

UNIX

Administration

A Comprehensive Sourcebook
for Effective Systems and
Network Management

INTERNET and COMMUNICATIONS

This new book series presents the latest research and technological
developments in the field of internet and multimedia systems and applications.
We remain committed to publishing high-quality reference and technical
books written by experts in the field.

If you are interested in writing, editing, or contributing to a volume in
this series, or if you have suggestions for needed books, please contact
Dr. Borko Furht at the following address:

Dr. Borko Furht, Director
Multimedia Laboratory
Department of Computer Science and Engineering
Florida Atlantic University
777 Glades Road
Boca Raton, FL 33431 U.S.A.

E-mail: borko@cse.fau.edu

© 2002 by CRC Press LLC

UNIX

Administration

A Comprehensive Sourcebook
for Effective Systems and
Network Management

Bozidar Levi

CRC PRESS

Boca Raton London New York Washington, D.C.

© 2002 by CRC Press LLC

Library of Congress Cataloging-in-Publication Data

Levi, Bozidar.
UNIX administration : a comprehensive sourcebook for effective systems and network management / by
Bozidar Levi.
p- cm. -- (Internet and data comunications series
Includes bibliographical references and index.
ISBN 0-8493-1351-1 (alk. paper)
1. Operating systems (Computers) 2.UNIX System V (Computer file) I. Title. II. Series.

QA76.76.063 L4853 2002
005.4’82—dc21 2002017438
CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2002 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1351-1
Library of Congress Card Number 2002017438
Printed in the United States of America 1 2 3 456 78 90
Printed on acid-free paper

© 2002 by CRC Press LLC

Preface

Unix Administration: A Comprehensive Sourcebook for Effective Systems and Network Manage-
ment attempts to make UNIX essential and network administrative topics more accessible
to a wide audience, including both academic and professional users. The selected book
title fully reflects this idea: to present UNIX administration in a comprehensive way and
enable effective systems and network management based on the presented text.

To achieve this goal, the book gives equal weight to UNIX systems and network concepts
and their practical implementations. During the many years that | have worked as a
computer hardware designer and programmer, and most recently as a UNIX administrator,
I have tackled many practical UNIX and network problems. Working for different employ-
ers, | faced real-life situations in an academic environment, in the financial industry and
the retail industry, and on the Internet. At the same time, while teaching at New York
University and Columbia University, | met many novices in this field and learned an
optimal and quick way to teach UNIX administration. This accumulated knowledge and
experience have helped me to select UNIX topics that are of the utmost relevance to
successful administration, and those topics served as the basis for this book. Some add-
itional UNIX topics, significant from a historical point of view, or necessary for an overall
presentation of UNIX administration, are also included. In concert, they create a logical
and comprehensive text, easy to read and follow. It is impossible to say that everything
existing in the UNIX administration arena is covered here — it would be impossible to
putitall in asingle book. However, the principal and most important UNIX administrative
topics that make a complete UNIX administration environment and a sufficient base for
overall UNIX management are fully explored.

UNIX was developed in two different environments: academic and industrial. Conse-
quently, two main UNIX platforms, Berkeley UNIX (also known as Berkeley Software
Distribution — BSD UNIX) and System V UNIX (also known as AT&T UNIX) have
emerged. Both platforms have coexisted for many years, continuing to develop and pro-
mote UNIX. Simultaneously, many vendors started to develop their own UNIX flavors by
trying to adopt the best from the two main platforms. Today we see a number of vendor-
specific UNIX flavors, all based on these two main platforms. In most cases, it is even
difficult to evaluate which platform is prevailing — each flavor is simply a hybrid of both
platforms, often bringing something new and specific to the UNIX market. However, upon
looking further at specific UNIX segments — for example, file system management,
printing, accounting, etc. — one is more easily able to describe them as mostly Berkeley-
like, or System V-like.

Networking, which appeared later, at a time when UNIX had already developed into
quite a mature product, merged very efficiently into both UNIX platforms and virtually
eliminated their differences in the network area. The TCP/IP protocols became a network
standard, while UNIX provided the main underlying layer of core network services. The
net effect was that UNIX network administration is more or less uniform among many
existing UNIX flavors, although far from identical. Differences in kernels, available com-
mands, and some other details do make a difference in some cases.

This book basically follows a historical UNIX path, i.e., it addresses UNIX administration
with an eye to the two main UNIX platforms, Berkeley and System V. For easier conceptual
understanding of administrative topics, Berkeley UNIX seems more convenient. This is

© 2002 by CRC Press LLC

probably the case, because it was primarily developed in academia. By following that
pattern for each individual UNIX topic, the Berkeley platform is discussed first and
afterward its System V counterpart. A practical implementation of a specific UNIX topic
is accomplished through many real-life examples from different vendor-specific UNIX
flavors. Now, at the start of a new millennium, Solaris, HP-UX, Linux, and AlX and SGI
IRIX are the most dominant flavors, and thus, this book mainly addresses them. SunQOS,
as a dominant UNIX flavor for many years, is also occasionally quoted, especially because
SunOS isatypical representive of Berkeley UNIX, and is still widely in use. In combination,
the book is an instrumental source of the information needed to learn UNIX administration
and efficiently perform the most essential and network-related UNIX administrative tasks.

This book presents a reliable UNIX administration reference book for practical UNIX
implementation. However, it could be easily used for educational purposes, as a textbook,
due to its education-related organization, conceptual clarifications, as well as an appro-
priate selection of administrative topics. Not many books of this kind are on the market
that are so diverse and detailed oriented at the same time. Many practical examples and
specific administrative procedures, logically connected to theoretical issues, strongly sup-
port the educational significance of this book.

UNIX Administration Sourcebook started as handouts prepared for the course "UNIX
System Administration” at NYU’s School of Continuous and Professional Studies and has
been in full use for quite some time with very encouraging feedback from students. During
this time, a number of text improvements and updates have been made, until this version
was reached. UNIX is changing continually (supposedly always better) and this text
presents an up-to-date version organized in a logical and comprehensive way. It can be
easily used by beginners, as well as experienced administrators.

There are many books related to UNIX systems and network administration, and they
all contribute to this complex arena in some way. This book contains elements that make
it different from others:

< The comprehensive organization and presentation of the text

< The condensed explanation of concepts and their practical implementations

< The inclusion of both UNIX systems and network administration, in full detail
< The choice of crucial administrative topics and their full coverage

= The discussion of the most common UNIX flavors

= The text is self-sufficient for successful administration on a daily basis

= The coverage of all basic and many advanced UNIX administrative topics

< The coverage of X window system, a complex administrative topic almost always
excluded from UNIX administration books

= Up-to-date text with coverage of the latest main UNIX flavors and releases
< Usefulness as a reference book as well as a textbook

« A careful selection of relevant examples based on many years of professional
experience in this field

< And last but not least, many years use of the initial book text in a handout form
demonstrates high usability of the text by students and professionals.

The book consists of four parts: UNIX Administration, Network Administration, Sup-

plemental UNIX Topics, and Case Studies. A total of 82 figures fully support the existing
text. Such an organization is logical, comprehensive, and easy to read.

© 2002 by CRC Press LLC

UNIX Administration covers essential UNIX administration and contains 13 chapters.
The first three chapters are an introduction to the UNIX operating system, an overview
of a certain number of selected UNIX topics important for the administration, and an
overview of the UNIX administration itself. The remaining chapters cover UNIX system
startup and shutdown, detailed UNIX filesystem management and layout, user account
management and system security, logging and printing subsystems, terminals, system
backup and recovery, and time-related UNIX facilities. In combination they provide suf-
ficient material for a successful “out-of-network” UNIX administration, which can also be
called stand-alone UNIX administration.

Network Administration covers network-related UNIX administration and contains
eight chapters. The first two chapters present an introduction to networking and, more
specifically, to TCP/IP networks. Other chapters cover the main network services: domain
name system (DNS), network information system (NIS), network filesystem (NFS), UNIX
remote commands and secure shell, electronic mail, and the most common network appli-
cations such as telnet and ftp. Selected network topics present core network services with
which each networked UNIX system has to comply.

Supplemental UNIX Topics covers several more subjects, which, by implementing cer-
tain criteria, make UNIX administration complete. These administrative topics are often
handled separately, out of basic UNIX administration. Four chapters include X window
system, kernel reconfiguration, modems and related UNIX facilities, and intranet technol-
ogies. X windowing, with its quite complex administration, is almost always handled
separately, as well as most of the advanced intranet technologies.

Finally, Case Studies are presented in three chapters on subjects extremely important to
practical UNIX implementation: UNIX installation, disk space upgrade, and several emer-
gency situations that every UNIX administrator should expect to face at some point. Most
administrators have experienced a need to bypass a “forgotten root password,” and while
this routine bypassing task varies among different flavors, the general hints presented can
be helpful in any case.

Finally, I would like to point out that during many years of active UNIX administration,
I was always thinking how nice it would be to have a single book in front of me, which
together with standard UNIX online documentation (UNIX manual pages) would be
sufficient for effective usual daily systems and network management. This book is a
response to that idea.

Dr. Bozidar Levi

New York City
October 2001

© 2002 by CRC Press LLC

About the Author

Dr. Bozidar Levi is an electronics engineer by education, a hardware designer and pro-
grammer by evocation, and an UNIX administration expert by profession. He received
his education at the University of Belgrade, Yugoslavia, and was awarded B.S., M.S., and
Ph.D. degrees in electronics and computer science. Dr. Levi joined Belgrade’s Pupin
Institute and had a successful career path from a junior associate to a top senior scientist,
dealing with many challenging projects — mostly as a project leader. A majority of the
devices and equipment he designed are still operational worldwide.

UNIX was a logical continuation of Dr. Levi’s rich and extensive IT background. He has
focused with enthusiasm and strength on system and network administration issues.
Again, Dr. Levi made a full circle by working in academia (Hunter College of the City
University of New York), in the financial industry (New York Stock Exchange), retail
industry (J. Crew), and currently the Internet (Linkshare Corporation). Such a wide work-
ing range has resulted in accumulated administrative expertise and experience.

Dr. Levi has also fully exercised his educational mission: first by teaching at the Uni-
versity of Belgrade, and now at Columbia and New York University. His teaching has
always been a rational balance between theory and practice, with strong emphasis on real-
life problems. Many of his former students are employed as IT professionals in various
industrial and non-industrial segments nationwide. UNIX Administration: A Comprehensive
Sourcebook for Effective Systems and Network Management is an extended and updated version
of his UNIX administration course syllabi, which are appreciated and highly rated by his
students. The book merges the required theoretical background with the practical needs
for a successful UNIX administration in almost any environment.

Dr. Levi has also appeared as an author or co-author in more than 60 published and
presented articles and papers and has received several awards for excellence and
achievement.

© 2002 by CRC Press LLC

Contents

Section I UNIX Administration

1 UNIX — Introductory Notes
1.1 UNIX Operating System
1.2 User’s View of UNIX
1.3 The History of UNIX
1.3.1 Berkeley Standard Distribution — BSD UNIX
1.3.2 System V or ATT UNIX
1.4 UNIX System and Network Administration
1.4.1 System Administrator’s Job
1.4.2 Computing Policies
1.4.3 Administration Guidelines
1.4.3.1 Legal Acts
1.4.3.2 Code of Ethics
1.4.3.3 Organizations
1.4.3.4 Standardization
1.4.4 In This Book

2 The UNIX Model — Selected Topics
2.1 Introduction
2.2 Files
2.2.1 File Ownership
2.2.2 File Protection/File Access
2.2.2.1 Access Classes
2.2.2.2 Setting a File Protection
2.2.2.3 Default File Mode
2.2.2.4 Additional Access Modes
2.2.3 Access Control Lists (ACLSs)
2.2.4 File Types
2.2.4.1 Plain (Regular) File
2.2.4.2 Directory
2.2.4.3 Special Device File
2.24.4 Link
2.2.45 Socket
2.2.4.6 Named Pipe
2.2.4.7 Conclusion
2.3 Devices and Special Device Files
2.3.1 Special File Names
2.3.2 Special File Creation
2.4 Processes
2.4.1 Process Parameters
2.4.1.1 Process Types
2.4.1.2 Process Attributes

© 2002 by CRC Press LLC

2.4.1.3 File Descriptors
2.4.1.4 Process States
2.4.2 Process Life Cycles
2.4.2.1 Process Creation
2.4.2.2 Process Termination
2.4.3 Process Handling
2.4.3.1 Monitoring Process Activities
2.4.3.2 Destroying Processes
2.4.3.3 Job Control

UNIX Administration Starters
3.1 Superuser and Users
3.1.1 Becoming a Superuser
3.1.2 Communicating with Other Users
3.1.3 The su Command
3.2 UNIX Online Documentation
3.21 The man Command
3.2.2 The whatis Database
3.3 System Information
3.3.1 System Status Information
3.3.1.1 The uname Command
3.3.1.2 The uptime Command
3.3.1.3 The dmesg Command
3.3.2 Hardware Information
3.3.21 The HP-UX ioscan Command
3.3.2.2 The Solaris prtconf Command
3.3.2.3 The Solaris sysdef Command
3.4 Personal Documentation
3.5 Shell Script Programming
3.5.1 UNIX User Shell
3.5.2 UNIX Shell Scripts
3.5.2.1 Shell Script Execution
3.5.2.2 Shell Variables
3.5.2.3 Double Command-Line Scanning
3.5.2.4 Here Document
3.56.2.5 Few Tips

System Startup and Shutdown
4.1 Introductory Notes
4.2 System Startup
4.2.1 The Bootstrap Program
4.2.2 The Kernel Execution
4.2.3 The Overall System Initialization
4.2.3.1 rc Initialization Scripts
4.2.3.2 Terminal Line Initialization
4.2.4 System States
4.2.5 The Outlook of a Startup Procedure
4.2.6 Initialization Scripts
4.3 BSD Initialization
4.3.1 The BSD rc Scripts
4.3.2 BSD Initialization Sequence

© 2002 by CRC Press LLC

4.4 System V Initialization
4.4.1 The Configuration File /etc/inittab
4.4.2 System V rc Initialization Scripts
4.4.3 BSD-Like Initialization

4.5 Shutdown Procedures
45.1 The BSD shutdown Command
4.5.2 The System V shutdown Command
453 An Example

UNIX Filesystem Management
5.1 Introduction to the UNIX Filesystem
5.2 UNIX Filesystem Directory Organization
5.2.1 BSD Filesystem Directory Organization
5.2.2 System V Filesystem Directory Organization
5.3 Mounting and Dismounting Filesystems
5.3.1 Mounting a Filesystem
5.3.1.1 The mount Command
5.3.2 Dismounting a Filesystem
5.3.3 Automatic Filesystem Mounting
5.3.4 Removable Media Management
5.4 Filesystem Configuration
5.4.1 BSD Filesystem Configuration File
5.4.2 System V Filesystem Configuration File
5.4.3 AIX Filesystem Configuration File
5.4.4 The Filesystem Status File
5.5 A Few Other Filesystem Issues
5.5.1 Filesystem Types
5.5.2 Swap Space — Paging and Swapping
5.56.3 Loopback Virtual Filesystem
5.6 Managing Filesystem Usage
5.6.1 Display Filesystem Statistics: The df Command
5.6.2 Report on Disk Usage: The du Command
5.6.3 Report on Disk Usage by Users: The quot Command
5.6.4 Checking Filesystems: The fsck Command

UNIX Filesystem Layout
6.1 Introduction
6.2 Physical Filesystem Layout
6.2.1 Disk Partitions
6.2.2 Filesystem Structures
6.2.3 Filesystem Creation
6.2.3.1 The mkfs Command
6.2.3.2 The newfs Command
6.2.3.3 The tunefs Command
6.2.4 File ldentification and Allocation
6.2.4.1 Index Node (inode)
6.2.4.2 File Allocation
6.2.5 Filesystem Performance Issues
6.2.5.1 File Storage vs. File Transfer
6.2.5.2 Reserved Free Space

© 2002 by CRC Press LLC

6.3 Logical Filesystem Layout
6.3.1 Logical Volume Manager — AlX Flavor
6.3.2 Logical Volume Manager — HP-UX Flavor
6.3.3 Logical Volume Manager — Solaris Flavor
6.3.4 Redundant Array of Inexpensive Disks (RAID)
6.3.5 Snapshot
6.3.5.1 The Volume Snapshot
6.3.5.2 The Filesystem Snapshot
6.3.6 Virtual UNIX Filesystem
6.4 Disk Space Upgrade

7 User Account Management
7.1 Users and Groups
7.1.1 Creation of User Accounts
7.1.2 User Database — File /etc/passwd
7.1.3 Group Database — File /etc/group
7.1.4 Creating User Home Directories
7.1.5 UNIX Login Initialization
7.1.5.1 Intialization Template Files
7.1.5.2 User Login Initialization Files
7.1.5.3 Systemwide Login Initialization Files
7.1.5.4 Shell Initialization Files
7.1.5.5 Setting the Proper Ownership
7.1.6 Utilities to Create User Accounts
7.2 Maintenance of User Accounts
7.2.1 Restricted User Accounts
7.2.2 Users and Secondary Groups
7.2.3 Assigning User Passwords
7.2.4 Standard UNIX Users and Groups
7.25 Removing User Accounts
7.3 Disk Quotas
7.3.1 Managing Disk Usage by Users
7.4 Accounting
7.4.1 BSD Accounting
7.4.2 System V Accounting
7.4.3 AlX-Flavored Accounting

8 UNIX System Security
8.1 UNIX Lines of Defense
8.1.1 Physical Security
8.1.2 Passwords
8.1.3 File Permissions
8.1.4 Encryption
8.1.5 Backups
8.2 Password Issues
8.2.1 Password Encryption
8.2.2 Choosing a Password
8.2.3 Setting Password Restrictions
8.2.4 A Shadowed Password
8.2.4.1 Usual Approach
8.2.4.2 Other Approaches

© 2002 by CRC Press LLC

8.3 Secure Console and Terminals
8.3.1 Traditional BSD Approach
8.3.2 The Wheel Group
8.3.3 Secure Terminals — Other Approaches
8.4 Monitoring and Detecting Security Problems
8.4.1 Important Files for System Security
8.4.2 Monitoring System Activities
8.4.3 Monitoring Login Attempts
8.4.3.1 The su Log File
8.4.3.2 History of the Root Account
8.4.3.3 Tracking User Activities

9 UNIX Logging Subsystem

9.1 The Concept of System Logging
9.1.1 The syslogd Daemon

9.2 System Logging Configuration
9.2.1 The Configuration File /etc/syslog.conf
9.2.2 Linux Logging Enhancements
9.2.3 The logger Command
9.2.4 Testing System Logging

9.3 Accounting Log Files
9.3.1 The last Command
9.3.2 Limiting the Growth of Log Files

10 UNIX Printing
10.1 UNIX Printing Subsystem

10.1.1 BSD Printing Subsystem
10.1.1.1 The Ipr, Ipgq, and Iprm Commands
10.1.1.2 The Ipd Daemon
10.1.1.3 Managing the BSD Printing Subsystem

10.1.2 System V Printing Subsystem
10.1.2.1 The Ip, Ipstat, and cancel Commands
10.1.2.2 The Ipsched Daemon
10.1.2.3 Managing the System V

Printing Subsystem
10.2 Printing Subsystem Configuration

10.2.1 BSD Printer Configuration and the Printer
Capability Database
10.2.1.1 The /etc/printcap File
10.2.1.2 Setting the BSD Default Printer
10.2.1.3 Spooling Directories
10.2.1.4 Filters
10.2.1.5 Linux Printing Subsystem

10.2.2 System V Printer Configuration and the Printer

Capability Database
10.2.2.1 The Printer Database Directory Hierarchy
on System V

10.2.2.2 Setting the System V Default Printer

10.2.3 AIX Printing Facilities

© 2002 by CRC Press LLC

11

12

10.3

10.4

Adding New Printers

10.3.1 Adding a New Local Printer
10.3.1.1 Adding a Local BSD Printer
10.3.1.2 Adding a Local Linux Printer
10.3.1.3 Adding a Local System V Printer

10.3.2 Adding a New Remote Printer
10.3.2.1 Adding a Remote BSD Printer
10.3.2.2 Adding a Remote Linux Printer
10.3.2.3 Adding a Remote System V Printer

UNIX Cross-Platform Printer Spooling

10.4.1 BSD and AIX Cross-Printing

10.4.2 Solaris and BSD Cross-Printing

10.4.3 Third-Party Printer Spooling Systems

Terminals

11

1.2

11.3
11.4

Terminal Characteristics
11.1.1 BSD Terminal Subsystem
11.1.1.1 BSD Terminal Line Initialization
11.1.1.2 The BSD termcap Database
11.1.2 System V Terminal Subsystem
11.1.2.1 System V Terminal Line Initialization
11.1.2.2 The System V terminfo Database
11.1.3 Terminal-Related Special Device Files
11.1.4 Configuration Data Summary
The tset, tput, and stty Commands
11.2.1 The tset Command
11.2.2 The tput Command
11.2.3 The stty Command
Pseudo Terminals
Terminal Servers

UNIX Backup and Restore

12.1

12.2

12.3

12.4

12.5

Introduction
12.1.1 Media
Tape-Related Commands
12.2.1 The tar Command
12.2.2 The cpio Command
12.2.3 The dd Command
12.2.4 The mt Command
12.2.5 Magnetic Tape Devices and Special Device Files
Backing Up a UNIX Filesystem
12.3.1 Planning a Backup Schedule
Backup and Dump Commands
12.4.1 The SVR3 and SVR4 backup Commands
12.4.2 The fbackup Command
12.4.3 The dump/ufsdump Command
12.4.4 A Few Examples
Restoring Files from a Backup
125.1 The restore Commands
125.1.1 The SVR3 restore Command

© 2002 by CRC Press LLC

125.1.2 The restorelufsrestore Command
12.5.1.3 Interactive Restore

125.2 The frecover Command

12.5.3 Restoring Multiple Filesystems Archived
on a Single Tape

12.6 Tape Control

13 Time-Related UNIX Facilities

13.1

13.2

13.3

13.4

Network Time Distribution

13.1.1 The NTP Daemon

13.1.2 The NTP Configuration File
Periodic Program Execution

13.2.1 The UNIX cron Daemon
13.2.2 The crontab Files

13.2.3 The crontab Command
13.2.4 Linux Approach

Programs Scheduled for a Specific Time
13.3.1 The UNIX at Utility

Batch Processing

13.4.1 The UNIX batch Utility

Section IT Network Administration

14 Network Fundamentals

14.1
14.2

14.3

14.4

UNIX and Networking
Computer Networks
14.2.1 Local Area Network (LAN)
14.2.1.1 CSMA/CD Networks
14.2.1.2 Token Passing Networks
14.2.2 Wide Area Network (WAN)
A TCP/IP Overview
14.3.1 TCP/IP and the Internet
14.3.2 I1SO OSI Reference Model
14.3.3 TCP/IP Protocol Architecture
TCP/IP Layers and Protocols
14.4.1 Network Access Layer
14.4.2 Internet Layer and IP Protocol
14.4.2.1 Internet Protocol (IP)
14.4.4.2 Internet Control Message Protocol (ICMP)
14.4.3 Transport Layer and TCP and UDP Protocols
14.4.3.1 User Datagram Protocol (UDP)
14.4.3.2 Transmission Control Protocol (TCP)
14.4.4 Application Layer

15 TCP/IP Network

15.1

Data Delivery
15.1.1 IP Address Classes
15.1.2 Internet Routing
15.1.2.1 The route Command

© 2002 by CRC Press LLC

15.2

15.3

15.4

15.5

15.1.2.2 Dynamic Routing
15.1.2.3 The gated Daemon
15.1.3 Multiplexing
15.1.3.1 Protocols, Ports, and Sockets
15.1.3.2 UNIX Database Files
Address Resolution (ARP)
15.2.1 The arp Command
Remote Procedure Call (RPC)
15.3.1 The portmapper Daecmon
15.3.2 The /etc/rpc File
Configuring the Network Interface
15.4.1 The ifconfig Command
15.4.2 The netstat Command
Super Internet Server
155.1 The inetd Daemon
15.5.1.1 The inetd Configuration
15.5.2 Further Improvements and Development
15.5.2.1 Extended Super Server xinetd

16 Domain Name System

16.1

16.2

16.3

16.4

Naming Concepts
16.1.1 Host Names and Addresses
16.1.2 Domain Name Service (DNS)
16.1.2.1 Domains and Subdomains
16.1.3 Host Database Files
16.1.3.1 The Local Host Table — /etc/hosts
16.1.3.2 Aliases
16.1.3.3 Maintaining the /etc/hosts File
UNIX Name Service — BIND
16.2.1 BIND Configuration
16.2.2 Resolvers
16.2.2.1 Configuring a Resolver
16.2.2.2 Other Resolver Parameters
16.2.3 Name Servers
16.2.3.1 The named Daemon
Configuring named
16.3.1 BIND Version 4.X.X
16.3.1.1 The Configuration File /etc/named.boot
16.3.1.2 Standard Resource Records
16.3.1.3 The Resource Record Files
16.3.2 BIND Version 8.X.X
16.3.2.1 Subdomains and Parenting
Using nslookup
16.4.1 The nslookup Interactive Mode
16.4.2 A Few Examples of nslookup Usage

17 Network Information Service (NIS)

17.1
17.2

Purpose and Concepts
NIS Paradigm
17.2.1 yp Processes

© 2002 by CRC Press LLC

18

19

17.3

17.4

17.2.2 To Create an NIS Server
17.2.2.1 Set the NIS domain
17.2.2.2 Set the Master Server
17.2.2.3 Set the Slave Server
17.2.2.4 Start NIS Service

17.2.3 To Create an NIS Client

17.2.4 NIS Domain Name

17.2.5 Databases/NIS Maps
17.25.1 The /etc/netgroup File

NIS Management

17.3.1 yp Commands

17.3.2 Updating NIS Maps
17.3.2.1 The make Utility and NIS

17.3.3 Troubleshooting

17.3.4 Security Issues

17.3.5 A Few NIS Stories
17.3.5.1 Too Large an NIS Group
17.3.5.2 Invalid Slave Server
17.3.5.3 Change of the NIS Domain Name

NIS vs. DNS

17.4.1 The /etc/nsswitch.conf File

17.4.2 Once upon a Time

Network File System (NFS)

18.1

18.2

18.3

18.4

NFS Overview

18.1.1 NFS Daemons

Exporting and Mounting Remote Filesystems

18.2.1 Exporting a Filesystem
18.2.1.1 The exportfs and share Commands
18.2.1.2 The Export Configuration File
18.2.1.3 The Export Status File

18.2.2 Mounting Remote Filesystems
18.2.2.1 The showmount Command
18.2.2.2 The mount Command and the Filesystem

Configuration File

Automounter

18.3.1 The Automount Maps
18.3.1.1 An Example

NFS — Security Issues

UNIX Remote Commands

19.1

19.2

UNIX r Commands

19.1.1 The rlogin Command

19.1.2 The r¢p Command

19.1.3 The remsh (rsh) Command

Securing the UNIX ¥ Commands

19.2.1 The /etc/hosts.equiv File

19.2.2 The $HOME]/.rhosts File

19.2.3 Using UNIX #-Commands — An Example

© 2002 by CRC Press LLC

19.3

Secure Shell (SSH)
19.3.1 SSH Concept
19.3.1.1 RSA Authentication
19.3.1.2 The ssh Client
19.3.1.3 The sshd Daemon
19.3.2 SSH Configuration
19.3.3 SSH Installation and User Access Setup
19.3.3.1 Setup of the ssh Client
19.3.3.2 Root Access
19.3.3.3 Individual User Access
19.3.4 SSH — Version 2

20 Electronic Mail

20.1

20.2

20.3

20.4

20.5

E-mail Fundamentals

20.1.1 Simple Mail Transport
Protocol (SMTP)

20.1.2 The MTA Program sendmail
20.1.2.1 The sendmail Daemon
20.1.2.2 The sendmail Command
20.1.2.3 Other sendmail Constituents

Sendmail Configuration

20.2.1 The sendmail.cf File
20.2.1.1 Macro and Class Definitions

20.2.2 Rulesets and Rewrite Rules
20.2.2.1 The Ruleset Sequence
20.2.2.2 The Ruleset 0

20.2.3 Creating the sendmail.cf File

The Parsing of E-mail Addresses

20.3.1 Rewriting an E-mail Address

20.3.2 Pattern Matching

20.3.3 Address Transformation

Testing sendmail Configuration

20.4.1 Testing Rewrite Rules

20.4.2 The sendmail -bt Command

20.4.3 The Debugging Level

20.4.4 Checking the Mail Queue

Mail User Agents

20.5.1 The Mail Program and .mailrc File
20.5.1.1 Starting mail
20.5.1.2 Sending E-mail Messages
20.5.1.3 Reading E-mail Messages
20.5.1.4 Mail Subcommands
20.5.1.5 Forwarding E-mail Messages
20.5.1.6 Variables

20.5.2 POP and IMAP
20.5.2.1 Post Office Protocol (POP)
20.5.2.2 Internet Message Access Protocol

(IMAP)

20.5.2.3 Comparing POP vs. IMAP

© 2002 by CRC Press LLC

21 UNIX Network Support

211

21.2

Common UNIX Network Applications
21.1.1 Telnet
21.1.1.1 Telnet Commands
21.1.2 FTP
21.1.21 FTP Commands
21.1.2.2 FTP Auto-Login
21.1.2.3 Anonymous FTP
21.1.3 Finger
Host Connectivity
21.2.1 The ping Command
21.2.2 The traceroute Command

Section III SUPPLEMENTAL UNIX TOPICS

22 X Window System

221

22.2

22.3

224

22.5

An Introduction to the X Window System
22.1.1 The Design of X11
22.1.2 The X Administration Philosophy
22.1.3 Window Managers
The X Display Managers
22.2.1 xdmldtlogin Concepts
22.2.2 xdm Configuration Files
22.2.2.1 Customizing xdm
22.2.3 CDE Configuration Files
22.2.4 Vendor-Specific X Flavors — a Configuration Example
Access Control and Security of X11
22.3.1 XDMCP Queries
22.3.2 The Xaccess File
22.3.3 Other Access Control Mechanisms
The User X Environment
22.4.1 Components of the xdm-Based User X Environment
22.4.2 Components of the CDE User X Environment
22.4.3 Window Manager Customizations
22.43.1 Motif Window Manager (mwm)
22.43.2 CDE Window Manager (dtwm)
22.4.4 The Shell Environment
Miscellaneous
22.5.1 Other Startup Methods
22.5.2 A Permanent X11 Installation
22.5.3 A Few X-Related Commands

23 Kernel Reconfiguration

23.1
23.2
23.3

Introduction to Kernel Reconfiguration

Kernel Configuration Database

BSD-Like Kernel Configuration Approach

23.3.1 Basic Configuration Entries

23.3.2 The BSD-Like Kernel Configuration Procedure
23.3.3 The config Command

© 2002 by CRC Press LLC

23.4 Other Flavored Kernel Reconfigurations
23.4.1 HP-UX 10.x Kernel Configuration
23.4.2 Solaris 2.x Kernel Configuration
23.4.3 Linux Kernel Configuration

24 Modems and UUCP
24.1 Introduction to Modems
24.1.1 UNIX and Modems
24.2 UNIX Modem Control
24.2.1 Terminal Lines and Modem Control
24.2.2 Modem-Related UNIX Commands
24.2.2.1 The cu Command
24.2.2.2 The tip Command
24.3 Third-Party Communication Software
24.3.1 C-Kermit
24.4 Introduction to UUCP
24.4,1 How Does UUCP Work?
24.4.2 UUCP Versions
24.4.3 UUCP Chat-Transfer Session
245 UUCP Commands, Daemons, and Related Issues
24.5.1 The Major UUCP Commands
24511 The uucp Command
245.1.2 The uux Command
245.2 The UUCP Daemons
245.2.1 The uucico Daemon
245.2.2 The uuxqt Daemon
245.2.3 The uusched Daemon
245.2.4 The uucpd Daemon
24.5.3 The UUCP Spool Directories and Files
24.6 Configuring a UUCP Link
24.6.1 Serial Line-Related Issues
24.6.2 UUCP Configuration Files
24.6.2.1 The UUCP Systems Data
24.6.2.2 The UUCP Devices Data
24.6.2.3 Other Configuration Data
24.7 UUCP Access and Security Consideration
24.7.1 Additional Security in BNU UUCP
24.7.2 Additional Security in Version 2 UUCP

25 Intranet
25.1 Introduction to Intranet
25.1.1 Intranet vs. Internet
25.1.2 Intranet Design Approach
25.2 Intranet Front-End Services
25.2.1 Firewalls
25.2.1.1 Firewall Techniques
5.2.1.2 Firewall Types
25.2.1.3 Firewall Implementation
25.2.1.4 Problems and Benefits

© 2002 by CRC Press LLC

25.3

25.2.2 Viruswalls

25.2.2.1 Computer Viruses and Other Malicious Codes

25.2.2.2 The Viruswall Implementation
25.2.3 Proxy Servers

25.2.3.1 Application Proxies

25.2.3.2 SOCKS Proxies
25.2.4 \Web Services
25.2.5 Other External Services
Inside the Intranet
25.3.1 Network Infrastructure and Desktops
25.3.2 Internal Services

25.3.2.1 Dynamic Host Configuration Protocol (DHCP)

25.3.3 Virtual Private Network (VPN)
25.3.4 UNIX and Not-UNIX Platform Integration

Section IV CASE STUDIES

26 UNIX Installation

27

28

26.1
26.2

26.3

Introductory Notes
UNIX Installation Procedures
26.2.1 HP-UX Installation
26.2.2 Solaris Installation
26.2.3 Linux Installation
Supplemental Installations
26.3.1 Supplemental System Software
26.3.1.1 Installation of Sun Enterprise (Veritas)
Volume Manager 2.5
26.3.1.2 Installation of Veritas FileSystem 3.X
26.3.1.3 Two Pseudo-Installation Scripts
26.3.1.4 Installation of Optional HP-UX Software
26.3.2 Patches
26.3.2.1 Solaris Patch Installation
26.3.2.2 HP-UX Patch Installation

Upgrade Disk Space

27.1

217.2

Adding a Disk

27.1.1 New Disk on the Solaris Platform
27.1.2 New Disk on the SunOS Platform
27.1.3 New disk on the HP-UX Platform
Logical Volume Manager Case Study
27.2.1 LVM on the HP-UX Platform
27.2.2 LVM on the Solaris Platform

UNIX Emergency Situations

28.1
28.2

Introductory Notes
Lost Root Password
28.2.1 Solaris and Lost Root Password
28.2.2 HP-UX and Lost Root Password

© 2002 by CRC Press LLC

28.3 Some Special Administrative Situations

28.3.1
28.3.2
28.3.3
28.3.4

28.3.5

Solaris Procedure to Create an Alternate Boot Partition
Solaris Recovery of the Failed Mirrored Boot Disk
HP-UX Support Disk Usage

HP-UX Procedure to Synchronize a Mirrored

Logical Volume

HP-UX Support Tape and Recovery of Root Disk

Recommended Reading

© 2002 by CRC Press LLC

1

UNIX — Introductory Notes

1.1 UNIX Operating System

UNIX is a popular time-sharing operating system originally intended for program devel-
opment and document preparation, but later widely accepted for a number of implemen-
tations. UNIX is today’s most ubiquitous multi-user operating system, with no indication
of any diminishment in the near future. Today, when a period of several years represents
the lifetime of many successful IT products, UNIX is still considered the most stable and
the most secure operating system on the market, three decades after its appearance. Of
course, during 30 years of existence UNIX has changed a great deal, adapting to new
requirements; it is hard to compare today’s modern UNIX flavors with initial (now obsolete)
UNIX versions. In fact, these changes and adaptations are unique to the UNIX operating
system; no other operating system has so successfully evolved, time and again, to meet
modern needs. The concept and basic design of UNIX deserve the credit for this remarkable
longevity, as they provide the necessary flexibility for the permanent changes required to
make UNIX suitable for many new applications.

UNIX, like any other operating system, is an integrated collection of programs that
act as links between the computer system and its users, providing three primary
functions:

1. Creating and managing a filesystem (sets of files stored in hierarchical-structured
directories)

2. Running programs

3. Using system devices attached to the computer

UNIX was written in the C computer language, with careful isolation and confinement
of machine-dependent routines, so that it might be easily ported to different computer
systems. As a result, versions of UNIX were available for personal computers, workstations,
minicomputers, mainframes, and supercomputers. It is somewhat curious to note that
portability was not a design objective during UNIX development; rather, it came as a
consequence of coding the system in a higher-level language. Upon realizing the import-
ance of portability, the designers of UNIX confined hardware-dependent code to a few
modules within the kernel (coded in assembler) in order to facilitate porting.

The kernel is the “core” of the UNIX operating system. It provides services such as a file-
system, memory management, CPU scheduling, and device I/O for programs. Typically,

© 2002 by CRC Press LLC

the kernel interacts directly with the underlying hardware; therefore, it must be adapted
to the unique machine architecture. However, there were some implementations of UNIX
in which the kernel interacted with another underlying system that in turn controlled the
hardware. The kernel keeps track of who is logged in, as well as the locations of all files;
it also accepts and enables instruction executions received from the shell as the output of
interpreted commands. The kernel provides a limited number (typically between 60 and
200) of direct entry points through which an active process can obtain services from the
kernel. These direct entry points are system calls (also known as UNIX internals). The actual
machine instructions required to invoke a system call, along with the method used to pass
arguments and results between the process and the kernel, vary from machine to machine.

The machine-dependent parts of the kernel were cleverly isolated from the main kernel
code and were relatively easy to construct once their purpose had been defined. The
machine-dependent parts of the kernel include:

¢ Low-level system initialization and bootstrap

¢ Fault, trap, interrupt, and exception handling

¢ Memory management: hardware address translation

¢ Low-level kernel/user mode process context switching

e I/0 device drivers and device initialization code

The rest of the UNIX kernel is extremely transportable and is largely made up of the
system call interface from which application programs request services.

An early implementation of the UNIX kernel consisted of some 10,000 lines of C code
and approximately 1000 lines of assembler code. These figures represent some 5 to 10%
of the total UNIX code. When the original assembler version was recoded in C, the size
and execution time of the kernel increased by some 30%. UNIX designers reasoned that
the benefits of coding the system in a higher-level language far outweighed the resulting
performance drawback. These benefits included portability, higher programmer productivity,
ease of maintenance, and the ability to use complex algorithms to provide more sophis-
ticated functions. Some of these algorithms could hardly have been contemplated if they
were to be coded in assembly language.

UNIX supports multiple users on suitable installations with efficient memory-management
and the appropriate communication interfaces. In addition to local users, log-in access and
file transfer between UNIX hosts are also granted to remote users in the network
environment.

Virtually all aspects of device independence were implemented in UNIX. Files and I/O
devices are treated in a uniform way, by means of the same set of applicable system calls.
As a result, I/O redirection and stream-level I/O are fully supported at both the
command-language and system-call levels.

The basic UNIX philosophy, to process and treat different requests and objects in a uniform
and relatively simple way, is probably the key to its long life. In a fast-changing environment
in which high-tech products become obsolete after a few years, UNIX is still in full
operational stage, three decades after its introduction. UNIX owes much of its longevity
to its integration of useful building blocks that are combinable according to current needs
and preferences for the creation of more complex tools. These basic UNIX blocks are
usually simple, and they are designed to accomplish a single function well. Numerous
UNIX utilities, called filters, can be combined in remarkably flexible ways by using the
facilities provided by I/O redirection and pipes. This simple, building-block approach is
obviously more convenient than the alternative of providing complex utilities that are
often difficult to customize, and that are frequently incompatible with other utilities.

© 2002 by CRC Press LLC

UNIX’s hierarchical filesystem helps facilitate the sharing and cooperation among users
that is so desirable in program-development environment. A UNIX filesystem (or filesystem,
as it has become known) spans volume boundaries, virtually eliminating the need for
volume awareness among its users. This is especially convenient in time-sharing systems
and in a network environment.

The major features of UNIX can be summarized as:

¢ Portability

* Multi-user operation

* Device independence

¢ Tools and tool-building utilities

* Hierarchical filesystem

1.2 User’s View of UNIX

UNIX users interact with the system through a command-language interpreter called the
shell. A shell is actually what the user sees of the system; the rest of the operating system
is essentially hidden from the user’s eyes. A UNIX shell (or shells, because there are different
command-interpreters) is also a programming language suitable for the construction of
versatile and powerful command files called shell scripts. The UNIX shell is written in
the same way as any user process, as opposed to being built into the kernel. When a user
logs into the system, a copy of the corresponding shell is invoked to handle interactions
with the related user. Although the shell is the standard system interface, it is possible to
invoke any user-specific process to serve in place of the shell for any specific user. This
allows application-specific interfaces to coexist with the shell, and thus provide quite
different views and working environments for users of the same system.

All programs invoked within the shell start out with three predefined files, specified by
corresponding file descriptors. By default the three files are:

1. Standard input — normally assigned to the terminal (console) keyboard
2. Standard output — normally assigned to the terminal (console) display

3. Error output — normally assigned to the terminal (console) display
The shell fully supports:

* Redirection — Since I/O devices and files are treated the same way in UNIX, the
shell treats the two notions as files. From the user’s viewpoint, it is easy to
redefine file descriptors for any program, and in that way replace attached
standard input and output files; this is known as redirection.

* Pipes — The standard output of one program can be used as standard input in
another program by means of pipes. Several programs can be connected via
pipes to form a pipeline. Redirection and piping are used to make UNIX utilities
called filters, which are used to perform complex compound functions.

¢ Concurrent execution of the user programs — Users may indicate their intention
to invoke several programs concurrently by placing their execution in the

© 2002 by CRC Press LLC

“background” (as opposed to the single “foreground” program that requires
full control of the display). This mode of operation allows users to perform
unrelated work while potentially lengthy operations are being performed in
the background on their behalf.

Since UNIX was primarily intended for program development, it offers several editors,
compilers, symbolic debuggers, and utilities. Other useful program development facilities
of UNIX include a general-purpose macro-processor, M4, that is language-independent,
and the MAKE program, which controls creation of other large programs. MAKE uses
a control file (or description file) called MAKEFILE, which specifies source file dependencies
among the constituent modules of a program. It identifies modules that are possibly out
of date (by checking the last program update), recompiles them, and links them into a new
executable program.

A much more elaborate system for large programming projects, called Source Code
Control System — SCCS, is also available under UNIX. Although SCCS was designed to
assist production of complex programs, it can also be used to manage any collection of
text files. SCCS basically functions as a well-managed library of major and minor revisions
of program modules. It keeps track of all changes, the identity of the programmers, and
other information. It provides utilities for rolling back to any previous version, displaying
complete or partial history of the changes made to a module, validation of modules, and
the like. A complex implementation of SCCS evolved into a simpler version named
Revision Control System — RCS, which is more suitable to manage text files. RCS provides
most of the SCCS functionality in a simpler and more user friendly way.

Users generally have restricted access to the UNIX filesystem; however, they are fully
authorized in their home directories, where they can create their own subdirectories and
files. This restricted-access approach is necessary to protect the system from intended and
unintended corruption, while still allowing users to have full control over their own
programs.

Filesystem protection in UNIX is accomplished by assigning ownership for each file and
directory that is created. At creation, the access modes for the three access classes (user-
owner, group-owner, and others) are also specified. Within each access class, three separate
permissions are specified: for reading, writing, and execution of the file. Since everything
in UNIX is a file (or is file-like), this simple protection scheme is widely implemented
throughout the whole operating system, making UNIX security and protection very efficient.

Finally, UNIX is extremely well suited for networking. One of the reasons for UNIX’s
enormous popularity and wide implementation lies in its inherent network-related
characteristics. UNIX facilitates most network functions in such a way that it can appear
the network has been designed expressly for the UNIX architecture. The truth is that UNIX
and modern networks have been developed independently, with UNIX preceding modern
network architecture by a decade. The reason UNIX handles networking so well is simple:
UNIX’s flexible internal organization and structure allow an almost perfect union between
the UNIX and network environments.

1.3 The History of UNIX

Ken Thompson (later joined by Dennis Ritchie) wrote the first version of UNIX at Bell Labs
in the late 1960s. Everything started with MULTICS (MULTiplexed Information and Com-
puting System), at that time the joint venture project between GE, AT&T Bell Laboratories,

© 2002 by CRC Press LLC

and MIT. The next phase was the project UNICS (UNiplex Information and Computing
System), which was created by some of the people from the MULTICS project (Ken Thompson,
Dennis Ritchie, and Rudd Canaday). UNICS was an assembly language, single-user system
for the DEC PDP-7, which at that time was the most popular minicomputer. Soon the system
had been enhanced to support two users. The name UNICS was later changed to UNIX.
After a major rewriting in C and porting to the DEC PDP-11 family of computers, UNIX
was made available to users outside of AT&T. At the time, AT&T was banned from selling
computing equipment by the U.S. antitrust law, and so was forced to release UNIX practic-
ally for free. Favorable licenses for educational institutions were instrumental in the adop-
tion of UNIX by many universities. Soon the mutual benefits for both the academic users
and UNIX itself became obvious. The leader was the University of Berkeley, which adopted
UNIX and tailored it significantly. UNIX also became commercially available from AT&T,
together with several other variants of the system provided by other vendors. Two versions
of UNIX emerged as the main UNIX platforms, with a number of “flavors” between them.

