin/ksh
##
#

© 2002 by CRC Press LLC

Xsession
#
Common Desktop Environment (CDE)
Configuration script for the Login Manager
#
************** DO NOT EDIT THIS FILE **************
#
/usr/dt/bin/Xsession is a factory-default file and will
be unconditionally overwritten upon subsequent installation.
Modification is discouraged.
#
$XConsortium: Xsession.src /main/cde1_maint/7 1995/11/17 14:43:10 gtsang $
#
#
This script starts the user’s session. It searches for one of three
types of startup mechanisms, in the following order:
#
DT existence of CDE DT Session Manager on the system
XDM “$HOME/.xsession” (executable)
xinit “$HOME/.x11start” (executable)
#
If none of these startup mechanisms exist, a default window manager
and terminal emulator client are started.
#
##
#
Initialize session startup logging
#
exec >/dev/null 2>/dev/null
LOGDIR=$HOME/.dt
LOGFILENAME=$LOGDIR/startlog

.

.
##
#
Global environment section
#
DT pre-sets the following environment variables for each user.
#
(internal)
DISPLAY set to the value of the first field in the Xservers file.
HOME set to the user’s home directory (from /etc/passwd)
LANG set to the display’s current NLS language (if any)
LC_ALL set to the value of $LANG
LOGNAME set to the user name
PATH set to the value of the Dtlogin “userPath” resource
USER set to the user name
SHELL set to the user’s default shell (from /etc/passwd)
TZ set to the value of the Dtlogin “timeZone” resource
#
(Xsession)
TERM set to xterm
EDITOR set to the default editor
KBD_LANG set to the value of $LANG for certain languages
MAIL set to “/var/mail/$USER”
#
Three methods are available to modify or add to this list depending
on the desired scope of the resulting environment variable.
#
1. X server and/or all users on a display (Xconfig file)
2. all users on a display (Xsession file)

© 2002 by CRC Press LLC

3. individual users (.dtprofile file)
#
#
##
TERM=dtterm
SESSION_SVR=‘hostname’
DISPLAY_HOLD=$DISPLAY

.

.
##
#
Default desktop component configuration variable settings
#
This section sets the default value for variables controlling
some desktop components.
#

.

.

.
##
#
Append desktop font aliases to font path
#

.

.
##
#
Source user’s desktop profile
#
This section determines if the user has a desktop profile in their
home directory. If not, the desktop default profile is copied to
the home directory. The desktop profile is then sourced. The purpose
is to incorporate any per-user/per-session environment customizations
and thereby propagate them to applications and desktop components.
#
DTSYSPROFILE=sys.dtprofile
DTPROFILE=.dtprofile

.

.
load system default resources

.

.
#
source the .dtprofile.
if [-f $HOME/$DTPROFILE]; then

Log “sourcing $HOME/$DTPROFILE…”
. $HOME/$DTPROFILE
fi
#
envirornment vars that must not be changed by dtprofile
DISPLAY=$DISPLAY_HOLD
Safety checks for .dtprofile setting important env variables
to non-existent or incorrect values. If so, reset to default values.

.

.
##
#
External Xsession processing section
#
This section searches the Xsession.d subdirectory and sources
the files contained therein. The purpose is to set up any

© 2002 by CRC Press LLC

per-user/per-session environment customizations and thereby propagate
them to applications and desktop components.
#
DT_XSESSION_DIR=Xsession.d
for i in $DT_CONFIG_PATH
do

if [[-d $i/$DT_XSESSION_DIR]]; then
Run custom Xsession scripts for this session.
for SCRIPT in $(ls $i/$DT_XSESSION_DIR); do

if [-x $i/$DT_XSESSION_DIR/$SCRIPT -a \
\(! -d $i/$DT_XSESSION_DIR/$SCRIPT \)]; then
Log “sourcing $i/$DT_XSESSION_DIR/$SCRIPT…”
.$i/$DT_XSESSION_DIR/$SCRIPT

fi
done

fi
done

##
#
Startup section.
#
Note: The ksh syntax ${parameter%% *} is used when appropriate to
remove any command line options that may have been included
in the definition of a DT executable below.
#
##
#
Prepare for session startup

.

.
#
Start the session for different user’s shells
Log “session log file is $dtstart_sessionlogfile”

.

.
case ${SHELL##*/} in
csh)

.
(set path = ($DT_BINPATH \$path /usr/openwin/bin); $tooltalk); \
$startup >>&! $dtstart_sessionlogfile” ;;

tcsh).
.
.

(set path = ($DT_BINPATH \$path /usr/openwin/bin); $tooltalk); \
$startup >>&! $dtstart_sessionlogfile” ;;

*)
.
.

PATH=/usr/dt/bin:\ $PATH:/usr/openwin/bin $tooltalk; \
$startup >> $dtstart_sessionlogfile 2>&1” ;;

esac
.
.

###################### eof #################################

CDE does not support an individual .Xresources file; there is no such file in the user’s
home directory. CDE provides the common Xresources file that contains the resource
definitions specifying the appearance of the login screen. This file could be customized,
but not on a per-user basis; the login widget is common for all users. The default
Xresources file is /usr/dt/config/Xresources. For a customization, the file should be copied

© 2002 by CRC Press LLC

into /etc/dt/config/Xresources, and then modified. CDE first searches for the Xresources in
the directory /etc/dt/config, and then in /usr/dt/config.

For an individual user X environment setting, the $HOME/.dtprofile file is available. This
file is used to set anything specific for a user; otherwise the default setting is applied. The
.dtprofile file coexists together with well-known UNIX user login script files, .profile or
.login, depending on the user’s login shell. We will talk more about this file later in the
paragraph treating the shell environment.

However, there is another CDE client, unknown in earlier X versions, important in
managing a user session; this is the CDE session manager dtsession. The dtsession client
manages a user session from login to logout. It supports per-user basis:

• To initialize a session
• To launch a window manager by default dtwm

• To restore a home (default) or current session
• To lock a session

• To launch a screen saver on command or timeout
• To act as a color server for other DT clients

• To save home (default) or current session
• To display and handle a dialog at logout

• To terminate a session

dtsession relies on the following files:

• The customized file /etc/dt/config/en_US/sys.session , or the default file /usr/dt/
config/en_US/sys.session that specifies a set of applications for the user’s initial
session. It searches first for the customized file.

• The customized file /etc/dt/config/en_US/sys.resources, or the default file /usr/dt/
config/en_US/sys.resources that specifies desktop resources. It searches first for
the customized file.

• The file .Xdefault in the user’s home directory that specifies user specified resources
• The file /usr/dt/app-defaults/en_US/Dtsession that specifies the default dtsession

resources.

Actually, the correct paths for all files listed here include the subdirectory identified by
the environment variable $LANG, in this case specified by en_US.

Here is an example, the user’s . Xdefault file on Solaris 2.6 platform. It is easy to recognize
the Sun X flavor named OpenWindows:

$ cat /home/bjl/.Xdefaults
OpenWindows.WorkspaceColor: #40a0c0
OpenWindows.IconLocation: top
OpenWindows.MultiClickTimeout: 4
OpenWindows.SelectDisplaysMenu: False
OpenWindows.WindowColor: #b7e5e5
OpenWindows.DragRightDistance: 100
OpenWindows.Beep: always
OpenWindows.SetInput: followmouse
OpenWindows.ScrollbarPlacement: right
OpenWindows.PopupJumpCursor: True
======================================

© 2002 by CRC Press LLC

Up to now, we have mentioned a number of script files, or programs, that are invoking
by Xsession, or dtsession, or whatever. All these programs could be customized on
a systemwide basis, and many of them on a user-specific basis. CDE includes a default
systemwide setting in the directory /usr/dt/app-defaults/en_US . By using the precise CDE
terminology, these files are resource description files for different CDE applications;
practically, they are configuration files that enable application customizations. It is easy
to recognize these files; they usually start with the prefix “Dt” (pay attention to the capital
“D”). We already mentioned one of them: “Dtsession,” when we talked about the dtsession
script. For an individual user-based customization, the corresponding resource file could
be copied into the user home directory and modified accordingly.

Some default resource files are shown in the following list of existing files on Solaris 2.6
(the “en_US” subdirectory is the link to “C”):

$ ls -C /usr/dt/app-defaults/C
Dt Dtfile Dtksh Dtsession Sdtfontadm
Dtbuilder Dthello Dtmail Dtstyle Sdtfprop
Dtcalc Dthelpprint Dtpad Dtterm Sdtimage
Dtcm Dthelpview Dtprintinfo Dtwm Solregis
Dtcreate Dticon Dtscreen Sdtaudio UNIXbindings

22.4.3 Window Manager Customizations

Window managers are launched by the Xsession script, directly or indirectly (as for CDE
by the invoked dtsession script). Their customization is crucial for the user overall look
and feel of X; a window manager configuration is defined by its startup rc file. We will
discuss the two currently most used window managers: Motif Window Manager (mwm)
and its configuration file .mwmrc, and CDE (or DT) Window Manager (dtwm) and its
configuration file .dtwmrc.

22.4.3.1 Motif Window Manager (mwm)

Let us start with the older window manager, mwm. We already mentioned a systemwide
mwm configuration file system.mwmrc; however, a more appropriate term for this file could
be a default window manager configuration file. X works in the following way: it searches
for a configuration file in several possible locations, starting from the user’s home directory
and ending with the systemwide default configuration file; the first file found will be used
to configure window manager. A user has a chance to set his/her own X configuration;
otherwise, the default file always exists and defines a decent and reasonable X environ-
ment. It is recommended to copy the default configuration into the user’s home directories,
i.e., system.mwmrc into .mwmrc (this is the task of the administrator), and give users an
opportunity to modify them. Otherwise, X would use the default configuration file (in
this case, the file system.mwmrc found in some of the assumed locations; at the end in the
/usr/lib/X11 directory), without any individual customization. As a matter of fact, in most
cases, it is too much for users to modify their individual configurations, so the systemwide
default setting is actually used.

Here is an example. Comments in bold are not a part of the file; they are added for
better understanding of the file:

$ cat /usr/lib/X11/system.mwmrc
#
DEFAULT mwm RESOURCE DESCRIPTION FILE (system.mwmrc and .mwmrc)

© 2002 by CRC Press LLC

#
menu pane descriptions
Root Menu Description => The “Root Menu” is invoked by clicking in the root window

(see the Button Bindings description). The “Root Menu” is the
pop-down menu with the here specified fields. By clicking on
the field, the corresponding function is started.

Menu RootMenu
{
“Root Menu” f.title
“New Window” f.exec “xterm &”
“Shuffle Up” f.circle_up
“Shuffle Down” f.circle_down
“Refresh” f.refresh
no-label f.separator
“Restart…” f.restart
}
Default Window Menu Description => This is the default window menu; it can be started

(function f.post_wmenu) using an appropriate key
or button (defined by Key or Button Bindings)

Menu Default Window Menu
{
Restore _R Alt<Key>F5 f.normalize
Move _M Alt<Key>F7 f.move
Size _S Alt<Key>F8 f.resize
Minimize _n Alt<Key>F9 f.minimize
Maximize _x Alt<Key>F10 f.maximize
Lower _L Alt<Key>F3 f.lower
no-label f.separator
Close _C Alt<Key>F4 f.kill
}
#
key binding descriptions => This resource is a set of key bindings that are used

to configure window manager behavior; a function defined
as “f.function_name” is started when a key is pressed within
the indicated context.

Keys DefaultKeyBindings
{
Shift<Key>Escape window/icon f.post_wmenu
Meta<Key>space window /icon f.post_wmenu
Meta<Key>Tab root/icon/window f.next_key
Meta Shift<Key>Tab root/icon/window f.prev_key
Meta<Key>Escape root/icon/window f.next_key
Meta Shift<Key>Escape root/icon/window f.prev_key
Meta Shift Ctrl<Key>exclam root/con/window f.set_behavior
Meta<Key>F6 window f. next_key transient
Meta Shift<Key>F6 window f.prev_key transient
<Key>F4 icon f.post_wmenu
}
#
button binding descriptions => This resource is a set of button bindings that are used to

configure window manager behavior; a function defined
as “f.function_name” is started when a button press occurs
with the pointer over a framed client window, an icon, or
the root window.

Buttons DefaultButtonBindings
{
<Btn1Down> icon/frame f.raise
<Btn3Down> icon f.post_wmenu
<Btn1Down> root f.menu RootMenu
}
Buttons ExplicitButtonBindings

© 2002 by CRC Press LLC

{
.
.
}
Buttons PointerButtonBindings
{
.
.
}
#
END OF mwm RESOURCE DESCRIPTION FILE

A full explanation of available functions specified as f.function_name can be found in the
manual pages for the mwm window manager.

22.4.3.2 CDE Window Manager (dtwm)

The same approach is implemented in the CDE environment; the only differences are in
the locations of files and their names. The default CDE window manager configuration
file (sometimes also called the window manager resource description file) sys.dtwmrc lives in
the directory /usr/dt/config. The manager searches for the following files (using the Bourne/
Korn shell notation for the user’s home directory):

$HOME/.dt/en_US/dtwmrc <- the “en_US” is linked to the “C” subdirectory

$HOME/.dt/dtwmrc

/etc/dt/config/en_US/sys.dtwmrc

/etc/dt/config/sys.dtwmrc

/usr/dt/config/en_US/sys.dtwmrc

/usr/dt/config/sys.dtwmrc <- this is the default file

Again, the first file found is the first used; at the end, the default settings must be found.

$ cat /usr/dt/config/sys.dtwmrc
##
#
Original copy: /usr/dt/config/C/sys.dtwmrc
#
The Resource Description File for the CDE Window Manager dtwm
#
(c) Copyright 1993, 1994 Hewlett-Packard Company.
(c) Copyright 1993, 1994 International Business Machines Corp.
(c) Copyright 1993, 1994 Sun Microsystems, Inc.
(c) Copyright 1993, 1994 Unix System Labs, Inc., a subsidiary
of Novell, Inc.
#
$XConsortium: sys.dtwmrc.src /main/cde1_maint/3 1995/10/30 17:23:26 drk $
#
##
###
#
Please make a COPY of this file before editing it.
#
Personalized copies typically exist as:
#
$HOME/.dt/dtwmrc

© 2002 by CRC Press LLC

#
###
###
#
Root Menu Description
#
###
Menu DtRootMenu => The “Root Menu” is invoked by clicking in the root window; it is

the pop-down menu with the here specified fields. By clicking on
the field, the corresponding function is started.

{
“Workspace Menu” f.title
“Programs” f.menu ProgramsMenu
no-label f.separator
“Shuffle Up” f.circle_up
“Shuffle Down” f.circle_down
“Refresh” f.refresh
“Minimize/Restore Front Panel” f.toggle_frontpanel
no-label f.separator
“Restart Workspace Manager…” f.restart
no-label f.separator
“Log out…” f.action ExitSession

}
Menu ProgramsMenu => This is the submenu in the “Root Menu”.
{
“Programs” f.title
“File Manager…” f.action DtfileHome
“Text Editor…” f.action TextEditor
“Mailer…” f.action Dtmail
“Calendar…” f.action Dtcm
no-label f.separator
“Terminal…” f.action Terminal
“Console…” f.action DttermConsole
no-label f.separator
“Clock…” f.action OWclock
“Calculator…” f.action Dtcalc
“Performance Meter…” f.action OWperfmeter
“Printer Manager…” f.action DtPrintManager
“Audio Tool…” f.action OWaudiotool
no-label f.separator
“Image Viewer…” f.action SDTimage
“Snapshot…” f.action SDTsnapshot
“Icon Editor…” f.action Dticon
no-label f.separator
“Style Manager…” f.action Dtstyle
“App Manager…” f.action Dtappmgr
“Help…” f.action Dthelpview
“AnswerBook…” f.action OWanswerbook
}

.

.
###
#
Key Bindings Description
#
###

.

.
###
#
Mouse Button Bindings Description

© 2002 by CRC Press LLC

#
###

.

.
###
#
Defaults: Window menus, key bindings, and mouse button bindings
#
###

.

.
###
#
User Customization: $HOME/.dt/user.dtwmrc (if it exists) => This is an alternate way to append
user-specific settings to the system-

wide ones
###
INCLUDE
{
$HOME/.dt/user.dtwmrc
}
################# End of the dtwmrc file #####################

22.4.4 The Shell Environment

How does the X environment relate to the UNIX shell? Although the shell is external to
the X environment, X clients running on UNIX systems necessarily depend on the shell
being set properly — more specifically, on properly defined environment variables and
the command search path.

The most important shell environment variable for an X client is DISPLAY. The DISPLAY
environment variable is used by all X clients to determine what X server to display on.
Since any X client can connect to any X server that allows it, all X clients need to know
what display to connect to upon startup. If DISPLAY is not properly set, the client cannot
execute.

The DISPLAY variable can be simply checked, for example:

echo $DISPLAY

:0.0

Earlier X11 releases could also display unix:0.0.
A good time to define the DISPLAY variable is probably when a user logs into the system

(same as when we are specifying a terminal for the character-based sessions). For example,
the DISPLAY variable could be defined as a global one in the user’s .login, or .profile file,
depending on the user’s shell:

setenv DISPLAY hostname:0.0

DISPLAY=hostname:0.0 ; export DISPLAY

Obviously hostname is the X terminal name, known to DNS, NIS, or local host database
(could also be an IP address). There are also opinions that the DISPLAY variable should
not be a part of login script, because it restricts a user to a specific X terminal.

The value of DISPLAY variable can be overridden from the command line by using:

xterm -display hostname:0.0 &

© 2002 by CRC Press LLC

This command invokes the xterm program to run in background; xterm is a terminal
emulator for the X window system; it provides DEC VT102 and Tektronix 4014 compatible
terminals for programs that cannot use the window system directly. The -display option
specifies the X server to contact, in this case the host hostname. The host name is followed
by the colon and the string 0.0 which specifies the display_number and the screen_number.
For better understanding of the syntax of the DISPLAY variable, please refer to the previous
discussion about the Xservers file in Section 22.2.2.1.2.

In the case of a local console display, both names: “:0.0” and “hostname:0.0” are accept-
able and they work; however, they imply different ways of connecting to the X server.
The first one specifies that the client should connect using UNIX domain sockets (IPC),
while the other one specifies that the client should connect using Internet domain sockets
(TCP/IP).

Another important issue concerning shell environment is the search path. The search
path needs to include the directories containing X executables. Assuming that the X
executables are in the /usr/bin/X11 and /usr/local/bin/X11 directories, the corresponding
user’s startup shell script .profile and .cshrc should be modified by extended PATH entries,
respectively:

PATH=/usr/ucb:/ bin:/ usr/bin:/ usr/bin/X11:/ usr/local/bin/X11:.

export PATH

and

set path = (/usr/ucb /bin /usr/bin /usr/bin/X11 /usr/local/bin/X11)

Note that this is only an example, and that other directories can also be included or
omitted; it can also be realized in different ways.

The .xsession startup script, typical of older X releases, had redefined the search path, unless
specified otherwise. It assumed the standard locations for X client programs. If clients resided
in different directories, an appropriate modification had been required.

The CDE counterpart, the .dtprofile script, coexists with the .profile file (supposing the
user Bourne or Korn shell environment; the same is true also for .login and the C shell).
Simply, the usual character-based login script .profile could be sourced by the .dtprofile, or
ignored, i.e., replaced. This idea was inherited from other vendor-specific X flavors and
has been proved to be the very effective one. This is quite obvious from the following
example; the whole file is actually a long discussion about the file purpose and how to
implement it; please, read it carefully.

$ cat /home/bjl/.dtprofile
##
###
.dtprofile
###
user personal environment variables
###
Common Desktop Environment (CDE)
###
###
$Revision: 1.7 $
###
##
###
Your $HOME/.dtprofile is read each time you login to the Common Desktop

© 2002 by CRC Press LLC

Enviroment (CDE) and is the place to set or override desktop
environment variables for your session. Environment variables set in
$HOME/.dtprofile are made available to all applications on the desktop.
The desktop will accept either sh or ksh syntax for the commands in
$HOME/.dtprofile.
###
By default, the desktop does not read your standard $HOME/.profile
or $HOME/.login files. This can be changed by uncommenting the
DTSOURCEPROFILE variable assignment at the end of this file. The
desktop reads .profile if your $SHELL is “sh” or “ksh”, or .login
if your $SHELL is “csh”.
###
The desktop reads the .dtprofile and .profile/.login without an
associated terminal emulator such as xterm or dtterm. This means
there is no available command line for interaction with the user.
This being the case, these scripts must avoid using commands that
depend on having an associated terminal emulator or that interact
with the user. Any messages printed in these scripts will not be
seen when you log in and any prompts such as by the ‘read’ command
will return an empty string to the script. Commands that set a
terminal state, such as “tset” or “stty” should be avoided.
###
With minor editing, it is possible to adapt your .profile or .login
for use both with and without the desktop. Group the statements not
appropriate for your desktop session into one section and enclose them
with an “if” statement that checks for the setting of the “DT”
environment variable. When the desktop reads your .profile or .login
file, it will set “DT” to a non-empty value for which your .profile or
.login can test.
###
example for sh/ksh
###
if [! “$DT”]; then
#
#commands and environment variables not appropriate for desktop
#
stty …
tset …
DISPLAY=mydisplay:0
…
fi
###
environment variables common to both desktop and non-desktop
#
PATH=$H OME/bin:$PATH
MYVAR=value
export MYVAR
…
###
example for csh
###
if (! ${?DT}) then
#
commands and environment variables not appropriate for desktop
#
stty…
tset…
setenv DISPLAY mydisplay:0
…
endif
###

© 2002 by CRC Press LLC

#environment variables common to both desktop and non-desktop
#
setenv PATH $HOME/bin:$PATH
setenv MYVAR value
…
###
Errors in .dtprofile or .profile (.login) may prevent a successful
login. If after you login, your session startup terminates and you
are presented with the login screen, this might be the cause. If this
happens, select the Options->Sessions->Failsafe Session item on the
login screen, login and correct the error. The $HOME/.dt/startlog and
$HOME/.dt/errorlog files may be helpful in identifying errors.
###
If $HOME/.profile (.login) has been edited as described above, uncomment
the following line.
#
DTSOURCEPROFILE=true
#

The preceding example, and this is the most common dtprofile configuration, fully
includes the .profile, or .login file, depending on user’s shell; consequently, the previous
shell environment setting stays valid. However, it requires a slightly modified .profile file,
as it could be read in the comments of the presented file.

The idea to integrate the existing character-based environment and new graphic envir-
onment has already been a part of other vendor-specific X flavors. CDE brought that as
a standard approach, enabling both options, to include, or exclude .profile (or alternatively,
.login) file when a user logs in to the system (of course, in an X environment).

To illustrate that, the .vueprofile script is presented. Visual User Environment (VUE) is the
HP-specific X flavor, implemented on all HP-UX platforms: from HP-UX 9.0x, via HP-UX
10.x, and also preserved on HP-UX 11.x. New HP-UX releases support both VUE and CDE.
The .vuelogin is the VUE counterpart for the .dtlogin file; actually, it is fair to say the
opposite, the file .vuelogin existed earlier. The file is well commented, so an additional
explanation is not needed.

$ cat /users/bjl/.vueprofile
#!/ bin/sh
##
###
.vueprofile
user personal environment variables
Hewlett-Packard Visual User Environment, Version 3.0
###
##
###
VUE pre-sets the following environment variables for each user.
###
DISPLAY set to the value of the first field in the Xservers file
EDITOR set to the HP VUE default editor
ENV set to “$HOME/.kshrc”
HOME set to the user’s home directory (from /etc/passwd)
KBD_LANG set to the value of $LANG for some languages (see Xsession)
LANG set to the display’s current NLS language (if any)
LC_ALL, LC_MESSAGES set to the value of $LANG
LOGNAME set to the user name
MAIL set to “/usr/mail/$USER”
PATH set to the value of the Vuelogin “userPath” resource
USER set to the user name
SHELL set to the user’s default shell (from /etc/passwd)

© 2002 by CRC Press LLC

TERM set to xterm
TZ set to the value of the Vuelogin “timeZone” resource
###
Three methods are available to modify or add to this list depending
on the desired scope of the resulting environment variable.
###
1. X server and/or all users on a display (Xconfig file)
2. all users on a display (Xsession file)
3. individual users (.vueprofile file)
###
###
Personal environment variables can be set in the script file
“$HOME/.vueprofile”. The files /etc/profile and $HOME/.profile are
not read by VUE as they may contain terminal I/O based commands
inappropriate for a graphical interface. Users should set up
“.vueprofile” with personal environment variables for their VUE
session.
###
VUE will accept either sh, ksh, or csh syntax for the commands in this
file. The commands should only be those that set environment
variables, not any that perform terminal I/O, ex. “tset” or “stty”.
If the first line of “.vueprofile” is #!/bin/sh, #!/bin/ksh, or
#!/bin/csh, VUE will use the appropriate shell to parse the commands.
Otherwise the user’s default shell ($SHELL) will be used.
###
With minor editing, it is possible to adapt $HOME/.profile (.login)
for use both with and without HP VUE. Group the statements not
allowed for VUE into one section and enclose them with an “if”
statement that checks for the setting of the “VUE” environment
variable. Then set the “VUE” environment variable at the bottom of
this script (.vueprofile) and log in again. From then on changes
need only be made to $HOME/.profile (.login).
###
example for sh/ksh
#
commands and environment variables used when logging in without VUE
#
if [! “$VUE”]; then
stty…
tset…
DISPLAY=mydisplay:0
MAIL=/usr/mail/$USER
EDITOR=/bin/vi
…
fi
###
#
environment variables common to both VUE and non-VUE
#
PATH=$HOME/bin:$PATH
…
###
Errors in .vueprofile or .profile (.login) may prevent a successful
login. If so, log in via the Fail-safe session and correct the error.
###
##
#
if $HOME/.profile (.login) has been edited as described above, uncomment
one of the two following lines, depending on your default shell.
#
VUE=true; export VUE; . $HOME/.profile; unset VUE # sh, ksh

© 2002 by CRC Press LLC

setenv VUE true; source $HOME/.login; unsetenv VUE # csh
#
@(#) $Revision: 66.1 $

The resemblance between .vueprofile and .dtprofile files is obvious; although, the .dtprofile
file is an improved version. The .vueprofile also requires a corresponding modification of
the user’s .profile file (or .login). What it means can be seen in the following example:

$ cat /users/bjl/.profile
User .profile file (/bin/sh initialization).
#
Testing VUE environment
if [! “$VUE”]; then

Set up the terminal: <---- this part is active only if VUE is not implemented!
TERM=vt100
export TERM
tset -Q
stty erase “^?” kill “^U” intr “^C” eof “^D”
stty hupcl ixon ixoff
tabs
echo “ Your terminal is $TERM”
echo “”
Set up the shell environment:
set -u
trap “echo ‘logout’” 0
Set up the shell variables:
EDITOR=vi
export EDITOR

fi <---- the end of the part
Set up the search paths:

PATH=$PATH:/usr/local/TeX/bin:.
export PATH

#

22.5 Miscellaneous

22.5.1 Other Startup Methods

X display manager, xdm (still widely in use), and the newer CDE related dtlogin are the
methods of choice for starting X. This is a very elegant way of starting an X session on
an X server (usually, an X terminal), remotely, or locally. We have already elaborated on
these programs, as well as other X programs and configuration files around; therefore, we
are more or less familiar with this startup procedure. The xdm, or dtlogin, are typically
started during the system booting, they run as daemons through the whole system life
and take care of keeping the X service running and getting users logged in. After the
startup, a window with the login widget appears, welcoming users and asking for user
name and password. After a user has successfully logged in, they start up the user’s X
environment and everything needed for an X session.

However, for the sites that support more than one window system, this is not the best
choice. Such sites might choose to use the xinit program instead for starting X manually.
A user logs-in in a conventional way and then executes the xinit command. The command
simply invokes a user-specified program to start the server, invokes another user-specified

© 2002 by CRC Press LLC

program to start any desired client, and then waits for either to finish. When the X client
exits, the xinit will kill the X server, and then terminate. Since either, or both, of the user-
specified programs may be shell scripts, this gives substantial flexibility at the expense of
nice interface (for this reason, xinit is not intended for end users).

The xinit is an obsolete program, and it is slowly being pushed out. It is supposed (and
it is also announced by many vendors) that new X releases will no longer support xinit.

Strictly speaking, the xinit is the core program for starting X; however, it is not the only
one. The startx script is a front-end to the xinit that provides a somewhat nicer user
interface; some X flavors use the x11start script instead. For the brief discussion that
follows, this is not of special interest, so all references will be made to the xinit.

Supposing the local display is being used and the xinit was activated from the command
line, the starting procedure consists of:

• The xinit first starts up the X server for the local display; by default, it starts
the generic program called /usr/bin/X11/X (which is usually a link to the real
server program); however, the default value can be overridden by entering
another command in the user’s file $HOME/.xserverrc.

• Since the X server was started, the xinit looks for a shell script called $HOME/
.xinitrc; if the file does not exist, xinit uses the default systemwide file /usr/lib/
X11/xinit/xinitrc.

• If both files are missing, the xinit starts a default xterm session:

xterm -geometry + 1 + 1 -n login -display :0

and sends a single xterm window to the local display to get a user started.
Here is an obsolete, but illustrative, example of the xinit systemwide configuration file

xinitrc:

$ cat /usr/lib/X11/xinit/xinitrc
#!/bin/sh
userresources=$HOME/.Xresources
usermodmap=$HOME/.Xmodmap
sysresources=/usr/lib/X11/xinit/.Xresources
sysmodmap=/usr/lib/X11/xinit/.Xmodmap
merge in defaults and keymaps
if [-f $sysresources]; then
xrdb -merge $sysresources
fi
if [-f $sysmodmap]; then

xmodmap $sysmodmap
fi
if [-f $userresources]; then

xrdb -merge $userresources
fi
if [-f $usermodmap]; then

xmodmap $usermodmap
fi
start some nice programs
twm&
xclock -geometry 50 × 50 - 1 + 1 &
xterm -geometry 80 × 50 + 494 + 51 &
xterm -geometry 80 × 20 + 494 - 0 &

© 2002 by CRC Press LLC

The configuration file supposes the start of the tab window manager (twm) in the
background and launches the clock and two xterm windows.

All of the rules related to the .xsession file could be applied to the .xinitrc file; this is
why, quite often, the .xinitrc file was simply linked to the .xsession. However, before linking
two files, there are three points to be considered:

1. The .xsession file is generally a shell script, but it can actually be any executable
file. The .xinitrc file must be a Bourne shell script.

2. The .xsession file must be an executable file. The .xinitrc file does not have to be
executable.

3. The .xsession script does not inherit the user’s login shell environment. The
.xinitrc script inherits the environment of the shell from which the xinit was
started.

22.5.2 A Permanent X11 Installation

An X11 package (today, this is primarily the CDE package) is mostly a standard part of
a UNIX installation. It means, upon the UNIX installation, X11 is more or less ready for
use; of course, site-dependent X11 setting is always assumed, although default X setting
works in most cases. For some UNIX platforms, the installation of the X11 package itself
could even be skipped, especially if the platform supports the vendor-specific X flavor
(although, today, it is quite common to have a CDE package installed together with a
vendor-specific X flavor, or customized in the vendor-specific way). For others, the X11
could still be treated as optional software. Nevertheless, an installation approach with
the X11 is the same as any other software package, and must be configured appropriately
for future system rebootings; it means a certain tribute should be paid to the X11 rc startup
initialization.

In the past, an X11 rc setting was a must; X11 used to be an optional software to be
added later, tested, and then integrated into the overall UNIX system. The integration
assumed a permanent X11 installation and a corresponding rc startup setting.

X11 is started during the system startup through the corresponding rc initialization
scripts, as is common for all UNIX daemons. On a typical BSD platform this is the
/etc/rc.local file, while on a System V platform even the /etc/inittab table could be used.
A brief survey of different UNIX flavors follows:

• On Solaris 2.x platform the rc start/stop script dtlogin is used; the corresponding
S-start, and K-stop scripts are hard linked to this file:

$ ls -li /etc/init.d | grep “dtlogin”
203657 -rwxr--r-- 4 root sys 2613 Jun 26 1998 dtlogin

$ ls -li /etc/rc2.d | grep “dtlogin”
203657 -rwxr--r-- 4 root sys 2613 Jun 26 1998 S99dtlogin

$ ls -li /etc/rc0.d | grep “dtlogin”
203657 -rwxr--r-- 4 root sys 2613 Jun 26 1998 K10dtlogin

• On HP-UX platform (9.0x, 10.10, 10.20, 10.30 …) the start procedure is the same,
except the other file name and locations are used, and symbolic links are
implemented:

© 2002 by CRC Press LLC

$ ls -l /sbin/init.d | grep dtlogin
-r-xr-xr-x 1 bin bin 3002 May 30 1998 dtlogin.rc

$ ls -l /sbin/rc3.d | grep dtlogin
lrwxr-xr-x 1 root sys 23 Jun 10 1998 S990dtlogin.rc -> /sbin/init.d/
dtlogin.rc

$ ls -l /sbin/rc2.d | grep dtlogin
lrwxr-xr-x 1 root sys 23 Jun 10 1998 K100dtlogin.rc -> /sbin/init.d/
dtlogin.rc

• The HP flavor of X, VUE, is started through the /etc/inittab file:
vue:34:respawn:/usr/vue/bin/vuerc

• On SunOS 4.1.x the /etc/rc.local script is used; a typical sequence to start the xdm was:
if [-f /usr/bin/X11/wdm]; then

/usr/bin/X11/xdm; echo -n “XDM”

fi

• On IRIX platform /etc/inittab is used; here is an example with the xdm:

xw:23:respawn:/usr/bin/X11/xdm -nodaemon

• On AIX platform the /etc/rc.tcpip script is used; for example, an entry to start
the xdm looked like:

start /usr/bin/X11/xdm “$src_running”

22.5.3 A Few X-Related Commands

X is an extremely rich environment, that offers users a lot. Once users become familiar
with X, it is hard to believe they would be eager to return to the character-based world.
Advantages and benefits of using X are enormous, and this session should encourage
administrators to bring X to life on their systems. Programmers and developers should
seriously consider the X environment for their new projects; everybody could only benefit
from an X implementation.

Besides a nice and friendly environment, X also brought many new, powerful,
and versatile utilities (commands) that could be efficiently used, especially for script
programming, to make scripts more powerful and productive. We will list a few X-related
commands; readers are encouraged to browse the manual pages for more information, as
well as for other X commands.

xwd The utility to dump an image of an X window. It allows storage of window
images in a specially formatted dump file that could later be read by other
X utilities for redisplay, printing, editing, formatting, archiving, image
processing, etc.

xwud The X image displayer. The utility undumps and displays in a window an
image saved in a specially formatted dump file (produced by xwd).

xpr The utility to print an X window dump. It takes as input a window dump
file produced by xwd and formats it for output on PostScript and some
other PCL compatible printers.

The xwud is a complementary utility to the xwd. The two utilities could be combined
in a very attractive way. For example, we can use xwd to dump (save) an X image at an
X display into a file, and then launch the saved X image by the xwud to another X display.

© 2002 by CRC Press LLC

In that way, it is possible to monitor X users by scanning (dumping) their screens and
display the dumped images at the administrator’s screen. By involving xpr, printouts are
also possible.

By presenting these X utilities, we will close our session dedicated to X11. After quite
a long discussion, and many real-life examples, we should be ready to enter successfully
into the X administration arena.

© 2002 by CRC Press LLC

23
Kernel Reconfiguration

23.1 Introduction to Kernel Reconfiguration

The UNIX kernel is the part of the UNIX operating system that manages the system
hardware. Kernel presents control software between OS and the underlying hardware,
merging all system devices into a functional OS controllable system. Kernel remains
memory resident while the system is up; otherwise a system would behave very poorly.
We have already talked about the kernel in Chapter 4 when we discussed system startup.
Then we learned that the executable image of the kernel is invoked after a bootstrap
program execution and it continues to run at all times. Now, we return to this topic to
elaborate the duties of the system administrator regarding the kernel.

The kernel is a site-dependent, memory resident executable program; this means the
kernel must be appropriately configured for a particular UNIX system implementation.
Each installed UNIX system also has a configured kernel; this is usually a generic kernel
compliant for most system implementations. However, site-specific conditions and a special
system mission could require different, more appropriate kernel configuration. Then we
have to change an existing kernel, and we talk about kernel reconfiguration. Generally,
reconfiguring the kernel means to create, or to modify, an appropriate kernel configuration
file, which defines the kernel correspondingly. In most cases it also means to compile a
reconfigured kernel afterward. All changes in a kernel become effective upon rebooting
the system, because the newly configured kernel could be invoked only at the next system
startup; there is no way to change an actual memory resident kernel image.

As a matter of fact, a kernel reconfiguration presents a routine procedure defined by
UNIX designers that an administrator should strictly follow. There is not a lot of freedom
in implementing this procedure; the existing rules must be fully respected, or our kernel
reconfiguration will fail. A failed kernel also means a “sick” UNIX system, sometimes even
a not-bootable one. An administrator must know how to handle such situations; a full
understanding of this procedure is very instrumental in doing this successfully. It raises
a crucial question, how to bring the system back from a “bad” kernel to the previously
“workable” one. We must always be prepared for the worst-case scenario.

BSD and System V have very different kernel configuration files and reconfiguration pro-
cedures. Also, within each of these two UNIX platforms, significant variations exist among
different vendors. That is why it is probably more appropriate to talk about vendor-
flavored kernel reconfiguration. Nevertheless, we will try to keep continuity with earlier
chapters — partially by following this topic historically, and partially by elaborating on
the dominant modern UNIX flavors.

© 2002 by CRC Press LLC

The nature of a kernel makes it almost impossible to create a “universal kernel” appli-
cable to any situation. Different hardware configurations require different kernel config-
urations, and some trade-off must be found. Some systems are shipped with a minimal
kernel, so changes may be needed when new hardware or software is added. Usually when
new software is installed, the kernel changes, if required, are performed automatically by
the installation procedure. This is also the case when OS patches are implemented if the
patches are kernel related. In both cases, to become effective, a system reboot is required
after implementation.

23.2 Kernel Configuration Database

Both UNIX platforms, BSD and System V, use the kernel configuration files to specify and
keep configuration data. Traditionally the configuration data had to be compiled into the
kernel binary for later loading into the system memory and its effective usage. This is still
the prevailing concept. For compilation purposes, usually some kind of front-end config
command is used (sometimes this program has a different name, but always the same
purpose) to build the kernel. A general approach assumes the UNIX kernel as a C program
to be compiled and installed by using available UNIX utilities, primarily the make command.
The front-end config command reads the kernel configuration file and generates the corres-
ponding kernel binary. This procedure is not so straightforward and it is mostly realized in
several steps. During this procedure, other UNIX commands are invoked (by the make utility)
and other files are needed to compile and link the kernel. Generally, the kernel is built offline,
and its execution started during the next system startup. Solaris has a slightly different
approach — certain parts of the kernel are fully built online during the system startup.

Specifying an entry in the kernel configuration database does not mean that the system
must possess the corresponding hardware device or peripheral. It means that the kernel
will be ready to support such device or peripheral if it is attached to the system. In other
words, specifying an entry in the kernel configuration file will enable the appropriate
system’s function. The system checks its current hardware configuration during its startup
and initializes (activates) all existing devices and peripherals. However, if the entry for
an existing device is missing in the kernel configuration file, the system cannot support
this device at all.

One might think that a kernel configuration file should contain all possible entries, so
we can be sure that any system hardware configuration will be supported. This is a nice
idea, but such an approach will create a large, memory-consuming, slow-to-execute kernel
image (do not forget that the kernel is a memory-resident program). Nevertheless, this is
a trend among modern versions of UNIX. On the other hand, the approach of stripping
a kernel configuration down to the existing system’s exact hardware configuration can
result in a restrictive kernel, inflexible for future system upgrades. Like everything in life,
a satisfactory compromise should be achieved.

It is important to make a strict distinction between a kernel configuration file and the
kernel itself. A kernel configuration file is an ASCII file that defines all kernel nondefault
data and arguments. A kernel (or rather, a kernel image) is an image of the built kernel,
a memory-resident executable that provides the interface between system hardware and
the operating system. Modifying the kernel configuration file does not mean modifying
the kernel itself; one more step is required: to compile, i.e., to rebuild, the kernel (Solaris
is an exception because it rebuilds the kernel online).

© 2002 by CRC Press LLC

23.3 BSD-Like Kernel Configuration Approach

In addition to the fact that each UNIX flavor has its own kernel configuration procedure
independent of its prevailing UNIX platform affiliation, we will start here with SunOS
flavor. For many years, SunOS was a main player in the UNIX arena and its kernel
reconfiguration has been a number 1 issue. Today SunOS does not play the same role, but
its educational value is still significant: SunOS is a good representative of BSD UNIX, with
a comprehensive configuration structure important for an easier understanding of needed
kernel administration. Keeping all that in mind, we are specifying its kernel configuration
as BSD-like.

On a BSD platform, the kernel configuration file is usually located in the directory /usr/
sys/conf. On SunOS the directory is /usr/share/sys/sun4c/conf. There is no standard name for
the kernel configuration file, and it is common to name it after the name of the machine
on which it is installed (however, it is not mandatory — a generic kernel works as well
as the named one). A large kernel configuration file named GENERIC is a part of the
UNIX installation, and it configures all of the standard devices for the system, including
the network devices. No modifications are necessary for the generic kernel configuration
file to run basic local and network services.

We will address several aspects of the kernel configuration. First, let us see the basic
kernel configuration entries. Then we will talk about the kernel configuration procedure,
and finally, about the available UNIX command for this purpose. At the end, we should
have a full picture of how everything works on the BSD platform.

23.3.1 Basic Configuration Entries

The kernel contains an identifying string that is helpful in discovering the name of the
configuration file itself. Assuming the usual kernel binary name vmunix:

$ strings /vmunix | grep SunOS

SunOS Release 4.1.3 (PATSY) #1: Fri Feb 25 13:59:37 EST 1996

The string enclosed in parentheses is the name of the configuration file. In this example,
the name of the kernel configuration file is patsy, while the kernel binary (kernel image)
name is vmunix. It is important to make a difference between kernel configuration data
saved in the ASCII kernel configuration file, and the corresponding compiled kernel
executable invoked during the system startup.

