

by Janet Valade

PHP 5
FOR

DUMmIES
‰

01 541668 FM.qxd 3/25/04 2:50 PM Page i

01 541668 FM.qxd 3/25/04 2:51 PM Page vi

by Janet Valade

PHP 5
FOR

DUMmIES
‰

01 541668 FM.qxd 3/25/04 2:50 PM Page i

PHP 5 For Dummies®
Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, e-mail:
permcoordinator@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DIS-
CLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PAR-
TICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFES-
SIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON
SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES
ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2003105680

ISBN: 0-7645-4166-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RQ/QZ/QT/IN

01 541668 FM.qxd 3/25/04 2:50 PM Page ii

About the Author
Janet Valade is the author of PHP & MySQL For Dummies. In addition, she has
authored and revised chapters for several Linux books and for a Webmaster
certification book.

Janet Valade has 20 years experience in the computing field. She worked as a
Web designer/programmer for an engineering firm. Prior to that, Janet worked
for several years in a university environment as a systems analyst. During her
tenure, she supervised the installation and operation of computing resources,
designed and developed a data archive, provided technical support for faculty
and students, wrote numerous technical papers, and developed and pre-
sented seminars and workshops on a variety of technology topics.

Dedication
This book is dedicated to anyone who finds it useful.

Acknowledgments
I wish to express my appreciation to the entire Open Source community.
Without those who give their time and talent, there would be no cool PHP for
me to write about. Furthermore, I never would have learned this software
without the PHP lists where people generously spend their time answering
foolish questions from beginners. Many ideas have come from reading ques-
tions and answers on the lists.

01 541668 FM.qxd 3/25/04 2:50 PM Page iii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.
Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editors: Kala Schrager,
Christopher Morris

Acquisitions Editor: Terri Varveris

Senior Copy Editors: Kim Darosett,
Teresa Artman

Technical Editor: Szemir Khangyi

Editorial Manager: Kevin Kirschner

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Production

Project Coordinator: Maridee Ennis

Layout and Graphics: Andrea Dahl,
Joyce Haughey, Stephanie D. Jumper,
Michael Kruzil, Heather Ryan,
Jacque Schneider

Proofreaders: Carl Pierce, TECHBOOKS
Production Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01 541668 FM.qxd 3/25/04 2:51 PM Page iv

Contents at a Glance
Introduction ..1

Part I: Say Hello to the PHP Scripting Language7
Chapter 1: Getting to Know PHP ..9
Chapter 2: Setting Up the Environment ..19
Chapter 3: Creating Your First PHP Script ..35

Part II: Variables and Data ..51
Chapter 4: Using Variables in PHP Scripts ...53
Chapter 5: Working with Data ..73
Chapter 6: Storing Data in Groups by Using Arrays ..97

Part III: Basic PHP Programming127
Chapter 7: Controlling the Flow of the Script ..129
Chapter 8: Reusing PHP Code ..157
Chapter 9: Object-Oriented Programming Meets PHP ..177

Part IV: Common PHP Applications197
Chapter 10: The Basics of Web Applications ...199
Chapter 11: Other Web Applications ..223
Chapter 12: Storing Data with PHP ..247
Chapter 13: PHP and Your Operating System ..279
Chapter 14: PHP Extensions ...303

Part V: The Part of Tens ...319
Chapter 15: Ten Things to Look For When Troubleshooting a Script321
Chapter 16: Ten PHP Resources You Can’t Live Without ...327

Part VI: Appendixes ...331
Appendix A: Installing PHP..333
Appendix B: Useful PHP Built-in Functions...353

Index ...377

01 541668 FM.qxd 3/25/04 2:51 PM Page v

01 541668 FM.qxd 3/25/04 2:51 PM Page vi

Table of Contents
Introduction ...1

About This Book ..1
How to Use This Book ..2
Foolish Assumptions ..3
How This Book Is Organized ..4

Part I: Say Hello to the PHP Scripting Language4
Part II: Variables and Data ..4
Part III: Basic PHP Programming ...4
Part IV: Common PHP Applications ..4
Part V: The Part of Tens ..5
Part VI: Appendixes ...5

Icons Used in This Book ...5

Part I: Say Hello to the PHP Scripting Language7

Chapter 1: Getting to Know PHP .9
Getting Familiar with PHP ..9
Considering the Various Uses for PHP ...10

Using PHP for Web applications ..11
Using PHP for database applications ..12
Using PHP with your file system ...13
Using PHP for system commands ...13

Understanding How PHP Works ..14
PHP as a general-purpose language ..14
PHP for the Web ...15

Keeping Up with Changes in PHP ..16
PHP 5 ...17
Previous versions of PHP ...18

Chapter 2: Setting Up the Environment .19
Establishing Your Web Environment ..19

Using an existing Web environment ..21
Choosing a Web hosting company ..22
Setting up your own Web environment ..25
Testing PHP ..27

Setting Up PHP for General-Purpose Scripting ..30
Configuring PHP ..32
Using Tools to Build PHP Scripts ..32

Programming editors ..32
Integrated Development Environment (IDE)33

01 541668 FM.qxd 3/25/04 2:51 PM Page vii

Chapter 3: Creating Your First PHP Script .35
Writing PHP Statements ...36
Building Scripts ...37

Adding PHP statements to HTML pages ...38
Using PHP independent of the Web ..40

Writing Your First Script ...42
Discovering More about Output Statements ...44

Processing PHP output statements ...45
Using special characters in output statements46

Documenting the Script ..48

Part II: Variables and Data ...51

Chapter 4: Using Variables in PHP Scripts .53
Naming Variables ...53
Assigning and Displaying Variable Values ..55

Creating variables ..55
Displaying variable values ...56

Writing Your First Script That Uses Variables ...57
Discovering More about Output Statements with Variables59
Using Variable Variables ...60
Removing Variables ..61
Working with Constants ...62

Creating constants ..62
Understanding when to use constants ...63
Displaying constants ...66
Utilizing built-in PHP constants ...66

Handling Error Messages ...67
Changing the error level for your Web site68
Changing the error level for a script ...69
Sending messages to a log ..70
Advanced error handling ..70

Chapter 5: Working with Data .73
Understanding Data Types ...73

Assigning data types ...74
Type casting ...74

Working with Numbers ...75
Performing mathematical operations ...75
Formatting numbers for output ...79

Working with Character Strings ..81
Using special characters in strings ...82
Comparing single-quoted strings and double-quoted strings82
Escaping characters ..84
Joining strings together ..85
Manipulating strings ...85
Formatting output strings ..89

PHP 5 For Dummies viii

01 541668 FM.qxd 3/25/04 2:51 PM Page viii

Working with Dates and Times ..92
Formatting dates ...92
Storing a timestamp in a variable ..94

Chapter 6: Storing Data in Groups by Using Arrays 97
Creating and Working with Arrays ..97

Creating arrays ..97
Viewing arrays ...100
Modifying arrays ..101
Removing values from arrays ..102

Sorting Arrays ..103
Using Arrays in Statements ..105

Using arrays in echo statements ...106
Using arrays in list statements ..106

Walking through an Array ..107
Traversing an array manually ..108
Using foreach to walk through an array ...109

Finding Array Size ...110
Converting Arrays into Strings (And Vice Versa)110
Converting Variables into Arrays (And Vice Versa)112
Splitting and Merging Arrays ...113
Comparing Arrays ...115
Working with Other Array Operations ...116

Summing arrays ...116
Removing duplicate items ..117
Exchanging keys and values ..117

Multidimensional Arrays ..118
Creating multidimensional arrays ...119
Viewing multidimensional arrays ..120
Using multidimensional arrays in statements120
Walking through a multidimensional array121

Built-in PHP Arrays ...123
Using superglobal arrays ..123
Using $_SERVER and $_ENV ...125
Using $argv and $argc ...125

Part III: Basic PHP Programming127

Chapter 7: Controlling the Flow of the Script 129
Changing the Order of Statement Execution ...129
Setting Up Conditions ...131

Using comparison operators ...131
Checking variable content ...133
Pattern matching with regular expressions133
Joining multiple comparisons ..138

ixTable of Contents

01 541668 FM.qxd 3/25/04 2:51 PM Page ix

Using Conditional Statements ...140
Using if statements ..140
Using switch statements ..144

Repeating Actions by Using Loops ...145
Using for loops ...146
Using while loops ..149
Using do..while loops ..151
Avoiding infinite loops ..153
Breaking out of a loop ...154

Chapter 8: Reusing PHP Code .157
Inserting Code in Your Script ..158

Including files ...158
Storing include files ...160
Setting up include directories ..161

Creating Reusable Code (Functions) ..162
Defining functions ...163
Using variables in functions ...165
Passing values to a function ..167
Returning a value from a function ...171
Using built-in functions ...174

Handling Errors ..174

Chapter 9: Object-Oriented Programming Meets PHP 177
Introducing Object-Oriented Programming ...177

Objects and classes ...178
Properties ...179
Methods ..179
Inheritance ...180
Object-oriented concepts PHP 5 omits ...180

Developing an Object-Oriented Program ...181
Choosing objects ...181
Selecting properties and methods for each object182
Creating and using the class ..182

Defining a Class ...183
Writing a class statement ...183
Setting properties ..184
Using $this ..185
Adding methods ..185
Writing the constructor ..186
Putting it all together ..187

Using a Class ..190
Making Properties and Methods Private ..191
Using Exceptions ...194
Copying Objects ..195
Destroying Objects ...196

PHP 5 For Dummies x

01 541668 FM.qxd 3/25/04 2:51 PM Page x

Part IV: Common PHP Applications197

Chapter 10: The Basics of Web Applications 199
Securing Your Web Site ...200

Ensuring the security of the host computer200
Keeping information private ..201
Being cautious of information from users202
Using a secure Web server ...202

Displaying Static Web Pages ..203
Working with HTML Forms ..203

Collecting information from Web site visitors204
Receiving the information ...211
Checking the information ...213
Cleaning information ...220

Chapter 11: Other Web Applications .223
Overcoming Statelessness ...223
Navigating Web Sites with Multiple Pages ...224

Echoing links ..224
Using forms ..224
Relocating users ..225

Moving Information from Page to Page ..226
Adding information to the URL ..227
Passing information via cookies ..229
Passing information using HTML forms ...231
Using PHP sessions ...232

Uploading Files ..238
Using a form to upload a file ..239
Accessing information about an uploaded file240
Moving uploaded files to their destination241
Putting it all together ..241

Using JavaScript with PHP ...244
Adding JavaScript code to a PHP script ...244
Using PHP variables with JavaScript ..245

Chapter 12: Storing Data with PHP .247
Using Flat Files ...249

Accessing files ...249
Writing to a file ...252
Reading from a file ...252
Exchanging data with other programs ...255

Working with Databases ...259
Understanding database software ..259
Understanding database support in PHP262
Communicating with your database ...265

xiTable of Contents

01 541668 FM.qxd 3/25/04 2:51 PM Page xi

Using PHP with a database ...266
Handling errors ..272
Putting it all together ..273

Using SQLite ...276

Chapter 13: PHP and Your Operating System 279
Managing Files ...279

Getting information about files ..280
Copying, renaming, and deleting files ...282
Organizing files ..283

Using Operating System Commands ..286
Using backticks ..288
Using the system function ..289
Using the exec function ..289
Using the passthru function ...290
Understanding security issues ..291

Using FTP ...292
Logging in to the FTP server ..292
Getting a directory listing ..293
Downloading and uploading files with FTP294
Other FTP functions ..295

Using E-Mail ...297
Setting up PHP to send e-mail ..297
Sending e-mail messages ..299
Sending e-mail attachments ...300

Chapter 14: PHP Extensions .303
Investigating the Basic Extensions ...303
Taking a Look at Standard Extensions ..305
Using PEAR ...309

Finding a PEAR Package ...309
Setting up PEAR ...311
Installing a PEAR package ..313
Using a PEAR package ...314

Part V: The Part of Tens ..319

Chapter 15: Ten Things to Look For When
Troubleshooting a Script .321

Missing Semicolons ...321
Not Enough Equal Signs ...322
Misspelled Variable Names ..322
Missing Dollar Signs ..323
Troubling Quotes ..323
Invisible Output ...324
Numbered Arrays ..324
Including PHP Statements ..325

PHP 5 For Dummies xii

01 541668 FM.qxd 3/25/04 2:51 PM Page xii

Missing Mates ..325
Confusing Parentheses and Brackets ...326

Chapter 16: Ten PHP Resources You Can’t Live Without 327
The PHP Web Site ..327
PHP Lists ..327
Zend ..328
PHP Builder ..328
Black Beans ..328
PHP Beginners ...328
PHP Dev Center ...329
PHPMac.com ..329
PHP Editors ..329
SourceForge.net ...329
Free PHP Hosting Directory ...330
My Web Site ..330

Part VI: Appendixes ..331

Appendix A: Installing PHP .333

Installing PHP on Computers Running Unix/Linux333
Before installing on Unix/Linux ...334
Installing on Unix/Linux ...335
Alternative method for installing with Apache336
Installing PHP on Computers Running Mac OS X339

Before installing on Mac ...339
Installing on Mac ...340

Installation Options for Unix/Linux/Mac ..342
Configuring on Unix/Linux/Mac ..343
Installing PHP on Computers Running Windows345

Installing PHP CGI with the PHP installer346
Installing PHP manually ..348
Configuring PHP and your Web server on Windows computers ...349

Appendix B: Useful PHP Built-in Functions .353

Array Functions ...353
Date and Time Functions ...358
File System Functions ...359
HTTP and Mail Functions ...366
Mathematical Functions ...367
PHP Options and Information Functions ...369
String Functions ..370
Variable Functions ..375

Index..377

xiiiTable of Contents

01 541668 FM.qxd 3/25/04 2:51 PM Page xiii

PHP 5 For Dummies xiv

01 541668 FM.qxd 3/25/04 2:51 PM Page xiv

Introduction

Because you’re here, you must be interested in writing PHP scripts.
Perhaps you just want to learn to program and you heard that PHP is

one of the easiest languages to learn. You’re right; it is. PHP is a good choice
for your first programming language.

Perhaps you’re developing an interactive Web site and you heard that PHP
is particularly good for Web site development. You’re right; it is. You can be
interacting with users at your Web site in no time at all.

Perhaps you have an application to write and you have a short timeline. You
heard that PHP is easy to learn. You’re right; it is. It was designed with easy to
learn as a specific design goal.

Perhaps you have some system administration, file manipulation, or data han-
dling tasks to perform and you heard that PHP can handle these tasks. You’re
right; it can. PHP can do almost anything that you can think of, although it
draws the line at asking your boss for a raise. Well, wait a minute, PHP can
send e-mail. . . . Hmmm.

About This Book
Think of this book as a friendly introduction to programming in PHP. This
book is both an introduction to programming and an introduction to PHP.
The book starts with the basics of PHP, including how to tell whether you
need to install it. (Full installation instructions are included in Appendix A.)
The book describes the basic features of PHP with examples of their use. If
you have experience with programming, you can probably just skim this sec-
tion, but if you don’t, all the programming basics are here.

The book goes on to describe the most common uses of PHP. It shows how to
write scripts for Web sites, file manipulation, databases, and other common
tasks. It provides techniques and shortcuts and warns against common errors.
Both beginners and experienced programmers can write useful scripts for
many common applications in a very short time by using the information in
the application section (Part IV) of the book.

02 541668 intro.qxd 3/25/04 2:52 PM Page 1

How to Use This Book
This book is designed as a reference, not as a tutorial, so you don’t have to
read this book from cover to cover unless you want to. You can start reading
at any point in the book — in Chapter 1, Chapter 8, wherever. I divide the
world of PHP programming into manageable chunks of information, so check
out the Table of Contents and locate the topic that you’re interested in. If you
need to know information from another chapter to understand the chapter
that you’re reading, I reference that chapter number.

This book includes many examples of PHP programming statements, ranging
from a line or two to complete PHP programs. PHP statements in this book
are shown in a different typeface that looks like the following line:

A PHP program statement

In addition, PHP is sometimes shown in the text of a paragraph. When it is,
the PHP in the paragraph is also shown in a different typeface. For example,
this text is an example of a PHP statement within the paragraph text.

In examples, you will often see some words in italics. Italicized words are gen-
eral types that need to be replaced with the specific name appropriate for
your data. For example, when you see an example like the following

echo number1,number2

you know that number1 and number2 need to be replaced with real numbers
because they are in italics. When you use it in your script, you may use it in
the following form:

echo 3,127

In addition, you may see three dots (. . .) following a list in an example line
of code. You don’t need to type the three dots. The three dots just mean that
you can have as many items in the list as you want. For example, when you
see the following line

echo number1,number2, . . .

you don’t need to include the three dots in the statement. The three dots just
mean that your list of numbers can be as long as you want. You can include
number3, number4, and so on, as follows:

echo number1,number2,number3,number4

2 PHP 5 For Dummies

02 541668 intro.qxd 3/25/04 2:52 PM Page 2

Foolish Assumptions
First, I assume that you know enough about computers to understand terms
like files, directories, path names, and other basic operating system concepts.
I assume that when I tell you to put a file in a specific directory, you know how
to do that.

Next, I assume that you know how to create files. You need to know how to
create a file and edit it by using a basic editor, such as Notepad in Windows.
You need to know how to save the file, copy it, and move it around.

I assume that you are using an operating system that PHP runs on, which
included almost every operating system. Your operating system needs to be
reasonably current. For example, Windows 95 is too old, as is Mac OS 9. Even
Windows 98 is a little old, although some people do run PHP on it.

If you’re using PHP for the Web, you need to use HTML (HyperText Markup
Language) statements. I assume that you know HTML. Consequently, although
I use HTML in many examples, I do not explain the HTML. If you need to use
PHP for a Web site and you do not have an HTML background, I suggest that
you first read a book on HTML — such as HTML 4 For Dummies, 4th Edition,
by Ed Tittel and Natanya Pitts, or HTML 4 For Dummies, Quick Reference, 2nd
Edition, by Deborah S. Ray and Eric J. Ray (both by Wiley Publishing, Inc.)
Then build some practice Web pages before you start this book. However, if
you’re the impatient type, I won’t tell you that it’s impossible to proceed with-
out knowing HTML. You may be able to glean enough HTML from this book
to build your particular Web site. If you choose to proceed without knowing
HTML, I would suggest that you have an HTML book by your side to assist
you when you need to figure out some HTML that isn’t explained in this book.

Also for PHP for the Web users, I assume that you have created at least a static
Web page, probably one or more static Web sites. I assume that you know
where you need to put files so that your Web pages are available to your Web
site users and that you know how to put the files in the appropriate place by
using copy, ftp, and so on.

I do not assume that you know anything at all about writing computer pro-
grams in any language. This introductory book provides the needed instruc-
tions for anyone to write PHP scripts. So, if this is your first programming
language, you should be fine. If you have a background in another program-
ming language, particularly C, you may find this book to be a quick reference
to learning how to do things in PHP. However, those who have no background
in programming will find all the information that they need.

3Introduction

02 541668 intro.qxd 3/25/04 2:52 PM Page 3

How This Book Is Organized
This book is divided into six parts. The content ranges from an introduction
to PHP basics to common applications for PHP.

Part I: Say Hello to the PHP
Scripting Language
This part provides an overview of PHP, including how it works and its many
uses. You discover how to set up your environment for using PHP. Finally, this
part shows you how to create your first PHP program.

Part II: Variables and Data
Variables are the fundamental feature of PHP. This section shows you how to
create variables and use them. It also describes the kind of data that you can
store in a variable as well as how to handle the various types of data. Then,
you find out how to create and use complex variables called arrays.

Part III: Basic PHP Programming
This part shows you how to program PHP scripts. You find out about the basic
features of PHP and the details of how to use them to create your scripts. This
part also introduces you to object-oriented programming.

Part IV: Common PHP Applications
Part IV provides the techniques needed to write scripts for the most common
PHP applications. You find out how to write scripts for use in your Web site,
such as how to display HTML forms and how to process information that users
type into forms. You find out how to use PHP to interact with databases. Using
PHP to perform system tasks, such as writing files on your hard disk and exe-
cuting operating system commands, is also described.

4 PHP 5 For Dummies

02 541668 intro.qxd 3/25/04 2:52 PM Page 4

Part V: The Part of Tens
This part provides some useful lists of things to do and not do when writing
PHP scripts, as well as a listing of PHP resources.

Part VI: Appendixes
This part provides detailed instructions for installing PHP for those who need
to install it themselves. Appendix B is a list of functions available in PHP,
intended to be a useful reference while you write your scripts.

Icons Used in This Book
Icons are provided to help you identify information in this book. The following
icons point out types of information for your notice.

Tips provide extra information for a specific purpose. Tips can save you time
and effort, so they’re worth checking out.

This icon is a Post-It note of sorts, highlighting information that’s worth com-
mitting to memory.

You should always read and pay attention to warnings. Warnings emphasize
actions that you must take or must avoid to prevent dire consequences.

This icon flags information and techniques that are more technical than other
sections of the book. The information here can be interesting and helpful, but
you don’t need to understand it to use the information in the book.

5Introduction

02 541668 intro.qxd 3/25/04 2:52 PM Page 5

6 PHP 5 For Dummies

02 541668 intro.qxd 3/25/04 2:52 PM Page 6

Part I
Say Hello to the
PHP Scripting

Language

03 541668 PP01.qxd 3/25/04 2:52 PM Page 7

In this part . . .

I provide an overview of PHP. I describe PHP, how it
works, and what it is useful for. After describing your

tools, I show you how to set up your working environ-
ment. I also present options for accessing PHP and point
out what to look for in each environment.

After describing the tools and options for the develop-
ment environment, I provide an overview of the develop-
ment process. I show you how to write your first script
and discuss a few simple output statements.

03 541668 PP01.qxd 3/25/04 2:52 PM Page 8

Chapter 1

Getting to Know PHP
In This Chapter
� Taking a look at PHP

� Understanding how PHP works

� Understanding PHP as open source software

So, you want to get to know PHP. Perhaps this is your first adventure in
programming, and you chose PHP because your techie friend told you

it’s easy to understand. Well, your friend is right. PHP is one of the easiest
programming languages to understand. The developers of PHP strive con-
stantly to keep it easy to use.

Perhaps you already know how to program in another language. You’ve
decided to study PHP because it’s the best language for your new Web appli-
cation project. It’s a good decision because PHP is well suited for writing
dynamic Web applications. PHP is easy to get started with, but it also has
many advanced features for seasoned programmers. If you know C, you
have a great head start because PHP syntax is similar to C syntax.

In this chapter, I discuss what PHP is, what it can do, and how it does it.

Getting Familiar with PHP
PHP is a widely used open source, general-purpose scripting language. It was
originally designed for use in Web site development. In fact, PHP started life
as Personal Home Page tools, developed by Rasmus Lerdorf to assist users
with Web page tasks. PHP proved so useful and popular, it rapidly grew to
become the full-featured language that it is today, acquiring the name PHP
Hypertext Preprocessor along the way to represent its expanded abilities —
processing Web pages before they’re displayed.

04 541668 Ch01.qxd 3/25/04 2:49 PM Page 9

The popularity of PHP continues to grow rapidly because of its many
advantages:

� It’s fast: On Web sites, because it is embedded in HTML code, the time to
process and load a Web page is short.

� It’s free: PHP is proof that free lunches do exist and that you can get
more than you paid for.

� It’s easy to use: The syntax is simple and easy to understand and use,
even for non-programmers. For use in Web sites, PHP code is designed
to be included easily in an HTML file.

� It’s versatile: PHP runs on a wide variety of operating systems —
Windows, Linux, Mac OS, and most varieties of Unix.

� Technical support is widely available: You can join one of several
e-mail discussion lists offered on the PHP Web site (www.php.net),
which cover topics such as general PHP, PHP on Windows, or databases
and PHP. In addition, a Web interface to the discussion lists is available
at news.php.net, where you can browse or search the messages.

� It’s secure: As long as your scripts are designed correctly, the user does
not see the PHP code.

� It’s customizable: The open source license allows programmers to
modify the PHP software, adding or modifying features as needed to fit
their own environments. PHP provides significant control over the envi-
ronment, reducing chances of failure.

Considering the Various Uses for PHP
PHP is a general-purpose language that can be used to write general-purpose
scripts. Scripts are computer files containing instructions in the PHP language
that tell the computer to do things, such as display Hello on the screen or
store some specified data in a database. Most scripts contain a series of
instructions that can accomplish tasks from designing Web pages to navigat-
ing your file system. Because PHP began life on the Web, it has many features
that are particularly well suited for use in scripts that create dynamic Web
pages. Currently, you find PHP most often hard at work in Web pages, but its
use for other purposes is growing.

PHP is very popular for Web sites. According to the PHP Web site (www.php.
net/usage.php), over 11 million domains are using PHP. Yahoo!, which is
probably the world’s most visited site, recently decided to change from its
own proprietary language to PHP.

10 Part I: Say Hello to the PHP Scripting Language

04 541668 Ch01.qxd 3/25/04 2:49 PM Page 10

Using PHP for Web applications
In the beginning, Web pages were static — they just presented documents.
Users went to Web sites to read information. Documents were linked together
so that users could easily find the information they sought, but the Web pages
didn’t change. Every user who arrived at a Web page saw the same thing.

Soon Web page developers wanted to do more. They wanted to interact with
visitors, collect information from users, and provide Web pages that were
customized for individuals. Several languages have developed that can be
used to make Web sites dynamic. PHP is one of the most successful of these
languages, evolving quickly to become more and more useful and rapidly
growing in popularity.

PHP is a server-side scripting language, which means that the scripts are exe-
cuted on the server (the computer where the Web site is located). This is differ-
ent than JavaScript, another popular language for dynamic Web sites. JavaScript
is executed by the browser, on the user’s computer. Thus, JavaScript is a client-
side language. Web servers and the interaction between servers and clients are
discussed in the section “PHP for the Web,” later in this chapter.

Because PHP scripts execute on the server, PHP can dynamically create the
HTML code that generates the Web page, which allows individual users to
see customized Web pages. Web page visitors see the output from scripts,
but not the scripts themselves.

PHP has many features designed specifically for use in Web sites, including
the following:

� Interact with HTML forms: PHP can display an HTML form and process
the information that the user types in.

� Communicate with databases: PHP can interact with databases to store
information from the user or retrieve information that is displayed to
the user.

� Generate secure Web pages: PHP allows the developer to create secure
Web pages that require users to enter a valid username and password
before seeing the Web page content.

PHP features make these and many other Web page tasks easy.

PHP is only server-side, meaning it can’t interact directly with the user’s com-
puter. That means PHP can’t initiate actions based on the status of the user’s
computer, such as mouse actions or screen size. Therefore, PHP alone can’t
produce some popular effects, such as navigation menus that drop down or
change color. On the other hand, JavaScript, a client-side scripting language,

11Chapter 1: Getting to Know PHP

04 541668 Ch01.qxd 3/25/04 2:49 PM Page 11

can’t access the server, limiting its possibilities. For example, you can’t use
JavaScript to store data on the server or retrieve data from the server. But
wait! You don’t have to choose. You can use JavaScript and PHP together to
produce Web pages that neither can produce alone. See Chapter 11 for details
on using JavaScript and PHP together.

Using PHP for database applications
PHP is particularly strong in its ability to interact with databases. PHP sup-
ports pretty much every database you’ve ever heard of and some you haven’t.
PHP handles connecting to the database and communicating with it, so you
don’t need to know the technical details for connecting to a database or for
exchanging messages with it. You tell PHP the name of the database and
where it is, and PHP handles the details. It connects to the database, passes
your instructions to the database, and returns the database response to you.