1.3.1 Berkeley Standard Distribution — BSD UNIX

BSD originated at the University of Berkeley in California and is also known as
Berkeley UNIX. Since the 1970’s more BSD-based UNIX releases have been derived
from version 4.3 BSD, which for a long time was a dominant version in the university
and engineering communities. At the same time, the even older version of 4.2 BSD
UNIX is still in use in some commercial implementations. The evolution of BSD is
illustrated in Figure 1.1.

Sunsoft (later Sun Microsystems) was most successful at bringing UNIX into the
commercial world with its SunOS, which was originally based on SVR4 UNIX, but with
many incorporated improvements of BSD. SunOS 4.1.x (mostly referred to only as SunOS)
is actually the best-known representative of the mostly BSD UNIX. The word “mostly”
indicates a number of SunOS features that did not originate in the Berkeley version of
UNIX. SunOS also introduced many new features (NIS, NFS, etc) that later became overall
standards in the UNIX community. In the 1990s, Sun Microsystems changed this very
successful UNIX version with the next generation version SunOS 5.x, better known as
Solaris. The new version presented a significant shift from BSD UNIX toward System V
UNIX. SunOS continues to exist thanks to many operating commercial installations. It
survived “Year 2000 syndrome” and still is supported by Sun Microsystems.

1.3.2 System V or ATT UNIX

System V was derived from an early version of System III developed at AT&T Bell Labs,
which is why it is also known as ATT UNIX. For a long time, the best-known versions
were Release 3 — SVR3.x and Release 4 — SVR4.x. SVR4 attempted to merge older UNIX
versions (SVR3 and 4.2 BSD) into a new more powerful UNIX system; the attempt was
not a complete success, although its overall contribution has been significant. Certain steps
in the development of System V UNIX during this period are illustrated in Figure 1.2.

Later on, many vendors accepted System V UNIX as a base for their own, vendor-specific
UNIX flavors, like: IRIX by Silicon Graphics Inc., HP-UX by Hewlett-Packard, AIX by
IBM, or Solaris 2.x by Sun Microsystems. However, it is not fair to classify all of these
vendor-specific UNIX flavors as the System V UNIX. Such a statement sounds quite biased.
Each vendor-specific flavor includes elements from both main UNIX platforms, so we can
talk about mostly BSD, or mostly ATT UNIX flavors. It is even better to talk about BSD
or ATT implementations in some segments of vendor-specific UNIX flavors.

© 2002 by CRC Press LLC

First Edition
(1969)

v

Fifth Edition
(1973)

Sixth Edition
(1976)

1BSD
(1977)

Seventh Edition 2BSD
(1978) (1978)

v

3BSD
(1978-1979)

4.0 BSD
(1979-1980)

4.1 BSD
(1980-1981)

4.1a BSD
(1981-1982)

4.1c BSD
(1982-1983)

4.2 BSD
(1984)

4.3 BSD
(1987)

4.3 BSD Tahoe
(1988-1989)

4.4 BSD

FIGURE 1.1
The development of BSD UNIX.

In the 1980s Richard Stallman started development of a C compiler for UNIX. He then
started the Free Software Foundation — FSF, also known as GNU (GNU stands for “Gnu
is Not Unix”). FSF just as it did when it started, manages many free pieces of UNIX-related
software, such as GNU C compiler (GCC) and emacs.

© 2002 by CRC Press LLC

System Ill (1982):
Named pipes
The run queue

v

System V (1983):
Hash tables
Buffer and inode caches
Semaphores
Shared memory
Message queues

v

System V Release 2 (1984):
Record and file locking
Demand paging
Copy on write

v

System V Release 3 (1987):
Inter Process Communication (IPC)
Remote File Sharing (RFS)
Enhanced signal operations
Shared libraries
File System Switch (FSS)
Transport Layer Interface (TLI)
STREAMS communication facility

v

System V Release 4 (1989):
Real time processing support
Process scheduling classes
Enhanced signal processing
Dynamically allocated data structures
Extended open file facilities
Virtual Memory management (VM)
Virtual File System capabilities (VFS)
Berkeley Fast File System (UFS)
Enhanced STREAMS
Preemptive kernel
File system quotas
Driver Kernel Interface facility (DKI)

FIGURE 1.2
The development of ATT UNIX.

UNIX development in the last decade has been characterized by many vendor-specific
UNIX flavors on the market. It is difficult to consider them as part of two main UNIX
platforms. Each vendor tried to take the best from each of the main UNIX platforms to
make a flavor better than the other vendors. In that light we can focus on, and talk about,
development within individual flavors. And each of these flavors does have a certain
impact on the overall trends in the UNIX development.

In its early days, UNIX was primarily run on high and mid-range computers,
minicomputers, and relatively powerful workstations (by that time’s standards). The
appearance of microcomputers presented a new challenge for UNIX. Microsoft wrote a
version of UNIX for microcomputer-based systems. Called XENIX, it was licensed to the
Santa Cruz Operation and was closest to System V UNIX. It was later renamed SCO UNIX;
later still it merged with Unixware. Other commercial versions also became available, like

© 2002 by CRC Press LLC

Unixware, and even Solaris for x86. However, the main contributor in this area of
microcomputer-based UNIX is Linux, a freeshare UNIX available to anyone who wants to
try to work in the UNIX arena. Sometimes UNIX for microcomputers is classified as the
third UNIX platform. We will treat different UNIX versions for minicomputers as different
UNIX flavors related to one of the two main UNIX platforms.

In 1993, Linus Travalds released his version of UNIX, called Linux. Linux was a complete
rewrite, originally for Intel 80386 architecture. Linux was quickly adopted and “ported”
to some other architectures (including Macintosh and PowerPC); currently there are ports
of LINUX for practically every single 32- and 64-bit machine available.

Today it is very difficult to differentiate between microcomputers and workstations;
the boundaries between them are indistinct. Tremendous IT development has made
very powerful IT resources available at low prices. This burst of activity had a very
positive impact on UNIX, too — the number of installed UNIX sites rose dramatically,
more people were involved in UNIX, and new application areas were conquered. The
best example of this IT booming is the Internet, which primarily relies on UNIX-based
servers. A thorough knowledge of UNIX has become a prerequisite for any real success
in IT.

Figure 1.3 presents the main stages of the UNIX genealogy, showing mutual impacts
among the different stages and within and out of the discussed UNIX platforms. For
a fuller picture, this figure should continue with the list of today’s available UNIX
flavors presented in Figure 1.4. (Note: Figure 1.4 is only a partial list of the many
UNIX flavors currently in use, and in no way indicates the extent of the individual
flavor’s usage.)

v

| Seventh Edition |

\

MP-based
UNIX
SVR2
Sun0OS '&— 43BSD 44— 4.2BSD SVR3

| i
Many UNIX

Flavors
| Solaris_| (se Fig. 14

FIGURE 1.3
UNIX genealogy.

© 2002 by CRC Press LLC

FIGURE 1.4
UNIX flavors.

UNIX Flavor

Hardware Platform

386BSD i386+

AIX RS6000, PowerPC
A/UX Macintosh

BSD different hardware
BSD/OS 1486+

BSD/386 i386+

BSDI x86

Convex0S Convex

Digital UNIX Alpha

DGUX Data General
DolphinOS i486

FreeBSD Pentium

HP-UX HP HPPA

IRIX SGl Indy; Mips-R8000
Linux Slackware i486+; Sparc

Linux RedHat i486+; Sparc; HP; IBM
Linux Suse i486+; Sparc

Linux Turbolinux i486+; Sparc

Linux Debian i486+

Linux 4.0 Alpha

Linux/Mach3 Macintosh; PowerPC
Linux/m68k Mac68k

Mach3 Mips

Mach3/Lites i386+

Machten/m68k Mac68k

NCR Unix NCR S40

NetBSD Pentium; Spark; Mac68k, Alpha
OpenBSD x86; Mac68k
NextSTEP Motorola

OSF/1 Alpha

Sequent i386+

SCO Unix i386+

SINIX Mips R4000

Solaris Sparc, i386+

Sony NEWS-0S Mac68k

SunOS Sparc, Sun3

SysV different hardware
Ultrix Mips

Unicos Cray C90

Unixware i386+

1.4 UNIX System and Network Administration

Organizations that rely on computing resources to carry out their mission have always
depended on systems administration and systems administrators. The dramatic increase
in the number and size of distributed networks of workstations in recent years has created
a tremendous demand for more, and better trained, systems administrators. Understanding

© 2002 by CRC Press LLC

of the profession of systems administration on the part of employers, however, has not
kept pace with the growth in the number of systems administrators or with the growth
in complexity of system administration tasks. Both at sites with a long history of using
computing resources and at sites into which computers have only recently been introduced,
system administrators sometimes face perception problems that present serious obstacles
to their successfully carrying out their duties.

Systems administration is a widely varied task. The best systems administrators are
generalists: they can wire and repair cables, install new software, repair bugs, train users,
offer tips for increased productivity across areas from word processing to CAD tools,
evaluate new hardware and software, automate a myriad of mundane tasks, and increase
work flow at their site. In general, systems administrators enable people to exploit computers
at a level that gains leverage for the entire organization.

Employers frequently fail to understand the background that systems administrators
bring to their task. Because systems administration draws on knowledge from many fields,
and because it has only recently begun to be taught at a few institutions of higher
education, systems administrators may come from a wide range of academic backgrounds.
Most get their skills through on-the-job training by apprenticing themselves to a more
experienced mentor. Although the system of informal education by apprenticeship has
been extremely effective in producing skilled systems administrators, it is poorly understood
by employers and hiring managers, who tend to focus on credentials to the exclusion of
other factors when making personnel decisions.

System administrators are the professionals that provide specific services in the system
software arena. These professionals are often known by their acronym SYSADMIN. A system
administrator performs various tasks while taking care of multiple, often heterogeneous,
computer systems in an attempt to keep them operational. When computer systems are
connected to the network, which is almost always the case today, the system administration
also includes network-related duties.

UNIX administrators are part of the larger family of the system administrators. Their
working platform is UNIX, and it caries many specific elements that make this job unique.
UNIX is a powerful and open operating system. As with any other software system, it
requires a certain level of customization (we prefer the term “configuration”) and
maintenance at each site where it is implemented. To configure and maintain an operating
system is a serious business; in the case of UNIX it can be a tough and sometimes
frustrating job. Why is UNIX so demanding? Here are some observations:

* A powerful system means there are many possibilities for setting the system
configuration.

* An open system results in permanent upgrades with direct impacts on admin-
istrative issues.

¢ UNIX is implemented at the most mission critical points, where a downtime is
not allowed.

* Networking presents a new challenge, but also a new area of potential problems.

* Different UNIX flavors bring additional system administration difficulties.

Networking in particular, with its many potential external failures, can affect a UNIX
system significantly. Periodical global network degradation (too high of a load, low
throughput, or even breaks in communication) can cause complex problems and bring a
lot of headaches. It is easy to be misguided in tracing a problem, and to be looking for
the source of troubles at the wrong place. Usually at such times everyone is looking to
the UNIX people for a quick solution. The only advice is: “Be ready for such situations.”

© 2002 by CRC Press LLC

As a matter of fact, system and network administration are relatively distinct duties,
and sometimes they are even treated separately. However, it is very common to look at
system and network administration as two halves of the same job, with the same individuals
or team responsible for both. It is fair to say that the term network administration is strictly
related to the computer system as part of the network, and remains within the network
service boundaries required for the computer functioning in the network environment. It
does not cover core network elements like switches, bridges, hubs, routers, and other
network-only devices. Nevertheless, the basic understanding of these topics also could
make overall administration easier.

So to get to the heart of the topic, let us start with a brief discussion of the administrator’s
role, duties, guidelines, policies, and other topics that make up the SYSADMIN business.
Most of the paragraphs that follow are not strictly UNIX related, although our focus
remains on UNIX systems and network administration.

1.4.1 System Administrator’s Job

Understanding system administrators” background, training, and the kind of job per-
formance to be expected is challenging; too often, employers fall back into (mis)using the
job classifications with which they are familiar. These job classification problems are
exacerbated by the scarcity of job descriptions for systems administrators. One frequently
used misclassification is that of programmer or software engineer. Production of code is
the primary responsibility of programmers, not of the systems administrator. Thus, sys-
tems administrators classified as programmers often receive poor evaluations for not being
“productive” enough. Another common misclassification is the confusion of systems
administrators with operators. Especially at smaller sites, where systems administrators
themselves have to perform many of the functions normally assigned to operators at larger
sites, system administrators are forced to contend with the false assumption they are
nonprofessional technicians. This, in turn, makes it very difficult for systems administra-
tors to be compensated commensurate with their skill and experience.

The following text lists the main elements that describe the system administrator’s job
at various levels. The basic intention is to describe the core attributes of systems admin-
istrators at various levels of job performance, and to address site-specific needs or special
areas of expertise that a systems administrator may have.

Generally, as for many other professions, system administrators are classified regarding
their background and experience into several categories:

e Novices

* Required background: 2 years of college or equivalent post-high-school educa-
tion or experience

* Desirable background: a degree or certificate in computer science or a related
field. Previous experience in customer support, computer operations, system
administration, or another related area; motivated to advance in the profession

* Duties: performs routine tasks under the direct supervision of a more experienced
system administrator; acts as a front-line interface to users, accepting trouble
reports and dispatching them to appropriate system administrators

* Junior
* Required background: 1 to 3 years system administration experience

* Desirable background: a degree in computer science or a related field, familiarity
with networked/distributed computing environment concepts (for example,

© 2002 by CRC Press LLC

can use the route command, add a workstation to a network, and mount
remote filesystems); ability to write scripts in some administrative language
(Tk, Perl, a shell); programming experience in any applicable language

* Duties: administers a small site alone or assists in the administration of a
larger system; works under the general supervision of a system administrator
or computer systems manager

o Intermediate/Advanced
* Required background: three to five years’ systems administration experience

¢ Desirable background: a degree in computer science or a related field; significant
programming background in any applicable language

* Duties: receives general instructions for new responsibilities from supervisor;
administers a midsized site alone or assists in the administration of a larger
site; initiates some new responsibilities and helps to plan for the future of the
site/network; manages novice system administrators or operators; evaluates
and/or recommends purchases; has strong influence on purchasing process

e Senior

* Required background: more than five years previous systems administration
experience

¢ Desirable background: a degree in computer science or a related field; extensive
programming background in any applicable language; publications within
the field of system administration

¢ Duties: designs/implements complex LAN and WANSs; manages a large site
or network; works under general direction from senior management;
establishes/recommends policies on system use and services; provides
technical lead and/or supervises system administrators, system programmers,
or others of equivalent seniority; has purchasing authority and responsibility
for purchase justification

This is a general job classification and description for potential UNIX administrators. It
can easily vary from one site to another, especially regarding official job titles. A number
of other skills could also be considered:

¢ Interpersonal and communication skills; ability to write proposals or papers, act
as a vendor liaison, make presentations to customer or client audiences or
professional peers, and work closely with upper management

* Ability to solve problems quickly and completely; ability to identify tasks that
require automation and automate them

¢ A solid understanding of a UNIX-based operating system, including paging and
swapping, inter-process communication, devices and what device drivers do,
filesystem concepts (inode, superblock), and use of performance analysis to tune
systems

* Experience with more than one UNIX-based operating system; with sites running
more than one UNIX-based operating system; with both System V and BSD-based
UNIX operating systems; with non-UNIX operating systems (for example, MS-DOS,
Macintosh OS, or VMS); and with internetworking UNIX and other operating
systems (MS-DOS, Macintosh OS, VMS)

* Programming experience in an administrative language (shell, Perl, Tk);
extensive programming experience in any applicable language

© 2002 by CRC Press LLC

¢ Networking skills — a solid understanding of networking /distributed computing
environment concepts, principles of routing, client/server programming, and
the design of consistent networkwide filesystem layouts; experience in
configuring network filesystems (for example, NFS, RFS, or AFS), in network
file synchronization schemes (for example, rdist and track), and in configuring
automounters, license managers, and NIS; experience with TCP/IP networking
protocols (ability to debug and program at the network level), with non-TCP/IP
networking protocols (for example, OSI, Chaosnet, DECnet, Appletalk, Novell
Netware, Banyan Vines), with high-speed networking (for example, FDDI, ATM,
or SONET), with complex TCP/IP networks (networks that contain routers), and
with highly complex TCP/IP networks (networks that contain multiple routers
and multiple media); experience configuring and maintaining routers and main-
taining a sitewide modem pool/terminal servers; experience with X terminals
and with dial-up networking (for example, SLIP, PPP, or UUCP); experience at
a site that is connected to the Internet, experience installing/configuring DNS/
BIND; experience installing/administering Usenet news, and experience as post-
master of a site with external connections

¢ Experience with network security (for example, building firewalls, deploying
authentication systems, or applying cryptography to network applications); with
classified computing; with multilevel classified environments; and with host
security (for example, passwords, uids/gids, file permissions, filesystem integ-
rity, use of security packages)

* Experience at sites with over 1000 computers, over 1000 users, or over a terabyte
of disk space; experience with supercomputers; experience coordinating multiple
independent computer facilities (for example, working for the central group at
a large company or university); experience with a site with 100% uptime require-
ment; experience developing/implementing a site disaster recovery plan; and
experience with a site requiring charge-back accounting

¢ Background in technical publications, documentation, or desktop publishing

¢ Experience using relational databases; using a database SQL language; and
programming in a database query language; previous experience as a database
administrator

¢ Experience with hardware: installing and maintaining the network cabling in
use at the site, installing boards and memory into systems; setting up and
installing SCSI devices; installing/configuring peripherals (for example, disks,
modems, printers, or data acquisition devices); and making board-level and
component-level diagnosis and repairing computer systems

* Budget responsibility, experience with writing personnel reviews and ranking
processes; and experience in interviewing/hiring

Do not be afraid of this long list of additional requirements. Nobody expects UNIX
systems and network administrators to be Supermen. UNIX administration is a normal
job that is demanding but definitely doable.

To end this discussion, here is a joke about UNIX administrators. Consider the similarities
between Santa Claus and UNIX administrators:

* Santa is bearded, corpulent, and dresses funny.

* When you ask Santa for something, the odds of receiving what you wanted are
infinitesimal.

© 2002 by CRC Press LLC

¢ Santa seldom answers your mail.

7

* When you ask Santa where he gets all the stuff he has, he says, “Elves make it for me.”
¢ Santa does not care about your deadlines.

* Your parents ascribed supernatural powers to Santa, but did all the work themselves.
* Nobody knows who Santa has to answer to for his actions.

¢ Santa laughs entirely too much.

¢ Santa thinks nothing of breaking into your HOME.

* Only a lunatic says bad things about Santa in his presence.

1.4.2 Computing Policies

A successful system administration requires a well-defined framework. This framework
is described by the corresponding computing policies within the organization where the
administration is provided. There are no general computing policies; they are always site
specific. Drafting computing policies, however, is often a difficult task, fraught with legal,
political, and ethical questions and possibly consequences. There are a number of related
issues: why a site needs computing policies; what a policy document should contain, who
should draft it, and to whom it should apply. There is no a unique list of all possible rules.
Each computing site is different and needs its own set of policies to suit specific needs.
The goal of this section is to point out the main computing policies that directly influence
the system administration. This is not possible without addressing security and overall
business policies as they relate to computing facilities and their use.

Good computing policies include comprehensive coverage of computer security.
However, the full scope of security, overall business, and other policies goes well beyond
computer use and sometimes may be better addressed in separate documents. For example,
a comprehensive security document should address employee identification systems,
guards, building structure, and other such topics that have no association with computing.
Computing security is a subset of overall security as well as a subset of overall computing
policy. If there are separate policy documents, they should refer to each other as
appropriate and should not contain excessive redundancy. Redundancy leaves room for
later inconsistencies and increases the work of document maintenance.

The system administrator policy usually is not completely separated from the user
policy. In practice there are few if any user policies from which a system administrator
needs to be exempt. System administrators are users and should be held accountable to
te same user policy as everyone else in the use of their personal computer accounts. System
administrators (and any other users with “extended” system access) have additional usage
responsibilities and limitations regarding that extended access, i.e., extra powers via
groups or root. The additional policies should address the extended access. Further, know-
ledge of policies governing how staff members perform their duties (e.g. how frequently
backups are done) is essential to the users. All the information on the operation of the
computing facility should be documented and available to both the end users and the
support staff to prevent confusion and redundancy as well as enhance communication.
The policy documents should be considered as a single guide for the users and the support
staff alike. We intentionally used the words “computing policies” in the plural; it is hard
to talk about a unique overall policy that could cover everything needed.

System administration is a technical job. System administrators are supposed to accom-
plish certain tasks, to implement technical skills to enforce certain decisions based
on certain rules. In other words, the system administrator should follow a specific

© 2002 by CRC Press LLC

administrative procedure to accomplish the needed task. A system administrator is not
supposed to make nontechnical decisions, nor dictate the underlying rules. It is important
to have feasible procedures, and in that sense, the administrator’s opinion could be
significant. But the underlying rules must be primarily based on existing business-driven
computing policies.

At the end of the day, we reach the point of asking: “Will a SYSADMIN really have
strictly defined procedures in the daily work that will make the administration job easier;
especially, would these procedures be in written form?” The most probable answer regarding
procedures will be negative. There are usually multiple ways to accomplish a certain
administrative task because system configurations are changing (just think about different
UNIX flavors, or new releases, or network changes). However this is not the case with
computing policies; they are usually general enough to last a longer time.

We already mentioned that the computing policies are business related. They are dif-
ferent in academia than in industry; they are different in the financial industry than in the
retail industry, or in the Internet business. They are, at least for a moment, always internal
and stay in the boundaries of a college, university, or company. So they can differ by
moving from one place to another. Still there are many common elements and we will try
to address them.

Security policy — Definitely the most important policy, a good security policy is the
best guarantee for uninterrupted business. Clear guidance in that direction is extremely
important. Requests for Comments (RFCs) that present standards for new technologies
also addressed this important issue. The RFC-2196 named “Site Security Handbook,”
a 75-page document written in 1997 by IETF (Internet Engineering Task Force), suggests
the need for internal security documents as guidelines for:

* Purchasing of hardware and software

® Privacy protection

® Access to the systems

* Accountability and responsibility of all participants
¢ Authentication rules

¢ Availability of systems

* Maintenance strategy (internal vs. outsourcing)

Policy toward users — Users are main players in the ongoing business, but they must
obey certain rules, and they do not have to have unrestricted access to all available
resources. It is crucial to define the following user rights and responsibilities:

¢ Who is an eligible user

¢ Password policy and its enforcement

¢ Mutual relationship among users

¢ Copyright and license implementation
* Downloading of software from Internet
* Misusing e-mail

¢ Disrupting services

* Other illegal activities

© 2002 by CRC Press LLC

Policy toward privileged users — The primary audience for this policy is SYSADMIN
and other privileged users. These users have unrestricted access to all system resources
and practically unlimited power over the systems. The policy addresses:

Password policy and its enforcement
Protection of user privacy

License implementation

Copyright implementation

Loyalty and obedience

Telecommuting

Monitoring of system activities

Highest security precaution and checkup

Business-time and off-business-time work

Emergency and disaster policies — Good policies mean prevention and faster recoveries
from disaster situations. They are essential to maintain system availability and justify spending
an appropriate amount of time to protect against future disastrous scenarios. Data are priceless,
and their loss could be fatal for overall business. Emergency and disaster policies include:

Monitoring strategies

Work in shifts

Tools

Planning

Distribution of information (pager, beepers, phones)

Personnel

Backup and recovery policy — This is a must for each system — in the middle of
disastrous situations, there is no bargaining regarding the need for backup. However, the
level and frequency of implemented backup vary and are business related. Generally the
policy should address the following issues:

Backup procedures
Backup planning
Backup organization
Storage of backup tapes
Retention periods
Archiving

Tools

Recovery procedures

Development policy — This policy should address the need for permanent development
and upgrading of the production systems. Today continual development of the IT infra-
structure is essential for overall business growth; however, the development should not
endanger basic production. In that light, the focus should be on:

Development team

Planning

© 2002 by CRC Press LLC

¢ Support

¢ Testing

¢ Staging

¢ Cutting new releases
¢ Fallback

System administration will be easier if more computing policies are covered and
elaborated internally and if more of the corresponding procedures are specified. It sounds
strange, but less freedom in doing something usually makes the job easier. Unfortunately
(or maybe fortunately) this is mostly the case only for large communities with strong IT
departments that have been running for years. The majority of medium-size and small
companies do not have, or have only rudimentary, specified procedure. The system admin-
istrator often does have freedom in enforcing listed policies. This freedom in action
increases the administrator’s responsibility, but also enhances the creativity in the work
(that is why we used the word “fortunately” earlier).

1.4.3 Administration Guidelines

This section provides some additional system administration-related information.

1.4.3.1 Legal Acts

Computer network and UNIX are quite young, but they have significantly affected all
spheres of human life. Today the Internet is strongly pushing ahead to replace, or at least
to alter, many traditional pieces of economic infrastructures: the telecommunication industry,
the entertainment industry, the publishing industry, the financial industry, postal services,
and others. All kinds of middleman services, such as travel agencies, job agencies, book
sellers, and music retainers, are also dramatically changing. Business-to-business (B2B)
links are growing, providing an efficient mechanism to merge customers and merchants
and make our online shopping easier. The full list of all affected businesses would be very,
very long.

Such a huge area of human activities also opened up possibilities for misuse, fraud,
theft, and other kinds of crimes. While the technological and financial capabilities have
fully supported booming information technologies, legal infrastructure seems to stay far
below our real needs. In many cases even when the perpetrator is caught, actual conviction
is very difficult under the current laws. Recent cases involving very destructive viruses
that cost businesses millions of dollars stayed in limbo even though the perpetrators were
known. The case against “Napster Music Community,” relating to music copyrights, was
closed after a long time and was only partially successful.

At this moment we have only a few legal acts in this area, covering only several
computer-crime-related topics, and sometimes those not even effectively. Definitely they
do not constitute a sufficient legal framework, and further improvements and expansions
are necessary.

The existing legal acts are:

* The Federal Communication Privacy Act
¢ The Computer Fraud and Abuse Act

e The No Electronic Theft Act

¢ The Digital Millenium Copyright Act

© 2002 by CRC Press LLC

A pending problem in the implementation of the listed legal acts, as well as others that
will presumably come in the future, lies in the fact that even if the corresponding laws
exist in the United States, they do not exist in many other countries. Because of the global
nature of the Internet and its presence in countries worldwide, it is very difficult to enforce
any court decision.

1.4.3.2 Code of Ethics

The lack of general legal guidance, and often the lack of clear internal administration rules
and procedures, presents new challenges in the system administrator’s job. More freedom
in doing the job also means more chances for wrongdoing. Under such circumstances, an
extremely responsible attitude of the administrators toward all these challenges is very
important. System administrators, regardless of their title and whether or not they are
members of a professional organization, are relied upon to ensure proper operation,
support, and protection of the computing assets (hardware, software, networking, etc.).
Unlike problems with most earlier technologies, any problem with computer assets may
negatively impact millions of users worldwide — thus such protection is more crucial
than equivalent roles within other technologies. The ever-increasing reliance upon
computers in all parts of society has led to system administrators having access to more
information, particularly information of critical importance to the users, thus increasing
the impact that any wrongdoing may have. It is important that all computer users and
administrators understand the norms and principles to be applied to the task. At the end
of the day, we come to the informal set of behavioral codes known as the code of ethics
that each administrator should be aware of. A code of ethics supplies these norms and
principles as canons of general concepts. Such a code must be applied by individuals,
guided by their professional judgment, within the confines of the environment and situation
in which they may be. The code sets forth commitments, responsibilities, and requirements
of members of the system administration profession within the computing community.
The basic purposes of such a code of ethics are:

¢ To provide a set of codified guidelines for ethical directions that system admin-
istrators must pursue

* To act as a reference for construction of local site acceptable-use policies
¢ To enhance professionalism by promoting ethical behavior

¢ To act as an “industry standard” reference of behavior in difficult situations, as
well as in common ones

¢ To establish a baseline for addressing more complex issues

This code is not a set of enforceable laws, or procedures, or proposed responses to
possible administrative situations. It is also not related to sanctions or punishments as
consequences of any wrongdoing. A partial overview of one proposal for the code of ethics
follows:

Code 1: The integrity of a system administrator must be beyond reproach — System
administrators must uphold the law and policies as established for the systems
and networks they manage, and make all efforts to require the same adherence
from the users. Where the law is not clear, or appears to be in conflict with their
ethical standards, system administrators must exercise sound judgment and are
also obliged to take steps to have the law upgraded or corrected as is possible
within their jurisdiction.

© 2002 by CRC Press LLC

Code 2: A system administrator shall not unnecessarily infringe upon the rights of
users — System administrators will not exercise their special powers to access
any private information other than when necessary to their role as system
managers, and then only to the degree necessary to perform that role, while
remaining within established site policies. Regardless of how it was obtained,
system administrators will maintain the confidentiality of all private information.

Code 3: Communications of system administrators with all whom they may come in
contact shall be kept to the highest standards of professional behavior — System
administrators must keep users informed about computing matters that might
affect them, such as conditions of acceptable use, sharing and availability of
common resources, maintenance of security, occurrence of system monitoring,
and any applicable legal obligations. It is incumbent upon the system adminis-
trator to ensure that such information is presented in a manner calculated to
ensure user awareness and understanding.

Code 4: The continuance of professional education is critical to maintaining currency
as a system administrator — Since technology in computing continues to make
significant strides, a system administrator must take an appropriate level of
action to update and enhance personal technical knowledge. Reading, study,
acquiring training, and sharing knowledge and experience are requirements to
maintaining currency and ensuring the customer base of the advantages and
security of advances in the field.

Code 5: A system administrator must maintain an exemplary work ethic — System
administrators must be tireless in their effort to maintain high levels of quality
in their work. Day to day operation in the field of system administration requires
significant energy and resiliency. The system administrator is placed in a position
of such significant impact upon the business of the organization that the required
level of trust can only be maintained by exemplary behavior.

Code 6: At all times system administrators must display professionalism in the
performance of their duties — All manner of behavior must reflect highly upon
the profession as a whole. Dealing with recalcitrant users, upper management,
vendors, or other system administrators calls for the utmost patience and care
to ensure that mutual respect is never at risk.

1.4.3.3 Organizations

There are several UNIX and system administration related organizations, support groups,
and conferences. Following are just a few words about the best known ones.

1.4.3.3.1 USENIX

USENIX is the advanced computing systems association. This was originally a nonprofit
membership organization for those individuals with an interest in UNIX, UNIX-related,
and other modern operating systems. Since 1975 the USENIX association has brought
together the community of engineers, system engineers, system administers, scientists,
and technicians. All of these people have been working on the cutting edge of the com-
puting world. The USENIX conferences have become the meeting grounds for presenting
and discussing new and advanced information on developments from the computing
systems. USENIX is dedicated to sharing ideas and experiences of those working with
UNIX and other advanced computing systems. USENIX members are dedicated to solving
problems with a practical bias, fostering research that works, communicating with both
research and innovation, and providing critical thought.

© 2002 by CRC Press LLC

USENIX supports its members’ professional and technical development through a variety
of ongoing activities, including;:

e Member benefits

* Annual technical and system administration conferences, as well as informal,
specific-topic conferences

¢ A highly regarded tutorial program

* Student programs that include stipends to attend conferences, low student
membership fees, best paper awards, scholarships, and research grants

¢ Online library with proceedings from each USENIX conference

* Participation in various IEEE and Open Group standards efforts

* International programs

* Cosponsorship of conferences by foreign technical groups

¢ Prestigious annual awards which recognize public service and technical excellence
* Membership in the Computing Research Association and the Open Group

* SAGE, a Special Technical Group (STG) for system administrators

1.4.3.3.2 System Administrators Guild — SAGE

At the moment the System Administrators” Guild, known by its acronym SAGE, is a
Special Technical Group (STG) of the USENIX Association. It is organized to help advance
computer systems administration as a profession, establish standards of professional excel-
lence and recognize those who attain them, develop guidelines for improving technical
capabilities, and promote activities that advance the state of the art of the community.
SAGE members are also members of USENIX.

Since its inception in 1992, SAGE has grown immensely and has matured into a stable
community of system administration professionals. Organization management has been
codified and stabilized. As an USENIX STG, reviews by USENIX are scheduled periodically,
principally for assessing continued viability. SAGE'’s viability has not been an issue for some
time — quite the opposite, the growth of SAGE has exceeded reasonable expectations and
those of USENIX as a whole. At this point in SAGE’s development, it is prudent for both
SAGE and USENIX to review organizational structures, their relationships, and future
developments. To that end, the SAGE executive committee reviewed the existing mission
statement, its relevance for the present and the future, and the future interests and projects
as they relate to that mission. While the existing SAGE Charter and Mission Statement
are still relevant, the following text was adopted as a working draft that better expresses
its current nature and future:

The System Administrators Guild is an international professional organization for people involved
in the practice, study, and teaching of computer and network system administration. Its principal
roles are:

¢ To always understand and satisfy the needs of system administrators so as to provide them with
products and services that will help them be better system administrators

¢ Toempower system administrators through information, education, relationships, and resources that
will enrich their professional development and careers

¢ To advance the thought, application, and ethical practice of system administration

© 2002 by CRC Press LLC

As SAGE grows, the majority of its members will be professionals who are not currently involved
with SAGE. This will come as a result of the growing awareness of SAGE, different certification
programs, and other future projects.

The SAGE executive committee, the USENIX board of directors, and USENIX staffs have
discussed how to meet the growing needs of SAGE. At this time, there are ideas that these needs
may be better met by changing SAGE from a USENIX internal STG to a sister organization
established as an independent nonprofit entity. If this process continues as expected, this tran-
sition could be implemented soon. The SAGE executive committee to be elected will become the
initial board of directors of SAGE. The precise legal structure and implementation details are yet
to be determined.

In this plan, SAGE will continue to serve its members with the benefits with which they have
become accustomed. SAGE member services and information will move to a more electronic
community model. SAGE will publish its own newsletter while SAGE news will continue to be
available as before. LISA will continue to be cosponsored by USENIX and SAGE. SAGE will also
sponsor new conferences and programs to reach out to the broader system and network adminis-
tration community. All the assets of USENIX used exclusively by SAGE will be transferred to the
independent SAGE organization, including intellectual property, inventory, and current operating
funds. SAGE will then operate independently from USENIX. The LISA conference will continue
without change, being operated by USENIX and cosponsored by SAGE. The responsibility for all
current and pending SAGE projects will also be transferred. Membership in USENIX and SAGE
will be decoupled such that a person can become a member of SAGE without having to become
a USENIX member. However, SAGE and USENIX will continue to provide close cooperation and
mutual benefits to their members.

1.4.3.3.3 Conferences

One of the ongoing activities of USENIX and SAGE is to organize UNIX and UNIX
administration-related annual and ad hoc conferences. The big events for system administra-
tors include the general conference LISA, which is organized every year during the fall or
the winter. For example, LISA ‘02 is scheduled for November 2002 in Philadelphia, PA.
LISA stands for Large Installation System Administration.

LISA is more than just an exchange of technical topics. This is also the place where many
system administration issues are generated, including essential ones for the sysadmin
community. For example, the initial idea for an independent SAGE was born and presents
the state of the discussions as of LISA 2000.

1.4.3.4 Standardization

There are no explicit standards regarding UNIX administration. There are no standards
regarding system administration generally. Anyhow, administrators are obliged to follow
a strict set of rules to make the system function properly. These rules were, and are,
determined by the OS designers. Although they are not official standards, they have an
even stronger impact on the system administration; otherwise a system will not work at
all. The problem is, at least in case of the UNIX administration, different administrative
rules exist for different UNIX flavors. It makes our lives more difficult, and any standard-
ization in that way will be well received by the administrators.

In the UNIX and network arena there are significant efforts toward standardization.
There are several standards bodies, both formal and informal. Each body has different
rules for membership, voting, and clout. From a system administration standpoint,
two significant bodies are: IETF (Internet engineering task force) and POSIX (portable
operating system interfaces). Especially POSIX has contributed a lot in the area of UNIX

© 2002 by CRC Press LLC

standardization, making also a corresponding ground for its uniform and more standard-
ized administration.

1.4.3.4.1 POSIX

The POSIX standardization effort used to run by the POSIX standards committee. During
a major overhaul of the names and numbers used to refer to this project, the IEEE Portable
Application Standards Committee (PASC) came into being. So currently the POSIX stand-
ards are written and maintained by PASC.

POSIX is the term for a suite of applications program interface standards to provide for
the portability of source code applications where operating systems services are required.
POSIX is based on the UNIX operating system (UNIX is registered trademark adminis-
trated by the Open Group), and is the basis for the Single UNIX Specification (SUS) from
the Open Group. Although it is essentially based on UNIX (and the kernels services), it
covers much more than just UNIX (Windows NT can be made to be POSIX compliant).

POSIX is intended to be one part of the suite of standards (a “profile”) that a user
might require of a complete and coherent open system. This concept is developed in
IEEE Std. 1003.0-1994: Guide to the POSIX Open System Environment. The joint revision
to POSIX and the Single UNIX Specification, involving the IEEE PASC committee, ISO
Working Group WG15, and the Open Group (informally known as the Austin Group),
is underway. More information, including draft specifications, can be found at the Austin
Group Web site.

The PASC continues to develop the POSIX standards. In accordance with a synchron-
ization plan adopted by the IEEE and ISO/IEC JTC1, many of the POSIX standards become
international standards shortly after their adoption by the IEEE. Therefore, these standards
are available in printed form from both IEEE and ISO, as well as from many national
standards organizations. Approved standards can also be purchased from the IEEE in
electronic (PDF) format. The IEEE also publishes Standards Interpretations for many of
the standards (more details are available at IEEE Web site).

Cooperation among IEEE, the Open Group (X/Open), and ISO is now underway for
the common UNIX/POSIX standard. Everybody can participate in the process (see the
Austin Group Web site). A revision of the whole suite of UNIX and POSIX standards is
going on. The plan is to make just one document, based on the UNIX 98 Single UNIX
Specification, and the same document will serve as the standard in all three of the
participating organizations. It is not clear, though, whether the name on the standard will
be UNIX or POSIX.

POSIX System Interface standards cover those functions that are needed for applications
software portability in general purpose, real time, and other applications environments.
Many of the extensions and options within the POSIX system interface standards reflect
the ongoing focus on more demanding applications domains such as embedded real time,
etc. Interfaces that require administration privileges, or that create security risks are not
included. The POSIX work consists of:

* System interface specifications for C, ADA, and FORTRAN
¢ Shell and utility specification

* System administration specifications for software installation, user administra-
tion, and print management

* Test methods: general methods, for system interfaces, and for shell and utilities

¢ Profiles documents: guide to POSIX-based profiles (concepts); supercomputing
application environment, real-time application environment, multiprocessing
environment, and general purpose or “traditional” environment

© 2002 by CRC Press LLC

The POSIX shell and utility standards define tools that are available for invocation by
applications software, or by a user from a keyboard. The system administration interfaces
are targeted at areas where consistency of interfaces between systems is important to
simplify operations for both users and systems operators. The POSIX test methods describe
how to define test methods for interfaces such as those in the POSIX suite of standards.
The explicit test methods for the system interface and shell and utilities standards apply
the approach defined in the overview to these specific documents.

1.4.4 In This Book

This text covers related issues for both system administration and network administration
on a UNIX platform. This is a challenging (but doable) task, given the many different
UNIX platforms and flavors. To make the terminology simpler, we will use the term UNIX
Administration to address both UNIX systems and network administration; the
administration personnel we will call UNIX administrators. This will not make UNIX
administration easier, nor it will simplify our task; however, it could help to clarify some
of the topics under discussion.
UNIX systems administration related issues are:

* System startup and shutdown

¢ User and group accounts management
* System resources management

¢ Filesystems

¢ System quotas

¢ System security

¢ Backup and restoration of the system
* Automating routine tasks

¢ Printing and spooling system

¢ Terminals and modem handling

¢ Accounting

* System performance tuning

¢ System customization — kernel reconfiguration
UNIX network administration related issues are:

¢ Network interface and connectivity

¢ Data routing

¢ Data multiplexing

* Network security

¢ Domain name service

* Network information service — NIS

* Network filesystem — NFS

* UNIX remote commands

* Network applications (telnet, FIP, etc)
¢ Remote printing

© 2002 by CRC Press LLC

e FElectronic mail
e UUCP

¢ X windowing

Despite many promises, wishes, advertisements, and attempts to standardize UNIX, the
differences among existing UNIX favors are not negligible. The differences exist in UNIX
implementations, but the main differences are seen in the UNIX administration. This text
attempts to cover most of the UNIX administrative topics on both the BSD and System V
(ATT) UNIX platforms. This is primarily achieved through brief theoretical explanations
of certain topics, and the selective presentation of related examples from the different
UNIX flavors. Assuming the basic knowledge of UNIX and shell programming, the pre-
sented material should be sufficient per se for a successful UNIX and network adminis-
tration. To clarify certain operational details, UNIX online documentation (manual pages
available on every UNIX platform) is also supposed.

© 2002 by CRC Press LLC

2

The UNIX Model — Selected Topics

2.1 Introduction

UNIX administration presents a complex job that requires certain skills to be accomplished
successfully. These skills range from a basic knowledge of computer hardware, operating
systems, and programming techniques, up to ethics, psychology, and social behavior. It
supposes a responsible approach to very challenging problems, and a readiness for a nonstop
follow-up of everything done. An administrator usually covers many different systems
(different hardware, different configurations, different software, different purposes), and
each of those systems is the “baby” that requires a certain amount of attention, and the
administrator must pay that attention.

Of course the level of the required skills varies; it would be wrong to expect that an
UNIX administrator (especially a successful one) has to graduate in each of the listed
fields to be able to respond to all administrative demands. However, it is true that some
of the required skills need more than just a basic knowledge; mostly these are strictly
UNIX-related skills. Nobody can fight with UNIX administrative challenges without being
familiar with the UNIX operating system, the UNIX commands and how to use them. An
even deeper expertise in UNIX internals could be very instrumental in an easier UNIX
administration. Script programming is another fighting arena. An average UNIX admin-
istration time consists of 75 to 80% of shell programming, and only the rest is a manual
administration from the keyboard.

Some selected UNIX topics are briefly discussed in this chapter to point out the most
important issues for a successful UNIX administration. A certain level of knowledge of
the discussed topics is still supposed — this chapter is simply trying to highlight the
needed background for a comprehensive UNIX administration. The chapter should refresh
the reader’s memory and push ahead to consider all holes in the reader’s knowledge and
understanding of discussed issues. Another purpose is to present in one place most of the
relevant UNIX fundamentals needed for better understanding of different administrative
tasks. The reader is also advised to look into other literature for more detailed descriptions,
if necessary. The terminology used is common in the UNIX community.

To help readers better understand the material, a number of examples and figures
illustrate the discussed UNIX topics.

© 2002 by CRC Press LLC

2.2 Files

In UNIX everything is a file, or rather, file-like — this makes file issues central to UNIX.
What does this really mean? A file is a collection of data, or, better, a sequence of bytes, stored
in a memory or on a disk. A file can be a program that can be executed. When such a program
is running, it creates a process. Therefore, a file lies in the origin of every process. On
UNIX each device is also described by a file — these are called special device files, but are
still file-like entities. Even users on UNIX are file related, as they have associated attributes
(such as what they are allowed access to) that are specified in a file-like way.

UNIX has a hierarchical tree-structured directory organization known collectively as the
filesystem (or filesystem). The base of this tree is the root directory with the special name
“I"” (the slash character). In UNIX all user-available disk space is integrated into a single
directory tree under /, so the physical disk unit (the disk drive itself) where a file resides
is not a part of the UNIX file specification.

We already mentioned that a file is a sequence of bytes. Such a sequence could be a newly
created user’s program, written text, acquired data, or a program that is a part of the operating
system itself. Many files are understandable by users, but a number of files (mostly binary
executable files) are machine-interpretable only. All files, no matter what their purpose, must
be stored somewhere and uniquely identified within the system. A disk is the most common
medium to store files, and files are identified by inodes within accessible disk space. The kernel
handles information about inodes and maintains and updates the corresponding inode table
(the inode table is laid out when a filesystem is created and its size and location do not change).
We will discuss those issues in more detail later.

UNIX file access is restricted and determined by file ownership and the protection
settings on the file itself. A user and a group own each file; correspondingly, the file’s
access rights for the user and group owners, as well as for others, (those who do not
belong to the owners) are explicitly specified.

2.2.1 File Ownership

Files have two owners: user and group, which are decoupled and nondependent. The file’s
user-owner could actually be outside of the group that owns the very same file. Such
flexibility enables full UNIX scalability to exclude certain members of the user-owner’s
group and treat them as others.

Information about a file’s ownership and permissions is kept in the file’s index node,
better known by its short name inode. UNIX does not allow direct managing of index
nodes; indirect management is provided through a certain number of commands that
handle specific segments of the index nodes. A brief overview of the most common of
these commands follows.

The long form of the 1Is command is used to display the ownership of a file or a directory,
with a slightly different meaning of options for System V and BSD UNIX:

#1s-1 System V
#1s-1g BSD

The system response looks like:

drwx------ 2 bjl mail 24 Mar2413:19 Mail
-rw-rw-rw- 1 bjl users 20 May 213:26 modefilel

© 2002 by CRC Press LLC

-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile2
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile3

The file ownerships are presented in the third column (for a user-owner), and fourth
column (for a group-owner). In this example, all files (modefiles 1, 2, and 3) are owned by
the user bjl and the group users.