The configuration file contains a sequence of one-line entries specifying different aspects
of the kernel’s configuration. Basically, there are 12 different types of configuration lines,
which are briefly described here:

1. machine Identifies the system’s architecture. This entry should not be
changed.

2. cpu Identifies the particular model, or often several models. It is not
recommended that you change it, but building a kernel that only
runs on one type of system reduces the kernel size.

3. ident An identifier for the kernel. This should be the same as the name
of the configuration file and the build directory. It is not the
kernel’s image file name, which is usually vmunix.

© 2002 by CRC Press LLC

4. maxusers This is the most important configuration parameter, as it controls
the size of the most important kernel tables. It is an estimate of
the number of users the system will be able to service simultan-
eously and comfortably (count one user for each timesharing
user, one for each window that is typically in use, and one for
each diskless client served). It is not a limit on the maximum
number of users for the system. Reducing maxusers is one way
to increase the amount of available memory. However, many
other system parameters are also decreased: the number of users
that the system supports effectively, the number of processes
that can run simultaneously, the number of files that can be
open, etc. Generally, modifying maxusers will affect the system’s
performance significantly, so an appropriate tradeoff must be
performed.

5. timezone The time zone in which the system is running. Its setting has
become very complex to take into account all kinds of interna-
tional timekeeping rules.

6. config There may be more config lines; they specify the actual name of
the kernel executable, the location of the boot partition, and the
location of the swapping and dump partitions. Usually, all those
parameters are specified within the single config line with more
arguments. If some of the arguments are missing, the kernel uses
the default values.

7. options There may be a number of different options that the kernel
supports. They often define certain optional system features. It
is not enough, per se, to configure only the kernel; the appro-
priate hardware and software support must also exist on a system.

8. pseudo-device There may be a number of pseudo-device lines. Each line tells the
kernel to include a certain software option that is technically
a device driver but does not correspond to a physical device.
Most of them are related to the networking and windowing
systems. Although it seems that many of them could be eliminated
and some space saved, in practice that is not the case. Networking
and windowing are so basic to modern systems that it is almost
inconceivable to operate without them.

The four remaining types of configuration lines involve Device Specification; this is by
far the most system-dependent part of the kernel configuration. It is possible to reduce
the kernel’s memory requirements by leaving out devices that you do not need. However,
this can be tricky; many systems have hidden devices that you do not know about, but
you need all the same. So, be extremely careful with removing devices from the kernel.

9. device-driver Sometimes specified only as device. These lines describe all
devices except disk and tape controllers, disk and tape drives,
and bus interfaces (i.e., controllers that connect one bus to
another).

10. controller These lines describe disk controllers, tape controllers, and bus
interfaces (i.e., controllers that connect one bus to another).
Today, the most common controllers are the SCSI controllers.

© 2002 by CRC Press LLC

11. disk These lines describe disk drives; a controller line by itself is not
sufficient, because most disk controllers can handle two or more
disk drives. That means a disk line is needed for every disk drive
that exists. Today, disks are most often connected to a SCSI
controller.

12. tape These lines describe tape drives. The same remarks for the disk
lines are also valid for tapes.

Let us see what the GENERIC configuration file looks like on SunOS 4.1.3. The file itself
is relatively well-commented; nevertheless, additional comments, printed in bold, are included
for a better understanding of the various entries.

$ cat /usr/share/sys/sun4c/conf/GENERIC
#
@(#) GENERIC from master 1.28 90/09/21 SMI
#
This config file describes a generic Sun-4c kernel, including all
possible standard devices and software options.
#
The following lines include support for all Sun-4c CPU types.
There is little to be gained by removing support for particular
CPUs, so you might as well leave them all in.
#
machine “sun4c” # Identifies the system’s architecture and model
cpu “SUN4C_60” # Sun-4/60 (it’s really for all the Sun-4c’s)
#
Name this kernel GENERIC.
#
ident “GENERIC” # To rename kernel, modify this name. If “GENERIC”

is used, the kernel name corresponds to the name
of the kernel configuration file.

This kernel supports about 8 users. Count one user for each
timesharing user, one for each window that you typically use, and one
for each diskless client you serve. This is only an approximation used
to control the size of various kernel data structures, not a hard limit.
#

maxusers 8 #The most important parameter that controls the
size of the most important kernel tables, it is an
estimated value of the users that system will serve
without a decrease in the system performance
(taking into account additional load, as NFS, etc).
This is not a hard limit!

#
Include all possible software options. #There may be any number of options lines, which

request certain optional system features.

The INET option is not really optional; every kernel must include it.
options INET # basic networking support — mandatory
#
The following options are all filesystem related. You only need
QUOTA if you have UFS. You only need UFS if you have a disk.
Diskless machines can remove QUOTA, UFS, and NFSSERVER. LOFS and TFS

© 2002 by CRC Press LLC

are only needed if you’re using the Sun Network Software Environment.
HSFS is only needed if you have a CD-ROM drive and want to access
ISO-9660 or High Sierra format CD discs.
options QUOTA # disk quotas for local disks
options UFS # filesystem code for local disks
options NFSCLIENT # NFS client side code
options NFSSERVER # NFS server side code
options LOFS # loopback filesystem — needed by NSE
options TFS # translucent filesystem — needed by NSE
options TMPFS # tmp (anonymous memory) filesystem
options HSFS # High Sierra (ISO 9660) CD-ROM filesystem
options PCFS # Unix access to MS-DOS filesystem
#

.

.
#
Build one kernel based on this basic configuration.
It will use the generic swap code so that you can have
your root filesystem and swap space on any supported device.
Put the kernel configured this way in a file named “vmunix”.
Config vmunix swap generic # Specifies the actual name of the kernel executable, the

location of the boot partition, and the locations of the
swapping partitions (by default, those are the “a” parti-
tion on the first disk for the root, and the “b” partition
for the primary swapping partition).

#
Include support for all possible pseudo-devices. #Pseudo-device lines tell the kernel to

include certain software drivers that
don’t correspond to physical (hardware)
devices.

#
The first few are mostly concerned with networking.
You should probably always leave these in.
pseudo-device pty # pseudo-tty’s, also needed for SunView
pseudo-device ether # basic Ethernet support
pseudo-device loop # loopback network – mandatory
#

.

.
#
The following section describes which standard # These lines spell out the configuration

of the system’s peripherals in more detail.
device drivers this kernel supports.
#
device-driver sbus # ‘driver’ for sbus interface
device-driver sbwtwo # monochrome frame buffer
device-driver gthree # 8-bit color frame buffer
device-driver cgsix # 8-bit accelerated color frame buffer
device-driver cgtwelve # 24-bit accelerated color frame buffer
device-driver dma # ‘driver’ for dma engine on sbus interface
##################
device-driver esp # Emulex SCSI interface
##################
device-driver fd # Floppy disk
device-driver audioamd # AMD79C30A sound chip

© 2002 by CRC Press LLC

device-driver le # LANCE ethernet
device-driver zs # UARTs
#
The following section describes SCSI device unit assignments.
scsibus0 at esp # declare first scsi bus
disk sd0 at scsibus0 target 3 lun 0 # first hard SCSI disk
disk sd1 at scsibus0 target 1 lun 0 # second hard SCSI disk
disk sd2 at scsibus0 target 2 lun 0 # third hard SCSI disk
disk sd3 at scsibus0 target 0 lun 0 # fourth hard SCSI disk
tape st0 at scsibus0 target 4 lun 0 # first SCSI tape
tape st1 at scsibus0 target 5 lun 0 # second SCSI tape
disk sr0 at scsibus0 target 6 lun 0 # CD-ROM device
#
scsibus1 at esp # declare second scsi bus

.
scsibus2 at esp # declare third scsi bus

.
scsibus3 at esp # declare fourth scsi bus

.

.

23.3.2 The BSD-Like Kernel Configuration Procedure

The README file, which resides in the same directory as the GENERIC file, includes
a detailed description of the kernel configuration procedure. This file is fully presented,
with additional comments in bold:

$ cat /usr/share/sys/sun4c/conf/README
CONFIGURING THE KERNEL
1. Choose a name for your configuration of the system; here, PICKLE.

2. Create the config file by making a writable copy of GENERIC:
cp GENERIC PICKLE; chmod +w PICKLE # Copy and rename the config-

uation file and make it writeable.

3. Edit PICKLE to reflect your system, e.g., delete devices that will
never be present on your system. # Modify and create a new config-

uration file.

4. Run config:
/etc/config PICKLE
(the directory ../ PICKLE will be made if it doesn’t exist and
a “make depend” will be done unless you specify a “-n” flag)

5. Make the new system:
cd ../ PICKLE
make

6. Typically the running kernel should be “/vmunix” because programs
like ‘ps’ and ‘w’ expect “/vmunix” to be the running kernel.
Save the original kernel, install the new one in /vmunix, and try it out:

mv /vmunix /vmunix.old # Rename the old kernel.
cp vmunix /vmunix # Copy a new kernel.

© 2002 by CRC Press LLC

/etc/halt # Halt the system.
b vmunix # Boot the system (with the new

kernel).

7. If the system does not appear to work, boot and restore the
original kernel, then fix the new kernel:

/etc/halt # Halt the system.
b vmunix.old -s # Boot the system single-user with

the old kernel.
mv /vmunix.old /vmunix # Replace the kernel with the old

kernel.
^D [Ctrl-D] # Brings the system up multi-user.

CONFIGURING AN OBJECT-ONLY DISTRIBUTION # What is mandatory?

The following lines from the GENERIC config file must be in every
config file for object-only configurations:

machine “sunN” # where ‘N’ is 2 or 3 or 4
options INET
pseudo-device loop

Failing to include these lines in a config file will probably result
in undefined routines during the making of the kernel, but may just
silently cause the resulting kernel to blow up.

Except for drivers which supply the source for sizing data structures
(e.g., xy_conf.c, sc_conf.c, xd_conf.c), you may not configure in more
devices of a particular type than is allowed by the distributed object
code in ../OBJ. Attempting to do so will not be detected and may cause
the kernel to appear to work but have only occasional failures. Double
check the .h files in ../OBJ if you change the number of devices
configured for any standard drivers.

ADDING A DEVICE DRIVER # How to upgrade a configuration
file.

New device drivers require entries in ../../sun/conf.c, files,
and possibly ../../sun/swapgeneric.c and devices. They are included by
mentioning the device name in the config file.

The described BSD-like approach consists of three main steps:

1. Modify the kernel configuration file — items 1, 2, and 3

2. Compile and build the new kernel image based on new configuration data, and
replace the old kernel with the new one — items 4, 5, and 6

3. Implement the new kernel — item 7

From an administrative standpoint, item 7 is extremely important; it describes a “fall-
back” procedure if something goes wrong with the newly built kernel. A good system
administrator must always be ready if something goes wrong — a fallback scenario is a
must even for much smaller system changes; in the case of kernel reconfiguration, it is
probably the major issue.

© 2002 by CRC Press LLC

Another important issue is the kernel image name. Although we have used the term
usual name for the default kernel name vmunix, it is extremely important to preserve this
name. Some important UNIX commands (for example the ps command) suppose the
default kernel name and do not work properly if the kernel is renamed. That is the reason
why the fallback procedure first boots the system into the single-user mode, overwrites
the “bad new” kernel with the “good old” one, and then continues with multi-user mode
(presented in item 7), instead of booting the system directly into multi-user mode with
the old renamed kernel.

23.3.3 The config Command

The config command is used to configure the system’s kernel and is sometimes named
autoconfig, or something else that denotes its autonomous nature. Here, the BSD-type
SunOS config command is briefly described

The syntax of the command is:

/usr/etc/config [-fgnp] [-o obj dir] config_file

config builds system configuration files. It performs the preparation necessary for build-
ing a new system kernel. The config_file named on the command line describes the kernel
to be made in terms of options desired in the system, table sizes, and device drivers to be
included. Running config, requires several input files located in the current directory
(typically the conf subdirectory of the system source including your config_file). If the
directory named ../config_file does not exist, config will create one. One of config’s output
files is a makefile, which is used with make to build the kernel.

config must be run from the conf subdirectory of the system source (in a typical Sun
environment, from /usr/share/sys/sun{2,3,3x,4,4c }/conf).

Watch for errors while config is running. Never use a kernel that config has complained
about; the results are unpredictable. If config completes successfully, the directory can be
changed to the ../config_file directory, where it has placed the new makefile, and make can
be used to build a kernel.

The output files placed in this directory include ioconf.c, which contains a description
of I/O devices attached to the system; mbglue.s, which contains short assembly language
routines used for vectored interrupts; a makefile, which is used by make to build the system;
a set of header files (device_name.h) which contain a number of various devices that may
be compiled into the kernel, and a set of swap configuration files which contain definitions
for the disk areas to be used for the root filesystem, swapping, and system dumps.

The available options are:

-f Set up the makefile for fast builds, which is accomplished by building
a vmunix.o file that includes all the .o files that have no source. This
reduces the number of files that have to be stated during a system build.
Prelinking all the files for which no source exists into another file, which
is then linked in place of all of these files when the kernel is made,
performs the reduction. This makefile is faster because it does not state
the object files during the build.

-g Get the current version of a missing source file from its SCCS history,
if possible.

© 2002 by CRC Press LLC

-n Do not do the “make depend.” Normally, config will do the “make
depend” automatically. If this option is used, config will print “Don’t
forget to do a ‘make depend’” before completing, as a reminder.

-p Configure the system for profiling. This option is only available for
systems with full source releases.

-o obj_dir Use ../obj_dir instead of ../OBJ as the directory to find the object files
when the corresponding source file is not present, in order to generate
the files necessary to compile and link your kernel.

Note that there are differences among kernel configuration commands of different UNIX
flavors and types; always consult the available documentation!

23.4 Other Flavored Kernel Reconfigurations

This part of the chapter presents several other kernel configuration procedures. The pre-
sented UNIX flavors are mostly System V-like, so conditionally we can say they represent
System V kernel configuration procedures. Unfortunately there is not a lot in common
among them, and the title used for this part is definitely more appropriate than strictly
System V-related title.

Generally, each implementation of System V had its own kernel configuration procedure.
There were major differences between SVR2, SVR3, and SVR4. Because of all of the diffi-
culties in practical implementation, System V vendors have done much to automate the
process. Therefore, if a new software package should be added, the system administrator
can run a system configuration program to install the package and automatically make the
necessary kernel changes. The System V approach is not a single kernel configuration file;
instead, it includes a number of so-called master files that contain configuration information
used to create a kernel; this means that the kernel configuration database is a collection of
files. The files reside in the master directory that has a different name for different flavors.

We will discuss this topic with the HP-UX, Solaris, and Linux UNIX flavors in mind.
Even though this review should provide sufficient expertise to understand other imple-
mentations, it is recommended that you see vendors’ documentation and manuals for
each specific case, as well as the system’s online manual pages. Even within the same
vendor flavors, completely different approaches between succeeding releases are possible,
as is the case with HP-UX 9.0x and HP-UX 10.x.

23.4.1 HP-UX 10.x Kernel Configuration

In HP-UX 10.x the kernel binary is created offline, and the newly created kernel binary will
be executed upon the next system reboot. The front-end HP-UX flavored command config
is used to configure device drivers, swap and dump devices, and tunable system parameters.
The config command reads a user-provided system description in the file /stand/system, as
well as the provided master kernel configuration tables (files), and generates the following:

• A C program source file that defines the system configuration

• A makefile file used to compile the C program and relink the newly configured
system (the make utility is used for this purpose)

© 2002 by CRC Press LLC

The config command performs these steps automatically, so the new kernel binary is
the end result of its execution. Correspondingly, our task is to appropriately modify the
kernel description file /stand/system, and execute the config command.

The default kernel values, as well as the permitted ranges of kernel parameters, are
defined within master files in the directory /usr/conf/master.d:

ls -l /usr/conf/master.d
total 146
-r--r--r-- 1 bin bin 17122 Mar 18 21:47 core-hpux
-r--r--r-- 1 bin bin 3950 Jun 10 1996 dfs
-r--r--r-- 1 bin bin 1170 Jun 10 1996 dskless
-r--r--r-- 1 bin bin 5474 Apr 3 13:45 flkmgr
-r--r--r-- 1 bin bin 4086 Jun 10 1996 lan
-r--r--r-- 1 bin bin 3716 Aug 26 1996 lan100bt_hppb
-r--r--r-- 1 bin bin 4309 Jun 10 1996 lvm
-r--r--r-- 1 bin bin 5069 Jun 10 1996 net
-r--r--r-- 1 bin bin 4001 Jun 10 1996 proc-resrc-mgr
-r--r--r-- 1 bin bin 4115 Mar 20 1997 spt
-r--r--r-- 1 bin bin 6358 Jun 10 1996 streams
-r--r--r-- 1 bin bin 4748 Jun 10 1996 streams-tio
-r--r--r-- 1 bin bin 4279 Jun 10 1996 vxfs

Not all of the master files presented here reside on every system; their presence depends
on the installed hardware and software. However, some of them always exist, for example,
the master file core-hpux. This file defines all tunable kernel parameters. Do not forget
that kernel reconfiguration mostly involves tuning kernel parameters. To add a new driver
is only required if new hardware is added, and swap and dump devices rarely change.
Also, if drivers are specified in the kernel description file, it does not mean they must be
active; drivers are always hardware dependent, and can be active only if the appropriate
hardware exists.

Let us see what a kernel description file looks like:

cat /stand/system
* Drivers and Subsystems
asp
btlan1
ccio
cdfs
clone
core
diag0

. . .

. . .
pts
sad
sc
scsi1
sdisk
sio
stape
tpiso
uipc
vxbase
wsio
* Kernel Device info
vxadv
diag2

© 2002 by CRC Press LLC

dmem
dev_config
dump lvol
* Tunable parameters
maxfiles 75
maxfiles_lim 1275
maxswapchunks 1031
maxuprc 175
maxusers 350
msgmax 32768
msgmnb 32768
msgmni 100
msgseg 7168
msgtql 256
nfile 15364
npty 250
nstrpty 250
semmnu 1170
msgssz 8

Rebuilding the kernel could be a risky business; any failure in the kernel could be
catastrophic for the system itself. The old “workable” kernel image /stand/vmunix must
always be saved for a possible fallback. By default, the config command creates the new
kernel image /stand/build/vmunix (vmunix_test if SAM was used); the new kernel must be
moved (copied) into the /stand directory, where the system looks for the kernel “vmunix,”
during startup. If something goes wrong with the new kernel, the fallback procedure must
be implemented:

• Halt or reboot the system (if possible; you must be logged in as root to do this).
The worst-case scenario is to power-cycle the system.

• Follow messages on the console and discontinue the system booting. HP-UX
allows you to interrupt the booting by pressing any key within the announced
10 second interval.

• Continue with the booting; at the menu prompt, type:

boot

• Accept to Interact with IPL; type y.

• Bring the system into single-user mode using the old kernel. Assuming the old
kernel was saved as /stand/vmunix.fbk, at the “ISL” prompt, type:

hpux -is /stand/vmunix.fbk

• While the system is in single-user mode, fallback to the old kernel:
mv /stand/vmunix.fbk /stand/vmunix

• Reboot the system into multi-user mode:
shutdown -r 0

23.4.2 Solaris 2.x Kernel Configuration

A Solaris kernel resembles to a generic SunOS kernel. During system startup, a machine
looks for attached devices and initializes the appropriate drivers. However, unlike a SunOS
BSD-like kernel, which leaves all drivers resident in the memory, Solaris kernel loads only
drivers for devices that are detected as active on the system (this can be changed only by
explicitly forcing a system to do it differently).

© 2002 by CRC Press LLC

Consequently, a Solaris kernel is a collection of software modules that includes the core
image file /kernel/unix and all of the modules loaded into the system memory — the
so-called loadable modules. Solaris is also searching for kernel data in several other
platform-specific directories, if it fails to find them in the directory /kernel. The core image
file /kernel/unix is a system executable file, which contains basic operating system services.
It is loaded first, during system booting (whether you are booting from a disk, a CD-ROM,
or over a network); loadable modules are also loaded during the system startup, although
they could be loaded at any time later (even from the command line). To be more precise,
Solaris first looks for the kernel image file named unix, but if it does not find this file, it then
looks for an alternate name genunix.

The kernel configuration can be controlled using the system specification file /etc/system,
also known as the system configuration information file. This file contains commands that
are read by the kernel and used to customize the system; commands are useful in modi-
fying the system’s treatment of its loadable modules.

The syntax of the /etc/system file consists of a list of keyword/value pairs, which are
recognized by the system as valid commands. Commands that modify the system’s operation
with respect to loadable kernel modules require you to specify the module type by listing
the module’s namespace. The following namespaces are currently supported:

drv Modules in this namespace are device drivers.
exec Modules in this namespace are execution format modules. The following

exec modules are currently provided for a SPARC system: aoutexec, elfexec,
intpexec; and for a x86 system: coffexec, elfexec, intpexec.

fs These modules are filesystems.
sched These modules implement a process scheduling algorithm.

strmod These modules are STREAMS modules.
sys These modules implement loadable system-call modules.

misc These modules do not fit into any of the above categories, so are considered
“miscellaneous” modules.

All of those modules reside in the appropriate subdirectories in the /kernel directory:

$ ls -l /kernel
total 2112
drwsrwsrwt 2 root sys 2048 Nov 15 14:26 drv
drwxr-xr-x 2 root sys 512 Apr 4 1995 exec
drwxr-xr-x 2 root sys 512 Apr 4 1995 fs
drwxr-xr-x 2 root sys 512 Apr 4 1995 misc
drwxr-xr-x 2 root sys 512 Apr 4 1995 sched
drwxr-xr-x 2 root sys 512 Apr 4 1995 strmod
drwxr-xr-x 2 root sys 512 Apr 4 1995 sys
-rwxr-xr-x 1 root sys 1058400 Jul 15 1994 unix

Except for the kernel executable image (named unix), all of the listed items are
namespaces’ subdirectories. A slightly deeper view into a namespace’s subdirectory (the
most representative is the driver’s subdirectory) shows:

$ ls /kernel/drv
arp gt mcp.conf rootnex sy
arp.conf icmp mcpp rtvc sy.conf
be icmp.conf mcpp.conf sad tcp
bpp id mcpzsa sad.conf tcp.conf

© 2002 by CRC Press LLC

bwtwo id.conf mcpzsa.conf sbus tcx
cgeight iommu mm sbusmem tl
cgfourteen ip mm.conf sbu smem.conf tl.conf
cgsix ip.conf obio sd udp
cgthree ipi3sc openeepr sd.conf udp.conf
cgtwelve isp openeepr.conf soc vme
clone iwscn options sp vmemem
clone.conf iwscn.conf options.conf sp.conf vmemem.conf
cn le pln ssd wc
cn.conf lebuffer pln.conf ssd.conf wc.conf
conskbd ledma pn st xbox
conskbd.conf leo profile st.conf zs
consms llc1 profile.conf stc zsh
consms.conf llc1.conf pseudo stc.conf zsh.conf
dma log pseudo.conf sx
esp log.conf qe sx_cmem
fd mcp qec sx_cmem.conf

As we can see, their configuration files can configure most drivers.
The supported commands (or directives) are described in the /etc/system file itself.

$ cat /etc/system
ident “@(#)system 1.15 92/11/14 SMI” / SVR4 1.5 */
*
* SYSTEM SPECIFICATION FILE
*
* moddir:
* Set the search path for modules. This has a format similar to the
* csh path variable. If the module isn’t found in the first directory
* it tries the second and so on. The default is /kernel /usr/kernel
* Example:
* moddir: /kernel /usr/kernel /other/modules

* root device and root filesystem configuration:
* The following may be used to override the defaults provided by
* the boot program:
* rootfs: Set the filesystem type of the root.
* rootdev: Set the root device. This should be a fully
* expanded physical pathname. The default is the
* physical pathname of the device where the boot
* program resides. The physical pathname is
* highly platform and configuration dependent.
* Example:
* rootfs:ufs
* rootdev:/sbus@1,f80 00000/esp@0,800000/sd@3,0:a
* (Swap device configuration should be specified in /etc/vfstab.)

* exclude:
* Modules appearing in the moddir path which are NOT to be loaded,
* even if referenced. Note that ‘exclude’ accepts either a module name,
* or a filename which includes the directory.
* Examples:
* exclude: win
* exclude: sys/shmsys

* forceload:
* Cause these modules to be loaded at boot time, (just before mounting
* the root filesystem) rather than at first reference. Note that
* forceload expects a filename which includes the directory. Also
* note that loading a module does not necessarily imply that it will

© 2002 by CRC Press LLC

* be installed.
* Example:
* forceload: drv/foo

* set:
* Set an integer variable in the kernel or a module to a new value.
* This facility should be used with caution. See system(4).
* Examples:
* To set variables in ‘unix’:
* set nautopush = 32
* set maxusers = 40
* To set a variable named ‘debug’ in the module named ‘test_module’
* set test_module:debug = 0 × 13

A single supported command is missing here: the include directive, which includes
the listed loadable modules. The command itself is pointless, because the system will,
by default, include all requested modules, so there is no need to use this command
at all.

In an ideal world, Solaris would correctly identify the system hardware environment
and automatically configure and build an appropriate kernel. In the real world, unfortu-
nately, flaky, nonstandard, or just buggy hardware (or sometimes software drivers them-
selves) can cause unexpected problems. That is why Solaris does not check by default for
a possible new hardware configuration when the system is rebooted; it is too expensive
and unnecessary. Testing to detect new hardware takes time, and changes in hardware
configuration are infrequent. And when they happen, we can explicitly require the system
to accomplish this task. This is indicated by the boot-argument “-r” which is passed to
the kernel to force hardware configuration checkup in such situations. By booting the
system from “ok” prompt:

ok boot -r

or, rebooting the system from the command prompt:

reboot-- -r (pay attention to doubled dash character, because the flag “-r” is
passed to the boot command as a boot-argument)

Correspondingly the startup procedure will include the search for its hardware config-
uration and all attached devices. Commands drvconfig and disks accomplish the same task
from the command line, each of them in its own area.

Solaris also provides several tools to display a current machine’s configuration —
commands like prtconf, sysdef, or modinfo:

• The prtconf command displays the machine’s general configuration, including
machine type, model number, amount of memory, and hardware information
about configured devices.

• The sysinfo command includes also pseudo-device drivers, tunable kernel param-
eters, and filenames of loaded modules.

• The modinfo command displays information about dynamically loaded modules.

To conclude, Solaris does not build the kernel image offline. All changes in the kernel
configuration implemented through the system specification file /etc/system will take
effect upon the next system booting, when all modified parameters will be loaded into

© 2002 by CRC Press LLC

the memory and the new kernel memory resident image will, assuming everything was
properly done, continue to run. However, there are not many “visible” indicators that the
configuration changes became really effective. The kernel image file /kernel/unix remains
unchanged, as well as other kernel module executables. Changes are loaded into memory,
and in some way hidden from a direct checkup; we can only indirectly come to conclusions
about changes through system behavior.

Stubborn administrators, who want to check new kernel configuration online, must take
a look into kernel memory resident data; the available tool is Solaris general-purpose debugger
adb. The following example describes how to check actual kernel parameters for sema-
phores, shared memory, and message queue on Solaris 2.7 (64-bit version).

Become a superuser and execute the following command sequence (# presents a command
prompt; additional comments are in bold):

uname –a # just to check system data
SunOS atlas 5.7 Generic sun4u sparc SUNW,Ultra-80
#
cd/
modload /kernel/sys/shmsys # force loads shm module
modload /kernel/sys/semsys # force loads sem module
modload /kernel/sys/msgsys # force loads msg module
adb -k /dev/ksyms /dev/mem # use adb to look at kernel
physmem 7cf0e

shminfo/2E2D # dumps the shm parameters (2 in unsigned
decimal format, and 2 in long decimal format)

shminfo:
shminfo: 1048576 1 100 6

seminfo/10D # dumps 10 sem parameters in long decimal format
seminfo:
seminfo: 10 10 60 30

25 10 10 104
32767 16384

msginfo/6D1u # dumps msg parameters (6 in long decimal
format and 1 in unsigned decimal format)

msginfo:
msginfo: 100 65535 65535 50

16 40 8192

$q # quits adb
back to the command prompt

How do we understand displayed kernel parameter values? And how do we specify an
appropriate number of parameters and a display format? These data could be found in the
corresponding header files in the /usr/include/sys directory (files shm.h, sem.h and msg.h).

For shared memory parameters:

cat /usr/include/sys/shm.h
.

/*
* IPC Shared Memory Facility.
*/

.

.
/*
* Shared memory information structure
*/

© 2002 by CRC Press LLC

struct shminfo {
size_t shmmax, /* max shared memory segment size */

shmmin; /* min shared memory segment size */
int shmmni, /* # of shared memory identifiers */

shmseg; /* max attached shared memory */
/* segments per process */

};
.
.

Each displayed value corresponds to a tunable “shared memory” parameter:

1048576 => shmmax
1 => shmmin

100 => shmmni
6 => shmseg

For semaphore parameters:

cat /usr/include/sys/sem.h
.

/*
* IPC Semaphore Facility.
*/

.

.
/*
* Semaphore information structure
*/
struct seminfo {

int semmap; /* # of entries in semaphore map */
int semmni; /* # of semaphore identifiers */
int semmns; /* # of semaphores in system */
int semmnu; /* # of undo structures in system */
int semmsl; /* max # of semaphores per id */
int semopm; /* max # of operations per semop call */
int semume; /* max # of undo entries per process */
int semusz; /* size in bytes of undo structure */
int semvmx; /* semaphore maximum value */
int semaem; /* adjust on exit max value */

};
.
.

Each displayed value corresponds to a tunable “semaphore” parameter:

100 => semmap

10 => semmni
60 => semmns

30 => semmnu
25 => semmsl

10 => semopm
10 => semume

104 => semusz

© 2002 by CRC Press LLC

32767 => semvmx
16384 => semaem

In this example, the displayed parameter values present default kernel parameters for
shared memory and semaphore; it means this very kernel has not been tuned in this
segment.

For “message” parameters:

cat /usr/include/sys/msg.h
.

/*
* IPC Message Facility.
*/

.

.
/*
* Message information structure.
*/
struct msginfo {

int msgmap; /* # of entries in msg map */
int msgmax; /* max message size */
int msgmnb; /* max # bytes on queue */
int msgmni; /* # of message queue identifiers */
int msgssz; /* msg segment size (should be word size multiple) */
int msgtql; /* # of system message headers */
ushort_t msgseg; /* # of msg segments (MUST BE < 32768) */

};
.
.

Correspondingly, displayed “message queue” values are:

10 => msgmap

65535 => msgmax
65535 => msgmnb

50 => msgmni
16 => msgssz

40 => msgtgl
8192 => msgseg

Finally, what is a Solaris fallback scenario if something really goes wrong with kernel
reconfiguration, so the system cannot boot properly. The approach is very similar to
SunOS, which is quite understandable keeping in mind the same vendor behind both
products. We should boot the system into single-user mode, replace kernel or kernel
configuration file, with “old good” data, and reboot the system into multi-user mode;
afterward we can continue our reconfiguration activities.

Once we halt the system and get the OK prompt (by typing the “halt” command, or by
sending “break” signal to the console < Stop-A >), we can boot the system into single-user
mode with the additional optional flag “-a” to be asked about kernel execution:

ok boot –as Will ask for kernel configuration data, such as where to find the
system file, where to mount root, and even override the name of the

© 2002 by CRC Press LLC

kernel itself. Default responses will be contained in square brackets,
and may simply be confirmed by hitting the RETURN key.

However, do not forget to save kernel core image and /etc/system file before any kernel
modification.

23.4.3 Linux Kernel Configuration

The official Linux kernel configuration file is the hidden file /usr/src/linux/.config. This file
specifies almost all kernel configuration data. We say “almost” because the tuning kernel
parameters (parameters that we are dealing mostly with) unfortunately are not a part of
this file; Linux handles them differently, and we will address them later. For a moment
we will focus on this file and the way to configure a new kernel.

The file /usr/src/linux/.config contains unusually huge numbers of kernel-related data,
allowing a detailed kernel specification regarding selected devices to be added, or compiled
as a loadable module. To avoid possible mistakes, Linux recommends not editing this file
directly, but rather using any of several tools available as “make” targets that make more
friendly user-interfaces for that purpose. Change the directory to /usr/src/linux and type:

• make xconfig — to bring up an X-based GUI
• make menuconfig — to invoke a cursor-based menu

• make config — to start a character based query-response dialogue
• make oldconfig — to carry the existing configuration to a new version with

minimal work

Obviously the presented sequence of available interfaces is directly related to how easy
the kernel configuration process will be; correspondingly GUI is the most comfortable,
but it requires a workable X environment, sometimes not available.

Nevertheless, whichever interface was implemented, the bottom line is a modified kernel
configuration file .config. The following example shows only a small piece of the content
of an actual configuration file for Linux kernel v.2.4.2. The idea is just to get a feel for
implemented configuration entries. The full listing of the file would probably take more
than 10 pages.

cat /usr/src/linux/.config
#
Automatically generated by make xconfig: don’t edit
#
CONFIG_X86 = y
CONFIG_ISA = y

.

.
#
Processor type and features
CONFIG_M386 is not set
CONFIG_M686 = y

.

.
#
General setup
CONFIG_NET = y
CONFIG_PCI = y

© 2002 by CRC Press LLC

.

.

.
#
ARCnet devices
CONFIG_DUMMY = m

.

.

.
#
Filesystems
CONFIG_QUOTA is not set
CONFIG_AUTOFS4_FS = y
CONFIG_VFAT_FS = m

.

.

.
#
Kernel hacking
CONFIG_MAGIC_SYSRQ is not set

The configuration file covers more than 40 different aspects of the kernel configuration,
and most of these aspects could be specified with multiple configuration entries — some-
times even a few dozen entries. Each entry could be set (specified as “y”), or “not set”
(commented-out), or realized as a loadable module (specified by “m”). Together they all
make a whole configuration scenario quite confusing. Fortunately, a default setting and
available tools, especially GUI with a decently verbose online help, make this task afford-
able. GUI is presented in Figure 23.1. Also our task is to reconfigure the existing kernel,
and usually it comes at the end to handle a limited number of configuration entries.

Following are a few notes about kernel configuration/reconfiguration:

• Having unnecessary drivers will make the kernel bigger, and can under some
circumstances lead to problems; a nonexistent controller card may confuse other
controllers.

• Compiling the kernel with a higher “processor type” could result in a not-
workable kernel.

• A kernel with math-emulation compiled in will still use the coprocessor if one
is present: the math emulation will just never get used in that case. The kernel
will be slightly larger but will work on different machines regardless of whether
they have a math coprocessor or not.

• The “kernel hacking” configuration details usually result in a bigger or slower
kernel (or both), and can even make the kernel less stable.

Once we are happy with implemented changes and the .config file is modified appro-
priately, we have to rebuild the kernel to make those changes effective. This is the routine
multistep procedure that we can summarize in the following way:

1. Run make depend, or the shorter version make dep, to set up all the dependencies
correctly.

2. Run make clean to make a clean build environment, although this step is not
mandatory.

3. Run make bzImage to create a compressed kernel image. To make a boot disk
(without root filesystem or LILO), insert a floppy disk and run make bzdisk.

© 2002 by CRC Press LLC

4. If any part of the kernel is specified as module, run make modules followed by
make modules_install.

5. Keep a backup kernel saved in case something goes wrong. Make sure to keep
a backup of the modules corresponding to that kernel, as well.

6. In order to boot a new kernel, the new kernel image /usr/src/linux/arch/i386/
boot/bzImage (obtained after compilation in step 3) should be copied to the place
where the regular bootable kernel is located, in most cases to be copied into
/boot/vmlinuz. Do not forget to save the old kernel image for a potential fallback
if it is overridden by the new one. However, it is not mandatory because the
new kernel could be named differently (both kernel images, the bootable kernel
and fallback kernel, are specified within the /etc/lilo.conf file).

7. Edit the /etc/lilo.conf file to reflect kernel configuration changes; specify the new
and fallback kernel images and reinstall boot loader LILO. Reinstalling of LILO
is accomplished by running the /sbin/lilo command.

8. After reinstalling LILO, the kernel configuration process is completed. To make
changes effective, system must be rebooted.

FIGURE 23.1
The GUI tool to configure the Linux kernel.

© 2002 by CRC Press LLC

An important step in kernel reconfiguration is an appropriate processing of the boot
loader LILO, which strictly speaking is not a part of the kernel at all. However, if the usual
kernel naming is preserved and both kernel images (the new and the old kernel image)
are copied over existing bootable and fallback kernels which are already specified in the
existing /etc/lilo.conf file, step 7 could be skipped.

The following example shows an actual LILO configuration file:

$ cat /etc/lilo.conf
boot = /dev/sda
map = /boot/map
install = /boot/boot.b
prompt
timeout = 30
linear
compact
image = /boot/vmlinuz-2.4.2

label = l-2.4.2
initrd = /boot/initrd-2. 4.2.img
read-only
root = /dev/md0

image = /boot/vmlinuz-2.2.14 –5.0smp
label = linux
initrd = /boot/initrd-2. 2.14–5.0smp.img
read-only
root = /dev/md0

image = /boot/vmlinuz-2.2.14 –5.0
label = linux-up
initrd = /boot/initrd-2. 2.14–5.0.img
read-only
root = /dev/md0

As can be seen above, a configuration file starts with a number of global options (the
top seven lines), followed by descriptions of the options for the various kernel images.
An option in an image description will override a global option. This file specifies kernel
images by using nonstandard kernel names. The newly compiled bootable kernel image
is /boot/vmlinuz-2.4.2, while two fallback kernel images are specified as /boot/vmlinuz-
2.2.14–5.0smp and /boot/vmlinuz-2.2.14–5.0. We will discuss later how to implement the
specified fallback kernel images.

Unfortunately, the kernel configuration file .config does not provide a mechanism for
tuning kernel parameters. Or maybe a more appropriate word is fortunately, because
requirements for the tuning of kernel parameters are more frequent, and the relatively
complex reconfiguration of the kernel is avoided. For this purpose Linux provides an
extensive kernel-to-user interface through “virtual files” in the /proc filesystem, or more
specifically, in the /proc/sys/kernel directory. Even more than that, to avoid a possible
confusion around existing /proc files (are they read-only or read-write), the handy front-
end command /sbin/sysctl is available.

The command sysctl is used to read and modify kernel parameters at runtime; the
parameters available are those listed under /proc/sys/, while tuning kernel parameters are
located in /proc/sys/kernel/. The command options are:

sysctl [-n] variable to read the specified parameter, for example:

sysctl kernel.ostype

kernel.ostype = Linux

© 2002 by CRC Press LLC

use the -n option to disable printing of the key name
when printing values:

sysctl -n kernel.ostype

Linux

sysctl [-n] variable = value to set an individual variable online; it remains effective
until the next reboot, for example:

sysctl kernel.ostype = RedHat

sysctl –w variable = value to change a setting in the /etc/sysctl.conf file, for example:

sysctl -w kernel.ostype = RadHat

sysctl –p /etc/sysctl.conf to load and make effective content of the specified sysctl

or, simply: sysctl -p configuration file (by default it is /etc/sysctl.conf); this
command option is applied during the system startup

sysctl –a to list all system configuration parameters and, among
them, also kernel parameters

The following example presents the output of the sysctl –a command; only kernel
parameters are fully listed (for other system parameters only one line is shown):

$ /sbin/sysctl -a
sunrpc.nlm_debug = 0

.
dev.raid.speed_limit_max = 100 000

.
fs.binfmt_misc.status = enabled

.
net.unix.max_dgram_qlen = 10

.
vm.page-cluster = 4

.
kernel.overflowgid = 65534
kernel.overflowuid = 65534
kernel.random.uuid = 2c396920 -8db7-4d2a-8dde-ed9fd456a0fe
kernel.random.boot_id = bc469e 92-1bc6-424d-9f81-abb2469eb495
kernel.random.write_wakeup_threshold = 128
kernel.random.read_wakeup_threshold = 8
kernel.random.entropy_avail = 0
kernel.random.poolsize = 512
kernel.threads-max = 131070
kernel.sem = 250 32000 32 128
kernel.msgmnb = 16384
kernel.msgmni = 16
kernel.msgmax = 8192
kernel.shmmni = 4096
kernel.shmall = 2097152
kernel.shmmax = 524288000
kernel.rtsig-max = 10 24
kernel.rtsig-nr = 0
kernel.modprobe = /sbin /modprobe
kernel.printk = 64 1 7
kernel.ctrl-alt-del = 0
kernel.real-root-dev = 2304
kernel.cap-bound = –257
kernel.panic = 60
kernel.domainname =

© 2002 by CRC Press LLC

kernel.hostname = atlas.scps.nyu.edu
kernel.version = #2 SMP Fri Feb 23 18:38:55 GMT 2001
kernel.osrelease = 2.4.2
kernel.ostype = Linux

Note: The same data could be seen by reading individual files in /proc/sys or, more specific
to the kernel, in /proc/sys/kernel directory.

Once we are familiar with the sysctl command, it becomes easy to tune the kernel
parameter. At the end the /etc/sysctl.conf file also should be modified to keep the tuned
changes permanent.

Finally, an actual /etc/sysctl.conf file is presented here:

$ cat /etc/sysctl.conf
#net.ipv4.ip_local_port_range = 32768–61000
#net.ipv4.ip_forward = 0
#net.ipv4.tcp_syncookies = 0
#net.ipv4.tcp_keepalive_probes = 1
#net.ipv4.ip_default_ttl = 64
#net.ipv4.tcp_keepalive_probes = 3
#net.ipv4.tcp_keepalive_time = 360
#net.ipv4.tcp_max_ka_probes = 5
#net.core.netdev_max_backlog = 1000
#net.core.rmem_default = 32768
#net.core.wmem_default = 131072
#net.core.rmem_max = 32768
#net.core.wmem_max = 131072
#net.core.optmem_max = 40960
fs.file-max = 16384
#fs.inode-nr = 65536
#net.ipv4.tcp_window_scaling = 0
kernel.shmmax = 524288000
kernel.panic = 60

Obviously, in this specific case most of the kernel parameters have their default values.
By the way, they are listed in the previously presented sysctl –a output.