Major databases currently supported by PHP include the following:

� dBASE

� Informix

� Ingres

� Microsoft SQL Server

� mSQL

� MySQL

� Oracle

� PostgreSQL

� Sybase

PHP supports other databases as well, such as filePro, FrontBase, and
InterBase. In addition, PHP supports ODBC (Open Database Connectivity),
a standard that allows you to communicate with even more databases, such
as Access and IBM DB2.

PHP works well for a database-driven Web site. PHP scripts in the Web site
can store data in and retrieve data from any supported database. PHP also
can interact with supported databases outside a Web environment. Database
use is one of PHP’s best features.

12 Part I: Say Hello to the PHP Scripting Language

04 541668 Ch01.qxd 3/25/04 2:49 PM Page 12

Using PHP with your file system
PHP can interact with your file system — the directories and files that are on
your local hard disk or on other computers accessible over a network. PHP can
write into a file on your file system, creating the file if it doesn’t exist, and can
read the contents from files. It can also create directories, copy files, rename
files, delete files, change file attributes, and perform many other file system
tasks. PHP allows you to perform almost any task related to your file system.

Many Web sites need to interact directly with the file system. For example,
a Web application may save information temporarily in a file rather than in a
database, or may need to read information from a file.

System administrative and maintenance scripts frequently need to interact
with the file system. For example, you may want to use a PHP script to back
up files, to clean out directories, or to process text files by reformatting their
contents. PHP can perform these tasks quite well.

Using PHP for system commands
PHP can interact with your operating system to perform any task the operat-
ing system can perform. You can execute an operating system command and
receive the output. For example, you can execute a dir or ls command (to
list the files in your directory) from PHP and receive the list of filenames that
the dir/ls command produces.

The ability to execute system commands is often useful for system adminis-
trative and maintenance tasks. For example, you may want to clean up a
directory by deleting files with a particular extension. You can use a system
command to get a list of files in a directory and then identify and delete the
files with the unwanted extension.

The ability to execute system commands includes the ability to run any other
program on the system. Thus, you can run programs in other languages from
PHP and make use of the output. Aren’t you relieved that you don’t have to
rewrite all those programs you’re using now? You can run Perl, C, shell scripts,
or any other language programs from PHP. New PHP programs can add func-
tionality to your system tools, without requiring you to spend time rewriting
existing tools.

13Chapter 1: Getting to Know PHP

04 541668 Ch01.qxd 3/25/04 2:49 PM Page 13

Understanding How PHP Works
PHP is a high-level language, which means that it’s human-friendly, similar to
English. Because your computer doesn’t understand English, you use PHP
to communicate, and the PHP interpreter converts the language in your PHP
script to language the computer can understand. The computer then follows
your instructions, passed to it by the interpreter.

The PHP interpreter comes in two flavors, one for use with Web sites and one
that you run from the command line, independent of the Web. You can install
either or both.

PHP as a general-purpose language
When you use PHP as a general-purpose scripting language, you install PHP
CLI, the version of PHP developed for this purpose. You access the PHP inter-
preter from the command line to run your PHP script. The process is similar
to other languages, such as Perl or C. For the lowdown on running scripts
using PHP CLI, check out Chapter 3.

14 Part I: Say Hello to the PHP Scripting Language

How the World Wide Web works
It’s helpful to understand a little about how the
World Wide Web (WWW) works. The Web is a
network of computers that offer Web pages.
Millions of Web sites are on the Web. To enable
Web surfers to find the Web sites they want to
visit, each Web page has an address, called a
URL. This includes the Web site’s domain name
and the filename, such as www.mycompany.
com/welcome.html. When Web surfers want
to visit a Web page, they type the URL into their
Web browsers. The following process is set in
motion:

1. The Web browser sends a message out
onto the Web, requesting the Web page.

2. The message is sent to the computer at the
address specified in the URL.

3. The Web server software on the addressed
computer receives the message.

4. The Web server searches for the requested
HTML file.

5. The Web server finds the requested file and
sends the file to the Web browser that
requested it. (If it can’t find the file, it sends
a message to the browser saying that it
couldn’t find the file.)

6. The Web browser displays the Web page
based on the HTML code it received.

04 541668 Ch01.qxd 3/25/04 2:49 PM Page 14

PHP for the Web
When used on your Web site, PHP works in partnership with your Web server.
Every Web site requires a Web server. The Web sever is the software that deliv-
ers your Web pages to the world. The PHP software works in conjunction with
the Web server.

When used on the Web, PHP is an embedded scripting language. This means
that PHP code is embedded in HTML code. You use HTML tags to enclose the
PHP language that you embed in your HTML file. You create and edit Web
pages containing PHP the same way you create and edit regular HTML pages.

When PHP is installed, the Web server is configured to look for PHP code
embedded in files with specified extensions. It’s common to specify the
extensions .php or .phtml, but you can configure the Web server to look
for any extension. When the Web server gets a request for a file with the des-
ignated extension, it sends the HTML statements as is, but PHP statements
are processed by the PHP software before they’re sent to the requester.

When PHP language statements are processed, the output consists of HTML
statements. The PHP language statements are not included in the HTML sent
to the browser, so the PHP code is secure and transparent to the user. For
example, consider this simple PHP statement:

<?php echo “<p>Hello World”; ?>

In this statement, <?php is the PHP opening tag, ?> is the closing tag, and
echo is a PHP instruction that tells PHP to output the text that follows it as
plain HTML code. The PHP software processes the PHP statement and out-
puts the following:

<p>Hello World

This is a regular HTML statement that is delivered to the user’s browser. The
PHP statement itself is not delivered to the browser, so the user never sees
any PHP statements.

PHP and the Web server must work closely together. PHP is not integrated
with all Web servers but works with many of the most popular ones. PHP is
developed as a project under the Apache Software Foundation and, conse-
quently, works best with Apache. PHP also works with Microsoft IIS/PWS,
iPlanet (formerly Netscape Enterprise Server), and others.

15Chapter 1: Getting to Know PHP

04 541668 Ch01.qxd 3/25/04 2:49 PM Page 15

Keeping Up with Changes in PHP
PHP is open source software. If you have only used software from major soft-
ware publishers — such as Microsoft, Macromedia, or Adobe — you will find
that open source software is an entirely different species. It’s developed by a
group of programmers who write the code in their spare time, for fun and for
free. There’s no corporate office to call with questions. There’s no salesperson
to convince you of the wonders of the software. There’s no technical support
phone number where you can be put on hold.

Sounds like there’s no support for PHP, doesn’t it? Actually, quite the opposite
is true: An incredible amount of support is available. PHP is supported by the
developers and by the many PHP users. But you need to look for the support.
It’s part of your job as a PHP user and developer to search out the information
you need.

Open source software changes frequently, rather than once every year or two
as commercial software does. It changes when the developers feel it’s ready.
It also changes quickly in response to problems. When a serious problem,
such as a security hole, is found, a new version that fixes the problem may be
released in days. You don’t receive glossy brochures or see splashy magazine
ads for a year before a new version is released. If you don’t make the effort to
stay informed, you may miss the release of a new version or be unaware of a
serious problem with your current version.

16 Part I: Say Hello to the PHP Scripting Language

Serving up Web servers
The software that delivers Web pages to
the world is called a Web server. Several Web
servers are available, but the most popular one
is Apache. Approximately 60 percent of Web
sites on the World Wide Web use Apache,
according to surveys at www.netcraft.com
and www.securityspace.com/s_survey/
data/. Apache is open source software, which
means it’s free. It’s available for all major oper-
ating systems. It’s automatically installed with
most Linux distributions and is preinstalled on
Mac OS X. You can find information about

Apache at httpd.apache.org. PHP is a pro-
ject of the Apache Software Foundation, so PHP
runs best with Apache.

Other Web servers are available. Internet Infor-
mation Server (IIS) is the second most popular
Web server with about 30 percent of the Web
sites. IIS is developed by Microsoft and runs
only on Windows. IIS is installed by default with
Windows server software. Other Web servers
include Zeus, NCSA, and Sun ONE. No other
Web server is used on more than 2.5 percent of
the Web sites.

04 541668 Ch01.qxd 3/25/04 2:49 PM Page 16

Visit the PHP Web site often. You need to know the information that’s pub-
lished there. Join the mailing lists, which often are very high in traffic. When
you first start using PHP, the large number of mail messages on the discussion
lists brings valuable information into your e-mail box; you can pick up a lot by
reading those messages. And soon, you may be able to help others based on
your own experience. At the very least, subscribe to the announcement mailing
list, which only delivers e-mail occasionally. Any important problems or new
versions are announced here. The e-mail you receive from the announcement
list contains information you need to know.

So, right now, before you forget, hop over to the PHP Web site and sign up for
a list or two at www.php.net/mailing-lists.php.

PHP 5
Most of the important changes in PHP version 5 don’t affect the coding or the
use of PHP. They affect the performance of PHP. The Zend engine (the magic,
invisible engine that powers PHP) has been significantly improved, and as a
result, scripts run faster and more efficiently.

The object-oriented programming features of PHP are a major focus of PHP 5.
Object-oriented programming is greatly improved over PHP 4. The creation
and use of objects runs much faster, many object-oriented features have been
added, and exceptions are introduced. Programmers who prefer object-
oriented programming will be much happier with PHP 5. (Object-oriented
programming is described in Chapter 9.)

With PHP 5, the names of the PHP programs changed. PHP for the Web is
called php-cgi; PHP CLI is called just php, as in php.exe on Windows. Both
are stored in the directory where PHP is installed. Prior to PHP 5, both pro-
grams were named php.exe, but stored in different subdirectories.

PHP 5 adds support for MySQL 4.1 and later. However, support for MySQL
is not included with PHP 5 by default. Support for MySQL 4.0 or MySQL 4.1
must be specified when PHP is installed. Prior to PHP 5, support for MySQL
4.0 and earlier was included automatically.

PHP 5 includes support for SQLite by default. SQLite provides quick and easy
methods for storing and retrieving data in flat files.

17Chapter 1: Getting to Know PHP

04 541668 Ch01.qxd 3/25/04 2:49 PM Page 17

Previous versions of PHP
You should be aware of some significant changes in previous PHP versions
because existing scripts that work fine on earlier versions may have problems
when they’re run on a later version, and vice versa. The following are some
changes you should be aware of:

� Version 4.3.1: Fixed a security problem in 4.3.0. It’s not wise to continue
to run a Web site using versions 4.3.0 or earlier.

� Version 4.3.0: Included significant improvements to the CLI version of
PHP, which is now built by default when you compile PHP from source
code (described in Appendix A). You must disable its build with installa-
tion options if you don’t want it to be built.

� Version 4.2.0: Changed the default setting for register_globals to Off.
Scripts running under previous versions may depend on register_
globals being set to On and may stop running with the new setting. It’s
best to change the coding of the script so that it runs with
register_globals set to Off.

� Version 4.1.0: Introduced the superglobal arrays. Scripts written using
the superglobals (described in Chapter 6) won’t run in earlier versions.
Prior to 4.1.0, you must use the old style arrays, such as
$HTTP_POST_VARS.

By the time you read this, it’s possible that everyone has updated to PHP 5.
However, some IT departments and Web hosting companies may not update
immediately. Keep the previous changes in mind when using older versions.

18 Part I: Say Hello to the PHP Scripting Language

04 541668 Ch01.qxd 3/25/04 2:49 PM Page 18

Chapter 2

Setting Up the Environment
In This Chapter
� Getting access to PHP through Web hosting companies

� Building your own Web site from scratch

� Testing PHP

Now that you’ve decided to use PHP, your first task is to set up an envi-
ronment for PHP development. As I discuss in Chapter 1, PHP is used

most often to develop dynamic Web sites, so the majority of this chapter dis-
cusses setting up PHP for use with a Web site. If you plan to use PHP only as a
general-purpose scripting language, independent of the Web, setting up your
environment is much simpler. You can skip the sections about setting up a
Web environment and go directly to the section, “Setting Up PHP for General-
Purpose Scripting.”

Establishing Your Web Environment
PHP for Web development runs in partnership with a Web server, as described
in Chapter 1. Thus, a Web site requires a Web server. To use PHP in your Web
site, the Web server must be able to exchange information with the PHP soft-
ware, and, thus, PHP must be installed where the Web server can access it.
The Web site environment involves more than just a Web server and PHP on
a computer. Here are a few other requirements:

� The computer must be connected to the Internet.

� The computer must have enough resources, such as disk space and
memory, to handle the expected Web traffic.

� Other software, such as a database, may be required in the environment.

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 19

You may or may not be interested in setting up your own Web environment.
You may think that installing software is fun, or you may think it’s similar to
having the flu. If you want to install your own Web environment from scratch,
you can. You may even already have a Web site running on your own computer
and are just looking to add to its functionality by using PHP. If you don’t want
to install your own Web environment, you can use a Web environment installed
and maintained by someone else, such as the IT department at work or a
commercial Web hosting company. Perhaps you have an existing Web site at
a hosting company that you want to make more dynamic. You can use PHP in
either a Web environment of your own or one provided by someone else.

Another common development environment includes both your own Web
environment and one maintained by someone else. That is, it’s common for
developers to set up testing Web environments on their own computers where
they write and debug Web pages. Then, when everything is working correctly,
the Web pages are transferred to their Web site at work, maintained by the IT
department, or to a Web hosting company.

The following are some advantages of using someone else’s Web environment:

� It’s easier than setting up your own: You just copy your Web pages onto
the other party’s computer, and that’s it. You don’t need to install any
software or hardware or resolve any computer problems. Someone else
handles that for you.

� Less technical skill is required: You need to understand only Web lan-
guages, such as HTML and PHP. You don’t need to know about Internet
connections, Web servers, computer administration, and other technical
things. Some people are very interested in these things, but some are not.

The advantages of running your own Web environment are as follows:

� Control: You get to make all the decisions. You can set up the Web envi-
ronment the way that works best for you.

� Access: You can access the computer whenever you want to work on
your Web site.

� Stability: You know the Web site will be there as long as you need it. You
won’t wake up one morning to discover that your Web hosting company
has gone out of business and you have two days to move your site.

� Security: Because you control the Web environment, you are the only
person who needs to access the computer. You can keep it under lock
and key. When you use a Web hosting company, other people have
access to the computer, and one of them may be a bad guy who’s after
your secrets.

20 Part I: Say Hello to the PHP Scripting Language

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 20

Using an existing Web environment
When you use a Web environment set up by someone else, you don’t need
to understand the installation and administration of the Web site software.
Someone else — your company’s IT department, a commercial Web hosting
company, your next-door neighbor — is responsible for the operation of the
Web site. It’s their job to provide you with a working Web site, including PHP
if it’s required. Your job is only to write and install the Web site files.

To use an existing Web environment, you need the following information from
the Web site administrator:

� The location of Web pages: For the world to see your Web site, the files
containing the Web pages must be in a specific location on the computer.
The Web server that delivers the Web pages to the world expects to find
the files in a specific directory. You need to know where that directory is
and have access to the directory.

� The Web page installation process: You need to know how to install the
files. In most cases, you send the files via FTP to the proper location. FTP
(File Transfer Protocol) is a method of copying a file from one computer
to another on a network. In some cases, you may copy the files directly
or use other methods to install the Web pages. You may need a user ID
and password to install the files.

� The name of the default file: When users point their browsers at a URL, a
file is sent to them. The Web server is set up to send a specific default file
when the URL points to a directory. Very often the default file is named
index.htm or index.html, but sometimes other names are used, such as
default.htm. You need to know what you should name your default file.

� The PHP file extension: When PHP is installed, the Web server is
instructed to expect PHP statements in files with specific extensions.
Frequently, the extensions used are .php or .phtml, but other extensions
can be used. PHP statements in files that do not have the correct exten-
sions won’t be processed. You need to know what extension to use for
your PHP scripts.

One of the disadvantages of hosting your site in an existing Web environment
is that you have no control over your development environment. The admin-
istrators of the Web environment provide the environment that works best
for them. For instance, PHP has a myriad of options that can be set, unset, or
given various values. The administrators decide the option settings based on
their needs, which may or may not be ideal for your purposes. They probably
set up the environment for ease of maintenance, low cost, and minimal cus-
tomer defections. You can’t change certain parts of your environment; you
can only beg the administrators to change it. They will be reluctant to change
a working setup because a change may cause problems for their system or
for other customers.

21Chapter 2: Setting Up the Environment

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 21

Choosing a Web hosting company
A Web hosting company provides everything you need to put up a Web site,
including the computer space and all the Web site software. You just create
the files for your Web pages and move them to a location specified by the
Web hosting company.

About a gazillion companies offer Web hosting services. Most charge a monthly
fee, which is often quite small, and some are even free. Most of the free ones
require you to display advertising. Usually, the monthly fee varies, depending
on the resources provided for your Web site. For instance, a Web site with
2MB (megabytes) of disk space for your Web page files costs less than a Web
site with 10MB of disk space.

When looking for a place to host your Web site, make sure that the Web host-
ing company offers PHP. Some do not. Also, make sure the company offers a
recent version of PHP. Web hosting companies may not offer a version that
has just been released, but they should upgrade their PHP fairly soon after a
new version is released.

Don’t consider a Web hosting company that offers only PHP 3. PHP 4.3.1 was
released in February 2003, so no Web hosting company should still be provid-
ing PHP older than 4.3.1, especially because a security issue was discovered
in earlier versions and was fixed in PHP 4.3.1. Ideally, by the time you read
this, most Web hosting companies will be offering PHP 5.

Other considerations when choosing a Web hosting company include the
following:

� Reliability: You need a Web hosting company that you can depend on —
one that won’t go broke and disappear tomorrow. And you want one
that has enough computer power and other resources to keep your Web
site up. A Web site with more down time than up time is pretty useless.
Hopefully, some research on the Web or among colleagues will identify
Web hosting companies whose reliability is not up to snuff.

� Speed: Web pages that download slowly are a problem because users
will get impatient and go elsewhere. Slow pages may be a result of a Web
hosting company that started its business on a shoestring and has a
shortage of good equipment, or the problem may be a Web hosting com-
pany that is so successful that its equipment is overwhelmed by new
customers. Either way, Web hosting companies that deliver Web pages
too slowly are unacceptable. In some cases, you can find sites that are
hosted at the Web hosting company and see the download speed for
these sites. Sometimes the Web hosting company’s Web site provides
some customer links, or the company’s salespeople may provide you
with this information.

� Technical support: Some Web hosting companies have no one available
to answer questions or troubleshoot problems. Technical support is

22 Part I: Say Hello to the PHP Scripting Language

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 22

often provided through e-mail only, which can be acceptable if the
response time is short. Sometimes you can test the quality of the com-
pany’s support by calling the tech support number, or test the e-mail
response time by sending an e-mail.

� Domain name: Each Web site has a domain name that Web browsers use
to find the site on the Web. Each domain name is registered, for a small
yearly fee, so that only one Web site can use it. Some Web hosting com-
panies allow you to use a domain name that you have registered inde-
pendently of the Web hosting company, some assist you in registering
and using a new domain name, and some require you to use their domain
name. For instance, suppose your company’s name is Good Stuff and you
want your Web site to be named JanetsGoodStuff. Some companies allow
your Web site to be JanetsGoodStuff.com, but some require that your
Web site be named JanetsGoodStuff.webhostingcompanyname.com,
or webhostingcompanyname.com/~GoodStuff, or something similar. In
general, your Web site will look more professional if you can use your
own domain name.

� Features: You should select features based on the purpose of your Web
site. Usually a hosting company bundles its features into plans — more
features generally means higher cost. Some features to consider include
the following:

• Disk space: How many MB/GB (gigabytes) of disk space will your
Web site require? Media files, such as graphics or music files, can
be quite large.

• Data transfer: Some hosting companies charge you for sending
Web pages to users. If you expect to have a lot of traffic on your
Web site, this cost should be a consideration.

• E-mail addresses: Many hosting companies provide you with a
number of e-mail addresses for your Web site. For instance, if your
Web site is JanetsGoodStuff.com, you could allow users to send
you e-mail at me@JanetsGoodStuff.com.

• Software: Hosting companies offer access to a variety of software
for Web development. In addition to the PHP required for this
book, some hosting companies offer databases, such as MySQL or
PostgreSQL, and other development tools such as FrontPage exten-
sions, shopping cart software, credit card validation, and other tools.

• Statistics: Often hosting companies can help you gather statistics
regarding your Web traffic, such as the number of users, time of
access, access by Web page, and so on.

� Backups: Backups are copies of your Web page files and your database
that are stored in case your files or database are lost or damaged. You
want to be sure that the company makes regular, frequent backup copies
of your application. You also want to know how long it would take for
backups to be put in place to restore your Web site to working order
after a problem.

23Chapter 2: Setting Up the Environment

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 23

It’s difficult to research Web hosting companies from a standing start — a
search at Google for Web hosting results in over 4 million hits. The best way
to research Web hosting companies is to ask for recommendations from
people who have experience with those companies. People who have used a
hosting company can warn you that the service is slow or that the computers
are frequently down. After you have gathered a few names of Web hosting
companies from satisfied customers, you can narrow the list to the one that
is best suited and most cost-effective for your purposes.

24 Part I: Say Hello to the PHP Scripting Language

The domain name game
Every Web site needs a unique address on the
Web. The unique address used by computers to
locate a Web site is the IP address. It is a series
of four numbers between 0 and 255, separated
by dots — for example, 172.17.204.2 or
192.163.2.33.

Because IP addresses are made up of num-
bers and dots, they’re not easy to remember.
Fortunately, most IP addresses have associated
names that are much easier to remember. Some
examples include amazon.com, www.irs.
gov, or mycompany.com. A name that is an
address for a Web site is called a domain name.
A domain can be one computer or many con-
nected computers. When a domain refers to sev-
eral computers, each computer in the domain
may have its own name. A name that includes
an individual computer name, such as thor.
mycompany.com, names a subdomain of
mycompany.com.

The domain or subdomain name is a required
component of the URL — the address that a
Web surfer types into the browser window to
identify the Web site he wants to visit. The URL
can contain more elements than just the domain
name, but often, the domain name (amazon.
com, for example) is all that is required. Or the
subdomain name (janet.valade.com, for
example) may be sufficient. When only the
domain name is used in the URL, the Web server
sends the file with the default filename, such
as index.htm or index.html. Or you can

include a filename in the URL, in addition to the
domain name, such as janet.valade.com/
links.html.

Each domain name must be unique to serve as
an address. Consequently, a system for register-
ing domain names ensures that no two locations
use the same domain name. Anyone can regis-
ter any domain name, as long as the name is not
already taken. You can register a domain name
on the Web. First, you test your potential domain
name to find out whether it is available. If it’s
available, you register it in your name or a com-
pany name and pay the fee. The name is then
yours to use, and no one else can use it. The
standard fee for domain name registration is
$35.00 per year. You should never pay more, but
bargains are often available.

Many Web sites, including those of many Web
hosting companies, enable you to register a
domain name. A search at Google (google.
com) for “domain name register” results in over
2 million hits. Shop around to be sure you find
the lowest price. Also, many Web sites allow
you to enter a domain name and see who it is
registered to. These Web sites do a domain
name database search by using a tool called
whois. A search at Google for “domain name
whois” results in over half a million hits. A
couple places where you can do a whois
search are Allwhois (Allwhois.com) and
Better-Whois (betterwhois.com).

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 24

You can ask for names from colleagues and friends. Also, people often ask for
recommendations for hosting companies on the PHP discussion lists. Many
people on the lists have experience using PHP with Web hosting companies
and are glad to provide recommendations or warnings. Because people often
ask this question, you may get all the information you need from the list
archives, which you can search at marc.theaimsgroup.com/.

Setting up your own Web environment
If you’re starting a Web site from scratch, you need to understand the Web
site software fairly well. You have to make several decisions regarding hard-
ware and software. You also need to install a Web server and PHP, as well as
maintain, administer, and update the system yourself. Taking this route
requires more work and more knowledge. The advantage is that you have
total control over the Web development environment.

The following are the general steps for setting up the Web environment
needed for the activities described in this book:

1. Set up the computer.

2. Install the Web server.

3. Install PHP.

The first step is outside the scope of this book. You probably have a com-
puter but may be planning to install a new one for your Web site. For more
information on buying and setting up computers, pick up a copy of Buying a
Computer For Dummies or PCs For Dummies, 9th Edition, both by Dan Gookin
and published by Wiley Publishing, Inc. Web servers and PHP exist for almost
all hardware and operating systems, including many flavors of Unix and Linux,
Windows, and Mac OS X.

Installing the Web server
When your computer is set up and ready, you need to decide which Web server
to install. Apache is generally your best bet because it offers the following
advantages:

� It’s free: What else do I need to say?

� It runs on a wide variety of operating systems: Apache runs on
Windows, Linux, Mac OS, FreeBSD, and most varieties of Unix.

� It’s popular: Approximately 60 percent of Web sites on the Internet use
Apache, according to surveys at www.netcraft.com/survey and at www.
securityspace.com/s_survey/data/. This wouldn’t be true if it didn’t
work well. Also, this means that a large group of users can provide help.

� It’s reliable: After Apache is up and running, it should run as long as your
computer runs. Emergency problems with Apache are extremely rare.

25Chapter 2: Setting Up the Environment

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 25

� It’s customizable: The open source license allows programmers to modify
the Apache software, adding or modifying modules as needed to fit their
own environments.

� It’s secure: Free software is available that runs with Apache to make it
into a secure SSL server. SSL is used to provide extra security for Web
sites that need to protect important information. It means that the infor-
mation passed between the Web server and the browser is encrypted so
that no one can intercept and read it. Security is an essential issue if
you’re using the site for e-commerce.

Apache is automatically installed when you install most Linux distributions.
Apache is also usually preinstalled on Mac. For most Unix flavors, you want
to download the Apache source and compile it yourself, although some
binaries (programs that are already compiled for specific operating systems)
are available. For Windows, you need to install a binary file, preferably on
Windows NT/2000/XP, although Apache also runs on Windows 98/Me.

As of this writing, Apache 1.3.27 is the current stable release. Apache 2 is also a
stable release, but it is still considered experimental to use PHP and Apache 2.
Check the PHP Web site (www.php.net) to find out the current status of PHP
and Apache 2 together. Apache information, software downloads, documenta-
tion, and installation instructions for various operating systems are available
at the Apache Web site (httpd.apache.org). The Web site provides extensive
documentation.

Other Web servers are available. Microsoft offers Internet Information Server
(IIS), which is the second most-popular Web server on the Internet with
approximately 27 percent of Web sites. Sun offers iPlanet (formerly Netscape
Enterprise Server), which serves less than 5 percent of the Internet. Other
Web servers are available, but they have even smaller user bases.

Installing PHP
Many computer systems come with PHP already installed. Most Linux distrib-
utions include PHP. Some newer versions of Mac OS X also come with PHP
installed. Before you install PHP, check whether it’s already installed by
searching your disk for any PHP files in the following manner:

� Linux/Unix/Mac: At the command line, type the following:

find / -name “php*”

� Windows: Use the Find feature (choose Start➪Find) to search for php*.

If you don’t find any PHP files, PHP is not installed. To install PHP, you need
access to the Web server for your site. For instance, when you install PHP
with Apache, you need to edit the Apache configuration file. All the informa-
tion and software you need is provided on the PHP Web site (www.php.net).
Detailed installation instructions are provided in Appendix A.