Ownership of a newly created file is determined in the following way:

¢ The user-owner is the user who has created the file
e The group-owner is:

* Same as the group-owner for the directory where the new file was created
(for BSD)

¢ Same as the group to which the user who created the file belongs (for System V)
Please note that this rule only applies to newly created files; once a file is created, its
ownership can be arbitrarily modified.
The chown command is used to change the user ownership of a file or a directory:

chown newowner filename(s)

where:
newowner A user name, or user-ID (UID)
filename A file name in the current directory, or a full-path file name (if multiple files
are specified, they are separated by a space)

Directories are treated in the same way as files; to change the user ownership of a directory
itself, type the command:

chown newowner directoryname(s)
where:
newowner A user name, or user-ID (UID)
directoryname A subdirectory name in the current directory, or a full-path directory

name (if multiple directories are specified, they are separated by a space).

However, to change the user ownership of a directory and all subdirectories and files
within it, the chown command should be used recursively (the option -R):

chown -R newowner directoryname(s)
(The command arguments are the same as those in the previous example.)
Who is authorized to change the user ownership?

user-owner of the file, or root (System V)
root only (BSD)

Please note that on the System V platform, if the original user-owner transfers user-

ownership to another user, it can only be transferred back to the original user-owner by
the new user who now owns the file, or by root. Also, such a change of ownership is

© 2002 by CRC Press LLC

restricted: some access rights cannot be transferred to the new user (we will discuss this
issue in more details later).

Generally, each recursive command must be accomplished extremely carefully; the
started command does not stay within the specified directory; it is propagated toward
all existing subdirectories, files in these subdirectories, subsequent subdirectories, and
so on, until the very end of the directory hierarchy (could be very, very deep). If
implemented in the root directory, each recursive command affects every single file in
the system.

Try to remember an unpleasant event when an administrator wanted to change
recursively the owner for a certain directory (of course the administrator did that as
the superuser). The administrator typed in the command and started to specify the
full pathname of the directory; unfortunately the administrator hit unintentionally the
[Enter] key too early, just after the leading “/” (slash character) of the directory path
was typed. The disastrous command: chown -R newuser /| was issued, causing recur-
sive changes of many system files, and soon a collapse of the system. The only solution
was to reinstall and restore the system from a backup (if such a backup is available
at all).

The chgrp command is used to change the group ownership of a file or a directory:

chgrp newgroup filename(s)/directoryname(s)

where:
newgroup A group name, or a group-ID (GID)
filename A file name in the current directory, or a full-path file name

directoryname A subdirectory name in the current directory, or a full-path directory
name (multiple names are separated by a space)

To change the group ownership of a directory, and all subdirectories and files within it,
the chgrp command should be used recursively (the option -R):

chgrp -R newgroup directoryname(s)
Who is authorized to change the group ownership?
user-owner of the file, or root

Originally, the BSD UNIX allowed simultaneous changes of the file’s user and group
ownership, using the same chown command in the following way:

chown newowner.newgroup filename(s)

chown -R newownernewgroup directoryname

where:
newowner A user name, or an UID
newgroup A group name, or a GID
filename A file name in the current directory or a full-path file name
directoryname A subdirectory name in the current directory, or a full-path directory

name

© 2002 by CRC Press LLC

Today, most modern UNIX flavors (whether BSD- or System V-derived) accept this
useful idea and allow the same simultaneous change, with slightly different syntax:

chown newowner:newgroup filename(s)
chown -R newowner:newgroup directoryname

Instead of a dot (.) that was originally used as a separator between the new user and
group name, now the colon (:) is introduced.

For a better understanding, a few examples follow:
Let’s start with a long listing of a directory (the logged-in user is bjl):

$1s -1

drwx------ 2 bjl mail 24 Mar 24 13:19 Mail
-rw-rw-rw- 1 bjl users 20 May 2 13:26 modefilel
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile2
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 2106 May 2 13:31 sesl.tmp

The user can change the user and group owners for certain files:

$ chown dubey modefilel
$ chgrp other modefile2

$1s -1

drwx------ 2 bjl mail 24 Mar 24 13:19 Mail
-rw-rw-rw- 1 dubey users 20 May 2 13:26 modefilel
-rw-rw-rw- 1 byl other 20 May 2 13:30 modefile2
-rw-rw-rw- 1 byl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 2106 May 2 13:31 sesl.tmp

And then regains the group ownership of the changed file modefile2:
$ chgrp users modefile2

Regaining user ownership of the changed file modefilel is not as simple; the logged-in user
bjl doesn’t own this file anymore, and only the new owner or the superuser can reassign
user ownership to bjl. Supposing that switching to root is possible (in most cases it is not
possible, only administrators know the root password that is always required to become
the superuser):

$ su
Password. 3 3 3 3% o

chown bjl modefilel

#1s -1

total 8

drwx------ 2 bjl mail 24 Mar 24 13:19 Mail
-rw-rw-rw- 1 bjl users 20 May 2 13:26 modefilel
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile2
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 2106 May 2 13:31 sesl.tmp

© 2002 by CRC Press LLC

2.2.2 File Protection/File Access

First, let us introduce the terminology we will use to identify access rights to a certain
file. We will use three different terms that are related to the very same issue: file protection,
file access, and file permissions. These three terms are mutually related, and their use is
primarily dependent upon the angle from which we are viewing the issue. Though file
access and file permissions are directly proportional, and we often use the composite term
access permissions (more file permissions permit wider access to the file), file access and
file protection are inversely proportional (a higher file protection requires more restricted
file access). Finally, they are all known as the file mode.

Every file has a set of permission bits that determine who has access to the file, and the
type of access they have. UNIX supports three types of file access:

Access File Meaning Directory Meaning
Read (r) View file contents Search directory contents (Is)
Write (w) Alter file contents Alter directory contents (rm)
Execute (x) Run executable file Make it the current directory (cd) for a search

Notes: (x) is sometimes identified as “execute/search” access right; For a script file execution, r and x access
permissions are required (each line in the script must be read to be executed).

The following table lists the permissions required to perform some of the most common
UNIX commands.

Minimum Access Required

Command On File Itself On Directory File Is in Comments

cd /home/username N/A

Is /home/username none r

Is -s /home/username none rx A file size determination requires a

logical move to the directory itself to
search the content of the inode of the
specified file

cat filename r X
cat >> filename w X
filename x (if binary) X
filename rx (if script) X
rm filename w XW w permission for a file is not a requirement

(but an additional confirmation will be
required); w permission for a directory is
mandatory (removing a file means altering
the directory)

Notes: It is important to understand the difference between a simple Is command, and any other, more elabo-
rated Is command (with an option that requires a search of the file’s inode). Simple listing of the directory
means just to read the content of the directory; options require information from the inode of the specified
file.

2.2.2.1 Access Classes

UNIX defines three basic classes of access to files, for which permissions can be specified
separately:

User access (u) Access granted to the user-owner of the file
Group access (g) Access granted to members of the group that owns the file

© 2002 by CRC Press LLC

Other access (0) Access granted to everyone else (except root)
All classes (a) Access granted to everyone (includes all three classes)

The access classes independently specify file modes for different categories (classes) of
users. The long format (the “-1” option) of the Is command is used to display the file mode
— see the previous example. The first column in the listing, a set of letters and hyphens,
represents a file mode; the file mode includes three triplets for the three access classes u,
g, and o. This is illustrated in the following table:

File Type User Access (u) Group Access (g) Other Access (0)
Position 1 2 3 4 5 6 7 8 9 10
Letter - r w X r w X r W X
Read access + + +

Write access + + +
Execute access + + +

Note: The first letter (or hyphen) in a line (the leftmost position) represents a file type.

2.2.2.2 Setting a File Protection

We have already discussed myriad terms to refer to file protection; UNIX simply refers to
a file protection as file mode. In UNIX parlance, to set file permissions means to change
a file mode; for that purpose, the UNIX chmod command is used:

chmod access-string filename(s)

where
access-string Includes:
Access class: u,g,0,0r a
Operator: +, -, or =
Permissions: r, w, or x
filename File name in the current directory, or the full-path file name (multiple files
are separated by a space).

Multiple access classes and/or permissions could be also simultaneously specified.
The recursive chmod command is also supported, for example:

chmod -R go-rwx /home/username

This command will change the file mode of all files and subdirectories beneath the
directory /home/username. It will deny any kind of access for group and other, and the user
access will remain unchanged.

This example specifies the file mode, using what is called symbolic mode notation.
Alternatively, the absolute, or numeric, mode notation could be also used. The difference
between the two is shown below:

user group other Access classes
rwx r—x r-- Symbolic mode
111 101 100 Convert to binary
7 5 4 Convert to digit
754 The corresponding absolute (numeric) mode

© 2002 by CRC Press LLC

The command to set this particular file mode is:
chmod 754 filename

Access rights for a certain user are strictly determined by the individual permissions
within the related class. It means that UNIX first determines where the user belongs — is
that the user-owner, a member of the group-owner, or any other user. Once it is done, only
the related file’s access class is checked and accordingly a needed access to the file granted
or denied. There is no a gradual top-down access class checkup in the cases when an user
belongs to multiple classes (an user-owner could also be a member of the group-owner, and
definitely belongs to others). Here is an example:

The user is bjl; the long listing for the text file textfile is:

$ Is -1 testfile

-tw-r--r-- 1 bjl users 15 Jul 6 20:49 textfile
With the following content:

$ cat textfile

#

This is just a test file

#

Let us deny read access to the user-owner bjl:

$ chmod u-r testfile

$ Is -1 testfile

-—-w-r--r -- 1 bjl users 15 Jul 6 20:49 textfile

And try to read the file again:
$ cat textfile
cat: textfile: Permission denied

However, the file can be modified
$ echo “# This is added text” >> textfile
$ echo “#” textfile

Besides the fact that user bjl is the owner of the file textfile and a member of the group
users, as well as that read permission is granted to the group users and to all others,
the file cannot be opened for reading. The file’s owner, user bjl, can modify or delete
the file (there is the w permission), but the file cannot be read. To overcome this “unusual
situation,” the owner has to change the file mode, and make the file readable.

$ chmod 644 testfile

$ Is -1 testfile

-rw-r--r-- 1 bjl users 15 Jul 6 20:49 textfile

$ cat textfile

#

This is just a test file

This is added text

#

The same is valid for a group-owner toward group permissions.

2.2.2.3 Default File Mode

The default file mode determines file permissions for newly created files. Once a file
is created, the file mode can be changed as desired. UNIX is quite flexible regarding
default file mode — there is a coded system setting, and a possibility for a program

© 2002 by CRC Press LLC

setting. First of all, the usual system default file modes for directories and files are
different:

¢ For a directory rwxrwxrwzx, i.e., all permissions are granted

* For a file rw-rw-rw-, i.e., the execute permissions are initially denied

However, do not be surprised if some specific UNIX flavors or even UNIX releases
behave differently.

The program setting of the default file mode is always adjusted toward a system setting,
and a specified permission can only be denied (never granted); it means only a more
restrictive default file mode can be dynamically created. Pay attention that this is related
to the default file mode only; the chmod command, or renaming and copying files, are
not restricted in that way.

The command umask is used for that purpose. Upon the command execution, all newly
created files in the new environment will be automatically set according to the new default
file mode. The umask command itself uses numeric notation to specify the default file
mode, but in a slightly different way than the chmod command. The umask command
sets permissions to be inhibited (masked out) when a file is created — it denies permis-
sions. The implemented numeric notation should be an octal complement to the numeric
notation of the desired file mode. Old UNIX releases supposed only the numeric notation;
modern UNIX flavors allow also the use of the symbolic notation. It is highly recom-
mended to stay familiar with the numeric notation (it works always and everywhere).

For example, to have a default file mode same as the file mode “754” in the previous
example:

777 All access granted
—754 Desired access granted
023 Masked out access for default mode

The corresponding command is umask 023.

2.2.2.4 Additional Access Modes

We have discussed common file permissions, which are quite self-explanatory (read
and write are obvious) and relatively easy to use. Some confusion is possible with
respect to the execute (x) permission on a directory, but once we accept execution as
a condition to “search the directory -> cd,” everything seems to be reasonable; that is
why it is also known as execute/search permission. However, the three file permissions
(r, w, and x) are far from sufficient to cover all file permission needs in UNIX, and
consequently UNIX has to support additional access modes. These additional access
modes are listed below:

Code Name Meaning

t sticky bit Keep executable image in memory after exit (memory resident program)
s set UID (SUID) Set process user ID on execution (will be discussed in greater detail)

s set GID (SGID) Set process group ID on execution (will be discussed in greater detail)

1 file locking Set mandatory file locking on r/w for this file (originally System V)

When using the Is -1 command, SUID and SGID access bits are displayed in the position
of “x access” for the corresponding access class (SUID in the user class, SGID in the group
class); the sticky bit is displayed in the position of x access for the class “others.”

© 2002 by CRC Press LLC

SUID and SGID are extremely important and are very sensitive issues from the system
security standpoint. Normally, when an executable file (a program) is invoked, and the
corresponding process created, the access rights to system resources of such a process
(known as a process’s effective IDs: EUID and EGID) are related to the user and group
who started the program execution (known as the process’s real IDs: RUID and RGID).
However, if SUID or SGID access is set on an executable file, access to system resources
is based upon the file’s user or group owner rather than on the real user who started the
program execution. This means, for example, for an executable file owned by the root,
regardless of who has started its execution, the program will be executed in the same way
as if the superuser had invoked it. (We will discuss this issue in more detail later by
addressing process attributes.)

SUID and SGID, as well as a sticky bit, are supposed to be implemented primarily on
executable files; however, they could be implemented on any file, as well as on a directory.
In such a case, they have different meanings. Here is a summary:

Set Bit File or Directory Meaning

SUID Executable file Effective user ID on execution (EUID) is equal to the file user owner’s ID
SUID Nonexecutable file None
or directory

SGID Executable file Effective group ID on execution (EGID) is equal to the file group owner’s ID

SGID Nonexecutable file Enable mandatory locking of the file

SGID Directory Opposite semantic in propagation of the group ownership; BSD behaves like
System V, and vice versa

Sticky Executable file Memory resident program

Sticky Nonexecutable file Memory resident file (system’s paging is skipped, as in swap files)

Sticky Directory Deletion of files in the directory is restricted only to the owner of the directory,

or of the file itself

The aforementioned chmod command is used to set additional file modes. Both symbolic
and absolute (numeric) notations are supported; however, on some UNIX platform only
the symbolic mode notation can be used to clear an SGID bit on a directory.

The symbolic notation uses the letter s, together with a corresponding access class to
set/clear additional access bits:

chmod u+s filename Set SUID on filename
chmod g+s filename Set SGID on filename

chmod o+s filename Set sticky bit on filename

Alternately, the minus sign (=) is used to clear additional access bits.

An additional, fourth triplet was introduced for the numeric notation; it corresponds to
SUID | SGID | sticky, and can be presented numerically, like any other triplet. This additional
triplet is the leading one, positioned in front of the other three triplets, and the leading digit
in the 4-digit numeric notation identifies it. The 3-digit numeric notation is still valid; UNIX
simply assumes 0 for additional access bits (there is no need for a leading zero).

The following example should make this clear; it presents the procedure to change a
file mode.

The login user is bjl; the current long listing of an arbitrary directory shows:

$1s-1

drwx------ 2 bl mail 24 Mar2413:19 Mail
-tw-rw-rw- 1 bjl users 20 May 2 13:26 modefilel

© 2002 by CRC Press LLC

-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile2
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 322 May 2 13:31 sesl.tmp

The user wants to change the file mode for certain files (the symbolic notation is
implemented):

$ chmod u+x modefilel
$ chmod g—w+x modefile2 modefile3
$1s-1

2 bjl mail 24 Mar2413:19 Mail

1 bl wusers 20 May?213:26 modefilel
-tw-r-xrw- 1 bjl users 20 May 2 13:30 modefile2
-rw-r-xrw- 1 bjl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 322 May 2 13:31 sesl.tmp

The required changes in file modes are shown in the new long listing of the directory.
Now let us set SUID and SGID on certain files:

$ chmod u+s modefilel

$ chmod g+s modefile2

$1s -1

drwx—---— 2 bl mail 24 Mar 2413:19 Mail
-rwsrw-rw- 1 bjl users 20 May 2 13:26 modefilel
-tw-r-stw- 1 bjl users 20 May 2 13:30 modefile2
-rw-r-xrw- 1 bjl users 20 May 2 13:30 modefile3
-rw-rw-rw- 1 bjl users 322 May 2 13:31 sesl.tmp

Pay attention to the displayed position of SUID and SGID bits (they overwrite x permission).
Finally, let us return to the initial file modes:

$ chmod 666 modefilel modefile2 modefile3

drwx------ 2 bl mail 24 Mar2413:19 Mail

-rw-rw-rw- 1 bjl users 20 May 2 13:26 modefilel
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile2
-rw-rw-rw- 1 bjl users 20 May 2 13:30 modefile3
-rw-tw-rw- 1 bjl users 322 May 2 13:39 sesl.tmp

Note that SUID and SGID were cleared also; in this case (this is HP-UX flavor), implemented
numeric notation works.

On the System V platform, a user-owner can change the file’s ownership. Practically, it
means that a user-owner can give the file to another user, also transferring owner access
rights to the new owner. If the SUID or SGID bit is set on the file, such a change of file
ownership could be a potential security problem. It would be very easy to create a
particularly nasty scenario that would affect the new owner. Just imagine a simple script
that purges the home directory of the new owner, and can be triggered by everybody
(there is x permission for others). Once the script ownership was modified, and supposing
the SUID is set, whoever starts the script’s execution will appear as the new owner —i.e,,
the targeted home directory will really be purged (very unpleasant!).

© 2002 by CRC Press LLC

Obviously System V UNIX has to protect itself from such unwelcome surprises. Let us
see how in the next example:

Three test files are created by the user bjl: testfilel, testfile2, and testfile3.

$1s -1

-FW-1----- 1 bjl wusers 0 May 27 15:07 testfilel
-FW-1----- 1 bjl wusers 0 May 27 15:07 testfile2
-FW-1----- 1 bjl wusers 0 May 27 15:07 testfile3

The SUID and SGID are set by the user-owner (numeric notation is used):

$ chmod 4777 testfilel

$ chmod 2777 testfile2

$ chmod 4640 testfile3

$1s -1

-twsrwxrwx 1 levi users 0 May 27 15:07 testfilel
-twxrwsrwx 1 levi users 0 May 27 15:07 testfile2
-rwSr----- 1 levi wusers 0 May 27 15:07 testfile3

The “set IDs” hide existing “x access bits” in the corresponding access classes. To make
the hidden bit recognizable, the low case letter “s” is displayed if both bits “set ID” and
“x access bit” are set, and capital letter “S” is displayed if only “set ID” bit is set (pay
attention, not for all UNIX flavors). In this example, the file testfile3 is not an executable
file. (In that light, SUID on this file does not make a lot of sense, but it is still a good
illustration of the previous point.)

The file ownership is now changed by the user-owner:

$ chown dubey testfilel testfile2 testfile3

$1s-1

-rwxrwxrwx 1 dubey users 0 May 27 15:07 testfilel
-rwxrwxrwx 1 dubey wusers 0 May 27 15:07 testfile2
-rW-1----- 1 dubey wusers 0 May 27 15:07 testfile3

What happened? We can see that the “set IDs” have not been transferred to the new
owner. Simply, if the file ownership was changed by the user-owner for files in which
SUID and SGID were set, the file modes would also change — SUID and SGID are not
transferable to another user; only the superuser can make it. (Anyhow, the superuser
can make whatever it wants.)

Now, let us return everything to the initial state; since the user bjl does not own the
files anymore, it will be done by the superuser. First switch to the superuser account:

$ su
Password: ********
chown bjl testfilel testfile2 testfile3

su bjl

$ chmod 640 testfilel testfile2

$1s -1

-rw-r----- 1 bjl users 0 May 27 15:07 testfilel
-rw-r----- 1 bjl users 0 May 27 15:07 testfile2
-rw-r----- 1 bjl users 0 May2715:07 testfile3

Note that a switch to the superuser (root) account always requires the root password,
while the switch from the superuser to some other user account does not. A superuser
already has full control over the system, including all user accounts.

© 2002 by CRC Press LLC

2.2.3 Access Control Lists (ACLs)

File access permissions originate from the early days of UNIX, and they provide enough
flexibility in accessing UNIX resources (objects) to meet most daily needs. This approach
was made even more flexible by introducing secondary groups as desired, and by grouping
individual users on a per need basis. Nevertheless, the continual development and growth
in the implementation of UNIX as a platform for different applications required an even
more selective approach. Modern UNIX flavors introduced Access Control Lists (ACLs)
to respond to new demands.

ACLs are a key enforcement mechanism of discretionary access control (DAC), used to
specify access to files by users and groups more selectively than with traditional UNIX
mechanisms. ACLs permit or deny access to a list of users, groups, or combinations thereof.
ACLs are supported as a superset of the UNIX operating system DAC mechanism for
files, directories, and devices.

An access control list is a set of (user.group, mode) entries associated with a file that specify
permissions for all possible user-ID/group-ID combinations. An entry in an ACL specifies
access rights for one user and group combination. Three bits in an ACL entry represent
read, write, and execute-search permissions. These permissions coexist with the traditional
mode bits associated with every file in the filesystem.

An individual ACL entry could be considered restrictive or permissive depending on the
context. Restrictive entries deny a user and/or group access that would otherwise be
granted by less specific base or optional ACL entries. Permissive entries grant a user and/or
group access that would otherwise be denied by less specific base or optional ACL entries.

The right to alter ACL entries is granted to file (object) owners and to privileged users.
Privileged users are superusers and members of certain privileged groups.

For a better understanding of the relationship between ACLs and traditional file permissions,
let us consider the following file and its permissions:

Permissions User Group Filename
-PWXT-XT-~- bjl admin datafile
The file owner is: bjl

The file’s group is: admin

The name of the file is: datafile

The file owner permissions are: rwx

The file group permissions are: r-x

The file other permissions are: r--

When a file is created, three base access control list entries are mapped from the file’s
access permission bits to match the file’s owner and group and its traditional permission
bits. The three base ACL entries are:

1. Base ACL entry for the file’s owner: (uid.%, mode)
2. Base ACL entry for the file’s group: (%.gid, mode)
3. Base ACL entry for other users: (%.%, mode)

The basic form of an ACL entry is (user.group, mode). user and group can be repre-
sented by names or ID numbers; mode is represented by a letter (r, w, and x if the
corresponding access is granted, or dash - ”if the access is denied). Two special symbols
may also be used:

1. % symbol, representing no specific user or group
2. @ symbol, representing the current file owner or group

© 2002 by CRC Press LLC

ACLs are superimposed on the file’s traditional permissions; however, managing ACLs
does not affect the traditional file mode. There is no way to change the traditional file
permissions by using ACL-specific commands (the opposite is not true because base ACL
entries are synchronized with the traditional file permissions). Both the traditional UNIX
command chmod and ACL-specific commands may be used to change base ACL entries.

Optional ACL entries contain additional access control information, which the privileged
user can set with the available ACL-specific commands to further allow or deny file access.
Up to 13 additional user/group combinations may be specified. For example, the following
optional ACL entries could be associated with the presented file datafile:

(mhr.admin, rwx) Grantread, write, and execute access to user mhr in group admin
(mnm.%, ---) Deny any access to user mnm in no specific group (any group)

ACL entries are unique; there can only be one (user.group, mode) entry for any pair of
user and group values; one (user.%, mode) entry for a given value of user; one (%.group,
mode) entry for a given value of group; and one (%.%, mode) entry for each file.

There are several UNIX commands to manage ACLs, and they are all UNIX-flavor
specific. Although they all have essentially the same mission, they have different command
names. We will focus on Solaris-specific ACL commands.

The getfacl command is available on Solaris to display discretionary file information:

getfacl [-ad] filename(s)

where
option-a Display the filename, owner, group, and file’s ACL
option-d Display the filename, owner, group, and default file’s ACL (if it exists)
no option Display the filename, owner, group, file’s ACL, and default file’s ACL (if it exists)
filename The filename in the current directory, or full-path filename. (multiple
filenames are separated by a space; a blank line separates displayed ACLs)

A few examples (the selected file is /etc/vfstab):

$ getfacl /etc/vfstab

file: Jetc/vfstab # The first three lines specify the filename, user-owner
and group owner; they start with pound sign (“#”).

owner: root

group: other

user::r-- # Permissions for user-owner (because the second field
is empty).

group:r-- #effective:r - # Permissions for group owner (because the second field
is empty).

mask:r-- # Maximum permissions allowed to any user except

user-owner, and to any group (including group owner);
they restrict the permissions specified in other entries.

other:r-- # Permissions granted to others.
In order to indicate when the group class permission bits restrict an ACL entry, an

additional string “#effective:” specifies the actual permissions granted in the same
line of the restricted entry; the string is separated by a tab character.

© 2002 by CRC Press LLC

$ cd Jetc
$ getfacl vfstab

file: vfstab # This is the same command as in the previous example,
except that the relative filename was specified.

owner: root

group: other

user::r—

group::r-- #effective: r--
mask:r--

other:r--

$ getfacl -a vfstab

file: vfstab # For this file, the “option —a” and “no options” display
the same output because there is no default ACL.

owner: root

group: other

user::r--

group:r-- #effective: r--

mask:r--

other::r--

$ getfacl -d vfstab

file: vfstab # Only the first three lines are displayed because there
is no default ACL.

owner: root

group: other

The Solaris setfacl command is available to modify an ACL for a file or files. Two forms
of the command may be used:

setfacl [-1] [-s | -m | -d] acl_entries filename(s)
setfacl [-r] [-f] acl_file filename(s)

where

option -r Recalculates the permissions for the file’s group class entry (known as the
mask entry). These permissions are ignored and replaced by the maximum
permissions needed for the file group class, to grant access to any
additional user, owning group, and additional group entries in the ACL.
The permissions for these entities remain unchanged.

option-s Sets the ACL to the entries specified on the command line; all
old ACL entries are removed and replaced with the newly specified
ACL.

option-m Adds one or more new ACL entries, and/or modifies one or more existing
ACL entries; when modified, the specified permissions will replace the
current permissions.

option-d Deletes one or more ACL entries; the file owner, owning group, and
others may not be deleted. Deleting an ACL entry does not necessarily

© 2002 by CRC Press LLC

option -f

acl_entries

uid
gid
acl_file

have the same effect as removing all permissions from the entry by
modifying the entry itself (an ACL entry superimposes on traditional file
permissions).
Sets the ACL to the entries contained within the file named acl_file on the
command line (see acl_file); the same constraints on specified entries in
the acl_file hold as with -s option.
One or more comma-separated ACL entries of the following format (all
entries are not applicable for all options):

u[ser]::operm | perm

u[ser]:uid:operm | perm

glroup]::operm | perm

glroupl:gid:operm | perm

ml[ask]:operm | perm

dlefault]:ulser]::operm | perm

dlefault]:ulser]:uid:operm | perm

dlefault]:g[roup]::operm | perm

dlefault]:g[roup]:gid: operm | perm

dlefault]:m[ask]:operm | perm

dlefault]:o[ther]:operm | perm
Where perm is a permissions string composed of the letters r(read),
w(write), and x(execute); the dash (-) may be specified as a place holder.
operm is an octal representation of the above permissions, 7 -> all
permissions (rwx), 0 -> no permissions (-—-)
is a login name or user ID; for user-owner is empty
is a group name or group ID; for group-owner is empty
The file that contains ACL entries; an ACL entry is specified as a single
line. Comments are permitted and they start with pound sign (#). The file
can be created as an output of the getfacl command.

2.2.4 File Types

We mentioned earlier that in UNIX everything is a file, or is file-like. Given what we
now know about file ownership and file mode, perhaps it is more appropriate to say
that in UNIX everything is “dressed like a file.” This means everything appears like a
file, but there are still differences in the file content and the way the file is managed and

processed.

These differences result in different kinds of files, or in UNIX terminology, different file
types. The type of a file determines how the file will be handled.

The long listing of the 1s -1 command also displays the file type; a leading single letter,
or hyphen, in the leftmost position of the first column in the listing that presents the file
mode, identifies a file type. The file type is identified in the following way:

© 2002 by CRC Press LLC

Plain (regular) file

d Directory

¢ Character special file
b Block special file

1 Symbolic link

s Socket

p Named pipe

Here is an example:

$ Is-1

drwx------ 2 bjl mail 24 Mar 24 18:19 Mail
-rwxrw-rw- 1 bjl users 20 May 2 18:26 filel
Irwxrwxrwx 1 bjl users 20 May 2 18:28 file2 -> /usr/local/bin/file2

Three different file types are displayed: a regular file (-), a directory (d), and a symbolic
link (I). A brief summary of file types follows.

2.2.4.1 Plain (Regular) File

A plain file is just a sequence of bytes: a data file, an ASCII file, a binary data file, executable
binary program, etc. In most cases when we talk about files, we are thinking of plain files.
They are identified by the hyphen (-) in the long listing of a directory they reside in.

2.2.4.2 Directory

Abinary file, a directory is a list of the files within it (including any subdirectories). Entries
are filename-inode pairs. In UNIX each file is identified by an inode (an official name is
index node). For simplicity, we will assume that an inode fully specifies the file, and that
by knowing the inode, UNIX actually knows everything about the file itself (ownership,
mode, type, other properties, contents, location on the disk) except its name. The directory
relates the filename with the file itself; the filename-inode pairs that make a content of a directory
itself actually establish this relationship. Although it might seem odd to a beginner, UNIX
can find a filename only in the corresponding directory. If a directory is corrupted, all of
its filenames can be easily lost, while the corresponding files remain unchanged and
unnamed.

The special entries “.” and “..” (single and double dots) refer to the directory itself
and its parent directory, respectively. A directory in its long listing is identified with the
letter d.

2.2.4.3 Special Device File

A special device file is used to describe the attached I/O device. UNIX accesses devices
via their special files. In UNIX, device drivers themselves (software interfaces that control
the devices) are part of the kernel, and can be accessed by using certain system calls (UNIX
internals). A special device file is a kind of pointer to the corresponding device driver
within the kernel; it is a very simple file that contains two pointers: major and minor
numbers. The major number points to the device class, while the minor number points to
the individual device within the class.

All special device files reside in the directory /dev (and its subdirectories on System V).
There are two groups of special device files: block device files and character device files.

2.2.4.3.1 Block Device File

I/0O operations are provided through a group of buffers; the system maintains a buffer
pool for all block devices. The block device is accessed in fixed-size blocks. Physically, the
high-speed data transfer is realized using a DMA mechanism (direct memory access data
transfer). The letter b in the long listing of a directory identifies the block device files. The
following disk-related block device files are examples of block device files: /dev/diskOa or
Jdev/dsk/c1d1s5.

© 2002 by CRC Press LLC

2.2.4.3.2 Character Device File

Nonbuffered I/O operations are provided via a character or raw device. Physically, the
data transfer is performed through a registered data exchange between the device and its
controller. Character devices include all devices that do not fit the block I/O transfer. The
letter c in the long listing of a directory identifies the character device files. The following
disk related raw device files are examples of character special files: /dev/rdiskOa or
/dev/rdsk/c1d1s5.

2.2.4.4 Link

A link is a mechanism that allows multiple filenames to refer to a single file on a disk,
i.e., a single inode. There are two kinds of links: hard links and symbolic links.

2.2.4.4.1 Hard Link

A hard link associates two or more filenames with an inode; each inode keeps a record
of a number of linked filenames. Only when all filenames are deleted will the file itself
also be deleted, and the corresponding inode released and returned as free for new file
assignments. Strictly speaking, a hard link is not a separate file type; each hard link
represents an already existing file with an additional filename. The only way to identify
mutually hard-linked filenames is to list a directory or directories by using the “ls -i”
command and check for identical inode numbers. The “-i” option displays, beside the
filename, the inode number for each displayed file in the listed directory.

Hard links always remain within the same filesystem; simply, inodes cannot be shared
between filesystems, and two hard links are always associated with the same inode. A hard
link never creates a new file; it only attaches a new filename to the existing file. This means
that a hard link only presents a new entry in a directory, a new record about a filename-
inode pair.

To create a hard link use the In command:

In myfile hardlink

This command will create a new entry in the current directory named hardlink paired
with the same inode number as myfile. There are no hard links for directories; it would
be too confusing and dangerous for the system.

2.2.4.4.2 Symbolic Link

A symbolic link is a pointer file to another file elsewhere in the overall hierarchical
directory tree. By creating a symbolic link, a new small file is also created; this new file
contains the full-path filename of the linked file. There is no restriction on the use of
symbolic links; they span filesystem boundaries independently of the origin of the linked
file. Symbolic links are very common (this cannot be said for hard links); they are easy to
create, easy to maintain and easy to see. The letter 1 in the long listing of a directory
identifies them; a linked file is also displayed in a visually comprehensive way (see
previous example for file types).
To create a symbolic link use also the In command (with the option -s):

In -s myfile symlink

This command creates another file named symlink in the current directory with a
separate inode (since this is a completely new file) that points to the file myfile. Both
types of links are presented in Figure 2.1. Let me explain it in more detail.

© 2002 by CRC Press LLC

Hard and symbolic links are created B The file myfile is deleted
(A) (B)
for the file:myfile

hardlink

hardlink symlink

symlink

points to the file myfile now points nowhere

(C) Another file myfile is created

hardlink symlink
7
/
/7
’
’
Il N1 e N2
1
\
\ B1 B3 B2
\ Note:
\ \
S~ o ’ N — Index node
—————————— - B — Data blocks
points to the new file myfile

FIGURE 2.1
Hard and symbolic links.

For an existing file named myname, which is determined by the inode (index node) N1,
both links are created. The hard link hardlink is another name for the file myfile, and it
corresponds to the same inode N1. The symbolic link symlink represents another file
determined by the inode N2; its contents point to the file myfile.

What will happen if the file myfile is deleted? Actually, only the filename “myfile” will
be deleted; the file itself remains with its other name hardlink (the file content remains
unchanged). The symbolic link symlink is now broken; it points nowhere (there is no
more referenced file myfile).

What will happen if another file named myfile is created in the same directory? This is
a brand new file, determined by the new index node N3 and unrelated to the existing file
hardlink, which continues to exist as a different file. However, the file symlink is now
linked with the new file myname, and it continues to point to the newly created file myfile.

2.2.4.5 Socket

A special type of file used for interprocess communication on a single system or between
different systems; sockets enable connection between processes. There are several kinds of

© 2002 by CRC Press LLC

sockets, and most of them are involved in network communications. UNIX domain sockets
are local ones, used in local interprocess communication; they are referenced as filesystem
objects. Sockets are created by the use of a special system call, “socket”, but can be treated in
a similar way as other files (using the same system calls). However, a socket can be read or
written only by processes directly involved in the connection. For example, printing systems,
X windowing, or error system logging use sockets. Sockets were originally developed in BSD
and later included in System V. The most probable place to find sockets is the /tmp directory.

2.2.4.6 Named Pipe

Another mechanism, originated in System V, to facilitate interprocess communication; the
named pipe presents a FIFO (first-in first-out) element in this communication. The output
of one process becomes an input to another process. Named pipes are very useful when
a large amount of data is involved in the interprocess communication; sometimes some
application, and even OS restrictions could be bypassed by using the named pipe.

UNIX provides the command mknod pipename p to create a named pipe pipename. The
same command is used to create special device files and we will return to this command
later. The trailing character “p” specifies the named pipe. Pay attention this is slightly
different from the usual UNIX way in specifying the command option. In the long listing
of a directory the leading letter p identifies named pipes. Again the most probable place
for named pipes is the /tmp directory.

2.2.4.7 Conclusion

Independent of a file type, the file must be mounted before it can be accessed. Mounting
is a special UNIX process of bringing online a storage device (primarily a disk) that keeps
the files, making the files accessible and their contents readable. Only mounted files
become visible and can be searched, found, and processed. We will cover mounting in
full details in Chapters 5 and 6.

All listed file types have different natures. They are created with file-type specific UNIX
commands, but other UNIX commands are mostly applicable on all file types. The output
of the same UNIX command can be different depending on the file types, but the command
itself would work. For example, the command:

cat filename

will display the contents of the file filename. But if filename is a symbolic link, the
command will display the contents of the linked file.

The common bond between all file types is the relationship of the file ownership and
the file mode. This relationship is fundamental to all UNIX platforms, and this is one of
the main issues that make UNIX so reliable and flexible in the constantly changing
environment.

2.3 Devices and Special Device Files

A device is a dedicated piece of hardware that provides a particular function within the
computer system. A device itself can be located internally or externally. Regardless of the
location, devices are treated equally within their classes.

© 2002 by CRC Press LLC

A device driver is a program that manages the system’s interaction with a particular
device; it presents a needed interface to translate between the hardware commands under-
stood by the device, and the kernel. Such a system structure keeps UNIX reasonably
hardware-independent.

Device drivers are parts of the kernel; they are not user processes. However, they can
be accessed both from within the kernel and from the user space. User-level access is
provided through special device files. The kernel transforms operations on these special
files into calls to the driver code.

Special device files are also called device special files. Independent of their naming, these
files are really special and different than regular files. Their mission is special in the UNIX
paradigm. We will use both names arbitrarily, or even simply special files.

Special device files are mapped to devices via two pointers: major and minor device
numbers. These numbers are stored in the inode for a particular special file. The major
device number identifies a device driver for a specific class of devices (a single driver can
be used for a number of devices of the same type); the minor device number is a parameter
within the specified device driver.

Each device driver has routines for performing necessary functions in its interaction
with the device. These basic functions are: probe, attach, open, close, read, reset, stop,
select, strategy, dump, psize, write, timeout, interrupt processing, and i/o control (ioctl). The
addresses of these functions for each driver (independent of the character and block
devices) are stored in the jump table inside the kernel. The major device number indexes
the jump tables; this is provided through another table known as device switch table.
Briefly, the mapping is performed in the following way: the major device number points
to the corresponding entry in the device switch table. The minor device number is passed
as a parameter to the relevant function in the device driver. The device driver is free
to interpret the minor number as it sees fit, although in most cases it uses it as a port
number (as is the case when a single driver controls multiple devices of the same
type). As soon as the kernel catches the reference, it looks up the appropriate function
name in the driver’s jump table and transfers control to it. To perform a device-specific
operation that does not have a direct analog in the filesystem model (for example,
ejecting a floppy disk), the ioctl system call is used to transfer a request directly into
the driver.

This treatment of devices in a file-like way is one of the fundamental design elements
that make UNIX so powerful. Just as the proven solutions for files” ownership, mode,
access rights, and protection have been implemented in the case of devices, the same has
been done with user commands as well. Meanwhile, existing differences in command
interpretations were maintained. We will see what this all means in the following example
of the copy command:

cp /pathl/filenamel /path2/filename2

This command will copy the contents of the file /path1/filenamel to the file named
/path2/filename2, effectively overwriting the file if it already existed, or creating the
file if it did not.

However, the command:

cp /pathl/filenamel /dev/console

will copy the file /path1l/filenamel to the file /dev/console which is the special file for the
physical console terminal. The contents of the file /path1/filenamel will be displayed on

© 2002 by CRC Press LLC

the console screen. As we can see, special files allow I/O operations to be performed with
regular interactions among UNIX files.

It is convenient to implement a device driver as an abstraction, even when there is no
actual device for it to control. Such devices are known as pseudo-devices; for example,
pseudo-TTY (assigned as PTY) is used to communicate with users over a network. From
a higher-level software point of view, a pseudo-device looks like a regular device; conse-
quently, preexisting software is transparent, allowing immediate use without the need for
any modification.

2.3.1 Special File Names

By convention, special files are kept in the /dev directory. On large systems there may be
hundreds of devices, including pseudo-devices. On System V (ATT) flavors, special files
are hierarchically organized, with separate subdirectories for different device types: disk,
tape, terminal, pseudo-terminal, etc. On BSD platforms, /dev is a flat directory containing
all of the special files.

Special file naming is different among different UNIX flavors; however, some common
rules are recognized. The following table presents the usual naming algorithms for disk-related
special files:

BSD System V
File name /dev /rdisk0d /dev/rdsk/c1d0s2
Access mode /dev /rdisk0d /dev/rdsk/c1d0s2
Device type /dev/rdisk0d /dev/rdsk/c1d0s2
Drive /dev /rdisk0d /dev/rdsk/c1d0s2
Disk partition /dev /rdiskOd /dev/rdsk/c1d0s2
Controller /dev/rdsk/c1d0s2

Unfortunately, the implemented rules are very restricted and are usually valid only
for the specific flavor; naming procedures vary among flavors within the same UNIX
platform.

2.3.2 Special File Creation

To create a special file, UNIX provides the mknod command, which has the following
syntax:

mknod filename type major minor

where
filename A name of the special file to be created
type A type of the special file to be created
¢ — for a character (row) type special file
b — for a block type special file
p — for a named pipe (FIFO)
major A major device number (decimal or octal)
minor A minor device number (decimal or octal)

© 2002 by CRC Press LLC

Special files are very small and simple files; they contain only two numbers (major and
minor number), which are pointers to corresponding device drivers within the kernel.
Only the superuser can create a special device file.

Both BSD and System V flavors often include some kind of utility program to create
and install special files; usually this is a script based on mknod commands. One such
script is makedev that originates from SunOS 4.1.x.

UNIX administrators like script utilities. First these scripts make their jobs easier. But
the scripts are also very instructive. We can read them and learn precisely how the utility
works and fully understand what happens behind the scenes. We can discover many of
the UNIX secrets that are so useful in its daily administration.

Special files are special by nature, but they are dressed like regular files. Several years
ago one student raised the questions: “Are the ownership and permissions of special files
uniform over all UNIX platforms? Their purposes are the same — is there any regularity?
How do you recreate a lost special device file?”

Despite the fact that these questions are very logical, there is no simple response.
Ownership and mode of special files vary among different UNIX flavors, as do special
file names. A very brief review of several UNIX flavors made several years ago easily
proved this. Things are not changed nowadays. The ownership and mode of the /dev
directory and reviewed same-purpose special files are presented for several UNIX
flavors.

SunOS

#1s -1g / | grep dev

11 drwxr-sr-x 2 bin staff 11264 May 16 09:24 dev/
#1s -lg /dev

total 13

0 crw--w---- 1 root wheel 0, 0 May 26 14:52 console
0 crw-r----- 1 root kmem 3, 1 Mar 19 1993 kmem
0 crw-r----- 1 root kmem 3, 0 Mar 19 1993 mem
0 srwxrwxrwx 1 root staff 0 May 16 09:24 printer
0 crw-rw-rw- 1 root staff 21, 16 Jun 11 1993 ptyq0
0 crw-rw-rw- 1 root staff 30, 1 Mar 19 1993 rmtl
0 crw-r----- 1 root operator 17, 0 Jan 20 14:58 rsd0a
0 brw-r----—- 1 root operator 7, 0 Sep 22 1993 sd0a
ULTRIX

#1s -1g / | grep dev

drwxr-xr-x 4 root system 12800 May 27 10:23 dev
#1s -1g /dev

total 46

Crw--w---- 1 operator tty 0, 0 May 27 13:01 console
Crw-r----- 1 root kmem 3, 1 May 14 15:18 kmem
Crw-r----- 1 root kmem 3, 0 Aug 7 1992 mem
STWXIWXTWX 1 root system 0 May 27 10:23 printer
Crw-rw-rw- 1 root system 21, 16 May 27 13:09 ptyq0
brw--—---—-- 1 root system 23, 0 Mar 22 1993 rala
Crw-rw-rw- 1 root system 36, 8 Mar 22 1993 rmtOh

© 2002 by CRC Press LLC

HP-UX
$1s -1/ | grep dev

drwxr-xr-x 13 root root 30 72 May 26 09:51 dev
$ 1s -1 /dev

total 42

Crw--w--1- 1 root sys 0 0x000000 May 26 09:51 console
Crw-rw-rw- 1 root sys 24 0x203010 Dec 13 16:31 hill
Crw-r----- 1 bin sys 3 0x000001 Dec 13 16:31 kmem
crw-r--r-- 1 Ip bin 11 0x206002 May 26 15:32 Ip_panlaser
Crw-r----- 1 bin sys 3 0x000000 Dec 13 16:31 mem
Crw-rw-rw- 1 root other 16 0x000010 Dec 13 17:14 ptyq0
Crw-rw-rw- 1 root sys 23 0x203000 Dec 13 16:31 rhil
IRIX

$1s -1/ | grep dev

drwxr-xr-x 10 root sys 358 4 May 16 08:59 dev

$ 1s -1 /dev

total 87

Crw--w--w- 3 root sys 58, 0 May 25 14:33 console
brw------- 1 root sys 22, 71 Mar 31 1993 disk2
Crw-r----- 1 root sys 1, 1 May 27 1993 kmem
Crw-r----- 1 root sys 1, 0 May 27 1993 mem
STWX----- 1 root Ip 0 May 16 08:59 printer
Cri------- 1 root sys 22, 71 Sep 20 1993 rdisk2
Crw-rw-rw- 3 root sys 23, 192 Nov 8 1993 tape
Crw--w--1w- 2 root sys 0, 1 Sep 10 1992 ttydl

It is very easy to conclude that there is no uniformity among different UNIX flavors
— naming, ownerships, and file modes are different. What to do if a special file is
accidentally lost? Do we have to remember them all?