And last but not least is the question of what to do if something goes wrong with the
newly reconfigured kernel. How do we accomplish the required fallback?

Assuming an appropriate LILO configuration, where the bootable and one or more
fallback kernel images are properly specified, the fallback becomes trivial. When booting,
the boot loader will wait by default for four seconds (40 deciseconds, 1decisecond is 1/10
of a second), or whatever is specified in the LILO configuration file, for us to press Shift.
If we do not, then the first specified kernel image (in our example /boot/vmlinuz-2.4.2,
that was probably installed just a few minutes ago) will be booted. If we do, the boot
loader will ask which image to boot. In case we forgot the possible choices, we can press
[TAB] or [?], and a corresponding menu with available kernel images will be presented.
We now have the choice of booting this brand new kernel, or an old trusted fallback kernel
/boot/vmlinuz-2.2.14-5.0smp , or a third specified kernel /boot/vmlinuz-2.2.14-5.0, or what-
ever. There can be up to 16 kernel images specified in the /etc/lilo.conf file.

© 2002 by CRC Press LLC

24
Modems and UUCP

24.1 Introduction to Modems

A modem is a telecommunication device that provides long-distance data transfer over
a transmission line to reach another remote device. Long-distance data transfer is based
on the fact that the data stream is modulated into the robust carrier suitable for remote
transmission, which is then demodulated on the receiving end. Basically, data are inserted
into some of the carrier parameters, to be later extracted and retrieved. Modulation
techniques could be different, i.e., different carrier parameters could be affected: amplitude,
frequency, phase, or other, and they identify the type of a modem. Each modem consists of
two parts:

• Transmitter, or modulator, which provides a modulation of input data into the
carrier suitable for remote data transfer.

• Receiver, or demodulator, which provides demodulation of received carrier and
extraction of transferred data.

The name modem presents an acronym for MOdulator-DEModulator and identifies
a single bidirectional transmission device. The transmission is performed serially, asynchro-
nously, or synchronously, in the half-duplex mode where a data transmit and receive are
performed at different times, or in the full-duplex mode where a data transmit and receive are
performed simultaneously. The implemented modulation techniques and the transmission
speeds could be different, but two modems involved in the communication at two ends of
a transmission line must be mutually compatible.

By attaching modems to computers, two remote computers can interchange data.
Historically, modems were used a long time before LANs appeared, and for quite a time
they presented the only devices suitable for remote computer communication. UNIX
designers had in mind modems to connect distant computer systems when they intro-
duced UUCP. Remote terminals also used modems to connect to a computer system, and
this is partially covered in Chapter 11 about terminals. Today modems are primarily used
to connect home computer systems to ISP servers that provide an access to the Internet.
Physically, modems are attached to the computer serial ports, the same ones that could
be used to attach any other terminal. That fact is important for the discussion that follows.

In the past modems presented “dumb” devices that only provided a conversion of serial data
signals into the form suitable for remote transmission, and vice versa. Only a few control

© 2002 by CRC Press LLC

signals have been used between DCE (data communication equipment) like a computer’s
serial interface, and DTE (data terminal equipment), i.e., the modem itself. Signals like
request to send (RTS), clear to send (CTS), and data carrier detect (DCD), played the main
role (besides DSR — data set ready — and DTR — data terminal ready signals). New
technologies brought many improvements into the modem arena; modems became
“smart” devices and opened new horizons for their implementations. Probably the main
change was a possibility for an independent modem configuration in an extremely flexible
way. A new ASCII-based protocol, known as AT commands, has been introduced for that
purpose; by issuing a sequence of AT commands from the computer, a modem can be
configured in different ways to match different needs.

Short and cryptic AT commands are always prefaced by the letters “AT,” which stand for
“attention — expect a command to follow.” Several AT commands could be combined
behind the same AT prefix, making the command syntax more condensed. While AT
commands are quite cryptic for us, they are very comprehensive for a modem itself, and
set the modem appropriately. A flexible modem configuration improves modem efficiency,
making data transmission easier for the computer itself. Modems are independent in
establishing mutual connection; the initial communication sequence between two distant
modems (known as modem handshake) checks for the actual quality of interconnecting
media and adjusts for optimal modem speed and modulation parameters. This modem
adaptability guarantees an optimal data transmission.

AT commands are beyond the scope of this text; we will strictly address UNIX modem-
related issues. However, AT commands are parts of communication programs which
support data transmission, and familiarity with AT commands is always instrumental in fully
understanding how modems work.

Once a modem is put in operation, the central issue becomes how to efficiently transfer
data over such a low-speed device (for many years even 300 bps modems have been rare).
In other words, how to optimally organize data transfer keeping in mind all the frustrating
modem characteristics. Many file transfer protocols have been introduced, and some of them
remained in use till nowadays:

• Xmodem is one of the most used file transfer protocols. Originally it used 128B
packets and simple checksum method of error detection. Later enhancements,
Xmodem-CRC and Xmodem-1K, present improved versions of the original Xmodem
protocol.

• Ymodem is essentially the Xmodem-1K protocol that allows multiple batch file
transfer. Its improved variant is Ymodem-g that supports error-control modems.

• Zmodem is generally the best protocol that has two significant features: it is
more efficient and it provides crash recovery. If a Zmodem transfer is interrupted
for any reason, the transfer can be resurrected later and already transferred data
need not be re-sent.

Listed protocols are supported by following send/receive programs: sx and rx, sy and ry,
and sz and rz, respectively, which are available also on UNIX platform.

24.1.1 UNIX and Modems

To clarify the relationship between UNIX and modems, we must keep in mind that for a
long time, a modem has been treated primarily as a part of the transmission line and not
the computer system itself. The modem, as a terminating part of the transmission line,
was connected to a serial interface, and correspondingly UNIX has focused on how to

© 2002 by CRC Press LLC

control the serial interface. So modem control actually refers to controlling serial lines that
traditionally have been dedicated to connect user terminals.

A long-standing deficiency of most UNIX implementations was the inability for the
same modem to be used to dial in and dial out simultaneously, in a full-duplex mode. The two
main reasons for this were:

1. The driver that controls the serial port was designed for another purpose — to
control data flow between a terminal and the system. So, the driver monitors
for the specific signal that identifies the presence of data on the line, the data
carrier detect signal (DCD), to start any communication with the attached
terminal.

2. And, when a DCD signal is detected, a getty program is invoked to start a login
process, i.e., to put the login prompt on the line.

This is quite OK when an attached terminal dials in, even if it is done over a modem.
However, what happens if the system itself should initialize the communication over the
modem? Obviously, when the system dials out, the DCD signal is missing. Another
obstacle presents the getty program itself. If a remote system attempts to start a commu-
nication, getty may respond to the dialed remote system with a login prompt; and if the
remote system reacts in the very same way, sending its own login prompt, the connection
can never be established. Two systems send repeated login and password messages at each
other, leaving the connection in a kind of deadly embrace.

It is also fair to say that modems have never been a real UNIX concern. Once networking
boomed, and UNIX so successfully merged with networking, modems were pushed even
more to the side. UNIX focused on providing basic network services, and a network
connection became an integral part of each UNIX system. Modems are more attractive
for the desktop side where UNIX never dominated. It does not mean that UNIX has
completely ignored modem topics; each UNIX flavor provides some kind of modem
control. It also gave a chance to third-party developers to fill the existing gap, providing
needed software widely implemented on all UNIX platforms.

24.2 UNIX Modem Control

The lack of a general UNIX approach to control modems resulted in many different, flavor-
specific solutions. In an early UNIX phase, solutions were based on flexible UNIX
organization and existing functions of a similar nature and purpose; later, each flavor
introduced some kind of modem-related commands and sometimes modem control relays
on the third-party UNIX upgrade. We briefly discuss all three listed approaches.

24.2.1 Terminal Lines and Modem Control

This approach probably belongs to history, but it is illustrative to understand a conflicting
situation in attaching a general-purpose bidirectional modem to a dedicated serial
terminal line. It is important to understand that the obstacle is not the used serial port (the
implemented hardware itself allows bidirectional serial communication), but rather the
existing control software, primarily the invoked getty program on the terminal line at system
startup.

© 2002 by CRC Press LLC

UNIX provided different flavor-colored solutions for this problem. SunOS has a mechanism
that allows a serial port to be used in both directions; the driver supports two entry points,
one for each direction. For each terminal line identified by the device tty0–tty127, the
existing driver is monitoring for DCD (data carrier detect) signal and puts up a getty
program. Devices with minor numbers 128–255 (by convention named cu0–cu127) refer to the
same physical devices but allow the device to be opened even when DCD is not present.
The net effect is that a modem can be attached to a terminal line ttyn (by convention
usually renamed to ttydn) and used for dial-in, but also used for dial-out when referred
to by the name cuan.

The administrator should create two different special files for the terminal line to which
the modem is attached; for dial-in — /dev/ttydn (n = modem line number) and for
corresponding dial-out — /dev/cuan. The dial-in device /dev/ttydn would be entered as
a normal entry in the terminal line configuration file /etc/ttytab.

The two special files differ only in their minor device numbers (subtype within device
class), with an offset of 128 (could be seen by the ls -l command). To create these special
files, the mknod command is used, as for any other device. Here is an example:

mknod /dev/ttyd1 c 12 1

mknod /dev/cua1 c 12 129

Two character special files for the class 12 (terminal lines) are created. The corresponding
entries for terminal lines in the /etc/ttytab should be replaced with:

The following entries represent the same physical modem

ttyd1 “/usr/etc/getty d2400” unknown on # dialin entry (enabled)

cua1 none unknown off # dialout entry (disabled)

Finally, the “software carrier detect” for the dial-out version of the port should be
disabled:

ttysoftcar n /dev/cua1

Once it is done, the use of special files /etc/ttyd1 and /etc/cua1 is possible.
For more detailed explanations and complete installation, SunOS provides the manual

page named zs.
System V UNIX flavors specify the terminal line, i.e., serial port initialization, through

the /etc/inittab file. When a modem is attached to the system, the appropriate port must
be enabled for duplex communication. It can be done by replacing the getty program in
the corresponding inittab-entry with another, more sophisticated program that supports
both, getty and duplex communication (such programs exist on the System V, for example
the program uugetty). An inittab-entry could be:

27:2:respawn:/usr/lib/uucp/uugetty -r tty12 2400

Another approach is also possible; to invoke the init program to reinitialize the terminal
line for dial-in and dial-out, using different init-run-levels (for example, 2 and 3). Then, invoking

init 2

© 2002 by CRC Press LLC

will initialize the terminal line for dial-in, including the getty program (the corresponding
inittab-entry with the getty must exist for run-level #2). By invoking

init 3,

the terminal line will be enabled for dial-out (the previous inittab-entry with the getty must be
excluded from the run-level #3).

24.2.2 Modem-Related UNIX Commands

There is no uniform UNIX set of modem-related commands; they are always flavor
specific. Most UNIX flavors point to the command uugetty, but this command was
primarily designed for a different purpose; more about this command and its implemen-
tation can be found in the section on UUCP. Several other commands will be briefly
described, or sometimes even only listed in the following text.

24.2.2.1 The cu Command

cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. The
command exists, for example, on Solaris and HP-UX flavors. It manages an interactive
conversation with possible transfers of files. It is convenient to think of cu as operating
in two phases:

1. The connection phase in which the connection is established
2. The conversation phase

The format of the command is:

cu options { telno /systemname }

cu accepts many options. The -c, -l, and -s options play a part in selecting the medium;
the remaining options are used in configuring the line. The command is directly related
to UUCP, and it uses some UUCP configuration data. Some of the options are listed.

Option Meaning

-c device Force cu to use configuration entries in the UUCP file /etc/uucp/Devices that match the user
specified device.

-s speed Specify the transmission speed; the default value is “Any” speed that depends on the
/etc/uucp/Devices file.

-l line Specify a device name to use as the communication line. Combined with other options could
also depend on the UUCP configuration files. The most common case is that a specified
device is a directly connected asynchronous line (for instance, /dev/term/a) required. However
the specified device need not be in the /dev directory. If the specified device is associated with
an auto dialer, a telephone number must be provided.

-b bits Specifies the number of bits processed on the line (either 7 or 8). This allows connection between
systems with different character sizes. By default, the character size of the line is set to the same
as the current local terminal.

telno When using an automatic dialer, specifies the telephone number; the equal sign “=” identifies
secondary dial tone, while the minus sign “-” placed appropriately, a delay of 4 seconds.

systemname Specifies a system name, which can be used rather than a telephone number. In this case,
cu will obtain an appropriate direct line or telephone number from a UUCP system file.

© 2002 by CRC Press LLC

For example:

• To dial a system whose telephone number is 9-1-212-567-1234 using 2400 baud
(where dial tone is expected after the 9):

cu -s 2400 9 = 12125671234

• To log in to a system connected by a direct line:

cu -l /dev/term/b

• To dial a system with a specific line and speed:

cu -s 1200 -l term/b

• To use a system name:

cu systemname

24.2.2.2 The tip Command

The tip command (or utility) connects to the remote system and establishes a full-duplex
terminal connection. Once the connection is established, a remote session using tip behaves
like an interactive session on a local terminal. The command is Solaris flavored.

The format of the command is:

tip [-v] [-speed-entry] { hostname | phone-number | device }

The remote file contains entries describing remote systems and line speeds used by tip.
Each host has a default baud rate for the connection, or the speed is specified in the speed-
entry option.

When phone number is specified, tip looks for an entry in the remote file of the form:
tip -speed-entry to set the connection speed accordingly.

When device is specified, tip attempts to open that device, but will do so using the
access privileges of the user (the user must have read/write access to the device). tip
interprets any character string beginning with the slash character (/) as a device name.

When establishing the connection, tip sends a connection message to the remote system.
The default value for this message can be found in the remote file.

When tip starts up, it reads commands from the file .tiprc in the user’s home directory.
Some other UNIX commands that belong to this category are, for example, the Solaris-

flavored commands ttymon and ttyadm for control of the serial lines, or the same purpose
Linux-flavored commands mgetty or agetty.

24.3 Third-Party Communication Software

The existing “gap” in the full UNIX control of modems is partially filled with the third-
party software. Most of this software is available across different UNIX flavors, sometimes
free for an implementaion, and sometimes even distributed with the operating system
itself. Popular programs of this type are, for example, minicom, C-kermit, ecu, pcomm/
procomm, or xcomm. We will briefly present the C-kermit program.

© 2002 by CRC Press LLC

24.3.1 C-Kermit

Kermit is a family of file transfer, management, and communication software programs
from Columbia University available for most computers and operating systems (known
as C-kermit). The version of Kermit for UNIX supports both serial connections (direct or
dialed) and TCP/IP connections. C-Kermit can be thought of as a user-friendly and
powerful alternative to cu, tip, uucp, ftp, and telnet; a single package for both network
and serial communications, offering automation, convenience, and language features not
found in the other packages. It fully supports modem dialing, file transfer and manage-
ment, terminal connection, character-set translation, and script programming. Together,
C-Kermit, Kermit 95, MS-DOS Kermit, and IBM Mainframe Kermit offer a consistent and
nearly universal approach to inter-computer communications.

C-Kermit is Copyright (C) 1985, 1996 by the Trustees of Columbia University in the City
of New York. The copyright notice must not be removed, altered, or obscured.

C-Kermit is thoroughly documented in the book by Frank da Cruz and Christine M.
Gianone, Digital Press, Second Edition, 1997. For serious users of C-Kermit, particularly
those who plan to write C-Kermit script programs, this book is highly recommended.
Book sales are the primary source of funding for the nonprofit Kermit Project. New features
added since the most recent edition of the book was published are documented in the
online file ckcker.upd. Hints, tips, limitations, and restrictions are listed in ckcker.bwr (general
C-Kermit) and ckuker.bwr (UNIX-specific); http link is www.columbia. edu/kermit/.

C-Kermit can be used in two modes:

1. Remote mode when C-Kermit establishes a connection to another computer by
direct serial connection, by dialing a modem, or by making a network connection.

2. Local mode when C-Kermit gives a terminal connection to the remote computer,
using an actual terminal, emulator, or UNIX workstation terminal window or
console driver for specific terminal emulation.

C-Kermit also has two types of commands:

1. The familiar UNIX-style command-line options.

2. An interactive dialog with a prompt that provides a small but useful subset of
C-Kermit’s features for terminal connection and file transfer, plus the ability to
pipe files into or out of C-Kermit for transfer. It also provides an access to dialing,
script programming, character-set translation, and in general, detailed control
and display of all C-Kermit’s features. Interactive commands can also be
collected into command files or macros.

The format of the command to start C-Kermit is:

kermit [command-file] [options…]

Among the options there is a group of so-called action options that require certain actions
to be accomplished. If there are no action options on the command line, C-Kermit starts
in interactive command mode: a greeting message and then the “C-Kermit>” prompt. If the
action options are specified on the command line, C-Kermit takes the indicated actions
and then exits directly back to UNIX. Either way, C-Kermit executes the commands in its
initialization file ckermit.ini (usually located in the directory /usr/share/lib/kermit), before it
executes any other commands. An exception is when an alternative initialization is explicitly
requested.

© 2002 by CRC Press LLC

C-Kermit is an extremely powerful and versatile program with many C-Kermit commands
for:

• Program management

• Connection establishment and release
• Terminal connection

• File transfer
• File management

• Client/server operation
• Script programming

Each of the listed command groups contain a decent number of C-Kermit commands; all
together it enables the most sophisticated tasks to be successfully completed. It is common
to specify C-Kermit commands with capital letters, and we will follow this convention.

A large number of existing options can also be divided into:

• Action options of the type connect, send/receive files, enter/terminate server
mode and similar

• Setting options that specify in more detail different kermit parameters involved
in the file transfer, connection procedure, and similar

• Other options of the type skip/alternate initialization, foreground, background,
forced stay, explicit interactive, remote, or debug mode, etc.

For a better understanding of how C-Kermit works, let’s see the most common scenario
for C-Kermit file transfer between two directly connected computers, identified here as
local and remote computer. The file transfer is slightly different over the network.
Although other methods are also possible, this basic method should work in all cases, and
it consists of:

• Start C-Kermit on the local computer and establish a connection to the remote
computer. Use the sequence:

SET MODEM TYPE modem-name
SET LINE device-name

SET SPEED bits-per-second
DIAL phone-number if you are dialing.

(SET NETWORK network-type and SET HOST host-name-or-address for net-
work connections).

• Set any other necessary communication parameters, such as PARITY, DUPLEX,
and FLOW-CONTROL.

• Give the CONNECT command.
• Log in to the remote computer.

• Start C-Kermit on the remote computer, give any desired SET commands for the
file, communication, or protocol-related parameters. If a transfer of binary files
is supposed, on the transmitting side SET FILE TYPE BINARY to the C-Kermit
program.

© 2002 by CRC Press LLC

• To transfer a file or file group, give the local C-Kermit a SEND command,
followed by a filename or “wildcard” file specification, for example:

send filename.txt # (send one file)
send filename.* # (send a group of files)

• To receive a file or files, give the remote C-Kermit a RECEIVE command. The send-
ing and receiving C-Kermit will exchange name and other attributes of each file.

• Escape back to the C-Kermit program on the local computer to get a local Kermit
program’s prompt.

• To transfer binary files, give the command SET FILE TYPE BINARY to the Kermit
program that is sending the files.

• To receive files, tell the local C-Kermit program to RECEIVE; to transfer files tell
the local C-Kermit program to SEND, specifying a filename or wildcard file
specification. In other words, tell the C-Kermit program what to do first, SEND
or RECEIVE, then escape back to the local C-Kermit and give it the opposite
command, RECEIVE or SEND.

• When the transfer is complete, give a CONNECT command to talk to C-Kermit
on the remote computer again. Type EXIT to get back to the command prompt
on the remote computer. When everything is done, log out and then (if necessary)
escape back to Kermit on the local computer. Then another connection could be
made, or EXIT from the local C-Kermit program.

C-Kermit’s file transfer protocol defaults are deliberately conservative, resulting in file
transfer that almost always works, but might be somewhat slow. To increase file transfer
performance on computers and connections that permit it, use:

SET RECEIVE PACKET-LENGTH to increase the packet length

SET WINDOW to increase the packet window size
SET PREFIXING to reduce the overhead of control-character prefixing

Alternatively, it is worth it to try the FAST command to enable all these performance
options at once. Also on serial connections, use hardware flow control (SET FLOW RTS/
CTS) if available, rather than software (XON/XOFF) flow control.

Obviously, there are quite a number of steps that should be properly done for a successful
output. It sounds like a good idea to script a quite complex scenario and make everything
much simpler.

Two examples how to use C-Kermit :

• Remote-mode example (C-Kermit is on the far end) — send the file “filename.bin”
in the binary mode (option -i) using a window size of 4 (option -v 4):

kermit -v 4 -i -s filename.bin

• Local-mode example (C-Kermit makes the connection):
kermit -l /dev/tty0p0 -b 19200 -c -r -n

This command takes following actions:
Makes a 19200-bps direct connection through the device /dev/tty0p0
Connects (option -c) to login
Presumably starts a remote C-Kermit program and tells it to send a file
Receives the file (option -r)
Then connects back (option -n) to finish up and log out

© 2002 by CRC Press LLC

For dialing out, specify a modem type, and use a different device name:

kermit -m hayes -l /dev/cul0p0 -b 2400 -c -r –n

At the end let’s see one quite complex real-life example. The task is to transfer data on
a regular daily basis from a UNIX system to the bulletin-board site. The available resources
are: 16-line modem pool (modem server) on the local area network and used by many
users, and public telephone network. The UNIX system accesses the modem pool through
the local area network. The solution presented here supposes:

• Data to be transferred are ready and saved in the file “FileToGo.”

• A dynamic creation of the “take-file” that will reflect the actual environment and
status of modem lines.

• Invoke the C-Kermit program (the file “take-file” is used for its initialization).

• A file transfer from UNIX system to the bulletin-board site with a verbose message
displaying.

The following script named “bbkermit.ksh” fully accomplishes this task. The command
syntax is:

/share/local/ckermit/bin/bbkermit.ksh /share/local/ckermit/etc/bbkermit.ini

Assuming specified paths and filenames (filenames are presented in bold), the script
dynamically specifies the so-called take-file and then invokes C-Kermit program, which uses
the so created take-file for its own initialization. The created take-file consists of two parts:

1. Dynamic modem-pool-related portion created in the script
2. Static bulletin-board-specific portion specified in the passed file bbkermit.init

The presented script bbkermit.ksh, as well as bbkermit.ini file, corresponds to a specific
C-Kermit implementation; however, they can be easily used as templates for many other
similar implementations. Both are well commented and quite comprehensive. Please read
them for more detailed information.

$ cat bbkermit.ksh
#!/bin/ksh
#
This script modifies kermit take-file, and accomplishes the transfer of the file
FileToGo to the bulletin-board site via 24-port modem-pool. The modified
kermit take-file consists of two major part: modem-pool specific part dynamically
specified within this script, and static site specific part specified in the file “bbsite.ini”,
and passed as an argument to this script. To fully understand this script a basic
knowledge of C-Kermit is supposed. All path and file names are arbitrary

Define global variables
CKERMIT=/share/local/c-kermit/bin/kermit # C-Kermit executable
ZMDIR=/share/local/zmodem/bin # zmodem executables directory
mpool=mpoolhost # actual modem-pool host name
user=modpool # actual modem-pool user ID
password=abc48fgh # actual modem-pool password
min_port= 2000 # starting modem-pool port number
max_port= 2024 # ending modem-pool port number

© 2002 by CRC Press LLC

Define a usage statement function
function show_usage {

echo “Usage: bbkermit.ksh <takefile>”
}

Check usage
if [$# -lt 1]; then

show_usage
fi
takefile=$1

Check specified file
if [! -f “$takefile”]; then

echo “Error: Cannot read file ‘$takefile’”
exit 1

fi

Create a temporary file that can only be read by the current user
This file will keep final kermit take-file data
TMPFILE=/tmp/bbkermit.$$
touch $TMPFILE
chmod 600 $TMPFILE

Create the final ‘take’ file for kermit dynamically
The “here document” specifies a sequence of C-Kermit
commands for the final kermit take-file

cat << !EOF > $TMPFILE

########### Start of the here document ##############

Setup the paths and macros for the zmodem executables
All zmodem executables named sz, sb, sx, csz, csb and csx,
as well as rz, rb, rx, crz, crb and crx reside in this directory
define \%t $ZMDIR

Setup send macro definitions
define sz if = \v(argc) 1 end 1 {sz what file(s)?}, -
redirect \%t/csz \%1 \%2 \%3 \%4 \%5 \%6 \%7 \%8 \%9
define sb if = \v(argc) 1 end 1 {sb what file(s)?}, -
redirect \%t/csb \%1 \%2 \%3 \%4 \%5 \%6 \%7 \%8 \%9
define sx if = \v(argc) 1 end 1 {sx what file?}, -
redirect \%t/csx \%1 \%2 \%3 \%4 \%5 \%6 \%7

Setup receive macro definitions
define rz redirect \%t/crz
define rb redirect \%t/crb
define rx if = \v(argc) 1 end 1 {rx what file?}, -
redirect \%t/crx \%1

Define the starting modem-pool port number
define \%p $min_port

This is the reference starting point to acquire a free modem-pool port
:ACQUIRE_MODEM

Clear the line (Only needed for multiple passes through this loop)
hangup

Increment the port (\%p) by one (The real starting port is 2001)
assign \%p \Feval(\%p + 1)

If we’ve tried all the ports and can’t get in, then just exit
if > \%p $max_port exit 1

Attempt to connect to the specified port
echo Attempting to connect on port \%p
telnet $mpool \%p

© 2002 by CRC Press LLC

If port is in use, then jump back up to :ACQUIRE_MODEM and try the next port
if failure goto ACQUIRE_MODEM

Log into modem-pool
input 5 sername:
if failure goto ACQUIRE_MODEM

Enter userid and password
output $user\13
input 5 assword:
if failure goto ACQUIRE_MODEM
To prevent the appearance of the clear password in the take-file
the password itself is previously saved in the kermit variable “\%w”
output \%w\13
sleep 3

Check that modem is responding
output AT\13
input 5 OK if failure goto ACQUIRE_MODEM

!EOF
########### End of the here document ##############

Add the user specified take-file onto the end of the temporary file
cat $takefile >> $TMPFILE
if [$? -ne 0]; then

rm $TMPFILE
exit 1

fi
Run kermit using TMPFILE as a final take-file. The password is
define here, so that it won’t show up in the temporary file.

$CKERMIT << !EOF
define \%w $password
take $TMPFILE
!EOF

Remove tempfile
rm -f $TMPFILE

The kermit initialization file follows:

$ cat bbsite.ini
This file presents the second portion of the kermit initialization sequence
that is dynamically created before the C-Kermit invocation and saved in the
then created kermit take-file. It contains bulletin-board site specific data,
cannot be copied as it is. The displayed syntax is C-Kermit specific.
Phone number to dial
output ATDT12125671234\13

The following sequence depends on the actual dialogue between
this host and the bulletin-board site. Each input entry specifies the
time to wait and the expected “pattern” to be received

input 70 CONNECT
if failure goto ACQUIRE_MODEM

input 20 logon id:
if failure goto ACQUIRE_MODEM
Login ID – for zmodem TP002324
output TP002324\13

input 20 password:
if failure goto ACQUIRE_MODEM
No password on this account
output \13

© 2002 by CRC Press LLC

input 20 cmd>
if failure exit 1
zmodem production= 1224, test= 1299
output $$ADD ID=TP002324 BID=‘TESTING’\13

input 20 seconds
if failure exit 1
Change directory for file to send named FileToGo
cd /share/bulletin-board/data

Send the file with periodic (fake) key insertion
Program “sz” to transmit the file is dynamically set
sz -w16384 FileToGo
if failure exit 2

input 50 cmd>
if failure exit 1
output LOGOFF\13
input 30 LOGOFF completed

24.4 Introduction to UUCP

UUCP stands for “UNIX to UNIX Copy” and represents a collection of programs designed
to provide communication between different UNIX systems. UUCP performs: a transfer of
files between UNIX systems; a command execution on a remote UNIX system; and mailing
to users on a remote UNIX system. Basically, UUCP uses standard serial connections and
a telephone service, but could also run on local networks. Each connection is established
on a user-request basis, creating a corresponding dial-up link. Each UNIX system involved
in an UUCP connection has files that describe the other systems directly linked to it,
including the type of the available links. To create these files is the task of the system
administrator; generally, UUCP requires minimal supervision and overall administration.

UUCP is an old-fashioned UNIX subsystem; nowadays, many will say an obsolete topic.
However, a more accurate description could be: UUCP appeared relatively early, but it is
still going on and is trying to keep pace with other, more-advanced communication
technologies; in other words UUCP is still in use — not very often, but sufficiently often
to find its place among other overall UNIX administration topics. The UUCP skills could
also be useful in managing some other UNIX issues, especially in the modem-related area.
Finally, thanks to the UUCP, the author of this text has been able to stay in daily touch
with friends in one besieged city, during one senseless war; UUCP deserves, at least, to
be a part of this text.

UUCP also supports Usenet, a bulletin-board network that uses the public domain
Netnews software to exchange news about a wide variety of topics.

24.4.1 How Does UUCP Work?

Using UUCP basically means dealing with three main programs:

1. uucp, for a file transfer to or from a remote machine (similar to the cp program;
however, with extended addressing capabilities)

2. uux, for a command execution on a remote machine (usually restricted in some
way because of security reasons)

© 2002 by CRC Press LLC

3. mail, a version of a mail program that is compatible with UUCP (this is /bin/
mail; it should not be confused with /usr/ucb/mail that is an e-mail user agent that
was discussed in the Chapter 20)

The listed programs are user related, i.e., they are primarily used from the command
line. However, it happens much more in the background; two running UUCP daemons,
uucico and uuxqt, invisible to users actually do most of the work. uucico is involved in
transferring files and remote execution requests between UNIX systems, and uuxqt in
their processing on a remote UNIX system.

UUCP is a “store-and-forward” subsystem: requests for transfer and remote processing
are not executed immediately; instead they are spooled for later execution. UUCP daemons
take care of spooled requests and process them once the connection between remote UNIX
systems has been established. A more detailed description of what happens is:

• When uucp or uux programs are invoked, a “work file” containing information
about the source and destination files, the program options, and the type of
requests is created in the directory /usr/spool/uucp. If a file transfer was required,
a file to be transferred is also copied.

• The uucico daemon is involved to make the transfer; it scans the spool directory
for work files and attempts to contact specified remote UNIX systems and execute
the instructions in the work files. In the BNU UUCP version, an intermediate
process called uusched does the scan and calls uucico when the needed conditions
are met.

• The work files contain only a part of the information uucico needs to know:
what to do, but not when or how to do it. This information is contained in a set
of the UUCP configuration files in the directory /usr/lib/uucp, and this is a duty
of the system administrator to set up in advance.

24.4.2 UUCP Versions

The first UUCP system was built in 1976 at AT&T Bell Laboratories, and this version was
known as Version 2 UUCP. It was distributed with UNIX Version 7 in 1977. Updated
versions were already incorporated in the SVR1 and SVR2 platforms.

Soon, UUCP was included in BSD 4x UNIX platform, as well as in other vendor-specific
UNIX flavors: Sun Microsystems SunOS and DEC’s Ultrix. The version shipped with BSD
4.2 was known as Truscott UUCP. All those UUCP versions were based on the updates
made at Duke University (known as Duke UUCP, which is no longer in use).

With SVR3, a new upgraded version known as BNU (an acronym for basic network utility)
began to be distributed. This version was/is also known as HoneyDanBer UUCP. Further
UUCP improvement and update continued on both major UNIX platforms. The BSD 4.3’s
UUCP presented another significant update, merging some BNU features while retaining
more continuity with other Version 2 UUCP implementations. The trend has continued
up to the present time. Typically, as for all of UNIX, different UUCP flavors and versions
have much in common, and they provide the very same tasks. A kind of generalization
could be to say that the BSD-like UNIX platforms were primarily oriented toward the
Version 2 UUCP, while the System V-like UNIX platforms were BNU UUCP oriented. We
will discuss this topic bearing in mind both major UUCP versions, underlying specific
differences as they appear.

How can we be sure about a running UUCP version? By listing the /usr/lib/uucp directory
and searching for some typical files, we can conclude something; if the file L.sys is there,

© 2002 by CRC Press LLC

this is Version 2 UUCP; otherwise, the file Systems belongs to BNU UUCP. The “UUCP
home directory” has been changed; for example on SunOS, the file /etc/uucp/L.sys existed.
Nowadays, Solaris, HP-UX and other modern UNIX flavors, keep UUCP configuration
files in the /etc/uucp directory.

24.4.3 UUCP Chat-Transfer Session

Assuming the basic idea of how UUCP works, let us analyze in more detail a UUCP
session. Let’s suppose a hypothetical case:

• Two remote UNIX hosts: red and blue have all the facilities to communicate over
the telephone network.

• A UUCP file transfer from the host red for the host blue is initiated.
• Both hosts are set up appropriately.

The last line saying: “set up appropriately” is the crucial one; the way the hosts would
communicate absolutely depends on the way the UUCP subsystems are configured. Every-
thing is written in the UUCP configuration file: on a BNU UUCP subsystem the /etc/uucp/
Systems file (earlier /usr/lib/uucp/Systems), or on a Version 2 UUCP subsystem the /etc/uucp/
L.sys file (or /usr/lib/uucp/L.sys).

A corresponding configuration entry at the host red would look like:

blue Any ACU 19200 3217654 ogin: iamred ssword: passme

This entry defines that the system red can call the system blue:

• At any time
• Over a modem connected to a telephone line (ACU = Automatic Calling Unit)

• At a speed of 19200 bps
• Using the telephone number 3217654

• Logging in with login name: iamred

• Identifying with password: passme

A UUCP session for the supposed configuration data starts with a user’s command at
the host red and continues until the remote system daemon at the host blue verifies the
transfer.

If there are multiple ways to reach a remote host, it could be multiple entries for that
host in the configuration file. However, the configuration file (Systems or L.sys) only includes
a designation for the specified connection; it does not describe the implemented hardware.
Another file, Devices in BNU (or L-devices in Version 2), contains one-to-one mapping
between the designated connection and what device name the daemon uucico should use
to access the actual device (for example, the serial line to use). If a device is a modem,
additional needed information how to dial could be found in the file acucap, or Dialers in
BNU (or modemcap in Version 2). In the early days of UUCP, some UUCP versions even
had dialing instructions hardcored into the uucp program.

There are several reasons why the file transfer may not occur immediately. First, the
transfer can be restricted to a particular time (through the configuration file itself); second,

© 2002 by CRC Press LLC

the telephone line can be busy at that very moment. In that case, uucico will leave the
corresponding status file and try again the next time it is invoked. The procedure will
repeat until successful transfer is performed, or the minimum retry period has elapsed
(by default, 55 or 60 minutes).

The file transfer is performed between two uucico daemons, on the source and the
destination host. The uucico on the source (calling) system is playing “master role” — it
controls the link; the uucico on the destination (receiving) system plays “slave role” — it
checks local permissions to authorize the transfer. Two daemons communicate (chat)
between themselves; when nothing is left to be transferred in either direction, they agree
to hang up. At that point, another daemon uuxqt is invoked to scan the spool directory
for any outstanding execution request from the remote system. If such a request exists,
uuxqt forks a command to do what the user asked for.

We will return to the UUCP configuration files later.

24.5 UUCP Commands, Daemons, and Related Issues

We already mentioned major UUCP commands and daemons. Now, we will discuss them
in more detail.

24.5.1 The Major UUCP Commands

UUCP related commands are located in the /usr/bin directory:

$ ls -l /usr/bin | grep uucp (HP-UX 10.20)
-r-sr-xr-x 1 uucp bin 45056 May 30 1996 uucp
-r-sr-xr-x 1 uucp bin 24576 May 30 1996 uuls
-r-sr-xr-x 1 uucp bin 12288 May 30 1996 uuname
-r-sr-xr-x 1 uucp bin 16384 May 30 1996 uusnap
-r-sr-xr-x 1 uucp bin 36864 May 30 1996 uustat
-r-sr-xr-x 1 uucp bin 49152 May 30 1996 uux

Among them, two commands present core UUCP commands that existed through all
UUCP flavors and releases; they are uucp and uux.

24.5.1.1 The uucp Command

The uucp command copies each source-file to the named destination-file. A filename may
be a fullpath name on the local system (host), or may have the form:

system-name!pathname

where
system-name Specifies a remote system (host). The system-name may also be a list of

names such as:
system-name!system-name!…!system-name!pathname

© 2002 by CRC Press LLC

in which case an attempt is made to send the file via the specified route
to the destination. The shell metacharacters ?, *, and [] appearing in the
pathname part will be expanded on the appropriate system.

pathname Specifies the fullpath of the designated file.

The uucp preserves execute permissions across the transmission and grants read and
write permissions to everybody (file mode 666).

The format of the uucp command is:

uucp -options source-file destination-file

where
source-file Specify a source file to be copied
destination-file Specify a designated copied file

and the options are:

Option Meaning

-c Use the source file when copying out rather than copying the file to the spool directory.
This is the default.

-C Make a copy of outgoing files in the UUCP spool directory, rather than copying the source
file directly to the target system. This lets you remove the source file after issuing the uucp
command.

-d Make all necessary directories for the file copy. This is the default.
-f Do not make intermediate directories for the file copy.
-j Output the job identification ASCII string on the standard output. This job identification

can be used by uustat to obtain the status or terminate a job.
-m Send mail to the requester when the copy is complete.
-r Do not start the uucico daemon, just queue the job.
-ggrade grade is a single letter or number, from 0 to 9, A to Z, or a to z; 0 is the highest grade,

and z is the lowest grade. Lower grades will cause the job to be transmitted earlier during
a particular conversation. The default grade is n. By way of comparison, uux defaults to A;
mail is usually sent at grade C.

-nusername Notify username at the remote system (that is, send username mail) that a file was sent.
-xdebug-level Produce debugging output on the standard output. A debug-level is a number between 0 and

9; higher numbers give more detailed information. The 5, 7, and 9 are good numbers to try;
they give increasing amounts of detail.

24.5.1.2 The uux Command

The uux will gather files from various systems, execute a command on a specified system
and send the standard output to a file on a specified system.

For security reasons, most installations limit the list of commands executable on behalf
of an incoming request from uux, permitting only the receipt of mail. Remote execution
permissions are defined in the corresponding configuration file.

The command-string is made up of one or more arguments that look like a shell
command line, except that the command and file names may be prefixed by system-
name!; a null system-name is interpreted as the local system. The format of the uux
command is:

uux -options command-string

© 2002 by CRC Press LLC

The “-” option sends the standard input to the uux command as the standard input to
the command-string. Other options are:

Option Meaning

-b Return whatever standard input was provided to the uux command if the job fails (that is, returns
a non-zero exit status).

-c Use the source file when copying out rather than copying the file to the spool directory. This is the default.
-C Force the copy of local files to the spool directory for transfer.
-n Do not return any indication by mail of success or failure of the job.
-p Same as “-”: the standard input to uux is made the standard input to the command-string.
-r Do not start the uucico daemon, just queue the job.
-z Return an indication by mail even if the job succeeds (that is, returns a zero exit status).
-aname Use name as the user identification replacing the initiator user ID. Notification will be returned

to the user.
-ggrade grade is a single letter or number, from 0 to 9, A to Z, or a to z; 0 is the highest grade, and z is the

lowest grade. Lower grades will cause the job to be transmitted earlier during a particular
conversation. The default grade is A.

-xdebug-level Produce debugging output on the standard output. A debug-level is a number between 0 and 9;
higher numbers give more detailed information. The 5, 7, and 9 are good numbers to try; they
give increasing amounts of detail.

The uux will attempt to get all files to the execution system. For files that are output
files, the file name must be escaped using parentheses. For example, the command:

uux ahost!cut -f1 bhost!/usr/file \(chost!/usr/file\)

gets the file /usr/file from the system bhost and sends it to the system ahost, performs the
cut command on that file, and sends the result of the cut command to the file /usr/file on
the system chost (pay attention also to the escape backslash characters in front of paren-
theses).

The uux command would notify if the requested command on the remote system was
disallowed, or if the command fails (returns a non-zero exit status). This notification could
be turned off by the -n option. The response comes by remote mail from the remote system
(machine). For example the command:

uux “!diff ahost!/example/file1 bhost!/busr/example/file2 > !~/example/file.diff”

will get the file1 and file2 files from the systems ahost and bhost, execute the diff command,
and put the results in the file file.diff in the local PUBDIR/example directory.

24.5.2 The UUCP Daemons

UUCP daemons present server programs involved in the execution of different UUCP
jobs — they provide some of the required UUCP-related services. They are started on an
as-needed basis, or by other programs. Most of the UUCP daemons live in the /usr/lib/
uucp directory:

$ ls -C /usr/lib/uucp (Solaris 2.x)
Uutry uucico uudemon.crontab uuxqt
bnuconvert uucleanup uudemon.hour
remote.unknown uudemon.admin uudemon.poll
uucheck uudemon.cleanup uusched

© 2002 by CRC Press LLC

We will discuss in more detail the following UUCP daemons: uucico, uuxqt, uusched,
and uucpd.

24.5.2.1 The uucico Daemon

uucico is the file transport daemon involved in transfers of UUCP work files; both discussed
UUCP commands, uux and uucp, only spool jobs into the queue that should be transferred
by this daemon. Depending on the UUCP version, this daemon could be started by the
other daemon-scheduler, uusched, or manually — primarily for debugging purposes.

The format of the command to start the daemon is:

/usr/lib/uucp/uucico -options

with the major options:
-dspool-directory Define the directory spool-directory that contains UUCP work files to be

transferred; the default directory is /usr/spool/uucp.
-iinterface Define the interface used with uucico. This interface only affects slave

mode. Known interfaces are UNIX (default).
-rrole-number Specify the role that uucico should perform. A role-number is the digit

1 for a master mode, or 0 for a slave mode (default). The master mode
should be specified when uucico is started by another program or
cron.