26 Part I: Say Hello to the PHP Scripting Language

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 26

If you do find PHP files, PHP is already installed, and you may not need to rein-
stall it. Use the following considerations to decide whether to reinstall PHP:

� Installation options: PHP may not have been installed with the options
you require. For instance, PHP may not have been installed with support
for the database that you’re planning to use. Support for ODBC is always
included, but support for MySQL, Oracle, MS SQL, and other databases
must be specified when PHP is installed. Support is also always included
for SQLite, XML, COM, FTP, and others, but other support is not auto-
matically included. If you’re planning to use another database or other
software or features, you may need to reinstall PHP with added support.

You can check which options were used when PHP was installed. Follow
the directions for testing PHP in the following section. If the test script
runs correctly, the table displayed by the phpinfo() statement shows
all the support that is included in your PHP installation. Check whether
the support you need is included. If it’s not, you need to reinstall. Detailed
instructions for installing PHP are provided in Appendix A.

� Version: The installed version may not be the most recent. You need to
check the version of PHP that’s installed. You can check the version with
the following command:

php-cgi –v

For versions prior to PHP 5, the command to check the version is:

php –v

You may need to be in the same directory with the file php-cgi.exe (or
php.exe)to execute the preceding command. You see output similar to
the following that shows the version of PHP that is installed:

PHP 5.0.0 (cgi-fcgi), Copyright (c) 1997-2003 The PHP
Group

Zend Engine v2.0.0, Copyright (c) 1998-2003 Zend
Technologies

If the version is not the most recent, you should reinstall it. To see what
the latest stable version is, check www.php.net/downloads.php.

Testing PHP
After you have the information you need to use PHP on your Web site at the
Web hosting company or you have PHP installed on your own computer, you
need to test to make sure PHP is working correctly. To test whether PHP is
installed and working, follow these steps:

1. Locate the directory in which your PHP scripts need to be located.

27Chapter 2: Setting Up the Environment

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 27

This directory and the subdirectories under it are called your Web space.
The default Web space for Apache is htdocs in the directory where
Apache is installed. For IIS, it is Inetpub\wwwroot. In Linux, it may be
/var/www/html. Different directories may be configured for your Web
space when the Web server is installed, so if someone other than you
installed the Web server, you may need to ask what the directory is. If
you’re using a Web hosting company, it will supply the directory name.

2. Create a file somewhere in your Web space with the name test.php
that contains the following code:

<html>
<head>
<title>PHP Test</title>
</head>
<body>
<p>This is an HTML line
<?php

echo “<p>This is a PHP line</p>”;
phpinfo();

?>
</body>
</html>

3. Point your browser at the file test.php created in Step 2 by typing
the URL to the file.

The URL will be in the format http://www.mycompany.com/test.php.
If your Web server, PHP, and the test.php file are on the same computer
you are testing from, you can type localhost/test.php.

In order for the file to be processed by PHP, you need to access the file
through the Web server, not by choosing File➪Open in your Web browser.

If your Web server, PHP, and test.php file are on the same machine you
are testing from, you can type localhost/test.php.

You should see the following in the Web browser:

This is an HTML line
This is a PHP line

Below these lines, you should see a large table, which shows all the infor-
mation associated with PHP on your system. It shows PHP information,
path names and filenames, variable values, what software is supported,
and the status of various options. For instance, if you scroll down
the table, you see a block of options for FTP that says: FTP support
enabled.

The table is produced by the line phpinfo() in the test script. Any time
you have a question about the settings for PHP, you can use the state-
ment phpinfo() to display this table and check settings. The phpinfo()
statement is used often throughout this book.

28 Part I: Say Hello to the PHP Scripting Language

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 28

If there are problems with the PHP installation, you might get one of the fol-
lowing results from the test file:

� You see only This is an HTML line. The PHP lines and the table of
information are not displayed.

� You see a blank page.

� The browser displays a download window rather than the Web page.

If you get a problem result from the test file and you are not the system
administrator, you need to talk to the person who installs and maintains the
software, such as an IT staff member at work or a technical support person at
your Web hosting company. It’s their responsibility to diagnose your problem.

If you get a problem result from the test file and you installed the software
yourself, first check to see that PHP is installed. At the command line, change
to the directory where PHP is installed and type the following:

php-cgi –v

or

php -v

If PHP returns information about its version, PHP is installed. Be sure that
you accessed the test file as instructed in Step 3 in the preceding list. Notice
the warning for that step.

Be sure that the file test is in a directory in your Web space, as described in
Step 1 of the preceding steps. In Apache, you can check the httpd.conf file
for a line similar to the following line:

DocumentRoot “C:/Program Files/Apache Group/Apache/htdocs”

This line tells Apache where to look for Web page files.

Double-check the script to make sure you typed it correctly. The script is also
available for download from my Web site: janet.valade.com.

If you are accessing the test file correctly and it seems to be entered correctly,
the problem is probably in your configuration. Reread the instructions for
configuring PHP at the end of Appendix A and make sure that you followed all
the instructions. In particular, check the following:

� The Web server is configured to know which file extensions to check for
PHP code. In Apache, check that the following line is included in the
httpd.conf file:

AddType application/x-httpd-php .php

29Chapter 2: Setting Up the Environment

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 29

This line tells Apache to look for PHP code in files with the extension
.php. For IIS, access the console, as described in Appendix A, and check
the extension tab to be sure the correct extension is set.

� Check to be sure the other lines were correctly added to the httpd file
for Apache, as described in the configuration sections for the appropriate
operating system in Appendix A. Check for any possible misspellings.
Also check that the lines were added in the correct location.

� If you’re using IIS, check for the following line in php.ini:

cgi.force_redirect = 0

If your php.ini doesn’t contain this line, add it. If you have the line with
a semicolon at its beginning, remove the semicolon. If you find a line
with a setting of 1 rather than 0 (zero), change it to 0.

If you check everything carefully and are still having problems, it’s possible
that you have something unusual in your computer setup or your Web server
that is causing the problem. Read all the online documentation related to
installation at the PHP Web site. Search the Web site for information on instal-
lation problems. You can find a wealth of information there.

If you still can’t find the answer, take your question to the PHP discussion
lists. First, search the archives at marc.theaimsgroup.com/. It’s possible
that someone has previously asked the same question and you can find the
answer quickly in the archives. If not, post your question to the discussion
list. Include the following information in your question:

� Indicate the name and version of the operating system you’re using.

� Identify the PHP version you’re trying to install.

� Copy the content of the test file into your message.

� Describe the exact output that you see in your Web page.

People on the list are very knowledgeable and will help you solve your
problem.

Setting Up PHP for General-
Purpose Scripting

PHP runs by itself when used as a general-purpose programming language.
You don’t need to have a Web server installed if you’re not using PHP with a
Web site. The command line version of PHP — PHP CLI — is a separate pro-
gram, different than the PHP program you use for Web sites. It needs to be
installed separately.

30 Part I: Say Hello to the PHP Scripting Language

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 30

Even if your machine came with PHP installed, PHP CLI may not be there. You
can check to see if PHP is on your computer and which version is there. By
default, you should find the file in the directory where PHP is installed. The
PHP CLI file is named php.exe and the PHP CGI file is named php-cgi.exe.
(Prior to PHP 5, the files were both named php.exe, but stored in different
subdirectories. PHP CLI was stored in a subdirectory named /cli.)Or PHP
CLI may have been installed in another location. You can search your disk for
all PHP files as follows:

� Linux/Unix/Mac: Type the following at the command line:

find / -name “php*”

� Windows: Use the Find feature (choose Start➪Find) to search for php*.

If you find any PHP files that you think might be PHP CLI, you can check
by changing to the directory where the PHP program file is and typing the
following:

php –v

The output will include either cgi or cli, similar to the following:

PHP 5.0.0 (cli) (built: Jun 15, 2003 23:07:34)

Notice that the output includes (cli). If it’s not the CLI version, it shows
(cgi). The previous command also serves to test whether PHP CLI is work-
ing. If it responds with the version number rather than an error message, it’s
working.

If you don’t find PHP CLI, you need to install it before you can use PHP for
tasks that are unrelated to the Web. Appendix A provides detailed PHP instal-
lation instructions, including instructions for PHP CLI.

If you’re going to use PHP for both Web sites and general-purpose program-
ming, you need to install two different PHP programs, the version for the Web
and PHP CLI. Both need to be the same version of PHP. That is, if you install
PHP 5.0.0 for the Web, be sure that you’re using PHP CLI 5.0.0 as well. In
Windows, PHP requires a file called php5ts.dll, which is in your main PHP
directory. You need to use the same version of PHP so that both PHP pro-
grams use the same version of php5ts.dll. (See Appendix A for details.)

31Chapter 2: Setting Up the Environment

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 31

Configuring PHP
PHP is very flexible. Configuration settings determine some of PHP’s behavior,
such as whether it displays error messages, A file called php.ini stores the
configuration settings. You can change the setting by editing php.ini.

When PHP is installed, php.ini is created, as described in Appendix A. If
you install PHP yourself, remember where you put php.ini. You may need
to change it. If you’re using PHP, but someone else is the PHP administrator
(for instance, if you’re using a Web hosting company), you are unlikely to
have access to php.ini. If you need to make a change to the PHP settings,
you will have to ask the administrator. For some settings, you can add state-
ments to your script to change the settings temporarily, for that script only.
Specific statements that change settings temporarily are discussed in context
throughout this book.

Using Tools to Build PHP Scripts
PHP scripts are just text files. You can use your favorite tool for writing text
files to write PHP scripts. Many scripts have been written with vi, Notepad, or
WordPad. However, you can find tools that make script writing much easier.

It’s worthwhile to check out programming editors and Integrated Development
Environments (IDEs) before creating your PHP scripts. These tools offer fea-
tures that can save you enormous amounts of time during development. So
download some demos, try out the software, and select the one that suits
you best. You can take a vacation on the time you save later.

Programming editors
Programming editors offer many features specifically for writing programs.
The following features are offered by most programming editors:

� Color highlighting: Highlight parts of the script — such as HTML tags,
text strings, keywords, and comments — in different colors so they’re
easy to identify.

� Indentation: Automatically indent inside parentheses and curly braces
to make scripts easier to read.

� Line numbers: Add temporary line numbers. This is important because
PHP error messages specify the line where the error was encountered. It
would be cumbersome to have to count 872 lines from the top of the file
to the line that PHP says is a problem.

32 Part I: Say Hello to the PHP Scripting Language

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 32

� Multiple files: Can have more than one file open at once.

� Easy code inserting: Buttons for inserting code, such as HTML tags or
PHP statements or functions.

� Code library: Save snippets of your own code that can be inserted by
clicking a button.

Many programming editors are available on the Internet for free or for a low
price. Some of the more popular editors include the following:

� Arachnophilia: (www.arachnoid.com/arachnophilia/) This multi-
platform editor is written in Java. It’s CareWare, which means it doesn’t
cost any money.

� BBEdit: (www.barebones.com/products/bbedit/index.shtml) This
editor is designed for use on a Mac. BBEdit sells for $179.00. Development
and support have been discontinued for BBEdit Lite, which is free, but it
can still be found and legally used. TextWrangler is offered for $49 as a
replacement for BBEdit Lite.

� EditPlus: (www.editplus.com) This editor is designed for use on a
Windows machine. EditPlus is shareware, and the license is $30.

� Emacs: (www.gnu.org/software/emacs/emacs.html) Emacs works
with Windows, Linux, and Unix, and it’s free.

� HomeSite: (www.macromedia.com/software/homesite/) HomeSite is
designed for use with Windows and will run you $99.00.

� HTML-Kit: (www.chami.com/html-kit/) This is another Windows
editor that you can pick up for free.

� vim and gvim: (www.vim.org/) These free, enhanced versions of vi can
be used with Windows, Linux, Unix, and Mac OS. The gvim editor has a
GUI that makes Windows users feel more at home.

Integrated Development
Environment (IDE)
An Integrated Development Environment (IDE) is an entire workspace for
developing applications. It includes a programming editor as well as other
features. Some features included by most IDEs are the following:

� Debugging: Has built-in debugging features.

� Previewing: Displays the Web page output by the script.

� Testing: Has built-in testing features for your scripts.

33Chapter 2: Setting Up the Environment

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 33

� FTP: Has built-in ability to connect and upload/download via FTP. Keeps
track of which files belong in which Web site and keeps the Web site up-
to-date.

� Project management: Organizes scripts into projects; manages the files
in the project; includes file checkout and check-in features.

� Backups: Makes automatic backups of your Web site at periodic intervals.

IDEs are more difficult to learn than programming editors. Some are fairly
expensive, but their wealth of features can be worth it. IDEs are particularly
useful when several people will be writing scripts for the same application.
An IDE can make project coordination much simpler and make the code more
compatible.

The following are popular IDEs:

� Dreamweaver MX: (www.macromedia.com/dreamweaver) This IDE is
available for the Windows and Mac platforms. It provides visual layout
tools so you can create a Web page by dragging elements around and
clicking buttons to insert elements. Dreamweaver can write the HTML
code for you. It includes the HomeSite editor so you can write your own
code. It also supports PHP. Dreamweaver will set you back $399.00.

� Komodo: (www.activestate.com/Products/Komodo/) Komodo is
offered for the Linux and Windows platforms. It’s an IDE for open source
languages, including Perl and Python, as well as PHP. It’s offered for
$29.95 for personal or educational use, and $295.00 for commercial use.

� Maguma: (www.maguma.com) Maguma is available for Windows only. It’s
an IDE for Apache, PHP, and MySQL on Windows and comes in two ver-
sions at different costs: Maguma Studio Desktop and Maguma Studio
Enterprise, which offers features for huge sites with multiple servers.
Maguma Studio for PHP is a free version with support for PHP only.

� PHPEdit: (www.phpedit.net/products/PHPEdit/) This free IDE is
available only for Windows.

� Zend Studio: (www.zend.com/store/products/zend-studio.php)
Zend Studio is offered for the Linux and Windows platforms. This IDE
was developed by the people who developed the Zend engine, which is
the engine under the hood of PHP. These people know PHP extremely
well. Zend Studio will run you $195.00.

A Web page describing editors and IDEs useful with PHP is available at
phpeditors.linuxbackup.co.uk. Currently 111 editors are listed.

34 Part I: Say Hello to the PHP Scripting Language

05 541668 Ch02.qxd 3/25/04 2:49 PM Page 34

Chapter 3

Creating Your First PHP Script
In This Chapter
� Writing PHP statements

� Adding PHP sections to HTML files

� Writing PHP output statements

� Documenting your scripts

A PHP statement is an instruction that tells PHP to perform an action. A
PHP script is a series of PHP statements. Theoretically, a script can con-

tain as few as one statement, but it’s unlikely that any practical script would
consist of a single statement. In most cases, you write scripts that contain
several statements in a row. PHP executes the statements one at a time until
it reaches the end of the script.

As discussed in Chapter 1, PHP can do many things, and scripts are the
method you use to tell PHP what you want it to do. You can tell it to display
some text on a Web page or to store data that a user entered into a form on
your Web page. PHP can also do things that are unrelated to Web sites, such
as back up all the files in a directory on your hard disk. You can write simple
scripts that just display hello in a Web browser. Or you can write complicated
scripts that display different things in the Web browser for different people,
or request passwords from Web site visitors and refuse access to visitors who
don’t enter valid passwords. Applications often consist of two or more scripts
that work together to accomplish the job required. A large, complicated appli-
cation, such as an e-commerce application, can consist of many scripts.

In this chapter, I explain how to write your first script. I also discuss output
statements, which are the most common PHP statements. Finally, I illustrate
the importance of documenting your script.

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 35

Writing PHP Statements
A PHP statement tells PHP to perform an action. One of the most common
PHP statements is the echo statement. Its purpose is to display output. For
instance, take a look at the following echo statement:

echo “Hi”;

An echo statement says to output everything that is between the double
quotes (“). So, this statement tells PHP to output the word Hi.

The echo statement is a simple statement. PHP simple statements end with a
semicolon (;). PHP reads a simple statement until it encounters a semicolon
(or the PHP closing tag, discussed later in this chapter). PHP ignores white
space. It doesn’t care how many lines it reads. It doesn’t consider the content
or the syntax of the statement. It just reads until it finds a semicolon and then
interprets the entire content as a single statement.

Leaving out the semicolon is a common error, resulting in an error message
that looks something like this:

Parse error: expecting `’,’’ or `’;’’ in file.php on line 6

Notice that the error message gives you the line number where it encountered
problems. Usually, the error is that the semicolon was left off in the line before
the indicated line. In this case, the semicolon is probably missing on line 5.

You may prefer to use an editor that displays line numbers. Debugging your
PHP scripts is much easier this way. Otherwise, you need to count the lines
from the top of the script to find the line containing the error. If your script
contains six lines, counting them is no big deal. If your script contains 553
lines, however, this is less than fun. Some editors allow you to indicate a line
number, and the editor takes you directly there.

As far as PHP is concerned, an entire script full of simple statements can be
written in one long line, as long as the statements are separated by semicolons.
However, a human would have a tough time reading such a script. Therefore,
you should put simple statements on separate lines.

Sometimes several statements are combined into a block, which is enclosed
by curly braces ({}). Statements in a block execute together. A common use
of a block is in a conditional statement where statements are executed only if
certain conditions are met. For instance, you may want to include the follow-
ing instructions:

36 Part I: Say Hello to the PHP Scripting Language

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 36

if (time = midnight)
{
put on pajamas;
brush teeth;
go to bed;

}

The statements are enclosed in curly braces to ensure they execute as a block.
If it’s midnight, then all three actions within the block are performed. If the
time is not midnight, none of the statements execute (no pajamas, no clean
teeth; no going to bed).

PHP statements that use blocks, such as if statements, are called complex
statements. PHP reads the entire complex statement, not stopping at the first
semicolon it encounters. PHP knows to expect one or more blocks and looks
for the ending curly brace of the last block in complex statements. Notice that
there is a semicolon before the ending brace. This semicolon is required, but
no semicolon is required after the ending curly brace.

Notice that the statements inside the block are indented. Indenting is not
necessary for PHP. Indenting is strictly for readability. You should indent the
statements in a block so that people reading the script can tell more easily
where a block begins and ends. One of the more common mistakes when
writing scripts is to leave out a closing curly brace, particularly when writing
blocks inside blocks inside blocks. Tracking down a missing brace is much
easier when the blocks are indented.

Building Scripts
To build a script, you add PHP statements one after another to a file that you
name with a .php extension. Actually, if you are wise, you write the script
on paper first, unless the script is very simple or you are quite experienced.
Planning makes programming much less prone to errors.

If you’re writing a PHP script for your Web site, you insert the PHP statements
into the file that contains the HTML for your Web page. If you’re writing a script
that will run independent of the Web, you type the PHP statements into a file
and then you run the script by calling PHP directly. The following sections
describe how to do this.

37Chapter 3: Creating Your First PHP Script

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 37

Adding PHP statements to HTML pages
If you’re using PHP for your Web site, you do so by adding PHP code to your
HTML Web pages. HTML files that have PHP code in them should be named
with a .php extension so that the Web server knows to check the file for PHP
code. (Actually, the Web server administrator may have specified other
extensions, such as .php4 or .phtml, to indicate files that can contain PHP
code, but .php is the most common extension. In this book, I assume that the
appropriate extension is .php.)

You add PHP code to your Web page by using tags, similar, but not identical,
to other tags in the HTML file. The PHP code section is enclosed in PHP tags
with the following form:

<?php
. . .
PHP statements
. . .
?>

38 Part I: Say Hello to the PHP Scripting Language

How the server processes PHP files
When a browser is pointed to a regular HTML file
(a file with an .html or .htm extension), the
Web server sends the file, as is, to the browser.
The browser processes the file and displays the
Web page that is described by the HTML tags in
the file. When a browser is pointed to a PHP file
(a file with a .php extension), the Web server
looks for PHP sections in the file and processes
them, rather than just sending them as is to
the browser. The steps the Web server uses to
process a PHP file are as follows:

1. The Web server starts scanning the file in
HTML mode.

It assumes that the statements are HTML
and sends them to the browser without any
processing.

2. The Web server continues in HTML mode
until it encounters a PHP opening tag
(<?php).

3. When the Web server encounters a PHP
opening tag, it switches into PHP mode.

This is sometimes called escaping from
HTML. The Web server assumes all subse-
quent statements are PHP statements and
executes the PHP statements. If there is
output, the server sends the output to the
browser.

4. The Web server continues in PHP mode
until it encounters a PHP closing tag (?>).

5. When the Web server encounters a PHP
closing tag, it returns to HTML mode.

The scanning is then resumed, and the
cycle continues from Step 1.

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 38

Sometimes you can use a shorter version of the PHP tags. You can try using
<? and ?>, without including the php. If short tags are enabled, you can save
a little typing. You enable or disable short tags in the php.ini file.

Using short tags is sometimes not a good idea. If you move your site to a
server where short tags are not enabled, all your PHP tags will quit working.
So if you think you might ever move your Web site, using the regular tags is
safer.

All statements between the two PHP tags are passed to PHP by the Web server
and are processed by the PHP preprocessor. After processing, the PHP section
is discarded. If the PHP statements produce output, the output is sent back
to the Web server, which then sends the HTML and the output from the PHP
sections to the browser. The browser does not see the PHP section, only its
output (if there is any output).

For example, you can add the following PHP section to your HTML file. Don’t
forget to give the HTML file a .php extension:

<?php
echo “This line brought to you by PHP”;

?>

When the Web server gets the file and sees the .php extension, it checks for
PHP tags. When it finds the PHP tag, it executes the PHP echo statement
instead of sending it to the browser. Only the output from the PHP section,
which is This line brought to you by PHP, is sent on to the browser. In
your browser window, you see the output at the location in the page where
you added the PHP section. Even if you view the source in your browser, you
only see the output, not the PHP code.

Don’t look at the PHP file directly with your browser. That is, don’t choose
File➪Open➪Browse in your browser to navigate to the file and click it. You
must point at the file using its URL, as discussed in Chapter 2. If you see the
PHP code (and not the output) displayed in the browser window, you may
not have pointed to the file by using its URL.

You can add several PHP sections to a Web page. For instance, you could
have the following code in your file:

HTML statements
<?php

echo “This line brought to you by PHP”;
?>
HTML statements
<?php

echo “This line also brought to you by PHP”;
?>

39Chapter 3: Creating Your First PHP Script

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 39

Both lines echoed by PHP appear in your Web page at the locations where
you inserted the PHP sections.

Using PHP independent of the Web
To use PHP as a general scripting language, independent of the Web, you use
the version of PHP called CLI, which stands for Command Line Interface. PHP
CLI is a different version of PHP than the version used with a Web server
(usually called PHP CGI). PHP CLI is created separately when PHP is installed.
Instructions for installing the CLI version are provided in Appendix A.

If you want to use the CLI version, you’re probably running PHP on Linux or
Unix. Windows programmers are much less likely to need to write general-
purpose PHP scripts, but they can if they need to. In this section, I provide the
information for the Linux/Unix version, but most of the information is also
true when working on Windows. (In some places, I point out the differences.)

The following is a PHP script:

<?php
echo “This line brought to you by PHP”;

?>

40 Part I: Say Hello to the PHP Scripting Language

Running PHP scripts on Linux/Unix
If you’re used to running shell scripts or Perl
scripts on Linux/Unix, you can run PHP scripts
in the same way. You can add a line to the top of
your script that directs the script to run with
PHP CLI, as follows, so that you can just run the
script directly without manually calling PHP:

#! /usr/bin/php
<?php

echo “This line brought to
you by PHP”;

?>

The first line tells the script to execute by using
the program found at /usr/bin/php. This line
does not work for Windows, but it doesn’t do
any damage when run on Windows. You can
include the first line when you write the script
so that it is more convenient on Unix/Linux and

not worry about having a broken script if you
move the script to Windows.

You execute the program by typing its name. You
may need to be in the same directory where the
program is located, unless it is in a directory on
your system path, or you can type the entire
path name to the PHP script. For instance, if the
preceding script is called test.php, you can
execute it by typing the following:

test.php

Or you may need to type the entire path:

/mystuff/test.php

You need to give the file execute permission, as
you do for any other script that you want to exe-
cute directly.

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 40

If you have a file named testcli.php containing this PHP code, you can run
it from the command line by having the file in the same directory where PHP
is installed and by typing the following:

php testcli.php

Or you can type the entire path name to PHP, as in the following example:

/usr/local/php/cli/php testcli.php

For Windows, use the command prompt. You enter command prompt mode
by choosing the appropriate entry on your menu. Usually, you choose Start➪
Programs➪Accessories➪Command Prompt.

The CLI version of PHP differs from the CGI version in the following ways:

� Outputting HTTP headers: Because the CGI version sends its output to
the Web server and then to the browser, it outputs the HTTP headers
(statements the Web server and browser use to communicate with each
other). Thus, the following is the output when the CGI version runs the
script in the previous example:

Content-type: text/html
X-Powered-By: PHP/5.0

This line brought to you by PHP

You don’t see the two headers on your Web page, but PHP for the Web
sends these headers because the Web server needs them. The CLI ver-
sion, on the other hand, does not automatically send the HTTP headers
because it is not sending its output to a Web server. The CLI output is
limited to the following:

This line brought to you by PHP

� Formatting error messages: The CGI version formats error messages
with HTML tags, because the errors are expected to be received by a
browser. The CLI version does not use HTML formatting for error mes-
sages; it outputs error messages in plain text.

� Providing argc and argv by default: The argc and argv variables allow
you to supply data to the script from the command line (similar to argc
and argv in C and other languages). You aren’t likely to want to pass
data to the CGI version, but you are likely to want to pass data to the CLI
version. Therefore, argv and argc are available by default in the CLI ver-
sion and not in the CGI version. (The argv and argc built-in variables
are explained in Chapter 5.)

41Chapter 3: Creating Your First PHP Script

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 41

When you run PHP CLI from the command line, you can use several options
that affect the way PHP behaves. For instance, -v is an option that displays
the version of PHP being accessed. To use this option, you would type the
following:

php –v

Table 3-1 shows the most useful PHP command-line options.

Table 3-1 PHP Command-Line Options
Option What It Does

-c Defines the path to the php.ini file to be used. This can be a differ-
ent php.ini file than the one used by the CGI version. For example,
-c /usr/local/php/cli/php.ini. (See Appendix A for more
on php.ini.)

-f Identifies the script to be run. For example, php -f /myfiles/
testcgi.php.

-h Displays a help file.

-i Displays PHP information in text output. Gives the same information as
phpinfo() (described in Chapter 2).

-l Checks the script file for errors, but doesn’t actually execute the code.

-m Lists the modules that are compiled into PHP. (See Chapter 14 for more
on modules.)

-r Runs PHP code entered at the command line. For example, php -r
‘print(‘Hi’);’.

-v Displays the version number of PHP.

Writing Your First Script
It’s sort of a tradition that the first program you write in any language is the
Hello World program. You may have written a Hello World program in
HTML when you first learned it. If you did, it probably looked similar to the
following HTML file:

42 Part I: Say Hello to the PHP Scripting Language

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 42

<html>
<head><title>Hello World HTML Program</title></head>
<body>
<p>Hello World!</p>
</body>
</html>

If you point your browser at this HTML program, you see a Web page that dis-
plays the following output in the browser window:

Hello World!