The only logical answer is to search for help within the same UNIX flavor. For example,
to look up the same special files on another same-flavor UNIX system (if applicable). Other
options are to check vendor documentation, or use other flavor-related sources (call
technical support, newsgroups, Internet, etc.).

2.4 Processes

A process is a single program that is running in its virtual address space. The process
should be distinct from a job or a command, which may be composed of many processes
working together to perform a specific task. One of the main administrative tasks is to
manage UNIX processes. In this section we will cover main process-related topics.

2.4.1 Process Parameters

This is a brief reminder about process parameters. We will start with the process types
and main process attributes. Full understanding of process attributes is crucial for certain

© 2002 by CRC Press LLC

administrative activities, as well as for the system security. Other discussed issues are file
descriptors attached to a process and process states.

2.4.1.1 Process Types

The three distinct types of processes are:

Interactive processes — Interactive processes are initiated and controlled by a
terminal session; they run in the foreground attached for the standard input
STDIN (in a terminal session STDIN corresponds to the terminal) or in the
background. Job control (which originated in BSD) allows a foreground process
to be sent to the background and vice versa.

Batch processes — Processes not associated with a terminal; these are explicitly
submitted to a batch queue and executed with a lower priority in sequential order,
primarily at off-peak times. Originally, batch processing was not very thoroughly
developed on UNIX platforms, but third-party vendors have improved it. Batch
processing is very convenient for non-urgent, long-lasting data processing such
as iterative calculations and the like.

Daemons — Server background processes, usually initiated at the system boot
time, which continue running as long as the system is up. Daemons perform differ-
ent system-related tasks; they wait in the background until some process requires
their service.

2.4.1.2 Process Attributes

There are many attributes associated with UNIX processes. The following paragraphs
discuss the major attributes.

Process ID (PID) — The PID is a unique identifying number used to refer to the
process. It is an integer assigned by the kernel when the process was created
and cannot be changed for the lifetime of the process. Crucial for process hand-
ling, a process is always identified by its PID.

Parent process ID (PPID) — The PPID is the PID of the parent process, which
is the process that was directly involved in the creation of the new process. The
PPID is not unique, because the same parent process could have a number of
child processes. The PPID cannot be changed during the lifetime of the process.

Real and effective user ID (RUID and EUID) — The real user ID (RUID) is the
UID of the user who started the process; the effective user ID (EUID) is the UID
used to determine the user access rights of the process to system resources
(objects). The relationship between the two user ID attributes is: RUID =EUID,
except if the SUID access mode was set on the program that created the process,
and then EUID corresponds to the owner UID of the program (see also the File
Permissions section of the text).

Real and effective group ID (RGID and EGID) — The real group ID (RGID) is the
GID of the group of the user who started the process; the effective group ID
(EGID) is the GID used to determine the group access rights of the process to
system resources (objects). The relationship between the two group ID attributes
is: RGID =EGID, except if the SGID access mode was set on the program that
created the process, and then EGID corresponds to owner GID of the program
(see also the File Permissions section of the text).

© 2002 by CRC Press LLC

Process group ID (PGID)—The process group ID (PGID) identifies the process
group that the process belongs to; typically, multiple processes are members of
the same process group and they share the same PGID. The PGID is the PID of
the process group leader; this is usually the initial parent process. Unlike PID
and PPID, which cannot be changed during the life of the process, PGID is under
program control and can be changed by the corresponding system call (as is the
case with job control). PGIDs are important in the processing of signals in inter-
process communications. For example: the invoked shell is the process group
leader for all subsequent commands that are members of the created process
group; once the user logs out and terminates the shell, all currently running
related processes will also terminate.

Control terminal (TTY) — The control terminal is the terminal (or pseudo-
terminal) associated with the created process — the terminal that the process
was started from.

Terminal group ID (IGID) — The terminal group ID (TGID) is the PID of the
process group leader that opened the terminal, which is typically the login shell.
The TGID identifies the control terminal (TTY) for a process group, ie., the
terminal associated with a process. The TGID is important for job control.

Current working directory (CWD) — The current working directory (CWD)
defines the starting point for all relatively specified pathnames (filenames that
do not begin with the “/” character).

Nice number — A number indicating the process priority relative to other pro-
cesses. Generally, a lower nice number means a higher priority; this is true also
when the nice numbers are in the range —20 to +20 (lower number in this case
means more negative).

2.4.1.3 File Descriptors

File descriptors are integers used to identify files that have been attached to a process and
opened for I/O. Modern UNIX systems provide more than 20 different files to be opened
for a process. File descriptors 0, 1, and 2 are associated with the standard input (a keyboard),
standard output (a screen), and a standard error (a screen also), respectively; they are, by
default, attached to a newly created process. UNIX provides an easy method of 1/O
redirection by simple replacement of the input, output, and error files. In the case of sockets,
the descriptors are called socket descriptors.

2.4.1.4 Process States

The existence of a process does not automatically mean it is eligible to receive and consume
CPU time. There are multiple process execution states, as discussed in the following text.

Runnable — The process is ready to execute whenever there is CPU time available.

Sleeping — The process is waiting for a specific event to occur, or for some resource to
become available. Interactive processes and daemons spend most of their time sleeping,
waiting for terminal input or a network connection.

Stopped — The process is suspended and forbidden to run as the result of a received
STOP signal; it can be restarted if it receives a CONT signal.

Zombie — The process is trying to die; another common term is defunct.

Swapped — The process is removed from the system main memory to a disk (more
precisely, a process image is removed). This occurs when the competition for memory is
intense, a lack of available memory for new processes is obvious, and regular memory

© 2002 by CRC Press LLC

paging is unable to solve the problem efficiently. Strictly speaking, swapped is not a true
process state, because a swapped process can be in one of the previously mentioned states:
sleeping, stopped, or even runnable.

2.4.2 Process Life Cycles

Each process is living as long as the corresponding program is running. Process life cycles
vary in range from “extremely short” up to “indefinitely” like for daemons (or better to
say “as long as the system lives”). Process starts with its creation and lasts until terminated
(program exit upon its completion) or forced to quit.

2.4.2.1 Process Creation

In UNIX a new process is created with the fork system call. An existing process, a parent
process, makes a copy of itself into the address space of a child process. From the user’s
point of view, the child process is an exact duplicate of the parent process, except for two
values: the PID and the parent PID. The fork system call returns the child PID to the parent
process and “zero” to the child process (thus, a program can determine whether it is the
parent or the child process). The fork system call involves three main steps:

1. Allocating and initializing a new structure for the child process
2. Duplicating the context of the parent process for the child process
3. Scheduling the child process to run

The memory organization and layout associated with a UNIX process contains three
memory segments called:

1. Text segment A shared read-only segment that includes program code

2. Data segment A private read-write segment divided into initialized and
uninitialized data parts (the uninitialized part is also known as
“block started symbol” (BSS))

3. Stack segment A private read-write segment for system and process related data
There are two modes of the fork operation:

1. A process makes a copy of itself to handle another task; this is typical for network
server daemons.

2. A process wants to execute another program. Since the only way to create a
new process is through the fork operation, the process first makes a copy of
itself and then the child process issues an exec system call to execute a new
program.

In the later case, the fork is followed shortly thereafter by an exec system call that
overlays the address space (text and data segments) of the child process with the contents
of the new executable. Such a procedure is also known as fork-and-exec. A new program
replaces the contents of the parent process in the address space of the child process but
in the same parent’s environment. In this way all global environment variables, standard
input/output/error, and priority are kept unchanged.

© 2002 by CRC Press LLC

The ultimate ancestor for every process on a UNIX platform is the process with PID 1,
named init and created by the system kernel during the boot procedure. The init process
presents a starting point in the chain of process creations; it creates a number of other
processes based on fork-and-exec. Among the many created processes are one or more getty
processes, assigned to existing terminal lines. Their main duty is to keep the system from
unauthorized login attempts; they protect the system from potential intruders, and from
the damage they can cause to the system.

This is illustrated in Figure 2.2. Different stages of the creation of involved processes
are presented, assuming four existing terminal lines.

Four getty processes have been forked-and-exec by the init process. Each getty process is
taking care of one terminal line. Since a user attempts to access the system via a terminal
line (more precisely via an attached terminal), getty will exec another program login to
supply a login prompt, and to authenticate the user (it will look up the user’s login and
password data in the file /etc/passwd); this is shown in the figure for the second terminal
line. Upon login, it checks the user’s password and sets the user ID, group ID, and working
directory. It will exec the user’s shell (specified in the user’s password entry in the /etc/
passwd file). In the figure this is the case with the third terminal line, and the exec-ed shell
is Bourne shell sh. In the next step, a user executes any command from the shell command
line, as the presented Is command on the fourth terminal line. The shell sh forks its copy
and then execs the program (command) Is. All presented process IDs are generally speci-
fied; however, please note that only fork creates a new child process with a new process ID.

init init init init
(PID=nn) (PID=mm) (PID=kk) (PID=jj)
exec exec exec exec
getty getty getty getty
(PID=nn) (PID=mm) (PID=kk) (PID=jj)

Waiting for users exec exec exec

login login login
(PID=mm) (PID=kk) (PID=jj)

A user has entered
his/her login name

exec

bin/sh | [/bin/sh faescg)| /0in/sh
(PID=kk) (PID=jj) (PID=ii)

The login shell is
started

exec

exec

/bin/ls

(PID=ii)

The command "Is"
is invoked

FIGURE 2.2
UNIX process creation (fork and exec).

© 2002 by CRC Press LLC

2.4.2.2 Process Termination

A process terminates either voluntarily through an exit system call, or involuntarily as
the result of a received signal. In either case, termination of a process causes a status code
to be returned to its parent process. The process then cleans and closes all process-related
resources:

¢ It cancels any pending timers.
* It releases virtual memory resources.
¢ It closes open descriptors.

¢ It handles stopped or traced child processes.

After completing those tasks the process can “die,” i.e., it can be deleted from the kernel
process table.

2.4.3 Process Handling

UNIX system administration involves dealing with processes on a regular basis. Monitor-
ing a UNIX system primarily means monitoring running processes. Any change in the
configuration usually requires restart of the corresponding daemons. And occasionally a
certain process has to be restarted or destroyed. Handling processes is one of the main
tasks in maintaining a UNIX system. Every UNIX administrator very quickly becomes
familiar with these issues. This is less true for a job control, which is also mentioned at the
end of this section. All together, the text that follows is a “good appetizer” — just for the start.

2.4.3.1 Monitoring Process Activities

Monitoring the processes running on the system is highly recommended; this is the best way
to get a good sense of what normal system activity is like: what programs are run, how long
they run, who runs them, and so on. In addition, when a problem on a system is encountered,
the first step to figure out what the problem could be is to check the status of running processes.
You can discover a lot from a simple cross-view of the status of the processes running on your
system at a certain time. Such a routine procedure is also very important for system security,
because any unusual system activity can be noticed and quickly stopped.

The UNIX ps (process status) command lists the characteristics of running processes;
the format of the command is:

ps [options]

Basic options are explained in the following text. Unfortunately, there are certain differ-
ences in command options between the two main UNIX platforms, BSD and System V.

2.4.3.1.1 BSD Flavored ps Command

The ps command displays the status of currently running processes; without any options
specified only the processes that are running with the effective user’s ID and those that
are attached to a controlling terminal are shown. Additional categories of processes can
be added to the display using certain options:

e -aoption Includes processes that are not owned by the user who issues the
command itself; displays all processes attached to the control terminal

© 2002 by CRC Press LLC

* -x option

* -r option

¢ -l option

Includes processes without control terminals; when both -a and -x

are specified, ps displays processes owned by anyone, with or with-
out a control terminal

Restricts the list of displayed processes to the running processes:

runnable processes, those in page wait, or those in short-term noninter-
ruptible waits

picture of each displayed process

Displays a long listing with many additional fields; gives a full

* -u option Displays a user-oriented listing with additional user-related fields

In its standard format, ps displays:

* The process ID, in the PID column

* The control terminal (if any), in the TT column

¢ The CPU time used by the process so far, including both user and system time,
in the TIME column

* The state of the process, in the STAT column
* An indication of the COMMAND that is running

Here is an example:

PID TT STAT

$ ps -ax
0 ?
1 ?
2 ?
2087 pl
2091 pl
199 p2

D

R
Iw

TIME

0:07
0:00
0:00

0:00
0:00
0:00

COMMAND
swapper

/sbin/init -
pagedaemon

-csh (csh)

ps -ax
-sh (csh)

The long listing (option -1) and the user-oriented (option -u) formats are different, as
seen in the following examples (only the first six lines in the listing are displayed):

ps -aux | head -6

USER PID %CPU %MEM
bjl 2905 30.8 3.3
bjl 2906 7.7 1.4
root 2 0.0 0.0
bald 2499 0.0 0.0
root 85 0.0 352

ps -alx | head -6

F uib PID PPID CP
80003 0 0 0 0
20088000 0 1 0 0
80003 0 2 0 0
88000 0 54 1 0
88000 0 59 1 0

Y4
228
40
0
36
0.0

PRI

-25
5

-24
1
1

RSS
476
200

NI

0
0
0
0
0

T
pl
pl

co

Y4
0
52
0
68
120

RSS WCHAN STAT TT

0

SO OO

STAT START
R 09:29
S 09:29
D Mayl6
w May23
w Mayl6

runout
child
child
select
select

D
Iw
D
Iw
Iw

TIME
0:00
0:00
0:00
6:23
0:36

NN TN NN

COMMAND
ps -aux

head -6
pagedaemon
telnet rsO1-ch
in.named

TIME COMMAND
0:41 swapper

0:00 /sbin/init -
0:00 pagedaemon
0:29 portmap
5:40 ypserv

The meaning of the columns in the listings is given below; the letters “u” and “1” indicate
the options user and long; “all” stands for both.

© 2002 by CRC Press LLC

Column Meaning

USER (u) The user name of the process owner
UID (1) The user ID of the process owner
PID (all) The process ID of the process
PPID (1) The process ID of the parent process
%CPU (u) Percentage of the CPU this process used in the previous minute
%MEM (u) Percentage of real memory this process is using
PRI (1) The priority of the process
NI () NICE value; used in priority computation
RSS (all) Resident set size (real memory size) in KB
SZ (u) The combined size of the data and stack segment in KB
WCHAN (1) The event for which the process is waiting or sleeping
START (u) Starting time of the process (if created this day) or the date otherwise
TT (all) The controlling terminal for the process
TIME (all) The CPU time (both user and system) the process has consumed
COMMAND (all) The command name and its arguments
STAT (all) The state of the process given as a sequence of four letters:
First letter: R =runnable D=short-term wait for disk
S =sleeping (<20 sec) I =sleeping (>20 sec)
T =stopped Z =zombie
P =page wait
Second letter: W =swapped out >=memory soft limit exceeded
Third letter: N =reduced priority <=raised priority
Fourth letter: Indicates some special process treatment
F (1) Flags associated with the process and presented in hexadecimal notation

(up to 8 hex. numbers). A number of flags describe the process in more detail.
For a flag specification consult manual pages.

The most common format of the BSD-flavored ps command is:
ps -aux

The output of this command is an extensive listing of process-related data sufficient for
most administrative needs.

2.4.3.1.2 System V (AT&T) Flavored ps Command

The ps command displays the status of currently running processes; without any options,
only the processes associated with the current terminal are displayed. The basic options
are:

¢ -e option Displays all processes
e -f option Produces a full listing, including the process start time

e -l option Displays a long listing with many additional fields

The regular output of this command is a so-called “short” listing (as opposed to the full
or long listing). A short listing contains only the user and process IDs (including parent
process 1D), terminal identifier, start and cumulative execution time, and the command
name. An example of the short listing for all processes follows:

$ ps -e

uib PID PPID C STIME TTY TIME COMMAND
root 0 0 0 Dec 31 ? 0:05 swapper
root 1 0 0 11:23:17 ? 0:00 init

© 2002 by CRC Press LLC

root

dubey
bjl

1550
1618

0

1549
1591

0 11:23:16 ? 0:00 vhand
0 08:40:13 ttysO 0:00 -sh
10 09:25:59 ttys1 ~ 0:00 ps -ef

A full or long listing displays many additional pieces of information:

$ ps -ef | head -6

F S UID PID PPID
3 S root 0 0
1 S root 1 0
3 S root 2 0
3 S root 3 0
3 S root 7 0

$ ps -1 | head -5
F S UID PID PPID
1 S 201 9444 9443
1 S 0 9443 106
1 R 201 9473 9472
1 S 201 9472 9444

C PRI NI ADDR SZ WCHAN STIME TTY TIME COMD

0 128 20 1e0568 0 Dec 31 ? 0:06 swapper

0 168 20 2056540 54 7{fe6000 May 16 ? 0:00 init

0 128 20 2056480 0 1ee3d0 May 16 ? 0:01 vhand

0 128 20 20564c0 0 lec4d4 May 16 ? 0:00 statdaemon

0 128 20 2056500 0 1e8dcO May 16 ? 0:00 unhash-
daemon

PRI NI ADDR SZ WCHAN TTY TIME COMD
158 20 2151100 52 350clc ttys1 0:00 sh

154 20 2151a40 17 221728 ttys1 0:00 telnetd
179 20 20d7f40 17 ttys1 0:00 ps

154 20 2151680 6 330004 ttys1 0:00 head

BN SO N

The column headings and the meaning of the columns in a ps listing are given below;
the letters “f”and “1” indicate the option (full or long) that causes the corresponding
heading to appear; “all” means that the heading always appears. Note that these two
options determine only which information would be displayed for a process; they do not
determine the processes to be listed.

Column Meaning
F O Flags (octal and additive) associated with the process:
0 =swapped 1=in core
2 =system process 4 =locked in core (e.g., for I/0)
10 = traced by another process 20 =another tracing flag
S) The state of the process:
0 =nonexistent S =sleeping
W =waiting R =running
I =intermediate Z = terminated
T =stopped X=growing
UID (D The real user ID number of the process owner; the login name is printed under the
-f option
PID (all) The process ID of the process; it is possible to kill a process if you know this datum
PPID () The process ID of the parent process
C (D Processor utilization for scheduling
PRI @ The priority of the process; higher numbers mean lower priority
NI O Nice value; used in priority computation
ADDR @ The memory address of the process, if resident; otherwise, the disk address
SZ O The size in blocks of the core image of the process
WCHAN)] The event for which the process is waiting or sleeping; if blank, the process is running
STIME 69) Starting time of the process. The starting date is printed instead if the elapsed time
is greater than 24 hours
TTY (all) The controlling terminal for the process
TIME (all) The cumulative execution time for the process (reported in the form “min:sec”)
COMD (all) The command name; the full command name and its arguments are printed under

the -f option. This field is renamed COMMAND except when the -1 option is specified

© 2002 by CRC Press LLC

The most common format of the System V flavored ps command is:
ps -ef

The full listing provides all the process-related data we need for a successful
administration.

2.4.3.2 Destroying Processes

The UNIX kill command will eliminate a process entirely:

kill [-signal] pid

where
signal Signal to be sent to the process (default: signal #15=TERM)
pid Process identification number (PID)

A signal is optional. BSD allows the user to specify either the signal number or its
symbolic name. System V requires the signal to be specified numerically.

The signal #9 (KILL) guarantees that the process will be destroyed. When a process is
killed, it informs its parent process of its imminent termination (death), and waits for the
parent’s acknowledgment. After receiving acknowledgment, the PID of the killed process
is removed from the process table.

Normally, the default kill command is used to terminate a process without the specified
signal that corresponds to the signal #15 (TERM); such a command is also known as a soft
kill. Upon receipt of the TERM signal, the process should exit in a normal way by closing
all the resources it is using. Occasionally, a process may still exist after a soft kill command.
If this occurs, another so-called hard kill has to be applied. By executing the kill command
with the signal #9 (KILL signal), a process is forced to exit. However, this kind of process
termination is not good for the system because some system resources may remain
unclosed and still busy. A hard kill should be used only as a last resort in attempting to
terminate a process.

Processes will not terminate (die) even after being sent the KILL signal if they fall in
one of the following three categories:

1. Zombies — A process in the zombie state (presented as Z status or defunct in ps
display) is one in which all of the process’s resources have been freed, but the
parent process’s acknowledgment has not occurred. Zombies are always cleared
when the system is booted and do not affect system performance.

2. Processes waiting for unavailable NFS resources — In such a case, a kill com-
mand with signal #3 (QUIT) or #2 (INT) should be used.

3. Processes waiting for a device to complete an operation — For example, waiting
for a tape to finish rewinding.

Killing a process also kills all of its child processes that share the same process group. For
example, killing a shell usually kills all the foreground and stopped background processes
initiated from that shell, including other invoked shells. Killing a login shell is equivalent
to logging the user out. It is common for children and parents to belong to the same process
group, but this is not necessarily always true (see Job Control at the end of this section).

Although the name kill indicates that the command should destroy a process, its real
effect depends on the selected signal that is sent to the process. Sometimes the command

© 2002 by CRC Press LLC

does not destroy a process at all, and it can even do the opposite. For example, by sending
the signal CONT to a previously stopped process, the process will continue to run; you
would not think a “killed” process could be “revived.” In that light, a more appropriate
name for the command could be “send signal,” because it better describes what the
command is really doing.

The -1 option is available to display a list of signal names:

$ kill -1 (SunOS, Solaris)

HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE ALRM
TERM URG STOP TSTP CONT CHLD TTIN TTOU 10 XCPU XFSZ VTALRM
PROF WINCH LOST USR1 USR2

$ kill -1 (HP-UX)

NULL HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS SEGV SYS PIPE
ALRM TERM USR1 USR2 CHLD PWR VITALRM PROF POLL WINCH STOP
TSTP CONT TTIN TTOU URG LOST DIL

As we can see, the order of listed signal names is not necessarily the same. Fortunately,
the most important and most often-used signals match. The list of signals with descriptions
follows.

Signal Number Signal Symbolic Name Signal Description
0 NULL No effect
1 HUP Hang-up (for daemons, force a daemon
to reread its configuration data)
2 INT Interrupt for a process
3 QUIT Quit
ILL Illegal instruction
TRAP Trace trap
ABRT ABR (IOT) trap
EMT EMT trap
FPE Arithmetic exception
9 KILL Kill — destroy a process
BUS Bus error
SEGV Segmentation fault
SYS Bad argument for a system call
PIPE Broken pipe
ALRM Alarm clock
15 TERM Soft termination — terminate a process
URG Socket in extremes
STOP Stop a process
TSTP Keyboard stop for a process
CONT Continue a stopped process
CHLD Status change for a child process
TTIN Invalid read
TTOUT Invalid write
10 IO possible on FD
XCPU CPU time limit up
XFSZ File size limit up
VTALRM Virtual time alarm
PROF Profiling time alarm
WINCH Window change
LOST Resource lost
USR1 User-defined
USR2 User-defined

Note: An empty Signal Number field indicates that it varies among flavors. The most important signals are
presented in bold letters.

© 2002 by CRC Press LLC

2.4.3.3 Job Control

A job is a collection of one or more processes that share the same process group ID. Job
control is a feature that allows multiple processes to start from a single terminal, and also
allows some control over their execution. Job control requires support from the terminal
driver, the signal mechanism, the used shell, and the underlying operating system. Job
control allows the user to have multiple jobs sharing a single terminal, to move jobs from
foreground to background and vice versa, to suspend and restart jobs, and to perform other
miscellaneous activities. A job control-compatible shell makes each child process sent to the
background a leader of its own process group. In this way, it makes a child process insen-
sitive to signals sent to the parent shell (recall that signals have an effect on all processes
within the same process group). One of the consequences is, for example, that all background
processes remain alive upon the termination of the shell (when the user logs out).

There are several job-related UNIX commands, i.e., jobs, fg, bg, which are quite com-
prehensive and easy to use. They are primarily user oriented, although they can play a
role in UNIX administration, too.

© 2002 by CRC Press LLC

3

UNIX Administration Starters

3.1 Superuser and Users

The central entity in UNIX is a file — every activity on the system represents some kind
of transaction with or between files. Consequently, administrators of UNIX systems are
expected to deal with files, including the special purpose files known as configuration
files. Configuring system functions, setting some system parameters, tuning a kernel, and
restoring a lost file, all require the appropriate access to the needed data within the file.
On the other side, system files always require privileged access. In practice, this means
that the administrator has to be a superuser on the system in order to effectively administer
the UNIX system.

3.1.1 Becoming a Superuser

On a UNIX platform, the superuser is a privileged user with unrestricted access to all files
and commands. The name of this user account is root; the account is protected with a password
as with any other user account.

There are two ways to become the superuser:

1. Log in directly as root. This is always possible from the system console; it is
recommended that you disable the direct root log-in from other terminals as
a security precaution, but this is not a requirement.

2. Switch from another user log-in account to the superuser’s account by executing
the su command.

In both cases the system will prompt for the root password. After entering the correct
password, the superuser is logged into the system and has full control over all its
resources. The root account is extremely sensitive; one wrong move can easily destroy
important files and crash the system itself. Only knowledgeable persons should enjoy
superuser status; it is very important to restrict root access only to a certain group of
people who are responsible for the system itself. Obviously UNIX administrators should
belong to this group.

© 2002 by CRC Press LLC

3.1.2 Communicating with Other Users

The UNIX administrator frequently needs to communicate with other users, mostly to
inform them of current administrative activities being performed on the system. Some
examples include instructing all logged-in users to close their files and logout on time
when a system is going to be shut down informing users when new software is installed,
or passing along any other information important for regular system operations.

Several UNIX commands are available for this purpose:

* Sending a message to the user:

write username [tty]

where
username User to whom the message is sent
[tty] Optional terminal if the user is logged in to more than one

The text of the message should be typed after the command is issued; typing Ctrl-D
("D) terminates the command. Once the message is terminated, the shell returns the
command prompt. The typed text of the message will be displayed at the terminal screen
of the addressed user.

* Sending a message to all users
wall (stands for “write all”)

The text of the message should be typed after the command was issued; typing
Ctrl-D ("D) terminates the command. The typed text of the message will be
displayed at the terminals of all logged-in users.

* Sending the message of the day

The message of the day — “motd” — can be used to broadcast systemwide informa-
tion to all users. The file /etc/motd keeps an arbitrary message which will be dis-
played during any user’s log-in procedure. Log-in is probably the most convenient
time to catch the user’s attention, because the user is fully concentrated on the
output of the log-in procedure. That makes it an ideal time to inform users about
changes in the system, newly installed software, and so on.

Any editor can be used to edit the /efc/motd file; the default UNIX editor is “vi.”

* Sending e-mail to user(s)

E-mail is a convenient vehicle for communicating nonurgent or lengthy messages
to users. E-mail is especially convenient for informing users about automated
jobs because it is very easy, for example, to send a message about the status of
an executed job to the users from the script that ordered the execution.

3.1.3 The su Command

We already mentioned the su command when we discussed how to become the superuser.
But the su commands does more; su allows an already logged-in user to become another
user without logging out. The format of the su command is:

su [- | [username [arg...]]

© 2002 by CRC Press LLC

where

- (dash) Must be specified as the first option when the environment for the specified
user is passed along unchanged, as if this user actually logged in. Otherwise,
the environment is passed along with the exception of certain environment
variables. Please note the differences to avoid any possible confusion regard-
ing the new user environment.

username Specifies the name of the new user to whom to switch; the default user name
is root. Without a specified user name, the command will try to switch to the
superuser.

arg... One or more optional arguments to be passed to the new shell; an arg of the
form “-c cmd_string” executes the command string using the shell; an arg of

7

-1” gives the user a restricted shell.

The su command requires the user to supply the appropriate password unless a switch
from the root to another user account is performed. If the password is correct, su creates
a new shell process with the characteristics of the specified user (RUID, EUID, RGID,
EGID, and supplementary groups). The new shell will be the shell specified in the username’s
passwd entry; otherwise the default Bourne shell sh will be invoked. To return to the initial
user’s account, type exit, or Ctrl-D (~D) to exit the new shell. All attempts to become su
are logged in the log file /var/adm/sulog.

A few examples follow:

* Tobecome user bjl while retaining the previously exported environment, execute:
$ su bjl

* To become user bjl but also change the environment as if bjl had originally
logged in, execute:
$ su - bjl

* To execute commands with the temporary environment and permissions of user
bjl, type:
$ su - bjl -c command args

3.2 UNIX Online Documentation
3.2.1 The man Command

UNIX has integrated online documentation, which is available to all users and UNIX
administrators. It is very hard to imagine successful administration without the extensive
online help provided by the UNIX manual pages. Every command, every option, all system
calls, and many other details are fully documented and available whenever you need
them, and they are always flavor-specific and accurate.

The basic online version of the UNIX reference manuals is usually located under the
manual page directory /usr/man, with possible additional topics located in the other “man”
directories /dirpath/man. The environment variable M ANPATH should include all “man”
directories in a complete search of the selected manual page title; otherwise, the system
will not be able to find and display the required manual pages.

© 2002 by CRC Press LLC

UNIX manual pages are divided into a number of sections, each containing similar
topics. The basic section organization is presented in the following table:

Contents BSD section System V section
User commands 1 1
System calls 2 2

C and other library routines 3 3
Special files, device drivers, hardware 4 7
Configuration files 5 4

Games 6 6orlorN/A
Miscellaneous commands 7 5
Administration commands 8 ™M
Maintenance commands 8 8

Note: An older organizational scheme under System V is also in use.

Modern UNIX flavors introduced new sections that were usually appended to the
existing ones. It is entirely possible for the manual pages to be organized somewhat
differently on your UNIX system.

Sections reside in separate subdirectories beneath the initial “man” directory. Here is an
example from the Solaris 2.x platform:

$ 1s -F /usr/man

cat-w/ manlf/ man3c/ man3r/ man4/ man7fs/ man9f/
cat./ manlm/ man3e/ man3s/ man4b/ man7i/ man9s/
man.cf manls/ man3g/ man3t/ manb/ man7m/ manl/

manl/ man2/ man3k/ man3x/ man6/ man7p/ mann/
manlb/ man3/ man3m/ man3xc/ man7/ man9/ windex
manlc/ man3b/ man3n/ man3xn/ man7/d man9e/

The UNIX man command is available to display specific manual pages. The command
has several options, but its basic format is:

man man_page_title

where
man_page_title A title we are looking for. If the specified title does not exist, or if it is
spelled incorrectly, the system informs us; otherwise the required
manual pages will be displayed, page by page.

The general format of the displayed manual pages includes the following paragraphs,
if applicable:

NAME A specified title with a brief description
SYNOPSIS A format for using the specified title
DESCRIPTION A full description of the specified title
OPTIONS Available options for the specified title

ADDITIONAL INFO Title-specific additional information such as like environment
issues, exceptions, additional explanation, etc.

EXAMPLES Examples for further explanation
FILES Title-related files
SEE ALSO Other related titles

© 2002 by CRC Press LLC

The following example for the title man (referring to the man command) fully documents
how to use the man command.

$ man man

MAN(1) USER COMMANDS MAN(1) NAME

man — display reference manual pages; find reference pages by keyword
SYNOPSIS
man [-] [-t] [-M path] [-T macro-package] [[section] title ...]...

man [-M path] -k keyword...
man [-M path] -f filename...

DESCRIPTION

man displays information from the reference manuals. It can display complete manual
pages that you select by title, or one-line summaries selected either by keyword (-k), or
by the name of an associated file (-f).

A section, when given, applies to the titles that follow it on the command line (up to
the next section, if any). man looks in the indicated section of the manual for those
titles. section is either a digit (perhaps followed by a single letter indicating the type
of manual page), or one of the words new, local, old, or public. The abbreviations n, I, o,
and p are also allowed. If section is omitted, man searches all reference sections (giving
preference to commands over functions) and prints the first manual page it finds. If no
manual page is located, man prints an error message.

The reference page sources are typically located in the /usr/man/man? directories. Since
these directories are optionally installed, they may not reside on your host; you may
have to mount /usr/man from a host on which they do reside. If there are preformatted,
up-to-date versions in corresponding cat? or fmt? directories, man simply displays or
prints those versions. If the preformatted version of interest is out of date or missing,
man reformats it prior to display. If directories for the preformatted versions are not
provided, man reformats a page whenever it is requested; it uses a temporary file to
store the formatted text during display.

If the standard output is not a terminal, or if the “-” flag is given, man pipes its output
through cat(1V). Otherwise, man pipes its output through more(1) to handle paging and
underlining on the screen.

OPTIONS

-t man arranges for the specified manual pages to be troffed to a suitable raster output device
(see troff(1) or vtroff(1)). If both the - and -t flags are given, man updates the troffed versions
of each named title (if necessary), but does not display them.

-M path

Change the search path for manual pages. path is a colon-separated list of directories that
contain manual page directory subtrees. For example, /usr/man/u_man:/usr/man/a_man makes
man search in the standard System V locations. When used with the -k or -f options, the
-M option must appear first. Each directory in the path is assumed to contain sub-direc-
tories of the form man[1-8l-p].

© 2002 by CRC Press LLC

-T macro-package

man uses macro-package rather than the standard -man macros defined in /ust/lib/tmac/tmac.an
for formatting manual pages.

-k keyword...

man prints out one-line summaries from the whatis database (table of contents) that contain
any of the given keywords. The whatis database is created using the catman(8) command
with the -w option.

-f filename...

man attempts to locate manual pages related to any of the given filenames. It strips the
leading pathname components from each filename, and then prints one-line summaries
containing the resulting basename or names. This option also uses the whatis database.

MANUAL PAGES

Manual pages are troff(1)/nroff(1) source files prepared with the -man macro package.
Refer to man(7), or formatting documents for more information.

When formatting a manual page, man examines the first line to determine whether it
requires special processing.

Referring to Other Manual Pages

If the first line of the manual page is a reference to another manual page entry fitting the
pattern: .so man?*/sourcefile

man processes the indicated file in place of the current one. The reference must be expressed
as a pathname relative to the root of the manual page directory subtree.

When the second or any subsequent line starts with .so, man ignores it; troff(1) or nroff(1)
processes the request in the usual manner.

Preprocessing Manual Pages

If the first line is a string of the form:
\"X

where X is separated from the ” by a single SPACE and consists of any combination of
characters in the following list, man pipes its input to troff(1) or nroff(1) through the
corresponding preprocessors.

eqn(1), or neqn for nroff
refer(1)

tbl(1)

vgrind(1)

< TR O

If eqn or neqn is invoked, it will automatically read the file /usr/pub/eqnchar (see eqnchar(7)).
If nroff(1) is invoked, col(1V) is automatically used.

ENVIRONMENT

MANPATH If set, its value overrides /usr/man as the default search path. (The -M flag, in
turn, overrides this value.)

© 2002 by CRC Press LLC

PAGER A program to use for interactively delivering man’s output to the screen. If not
set, ‘more -s’ (see more(1)) is used.

TCAT The name of the program to use to display troffed manual pages. If not set,
‘Ipr-t’ (see Ipr(1)) is used.

TROFF The name of the formatter to use when the -t flag is given. If not set, troffis used.
FILES

fusr/[share]/man root of the standard manual page directory subtree
fusr/[share]/man/man ?/* unformatted manual entries

fusr/[share]/man/cat ?/*nroffed manual entries

[usr/[share]/man/fmt ?/*troffed manual entries

Jusr/[share]/man/what is table of contents and keyword database
Jusr/[share]/lib/tma c/tmac.an standard -man macro package /usr/pub/eqnchar

SEE ALSO

apropos(1), cat(1V), col(1V), eqn(1), lpr(1), more(1), nroff(1), refer(1), tbl(1), troff(1), vgrind(1),
vtroff(1), whatis(1), eqnchar(7), man(7), catman(8)

NOTES

Because troff is not 8-bit clean, man has not been made 8-bit clean.
The -f and -k options use the /usr/man/whatis database, which is created by catman(8).

BUGS

The manual is supposed to be reproducible either on a photo-typesetter or on an ASCII
terminal. However, on a terminal some information (indicated by font changes, for instance)
is necessarily lost.

Some dumb terminals cannot process the vertical motions produced by the e (eqn(1))
preprocessing flag. To prevent garbled output on these terminals, when you use e also
use t, to invoke col(1V) implicitly. This workaround has the disadvantage of eliminating
superscripts and subscripts even on those terminals that can display them. CTRL-Q will
clear a terminal that gets confused by eqn(1) output.

Linux provides even more; besides this, for UNIX standard online documentation, Linux
also offers Texinfo Manual, which presents more detailed technical descriptions of related
topics. Again its use is very simple; by typing “info topic-name” the required information
about the specified topic is displayed.

3.2.2 The whatis Database

The man command is very useful for getting information on a specific title; a title could
be a command name, system call, library item, or something similar, but an existing title
must always be specified. If such a title is unknown and you are searching for the manual
pages related to a topic (but that topic is not the title itself), the whatis database has been
provided.

© 2002 by CRC Press LLC

UNIX allows you to build the whatis database, which is instrumental in finding infor-
mation about a certain topic without knowing the relevant manual page title. The whatis
database contains all of the manual page titles with a brief description of them; it primarily
resides in the /usr/man/windex file (sometimes the file name is whatis), but also in other
additional database files in the corresponding “man” directory. The command “man -k
topic_item” will search through the whatis database and display all manual page titles
that refer to the specified “topic_item.” Once the relevant title is known, the corresponding
manual pages can be displayed. For a better understanding, see the -k option in the manual
pages for the man command.

The whatis database must first be created locally; copying a database from another
system does not work because the database must be directly linked with existing manual
pages on the system where it resides. Additionally, the database should always be recre-
ated when new manual pages are added to the system; the database must integrate the
newly available titles.

The UNIX command catman-w is available to create a whatis database. It is very easy
to begin to create a database, but it takes quite a while for the process to finish. It is a good
idea to create a whatis database immediately upon UNIX installation.

Some UNIX flavors introduced new commands to create the whatis database. In Linux,
the whatis and apropos commands are available (they have almost the same appearance
as “man -k”), and the command makewhatis to create the whatis database.

3.3 System Information

UNIX administration means administering UNIX software or, more precisely, UNIX
system software. Software requires maintenance just like any other product; but
because of their complexity, software systems require a more sophisticated level of
maintenance. Among the increased requirements are highly educated and skilled
personnel who are capable of managing, upgrading, configuring, and fixing unpre-
dictable and very sophisticated problems.

Software could not exist without the corresponding computer hardware. Knowledge of
hardware can be very instrumental and helpful in UNIX system administration. At the very
least, a UNIX administrator has to be familiar with basic system hardware configuration.

In the following text, several UNIX commands of this nature will be discussed.

3.3.1 System Status Information

To begin, let us introduce a few commands useful for checking the system status.

3.3.1.1 The uname Command

The uname command prints the basic UNIX system information to the standard output
file. The displayed system data contain: hostname, operating system data, and hardware
architecture data.

The format of the command is:

uname [options]

© 2002 by CRC Press LLC

where the available options are:

-n Print the hostname (the hostname may be the name by which the system is known
to a communications network)

-s Print the operating system name (default)

-r Print the operating system release

-v Print the operating system version

-m Print the machine hardware name (architecture)

-a Print all the above information

The output of the uname -a command for several UNIX flavors is presented in the
following table:

ULTRIX acf4 4.3 1 RISC

HP-UX apollo A.09.03 A 9000/715 2004998919 two-user license

HP-UX baltic B.10.20 A 9000/800 1293244351 two-user license

IRIX indigol 4.0.5 06151813 IP12

SunOS patsy 4.1.3 1 sundc

SunOS apollo 5.3 Generic sundm sparc

SunOS aegean 5.6 Generic_105181-17 sun4u sparc SUNW,Ultra-Enterprise
AIX rs01-ch 2 3 000187963100

Linux broome 2.2.16 #2 SMP Thu Oct 12 22:32:13 GMT 2000 i686 unknown

Supposing a default system startup, Linux offers more detailed information about OS
in the file /etc/issue. By typing:

$> cat /etc/issue

Red Hat Linux release 7.0 (Guinness)
Kernel 2.2.16 on a 4-processor i686

we will definitely learn more about our Linux installation.

3.3.1.2 The uptime Command

The uptime command displays:

¢ The current time

* How long the system has been up (the length of time)

¢ Number of users

* A rough estimate of the system load over the last estimate, every 5 and 15 minutes

Here are a few examples:

uptime

6:47am up 6 days, 16:38, 1 user, load average: 0.69, 0.28, 0.17 (Solaris)
9:50am up 9 days, 34 min, 3 users, load average: 0.00, 0.00, 0.00 (SunOS)
9:38am up 9 days, 27 min, 1 user, load average: 2.07, 2.03, 2.03 (HP-UX)

3.3.1.3 The dmesg Command

The dmesg command collects system diagnostic messages; it looks in a system buffer for
recently generated messages when errors occur and forwards them to the standard output.

© 2002 by CRC Press LLC

When the “-” option is used, the dmesg command incrementally generates messages that
are new since the last time it was executed.

Sometimes, existing imperfections can stay hidden and the system appears to be working
fine; in such cases the dmesg command could be very useful. However, the system error
message buffer is of a small, finite size, so there is no guarantee that all error messages
will be logged.

In the past, the dmesg command was also used to update the system log file (usually /usr/
adm/messages) by its periodic execution through the cron facility. A typical crontab entry:

fetc/dmesg - >> Jusr/adm/messages

would update the system log file periodically. Today, such a task is obsolete, and an update
of the system log file is performed by the syslogd daemon (see Chapter 9).
An example follows (from the HP-UX platform):

$ dmesg

May 20 16:59
Floating point coprocessor configured and enabled.
1/O System Configuration:
Block TLB entry #8 from 0x 5000000 to 0 f5ffffff allocated.
HPA1991AC19 Bit-Mapped Display (revision 8.02/10) in SGC slot 0
SGC at select code 0% 0
Built-In SCSI Single-Ended Interface at select code 0x 20: function number 1
Built-In LAN controller found at select code 0 x 20: function number 2
HIL interface at select code 0 x 20: function number 3
Built-In RS-232C Serial Interface at select code 0x 20: function number 4
Built-In RS-232C Serial Interface at select code 0x 20: function number 5
Parallel port at select code 0x 20: function number 6
Advanced Digital Audio Interface at select code 0x 20: function number 8
System Console is on the ITE
Networking memory for fragment reassembly is restricted to 2957312 bytes
Swap device table: (start & size given in 512-byte blocks) entry
0 - auto-configured on root device; start = 869400, size=152702
Core image of 8192 pages will be saved at: block 478283 on device 0 x 7201600
Warning: filesystem time later than time-of-day register
Getting time from filesystem
B2352A HP-UX (A.09.03.nodebug) #1: Mon Aug 30 21:05:26 MDT 1993
Memory Information:
Physical: 32768 Kbytes, lockable: 26168 Kbytes, available: 27880 Kbytes
Copyright (c) 1990-1998, Rational Software Corporation.
Covered by U.S. patent no. 5,574,898.
Other U.S. and foreign patents pending.
automountd not running, retrying
automountd OK

3.3.2 Hardware Information

It is logical to want to upgrade your UNIX system to improve its overall performance. The
first thing you need to know is the current hardware configuration of the UNIX system: how
many CPUs are installed? How much memory is used? What is the size of the disk space?
These simple questions are very common, and the UNIX administrator always addresses them.

A partial answer can be obtained with the UNIX command top. The top command lists
the top-most CPU-consuming processes. The command is extremely instrumental in
performance measurement and the tracing of potential problems. However, the command

© 2002 by CRC Press LLC

also displays basic data about the number of CPUs and memory usage, which is what we
are looking for right now. An example follows:

top

System: mekong Mon Jul 17 22:51:28 2000
Load averages: 0.91, 0.77, 0.75
199 processes: 197 sleeping, 2 running

CPU states:

CPU LOAD USER NICE SYS IDLE BLOCK SWAIT INTR SSYS
0 0.83 1.0% 0.0% 1.4% 97.6% 0.0% 0.0% 0.0% 0.0%
1 0.99 75.2% 0.0% 24.8% 0.0% 0.0% 0.0% 0.0% 0.0%
avg 0.91 38.0% 0.0% 13.1% 48.8% 0.0% 0.0% 0.0% 0.0%

Memory: 49676K (40972K) real, 100316K (83172K) virtual, 196720K free Page# 1/19
CPU TTY PID USER PRI NI SIZE RES STATE TIME %WCPU %CPU COMMAND

NAME
1 q2 27047 cbwl 239 20 4740K 968K run 173:59 99.09 98.92 udt
0 ? 398 root 154 20 108K 140K sleep 1324:09 0.93 0.93 syncer
0 ? 7448 rpsc 168 20 4484K 696K sleep 35:57 0.89 0.89 udt
0 pl 8405 root 178 20 1260K 340K run 0:00 0.85 0.49 top
0 ? 6948 root 155 2 6288K 6340K sleep 28:49 0.41 0.41 Iep

It is also a good idea to try using the available system administration tools, like the HP-UX
flavored SAM, or AIX flavored SMIT. These always provide hardware-related information
among their many other menu selections. They are very well suited to this purpose,
because a search for hardware information is almost always interactive.

Otherwise, each UNIX flavor provides a different set of commands used to diagnose
the installed hardware. We will discuss some of them.

3.3.2.1 The HP-UX ioscan Command

On the HP-UX platform, the special command ioscan is available for dealing with actual
hardware. The command scans system hardware, usable I/O system devices, or kernel I/O
system data structures, as appropriate, and lists the results. For each hardware module
on the system, ioscan displays (by default) the hardware path to the hardware module,
the class of the hardware module, and a brief description of it.