-ssystem-name Specify the remote system system-name to try to contact; it is required
when the role is master.

-xdebug-level Produce debugging output on the standard output. A debug-level is
a number between 0 and 9; higher numbers give more detailed
information. The 5, 7, and 9 are good numbers to try; they give
increasing amounts of details.

24.5.2.2 The uuxqt Daemon

uuxqt is the daemon involved in executing remote job requests from remote systems
generated by the use of the uux command on remote hosts (the mail program also uses
uux for remote mail requests). The uuxqt daemon searches the spool directories looking
for “X.” files. For each “X.” file, uuxqt checks to see if all required data files are available
and accessible, and if the specified commands are permitted for the specified system.
A corresponding configuration file is used to validate file accessibility and command
execution permission (primarily the file Permissions).

The format of the command is:

/usr/lib/uucp/uuxqt [-ssystem-name] [-xdebug-level]

where the option:
-ssystem-name Specifies the remote system name system-name.
-xdebug-level Produces debugging output on the standard output. A debug-level is a

number between 0 and 9; higher numbers give more detailed informa-
tion. The 5, 7, and 9 are good numbers to try; they give increasing
amounts of detail.

© 2002 by CRC Press LLC

There are two environment variables that must be set before the uuxqt command is
executed:

UU_MACHINE Machine that sends the job
UU_USER User that sends the job

The variables could be specified within the program that invokes the uuxqt daemon, or
any other way.

24.5.2.3 The uusched Daemon

The uusched daemon is the UUCP file transport scheduler; it is usually started indirectly
by the cron facility (literally it is started by another UUCP program uudemon.hour, that
sets a needed environment for a successful execution of this daemon, and which is actually
started by the cron).

The format of the command is:

/usr/lib/uucp/uusched [-udebug-level] [-xdebug-level]

where the available options are only for debugging purposes; a debug-level is a number
between 0 and 9; higher numbers give more detailed information:

-udebug-level Specifies the debug level to be passed to the uucico program
-xdebug-level Specifies the debug level for internal output messages

An example of the needed cron entry on the Solaris platform, to start indirectly the
uusched daemon is:

15,45 * * * * /etc/uucp/uucp/uudemon.hour

Every half hour the program uudemon.hour is started; that invokes the uusched daemon.

24.5.2.4 The uucpd Daemon

The uucpd daemon supports a UUCP connection over the network. This daemon was
developed and introduced later; originally, UUCP was based on the connections other
than over the network. Obviously, UUCP had to be adapted to the emerging networking
that has become a common way to communicate between computer systems. Sometimes,
the daemon is named in.uucpd, like on the Solaris platform.

uucpd is invoked by the super server inetd, when a UUCP connection is established (via
the corresponding well-known UUCP port). The corresponding inetd configuration entry
(HP-UX 10.20):

$ cat /etc/inetd.conf | grep uucp

uucp stream tcp nowait root /usr/sbin/uucpd uucpd

This entry is usually commented out; to activate the uucpd daemon the line must be
uncommented and the inetd server recycled.

The corresponding UUCP-related port is:

$ cat /etc/servisces | grep uucp

uucp 540/tcp uucpd # uucp daemon

© 2002 by CRC Press LLC

Once invoked, the uucpd daemon prompts for login, requesting the uucico process at
the other end (the daemon at the remote host that started connection) to supply a username
and password.

24.5.3 The UUCP Spool Directories and Files

A discussion on UUCP files and directories very quickly focuses on the UUCP spool
directory. Despite the fact that UUCP configuration files are located in the /etc/uucp direc-
tory, and UUCP related programs in the /usr/lib/uucp directory, to maintain and administer
UUCP properly, understanding of the spool directory is the most important.

The contents of the spool directory are constantly changing. In addition to log files,
which are always added when a transfer occurs, there are a large number of work files
that are dynamically created and deleted during the UUCP communication between UNIX
systems. A work file contains the instructions for uucico such as the name of the file to
be copied (transferred), ownership and permissions, destination, and so on. A work file
is created under the name:

C.dest_unameAjob_ID

where
C Stands for a control file, to distinguish from a data file (D)
dest_uname A remote system name, truncated to seven characters
A A letter indicating the file processing order (letters A to Z, and a to z, or

some specific letters depending of the UUCP version)
job_ID A job identification 6-digit number

Each work file can contain up to 20 requests for the file transfer or execution for a given
system.

For files that are copied to the spool directory (uucp -C option), the corresponding data
files use the same name with the prefix “D.” When a remote command execution is
requested, an execute file is created with the prefix “X;” temporary files have the prefix
“TM,” lock files “LCK,” and status files “STST.”

One of the major improvements of BNU UUCP was the introduction of the better
organized spool directory:

/usr/spool/uucp/
.Admin Administrative files
.Corrupt Corrupt files that could not be processed
.Log Log files
.Old Old log files
.Sequence System sequence numbers
.Status System status file
.Workspace UUCP temporary workspace area
.Xqtdir Remote executions
.system_name1 Files to/from the specific systems
.system_name2 ”
.system_name3 ”

/usr/spool/uucp/.Log/
uucp/ Directory of uucp request logs
uucico/ Directory of uucico execution logs
uux/ Directory of uux request logs
uuxqt/ Directory of uuxqt request logs or remote command executions on

the local system

© 2002 by CRC Press LLC

Probably the biggest administrative problem concerning UUCP is the spool directory
cleanup to clean out jobs that have been spooled but not completed successfully. In most
UUCP implementations, there are automatic shell scripts to do this cleanup; the only
elements to adjust are the frequency those scripts should be running and the lifetime of
UUCP work files.

24.6 Configuring a UUCP Link

A brief description of an UUCP chat-transfer session at the beginning of this chapter
shed light on some of the configuration files. However, to configure an UUCP link
properly, it is not enough to configure those files only; there are several steps more that
must be performed:

• Establish a communication link between the two UNIX hosts in question; usually,
a modem based dial-out link.

• Give a name to the UNIX system that identifies the system uniquely.

• Create entries in the Systems (or L.sys) file that describes when and how to reach
other UNIX systems.

• Create entries in the Devices (or L-devices) file that describes communication
devices (hardware issues).

• For modems unknown to the system, create dialing instructions.
• Apply security mechanisms.

Some systems provide menu-driven installation utilities that make the task easier.
However, the discussion that follows assumes managing from the command line.

24.6.1 Serial Line-Related Issues

The baseline of the UUCP network is a physical communication link; a proper communi-
cation link is a basic requirement for UUCP to work at all. Until the link has been
established, nothing else matters.

There are three types of communication links:

1. Direct (hardwired RS-232 link)

2. A modem (used via telephone line)
3. A network (TCP/IP)

When a direct or a modem communication link is in question, they both relate to the
system’s serial lines; from the UNIX standpoint, they target the serial ports. UNIX
addresses serial ports, as any other device, via the corresponding special device files
(special device files point further to the corresponding drivers that are parts of the kernel).
For the serial ports, these are terminal-related device files, specified as /dev/ttynn (where
nn identifies the port’s number). Basically, it was supposed to use serial ports to connect
the system’s terminals, to provide regular user’s communication with the system. The
getty program has monitored the serial lines and started a login process as soon as it

© 2002 by CRC Press LLC

detected any activity on the line. When it happened, the getty program would immediately
send back the login prompt and exec the login program to continue the login process.

Such an approach seems to be OK if only a terminal could be at the other side of the serial
line, and the only possible sender is a user who wants to log in to the system. However,
for another kind of communication which is not “login related,” the gettys behavior seems
to be an obstacle. Actually, it is appropriate for getty to monitor dial-in lines; but for dial-out
lines, getty should be disabled.

This is the “well-known” problem with serial lines monitored by the getty program,
when they are not used for an exclusive login into the UNIX system. However, to realize
a different bidirectional serial communication, the alternatives are:

• Use two ports (one for “in” and the other for “out”)
• Use a single port in two ways

In both cases, additional administrative work must be done.
UUCP assumes the second approach. BNU UUCP provides a bidirectional program

called uugetty (an improved version of the getty program) that could be used instead of
getty. The uugetty program is wise enough not to respond with a “login prompt” when
the line is in use for outgoing calls; instead it continues with an appropriate dialogue.

To enable the start of the uugetty program on the System V platform during the system
startup, the /etc/inittab table should include a corresponding UUCP entry like this one:

uu:2:respawn:/usr/lib/uucp/uugetty -r tty07 19200

where
r option tells uugetty to wait to read for a character before putting up a login

prompt
tty07 is the supposed serial port (terminal line)
19200 is a modem’s speed

uugetty is a common replacement for the getty program to enable the bidirectional
communication required by UUCP over the corresponding serial line. However, this is
not a must; on Solaris 2.x the regular terminal line monitoring program ttymon is smart
enough to know how to handle the UUCP related bidirectional communication. Solaris 2.x
does not even provide the program uugetty.

24.6.2 UUCP Configuration Files

Once a serial link has been set, a number of other configuration and description data must
also be provided. These data define the UUCP behavior on the system and are located in
the several UUCP configuration files. Two examples follow.

$ ls -C /etc/uucp (HP-UX 10.20)
Devices Dialers Maxuuxqts Poll
Dialcodes Maxuuscheds Permissions Systems

$ ls -C /etc/uucp (Solaris 2.x)
Config Dialcodes Limits Sysfiles
Devconfig Dialers Permissions Systems
Devices Grades Poll remote.unknown

© 2002 by CRC Press LLC

24.6.2.1 The UUCP Systems Data
First, the appropriate configuration data about assumed remote systems (hosts) should be
provided:

• A remote system name

• Convenient time to call
• Phone number of attached remote modem

• UUCP login name on the remote system
• UUCP password on the remote system

Both sides in a UUCP communication need these data, and they always relate to the
remote system on the other side. If we recall the example from the beginning of this section,
we can easily recognize these configuration data.

The data are placed into the UUCP systems configuration file: Systems on BNU UUCP
or L.sys on Version 2 UUCP. An entry in the file describes one link; multiple links with the
same system are described with multiple entries. The generic format of an entry is:

sys_name schedule device_type speed phone_number chat_script

where
sys_name The name of the remote system (the DNS hostname could be used).
schedule The time schedule when the local system can call the remote one:

Any the system can call on any day
Never the system should never call but should just wait to be called
Wk any weekday (any weekday could be also specified: Su, Mo,

Tu, We, Th, Fr, and Sa); the time subfield is specified by two
24-hour clock times separated by a dash: 1900–2300 specifies
time between 7 and 11 p.m

device_type The type of a device to be used for the call:
ACU for Automatic Call Unit
ttynn for direct links (ttynn is the name of a special device file in the

/dev directory
TCP for TCP/IP connection (the port for uucp service is specified in

the /etc/services file)
speed The speed in “bps” for a device (some systems also allow the speed

range).
phone_number The dialer sequence to be used by the modem to call the remote

system.
chat_script A string describing the initial conversation between two systems. More

details follow.

The chat_script presents a text string of the remainder of the entry, after the
phone_number. It consists of expect-send pairs, separated by spaces, with optional
“subexpect-subsend” pairs separated by hyphens, as in the following example:

ogin: BREAK-ogin: myuuname ssword: myuupass

expect send expect send

subsend subexpect

© 2002 by CRC Press LLC

The expect and subexpect fields specify literally what the system expects to receive from
the remote system. This is the reason why login/password expect fields are specified as
ogin: and ssword:. These words are sufficient for unique login/password identification
and also cover a number of possible “Login:” and “Password:” prompting from the remote
system; they even allow the additional leading text. By the way, the subsend field BREAK
enables adjustment of the modem speed between two systems (of course if the device
supports it — see Chapter 11, Terminals).

When uucico is invoked, it scans the UUCP systems configuration file for the name of
the system to call, as well as for a valid time to call. If it is a time to call, it checks the
device type and speed fields, and other device-related configuration data. The next step
is to check for locked files for that device type in the spool directory; if locked files exist,
it means this device type is already in use. Then, uucico checks if there is another device
of the requested type and speed to use it. If no device is available, uucico returns to the
UUCP system configuration file to see if there is another configuration entry for the same
system. If not, the call is terminated and postponed until later.

24.6.2.2 The UUCP Devices Data
The third field in each entry in the UUCP systems configuration file gives the name of
a device type to be used when calling the remote system. If the direct link is in question,
this is a special device file for the corresponding serial port; otherwise, additional infor-
mation about the device of the specified type is needed. The specified device type is
actually a pointer to an entry in another configuration file, the UUCP devices configuration
file Devices on BNU UUCP, or L-devices on Version 2 UUCP. The contents of the UUCP
devices configuration files for two UUCP versions are different, and the files will be
discussed separately.

In BNU UUCP, the /etc/uucp/Devices file contains information for direct links, automatic
call units, and network connections. The strict file syntax rules require that each entry must
begin in the first column; otherwise the entry is ignored. Each entry contains five fields and
has the following format:

type dataport dialer_port speed dialer_token_pairs

where
type The type of link:

Direct for a line to a computer, modem, or LAN switch to be
used by the program cu (test utility)

ACU for a modem connection
network for TCP/IP connection
sys-name for direct links to a particular system sys-name

dataport The device name of the port used for making the connection.
For direct serial links and modems this is the name of the special
file in the /dev directory that corresponds to the serial port used
for the UUCP link.

dialer_port An optional field that is used for special type of ACU, and which
specifies the dialer; otherwise it is ignored, the field has a dummy
value: “-.”

speed The “baud rate” of the device for modems and direct links; it can
be also “Any” to match any speed requested in the Systems file.

dialer_token_pairs The remainder of the line contains pairs of dialer names and tokens
(each pair represents a dialer and an argument to pass to that dialer
defined in another file Dialcode).

© 2002 by CRC Press LLC

In the Version 2 UUCP, each port connected to a modem or direct cable to another system
should be described in the L-devices file. An entry contains four fields and has the following
format:

type device call_unit speed

where
type The type of link:

DIR for a direct link
ACU for a modem connection
TCP for TCP/IP connection

device The name of the special file in the /dev directory that corresponds to the serial
port used for the UUCP link.

call_unit If a system uses a true ACU, two separate devices could be used to place the
call: the dialer itself (referred to as cua) and the data line (referred to as cul);
for a smart modem with built-in dialer, this field has a dummy value: “-”or “0.”

speed The “baud rate” of the port for modems and direct links or the port number
to use for local area network connections.

24.6.2.3 Other Configuration Data

The UUCP systems and devices configuration files always exist, and they are essential for
the UUCP configuration. Other configuration files sometimes depend on the UUCP flavor
and implemented modems; sometimes they are even optional. The differences among
existing UUCP configuration files could also be seen in the earlier presented listings of
the /etc/uucp directories for two similar BNU UUCP flavors on HP-UX and Solaris plat-
forms. We will focus on the way the maximum number of simultaneous UUCP daemons is
restricted.

While on HP-UX platform files: Maxuuxqts and Muxuuscheds specify separately limits
for the corresponding UUCP daemons, Solaris has introduced a single file, named Limits,
for that purpose. This file is presented hereafter; the file is so well commented that
additional explanations are not needed.

$ cat /etc/uucp/Limits
#ident “@(#)Limits 1.2 SMI” /* from SVR4 bnu:Limits 1.1 */
#
Limits provides a means of specifying the maximum number of
simultaneous uucicos, uuxqts, and uuscheds that are permitted.
5 uucicos, 2 uuxqts, and 2 uuscheds are reasonable.
#
FORMAT:
service=<service name> max=<number>
where
<service name> is “uucico” or “uuxqt” or “uusched”,
<number> is the limit that is permitted for that service.
The fields are order insensitive, case sensitive, and the first match in the file wins.
#
If the Limits file does not exist or it is unreadable or <number is> not a positive number,
then there will no overall limit for that service.
#
service=uucico max= 5
service=uuxqt max= 2
service=uusched max= 2

© 2002 by CRC Press LLC

Some of the UUCP programs are periodically activated through the system cron facility.
Although cron presents an independent UNIX facility, it is fair to emphasize dependencies
between cron and UUCP; a proper UUCP configuration always requests a proper cron
configuration as well. The UUCP-related crontab entries live in the /usr/spool/cron/crontabs/
uucp file.

24.7 UUCP Access and Security Consideration

UUCP implies a remote access to the local system. A remote access always raises issues
of system security. If left unprotected, the UUCP system could allow any remote user to
copy in or out files, or execute commands locally. There is no need to emphasize how it
could be an opportunity and challenge for intruders, and how it could be dangerous for
the system itself. Fortunately, there are quite a lot of security measures already in place,
as well as the possibility for additional ones.

UUCP appears in front of a system as a user-entity; the UUCP-related user account
named uucp exists on any system as a system-related account. As for all other users’
accounts, UUCP must first log in to the system, and it must pass the whole login/
password procedure. Upon a successful login, UUCP does not receive a regular shell;
instead it has restricted access and invokes a copy of the local uucico program. And
besides that, there are a few more mechanisms available to increase the level of security
of the local site, as:

• Creating additional passwd file entries to grant individual access to separate
calling systems

• Restricting local file access by remote system, or requiring a call-back for certain
system logins

• Controlling the remotely executed commands
• Controlling the forwarding of files from and for other systems

• Assigning appropriate file access modes and ownership to protect the UUCP
files (with sensitive data) from outside users

We will pass quickly through most of these issues.
On most systems, the /etc/passwd file includes the uucp entry which specifies needed

administrative data (UUCP user and group ID, and indirectly the ownership of all UUCP
directories and files) and working environment upon login (working directory and, instead
of the usual shell, the spawned initial program uucico). On some systems two separate
user entries exist for the same purpose. Here is an extracted uucp user entry:

$ cat /etc/passwd | grep uucp

uucp:x:5:3::/usr/spool/uucppublic:/usr/lib/uucp/uucico

As can be seen from the entry, the UUCP working directory is the spool directory /usr/
spool/uucppublic, and the started program is uucico. The UUCP password entry is the
regular part of any user authentication; however, the account is closed by default and
must be activated.

© 2002 by CRC Press LLC

Often multiple UUCP accounts are provided, as in this example from HP-UX 10.20:

$ cat /etc/passwd | grep uucp
uucp:*:5:3::/var/spool/uucppublic:/usr/lbin/uucp/uucico

nuucp:*:11:9::/var/spool/uucppublic:/usr/lbin/uucp/uucico

Multiple UUCP accounts give more flexibility; it is possible to provide different access
to the system for different remote systems, based on the corresponding UUCP login name.
However, in this example, both accounts are closed (pay attention to the asterisk in the
password field — it means UUCP is not activated on this system).

24.7.1 Additional Security in BNU UUCP

BNU UUCP provides additional protection, based on login IDs, and a fine control over
remote system logins, based on the introduced file named Permissions. In addition, there
is also the file named remote.unknown that controls whether or not an “unknown system”
(one not listed in the Systems file) could log in.

The Permissions file has two types of entries:

1. LOGNAME entries gain specific permissions for individual login IDs that are
used when remote systems call this system, i.e., this system accesses remote
systems.

2. MACHINE entries gain specific permissions for individual systems when this
system calls them; i.e., remote systems access this system.

To have full access control, the administrator must create separate login IDs and write
combined MACHINE and LOGNAME entries.

Both entries in the Permissions file consist of an arbitrary number of option/value pairs
of the format:

option=value (no spaces around “=” sign)

Available options are listed in the following table. A class code “M” or “L” designates
whether an option could be used with a MACHINE or a LOGNAME entry.

Option Class Description

LOGNAME L Specifies the login IDs to be used by remote systems
MACHINE M Specifies systems that the local system can call
REQUEST M, L Specifies whether the remote system can request to set up file transfer from this computer

(default is “no”)
SENDFILES L Specifies whether the called system can execute locally queued requests during a session
READ M, L Specifies the directories that uucico can use for requesting files (default is uucppublic)
WRITE M, L Specifies the directories that uucico can use for depositing files (default is uucppublic)
NOREAD M, L Exceptions to READ option or default
NOWRITE M, L Exceptions to WRITE option or default
CALLBACK L Specifies whether or not the local system must call back before transaction occurs (default

is “no”)
COMMANDS M Commands that the remote system can execute locally (the keyword ALL grants access

to all commands)
VALIDATE L Used to verify calling system’s identity
MYNAME M Used to link another system name to the local system
PUBDIR M,L Specifies the directory for local access

© 2002 by CRC Press LLC

The Permissions file could sound quite confusing, and the best way to explain how it
works is by an example. This is presented here, through the presentation of the Permissions
files on three arbitrary UUCP systems: blue, red and black.

$ cat /etc/uucp/Permissions
#ident “@(#)Permissions 1.6 SMI” /* from SVR4 bnu:Permissions 2.2 */ #
#
per-machine and per-login permissions, e.g.,
LOGNAME=Usun MACHINE=sun VALIDATE=sun COMMANDS=rmail \
REQUEST=yes SENDFILES=yes
#
See the System and Network Administration Manual for more information.
#

#
To configure the machine “blue”:
“red” logs in to “blue” as “Ured”, and can request and send files regardless of who started
the call. “red” can read and write to all directories on “blue” except the /blue/only directory,
and can execute any command; other machines are not allowed.
#
--> Uncomment following lines on the host “blue”
LOGNAME=Ured MACHINE=red READ=/ WRITE=/ COMMANDS=ALL NOREAD=/#blue/only \
SENDFILES=yes REQUEST=yes
#

#
To configure the machine “red”:
“blue” logs in to “red” as “Ublue”, and can request and send files regardless of who started
the call. “blue” can read and write to all directories on “red” except the /red/only directory,
and can execute any command. Any other machine logs in to “red” as “nuucp”, and can
request files regardless of who started the call, but will send files only when it calls. Other
machines can read and write only from the public directory (the default), and can execute only
the default list of commands.
#
--> Uncomment following lines on the host “red”
LOGNAME=Ublue MACHINE=blue READ=/ WRITE=/ COMMANDS=ALL NOREAD=/#red/only \
SENDFILES=yes REQUEST=yes
#
LOGNAME=nuucp MACHINE=OTHER SENDFILES=yes REQUEST=yes
#

#
To configure the machine “black”:
“red” logs in to “black” as “Ured”, and can request and send files regardless of who started
the call. “red” can read and write to all directories on “black” except the /black/only directory,
and can execute any command; other machines are not allowed.
#
--> Uncomment following lines on the host “black”
LOGNAME=Ured MACHINE=red READ=/ WRITE=/ COMMANDS=ALL NOREAD=/#black/only \
SENDFILES=yes REQUEST=yes
#

#

© 2002 by CRC Press LLC

24.7.2 Additional Security in Version 2 UUCP

Version 2 UUCP provides five files for controlling remote system access.

• /usr/lib/uucp/USERFILE — This file controls local access of files and directories.
This is the text file with entries that specify four constraints on file transfer:

1. Which file can be accessed by a local user
2. Which file can be accessed by a remote system

3. The login name that a remote system must use to talk to the local system
4. Whether a remote system must be called back by the local system to confirm

its identity

The entry format is:

user_name,system_name [c] path_name(s)

where
user_name The login name for a remote user or the name of a local user
system_name The name of a remote system
c An optional call-back flag; if exists, the local uucico must call back

the remote system in order to establish its identity before the next
conversation can occur

path_name(s) A list of absolute paths separated by blanks; a blank field indicates
open access to any file

The use of the USERFILE is probably the most complicated part of UUCP. Every
UUCP version treats it differently, and the use of file is different depending on who
is using it: uucp, uux, uucico in master or slave role, etc.). Besides that, the effect of
its use is very ambiguous.

• /usr/lib/uucp/L.cmds — This file specifies commands that could be executed
locally by a remote system (alternatively, the name of the file is L-cmds, and
uuxqtcmds). A typical L.cmds file might contain the following list of commands:

rmail

rnews

lp

who

Special attention should be paid if new commands are added; some sufficiently
general commands like cat can override the security restrictions.

• /usr/lib/uucp/SQFILE — This file is an optional file that keeps a record of the
conversation counts and date/time of the last conversation for a particular
system. The file contains an entry for each system that the conversation count
check is performed. The remote system must also have a corresponding entry
for this system in its SQFILE.

• /usr/lib/uucp/FWDFILE — This file controls the ability of remote systems to
forward files through the system to other connected remote systems.

• /usr/lib/uucp/ORIGFILE — This file is also available on some UUCP implemen-
tations with the same function as the FWDFILE.

© 2002 by CRC Press LLC

25
Intranet

25.1 Introduction to Intranet

The enormous growth of the Internet has continued since its introduction. Everybody
realized very quickly the benefits of being connected to the Internet. The first Internet
consumers were recruited from the academic environment. Businesses followed. Home users
joined the race. Soon the Internet became overcrowded. Two main problems emerged:

1. Security concerns — Each networked computer was accessible and exposed to
potential attackers and intruders. The business systems were the most vulnerable,
and they had to be better protected.

2. The Internet address capacity was saturated — Each computer in the network
consumes at least one IP address, and the IP addressing mechanism was quite
limited in providing needed addresses.

The solution was found in the intranet. An intranet presents a private network with an
arbitrary number of participating hosts that is connected to the Internet at a single point
(or more precisely a few points). It means that the whole intranet appears in front of
Internet as a single participant. It requires only a single, or a few, IP addresses at the
Internet side, while internally it can provide all Internet services to an arbitrary numbers
of hosts. In the intranet any IP address can be used, because this IP address never appears
outside of the intranet. Intranets are only for internal use, so the same IP addresses can
be repeated in many intranet networks. Traditionally the class A IP address 10.0.0.0 is
reserved for intranet purposes. However, it is not mandatory to use just this address. Of
course the implemented intranet IP addresses, whatever they are, must remain within the
intranet itself. This is shown in the Figure 25.1.

Intranet and Internet have a single connection point. This is a bidirectional link that
provides a required flow of data in and out of the intranet. But this is also the point that
separates intranet from Internet. This is very important because:

• It allows the full control of the data flow.
• It protects the intranet from an unauthorized access from the Internet.

• It redirects traffic.
• It is relatively easy to implement at the single place, while the rest of the network

remains unchanged.

An intranet provides all Internet services to the local hosts. From the standpoint of the
local users, an intranet is fully transparent toward the Internet. Converting intranet
addresses to Internet addresses provides the required transparency and vice versa, when-
ever it is needed. This is known as address mapping. Thanks to that we can say the intranet
remains part of the Internet, and every local host remains a participant in the Internet.
Frankly, it would be more appropriate to say “every local host has a feeling that it remains
a participant in the Internet.”

To accomplish transparency, several intranet technologies have been developed. These
are primarily specialized network applications (services). Once again UNIX has proved
to be a dominant OS platform to run these applications. The specialized equipment also
has been developed — the specialized hardware always improves performance.

25.1.1 Intranet vs. Internet

An intranet has many elements in common with the Internet. But the intranet also differs
from its “big brother.” The intranet and Internet implement basically the same technologies,
but their basic missions are different. Intranet and Internet are merging together, but they
are also very cautious and susceptible at the connection points. Simply, we must be aware
of their differences and similarities.

Intranet is a world in itself. It is sufficiently separated from the Internet to introduce its
own more restricted local rules of behavior, but also sufficiently merged to the Internet to
benefit from its globalization and worldwide access. We can name this relationship as
a marriage driven by interests. There is not “too much love” in the intranet-Internet
relationship.

For a better understanding of this relationship, let us try to summarize the main
aspects of both; afterward it will be easier to understand the administrative duties in
this area.

Intranet

Intranet Front-End
Services

Internet

Intranet

Intranet

Intranet

Intranet

Intranet

FIGURE 25.1
Intranet.

The basic Internet characteristics are:

• This is a global, worldwide network.
• Its basic mission is globalization.

• It is open and eager to accommodate new participants.
• It consists of a huge number of mutually connected subnetworks and an enormous

number of participating hosts (computers).

• It provides different network services.
• Different network technologies are implemented.

• Different hardware and software platforms are used.
• Network control is distributed.

• Databases are distributed.
• Costs are distributed.

Despite many different and distributed issues, the Internet works, and it works very
well. We are all witnesses of the enormous success of the Internet.

The basic intranet characteristics are:

• This is a private, dedicated network.
• It is basically business oriented.

• Its growth is strictly controlled.
• The concept is Internet-like.

• Access to and from the out-of-Intranet world is restricted.
• There is full control over the network.

• Mostly the same network technologies are implemented throughout an intranet.
• Mostly the same hardware and software platforms are used.

• It is a part of Internet.
• It overrides some Internet restrictions.

In some ways, we can say that an intranet is a “small Internet” where we have even
more control and influence. Such a statement is mostly true, but it does not make our job
“smaller.”

Finally, what can we conclude about an intranet as a part of the Internet?

• The same technologies are implemented.
• The concept is almost the same.

• Security issues are different.
• Ownership is different.

• Special concerns exist regarding connections with the Internet.

From an administrative standpoint, there are no significant differences between
administering a UNIX host in an intranet or on the Internet. This is logical since UNIX
administration is primarily focused on configuring a UNIX host in the local network
(LAN where the UNIX host belongs). This administration is independent of the wider
network layout regarding whether this LAN belongs to an intranet or the Internet. UNIX

administrative responsibilities terminate with routers in the LAN. Afterward other
administrative skills are required.

25.1.2 Intranet Design Approach

Today an intranet is a common thing. Thousands and thousands of different size Intranets
are running and blooming around. You can even order an intranet as a package, to choose
among several packet solutions. Everything will be delivered and put in operation for
a certain price. Whether it really matches your needs is another question.

Of course an intranet has its price, and you have to doublecheck whether your budget
can cover these costs. Before you decide to go ahead with the intranet, the following are
worth considering:

• Do you expect to save money? Typically, intranet technologies are used at the
beginning for such things as telephone directories, data sheets, material safety
sheets, surveys, human resources materials, travel policies, and job postings.
Even when used in such a limited way, the intranet return on investment is quite
significant for companies adopting the technology.

• Do you expect to spend money and to need outside help? Making your Internet and
intranet look and behave correctly will probably involve bringing in outside
help. This help should always include knowledge transfer. Transferring knowledge
on how to design a site and make programming interfaces in the existing systems
and managing employee-added content would pay back later. Your employees
can manage this infrastructure once the experts have left.

• Do you expect things to happen more quickly? Company manuals can be placed on your
intranet the instant they are completed. Likewise, changes can be made instantly
and be instantly available. Expect that your corporate data will be made available
more quickly. And there is no more listening to why a software program has to be
installed on hundreds or even thousands of machines before it is fully applicable.

• Do you expect to have to manage employee involvement on your site? As the intranet
site grows, you will have to look at controlling the appearance of documents,
managing how your employees can navigate your site, and making security
arrangements.

• Do you expect to have to address Internet technology at some point? Many believe
that Internet technologies are replacing the PC as the engine for information
technology market growth. How much did your company spend last year on
PC and related technologies? Now shift some of this money over to the Internet
and reconsider the costs.

Funding for the intranet can be based on different criteria. Some companies consider it
a cost of doing business while others fund it on a value-based allocation. Remember that
there will be ongoing operating expenses that could be even greater than the initial expense
of setting up the intranet.

Security is extremely important. An intranet extends a company’s reach, but it also
increases its vulnerability and exposure. Security policies must be in place to dictate who
has access to what information, when they can get the information, and how much
information they can get. Firewall software provides the needed security mechanisms, but
the security policies have to be written down, maintained, communicated, enforced, and
constantly monitored. All of this is necessary to ensure the livelihood of the company is
not threatened.

Return on investment can be quite substantial. Conservative figures place the payback
at a low of 23% to a high of 88%, over one to two years. Costs of paper dissemination and
printing will be reduced, but the greatest benefits realized will relate to information flow.

It is also very important to decide who will control the intranet. Often the IT
department is given control of the intranet, and this is usually a mistake. IT is very
good at handling hardware and software but not as good at knowledge management.
Intranet management requires skills in professional research and information gathering.
Strict cooperation with IT is needed to efficiently disseminate high-quality information
via the intranet, but the control to the content of the intranet should remain with the
company management, or maybe within the HR department. Departments within the
organization may be allowed to maintain their own Web pages and publish their own
documents, but the core information for the company should remain under the control
of a single management body.

Having intranet control centralized has other benefits in addition to ensuring the quality
of the data. It allows for better maintenance of the site and can simplify startup and
ongoing use. It can provide consistent navigation for all users if all the links are established
on the main page. It also allows uniform customization of links for various users, based on
an individual department’s information needs.

Here are fundamental principles for designing an intranet. Starting with an appropriate
solution is very important.

1. Define business needs — do not underestimate your real needs, but also do not
exaggerate!

2. Choose technology wisely — cheap initial solutions usually are not the cheapest
ones. If reliability and stability are your concern, the choice of UNIX for the
server platforms sounds quite logical.

3. Opt for function over glitz — the functionality always has priority over enter-
tainment.

4. Make room for growth — the business will grow, think about an easy upgrade.
5. Include a site map for navigation — the graphic presentation of the intranet

structure is important. It always saves time and prevents problems.

6. Do not get carried away with fonts and colors — good visual appearance on the
intranet site is important, but do not exaggerate (there are many other issues to
complete).

7. Test the usability of the interface — be realistic in choosing resources involving
the Internet.

8. Check the network security — security is always an issue, for some businesses
the most important one.

9. Obey the law — it is internal, but rules still exist.

10. Stay focused — always remember the mission of your intranet.

25.2 Intranet Front-End Services

The intranet was followed by a number of applications to support it. Sometimes it is even
hard to say who was first on the market: did the intranet provoke some applications, or
did the applications pave the route for the intranet introduction. This is the classic story

about “the chicken and the egg.” These applications primarily address intranet-Internet
relationships. We will call them “intranet front-end services” based on the fact that the
front-end of the intranet is placed toward the Internet.

These front-end services also require administration, often quite complex. Strictly speak-
ing the administration of the applications of that kind is out of the scope of the usual
UNIX administration. However, it does not mean that UNIX administrators never face
problems caused by these services. At least they are also running on the UNIX platform.
There is no doubt about the need to have a certain level of knowledge regarding these
applications.

The most common intranet front-end applications are briefly discussed in this section.
You will notice a lack of detailed information on administration, but this is intentionally
done. Details of this kind are outside the scope of this book. However the issues that are
discussed should make a solid background for further improvements, if needed.

25.2.1 Firewalls

A firewall is a structure intended to keep a fire from spreading. Buildings have firewalls
made of brick walls that completely divide sections of the building. In a car, a firewall is
the metal shield separating the engine and passenger compartments. This is the origin of the
term firewall we use when a private network (the intranet) is separated from the public
network (the Internet). Intranet firewalls are intended to keep the flames of Internet hell
out of the intranet itself — or to keep the intranet community pure and chaste by denying
them access to the evil Internet temptations.

A firewall protects networked computers from intentional hostile intrusion that could
compromise confidentiality or result in data corruption or denial of service. It may be a
hardware device (usually part of a router) or a software program running on a secure host
computer. We will consider the second one, presented in the Figure 25.2. In either case, it
must have at least two network interfaces, one for the network it is intended to protect,
and one for the network it is exposed to. A firewall sits at the junction point between the
two networks, a private network (intranet) and a public network (Internet). The earliest
firewalls were simply routers.

A firewall examines all traffic routed between the two networks to see if it meets certain
criteria. If it does, the traffic is routed between the networks; otherwise it is stopped. A firewall
filters both inbound and outbound traffic. It can also manage public access to private
networked resources such as host applications. It can be used to log all attempts to enter
the private network and trigger alarms when hostile or unauthorized entry is attempted.

Firewalls can filter packets based on:

• The source and destination addresses and port numbers — known as address
filtering.

• The specific types of network traffic — also known as protocol filtering because
the decision to forward or reject traffic is dependant upon the protocol used, for
example HTTP, ftp, or telnet.

• The packet attribute or state.

There are two access denial methodologies used by firewalls (see Figure 25.3):

1. A firewall may allow all traffic through unless it meets certain criteria.
2. A firewall may deny all traffic unless it meets certain criteria.

Internet

Intranet

Firewall

FIGURE 25.2
Firewall.

Traffic is stopped because it
did not meet specified criteria

Not allowed

Only traffic meeting specified
criteria is allowed through

Not allowed

Allowed

Allowed

FIREWALL

Unknown traffic

Specified allowed
traffic

Access to specific
resources

Allowed traffic Out to Internet

Restricted traffic

InternetIntranet

FIGURE 25.3
Basic firewall operation.

The type of criteria used to determine whether traffic should be allowed through varies
from one type of firewall to another. Firewalls may be concerned with the type of traffic,
or with source or destination addresses and ports. They may also use complex rule bases
that analyze the application data to determine if the traffic should be allowed through.
How a firewall determines what traffic to let through depends on which network layer it
is operating. A discussion on network layers and architecture follows.

25.2.1.1 Firewall Techniques
Referring to the ISO OSI model or TCP/IP stack, firewalls operate at different layers to
use different criteria to restrict traffic:

• The lowest layer at which a firewall can work is layer three in the ISO OSI model.
This is the network layer. In TCP/IP the corresponding layer is the internet protocol
layer. This layer is concerned with routing packets to their destination. At this
layer a firewall can determine whether a packet is from a trusted source, but
cannot be concerned with what it contains or what other packets it is associated
with.

• Firewalls that operate at the transport layer know a little more about a packet and
are able to grant or deny access depending on more sophisticated criteria.

• At the application layer, firewalls know a great deal about what is going on and
can be very selective in granting access.

It would appear then that firewalls functioning at a higher layer in the stack must be
superior in every respect. This is not necessarily the case. The lower in the stack the packet
is intercepted, the more secure the firewall. If the intruder cannot get past level three, it
is impossible to gain control of the operating system.

Professional firewall products catch each network packet before the operating system
does; thus, there is no direct path from the Internet to the operating system’s TCP/IP
stack. They introduce their own IP layer that is very robust toward incoming attacks. It
is therefore very difficult for an intruder to gain control of the firewall host computer and
then “open the doors” from the inside. This is presented in the Figure 25.4.

Network Interface Card Network Interface Card

NIC Driver NIC Driver

OS IP Layer Firewall IP Layer

Higher Layers

Allowed Incoming Traffic
InternetIntranet

FIGURE 25.4
Firewall IP layer.

Firewalls examine the source IP addresses of packets to determine if they are legitimate.
A firewall may be instructed to allow traffic through if it comes from a specific trusted
host. A malicious cracker would then try to gain entry by “spoofing” the source IP address
of packets sent to the firewall. If the firewall thought that the packets originated from a
trusted host, it might let them through unless other criteria were not met. Of course the
cracker would need to know a good deal about the firewall’s rule base to exploit this kind
of weakness. This reinforces the principle that technology alone will not solve all security
problems. Responsible management of information is essential. There are management
solutions to technical problems, but no technical solutions to management problems.

An effective measure against IP spoofing is the use of a virtual private network (VPN)
protocol such as IPSec. This methodology involves encryption of the data in the packet
as well as the source address. The VPN software or firmware decrypts the packet and the
source address and performs a checksum. If either the data or the source address have
been tampered with, the packet will be dropped. Without access to the encryption keys,
a potential intruder would be unable to penetrate the firewall.

25.2.1.2 Firewall Types
Firewalls fall into four broad categories: packet filters, circuit level gateways, application
level gateways, and stateful multilayer inspection firewalls.

Packet filtering firewalls — Packet filtering firewalls work at the network level of the ISO
OSI model or the IP layer of TCP/IP (see Figure 25.5a). They are usually part of a router.
In a packet filtering firewall, each packet is compared to a set of criteria before it is
forwarded. Depending on the packet and the criteria, the firewall can drop the packet,
forward it, or send a message to the originator. Rules can include source and destination
IP address, source and destination port number, and protocol used, however this firewall
does not support sophisticated rule-based models. The advantage of packet filtering firewalls
is their low cost and low impact on network performance. Most routers support packet
filtering. Even if other firewalls are used, implementing packet filtering at the router level
affords an initial degree of security. Network address translation (NAT) routers offer the
advantages of packet filtering firewalls but can also hide the IP addresses of computers
behind the firewall and offer a level of circuit-based filtering.

Circuit level gateways — Circuit level gateways work at the session layer of the ISO
OSI model or the TCP layer of TCP/IP. They monitor TCP handshaking between packets to
determine whether a requested session is legitimate. Information passed to a remote
computer through a circuit level gateway appears to have originated from the gateway. This
is useful for hiding information about protected networks. Circuit level gateways are relatively
inexpensive and have the advantage of hiding information about the private network they
protect. On the other hand, they do not filter individual packets (see Figure 25.5b).

Application layer gateways — Application layer gateways, also called proxy firewalls,
are similar to circuit-level gateways except that they are application specific. They can
filter packets at the application layer of the ISO OSI model or TCP/IP stack (see Figure
25.5.c). Incoming or outgoing packets cannot access services for which there is no proxy.
In plain terms, an application level gateway that is configured to be a web proxy will not
allow any ftp, telnet or other traffic through. Because they examine packets at application
layer, they can filter individual application specific commands. This cannot be accomplished
with either packet filtering firewalls or circuit level neither of which knows anything about
the application level information. Application layer gateways can also be used to log user
activity and logins. They offer a high level of security, but have a significant impact on
network performance. This is because of the context switches that slow down network
access dramatically. They are not transparent to end-users because they require manual
configuration of each client computer.

Stateful multilayer firewalls — Stateful multilayer firewalls, or more specifically stateful
multilayer inspection firewalls, combine the aspects of the other three types of firewalls
(presented in Figure 25.5d). They filter packets at the network layer, determine whether
session packets are legitimate and evaluate contents of packets at the application layer.
They allow direct connection between client and host, alleviating the problem caused by
the lack of transparency of application level gateways. They rely on algorithms to recognize
and process application layer data instead of running application specific proxies. Stateful
multilayer firewalls offer a high level of security, good performance, and transparency to
end users. They are expensive, however, and, due to their complexity, are potentially less
secure than simpler types of firewalls if not administered properly.

25.2.1.3 Firewall Implementation
At the end of the day we have to decide about the firewall we want to implement in our
intranet. In most cases this is not an easy decision. There are several issues to consider
when implementing a firewall in the intranet:

1. Determine the access denial methodology to use — It is recommended to begin
with the methodology that denies all access by default. In other words, to start

Internet

Transport

Application

Physical

Network Access

Traffic is filtered based
on specified rules
including source and
destination IP address,
packet type, port
number etc.