Your first PHP script is a script that does exactly the same thing. The follow-
ing code is a PHP script that includes both HTML and PHP code and displays
Hello World! in a browser window:

<html>
<head><title>Hello World Script</title></head>
<body>
<?php
echo “<p>Hello World!</p>”

?>
</body>
</html>

If you point your browser at this script, it displays the same Web page as the
HTML script.

Don’t look at the file directly with your browser. That is, don’t choose File➪
Open➪Browse from your browser menu to navigate to the file and click it.
You must point at the file by typing its URL, as discussed in Chapter 2. If you
see the PHP code displayed in the browser window, instead of the output you
expect, you may not have pointed to the file by using its URL.

In this PHP script, the PHP section consists of the following code:

<?php
echo _<p>Hello World!</p>_

?>

The PHP tags enclose only one statement — an echo statement — that simply
outputs the text between the double quotes.

When the PHP section is processed, it is replaced with the output. In this
case, the output is as follows:

<p>Hello World!</p>

43Chapter 3: Creating Your First PHP Script

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 43

If you replace the PHP section in the HTML version of Hello World with the
preceding output, the script now looks exactly like the HTML program. If you
point your browser at either program, you see the same Web page. If you look
at the source code that the browser sees (in the browser, choose View➪
Source), you see the same source code listing for both programs.

Discovering More about
Output Statements

In your Hello World script, created in the preceding section, you used an
echo statement, which is a good example of an output statement. Output
statements are used in almost every PHP script. It’s rare that you would write
a script that would do something and not output anything. True, a script can
do things that are invisible, like checking your entire hard disk to see if a cer-
tain file exists. You would not see it checking. However, the search is pretty
pointless if the script doesn’t tell you what it found. You’d want to know where
it looked, when it finished, and whether or not it found the file. Because of
this, almost all scripts use output statements.

The general format of the echo statement is as follows:

echo outputitem1,outputitem2,outputitem3, . . .

Keep the following points in mind when working with echo statements:

� An outputitem is a number or a string of characters. Numbers are things
like 1 or 250. A string is a string of characters, which can include num-
bers. See Chapter 5 for a discussion of data types.

� Enclose a string of characters with single or double quotes. (Chapter 5
explains when to use which type of quotes.)

� List as many outputitems as you need.

� Separate each outputitem with a comma. No space is added between
outputitems.

� If you want a space in your output, add it as a character in a character
string.

44 Part I: Say Hello to the PHP Scripting Language

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 44

Table 3-2 shows some echo statements and their output.

Table 3-2 echo Statements
Echo Statement Output

echo 123; 123

echo “Hello World!”; Hello World!

echo “Hello”,”World!”; HelloWorld!

echo “Hello”,” “,”World!”; Hello World!

echo Hello World!; Not valid because the string is not enclosed
in quotes; results in an error message

echo ‘Hello World!’; Hello World!

Processing PHP output statements
The Hello World script, like most PHP scripts for the Web, is written mainly
to output HTML code that the browser then processes and displays in your
Web page. When writing PHP code to deliver output to a Web browser, you
need to keep in mind that there are two stages, as follows:

1. PHP processes the PHP statement and sends the output to the Web
server, which sends the output to the browser.

PHP does not know anything about HTML code and just sends the output
according to the instructions you write in the PHP output statement.

2. The Web browser receives the output from PHP, interprets it as HTML
statements, and displays a Web page accordingly.

The Web browser only understands HTML, not PHP code, so make sure
your PHP output is understandable to your browser.

Consider the echo statement from the Hello World script:

echo _<p>Hello World!</p>_

45Chapter 3: Creating Your First PHP Script

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 45

The echo statement says to output everything that is between the double
quotes (“). So, for this statement, the two stages are as follows:

1. When PHP processes the echo statement, it outputs the following:

<p>Hello World!</p>

PHP does not understand HTML, so it does not know that <p> is an HTML
tag and does not see <p> as any sort of instruction. It just outputs the
statement as text.

2. The Web browser receives the output, recognizes that <p> is an HTML
tag, and displays the output on the Web page according to the HTML
tags. You see the following on the Web page:

Hello World!

The HTML tags <p> and </p> indicate the beginning and end of a para-
graph and are interpreted by the Web browser, but not displayed on the
screen. To see what PHP sent to the browser, view the source by using
the selections on your Web browser menu. For instance, in Internet
Explorer 5.5, choose View➪Source. For this Web page, the source would
show the following:

<p>Hello World!</p>

Using special characters
in output statements
The echo statement interprets some special characters that affect the output.
One common special-character combination is \n, which starts a new line in
the output of an echo statement. For example, write the following line:

echo _<p>Hello\n World!</p>_

The \n tells PHP that the output should start a new line. However, this does
not result in a new line on the Web page. To get a new line in the Web page,
you need to send the HTML code for a new line, which is
. Therefore, to
see the output on two lines in the Web page, you use the following statement:

echo _<p>Hello
 World!</p>_

46 Part I: Say Hello to the PHP Scripting Language

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 46

A comparison of echo statements in Table 3-3 shows the differences in output
at Stage 1 (the PHP output stage) and Stage 2 (the Web browser display stage).
The first column contains the echo statement used in a PHP script. The second
column shows the output sent by PHP to the browser. The third column is
the output displayed on the Web page after the PHP output is interpreted
by the browser as HTML code.

Table 3-3 Stages of Web Page Delivery
Echo Statement PHP Output Web Page Display

echo “Hello World!”; Hello World! Hello World!

echo “Hello”; HelloWorld! HelloWorld!
echo “World!”;

echo “Hello\nWorld!”; Hello Hello World!
World!

echo “Hello
World!”; Hello
World Hello
World!

echo “Hello
\nWorld!”; Hello
 Hello
World! World!

Notice where spaces are included in the output. The first echo statement
includes a space so the space is output. The second row has two echo state-
ments, but neither includes a space, so no space appears in the Web page. The
third row shows a space on the Web page, even though no space is included
in the echo statement. The space is added by the browser when it reads the
PHP output as HTML. In HTML, a new line is not displayed as a new line; it is
just interpreted as a single space.

Use \n liberally. Otherwise, your HTML source code will have some really
long lines. For instance, if you echo a long form, the whole thing may be
one long line in the source code, even though it looks fine in the Web page
because you used
 in all the right places. If your Web page doesn’t dis-
play correctly, you may need to troubleshoot the problem in the Web page
source code, a difficult process if your source code is one mile-long line. Use
\n to break the HTML source code into reasonable lines. Taking the extra
time to add these line breaks will pay off if you have to troubleshoot a Web
page. In addition, some browsers don’t handle mile-long lines very well.

47Chapter 3: Creating Your First PHP Script

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 47

PHP executes output statements as instructed. PHP doesn’t care whether the
output is going to the Web or displayed on the screen. It’s your job to know
what kind of output you need. If you’re writing PHP scripts for use on the Web,
the output needs to be in HTML statements. If you’re writing code for indepen-
dent scripts, executed outside the Web environment, the output needs to be
in plain text format for display on the screen.

Documenting the Script
Adding comments to your script is essential. Comments describe your
script — what it does and how it does it. The larger, more complicated, or
more unusual your code is, the more you need comments. After working
20 hours a day on a script, you may believe its code is permanently burned
into your brain. From experience, however, I know that two years from now,
when you need to revise this script, you will swear it was written by a stranger.
And there’s also the possibility that your scripts may need to be revised by
an actual stranger. You may be long gone, retired in luxury in the Bahamas,
when your scripts need to be revised.

Comments are notes that are embedded in the script itself. PHP ignores com-
ments; comments are for humans. You can embed comments in your script
anywhere as long as you tell PHP that they are comments. The format for
comments is as follows:

/* comment text
more comment text */

Your comments can be as long or as short as you need. When PHP sees code
that indicates the start of a comment (/*), it ignores everything until it sees
the code that indicates the end of a comment (*/).

It is customary and useful to put a block of comments at the top of your script
giving information about the script and an overview of what it does. For exam-
ple, here’s one possible format for a comment block at the top of your script:

/* name: hello.php
description: Displays “Hello World!” on a Web page.
written by: Joe Programmer
created: 2/1/03
modified: 3/15/03

*/

48 Part I: Say Hello to the PHP Scripting Language

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 48

PHP also has a short comment format. You can specify that a single line is a
comment by using the # or two slashes (//) in the following manner:

This is comment line 1
// This is comment line 2

You can also use # or // in the middle of a line to signal the beginning of a
comment. PHP will ignore everything from the # or // to the end of the line.
This is useful for commenting a particular statement, as follows:

echo “Hello”; // this is my first output statement

PHP comments are not included in the HTML code that is sent to the user’s
browser, so the user does not see these comments.

It’s helpful to use descriptive comments as titles for sections of code, such as
the following:

/* Check whether the customer is over 18 years old */
/* Store the information in the database */
/* Search for the selected file name */

Sometimes you really want to emphasize a comment. The following format
makes a comment very noticeable:

######################################
Double-Check This Section
######################################

Use comments as often as necessary in the script to make it clear. However,
using too many comments is a mistake. Don’t comment every line or every-
thing you do in the script. If your script is too full of comments, the really
important comments can get lost in the maze. Only use comments to label
sections and to explain code that is unusual or complicated, not code that is
obvious. For instance, the previous comment, documenting the echo state-
ment, is not a useful comment in most cases. It’s obvious what the code is
doing; a comment isn’t needed.

Be careful that you don’t get your comments mixed together. For instance, if
you nest one comment section inside another, PHP can’t handle it. For
instance, a comment such as the following won’t work:

/* This is the first comment.
/* This is the comment nested inside */

*/

49Chapter 3: Creating Your First PHP Script

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 49

PHP looks at the opening /* of the first comment and ignores everything until
it comes to the first */. It ignores the second /* because it considers it part of
a comment. PHP considers the comment ended after the first */ and outputs
an error message when it comes to the second */. PHP doesn’t recognize the
second */ as closing a comment because it isn’t in comment mode.

50 Part I: Say Hello to the PHP Scripting Language

06 541668 Ch03.qxd 3/25/04 2:49 PM Page 50

Part II
Variables and Data

07 541668 PP02.qxd 3/25/04 2:51 PM Page 51

In this part . . .

In this part, I describe the use of variables in PHP. I
explain how to create and use them. I describe the

types of data that can be stored in variables and how to
store these different types. I also show you how to store
related data in complex variables called arrays.

07 541668 PP02.qxd 3/25/04 2:51 PM Page 52

Chapter 4

Using Variables in PHP Scripts
In This Chapter
� Naming variables

� Assigning values to variables

� Removing variables

� Using constants

� Handling errors

Variables are containers that hold information. First, you give a variable a
name, and then you can store information in it. For example, you could

name a variable $age and store the number 21 in it. After you store informa-
tion in a variable, you can use that variable later in the script.

When using PHP on the Web, variables are often used to store the informa-
tion that users type into an HTML form, such as their names. You can then
use the variable later in the script, perhaps to personalize a Web page by dis-
playing the user’s name, as in, for example, Welcome Sam Smith.

In this chapter, you find out how to create variables, name them, and store
information in them. You also discover how to handle errors.

Naming Variables
Variable names or identifiers should be very descriptive. I have seen scripts
where all the variables were named $var1, $var1, $var2, and so on. It may
seem straightforward to name variables like this, but two years from now
when you come back to the script, it will take forever to figure out what
information is in each variable. PHP won’t care or get confused, but humans
trying to follow the script will have a hard time. Make your scripts much
easier to understand by using descriptive variable names like $firstName,
$directory_name, or $DateOfBirth.

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 53

The rules for variable names are as follows:

� All variable names start with a dollar sign ($). This tells PHP that it is a
variable name.

� Variable names can be any length.

� Variable names can include letters, numbers, and underscores only.

� Variable names must begin with a letter or an underscore. They
cannot begin with a number.

� Uppercase and lowercase letters are not the same. $favoritecity
and $Favoritecity are not the same variable. If you store information
in $FavoriteCity, you can’t retrieve that information later in the script
by using the variable name $favoriteCity.

The following are valid variable names:

$_name
$first_name
$name3
$name_3

The following variable names cause error messages:

$3name
$name?
$first+name
$first.name

The first name is invalid because it doesn’t begin with a letter or an under-
score, as required. The three remaining names are invalid because they con-
tain characters other than numbers, letters, and underscores.

Assigning variable names is a matter of personal style. Creating descriptive
variable names by connecting words with an underscore or by using upper-
case letters to denote the beginning of new words (often called camel caps)
are the two most common variable naming styles, as shown here:

$first_name
$firstName

Naming your variables by using one of these two common styles makes it
easier for other programmers to read your scripts. It’s also common to start
the name with a lowercase letter. The most important factor in naming vari-
ables, however, is to be consistent. Pick a style and use it throughout the
entire script.

54 Part II: Variables and Data

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 54

Assigning and Displaying
Variable Values

Variables can hold either numbers or strings of characters. A variable can
exist or not exist and can hold information or not hold information; these are
two separate ideas. Even if a variable doesn’t currently contain any informa-
tion, it still can exist, just as a drawer exists even when it is empty. Of course,
if a variable contains information, it has to exist.

The following sections discuss how to create variables, and how to assign
and display their values.

Creating variables
Storing information in a variable creates it.

To store information in a variable, you use a single equal sign (=). For exam-
ple, the following four PHP statements assign information to variables:

$age = 21;
$price = 20.52;
$temperature = -5;
$name = “Clark Kent”;

In these examples, notice that the numbers are not enclosed in quotes, but
the name, which is a string of characters, is. The quotes tell PHP that the
characters are a string, handled by PHP as a unit. Without the quotes, PHP
doesn’t know the characters are a string and won’t handle them correctly.
The different types of data and their uses are discussed in detail in Chapter 5.

Whenever you put information into a variable that did not previously exist,
you create that variable. For example, suppose you use the following PHP
statements at the top of your script:

$color = “blue”;
$color = “red”;

If the first statement is the first time you mention the variable $color, this
statement creates the variable and sets it to “blue”. The next statement
changes the value of $color to “red”.

55Chapter 4: Using Variables in PHP Scripts

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 55

You can store the value of one variable in another variable, as shown in the
following statements:

$name1 = “Sally”;
$name2 = “Susan”;
$favorite_name = $name2;

After these statements are executed, the variable $favorite_name contains
the value “Susan”.

You can create a variable without storing any information in it. For example,
the following statement creates a variable:

$city = “”;

The variable now exists but does not contain any value. Chapter 5 contains a
discussion of the types of data that can be stored in a variable and their uses.

Displaying variable values
The quickest way to display the value stored in a variable is with the print_r
statement. You can output the value of a variable as in the following statements:

$today = “Sunday”;
print_r($today);

The output from the preceding statements is Sunday.

You can also display the value by using an echo statement. If you used the
following PHP statements

$age = 21;
echo $age;

in a PHP section, the output would be 21.

Using an echo statement of the preceding form, with one variable only, pro-
vides the same basic output as the print_r statement. However, you can do
a lot more with the echo statement. You can output several items and include
numbers and strings together. For example, suppose the variable $name has
the value Clark Kent. You can include the following line in an HTML file:

<p>Welcome <?php echo $name ?></p>

The output on the Web page is as follows:

Welcome Clark Kent

56 Part II: Variables and Data

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 56

If you use a variable that does not exist, you get a warning message. For
example, suppose you intend to display $age, but type the following state-
ment by mistake:

echo $aeg;

You get a notice that looks like the following:

Notice: Undefined variable: aeg in c:\testvar.php on line 5

The notice points out that you’re using a variable that has not yet been given
a value. The notice is helpful in this case because it pinpoints your typo.
However, in some cases, writing a statement using a variable that does not
exist may not be a typo; you may be using the variable deliberately. For exam-
ple, you may be using it for a conditional statement (conditional statements
are described in Chapter 7.) The script may be running exactly the way you
want it to, and your only problem is the notice. You can prevent the notice
from being displayed by using @ before the variable name. If you don’t want
the notice to display, use the following statement:

echo @$aeg;

Because the @ turns off the error message and the variable doesn’t exist, the
echo statement displays nothing.

Don’t turn off any error message that you don’t understand. Be sure you
understand the error and are confident that it doesn’t affect your program
before you shut it off. The message may mean that your script has a problem
that needs to be fixed, such as the typo in the variable name shown in the
previous example.

Many languages require you to create a variable before you can use it. In
these languages, using a variable without creating it first is a fatal error, and
the script stops running. PHP, however, doesn’t require this, which may be
confusing if you have C or Java experience.

Writing Your First Script
That Uses Variables

In Chapter 3, the Hello World script displays Hello World! on a Web page
by using a simple echo statement. In this section, you write a script that also
displays Hello World!, but uses a variable in the script. In the script in
Chapter 3, the following PHP section is used to display the output:

57Chapter 4: Using Variables in PHP Scripts

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 57

<?php
echo “<p>Hello World!</p>”;

?>

The following script is a complete script that contains a PHP section that
uses a variable to display Hello World!:

<html>
<head><title>Hello World Script using Variable</title></head>
<body>
<?php
$salutation = “Hello World!”;
echo “<p>$salutation</p>”;

?>
</body>
</html>

If you point your browser at this script by typing the URL into the browser,
the following output is displayed on the Web page:

Hello World!

A variable keeps its information for the whole script, not just for a single PHP
section. If a variable is set to 5 at the beginning of a script, it will still hold 5
at the end of the script (unless, of course, you assign it another value). For
example, the following script has two separate PHP sections:

<html>
<head><title>Hello World Script</title></head>
<body>
<?php
$salutation = “Hello World!”;
echo “<p>$salutation</p>”;

?>
<p>This is an HTML section</p>
<?php
echo “<p>$salutation again</p>”;

?>
</body>
</html>

If you point your browser at this script by typing the URL into your browser,
the following output displays on the Web page:

Hello World!

This is an HTML section

Hello World! again

58 Part II: Variables and Data

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 58

Discovering More about Output
Statements with Variables

In Chapter 3, echo statements are shown to have the following format:

echo outputitem1,outputitem2,outputitem3,...

You can use a variable for any output item. For example, you could write the
following PHP section:

<?php
$first_name = “Clark”;
$last_name = “Kent”;
echo “My name is “,$first_name,” “,$last_name;

?>

And the output of this section is the following:

My name is Clark Kent

Notice the space included between $first_name and $last_name. If this
space isn’t added, the output of the two variables runs together like this:

My name is ClarkKent.

Statements containing more than one variable must follow certain formatting
rules to produce the desired output. Table 4-1 shows some echo statements
containing variables and their output. The following variables are set for use
in the echo statements in the table:

$number = 123;
$word1 = “Hello”;
$word2 = “World!”;

Table 4-1 echo Statements with Variables
echo Statement Output

echo $number; 123

echo $word1,$word2; HelloWorld!

echo $word1,” “,$word2; Hello World!

echo $word1 $word2; Not valid because no commas separate
the variables; results in an error message

echo “$word1 $word2 now”; Hello World! now

59Chapter 4: Using Variables in PHP Scripts

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 59

Notice that in line 2 of the table, there is no space between the two variable
names, so there is no space in the output. In line 3, a space is echoed between
the two variables.

In some echo statements, PHP can’t tell the variable name from the other
information around it. In cases where this could be confusing, you need to
enclose the variable name in curly braces. For example, suppose you use the
following statements:

$type = “bird”;
echo “Keep the $typecage clean”;

Rather than the desired output, you get the following message:

Notice: Undefined variable: typecage in testvar.php on line 6

After notifying you of the problem, the following output is displayed:

Keep the clean

To make this code work correctly, you need to use the following echo
statement:

echo “Keep the {$type}cage clean”;

With this statement, the output is the following:

Keep the birdcage clean

Using Variable Variables
PHP allows you to use dynamic variable names, called variable variables. You
can name a variable by using the value stored in another variable. That is, one
variable contains the name of another variable. For example, suppose you want
to construct a variable named $city with the value Los Angeles. You can use
the following statement:

$name_of_the_variable = “city”;

This statement creates a variable that contains the name that you want to
give to a variable. Then you use the following statements:

$$name_of_the_variable = “Los Angeles”;

Note the extra dollar sign ($) character at the beginning of the variable name.
This indicates a variable variable. This statement creates a new variable with
the name that is the value in $name_of_the_variable, resulting inthe
following:

60 Part II: Variables and Data

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 60

$city = “Los Angeles”;

The value of $name_of_the_variable does not change.

The following example shows how this feature works. In its present form, the
script statements may not seem that useful; you may see better ways to pro-
gram this task. The true value of variable variables becomes clear when they
are used with arrays and loops, as discussed in Chapters 6 and 7.

Suppose you want to name a series of variables with the names of cities that
have values that are the populations of the cities. You can use this code:

$Reno= 360000;
$Pasadena = 138000;
$cityname = “Reno”;
echo “The size of $cityname is ${$cityname}”;
$cityname = “Pasadena”;
echo “The size of $cityname is ${$cityname}”;

The output from this code is:

The size of Reno is 360000
The size of Pasadena is 138000

Notice that you need to use curly braces around the variable name in the
echo statement so that PHP knows where the variable name is. If you use the
statement without the curly braces, the output is as follows:

The size of Reno is $Reno

Without the curly braces in $$cityname, PHP converts $cityname to its
value and puts the extra $ in front of it, as part of the preceding string.

Removing Variables
You can also remove information from a variable. You can use the following
statement:

$age = __;

This takes the information out of the variable $age. It now has no value. This
does not mean that $age is set to 0. It means that $age is not storing any
information. Technically, it means that $age is storing a string of zero charac-
ters. If you echo it, you get no error message or notice; it just echoes nothing,
a blank.

61Chapter 4: Using Variables in PHP Scripts

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 61

You can go even further and uncreate the variable by using this statement:

unset($age);

After this statement, the variable $age no longer exists. If you try to echo it,
you get an “undefined variable” notice. You can unset more than one variable
at once, as follows:

unset($age,$name,$address);

Working with Constants
Constants are similar to variables. Constants are given names, and values are
stored in them. However, constants are constant; they can’t be changed by
the script. After you set the value for a constant, it stays the same. If you use
a constant for weather and set it to sunny, it can’t be changed. Wouldn’t that
be grand — only sunny days from now on?

Creating constants
Constants are set by using the define statement. The general format is as
follows:

define(“constantname”,”constantvalue”);

For example, to set a constant with the weather, use the following statement:

define(“WEATHER”,”Sunny”);

This statement creates a constant called WEATHER and sets its value to
“Sunny”.

When naming constants, use descriptive names, as you do for variables.
However, unlike variables, constant names do not begin with a dollar sign ($).
By convention, constants are given names that are all uppercase so you can
see easily that they’re constants. However, PHP accepts lowercase letters
without complaint.

You can store either a string or a number in a constant. The following state-
ment, which defines a constant named INTEREST and assigns to it the value
.01, is perfectly okay with PHP:

define (“INTEREST”,.01);

62 Part II: Variables and Data

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 62

Constants should not be given names that are keywords for PHP. Keywords are
words that have meaning for PHP, such as echo, and they can’t be used as con-
stants because PHP treats them as the PHP feature of the same name. PHP will
let you define a constant ECHO without giving an error message, but it will have
a problem when you try to use the constant. For example, if you use the follow-
ing statement:

echo ECHO;

PHP gets confused and displays an error message. It sees the constant as the
beginning of another echo statement, but it can’t find all the things it needs
to complete the first echo statement.

Some PHP keywords include the following:

63Chapter 4: Using Variables in PHP Scripts

and

as

break

case

class

const

continue

declare

default

die

do

echo

else

empty

eval

exit

for

foreach

function

global

if

include

list

new

or

print

require

return

switch

use

var

while

If you’re baffled by some code that looks perfectly okay but refuses to work
correctly, even after numerous changes, try changing the name of a constant.
It’s possible that you are using an obscure keyword for your constant, and
that’s causing your problem. This doesn’t happen often, but it’s possible.

Although you can use keywords for variable names, because the beginning $
tells PHP the keyword is a variable name, you probably shouldn’t. It causes
too much confusion for the humans involved.

Understanding when to use constants
If you know the value of something won’t change during the script, use a con-
stant. Using a constant allows you to use a descriptive name, making the
script clearer. For example, PRODUCT_COST is much clearer than 20.50.

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 63

Using a constant allows you set the value once at the beginning of the script.
If this value ever needs to be changed, using constants allows you to change
it in only one place, instead of finding and changing the value in 20 different
places throughout the script. One change is better than 20. It’s less work and
lessens the likelihood of missing a place that needed to be changed, leading
to unknown and unseen havoc.

Using a constant ensures that the value won’t be changed accidentally some-
where in the script, leading to the wrong value being used in statements later
in the script.

Suppose you have a script that must change money from one currency to
another by multiplying the dollar amount by the exchange rate. For example,
if the exchange rate from U.S. to Canadian dollars is 1.52, you can write the
following code:

<?php
$US_dollars = 20.00;
$CA_dollars = $US_dollars * 1.52;

?>

Now, suppose your script contains 40,000 lines of code and you need to convert
U.S. dollars to Canadian dollars in 50 different places in the script. So you use
the preceding code in 50 different places. Then you realize that the exchange
rate is likely to change every week, so you would need to go through this script
every week and change 1.52 to something else, manually, in 50 different places.
That’s a lot of work.

A better way to handle this is to put the exchange rate in a variable so you
could change it only in one place. You change your script to the following:

<?php
$rate = 1.52;

$US_dollars = 20.00;
$CA_dollars = $US_dollars * $rate;

?>

You set $rate at the beginning of the script. Then you can use the two lines
that convert the currency in all 50 parts of the script. This is clearly a better
option. When the rate changes, you need to change the rate in only one
place. For example, if the exchange rate changes to 1.53 next week, you just
change the first line of the script to the following:

$rate = 1.53;

This would work. However, $rate is not a very descriptive name. Remember
that your script is 40,000 lines of code and the 2 lines of code that convert
currency are used in 50 different places. Suppose somewhere in the middle of

64 Part II: Variables and Data

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 64

your script you need to add some code to compute interest. Suppose you
accidentally use the following code somewhere in the middle of your script:

$interest_rate = 20;
$rate = $interest_rate-1;
$amount = $principal * $rate;

All the places after this code will have a different value for rate; the 1.52 that
you set at the beginning of your script will be replaced by the 19 set by this
code. You can guard against this by using more descriptive variable names.
Or an even better option is to use a constant, as in the following script:

<?php
define(“RATE”,1.52);

$US_dollars = 20;
$CA_dollars = $US_dollars * RATE;

?>

Now you are using a constant, RATE, that can’t be changed in the script. If
you try to add the line

RATE = 20;

in the middle of your script, PHP won’t allow it. So, you won’t make the mis-
take that you made with the variable.

Next week when the exchange rate changes to 1.53, you just edit your script
as follows:

<?php
define(“RATE”,1.53);
$US_dollars = 20;
$CA_dollars = $US_dollars * RATE;
?>

Of course, this would be even better if you used a more descriptive name,
such as the following:

define(“US_TO_CA”,1.52);

Keep in mind that mistakes that seem impossible to make when you’re look-
ing at a ten-line script, become entirely possible when you think in terms of
scripts with thousands of lines of code, especially scripts with more than one
programmer involved.

If you know the value of something won’t change during the script, use a
constant. If you need to manipulate the value somewhere in the script, use
a variable.