By default, the ioscan command scans the system and lists all reportable hardware
found. The types of hardware reported include processors, memory, interface cards, and
I/0O devices. Entities that cannot be scanned are not listed.

The ioscan command recognizes the following options:

-C class Restricts the output listing to those devices belonging to the specified
class

-d driver Restricts the output listing to those devices controlled by the specified
driver

-f Generates a full listing, displaying the module’s class, instance number,
hardware path, driver, software state, hardware type, and a brief
description

-F Produces a compact listing of fields separated by colons

© 2002 by CRC Press LLC

-H hw_path Restricts the scan and output listing to those devices connected at
the specified hardware path

-I instance Restricts the scan and output listing to the specified instance

-k Scans kernel I/O system data structures instead of the actual hardware
and lists the results

-n Lists device file names in the output; only special files in the /dev
directory and its subdirectories are listed

-u Scans and list usable I/ O system devices instead of the actual hardware.
Usable 1/0 devices are those having a driver in the kernel and an
assigned instance number.

Some of the options require additional arguments, known as fields, which are defined
as follows:

class A device category, for example: disk, printer, or tape

instance The instance number associated with the device or card; it is a unique
number assigned to a card or device within a class

hw_path A numerical string of hardware components, noted sequentially from the
bus address to the device address; typically, the initial number is appended
by slash (“/”), to represent a bus converter (if required by the machine),

and subsequent numbers are separated by periods (”.”). Each number
represents the location of a hardware component on the path to the device.

driver The name of the driver that controls the hardware component

The following example shows a partial output of the ioscan command:

/usr/sbin/ioscan

H/W Path Class Description
be
8 bc 1/O Adapter
10 be 1/O Adapter
10/0 ext_bus GSC built-in Fast/Wide SCSI Interface
10/0.5 target
10/0.5.0 disk SEAGATE ST15150W
10/0.6 target
10/0.6.0 disk SEAGATE ST15150W
10/0.7 target
10/0.7.0 ctl Initiator
10/4 bc Bus Conuverter
10/4/0 tty MUX
10/4/12 ext_bus HP 28696A-Wide SCSI ID =7
10/4/12.12 target
10/4/12.12.0 disk SEAGATE ST32550W
10/12/5.0 target
10/12/5.0.0 tape HP C1533A
10/12/5.2 target
10/12/5.2.0 disk TOSHIBA CD-ROM XM-5401TA
10/12/5.7 target
10/12/5.7.0 ctl Initiator

© 2002 by CRC Press LLC

10/12/6 lan Built-in LAN

10/12/7 ps2 Built-in Keyboard/Mouse
32 processor processor

34 processor processor

49 memory Memory

3.3.2.2 The Solaris prtconf Command

On the Solaris platform, the prtconf command displays the system configuration information.
The output includes the total amount of memory and the configuration of system
peripherals formatted as a device tree.

The prtconf command has several options:
-P Includes information about pseudo devices; by default, information regarding
pseudo devices is omitted

-v Specifies verbose mode

-F Returns the device pathname of the console frame bulffer, if one exists. If there
is no frame buffer, prtconf returns a non-zero exit code

-p Displays information derived from the device tree provided by the firmware
(PROM)

-V Display platform-dependent information

-D For each system peripheral in the device tree, displays the name of the device
driver used to manage the peripheral

The following example presents a partial output of the command running on a Sun4/65
series machine:

lusr/sbin/prtconf

System configuration: Sun Microsystems sundc
Memory size: 16 megabytes
System peripherals (software nodes):
Sun 4_65

options, instance #0

zs, instance #0

zs, instance #1

fd (driver not attached)

audio (driver not attached)

sbus, instance #0

dma, instance #0

esp, instance #0

sd (driver not attached)

st (driver not attached)

sd, instance #0

sd, instance #1 (driver not attached)

le, instance #0

cgsix (driver not attached)
auxiliary-io (driver not attached)
interrupt-enable (driver not attached)
memory-error (driver not attached)
counter-timer (driver not attached)
eeprom (driver not attached)

pseudo, instance #0

© 2002 by CRC Press LLC

The output of the prtconf command is highly dependent upon the version of the PROM
installed in the system. The output will be affected in potentially all circumstances.

The “driver not attached” message means that no driver is currently attached to that specific
device. In general, drivers are loaded and installed (and attached to hardware instances) on
demand and when needed, and may be uninstalled and unloaded when the device isnot in use.

3.3.2.3 The Solaris sysdef Command

Another Solaris command that can be used for this purpose is sysdef. The sysdef command
outputs the current system definition in tabular form. It lists all hardware devices, as well
as pseudo devices, system devices, loadable modules, and the values of selected kernel
tunable parameters. It generates the output by analyzing the named bootable operating
system file (namelist) and extracting the configuration information from it. The default
system namelist is /dev/kmem. However, the command output is not entirely comprehen-
sive for figuring out basic hardware information; it is more suitable for kernel-related
information. This command should probably not be the first choice.

3.4 Personal Documentation

UNIX administration is a challenging job; it requires a substantial level of expertise and skills.
But UNIX administration is also a routine job, in which the tasks can only be successfully
accomplished by following the required procedures. To install UNIX, you must follow the
vendor’s instructions and recommendations; to configure an application you must strictly
obey configuration rules. There is no room for improvisation; improper settings are the main
causes of system instability and all related problems. Bugs in the software are a good excuse
for our wrongdoings, but only rarely are they the real cause of the problems we experience.

Properly configuring a system, and ensuring all of its settings are correct, is not an easy
task. Often there are plenty of small but important details that we must take care of. It is
easy to forget these small issues, especially if we only deal with them occasionally. Taking
notes on everything done to the system can be very instrumental for future work; such
notes can be the lifesaver in some critical situations. These moments are always very
stressful, and an administrator has to act quickly and accurately. There is no better advice
for that time than to follow your own, already tested and proven notes.

Many administrative tasks repeat a number of times; it is common to install the same
UNIX version on different machines, to configure hosts in the same network environment,
to set the same application software multiple times, etc. Any notes about jobs you have
done previously can be very helpful; the length of time between jobs can be large enough
that you may forget many important details.

Note by note a substantial personal documentation will be built; this is your “knowledge
database,” and it is very important for efficient work. You will always be more familiar
with your own documents than with any vendor-provided documentation. There is no
need to worry about style, syntax, or language — as long as they are explicit and complete,
you will always understand your own texts.

A key issue for successful UNIX administration is to be well organized. System admin-
istration is based on rules designed by others: different configuration files have different
formats and syntax. Each required letter, number, dot, dash, or whatever is specified must
be fully respected — there is not a great deal of freedom of choice. A UNIX administrator
cannot invent another set of configuration rules, even if the existing ones do not seem

© 2002 by CRC Press LLC

very logical or convenient. It simply will not work. Past experiences can save time and
make everything easier; copying a workable procedure is definitely more efficient than
reinvestigating something you have already done.

In most cases, UNIX administration is also a team task. It takes a number of UNIX
administrators (as well as others such as NT administrators, network administrators,
helpdesk staffers, etc.) to support large company networks. One important issue, then, is
how to make their collective work more efficient. One logical solution is to combine all
individual documentation and then make all of this documentation available to all team
members. The organization of this effort, however, is crucial.

A very efficient approach to making all system documentation available yet well orga-
nized is to put individual personal documents on the company network, creating sub-
stantial internal company site-specific documentation, and make the documentation
available to all relevant associates. By posting these documents on an internal company
Web site (if necessary even creating an internal Web site for this purpose), everyone will
be able to obtain the necessary information about any described topic. The documentation
remains open for any required update or upgrade. To prevent potential frauds, the access
to documents should be restricted to administrative personnel only.

There are third-party products that provide tools to create internal knowledge databases;
in most cases they offer other features, as well. However, they can be costly and sometimes
too complex to work with. Creating your own internal, Web-based documentation site is
simple, inexpensive, and very efficient.

3.5 Shell Script Programming

Shell programming is one of the strongest parts of the UNIX administration. This is also one
of the key elements of an overall UNIX success. UNIX administrators are in love with shell
programming. Where is this authoritative statement coming from? It is coming from the fact
that the shell programming presents an extremely powerful tool to customize and automate
your UNIX system, as well as to accomplish many manual administrative activities easier.

An intuitive and colorful graphic user interface (GUI) sounds challenging for certain
complex administrative actions. However, GUI actions remain quite hidden from us. GUI
is great as long as everything is going smoothly, but very frustrating once it starts to fail.
And what do you do when GUI is not even running because of underlying problems? Or,
how do you automate some repeated actions? Even to document needed steps in the GUI
administration is not an easy task.

A good UNIX administrator tends to pack needed administrative actions into the
corresponding shell scripts, and then to use the scripts instead. Well-written and tested
shell scripts are always working properly, even in the most critical situations when the
pressure on the UNIX administrator is always very high. There are no typos and mistyping
in the shell-script implementations nor are there incorrect command options — frequent
errors during manual procedures. Everything is happening correctly and in the fastest
possible way. Simply, shell scripts are lifesavers.

There are also many other reasons in favor of the intensive shell programming.
Time-scheduled scripts will execute successfully the same job as many times as needed,
withor without provided verbose logging, e-mailing, paging, or whatever is required.
We should spend the time only once, when we write the script, and only to use the
script later. And always when we write a script, we should have enough time, and
be doing it far from any of the pressure typical of urgent administrative actions.

© 2002 by CRC Press LLC

Shell programming is a prerequisite for good UNIX administration. It is assumed that
a UNIX administrator is familiar with shell programming. This section is not a tutorial in
shell programming. Rather it points to certain aspects of shell programming that could
be confusing for UNIX administrators (even if not beginners in this area). A thorough
shell-programming tutorial is definitely not in the scope of this book; however, these skills
are assumed throughout the pages of this book.

3.5.1 UNIX User Shell

UNIX user shell is an interface layer between the UNIX operating system and the user. It
is presented in the Figure 3.1.

Input LB
: UNIX
™ Operating
USER - System
Output 5

SHELL

FIGURE 3.1
The user’s shell layer.

There are many different UNIX shell flavors: Bourne shell sh, Korn shell ksh, C shell
csh, Bourne again shell bash, enhanced C shell tcsh, etc. Some shells are very similar — like
ksh and bash, sh is the subset of ksh — but generally they are not mutually compatible
(at least in both directions). This is important to know when a shell script is invoked.

3.5.2 UNIX Shell Scripts

Shell scripts are programs that comply with the shell programming language. Shell scripts
are not compiled programs; instead they are readable text files where each command line
is read and processed by the shell command interpreter at the time the script is executed.
Shell command interpreter processes a shell script until an erroneous command line is
encountered or until it ends. A shell command line can contain:

Any UNIX command or command sequence

Any shell-flavored command or statement

Any other program or shell script

A combination of previously listed items

Each shell has a number of its own commands and statements that actually make shell
programming so powerful. Make sure that they are very shell-specific in every sense:
syntax and action.

© 2002 by CRC Press LLC

3.5.2.1 Shell Script Execution

A shell script (as any other program in UNIX) can be simply invoked by its name, but
the read and execute permissions for the script are required. The following example
illustrates this:

sh# cat ItmpMyScript.sh (to see content)

echo “Just a test of x permission”

sh# Is -1 [tmp/MyScript.sh (to see permissions)
-rw-r—-r-- 1 root root 39 Aug 21 18:27/tmp/MyScript.sh

sh# [tmp/MyScript.sh (to invoke shell script)
sh: ftmp/test4.sh: Permission denied

The script can also be invoked with an explicitly specified shell. In that case the execute
permission on the script is not mandatory. Some UNIX flavors will execute a shell script
even without read permission granted.

sh# /bin/sh [tmp/MyScript.sh

Just a test of x permission

When invoked directly, the shell script is executed in the environment of the current
user shell. The current user shell is forked, and then each command line of the shell script
is processed by the shell interpreter and executed (already discussed fork-and-exec start
of the program). If two shell flavors do not match (the shell script and the parent shell —
for example bash script is invoked in csh environment), most probably a number of errors
will be encountered for basically correct shell script.

The following examples present such situations. The arbitrary bash script named
myscript.bash is invoked in the bash and csh environment:

bash# cat Itmp/myscript.bash

Define variables

export TEXT1 = “This is a bash script myscript.bash”
export TEXT2="Running the script myscript.bash”
#

Run the command

echo “"$TEXT1"”
echo “"$TEXT2"”

bash# [tmp/myscript.bash

This is a bash script myscript.bash
Running the script myscript.bash

bashi [bin/csh (Switch to csh)
cshi# [tmp/myscript.bash

export: Command not found.
export: Command not found.
TEXT1: Undefined variable.

© 2002 by CRC Press LLC

The previous problematic situation could be skipped in two ways. First, as we mentioned
previously, the script can be invoked with explicitly specified shell:

bash# /bin/bash [tmp/myscript.bash (Here shells match)

This is a bash script myscript.bash
Running the script myscript.bash

cshi# [bin/bash [tmp/myscript.bash (Here shells don’t match)

This is a bash script myscript.bash
Running the script myscript.bash

Or the shell can be implicitly specified in the script itself. The very first line in the script
of the format — #!/bin/shellname — has a special meaning. The “/bin/shellname” identifies
the full path of the desired shell, which will be invoked first and then the script executed
in this shell environment. Remember that it can be any other executable program, not
necessarily the shell. However, we are assuming a shell. Here are examples:

bash# cat Itmp/myscriptl.bash
#!/ bin/bash

Define variables

export TEXT1="This is a bash script myscript1.bash”
export TEXT2="Running the script myscriptl.bash”
#

Run the command

echo “"$TEXT1"”

echo “"$TEXT2"”

bash# [tmp/myscriptl.bash

This is a bash script myscript1.bash
Running the script myscript1.bash

cshi# [tmp/myscriptl.bash

This is a bash script myscript1.bash
Running the script myscript1.bash

In all the examples, the current shell spawns itself or another shell, making a “parent-child
relationship” between two shells (current user’s shell and the invoked shell script). However,
a shell script can also be executed directly in the user’s shell environment. For this purpose
the shell script must be “sourced.” A special shell command is used to source the script.

source myscript.sh # for csh and csh-like shells
. myscript.sh # for ksh, bash, and Bourne shells

To source a shell script means to skip the forking of the user’s shell and to execute the
script directly in the user’s shell environment.

3.5.2.2 Shell Variables

We can define and redefine shell environment within the shell script. By invoking a new
shell script, the current shell environment is transferred and the new initial shell
environment created. Remember that this is a unidirectional transfer, from parent toward
child shell (child inherits the parent’s environment); the reverse is never possible. Regarding

© 2002 by CRC Press LLC

shell variables, only global, i.e., exported, variables could be inherited; local variables
remain always within the current shell environment, and they disappear once the shell is
terminated. This sometimes sounds very confusing for the novices in UNIX administration.

In this light we can better understand the need and purpose of the shell command:
source. If we want to define a shell environment within a single script (let us call it
environment definition script), and then share these definitions among many other shell
scripts, we must source the environment definition script. Otherwise, all definitions will
last as long as the execution of the environment definition script. The following example
illustrates that situation.

The user’s shell is Bourne shell. Variables VARA and VARB are not defined.

shi# echo $VARA # To check if $VARA is defined
shi# echo $VARB # To check if $VARB is defined

The script /tmp/myscript2.sh defines the global variables VARA and VARB:

sh# cat Itmp/myscript2.sh

Variable definitions
HHHEHHHHHHHHA
VARA="VariableA”
VARB="VariableB”
Export VARA VARB
HHHEHHHHHHHHA

Upon the script execution, variables VARA and VARB are still undefined in the user’s
shell environment. There is no way to export variables toward the parent shell environment.

sh# [tmpilmyscript2.sh # Execute the script
shi# echo $VARA # To check if $VARA is defined
shi# echo $VARB # To check if $VARB is defined

Upon the sourcing of the script variables, VARA and VARB remain defined within the
user’s shell environment.

sh# . [tmplmyscript2.sh # Source the script

shi echo $VARA # To check if $VARA is defined
VariableA
shi# echo $VARB # To check if $VARB is defined
VariableB

The previous discussion is instrumental in understanding the user’s log-in process and
the initial definition of the user’s shell environment, which is discussed in Chapter 7.

3.5.2.3 Double Command-Line Scanning

Shell variables are often used on the shell command-lines, as a part of UNIX or shell com-
mands. Unfortunately, sometimes they can easily be misinterpreted. Simply, under certain
conditions, shell variables could be understood literally: the variable $VARA from the previous
example can be understood as “$VARA” instead of its value “VariableA.” Just think about
versatile and powerful UNIX commands (better to say UNIX utilities) like, awk, sed, or other
commands that have their own syntax somehow different from the shell syntax. This makes
a great difference and could make the use of shell variables very restricted.

© 2002 by CRC Press LLC

The shell response to this situation is the command: eval. This command allows so-called
“double command-line scanning,” where the shell variables are first processed, developed,
and then replaced for the second command-line processing. For better understanding of
this command, let us see how the shell command interpreter processes a command line
at all. This is presented in Figure 3.2 and explained in the following text.

> Tokenize command

Check quotes
Double quotes

Read next command —p»

No quote

Expand alias

Check 1 token
Opening keyword Other keyword
Not keyword

Syntax erro

14

v
Error

Check 1 token

Not alias

Tilde expansion — substitution of home directory

>y (s)

Variable substitution

v (6)

Command substitution

| I

Arithmetic expression substitution

+ ®)

Tokenize eventually expanded text

v ©)

Wildcard expansion
>¢<

Command lookup
(built-in commands — functions — executables)

Make arguments into next command

Double quotes “

Run
command

eval

FIGURE 3.2
Shell processing of the command line.

© 2002 by CRC Press LLC

1. The command line is “tokenized,” i.e., split into its constituents: word, keywords,
10 redirectors, and semicolons, according to the separating metacharacters: space,
tab, new line,), (, <, >, \, /, and &.

2. The first token is tested if it is “a single-line unquoted keyword” (a keyword
without quotes or continuation character). Shell statements (if, while, until...) and
functions are treated as “opening keywords,” set up internally; the processing
continues with the next token.

3. The command is tested against the list of command aliases; eventual aliases are
expanded and reprocessed.

4. The substitution of an eventual user’s home directory.

5. The variable substitution for any expression with leading $. This is also the
second processing step for double-quoted tokens (steps between are skipped).

6. The command substitution for any single back-quoted expression of the form
‘expression' or $(expression). The expression is executed and substituted with the
obtained result for additional processing.

7. The evaluation of the arithmetic expressions of the form $((expression)). Remember
that the double-quoted expressions are processed differently from others after
this step.

8. The eventual expanded text (as a result of the previous step processing) is now
“tokenized” according to the shell environment internal field separators (IFS).

9. The wildcard expansion of *, ? and [/] pairs, and processing of regular expression
operators.

10. The search for the command in all predefined command directories (according
to the shell $PATH or $path variable). This is also the second, and the only, step
in processing single-quoted command-line tokens.

At this point everything is ready for the command-line execution. However, if the shell
command eval was specified, another round of the command processing will be performed.
This is known as double command-line scanning.

The format of the command is: eval args where args includes the actual command itself
and command arguments. For better understanding of this command, see the following
example. The user’s shell is bash, but it does not have any specific impact on the example
(could be any other shell).

bash# VAR1="$VAR2’ # Define variable VAR1

bash# VAR2='Example’ # Define variable VAR2

bash# echo $VAR1 # Check the values of variables

$VAR2

bash# echo $VAR2

Example

bash# eval echo $VAR1 # Check the values of variables upon double scanning
Example

bash# eval echo $VAR2

Example

© 2002 by CRC Press LLC

3.5.2.4 Here Document

An extremely powerful feature of the shell programming is its Here Document. The shell
redirector of the form: “<< Ilabel” forces the input to the specified command to be the
shell’s standard input, which is read until the line that contains only “label” is reached.
It means that all script command-lines within the Here Document will not be processed by
the shell command interpreter. Instead they will be processed by the command specified
at the start of the Here Document.

Here is an example:

it

myprogram << |EOF
mycommandA
mycommandB
mycommandC

!EOF

i

This shell script command-line sequence will start the execution and transfer the further
command-line control to myprogram. Command lines that follow until the terminating
label !EOF are submitted to and strictly processed by myprogram. The specified label can
be any string, but two labels must match literally; no leading or trailing blanks on the
terminating line are allowed.

Here Document enables an unattended execution of not-shell and not-UNIX commands
within the shell script. It is used frequently for inception of SQL, FIP, and other command
sequences into the shell environment. Unfortunately Here Document does not support inter-
active procedures — simply the next command-line is submitted as soon as the previous
one is done. Generally the main disadvantage of the shell programming is its inability to
act interactively if used unattended. For this purpose Espect or Perl patches are required.

Here Document makes shell script programming easier and more powerful. For more
details see the FIP example in Chapter 21.

3.5.2.5 Few Tips

At the end of this brief overview of certain shell programming topics, few tips for using
the shell scripts:

* A shell script inherits the caller’s environment, usually the user’s shell.
However there are no rules for the initial environment setting. Everything
defined-out-of-script is uncertain, including the search path for the implemented
commands in the script. Some good advice follows:

Define the PATH variable in the script.
Or, use the full-path command names.

e It is very common that the fully tested shell script from the command line
fails when it is run as a cron job. The reason is simple: cron environment is
reduced to several default values, usually insufficient for the successful script
execution.

* Always clean everything that the shell script creates temporarily. Each file is
owned by its creator, and remaining temporary files could be obstacle for other
script invokers.

* Pay attention to the standard and error output. The shell scripts are often running
in background either.

© 2002 by CRC Press LLC

4

System Startup and Shutdown

4.1 Introductory Notes

UNIX systems run continuously under normal circumstances. Shutting down and
powering-off a UNIX system should be done rarely, usually only when a hardware
upgrade is being performed or a system is being allocated, or occasionally when another
action requiring a system shutdown is performed. In real life, system shutdown is more
frequent, because unpredictable situations always occur.

Power-cycling a UNIX system is not the only way the system can be shut down.
Rebooting is also a familiar task for any UNIX administrator; UNIX administrators know
well how system rebooting can be healthy for overall system maintenance.

Nevertheless, keeping the UNIX system running is the most visible task of a system
administrator. If the system crashes, everyone will complain, your phone will ring constantly,
and you will find yourself anxiously trying to fix the problem and bring the system back
into production. Quickly you will learn how important the system you are in charge of
really is, and how many users depend on it. Even more important, you will learn how
crucial a smooth, fast, proper system startup can be.

This chapter covers topics related to normal UNIX system startup and shutdown pro-
cedures. Invoking a system startup and shutdown is quite simple; the main requirement
is to be the superuser on the system (an easy task for an administrator). On the other
hand, making the system behave correctly, especially during startup, requires a great deal
of knowledge and administrative skill. Proper system startup is supposed to customize
and set the myriad of existing system configuration files that will control each portion
of the UNIX system. Some of these files include system-related configuration data, but
there are also site-added applications; the bottom line is that the system should be fully
operational after any system startup.

Given the complexity of properly configuring the system startup, this chapter could
easily be located at the end of the overall text, rather than at its beginning. However,
discussing the administration of a running UNIX system without knowing how that
system came to be running seems strange; it is as though we are talking about administering
a nonexistent UNIX system. So this material remains in the beginning by design; it will
focus on the topic of global system startup and shutdown, and we will return to individual
startup and shutdown issues later, whenever it is appropriate in discussing specific UNIX
topics.

© 2002 by CRC Press LLC

From an administrative standpoint, system shutdown is the simpler procedure; at the
end of the procedure a system must terminate all running processes, dismount all filesys-
tems, and stop any other system activity. System shutdown works even if we never touch
the default shutdown procedure — or perhaps it is better to say it mostly works, because
the author of this text has witnessed a UNIX system that could not be shut down from
the command line, and the only choice was to power-cycle the system. Our administrative
task is to provide a graceful system shutdown. Everything must be stopped in a regular
way, or the administrator will have to use the brute force method of power-cycling. System
startup, on the other hand, must be done properly or the system will never come up.
Obviously, more attention should be paid to system startup, and we will spend much
more time discussing the startup procedure than the shutdown process.

System startup is often referred to as system booting. Although “booting” specifies only
one phase in the overall system startup, the two terms are commonly interchanged, as
you will see in this chapter. Strictly speaking, system startup has a broader meaning than
system booting.

All UNIX systems must be shut down in a regular way before any further action can
be taken. You should never directly power-off UNIX systems (such as DOS-based PCs);
the shutdown procedure must be implemented, otherwise disk data integrity can be
corrupted (a UNIX filesystem could be damaged). The corruption can range between
arelatively benign loss of data to heavy filesystem damage, which in the worst case
scenario can leave a system unbootable.

The two major UNIX platforms BSD and System V have different startup and shutdown
procedures, with, of course, the main differences occurring in startup. Among existing
commercial UNIX flavors, the System V approach is more common; it provides more
flexibility and some other administrative advantages. However, the BSD approach is some-
what easier to understand, and we will start our discussion with the BSD startup /shutdown
procedure. Once the startup/shutdown concept is well understood, it will be easy to
continue with the System V procedure.

4.2 System Startup

The system startup procedure is a continuous process that a UNIX system goes through,
from its initial hardware-determined stage until the final production-ready stage. However,
this unique system journey passes through several distinct phases, and each of these
phases has its specific characteristics. The startup phases, listed in the order they occur, are:

* Bootstrap program execution
¢ Kernel execution
* rc system initialization

e Terminal line initialization

It is easier to understand the system startup procedure when the whole process is
divided into several phases and each of the phases is analyzed separately, so this is the
approach we will take. Although each of the listed phases is equally important for successful
system startup, the system initialization phase requires the most administrative attention,
so most of the following discussion will address this phase.

© 2002 by CRC Press LLC

In each of the startup phases, the system learns enough to execute the next phase.
Each phase contributes a bit to the overall system startup. At the very beginning, the
system does not know very much; at the very end, the system is ready for multi-user
operations.

4.2.1 The Bootstrap Program

The origin of the word boot (as in, “to boot the system”) is bootstrapping, which is the
process of bringing a computer system to life and ready for use. (“Bootstrapping” is
actually the “nerd word” for starting up a computer.) The computer system itself is only
a collection of hardware resources (registers, arithmetic/logical unit, program counter,
memories, etc.) capable of executing a sequence of instructions that make a program. The
program, stored in the computer’s memory (any kind of memory: ROM, RAM, external
magnetic memory, etc.), defines the system’s activity at every moment, including its first
steps during the system startup.

Aninitial program, the bootstrap program, must be stored in the fast nonvolatile memory
directly accessible by a processor, or CPU (CPU stands for central processing unit and is
another term for a processor). This portion of the computer memory is known as internal
read-only memory (ROM). The execution of the bootstrap program is always automatically
initiated when the system is powered-on or when a system hardware reset is applied. It
is also initiated when the system is rebooted from the system console. Only the initial part
of the bootstrap program, the part sufficient to bring the system into a workable state to
deal with other memory types, must be stored in ROM. Once this level is achieved, the
bootstrap program execution can be continued from another nonvolatile media such as a hard
disk, a floppy disk, a tape, or a CD-ROM, or even through the network from a boot-server
(in the case of diskless workstations). For UNIX systems, regular system booting is
commonly executed from a hard disk, while first-time UNIX OS installation is performed
from a CD-ROM (not long ago, a tape was used).

The system has to learn enough from the ROM to be able to access a disk to continue
the bootstrap program, but it still assumes a simple flat data structure on the disk. A complex
disk data organization such as the UNIX filesystem data structure is still too complicated
for the system at this stage; more learning is needed to deal with a filesystem. That is why
the rest of the bootstrap program is stored in a special part of the disk known as the boot
partition (sometimes also known as the boot segment). The main characteristic of the boot
partition is its easy access and flat data structure, so the system is able to continue with
the bootstrap program execution, and further learning.

The ratio of the percentage of the bootstrap program stored in the ROM versus the disk
boot partition varied through time. In the early days of UNIX when only low capacity,
expensive ROM was available, the first part of the bootstrap program was reduced to the
bare minimum size. Today, systems include high-density ROM sulfficient to store quite
sophisticated bootstrap programs; this makes boot partitions less important, although they
are still a part of every system startup.

Once the bootstrap program is completely executed, the system is knowledgeable
enough to continue with the kernel execution.

Traditionally UNIX presents the only OS running on underlying hardware; and trad-
itionally this is a proprietary hardware for that UNIX flavor. This fact makes a booting
process unique and quite straightforward. However, once PC hardware also became
common in the UNIX arena, a more flexible booting, with UNIX as one of several choices,
emerged as a preferable system characteristic. Linux is an example.

© 2002 by CRC Press LLC

On the Linux platform, the three most common booting mechanisms are:

* To boot Linux from the floppy, and leave hard drive for other OSs
e To use the Linux loader (LILO), the most common case
¢ To run Loadlin, an MS-DOS program that boots Linux from within DOS

What is exceptional with LILO is the possibility of configuring this loader in different
ways to match different needs; multiple-choice booting, including a non-UNIX startup, is
also possible. The configured loader should then be installed in the boot sector of the first
disk, known as MBR (master boot record). When the system is started, the PC BIOS
transfers control to MBR and triggers a corresponding LILO booting. Linux provides an
easy LILO configuration through its /etc/lilo.conf configuration file, and the command lilo
for its installation as MBR.

4.2.2 The Kernel Execution

The bootstrap program is responsible for loading the UNIX kernel into the system memory.
The kernel image, originally named unix under System V, or vmunix under BSD, is intentionally
located in the root filesystem, because the root filesystem is the first filesystem the system
mounts to access data. Mounting is a UNIX-specific procedure that makes data on the disk
accessible. (We discuss this issue in great detail in following chapters.) In the past, the kernel
image was located in the root directory for easier access, but today, it usually resides in a
separate subdirectory. We do not refer to “mounting” the kernel; we usually just say that
the kernel image was loaded into the system memory and its execution was started.

The kernel manages all system hardware; all hardware drivers are part of the kernel,
and the only OS access to the system hardware is through the kernel. Therefore the system
hardware will be available upon the completion of this phase.

Once control passes to the kernel, it prepares itself to run the system by initializing its
internal tables and completing the hardware diagnostics that are part of the boot process.
The level of diagnostics implemented varies from one UNIX flavor to another. At the very
end, the kernel verifies the integrity of the root filesystem and remounts it, and starts three
programs that create three basic processes. Two of them, named kernel processes, function
wholly within the kernel in the kernel’s privileged execution mode. They are actually
portions of the kernel itself, only “dressed” like processes for scheduling reasons.

On BSD systems, the two processes are:

1. Swapper (process #0), responsible for the “swapping” — to schedule the transfer
of whole processes between the main system memory and a mandatory swap
partition on the primary disk when system resources are low

2. Pagedeamon (process #2), responsible for supporting the memory-management
system regarding paging — a regular transfer of data in the pages between the
main system memory and the disk

On System V systems, the processes are named differently: sched for the process #0,
while the process #2 is replaced with various memory handlers.

The third process created by the system is the init process (process #1), which performs all
administrative tasks during the system startup and shutdown. The init process is an extremely
important process that enables the creation of all subsequent processes (in UNIX a process
can be created only by another parent process). The init process has the PID=1, and it is the
ancestor of all subsequent UNIX processes and the direct parent of each user’s login shell.

© 2002 by CRC Press LLC

In the case of diskless workstations, the procedure is slightly different. Obviously, the
kernel cannot be read from a nonexisting root filesystem; therefore, it must be downloaded
from the network. Further kernel activities are adapted to the diskless environment.

The kernel is quite verbose and it prints messages on the console that report on the
current execution status, total memory used and free, and some other information. However,
the information reported varies among different UNIX flavors.

4.2.3 The Overall System Initialization

The init process does the rest of the work needed to bring the system into its final stage:

* Mounting the remaining local disk partitions

¢ Performing some filesystem cleanup

¢ Bringing on major UNIX subsystems (accounting, printing, etc.)
* Setting the system’s name and time zone

¢ Starting the network

* Mounting remote filesystems

¢ Enabling user logins

4.2.3.1 rc Initialization Scripts

Most of the initialization activities are specified and carried out by means of the system
rc initialization scripts stored in the /etc directory and its subdirectories. Rc initialization
scripts are usually named in the way that they include the acronym rc as part of their
names (as a prefix, a suffix, or in a fullpath name). rc stands for run-command and basically
explains the purpose of the scripts. These mostly Bourne shell programs are organized
differently on BSD and System V platforms, although their purpose is the same. As with
any other script, rc initialization scripts are readable, so we can manage them in a very
comprehensive way. Besides that, rc scripts are sufficiently verbose during execution, and
this is a great help if the system hangs midway through the startup, or if there are any
other related problems.

Main administrative activities are related to this phase. System site-related customization
means editing the rc initialization scripts. Any system upgrade means to upgrade (or to
add) rc initialization scripts; any startup modification means to do something with rc
initialization scripts. The rest of this section exclusively addresses these issues. Afterward,
a full picture of the necessary administration in this segment should be complete.

4.2.3.2 Terminal Line Initialization

The terminal line initialization is a part of the overall system initialization; however, the
implemented initialization technique is quite different than that in the rc system initializa-
tion, which is sufficient reason to handle this topic separately. UNIX is extremely cautious
with terminal line initialization — terminal lines are “gates” to the outside world. Users
access the system via terminal lines, and the essence of UNIX existence is to serve users.
Once the initialization scripts have been executed, the system is fully operational, except
for the fact that no one can log in to the system. In order to provide login via a particular
terminal line, there must be a corresponding controlling process listening on it (usually
the getty process, but the ttymon is used on the Solaris platform). At the final initialization
phase, init spawns the getty processes to all indicated terminals and the startup procedure

© 2002 by CRC Press LLC

is completed. Today, users typically log in over a network using pseudo-terminals; however,
the getty program is still doing its job.
Terminal line initialization is fully covered in Chapter 11.

4.2.4 System States

Once the initialization activities are completed, the UNIX system enters the multi-user
mode, and users may log in to the system. But init can also place the system in single-user
mode instead of completing the initialization tasks required for multi-user mode. The
single-user mode corresponds to a functionally reduced UNIX system. In single-user
mode, a UNIX system looks very much like a personal computer. The single-user mode
is primarily dedicated to administrative and maintenance activities that require complete
control over the system. The user has all superuser privileges.

In some cases, the system will automatically enter single-user mode if there are any
problems in the boot process that the system cannot handle on its own (for example,
filesystem problems that fsck cannot fix), so the system administrator must resolve the
problem. The init simply spawns the Bourne shell on the system’s console and waits for
it to terminate before continuing with the rest of the startup sequence. Entering <CTRL-D>
or the exit command from the shell prompt can terminate the spawned single-user shell.
Once this is done, the system may continue into multi-user mode.

Single-user mode represents a minimal system startup with no daemons running, so
many UNIX facilities are disabled. Only the root filesystem is mounted (in the most
common case) and a restricted number of commands are available (commands residing
in the root filesystem). Under normal circumstances, other filesystems can be mounted by
hand to access other commands.

Single-user mode can be a security problem for a system, because full control over the
system is granted. On older UNIX systems, no password was required, but physical access
to the system was required in the single-user mode. On some systems, a front panel lock
with normal (secure) vs. maintenance (service) key positions enabled multi-user vs. single-user
mode; the system protection was the key, and only authorized personnel could acquire
the key. Modern UNIX systems usually require a root password to enter single-user mode.
None of these approaches are perfect, and all of them have some disadvantage. A request
for the root password could make difficulties under different circumstances, if the root
password was forgotten.

While the BSD flavored system could be in one of three possible states — off, single-user,
and multi-user mode — the System V platform explicitly defines a series of system states,
called run-levels designated by a one-character name. System V run-levels are flavor
dependent; an example is listed in the following table:

Run-Level Name and Uses

0 Power-down state => safe to power-off the system

1 Administrative state

sorS Single-user mode (on many systems same as 1)

2 Multi-user mode for stand-alone system

3 Multi-user mode for networked system, possibly sharing disks with other systems => via RFS,
TCP/IP, and NFS, or some other protocol

4 Unused => can be user defined locally

5 Firmware state => for maintenance and running diagnostics, and for booting from an alternate
not-root disk

6 Shutdown and reboot state => to reboot system from some running state (s, 2, 3, or 4); the system

is taken down (to run-level 0) and then rebooted back

© 2002 by CRC Press LLC

To display the current system run-level, the following command is available:

$ who -r
.run-level 3 Mar 14 11:14 3 0 S

The system was taken to run-level 3, from run-level S, via run-level 0, on March 14, at
11:14. The leading dot is by default at the beginning of the line.

On the System V platform, movement between run-levels is managed by init, and each
run-level is controlled by its own set of initialization scripts.

4.2.5 The Outlook of a Startup Procedure

UNIX systems are configured to boot automatically when powered-on. If this is not
possible, systems enter some form of the “ROM monitor mode” — a restricted ROM
resident command interpreter that enables essential diagnostics, booting, and some
other basic system activities. The ROM monitor mode is also the state that the system
enters after being shut down; in that state, a system can be safely powered off. On
some systems there is also a keystroke combination to enter this mode — for example
on Sun Microsystems systems, the key (STOP-A) followed by the specific ROM monitor
prompt “OK>.”

The ROM monitor always provides the boot command, specified as “b” or “boot,” among
the other commands it provides. Certain options sufficient to control the system startup
when problems are encountered (to boot the system from different media, into different
modes, etc.) are also provided. The default booting media is the hard disk.

On old UNIX systems, manual booting from the ROM monitor was a two-stage
procedure:

1. Theboot command first loaded a boot program with a stand-alone shell (actually
a mini-operating system).

2. A second command was then issued in a stand-alone shell to load UNIX kernel.

This two-step procedure looked like this:

>b
$$ unix

Different prompts specify two steps in the boot procedure. The technology available in
the past limited the bootstrap program possibilities, which led to a more complicated
startup procedure.

Today all UNIX flavors provide a relatively verbose system startup; a number of
messages are directed to the console indicating the stage and status of the startup
procedure. It is highly recommended that you monitor the system startup on the console.
Otherwise, some trouble messages can remain undetected, which leads to a high proba-
bility for later surprises.

The startup sequences for two system user modes are presented in Figures 4.1 and 4.2.
The UNIX system named “atlas” is running Solaris 2.x.; brief comments follow.

© 2002 by CRC Press LLC

------------------------ bootstrap program starts -------------------------

SPARCstation 20 (1 X 390250), Keyboard Present

SUN LOGO ROM Rev. 2.19, 32 MB memory installed, Serial #7491530
Ethernet address 8:0:20:72:4f:ca, Host ID: 72724fca.

Rebooting with command:
Boot device: /iommu/sbus/espdma @f, 400000/esp @f, 800000/sd @ 3,0 File and args:

------------------------ bootstrap program ends, and kernel starts --------zz=mzzmzzzzznnnnn

SunOS Release 5.4 Version generic [UNIX (R) System V Release 4.0]
Copyright (c) 1983-1984, Sun Microsystems, Inc.
------------------------ kernel ends, and rc initialization starts --------====szzmmmmmzunnn
configuring network interfaces: le0.
Hostname: atlas
The system is coming up. Please wait.
checking ufs filesystems
/dev/rdsk/c0t2d0s6: is clean
/dev/rdsk/cOt3d0s7: is clean
/dev/rdsk/c0t2d0s0: is clean
Flushing routing table:
add net default: gateway 146.95.8.250
starting rpc services: rcpbind keyserv kerbd done.
Setting netmask of le0 to 255.255.255.0
Setting default interface for multicast: add net 244.0.0.0: gateway atlas.ph.hunter.cuny.edu
syslog service started.
Print services started.
volume management starting.
HTTP service starting.
The system is ready.

atlas console login:

FIGURE 4.1
An illustration of a multiple-user startup sequence.

The Sun logo and first five lines are printed from the bootstrap program. These lines
list basic system configuration and identification data, as well as the kind of boot device.
The somewhat cryptic description of a boot device indicates an SCSI disk. The kernel
prints only two identification lines that include the system version and release. Other lines
are printed from initialization scripts invoked by the program init. One of the lines
indicates that the system was customized. The message that indicates the start of the HTTP
service is not a part of a regular OS installation — obviously, this site has been customized
to provide an Internet service. At the end, the login prompt is displayed upon the console
initialization.

The startup procedure includes filesystem checking, one of the most important activities
performed by the fsck utility (fsck is discussed in greater detail in Chapter 5). The
filesystem verifications are different on BSD and System V platforms. BSD checks all
filesystems on every boot; System V does not check filesystems if they were dismounted
normally when the system last went down (the fsstat command is used for this purpose),
and faster booting is enabled. Filesystem checking can result in the display of many
messages depending on the current filesystem status. If more serious filesystem corruption
is encountered, the system is left in single-user mode, and manual filesystem checking
and repair by the administrator may be required.

A single-user startup sequence is much shorter, and it includes the boot and kernel lines.
The next two lines about the network interface configuration and host’s name are printed
from corresponding initialization scripts involved in the system single-user startup.
Finally, the console is activated and the user is informed of two possibilities:

© 2002 by CRC Press LLC

1. Enter the system in single-user mode by entering the root password
2. Or continue with multi-user startup by entering [Ctrl-D]

If [Ctrl-D] is entered, the system continues with the multi-user startup, as in the previous case.

------------------------ bootstrap program starts -----------=======-------
SPARCstation 20 (1 X 390250), Keyboard Present
SUN LOGO ROM Rev. 2.19, 32 MB memory installed, Serial #7491530
Ethernet address 8:0:20:72:4f:ca, Host ID: 72724fca.

Rebooting with command: -s
Boot device: iommu/sbus/espdma @f, 400000/esp @f, 800000/sd @3, 0 File and args: -s

------------------------ bootstrap program ends, and kernel starts --------===zz==zz=zzznznx
SunOS Release 5.4 Version generic [UNIX (R) System V Release 4.0]
Copyright (c) 1983-1984, Sun Microsystems, Inc.
------------------------ kernel ends, and single-user rc initialization starts --------------====-------
configuring network interfaces: le0.
Hostname: atlas

INIT: SINGLE USER MODE

Type Ctrl-d to proceed with normal startup,
(or give root password for system maintenance):

>>>>>>>>>>>>>> Since Ctrl-D is entered <<<<<<<<<<<<<<
------------------------ rc initialization continUEs -------==============----

INIT: New run level: 3

The system is coming up. Please wait.

checking ufs filesystems

/dev/rdsk/cOt2d0s6: is clean

/dev/rdsk/cOt3d0s7: is clean

/dev/rdsk/c0t2d0s0: is clean

Flushing routing table:

add net default: gateway 146.95.8.250

starting rpc services: rcpbind keyserv kerbd done.
Setting netmask of le0 to 255.255.255.0

Setting default interface for multicast: add net 244.0.0.0: gateway atlas.ph.hunter.cuny.edu
syslog service started.

Print services started.

volume management starting.

HTTP service starting.

The system is ready.

atlas console login:

FIGURE 4.2
An illustration of a single-user startup sequence.

4.2.6 Initialization Scripts

Once the init process is born, the system startup is determined by a series of rc initialization
scripts which define a detailed procedure to bring the system into the multi-user mode.
This is the most common case, although other system modes (run-levels) are also possible.
These files control all custom-defined and site-dependent items (there are multiple rc
initialization scripts), and they are executed sequentially. Generally, rc initialization scripts
represent Bourne shell script files, executable at any time and on any UNIX platform. (The
Bourne shell is the default shell, and it is available at the very early system stage on every
UNIX platform.) The rc initialization scripts do not differ from any other shell script,
except at the time of their execution. (This, by the way, is why the prefix “rc” is used in
their description, as well as in the name.) However, they can also be executed from the

© 2002 by CRC Press LLC

command line at any time, and administrators can make full use of this opportunity: on
System V, individual function-specific initialization scripts are often used to stop and start
specific UNIX functions during regular system production. On modern UNIX platforms,
sometimes Korn shell rc initialization scripts are also included (for example, on the HP-UX
platform) which indicated the early availability of the Korn shell.

Understanding rc initialization scripts is a vital part of system administration — this is
the place for system customization. A system administrator must be familiar with these
files, their locations and, in many cases, their contents. Only then is full control over the
system startup possible, and quick corrective action can follow any problem encountered
during system boot time. Each modification in the initialization scripts must be done very
carefully with respect for the basic administrative rule: save original script files before
making any changes. If this rule is not followed, various problems can ensue.

Despite the fact that rc initialization scripts on both UNIX platforms BSD and System V
serve the same purpose, the mechanisms by which they are initiated and executed are quite
different. These differences require great attention, knowledge, and skills from system
administrators working in a heterogeneous environment, which is very common today.
Today, the System V rc approach prevails — the System V organization of the rc initialization
scripts offers more flexibility and other administrative advantages. We will discuss System
V initialization in greater detail after a quick survey of the BSD-style initialization.

4.3 BSD Initialization
4.3.1 The BSD rc Scripts

Originally, the BSD initialization was controlled only by two rc initialization scripts: /etc/rc
and /etc/rc.local. A general system initialization was supported by the /etc/rc script, while
the /etc/rc.local script referred to a local site, i.e., to issues that should be customized
(probably a more appropriate script name would be “rc.site” to avoid any possible confusion
toward the logical association with a “network-local relationship”). During system booting
to the multi-user mode, init executed the rc script, which in turn executed the rc.local
script. If a single-user boot was performed, scripts were only partially executed; the
remaining parts were executed when the single-user shell was exited.