Unknown traffic is only
allowed up to Internet
layer.

Not allowed Traffic

OK

OK Allowed Traffic

Allowed Outgoing TrafficIncoming Traffic

(a) Packet Filtering Firewall

Note:

Internet

Transport

Application

Physical

Network Access

Traffic is filtered based
on specified session
rules such as a
session initialization by
a recognized host.

Unknown traffic is only
allowed up to
Transport layer.

OK

Allowed Outgoing TrafficIncoming Traffic

(b) Circuit Level Firewall

Internet

Transport

Application

Physical

Network Access

Traffic is filtered based
on specified applica-
tion rules such as a
specific application (for
example, a browser),
or a protocol (for
example, FTP), or
combinations.

Unknown traffic is
allowed up to the top
layer.

OK

Allowed Outgoing TrafficIncoming Traffic

(c) Application Layer Firewall

Internet

Transport

Application

Physical

Network Access

Traffic is filtered at
three levels, based on
a wide range of
specified application,
session, and packet
filtering rules.

Unknown traffic is only
allowed up to the
specific layer.

OK

Allowed Outgoing TrafficIncoming Traffic

(d) Statefull Multilayer Firewall

OK

OK

FIGURE 25.5
Basic firewall types.

with a firewall that routes no traffic and is effectively a brick wall with no doors
in it.

2. Determine inbound access policy — If all of the internet traffic originates in the
intranet, a straightforward NAT router sounds quite sufficient. It will block all
inbound traffic that is not in response to requests originating from within the
LAN. The true IP addresses of intranet hosts behind the firewall are never
revealed to the outside world, making intrusion extremely difficult. Indeed,
intranet host IP addresses are nonpublic addresses, making it impossible to route
traffic to them from the Internet. Packets coming in from the Internet in response
to requests from local hosts are addressed to dynamically allocated port numbers
on the public side of the NAT router. These change rapidly, making it difficult
or impossible for an intruder to make assumptions about which port numbers
to use. If the requirements involve secure access to intranet-based services from
Internet-based hosts, then it is needed to determine the criteria to be used in
deciding when a packet originating from the Internet may be allowed into the
intranet. The stricter the criteria, the more secure your network will be. Ideally
the Internet IP addresses that may originate inbound traffic should be known
and specified. By limiting inbound traffic to packets originating from these hosts,
the likelihood of hostile intrusion is reduced. The inbound traffic could also be
limited to certain protocol sets such as ftp or http. All of these techniques can
be achieved with packet filtering on a NAT router. If the Internet IP addresses
cannot be known in advance, and also the protocol filtering cannot be used, then
a more complex rule-based model must be used. This can lead to a stateful
multilayer inspection firewall.

3. Determine outbound access policy — If intranet users only need access to the
Internet Web sites, a proxy firewall may give a high level of security with access
granted selectively to appropriate users. This type of firewall requires manual
configuration of each Web browser on each intranet machine. Outbound protocol
filtering can also be transparently achieved with packet filtering and no sacrifice
in security. If a NAT router with no inbound mapping of traffic originating from
the Internet is also used, then intranet users can freely access all services on
the Internet with no security compromise. The risk of intranet users behaving
irresponsibly with e-mail or with external hosts remains, but this is more a
management issue and must be dealt with as such.

4. Determine if dial-in or dial-out access is required — Dial-in access bypasses
the router and as such it requires a secure remote access PPP server that should
be placed outside the firewall. Dial-out access must be made secure in such a
way that hostile access to the intranet through the dial-out connection becomes
impossible. The safest way is to physically isolate the computer from the intranet.
Alternatively, personal firewall software may be used to isolate the intranet
network interface from the external access interface.

5. Decide whether to buy a complete firewall product, have one implemented
by a systems integrator, or implement one yourself.

Once the above issues have been settled, the appropriate firewall can be implemented.
The decision will depend as much on the availability of in-house expertise as on the
complexity of the need. A satisfactory firewall may be built with little expertise if the
requirements are straightforward. However, complex requirements will not necessarily
entail recourse to external resources if the system administrator has sufficient grasp of the

elements. Indeed, as the complexity of the security model increases, so does the need for
in-house expertise and autonomy.

25.2.1.4 Problems and Benefits
The firewall is an integral part of any security program, but it is not a security program
in and of itself. An overall security program involves data integrity, service or application
integrity, data confidentiality, and authentication. Firewalls only address the issues of data
integrity, confidentiality, and authentication of data that is behind the firewall. Any data
that transits outside the firewall is subject to factors out of the control of the firewall. It is
therefore necessary for an organization to have a well-planned and strictly implemented
security program that includes, but is not limited to, firewall protection.

Firewalls also introduce problems of their own. Information security involves con-
straints, and users do not like this. Firewalls restrict access to certain services. Firewalls
can also constitute a traffic bottleneck. They concentrate security in one spot, aggravating
the single point of failure phenomenon. The alternatives however are either no Internet
access or no security, neither of which is acceptable in most organizations.

Firewalls protect the intranet networks from hostile intrusion from the Internet. Conse-
quently, thanks to the firewalls, many intranets are now connected to the Internet where
Internet connectivity would otherwise have been too great a risk.

Firewalls allow network administrators to offer access to specific types of Internet
services to selected intranet users. This selectivity is an essential part of any information
management program and involves not only protecting private information assets, but
also knowing who has access to what. Privileges can be granted according to job descrip-
tion and need rather than on an all-or-nothing basis.

At the moment, among the best-ranked firewall hardware is Nokia, while very respected
firewall software is made by CheckPoint.

25.2.2 Viruswalls

VirusWall is the name of an antivirus product by Trend Micro. This is the scanning package
against network malicious codes to support the application gateway firewalls. It seems
that this name is quite appropriate for the text that follows. First, it fully explains its
purpose: to fight the viruses and other attackers to the intranet; and second, it suggests
its location in the intranet, parallel with the firewall.

25.2.2.1 Computer Viruses and Other Malicious Codes

There are many “nasty” offenders traveling through the Internet with their only wish
being to harm “naïve” hosts ready to offer them a hand. The most tragic part of this story
is that, in most cases, they are doing it just for fun. These are different malicious programs
(sometimes very simple programs) looking for holes in your defense, ready to attack and
often damage your system. Among them, viruses are the best known, and the most
dangerous.

A computer virus is a program — a piece of executable code — that has the unique
ability to replicate. Like biological viruses, computer viruses can spread quickly and are
often difficult to eradicate. They can attach themselves to just about any type of file and
are spread as files that are copied and sent from individual to individual.

Besides replication, some computer viruses have something else in common: a damage
routine that can deliver the virus payload. While payloads may sometimes only display
messages or images, they can also destroy files, reformat your hard drive, or cause other

kinds of damage. If the virus does not contain a damage routine, it can still cause trouble
by taking up storage space and memory, and downgrading the overall performance of
your computer.

In the past, most viruses spread primarily via floppy disk, but the Internet has intro-
duced new virus distribution mechanisms. With e-mail now used as an important business
communication tool, viruses are spreading faster than ever. Viruses attached to e-mail
messages can infect an entire intranet in a matter of minutes, costing companies millions
of dollars annually in productivity loss and clean-up expenses.

Viruses will not go away any time soon. More than 10,000 have been identified, and 200
new ones are created every month, according to the International Computer Security
Association. With numbers like those, it is safe to say that most organizations will deal
regularly with virus outbreaks. No one who uses computers is immune to viruses.

25.2.2.1.1 Life Cycle of a Virus

Computer viruses have a life cycle that starts when they are created and ends when they
are completely eradicated. The following outline describes each stage.

• Creation — Certain programming knowledge and skills are required to create
a virus.

• Replication — Viruses replicate by nature. A well-designed virus will replicate
for a long time before it activates, which allows it plenty of time to spread.

• Activation — Viruses that have damage routines will activate when certain
conditions are met, for example, on a certain date or when a particular action is
taken by the user. Viruses without damage routines do not activate, instead they
cause damage by stealing storage space.

• Discovery — This phase does not always come after activation, but it usually
does. When a virus is detected and isolated, data is sent to the International
Computer Security Association ICSA to be documented and distributed to antivirus
developers. Discovery usually takes place on time before the virus becomes a
real threat to the computing community.

• Assimilation — At this point, antivirus developers modify their software so that
it can detect the new virus. This can take anywhere from one day to six months,
depending on the developer and the virus type.

• Eradication — If enough users install up-to-date virus protection software, any
virus can be wiped out. So far no viruses have disappeared completely, but some
have long ceased to be a major threat.

25.2.2.1.2 Virus Types

The majority of viruses fall into four main classes:
Boot sector viruses — Until the mid-1990s, boot sector viruses were the most prevalent

virus type, spreading primarily in the 16-bit DOS world via floppy disk. Boot sector viruses
infect the boot sector on a floppy disk and spread to a user’s hard disk and can also infect
the master boot record (MBR) on a user’s hard drive. Once the MBR or boot sector on the
hard drive is infected, the virus attempts to infect the boot sector of every floppy disk that
is inserted into the computer and accessed.

Boot sector viruses work like this: by hiding on the first sector of a disk, the virus is loaded
into memory before the system files are loaded. This allows it to gain complete control of
DOS interrupts so that it can spread and cause damage.

These viruses often replace the original contents of the MBR or DOS boot sector with
their own contents and move the sector to another area on the disk. Cleaning up a boot
sector virus can be performed by booting the machine from an uninfected floppy system
disk rather than from the hard drive, or by finding the original boot sector and replacing
it in the correct location on the disk.

File-infecting viruses — File infectors, also known as parasitic viruses, operate in memory
and usually infect executable files with the following extensions: *.COM, *.EXE, *.DRV,
*.DLL, *.BIN, *.OVL, *.SYS. They activate every time the infected file is executed by copying
themselves into other executable files and can remain in memory long after the virus has
activated.

Thousands of different file-infecting viruses exist, but similar to boot sector viruses, the
vast majority operate in a DOS 16-bit environment. Some, however, have successfully
infected Microsoft Windows, IBM OS/2, and Apple Computer Macintosh environments.

Multipartite viruses — Multipartite viruses have characteristics of both boot sector
viruses and file-infecting viruses.

Macro viruses — Macro viruses currently account for about 80 percent of all viruses,
according to the International Computer Security Association, and are the fastest growing
viruses in computer history. Unlike other virus types, macro viruses are not specific to an
operating system and spread with ease via e-mail attachments, floppy disks, Web down-
loads, file transfers, and cooperative applications.

Macro viruses are, however, application-specific. They infect macro utilities that accom-
pany such applications as Microsoft Word and Excel, which means a Word macro virus
cannot infect an Excel document and vice versa. Instead, macro viruses travel between
data files in the application and can eventually infect hundreds of files if undeterred.
Macro viruses are written in “every man’s programming language” — Visual Basic — and
are relatively easy to create. They can infect at different points during a file’s use, for
example, when it is opened, saved, closed, or deleted.

25.2.2.1.3 Some Other Malicious Codes

It is fair to list two more intruders:
Trojan horses — A Trojan horse is a program that performs some unexpected or unauthor-

ized, usually malicious, action such as displaying messages, erasing files, or formating a whole
disk. A Trojan horse is not infective, i.e., it does not infect other host files. Once its action is
terminated (if we survive), there is no need for additional cleaning. To get rid of the Trojan
horse, deleting the program is sufficient.

Worms — A computer worm is a self-contained program (or set of programs) that is
able to spread functional copies of itself or its segments to other computer systems. The
propagation usually takes place via network connections or e-mail attachments. To get rid
of the worm, the program has to be deleted.

25.2.2.2 The Viruswall Implementation

A viruswall responsibility is to protect the intranet from viruses and other malicious codes
that travel through the Internet and attack all network participants. Most of the malicious
codes are doing that unselectively; as soon as they realize any possibility for an action,
they act. And they are produced on a daily basis worldwide. This is an unfortunate
challenge that we face, and we must respond appropriately. The viruswall is a solution.

The viruswall duties could be divided into two categories: basic and extended. Basic
duties are a must for a safer intranet (the term safer is used intentionally — there is no
guarantee for 100% safety); extended duties are optional and they improve intranet
performance and safety.

Basic duties include:

• Real-time virus detection in the inbound traffic (outbound traffic can be also
included):
• SMTP protection complements intranet mail server to scan received e-mails

for the viruses.

• HTTP protection keeps infected files from being downloaded and allows
setting of uniform, intranet security standards for Java and other HTTP-
related applications.

• FTP protection works transparently to ensure that infected files are not down-
loaded from the Internet.

• Blocking the entering of other malicious codes
• Virus pattern file update (new viruses must be known to be fight successfully):

• Automatic periodic updates
• On demand

Extended duties include:

• Blocking of spam and other unwanted e-mail traffic:
• Full spam filtering

• Automatic spam source and keyword-list update
• Customizable

• Control distribution of sensitive e-mail contents:
• Prevention of confidential or inappropriate material leaving the intranet

• Customized profile-based filtering
• Manage the delivery of large messages to optimize the network bandwidth:

• Monitoring of the e-mail traffic patterns
• Postponement of the delivery of e-mail based on customizable criteria

• Monitoring of ongoing Internet traffic (sudden unusual increase in the external
traffic usually signifies virus attacks):
• Prediction of virus attacks based on the traffic statistic

• Prevention of inbound traffic under suspicious Internet traffic circumstances

The viruswall can run on the firewall machine. Assuming sufficient processing hardware
power of the implemented machine, such an approach is quite feasible. But it is also quite
vulnerable — a single failure in the machine can shut down the intranet completely.
Firewall-viruswall is the crucial Intranet front-end service and the need for a redundancy
is obvious, including on the hardware level. And if two machines are already in place,
than it is also good idea to provide these two services under normal circumstances on
two different machines. If one machine happens to be down, then the corresponding
service could be switched to another machine. This is presented in the Figure 25.6.

The regular configuration supposes that the firewall and viruswall software are installed
on both machines, but only one application is activated on each machine (firewall or
viruswall). Full communication between the firewall and viruswall machines is provided
all the time. The inbound traffic is directed to the firewall. Firewall forwards messages to
the viruswall for their antivirus scanning. Scanned messages are then allowed into the

intranet. If a virus or some other malicious code is detected in the message, the message
itself is stopped and erased. Optionally the message sender and recipient are informed
about detected problem.

All internal IP addresses are programmable to allow an easy automatic reconfiguration.
If one machine fails, the failed application should be started on another machine, and the
internal network interfaces reconfigured appropriately. Relatively simple start/stop shell
scripts could accomplished this task efficiently.

An additional benefit of such a firewall-viruswall solution is that less demanding hardware
can be implemented. Regularly this task is divided between two machines; in emergency
situations a certain decrease in the speed and the performance is tolerable.

25.2.3 Proxy Servers

Proxy servers are store-and-forward caches that separate the intranet community from the
external Internet world. An intranet application configured to use the proxy server never
leaves the intranet boundaries. Instead, it always connects to the proxy server and asks it
to proceed with the application requests.

How does it work? A proxy server receives a request for an Internet service (let us
assume retrieving a Web page) from an intranet user. If the request passes filtering require-
ments, the proxy server looks it up in its local cache of previously downloaded Web pages.
If it finds the requested page, it returns the page to the user without needing to forward

FIREWALL VIRUSWALL

DMZ Hub

Firewall Hub Viruswall Hub

Internet

Intranet

IP2IP1

IP

ip1 ip2 ip3 ip4

ipbipa

FIGURE 25.6
Firewall-viruswall configuration.

the request outside to the Internet. If the requested page is not in the cache, the proxy
server, acting as a client on behalf of the user, uses one of its own IP addresses to request the
page from the Web server. When the page is returned, the proxy server relates it to the
original request and forwards it on to the user.

During this transaction, the proxy server remains invisible to the intranet user. All requests
and returned responses appear to deal directly with the addressed Internet server. As a matter
of fact, the proxy server is not completely invisible. Its address must be known to, and specified
as a configuration parameter to, the user’s browser or other protocol programs.

Proxy servers usually have the ability to cache documents that they retrieve on behalf
of the clients. But this is not mandatory; proxy servers can also function without document
caching. If caching is part of the process, they are known as the caching proxy servers. A caching
proxy server is presented in Figure 25.7.

The squared numbers in the figure indicate the order of events. The client requests a certain
document (1), which is handled by the proxy server (2). The retrieved document (3) is
cached in the proxy’s cache (4) and also returned to the client (5). When another client requests
the same document (6), it can be fulfilled from the cache (7) and returned to the other
client (8).

Caching has several beneficial effects:

• Faster response — A proxy server that is closer or on a faster link can supply
a cached document faster than the remote master server.

• Reduced load — If a document can be retrieved from a cache, then the network
traffic is reduced.

• Lower cost — The reduced traffic means a lower cost. Caching proxy servers
could be used to compensate expansive or slow network traffic at any place in
the inner or outer network.

Proxy
Server

cache

Client
1

Client
2

External
Server

1

6
3

4

2
5

8

7

InternetIntranet
Note:
1,2,6: Requests
3,4,5,7,8: Documents

FIGURE 25.7
Caching proxy server.

A main difficulty with implementing caching is determining when a cached document
is out of date. Cached documents are not updated, and they can differ from the original
ones. The extreme case of this occurs for virtual documents. Virtual documents are created
on request and they are practically immediately out of date. Caching proxy servers take
three steps to address the problem of obsolete documents:

1. Virtual documents are not cached at all.
2. Retrieved documents are marked with an expiration time, and their cached

copies are used only until this time. Afterward, upon the next client’s request,
a new copy of the document is retrieved from the master server.

3. A creation time is assigned with each cached document. If the document has not
changed on the master server then the master server will reply with a new
expiration time rather than the whole document.

The needed cache space is another issue related to the caching proxy server. How
much cache space should be reserved to obtain relatively good results? Typically the
optimal size is quite modest and actually does not present a real issue. A few GB of
disk space seems to be sufficient to keep the effectiveness of the caching proxy server
quite high. In most cases for Web documents, the hit rate remains in the range of 40
to 50%. This is the percentage of Web clients’ requests that are serviced from the
cache, when no external network traffic is required. To return the ball to our court-
yard, we can say that one half of Web requests will not leave the intranet boundaries
at all.

Proxy servers can also filter data and act similarly to a firewall. But a proxy server is
less restrictive than a real firewall. From the security standpoint it is always better to
opt for a real than a quasi firewall for that purpose. Some Internet service providers
(IPSs) make all their users use a proxy server and block sites with unsuitable material.
This is very common in some countries. Without elaborating the political correctness of
such an approach, from the proxy’s standpoint this is quite feasible.

The functions of proxy, filtering (firewall), and caching can be separated among several
server programs or combined in a single package. Different server programs can run on
different machines, so these functions can even be physically separated. Even caching can
be provided on a different box from the proxy server. Any other combination is also
possible.

Proxy servers are intranet oriented. They act on behalf of intranet clients for outside
services. But proxy servers can play the opposite role. They can help the users coming
from the outside to get some internal services. Today this is quite common in the
academic environment. Library resources should be available to students and faculties
at any time, while they are on campus, as well as when they are off campus. When
off-campus users want to access the library, they actually reach a proxy server that
first authenticates them. Afterward the communication continues between the users
and the proxy server that on behalf of them accesses the library resources for the
needed data. The provided service is identical as if it is was performed on campus.
The only requirement for users is to configure their off-campus PCs appropriately to
use the proxy server.

There are two basic types of proxy servers:

1. Application proxies — perform work for users
2. SOCKS proxies — cross-wire ports between clients and targeted servers

25.2.3.1 Application Proxies
This is the proxy type we have already discussed. It automates the process of connecting
an intranet client to the outside world, i.e., an Internet server. Everything happens via an
application proxy server, which also performs needed logging and optional filtering.
Application proxy servers can also authenticate users. Before the connection is made, the
proxy server can ask the user to log in first. To a Web user this would make each site look
like it required a login.

25.2.3.2 SOCKS Proxies

SOCKS proxies cross-wire users’ internal connection to another outside connection. They
simply act as a switchboard for the incoming and outgoing connections.

SOCKS is a generic proxy protocol for TCP/IP-based networking applications. It
includes two more components in the connection picture: the SOCKS server and the
SOCKS client. This is presened in Figure 25.8.

When an application client needs to connect to an application server, the client connects
to a SOCKS proxy server. The SOCKS proxy server connects to the application server on
behalf of the client and relays data between the application client and the application
server. For the application server, the SOCKS proxy server is the client.

The SOCKS protocol performs multiple functions:

• Makes connection requests
• Sets up proxy circuit

• Relays application data
• Optionally authenticates the users

SOCKS was originally intended as a network firewall. Because of its simplicity and
flexibility, SOCKS has been used as a generic application proxy, in virtual private networks
(VPNs), and for extranet applications. SOCKS offers unique features and benefits:

• Application-independent protection — as soon as new applications appears,
SOCKS can protect them without need for any additional development.

Physical Physical Physical

Application

Transport

Internet

Network
 Access

SOCKS

Transport

Internet

Network
 Access

Application

Transport

Internet

Network
 Access

FIGURE 25.8
SOCKS proxy protocol.

• Flexible protection through a variety of access control policies based on user,
application, and time criteria, in addition to source and destination addresses.

• Bidirectional proxy support — SOCKS identifies communication target through
domain names, overriding the restriction of using the private IP addresses.
SOCKS can use domain names to establish bidirectional communication between
separate LANS with overlapping IP addresses.

Other IP-layer based proxy mechanisms, like the network address translation (NAT),
support only unidirectional connections, from the private network (the intranet) toward
the external network (the Internet). For some applications, like multimedia applications,
it simply cannot work; these applications request the return data channel.

25.2.4 Web Services

We have discussed in this section primarily intranet-related services. Without these
services, or at least some of them, intranet cannot function at all. The services themselves
are functionally unidirectional, and their main purpose is to protect an intranet and
provide the selected transparency toward external Internet services. Just recall firewalls
or proxy servers. But there is another side of the intranet-Internet story: do we want also
to present our intranet community to the external world? In most cases the answer is
positive. Intranet owners, whoever they are — companies, organizations, colleges — wish
to publish certain information to the public. And they can find the audience on the
Internet.

Web services make this wish become a reality. As an example let us look at a company’s
intranet. The company’s Web page on the Internet is its public face and presents the image
the company wants the world to see. It may be built glamorously, with many graphics
and special features to attract Web visitors — potential patrons and customers — and
catch their attention. While the intranet is the company’s private face, hidden from
external viewers, that makes a working environment for its employees, the purpose of
Web services is the opposite — advertise the company to as many people as possible.
And both use almost the same hardware and software for the two very different purposes.
A Web service can exist without an intranet (there are many Web sites without intranet
backings), while the opposite is extremely rare. Everybody tends to want to be recognizable
worldwide.

There are many variations on the name Web services: World Wide Web (WWW), Web
Hosting, Information Superhighway, and sometimes even simply intranet. Without
elaborating the correctness of certain names, we will primarily use the name Web service/
services.

Web services are self-contained, modular applications that could be described, published,
located, and invoked over a network:

• A Web service needs to be created, and its interfaces and invocation methods
must be defined.

• A Web service needs to be published to one or more network repositories for
potential users to locate them.

• A Web service needs to be located for being invoked by potential users.

• A Web service needs to be invoked to be of any benefit.
• A Web service may need to be unpublished when it is no longer available or

needed.

These “academic definitions” of Web services could be expressed in other, more
comprehensive ways:

• Web services are HTML/XML-based information exchange systems that use
a network for direct application-to-application interaction. These systems can
include programs, objects, messages, and/or documents.

• Web services provide data-independent mechanisms to programmatically expose
business services on the network using HTML/XML protocols and formats.

• Web services could be accessed by using browsers (Web clients), but do not
requires the use of either browsers or HTML/XML.

The foundation of the Web services is the hyper-text transfer protocol (HTTP) a simple
TCP/IP-based application protocol (default port number is 80). The HTTP protocol is used
to format, transmit, and link documents of different type (text, graphics, sounds, anima-
tion, and video). Web-based information comes in a standardized format known as hyper-
text markup language (HTML). Hyper-text in the name means that the text contains “hot
links” which, when activated, refer directly to another body of information. Markup
language means documents are prepared in a generic way that will allow them to be
displayed on any client’s video display. HTML documents are generally referred to as web
pages. An improved version of HTML is known as extensible markup language (XML).
XML is already in wide use today, and it will probably completely replace HTML in the
future.

The JavaTM 2 Platform, Enterprise Edition (J2EE) technology provides a component-
based approach to the design, development, assembly, and deployment of Web services.
The J2EE platform provides a multitiered distributed application model, the ability to
reuse components, a unified security model, and flexible transaction control. By intent,
Web services are not implemented in a monolithic way, but rather represent a collection
of several related technologies. At a bare minimum, any Web service entails a connection
between two applications — in programmers’ parlance, a remote procedure call (RPC) —
in which queries and responses are exchanged in XML over HTTP. The more generally
accepted definition, however, implies implementation of a stack of specific, complemen-
tary standards, as presented in the Figure 25.9.

Common Internet Protocols
(TCP/IP, HTTP, etc.)

Extensible Markup Language
(XML)

Simple Object Access
Protocol (SOAP)

Web Services Languages

Other Business Rules

C
o

re
 L

ay
er

s
E

m
er

g
in

g
 L

ay
er

s

FIGURE 25.9
The Web services technology stack.

Today, the core layers that define basic Web services communication have been widely
accepted and likely will be implemented quite uniformly. Higher-level layers that define
strategic aspects of business processes remain an open question, however, and it is possible
that divergent approaches will emerge. The development of generally open and accepted
standards is a key strength of the coalitions that have been building Web services infra-
structure. At the same time, these efforts have resulted in a dizzying array of jargon and
acronyms. We will focus on the core layers; higher layers are business-related, and they
are beyond the scope of this text.

Core layers of the Web services stack are:

• Common Internet Protocols. Although not specifically tied to any transport proto-
col, Web services build on ubiquitous Internet connectivity and infrastructure to
ensure nearly universal reach and support. In particular, Web services will take
advantage of HTTP, the same connection protocol used by Web servers and
browsers.

• Extensible Markup Language (XML). XML is a widely accepted format for exchang-
ing data and its corresponding semantics. It is a fundamental building block for
nearly every other layer in the Web services stack.

• Simple Object Access Protocol (SOAP). SOAP is a protocol for messaging and RPC-
style communication between applications. It is based on XML and uses common
Internet transport protocols like HTTP to carry its data. SOAP has been submitted
to the World Wide Web Consortium (W3C) standards body and will emerge soon
as “XML Protocol (XP).”

Web services, as they are described here, make a framework for further development
and implementations in the area of e-businesses. In that light they are more appropriate
for future events than the current state of the art. However, the origins of Web services
are in the today’s WWW, and WWW is currently the main player on the Internet.

WWW is built as a server/client application. At the server side is the Web server, which
hosts Web sites, provides support for HTTP and other implemented protocols, and executes
server-side programs that perform certain functions. Such programs are CGI scripts or
servlets (CGI stands for common gateway interface) that provide dynamic creation of Web
pages. Web server provides services to one or more Web containers. A Web container presents
a ubiquitous, accessible, and consistent platform that provides a first-class environment
for deploying and running of the Web service.

Web browsers are at the client side. The browser is a program that reads Web-based
information in the standardized HTML/XML format. It contacts a remote Web server and
places requests on behalf of users. The requested documents are then transferred and dis-
played on the user’s video display. Currently, the two most popular browsers are Netscape
Navigator and Microsoft Internet Explorer.

The browser follows the specified pointer to look for certain objects or service. This
pointer is known as the uniform resource locator (URL) and contains five basic components:

1. Protocol or application identified by:

• http:// HTTP protocol to access Web pages
• https:// secure HTTP protocol based on HTTP/SSL

• ftp:// FTP protocol to transfer files
• mailto: Send e-mail to the designated address

• news: Access Usenet newsgroups

• telnet:// TELNET protocol for remote login
• ldap:// Access LDAP directory services

• file:// Access a local file on the browser’s machine
2. Hostname Domain host name of the Web server.

3. TCP port Optional; otherwise the default port is assumed (80 for HTTP).
4. Directory Optional; otherwise the document directory configured at Web server

is assumed.

5. Filename Optional; otherwise the default filename “index.html” is assumed.
The filename is case sensitive.

As an example, the following URL:
http://www.scps.nyu.edu/demo/example.html

specifies Web page example.html on the Web server www.scps.nyu.edu in the subdirectory
demo (the subdirectory is referred to the configured document home directory for the server).

The WWW includes more than just Web page browsing. This is a suite of many well-known
network services. The implemented URL identifies the requested network service (the first
URL component).

A Web server is a daemon, usually named httpd, which is listening for incoming HTTP
requests at the configured port (default port number is 80). The Web server configuration
is an OS-independent procedure characterized by a separate set of configuration rules.
Generally Web server configuration files are well-commented, with logical and comprehensive
syntax and an intuitive content. They are definitely very different from old-fashioned con-
densed and unfriendly UNIX configuration files, which were designed a long time ago to be
primarily machine oriented. Unfortunately, it does not mean that the configuration of a Web
server is an easy task. There are many configuration details, enough for quite a tick book.

Today the most popular and the most implemented Web server is Apache (more than
70% of all server installations worldwide). This is not unusual, bearing in mind the quality
of this freeware product. The following example presents a piece of the Apache configuration
file. The only purpose is to illustrate the format and syntax of the configuration data
without any detailed elaboration.

$ cat /usr/local/apache/conf/httpd.conf (presented only partially)
.
.

#
Section 3: Virtual Hosts
#
VirtualHost: If you want to maintain multiple domains/hostnames on your
machine you can setup VirtualHost containers for them.
Please see the documentation at <URL:http:/ /www.apache.org/docs/vhosts/>
for further details before you try to setup virtual hosts.
You may use the command line option ‘-S’ to verify your virtual host
configuration.
#
If you want to use name-based virtual hosts you need to define at
least one IP address (and port number) for them.

< VirtualHost 146.25.91.112 >
DocumentRoot /usr/local/myserver/www/
ServerName myserver.scps.nyu.edu
< Directory “/usr/local/myserver/www/”>
AllowOverride AuthConfig

Options FollowSymLinks
Order allow,deny
Allow from all
SetHandler server-parsed
</Directory>
ScriptAlias /cgi-bin/ “/usr/local/myserver/cgi-bin/”
ScriptAlias /admin/ “/usr/local/myserver/admin/ ”
ScriptAlias /gifs/ “/usr/local/myserver/www/gi fs/”
<Directory “/usr/local/myserver/cgi-bin/”>

AllowOverride None
Options FollowSymLinks
Order allow,deny
Allow from all

</Directory>
</VirtualHost>

.

.

To respond to incoming requests for Web pages, multiple Web server daemons are
running simultaneously, and new daemons could be spawned on an as needed basis. The
number of daemons, both initial and maximum, is configurable. These configuration
parameters should reflect real needs and processing power of the implemented Web
server’s hardware. Here is an example:

$ ps –ef | grep http | grep –v grep
root 470 1 0 12:43 ? 00:00:03 /usr/local/apache/bin/httpd
nobody 473 470 0 12:43 ? 00:00:01 /usr/local/apache/bin/httpd
nobody 474 470 0 12:43 ? 00:00:00 /usr/local/apache/bin/httpd
nobody 475 470 0 12:43 ? 00:00:00 /usr/local/apache/bin/httpd
nobody 476 470 0 12:43 ? 00:00:00 /usr/local/apache/bin/httpd
nobody 477 470 0 12:43 ? 00:00:01 /usr/local/apache/bin/httpd
nobody 478 470 0 12:43 ? 00:00:00 /usr/local/apache/bin/httpd
nobody 479 470 0 12:43 ? 00:00:01 /usr/local/apache/bin/httpd
nobody 480 470 0 12:43 ? 00:00:01 /usr/local/apache/bin/httpd
nobody 481 470 0 12:43 ? 00:00:00 /usr/local/apache/bin/httpd
nobody 482 470 0 12:43 ? 00:00:00 /usr/local/apache/bin/httpd

Pay attention to the RUID of the daemons. The very first daemon is invoked during the
system startup by the process init (the daemon’s PPID=1) and it has superuser RUID. Ten
more daemons are then spawned, but they have RUID “nobody” (user’s entity “nobody”
owns Web stuff). The number of spawned daemons is specified in the Apache configuration
file /usr/local/apache/conf/httpd.conf. More daemons will be invoked online if needed.

Web pages require permanent maintenance and update. Otherwise they soon become
obsolete and nonattractive. A good Web page has to be well organized, clear, simple, and
intuitive to follow, readable and comprehensive. An overcrowded page could be counter-
productive because users are eager to browse quickly through presented material. It is
better to put the existing material in several linked pages instead of a single page. Finally,
an appropriate balance between textual and graphic presentation is a key for a successful
Web page.

It is very difficult to predict an exact number of hits to a newly designed Web server.
But an increase in the load over the time is expected. The scalability and the availability
of the Web services are very important. A possible solution can include multiple Web
servers behind a special front-end device known as the load director. All servers provide
the same service, and the load director controls a load balance among all available servers.
If an individual server fails, the load is distributed between other active servers.

A need for Web services is primarily business driven. But it would be naïve to expect
that all business problems will be solved if you provide a technically good WWW site.
Following are some tips on what not to expect from a Web presence:

• Do not expect a WWW site to produce miracles. Placing a Web page up on the
Internet is no longer enough. If you want people to visit, you must drive them
there. The Internet must be a part of a total marketing mix in order to be effective.
It must be a reason for customers to place an order, or anything else for that
matter. The reason could be anything from greater and easier access to information,
up to saving money by placing an order over the Internet.

• Do not think of the Web as a place for outsiders only. The Web can also be inside the
company’s intranet for information like employee manuals, questionnaires,
employees’ 401 K plans, as well as core business functions like placing orders,
workflow applications, etc.

• Do not expect to have to throw away the existing hardware and software. The company
has made substantial investments in the core business systems over time. As
a general principal, needed information should be accessible on the Internet/
intranet site.

• Do not expect to be dependent on one hardware/software company ever again. A prop-
erly done Internet/intranet site (including any custom programming that has to
be done) should be able to run on any platform. If IT personnel have chosen a
Solaris operating system, a properly done site should be able to run on a Hewlett-
Packard, IBM, or DEC box, too.

• Do not ignore this technology. The only thing that is certain is that competitors are
not ignoring the Web. This technology (if properly implemented) will allow
closer communications with customers, with suppliers and even between
employees in the company. In this millennium, information will be the most
valuable commodity of most companies, and the Web allows for information to
move quickly in a format that is accessible to vast numbers of people. In turn,
this information will allow businesses to move more quickly and to save money.

25.2.5 Other External Services

This title refers to the services that are offered to the out-of-intranet users. We will address
them as external or Internet users, and the offered services as the external services. External
users are also regular intranet users at the off-business time. Once the employees step out
of the company offices and continue to work from homes, they appear in front of the
intranet the same as the other external users. External services are generally business
driven. Besides Web server, which is today a common service, other external services are
always questionable. As much as we open our intranet for external access, proportionally
we increase a risk to be attacked by potential intruders. Of course it does not mean that
additional external services are not allowed. It only means that everything should be done
carefully to prevent unpleasant surprises.

The main candidate for other external services is the FTP service. If our business supposes
downloading, or even uploading of data by external users, then an Internet-oriented FTP
server sounds reasonable. If the FTP access should be granted to an unspecified number
of external users, then an anonymous FTP site should be built. We addressed this topic in
Chapter 21. In any case we have to administer and maintain the FTP site internally, i.e.,
from the intranet.

The FTP site could be realized in different ways. One approach is to build the FTP server
with its own external network interface and spend one more external IP address for this
purpose. In this case it is important to prevent any attempt to penetrate from the Internet
through the FTP site into the intranet. Even if the FTP site is compromised, it should remain
within its own boundaries.

Another approach is to leave the FTP site behind the firewall and access the FTP server
through the firewall. The firewall will redirect external ftp traffic based on the intranet IP
address and the FTP port number. At the same time, the firewall combined with the
viruswall can scan the ftp traffic and protect the FTP server itself. This approach sounds
more secure, and probably easier to realize.

An external access to the intranet e-mail service also sounds very convenient. Intranet
users have to have access to their e-mail from home, during the trips, or whatever. Why
restrict the use of e-mail strictly to the business time?. Especially when the e-mail service
itself is not restricted to the intranet at all. Again several approaches are possible. We
can allow access to the intranet e-mail server from the external POP and IMAP clients
(as it is done internally). But the external POP or IMAP clients require the installed
client software and corresponding setting and configuration. When the user moves to
another PC, everything must be redone. Another issue is security. Again we must open
tunnels through the firewall for new services and effectively decrease overall intranet
security.

There is another approach to allow Web e-mail access. It does not request anything
special on the client side — the standard browser is sufficient to access and log in to the
server, and browse the e-mail. At the server side there is more work to do to provide Web
service and support e-mail handling. But it is worth doing it — this is a safer and more
flexible and robust solution.

One more example of an external access to the intranet data we already discussed
in Section 25.2.3 by talking about proxy servers. The example addressed the problem
of how to allow the students and faculty to access the campus library from the
Internet.

The list of possible external services is not finished with those examples. Under certain
circumstances, other services can also require external access. How everything will be
realized depends on our wishes, business needs, and technical possibilities. In most cases
nontechnical issues prevail in making certain decisions.

However, there is only one “most important issue” and that is the security of the intranet.
Never forget that by opening our intranet to the external world, we always accept a certain
risk to be compromised.

25.3 Inside the Intranet

This section presents intranet as an insider anticipates it. It is focused on the major
technical topics related to the intranet. The idea is to discuss the main intranet compo-
nents and issues, without going too deeply in to details. The title “Inside the intranet”
should emphasize the fact that the intranet itself, as a self-sufficient network, is a point
of interest.

This section addresses both intranet aspects: hardware and software, as some other
intranet-specific issues.

25.3.1 Network Infrastructure and Desktops

An intranet presents a size-restricted network, usually contained within several rooms,
a floor, several floors or a building. Intranet users belong to the same company, organiza-
tion, department, division, or some other organizational entity, but always within the same
administrative control. An intranet connects users’ workstations, better known as desktops
(desktop computers) with intranet servers, providing a workable environment to run the
business more efficiently. A restricted area covered by an intranet makes a ground for an
economical implementation of the high-tech technologies in a number of various ways.
An intranet could be even realized as a single local area network (LAN). However, it is
always better, performance-wise, to organize an intranet as a hierarchical network instead
of a flat one. Subnetting is always beneficial regarding the network throughput and speed.
An intranet realized as a wide area network (WAN) also has other advantages. For LAN
and WAN see Chapter 14.

A direct consequence is that the Intranet implements the same technologies used on the
Internet. All hardware and software pieces of an intranet are “déjà vu” from the Internet.
The basic intranet infrastructure includes the same kind of twisted-pair, fiber optic, and
even wireless transmission links, bridges, hubs, switches, routers, and gateways, already
seen and known from the Internet. The most common LAN technologies are Ethernet,
Fast Ethernet, Gigabit Ethernet, ARCnet, as well as Token Ring. Sometimes ISDN and dial-in
connections are also in use.

A client/server model is the main characteristic of the intranet. The clients are desktop
computers that are connected by high-speed links into the intranet network. The server
is a powerful, high-speed computer with a larger disk capacity. It provides a specific
service to the desktop clients. Both servers and desktops contain the network support
software that is required to run the network and carry out the certain service. An example
of the network service is the Web service; a firewall is another example.

Web software allows the server to support HTTP so it can exchange information with
the clients. Firewall software will provide the security needed to protect internal informa-
tion from the outside world. Browser software allows the use of hyperlinks to go from
one place to another in a document, or to go to a completely different document. These
three pieces of software are basic for an intranet today, but other network software already
in use on the Internet can be added to provide other useful functions.

Intranet is not only a hardware-software tale. A successful intranet primarily depends
on the staff that is running this intranet. As always, the human factor is again crucial for
a success. An intranet often involves new staffing, and consultants may be needed to get
the project started. After the intranet is in place, a Web developer and an information
designer will be needed. People will also be needed to train employees in using the
intranet.

Desktop computers (we will address them simply as “desktops”) constitute the largest
group of participants of the intranet. They are attached to each individual user, and they
are the main vehicles in using the Intranet. In most cases desktops are personal computers
(PCs), and sometimes Macintosh workstations (Macs), or UNIX workstations (primarily
Linux). It means that the desktops primarily run on the Microsoft Windows platforms (all
flavors). At the same time, intranet servers are mostly UNIX or NT based. Obviously an
intranet presents a mixture of the different platforms on the operating system level too.
A rough division on that level could be that desktops are Windows dominated, while the
server side is UNIX dominated. There are exceptions to this, but we like to say: “exceptions
only prove the rule.”

The needed glue to make an intranet operational, despite all existing differences, is the
implemented network software. TCP/IP is the dominant network protocol implemented

in the intranet, although some other network protocols are also used, like Novel Netware
IPX or Microsoft NetBIOS. This is slightly different from the Internet where TCP/IP is the
almost exclusive protocol in use.

At the end, what can we conclude? In general, the intranet infrastructure matches the
Internet in both areas: hardware and software. The same hardware and software (or at least
very similar ones) means that all Internet-based skills could be fully implemented on the
intranet. This statement is also valid for UNIX administration skills.

25.3.2 Internal Services

We can look to the intranet as an extension of the Internet. Especially from the user
standpoint, the intranet is only the vehicle to join the larger family of Internet users. In that
light, it is fair to conclude that Web browsing, e-mail, and a few of the other best-known
Internet services are the ones expected by the intranet users. Users hate restrictions on
using the Internet, and intranet firewalls could restrict this usage significantly. By using
the intranet terminology, users are looking for full transparency toward Internet. In most
cases they do not care and do not know about the intranet, but they complain if they cannot
fulfill their Internet wishes.

Making external Internet services available internally greatly depends on the implemented
intranet policy: What do the intranet users need, and what should be given to them? And,
primarily, the intranet users are treated as clients (one exception is X windowing, where
the intranet is on the server side). Technically it always means how to configure and tune the
intranet firewall.