65Chapter 4: Using Variables in PHP Scripts

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 65

Displaying constants
You can determine the value of a constant by using print_r as follows:

print_r(US_TO_CA);

You can also use a constant in an echo statement:

echo US_TO_CA;

When you echo a constant, you can’t enclose it in quotes. If you do, it echoes
the constant name rather than the value. You can echo the constant as shown
in the preceding example, or you can enclose it with parentheses. You can
build more complicated output statements by using commas, as in the follow-
ing example:

echo “The Canadian exchange rate is $”,US_TO_CA;

The output from this statement is the following:

The Canadian exchange rate is $1.52.

Notice that the dollar sign is inside the quoted string in the first output
string, not in the second output item as part of the constant name.

Utilizing built-in PHP constants
PHP has many built-in constants that you can use in your scripts. For exam-
ple, the constant __LINE__ has a value that is the line number where it is
used, and __FILE__ contains the name of the file in which it is used. (These
constants begin with two underscores and end with two underscores.) For
example, you can use the following statement:

echo _ _FILE_ _;

The output looks similar to the following:

c:\program files\apache group\apache\htdocs\testvar2.php

PHP has many other built-in constants. For example, E_ALL and E_ERROR are
constants you can use to affect how PHP handles errors. These constants are
explained in the next section.

66 Part II: Variables and Data

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 66

Handling Error Messages
PHP tries to be helpful when problems arise by providing error messages. It
provides the following types of messages:

� Error message: You receive this message when the script has a problem
that prevents it from running. The script displays an error message and
stops running. The message contains as much information as possible to
help you identify the problem. The following is a common error message:

Parse error: parse error in c:\test.php on line 6

Often, you receive this error message because you’ve forgotten a semi-
colon, a parenthesis, or a curly brace.

� Warning message: You receive a warning message when the script sees
a problem but the problem does not prevent the script from running.
Warning messages do not mean the script can’t run; they indicate that
PHP believes something is probably wrong. You should identify the
source of the warning and then decide whether it needs to be fixed. It
usually does. For example, you see the following message if you don’t
include a variable name in the print_r statement — print_r() rather
than print_r($varname).

Warning: print_r() expects at least 1 parameter, 0 given
in d: test1.php on line 9

Because this is a warning, not an error, the script continues to execute
the statements after the print_r statement. However, a warning usually
indicates a more serious problem than a notice. In this case, you need to
fix the problem.

� Notice: You receive a notice when PHP sees a condition that may be an
error or may be perfectly okay. One common condition that produces a
notice is echoing variables that don’t exist. Here’s an example of what
you might see in that instance:

Notice: Undefined variable: age in testing.php on line 9

Error messages, warning messages, and notices all indicate the filename caus-
ing the problem and the line number where the problem was encountered.

The types of error messages that are displayed depend on the error level that
PHP is set to. You need to see all the error messages, but you may not want
to see all the warnings and notices. (Often the only problem with a notice is
the unsightly notice; the code is working correctly.) Or, you may want warning
messages and notices displayed during development but not after customers
are using the application. Or, you may want to send all the error messages to
a log file, rather than have them output for users to see.

67Chapter 4: Using Variables in PHP Scripts

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 67

The next few sections tackle the subject of setting PHP to give you the type of
error messages that you want.

Changing the error level for your Web site
The error level for your Web site is defined in the php.ini file. You can
change the error level if you are the PHP administrator and have access to
the php.ini file. If you are not the administrator (which will be the case if,
for example, you are using a Web hosting company), you can change the
error level for each script, as described in the next section. (See Appendix A
for more on the php.ini file.)

To see what the current error level is, open php.ini in an editor and look for
a line similar to the following:

error_reporting = E_ALL; display all errors, warnings and
notices

This statement causes all errors, warnings, and notices to be displayed. This
setting is useful when you’re developing the script. However, when you
release the script for users, you probably don’t want notices displayed.

In the preceding example, notice that there is a semicolon (;) after E_ALL but
not at the beginning of the line. The semicolon is the character that indicates
a comment in the php.ini file. Therefore, the text on the line after the semi-
colon is just a comment, not part of the statement. If there were a semicolon
at the beginning of the line, the entire line would be a comment, and the
statement would not be in effect.

When you look in your php.ini file, you will probably find several statements
like the preceding line, except with semicolons at the beginning of the lines.
These statements are included as examples, not as statements that execute.
Look for the statement without a semicolon in front of it to see which state-
ment is currently active.

E_ALL is a built-in PHP constant that refers to all errors, warnings, and
notices. E_NOTICE is a built-in constant representing notices. You can use
these two constants in the following statement:

error_reporting = E_ALL & ~E_NOTICE

E_ALL tells PHP to display all errors, warnings, and notices. However, the
second term ~E_NOTICE tells PHP not to display notices. The result is that
only errors and warnings are displayed. This method of specifying the errors
to be displayed is shorter than listing all the types of errors that you want to
display.

68 Part II: Variables and Data

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 68

The two statements shown in this section are used most often. You can use
other constants to specify error levels, but E_ALL and E_NOTICE are usually
sufficient for most scripts. You can find a listing of all the constants in the
php.ini file. For a complete discussion of error levels, check out the PHP
online manual.

You can stop error reporting all together. You may not want users to see any
of the PHP-generated error or warning messages because they may contain
compromising information. Usually if you do this, you want to save error
messages in a log instead, as described later in this chapter in the section,
“Sending messages to a log.”

To turn off error reporting, find the line that says display_errors = On in
php.ini and change On to Off.

You need to restart your Web server before any changes you make in
php.ini will go into effect.

Changing the error level for a script
If you want to set the error level for a particular script, add a statement with
the following format to the beginning of the script:

error_reporting(OPTIONS);

The OPTIONS in the statement are the built-in constants discussed in the pre-
ceding section. For example, you can have all errors, warnings, and notices
displayed in the script by adding the following statement:

error_reporting(E_ALL);

Suppose the setting in php.ini is set to E_ALL. You may be satisfied with
that level while developing your scripts, but then want to stop displaying
notices when users start running your scripts. To override the php.ini set-
ting, you can add the following statement to the scripts after they are fine-
tuned and ready to go:

error_reporting(E_ALL & ~E_NOTICE);

You can set error reporting so that no messages are displayed by using the
following statement:

error_reporting(0);

69Chapter 4: Using Variables in PHP Scripts

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 69

Sometimes you want to turn error and warning messages off when your
scripts are complete and being used by the world. You may not want users to
see the error messages that PHP sends because the information in the PHP
messages can represent a security issue, but you may want to see any error
messages from PHP yourself. You can turn error reporting off by using a set-
ting of zero, but log the error messages to a file at the same time. Users don’t
see the messages, but you can look at them. Sending messages to a log is
described in the next section.

Sending messages to a log
You can send the errors and warnings from PHP to a log file. You may want to
have a permanent record of errors as well as display them, or you may want
to send the errors to a file rather than display them for the world to see.

You can set up an error message log for the whole site by using settings in
the php.ini file, if you have access to it. Open php.ini and find the follow-
ing line:

log_errors = Off

You need to change Off to On. You also need to tell PHP where to send the
error messages. To do this, find the following line:

;error_log = filename

Now remove the semicolon from the beginning of the line. This changes the
line from a comment to a statement. Change filename to the path to the file
into which you want the messages saved. For example, you could use the fol-
lowing statement:

error_log = c:\temp\php_error_log

The directory (often called folder in Windows) must exist. For this statement,
you must create the directory c:\temp before the error messages can be
logged there. You don’t need to create the file; PHP can create the file as long
as it can find the directory.

You need to restart your Web server before any changes you make in
php.ini will go into effect.

Advanced error handling
This section describes advanced error handling. Newbies do not need to read
this section. Come back and read this section after you have some experience
with the programming techniques described in the rest of the book.

70 Part II: Variables and Data

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 70

The standard PHP errors and error messages may not be sufficient for your
needs. For example, you may know something is an error in your script,
although PHP sees nothing wrong with the problem. For example, you may
be writing a script to design a house. In such a case, if $height_of_door is
larger than $height_of_house, you know that something is wrong. You know
this, but PHP doesn’t. PHP would not recognize this as an error condition. To
get PHP to check for this error in the script, you could write the following
statement:

If ($height_of_door > $height_of_house)
{

trigger_error(“Impossible condition”,E_USER_ERROR);
}

Using if statements is explained in detail in Chapter 7.

The E_USER_ERROR in the statement tells PHP that the condition is an error.
The string “Impossible condition” is the message to be displayed when the
error is encountered. If the condition is true, the following message is displayed:

Fatal error: Impossible condition in d:\testerr.php on line 9

The script stops at this point because you told PHP that it was an error,
rather than a warning or a notice. You can use E_USER_WARNING or
E_USER_NOTICE, rather than E_USER_ERROR, to have PHP treat the condition
as a warning or notice.

If you want to handle the error in your own way, instead of using PHP standard
error procedures, you can write your own statements to perform actions, such
as send a message, log a message, send an e-mail, or stop the script. For exam-
ple, you could simply echo an error message to the user and stop the script, as
follows:

If ($height_of_door > $height_of_house)
{

echo “This is impossible
”;
exit();

}

If $height_of_door is larger than $height_of_house, the message is
echoed, and exit() stops the script. No more statements are executed.

You could also send a message to a PHP error log when this condition occurs
by using the following type of statement:

error_log(message,3,logfilename);

For example, you could use the following if block:

71Chapter 4: Using Variables in PHP Scripts

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 71

If ($height_of_door > $height_of_house)
{

error_log(“The door is taller than the
house”,3,”/temp/err_log”);

exit();
}

After this statement, if $height_of_door is larger than $height_of_house,
the message “The door is taller than the house” is stored in the log
file /temp/err_log. The 3 in the statement tells PHP to store the message in
the specified log file. The directory /temp must exist, but PHP will create the
file if it doesn’t already exist.

Alternatively, you might want to send yourself an e-mail message when the
error occurs. The error_log statement can be used for this purpose as well
as for logging an error message. The 1 in the following error_log statement
tells PHP to send the message as e-mail to the specified e-mail address:

error_log(“The door is taller than the
house”,1,”me@mymail.com”);

This statement assumes that e-mail can be accessed from PHP. See the dis-
cussion of PHP and e-mail in Chapter 13.

On the other hand, you may be willing to accept PHP’s definition of an error,
but want it to behave differently when it encounters an error. You could have
procedures you want performed in the event of an error. You may want PHP
to display a message written by you or to execute statements written by you.
For example, you may want to be informed by e-mail of error messages, or
you may want certain files opened or closed before the script stops.

You can write your own code to handle errors and instruct PHP to use your
code whenever it encounters an error. To do this, you write your own error-
handling code and save it as a function, which is a piece of code you write
and call repeatedly whenever you need it. (Instructions for writing functions
are provided in Chapter 8.) You can tell PHP to use your function rather than
its own procedure for error handling by using the following statement:

set_error_handler(functionname);

For example, you could use the following:

set_error_handler(my_error_handler);

Further instructions for writing my_error_handler are provided in Chapter 8
where functions are discussed.

Another method for handling errors recognized by PHP is to use the die
statement to display a message when a function fails. The die statement is
discussed in detail in Chapter 8 along with the discussion of functions.

72 Part II: Variables and Data

08 541668 Ch04.qxd 3/25/04 2:50 PM Page 72

Chapter 5

Working with Data
In This Chapter
� Understanding data types

� Performing arithmetic

� Manipulating character strings

� Using dates and times

Variables can store data of different types, and different types of data can
do different things. For example, you can add variables whose values are

numbers (1 + 2), but adding variables whose values are characters (a + b)
doesn’t make much sense. In this chapter, you find out what data types PHP
can handle and how you can use them.

Understanding Data Types
You can store the following simple types of data in PHP variables:

� Integer: A whole number (no fractions), such as –43, 0, 1, 27, or 5438.
The range of integers that is allowed varies, depending on your oper-
ating system, but in general, you can usually use any number from
–2 billion up to +2 billion.

� Floating point number: A number (usually not a whole number) that
includes decimal places, such as 5.24 or 123.456789. This is often called
a real number or a float.

� Character string: A series of single characters, such as hello. There is
no practical limit on the length of a string.

� Boolean: A TRUE or FALSE value. See the nearby sidebar for more
information.

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 73

Assigning data types
Most other languages require that you initialize the variable before using
it, specifying what type of data it can hold, but PHP is more informal. You
don’t need to tell PHP which data type is in a variable. PHP evaluates the
data when you assign it to the variable and then stores it as the appropriate
type. Generally, this is helpful. PHP guesses the data type pretty accurately.

PHP also converts data when it needs to be converted. For example, if you
have the following statements, PHP converts the data types with no problem:

$firstNumber = 1; # PHP stores it as an integer
$secondNumber = 1.1; # PHP stores it as a float
$sum = $firstNumber + $secondNumber;

Technically, the third statement is not possible because the data to be added
are different types. However, PHP converts the integer to a float so that the
addition proceeds smoothly. This happens automatically and invisibly and is
very helpful.

Type casting
On a rare occasion, PHP guesses badly when it stores the data. You might
need to do something with a variable, and PHP won’t let you because the

74 Part II: Variables and Data

True or false? Boolean values
Boolean data types represent two possible
states — TRUE or FALSE. Boolean values are
used mainly to compare conditions for use in
conditional statements. For example, PHP eval-
uates an expression, such as $a > $b, and the
outcome is either TRUE or FALSE.

PHP considers the following values FALSE :

� The string FALSE (can be upper- or
lowercase)

� The integer 0

� The float 0.0

� An empty string

� The one-character string 0

� The constant NULL

Any other values in a Boolean variable are con-
sidered TRUE. If you echo a Boolean variable,
the value FALSE displays as a blank string; the
value TRUE echoes as a 1. Functions often
return a Boolean variable that you can test to
see whether the function succeeded or failed.
For more information on using Boolean vari-
ables with functions, check out Chapter 8.

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 74

data is the wrong type. In such a case, you can specify how you want PHP to
store the data, rather than let PHP decide for itself. This is called type casting.
To specify a particular type, use a statement like one of the following:

$newint = (int) $var1;
$newfloat = (float) $var1;
$newstring = (string) $var1;

The value in the variable on the right side of the equal sign is stored in the
variable on the left side as the specified type. So the value in $var1 is stored
in $newint as an integer, as specified by (int).

Be careful when doing type casts. Sometimes you can get unexpected results.
For example, when you cast a float into an integer, it loses its decimal places.
To do this, PHP rounds the float toward 0. For example, if $number = 1.8
and you cast it into an integer — $newnumber = (int) $number —
$newnumber will equal 1.

You can find out the data type of a variable by using a statement like the
following:

var_dump($myvariable);

For example, the following statement checks the data type of $checkvar:

var_dump($checkvar);

The output from this statement is int(27), which tells you that $checkvar
contains the integer 27.

Working with Numbers
The data types float and integer are both numbers. You store them in vari-
ables as follows:

$intvar = 3;
$floatvar = 9.3;

PHP automatically stores the values as the correct data type.

Performing mathematical operations
PHP allows you to do mathematical operations on numbers. You indicate
mathematical operations by using two numbers and a mathematical operator.

75Chapter 5: Working with Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 75

For example, one operator is the plus (+) sign, so you can indicate a mathe-
matical operation like this:

1 + 2

You can also do math with variables:

$var1 + $var2;

If you plan to use numbers in mathematical operations, don’t enclose them in
quotes when assigning them to variables. Using quotes sets the numbers as
character strings, and you can’t perform mathematical operations on charac-
ter strings. However, PHP, as opposed to most other languages, will automati-
cally convert strings to numbers when it needs to. For example, suppose you
have the following statements:

$var1 = “1”;
$var2 = 2;
$total = $var1 + $var2;

Technically, you can’t add these two numbers together because $var1 is a
character string. However, PHP automatically converts the string 1 to a
number 1 when it gets to the third statement and then adds the numbers.

If you use the following statements, PHP also converts the string so it can add
the numbers, but the results are not as obvious:

$var1 = “x”;
$var2 = 2;
$total = $var1 + $var2;

Because x is not a number that PHP can convert, it uses 0 in the addition. The
result is that $total equals 2. In most cases, this conversion is not what you
want. The automatic conversion feature is useful, and saves some typing, but
be careful when depending on it. Sometimes you don’t get the results you
expect, as shown in the previous example.

PHP can also guess wrong because it doesn’t understand certain human nota-
tion. For example, the following statements cause PHP to get it wrong:

$var1 = “2,000”;
$var2 = 2;
$total = $var1 + $var2;

76 Part II: Variables and Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 76

Although people understand what commas mean in numbers, PHP does not.
PHP thinks 2,000 ends at the comma. After these statements are executed,
$total equals 4.

Table 5-1 shows the mathematical operators that you can use.

Table 5-1 Mathematical Operators
Operator Description

+ Adds two numbers together.

- Subtracts the second number from the first number.

* Multiplies two numbers together.

/ Divides the first number by the second number.

% Finds the remainder when the first number is divided by the second
number. This is called modulus. For example, in $a = 13 % 4, $a
is set to 1.

Understanding the order of operations
You can do several mathematical operations at once. For example, the follow-
ing statement performs three operations:

$total = 1 + 2 * 3 + 1;

The order in which the arithmetic is performed is important. You can get dif-
ferent results depending on which operation is performed first. PHP does
multiplication and division first, and then addition and subtraction. If other
considerations are equal, PHP goes from left to right. Consequently, the pre-
ceding statement sets $total to 8, in the following order:

$total = 1 + 2 * 3 + 1 #first, it does the multiplication
$total = 1 + 6 + 1 #next, it does the leftmost addition
$total = 7 + 1 #next, the remaining addition
$total = 8

You can change the order in which the arithmetic is performed by using
parentheses. The arithmetic inside the parentheses is performed first. For
example, you can write the previous statement with parentheses, like this:

$total = (1 + 2) * 3 + 1;

77Chapter 5: Working with Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 77

This statement sets $total to 10, in the following order:

$total = (1 + 2) * 3 + 1 #first, the math in the parentheses
$total = 3 * 3 + 1 #next, the multiplication
$result = 9 + 1 #next, the addition
$result = 10

The general order of operations is in force inside of parentheses when there
is more than one operation, such as (3 + 2 * 5). In this example, the multi-
plication is performed first. You can use parentheses inside of parentheses to
change that order as well.

On the better-safe-than-sorry principle, it’s best to use parentheses whenever
more than one answer is possible.

Incrementing and decrementing
PHP provides a shortcut for adding 1 to a variable. If you want to add 1 to a
variable, you can use a statement like the following:

$counter=$counter+1;

PHP also lets you write a shorter statement that does the same thing:

$counter++;

For example, you could use the following statements:

$counter=0;
$counter++;
echo $counter;

This echo statement outputs 1, because ++ adds 1 to the current value of
$counter. You can also subtract 1 by using the following statement:

$counter--;

Another shortcut for adding a number to an existing variable is +=1, which
adds 1 to the variable. You can add any number to a variable by using this
shortcut. You can also subtract, multiply, or divide by using a similar short-
cut. The following are some valid statements using this shorter format:

$counter+=2;
$counter-=3;
$counter*=2;
$counter/=3;

78 Part II: Variables and Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 78

These statements add 2 to $counter, subtract 3 from $counter, multiply
$counter by 2, and divide $counter by 3, respectively.

Using built-in higher-math functions
PHP provides functions to perform more complicated math for you. (Functions
are described further in Chapter 8.) For example, if you need to compute a
square root, you don’t have to write code that does all the math. PHP has
already written this code for you. You can just use a statement like one of
these:

$rootvar = sqrt(91);
$rootvar = sqrt($number);

The first statement takes the square root of a number, and the second state-
ment takes the square root of a variable’s value.

You can use a statement like the following to round up to the next integer:

$upnumber = ceil(27.63);

The result is 28. You can also round down by using the following format:

$downnumber = floor(27.63);

The result of this segment is 27.

PHP offers many math functions, including functions for simple math, such as
maximum, minimum, and random numbers; and functions for advanced math,
such as sine, tangent, and converting to binary or octal numbers. To find a par-
ticular mathematical function, see Appendix B.

Formatting numbers for output
Often you want to display a number in a familiar format, such as with commas
dividing the thousands or formatted as dollar amounts with two decimal places.
But PHP stores and displays numbers in the most efficient format. If the number
is 10.00, it is displayed as 10. Therefore, you need to tell PHP how you want the
number displayed.

One PHP statement that formats numbers is the number_format statement,
which has the following general form:

number_format(number,decimals,”decimalsep”,”thousandsep”)

79Chapter 5: Working with Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 79

In this format, each piece of input has a meaning:

� number is the number to be formatted. This must always be included.

� decimals is the number of decimal places. If decimals is not included,
the number of decimal places is 0 by default, and number is rounded
to the closest integer. If you are going to include thousandsep and
decimalsep, you must include decimals.

� decimalsep is the character used to separate the decimal places. The
default is a decimal point. If you include this, you must also include
thousandsep.

� thousandsep is the character used to separate the number into thou-
sands. The default is a comma. If you include this parameter, you must
also include decimalsep.

Table 5-2 shows some number_format statements and their output.

Table 5-2 number_format Statements
$number Format Output

12321 number_format($number) 12,321

12321.66 number_format($number,2) 12,321.66

12321.66 number_format($number) 12,322

12321.6 number_format($number,3) 12,321.600

12321 number_format($number,0,”.”,”.”) 12.321

12321.66 number_format($number,2,”.”,””) 12321.66

After formatting, the number is converted to a string data type, so perform
any arithmetic on the number before you format it.

For more complicated formatting, PHP provides the statements printf and
sprintf:

� printf outputs the formatted number directly.

� sprintf is used to store the formatted number into a variable.

The formatting statements printf and sprintf can be used to format char-
acter strings as well as numbers, and to output strings and numbers in the
same output statement. For a more complete description of these statements,
check out the section “Formatting output strings,” later in this chapter.

80 Part II: Variables and Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 80

Working with Character Strings
Characters are letters, numbers, and punctuation, and a character string is a
series of characters. When a number is used as a character, it is just a stored
character, the same as a letter. It can’t be used in arithmetic. For example, a
phone number usually is stored as a character string and not a number
because it only needs to be stored, not added or multiplied.

When you store a character string in a variable, you use double quotes or
single quotes to tell PHP where the string begins and ends. For example, the
following two statements are the same:

$string = _Hello World!_;
$string = _Hello World!_;

81Chapter 5: Working with Data

Storing really long strings
PHP provides a feature called a heredoc that is
useful for assigning values to really long strings
that span several lines. A heredoc enables you
to tell PHP where to start and end reading a
string. A heredoc statement has the following
format:

$varname = <<<ENDSTRING
text
ENDSTRING;

ENDSTRING is any string you want to use. You
enclose the text you want stored in the variable
$varname by typing ENDSTRING at the begin-
ning and again at the end. When PHP processes
the heredoc, it reads the first ENDSTRING and
knows to start reading text into $varname. It
continues reading text into $varname until it
encounters the same ENDSTRING again. At
that point, it ends the string.

The string created by a heredoc statement
evaluates variables and special characters in
the same manner as a double-quoted string.
(For details on double-quoted strings, see the
section, “Comparing single-quoted strings and
double-quoted strings,” later in this chapter.)

The following statements create a string by
using the heredoc method:

$distance = 10;
$herevariable = <<<ENDOFTEXT
The distance between
Los Angeles and Pasadena
is $distance miles.
ENDOFTEXT;
echo $herevariable;

The output of the echo statement is as follows:

The distance between Los
Angeles and Pasadena is 10
miles.

But be careful. PHP is picky about its END-
STRINGs. When it first appears, the END-
STRING (ENDOFTEXT in this example) must
occur at the end of the first line, with nothing fol-
lowing it, not even a space. And the END-
STRING on the last line must occur at the start
of the line, with nothing before it, not even a
space, and nothing following it other than the
semicolon. If these rules are broken, PHP won’t
recognize the ending string and will continue
looking for it throughout the rest of the script. It
will eventually display a parse error showing a
line number that is the last line in the script.

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 81

Using special characters in strings
PHP provides some special characters you can use in strings: \n and \t. You
can use \n to start a new line in a string, as in the following statements:

$string = “Hello \nWorld”;
echo $string;

The output is broken into two lines:

Hello
World

You can use \t to insert a tab, as in the following statements:

$string = “Line 1 \n\tLine 2”;
echo $string;

The second line of the output is indented:

Line 1
Line 2

Special characters can be used only in strings enclosed with double quotes.
In single-quoted strings, special characters have no special meaning; they are
output the same way as any other character. The difference between single
and double quotes is explained in the next section.

Comparing single-quoted strings
and double-quoted strings
Single-quoted and double-quoted strings are handled differently:

� Single-quoted strings are stored literally, with the exception of \’, which
is stored as an apostrophe. (For more information about \’, see the next
section, “Escaping characters.”)

� In double-quoted strings, variables and special characters are evaluated
before the string is stored.

The following examples show the difference in output produced by single and
double quotes.

If you enclose a variable in double quotes, PHP uses the value of the variable.
However, if you enclose a variable in single quotes, PHP uses the literal variable

82 Part II: Variables and Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 82

name. For example, the following statements use both the single and double
quote methods with a variable:

$name = “Sam”;
$output1 = _$name_;
$output2 = _$name_;
echo $output1;
echo $output2;

The output of these echo statements is as follows:

Sam
$name

If you use special characters in a string enclosed by double quotes, PHP out-
puts the string after evaluating the special characters. However, if you enclose
the string in single quotes, PHP outputs the special characters as literals. For
example, the following statements use both single and double quotes with the
new line character \n and the tab character \t:

$string1 = “String in \n\tdouble quotes”;
$string2 = ‘String in \n\tsingle quotes’;

When $string1 is displayed, you get the following:

String in
double quotes

When $string2 is displayed, you get the following:

String in \n\tsingle quotes

The quotes that enclose the entire string determine the treatment of variables
and special characters, even if there are other sets of quotes inside the string.
For example, look at the following statements:

$number = 10;
$string1 = “There are ‘$number’ people in line.”;
$string2 = ‘There are “$number” people waiting.’;
echo $string1,”\n”;
echo $string2;

The output is as follows:

There are ‘10’ people in line.
There are “$number” people waiting.

83Chapter 5: Working with Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 83

You can see that even though $number is enclosed in single quotes in
$string1, the double quotes around the entire string cause the output to
contain the value of the variable rather than the name of the variable.
Similarly, even though $number is enclosed in double quotes in $string2,
the single quotes around the entire string cause the output to contain the
name of the variable rather than the value of the variable

Escaping characters
Sometimes you want a character in a double-quoted string to be treated as a
literal, not as a special character, even though it has special meaning. For
example, you may want to output a dollar sign as a dollar sign, rather than
have the dollar sign treated as the first character of a variable name. You can
tell PHP to output characters, rather than use their special meaning, by pre-
ceding the character with a backslash (\). This is called escaping the charac-
ter. For example, the following two strings produce the same output:

$string = ‘The variable name is $var1’;
$string = “The variable name is \$var1”;

The output from either string is the following:

The variable name is $var1

Suppose you want to store a string as follows:

$string = _Where is Sally_s house_;
echo $string;

These statements won’t work because when PHP sees the ‘ (single quote)
after Sally, it thinks this is the end of the string. It displays the following:

Where is Sally

You need to tell PHP to interpret the single quote (‘) as an apostrophe, not as
the end of the string. You can do this by using a backslash (\) in front of the
single quote. The backslash tells PHP that the single quote does not have any
special meaning; it’s just an apostrophe. To display the string correctly, use
the following statement:

$string = _Where is Sally_s house_;

When you enclose a string in double quotes, you must also use a backslash in
front of any double quotes inside the string.