Having only two rc initialization scripts would lead one to believe that system mainten-
ance was easy, but in fact the reality is quite the opposite. The work required for system
initialization remained the same, regardless of how many rc scripts were involved, and
huge rc script files were more difficult to manage and more vulnerable to corruption
during modification. It could be very difficult to find an appropriate control sequence,
items were often doubled, and so on.

SunOS introduced additional script files: /etc/rc.boot and /etc/rc.single. The program
init invokes first rc.boot script and from there rc.single (regardless of whether the system
is booting to single vs. multi-user mode); then the /etc/rc and /etc/rc.local files follow.

4.3.2 BSD Initialization Sequence

For a clearer picture, the block diagram of the SunOS execution sequence is presented in
Figure 4.3 (it is assumed the system is booting from the local disk). The SunOS organization
made a clear distinction between single and multiple-user modes; it was immediately
easier to follow any problems that developed in the system booting.

© 2002 by CRC Press LLC

The Program
init

The Script File §p4 The Script File
/etc/re.boot 4—] /etc/rc.single

multi-user mode + single-user mode

The Bourne Shell
sh

The Script File §—ppd The Script File
/etc/rc 4—] /etc/rc.local

¢ ¢ T first-time startup

The Script File

/Jusr/etc/install/run_configure

EXIT

FIGURE 4.3
The execution sequence of SunOS initialization scripts.

To make system customization easier, SunOS provided a special interactive script named
lusrletclinstalllrun_configure that was invoked only once, the very first time the system
was started upon the OS installation. Through the provided dialogue, the required parameters
such as: system name, time zone, date, time, and network data were entered. The system
administrator had to answer a number of questions, and new system and network data
were saved for future use. The dialogue was performed via the system console. Upon
successful completion, the program is never again invoked; subsequent modification can
be done directly in the rc scripts.

In the single-user mode, the only way to communicate with the system is via the console;
other terminals are not initialized at all. SunOS assumes that anyone who has physical
access to the console is an administrator, because from the console it is easy to gain full
control over the system. There is no additional system protection.

All rc files live in the /etc directory; this is an example from SunOS 4.1.3:

$ Is -1 /etc | grep rc

-Yw-r--r-- 1 root 2993 Jan 20 1996 rc
-rw-r--r-- 1 root 5476 Jun 23 1996 rc.boot
-rW-r--1-- 1 root 352 Jan 20 1996 re.ip
-rW-r--1-- 1 root 6169 Aug 3 1997 rc.local
-1W-r--1-- 1 root 5911 Jan 20 1996 rc.local.orig
-rW-r--1-- 1 root 2172 Jan 20 1996 re.single

We can easily recognize all of the listed files; the file rc.local was modified according to
the local (site) requirements, and the original file was saved. An exception is the file rc.ip,
which is used to start up diskless systems.

© 2002 by CRC Press LLC

All of the listed files are excellent examples of what shell scripts should look like;
extremely skillful programmers write them, and it is a good idea to read them to learn
the art of shell programming. However, this is out of the scope of this text.

The description of the BSD system startup should be sufficient to explain how a UNIX
system is brought into an operational stage. To conclude this discussion, an additional
brief report related to this topic is presented. This report is taken directly from the manual
pages for rc files on the SunOS platform; nevertheless, there are some discrepancies
between the actual initialization scripts and this report, even though the described scripts
and manual pages belong to the very same system. This is not so unusual, and a UNIX
administrator must be prepared for such surprises. The supplied online documentation
simply does not always fully support all system changes and upgrades.

$ man rcfiles

NAME
rc, rc.boot, rc.local — command scripts for auto-reboot and daemons

SYNOPSIS
Jetc/rc
/Jetc/rc.boot
Jetc/rc.local

DESCRIPTION
rc and rc.boot are command scripts that are invoked by init(8) to perform filesystem
housekeeping and to start system daemons. rc.local is a script for commands that are
pertinent only to a specific site or client machine.

rc.boot sets the machine name and, if on SunOS 4.1.1 Rev B or later, invokes ifconfig,
which uses RARP to obtain the machine’s IP address from the NIS network. Then a
“whoami” bootparams request is used to retrieve the system’s host-name, NIS domain
name, and default router. The ifconfig and hostconfig programs set the system’s host-
name, IP address, NIS domain name, and default router in the kernel.

If coming up multi-user, rc.boot runs fsck(8) with the -p option. This “preens” the disks of
minor inconsistencies resulting from the last system shutdown and checks for serious incon-
sistencies caused by hardware or software failure. If fsck(8) detects a serious disk problem, it
returns an error and init(8) brings the system up in single-user mode. When coming up
single-user, when init(8) is invoked by fastboot(8), or when it is passed the -b flag from
boot(8S), functions performed in the rc.local file, including this disk check, are skipped.

Next, rc runs. If the system came up single-user, rc runs when the single-user shell
terminates (see init(8)). It mounts 4.2 filesystems and spawns a shell for fetc/rc.local,
which mounts NFES filesystems, runs sysIDtool (if on SunOS 4.1.1 Rev B or later) to
set the system’s configuration information into local configuration files, and starts local
daemons. After rc.local returns, rc starts standard daemons, preserves editor files, clears
/tmp, starts system accounting (if applicable), starts the network (where applicable),
and if enabled, runs savecore(8) to preserve the core image after a crash.

4.4 System V Initialization

System V organizes the initialization procedure in a more flexible, but also a more complex
way using up to three levels of initialization files. During a system startup, when init

© 2002 by CRC Press LLC

takes control from the kernel, it scans its configuration file /etc/inittab to learn what to
do next. We should recall that System V can have multiple run-levels. The file /etc/inittab
defines init’s action whenever the system enters a new level; the commands to execute at
each run-level are specified in the corresponding inittab entries. Usually, the entries are
initialization script files named rcn (where “n” is a run-level number); the scripts files
themselves are located in the directory /etc, or sometimes in /sbin (HP-UX platform). The
various ren scripts in turn invoke other scripts that reside in the corresponding subdirec-
tories rcn.d (again, “n” represents the specified run-level). A simplified version of the
System V rebooting procedure is illustrated in Figure 4.4; the rebooting procedure first
shuts down a system (the run-level 0) and then brings a system into a normal operating

state (in this case the run-level 2).

]] + o+ o+
Jinit.d [rcoa ||| .drc2d |

e |
+ o+ T [r + o+
| ANNOUNCEN | Ip | | cron | \ | S71rpc| | S750ron| | S80Ip |
\
[modyTFs | | nissever | [e | [so1mMOUNTFS | | Kasnfs.server|
I T + + o+
[KooANNOUNCE | | [Kaocron |
| K39Ip | | K28nfs.server|
FIGURE 4.4

A graphical presentation of System V rebooting.

4.4.1 The Configuration File /etc/inittab

We will start with init’s configuration file /etc/inittab; here is an example:

$ cat /etc/inittab (from Red Hat Linux, partly presented)
#

inittab This file describes how the INIT process should set up

the system in a certain run-level.

#

Default run-level. The run-levels used by RHS are:

0 — halt (Do NOT set initdefault to this)

1 — Single user mode

2 — Multi-user, without NFS (The same as 3, if you do not have networking)
3 — Full multi-user mode

4 — unused

#5—X11
6 — reboot (Do NOT set initdefault to this)
#

id:2:initdefault:

System initialization
si::sysinit:/etc/rc.d/rc.sysinit
10:0:wait:/etc/rc.d/rc 0
11:1:wait:fetc/rc.d/frc 1
12:2:wait:fetc/rc.d/rc 2

© 2002 by CRC Press LLC

13:3:wait:fetc/rc.d/rc 3
14:4:wait:fetc/rc.d/rc 4
15:5:wait:fetc/rc.d/rc 5
16:6:wait:/etc/rc.d/rc 6

Things to run in every run-level.

Each entry in the /etc/init file is of the form:
cc:states:action:process
With the following definitions of the individual fields:

cc Two-character case-sensitive label identifying the entry (some new
implementations allow up to 14 characters)

states A list of the run-levels to which the entry applies; if blank, indicates all
run-levels

action wait Start the process and wait for it to finish before going on to
the next entry for this run-level

respawn Start the process and automatically restart it when it

dies

once Start the process if it is not already running; do not wait
for it

boot Only execute entry at boot time and do not wait for it

bootwait Only execute entry at boot time and wait for it to finish
initdefault Specify the default run-level for system reboot
sysinit Use to initialize the console
off Kill the process if it is running
process The command to execute

The system scans inittab entries from the top down, checks that they belong to a current
run-level, and executes them sequentially, respecting the contents of the entry fields. Let
us analyze the previous example.

The first entry named “id” is not the executable one; this entry (determined as
“initdefault”) specifies the default run-level (here it is run-level 2) to be implemented
when the run-level is not explicitly specified by init itself. The following entry “si,”
marked as “sysinit,” must be executed first to make the console and some other initial
items operational. The specified initialization script /etc/rc.d/rc.sysinit performs many of
the “housecleaning” jobs to prepare the system for other run-level specific scripts that
will come afterward. The run-level scripts for different run-levels are specified by
subsequent inittab entries identified as 10 to 16, for the run-levels 0 to 6; this is actually
the same rc initialization script named /etc/rc.d/rc, invoked with an argument that
specifies the run-level (argument 0 to 6). The script invokes other specific “stop” and
“start” scripts needed for specific run-level initialization. This part of the /etc/inittab file
is crucial to our discussion; other inittab entries are not presented at all, and they relate
to other required general initialization tasks such as power supply control, terminal
line initialization, etc.

© 2002 by CRC Press LLC

Linux has located rc initialization scripts in a separate directory /etc/rc.d and its sub-
directories, as we see in the following example:

$ 1Is -1 /etc/rc.d

total 18

drwxr-xr-x 2root root 1024 May13 12:24 init.d
“TWXT-XT-X 1root root 1871 Oct 15 1998 rc
“TWXT-XT-X 1 root root 693 Oct 15 1998 rc.local
-TWXT-XT-X 1root root 7165 Oct 15 1998 rc.sysinit
drwxr-xr-x 2root root 1024 May13 12:24 rc0.d
drwxr-xr-x 2root root 1024 May13 12:24 rcl.d
drwxr-xr-x 2root root 1024 May13 12:24 rc2.d
drwxr-xr-x 2root root 1024 May 13 12:24 rc3.d
drwxr-xr-x 2root root 1024 May 13 12:24 red.d
drwxr-xr-x 2root root 1024 May13 12:24 rch.d
drwxr-xr-x 2root root 1024 May 13 12:24 rc6.d

Besides the scripts rc, rc.sysinit, and rc.local, which are accomplishing specific tasks, other
needed scripts for particular run-levels are located in the corresponding subdirectories
rc0.d to rc6.d. The subdirectory init.d is a “depot” directory for all scripts, and it will be
explained later.

The described startup procedure is almost identical on other System V platforms; the
existing differences are mostly concentrated in the naming of the initialization scripts.
Here is another example:

cat /etc/inittab (on Solaris 2.x platform)
ap::sysinit:/ sbin/autopush -f Jetc/in.ap

fs::sysinit:/sbin/rcS >/ dev/console 2>&1 </dev/console
is:3:initdefault:

p3:s1234:powerfail:/ usr/sbin/shutdown -y -i5 -g0 >/dev/console 2>&1

$0:0:wait:/ sbin/rc0 >/dev/console 2>&1 </dev/console
s1:1:wait:/ usr/sbin/shutdown -y -iS -g0 >/dev/console 2>&1 </dev/console
$2:23:wait:/ sbin/rc2 >/dev/console 2>&1 </dev/console
$3:3:wait:/ sbin/rc3 >/dev/console 2>&1 </dev/console
s5:5:wait:/ sbin/rch >/dev/console 2>&1 </dev/console
$6:6:wait:/ sbin/rcé6 >/dev/console 2>&1 </dev/console
fw:0:wait:/ sbin/uadmin 2 0 >/dev/console 2>&1 </dev/console
of:5:wait:/ sbin/uadmin 2 6 >/dev/console 2>&1 </dev/console
rb:6:wait:/ sbinfuadmin 2 1 >/dev/console 2>&1 </dev/console

sc:234:respawn:/ usr/lib/saf/sac -t 300
co:234:respawn:/ usr/lib/saf/ttymon -g -h -p ““uname -n’" console login: " -T sun -d /dev/console \
-1 console -m ldterm,ttcompat

Briefly, the main differences regarding the previous example are: the default run-level
is #3, the system always passes through the single-user stage (the script /etc/rcS), and the
spawned console-monitoring process is ttymon, instead of getty (this issue is discussed in
greater detail in Chapter 11). Other entries are either quite similar, or they are out of the
scope of this text.

4.4.2 System V rc Initialization Scripts

As is seen from the /etc/inittab, an inittab entry points to the corresponding rc script to
be directly executed by init for the specified run-level. However, what is more important
is the part that stays hidden behind the scenes — this rc scripts invokes a series of

© 2002 by CRC Press LLC

additional scripts for specific system functions associated with the corresponding run-
level. The invoked scripts can terminate (stop) or start a specific function, whatever is
appropriate for the run-level. Sometimes the same script can be invoked twice for the
same run-level: first to stop, and then to restart a specific function (so a clean function
start is guaranteed).

We will start a more detailed analysis with one of the “directly invoked scripts,” the
script /etc/rc2 on the IRIX platform (obviously this script corresponds to run-level #2). This
script is quite typically found on other System V flavors, too. For better understanding
additional explanations are in bold.

$ cat /etc/rc2

#! /bin/sh

#Tug 0x00000f00

#ident “$Revision: 1.12 $”

#

“Run Commands” executed when the system is changing to init state 2

traditionally called “multi-user”

. Jetc/TIMEZONE Setup the time zone
(source another script)

Pickup startup packages for mounts, daemons, services, etc.

set ‘who -r' Show run-level arguments
if[$9="S"1] $9 corresponds to a previous state
then - was “single user mode”

echo ‘"The system is coming up. Please wait.” Display the message and. ..
BOOT=yes ... mark the system booting

elif [$7 = "2"] $7 corresponds to a required state
then - is the state 2

This Section Invokes Individual Termination Scripts

echo ‘Changing to state 2.
if [-d Jetc/rc2.d]

then
for fin Jetc/rc2.d/K* Every termination script in the directory letc/rc2.d
is invoked with “stop” argument
{
if [-s ${f}]
then
/bin/sh ${f} stop
fi
1
fi
fi

handle local mounts specially, rather than as part of a generic rc2.d
operation, so that if the some mounts fail, we can warn the user
#
if [-f fetc/mountall | Mount filesystems
then
if /etc/mountall
then:
else
echo ‘\07Some filesystems failed to mount; may be unable to reach multiuser state’
sleep 5
fi
fi

© 2002 by CRC Press LLC

This Section Invokes Individual Start Scripts
if [-d Jetc/rc2.d]

then
for fin fetc/rc2.d/S* Every initialization script in the directory /etcl/rc2
is invoked with “start” argument
{
if [-s ${f}]
then
/bin/sh ${f} start
fi
}
fi
if [“${BOOT}” = “yes”]
then
stty sane tab3 2>/dev/null Set the terminal

fi
if [“${BOOT}” = “yes” -a $7 = “2"]
then
echo “The system is ready. Display messages

elif [$7 = “27]
then
echo ‘Change to state 2 has been completed.”

fi

Besides a number of common run-level #2 housekeeping tasks that /etc/rc2 performs,
the individual start and termination scripts for all associated functions are also executed.
The general mechanism for installing and executing start and termination scripts is common
for all /etc/ren files:

Filenames in rcn.d directories are of the form “[S/K]nn[init.d filename]” where S means
start this job, K means kill (terminate) this job, and nn is the relative sequence number
to terminate or start the job. When entering a state (n =S, 0, 2, 3, etc.), the rcn script
executes those scripts in the /etc/rcn.d directory that are prefixed with K followed by
those scripts prefixed with S. When executing each script in one of the /etc/rcn.d directories,
the rcn script passes a single argument. It passes the argument stop for scripts prefixed
with K and the argument start for scripts prefixed with S. There is no harm in applying
the same sequence number to multiple scripts. In this case the order of execution is
deterministic but unspecified. Guidelines for selecting sequence numbers are provided
in the README files located in the directory associated with that target state (e.g.: /etc/
rcen.d/README).

For example, when changing to init state 2 (in this case, multi-user mode with nonex-
ported network resources), the init process initiates rc2. The following steps are performed
by rc2:

1. In the directory /etc/rc2.d are scripts used to stop processes that should not be
running in state 2. The filenames are prefixed with K. Each K file in the directory
is executed in alphanumeric order when the system enters init state 2.

2. Also in the /etc/rc2.d directory are scripts used to start processes that should be
running in state 2. As in the step above, each § file is executed.

To illustrate the above, assume the arbitrary file /etc/init.d/netdaemon is a script that

will initiate networking daemons when given the argument start, and will terminate the
daemons if given the argument stop. It is linked to /etc/rc2.d/S68netdaemon, and to

© 2002 by CRC Press LLC

/Jetc/rc0.d/K67netdaemon. The file is executed by /etc/rc2.d/S68netdaemon start when init
state 2 is entered and by /etc/rc0.d/S67netdaemon stop when shutting the system down
(init state 0).

All scripts for individual system functions are written to accept the passed argument
stop or start, and to behave accordingly as a termination or a start script. All scripts are
located in the separate “depot directory” /etc/init.d, and they are linked to the corresponding
K and S files in the /etc/rcn subdirectories.

Let us see how this looks for the IRIX flavor:

#1s -1 /etc/rc*

-FWXT-XT-X 1 root sys 790 Sep 8 1992 Jetc/rcO

-FWXT-XT-X 1 root sys 1440 Sep 8 1992 Jetc/rc2

-FWXT-XT-X 1 root sys 444 Sep 8 1992 Jetc/rc3

Jetc/rc0.d:

total 10

e 1 root sys 16 Sep 8 1992 K15cron -> Jetc/init.d/cron

e 1 root sys 16 Sep 8 1992 K18uucp -> /etc/init.d/uucp

[-=--mmm- 1 root sys 16 Sep 8 1992 K20mail -> Jetc/init.d/mail

Jetc/rc2.d:

total 19

[-=--mmm- 1 root sys 21 Sep 8 1992 SOIMOUNTESYS -> /Jetc/init.d
/MOUNTFSYS

e 1 root sys 19 Sep 8 1992 S20sysetup -> Jetc/init.d/sysetup

[--m-mmm- 1root sys 16 Sep 8 1992 S21perf -> Jetc/init.d/perf

Jetc/rc3.d:

total 0

What can we conclude from this directory listing? The three directly invoked rc scripts
specified in the /etc/inittab file reside in the /efc directory; they are scripts rc0, rc2, and
rc3. The corresponding rcn.d subdirectories are rc0.d, rc2.d, and rc3.d (although rc3.d is
an empty subdirectory). Termination and start files in the /etc/rcn.d subdirectories are
symbolic links to the scripts located in the depot directory /etc/init.d. In that way, the
same files appear under different names, which are more appropriate for their imple-
mentation.

The listing of the depot directory /etc/init.d is:

$ 1s -C /etc/init.d

MOUNTEFSYS autoconfig cron mail sysetup
README bsdlpr floppy network uucp
RMTMPFILES cdromd.2 hyperchem_elm perf winattr
audio configmsg Ip savecore xdm

The linked files in the /etc/rcn directories have slightly modified names; the original
filenames from the /etc/init.d directory are preceded with the letter S or K, and a two-digit
number; numbers define the sequence in which the files are listed as well as executed,
while the letters S and K classify files into two categories: start and termination scripts,
so they can be invoked differently, with the start or stop argument.

IRIX has introduced, and Linux accepted and further developed, a specific command
to handle needed rc links. Many init run-levels require a careful implementation of rc
start/stop scripts, i.e., the corresponding links toward init.d depot directory. The command

© 2002 by CRC Press LLC

chkconfig makes this job easier. So if your system is running Linux, do not forget this
possibility. If you prefer to make needed links manually, it also works.

Linux introduced one more directory level “/etc/rc.d” to confine all rc-related programs.
Another Linux specific issue is that all rc scripts use functional wrappers to handle
individual processes. A separate script /etc/rc.d/init.d/functions defines a number of functions
instrumental for conditional start or stoppage of programs. This script is sourced at the
beginning of each individual rc script defining a very convenient environment for the
system startup and shutdown, status display, and logging. Unfortunately, while such an
approach works well for this purpose, in some other cases it could fail. UNIX adminis-
trators love to use rc start/stop scripts to control running daemons — it is quite common
to recycle, stop, or restart daemons by executing rc scripts with an appropriate argument.
Functional wrappers check for possible remaining processes and, if they exist, bypass the
start of a corresponding daemon, what is correct for most situations. However, under
certain circumstances remaining processes could be “legal” until they complete their task
(like sendmail children during processing of the mail queue); unfortunately, a new daemon
would not be started.

Basically, all listed System V rc scripts provide the same functions as BSD rc scripts. This
makes sense because their task is the same: to bring the UNIX system into a workable
multi-user (or any other) state. However, they are organized in very different ways, and
must be administered accordingly. The System V approach prevails today.

The presented IRIX flavor is quite typical of the System V startup. Another example we
will discuss is the Solaris 2.x; we will primarily emphasize the differences. The long listing
of Solaris rc scripts shows:

#1s -1 /etc/rc*

Irwxrwxrwx 1 root root 11 Apr 4 11:16 Jetc/rc0 -> ../ sbin/rcO
Irwxrwxrwx 1 root root 11 Apr 4 11:16 Jetc/rcl -> ../ sbin/rcl
Irwxrwxrwx 1 root root 11 Apr 4 11:16 Jetc/rc2 -> ../ sbin/rc2
Irwxrwxrwx 1 root root 11 Apr 4 11:16 Jetc/rc3 -> ../ sbin/rc3
Irwxrwxrwx 1 root root 11 Apr 4 11:16 Jetc/rc5 -> ../ sbin/rc5
Irwxrwxrwx 1 root root 11 Apr 4 11:16 Jetc/rc6 -> ../ sbin/rc6
Irwxrwxrwx 1 root root 11 Apr 4 11:16 Jetc/rcS -> ../ sbin/rcS

What specifies the Solaris rc script files? There are seven rcn scripts, although not all of
them are specified in the /etc/inittab file. They actually reside in the directory /sbin and are
symbolically linked to the /etc directory. The corresponding rc directories are:

Jetc/rc0.d:

total 34

-TWXT--1-- 3 root sys 103 Aug 3 1994 KOOANNOUNCE
-TWXT--T-- 4 root sYs 318 Jul 15 1994 K20Ip

-TWXT--1-- 4 root sYs 388 Aug 3 1994 K42audit
Jetc/rcl.d:

total 34

-TWXT--1-- 3 root sys 103 Aug 3 1994 KOOANNOUNCE
-TWXT--1-- 4 root sYs 388 Aug 3 1994 K42audit
-TWXT--1-- 3 root sYs 534 Aug 3 1994 SOIMOUNTEFSYS
Jetc/rc2.d:

total 100

-rWXT--1-- 4 root sys 318 Jul 15 1994 K20Ip

© 2002 by CRC Press LLC

-rW-r--1-- 1 root sYs 1369 Aug 3 1994 README

-TWXT--T-- 3 root sYs 534 Aug 3 1994 SOIMOUNTEFSYS
-rwW-r--1-- 2 root other 547 Jun 16 12:15 S93httpsvc
Jetc/rc3.d:

total 8

-rW-r--1-- 1 root sYs 1708 Aug 3 1994 README
-TWXT--1-- 5 root sYs 1387 Aug 3 1994 S15nfs.server
Jetc/rcS.d:

total 32

-TW-r--1-- 1 root sYs 2392 Aug 3 1994 README
-r-XT--1-- 2 root sYs 369 Jul 16 1994 S00sxcmem
-TWXT--1-- 2 root sYs 4514 Aug 3 1994 S30rootusr.sh

Not every ren script has an associated rcn.d subdirectory (there is simply no need for
all of them; do not forget that rcn scripts can be written in a different way). Finally, the
existing start and termination files in the rcn.d subdirectories represent hard links to the
function-specific scripts residing in the depot directory /etc/init.d (this can be easily seen
by using the Is -i command to check the file’s inode numbers). Obviously, both types of
links can be equally implemented.

4.4.3 BSD-Like Initialization

The System V initialization approach dominates today, but it is hard to judge this approach
as the better one overall. Sometimes the use of a few larger script files would be more
convenient, versus the implementation of a multidirectory structure with many small
script files. This is probably the reason that some hybrid solutions have appeared; some
System V flavors made a compromise by introducing something of the BSD initialization
spirit into a System V initialization body. They avoided a more complex multilayer ini-
tialization approach, and provided one or more larger script files for any run-level, which
are directly invoked from the /etc/inittab file, or even coded in the start/stop procedures.
In this way, the System V initialization reminds us very much of the BSD one, with the
occasional exception as to how the scripts are invoked. A substantial level of flexibility is
preserved because the /etc/inittab file remains available. Such an approach characterized,
for example, the HP-UX 9.0x, or IBM AIX 3.x platforms. Today, we can even recognize
elements of such an organization in Linux.

The HP-UX 9.0x platform included only a few rc script files with almost the same names
as on the BSD platform. Some of them were even written as Korn shell scripts, which
implies the Korn shell as the default one on the system.

$ 1Is -1 /etc/rc*

-r-XT--F-- 1 bin bin 15988 Apr 4 11:10 Jetc/rc
e 1 bin bin 21584 Mar 5 18:43 /Jetc/rc.utils
“TW-rW-1W- 1 root root 0 May4 11:23 /Jetc/rcflag

This does not necessarily mean that the presented files are the only files used in the
system initialization; other files with other names can be called by these rc files. If we
take a look into the /etc/inittab file, we see a single inittab entry, named “rc” for this
purpose.

© 2002 by CRC Press LLC

$ cat /etc/inittab
init:4:initdefault:
stty::sysinit:stty 9600 clocal icanon echo opost onlcr iengak ixon icrnl ignpar </dev/systty

brel::bootwait:/ etc/bcheckre </dev/console >/dev/console 2>&1 # fsck, etc.
slib::bootwait:/etc/recoversl </dev/console >/dev/console 2>&1 #shared libs
bre2::bootwait:/ etc/brc >/dev/console 2>&1 # boottime commands
link:wait:/ bin/sh -c¢ “rm -f /dev/syscon; In /dev/systty /dev/syscon” >/dev/console 2>&1

rc :wait:/ etclrc </deviconsole >/deviconsole 2>&1 # system initialization
powf::powerwait:/ etc/powerfail >/dev/console 2>&1 # power fail routines

Ip ::off:nohup sleep 999999999 </dev/lp & stty 9600 </dev/lp
halt:6:wait:/ usr/lib/X11/ignition/shutdown.ksh \
NOTE: run-level 6 is reserved for system shutdown

cons:012456:respawn:/ etc/getty -h console console # system console
vue :34:respawn:/ etc/vuerc # VUE walidation and
invocation

A similar situation was used by the AIX flavor with several more initialization script
files:

$ 1Is -1 /etc/rc*

-P-XT-XT-- 1 bin bin 1750 Feb 10 1994 Jetc/rc
-P-XT-XT-- 1 bin bin 1866 Feb 10 1994 Jetc/rc.bsdnet
-FW-TWXT—- 1 root system 667 Feb 10 1994 Jetc/rc.ncs
-P-XT-XT-- 1 bin bin 7680 Feb 10 1994 Jetc/rc.net
-FWXT-XT-X 1 root system 2628 Jul 17 13:35 Jetc/re.nfs
-FWXT-XT-X 1 root system 1161 Feb 12 1993 Jetc/re.pci
-PWX----- 1 root system 20832 Feb 10 1994 Jetc/re.powerfail
-TWXTWXT-- 1 root system 3950 Jul 17 13:35 Jetc/re.tepip

Most of the listed rc files are invoked directly through the inittab entries; others are called
by the invoked files, which can be seen from the /etc/inittab file:

$ cat /etc/inittab
init:2:initdefault:

bre::sysinit:/ etc/bre >/dev/console 2>&1 # phase 2 of system boot
rc:2:wait: etclrc > Idevlconsole 2>&1 # multi-user checks
retepip:2:wait:/ etclre.tepip >ldeviconsole 2>&1 # start TCP/TP daemons
renfs:2:wait:/ etc/re.nfs >ldev/console 2>&1 # start NFS daemons
sremstr:2:respawn:/ etc/sremstr #system resource controller
cons::respawn:/ etc/getty /dev/console

cron:2:respawn:/ etc/cron #periodic (cron) daemon

qdaemon:2:once:/ bin/startsrc -sqdaemon

Linux implements three task-specific scripts: rc, rc.local, and rc.sysinit. They are located
in the rc.d directory, out of individual rcn.d subdirectories. In the Linux rc directory
structure shown earlier, the three files have special meaning. They are presented again
here.

$ 1Is -1 /etc/rc.d

-FWXT-XT-X 1 root root 1871 Oct 15 1998 rc
-FWXT-XT-X 1 root root 693 Oct 15 1998 rc.local
-TWXT-XT-X 1 root root 7165 Oct 15 1998 re.sysinit

© 2002 by CRC Press LLC

Their names strongly evoke “old-style” BSD rc organization, as does their purpose.
Correspondingly, rc.local is assumed for a site-specific customization.

4.5 Shutdown Procedures

UNIX systems are designed to run continuously. In real life, however, from time to time
it will be necessary to shut the system down (for scheduled maintenance, diagnostic
purposes, relocating the system, hardware upgrades, etc.). Before the system can be powered
off, a clean system shutdown is required; otherwise substantial system damage can occur.
The shutdown procedure consists of several steps that should be followed:

* Notify all users that the system will be shutdown at a certain time.

¢ Signal all users’ processes that they will be killed, allowing them time to exit
gracefully.

¢ Place the system into single-user mode, log off all remaining users and kill all
remaining processes.

* Ensure that filesystem integrity is maintained by completing all pending disk
updates.

Fortunately, UNIX designers have provided the shutdown command and its derivatives
to fulfill all the required steps smoothly. The only responsibility of a system administrator
is to implement the command when the system is going to be shut down.

The reboot command is also supported for a majority of UNIX flavors on both platforms.
It usually represents a renamed version of the shutdown command, although it can also
have its own options. For example, on the HP-UX platform the reboot command behaves
differently from the shutdown -r command (the -r option indicates rebooting). While the
shutdown command terminates all processes gracefully (it sends the TERM signal to
processes), the reboot command kills all processes unconditionally (it sends the KILL
signal to processes). It is highly recommended that you check the manual pages for the
availability, options, and behavior of the reboot command before using it on any UNIX
platform.

4.5.1 The BSD shutdown Command

The BSD shutdown command has the following syntax:

shutdown time message

where
time Can have one of the three forms:
now For immediate shutdown
+m For shutdown after m minutes

hh:mm For shutdown at this time on the 24-hour clock
message An announcement that is sent to all users; the message is repeated with
increased frequency as the shutdown time approaches

© 2002 by CRC Press LLC

Some BSD flavors support a nonstandard shutdown configuration file /etc/rc.shutdown.
In this case, the system administrator may place any desired command in the file, enabling
its execution at shutdown. The shutdown command also creates the file /etc/nologin, which
automatically denies any future user attempts to log in to the system, and the contents of
the file are displayed to the user. The file is deleted by the /etc/rc script during system
booting.

Several options are supported, among them:

shutdown -r Allows the system to be shut down and rebooted automatically as
soon as the system enters single-user mode(or after a default time
interval if not specified with command itself)

shutdown -f Allows the system to be shut down and quickly rebooted
automatically as soon as the system enters single-user mode (without
filesystem checking)

shutdown -h Allows the system to be shut down and halted at the point where
the power may be safely turned off

shutdown -k Performs a fake shutdown with the message sent to all users, but no
shutdown actually occurs

4.5.2 The System V shutdown Command

The System V shutdown command has the following syntax:
shutdown -gn -ilevel [-y]

where
n Number of seconds to wait for the shutdown to begin (the default value is 60 s)
level Run-level in which system should be placed:
0 — to turn off power
1 — administrative state
S — single-user mode (default)
5 — firmware state
6 — reboot to initdefault state in /etc/inittab
y Optional preanswered query for shutdown confirmation (“yes”); otherwise the
command will prompt for confirmation just before the system goes down

Older System V flavors required input to the shutdown command from the system
console. However, this could be easily bypassed by executing the command from any
terminal and redirecting the standard input to the console, with the -y option included:

shutdown -g120 -i6 -y < /dev/console > /dev/console 2>&1

To shutdown a system immediately and reboot automatically:

shutdown -g0 -i6 -y
To shutdown and halt a system (after 60 s - default time):

shutdown -i5 -y

© 2002 by CRC Press LLC

4.5.3 An Example

An example from the Solaris 2.x platform is presented to illustrate a system shutdown
process. Even though Solaris 2.x belongs to the System V category, the shutdown com-
mand is more BSD-like. Once the command to halt the system is entered, a series of
messages about the system’s behavior appears on the console until the final halt has been
reached.

$ shutdown -h now

Broadcast message from root (tty1) Thu Sep 21 10:38:59 2000 ...
The system is going down NOW !!

Sep 21 10:39:01 getty [61] : exiting on TERM signal

halt: sending all processes the TERM signal
halt: sending all processes the KILL signal ..

Unmounting filesystems

Done

The system is halted

© 2002 by CRC Press LLC

5

UNIX Filesystem Management

5.1 Introduction to the UNIX Filesystem

The UNIX filesystem is the widely accepted name for UNIX's hierarchical tree-structured
directory organization, which holds all files merged together, enabling equal access to
them regardless of their nature or type. Any file in the UNIX filesystem can be identified
by its position in the tree in two ways: by an absolute file name, a full-path file name that
starts from the root directory (represented by “/”); or by a relative file name, which is
relative to the current working directory. Since everything in UNIX is either a file or file-
like, UNIX filesystem management is one of the most important administrative tasks.
Good filesystem management is the key issue for successful UNIX administration; since
most activities are related, in some way, to the filesystems, most problems are related to
the filesystems, too. Sufficient knowledge and understanding of this topic is crucial for
administration. The purpose of the following text is to help readers better understand
UNIKX filesystem issues.

The system administrator is responsible for ensuring that users have access to the files
they need, as well as for keeping those files uncorrupted and secure. Basically, admin-
istering the filesystem includes the following tasks:

* Making local and remote files available to users

* Monitoring and managing file corruption, hardware failures, and user errors

* Monitoring and preventing filesystem overloading and unrestricted file growths
* Ensuring data confidentiality by limiting file and system access

* Checking for, and correcting, filesystem corruption

* Enabling a full data restore via a well-planned backup schedule

¢ Connecting and configuring new storage devices when needed

Some of these tasks can be performed automatically (like checking for filesystem corruption),
while others are usually done manually on an as-needed basis. Some of these tasks are
also discussed in greater detail in other chapters.

When discussing the UNIX filesystem, two basic issues should be made clear:

1. Filesystem visibility, i.e., how the UNIX filesystem is seen by users. The admin-
istrator’s duty is to provide this visibility. We will refer to this topic as UNIX
Filesystem Directory Organization, and discuss it in this chapter.

© 2002 by CRC Press LLC

2. Filesystem layout, i.e., how the UNIX filesystem is seen by the operating
system itself, and how a selected file is found, opened, modified, or stored
within the available disk space. How this “jungle of files” functions at all,
and how to ensure that it works well at any time. We will refer to this topic
as UNIX Filesystem Layout, and discuss it in the next chapter.

As with everything in UNIX, both filesystem topics are BSD or System V colored and
the main UNIX filesystem types originate from the two basic UNIX platforms. However,
the differences between the two platforms are such that the corresponding filesystem types
are mutually incompatible. They differ in the way directories are organized, as well as in
the filesystem layout; they differ also performance-wise.

Despite differences, the filesystem layout and filesystem directory organization are
relatively independent issues, and UNIX vendors are free to select the best of each file-
system type and combine and improve them, thereby making new higher-performance
hybrid solutions. The Berkeley filesystem layout prevailed and today all UNIX vendors
implement it. The System V filesystem layout is obsolete; however, the System V filesystem
directory organization is widely implemented.

5.2 UNIX Filesystem Directory Organization

Both the BSD and the System V filesystem directory organizations will be discussed in
this chapter. We will follow the usual educational approach widely implemented in this
book, and we will start with the BSD filesystem. Originally there were very few differences
between BSD and the System V filesystem directory organizations — BSD and SVR3
(System V Release 3) were almost the same. They are referred to as the traditional UNIX
filesystem. A traditional UNIX filesystem certainly deserves to be considered first. Later
on, the SVR4 (System V Release 4) introduced several significant changes in the directory
organization that were accepted by many vendors, and which remain, with certain
improvements, up to the present time.

Generally, any directory structure can be customized and tailored for site-specific
needs. New directories can be created, and old directories can be moved or deleted.
Sometimes the actual directory tree is quite different from the initial one. However,
there are always plenty of elements to identify the basic flavor of the actual filesystem
directory structure.

5.2.1 BSD Filesystem Directory Organization

The basic directory structure of a traditional UNIX filesystem is illustrated in Figure 5.1,
which presents an idealized BSD directory tree. The directory organization of the SVR3
filesystem was quite similar, with some minor differences. Some vendors, like SunOS
and AIX, followed such filesystem organization. In examining the BSD directory
hierarchy, we will also address these UNIX flavors, and occasional differences will be
emphasized.

© 2002 by CRC Press LLC

/ (root dir)

bin ” dev ” etc ” lib ” usr ” mnt		u (home)l	tmp ” Iost+found								
adm		bin		etc		spooll	lib		ucb		tmp
local		includel	skel		man		games		preservel		
at		cronl		batch		mail		mqueue		news	
FIGURE 5.1

BSD filesystem directory organization.

A brief discussion and explanation of the directory organization presented in Figure 5.1
follows.

/ The root directory — The base of the filesystem’s tree structure.
All other files and directories, regardless of their physical disk
locations, are logically contained within the root directory.

/bin Command binaries — Includes executable public programs that
are part of the UNIX operating system and its utilities. Other
directories with UNIX commands are /usr/bin, and in some ver-
sions /usrlucb; strictly for BSD commands.

ldev Device directory — Contains special files related to devices. In
BSD this is a flat directory, while in SVR3 the directory was divided
into subdirectories holding special files of a given type of devices.

letc System configuration files and executables — Contains most of
the administration and configuration files and the executable
binaries for administrative commands (including system startup
scripts). Some administrative commands are stored in /usr/etc.

/lib Library files — For C and other programming languages. Some
library files are also stored in /usr/lib.

Imnt Mount directory — An empty directory conventionally designed
for a temporary mounting of another filesystem.

lu, lhome, [users User’s home directory — Flavor-specific directory name some-
times even changed by the local site. The oldest name was /u,
later changed into /home. Another common name for this direc-
tory is users.

[tmp Temporary directory — Scratch directory available to all users.
Files in the directory should be deleted occasionally. Originally,
it was supposed to clear this directory during the system startup;
nowadays this is not a rule and it varies among UNIX flavors.

[lost+found Lost file directory — Disk errors or incorrect system shutdown
may cause files to be “lost.” They can be fully identified and

© 2002 by CRC Press LLC

lusr

lusrladm

lusr/bin

lusrletc

lusr/lib

lusrlucb

lusrltmp
lusrl/local

lusrlincludes

lusrlskel

lusriman

lusrlgames
lusr/preserve
lusr/spool

© 2002 by CRC Press LLC

located on the disk, but they are not listed in any directory. In
an attempt to repair the corrupted filesystem (by using the fsck
program — will be discussed later), UNIX finds these files and
puts them into this directory for later identification by users. By
default the lost+found directory exists in each filesystem; this one
belongs to the root filesystem.

This directory contains a number of subdirectories for many
important parts of the UNIX system. A more detailed discussion
about these subdirectories follows.

Administrative directory — Home directory for the special user
adm, dedicated to “accounting.” It contains UNIX accounting
files and various system log files.

Command binary files and shell scripts — Public executable
programs that are part of the UNIX system (similar to /bin).

Additional administrative commands — In SunOS all adminis-
trative commands are stored in this directory.

Library directory — For public library files; contains the standard
C libraries for mathematics and I/O commands, and configuration
files for various UNIX facilities and services, and optional soft-
ware products.

Original Berkeley UNIX commands — Developed at the Uni-
versity of California, Berkeley; sometimes included subdirectories
for separate file types (bin for binaries, lib for library, etc.).

Temporary directory — Another depot for temporary located files.

Local files — By convention, its subdirectory /usr/locallbin is
reserved for any public executable programs developed on that
system.

Include files — Contains C-language header files which define
the C programmer’s interface to standard system features and
program libraries. The directory /usr/include/sys contains OS-
included files.

Skeleton directory — Contains default template files to be custom-
ized and used at the site, like the users’ initialization (dot) files
to be copied into a user’s home directory.

Manual pages directory — Contains online documentation of
the UNIX reference manuals, divided into subdirectories for
each section of the manual. It contains several man# subdirec-
tories holding the raw source for the manual pages in that sec-
tion, and the cat# subdirectories holding the processed versions
(sometimes cleared to save a space).

UNIX game collections — Often removed by administrators.
Preserve directory — Old-fashioned directory to store files.
Spooling directory — Contains subdirectories for UNIX sub-
systems that provide different kinds of spooling services, such as:
Jat for time-scheduled jobs

Jcron for batch jobs

Jbatch for batch jobs

Jmail, and ./mqueue for the email subsystem

Inews for news
Jlpd for the printing subsystem
Juucp, and Juucppublic for the UUCP subsystem

Some UNIX flavors, for example, SunOS or AIX, introduced more /usr subdirectories
(which are not presented in Figure 5.1), like:

lusr/5bin Executables for System V — In SunOS, stores executables for System
V-specific commands; over time the name was changed to /usr/sbin.

lust/lpp Licensed program products — In AIX, optional products are stored
in this directory; in particular, the subdirectory /ust/Ipp/bos holds
information about the current OS release.

5.2.2 System V Filesystem Directory Organization

The UNIX filesystem directory organization described next was introduced with the SVR4
(System V Release 4). We will refer to it as the System V filesystem. The basic directory
organization is presented in Figure 5.2. Today, this is the prevailing directory organization,
sometimes slightly modified by UNIX vendors.

/ (root dir)
| | |
| sbin ” dev ” etc ” tmp ” usr ” mnt ” home ” var ” Iost+found|
[[
dsk		terml	mt		bin		ucb		share		lib
SA I	pts I	sbin		game		include					
			man								
bkup		re.d		re1.d		rc3.d					
defaultl	Init.d		rc0.d	[re2d		skel					
at		cronl		Ip		mail		preserve		news ” spool	
Ip ” uucp		uucppublicl									
FIGURE 5.2

System V filesystem directory organization.

When comparing the directory structures presented in Figures 5.1 and 5.2, certain
organizational changes can be seen. System V reorganized the traditional UNIX filesystem
in several ways:

* The /dev directory has been changed. Instead of a flat directory, a number of
new subdirectories dedicated to specific devices were added: ./dsk for disks,
Jterm for terminals, ./mt for magnetic tapes, ./pts for pseudo-terminals, as well
as ./SA for the device-related system administration utilities.

© 2002 by CRC Press LLC

e The new directories /sbin and /usr/sbin were introduced; the new names reflected
System V binaries. Executable files were moved out of the /etc and /usr/etc
directories. The contents of /bin were moved to /usr/bin, and the /bin and /usr/etc
ceased to exist. However, many UNIX flavors set up symbolic links toward the
old locations, so the commands may seem to be in both places.

¢ Virtually all system configuration files were placed in the /etc directory, organized
in the slightly different way. New subdirectories were created to store files in
a more appropriate way (./default for template configuration files, ./bkup for
backup configuration files, ./skel for site-customized configuration files). In
particular, the system rc startup files have been organized in a more flexible
way: a separate depot subdirectory for start and stop scripts named ./init.d and
subdirectories for each system run-level, ./rcn.d were introduced.

¢ Certain types of static data files (like manual pages, fonts, spelling data, etc.)
were stored in the subdirectories under /usr/share. It was supposed to share these
files among a group of networked systems, eliminating the need for separate
copies on each system (the name share reflected that idea).

* A new top-level directory /var was introduced to hold the volatile spooling
directories, formerly placed in /usr/spool. The idea was this: if /var represents a
separate filesystem that keeps dynamic data, then the root filesystem can remain
relatively static after initial system setup. This is an important step toward full
support for “read-only” (RO) system disks. However, this very good idea is still
far from its practical implementation. SunOS also used the /var directory.

¢ The /lib directory was moved into /usr/lib.

5.3 Mounting and Dismounting Filesystems

At first glance, it can seem that the directories of filesystems presented in Figures 5.1 and
5.2 reside in a single place, in a single storage device. The filesystem directory organization
gives no indication of disk devices or disk space boundaries. The directory tree simply
continues over directories and subdirectories in a continuous fashion until the very last
file in the tree.

Administrators must be aware that their filesystems could be spread over multiple disk
devices. As a matter of fact, this is the most common scenario. The actual filesystem layout
is determined by the filesystem configuration, and the configuration data must be well
known to the operating system. The filesystem configuration data defines “break points”
in the overall UNIX filesystem directory structure by establishing relationships between
particular parts of the directory tree and the implemented disk space, i.e., the corresponding
disk devices.

The advantages of merging all files into a single hierarchically organized overall UNIX
filesystem tree structure are numerous. Identifying each file in the tree simply by its
position in the tree, independently of its real physical location, makes the filesystem much
easier to use. Anyone who has ever installed and reinstalled software in a different
filesystem environment would appreciate such a concept very much.