Besides the extension of Internet services within the intranet, there is also another group
of internal network services that are strictly intranet oriented. We mentioned that the
concept of the intranet is the same as Internet. We even said that the intranet is the “small
Internet.” This means that the network services available on the Internet could be directly
implemented on the intranet. They range from X windowing, via DNS, to the WWW and
DHCP. Some of them are even mandatory.

A list of such services is (or rather could be):

• DNS is the mandatory service. Intranet hosts are invisible outside of the intranet
and nobody can replace this service. Internal host name resolution must be
covered by the internal DNS service. DNS requests for external (Internet) hosts
should be forwarded to some external DNS server. For more details about DNS
see Chapter 16.

• Print service is definitely needed; users always print something (the paperless
office still does not fully exist). The print service can be organized around
print servers with multiple local printers, or around individual network
printers directly connected to the intranet (they directly provide the print
service). Today the latter is more common. For more details about printing,
see Chapter 10.

• NIS is preferable for administering the UNIX part of the intranet. The intranet
environment is almost ideal for centralized administration. The whole intranet
is usually under the same administrative jurisdiction, protected from external
interferences, and it is very easy to define administrative domains. For more
details about NIS see Chapter 17.

• NFS is highly suitable for intranet file service. It provides data consistency
intranet-wide, and makes the data backup and restore easier. For not-UNIX

clients (DOS, NT, Mac), a number of emulation software products is available,
like free Samba or other professional packages (Xinet, Totalnet, etc.). For more
details about NFS see Chapter 18.

• Intranet is ideal for networked backup implementations, like free Amanda, or
professional products as Legato Networker or Veritas NetBackup.

• E-mail is certainly needed within the intranet, as well as with external
Internet users. There is no difference between the two; e-mail traffic must
be routed through the firewall. The inbound e-mail traffic has to be scanned
for viruses and other malicious codes. Today e-mail is the main “transporter”
of nasty offenders, and the intranet must be protected accordingly. This is
efficiently provided by the intranet viruswall. For more details about e-mail
see Chapter 20.

• Intranet community consists of trusted hosts. So internal remote login and other
remote commands (including “remshing”) should be quite safe, as well as telnet,
ftp, and other “insecure” network services.

Despite internal intranet safety, the secure remote commands and secure “shelling”
(SSH) are recommended even within the intranet. Today SSH should be standard
on every computer, especially on the UNIX platform.

• Intranet actually means the small Internet confined within a company or organ-
ization. This also means that internal Web services are also very useful within
the intranet. All internal information could be published on the internal Web
site, and they will be available companywide. But everything remains among
the intranet users. Technically, internal Web service is the same as the external
one. The difference is only that the audience is restricted strictly to the intranet
community.

• Most other Internet services are also possible within the intranet. The only issue
is what are the benefits of their implementations. Each new service has a price,
and it is not worth it to support senseless network services.

• Among all mandatory, recommended, possible, and senseless network services,
there is one that sounds like it was invented for the intranet environment. This
is the dynamic host configuration protocol (DHCP). We will elaborate on this
service in more detail.

25.3.2.1 Dynamic Host Configuration Protocol (DHCP)
DHCP (dynamic host configuration protocol) is a protocol that allows the centralized and
automatic assignment of IP configurations on a computer network. Each participant in the
network communication requires a unique IP address. Up to now we have assumed
a manual IP address assignment, and we learned about the corresponding UNIX config-
uration behind it. A manually assigned IP address is known as a “static IP address” and
it is almost standard on the UNIX platform. UNIX hosts are assumed to run primarily as
network servers and they need in most cases a static IP address.

But intranet is not exclusively UNIX based. Desktop computers are the most numerous
participants in the Intranet, and mostly they are not UNIX hosts at all. Although the
manual IP configuration always can be implemented, the ability to assign IP client con-
figurations automatically can alleviate the painful process of intranet IP address manage-
ment. Network administrators have quickly appreciated the importance, flexibility, and
ease-of-use offered in DHCP.

DHCP was introduced by the Internet Engineering Task Force (IETF), and it is specified
in RFC documents. DHCP lets a network administrator supervise and distribute IP
addresses from a central point. The purpose of DHCP is to provide the automatic
(dynamic) allocation of IP client configurations for a specific time period (called a lease
period) and to eliminate the work necessary to administer a large IP network.

For every computer to be online, a unique IP address is required. What makes an intranet
unique is the fact that the majority of computers should not be online continuously. The
truth is that they spend more time offline or inactive. Also, when mobile computer users
travel between sites, they have had to relive this process for each different site from which
they connected to a network. So there are many reasons to automate the process of adding
machines to a network and assigning unique IP addresses.

How does DHCP work? When a client needs to start up TCP/IP operations, it
broadcasts a request for address information. The DHCP server receives the request,
assigns a new address for a specific time period (called a lease period), and sends it to
the client together with the other required configuration information. This information
is acknowledged by the client and used to set up its configuration. The DHCP server
will not reallocate the address during the lease period and will attempt to return the
same address every time the client requests an address. The client may extend its lease
with subsequent requests, and may send a message to the server before the lease expires
telling it that it no longer needs the address so it can be released and assigned to another
client on the network.

The use of DHCP in the intranet is extremely useful and efficient. Manual configuration
requires the careful input of a unique IP address, subnet mask, default router address,
and a DNS server address. In an ideal world, manually assigning client addresses should
be relatively straightforward and error free. Unfortunately, we do not live in an ideal
world; computers are frequently moved and new machines get added to a network. Also
if other intranet resources such as routers change, this could mean changing many system
configurations. For an administrator, this process can be time-consuming, tedious, and
error prone. DHCP has several major advantages over manual configurations. Each intranet
computer gets its configuration from a pool of available IP addreses automatically for
a specific leasing period, meaning no wasted IP numbers. When a computer has finished
with the address, it is released for another computer to use. Configuration information
can be administered from a single point. And major network resource changes require
only the DHCP server to be updated with the new information, rather than each computer
in the intranet.

The benefits of dynamic addressing are especially helpful in mobile computing
environments where users frequently change locations. New mobile users in the intranet
simply plug in their laptop to the network, and receive their required configuration
automatically. When moving to a different network using another DHCP server, then
that network’s server will supply the configuration. No manual reconfiguration is
required at all.

At the same time, DHCP servers are easy to administer and can be set up in just a few
minutes. The DHCP servers have to run continuously as they must be available at all times
when clients need IP access.

Some machines in the intranet need to be at fixed addresses. For example, all servers,
routers, printers, and similar devices that have to be accessible by all clients. The
changes in their IP addresses would disable the corresponding services. The DHCP
server should be capable of assigning pre-allocated IP addresses to these specific
machines.

To avoid conflicts between addresses assigned by the DHCP server and those assigned
manually, intranet users should be discouraged, or preferably prevented, from recon-

figuring their own IP addresses. Also some older operating systems do not support
DHCP.

25.3.3 Virtual Private Network (VPN)

Intranet seems to be a magic solution for many companies and organizations. All intranet
users (company employees) are grouped together in a safe environment with all needed
Internet services available for their efficient work. However, an intranet is a space-
restricted network, contained within relatively limited geographical area.

How can a remote company branch office be included in the company intranet? How
do retail organizations with hundreds of stores nationwide provide each store with the
access to the intranet servers and databases that they desperately need?

Today virtual private network (VPN) sounds like a solution for this problem. VPN
technology allows us to build a low cost virtual intranet that incorporates all remote
participants, by using the existing Internet infrastructure. There is no need for a significant
investment, while the needed network privacy is preserved over the large geographical
area. VPN supplies network connectivity over a possibly long physical distance. In this
respect, VPN is a form of wide area network (WAN). The key feature of a VPN, however,
is its ability to use public networks like the Internet rather than rely on private leased
lines. VPN technologies implement restricted-access networks that use the Internet
resources without sacrificing features and basic security.

Traditionally a company or an organization that wanted to build a WAN needed to
procure expensive, dedicated lines to connect their offices together. Typically a leased-line
WAN supported a long-distance intranet. Besides file sharing and e-mail, the long-distance
intranet provided access to intranet Web sites and videoconferencing systems. In addition,
the intranet was open selectively to partners to provide their services, known as extranet
services.

A VPN can support the same intranet/extranet services as in a traditional long-distance
intranet. But VPN has also grown in popularity for its ability to support remote access
service. In recent years, many companies have increased the mobility of their users by
allowing more employees to telecommute. Employees also continue to travel and face an
increasing need to stay “plugged in” to the company intranet. Companies that do not use
VPNs must resort to implementing specialized secure dial-up services. To log in to an
intranet, a remote user must call into a intranet’s dial-in access server (using either a 1–800
number or a local number). The overhead of maintaining such a system internally, coupled
with the possibility of high long distance charges incurred by travelers, make VPNs an
appealing option here.

VPN remote access architecture is presented in the Figure 25.10. A remote node (client)
wanting to log in to the company intranet calls into a local Internet service provider (ISP).
Once on the Internet, the VPN client establishes a connection to the intranet VPN server
maintained at the company site. Once the connection has been established, the remote
client can communicate within the intranet just as securely over the Internet as if it resided
on the internal network itself.

A simple extension of the VPN remote access architecture shown in Figure 25.10 allows
Internetworking: an entire remote network (rather than just a single remote client) joins
the local network. Rather than a client-server connection, a server-server VPN connection
joins two networks to form an extended intranet, known as extranet.

VPNs do not offer any network services that are not already offered through alternative
mechanisms. However, a VPN does use a unique mix of technologies that promises to
improve on the traditional approaches.

VPN promises two main advantages over competing approaches:

1. Cost savings – There is no more need for expensive long-distance leased lines.
With VPNs, only a relatively short dedicated connection to the ISP provider is
required. This connection could be a local leased line (much less expensive than
a long-distance one), or it could be a local broadband connection such as DSL,
cable modem, or ISDN service. Another way VPN reduces costs is by lessening
the need for long-distance telephone charges for remote access. A third, more
subtle way that VPN may lower costs is through the offloading of the support
burden. With a VPN, the ISP rather than the company intranet must support
dial-up access. ISP can in theory charge much less for their support than it costs
a company internally because the public ISP cost is shared among potentially
thousands of customers.

2. Scalability – As a company grows and more remote hosts must be added to the
intranet, the cost of the traditional approach with leased lines increases dramat-
ically. Four branch offices require six lines for full connectivity, five offices require
ten lines, and so on. This phenomenon is known as a combinatorial explosion, and
in a traditional WAN this explosion limits the flexibility for growth. VPN that
uses the Internet avoids this problem by simply tapping into the geographically
distributed access already available.

Internet

Intranet

Local ISP

Local ISP

VPN Client

VPN Client

FIGURE 25.10
Virtual private network (VPN).

Main VPN disadvantages are:

1. VPNs require an in-depth understanding of public network security issues and
proper deployment of precautions.

2. The availability and performance of an organization’s wide-area intranet with
the implemented VPN over the Internet, depends on factors largely outside of
its own control.

3. VPN technologies from different vendors may not work well together due to
immature standards.

4. VPN needs to accommodate protocols other than IP and existing (“legacy”)
internal network technology.

Generally speaking, these four factors constitute the “hidden costs” of a VPN solution.
Whereas VPN advocates emphasize cost savings as the primary advantage of this tech-
nology, detractors cite hidden costs as the primary disadvantage of VPNs.

VPN works hard to ensure the data remains secure, but even its security mechanisms
can be breached. Particularly on the Internet, sophisticated hackers with ample amounts
of free time will work equally hard to “steal” VPN data if they believe it contains valuable
information. Most VPN technologies implement strong encryption so that data cannot be
directly viewed using network sniffers. VPN may be more susceptible to “man in the
middle” attacks, however, that intercept the session and impersonate either the client or
server. In addition, some private data may not be encrypted by the VPN before it is
transmitted on the Internet. IP headers, for example, will contain the IP addresses of both
the client and the server. Hackers may capture these addresses and choose to target these
devices for future attacks.

VPN technology is based on a tunneling strategy. Tunneling involves encapsulating packets
constructed in a base protocol format within some other protocol. In the case of VPNs run
over the Internet, packets in one of several VPN protocol formats are encapsulated within
IP packets.

Several network protocols have been implemented for use with VPNs. These protocols
emphasize authentication and encryption in VPNs and attempt to close some of the security
holes inherent in VPNs. Authentication allows VPN clients and servers to correctly estab-
lish the identity of people when accessing the intranet. Encryption allows potentially
sensitive data to be hidden from the general Internet public.

Point-to-point tunneling protocol (PPTP) — PPTP is a protocol specification developed
by several companies. People generally associate PPTP with Microsoft because nearly all
flavors of Windows include built-in support for the protocol. The initial releases of PPTP
for Windows by Microsoft contained security features that some experts claimed were too
weak for serious use. Microsoft continues to improve its PPTP support, though. PPTP’s
primary strength is its ability to support non-IP protocols. The primary drawback of PPTP
is its failure to choose a single standard for encryption and authentication. Two products
that both fully comply with the PPTP specification may be totally incompatible with each
other if, for example, they encrypt data differently.

Layer two tunneling protocol (L2TP) — The original competitor to PPTP in VPN
solutions was L2F — a protocol implemented primarily in Cisco products. In an attempt
to improve on L2F, the best features of it and PPTP were combined to create a new standard
called L2TP. L2TP exists at the data link layer (layer two) in the ISO OSI model — thus
the origin of its name. Like PPTP, L2TP supports non-IP clients, but it also fails to define
an encryption standard. However, L2TP supports non-Internet based VPNs including
frame relay, ATM, and SONET.

Internet protocol security (IPsec) — IPsec is actually a collection of multiple related
protocols. It can be used as a complete VPN protocol solution, or it can be used simply
as the encryption scheme within L2TP or PPTP. IPsec exists at the network layer (layer
three) in the ISO OSI model. IPsec extends standard IP for the purpose of supporting more
secure Internet-based services (including, but not limited to, VPNs). IPsec specifically
protects against “man in the middle attacks” by hiding IP addresses that would otherwise
appear on the wire.

SOCKS network security protocol — The SOCKS system provides a unique alternative
to other protocols for VPNs. SOCKS functions at the session layer (layer five) in the ISO
OSI model, compared to all of the other VPN protocols that work at layer two or three.
This implementation offers advantages and disadvantages over the other protocol choices.
Functioning at this higher level, SOCKS allows administrators to limit VPN traffic to
certain applications. To use SOCKS, however, administrators must configure SOCKS proxy
servers within the client environments as well as SOCKS software on the clients themselves
(see the section about proxies).

A number of vendors offer VPN-related products. These products sometimes do not
work with each other because of the choice of incompatible protocols (as described above)
or simply because of lack of standardized testing. Some VPN products are hardware
devices. Most VPN devices are effectively routers that integrate encryption functionality.
Other types of VPN products are software packages. VPN software installs on top of a host
operating system and can require significant customization for the local environment.
Many vendor solutions comprise both server-side hardware and client-side software
designed for use with the hardware.

VPN technology can also be used within the intranet itself to control access to individual
subnets on the private network. In this mode, VPN clients connect to a VPN server that
acts as a gateway to computers behind it on the subnet. Note that this type of VPN
implementation does not involve Internet resources because everything happens within
the intranet. However, it does take advantage of the security features and convenience of
VPN technology.

An amazing amount of development effort has been invested in VPN technologies. Yet
the task of choosing and deploying a VPN solution remains far from simple. It may prove
helpful to train workers in at least the basics of VPN clients to help them migrate to new
VPN deployments. They have to be aware of the traffic congestion and router failures on
the Internet that can adversely impact the performance of the implemented VPN. It is also
important when building a VPN to choose a high-quality ISP.

25.3.4 UNIX and Not-UNIX Platform Integration

An intranet is heterogeneous in many aspects, on different implementation levels, includ-
ing the OS level. Same network services could be accomplished on multiple OS platforms,
and the implemented OS platform is completely hidden from the users. All differences
are mostly invisible. However, this is not the case regarding the needed administration
for provided intranet services. Simply, sometime things are not going so smoothly, and
we cannot ignore underlying differences. They can have a substantial impact to the overall
intranet behavior and performances.

Basically, desktops belong to MS Windows (W95, W98, NT, W2000, etc.). Not necessarily
everywhere, and not exclusively, but definitely Windows dominate. We will address it as
NT platform. Main intranet servers are mostly UNIX-based (again this is not the rule,
rather the most frequent situation). UNIX appears as a more stable and reliable platform
for the crucial network services. Such division could be considered as the biased one

(at least this book is about UNIX), but this is a fact at the beginning of this millennium. The
end of the millennium will probably belong to platforms other than UNIX.

Intranet users simply use the network resources (hardware and software) and complain
if something does not work, or works slowly. A typical working scenario is that a user
logs in via a desktop, checks e-mail, and continues to work in the intranet environment.
NT clients access UNIX servers, request certain services on behalf of users, and return
requested data to users. On the surface, this working intranet environment looks uniform
and contiguous. In reality there are certain discontinuities in its implementation.

Generally, the intranet benefit of using multiple OS platforms is that each platform is
implemented on those places in the intranet where its advantages lead to better overall
performance. But there are also some disadvantages of mixed OS implementations. A certain
level of the intranet customization can help to diminish these disadvantages. This custom-
ization is primarily related to a unified intranet administration and management. To
accomplish this task, a larger integration of implemented OS platforms is needed to avoid
existing differences in their administrations. The following text is an attempt to point to the
main issues related to the integration of the UNIX and NT platforms to make the intranet
a technically better place to work.

1. A uniform administration of individual user accounts — Users have to have the
same login name, user ID, primary group, home directory, as well as authenti-
cation data (password). This is not trivial in the heterogeneous environment.
UNIX supports NIS for centralized system administration (see Chapter 17). But
NIS is unknown to NT. Centralized NT administration is provided via one or
more primary domain controllers (PDC). The two approaches are mutually
incompatible, and the need for their integration is obvious. More specifically it
means that the UNIX Master NIS Server and NT Primary Domain Controller
have to share the same administrative data and push them all over the intranet.
In that way UNIX NIS clients and desktops will see the same user administrative
data.
There is third-party software that delivers the same. But we advocate a homemade
solution. First we have to proclaim the master NIS server for the central admin-
istrative resource for the whole intranet. Simultaneously UNIX part of the Intranet
will be fully covered. Then we have to force that each action on the NIS master
is automatically transferred and remotely invoked on the NT PDC. That will
cover the NT part of the network. Afterward every user will be identified identi-
cally anywhere on the intranet.

A homemade program (even a script) can handle the needed synchronization
between NIS master and PDC. This presents a cost-effective and efficient solution.

2. A uniform administration of groups — unique groups over the whole intranet
are very important for a secure intranet operation. The groups have to be the
same and users should belong to the same groups. Access to the data is usually
based on the file’s mode, and they are shared only among members of the same
group. Unfortunately, the required uniqueness is not possible for certain system
groups that are too specific in UNIX and NT. These system groups remain, as
they are, each in its own platform without any impact on the wider intranet
behavior.

The same approach from the previous paragraph can be implemented: NIS
master vs. PDC integration. The same homemade program can handle group
data in the same way as the user data.

3. A uniform administration of authentication data — More specifically, the same
password should be valid all over the Intranet. Users hate multiple passwords:
one password to login, another for e-mail, a third for… And how to handle
needed password changes? Again NIS master seems as the most appropriate for
the password maintenance, which will then be pushed toward PDC and NT
community.

4. An integrated intranet file service — Users have to have unrestricted access to the
same data. Especially users’ home directories should be unique. A kind of unified
intranet file service (UIFS) has to be provided. UNIX network filesystems — NFS
(see Chapter 18) are incompatible with NT Common Internet Filesystem (CIFS).
Neither side can provide UIFS for both UNIX and NT parts of an intranet.

The most appropriate solution could be a UNIX NFS file server with the CIFS
emulation software on it. UNIX file servers are stable and robust in their imple-
mentations. UNIX nfs clients approach the file server normally, while at the same
time the CIFS emulation software accommodates NT clients. There are several
commercial CIFS emulation products, as well as the freeware Samba package.
User home directories could and should be located on the UIFS file server/servers.
UIFS and unique home directories relax other network applications also. Especially,
it is easier to enforce the required backup policy. Simply, important data to be
backed up are grouped together on one or several UIFS servers. There is no need
to worry about desktop data.

5. A unified print service is much easier to accomplish. Network printers are
compatible with both UNIX and NT clients. If a printing center organized around
a print server with multiple local printers is needed, NT print server is probably
a better choice.

6. A unified e-mail service is also easy to accomplish; a UNIX e-mail server seems
to be appropriate. Sendmail (see Chapter 20) is a mature and reliable e-mail
product proven through all years of its wide use. The compatibility of the intranet
e-mail server with UNIX and NT clients is based, however, on the implementa-
tion of POP and IMAP protocols, which are independent of sendmail and trans-
parent over both platforms.

7. Most other intranet services can run on any OS platform independently, like
firewall, viruswall, or proxy. The only criterion for the implemented OS platform
is overall service performance.

26
UNIX Installation

26.1 Introductory Notes

The first step in dealing with an UNIX system is to install the operating system itself. On
a UNIX platform, delivered systems with the OS preinstalled is more an exception than
the rule. In any case, among the administrative duties are the UNIX installation (when
we say “UNIX installation” we are thinking “UNIX OS installation”) and the initial
configuration of the installed UNIX system that will allow access for further upgrades.

UNIX installation per se should not be a problem. There are two main reasons why:

1. The installation procedure is usually well documented; the provided documentation
usually covers all possible installation scenarios, as well as potential troubleshooting.

2. The system is not in an operational stage, and we are relaxed during the instal-
lation. It is easy to repeat an installation procedure if something is going wrong,
we have started everything from scratch, so we can do the same again.

Nevertheless, any real installation example is always welcome and helpful. Different instal-
lation scenarios and options, and a general installation approach in the provided documenta-
tion can sometimes be confusing. Existing dilemmas can be quickly resolved if we have an
appropriate installation case in front of us. This is the purpose of this chapter. A few installation
examples for the currently most common UNIX flavors — Solaris, HP-UX, and Linux — could
be very helpful in a number of real installation cases, and also very educational for the readers.

OS installation is the first step in making a UNIX system workable. However, this is not
the only step in accomplishing this task, as well as keeping a UNIX system compliant
with unavoidable upgrades, updates, and patches. The second part of this chapter
addresses these issues. For both parts it is assumed that we have workable hardware in
front of us, that we have access to the system console, and that the CD drive is available.

26.2 UNIX Installation Procedures

In this part, the installation procedure examples for a few common UNIX flavors are
documented. Despite the fact that they are sufficiently general and applicable for listed

UNIX flavors, they are also site-specific. Please keep in mind that some differences in the
installation procedures caused by different system hardware configurations and/or operating
system versions and releases are always possible. This is the reason why, in each of the
examples that follow, the relevant initial information is always provided.

26.2.1 HP-UX Installation

The following text describes in detail steps performed in installing HP-UX 10.20 operating
system on the Series 800 HP system — model E35; the host is named “blue” in this example.
The described installation procedure also includes a mirroring of the root filesystem, which
is realized as a single filesystem that also includes /usr and /var.

1. Power-on the system.
2. Insert the “HP-UX 10.20 Install and Core OS” CD into the CD drive.
3. Follow messages on the console. Pay attention to the message:

“To discontinue press any key within 10 seconds! …”
and hit any key.

4. Respond to questions:
Boot from primary boot path (Y or N)? > n
Boot from alternate boot path (Y or N)? > n
Enter boot path, command, or ?> boot 56/52.2 (or corresponding CD hardware path)

Since the CD was selected (hardware path 56/52.2), respond to the question:
Interact with IPL (Y or N)?> n

5. The Install Program on the CD is started, and the Welcome Screen appears.
Select Install HP-UX and continue dialogue.

Would you like to enable networking now? > y
6. The screen: HP-UX Install Utility — Network Configuration

hostname: blue
ip address: XX.XX.XX.XX (enter corresponding IP address)
router: XX.XX.XX.XX (enter corresponding IP address)
netmask: 255.255.255.0 (or another netmask)

Select OK.
7. The screen: HP-UX Install Utility — Select System Root disk

Select 56/52.6.0 for the primary boot disk (or corresponding disk hardware path).
8. The screen: HP-UX Install Utility — Select Whole System Configuration

Select LVM Configuration with VxFS (Journaled file system).
Select OK.

9. The screen: HP-UX Install Utility — View/Modify Basic Configuration
Primary swap size (for example 1200, or accept offered value)
Secondary swap size none
Software selection CDE Runtime Environment
Software language English
Locale setting default
FS file name length Long
/home Configuration none
How many disks in root group one
Make volatile dirs separate true
Create /export volume false

Select OK.
10. The screen: HP-UX Install Utility — Configure File System

mount size volume disk
directory (MB) usage group
/ 1420 VxFS vg00
/stand 48 HFS vg00
(swap) 560 swap vg00
Select OK.

11. Since configuration was done, continue installation by using swinstall utility in the noninteractive
mode.

The screen: HP-UX Install Utility — Enter SD-UX swinstall information
Do you want to interact with SD-UX swinstall? > No

Select OK.
12. The swinstall procedure continues; it takes almost one hour. Once it is completed, log in to the system

as “root” and set the password.

Once the HP-UX OS is installed, the system itself should be appropriately configured
for its mission. The following text describes the most common needed administrative steps
to customize the installed system. Of course, the described steps are not mandatory —
they are very much site-dependent; please read them as appropriate. Also, HP-UX provides
a menu-based tool, system administration manager (SAM), to help in the system
administration — it is available upon OS installation. In some of the following steps, SAM
is used to accomplish specific tasks.

13. Log in as root.
14. Using “vi” modify the file /etc/issue to reflect the host’s name blue.

blue [HP Release B.10.20]
15. Create/prepare configuration files for Automounter if needed. This step is site-specific and probably

could be skipped in most installations. In this example Automounter is used to mount home and
share filesystems exported by the NFS server; and NIS maps specify the configuration data.

/etc/auto_direct:
+auto_direct
/etc/auto_master:
/- auto_direct -ro
/net -hosts -rw
/home auto_home -rw
/share auto_share -rw
/etc/auto_home:
+auto_home
/etc/auto_share:
+auto_share

16. Modify/prepare the following files for NIS:
/etc/passwd
/etc/group

Add NIS marker “+” as the last line in the file; it will be in effect until the /etc/nsswitch.conf file is
created. Again this step probably could be skipped; in this example NIS is implemented.

17. For most of the network-related services that follow, it is easier to use the SAM tool than to modify
configuration files from the command line. However, such an approach is also acceptable. Enter sam
to start SAM from the command line.

18. Select Networking and Communications.
Select Name Service Switch.
For each displayed entry, select Action/Configure Name Service Switch and provide the necessary data.
The default values could be OK for most of implementations Select Network Information Service.
Select Action/Set Domain Name and set to domain-name (enter the name for your NIS domain if

applicable at all).
Select Networked File System.
Select Mounted Remote File Systems.
Select Action/Enable Automounter.
Note: If there are problems, please check the rc configuration file /etc/rc.config.d/namesvrs (it includes
configuration data for NIS) and /etc/rc.config.d/nfsconf (for NFS client and Automounter).

19. Return to the SAM Main Menu and select Time.
Select NTP Network Time Resources.
Select Action/Add Remote Server or Peer…
Enter Host Name: ntphost (or the name of the time server).
Select Action/Start NTP.

20. Return to the SAM Main Menu and select Printer and Plotters.
Select LP Spooler.
Select Printer and Plotters.

Select Action/Add Remote Printer/Plotter.
Printer name: printer-name
Remote system: system-name
Remote printer name: remote-name (for network printer LF1)

Make the printer default one; select Action/Set as Default Destination.
Return to the SAM Main Menu and exit.

21. Create/prepare the file /etc/shells to include all shells that FTP users could use. Otherwise, the FTP
access to the system would be restricted.

22. Modify the system-wide file /etc/profile to reflect your login needs.
23. Build the whatis database.

Execute catman -w — it takes a while.

At this point the basic system configuration is set and the system is ready for use.

26.2.2 Solaris Installation

Solaris installation procedure is presented in the following text. Solaris 2.6 (SunOS 5.6) is
installed on Sun Enterprise 3000 server with disk arrays, named red. Enterprise Volume
Manager 2.5 and Veritas Filesystem are also installed. The system has multiple network
interfaces.

1. Power-on system.
2. Set NVRAM

ok> set-defaults
ok> setenv boot-device disk
ok> setenv local-mac-address? true

3. Put Solaris 2.6 Software CD in drive.
ok> boot cdrom

4. Select a Locale.
USA — English (ASCII only)

.

.
Type a number and press Return or Enter [0]: 0

5. What type of terminal are you using?
1) ANSI Standard CRT
2) DEC VT52
3) DEC VT100
Type the number of your choice and press Return: 3

6. The Solaris Installation Program
Select F2_Continue

Note: At this point if function keys do not work, press <Esc> and then <Esc-2> instead of <F2>, and
<Esc-6> instead <F6>).

7. Identify This System
Select F2_Continue

8. Host Name
Host name: red

Select F2_Continue
9. Network Connectivity

Networked

[X] Yes
[] No

Select F2_Continue
10. IP Address

IP address: XX.XX.XX.XX (corresponding IP address)
Select F2_Continue

11. Confirm Information
Select F2_Continue

12. Name Service
Name service

[] NIS+
[] NIS (formerly yp)
[X] Other (to set DNS appropriately)
[] None

Select F2_Continue
13. Confirm Information

Select F2_Continue
14. Subnets

System part of a subnet
[X] Yes
[] No

Select F2_Continue
15. Netmask

Netmask: 255.255.255.0 (or whatever)
Select F2_Continue

16. Time Zone
[X] United States

Select F2_Continue
[X] Eastern

Select F2_Continue
17. Date and Time

Set date and time
Select F2_Continue

18. Confirm Information
Select F2_Continue

19. Solaris Interactive Installation
Select F4_Initial Select F2_Continue

20. Allocate Client Services?
Select F4_Allocate

21. Select Platforms
[X] sparc.sun4u
[X] sparc.sun4m
[X] sparc.sun4c
[] sparc.sun4d

Select F2_Continue
22. Allocate Client Services

Select F2_Continue
23. Select Software

[] Entire Distribution plus OEM support .. 1196.00 MB
[X] Entire Distribution ………………. 1189.00 MB
[] Developer System Support ………….. 1124.00 MB
[] End User System Support …………… 864.00 MB
[] Core System Support ………………. 665.00 MB

Select F2_Continue
24. Select Disks

Select F2_Continue

Type # of Clients X Size Per = Total Size Mount Point

ROOT 5 X 25 = 125 /export/root
SWAP 5 X 32 = 160 /export/swap

Disk Device (Size) Available Space

[X] c0t0d0 (8633 MB) boot disk 8633 MB
Total Selected: 8633 MB
Suggested Minimum: 844 MB

25. Preserve Data?
Select F2_Continue

26. Automatically Lay Out File Systems?
Select F2_Auto_Layout

Select F2_Continue
27. File System and Disk Layout

Select F4_Customize
Customize Disk: c0t0d0
Boot Device: c0t0d0s0
Entry: swap Recommended: 258 MB Minimum: 0 MB

Capacity: 8633 MB
Allocated: 8633 MB
Free: 0 MB

Select F2_OK

Select F2_Continue

28. Mount Remote File Systems?
Select F2_Continue

29. Profile
Select F2_Continue

30. Reboot After Installation?
[X] Auto Reboot
[] Manual Reboot

Select F2_Begin Installation

File Systems for Auto-layout

[X] /
[] /export
[] /export/root
[] /export/swap
[] /opt
[] /usr
[] /usr/openwin
[] /var
[X] swap

Slice Mount Point Size (MB)

0 / 1779
1 swap 6452
2 overlap 8633
3 /altboot 401
4 0
5 0
6 0
7 0

File System/Mount Point Disk/Slice Size

/ c0t0d0s0 1779 MB
swap c0t0d0s1 6452 MB
overlap c0t0d0s2 8633 MB
/altboot c0t0d0s3 401 MB

At this point the installation is started, and it takes awhile. Once the OS is installed, the
basic system administration should be provided. It is described here:

31. Log in to host and set the root password.
32. Set terminal:

TERM = vt100
export TERM
stty rows 24 columns 80

33. Modify /etc/inittab
cp -p /etc/inittab /etc/inittab.fb

modify the entry for “console”: instead of “sun” => “unknown”
You can modify /etc/default/login file to allow the direct root login from the network; comment-out the line:

CONSOLE = /dev/null
This should be allowed only temporarily, during the software installation.
Also copy and modify the root login file /.profile for an easier work.

cp /etc/skel/login.profile/.profile
34. Install QFE Drivers (this example assumes Quad FastEthernet network interface) Put Sun Quad

FastEthernet drivers CD in drive.
cd /cdrom/sun_quadfast_2_1/Sol_2.6
pkgadd -d . SUNWqfed SUNWqfedu

Respond “yes” to the question about executing scripts with “root” credentials.
Switch the network interface to “qfe0”

mv /etc/hostname.hme0 /etc/hostname.qfe0
Define the router

echo “XX.XX.XX.XX” > /etc/defaultrouter (corresponding IP address)
reboot -- -r

35. Installation of supplemental software (in this example) of packages for:
Hardware testing

SUNWvts Online Validation Test Suite
SUNWvtsmn Online Validation Test Suite Man Pages
SyMON Monitor system hardware status and OS performance
SUNWsyc Solstice SyMON Server’s standalone configd program
SUNWsye Solstice SyMON Event Manager/Generator/Handler
SUNWsym Solstice SyMON Man Pages
SUNWsyrt Solstice SyMON Runtime Library and Tcl Scripts
SUNWsys Solstice SyMON Server’s Commands and Data
SUNWsyu Solstice SyMON System Monitor System Commands and GUI
SUNWsyua Solstice SyMON Images for UE servers
SUNWodu Online Diagnostic Utilities
INTERSOLV’s ODBC Driver manager
ISLIodbc ODBC (Open DataBase Connectivity) Driver Manager
ISLIodbcD Demo ODBC (Open DataBase Connectivity)
Mutli-Dialect dBASE Driver

Put SMCC Software Supplement for Solaris 2.6 CD in drive.
cd /cdrom/supp_sol_2_6_smcc/Product
pkgadd -d . SUNWvts SUNWvtsmn SUNWsyc SUNWsye SUNWsym \
SUNWsyrt SUNWsys SUNWsyu SUNWsyua SUNWodu \
ISLIodbc ISLIodbcD

Respond “yes” to all questions, accept defaults for ODBC directories
36. Installation of Patches

It is a time to install patches, if required. The installation procedure is described later.
37. Installation of Volume Manager

Volume Manager is the optional software and its installation is not a must. Nevertheless, it is
described later in the paragraph Installation of Additional Software. This procedure mirrors the root
disk and creates the additional disk group dg01 with two volumes — vol01 ands vol02.

38. Installation of Veritas Filesystem VxFS
Veritas Filesystem (VxFS) is the implemented filesystem in this example. The installation procedure
is described later.

39. Create and mount filesystems:
Supposing two additional filesystems with mount-points /files1 and /files2, and two created volumes
vol01 and vol02 in the disk group dg01

Create mount points:
mkdir /files1 /files2

Make filesystems:
mkfs -F vxfs -o largefiles,bsize = 8192,logsize = 2048 /dev/vx/rdsk/dg01/vol01
mkfs -F vxfs -o largefiles,bsize = 8192,logsize = 2048 /dev/vx/rdsk/dg01/vol02

Add following to /etc/vfstab:
/dev/vx/dsk/dg01/vol0 1 /dev/vx/rdsk/dg01/vol01 /files1 vxfs 1 yes -
/dev/vx/dsk/dg01/vol0 2 /dev/vx/rdsk/dg01/vol02 /files2 vxfs 1 yes -

Mount filesystem:
mount /files1
mount /files2

40. Set NVRAM
In step 38 the root disk was mirrored. For a proper system booting from the mirrored root volume,
the NVRAM must be modified in the following way:
To force the definition of alias devices:

/usr/sbin/eeprom use-nvramc? = true
To specify boot devices: root disk and mirrored disk rd501 (if the mirrored root disk is different than
rd501 specify correspondingly; for example: vx-rd002):

/usr/sbin/eeprom boot-device = “disk vx-rd501”
/usr/sbin/eeprom diag-device = “disk vx-rd501”

To specify alias devices for alternate booting vx-rd501, and alternatively vx-rd002 (pay attention the
following is valid only when rd501 = c2t64d0 and rd002= c1t64d0):

/usr/sbin/eeprom nvramrc =
“devalias vx-rd501 /sbus@2,0/SUNW,socal@d,10000/ sf@1,0/ssd

@w2100002037160238,0:a
devalias vx-rd002 /sbus@2,0/SUNW,socal@d,10000/ sf@0,0/ssd

@w2100002037160b1f,0:a”
41. Set the printer/printers:

lpadmin -p printer-name -s system-name!remote-name
or for the network printer

lpadmin -p printer-name -s system-name!LF1
42. Configure additional network interfaces, for example:

/usr/sbin/ifconfig q fe0:1 inet 10.2.110.249 netmask 255.255.255.0 up
/usr/sbin/ifconfig q fe1 plumb
/usr/sbin/ifconfig q fe1 inet 10.2.120.249 netmask 255.255.255.0 up
/usr/sbin/ifconfig q fe1:1 inet 10.2.130.249 netmask 255.255.255.0 up
/usr/sbin/ifconfig q fe2 plumb
/usr/sbin/ifconfig q fe2 inet 10.2.140.249 netmask 255.255.255.0 up
/usr/sbin/ifconfig q fe2:1 inet 10.2.150.249 netmask 255.255.255.0 up

43. Setup network services
DNS, i.e., /etc/resolv.conf file
SSH (if required)
NIS (if implemented)
Sendmail (if applicable)
NTP (if needed)
Other (if applicable)

44. Backup/dump the configured system data (root filesystem)
shutdown -yi s -g 0 (single-user mode)
ufsdump 0cfu /dev/rmt/0 /dev/vx/dsk/rootvol

26.2.3 Linux Installation

Linux installation resembles other UNIX installations. It is quite logical; Linux is only
one of many UNIX flavors, and the bottom line is the same: to bring a system into
a workable state. On the other hand, Linux is specific in some aspects, especially regard-
ing the implemented hardware platform which is not the proprietary one; just the
opposite — Linux is implemented on hardware originally dedicated to other operating
systems. This is exactly what makes Linux so attractive — it is successfully running on

relatively cheap and familiar hardware. We will try to emphasize those issues specific
to Linux installation.

The following text describes a complete Linux installation on Intel PC architecture. It is
supposed that the available hardware includes a CD-ROM drive and sufficient memory and
hard drive space. It is also supposed that there is no other OS preinstalled on the system itself.

1. Select the installation method and media between:
a. Bootable Linux floppy disk (known as local boot disk)
b. Bootable Linux CD-ROM disk

2. Power-on the system and enter in the system’s BIOS setup mode (usually by pressing on time [TAB]
or [F1] key).

3. Prepare for booting the installation program (this program will provide Linux installation later).
a. If the bootable CD-ROM is a choice, the system must be set to boot from CD-ROM disk — set

correspondingly the system’s BIOS; instead of the usual booting sequence: “floppy disk A and
then hard disk C,” set “CDROM disk” (probably D or E).

b. If local boot disk is a choice, boot the system and then select CD-ROM as the installation media.
Actually, in both cases CD-ROM is the selected media, and Linux installation is provided from
the CD-ROM disk.

4. Beginning the Installation
We recommend “text installation mode”; on “boot” prompt type:

boot: text
5. Language Selection

Select English
6. Keyboard Configuration

Select Generic, US, or whatever is appropriate
7. This step depends on the previously selected installation method:

a. if local boot disk was the choice, a media selection screen for Linux installation is displayed (CD-
ROM is not the only possibility, although we are discussing this case):
Select CD-ROM

b. if Bootable CD-ROM was the choice, a Welcome screen is displayed
From this step we continue Linux installation from the CD-ROM disk

8. Welcome Screen
Select OK

9. Installation Type
Select Workstation, Server, or another choice

10. Partitioning
Linux provides an automatic partitioning (sometimes could be satisfactory), or manual partitioning
with Disk Druid, which is probably more appropriate.

-------------------------------- Current Disk Partitions --
Mount Point Device Requested Actual Type

hda1 512M 512M Linux native
hda5 2048M 2048M Linux native
hda6 620M 620M Linux swap
hda7 2048M 2048M Linux native
hda8 1024M 1024M Linux native

Drive Summaries
Drive Geom [C/H/S] Total Used Free

hda
Edit partitions and at the end select OK

11. Formatting Partitions
Choose all newly created partitions and select OK to format them

12. Hostname Configuration
Enter a fully qualified domain name for the system, for example:

Hostname green.myschool.spcs.edu
13. Network Configuration

Enter network-related data, for example:
Use bootp/dhcp: no
IP address: 146.28.123.18
Netmask: 255.255.255.0

Default gateway (IP) 146.28.123.1
Primary nameserver: 146.28.123.31

Select OK
14. Mouse Configuration

Choose the appropriate mouse type, for example:
Generic - 2 Button Mouse (PS/2)

Select OK
15. Time Zone

Choose the appropriate time zone, for example:
America/New_York

Select OK
16. Root Password

Specify root password
Password: xxxxxxxxxx
Pasword (again) xxxxxxxxxx

Select OK
17. Creating User Accounts

An optional step — consequently you can skip this.
18. Individual Package Selection

A list of common software packages is offered. Upon selection, the system checks for a video card
and later the selected packages are installed. Among packages are possible dependencies, and they
must be resolved. A package is properly installed only if all other required packages are also installed.

19. Video Card Confirmation
Detected video card is displayed; if system cannot detect a video card, a list of available video cards
is displayed. Choose the video card and confirm.
Select OK

20. Package Installation
Installation dialog screens are displayed:

a. To begin dialog
b. Package installation status dialog

21. Create Boot Disk
Creating a boot floppy disk is recommended; insert a blank floppy and
Select OK

22. X Window Configuration
The Xconfigurator utility provides an easy X window configuration. It allows a choice of
standard or custom monitor, video memory, clockchip, video mode, and finally testing of the X
configuration.