84 Part II: Variables and Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 84

Joining strings together
You can join strings together, a process called concatenation, by using a dot
(.). For example, you can join $string1 and $string2 with the following
statements:

$string1 = _Hello_;
$string2 = _World!_;
$stringall = $string1.$string2;
echo $stringall;

The echo statement outputs one string:

HelloWorld!

Notice that no space appears between Hello and World!. That’s because no
spaces are included in the two strings that are joined. You can add a space
between the words by joining three strings together — the two variables and
a string that contains a single space — with the following statement rather
than the earlier statement:

$stringall = $string1._ _.$string2;

You can use .= to add characters to an existing string. For example, you can
use the following statements, in place of the preceding statements:

$stringall = “Hello”;
$stringall .= “ World!”;
echo $stringall;

The echo statement outputs this:

Hello World!

Manipulating strings
PHP provides many built-in functions for manipulating strings. (Functions
are discussed in detail in Chapter 8.) Using PHP functions, you can find sub-
strings or characters, replace part of a string with different characters, take a
string apart, count the length of a string, and perform many other string
manipulations.

85Chapter 5: Working with Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 85

Often you want to remove blank spaces before or after a string. You can
remove leading or trailing spaces by using the following statements:

$string = trim($string) # removes leading & trailing spaces
$string = ltrim($string) # removes leading spaces
$string = rtrim($string) # removes trailing spaces

PHP can help you split a string into words, which is often handy. The general
form of this function is as follows:

str_word_count(“string”,format)

In this expression, format can be 1, meaning return the words as a numeric
array; or 2, meaning return the words as an array where the key is the posi-
tion of the first character of the word. (Arrays are explained in Chapter 6.) If
you don’t include a format, the function returns the number of words. The
following examples use str_word_count:

$string = “Counting Words”;
$numberOfWords = str_word_count($string);
$word1 = str_word_count($string,1);
$word2 = str_word_count($string,2);

After the statements are executed, the following variables exist:

$numberOfWords = 2
$word1[0] = Counting
$word1[1] = Words
$word2[0] = Counting
$word2[9] = Words

Notice that the first word starts at position 0 (not position 1 as you and I
might think), and the next word starts at position 9. I explain this more fully
in Chapter 6 when I discuss arrays.

Some additional useful string manipulation statements are shown in Table 5-3
with examples. When looking at the examples, remember that the first posi-
tion in the string is 0, not 1.

86 Part II: Variables and Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 86

Ta
bl

e
5-

3
St

rin
g

M
an

ip
ul

at
io

n
Fu

nc
tio

n
Fo

rm
at

W
ha

t I
t D

oe
s

Ex
am

pl
e

Re
su

lt

st
r_
re
pe
at
(“
st
r”
,n
)

Re
pe

at
 s
tr

n
tim

es
$x
=s
tr
_r
ep
ea
t(
“x
”,
5)
;

$x
=x
xx
xx

st
r_
re
pl
ac
e(
“a
”,
”b
”,

Re
pl

ac
e

al
l a

$a
=”
ab
c
ab
c”
;

$s
=

”s
tr
”)

w
ith

 b
in

 s
tr

$s
=s
tr
_r
ep
la
ce
(“
b”
,”
i”
,$
a)
;

ai
c
ai
c

st
rc
hr
(“
st
ri
ng
”,

Re
tu

rn
s
st
ri
ng

$s
tr
=”
aB
c
ab
c”
;

$s
ub
=b
c

”c
ha
r”
);

fro
m

 c
ha
r

to
 e

nd
$s
ub
=s
tr
ch
r(
$s
tr
,”
b”
);

st
ri
st
r(
“s
tr
in
g”
,

Sa
m

e
as

 s
tr
ch
r,

$s
tr
=”
aB
c
ab
c”
;

$s
ub
=

”c
ha
r”
);

ex
ce

pt
 n

ot
 c

as
e

se
ns

iti
ve

$s
ub
=s
tr
is
tr
($
st
r,
”b
”)
;

Bc
 a
bc

st
rl
en
(“
st
ri
ng
”)

Re
tu

rn
s

le
ng

th
 o

f s
tr
in
g

$n
=s
tr
le
n(
“h
el
lo
”)
;

$n
=5

st
rp
os
(“
st
ri
ng
”,

Re
tu

rn
s

po
si

tio
n

of
 fi

rs
t

$s
tr
=”
he
ll
o”
;

$n
=2

”s
ub
st
r”
)

su
bs
tr

be
gi

nn
in

g
$n
=s
tr
po
s(
$s
tr
,”
ll
”)
;

st
rr
ch
r(
“s
tr
in
g”
,

Sa
m

e
as

 s
tr
ch
r,

 e
xc

ep
t

$s
tr
=”
ab
c
ab
c”
;

$s
ub
=b
c

”c
ha
r”
);

fin
ds

 o
nl

y
th

e
la

st
 in

st
an

ce
 o

f c
ha
r

$s
ub
=s
tr
rc
hr
($
st
r,
”b
”)
;

st
rr
ev
(“
st
ri
ng
”)

Re
ve

rs
es

 s
tr
in
g

$n
=s
tr
re
v(
“a
bc
de
”)
;

$n
=e
dc
ba

st
rr
po
s(
“s
tr
in
g”
,

Re
tu

rn
s

po
si

tio
n

of
 la

st

$s
tr
=”
ab
c
ab
c”
;

$n
=5

”s
ub
st
r”
)

in
st

an
ce

 o
f s
ub
st
r

$n
=s
tr
rp
os
($
st
r,
”b
c”
);

st
rt
ol
ow
er
(“
st
ri
ng
”)

Re
tu

rn
s

a
lo

w
er

ca
se

 v
er

si
on

 o
f s
tr
in
g

$s
tr
=s
tr
to
lo
we
r(
“Y
ES
”)
;

$s
tr
=y
es

(c
on

tin
ue

d)

87Chapter 5: Working with Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 87

Ta
bl

e
5-

3
(c

on
tin

ue
d)

Fu
nc

tio
n

Fo
rm

at
W

ha
t I

t D
oe

s
Ex

am
pl

e
Re

su
lt

st
rt
ou
pp
er
(“
st
ri
ng
”)

Re
tu

rn
s

an
 u

pp
er

ca
se

 v
er

si
on

 o
f s
tr
in
g

$s
tr
=s
tr
to
up
pe
r(
“y
es
”)
;

$s
tr
=Y
ES

Re
pl

ac
es

 a
ll
st
r1

w
ith

$s
tr
=”
aa
 b
b
cc
”;

$n
ew
=

”s
tr
1”
,”
st
r2
”)

st
r2

in
 s
tr
in
g

$n
ew
=s
tr
tr
($
st
r,
”b
b”
,”
xx
”)
;

aa
 x
x
cc

su
bs
tr
(“
st
ri
ng
”,
n1
, n
2)

Re
tu

rn
s
st
ri
ng

$s
st
r=
su
bs
tr
(“
he
ll
o”
,2
,4
);

$s
st
r=
ll
o

be
tw

ee
n
n1

an
d
n2

su
bs
tr
_c
ou
nt
(“
st
r”
,

Re
tu

rn
s

th
e

nu
m

be
r o

f
$s
tr
=”
ab
c
ab
 a
bc
”;

$n
=2

”s
ub
”)

oc
cu

rr
en

ce
s

of
 s
ub

in
 s
tr

$s
=”
bc
”;

$n
=s
ub
st
r_
co
un
t(
$s
tr
,$
s)
;

su
bs
tr
_r
ep
la
ce
(“
s ”
,

Re
pl

ac
e
r

in
to

 s
, b

eg
in

ni
ng

$s
=”
ab
c
ab
c”
;

$t
=

”r
”,
n,
l)

w
ith

 n
fo

r l
ch

ar
ac

te
rs

$t
=

ab
xb
c

su
bs
tr
_r
ep
la
ce
($
s,
”x
”,
2,
3)
;

uc
fi
rs
t(
“s
tr
in
g”
)

Ch
an

ge
s

fir
st

 le
tte

r o
f

$s
tr
=”
a
B
c”
;

$s
tr
2=

st
ri
ng

to
 u

pp
er

ca
se

$s
tr
2=
uc
fi
rs
t(
$s
tr
);

A
B
c

uc
wo
rd
s(
“s
tr
in
g”
)

Ch
an

ge
s

ea
ch

 w
or

d
of

$s
tr
=”
aa
 B
b
cc
”;

$s
tr
2=

st
ri
ng

to
 u

pp
er

ca
se

$s
tr
2=
uc
wo
rd
s(
$s
tr
);

Aa
 B
b
Cc

88 Part II: Variables and Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 88

Formatting output strings
The output produced by PHP is always in string format. That is, the output of
the echo statement is a string, even if the output statement included a variable
containing a number. The following is an output statement:

$number = 4;
echo “Sally has $number children.”;

The output is as follows:

Sally has 4 children.

The output is a string, even though 4 was a number when it was in the vari-
able named $number. The echo statement outputs 4 as part of a character
string.

Formatting the output is an important part of scripting. The echo statement
allows quite a bit of flexibility in formatting output. In the section, “Formatting
numbers for output,” earlier in this chapter, I describe some possibilities for
formatting numbers by using the number_format statement. PHP provides
additional statements for formatting output strings. The printf and sprintf
statements allow you to format strings, numbers, and a mix of both strings
and numbers.

The general format is as follows:

printf(“format”,$varname1,$varname2,. . .);
$newvar = sprintf(“format”,$varname1,$varname2,. . .);

The printf statement outputs formatted strings; sprintf stores the format-
ted output in a variable. You can format strings or numbers or both together,
including variable values. The information in format gives instructions for
the format, and $varname contains the value(s) to be formatted. The follow-
ing statement is valid:

$newvar = sprintf(“Hello World!”);

This statement outputs the literal string, as given, because no format is
included. The string “Hello World!” is now assigned to the variable $newvar.
However, you can mix variables with literals by using the following statements:

$nboys = 3;
$ngirls = 2;
printf(“%s boys and %s girls”,$nboys,$ngirls);

89Chapter 5: Working with Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 89

The %s is a formatting instruction that tells printf to insert the variable
value as a string. Thus, the output is: 3 boys and 2 girls. The % character
signals printf that a formatting instruction starts here. The formatting
instruction has the following format:

%pad-width.dectype

These are the components of the formatting instructions:

� %: Signals the start of the formatting instruction.

� pad: A padding character that is used to fill out the string when the value
to be formatted is smaller than the width assigned. (See width, later in
this list.) If you don’t specify a character, a space is used. pad can be a
space, a 0, or any character preceded by a single quote (‘). For example,
it is common to pad numbers with 0 — for example, 01 or 0001.

� -: A symbol meaning to left-justify the characters. If this is not included,
the characters are right-justified.

� width: The number of characters to use for the value. If the value doesn’t
fill the width, the padding character is used to pad the value. For example,
if the width is 5, the padding character is 0, and the value is 1, the output
is 00001.

� .dec: The number of decimal places to use for a number. This value is
preceded by a decimal point.

� type: The type of value. Use s (string) for most values. Use f (float) for
numbers that you want to format with decimal places.

The following are some possible sprintf statements:

$money = 30;
$pet = “Kitten”;
$new = sprintf(“It costs $%03.2f for a %s.\n”,$money,$pet);
$new2 = sprintf(“%’.-20s%3.2f”,$pet,$money);
echo $new;
echo $new2;

The output of these statements is

It costs $030.00 for a Kitten.
Kitten.............. 30.00

Notice that the format for $money is 3.2f (3 digits wide with 2 decimal places)
for both $new and $new2, but in $new, it’s padded with a 0. In $new2, the
number format is not padded, so there is a space before 30.

For $new2, the format for $pet is ‘.-20. The 20 makes the space for $pet
20 characters wide. The value Kitten takes up 6 characters. The format char-
acters ‘. tell sprintf to pad the space with dots, so that produces 14 dots.

90 Part II: Variables and Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 90

The - format character says to left justify Kitten, so Kitten is on the left side
of the space, and the padding comes after Kitten. If the - is left out, Kitten is
right justified by default, which means that Kitten is on the right side of the
space, with the dots coming before it.

Often scripts need to display columns of numbers. For example, you might
have three numbers: 12.3, 1, and 234.55. If you just echo them, they display
as follows:

12.3
1
234.55

Even if you use number_format to specify two decimal places, they display
as follows:

12.30
1.00
234.55

You can display them in an orderly column, however, by using printf as
follows:

printf(“%5.2f\n”,$number1);
printf(“%5.2f\n”,$number2);
printf(“%5.2f\n”,$number3);

Your output is as follows:

12.30
1.00

234.55

In the preceding statements, %5.2f\n is the format that tells PHP how to
format the number in the output. Here’s a closer look:

� %: Tells PHP that the following digits are a formatting instruction.

� 5: The width — how long the number should be. If the number is less
than 5 digits wide, it is right-justified, which means it’s moved as far right
as it can go. Right-justified is the default, so no symbol is needed in the
format to right-justify the numbers.

� .2: Means that the number should be displayed with 2 decimal places.

� f: Tells PHP to display the number as a float.

� \n: Tells PHP to start a new line.

To put numbers into the proper format for dollars, you can use sprintf. The
following statement formats a number into a dollar amount:

$newvariablename = sprintf(“$%.2f”, $oldvariablename);

91Chapter 5: Working with Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 91

This statement reformats the number in $oldvariablename and stores it in
the new format in $newvariablename. For example, the following statements
display money in the correct format:

$price = 25;
printf(“$%.2f”,$price);

You see the following output:

$25.00

Working with Dates and Times
Dates and times can be important elements in a script. PHP has the ability to
recognize dates and times and handle them differently than plain character
strings. The computer stores dates and times in a format called a timestamp,
which is expressed entirely in seconds. However, because this is an impracti-
cal format for humans to read, PHP converts dates from your notation into a
timestamp the computer understands and from a timestamp into a format that
is familiar to people. PHP handles dates and times by using built-in functions.

The timestamp format is a UNIX Timestamp, an integer that is the number of
seconds from January 1, 1970 00:00:00 GMT to the time represented by the
timestamp. This format makes it easy to calculate the time between two
dates — just subtract one timestamp from the other.

Formatting dates
The function you will use most often is date. The date function converts a
date or time from the timestamp format into a format you specify. The gen-
eral format is as follows:

$mydate = date(“format”,$timestamp);

$timestamp is a variable with a timestamp stored in it. You previously stored
the timestamp in the variable by using a time or mktime, as described in the
next section. If $timestamp is not included, PHP obtains the current time
from the operating system. Thus, you can get today’s date with the following
statement:

$today = date(“Y/m/d”);

If today is March 10, 2004, this statement returns:

2004/03/10

92 Part II: Variables and Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 92

The format is a string that specifies the date format you want stored in the
variable. For example, the format “y-m-d” returns 04-3-10, and “M.d.Y”
returns Mar.10.2004. Table 5-4 lists some of the symbols that you can use in
the format string. (For a complete list of symbols, see the documentation at
www.php.net.) The parts of the date can be separated by hyphens (-), dots
(.), slashes (/), or spaces.

Table 5-4 Date Format Symbols
Symbol Meaning Example

M Month in text, abbreviated Jan

F Month in text not abbreviated January

m Month in numbers with leading zeros 02 or 12

n Month in numbers without leading zeros 1 or 12

d Day of the month; two digits with leading zeros 01 or 14

j Day of the month without leading zeros 3 or 30

l Day of the week in text not abbreviated Friday

D Day of the week in text as an abbreviation Fri

w Day of the week in numbers from 0 (Sunday) 5
to 6 (Saturday)

Y Year in four digits 2004

y Year in two digits 04

g Hour between 0 and 12 without leading zeros 2 or 10

G Hour between 0 and 24 without leading zeros 2 or 15

h Hour between 0 and 12 with leading zeros 01 or 10

H Hour between 0 and 12 with leading zeros 00 or 23

i Minutes 00 or 59

s Seconds 00 or 59

a am or pm in lowercase am

A AM or PM in uppercase AM

U Unix seconds 1056244941

93Chapter 5: Working with Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 93

Storing a timestamp in a variable
You can assign a timestamp with the current date and time to a variable with
the following statement:

$today = time();

Another way to store a current timestamp is with the following statement:

$today = strtotime(“today”);

You can store a specific date and time as a timestamp by using the function
mktime. The format is

$importantDate = mktime(h,m,s,mo,d,y);

where h is hours, m is minutes, s is seconds, mo is month, d is day, and y is
year. For example, you would store the date January 15, 2003, by using the
following statement:

$importantDate = mktime(0,0,0,1,15,2003);

You can also store specific timestamps by using strtotime with various key-
words and abbreviations that are very much like English. For instance, you
can create a timestamp for January 15, 2003, as follows:

$importantDate = strtotime(“January 15 2003”);

strtotime recognizes the following words and abbreviations:

� Month names: Twelve month names and abbreviations

� Days of the week: Seven days and some abbreviations

� Time units: Year, month, fortnight, week, day, hour, minute, second;
am, pm

� Some useful English words: Ago, now, last, next; this, tomorrow,
yesterday

� Plus and minus: + or -

� All numbers

� Time zones: For example, gmt (Greenwich Mean Time), pdt (Pacific
Daylight Time), and akst (Alaska Standard Time)

94 Part II: Variables and Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 94

You can combine the words and abbreviations in a variety of ways. The fol-
lowing statements are all valid:

$importantDate = strtotime(“tomorrow”); #24 hours from now
$importantDate = strtotime(“now + 24 hours”);
$importantDate = strtotime(“last saturday”);
$importantDate = strtotime(“8pm + 3 days”);
$importantDate = strtotime(“2 weeks ago”); # at current time
$importantDate = strtotime(“next year gmt”); #1 year from now
$importantDate = strtotime(“tomorrow 4am”);

You can find differences between timestamps by using subtraction. For exam-
ple, if $importantDate is in the past and you want to know how long ago
$importantDate was, you can subtract it from the variable $today you
defined earlier. For example:

$timeSpan = $today - $importantDate;

This gives you the number of seconds between the important date and today.

You can also use the following statement to find out how many hours have
transpired since the important date:

$timeSpan =(($today - $importantDate)/60)/60;

95Chapter 5: Working with Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 95

96 Part II: Variables and Data

09 541668 Ch05.qxd 3/25/04 2:50 PM Page 96

Chapter 6

Storing Data in Groups
by Using Arrays

In This Chapter
� Building arrays

� Assigning values to arrays

� Sorting arrays

� Using values in arrays

� Building multidimensional arrays

Arrays are complex variables that store a group of values under a single
variable name. An array is useful for storing a group of related values.

For example, you can store information about a car, such as model, color, and
cost, in a single array named $FordInfo. Information in an array can be han-
dled, accessed, and modified easily. For example, PHP has several methods
for sorting the information inside an array.

In this chapter, you find out how to create, modify, copy, and use arrays.

Creating and Working with Arrays
Arrays are an important feature in PHP programming. This section describes
how to create, modify, and remove arrays.

Creating arrays
To create a variable, you assign a value to it. Similarly, the simplest way to
create an array is to assign a value to it. For instance, assuming that you have
not referenced $customers at any earlier point in the script, the following
statement creates an array called $customers:

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 97

$customers[1] = “Sam Smith”;

At this point, the array named $customers has been created and holds only
one value — Sam Smith. Next, you use the following statements:

$customers[2] = “Sue Jones”;
$customers[3] = “Mary Huang”;

Now, the array $customers contains three values: Sam Smith, Sue Jones, and
Mary Huang.

An array can be viewed as a list of key/value pairs, stored as follows:

$arrayname[‘key1’] = value1;
$arrayname[‘key2’] = value2;
$arrayname[‘key3’] = value3;

and so on up to any number of elements in the array.

The key is also referred to as the index.

Arrays can use either numbers or strings for keys. In the $customers array,
the keys are numbers — 1, 2, and 3. However, you can also use strings for
keys. For example, the following statements create an array of state capitals:

$capitals[‘CA’] = “Sacramento”;
$capitals[‘TX’] = “Austin”;
$capitals[‘OR’] = “Salem”;

Or you can use shortcuts to create arrays, rather than write separate assign-
ment statements for each number. One shortcut uses the following statements:

$streets[] = “Elm St.”;
$streets[] = “Oak Dr.”;
$streets[] = “7th Ave.”;

When you create an array by using this shortcut, the values are automatically
assigned keys that are serial numbers, starting with the number 0. For exam-
ple, consider the following statement:

echo “$streets[0]”;

It sends the following output:

Elm St.

98 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 98

The first value in an array with a numbered index is 0, unless you deliberately
set it to a different number. One common mistake when working with arrays
is to think of the first number as 1, rather than 0.

An even shorter shortcut is to use the following statement:

$streets = array (“Elm St.”,”Oak Dr.”,”7th Ave.”);

This statement creates the same array as the preceding shortcut. It assigns
numbers as keys, starting with 0. If you want the array to start with the
number 12, instead of 0, you can use the following statement:

$streets = array (12 => “Elm St.”,”Oak Dr.”,”7th Ave.”);

This statement creates an array as follows:

$streets[12] = Elm St.
$streets[13] = Oak Dr.
$streets[14] = 7th Ave.

You can use a similar statement to create arrays with words as keys. For
example, the following statement creates the array of state capitals with an
array statement, instead of using separate statements for each element of the
array:

$capitals = array (“CA” => “Sacramento”,
“TX” => “Austin”,
“OR” => “Salem”);

Notice the structure of this statement. PHP doesn’t pay attention to the white
spaces or new lines. The statement could be written as one long line. The
organization of this statement is solely to make it easier for people to read.
You should make your statements as clear and legible as possible. When you
are troubleshooting your scripts, you will be glad you took the time to make
them more people-friendly.

You can also create an array with a range of values by using the following
statement:

$years = range(2001, 2010);

The resulting array looks like the following:

$years[0] = 2001
$years[1] = 2002
. . .
$years[8] = 2009
$years[9] = 2010

99Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 99

Similarly, you can use a statement, as follows:

$reverse_letters = range(“z”, “a”);

This statement creates an array with 26 elements:

$reverse_letters[0]=z
$reverse_letters[1]=y
. . .
$reverse_letters[24]=b
$reverse_letters[25]=a

Viewing arrays
You can see the structure and values of any array by using one of two
statements — var_dump or print_r. The print_r() statement, however,
gives somewhat less information. To display the $customers array, use
the following statement:

print_r($customers);

This print_r statement provides the following output:

Array
(

[1] => Sam Smith
[2] => Sue Jones
[3] => Mary Huang

)

This output shows the key and the value for each element in the array. To get
more information, use the following statement:

var_dump($customers);

This statement gives the following output:

array(3) {
[1]=>
string(9) “Sam Smith”
[2]=>
string(9) “Sue Jones”
[3]=>
string(10) “Mary Huang”

}

This output shows the data type of each element, such as a string of 9 char-
acters, in addition to the key and value. An array containing the customer
name and age would display as follows:

100 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 100

array(2) {
[“name”]=>
string(9) “Sam Smith”
[“age”]=>
int(12)

}

The integer value is identified as an integer with int, and the value of age is
shown. This customer is 12 years old.

Remember, this output is sent by PHP. If you’re using PHP for the Web, the
output displays on the Web page with HTML, which means that it displays in
one long line. To see the output on the Web in the useful format that I describe
here, send HTML tags that tell the browser to display the text as received, with-
out changing it, by using the following statements:

echo “<pre>”;
var_dump($customers);
echo “</pre>”;

Modifying arrays
Arrays can be changed at any time in the script, just as variables can. The
individual values can be changed, elements can be added or removed, and
elements can be rearranged. For example, if you have an existing array named
$capitals, you can use the following statement to change the value of an
element:

$capitals[‘TX’] = “Big Springs”;

This statement changes the value of this element of the $capitals array,
although the people in Austin might object to the change. Or you could use
the following statement:

$capitals[‘RI’] = “Providence”;

The statement adds a new element to the array, leaving the existing elements
intact.

Suppose that your array has numbers for keys, as is the case with the follow-
ing array, which is created at the beginning of a script:

$customers[1] = Sam Smith
$customers[2] = Sue Jones
$customers[3] = Mary Huang

101Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 101

You can use the following statement later in the script:

$customers[] = “Juan Lopez”;

$customers now becomes an array with four elements, as follows:

$customers[1] = Sam Smith
$customers[2] = Sue Jones
$customers[3] = Mary Huang
$customers[4] = Juan Lopez

You can also copy an entire existing array into a new array with this statement:

$customerCopy = $customers;

Removing values from arrays
Sometimes you need to completely remove a value from an array. For exam-
ple, suppose you have the following array:

$colors = array (“red”, “green”, “blue”, “pink”, “yellow”);

This array has five values. Now you decide that you no longer like the color
pink, so you use the following statement to try to remove pink from the array:

$colors[3] = “”;

Although this statement sets $colors[3] to blank, it does not remove it from
the array. You still have an array with five values, one of the values being an
empty string. To totally remove the item from the array, you need to unset it
with the following statement:

unset($colors[3]);

Now your array has only four values in it and looks as follows:

$colors[0] = red
$colors[1] = green
$colors[2] = blue
$colors[4] = yellow

Notice that the other keys did not change when element 3 was removed.

After an array has been created, it does not cease to exist unless it is deliber-
ately removed. Removing all the values doesn’t remove the array itself, just

102 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 102

like removing all the drawers from a dresser doesn’t make the dresser disap-
pear. To remove the array itself, you can use the following statement:

unset($colors);

Sorting Arrays
One of the most useful features of arrays is that PHP can sort them for you.
PHP originally stores array elements in the order in which you create them.
If you display the entire array without changing the order, the elements are
displayed in the order in which they were created. Often, you want to change
this order. For example, you may want to display the array in alphabetical
order by value or by key.

PHP can sort arrays in a variety of ways. To sort an array that has numbers
as keys, use a sort statement as follows:

sort($arrayname);

This statement sorts arrays by the values and assigns new keys that are the
appropriate numbers. The values are sorted with numbers first, uppercase
letters next, and lowercase letters last. For example, consider the $streets
array:

$streets[0] = “Elm St.”;
$streets[1] = “Oak Dr.”;
$streets[2] = “7th Ave.”;

You enter the following sort statement:

sort($streets);

Now the array becomes as follows:

$streets[0] = “7th Ave.”;
$streets[1] = “Elm St.”;
$streets[2] = “Oak Dr.”;

If you use sort() to sort an array with words as keys, the keys are changed
to numbers, and the word keys are thrown away.

To sort arrays that have words for keys, use the asort statement as follows:

asort($capitals);

103Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 103

This statement sorts the capitals by value, but it keeps the original key for
each value instead of assigning a number key. For example, consider the state
capitals array created in the preceding section:

$capitals[‘CA’] = “Sacramento”;
$capitals[‘TX’] = “Austin”;
$capitals[‘OR’] = “Salem”;

You use the following asort statement,

asort($capitals);

The array becomes as follows:

$capitals[‘TX’] = Austin
$capitals[‘CA’] = Sacramento
$capitals[‘OR’] = Salem

Notice that the keys stayed with the value when the elements were reordered.
Now the elements are in alphabetical order, and the correct state key is still
with the appropriate state capital. If the keys has been numbers, the numbers
would now be in a different order. For example, suppose the original array was
as follows:

$capitals[1] = “Sacramento”;
$capitals[2] = “Austin”;
$capitals[3] = “Salem”;

After an asort statement, the new array would be as follows:

$capitals[2] = Austin
$capitals[1] = Sacramento
$capitals[3] = Salem

It’s unlikely that you want to use asort on an array with numbers as a key.