A strict relationship between the filesystem directory organization and the filesystem
physical layout, although hidden from the user, does exist. Otherwise, the UNIX filesystem
could not work at all. In UNIX, this relationship is established in a simple and flexible
way: each filesystem must be mounted before it can be used.

© 2002 by CRC Press LLC

Mounting is the process that makes a disk’s contents available to the system, merging
them into an overall filesystem directory tree. Dismounting is the process that breaks
established logical ties and makes the disk’s contents unavailable. Both processes play
important roles in the UNIX system. Mounting and dismounting are performed on the
level of a filesystem that belongs to the particular disk’s space, which is defined as an
individual storage unit (storage entity). This could be a partition, or a whole disk,
or lately even several disks together. Each such filesystem has its own hierarchical,
directory-tree based file structure and all individual filesystem’s attributes. We will refer
to such an individual filesystem as a partition’s filesystem, or simply as a filesystem. We
are using the term partition, although another term, volume, would be more appropriate.
The term partition has been perfectly serviceable in the past, when disks were partitioned
into smaller parts, and the corresponding partitions were used as basic storage units to
create filesystems. But today it is quite common to combine several disks into an
equivalent storage entity known as a volume. Although it could sound confusing and
somehow inappropriate to say that a partition consists of several disks, to keep every-
thing simple, we will continue to use “partition” (at least until we learn more about
volumes).

Mounting enables the merging of all these partitions’ filesystems into a single overall
UNIX filesystem. A filesystem can be arbitrarily mounted and dismounted — that is, it
can be connected to any point, or disconnected from the overall UNIX filesystem at will.
The only exception is the root filesystem, which is always mounted by the system itself in
the root directory, and, while the system is up, cannot be dismounted.

5.3.1 Mounting a Filesystem

Mounting a UNIX filesystem does more than merely make its data available. Mounting
eliminates all device boundaries, making the filesystem device-independent (a very important
feature in software installation and implementation). Figure 5.3 illustrates the relationship
between disk partitions (as basic storage units) with the associated filesystems and with
the overall UNIX filesystem.

The root filesystem resides in the first partition of the root disk (the first disk — Disk
#1), which is accessible via a special device file /dev/dsk/c1d0s0 (the naming of special device
files can be different among different UNIX flavors). Mounting a root filesystem establishes
a logical connection between the special device file /dev/dsk/c1d0s0 and a mounting point
for the root filesystem in the overall UNIX hierarchical directory tree. For the root filesystem,
the mounting point must be the root directory “/,” and the mounting itself must be
performed during the system startup (booting). A mounted root filesystem cannot be
dismounted as long as the system lives.

To mount a new filesystem, the corresponding mounting point (or, as we prefer to
say, mount-point) is required. A mount-point must be an accessible directory in the
already mounted directory hierarchy. It explains why the mounting of the root filesystem
must be done during the system startup, as well as why the root filesystem must live
as long as the UNIX system itself. The mounting of the root filesystem happens when
no hierarchical directory structure exists at all. Obviously it can be performed only by
the system itself. In addition, dismounting of the root filesystem would be fatal for the
system because the complete UNIX filesystem would be lost without chances for a
recovery. A filesystem cannot be accessed if its mount-point is not accessible, and the
root filesystem is the beginning of everything. However, once the root filesystem is
available, a number of new mount-points can be created and designated to mount other
filesystems.

© 2002 by CRC Press LLC

\
\
4 5 " nh V3 40
| W\ W A I ! \
| N\ \N A Yl / \
! \ N A\ n / \
1 AN N\ AN (W / \
i AN N\ v\ Vil / I \
i NN N\ NN Vi | \
i NN A (R (W ! I
1 A \ \ Y i ! I \
\ \ J \

| \ '\ A\ [} / I \

1 \ W\ LY 1 / i \

/ Y N NN W ! | \
! \ A\ A\ \i ! i \
h N\ \ AN \ / I \
I \, AN A 1l i 1 \

A\ A
] \ \ "\ u / | \
! \ Y LY W / 1 1
i \ \ LR] / 1 \
1 \ \ A\ 1 1 | \
1 \ AY N N il 1 1 v
/project/docs /project /home /var | /usr | swap | root
/dev/dsk/c1d2s2 /dev/dsk/c1d1s5 /dev/dsk/c1d1s0 c1d0s5 | c1d0s3 c1d0s1 | c1d0sO
Disk #3 Disk #2 Disk #1
FIGURE 5.3

Mounting filesystems.

In Figure 5.3, the root filesystem contains several empty directories: /ust, lvar, [home,
and /project designated to merge other filesystems (any mount-points can easily be added
by creating a new directory). While the first three listed filesystems are standard ones
(please make clear that they are not mandatory as separate filesystems — they could be
part of the root filesystem), the fourth one is very site-specific. This example illustrates
a special case where two additional disk partitions (named projectand docs) are dedicated
to keep specific project-related data, and only the project filesystem is supposed to be
mounted onto the root filesystem. In any case all partition sizes and mount-points are
arbitrary, and they fully reflect flexibility in creating an overall UNIX filesystem. In this
example, partitions’ filesystems are located in disks and partitions that can be accessed
via the special device files presented in Table 5.1.

An additional partition of the disk #1 (as it can be seen in the Figure 5.3), identified
with /dev/dsk/c1d0s1 is dedicated to the swap partition. While the swap partition is crucial
for the operating system, it is not an integral part of the UNIX filesystem and that is why
it is not included in this discussion.

Four filesystems, ust, var, home, and project, are merged into the root filesystem, while
the fifth one, docs, is merged into the project filesystem. This means that the project
filesystem must be mounted before the docs filesystem. Additionally, the project filesystem
contains the empty directory ./docs (/project/docs after the project filesystem is mounted)
as a mount-point for the docs filesystem.

© 2002 by CRC Press LLC

TABLE 5.1

Filesystem Locations and Special Device Files

Filesystem Special Device File Disk and Partition Mount-Point
usr /dev/dsk/c1d0s3 disk #1 - part. #3 lusr

var /dev/dsk/c1d0s5 disk #1 - part. #5 lvar

home /dev/dsk/c1d1s0 disk #2 - part. #1 /home
project /dev/dsk/cld1s5 disk #2 - part. #5 Iproject

docs /dev/dsk/c1d2s2 disk #3 - whole disk Iprojectidocs

Note: Filesystems are usually named by their mount-points; this convention is
implemented here.

Please note that there is no necessary connection (even by convention) between
a mount-point for a specific filesystem and a particular disk partition and its associated
special device file. The collection of files in a disk partition can be mounted in any directory
in an already accessible filesystem. Once the partition’s filesystem is mounted, its top-level
directory will take the name of its mount-point. At the same time, the top-level directory
of a mounted partition’s filesystem replaces the mount-point directory. As a side effect,
the eventual files that could reside in the mount-point directory (if it was not empty) will
disappear once the new filesystem is mounted. These data can no longer be seen and
accessed, but they are not erased or overwritten. They remain unchanged but hidden for
future use; they will reappear once the filesystem is dismounted. Obviously, it is highly
recommended to select empty directories for the mount-points. Otherwise, disk space
taken by such files will be wasted — the files cannot be accessed, nor used, but they still
take up disk space.

A filesystem can only be mounted in one place at one time; that is, a special device file
may only designate one mount-point in the directory tree. However, one filesystem can
have another filesystem as a subtree within it.

The previous discussion was related to the local filesystems — the filesystems that reside
in local disks. This is not necessarily always the case; UNIX also supports remote disks.
Nevertheless, at this time we will only focus on the local filesystems, and the discussion
in this chapter will primarily address these issues.

5.3.1.1 The mount Command

The mount command must be used to mount a filesystem. This is a regular UNIX com-

mand that can be invoked from the command line or a script at any time. However, the

command is so crucial for the system that the security precautions require strict superuser

privileges for its execution. Even the SUID bit (discussed in Section 2.2.2.2.4) doesn’t work

in the case of the mount command; if SUID is set, the system will simply reject execution

of the command. Any security risk must be avoided, and SUID always carries a bit of it.
The generic format for the mount command is:

mount [key-options] block-special-file mount-point

The mount command attaches a named filesystem, identified by block-special-file, to
the overall filesystem hierarchy at an existing directory, identified by mount-point. A
number of options are available.

mount maintains a table of mounted filesystems in the filesystem status file, usually named
fetc/mnttab, or /etc/mtab. If invoked without an argument, mount displays the contents of this

© 2002 by CRC Press LLC

table. If invoked with a single argument, either block-special-file or mount-point only, mount
searches the filesystem configuration file (usually named /etc/vfstab, or /etc/fstab) for a matching
entry, and mounts the specified filesystem in the specified directory.

The key-options can be generic ones, valid for all filesystem types, or specific for the
different filesystem types. The following are the most common options:

-p Print the list of mounted filesystems in a format suitable for
use in the filesystem configuration file.

-a Stands for all. Attempt to mount all the filesystems described
in the filesystem configuration file. If a type argument is
specified with the -t option, mount all file systems of that
type. Some UNIX platforms have a special mount command
for this purpose.

-f Fake a filesystem status entry (in the filesystem status file /etc/
mtab, or fetc/mnttab), but do not actually mount any filesystem.

-n Mount a filesystem without making an entry in the filesystem
status file.

-V Verbose. Display messages indicating each filesystem being
mounted.

-t type Specify a file system “type” (see the later text about filesystem
types).

-r Mount the specified file system read-only, even if the config-

uration entry specifies that it is to be mounted read-write.
Physically write-protected and read-only filesystems
should be mounted read-only. Otherwise errors occur when
the system attempts to update access times, even if no write
operation is attempted.

-0 FS-specific-options Specify the filesystem-specific options — a comma-separated
list of options valid for the corresponding filesystem type
(see the text about filesystem types).

The following list shows the common options for most local UNIX filesystems.

Options Meaning

defaults Use all default options.

rw / ro Read /write, or read-only; the default is rw.

suid / nosuid SUID execution allowed, or not allowed; the default is suid.

grpid Create files with BSD semantics for the propagation of the group ID. Under this option,
files inherit the GID of the directory in which they are created, regardless of the directory’s
SGID bit.

noauto Do not mount the filesystem automatically, only explicitly (ignore option -a).

remount A filesystem mounted read-only can be remounted read-write (used in conjunction with rw).

intr / nointr Allow, or do not allow, keyboard interrupts to terminate a process that is waiting for an
operation on a locked filesystem; the default is intr.

quota / noquota Filesystem usage limits are enforced, or are not enforced; the default is noquota.

rq Read-write with quota turned on (equivalent to rw,quota).

largefiles / nolargefiles ~ Attempt to enable or disable the creation of files greater than 2GB in size; the filesystem
must be created especially to support large files. The default is nolargfiles.

Note: It is highly recommended that you check the manual pages for the mount command before attempting
to implement it.

© 2002 by CRC Press LLC

A few examples of how to use the mount command follow; the presented situations are
hypothetical.

¢ To mount the local filesystem /dev/xy0g in the directory /usr:
mount /dev/xy0g /usr

* To mount the hfs filesystem /dev/dsk/c1d2s0 in the directory /home:
#mount -t hfs /dev/dsk/c1d2s0 /home

¢ To fake an entry for nd root:
mount -ft 4.2 /dev/nd0 /

¢ To list the filesystems that are currently mounted:
mount

¢ To mount all ufs file systems:
mount -at ufs

¢ To save the current mount state:
mount -p > /etc/vfstab

5.3.2 Dismounting a Filesystem

Dismounting is the reverse process of mounting. Every mounted filesystem can be
dismounted (except the root filesystem). When system shutdown is required, before the
system stops entirely, all filesystems are dismounted. This is actually the only situation
when the root filesystem is dismounted.

The umount command is used to dismount a filesystem. Using the command is somewhat
easier than mounting; you simply type:

umount name

where
name is either the name of the mounted filesystem’s special file or the name of the
mount-point, i.e., the directory at which the filesystem is mounted

The single argument is sufficient for full identification of the mounted filesystem. The
umount command looks in the filesystem status file /etc/mnttab (or, /etc/mtab) for another
argument. If a specified name cannot be found, it simply means there is no need for
dismounting because the specified filesystem is not mounted at all.

umount supports the same options as the mount command. Online UNIX documentation
often presents both commands in the same manual pages.

A few examples:

¢ To dismount the filesystem /dev/dsk/c1d2s0 mounted at /home:
umount /dev/dsk/c1d2s0 or
umount /home
¢ To dismount all filesystems described in the filesystem status file /etc/mtab:

umount -a (Pay attention that the root filesystem can never be dismounted.)

© 2002 by CRC Press LLC

A filesystem can be dismounted only if it is not busy. A filesystem is busy as long as
any running process is requiring any resource within the filesystem. For example, when
a user changes a directory within a certain filesystem (by executing the c¢d command),
that filesystem becomes busy, and the superuser cannot dismount it. The only way to
dismount a busy filesystem is to first make it free by destroying all related running
processes. Once all processes release the filesystem, it can be dismounted. For example,
to dismount the /home filesystem (supposing it as a separate filesystem), all users must
log out.

Releasing a busy filesystem is not a simple task. It is not always easy to determine which
processes are associated with the filesystem. The fuser command could be instrumental
in this case:

fuser [option] fsname

where
fsname The name of the filesystem, specified as a special device file (recommended)
or a mount directory
option wjo option Lists all involved processes, identified by their PIDs

-u Lists all involved processes; the login user name is added in
parentheses besides the PIDs
-k Destroys all involved processes and makes the filesystem free

The -k option of the fuser command is dangerous, and must be used with extreme
caution; for example, “fuser -k /home” will kick-out all logged-in users from the system.

5.3.3 Automatic Filesystem Mounting

Regardless of its form, once the filesystem configuration file is set up, mounting may take
place automatically. The following commands, depending on the implemented UNIX
flavor, will mount all filesystems specified in the filesystem configuration file.

mount -a Mostly for BSD flavors
$ mountall Mostly for System V flavors
$ mount all For AIX

Once the filesystem configuration file is specified properly, even the mount command
can work with a single argument (either the mount-point or the special device file name)
specified on the command line. Another argument is read and taken from the filesystem
configuration file. This is a good opportunity to check newly specified filesystem config-
uration entries, and to avoid potential surprises once the system is rebooted.

5.3.4 Removable Media Management

Mounting and dismounting can be performed manually or automatically (in the sense
that a single command can be used simultaneously for multiple filesystems). However,
a command itself must always be invoked by a user or from a script. This means that each
time a floppy disk or a CD-ROM is used a user must mount and /or dismount a filesystem
residing on the medium. This can be frustrating for many users, but this is the way things
work on many UNIX systems.

© 2002 by CRC Press LLC

Modern UNIX versions, like Solaris 2.x, introduced a special daemon, a media (volume)
management daemon, to manage an automatic mounting and dismounting of removable
media filesystems. The daemon permanently monitors devices like floppy drives or CD-ROM
drives and provides an appropriate action as soon as a medium (disk) has been inserted
into a corresponding device; it also ejects a medium if requested by the user. The name
for the daemon on Solaris 2.x is vold:

$ ps -ef | grep -v grep | grep vold
root 200 1 80 Sep28 ? 0:01 /Jusr/sbin/vold

The vold daemon is started during the system startup, and it lives as long as the system
itself. In the presented example, the running program is /usr/sbin/vold and the process ids
are PID=200 and PPID=1 (the parent process init, as for all daemons). Solaris uses the
term volume instead of medium, which explains the name of the daemon.

The vold daemon takes care of all replaceable mountable devices. It automatically
mounts newly inserted volumes (media), assuming a single predefined mount-point for
each volume (medium) of the same device. There is no need for any additional action.
Users can simply insert floppy or CD-ROM disks and use them.

The media (volume) management daemon vold is often referred to as a volume manager.
This can be quite confusing, because the name volume manager is commonly used on
different UNIX platforms to identify the logical volume manager — the suite of programs
that manage logical volumes, in a new approach in the management and handling of
available disk space. Instead of dealing with disk units as physical entities, they can be
logically grouped and treated as logical entities. The logical volume manager will be dis-
cussed in greater detail later.

5.4 Filesystem Configuration

Mounting and dismounting filesystems is seldom performed manually; the mount com-
mand (or several mount commands) is executed automatically at system boot time. How
does the system know which filesystems have to be mounted? Obviously, the required
configuration data must be available to the system during its startup. The information
about all filesystems, for use by the mount and other relevant commands, is stored in the
filesystem configuration file. The name and form of this file vary slightly between UNIX
flavors. The variations originated in the traditional BSD and System V UNIX systems, and
the two versions will be presented separately. Even though the BSD-type filesystem is the
dominant one today, we will address both BSD and System V types of filesystem config-
uration files.

5.4.1 BSD Filesystem Configuration File
The BSD-style filesystem configuration file /etc/fstab was, and still is, used by many UNIX
flavors: SunOS 4.1.x, HP-UX 10.20, IRIX, Linux, etc. Here is an example from SunOS:

$ cat /etc/fstab

Idev/sd0a / 4.2 rw 11
Idev/sdOh lhome 4.2 rw 13

© 2002 by CRC Press LLC

ldev/sd0g lusr 4.2 rw 12

ldevlfd0 Ipcfs pefs rwmnoauto 00
indigol:/indigol /indigol nfs rw,bg,intr,hard 00
heprophet:/hcprophet /hcprophet nfs rw,bg,hard,intr 00
rs01-ch:/home/2gig/rsxx-ch Jrsxx-ch nfs rw,bg,hard, intr 00

The first three entries define three local 4.2. type filesystems: root, usr, and home, in the
partitions a, h, and g, of the same disk sd0. This used to be a very common filesystem
configuration when disk space was quite expensive. The fourth entry defines a floppy
drive (pcfs filesystem type). The last three lines define three NFS filesystems. To mount
remote NFS filesystems, different syntax and options should be implemented; this will be
discussed in another chapter.

This filesystem configuration file does not include any swap-related entry. The system
obviously has used only the primary swap partition, the partition b at the disk sd0,
identified by the special device file /dev/sd0b. If it is not specified otherwise, the system
by default mounts the primary swap partition. However, as we mentioned earlier, modern
UNIX versions require swap configuration entries.

An example on Linux platform:

$> cat /etc/fstab

/dev/sdal / ext2 defaults 11
/dev/sda5 /home ext2 defaults 12
/dev/sda8 /log ext2 defaults 12
/dev/sda7 /tmp ext2 defaults 12
/dev/sda2 Jusr ext2 defaults 12
/dev/sda3 Jvar ext2 defaults 12
none /proc proc defaults 00
/dev/sda6 swap swap defaults 00

Linux displays swap partitions, including the primary one. Most UNIX flavors today
follow this approach — it is always better to see, than to guess about, the system config-
uration. However, the presented proc filesystem could be confusing. This configuration
entry is Linux specific — proc is a quasi-filesystem which allows an easy access to handle
kernel parameters by using regular UNIX commands. Although it is primarily read-only,
some kernel parameters could even be modified in that way.

In the SunOS example an entry for a local filesystem has the form:

block-special-file mount-point type opts dump-freq pass-number
The fields have the following meanings:

block-special-file The name of a special block device file where the filesystem

resides
mount-point The directory at which to mount the filesystem
type The filesystem type; here the implemented values are:

4.2 For local partitions
nfs For volumes mounted remotely via NFS
pcfs For DOS formatted floppy diskettes

These could also be:

swap For swap partition
ignore For the mount command to ignore this line

© 2002 by CRC Press LLC

opts

dump-freq

pass-number

The field consists of one or more options, separated by commas.
These are the usual mount options for a specified filesystem
type, determined by the type field. For ignore type entries, this
field is ignored. For swap type entries, this field should be sw.
If the file’s type is 4.2, the options field may include the follow-
ing keywords, separated by commas:

rw Read-write filesystem
10 Read-only filesystem
suid The SUID access mode permitted

nosuid ~ The SUID access mode not permitted

quota Quotas may be placed in effect
noquota Quotas not in use

A decimal number indicating the frequency with which this
filesystem should be backed up. A value of 1 means every day,
2 means every other day, and so on. This field should be 0 for
swap devices.

A decimal number indicating the order in which fsck should
check the filesystems. The number 1 indicates that the filesys-
tem should be checked first, 2 indicates that the filesystem
should be checked second, and so on. The root filesystem must
have a pass-number of 1. All other filesystems should have
higher numbers. For optimal performance, two filesystems that
are on the same disk drive should have different numbers;
however, filesystems on different drives may have the same
number, letting fsck check the two filesystems in parallel. The
number should be 0 for a swap device.

5.4.2 System V Filesystem Configuration File

Since SVR4, the filesystem configuration file has been named /etc/vfstab to reflect the newly
used term virtual; this name is still the most common today. An example from Solaris 2.6
follows.

$ cat /etc/vistab

#

device device mount FS fsck mount

to mount to fsck point type pass at boot options
#

/proc - /proc proc - 1o -
1 - /dev/fd fd - 1o -
swap - /tmp tmpfs - yes -
/dev/dsk/c0t3d0s0 /dev /rdsk/cOt3d0s0 / ufs 1 1o -
/dev/dsk/c0t3d0s6 /dev /rdsk/cOt3d0s6 Jusr ufs 1 1o -
/dev/dsk/c0t3d0s7 /dev /rdsk/cOt3d0s7 /Jexport/home ufs 2 yes -
/dev/dsk/c0t3d0s1 - - swap - 1o -
/dev/dsk/c0t2d0s0 /dev /rdsk/cOt2d0s0 Japplic ufs 3 yes -
/dev/dsk/c0t2d0s6 /dev frdsk/cOt2d0s6 /software ufs 4 yes -
/dev/dsk/c0t2d0s1 - - swap - 1o -

© 2002 by CRC Press LLC

Changes in the file’s syntax are visible when the two main UNIX filesystem configuration
files are compared, but the structure and contents of the file remain essentially identical.
The configuration file on Solaris includes a header, which identifies each entry field and
makes the file easier to read. Other modifications include: partitions are specified with
both block and character (raw) special device files, for the filesystem mounting and
checking, respectively; the entry for nonsystem-critical filesystems can be bypassed during
system startup (system critical filesystems are always mounted, regardless of what is
specified in the “mount at boot” field); and there is no more useless backup-related data.

According to the filesystem configuration file, this system contains two local disks. The
first disk c0t3d0 (this is the way Solaris identifies disks, by controller#/target#/disk#) with
three partitions (root, usr, and export/home), as well as the primary swap partition; the second
disk c0t2d0 contains two partitions (applic and software) and the second swap partition.
Partitions are mounted into the corresponding directories with the same names. Based on
the naming scheme, the second disk seems to be added later.

Please note that the disk identification used here is not a generic one; the identification
is very hardware dependent (based on the disk controller, interface, and many other
factors). In the preceding example, the implemented disks are SCSI disks occupying SCSI
addresses #3 and #2.

Typically, an entry in the /etc/vfstab file has the format:

blk-spfile char-spfile mount-point type fsck-pass automount? opts

where
blk-spfile Block special file (to be used by mount)
char-spfile Character special file (to be used by fsck)
mount-point Directory at which to mount the filesystem
type Filesystem type. The possible values are:
ufs (efs) For a BSD-style filesystem
nfs For volumes mounted remotely via NFS
s5 For a System V-like filesystem
fsck-pass A decimal pass-number indicating the order in which fsck should
check the filesystems. 1 indicates that the filesystem should be
checked first, 2 if it’s to be checked second, and so on. The root file-
system must have a pass-number of 1. All other filesystems should
have higher numbers. Again, for optimal performance, filesystems
on the same disk drive should have different numbers; however,
filesystems on different drives may have the same number, allow-
ing fsck to check the two filesystems in parallel.
automount? The keyword yes or no, indicating whether the filesystem is to be
automatically mounted by the mountall command
opts The field consists of one or more options, separated by commas.
The options field may include the following keywords:
rw Read-write filesystem
70 Read-only filesystem
rq Read-write filesystem with disk quotas in effect
suid The SUID access mode permitted
nosuid The SUID access mode not permitted

HP-UX 9.0x renamed the filesystem configuration file into /etc/checklist; HP-UX 10.x
named it back to /etc/fstab, but made a corresponding link for this unusual name to keep

© 2002 by CRC Press LLC

it compatible with the previous releases. Regardless of what the file name was, its contents
remained essentially the same. The next example is from HP-UX 9.0x. Starting with HP-UX
9.04, the logical volume manager (LVM) became a part of the HP-UX installation, so the
logical volume can replace the partitions presented here.

$ cat /etc/checklist

/dev/dsk/c201d6s0 / hfs rw,quota 01
#/dev/dsk/c201d6sO ... swap end,pri= 0 00
/dev/dsk/c201d5s0 /disk2 hfs rw,suid, 02
/dev/dsk/c201d5s0 swap end,pri=1 00
/dev/dsk/c201d2s0 Jedrom cdfs ro,suid, 00

769
16408
16408
16408

0

16409

31484

Two hard disks, d6 and d5, containing a single partition and a swap partition and a CD-ROM
disk, d2, are specified; HP-UX assumes only one partition on a disk, with or without
a swap partition (this is discussed in greater detail in Chapter 27). The entry for the first
swap partition is commented out, but this does not affect performance, because the system
always mounts the primary swap partition by default.

The next example is IRIX related. IRIX is a primarily System V flavored version of UNIX,
which uses the slightly modified BSD-style /etc/fstab file (only local filesystem entries are
presented):

$ cat /etc/fstab

/dev/root / efs rw,raw=/dev/rroot
Jdev/usr Jusr efs rw,raw=/dev/rusr
/dev/dsk/dks0d2s7 /hom e efs rw,raw=/dev/dsk /dks0d2s7 fsc k
/dev/dsk/dks0d3s7 /dis k3 efs rw,raw=/dev/dsk /dks0d3s7 fsc k

The implemented filesystem type is IRIX-flavored “efs.”

5.4.3 AIX Filesystem Configuration File

00
00
00
00

AIX has a completely different approach to filesystem configuration (as well as to a number
of other issues). AIX has introduced a journaled filesystem, jfs, which is its standard
filesystem type. The configuration data are specified in two filesystem configuration files:
/etc/filesystems and /etc/vfs, both very AIX-specific. Here is an example:

$ cat /etc/filesystems

*

N R R

@#filesystems @(#)29 1.18 com/cfg/etc/filesystems, bos, bos320

This version of /etc/filesystems assumes that only the root file system
is created and ready. As new file systems are added, change the check,
mount, free, log, vol, and vfs entries for the appropriate stanza.

dev = /dev/hd4
ufs =jfs

log =/dev/hd8
mount = automatic
check = false

type = bootfs

vol =root

free =true

© 2002 by CRC Press LLC

Jusr:

dev = /dev/hd2

ufs =jfs

log = /dev/hd8

mount = automatic

check = false

type = bootfs

vol = Jusr

free =false
/home:

dev = /dev/lv00

ufs =jfs

log = /dev/loglv01

mount = true

check =true

options = rw

account = false

A filesystem

characteristics

is confined to a logical volume. All of the information about the filesystem
is centralized in the /etc/filesystems file. Most of the filesystem maintenance commands
take their defaults from this file. The file is organized into “stanzas” which are named as
the filesystems are named; their contents are attribute-value pairs, which specify the

of the corresponding filesystems.

The /etc/filesystems file serves two purposes:

1.
2.

It documents the layout characteristics of the filesystems.

It frees the person who sets up the filesystem from having to enter and remember

items such as the device where the filesystem resides, because this information
is defined in the file.

Each stanza names the directory where the filesystem is normally mounted. The filesystem

attributes specify all of the parameters of the filesystem. The attributes currently used are:

account

boot

check

dev

© 2002 by CRC Press LLC

Used by the dodisk command to determine the filesystems to be
processed by the accounting system. This value can be either True or
False.

Used by the mkfs command to initialize the boot block of a new filesystem.
This specifies the name of the load module to be placed into the first
block of the filesystem.

Used by the fsck command to determine the default filesystems to
be checked. The True value, enables checking while the False value
disables checking. If a number, rather than the True value, is specified, the
filesystem is checked in the specified pass of checking. Multiple-pass
checking, described in the fsck command, permits filesystems on different
drives to be checked in parallel.

Identifies, for local mounts, either the block special file where the filesys-
tem resides or the file or directory to be mounted. System management
utilities use this attribute to map filesystem names to the corresponding
device names. For remote mounts, it identifies the file or directory to be
mounted.

mount Used by the mount command to determine whether this filesystem
should be mounted by default. The possible values of the mount attribute
are:

automatic ~ Automatically mounts a filesystem when the system is
started. For example, the root filesystem line is the
“mount=automatic” attribute. This means that the root
filesystem mounts automatically when the system is
started. The True value is not used so that mount all does
not try to mount it, and umount all does not try to
dismount it. Also, it is not the same as the False value
because certain utilities, such as the ncheck command,
normally avoid filesystems with a False value for the
mount attribute.

False This filesystem is not mounted by default.
readonly This filesystem is mounted as read-only.
True This filesystem is mounted by the mount all command. It

is dismounted by the umount all command. The mount all
command is issued during system initialization to automat-
ically mount all such filesystems.

nodename Used by the mount command to determine which node
contains the remote filesystem. If this attribute is not
present, the mount is a local mount. The value of the node-
name attribute should be a valid node nickname. This value
can be overridden with the mount -n command.

size Used by the mkfs command for reference and to build the filesystem.
The value is the number of 512-byte blocks in the filesystem.

type Used to group related mounts. When the mount -t string command is
issued, all of the currently dismounted filesystems with a type attribute
equal to the string parameter are mounted.

ufs Specifies the type of mount. For example, “vfs=nfs” specifies that the
virtual filesystem being mounted is an NFS filesystem.

vol Used by the mkfs command when initializing the label on a new file-
system. The value is a volume or pack label using a maximum of six
characters.

log The device to which log data is written as this filesystem is modified.

This is only valid for journaled filesystems.
The asterisk (*) is the comment character used in the /etc/filesystems file. Also, the
“default” stanza can be introduced to specify default attributes valid in each of the stanzas

if not otherwise specified, as in the following example:

* Filesystem information

default:
vol = “AIX”
mount = false
check = false

/:
dev = /dev/hd4
vol = "root”

© 2002 by CRC Press LLC

mount = automatic
check = true

log = /dev/hd8
...etc.

The purpose of the second file /etc/vfs is different. This is a generic file that defines
filesystem types. Here is a self-explanatory example from the very same AIX system:

$ cat /etc/vfs

#@#)ufs @#)77 1.20 com/cfg/etc/vfs, bos, bos320

#

this file describes the known virtual file system implementations.

format: (the name and vfs_number should match what is in <sys/omount.h>)
The standard helper directory is /etc/helpers

#

Uncomment the following line to specify the local or remote default vfs.

%defaultofs jfs nfs
#

name vfs_number mount_helper fil sys_helper
cdrfs 5 none none
ifs 3 none /sbin /helpers/v3fshelper
nfs 2 /sbin/helpers /nfsmnthelp none remote

5.4.4 The Filesystem Status File

The filesystem configuration file defines the configuration that the system is trying to
achieve. A configuration entry does not necessarily mean that the appropriate mount
attempt will be successful; there are many reasons that can cause mounting to fail. For
example, for all removable media, a mount attempt will fail if a volume was not loaded
into the device (floppy drive, CDROM drive, etc.), not to mention a broken disk or
corrupted filesystem. Even after a successful mounting, the filesystem could be automatically
or manually dismounted. Briefly, the real filesystem status does not necessarily match with
the configuration requirements.

The system automatically maintains a separate table of its current filesystem status. This
table is updated always when any filesystem is mounted or dismounted. The table is an
ASCII readable file that can be manually modified; of course, manual modification is not
recommended except as a last resort to fix an obvious error. Two file names are common
for the filesystem status file: /etc/mnttab and /etc/mtab; both names reflect the file’s purpose
as a mounted filesystem table.

The filesystem status file contains a table of all filesystems currently mounted by the
mount command. The umount command removes entries from this file. The file contains
an entry (a line of information) for each mounted filesystem, which is structurally
identical to the contents of the filesystem configuration file. The entry format varies
slightly among UNIX flavors, just as the filesystem configuration entries do. A typical
entry looks like:

fsname dir type opts freq passno

where
fsname A filesystem name
dir A mount-point directory
type A filesystem type
opts Are comma-separated filesystem options

© 2002 by CRC Press LLC

freq A number indicating backup strategy for the filesystem
passno A number indicating the fsck order for the filesystem

The content of the /etc/mtab file on SunOS is presented to illustrate the previous
information:

cat /etc/mtab

/dev/sdOa / 4.2 rw,dev=0700 11
/dev/sd0g Jusr 4.2 rw,dev=0706 12
/dev/sdOh /home 4.2 rw,dev=0707 13
indigol:/indigol /indigol nfs rw,bg,intr,hard, dev= 8200 00
heprophet:/hcprophet /heprophet nfs rw,bg hard,intr,dev= 8203 00

This is the filesystem status file for the same system for which the filesystem config-
uration file /etc/fstab was shown earlier. If we compare the two files, and assume the
filesystems were mounted automatically during the system startup, we can conclude:

¢ All local filesystems are mounted.

¢ The floppy diskette was not inserted at the startup time, so the pcfs filesystem
is not mounted.

* One of the nfs filesystems is not mounted, obviously because a connection with
the remote host “rs01-ch” was not established at that time (it is a logical to
speculate that the remote host was not reachable, although there could be a
number of other reasons for mounting to fail).

5.5 A Few Other Filesystem Issues

For a better understanding of UNIX filesystems, let us make a brief overview of several
other filesystem issues. The most intriguing issue is how many different UNIX filesystems
exist. We will try to describe the actual situation in this area. We will also address another
extremely important topic related to the UNIX, the topic that affects both the operating
system itself and disk usage. This is swap space and its usage on a UNIX platform — this
time from the angle of the UNIX filesystem organization. Finally, a more detailed description
of one pseudo filesystem is presented, just to clarify mysteries around these filesystem

types.

5.5.1 Filesystem Types

The filesystem type is determined by “a logical organization of the filesystem within the
storage entity,” or more specifically, by the filesystem layout. The filesystem layout will
be elaborated in greater detail in the next chapter.

Different filesystem types are mutually incompatible. Each filesystem type has a different
organization and allows a different approach to its system data and existing files. This
does not mean that different filesystem types cannot coexist within the same UNIX imple-
mentation; it means that the OS has to support all of the implemented filesystem types.

The core of each filesystem is its superblock, a collection of filesystem tables, index
nodes, and other system data that uniquely identify the filesystem. Creating a filesystem

© 2002 by CRC Press LLC

primarily means creating the superblock; differences in the superblocks (structure, contents,
layout, etc.) literally determine the filesystem differences.

Nowadays vendor-specific UNIX filesystems are dominant. The typical System V
filesystem type, known as s5, has practically disappeared. The superior BSD-like filesys-
tems prevailed, with many additions and improvements introduced by different vendors.
Currently, the most common local UNIX filesystem type, supported by a number of UNIX
vendors, is ufs (UNIX filesystem). However, many other flavor-specific filesystem types
are also in use:

¢ hfs On the HP-UX platform
¢ ¢fs On the IRIX platform
* ext2 On Linux platform

* jfs Journaled filesystem, introduced by AIX, but also implemented on
other platforms. jfs has some advantages; it is more robust in the face of
filesystem corruption because a journal of filesystem activities
enables a rollback of incomplete transactions to maintain filesystem data
consistency

¢ 42 Animproved filesystem introduced with BSD 4.2 UNIX, and widely used
on the SunOS platform (a real ancestor of the ufs filesystem)

* vxfs Veritas filesystem, an improved journaled filesystem version with a number
of beneficial filesystem characteristics

Other implemented local filesystem types are:

* afs Andrew filesystem, provides some additional flexibility, especially
regarding remote filesystem sharing

hsfs High Sierra filesystem, typical for CD-ROM media
cdfs CD-ROM filesystem

* pcfs PC filesystem (FAT filesystem), implemented for DOS-formatted floppy
diskettes

¢ cachefs Cache filesystem, allows use of local disk space to cache frequently-used
data from a CD-ROM or a remote filesystem

There are also a number of specific, pseudo filesystem types supported by different
UNIX flavors:

tmpfs Temporary filesystem, a temporary file storage in memory that swaps
to bypass the overhead of writing into a disk

lofs Loopback filesystem, a virtual filesystem to approach files using
different pathnames (it is discussed in more details later in this section)

* ifs Translucent filesystem, allows mounting of a filesystem on top of existing
files (mount-point does not have to be an empty directory)

* swapfs Swap filesystem, used by the kernel to manage swap space
* proc Process access filesystem, allows access to active processes and their
images

* specfs Special filesystem, allows access to the special device files

© 2002 by CRC Press LLC

Besides the listed local filesystem types, supported remote filesystem types are:

* nfs Network filesystem, widely used on all UNIX platforms
* fs Remote file share filesystem, typical for System V and barely in use

* autofs Automount filesystem, an NIS-based automounted NFS filesystem

Some of the listed types are barely in use, while others are widely used. This relatively
long list also is not, by any means, a complete list. In this chapter we will discuss strictly
local UNIX filesystems; network filesystems will be discussed separately.

We mentioned earlier the swap partition and its crucial role on the UNIX platform. The
swap partition definitely deserves more than this brief statement. A more detailed overview
follows.

5.5.2 Swap Space — Paging and Swapping

UNIX systems require an appropriate swap space available for regular activities; otherwise,
they cannot function normally and they crash immediately. The swap space is provided
as a separate swap partition, and is sometimes several partitions (for primary and additional
swap partitions).

UNIX systems use a virtual memory approach to access required programs and data.
Virtual memory space consists of the physical memory space (known as system memory)
and the corresponding disk space where programs and data actually reside. However,
program execution and data processing are performed from the system memory only;
therefore special techniques are required to provide the data needed from the system
memory at the right time. This is the only task (but it is an extremely difficult task) of a
specialized subsystem known as a memory management system (MMS). This task is crucial
for system performance. The system memory is continuously updated and synchronized
with the disk, and programs and data are transferred in both directions. The transfer is
performed in “pages,” and a page is the basic unit in the data transfer.

In UNIX a part of the disk space is reserved as an extension of the system memory for
temporary storage while the OS keeps track of processes that require more system memory
than is available. This temporary depot is known as a swap space. When the OS recognizes
the need, swap space is used for paging and swapping.

Paging is when individual memory segments, or pages, are moved to or from the swap
area in an ordered way. When free memory space is low, portions of processes (primarily
data segments within the process address space) are moved into the swap space to free
system memory. The data segments are selected to be moved if they have not been
referenced recently (different criteria can be implemented, but the most common is
LRU — least recently used). When the running process tries to reference the data segment
that has been transferred to the swap space, a page fault occurs and the process is
suspended until the required data pages are returned into the system memory. A page
fault occurs normally when a program is started for the first time; then the required pages
must be brought from the disk.

The swap space is mostly organized as a flat partition, which reduces the overhead and
enables faster page transfer, both in and out. This is not a necessity, but it increases the
transfer efficiency. However, the existence of a swap space is a requirement; the swap
space can be thought of as an extension of the system memory, and there is no operating
system to operate without a system memory.

The additional swap partition improves system performances, but it is not mandatory.
Certain UNIX versions enable the use of a swap file (also known as a paging file) within

© 2002 by CRC Press LLC

a regular filesystem, which serves the same purpose as a swap partition. It is important to
note that the use of a swap file instead of a swap partition will not save any disk space — the
required swapping area must be provided in any case, and it stays the same, independent
of its “formal” organization. The main advantage of the swap file is that it can be created
at any time, while the swap partition must be created in advance; its disadvantage is the
time overhead in its use. To create a swap file, a special UNIX command, mkfile, is available
on many platforms (for example, on the SunOS platform).

Swapping occurs during a heavy workload, when memory shortage becomes critical,
and the OS lacks the needed time to perform regular paging. When swapping, the kernel
moves complete processes (including all associated code and data segments) to the swap
area. The processes are chosen if they are not expected to run for a while. Unfortunately,
it is often nearly impossible to make a perfect selection. When the process is run again it
must be copied back into the system memory from the swap space. If such a transfer has
to be performed repeatedly, the system performance drops sharply until the system stabilizes
and continues with regular paging. The system simply spends more time doing process
image and data transfer between the memory and swap areas than it spends running the
same processes.

While paging represents normal system activity, swapping is an undesired event.
Performance-wise, it is preferable for swapping to never occur. Unfortunately, in real life
such situations are unavoidable. The best way to prevent swapping is to increase the system
memory. Today, huge system memory space is quite common and the need for swapping
is drastically reduced; swapping happens only occasionally, or perhaps even never.

The size of the swap space should be larger than the system memory. Theoretically, the
need for swapping the complete system memory could arise. Therefore, if the system
memory is upgraded, a new swap partition should also be added (unless the primary
swap partition has already been sized for future memory upgrades).

The swap space is also used as a dump space. In an emergency the system could dump
a complete memory image into the swap space (known as a memory core). This is an
additional reason to have a swap space larger than the memory itself. In the case of a dump
space, the requirements are even greater: the available space must be contiguous — at
a dump time no overhead is allowed, and the copying of the memory into the swap partition
must be simple and fast. In this case, an additional swap partition does not work; only a
contiguous increase of the existing primary partition helps. Unfortunately, this demand often
cannot be met; a more painful yet realistic solution is to rebuild the complete system.

Solaris 2.x went one step further by introducing the swapfs filesystem. Today, memory is
not very expensive, and therefore huge system memory is not rare; new UNIX implemen-
tations frequently have GBs sized system memory. Under these circumstances, swap space
can be expanded to include a part of the system memory besides the usual disk-based swap
area. Then pages can be swapped from the system memory to the memory-based swap area,
thereby actually staying within the system memory. The only question, then, is how the
system would tell the difference between regular and swapped pages; this is the task of the
swapfs filesystem. Anonymous swapped pages are named by swapfs and handled appro-
priately. There is no need for a literal copying of pages within memory; simply, pages stay
where they were, but are marked as swapped. Swapped pages requested by the system are
released for regular use. Therefore, everything happens as it would in typical swapping,
except much, much faster; the system performance benefit is obvious. Please note that the
phrases “a swapped page” and “to swap a page” do not necessarily refer to the swapping
process; they have been also used to identify a page in the swap area and the process of
transferring a page into the swap area, as a part of the regular paging procedure.

As the need for system memory increases, swapfs makes more space by backing
swapped pages into the disk-based swap area (swap partition). The worst-case scenario

© 2002 by CRC Press LLC

is a well-known swap structure: physical memory is used as system memory, and the
swap area is restricted to the swap partition. As soon as more room has been made in the
memory, a swap space can expand in that way.

Such a flexible approach implies that all swap partitions, including the primary one, should
be mounted through entries in the filesystem configuration file. Otherwise, there is no need
for a default primary swap configuration entry; it is already well known to the system.

5.5.3 Loopback Virtual Filesystem

Modern UNIX versions introduced a more flexible way to merge individual filesystems
into the overall UNIX hierarchical filesystem. Initially, UNIX filesystems could be handled
only as complete partitions; this meant that only a complete filesystem within a partition
could be merged by mounting the top-most directory from the partition’s filesystem onto
the mount-point (supposedly an empty directory within the overall UNIX filesystem). It
also meant that to access any file within a partition, a long trip from the starting partition’s
point was often required. The requested long pathname could be accepted, but for a
number of applications, doing so required a careful selection of the filesystem’s mount-
point. In some cases symbolic links could help in skipping a part of the path, thereby
reaching the needed data using a corresponding shortcut. However, a real advantage
would be to mount the same filesystem in different ways — such flexibility would be
quite an improvement.

A new approach was introduced, known as the loopback filesystem (lofs). Once the
filesystem is mounted in the usual way, lofs allows new, virtual filesystems to be created,
which provide access to existing files using alternate pathnames. Once the virtual filesys-
tem is created, other filesystems can be mounted within it without affecting the original
filesystem. At the same time, filesystems that are subsequently mounted onto the original
filesystem continue to be visible to the virtual filesystem. The new filesystem type lofs
requires a slightly modified treatment by the OS; however, all of the filesystem’s issues
remain transparent.

The idea for lofs came from the network filesystem (nfs), which will be discussed later
in Chapter 18. If something could be implemented through the network, obviously it could
be implemented locally, too. Instead of a network interface, the local loopback interface
should be used, and that is the origin of the filesystem’s name.

An example from HP-UX 10.20 follows. The corresponding lofs entries in the filesystem
configuration file /efc/fstab are presented:

$ cat /etc/fstab (partially presented, here)

/dev/vg01/lvol10 [files vxfs rw,suid,delaylog,datainlog 0 2
[files/export/share/ud Jusr/ud lofs defaults 0 0
[files/export/home /home lofs defaults 0 0
[files/export/home Jusers lofs defaults 0 0
[files/tmp [tmp lofs defaults 0 0

The first line defines how the initial (original) filesystem is mounted (the type, vxfs, will
be discussed later); the filesystem resides in the logical volume lvol10 (which will also be
discussed later); and it is mounted into the /files directory. Other lines define how to remount
parts of the very same filesystem (of type lofs). Please note that the first column that normally
identifies the logical volume, or partition, where the filesystem lives, now identifies a starting
point of the part of the filesystem we want to remount. The last two columns (arguments
for fsck and backup) obviously do not apply in this situation, so they are 0.