23. Congratulation Screen
At this point Linux installation is complete, and the system should be available for use.

26.3 Supplemental Installations

OS installation presents a basic step in preparing a UNIX system for its final mission.
However, by installing OS and providing needed system administration for its normal
operation, we just “open the door” of the system for its further usage. There are more
things to do afterward, and system administrators have a long-term responsibility for the
installed OS. Installation is a one-time job, but maintenance is forever. By saying that,
we are strictly thinking of UNIX OS as a general-purpose vehicle to provide successful
implementations of different application software. To administer the application software
is a separate topic, and it is beyond the scope of this text.

Each UNIX flavor provides some tolls and commands that should make this job easier.
Graphic or character-based tools like HP-UX’s SAM, or AIX’s SMIT, or Linux’s Linuxconfig
present relatively user-friendly, partially intuitive, and definitely big helpers in handling
many administrative jobs, especially when we are performing infrequent tasks. Their

usage is strongly recommended, but it is always a good idea to understand what happens
behind their friendly appearance.

What should we expect upon an OS installation? First to install supplemental system soft-
ware that makes our OS better and our work easier; this term, supplemental system software, is
so broad that we can put everything underneath. However, one issue is especially critical, and
that is permanent OS upgrade and improvement, mostly through a number of released
patches. The following text describes several installation procedures for different UNIX flavors.

26.3.1 Supplemental System Software

26.3.1.1 Installation of Sun Enterprise (Veritas) Volume Manager 2.5

1. Included packages are:
SUNWvmdev Sun Enterprise Volume Manager (header files)
SUNWvmman Sun Enterprise Volume Manager (manual pages)
SUNWvxva Sun Enterprise Volume Manager Visual Admin
SUNWvxvm Sun Enterprise Volume Manager

2. Put Sun Enterprise Volume Manager 2.5 CD in drive and type:
cd /cdrom/sun_sevm_2_5_sparc/Product
pkgadd -d. SUNWvmdev SUNWvmman SUNWvxva SUNWvxvm

Respond yes to all questions
3. Connect all external drives and reboot the system

reboot -- -r (pay attention to doubled hyphen characters)
4. Start the installation:

vxinstall
5. Interactive installation procedure continues

Volume Manager Installation Options
Menu: VolumeManager/Install
1 Quick Installation
2 Custom Installation
? Display help about menu
?? Display help about the menuing system
q Exit from menus
Select an operation to perform: 2
Encapsulate Boot Disk [y,n,q,?] (default: n) y
Enter disk name for [<name>,q,?] (default: rootdisk) root01
The Volume Manager has detected the following disks on controller c1:
c1t0d0 c1t16d0 c1t17d0 c1t18d0 c1t19d0 c1t1d0 c1t2d0 c1t20d0
Select an operation to perform: 4 (Leave these disks alone.)
The Volume Manager has detected the following disks on controller c2:
c2t100d0 c2t101d0 c2t102d0 c2t112d0 c2t113d0 c2t114d0
Select an operation to perform: 4 (Leave these disks alone.)
The following is a summary of your choices.
c0t0d0 Encapsulate
Is this correct [y,n,q,?] (default: y) y
Shutdown and reboot now [y,n,q,?] (default: n) n

The Volume Manager installation is completed. Volume Manager has detected 14 additional
disks. Disk c0t0d0 is supposed for a mirror of the root disk (remember that we are dealing
here with additional disks only — Solaris OS is already installed on the boot disk that we have
referred to as “root disk”); remaining 13 disks are left for later Volume Manager configuration.

26.3.1.2 Installation of Veritas Filesystem 3.X

1. Put Veritas Foundation Suite CD in drive.
/usr/sbin/pkgadd -d /cdrom/vrts_9803/Solaris_2_6/pkgs VRTSvxfs VRTSfsdoc

Do you want to install these conflicting files [y,n,?,q] y
Do you want to install these as setuid/setgid files [y,n,?,q] y
Do you want to continue with installation of <VRTSvxfs> [y,n,?] y

2. Enter license key
/usr/sbin/vxfsserial -c
Please enter your key:

Once you enter the license key of the form: “4959 4803 5362 2285 3667 7868 1623 9” the installation
process continues until completed.

26.3.1.3 Two Pseudo-Installation Scripts

The following two scripts could be used in handling some volume manager and veritas
filesystem issues. In some ways they are also a part of the installation procedure, and that
is why they are presented here. The first script creates a disk group named mydg that
includes 12 + 1 disks (one disk is supposed to be a spare for online disk replacement), and
a volume named myvol within this disk group. The volume myvol consists of six striped
and mirror disks — RAID 0 + 1. The script named make_mydg.csh illustrates nicely the
required procedure to accomplish this task, and could be easily used as a guide for similar
actions from the command line.

$ cat /usr/local/bin/make_mydg.csh
#!/ bin/csh
#===
The script: make_mydg.csh
#
Purpose: to create a disk group named mydg with a single volume named myvol over six
striped and mirrored disks (RAID 0+1) over the whole available disk space
#
Note: disk layout is specified within the script
#
disk group mydg
set MYDG = (c1t1d0.md01 c1t2d0.md02 c1t3d0.md03 \

c1t4d0.md04 c1t5d0.md05 c1t6d0. md06 \
c2t1d0.md11 c2t2d0.md12 c2t3d0. md13 \
c2t4d0.md14 c2t5d0.md15 c2t6d0. md16 \
c2t16d0.mdsp)

#
mydg disk group, plex 1
set MYDGP1 = (md01 md02 md03 md04 md05 md06)
#
mydg disk group, plex 2
set MYDGP2 = (md11 md12 md13 md14 md15 md16)

#
Initialize each disk – put under VM control
foreach DISK ($MYDG[*])

set NAME = $DISK:e
set DEV = $DISK:r
echo “Initializing $DEV”
/etc/vx/bin/vxdisksetup -i $DEV

end

#
Create mydg disk groups
set NAME = $MYDG[1]:e
set DEV = $MYDG[1]:r
echo “Initializing mydg disk group with $NAME”
vxdg init mydg $NAME = $DEV

foreach DISK ($MYDG[2-])
set NAME = $DISK:e
set DEV = $DISK:r
echo “Adding $NAME to mydg disk group”
vxdg -g mydg adddisk $NAME=$DEV

end

vxedit set spare=on mdsp

#
Create the mydg volume myvol over all available disk space (dedicated for a filesystem)
The size of volume is maximum available, striped over 6 disks and mirrored (RAID 0 + 1)
#

set MAX=�vxassist -g mydg -U fsgen -p maxsize layout=stripe,nolog nstripe=$#MYDGP1 stripeunit=128 $MYDGP1�

echo “Initializing myvol to a size of $MAX”
/usr/sbin/vxassist -g mydg -U fsgen make myvol01 $MAX \
layout = stripe,nolog nstripe = $#MYDGP1 stripeunit = 128 $MYDGP1

echo “Synchronizing mirror of myvol”
batch << EOF
/usr/sbin/vxassist -g mydg mirror myvol layout = stripe $MYDGP2
EOF

#
End of script
#===

The second script, make_myvol.csh, presents a kind of continuation of the first script;
here the disk group named mydg is already created, and this script could be used to create
a new volume of an arbitrary name, size, and type.

$ cat /usr/local/bin/make_myvol.csh
#!/ bin/csh
#===
#
Purpose: to create an arbitrary volume of the arbitrary size and type within the predefined disk
group mydg; new volume is striped and mirrored (RAID 0+1) over the available disk
space
#
Note: volume name, size and type are passing script arguments #1, #2 and #3

if (${#argv} != 3) then
echo “ ”
echo “Usage: /usr/local/bin/make_myvol name size type”
echo “ ”
exit (1)
endif

set myvol= �echo ${argv[1]}�
set size = �echo ${argv[2]}�
set type = �echo ${argv[3]}�

if ($type !~gen) then
set type = fsgen
endif

echo “ ”
echo “The volume name is: $myvol - the size is: $size – the type is: $type”
echo “If it is correct hit <Enter> key - otherwise type <Cntrl>C”
echo “ ”
read

the disk group mydg exists - this is its layout
set MYDG=(c1t1d0.md01 c1t2d0.md02 c1t3d0.md03 \

c1t4d0.md04 c1t5d0.md05 c1t6d0. md06 \
c2t1d0.md11 c2t2d0.md12 c2t3d0. md13 \
c2t4d0.md14 c2t5d0.md15 c2t6d0. md16 \
c2t16d0.mdsp)

mydg disk group, plex 1
set MYDGP1=(md01 md02 md03 md04 md05 md06)

mydg disk group, plex 2
set MYDGP2=(md11 md12 md13 md14 md15 md16)

#
Create the mydg volume $myvol (the name is specified as the argument #1)
The size of volume is $size, striped over 6 disks, and mirrored (RAID 0+1)
(the size is specified as the argument #2). The type (fsgen or gen) is specified
as the argument #3.

echo “Initializing $myvol of a type $type and a size of $size”
/usr/sbin/vxassist -g mydg -U $type make $myvol $size \
layout=stripe,nolog nstripe=$#MYDGP1 stripeunit=128 $MYDGP1

echo “Syncronizing mirror of $myvol”
batch << EOF
/usr/sbin/vxassist -g mydg mirror $myvol layout=stripe $MYDGP2
EOF

#
End of script
#===

26.3.1.4 Installation of Optional HP-UX Software

Procedures for a few common optional software packages are presented.
HP-UX MirrorDisk/UX Software

1. Insert CD “HP-UX Applications, disk 1 of 3”
Log in as “root”
Mount CD: mount /dev/dsk/c2t2d0 /SD_CDROM
Enter: swinstall

2. Install “MirrorDisk/UX software”
Select OK for:

Source depot type: “Local CD”
Source host name: “blue”
Source depot path: “/SD_CDROM”

3. From “Action” pop-down menu select: “Add new codeword”
Enter Customer ID and Codeword

4. Select/mark [m] “MirrorDisk/UX” software
From “Action” pop-down menu select “Install (analysis)”
Follow the procedure, select “Logfile”
Since the analysis is completed, select OK
Start the installation, select YES
Follow the procedure, select “Logfile”
Since the installation was completed, select OK and then DONE
At the end, the system would be rebooted

We can now implement the installed optional software to mirror root disk. Steps that
follow describe the required procedure.

5. Log in as root
6. To mirror Root Filesystem and Primary Swap (must be done manually from the command line):

Create a bootable physical volume from the second disk:
pvcreate -B /dev/rdsk/c2t5d0 (use the -f option if it is denied)

Add the physical volume to the root volume group vg00:
vgextend /dev/vg00 /dev/dsk/c2t5d0

Place boot utilities in the second disk boot area (make the disk bootable):
mkboot /dev/rdsk/c2t5d0

Add the AUTO file in the second disk boot LIF area:
mkboot -a “hpux (52.5.0;0)/ stand/vmunix” /dev/rdsk/c2t5d0

Mirror logical volumes and swap:
lvextend -m 1 /dev/vg00/lvol1 /dev/dsk/c2t5d0
lvextend -m 1 /dev/vg00/lvol2 /dev/dsk/c2t5d0
lvextend -m 1 /dev/vg00/lvol3 /dev/dsk/c2t5d0

Verify the boot information:
lvlnboot -v

Optionally, the system could be rebooted to check if it appears OK.

HP-UX OnLine Journaled Filesystem

1. Insert the tape OnLine Journaled FS into the tape drive
Login as root
Enter: swinstall

2. The screen: “Specify Source”
Source depot type: “Local Tape”
Source host name: “scarlet”
Source depot path: /
Software filter: none

Select OK.
3. Enter / mark [m] the bundle AdvJornalFS to install

Select Action/Install (analysis)
Follow instructions to complete.

Select/enter/read Logfile.
Since the analysis was completed, select OK to install.

Select/enter/read Logfile.
Since the installation was completed, select DONE.

At the end, the system would be rebooted.
4. To list (check) installed journaled FS software

Login as “root”
swlist -l product * | grep VxFS

HP JetAdmin for UNIX Utility Software

1. Insert CD “HP-UX Applications, disk 3 of 3”
Log in as root

Mount CD: mount /dev/dsk/c2t2d0 /SD_CDROM
Enter: swinstall

2. To install HP JetAdmin software:
Select OK for:

Source depot type: “Local CD”
Source host name: “blue”
Source depot path: “/SD_CDROM”

3. From Action pop-down menu select: Add new codeword
Enter Customer ID and Codeword

4. Select/mark [m] HP JetAdmin for UNIX Utility software
From Action pop-down menu select Install (analysis).
Follow the procedure, select Logfile.
Since the analysis is completed, select OK.

Start the installation, select YES.
Follow the procedure, select Logfile.
Since the installation was completed, select OK and then DONE.

5. Exit swinstall and dismount CD
umount /SD_CDROM

26.3.2 Patches

26.3.2.1 Solaris Patch Installation

1. Download needed patches and put in the /patches directory
mkdir /patches
ftp $HOST (where $HOST is machine with patches, or obtain from
“sunsolve.sun.com,” or “sunsolve1.sun.com”)

2. Ftp-ed files are of the form: “PatchID.tar.Z,” where “PatchID” corresponds to the listed files. Once
patches are downloaded uncompress them:

cd /patches
uncompress *

3. Untar each patch:
tar -xvf PatchID.tar

The corresponding subdirectories with needed files are created.
4. Continue with individual patch installation.

A few examples of individual patch installations follow:

OS Patches
cd /patches/2.6_Recommended
./ install_cluster
Are you ready to continue with install? [y/n]: y

Volume Manager
cd /patches/105463–04
patchadd.

Flashprom Patches (updates):
cd /patches/103346–11
./ flash-update-11
Do you wish to flash update your firmware? y/[n] : y
Are you sure you wish to continue? y/[n] : y
halt
ok> setenv auto-boot? false

Power-cycle machine
ok> power-off

Power-on machine
ok> setenv auto-boot? true

5. Optionally remove downloaded patches:
rm -R /patches

26.3.2.2 HP-UX Patch Installation
Three different installation procedures are presented, for a single patch, multiple patches,
and a set of patches provided on CD.

HP-UX Individual Patches

1. Download individual patches from the HP Web site: http:/ /us-support.external. hp.com. You can
register at any time as a new user (you must be registered to use the site). Alternatively, patches
could be ftp-ed from the HP ftp site:

i3107ffs.external.hp.com/hp-ux_patches/s800/10.X

To ftp, follow the procedure:
mkdir /tmp/PATCHES
cd /tmp/PATCHES
ftp HP_ftp_site_name
cd /hp-ux_patches/s800/10.X
ls
get whatever_patch_name

Select and download a patch.
2. Become “root” at the target HP-UX host.
3. Copy a patch (for example: PHKL_xxxxx) to the temporary directory (for example: /tmp/PATCHES) if not

already there.
4. Change the directory and unshar the patch:

cd /tmp/PATCHES
sh PHKL_xxxxx

Two files will be created: PHKL_xxxxx.depot and PHKL_xxxxx.text
You can read the text file to learn more about the patch (including how to install it).

5. Run swinstall to install the patch:
swinstall -x autoreboot = true -x match_target = true \
-s /tmp/PATCHES/PHKL_xxxxx.depot

The selected patch will be installed. If the installation requests rebooting it will be automatically
done (option autoreboot = true).

6. To check if the patch is installed:
a. If the patch was installed individually:

swlist | grep PHKL_xxxxx
b. If the patch was installed within a fileset:

swlist -l fileset | grep PHKL_xxxxx
This is recommended; it also includes the first case (the opposite is not true).

c. For patches that affect the kernel (PHKL and PHNE), to check:
what /stand/vmunix | grep PHKL_xxxxx

HP-UX Multiple Patches — For multiple individual patches, creating a single jumbo
patch to be installed at once is recommended. A sequential installation of multiple patches
sometimes does not work because of existing dependencies among the patches. This
example describes how to create a single jumbo patch that includes multiple patches, to
be installed at one time.

1. Make a list of required patches. For example a new model of 19 GB disk, unknown at the time of
the OS installation, has to be added to the system. The list of required patches is (information could
be obtained from HP-UX Technical Support Center, Web site, or other):

2. Be sure to have all of the required patches unsharred and in one directory; for example /source/ is
the path to patches, and /target/ is the new depot (do not mkdir).

swcopy -x enforce_dependencies=false -s /source/ * @ /target
Here is an example, assuming the .depot files are in the /tmp dir:

swcopy -x enforce_dependencies=false -s /tmp/PHKL_16751.depot *
@/tmp/hp_patch

You must run this command for each patch.

Status Catalog Text (Nine Patches)

PHCO_16591 fsck_vxfs(1M) cumulative patch
PHKL_16751 SIG_IGN/SIGCLD,LVM,JFS,PCI/SCSI cumulative patch
PHKL_16957 Physical dump devices configuration patch
PHKL_17858 Fix for mount/access of disc sections
PHKL_18522 LOFS cumulative patch
PHCO_18563 LVM commands cumulative patch
PHKL_19159 Correct process hangs on ufs inodes
PHKL_19540 VxFS (JFS) mount,fsck cumulative changes
PHNE_19936 cumulative ARPA Transport patch

3. When you are done, start the “swinstall” menu:
swinstall -s /tmp/hp_patch

Select “options” and make sure that the top five options are checked (marked):
select all the patches
mark for install
install analysis

HP-UX Set of Patches on CD

1. Insert CD “HP-UX Recommended Patches Extension Software” (last available version). Log in as
“root” and mount the CD:

mount /dev/dsk/c2t2d0 /SD_CDROM
2. Enter swinstall, to start swinstall menu-driven utility:

Select OK.

3. Select Action/Match What Target Has and follow messages.
4. Select Action/Install (analysis) and follow instructions to complete:

Select/enter/read Logfile.
Since the analysis was completed, select OK to start installation; it takes about one hour.
Select/enter/read Logfile.
Since the installation was completed, select DONE.
At the end, the system would be rebooted.

5. Log in as “root” and mount CD:
mount /dev/dsk/c2t2d0 /SD_CDROM

6. Enter swinstall to start swinstall menu-driven utility.

Select OK.
7. Select Action/Match What Target Has and follow messages.
8. Select Action/Install (analysis) and follow instructions to complete:

Select/enter/read Logfile.
Since the analysis was completed, select OK to install; it takes about one hour.
Select/enter/read Logfile.
Since the installation was completed, select DONE.
At the end, the system would be rebooted.

The screen: “Specify Source”

Source depot type: “Local CDROM”
Source host name: “scarlet”
Source depot path: /SD_CDROM/10.x/800/10.20 /XSW800HWCR1020
Software filter: none

The screen: Specify Source

Source depot type: “Local CDROM”
Source host name: “scarlet”
Source depot path: /SD_CDROM/10.x/800/10.20 /XSW800GR1020
Software filter: none

27
Upgrade Disk Space

27.1 Adding a Disk

Adding a disk is a routine task, and to accomplish this task, the procedure specific to the
particular UNIX flavor must be fully respected and followed. To add a new disk does not
mean simply to connect a disk — there are several more steps that must be accomplished:

• To partition a disk, and prepare one or more independent disk partitions
• To create a filesystem, and make disk partitions available for data storage

• To mount created filesystem, and make accessible for data storage

If logical volume manager (LVM) is used, a few more steps are required before
a filesystem creation, to create a logical volume for further processing.

27.1.1 New Disk on the Solaris Platform

Solaris 2.x (as well as the earlier Sun Microsystems UNIX version, SunOS 4.1.x) provides
the disk utility format to partition a disk. Once it is invoked (from the command line by
typing format), an interactive, menu-driven, user-friendly program offers a number of
useful disk-related commands. At the very start, all attached and detected disks are
displayed. Solaris requires the system to be rebooted with the -r option for new disk/
disks to be detected. Solaris does not check the system for new hardware every time it is
booted; hardware checking takes additional time, so normally it is assumed there are no
changes in the system hardware configuration. In the rare situations when the system is
being upgraded, Solaris needs an explicit action by the administrator:

$ reboot -- -r

or
$ halt

OK > boot -r

The OK > prompt specifies the system monitor mode (the low-level system ROM resident
program that enables a number of monitoring functions, primarily checking the hardware
and booting the system). It is actually recommended to first check that the disk is connected
properly:

OK > probe-scsi

.

.

And then boot the system:
OK > boot -r

Assuming everything is done properly, the system should recognize and display the
new disk (as well as the preexisting disks). Since a new disk was selected, the FORMAT
MENU is displayed:

FORMAT MENU:
disk - select a disk
type - select (define) a disk type
partition - select (define) a partition table
current - describe the current disk
format - format and analyze the disk
repair - repair a defective sector
show - translate a disk address
label - write label to disk
analyze - surface analysis
defect - defect list management
backup - search for backup labels
quit
format> partition # select the partition command
PARTITION MENU:
a - change ‘a’ partition
b - change ‘b’ partition
c - change ‘c’ partition
d - change ‘d’ partition
e - change ‘e’ partition
f - change ‘f’ partition
g - change ‘g’ partition
h - change ‘h’ partition
select - select a predefined label
name - name the current label
print - display the current label
label - write partition map and label to the disk
quit
partition> x # select the partition to be defined

(by a corresponding letter)
partition x - starting cyl 0, # blocks 0 (0 / 0 / 0)
Enter new starting cyl [0]: 0
Enter new # blocks [0, 0 /0 /0]: XXXX
partition> y # repeat for all partitions to be defined

.

.
partition> quit # return to the FORMAT MENU
FORMAT MENU:

.

.

.

quit
format> quit # exit from the format utility
$ # UNIX prompt

At this point one or more disk partitions are created; each partition represents an inde-
pendent entity identified by a corresponding special device file. Now a filesystem can be
created in each of the new partitions. Supposing default values for the filesystem parameters:

$ newfs -v /dev/rdsk/c#d#t#s# c#d#t#s# identifies the partition

Finally, new filesystems should be mounted and merged into the overall UNIX hier-
archical filesystem. The corresponding mount-points (new directories) for new filesystems
must be previously defined:

$ mkdir /new-mount-point # create directory for file-
system mounting

$ mount /dev/dsk/c#d#t#s# /new-mount-point # mount the filesystem

Once the procedure is complete and the new disk is added to the system, it is recom-
mended that you perform disk checking (with the df command) to see if everything was
done properly.

The filesystem mounting above was performed manually, and everything is ready except
for the very next system booting. To ensure automatic mounting at system start-up, the
filesystem configuration file /etc/vfstab must be modified to include entries for the new
filesystems; the file can be edited manually or with the mount -p command.

This procedure is required if the LVM is not used; otherwise, as soon as the system
recognizes a new disk, the LVM takes full control over the whole disk, and everything
needed afterward is provided by the LVM itself.

27.1.2 New Disk on the SunOS Platform

The procedure and available utilities on SunOS 4.1.x are almost the same as those for Solaris
2.x. Since SunOS 4.1.x does not deliver any significant advantages and will most likely
become obsolete soon, the many existing installations will produce a major need for disk
upgrades. If we are familiar with upgrading disks on Solaris 2.x, then we know how to
handle SunOS 4.1x upgrades, too.

There are, however, small differences in the procedure. SunOS does not recognize the
boot option -r; it always checks for newly attached hardware, which actually makes the
procedure easier. Given that slight difference, the procedure described above for Solaris
can be copied here: the same format utility, the same partitioning scheme, etc. The only
remaining difference is in the specification of the corresponding special device files:

$ newfs -v /dev/rsdxx # xx identifies the partition

And the mounting of the new filesystem:

$ mkdir /new-mount-point # create directory for filesystem mounting

$ mount /dev/sdxx /new-mount-point # mount the filesystem

After the mount is complete, the filesystem configuration file /etc/fstab should be modi-
fied. The entry format is also slightly different than that of the Solaris platform.

27.1.3 New Disk on the HP-UX Platform

Since the release of HP-UX 9.04, the LVM is a standard part of the HP-UX installation; the HP-
UX specific System Administration Management tool (SAM) enables relatively comfortable
disk integration into the system. However, we will discuss a disk upgrade on a lower level
using the available UNIX commands; correspondingly, we will also refer to some “old” HP-
UX issues, among others the disk description file /etc/disktab. The basic idea is that an example
such as this is a good illustration for similar procedures on other UNIX platforms.

On the HP-UX platform, a disk can be divided into one active partition (referred to as
a section), with or without an additional swap partition; actually, all available disk space
not included in the created filesystem is automatically designated as the swap area. It is
up to the system administrator to decide the size of these two available partitions; in most
cases a whole disk will be used as a single active partition.

In the case of a new SCSI disk, special attention should be paid to the SCSI bus termin-
ation and the selection of an appropriate SCSI address. Once a disk is physically connected
and the system has recognized its presence at boottime (HP-UX provides a useful com-
mand, ioscan, to check the existing system peripherals), a check for the required special
device file is recommended:

$ ls -l /dev/dsk
brw-r----- 1 root sys 7 0x201000 Dec 13 1993 c201d0s0

brw-r----- 1 root sys 7 0x201100 Dec 13 1993 c201d1s0

brw-r----- 1 root sys 7 0x201200 Apr 19 11:52 c201d2s0

brw-r----- 1 root sys 7 0x201300 Dec 13 1993 c201d3s0

brw-r----- 1 root sys 7 0x201400 Dec 13 1993 c201d4s0

brw-r----- 1 root sys 7 0x201500 Dec 13 1993 c201d5s0

brw-r----- 1 root sys 7 0x201600 May 12 17:58 c201d6s0

$ ls -l /dev/rdsk
crw-r----- 1 root sys 47 0x201000 Dec 13 1993 c201d0s0

crw-r----- 1 root sys 47 0x201100 Dec 13 1993 c201d1s0

crw-r----- 1 root sys 47 0x201200 Apr 19 11:52 c201d2s0

crw-r----- 1 root sys 47 0x201300 Dec 13 1993 c201d3s0

crw-r----- 1 root sys 47 0x201400 Dec 13 1993 c201d4s0

crw-r----- 1 root sys 47 0x201500 Dec 13 1993 c201d5s0

crw-r----- 1 root sys 47 0x201600 Dec 13 1993 c201d6s0

Generally, the corresponding special device file will be there; the system creates all
special device files related to the recognized SCSI controller (in this case seven devices
can be connected to the SCSI controller at SCSI addresses 0–6, and the address 7 identifies
the controller itself). If by any chance this is not the case, the special device file must be
created in the usual way with the mknod command.

The disk partitioning and filesystem creation can be performed simultaneously with the
mkfs command (the SCSI-ID = 5 is assumed):

$ mkfs /dev/rdsk/c201d5s0 s0 ns nt b0 f0 ncpg minfree rps nbpi

where
s0 Size of the partition “sector” in KB => s0 =ns × nt × nc (nc = number of

cylinders/disk) — the size of the filesystem s0 indirectly determines the
swap partition also

ns Number of sectors/track
nt Number of tracks/cylinder
b0 Block size in bytes
f0 Fragment size in bytes
ncpg Number of cylinders per group (default is 16)
minfree Minimum percentage of free disk space allowed (default is 10%)
rps Number of disk revolutions per second
npbi Number of user file spaces per inode (the default value is 2 KB/inode)

The simpler method is to use the friendlier front-end command newfs. The command
looks into the disk description file /etc/disktab for the type of the disk a filesystem is being
created in, calculates the appropriate parameters, and then invokes the mkfs command.
The /etc/disktab file describes all disks being used by the system. If we are using an already-
supported disk, the use of the newfs command is trivial:

$ newfs /dev/rdsk/c201d5s0 disk_name

Regardless of which one of the previously mentioned commands was used to partition
and create the filesystem, UNIX versions that rely on the disk description file /etc/disktab
(as the HP-UX 9.0x did), require an appropriate description entry in the file for the specified
disk, or the command fails.

It is quite possible that an entry for new disk models could be missing from the file;
then the description file must be patched (patches can be obtained from the vendor’s
Internet site). As a last resort, the administrator can edit the file, following the pattern of
existing entries in the file, and using obtained technical data about the disk.

The /etc/disktab file describes the ways in which a disk can be partitioned (for each disk
multiple entries are defined), and a correspondent filesystem created. The disk_name
identifies the entry in the file; actually, several names identify the same disk with different
partitioning schemes. The file is very well commented and self-explanatory. Here, the disk
description file from HP-UX 10.20 is partly presented; please note the initial remarks in
the file header, which are HP-UX-specific.

$ cat /etc/disktab
@(#) $Revision: 72.15 $
##
disktab: Data Base and Informational File
for both HP-IB (CS/80, Amigo) and SCSI discs
#
This file is provided for backward compatibility with previous releases
of HP-UX. Its use is discouraged. The newfs command can provide
defaults for the parameters defined by this file.
#
##
PRELIMINARY:
All discs, including fixed (hard) discs and all
removable media, must be formatted before they can
be used. Formatting is the process of preparing
a new disc to receive information and assuring
media integrity.
#
To format an HP-UX disc, use the HP-UX command:
% mediainit
#

IMPORTANT: Some discs require an interleave different
than one (1). This file contains information to
help you make the correct choice. An improper
performance.
#
#
GENERAL: Disktab is a simple database which describes disc
geometries and disc section characteristics.
Entries consist of a number of fields, separated
by ‘:’. The first entry for each disc gives the
name(s) which are known for the disc, separated
and is unused by newfs. Sectors are of size
DEV_BSIZE = 1024 bytes.
#
##
DISK GEOMETRY AND PARTITION LAYOUT TABLES.
Key:
(Leading field is name -- can be any string)
ty Information about the disk (informational only)
ns number of 1k sectors/track
nt number of tracks/cylinder
nc number of cylinders/disk
s0 size of file system in 1k blocks
b0 block size in bytes
(only 8192 or 4096 supported)
f0 fragment sizes in bytes
(1K, 2K, or 4K are supported)
se #bytes/physical sector (informational only)
rm rpm (rotational speed of platters)
##
EXPLANATION:
s0 = ns * nt * nc
Sectors not allocated to the file system will be
used in the swap area. If no swap is required, s0
represents the actual amount of disc space available
on the disc. In general, any space reserved for swap
must be in increments of 2 megabytes i.e. swap will
be utilized in multiples of:
2 * 1024 * 1024 (= 2,097,152 bytes)
.
.
#
##
GENERAL GUIDELINES (and HINTS) for CREATING NEW ENTRIES:
- How much swap is required
- Swap must be reserved in multiples of 2 megabytes
- The O/S needs some swap to run
- An attempt to make ns a multiple of b0 will
enhance performance. At a minimum, attempt to
make it a multiple of the fragment size (f0).
- diskinfo(1m) is a useful utility for determining
the parameters necessary to make disctab entries.
#
An entry should have a unique name, and conform
approximately to the following skeleton:
#
vendor_model:\
:comment (how much swap):ns#X:nt#X:nc#X:\
:s0#X:b0#8192:f0#1024 :\
:se#X:rm#X:
#

.
.
#
##
.
.
SEAGATE ST11200N
Set rotdelay = 0 ms for optimal file system perf (see tunefs(1M))
#
SEAGATE_ST11200N_noswap|SEAGATE_ST11200N_noreserve:\

:No swap or boot:ns#38:nt#13:nc#2075:\
:s0#1025050:b0#8192:f0#1024:\
:se#512:rm#5400:

#
SEAGATE_ST11200N_200MB:\

:200 MB reserved for swap & boot:ns#38:nt#13:nc#1661:\
:s0#820534:b0#8192:f0#1024:\
:se#512:rm#5400:
.
.

An example follows for the manually edited entry for a new 2GB SEAGATE disk
(obviously, its information was not included in the table at that time):

###
SEAGATE ST12400N
Edited by the System Administrator
###
SEAGATE_ST12400N_noswap|SEAGATE_ST12400N_noreserve:\

:No swap or boot:ns#41:nt#19:nc#2621:\
:s0#2041759:b0#8192:f0#1024:\
:se#512:rm#5400:

SEAGATE_ST12400N_swap|SEAGATE_ST12400N_150MB:\
:150 MB reserved for swap & boot:ns#41:nt#19:nc#2423:\
:s0#1887517:b0#8192:f0#1024:\
:se#512:rm#5400:

###
.
.

Once disk partitioning and filesystem creation are performed, the filesystem must be
mounted. For future system booting, the filesystem configuration file (/etc/vfstab, /etc/fstab,
or on HP-UX 9.0x as /etc/checklist) should also be updated to add the new entries. In this
specific case, on HP-UX 9.0x, the configuration file before the update was:

$ cat /etc/checklist
/dev/dsk/c201d6s0 / hfs rw,quota 0 1 0
/dev/dsk/c201d2s0 /cdrom cdfs ro,suid, 0 0 0
/dev/dsk/c201d6s0 ….. swap pri = 0 0 0 0

… and after the update:

$ cat /etc/checklist
/dev/dsk/c201d6s0 / hfs rw,quota 0 1 0
/dev/dsk/c201d2s0 /cdrom cdfs ro,suid, 0 0 0
/dev/dsk/c201d6s0 ….. swap pri = 0 0 0 0
/dev/dsk/c201d5s0 /disk 2 hfs rw,suid, 0 2 0
/dev/dsk/c201d5s0 ….. swap end,pri = 1 0 0 0

27.2 Logical Volume Manager Case Study

Case description: The system includes 12 disk units divided between two SCSI controllers.
The operating system and the logical volume manager are installed on the root volume/
disk (the first disk of the dozen). Our task is to mirror the root and swap volumes and
to create new mirrored volume/volumes among the remaining disks. The RAID0+1 is
preferable.

We will show the procedure for two UNIX flavors: HP-UX 10.20 and Solaris 2.6. In both
cases, the procedure will be managed from the command line. Both flavors, however,
include higher-level administration tools: HP-UX SAM and Solaris GUI Volume Admin-
istrator V×VA.

Notice: All included data about special device files, volume and group names, and sizes,
are system dependent.

27.2.1 LVM on the HP-UX Platform

LVM is a standard part of the OS distribution for HP-UX 9.04, HP-UX 10.x, and future
releases. The regular installation procedure implements LVM, and the OS is installed on
volumes. Let us suppose the following OS layout upon the installation (this is, by the way,
default):

Volume Volume Group Mount Directory Description

lvol1 vg00 /stand kernel
lvol2 vg00 swap
lvol3 vg00 / root FS

To mirror the root disk to the second disk (identified by /dev/dsk/c2t5d0 and /dev/rdsk/
c2t5d0):

• Create a bootable physical volume:

pvcreate -B /dev/rdsk/c2t5d0

• Add the physical volume to the root volume group vg00:

vgextend /dev/vg00 /dev/dsk/c2t5d0

• Place the boot utilities into the disk boot area (make the disk bootable):

mkboot /dev/rdsk/c2t5d0

• Add the AUTO file into the disk boot LIF area:

mkboot -a “hpux (52.5.0;0)/ stand/vmunix” /dev/rdsk/c2t5d0

• Mirror logical volumes (incl. swap):

lvextend -m 1 /dev/vg00/lvol1 /dev/dsk/c2t5d0

lvextend -m 1 /dev/vg00/lvol2 /dev/dsk/c2t5d0

lvextend -m 1 /dev/vg00/lvol3 /dev/dsk/c2t5d0

• Verify the boot information:

lvboot -v

The ten remaining disks will be placed into the volume group vg01, and new logical
volumes will be created. Please note that HP-UX LVM supports RAID0 (striping) or RAID1
(mirroring) only. RAID0+1 is not supported; however, there is a tricky way to accomplish
RAID0 + 1 (which is not recommended). The implementation of striping and mirroring
separately follows:

• Create (initialize) physical volume for each of the ten disks:
pvcreate /dev/rdsk/c0t1d0

pvcreate /dev/rdsk/c0t2d0

. . .
pvcreate /dev/rdsk/c1t4d0

pvcreate /dev/rdsk/c1t5d0

• Create the special device file for the volume group vg01:

mkdir /dev/vg01

chmod 755 /dev/vg01

mknod /dev/vg01/group c 64 0×010000

chmod 640 /dev/vg01/group

• Create the volume group vg01:
vgcreate /dev/vg01 /dev/dsk/c0t1d0

vgextend /dev/vg01 /dev/dsk/c0t2d0

. . .

vgextend /dev/vg01 /dev/dsk/c1t4d0

vgextend /dev/vg01 /dev/dsk/c1t5d0

• Check the created volume group:
vgdisplay -v /dev/vg01

To make the 3.8 GB mirrored logical volume lvol4 (supposing 2 GB disks):

• Create the 1.9 GB logical volume lvol4 on the first available disk /dev/dsk/
c0t0d0:

lvcreate -n lvol4 -M n -C y -L 1900 /dev/vg01

• Increase the logical volume size of the next disk /dev/dsk/c0t2d0:
lvextend -L 3800 /dev/vg01/lvol4 /dev/dsk/c0t2d0

• Mirror to disks /dev/dsk/c1t1d0 and /dev/dsk/c1t2d0:
lvextend -m 1 /dev/vg01/lvol4 /dev/dsk/c1t1d0 /dev/dsk/c1t2d0

• Check physical volume layout:
pvdisplay -v /dev/dsk/c0t1d0

pvdisplay -v /dev/dsk/c0t2d0

pvdisplay -v /dev/dsk/c1t1d0

pvdisplay -v /dev/dsk/c1t2d0

To make a journaled (VxFS) filesystem:

• Create VxFS filesystem:
newfs -F vxfs /dev/vg01/rvol4

• Mount the new filesystem:
mkdir /mntvol4

mount /dev/vg01/lvol4 /mntvol4

• Modify the /etc/fstab file; add the entry:
/dev/vg01/lvol4 /mntvol4 vxfs delaylog, datainlog,rw,suid 0 2

To make 4 GB striped logical volume lvol5 across the six remaining disks:

• Create the logical volume (LVM will select all disks):

lvcreate -n lvol5 -i 6 -I 4 /dev/vg01

• Check physical volume layout:

pvdisplay -v /dev/dsk/c0t3d0

pvdisplay -v /dev/dsk/c0t4d0

pvdisplay -v /dev/dsk/c0t5d0

pvdisplay -v /dev/dsk/c1t3d0

pvdisplay -v /dev/dsk/c1t4d0

pvdisplay -v /dev/dsk/c1t5d0

• Create VxFS filesystem:
newfs -F vxfs /dev/vg01/rvol5

• Mount the new filesystem:
mkdir /mntvol5

mount /dev/vg01/lvol5 /mntvol5

• Modify the /etc/fstab file; add the entry:
/dev/vg01/lvol5 /mntvol5 vxfs delaylog, datainlog,rw,suid 0 3

The remaining disk space can be managed in a similar way.

27.2.2 LVM on the Solaris Platform

For Solaris, VxVM is optional software; the standard OS installation uses disk partitions.
Let us suppose that the OS was installed on two disk partitions (this is one of the possible
outputs of the installation program):

To prepare the root and swap mirrored volumes:

• Encapsulate the existing root and swap disk and create the mandatory default
disk group “rootdg” and the root and swap volumes:

vxencap -g rootdg -c btd01=c0t0d0

Partition Mount Directory Description

c0t0d0s0 / kernel
c0t0d0s1 swap

• Initialize and add a new disk into the disk group “rootdg”:
vxdisksetup -i c1t0d0

vxdg -g rootdg adddisk btd02=c1t0d0

• Mirror the root and swap volumes:

vxrootmir btd02

vxassist mirror swapvol layout =contig,diskalign btd02

• or alternatively:
vxassist mirror rootvol layout =contig,diskalign btd02

vxbootsetup $V_opt btd02

vxassist mirror swapvol layout =contig,diskalign btd02

• Modify EEPROM variables to make the system bootable from the alternate disk:
eeprom use-nvramrc ?=true

eeprom nvramrc =“devalias vx-btd02 hwpath_for_c1t0d0”

eeprom boot-device =“disk vx-btd02”

The ten remaining disks will be placed into the disk group “appldg” and the new
RAID0+1 volume will be created. VxVM supports RAID0+1.

• Initialize remaining disks:
vxdisksetup -i c0t1d0

vxdisksetup -i c0t2d0

.

vxdisksetup -i c1t4d0

vxdisksetup -i c1t5d0

• Create a new disk group with the first disk:
vxdg init appldg apd01=c0t1d0

• Add the other disks into the group:
vxdg -g appldg adddisk apd02=c0t2do

vxdg -g appldg adddisk apd03=c0t3do

.

vxdg -g appldg adddisk apd09=c1t4do

vxdg -g appldg adddisk apd10=c1t5do

• Create the striped volume applvol of the maximum size (RAID0), across five
VM disks (supposing Bourne or Korn shell):

MAX = �vxassist -g appldg -U fsgen -p maxsize layout= stripe,nolog,nstripe=5 \
stripeunit= 128 apd01 apd02 apd03 apd04 apd05�

vxassist -g appldg -U fsgen make applvol $MAX layout= stripe,nolog,nstripe=5 \
stripeunit= 128 apd01 apd02 apd03 apd04 apd05

• Mirror the created volume applvol (RAID0), across five remaining VM disks
(RAID 0 + 1):

vxassist -g appldg mirror applvol layout= stripe apd06 apd07 apd08 apd09 apd10

28
UNIX Emergency Situations

28.1 Introductory Notes

UNIX systems run and behave very stably, especially if they are properly configured for
their missions. Unfortunately, unpredicted and unwanted situations occur. A UNIX sys-
tem, as any other computer system, can experience different problems giving quite a hard
time to UNIX administrators. It is very important to be ready to handle such events.

This chapter describes several procedures to overcome certain emergency situations. It is
very instructive in the sense of what to do if something similar happens. Although the illus-
trated examples are related to Solaris and HP-UX flavors, they could also provide hints on
how to approach the same problems on other UNIX platforms. In the first part, the problem
of forgotten root password is addressed; more or less every UNIX administrator faces the same
problem during the professional carrier. The second part describes some other cases when a
recovery action is required, or at least preparedness for such an action is supposed.

All presented examples are fully documented.

28.2 Lost Root Password

Almost all UNIX administrators during their professional careers face the problem of a
“lost root password;” occasionally a root password for some of the existing UNIX systems
drops out of our control, and we are no longer able to administer that system. In a network
with several hundred UNIX boxes, administered by dozens of UNIX administrators, it is
not so unusual to find a “forgotten” system that nobody has taken care of lately. How it
happened, and why it has happened, is another issue; the fact is that a superuser access
to this very system is not possible, and we desperately need it.