You can use several other sort statements to sort in other ways. Table 6-1
lists all the available sort statements.

Table 6-1 Ways You Can Sort Arrays
Sort Statement What It Does

sort($arrayname) Sorts by value; assigns new numbers as the keys.

asort($arrayname) Sorts by value; keeps the same key.

rsort($arrayname) Sorts by value in reverse order; assigns new num-
bers as the keys.

104 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 104

Sort Statement What It Does

arsort($arrayname) Sorts by value in reverse order; keeps the
same key.

ksort($arrayname) Sorts by key.

krsort($arrayname) Sorts by key in reverse order.

usort($arrayname, Sorts by a function (see Chapter 8 for information
functionname) on functions).

natsort($arrayname) Sorts mixed string/number values in natural order.
For example, given an array with values day1, day5,
day11, day2, it sorts into the following order: day1,
day2, day5, day11. The previous sort functions sort
the array into this order: day1, day11, day2, day5.

Using Arrays in Statements
Arrays can be used in statements in the same way that variables are used in
statements. This section shows the use of arrays in PHP statements.

You can retrieve any individual value in an array by accessing it directly, as in
the following example:

$CAcapital = $capitals[‘CA’];
echo $CAcapital ;

You get the following output from these statements:

Sacramento

If you use an array element that doesn’t exist in a statement, a notice is dis-
played. For example, suppose you use the following statement:

$CAcapital = $capitals[‘CAx’];

If the array $capitals exists, but no element has the key CAx, you see the
following notice:

Notice: Undefined index: CAx in d:\testarray.php on line 9

A notice does not cause the script to stop. Statements after the notice will
continue to execute. But because no value has been put into $CAcapital,
any subsequent echo statements will echo a blank space. You can prevent
the notice from being displayed by using the @ symbol:

105Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 105

@$CAcapital = $capitals[‘CAx’];

Using arrays in echo statements
You can echo an array value like this:

echo $capitals[‘TX’];

It displays the following:

Austin

If you include the array value in a longer echo statement that’s enclosed by
double quotes, you may need to enclose the array value name in curly braces
like this:

echo “The capital of Texas is {$capitals[‘TX’]}”;

The output is as follows:

The capital of Texas is Austin

Using arrays in list statements
You can retrieve several values at once from an array with the list statement.
The list statement copies values from an array into variables. Suppose you
create the following array:

$shoeInfo = array(“loafer”, “black”, 22.00);

You can display the array with the following statement:

print_r($shoeInfo);

The output is as follows:

Array
(

[0] => loafer
[1] => black
[2] => 22

)

106 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 106

The following statements show the use of the list statement on the
$shoeInfo array:

list($first,$second) = $shoeInfo;
echo $second,” “,$first;

This list statement creates two variables named $first and $second and
copies the first two values from $shoeInfo into the two new variables, as if
you had used the following two statements:

$first=$shoeInfo[0];
$second=$shoeInfo[1];

The third value in $shoeInfo is not copied into a variable because the list
statement contains only two variables. The output from the echo statement
is as follows:

black loafer

In some cases, you may want to retrieve the key from an array element rather
than the value. Suppose the following element is the first element in an array:

$shoeInfo[‘style’] = loafer;

The following statements retrieve the key, along with the value, and echo
them:

$value = $shoeInfo[‘style’];
$key = key($shoeInfo);
echo “$key: $value”;

The output from these statements is as follows:

style: loafer

The first statement puts loafer into $value. The second statement puts
style into $key. The key statement gets the key of an array element. In this
case, it retrieves the key from the first element because that was the current
element where the pointer is located. You can get any key in the array by
walking through the array. The next section explains what the pointer is and
how to walk through arrays.

Walking through an Array
You will often want to do something to every value in an array. You may want
to echo each value, store each value in a database, or add six to each value in

107Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 107

the array. In technical talk, walking through each and every element in an
array, in order, is called iteration. It is also sometimes called traversing. This
section describes two ways to walk through an array:

� Traversing an array manually: Uses a pointer to move from one array
value to another

� Using foreach: Automatically walks through the array, from beginning
to end, one value at a time

Traversing an array manually
You can walk through an array manually by using a pointer. To do this, think of
your array as a list. Imagine a pointer pointing to a value in the list. The pointer
stays on a value until you move it. After you move it, it stays there until you
move it again. You can move the pointer with the following instructions:

� current($arrayname): Refers to the value currently under the pointer;
does not move the pointer

� next($arrayname): Moves the pointer to the value after the current value

� previous($arrayname): Moves the pointer to the value before the cur-
rent pointer location

� end($arrayname): Moves the pointer to the last value in the array

� reset($arrayname): Moves the pointer to the first value in the array

The following statements manually walk through an array containing state
capitals:

$value = current ($capitals);
echo “$value
”;
$value = next ($capitals);
echo “$value
”;
$value = next ($capitals);
echo “$value
”;

Unless you have moved the pointer previously, the pointer is located at the
first element when you start walking through the array. If you think the array
pointer may have been moved earlier in the script or if your output from the
array seems to start somewhere in the middle, use the reset statement
before you start walking, as follows:

reset($capitals);

Using this method to walk through an array, you need an assignment state-
ment and an echo statement for every value in the array — for each of the 50
states. The output is a list of all the state capitals.

108 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 108

This method gives you flexibility. You can move through the array in any
manner, not just one value at a time. You can move backwards, go directly
to the end, skip every other value by using two consecutive next statements,
or employ whatever method is useful. However, if you want to go through the
array from beginning to end, one value at a time, PHP provides an easier
method: the foreach statement, which does exactly what you need more
efficiently. The foreach statement is described in the next section.

Using foreach to walk through an array
You can use foreach to walk through an array one value at a time and exe-
cute a block of statements by using each value in the array. The general
format is as follows:

foreach ($arrayname as $keyname => $valuename)
{

block of statements;
}

In this format, you need to fill in the following information:

� arrayname: The name of the array you are walking through.

� keyname: The name of the variable where you want to store the key. The
keyname variable is optional. If you leave out $keyname =>, only the
value is stored into $valuename.

� valuename: The name of the variable where you want to store the value.

For example, the following foreach statement walks through a sample array
of state populations and echoes a list:

$state_population = array (“CA” => 34501130,
“WY” => 494423,
“OR” => 3472867);

ksort($state_population);
foreach($state_population as $state => $population)
{

$population = number_format($population);
echo “$state: $population.
”;

}

The preceding statements give the following Web page output:

CA: 34,501,130
OR: 3,472,867
WY: 494,423

109Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 109

You can use the following line in place of the foreach line in the previous
statements:

foreach ($state_population as $population)

With this statement, the key (state) is not stored in a variable. Only the popu-
lations are available for the output.

When foreach starts walking through an array, it moves the pointer to the
beginning of the array. You don’t need to reset an array before walking
through it with foreach.

Finding Array Size
To see the structure and values of your array, you can use var_dump and
print_r (described earlier in this chapter in “Viewing arrays”), but some-
times you just want to know the size of your array, rather than see everything
that’s in it.

You can find out the size of your array by using either the count statement or
a sizeof statement. The format for these statements is as follows:

$n = count($arrayname);
$n = sizeof($arrayname);

After either of these statements, $n will contain the number of elements in
the array.

Converting Arrays into Strings
(And Vice Versa)

Sometimes you want to perform an operation on information, but the opera-
tion requires the information to be in a different format. For instance, you may
want to display every word in a sentence on a separate line. One way to do this
is to add a \n on the end of each word before you display it. You could use a
foreach statement to do that easily if the sentence is in an array, rather than
in a string. PHP allows you to create an array that contains one word of the sen-
tence in each element.

You can create an array that contains the contents of a string by using a
statement in the following format:

$arrayname = explode(“s”,string);

110 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 110

The first item in the parentheses (s) is the character to use to divide the
string. The second item is the string itself. For example, the following state-
ment creates an array that contains the characters in a string:

$string1 = “This:is a: new:house”;
$testarray = explode(“:”,$string1);
print_r($testarray);

The explode statement tells PHP to split the string at each colon (:) and
create an array containing the substrings. The output is the following:

Array
(

[0] => This
[1] => is a
[2] => new
[3] => house

)

$string1 is not affected.

Conversely, you can convert an array into a string by using the following
statement:

$resString = implode(“s”,$array);

The statement tells PHP to create a string containing all the elements in
$array, with s separating the text from each array element, and store the
string in $resString. For example, you could use the following statements:

$arrayIn = array(“red”, “blue”, “green”);
$stringOut = implode(“;”,$arrayIn);
echo $stringOut;

The output string from implode is stored in $stringOut. The implode
statement, as you might guess, doesn’t affect $arrayIn. In general, these
statements do not affect the input to the statement; they just read it. If
any statement changes the input, I will point it out to you.

The following is the output of this echo statement:

red;blue;green

There is no space between the elements in the string because no space was
specified in the implode statement. Using a space in s, as in the following
implode statement, puts spaces into the resulting string:

$stringOut = implode(“; “,$arrayIn);

111Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 111

With this statement, the output is as follows:

red; blue; green

Converting Variables into
Arrays (And Vice Versa)

Sometimes you want the information in an array stored in variables that you
can use in PHP statements. Or you need variables converted to array ele-
ments. For example, you might want to perform the same operation on a
bunch of variables, such as add 1 to each variable value. If you convert the
variables into elements of an array, you can use one foreach statement to
access the variable values one at a time, rather than write a bunch of state-
ments to access each variable separately.

Using the extract statement, you can retrieve all the values from an array,
and insert each value into a variable, by using the key for the variable name.
In other words, each array value is copied into a variable named for the key.
For example, the following statements get all the information from an array
and echo it:

$testarray = array(“pink”=>”carnation”, “red”=>”rose”);
extract($testarray);
echo “My favorite red flower is a $red.\n”;
echo “My favorite pink flower is a $pink.”;

The output for these statements is the following:

My favorite red flower is a rose.
My favorite pink flower is a carnation.

Conversely, you can also convert a group of simple variables into an array by
using a compact statement that copies the value from each specified variable
name into an array element. The use of the compact statement is, shown in
the following statements:

$color1 = “red”;
$color2 = “blue”;
$a = “purple”;
$b = “orange”;
$arrayIn = array(“a”,”b”);
$arrayOut = compact(“color1”,”color2”,$arrayIn);

112 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 112

The result is the following array:

$arrayOut[color1] = red
$arrayOut[color2] = blue
$arrayOut[a] = purple
$arrayOut[b] = orange

As you can see, the names of the variables are used as the keys.

Notice that two different methods are used in the compact statement to spec-
ify the variables that make up the array:

� First method: You can use the variable names directly, as strings. The
two variables color1 and color2 in the example show this method.

� Second method: You use an array that contains the names of the vari-
ables. In the previous code, $arrayIn contains the variable names: a
and b. Then in the compact statement, the array name is used to add the
variables to the array.

You can use either method. If you have only a few variables to compact into
an array, the first method of just using the variable names is probably fine.
However, if you have a lot of variables to include, you may prefer putting the
names into an array first, and then using the array in the compact statement.

Splitting and Merging Arrays
You often need to put arrays together or take them apart. For example, suppose
you have two classes of students and you have two arrays, each of which stores
the names of the students in one class. If the two classes were to merge, you
would want to merge the two arrays containing the student names.

You can split an array by creating a new array that contains a subset of an
existing array. You can do this by using a statement of the following general
format:

$subArray = array_slice($arrayname,n1,n2);

The n1 in the statement is the sequence number of the element where the
new array should start, such as 0 for the first element in the array or 1 for the
second element. The n2 is the length of the new array. For example, consider
the following statements:

$testarray = array(“red”, “green”, “blue”,”pink”);
$subArray = array_slice($testarray,1,2);

113Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 113

The new array, $subArray, will contain the following:

[0] => green
[1] => blue

It starts with element 1 of $testarray and takes 2 elements.

Unless you specify otherwise, arrays begin with 0, not 1. Therefore, element 1
of $testarray is green. Red is element 0.

Conversely, you can merge two or more arrays together by using the follow-
ing statement:

$bigArray = array_merge($array1,$array2,...);

For example, you might use the following statements to merge arrays:

$array1 = array(“red”,”blue”);
$array2 = array(“green”,”yellow”);
$bigArray = array_merge($array1,$array2);

After the statement, $bigArray is the following array:

$bigArray[0] = red
$bigArray[1] = blue
$bigArray[2] = green
$bigArray[3] = yellow

You can merge arrays with keys that are words, rather than numbers, as well.
However, if the keys are the same for any of the elements, the later element
with the same key word will overwrite the first element of the same key. For
example, suppose you merge the following arrays:

$array1 = array(“color1”=>”red”,”color2”=>”blue”);
$array2 = array(“color1”=>”green”,”color3”=>”yellow”);
$bigArray = array_merge($array1,$array2);

The output array is as follows:

$bigArray[color1] = green
$bigArray[color2] = blue
$bigArray[color3] = yellow

If you need to merge arrays that have identical keys, you can use the statement
array_merge_recursive rather than array_merge. The array_merge_
recursive statement creates a multidimensional array when keys are identical,
instead of overwriting the value as array_merge does. Multidimensional arrays
are explained in the section, “Multidimensional Arrays,” later in this chapter.

114 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 114

Comparing Arrays
You may need to know whether two arrays are the same. You can identify
the elements that are different or the elements that are the same. To find
out which elements are different, use the following statement:

$diffArray = array_diff($array1,$array2,...);

After this statement, $diffArray contains the elements from $array1 that are
not present in any of the other listed arrays. The elements in the result array
will have the same keys. For example, you can use the following statements:

$array1 = array(“a”=>”apple”, “b”=>”orange”, “c”=>”banana”);
$array2 = array(“prune”, “orange”, “banana”);
$diffArray = array_diff($array1,$array2);

After this code, $diffArray looks like this:

$diffArray[a] = apple;

The element apple is in the array because apple is in $array1 but not in
$array2.

The order in which you list the arrays to be compared makes a difference.
For example, if you used the following statement, instead of the preceding
one, you’d get a different output:

$diffArray = array_diff($array2,$array1);

After this statement, $diffArray looks like the following:

$diffArray[0] = prune;

Because $array2 is listed first in this statement, the resulting difference
array contains only prune because prune is in $array2, listed first, but not
in $array1, listed second.

If you want to find array elements that differ in either the value or the key,
you can use the following statement:

$diffArray = array_diff_assoc($array1,$array2);

Using the same $array1 and $array2 as the previous examples, the result-
ing array would look like this:

$diffArray[a] = apple
$diffArray[b] = orange
$diffArray[c] = banana

115Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 115

In this case, none of the elements in $array1 appear in $array2 because the
keys are all different.

You can create an array that contains the elements that are the same, rather
than different, in two or more arrays by using the following statement:

$simArray = array_intersect($array1,$array2,. . .);

For example, using the same arrays, you could use the following statement:

$simArray = array_intersect($array1,$array2);

The results array would look like this:

$simArray[b] = orange
$simArray[c] = banana

This array_intersect statement adds an element to the new array for any
values that are in both the arrays. If you want both the value and the key to
be the same, use the following statement:

$simArray = array_intersect_assoc($array1,$array2);

This statement requires both the value and the key to be identical before
adding an element to the array. Using the same arrays, $simArray is empty
after the statement, because even though two of the values are the same,
none of the keys are the same.

Working with Other Array Operations
The following sections describe these miscellaneous operations on arrays:

� Adding the values of an array

� Removing duplicate items from an array

� Exchanging keys and values in an array

Summing arrays
To add all the values in an array, use the following statement:

$sum = array_sum($array);

116 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 116

For example, you can use the following statements;

$arrayAdd = array(3,3,3);
$sum = array_sum($arrayAdd);
echo $sum;

The output is 9.

Of course, you are only going to add elements in an array of numbers. As
mentioned in Chapter 5, PHP converts strings to 0 if you try to add them.

Removing duplicate items
You sometimes need to remove duplicate elements from an array. For exam-
ple, if you want to print a list of customer names from the elements of an
array, you probably want each name listed only once. You can do so with the
following statements:

$names = array(“Mary”, “Sally”, “Sally”,”Sam”);
$names2 = array_unique($names);

The array $names2 looks like this:

$names2[0] => Mary
$names2[1] => Sally
$names2[3] => Sam

As you can see, the duplicate element and its key are not in the resulting
array.

Exchanging keys and values
You can exchange values and keys in an array. For example, suppose you
have the following array:

$testarray[‘rose’] = red
$testarray[‘iris’] = purple

To exchange the values, use the following statement:

$arrayFlipped = array_flip($testarray);

The array $arrayFlipped looks like this:

$testarray[‘red’] = rose
$testarray[‘purple’] = iris

117Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 117

Multidimensional Arrays
In the earlier sections of this chapter, I describe arrays that are a single list of
key/value pairs. However, on some occasions, you may want to store values
with more than one key. For example, suppose you want to store the follow-
ing food prices together in one variable:

� onion, 0.50

� apple, 2.50

� orange, 2.00

� bacon, 3.50

� potato, 1.00

� ham, 5.00

You can store these products in an array as follows:

$foodPrices[‘onion’] = 0.50;
$foodPrices[‘apple’] = 2.50;
$foodPrices[‘orange’] = 2.00;
$foodPrices[‘bacon’] = 3.50;
$foodPrices[‘potato’] = 1.00;
$foodPrices[‘ham’] = 5.00;

Your script can easily look through this array whenever it needs to know the
price of an item. But suppose you have 3,000 products. Your script would need
to look through 3,000 products to find the one with onion or ham as the key.

Notice that the list of foods and prices includes a variety of food that can be
classified into three groups: vegetable, fruit, and meat. If you classify the prod-
ucts, then the script needs to look through only one classification to find the
correct price. Classifying the products is much more efficient. You can classify
the products by putting the costs in a multidimensional array as follows:

$foodPrices[‘vegetable’][‘onion’] = 0.50;
$foodPrices[‘vegetable’][‘potato’] = 1.00;
$foodPrices[‘fruit’][‘apple’] = 2.50;
$foodPrices[‘fruit’][‘orange’] = 2.00;
$foodPrices[‘meat’][‘bacon’] = 3.50;
$foodPrices[‘meat’][‘ham’] = 5.00;

This kind of array is called a multidimensional array because it’s like an array
of arrays. Figure 6-1 shows the structure of $foodPrices as an array of arrays.
The figure shows that $foodPrices has three key/value pairs. The value for
each key — vegetable, fruit, and meat — is an array with two key/value pairs.
For example, the value for the key meat is an array with the two key/value
pairs: bacon/3.50 and ham/5.00.

118 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 118

$foodPrices is a two-dimensional array. PHP can also understand multi-
dimensional arrays that are four, five, six, or more levels deep. However, my
head starts to hurt if I try to comprehend an array that is more than three
levels deep. The possibility of confusion increases as the number of dimen-
sions increases.

Creating multidimensional arrays
You can create multidimensional arrays in the same ways you create one-
dimensional arrays. You can create them with a series of direct statements,
as follows:

$foodPrices[‘vegetable’][‘potato’] = 1.00;
$foodPrices[‘fruit’][‘apple’] = 2.50;

You can also use a shortcut and allow PHP to choose the keys, as follows:

transportation[‘car’][] = “Ford”;
transportation[‘car’][] = “Jeep”;

PHP will assign numbers as keys so that the array looks like the following:

transportation[car][0] = Ford;
transportation[car][1] = Jeep;

You can also create a multidimensional array by using the array statement, as
follows:

$foodPrices = array(
“vegetable”=>array(“potato”=>1.00,”onion”=>.50),
“fruit”=>array(“apple”=>2.50,”orange”=>2.00));

Notice that foodPrices is an array, created by the first array statement. The
first array statement sets two elements — vegetable and fruit. The values for
the two elements are themselves set by array statements, resulting in an array
of arrays. This statement creates the following multidimensional array:

$foodPrices key value
key value

vegetable onion 0.50
potato 1.00

fruit orange 2.00
apple 2.50

meat bacon 3.50
ham 5.00

Figure 6-1:
The

structure of
$food

Prices, an
array of
arrays.

119Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 119

$foodPrices[vegetable][potato] = 1.00
$foodPrices[vegetable][onion] = .50
$foodPrices[fruit][apple] = 2.50
$foodPrices[fruit][orange] = 2.00

Viewing multidimensional arrays
You can view a multidimensional array in the same ways you can view any
array — by using the print_r or the var_dump statements. The output of
the var_dump statement is shown here:

array(2) {
[“vegetable”]=>
array(2) {
[“potato”]=>
float(1)
[“onion”]=>
float(0.5)

}
[“fruit”]=>
array(2) {
[“apple”]=>
float(2.5)
[“orange”]=>
float(2)

}
}

The first line identifies the first array and says it has two elements. The first
element, with the key vegetable, contains an array of two elements with the
keys potato with a value of 1 of type float, and the second element with the
key onion and a value of 0.5 of type float. The second element of the main
array, with the key fruit, also contains an array with two elements.

Using multidimensional
arrays in statements
You can get values from a multidimensional array by using the same proce-
dures that you use with a one-dimensional array. For example, you can
access a value directly with this statement:

$hamPrice = $foodPrices[‘meat’][‘ham’];

You can also echo the value:

echo $foodPrices[‘meat’][‘ham’];

120 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 120

However, if you combine the value within double quotes, you need to use
curly braces to enclose the variable name. The $ that begins the variable
name must follow the { immediately, without a space, as follows:

echo “The price of ham is \${$foodPrices[‘meat’][‘ham’]}”;

Notice the backslash (\) in front of the first dollar sign ($). The backslash
tells PHP that $ is a literal dollar sign, not the beginning of a variable name.
The output is

The price of ham is $5

Earlier in this chapter, I describe several statements that convert strings to
arrays (and vice versa) and convert arrays to variables (and vice versa) and
statements for other operations on arrays. Most of the statements don’t
make sense with multidimensional arrays and won’t work correctly. However,
remember that a multidimensional array is an array of arrays. Therefore, you
can use one of the elements of the multidimensional array (which is an array
itself) in these statements. For instance, the implode statement described ear-
lier in this chapter converts an array into a string. You can’t use the implode
statement with a multidimensional array because its values are arrays, not
strings. However, you can use any one of the elements in the implode state-
ments, as follows:

$resString = implode(“: “,$foodPrices[‘vegetable’]);

This statement puts the value for each element of the vegetable array into
the string, separating them by :. When you echo $resString, you see the
following output:

1: 0.5

The output is the value of potato (1) and the value of onion (0.5). The two
values are separated by a semicolon and a space, as specified in the implode
statement.

Walking through a multidimensional array
You can walk through a multidimensional array by using foreach statements
(described in the section “Walking through an Array,” earlier in this chapter).
Because a two-dimensional array, such as $foodPrices, contains two arrays,
it takes two foreach statements to walk through it. One foreach statement
is inside the other foreach statement. (Putting statements inside other state-
ments is called nesting.)

121Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 121

The following statements echo the values from the multidimensional array:

foreach ($foodPrices as $category)
{

foreach ($category as $food => $price)
{
$f_price = sprintf(“%01.2f”, $price);
echo “$food: \$$f_price \n”;

}
}

The output is the following:

onion: $0.50
potato: $1.00
apple: $2.50
orange: $2.00
bacon: $3.50
ham: $5.00

Here is how PHP interprets these foreach statements:

1. The first key/value pair in the $foodPrices array is retrieved, and the
value is stored in the variable $category. (The value is an array.)

2. The first key/value pair in the $category array is retrieved. The key is
stored in $food, and the value is stored in $price.

3. The value in $price is formatted into the correct format for money.

4. One row for the product and its price is echoed.

5. The next key/value pair in the $category array is reached.

6. The price is formatted, and the next row for the food and its price is
echoed.

7. Because there are no more key/value pairs in $category, the inner
foreach statement ends.

8. The next key/value pair in the outer foreach statement is reached. The
next value is put in $category, which is an array.

9. The procedure in Steps 1 through 8 is repeated until the last key/value
pair in the last $category array is reached. The inner foreach state-
ment ends. The outer foreach statement ends.

In other words, the outer foreach starts with the first key/value pair in the
array. The key is vegetable, and the value of this pair is an array that is put
into the variable $category. The inner foreach then walks through the
array in $category. When it reaches the last key/value pair in $category, it
ends. The script is then back in the outer loop, which goes on to the second
key/value pair . . . and so on until the outer foreach reaches the end of the
array.

122 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 122

Built-in PHP Arrays
PHP has several built-in arrays that you can use when writing PHP scripts.
Different types of information are stored in different arrays. For example,
information about your server (such as headers, paths, and script locations)
is stored in an array called $_SERVER. When you want to display the name of
the current script that is running, it’s available in the $_SERVER built-in array
in $_SERVER[‘PHP_SELF’].

Using superglobal arrays
Currently, two sets of built-in arrays contain the same information. One set of
arrays, introduced in PHP 4.1.0, are called superglobals or autoglobals because
they can be used anywhere, even inside a function. (Functions and the use of
variables inside functions are explained in Chapter 8.) The older arrays, with
long names such as $HTTP_SERVER_VARS, must be made global before they
can be used in an array, as explained in Chapter 8. Unless you’re using an old
version of PHP, use the newer arrays, those whose names begin with an
underscore (_). The older arrays should be used only when you’re forced to
use a version of PHP older than PHP 4.1.0.

A new php.ini setting introduced in PHP 5 allows you to prevent PHP from
automatically creating the older, long arrays. It’s very unlikely that you will
need to use them, unless you’re using some old scripts containing the long
variables. The following line in php.ini controls this setting:

register_long_arrays = On

At the current time, this setting is On by default. Unless you’re running old
scripts that need the old arrays, you should change the setting to Off so that
PHP doesn’t do this extra work.

Although the setting is currently On by default, that could change. The default
setting might change to Off in a future version. If you’re using some old scripts
and getting errors on lines containing the long arrays, such as $HTTP_GET_
VARS, check your php.ini setting for long arrays. It might be Off, and the long
arrays needed by the older script are not being created at all.

The built-in arrays are listed in Table 6-2, along with a short description. The
use of specific arrays is described in detail in this book where the related
subjects are described. For example, the built-in arrays that contain form
variables are discussed in Chapter 10 when I discuss the use of forms.

123Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 123

Table 6-2 Handy Built-in Arrays
Array Description

$GLOBALS Contains all the global variables. For example, if
you use the statement, $testvar = 1, you can
then access the variable as $GLOBALS
[‘testvar’].

$ _POST Contains all the variables contained in a form if
the form uses method=”post”.

$HTTP_POST_VARS Same as $ _POST.

$ _GET Contains all the variables passed from a previous
page as part of the URL. This includes variables
passed in a form using method=”get”.

$HTTP_GET_VARS Same as $ _GET.

$ _COOKIE Contains all the cookie variables.

$HTTP_COOKIE_VARS Same as $ _COOKIE.

$ _SESSION Contains all the session variables.

$HTTP_SESSION_VARS Same as $ _SESSION.

$_REQUEST Contains all the variables together that are in
$_POST, $_GET, and $_SESSION.

$_FILES Contains the names of files that have been
uploaded.

$HTTP_FILES_VARS Same as $_FILES.

$_SERVER Contains information about your server. Because
your Web server provides the information, the
information that’s available depends on what
server you’re using.

$HTTP_SERVER_VARS Same as $_SERVER.

$_ENV Contains information provided by your operating
system, such as the operating system name, the
system drive, and the path to your temp directory.
This info varies depending on your operating
system.