© 2002 by CRC Press LLC

How are the systems mounted? Here is the partial report of the mount command:

$ mount (partially presented too)

[files on /dev/vg01/lvol10 delaylog on Sat May 16 23:30:37 1998
fusr/ud on [files/export/share/ud defaults on Sat May 16 23:31:10 1998
/users on /files/export/home defaults on Sat May 16 23:31:10 1998
/tmp on [files/tmp defaults on Sat May 16 23:31:10 1998

/home on /files/export/home defaults on Sat May 16 23:31:10 1998

The lines presented here correspond to those presented earlier in the filesystem
configuration file /etc/fstab. It is clear to see that the system was rebooted on Saturday,
May 16, 1998.

5.6 Managing Filesystem Usage

Once a filesystem is configured and mounted properly, users can start to use files. This is
the purpose of the filesystem’s existence. Using filesystems also means consuming appro-
priate disk space. Not only users do this; the system also consumes disk space on a regular
basis because a number of system log files grow continuously. Incorrect filesystem usage
can also corrupt the filesystem itself, making it inaccessible. The worst-case scenario is a
complete collapse and crash of the system.

Filesystems require a great deal of maintenance during their lifetimes. Primary activities are
closely related to disk space usage, and we will mainly focus on that topic. To manage disk
space a corresponding tool is needed; UNIX provides the necessary tools in a set of commands
that are sufficient for successful management. The main commands in this group are:

df To display filesystem statistics
du To report on disk usage

quot To report disk usage by users

The fsck command is used to check filesystems, and will also be discussed.

5.6.1 Display Filesystem Statistics: The df Command

The df command produces a report that describes the filesystems, the total capacities, and
the amount of free space available, all displayed in 1kB blocks. If a filesystem, or a file,
or a directory within a filesystem is specified as an argument, the report refers only to the
corresponding filesystem.

The two usual flavors of the df command (Berkeley and System V) generate different
reports. A typical BSD report displays:

df

Filesystem Kbytes used avail ~ capacity ~ Mounted on
/dev/sd0a 30191 10596 16576 39% /
/dev/sd0g 220010 173838 24171 88% Jusr
/dev/sdOh 764758 243088 445195 35% /home

© 2002 by CRC Press LLC

rs01-ch:/home/2gig/rsxx-ch

2031616
18875

1854268
7449

177348

heprophet:/hcprophet 9538

91%
44%

Jrsxx-ch
/heprophet

This output reports the status of existing filesystems, starting with the root disk partition,
and then other mounted disk partitions. Each line of the report shows:

¢ The filesystem name

* The total filesystem capacity in Kbytes

* The number of Kbytes in use

¢ The number of Kbytes available (free)

* The percentage of the filesystem'’s storage currently in use

¢ The filesystem mounting point

It sounds impossible, but the displayed percentage can be sometimes larger than 100%
(the maximum value can reach 111%). How can this be? To increase transfer efficiency,
10% of the available filesystem space is sacrificed as fragmented disk space; however, the
superuser can use this space if needed. So the full filesystem size is 90% of the total size
(but 100% for df), and under such circumstances the filesystem can appear to be overfilled.
We will return to the “10% reserved disk space” later.

This example was from SunOS 4.1.3, which supports the BSD form of the df command.
Some UNIX flavors, like HP-UX, support both command types; to distinguish between
them, the BSD type is renamed bdf. Here is an example from HP-UX 10.20:

$ bdf

Filesystem

/dev/vg00/lvoll
/dev/vg00/lvol7
/dev/vg00/lvol6
/dev/vg00/lvol5
/dev/vg00/lvol4

Kbytes used avail ~ %used
91669 58532 23970 71%
319125 252427 34785 88%
350997 294527 21370 93%
99669 23060 66642 26%
251285 189044 37112 84%

Mounted on

/
Jvar
Jusr
/tmp
Jopt

The logical volume manager (LVM) is a standard part of the HP-UX 10.20 and creates
the needed special device files for existing logical volumes.

To get the report about index nodes (this is actually a numerical report about files), use
df -i (the -i option refers to index nodes):

df -i

Filesystem iused ifree Yoiused
/dev/sdOa 1217 13887 8%
/dev/sd0g 13130 100150 12%
/dev/sdOh 10726 374426 3%
rs01-ch:/home/2gig/rsxx-ch* * *
moaxgr:1DUB1: * * *
heprophet:/hcprophet * * *

Mounted on
/
Jusr
/home
Jrsxx-ch
/moaxgr/disku2
/heprophet

The System V df command produces a different report. This example is from Solaris 2.6:

$ df

/

/proc
/dev/fd
/altboot

© 2002 by CRC Press LLC

(/dev/dsk/c1t0d0s0): 1488210 blocks
(/proc): 0 blocks
(fd): 0 blocks
(/dev/dsk/c1t0d0 s3): 384464 blocks

290743 files
2866 files

0 files
98556 files

/tmp (swap): 1122128 blocks 30843 files
/files (/dev/md/dsk/d10): 1334502 blocks 344191 files

This example is from HP-UX 10.20:

$ df

/opt (/dev/vg00/lvol4): 74224 blocks 36311 i-nodes
/tmp (/dev/vg00/lvol5): 133284 blocks 15592 i-nodes
/usr (/dev/vg00/1vol6): 42740 blocks 44762 i-nodes
/var (/dev/vg00/1vol7): 69570 blocks 35897 i-nodes
/ (/dev/vg00/lvoll): 47940 blocks 11893 i-nodes

The report includes:

¢ The filesystem mount point

* The special file name

* The number of blocks (block=512 bytes)
e The number of inodes, i.e., files in use

The percentage field, with the used space represented as a percentage of the total space,
is missing from the generic System V df report. However, this is the most used, and
possibly the most valuable, piece of information generated by the BSD-type command.
Some vendors, therefore, provide a special option for this purpose. On Solaris 2.x, the
option -k in effect converts the existing df command into the Berkeley style one.

$ df -k

Filesystem kbytes used avail capacity ~ Mounted on
/dev/dsk/c1t0d0s0 1280786 536681 740904 43% /

/proc 0 0 0 0% /proc

fd 0 0 0 0% /dev/fd
/dev/dsk/c1t0d0s3 192241 9 192040 1% /Jaltboot
swap 565480 4416 561064 1% [tmp
/dev/md/dsk/d10 4211882 3544631 625133 86% [files

A frequent run of the df command is strongly recommended. This is an efficient way
to prevent the filesystem from being overfilled. Typically, the administrator should be
warned when 90% of the filesystem is in use. Please note that fulfilled system-critical
filesystems (root, /ust/, /var) can be fatal for the system. It is a good idea to automate the
monitoring of filesystem statistics by periodically running the df command. Combined
with an automatically generated warning e-mail, or a paging of the administrator, this
can be a very efficient early warning method and could prevent more serious system
problems. Some system administrators put the df command in the root’s login scripts to
be executed as each administrator logs into the system.

5.6.2 Report on Disk Usage: The du Command

The df command is useful in detecting possible problems related to the filesystem status
and size. If there are problems, appropriate action is required. The action is quite simple: the
filesystem must be purged of unnecessary files to make more room. On the other hand,
having a clear idea of what should be done does not mean it can be done easily. Deciding
which candidates should be purged without affecting users, installed software, and in

© 2002 by CRC Press LLC

some cases the system itself is a challenge. In addition, the solution must actually provide
relief: instead of deleting hundreds of small files, it is a much better idea to remove a few
larger files. The du command can help with this important task.

The du command summarizes disk usage; it recursively reports the amount of disk space
used by all files and subdirectories within a specified directory, listed on a per-subdirectory
basis. Disk usage is reported in blocks (block size varies among systems); BSD uses 1KB
blocks, while System V uses 512-byte blocks. Otherwise, there are no differences between
the versions. A typical du reports look like:

Berkeley style — SunOS

du /home/bjl

3753 /home/bjl/ncsa

376 /home/bjl/email

47 /home/bjl/publdoc
266 /home/bjl/ftp/drivers

11476 [homelbjl
System V style — HP-UX 10.x or Solaris 2.x

$ du /users/bjl

8 fusers/bjl/current
18 Jusers/bjl//sessions
42 Jusers/bjl/.elm

2 fusers/bjl/Mail

342 [users/bjl

Obviously there is no difference between two UNIX platforms. For each subdirectory,
all of the files and subdirectories that belong are presented, as well as a separate line
indicating the total amount of disk space occupied by this subdirectory. The last line
presents the total usage for the specified directory. Often, this report can be inordinately
long and tedious; a report with several hundred lines is obviously hard to use. By
specifying the -s option, only the total amount of disk space that a directory and its contents
occupy is displayed, while the subdirectories and files are skipped:

du -s /home/bjl
11476 /home/bjl
$ du -s /users/bjl
342 /Jusers/bjl

This command can be piped with others to obtain different reports, with subdirectories
sorted by different criteria (size, reverse size, etc.).

An extremely convenient way to use the command is “du -s *;” the report will include
the size of each file and the total size of each subdirectory within the current directory
only. This can be very useful in tracking the change in the size of a filesystem and in
determining the cause of any sudden increase in size. By starting from the mount-point
directory of the oversized filesystem, we can browse through large associated subdirectories
until we reach the file, or files, that caused a sudden change in the size of the filesystem.

© 2002 by CRC Press LLC

Once the cause is detected, corrective action can be implemented. For a better understanding,
just follow this example:

$ bdf /var
Filesystem kbytes used avail Y%used ~ Mounted on
/dev/vg00/lvol6 524288 462700 51387 90% Jvar

The /var filesystem has reached the critical size (supposing 90% as a critical size) and
should be checked and cleared. To efficiently discover potential offenders, we have to find
large subdirectories and files and check whether we can remove or resize them. We will
start to browse from the filesystem mount-point, in this case /var.

$ cd /var
$du-s*

0 X11
585562 adm

2 dt

0 lost+found
36 mail
1292 opt
186746 patches
914 preserve
1886 sam
122656 spool
10 statmon
392 stm
10900 tmp

78 yp

The adm directory seems to be oversized. So, the next step is:

$ cd adm

$du-s*

3038 btmp

18 cron

32254 debug

7264 diag

40 ftmp.cron.log
4 inetd.sec
1914 Ip

4598 maillog

2 netstat_data
1642 nettl. LOGOO
50 sulog
300892 sw

221550 syslog

52 vtdaemonlog
980 wtmp

The file syslog is the system log file; the OS permanently logs into the file after the system
startup. It seems to be unusually large (larger than 100 MB). By checking its contents,

© 2002 by CRC Press LLC

we will quickly see many old useless log records that can be deleted from the file.
Since resizing the file (preserving only those records from the last two months), the /var
filesystem appears to be doing fine.

$ bdf /var
Filesystem kbytes used avail ~ %used Mounted on
/dev/vg00/lvol6 524288 360000 154087 70% Joar

5.6.3 Report on Disk Usage by Users: The quot Command

Another command related to disk usage is quot, which summarizes filesystem ownership.
The quot command reports the number of 1KB blocks used by each of the users in
a specified filesystem. Only the superuser can execute this command, because it accesses
the disk special files. The command syntax is:

quot [options] block-special-file

where
block-special-file The filesystem block special file
options The usual filesystem related options

An example:

$ quot /dev/sdOh

/dev/sdOh (/home):
68456 pam

29154 mindy
23693 george

11466 bjl
353 root
6 bin

5.6.4 Checking Filesystems: The fsck Command

A filesystem can be corrupted by any number of things: operator errors, hardware failures,
etc. The fsck command (it stands for filesystem check) checks the filesystem’s consistency,
reports any encountered problems, and optionally tries to repair them (sometimes such
repairs can cause minor data loss). The fsck command interactively repairs inconsistent
filesystem conditions.

fsck can encounter the following filesystem problems:

¢ One block belonging to several files (inodes)

* Blocks marked as free but in use

* Blocks marked as used but free

¢ Incorrect link counts in inodes, indicating missing or excess directory entries
¢ Incorrect directory sizes

¢ Inconsistencies between inode size value and the amount of data blocks referenced
in the address field

© 2002 by CRC Press LLC

¢ Illegal blocks (e.g., system tables) within files
* Inconsistent data in the filesystem’s tables

¢ Lost files (nonempty inodes that fully identify files not listed in any directory) —
fsck places these orphaned files in the filesystem directory named lost+found
(each filesystem has its own lost+found directory), so they can be recognized later
by owners and reused; the name assigned to a lost file corresponds to the inode
number

¢ Illegal or unallocated numbers in directories

On BSD, the fsck command is run automatically on boots and reboots. On System V,
fsck is run at boot time on nonroot filesystems only if they have not been dismounted
cleanly, i.e., if the system crashed. A manual run of the fsck command is needed only
occasionally: at boot, when fsck’s automatic mode cannot fix all encountered problems,
after creating a new filesystem (although it is a good idea to reboot the system upon
filesystem creation, if possible), and under a few other circumstances. Nevertheless,
a system administrator should understand how the fsck command works to be able to
quickly recognize abnormal situations.

The syntax of the fsck command is:

fsck [options] spec_ file

where
spec_file The name of the filesystem’s special file
options Available options:
-n|-N Answer no to all prompts, and list problems but do not repair them
-y |-Y Answer yes to all prompts (Be careful when using this option! It repairs
all damage regardless of the severity!)
-p Preens the filesystem and performs noninteractive repairs that do
not change any file’s contents
-bnn Use an alternate superblock located at nn-th block

-m Perform a sanity check only — do not repair

-q Quiet mode; removes nonreferenced named pipes and reconstructs
the free list without comment

-f Force filesystem checking regardless of the superblock status

-F type Specify a filesystem type to be fsck-ed

-V Echo, but do not execute, the command; verify and validate a com-
mand line

The fsck command runs faster on character special files. However, the block device
must be used for the root filesystem. If the filesystem is not specified, the fsck command
checks all filesystems listed in the filesystem configuration file (/etc/fstab, or Jetc/vfstab);
this happens at boot time. Under AIX, the checking of filesystems is determined in the
filesystem configuration file /etc/filesystems (if the keyword check is true for a corresponding
filesystem).

Normally, the fsck command runs with -p option, i.e., it silently fixes the following
problems:

¢ Link counts in inodes too large
* Missing blocks in the free list

e Blocks in the free list and also in files

© 2002 by CRC Press LLC

¢ Incorrect counts in the filesystem’s table
* Nonreferenced zero-length files deleted

* Lost files placed in the filesystem’s lost+found directory, and named by their
inode number

More serious errors will be handled with a prompt for confirmation.
If fsck modifies any filesystem, it will display the message:

*** FILESYSTEM WAS MODIFIED ***
If the root filesystem is modified, an additional message also appears:

#** REBOOT UNIX ***

or
x##x%* REMOUNTING ROOT FILESYSTEM ****

When modifications happen during a boot procedure, the reboot, or remount, is initiated
automatically. If the fsck has been executed from the command line on the root filesystem,
then the reboot command has to be started manually, too:

reboot -n

The -n option is very important to prevent previous execution of the sync command,
which flushes the output buffers and might, under these circumstances, recorrupt the
filesystem (the only case when the system is rebooted without sync-ing the disks).

An example (from the Apollo workstation and HP-UX):

$ fsck -y

fsck: /dev/dsk/c201d6s0: root file system

continue (y/n)? y

** /dev/dsk/c201d6s0

** Last Mounted on/

** Root file system

** Phase 1 — Check Blocks and Sizes

** Phase 2 — Check Pathnames

** Phase 3 — Check Connectivity

** Phase 4 — Check Reference Counts

FREE INODE COUNT WRONG IN SUPERBLK

FIX? yes

** Phase 5 — Check Cyl groups

SUMMARY INFORMATION (SUPER BLOCK SUMMARIES) BAD
BAD CYLINDER GROUPS

FIX? yes

** Phase 6 — Salvage Cylinder Groups

21806 files, 0 icont, 296674 used, 128312 free (1472 frags, 15855 blocks)
#0% MARKING FILE SYSTEM CLEAN ¢

*#et FILE SYSTEM WAS MODIFIED *****

*#et REBOOT HP-UX; DO NOT SYNC (USE reboot -n) *****

It is not the end of the world to have messages about filesystem inconsistencies during

system startup. As long as the fsck command can fix them, sometimes even in several
attempts, everything will be fine. However, it can be very upsetting if fsck fails; the failure

© 2002 by CRC Press LLC

usually indicates a more serious filesystem problem, frequently, a hardware-related problem
that requires a more radical approach. The fsck command can resolve many logical
inconsistencies, but it cannot repair a broken disk.

fsck is a very time-consuming command; for a large filesystem, a complete check can
take a while. This is why filesystems that were cleanly dismounted during system shutdown
are skipped — they will have no problems and checking them is a waste of the time. Also,
the journaled filesystem (the jfs type) is the most robust with regards to corruption; if it is
corrupted, the recovery is much faster. The price paid for such robustness is additional
overhead in the filesystem use; the online journaling of filesystem transactions requires
more resources and time.

© 2002 by CRC Press LLC

6

UNIX Filesystem Layout

6.1 Introduction

In Chapter 5 we discussed the UNIX filesystem primarily from the user standpoint. UNIX
users create, read, write, and purge files. And this is correct — UNIX filesystems exist to
make the files accessible to users. But there is a lot of work behind the scenes to fulfill
this logical requirement. This part is done by the UNIX system itself, and it is mostly
hidden from the users. But UNIX administrators must be aware of this fact and should
understand this process. Everybody knows that files reside on disk. They are saved
somewhere, and when we need them, we get them. But how it works is more mysterious.

We use the term filesystem layout to explain how the files are organized within the
available disk space. UNIX files cannot exist out of the UNIX filesystems. UNIX
filesystem is the vehicle to organize storage resources in a usable way. The filesystem
merges files in a hierarchical way and enables their physical storage, as well as access
to the stored files when needed. This is always true, independent of the filesystem type
and organization.

The filesystem layout is the main topic discussed in this chapter. A thorough under-
standing of filesystem layout is extremely important for successful filesystem management.
Once this important topic is understood, many other UNIX issues will become automat-
ically clear. Filesystem management is crucial for overall UNIX administration. This cannot
be overstated. Just remember what we said earlier: on UNIX everything is a file or file-like.
Files are in the center of UNIX. Consequently managing the files is the core of UNIX
administration.

Disk space can vary in size, type, characteristics, and even location (a remote disk space
can be used, just as the local one), and UNIX must respond to all possible situations. The
total disk space is usually partitioned into smaller storage entities convenient for more
flexible use, and a separate UNIX filesystem is created in each storage entity. To make the
created filesystem visible to users, an additional step is required: it must be merged with
other filesystems in an overall UNIX directory hierarchy, which we will address as “an
overall UNIX filesystem.” Strictly speaking the overall UNIX filesystem is not a filesystem
per se, rather this is a set of merged filesystems ready for use.

UNIX filesystems are organized on two levels: physical and logical. Physical layout
directly reflects the filesystem organization within a storage entity. It takes care of files’
parameters and maps them into corresponding hardware parameters of the storage entity.
However, the UNIX filesystem can be organized and managed in a more sophisticated
way within a virtual (logical) storage space that is built around physical entities. A new

© 2002 by CRC Press LLC

level of abstraction was introduced to make filesystem organization more flexible and
powerful.

Logical layouts of a storage space and its physical counterpart do not have to be
necessarily the same. A logical storage can be spread over a part of a disk, over a whole
disk, or as in today’s modern UNIX flavors, over several disks. Nearly any combination
of multiple partitions of multiple disks can be combined performance-wise in an extremely
powerful way. Of course, a precise mapping of the logical storage to the physical storage
counterpart is crucial. Once this bidirectional relationship is firmly established, UNIX can
manage files on a logical level only.

Logical storage entities are known as logical volumes, and the corresponding system
software for their management is known as logical volume manager (LVM). Logical
volumes appeared at the moment when the disk technology reached the point where disk
size, speed, and price stopped to be issues. LVM is a relatively new UNIX topic; for most
of the UNIX flavors it is still an optional piece of software. The traditional physical
partitioning of disks and their usage is still dominant, but the situation is changing
rapidly.

We will use the general term data to refer to the system and user data stored on the
disk. User data is the real data kept in files within the filesystem; system data is the data
needed to identify and manage the user data. The system data presents a necessary
overhead, but from the system standpoint this data is crucial for managing the filesystem.

The data block is the smallest data unit. Each UNIX file consumes one or more blocks.
If all the file’s blocks are known, the file itself can be easily managed. An additional step
to identify the sequence of blocks that make the file is required. This is exactly why we
organize files into a filesystem. We can look to the filesystem as a kind of umbrella that
covers files and provides mechanisms for their use; system data keeps information needed
for their accurate identification and allocation.

6.2 Physical Filesystem Layout

In our attempt to fully understand the filesystem layout, we will follow the traditional
path in managing disk space. There are a few good reasons for such an approach: it is
still prevailing in use; it is always easier to start with less complex issues and then go
toward more complex ones; and the strongest argument — behind any logical structure
is a physical layout that can never be bypassed. At the very end, each file must be
physically stored in the magnetic disk media.

Disks have cylinders: concentric circles within the disk’s plates that are farther divided
into tracks, or segments (we will use the term track). Data is always stored in blocks that
are spread over the disk space; the block can be located in any track. Each track contains
a well-defined number of blocks (usually 512 blocks). Each block is uniquely identified
by the block number. The disk controller knows how to allocate each block specified by
its number within the whole disk space. Block allocation means mapping the block number
into the disk geometry (to the corresponding cylinder and track and a block in the track).
Once a block is allocated, it can easily be accessed and processed.

Disks cannot be used directly from shelves; they must be prepared for data storage. In
UNIX terminology, it means the physical filesystem layout must be properly defined and
put in the operation. In this section we will address main issues related to the physical
filesystem layout. They are grouped around:

© 2002 by CRC Press LLC

¢ Disk partitions — the way to specify a storage entity for the usage
¢ Filesystem structures — mechanisms to manage data on the disk
¢ Fileidentification and allocation — the way to identify and access files on the disk

¢ Performance-related issues —how to improve the performances of the filesystem

This section partially refers to Chapter 2, especially in the part about special device files.

6.2.1 Disk Partitions

For a long time the basic UNIX filesystem storage entity was a disk partition. This simply
involved partitioning of the magnetic disk into several smaller pieces suitable for additional
processing. You can compare this to putting filing cabinets (here partitions) within a filing
closet (the disk) in an office. It is the first step to take, but still the cabinets are not prepared
to store the files. Some items are still not ready; drawers and their inventories are not yet
prepared. We just decided and specified the size of the storage space.

In the past, disk space was expensive. Organizing a disk into smaller pieces (partitions)
benefited the system in a number of ways. The smaller partition contained a smaller
filesystem that offered more flexibility in organizing the UNIX tree hierarchy. The small
filesystem was more robust with regards to possible filesystem corruption. Many
filesystem-related commands could run faster on a smaller filesystem (like backup, fsck,
etc.). And it is easier to manage smaller filesystems.

Both UNIX platforms, BSD and System V, organized disks around fixed-size partitions (but
different partitions had different sizes). UNIX treated disk partitions as independent devices;
each of them was accessed as if it were a physically separate disk — consequently, the terms
partition and disk could be used alternatively. One physical disk might be divided into several
partitions, or be configured with only one partition. In the past disk, partitions were usually
defined in advance by the OS. Thus they offered few division schemes. The number of parti-
tions was fixed, while their size could be specified. Imagine that only a predetermined number
of filing cabinets could go into the filing closet, but you could decide the size of each cabinet.

Typically each disk was divided into multiple partitions: eight partitions for BSD and
ten for System V, with some overlapping of the partitions. Simple BSD disk partition
schemes are presented in Figure 6.1.

Eight different partitions might be defined for a disk, named by the letters a to 1; a partition
could be skipped if its size was 0. The ¢ partition comprised the entire disk, including the
forbidden (inaccessible) area. The g partition overlapped with the d, e, and f partitions.
It was not possible to use them all simultaneously, since some of them included the same
disk space — for example, either partitions d through f or the partition g could be accessed.
Actually, this disk layout offered three different ways of using the disk: divided into four
partitions, or six partitions, or to use the whole disk. Each partition might hold a filesystem,
or it could be used as a swap partition. The OS offered this flexibility — from today’s point
of view it was not much, but it was adequate to manage everything in a decent way.

The swap partition plays a special role in each UNIX system. UNIX memory manage-
ment system (MMS) requires the dedicated disk space for normal paging and swapping.
Recall the discussion of these issues from Chapter 5:

* Paging presents a regular exchange of data pages between the system memory and
disk. Paging is an ordered process based on certain performance-related criteria.

* Swapping presents an emergency situation when the system encounters a significant
lack of the memory space and a lack of time to do that in an ordered way.
Swapping is an irregular process and performance-wise it should never happen.

© 2002 by CRC Press LLC

Cylinder 0
a (center)

o

== 0|Q|T|T|o
=2
(¢}

Cylinder N
(edge)

Cylinder 0 Cylinder N
(center) (center)

[Inaccessible disk area

FIGURE 6.1
Simple BSD disk partitioning.

The swap partition is used as a “raw” partition. The complex filesystem structures would
only make the swapping slower. Swap partition must be used in the simplest possible
way and this is the “flat organization” provided by the MMS itself. Briefly, the swap
partition does not know and does not care about UNIX filesystem.

A logical question arises: Why does a disk-partitioning scheme have to be defined in
advance, and why in such a strict way? Why was the decision about partitioning not left
to the system administrator? Supposedly the UNIX designers wanted to make this sensitive
and relatively tough administrative task easier to handle; less flexibility makes things
simpler. But to fully understand such an approach, perhaps a closer look into the very
early stages of UNIX systems is needed.

In the early days of UNIX development, a number of disk control functions were
determined on the hardware level, so the first disk controllers were quite restricted in the
way they managed disk partitions; even the partition sizes were hardwired within the
controller hardware. So at the time partition schemes were established, there were not a
lot of choices. Since then, with the development of the technology, things have changed
and most of the disk-related issues have been shifted into the software (or sometimes the
firmware). To keep the new UNIX systems compatible with the old ones, the slightly
modified “old partition scheme” continued to exist. The partition size can be specified
arbitrarily, and in that way the number of partitions. It makes the partition scheme
sufficiently flexible even for today’s standards. By simply assigning its size to zero, a partition
could be skipped, and any partition combination become viable. At the same time, the required
special device files for the selected partitions already exist, and all needs seem to be met.

The partition scheme presented in Figure 6.1 was, and still is, implemented by Sun
Microsystems. It was used by SunOS and is now used by Solaris. Despite the fact that
today we can combine multiple disks (or partitions) in larger logical volumes, this partition
scheme remains useful and used.

© 2002 by CRC Press LLC

UNIX accesses any disk partition through the corresponding special device file (see
Chapter 2). A special device file is a pointer to the disk driver within the kernel (in UNIX
all device drivers are part of the kernel). It is essential that the kernel supports imple-
mented disk interface; otherwise the disk cannot be used at all. You should not worry
about that because UNIX fully supports all usual disk interfaces, and the kernel has been
built properly during the UNIX installation.

Most UNIX flavors provide some kind of tool to create disk partitions (the format utility
on Solaris and SunOS, SAM on HP-UX, SMIT on AIX, etc.). This tool automatically creates
the required special device files in the /dev directory. A special device file can be created
also manually: the UNIX mknod command is available. Its usage is trivial, only two
arguments are required: the major and minor device number. Sometimes other front-end
commands, or scripts, can also be available.

6.2.2 Filesystem Structures

Disk partitioning per se will not allow you to start to use the specified disk space. UNIX
files cannot be stored directly in such “raw” storage entities. UNIX files can only reside
within the UNIX filesystems. Imagine again a filing closet in the office. At this point,
number and sizes of cabinets are decided, but each drawer in the cabinet is still missing
file holders, bars, labels, and other needed accessories. It is time now to think about these
details; otherwise, we will not be able to organize the filing system for our papers.

Similarly, a UNIX filesystem has to be created in each disk partition before we can start
to use it for our UNIX files. When a filesystem is built in UNIX, certain system data
structures are written into the reserved system part of the partition. This system data
uniquely defines the physical layout of the filesystem. Its main task is to provide correct
allocation of UNIX files within this partition. Filesystems are mutually separated; each
filesystem has its own independent system data structures. A single file cannot be shared
between two filesystems, i.e., two partitions.

The most important filesystem data structure is the superblock. The superblock is a set of
tables that contain important information about the filesystem such as its label, size, and
a list of index nodes, better known by the shorter name inodes. The superblock determines
the filesystem type, and all incompatibilities among different filesystems (including
between different UNIX filesystem types — see Chapter 5) are caused by the superblock
differences. UNIX can use a specific filesystem only if knows how to read the filesystem
superblock; without this understanding the disk is a compilation of senseless and useless
data blocks.

A visual depiction of the BSD and System V filesystem layouts are presented in Figure
6.2. The Berkeley filesystem layout included some additional information about file-
systems like the cylinder group block, while System V included certain additional dynamic
information about current free space. However, the main difference was that Berkeley
filesystems originally spread multiple superblock copies over the available disk space. If
a superblock is damaged, the filesystem becomes useless. It was a good idea to keep several
superblock copies separately. If one copy is damaged, the Berkeley system automatically
switches to another.

Through the years, the Berkeley filesystem proved to be faster and more robust, and pro-
vided better performance. Eventually the traditional System V (known as the s5 filesystem)
became obsolete. System V release 4 discontinued with s5 filesystem and switched to the
Berkeley filesystem. Additional filesystem development continues to evolve among the
specific UNIX flavors. Today all filesystems have roots in the Berkeley version; the s5
filesystem disappeared. The filesystems are identified by different names: 4.2, ufs, efs, hfs,

© 2002 by CRC Press LLC

ext2, jfs, vxfs; they are mutually incompatible despite the fact that they all belong to the
UNIX family of filesystems. The prevailing type in use is ufs, which stands for UNIX
filesystem. Even if the filesystem name is the same, some incompatibilities among different
UNIX vendors are quite possible. Throughout this text we will steer clear of flavor-specific
details and elaborate on common filesystem issues.

Another data structure, presented in Figure 6.2, is the single boot-block area reserved
at the beginning of the filesystem. This area contained the bootstrap program that brings
the UNIX system into operation. However, a boot block area is active only if a filesystem
is bootable, i.e. if it is on the root filesystem. This filesystem structure is crucial for the
system startup, but not for the rest of this chapter. That is why it is just mentioned here.
We discussed booting of the system and the bootstrap program in Chapter 4.

6.2.3 Filesystem Creation

The discussed filesystem structures, including the superblock, are the result of the procedure
known as to create a filesystem. In the UNIX terminology, we say to make a filesystem.
UNIX provides several commands to deal with filesystems, and often additional user-friendly
character-based or GUI tools. We will focus on the related UNIX commands available on
all UNIX flavors. UNIX sees storage entities (at the moment we talk about disk partitions)
through the corresponding special device files. Remember that storage entities are accessible
through both types of special device files (character/raw and block special device files).

Berkeley filesystem SVR4 filesystem
(ufs) (s5)

Boot block Boot block
Superblock Superblock
repeated

Cylinder group Inode
Inode
Data
blocks
Data
Superblock
repeated
Cylinder group blocks
Data
blocks
etc.
A\ A\ A\ v

FIGURE 6.2
The filesystem layout.

© 2002 by CRC Press LLC

6.2.3.1 The mkfs Command

This the basic UNIX command for this purpose. It offers the most flexibility; practically
all filesystem parameters could be specified. For most cases, however, the default specifi-
cation should be appropriate. The format of the command is:

mkfs [options] char-spec-file size [operands]

where
options Generic or filesystem type specific options
char-spec-file The character special file for the corresponding disk partition
size The size of filesystem in 512-byte blocks
operands Optional arguments for a fine-tuning of the filesystem parameters such

as a number of inodes to create (the default is one inode for every 2KB
of disk space), a primary block size, a fragment size, free disk space
threshold, and others

The mkfs command is a versatile command that enables flexible creation of the filesystem;
myriad of options and operands specify many details of the created filesystem. It checks
for dependencies among specified parameters to prevent any wrongdoing. The command
varies slightly among different vendor’s flavors.

6.2.3.2 The newfs Command

Another (BSD-style) front-end command, newfs, can also be used to create a filesystem.
This command actually invokes the mkfs command but with a number of predefined
filesystem parameters. It is much easier to work with this command, and the author
recommends its use whenever possible. The format of the newfs command is:

newfs [options] char-spec-file

where
options Generig, filesystem-type specific, and mkfs-related options
char-spec-file Raw (character) special file for the corresponding disk partition

Remember that most of the filesystem-related commands require character special
device files to identify the storage entity (here the disk partition).

Some UNIX flavors maintain a special disk description file that facilitates the use of this
command. The usual file /etc/disktab contains description entries for each disk that can be
used. Each description entry is uniquely named and fully defines a partitioned disk.
Usually several entries describe the same disk with different partitioning schemes. Simply
by referring to an entry, all of the necessary filesystem parameters can be obtained. This
makes the use of the newfs command trivial:

newfs char-spec-file disk-name
where
char-spec-file Raw (character) special file for the corresponding disk partition

disk-name The name of the entry specified in the disk description file /etc/disktab

HP-UX (version 9) used such an approach. The main disadvantage was that required
disktab entries could not include all available disk models. Simply, newer disk models

© 2002 by CRC Press LLC

appeared after the file installation cannot be included. This led to a frequent patching of
the disk description table, which could be annoying. HP-UX (version 10) retained the disk
description file for backward compatibility but switched to the new type of the newfs
command: one that is not dependent on the disk description table.

6.2.3.3 The tunefs Command

UNIX also provides the command tunefs to tune (adjust) the created filesystem. The
command can modify dynamically certain filesystem parameters. It is not unusual to
realize after some time that the created filesystem does not optimally match your needs.
The used filesystem cannot be easily recreated; in most cases it is almost impossible. This
command is the UNIX response for that purpose.

Some UNIX flavors provide other filesystem specific commands, for example, a command
to extend the size of a filesystem.

6.2.4 File Identification and Allocation

Another popular term for the filesystem creation is formatting the disk (or partition). In the
PC world this is the only official term. In UNIX context, formatting literally means to
create filesystem structures only, primarly the superblock. The created filesystem itself is
absolutely empty — there is no single-user data in it. To compare with the filing closet
and cabinets in the office: all drawers are now equipped with needed accessories; carriers
and holders are there, as well as empty labels for easy identification of documents. These
accessories take up some available space in the cabinets, but without them it would be
very hard to file our papers.

The UNIX counterpart for the mentioned accessories is the superblock. The superblock
contains the filesystem structures (system data) needed for user data management. All
superblock structures are free and ready for use. The superblock consumes a certain
amount of the storage space to keep its system data.

Keeping in mind the previous discussion, it becomes clear:

* Why once we reformat (create a filesystem) a disk or partition we lose all
previously stored data. It does not mean that this data was purged. All stored
data blocks remain unchanged, but the new superblock is now created. All
system data in the old superblock was erased. UNIX does not know how to
find this data.

* Why there is a difference in the size between unformatted and formatted
storage space. The superblock data must also be saved in the very same
storage space.

Let us see now in more detail how the UNIX filesystem identifies and allocates files
within the corresponding storage space. It is worthwhile to mention that we are still
staying within the physical filesystem layout boundaries.

6.2.4.1 Index Node (inode)

The most important individual entity in the filesystem superblock is the inode. Inode
is a shorter, more convenient, name for the index node. Each file in the filesystem is
completely described by its inode. An inode includes all of the file’s relevant data
except the file name. File names are contained in the directory where the files reside.

© 2002 by CRC Press LLC

The content of each directory includes the file names with the references to the
corresponding inodes. In this way, UNIX is able to find any file by scanning the file’s
directory until the file name matches. Afterward only the corresponding inode is used
to access the file on the disk. A file can have several different names because several
file names can be referenced to the same inode. They can appear in the same or different
directories, but must remain in the same filesystem. These references are known as
hard links (see Chapter 2).

An inode contains around 200 bytes, enough space to uniquely identify a file. An inode
structure is presented in Figure 6.3.

The type and access mode for the file

The file's owner (user and group)

The time that file was last read and
written and the inode was last updated

The size of the file in bytes

The total number of physical blocks
used by the file

The number of references
to the file (links)

Direct pointers for the 12 first
data blocks used by the file

The single indirect pointer to a single
indirect block of pointers to data blocks
used by the file

The double indirect pointer to a double
indirect block of pointers to data blocks
used by the file

The triple indirect pointer to a triple
indirect block of pointers to data blocks
used by the file

FIGURE 6.3
The inode structure.

The first part of the inode contains all information about the file. Most of the information
we know from the long file listing (the Is -I command). UNIX opens and reads the inode,

© 2002 by CRC Press LLC

and learns about the file’s type, ownership, and permissions. Based on this information,
UNIX knows how to proceed with the file itself. Do not forget that UNIX processes
different file types in a different way.

Once we are familiar with the contents of an inode, many of the already discussed issues
become clear — for example, why hard links are restrained to the same filesystem, or
where the system finds information for long listing of files, or how the fsck command can
check and even fix problems in the filesystem, and many others.

The inode number, starting from one and increasing, identifies an inode. An identified
inode must be allocated in the disk space before it can be used by the system. To allocate
an inode is easy, because each inode is well defined within the superblock and the
superblock is always stored in the reserved disk space well known to the system.

6.2.4.2 File Allocation

It is much tougher job to locate a file in the disk space. A file can contain an arbitrary
number of data blocks, from a single block up to a huge number of blocks. These blocks
could be spread over the whole disk space. Again this is the inode that precisely allocates
the file itself. The second part of the inode contains a number of direct and indirect pointers
to point to the location of each data block that belongs to this file. For most UNIX flavors
the pointers are 32 bits long (4B), and we will assume that length in the discussion that
follows.

An inode can directly point to as many as 12 data blocks consumed by the file.
Assuming the block size of 4 KB (or 8 KB), this means a file as large as 48 KB (or 96 KB)
is directly accessible. For larger files, indirect pointers must be used. A single indirect
block contains additional pointers: a 4 KB block contains up to 1 K pointers, while a 8 KB
block contains up to 2K pointers. A double indirect block contains, or, better to say,
points to, millions of new pointers. And finally a triple indirect pointer can be used in
the case of extremely large files. If a file is very small, the file data is stored directly in
the inode. Figure 6.4 illustrates how this allocation mechanism works.

A 32-bit (4 B) pointer can uniquely identify one block among as many as 4 G (4 billion)
blocks. This is, simply, the address capability of a 32-bit pointer. More precisely, assuming
a block size of 4KB (or 8 KB), the maximum size of the reachable disk space (i.e., the
filesystem) is, respectively, 4 Gx4 KB=16 TB (or 4G x 8 KB =32 TB). Beyond that size, the
block must be increased (16 KB or more) during the filesystem creation. This is one of
the options of the mkfs command. (By the way, UNIX checks all specified options and,
in the case of an inappropriate option value, cancels the command execution.) However,
disk blocks could be smaller than in this example, and they would still be correct —
today’s disk sizes are still in the range of several dozens GB.

The presented inode structures illustrate very well a typical UNIX filesystem. It
does not mean necessarily that each UNIX flavor implements the same inode struc-
tures, primarily regarding the number of direct and indirect pointers. Differences
cause incompatibilities, but in general, issues discussed here are valid over all UNIX
platforms.

6.2.5 Filesystem Performance Issues

Once the filesystem is in place, UNIX starts to use the same filesystem very intensively.
Thus the filesystem efficiency is very important for an overall UNIX behavior. Throughout

© 2002 by CRC Press LLC

all these years, the UNIX filesystem has been developed and improved significantly. Some
of the improvements have been integrated into the filesystem itself. Other optional issues
have been left to UNIX administrators to be implemented on an as-needed basis. We will
address a few filesystem performance issues.

12 blocks
inode The max. number of pointers for a single
fileis: (12 +2K +4M +8G) > 8G .

. inode - However, 32-bit pointer can point only
administrative

information up to 4G blocks (w/o fragmentation) .
1st direct pointer

2nd direct pointer /

2K blocks

|/|:| 4M blocks

2048

3rd direct pointer

12th direct pointer

Single indirect pointer 1 2048
Double indirect pointer

Triple indirect pointer Single
indirect

block

2048

Double
indirect
block

8G blocks

2048

Triple
indirect
block

FIGURE 6.4
File layout on a disk.

© 2002 by CRC Press LLC

6.2.5.1 File Storage vs. File Transfer

A disk block is the basic unit of data that the filesystem manages. Data are always
transferred, written and read in blocks. Thus the block size determines:

* The storage efficiency — blocks cannot be used partially for data storage, regardless
of the actual size of the data to be stored

¢ The data transfer efficiency (i.e., I/O throughput) — larger blocks cause smaller
overhead in the data transfer

Two performance issues are related differently toward the block size. A large block size
increases transfer efficiency, but decreases storage efficiency.

The original System V filesystem supported block sizes of 512 B and 1KB, or sometimes
2 KB. The Berkeley filesystem supported 4, 8, 16, 32, or 64 KB. The difference in the block
size was obvious. To avoid wasting disk space, the Berkeley-style filesystem introduced
“block fragmentation”: each block could be split into 2, 4, or typically 8 fragments. Block
fragments could then be used separately to store data from different files. The transfer
efficiency remained unchanged because a whole block was still used in the transfer of
data. However, the storage efficiency was improved because a block, partially used by
one file, could be shared with other files. At the end, each disk block is fully utilized. Of
course nothing is free. The price paid for this storage improvement is the need to identify
individual block fragments within a specific block. Earlier, it was enough to identify only
the block; now the block fragments are also in play. The concept of block fragmentation
is presented in Figure 6.5.

In this example, a hypothetical 25KB large file was located in the three 8 KB blocks and
one 1KB block fragment. Upon a change in the file size to 51 KB, the file will consume six
8 KB blocks and three block fragments. In both cases, the remaining block fragments will
be used for other files, so the wasted space is minimized.

1K fragment Free 1K fragments

Lk /ZJ '

1K fragment Free 1K fragments 8K block

hians,

8K block

8K block
8K block
8K block
K block
8K bloc 8K block
25 KB file 51 KB file
FIGURE 6.5

Berkeley-style filesystem: Blocks and fragments.

© 2002 by CRC Press LLC

6.2.5.2 Reserved Free Space

File transfer efficiency can be improved by the introduction of the 10% filesystem free
space. We briefly mentioned the 10% free space in Chapter 5 regarding the command df.
We elaborate on this issue in more detail here.

The disk space always tends to be fragmented. The filesystem content is changing
dynamically, old files are deleted and new files created. Upon the filesystem creation, the
empty disk space will be quickly filled with data. Normally the filesystem tries to keep
all file blocks together, so the access to the file could be faster. But the files are also deleted,
and many gaps in the disk space remain after the file blocks are removed. This is known
as disk fragmentation.

These gaps are reused, and reused, but the fragmentation of the overall disk space
through time is unavoidable. Fragmented space requires more time to store and access
files. Simply, the time spent in seeking and transferring chaotically allocated small chunks
of the file blocks is much larger than if the blocks are allocated in larger chunks. Statistically,
if 10% of the available storage space is sacrificed and not used, the performance benefits
can be significant. This space is already badly fragmented and too “expensive” to be used.
The remaining space offers more contiguous space for faster file allocation.

Remember that this free space is dynamically allocated and is changing through time.
It always contains the most fragmented storage space in that point of time. (In addition,
this 10% of space remains a forbidden zone only for users. Superuser and high-priority
processes are still allowed to use that space.) The basic assumption is that these processes
are beyond introduced restrictions. Those are system-related processes and should not be
interrupted despite expected low-performance behavior of the system.

There is an odd consequence of this implementation. Occasionally the df-k command can
report filesystem consumption larger than 100%. Although it could be quite confusing, it is
still normal system behavior. Your system will not crash soon. It also does not mean that
your data will spill over the edges of your disk. It simply means that 10% of reserved free
space of this filesystem was also used by a superuser. A literally completely full filesystem
reports 111% of space in use, and after that even a superuser identity cannot help more.

The 10% free filesystem space was introduced in the Berkeley UNIX. It has to be specified
when the filesystem is created. It can be disabled at any time during the life of the
filesystem. The reserved space can be returned for regular use at any time. The opposite
is not possible: there is no way to introduce the 10% free space in an existing filesystem.
If needed, the filesystem must be recreated, whatever it takes.

6.3 Logical Filesystem Layout

The physical approach to managing disk space is easier to understand, but it carried a
number of restrictions caused by the disk hardware itself: How to overcome the finite size
of a disk unit? What to do when the maximum size of the filesystem is below that needed?
How to provide redundancy? And many other issues needed to improve overall system
performances. The problem was especially acute in the management of large databases.

A solution was found in a different, logical approach in managing disk space. Existing
physical storage entities (partitions and disks) could be combined and presented as arbi-
trary large logical storage entities. They then appear simply as storage entities to the
operating system. The obvious benefits of such an approach are its inherent flexibility and
increased capabilities.

© 2002 by CRC Press LLC

For a better understanding of the terminology, here are a few introduction notes. Generally,
the term physical refers to a real situation — what something physically looks like. The
term logical refers to the way something is presented to the users. The relationship between
physical and logical entities must be strictly defined and established. Once this bidirectional
relationship is done, further management can be completely shifted to the logical layer.
The required division of the storage space continues over the logical entities in the almost
identical way we have already discussed. Of course, in real life everything is mapped
back to physical entities, because they are the real providers of the needed storage space.
The basic logical entity was named the logical volume (although this name is not used
explicitly on all UN