UNIX predicts such situations, and each UNIX flavor does have a procedure to solve them.
The forgotten password can never be recreated — it can only be replaced with a new password.
However, UNIX allows the change of a password only if the old password is previously
submitted as a proof of an authorized password replacement. Obviously, at the moment we
are not able to fulfill this requirement. So the solution is to purge the encrypted root password
in the /etc/passwd file or /etc/shadow file, where encrypted passwords are normally kept. For
this action the UNIX system has to be brought in the single-user mode. Two examples follow.

28.2.1 Solaris and Lost Root Password

This paragraph describes the emergency procedure to change the root password on Solaris
2.X platform if the root password was lost (forgotten). When root access to the system is
not possible, the usual procedures to change a password by using the command passwd,
or to bring the system into “single-user” mode cannot be implemented. The emergency
procedure requires the Solaris 2.X OS Installation CD disk.

1. Start Solaris 2.X from CD in single-user mode. Put Solaris 2.6 Software CD in the CD drive.
ok > boot cdrom -s

At this point the Mini OS — single-user mode — from CD is loaded into memory.
2. Mount root filesystem to /a mount point — this directory already exists for this purpose, although

another mount point could also be created:
mount /dev/dsk/c0t3d0s0 /a (this is an example –— here the corresponding device file for the

root partition must be used)
3. Set a terminal for easy editing:

TERM = vt100
export TERM

4. Purge encrypted root password from “shadow” file:
$ cd /a/etc
$ vi shadow (delete encrypted password from the root password entry — leave the field blank)

At this point, the old lost root password is removed and the root access to the system is possible; there is
no password at all, and the system should be disconnected from the network to prevent potential intruders.

5. Reboot the system:
$ reboot

6. Set/change the root password:
$ passwd
.
.

7. This step may be used if there is some booting problem with the boot disk. Upon booting to single-
user mode from CD, run fsck on the root partition.

$ fsck /dev/rdsk/c0t3d0s0 (use the corresponding device file for the root partition)

28.2.2 HP-UX and Lost Root Password

To change a lost (forgotten) root password, the system must be brought into the single-user
mode. Since a system reboot requires the root password, the only possible way is to power-
off the system (a system halt also requires the root password), with an unavoidable risk
for a filesystem corruption. Once it is down, the procedure is:

1. Power-on the system.
2. Follow messages on the console. Pay attention to the message:

“To discontinue press any key within 10 seconds…,” hit any key.
3. At main menu prompt enter:

Main Menu: Enter command or menu > boot
Respond to the question:

Interact with IPL (Y or N)? > y
booting…

At ISL prompt enter:
ISL > hpux -is

4. The system continues booting and enters the SINGLE USER mode. Purge the encrypted root pass-
word from /etc/shadow file.

5. Reboot the system into the multi-user mode:
$ shutdown -r 0

6. Change the root password:
$ passwd
.
.

28.3 Some Special Administrative Situations

A few practical examples of how to handle system emergency situations are described
here. They illustrate very important and difficult administrative tasks related to potential
system disasters and their later recovery. The good system administrator should be prepared
to respond appropriately to the worst-case system scenarios.

28.3.1 Solaris Procedure to Create an Alternate Boot Partition

The purpose of an alternate boot partition is to enable the system booting in case the OS
on the primary partition is corrupt. Booting from an alternate partition provides a minimal
core OS configuration; however, it should be sufficient to fix the primary root filesystem.

The primary root filesystem is mounted in “/ root” directory, or if it is mirrored in /boot1
and /boot2 directories (two root partitions from two disks that are mirrored.)

To boot the system from an alternate partition, the alternate partition must be specified
in the system’s NVRAM for an easy booting (otherwise a hardware path should be
specified). Supposed names are: “altboot”, or “altboot1” and “altboot2” for multiple alternate
boot partitions.

To boot from an alternate partition (for example “altboot”) type:
ok > boot altboot

To reboot the system with an alternate boot partition, type:
reboot -- altboot

The detailed procedure to install Solaris 2.6 into an alternate partition follows:

1. Put Solaris 2.6 Software CD in the drive.
ok > boot cdrom

At this point Mini OS from the CD is loaded into memory and minimal required root filesystem
mounted in /tmp.

2. Select a Locale
0) USA - English (ASCII only)
Type a number and press Return or Enter [0]: 0

3. What type of terminal are you using?
1) ANSI Standard CRT
2) DEC VT52
3) DEC VT100

Type the number of your choice and press Return: 3
4. The Solaris Installation Program

Select F2_Continue
At this point if function keys do not work, press < Esc > , and then < Esc-2 > instead of < F2 > and
(< Esc-6 > instead < F6 >)

5. Identify This System
Select F2_Continue

6. Host Name
Enter a corresponding hostname
Select F2_Continue

7. Network Connectivity
Networked

[X] Yes
[] No

Select F2_Continue
8. IP Address

Enter a corresponding IP address (permanent or temporary)
Select F2_Continue

9. Primary Network Interface
If there are multiple network interfaces, you will be asked for:
Select network interface hme (or whatever…)

[X] hme0
[] kme 1

Select F2_Continue
10. Confirm Information

Select F2_Continue
11. Name Service

[] NIS+
[] NIS (formerly yp)
[X] Other
[] None
Select F2_Continue

12. Subnets
System part of a subnet
[X] Yes
[] No

Select F2_Continue
13. Netmask

Netmask: 255.255.255.0
Select F2_Continue

14. Time Zone
[X] United States

Select F2_Continue
[X] Eastern

Select F2_Continue
15. Date and Time

Set date and time
Select F2_Continue

16. Confirm Information Select F2_Continue

At this point, system identification is completed, and the Solaris Installation Program
is started.

17. Solaris Interactive Installation
Select F4_Initial
Select F2_Continue

18. Allocate Client Services?
Select F2_Continue

19. Select Software
Note: Select “Core System Support”

[] Entire Distribution plus OEM support.. 838.00 MB
[] Entire Distribution 831.00 MB
[] Developer System Support 764.00 MB
[] End User System Support 504.00 MB
[X] Core System Support 309.00 MB

Select F2_Continue
20. Select Disks

Note: Select a corresponding disk where an alternate boot partition resides (for example).

Select F2_Continue

Disk Device (Size) Available Space

[] c0t0d0 (8633 MB) 8633 MB
[] c2t0d0 (4092 MB) 4092 MB
[] c2t1d0 (8633 MB) 8633 MB
[] c2t2d0 (8633 MB) 8633 MB
[X] c3t0d0 (4092 MB) boot disk 4092 MB
[] c3t1d0 (8633 MB) 8633 MB
[] c3t2d0 (8633 MB) 8633 MB

Total Selected: 4092 MB
Suggested Minimum: 838 MB

21. Preserve Data?
This is the crucial step! Root partition must be preserved; to preserve the partition it must be renamed
from “/” to “/ root” (or “/ root1”). /altboot partition should be renamed to “/” to install OS in it.
Mark (set X) “/root” and “swap” to be preserved (although swap is not important); “overlap” (whole
disk) is already marked!
Select F2_Continue

22. Automatically Layout File Systems?
Select F4_Manual Layout

23. File System and Disk Layout
At this point a disk layout is displayed.
Pay attention that /root partition must be preserved!
Select F2_Continue

24. Mount Remote File Systems?
Select F2_Continue

25. Profile
At this point an installation profile is displayed!
Select F2_Continue
A warning message about remaining free disk space could be ignored!

26. Reboot After Installation?
[X] Auto Reboot
[] Manual Reboot

Select F2_Begin Installation

The installation of the OS core is relatively quick. You will be informed about the
installation status during this time. Do not set the root password when asked for (upon
the automatic reboot) — just hit Return twice.

NOTE: Do not assume that the system modifies NVRAM to boot from this partition
permanently! All required modifications will be done manually.

27. Log in to the system and set a workable environment.
28. Set NVRAM

For the proper system booting from the alternate boot partition the NVRAM must be modified in
the following way:
Check the contents of following NVRAM locations: “use-nvramrc?” and “nvramrc.”
Type: “eeprom”
If needed, modify:

eeprom use-nvramc? = true
eeprom nvramrc = “…whatever was written…

devalias altboot hw_path_for_this_disk:d”
where “hw_path_for_this_disk” must be properly specified!

29. Test everything by rebooting the system with the primary and the alternate boot partition.
For primary partition type: reboot

or: halt

ok > boot
For alternate partition type: reboot -- altboot

or: halt
ok > boot altboot

28.3.2 Solaris Recovery of the Failed Mirrored Boot Disk

The following procedure refers to the Solaris system recovery when one of the mirrored
boot disks fails, and the implemented Disk Manager is “DiskSuite 4.1.” The procedure
itself is sufficiently general for many different hardware configurations.

The tested configuration consisted of two SCSI disks:

c0t3do - > prime boot disk
c0t1d0 - > mirrored disk

The test included removal of the prime boot disk, and the system power recycling.
Afterward, the disk was returned into the system.

root (/) mirror d10 - > d11 (c0t3d0s0) & d12 (c0t1d0s0)
swap mirror d20 - > d21 (c0t3d0s1) & d22 (c0t1d0s1)
/altboot (ufs) mirror d30 - > d31 (c0t3d0s3) & d32 (c0t1d0s3)
dedicated partitions (slices) c0t3d0s7 and c0t1d0s7 are used for metadevice database replicas (each for three replicas)

The system was shut down, and the prime boot disk taken out. The system was rebooted
again with a single disk (mirrored boot disk). A number of warning and error messages
were displayed during the system startup (mostly related to the “read-only or missing
files”). The system has required maintenance - > single-user mode!

The System Recovery

1. Bring the system into the single-user mode, enter the root password.
2. Remove metadevice db replicas from the “broken” disk (the quotes are used because the disk was

not really broken!):
cd /usr/opt/SUNWmd/sbin

Check the current status — should be six replicas:
./ metadb

Remove replicas:
./ metadb -d c0t3dos7

Check again — should be three replicas:
./ metadb

3. Unmirror (detach) all mirrors — must be done forcibly:
$ > metadetach -f d10 d11
d10: Submirror d11 is detached
$ > metadetach -f d20 d21
d20: Submirror d21 is detached
$ > metadetach -f d30 d31
d30: Submirror d31 is detached

Keep in mind that concats/submirrors d11, d21, and d31 belong to the “broken” disk — prime root
disk (c0t3d0); otherwise should be d12, d22, and d32. Reboot the system, type: reboot.

4. The system should boot into multiuser mode with a single disk; everything appears to be correct.
Log in as root. To check the status:

metastat The concats/submirrors from the broken disk (in this case d11, d21, and d31) need
maintenance

5. Reinstall the disk.
Power-off the system.

$ > poweroff
or

$ > halt
ok power-off

Return (reinstall) the disk and power-on the system.
6. Recreate database replicas.

Log in as root.
Check the current status — should be three replicas:

metadb
Add three more replicas for the returned disk:

metadb -a -c 3 c0t3dos7
Check again — should be six replicas:

metadb
Check the status of metadevices:

metastat
Reboot the system:

reboot -- disk1

7. Remirror disks.
Check the status of db replicas:

metadb
Mirror (reattach) concats/submirrors:

$ > metattach d10 d11
d10: Submirror d11 is attached
$ > metattach d20 d21
d20: Submirror d21 is attached
$ > metattach d30 d31
d30: Submirror d31 is attached

8. Check for completion of mirroring (recycling). To check the status of mirroring (recycling) type:
metastat

9. Reboot the system when recycling is complete:
reboot

Disk Replacement — If the mirrored disk is broken, this disk must be replaced (this is
the most probable case), and the new empty disk must be prepared for mirroring. Sup-
posing three partitions with root filesystem “/”, swap, and additional filesystem /altboot,
the procedure to replace and remirror the disk is:

1. Partition the disk c0t3d0 to match the boot disk c0t1d0. Use format utility.
2. Type: format

Select the boot disk: c0t1d0
Type: partition (“p” is sufficient)
Type: print (“p” is sufficient) to see current root partitioning
Type: quit (“q” is sufficient)
Type: disk to select the new disk “c0t3d0”
Type: partition
Create all partitions as on the root disk
Type: label to save a new partitioning table into the disk
Ready to label disk, continue? y

3. Create “state database replicas” in a new disk (pay attention to identify the partition/slice “s7”):
metadb -a -c 3 c0t3d0s7

Three additional db replicas will be created in a dedicated slice “s7” of the new disk. To check created
db replicas:

metadb
4. Reboot the system — type: reboot.
5. Mirror root filesystem.

Create the concat/submirror d11:
$ > metainit -f d11 1 1 c0t3d0s0
d11: Concat/Stripe is setup

Attach concat/submirror “d11” to the mirror d10:
$ > metattach d10 d11
d10: Submirror d11 is attached

Mirroring itself will take awhile!
6. Mirror swap.

Create the concat/submirror d21:
$ > metainit -f d21 1 1 c0t3d0s1
d21: Concat/Stripe is setup

Attach concat/submirror d21 to the mirror d20:
$ > metattach d20 d21
d20: Submirror d21 is attached

Mirroring itself will take awhile!
7. Mirror /altboot.

Create the concat/submirror d31:
$ > metainit -f d31 1 1 c0t3d0s3
d31: Concat/Stripe is setup

Attach concat/submirror “d31” to the mirror d30:
$ > metattach d30 d31
d30: Submirror d31 is attached

Mirroring itself will take awhile!

8. Check for completion of mirroring (recycling). To check the status of mirroring (recycling) type:
metastat

9. Reboot the system when recycling is complete:
reboot

28.3.3 HP-UX Support Disk Usage

HP-UX allows system startup from the support CD disk, which can be very convenient
for some emergency situations.

1. Insert CD “HP-UX Support Disk” into CD drive.
2. Power-on the system.
3. At main menu prompt enter:

Main Menu: Enter command or menu > boot 56/52.2.0 (an example for CD HW path)
Respond to the question:

Interact with IPL (Y or N)? > y
booting…

At ISL prompt enter:
ISL > 800 Support

4. The system continues booting from the Support CD disk (although some messages refer to Support
Tape)

…
Boot
:disk (56/52.2.0:0); ERECOVERY
…
…

Welcome to the HP-UX recovery process!
[Run a Recovery Shell]
[Cancel and Reboot]
[Help]

Select and enter: Run a Recovery Shell
5. Respond to the question:

Would you like to startup networking at this time? [n] n (or just Enter)
6. Following messages are displayed:

HP-UX SUPPORT MEDIA
WARNING: YOU ARE SUPERUSER !!

NOTE: Commands residing in the RAM-based file system are unsupported ‘mini’ commands. These
commands are only intended for recovery purposes.
Loading commands needed for recovery!
WARNING: If ANYTHING is changed on a root (/) that is mirrored a “maintenance mode” (HPUX -lm)
boot MUST be done in order to force the mirrored disk to be updated.

7. At the end, the support main menu is displayed:
SUPPORT MEDIA MAIN MENU
s Search for a file
b Reboot
l Load a file
r Recover an unbootable HP-UX system
x Exit to shell
c Instructions on chrooting to lvm /(root)

8. Enter “c” to see “chroot” instuctions:
Exit to the shell and run ‘chroot_lvmdisk’

9. Follow these instructions; enter “x”
Support# chroot_lvmdisk
Enter the hardware path associated with the ‘/’ (ROOT) file system (example: 56/52.6.0)

Enter “56/52.6.0” or “56/52.5.0”, depending on selected boot disk.
The selected root FS is checked…

…
Mounting c2t6d0s1lvm to the Support Tape’s /ROOT directory…

…
Finally the system root FS is mounted onto “/ROOT”

10. To remount the system’s root filesystem, and start Bourne shell, enter:
cd /ROOT ; chroot /ROOT /sbin/sh

The system’s root filesystem is mounted onto “/” (the “/stand” filesystem is also mounted). Other
filesystems could be mounted manually, as well as any UNIX command executed (including a
filesystem check) from the command line.

11. To return to Support shell, enter exit.
12. To return to SUPPORT MEDIA MAIN MENU, enter exit.
13. To reboot the system, in the SUPPORT MEDIA MAIN MENU, enter b.

NOTE: System rebooting…
…
…

Regular rebooting process continues…

28.3.4 HP-UX Procedure to Synchronize a Mirrored Logical Volume

The data in a mirrored copy, or copies, of a logical volume could become “out of sync”
or “stale” (for example as a result of disk power failure, or a replacement of a disk). In
such cases, to reestablish identical data, synchronization must occur. This procedure refers
to HP9000 Series 700/800 computer systems.

Automatic Synchronization — When a nonactive volume group is activated, either
automatically at boot time or later with the vgchange command, LVM automatically
synchronizes the mirrored copies of all logical volumes within the volume group, replacing
data in physical extents marked as “stale” with data from “nonstale” extents. Otherwise,
no automatic synchronization occurs and manual synchronization is necessary.

LVM also automatically synchronizes mirrored data in the following cases:

• When a disk comes back online after experiencing a power failure
• When a logical volume is extended by increasing the number of mirror copies;

then the newly added physical extents will be synchronized

Manual Synchronization

1. Check the status of a logical volume, to see if it contains any stale data:

lvdisplay -v /dev/vg02/lvol3

Identify which disk contains the stale physical extents.

2. To synchronize manually the data in one or more logical volumes (an example):

lvsync /dev/vg02/lvol3

3. To synchronize manually the data in all logical volumes in one or more volume
groups (an example):

vgsync /dev/vg02

Disk Replacement

1. Save the volume group configuration data (an example):

vgcfgbackup /dev/vg02

By default the configuration data are saved in /etc/lvmconf/vg02.conf.

2. Remove the broken disk from the volume group by using (an example):

vgreduce /dev/vg02 /dev/dsk/c1t3d0

3. Physically disconnect and replace the broken disk.

4. Restore saved LVM configuration data to the replaced disk (an example):
vgchange -a n /dev/vg02

vgcfgrestore -n /dev/vg02 /dev/dsk/c1t3d0

The volume group must be first deactivated, and then configuration data restored
from the default backed-up file /etc/vmconf/vg02.conf.

5. Reactivate the volume group (an example):
vgchange -a y /dev/vg02

6. Manually synchronize all the extents in the volume group (an example):
vgsync /dev/vg02

28.3.5 HP-UX Support Tape and Recovery of Root Disk

HP-UX provides a powerful way for recovery of a corrupted or broken root disk. A special
procedure allows a transfer of the content of the root disk onto the tape, and a creation
of the bootable support tape. In the critical situations when the root disk is broken or
corrupted, the system could be started from the support tape and its content now trans-
ferred back to the disk. There is no need for OS reinstallation and later root recovery, a
previously copied root disk is simply recreated.

This procedure is described in the following text. Pay attention to the specified hardware
paths for the root disk and the tape specific to this example. The HP-UX specific Support
Media Tool COPYUTIL is used. The first part describes the procedure to create the support
tape, while the second one describes disk recovery. The support tape could be a good
replacement for mirroring of the root disk.

Part One — How to Create a Support Tape — The COPYUTIL utility could be found on
the SUPPORT CD. The system must be booted from the SUPPORT CD to use the COPYUTIL.

1. Booting the system from the SUPPORT CD:
Log in as root
Reboot the system

shutdown -r -y 0
Follow messages on the console, until the system displays:

.
To override, press any key within 10 seconds.

Hit any key!
After the message: “Boot terminated,” the main menu will be displayed:

Insert SUPPORT CD into CD Drive
At the main menu prompt, type:

Main Menu: Enter command or menu > boot 10/12/5.2.0 [hardware path for CD Drive]
Follow messages and enter corresponding responses:

Interact with IPL (Y or N)? > y
Booting…
ISL > ode
ODE > ls to list available utilities
ODE > copyutil

2. Since COPYUTIL checked for available devices, a list of all devices found will be displayed. Depend-
ing on the system hardware configuration, it could be done in two steps: first, the SCSI busses only,
and then devices (upon the selection [all]). In this example:

T 0 10/12/5.0.0 HPC1533A/C1 530B tape drive (internal)
D 1 10/0.6.0 SEAGATE ST15150W disk drive (root disk)
D 2 10/0.5.0 SEAGATE ST15150W disk drive (another disk)

.

.
T 11 10/4/16.3.0 HPC1533A/C 1530B tape drive (external)

3. COPYUTIL > backup
Enter the Disk index ([q]/?): 1 root disk
Enter the Tape index ([q]/?): 0 internal tape drive

or, you can use the external tape drive: index 11
Depending on the existing tape drive, an additional question could be displayed:

Use data compression? (y/[n]? n do not use compression
* Please Load into Tape Drive, Tape Volume 0 for Backup.

If you have to, you may safely remove the SUPPORT MEDIA now.
At this point, eject the SUPPORT CD from the CD drive

4. Continue the procedure:
Ready to continue ([y]/n/q/?): y
Checking for the beginning of tape: DONE
……….10% completed
……….20% completed
……….30% completed
……….40% completed
……….50% completed
……….60% completed
……….70% completed
……….80% completed
……….90% completed
……….100% completed
End of BACKUP
Please wait while I rewind the tape

Depending on the size of the disk tape capacity, a single tape might not be sufficient. The system
asks for another tape by repeating the menu. It is easy to figure out when 100% is completed.

COPYUTIL > exit
Replace the SUPPORT MEDIA now, if you removed it earlier.

At this point, close the CD drive with the SUPPORT CD.
5. Exit

ODE > exit to return ISL prompt
ISL >

Note: The system was booted from the SUPPORT CD; at this point we can power-cycle (power off
and on) the system, or continue with bringing the system into the recovery mode (recommended):

ISL > 800SUPPORT
6. Once the system reaches the recovery menu (it takes some time) select:

[Cancel and Reboot]
NOTE: System rebooting

The full test of the system is performed, so it takes awhile!
7. The regular system startup continues.
8. Labeling the support tape

The COPYUTIL tape/tapes of the root disk are ready. They could be used for the recovery (restore)
of the root disk, if necessary. Label them as: “Hostname: COPYUTIL# of Root Disk.”

Part Two — How to Recover (Restore) the Root Disk from the “COPYUTIL Tape”

9. The system recovery procedure is similar to the preparation of the support tape.
The differences are:
Now the source media is a tape.
Now the destination media is a disk.
The COPYUTIL utility could be found only on the SUPPORT CD. The system must be booted from
the SUPPORT CD to use the COPYUTIL.

10. Booting the system from the SUPPORT CD:
Power-on (reset) the system
Follow messages on the console, until the system displays:

.
To override, press any key within 10 seconds.

Hit any key.
After the message: “Boot terminated,” the main menu will be displayed:
Insert SUPPORT CD into CD Drive.

At the main menu prompt, type:
Main Menu: Enter command or menu > boot 10/12/5.2.0 [hardware path for CD Drive]

Follow messages and enter corresponding responses:
Interact with IPL (Y or N)? > y
Booting…
ISL > ode
ODE > ls to list available utilities
ODE > copyutil

Because COPYUTIL checked for available devices, a list of all found devices will be displayed. This
can be done in two steps, first, the SCSI busses only, and then the devices.

T 0 10/12/5.0.0 HPC1533A/C1 530B tape drive (internal
D 1 10/0.6.0 SEAGATE ST15150W disk drive (root disk)
D 2 10/0.5.0 SEAGATE ST15150W disk drive (another disk)

.

.
T 11 10/4/16.3.0 HPC1533A/C1530B tape drive (external)

11. COPYUTIL > restore:
Enter the Tape index ([q]/?): 0 internal tape drive
Enter the Disk index ([q]/?): 1 root disk

or, you can use the external tape drive: index 11.
Depending on the existing tape drive, an additional question could be displayed:

Use data compression? (y/[n]?) n do not use compression
* Please Load into Tape Drive, Tape Volume 0 (or the Desired Tape).
If you have to, you may safely remove the SUPPORT MEDIA now.

At this point, eject the SUPPORT CD from the CD drive.
12. Continue procedure:

Ready to continue ([y]/n/q/?): y
Checking for the beginning of tape: DONE
……….10% completed
……….20% completed
……….30% completed
……….40% completed
……….50% completed
……….60% completed
……….70% completed
……….80% completed
……….90% completed
……….100% completed
Restored Successful.
COPYUTIL > exit
Replace the SUPPORT MEDIA now, if you removed it earlier.

At this point, close the CD drive with the SUPPORT CD.
13. Exit.

ODE > exit to return ISL prompt
ISL > 800SUPPORT

Note: The system was booted from the SUPPORT CD; at this point it can be power-cycled (power
off and on), or brought into the recovery mode in this way!
Once the system reaches the Recovery Menu (it takes some time) select:

[Cancel and Reboot]
NOTE: System rebooting

The full test of the system is performed, so it takes awhile!
14. The regular system startup continues.

	UNIX Administration
	INTERNET and COMMUNICATIONS
	Preface
	About the Author
	Contents
	Chapter 1. UNIX — Introductory Notes
	UNIX Operating System
	User’s View of UNIX
	The History of UNIX
	Berkeley Standard Distribution — BSD UNIX
	System V or ATT UNIX

	UNIX System and Network Administration
	System Administrator’s Job
	Computing Policies
	Administration Guidelines
	Legal Acts
	Code of Ethics
	Organizations
	Standardization

	In This Book

	Chapter 2. The UNIX Model — Selected Topics
	Introduction
	Files
	File Ownership
	File Protection/ File Access
	Access Classes
	Setting a File Protection

	Default File Mode
	Additional Access Modes
	Access Control Lists (ACLs)
	File Types
	Plain (Regular) File
	Directory
	Special Device File
	Link
	Socket
	Named Pipe
	Conclusion

	Devices and Special Device Files
	Special File Names
	Special File Creation

	Processes
	Process Parameters
	Process Types
	Process Attributes
	File Descriptors
	Process States

	Process Life Cycles
	Process Creation
	Process Termination

	Process Handling
	Monitoring Process Activities
	Destroying Processes
	Job Control

	Chapter 3. UNIX Administration Starters
	Superuser and Users
	Becoming a Superuser
	Communicating with Other Users
	The su Command

	UNIX Online Documentation
	The man Command
	The whatis Database

	System Information
	System Status Information
	The uname Command
	The uptime Command
	The dmesg Command

	Hardware Information
	The HP- UX ioscan Command
	The Solaris prtconf Command
	The Solaris sysdef Command

	Personal Documentation
	Shell Script Programming
	UNIX User Shell
	UNIX Shell Scripts
	Shell Script Execution
	Shell Variables
	Double Command- Line Scanning
	Here Document
	Few Tips

	Chapter 4. System Startup and Shutdown
	Introductory Notes
	System Startup
	The Bootstrap Program
	The Kernel Execution
	The Overall System Initialization
	rc Initialization Scripts
	Terminal Line Initialization

	System States
	The Outlook of a Startup Procedure
	Initialization Scripts

	BSD Initialization
	The BSD rc Scripts
	BSD Initialization Sequence

	System V Initialization
	The Configuration File / etc/ inittab
	System V rc Initialization Scripts
	BSD- Like Initialization

	Shutdown Procedures
	The BSD shutdown Command
	The System V shutdown Command
	An Example

	Chapter 5. UNIX Filesystem Management
	Introduction to the UNIX Filesystem
	UNIX Filesystem Directory Organization
	BSD Filesystem Directory Organization
	System V Filesystem Directory Organization

	Mounting and Dismounting Filesystems
	Mounting a Filesystem
	The mount Command

	Dismounting a Filesystem
	Automatic Filesystem Mounting
	Removable Media Management

	Filesystem Configuration
	BSD Filesystem Configuration File
	System V Filesystem Configuration File
	AIX Filesystem Configuration File
	The Filesystem Status File

	A Few Other Filesystem Issues
	Filesystem Types
	Swap Space — Paging and Swapping
	Loopback Virtual Filesystem

	Managing Filesystem Usage
	Display Filesystem Statistics: The df Command
	Report on Disk Usage: The du Command
	Report on Disk Usage by Users: The quot Command
	Checking Filesystems: The fsck Command

	Chapter 6. UNIX Filesystem Layout
	Introduction
	Physical Filesystem Layout
	Disk Partitions
	Filesystem Structures
	Filesystem Creation
	The mkfs Command
	The newfs Command
	The tunefs Command

	File Identification and Allocation
	Index Node (inode)
	File Allocation

	Filesystem Performance Issues
	File Storage vs. File Transfer
	Reserved Free Space

	Logical Filesystem Layout
	Logical Volume Manager — AIX Flavor
	Logical Volume Manager — HP-UX Flavor
	Logical Volume Manager — Solaris Flavor
	Redundant Array of Inexpensive Disks (RAID)
	Snapshot
	The Volume Snapshot
	The Filesystem Snapshot

	Virtual UNIX Filesystem

	Disk Space Upgrade

	Chapter 7. User Account Management
	Users and Groups
	Creation of User Accounts
	User Database — File /etc/ passwd
	Group Database — File / etc/ group
	Creating User Home Directories
	UNIX Login Initialization
	Initialization Template Files
	User Login Initialization Files
	Systemwide Login Initialization Files
	Shell Initialization Files
	Setting the Proper Ownership

	Utilities to Create User Accounts

	Maintenance of User Accounts
	Restricted User Accounts
	Users and Secondary Groups
	Assigning User Passwords
	Standard UNIX Users and Groups
	Removing User Accounts

	Disk Quotas
	Managing Disk Usage by Users

	Accounting
	BSD Accounting
	System V Accounting
	AIX-Flavored Accounting

	Chapter 8. UNIX System Security
	UNIX Lines of Defense
	Physical Security
	Passwords
	File Permissions
	Encryption
	Backups

	Password Issues
	Password Encryption
	Choosing a Password
	Setting Password Restrictions
	A Shadowed Password
	Usual Approach
	Other Approaches

	Secure Console and Terminals
	Traditional BSD Approach
	The Wheel Group
	Secure Terminals — Other Approaches

	Monitoring and Detecting Security Problems
	Important Files for System Security
	Monitoring System Activities
	Monitoring Login Attempts
	The su Log File
	History of the Root Account
	Tracking User Activities

	Chapter 9. UNIX Logging Subsystem
	The Concept of System Logging
	The syslogd Daemon

	System Logging Configuration
	The Configuration File /etc/syslog.conf
	Linux Logging Enhancements
	The logger Command
	Testing System Logging

	Accounting Log Files
	The last Command
	Limiting the Growth of Log Files

	Chapter 10. UNIX Printing
	UNIX Printing Subsystem
	BSD Printing Subsystem
	The lpr, lpq, and lprm Commands
	The lpd Daemon
	Managing the BSD Printing Subsystem

	System V Printing Subsystem
	The lp, lpstat, and cancel Commands
	The lpsched Daemon
	Managing the System V Printing Subsystem

	Printing Subsystem Configuration
	BSD Printer Configuration and the Printer Capability Database
	The / etc/ printcap File
	Setting the BSD Default Printer
	Spooling Directories
	Filters
	Linux Printing Subsystem

	System V Printer Configuration and the Printer Capability Database
	The Printer Database Directory Hierarchy on System V
	Setting the System V Default Printer

	AIX Printing Facilities

	Adding New Printers
	Adding a New Local Printer
	Adding a Local BSD Printer
	Adding a Local Linux Printer
	Adding a Local System V Printer

	Adding a New Remote Printer
	Adding a Remote BSD Printer
	Adding a Remote Linux Printer
	Adding a Remote System V Printer

	UNIX Cross- Platform Printer Spooling
	BSD and AIX Cross- Printing
	Solaris and BSD Cross- Printing
	Third- Party Printer Spooling Systems

	Chapter 11. Terminals
	Terminal Characteristics
	BSD Terminal Subsystem
	BSD Terminal Line Initialization
	The BSD termcap Database

	System V Terminal Subsystem
	System V Terminal Line Initialization
	The System V terminfo Database

	Terminal- Related Special Device Files
	Configuration Data Summary

	The tset, tput, and stty Commands
	The tset Command
	The tput Command
	The stty Command

	Pseudo Terminals
	Terminal Servers

	Chapter 12. UNIX Backup and Restore
	Introduction
	Media

	Tape-Related Commands
	The tar Command
	The cpio Command
	The dd Command
	The mt Command
	Magnetic Tape Devices and Special Device Files

	Backing Up a UNIX Filesystem
	Planning a Backup Schedule

	Backup and Dump Commands
	The SVR3 and SVR4 backup Commands
	The fbackup Command
	The dump/ufsdump Command
	A Few Examples

	Restoring Files from a Backup
	The restore Commands
	The SVR3 restore Command
	The restore/ufsrestore Command
	Interactive Restore

	The frecover Command
	Restoring Multiple Filesystems Archived on a Single Tape

	Tape Control

	Chapter 13. Time-Related UNIX Facilities
	Network Time Distribution
	The NTP Daemon
	The NTP Configuration File

	Periodic Program Execution
	The UNIX cron Daemon
	The crontab Files
	The crontab Command
	Linux Approach

	Programs Scheduled for a Specific Time
	The UNIX at Utility

	Batch Processing
	The UNIX batch Utility

	Chapter 14. Network Fundamentals
	UNIX and Networking
	Computer Networks
	Local Area Network (LAN)
	CSMA/ CD Networks
	Token Passing Networks

	Wide Area Network (WAN)

	A TCP/ IP Overview
	TCP/ IP and the Internet
	ISO OSI Reference Model
	TCP/ IP Protocol Architecture

	TCP/ IP Layers and Protocols
	Network Access Layer
	Internet Layer and IP Protocol
	Internet Protocol (IP)
	Internet Control Message Protocol (ICMP)

	Transport Layer and TCP and UDP Protocols
	User Datagram Protocol (UDP)
	Transmission Control Protocol (TCP)

	Application Layer

	Chapter 15. TCP/ IP Network
	Data Delivery
	IP Address Classes
	Internet Routing
	The route Command
	Dynamic Routing
	The gated Daemon

	Multiplexing
	Protocols, Ports, and Sockets
	UNIX Database Files

	Address Resolution (ARP)
	The arp Command

	Remote Procedure Call (RPC)
	The portmapper Daemon
	The /etc/rpc File

	Configuring the Network Interface
	The ifconfig Command
	The netstat Command

	Super Internet Server
	The inetd Daemon
	The inetd Configuration

	Further Improvements and Development
	Extended Super Server xinetd

	Chapter 16. Domain Name System
	Naming Concepts
	Host Names and Addresses
	Domain Name Service (DNS)
	Domains and Subdomains

	Host Database Files
	The Local Host Table — /etc/hosts
	Aliases
	Maintaining the /etc /hosts File

	UNIX Name Service — BIND
	BIND Configuration
	Resolvers
	Configuring a Resolver
	Other Resolver Parameters

	Name Servers
	The named Daemon

	Configuring
	BIND Version 4. X. X
	The Configuration File / etc/ named. boot
	Standard Resource Records
	The Resource Record Files

	BIND Version 8. X. X
	Subdomains and Parenting

	Using nslookup
	The nslookup Interactive Mode
	A Few Examples of nslookup Usage

	Chapter 17. Network Information Service (NIS)
	Purpose and Concepts
	NIS Paradigm
	yp Processes
	To Create an NIS Server
	Set the NIS domain
	Set the Master Server
	Set the Slave Server
	Start NIS Service

	To Create an NIS Client
	NIS Domain Name
	Databases/ NIS Maps
	The /etc/netgroup File

	NIS Management
	yp Commands
	Updating NIS Maps
	The make Utility and NIS

	Troubleshooting
	Security Issues
	A Few NIS Stories
	Too Large an NIS Group
	Invalid Slave Server
	Change of the NIS Domain Name

	NIS vs. DNS
	The /etc/nsswitch.conf File
	Once upon a Time

	Chapter 18. Network File System (NFS)
	NFS Overview
	NFS Daemons

	Exporting and Mounting Remote Filesystems
	Exporting a Filesystem
	The exportfs and share Commands
	The Export Configuration File
	The Export Status File

	Mounting Remote Filesystems
	The showmount Command
	The mount Command and the Filesystem Configuration File

	Automounter
	The Automount Maps
	An Example

	NFS — Security Issues

	Chapter 19. UNIX Remote Commands
	Table of Contents
	UNIX Remote Commands
	UNIX r Commands
	The rlogin Command
	The rcp Command
	The remsh (rsh) Command

	Securing the UNIX r Commands
	The /etc/hosts.equiv File
	The $HOME/.rhosts File
	Using UNIX r-Commands — An Example

	Secure Shell (SSH)
	SSH Concept
	RSA Authentication
	The ssh Client
	The sshd Daemon

	SSH Configuration
	SSH Installation and User Access Setup
	Setup of the ssh Client
	Root Access
	Individual User Access

	SSH — Version 2

	Chapter 20. Electronic Mail
	E- mail Fundamentals
	Simple Mail Transport Protocol (SMTP)
	The MTA Program sendmail
	The sendmail Daemon
	The sendmail Command
	Other sendmail Constituents
	Global Mail Aliases
	Personal Mail Forwarding Files
	Mail Delivery Programs — Mailers
	The sendmail Configuration File
	The Frozen sendmail Configuration File

	Configuration
	The sendmail.cf File
	Macro and Class Definitions
	The Define Macro Command
	The Define Class Command

	Rulesets and Rewrite Rules
	The Ruleset Sequence
	The Ruleset 0

	Creating the sendmail.cf File

	The Parsing of E- mail Addresses
	Rewriting an E- mail Address
	Pattern Matching
	Address Transformation

	Testing sendmail Configuration
	Testing Rewrite Rules
	The sendmail -bt Command
	The Debugging Level
	Checking the Mail Queue

	Mail User Agents
	The Mail Program and .mailrc File
	Starting mail
	Sending E- mail Messages
	Reading E- mail Messages
	Mail Subcommands
	Forwarding E- mail Messages
	Variables

	POP and IMAP
	Post Office Protocol (POP)
	Internet Message Access Protocol (IMAP)
	Comparing POP vs. IMAP

	Chapter 21. UNIX Network Support
	Common UNIX Network Applications
	Telnet
	Telnet Commands

	FTP
	FTP Commands
	FTP Auto- Login
	Anonymous FTP

	Finger

	Host Connectivity
	The ping Command
	The traceroute Command

	Chapter 22. X Window System
	An Introduction to the X Window System
	The Design of X11
	The X Administration Philosophy
	Window Managers

	The X Display Managers
	xdm/dtlogin Concepts
	xdm Configuration Files
	Customizing xdm
	The xdm-config File
	The Xservers File
	The Xresources File
	The Xsession File
	The Xreset File

	CDE Configuration Files
	Vendor- Specific X Flavors — a Configuration Example

	Access Control and Security of X11
	XDMCP Queries
	The Xaccess File
	Other Access Control Mechanisms

	The User X Environment
	Components of the xdm-Based User X Environment
	Components of the CDE User X Environment
	Window Manager Customizations
	Motif Window Manager (mwm)
	CDE Window Manager (dtwm)

	The Shell Environment

	Miscellaneous
	Other Startup Methods
	A Permanent X11 Installation
	A Few X- Related Commands

	Chapter 23. Kernel Reconfiguration
	Introduction to Kernel Reconfiguration
	Kernel Configuration Database
	BSD- Like Kernel Configuration Approach
	Basic Configuration Entries
	The BSD-Like Kernel Configuration Procedure
	The config Command

	Other Flavored Kernel Reconfigurations
	HP- UX 10. x Kernel Configuration
	Solaris 2. x Kernel Configuration
	Linux Kernel Configuration

	Chapter 24. Modems and UUCP
	Introduction to Modems
	UNIX and Modems

	UNIX Modem Control
	Terminal Lines and Modem Control
	Modem- Related UNIX Commands
	The cu Command
	The tip Command

	Third- Party Communication Software
	C-Kermit

	Introduction to UUCP
	How Does UUCP Work?
	UUCP Versions
	UUCP Chat-Transfer Session

	UUCP Commands, Daemons, and Related Issues
	The Major UUCP Commands
	The Major UUCP Commands
	The uux Command

	The UUCP Daemons
	The uucico Daemon
	The uuxqt Daemon
	The uusched Daemon
	The uucpd Daemon

	The UUCP Spool Directories and Files

	Configuring a UUCP Link
	Serial Line- Related Issues
	UUCP Configuration Files
	The UUCP Systems Data
	The UUCP Devices Data
	Other Configuration Data

	UUCP Access and Security Consideration
	Additional Security in BNU UUCP
	Additional Security in Version 2 UUCP

	Chapter 25. Intranet
	Introduction to Intranet
	Intranet vs. Internet
	Intranet Design Approach

	Intranet Front- End Services
	Firewalls
	Firewall Techniques
	Firewall Types
	Firewall Implementation
	Problems and Benefits

	Viruswalls
	Computer Viruses and Other Malicious Codes
	The Viruswall Implementation

	Proxy Servers
	Application Proxies
	SOCKS Proxies

	Web Services
	Other External Services

	Inside the Intranet
	Network Infrastructure and Desktops
	Internal Services
	Dynamic Host Configuration Protocol (DHCP)

	Virtual Private Network (VPN)
	UNIX and Not- UNIX Platform Integration

	Chapter 26. UNIX Installation
	Introductory Notes
	UNIX Installation Procedures
	HP- UX Installation
	Solaris Installation
	Linux Installation

	Supplemental Installations
	Supplemental System Software
	Installation of Sun Enterprise (Veritas) Volume Manager 2.5
	Installation of Veritas Filesystem 3. X
	Two Pseudo- Installation Scripts
	Installation of Optional HP- UX Software

	Patches
	Solaris Patch Installation
	HP- UX Patch Installation

	Chapter 27. Upgrade Disk Space
	Adding a Disk
	New Disk on the Solaris Platform
	New Disk on the SunOS Platform
	New Disk on the HP-UX Platform

	Logical Volume Manager Case Study
	LVM on the HP- UX Platform
	LVM on the Solaris Platform

	Chapter 28. UNIX Emergency Situations
	Introductory Notes
	Lost Root Password
	Solaris and Lost Root Password
	HP- UX and Lost Root Password

	Some Special Administrative Situations
	Solaris Procedure to Create an Alternate Boot Partition
	Solaris Recovery of the Failed Mirrored Boot Disk
	HP- UX Support Disk Usage
	HP- UX Procedure to Synchronize a Mirrored Logical Volume
	HP- UX Support Tape and Recovery of Root Disk