$HTTP_ENV_VARS Same as $_ENV.

124 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 124

Using $_SERVER and $_ENV
The $_SERVER and $_ENV arrays contain different information, depending on
the server and operating system you’re using. You can see what information
is in the arrays for your particular server and operating system by using the
following statements:

foreach($_SERVER as $key =>$value)
{

echo “Key=$key, Value=$value\n”;
}

The output includes such lines as the following:

Key=DOCUMENT_ROOT, Value=c:/program files/apache
group/apache/htdocs

Key=PHP_SELF, Value=/test.php

The DOCUMENT_ROOT element shows the path to the directory where Apache
expects to find the Web page files.

The PHP_SELF element shows the file that contains the script that is currently
running.

You can see the information in the $_ENV array by using the phpinfo() state-
ment with a 16 to specify the environmental variables, as follows:

phpinfo(16);

Built-in arrays are available only if track-vars is enabled. As of PHP 4.0.3,
track-vars is always enabled, unless the PHP administrator deliberately
turns track-vars off when installing PHP. It’s rare that track-vars would
be turned off. If the built-in arrays don’t seem to be available, check with
phpinfo() to make sure that track-vars is turned on. If it’s turned off, PHP
has to be reinstalled.

Using $argv and $argc
Sometimes you want to pass information into a script from the outside. One
way to do this is to pass the information to the script on the command line
when you start the script. You rarely want to do this when using PHP for the
Web, but you may want to do this when running PHP CLI from the command
line. For example, suppose you write a script that can add any two numbers

125Chapter 6: Storing Data in Groups by Using Arrays

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 125

together and you want to pass the two numbers into the script when you
start it. You can give PHP the two numbers you want it to add together when
you start the script, on the command line, as follows:

php add.php 2 3

In this statement, the script is named add.php, and 2 and 3 are the numbers
you want the script to add together. These numbers are available inside the
script in an array called $argv. This array contains all the information on the
command line, as follows:

$argv[0]=add.php
$argv[1]=2
$argv[2]=3

So, $argv always contains at least one element — the script name.

Then, in your script, you can use the following statements:

$sum = $argv[1] + $argv[2];
echo $sum;

The output is the following:

5

Another variable is also available called $argc. This variable stores the number
of elements in $argv. Thus, $argc always equals at least 1, which is the name
of the script. In the preceding example, $argc equals 3.

126 Part II: Variables and Data

10 541668 Ch06.qxd 3/25/04 2:52 PM Page 126

Part III
Basic PHP

Programming

11 541668 PP03.qxd 3/25/04 2:51 PM Page 127

In this part . . .

In this part, you find out how to write complete PHP
scripts. You discover how to combine simple state-

ments into a finished script. You find out about complex
statements that allow you to write scripts that perform
complex tasks. You see the usefulness of reusing code and
find out how to write code that can be reused. When you
finish this part, you will know everything you need to
know to write useful and complex PHP scripts.

11 541668 PP03.qxd 3/25/04 2:51 PM Page 128

Chapter 7

Controlling the Flow of the Script
In This Chapter
� Changing the order in which statements are executed

� Setting up conditions

� Joining simple conditions to make complex conditions

� Using conditions in conditional statements and loops

� Writing if statements

� Building and using loops for repeated statements

� Breaking out of loops

P HP scripts are a series of instructions in a file. PHP begins at the top
of the file and executes each instruction, in order, as it comes to it.

However, some scripts need to be more complicated. You may want your
script to display one page to new customers and a different page to existing
customers. Or you may need to display a list of phone numbers by executing
a single echo statement repeatedly, once for each phone number. This chap-
ter describes how to change the order in which simple statements are exe-
cuted by using complex statements such as conditional statements or loops.

Changing the Order of
Statement Execution

Simple statements in PHP are executed one after another from the beginning
of the script to the end. For example, the following statements in a script are
executed in order:

$a = “Good Morning”;
echo $a;
$a = “Good Afternoon”;
echo $a;

To change the order of execution of these statements, you have to change the
order of the statements themselves, as follows:

541668 Ch07.qxd 3/25/04 10:24 PM Page 129

130 Part III: Basic PHP Programming

$a = “Good Afternoon”;
echo $a;
$a = “Good Morning”;
echo $a;

However, suppose you want to display the appropriate greeting for the time
of day. You want to echo Good Morning if it’s before noon, and you want to
echo Good Afternoon if it’s after noon. In other words, you want to do the
following:

if (time is before noon)
{

$a = Good Morning;
echo $a;

}
or else if (time is after noon)
{

$a = Good Afternoon;
echo $a;

}

To display the appropriate greeting, you need a complex statement that tests
the condition of time. PHP provides two types of complex statements that
enable you to perform tasks like this — tasks that change the order in which
statements are executed:

� Conditional statements: Sometimes you need to set up statements that
execute only when certain conditions are met. For example, you may
want to provide your catalog only to customers who have paid their bills
and not to customers who owe you money. This type of statement is
called a conditional statement. The PHP conditional statements are the
if statement and the switch statement.

� Looping statements: Frequently you need to set up a block of statements
that is repeated. For example, you may want to send an e-mail message to
all your customers. To do that, you can use two statements: one that gets
the customer’s e-mail address from the database and one that sends the
customer an e-mail message. You would need to repeat these two state-
ments for every customer in the database. The feature that enables you
to execute statements repeatedly is called a loop. Three types of loops
are for loops, while loops, and do..while loops.

Both types of complex statements execute a block of statements based on a
condition. That is, if a condition is true, the block of statements executes. In
conditional statements, the block of statements executes once. For example,
if the time is after noon, the script echoes Good Afternoon. In loops, the block
of statements executes repeatedly, until the condition is no longer true. For
example, if another customer in the database has not yet received an e-mail
message, send that person one. The loop repeats this process as long as there
is another customer who has not received an e-mail.

541668 Ch07.qxd 3/25/04 10:24 PM Page 130

131Chapter 7: Controlling the Flow of the Script

Setting Up Conditions
Conditions are expressions that PHP tests or evaluates to see whether they
are true or false. Conditions are used in complex statements to determine
whether or not a block of simple statements should be executed. To set up
conditions, you compare values. Some questions you may ask in comparing
values for conditions are as follows:

� Are two values equal? Is Sally’s last name the same as Bobby’s last
name? Or, is Nick 15 years old? (Does Nick’s age equal 15?)

� Is one value larger or smaller than another? Is Nick younger than
Bobby? Or, did Sally’s house cost more than a million dollars?

� Does a string match a pattern? Does Bobby’s name begin with an S?
Does the zip code have five numeric characters?

You can also set up conditions in which you ask two or more questions. For
example, you may ask: Is Nick older than Bobby and is Nick younger than
Sally? Or you may ask: Is today Sunday and is today sunny? Or you may ask:
Is today Sunday or is today Monday?

Using comparison operators
PHP offers several comparison operators that you can use to compare
values. Table 7-1 shows these comparison operators.

Table 7-1 Comparison Operators
Operator What It Means

== Are the two values equal in value?

=== Are the two values equal in both value and data type?

> Is the first value larger than the second value?

>= Is the first value larger than or equal to the second value?

< Is the first value smaller than the second value?

<= Is the first value smaller than or equal to the second value?

!=, <> Are the two values not equal to each other in value?

!== Are the two values not equal to each other in either value or
data type?

541668 Ch07.qxd 3/25/04 10:24 PM Page 131

132 Part III: Basic PHP Programming

You can compare both numbers and strings. Strings are compared alphabeti-
cally, with all uppercase characters coming before any lowercase characters.
For example, SS comes before Sa. Punctuation characters also have an order,
and one character can be found to be larger than another character. However,
comparing a comma to a period doesn’t have much practical value.

Strings are compared based on their ASCII code. In the ASCII character set,
each character is assigned an ASCII code that corresponds to a number
between 0 and 127. When strings are compared, they are compared based
on this code. For example, the number that represents the comma is 44. The
period corresponds to 46. Therefore, if a period and a comma are compared,
the period is seen as larger.

The following are some valid comparisons that PHP can test to determine
whether they are true:

� $a == $b

� $age != 21

� $ageNick < $ageBobby

� $house_price >= 1000000

The comparison operator that asks whether two values are equal consists
of two equal signs (==). One of the most common mistakes is to use a single
equal sign for a comparison. A single equal sign puts the value into the vari-
able. Thus, a statement like if ($weather = “raining”) would set
$weather to raining rather than check whether it already equaled raining,
and would always be true.

PHP tests comparisons by evaluating them and returning a Boolean value,
either TRUE or FALSE. For example, look at the following comparison:

$a == $b

If $a=1 and $b=1, the comparison returns TRUE. If $a =1 and $b =2, the com-
parison returns FALSE.

If you write a negative (by using !), the negative condition is true. Look at the
following comparison:

$age != 21

The condition is that $age does not equal 21. That’s the condition that is
being tested. Therefore, if $age = 20, the comparison is TRUE.

541668 Ch07.qxd 3/25/04 10:24 PM Page 132

133Chapter 7: Controlling the Flow of the Script

Checking variable content
Sometimes you just need to know whether a variable exists or what type of
data is in the variable. Here are some common ways to test variables:

isset($varname) # True if variable is set, even if
nothing is stored in it.

empty($varname) # True if value is 0 or is a string with
no characters in it or is not set.

You can also test what type of data is in the variable. For example, to see if
the value is an integer, you can use the following:

is_int($number)

The comparison is TRUE if the value in $number is an integer. Some other
tests provided by PHP are as follows:

� is_array($var2): Checks to see if $var2 is an array

� is_float($number): Checks to see if $number is a floating point
number

� is_null($var1): Checks to see if $var1 is equal to 0

� is_numeric($string): Checks to see if $string is a numeric string

� is_string($string): Checks to see if $string is a string

You can test for a negative, as well, by using an exclamation point (!) in front
of the expression. For example, the following statement returns TRUE if the
variable does not exist at all:

!isset($varname)

Pattern matching with regular expressions
Sometimes you need to compare character strings to see whether they fit
certain characteristics, rather than to see whether they match exact values.
For example, you may want to identify strings that begin with S or strings
that have numbers in them. For this type of comparison, you compare the
string to a pattern. These patterns are called regular expressions.

You have probably used some form of pattern matching in the past. When you
use an asterisk (*) as a wild card when searching for files (dir ex*.doc or
ls ex*.txt, for example), you’re pattern matching. For example, ex*.txt is
a pattern. Any string that begins with ex and ends with the string .txt, with
any characters in between the ex and the .txt, matches the pattern. The
strings exam.txt, ex33.txt, and ex3x4.txt all match the pattern. Using
regular expressions is just a more complicated variation of using wild cards.

541668 Ch07.qxd 3/25/04 10:24 PM Page 133

One common use for pattern matching is to check the input from a Web page
form. If the information input doesn’t match a specific pattern, it may not be
something you want to store in your database. For example, if the user types
a zip code into your form, you know the format needs to be five numbers or
a zip + 4. So, you can check the input to see if it fits the pattern. If it doesn’t,
you know it’s not a valid zip code, and you can ask the user to type in the cor-
rect information.

Using special characters in patterns
Patterns consist of literal characters and special characters. Literal charac-
ters are normal characters, with no special meaning. An e is an e, for exam-
ple, with no meaning other than that it’s one of 26 letters in the alphabet.
Special characters, on the other hand, have special meaning in the pattern,
such as the asterisk (*) when used as a wild card. Table 7-2 shows the special
characters that you can use in patterns.

Table 7-2 Special Characters Used in Patterns
Character Meaning Example Matches Does Not

Match

^ Beginning ^e exam math exam
of line

$ End of line m$ exam exams

. Any single .. up, do A, 2
character Longer words

match because
they contain a
string of two
characters.

? The preceding ger?m germ, gem geam
character is
optional

() Groups literal g(er)m germ Gem,
characters into grem
a string that
must be
matched exactly

[] Encloses a set g[er]m gem, grm germ, gel
of optional literal
characters

134 Part III: Basic PHP Programming

541668 Ch07.qxd 3/25/04 10:24 PM Page 134

135Chapter 7: Controlling the Flow of the Script

Character Meaning Example Matches Does Not
Match

[^] Encloses a set g[^er]m gym, gum gem, grem,
of nonmatching germ
optional characters

- Represents all the g[a-c]m gam, gbm, gcm gdm, gxm,
characters between gal
two characters (a
range of possible
characters)

+ One or more of the bldg bldg111, bldg,
preceding items [1-3]+ bldg132 bldg555

* Zero or more of the ge*m gm, geeem germ, grm
preceding items

{n} Repeat n times ge{5}m geeeeem geeeem,
geeeeeem

{n1,n2} Specifies a range a{2,5} aa, aaa, aaaa, 1, a3
of repetitions of 145aaaaa
the preceding
character(s).

\ The following g*m g*m gem, germ
character is literal

(| |) A set of alternate (Sam| Samuel Go Sarah,
strings Sally) Sally Salmon

Considering some example patterns
Literal and special characters are combined to make patterns, sometimes long
complicated patterns. A string is compared to the pattern, and if it matches,
the comparison is true. Some example patterns follow, with a breakdown of
the pattern and some sample matching and non-matching strings:

Example 1
^[A-Za-z].*

This pattern defines strings that begin with a letter and have two parts:

� ^[A-Za-z] The first part of the pattern dictates that the beginning of
the string must be a letter (either uppercase or lowercase).

� .* The second part of the pattern tells PHP the string of characters can
be one or more characters long.

541668 Ch07.qxd 3/25/04 10:24 PM Page 135

136 Part III: Basic PHP Programming

The expression ^[A-Za-z].* matches the following strings: play it
again, Sam and I.

The expression ^[A-Za-z].* does not match the following strings: 123 and ?.

Example 2
Dear (Kim|Rikki)

This pattern defines two alternate strings and has two parts:

� Dear The first part of the pattern is just literal characters.

� (Kim|Rikki) The second part defines either Kim or Rikki as matching
strings.

The expression Dear (Kim|Rikki) matches the following strings: Dear Kim
and My Dear Rikki.

The expression Dear (Kim|Rikki) does not match the following strings:
Dear Bobby and Kim.

Example 3
^[0-9]{5}(\-[0-9]{4})?$

This pattern defines any zip code and has several parts:

� ^[0-9]{5} The first part of the pattern describes any string of five
numbers.

� \- The slash indicates that the hyphen is a literal.

� [0-9]{4} This part of the pattern tells PHP that the next characters
should be a string of numbers consisting of four characters.

� ()? These characters group the last two parts of the pattern and make
them optional.

� $ The dollar sign dictates that this string should end (no characters are
allowed after the pattern).

The expression ^[0-9]{5}(\-[0-9]{4})?$ matches the following strings:
90001 and 90002-4323.

The expression ^[0-9]{5}(\-[0-9]{4})?$ does not match the following
strings: 9001 and 12-4321.

Example 4
^.+@.+\.com$

541668 Ch07.qxd 3/25/04 10:24 PM Page 136

137Chapter 7: Controlling the Flow of the Script

This pattern defines any string with @ embedded that ends in .com. In other
words, it defines an e-mail address. This expression has several parts:

� ^.+ The first part of the pattern describes any string of one or more
characters that precedes the @.

� @ This is a literal @ (at sign). @ is not a special character and does not
need to be preceded by a \.

� .+ This is any string of one or more characters.

� \. The slash indicates that PHP should look for a literal dot.

� com$ This defines the literal string com at the end of the string, and the
$ marks the end of the string.

The expression ^.+@.+\.com$ matches the following strings: you@your
company.com and johndoe@somedomain.com.

The expression ^.+@.+\.com$ does not match the following strings: you@
yourcompany.net, you@.com, and @you.com.

Comparing strings to patterns
You can compare a string to a pattern by using ereg. The general format is as
follows:

ereg(“pattern”,value);

For example, to check the name that a user typed in a form, compare the
name (stored in the variable $name) to a pattern as follows:

ereg(“^[A-Za-z’ -]+$”,$name)

The pattern in this statement does the following:

� Uses ^ and $ to signify the beginning and end of the string. That means
that all the characters in the string must match the pattern.

� Encloses all the literal characters that are allowed in the string in []. No
other characters are allowed. The allowed characters are upper and
lower case letters, an apostrophe (‘), a blank space, and a hyphen (-).

You can specify a range of characters using a hyphen within the []. When
you do that, as in A-Z above, the hyphen does not represent a literal char-
acter. Since you want the hyphen included as a literal character that is
allowed in your string, you need to add a hyphen that is not between any
two other characters. In this case, the hyphen is included at the end of the
list of literal characters,

� Follows the list of literal characters in the [] with a +. The plus sign
means that the string can contain any number of the characters inside
the [], but must contain at least one character.

541668 Ch07.qxd 3/25/04 10:24 PM Page 137

138 Part III: Basic PHP Programming

Joining multiple comparisons
Often you need to ask more than one question to determine your condition.
For example, suppose your company offers catalogs for different products in
different languages. You need to know which type of product catalog the cus-
tomer wants to see and which language he or she needs to see it in. This
requires you to join comparisons, which have the following the general
format:

comparison1 and|or|xor comparison2 and|or|xor comparison3
and|or|xor ...

Comparisons are connected by one of the following three words:

� and: Both comparisons are true.

� or: One of the comparisons or both of the comparisons are true.

� xor: One of the comparisons is true but not both of the comparisons.

Table 7-3 shows some examples of multiple comparisons.

Table 7-3 Multiple Comparisons
Condition Is True If . . .

$ageBobby == 21 Bobby is 21 or 22 years of age.
or $ageBobby == 22

$ageSally > 29 and Sally is older than 29 and lives in Oregon.
$state ==”OR”

$ageSally > 29 Sally is older than 29 or lives in Oregon or both.
or $state == “OR”

$city == “Reno” The city is Reno or the state is Oregon, but
xor $state == “OR” not both.

$name != “Sam” The name is anything except Sam and age is
and $age < 13 under 13 years of age.

You can string together as many comparisons as necessary. The comparisons
using and are tested first, the comparisons using xor are tested next, and the
comparisons using or are tested last. For example, the following condition
includes three comparisons:

$resCity == “Reno” or $resState == “NV” and $name == “Sally”

541668 Ch07.qxd 3/25/04 10:24 PM Page 138

139Chapter 7: Controlling the Flow of the Script

If the customer’s name is Sally and she lives in NV, this statement is true. The
statement is also true if she lives in Reno, regardless of what her name is.
This condition is not true if she lives in NV but her name is not Sally. You get
these results because the script checks the condition in the following order:

1. The and is compared.

The script checks $resState to see if it equals NV and checks $name to
see if it equals Sally. If both match, the condition is true, and the script
does not need to check or. If only one or neither of the variables equal
the designated value, the testing continues.

2. The or is compared.

The script checks $resCity to see if it equals Reno. If it does, the condi-
tion is true. If it doesn’t, the condition is false.

You can change the order in which comparisons are made by using parenthe-
ses. The connecting word inside the parentheses is evaluated first. For exam-
ple, you can rewrite the previous statement with parentheses as follows:

($resCity == “Reno or $resState == “NV”) and $name == “Sally”

The parentheses change the order in which the conditions are checked. Now
the or is checked first because it is inside the parentheses. This condition
statement is true if the customer’s name is Sally and she lives in either Reno
or NV. You get these results because the script checks the condition as follows:

1. The or is compared.

The script checks to see if $resCity equals Reno or $resState equals
NV. If it does not, the entire condition is false, and testing stops. If it
does, this part of the condition is true. However, the comparison on the
other side of the and must also be true, so the testing continues.

2. The and is compared.

The script checks $name to see if it equals Sally. If it does, the condi-
tion is true. If it does not, the condition is false.

Use parentheses liberally, even when you believe you know the order of the
comparisons. Unnecessary parentheses can’t hurt, but comparisons that
have unexpected results can.

If you’re familiar with other languages, such as C, you may have used || (for
or) and && (for and) in place of the words. The || and && work in PHP as well.
The statement $a < $b && $c > $b is just as valid as the statement $a <
$b and $c > $b. The || is checked before the word or, and the && is
checked before the word and.

541668 Ch07.qxd 3/25/04 10:24 PM Page 139

140 Part III: Basic PHP Programming

Using Conditional Statements
A conditional statement executes a block of statements only when certain con-
ditions are true. Here are two useful types of conditional statements:

� An if statement: Sets up a condition and tests it. If the condition is true,
a block of statements is executed.

� A switch statement: Sets up a list of alternative conditions. It tests for
the true condition and executes the appropriate block of statements.

Using if statements
An if statement tests conditions, executing a block of statements when a con-
dition is true. The general format of an if conditional statement is as follows:

if (condition)
{

block of statements
}
elseif (condition)
{

block of statements
}
else
{

block of statements
}

The if statement consists of three sections:

� if: This section is required. It tests a condition:

• If the condition is true: The block of statements is executed. After
the statements are executed, the script moves to the next instruc-
tion following the conditional statement; if the conditional state-
ment contains any elseif or else sections, the script skips over
them.

• If the condition is not true: The block of statements is not exe-
cuted. The script skips to the next instruction, which can be an
elseif, an else, or the next instruction after the if conditional
statement.

� elseif: This section is optional. You can use more than one elseif sec-
tion if you want. It also tests a condition:

• If the condition is true: The block of statements is executed.
After executing the block of statements, the script goes to the next
instruction following the conditional statement; if the if statement

541668 Ch07.qxd 3/25/04 10:24 PM Page 140

141Chapter 7: Controlling the Flow of the Script

contains any additional elseif sections or an else section, the
script skips over them.

• If the condition is not true: The block of statements is not executed.
The script skips to next instruction, which can be an elseif, an
else, or the next instruction after the if conditional statement.

� else: This section is also optional. Only one else section is allowed.
This section does not test a condition, rather it executes the block of
statements. If the script has entered this section, it means that the if
section and all the elseif sections are not true.

Here’s an example. Pretend you’re a teacher. The following if statement,
when given a test score, sends your student a grade and a snappy little text
message. It uses all three sections of the if statement, as follows:

if ($score > 92)
{

$grade = “A”;
$message = “Excellent!”;

}
elseif ($score <= 92 and $score > 83)
{

$grade = “B”;
$message = “Good!”;

}
elseif ($score <= 83 and $score > 74)
{

$grade = “C”;
$message = “Okay”;

}
elseif ($score <= 74 and $score > 62)
{

$grade = “D”;
$message = “Uh oh!”;

}
else
{
$grade = “F”;
$message = “Doom is upon you!”;

}
echo $message.”\n”;
echo “Your grade is $grade\n”;

The if conditional statement proceeds as follows:

1. The value in $score is compared to 92.

If $score is greater than 92, $grade is set to A, $message is set to
Excellent!, and the script skips to the echo statement. If $score is 92
or less, $grade and $message are not set, and the script skips to the
elseif section.

541668 Ch07.qxd 3/25/04 10:24 PM Page 141

142 Part III: Basic PHP Programming

2. The value in $score is compared to 92 and to 83.

If $score is 92 or less and greater than 83, $grade and $message are
set, and the script skips to the echo statement. If $score is 83 or less,
$grade and $message are not set, and the script skips to the second
elseif section.

3. The value in $score is compared to 83 and to 74.

If $score is 83 or less and greater than 74, $grade and $message are
set, and the script skips to the echo statement. If $score is 74 or less,
$grade and $message are not set, and the script skips to the next
elseif section.

4. The value in $score is compared to 74 and to 62.

If $score is 74 or less and greater than 62, $grade and $message are set,
and the script skips to the echo statement. If $score is 62 or less, $grade
and $message are not set, and the script skips to the else section.

5. $grade is set to F, and $message is set to Doom is upon you!.

The script continues to the echo statement.

When the block to be executed by any section of the if conditional state-
ment contains only one statement, the curly braces are not needed. For
example, say the preceding example had only one statement in the blocks,
as follows:

if ($grade > 92)
{

$grade = “A”;
}

You could write it as follows:

if ($grade > 92)
$grade = “A”;

This shortcut can save some typing, but when several if statements are
used, it can lead to confusion.

Negating if statements
You can write an if statement so that the statement block is executed when
the condition is false by putting an exclamation point (!) at the beginning of
the condition. For example, you can use the following if statement:

if (ereg(“^S[a-z]*”,$string))
{

$list[]=$string.”\n”;
}

541668 Ch07.qxd 3/25/04 10:24 PM Page 142

143Chapter 7: Controlling the Flow of the Script

This if statement creates an array of strings that begin with S. More specifi-
cally, if $string matches a pattern that specifies one uppercase S at the
beginning, followed by a number of lowercase letters, the statement block is
executed. However, if you were to place an exclamation point at the begin-
ning of the condition, things would change considerably. For example, say
you use the following statements instead:

if (!egreg(“^S[a-z]*”,$string)
{

$list[]=$string.”\n”;
}

In this case, the array $list contains all the strings except those that begin
with S. In this case, because a ! appears at the beginning of the condition, the
condition is “$string does not match a pattern that begins with S.” So, when
$string does not begin with S, the condition is true.

Nesting if statements
You can have an if conditional statement inside another if conditional
statement. Putting one statement inside another is called nesting. For exam-
ple, suppose you need to contact all your customers who live in Idaho. You
plan to send e-mail to those who have e-mail addresses and send letters to
those who do not have e-mail addresses. You can identify the groups of cus-
tomers by using the following nested if statements:

if ($custState == “ID”)
{

if ($EmailAdd = “”)
{
$contactMethod = “letter”;

}
else
{
$contactMethod = “email”;

}
}
else
{

$contactMethod = “none needed”;
}

These statements first check to see if the customer lives in Idaho. If the cus-
tomer does live in Idaho, the script tests for an e-mail address. If the e-mail
address is blank, the contact method is set to letter. If the e-mail address
is not blank, the contact method is email. If the customer does not live in
Idaho, the else section sets the contact method to indicate that the cus-
tomer will not be contacted at all.

541668 Ch07.qxd 3/25/04 10:24 PM Page 143

144 Part III: Basic PHP Programming

Using switch statements
For most situations, the if conditional statement works best. However,
sometimes you have a list of conditions and want to execute different state-
ments for each condition. For example, suppose your script computes sales
tax. How do you handle the different state sales tax rates? The switch state-
ment was designed for such situations.

The switch statement tests the value of one variable and executes the block
of statements for the matching value of the variable. The general format is as
follows:

switch ($variablename)
{
case value :

block of statements;
break;

case value :
block of statements;
break;

...
default:

block of statements;
break;

}

The switch statement tests the value of $variablename. The script then
skips to the case section for that value and executes statements until it
reaches a break statement or the end of the switch statement. If there is no
case section for the value of $variablename, the script executes the default
section. You can use as many case sections as you need. The default section
is optional. If you use a default section, it’s customary to put the default sec-
tion at the end, but as far as PHP is concerned, it can go anywhere.

The following statements set the sales tax rate for different states:

switch ($custState)
{
case “OR” :

$salestaxrate = 0;
break;

case “CA” :
$salestaxrate = 1.0;
break;

default:
$salestaxrate = .5;
break;

}
$salestax = $orderTotalCost * $salestaxrate;

541668 Ch07.qxd 3/25/04 10:24 PM Page 144

In this case, the tax rate for Oregon is 0, the tax rate for California is 100 per-
cent, and the tax rate for all the other states is 50 percent. The switch state-
ment looks at the value of $custState and skips to the section that matches
the value. For example, if $custState is TX, the script executes the default
section and sets $salestaxrate to .5. After the switch statement, the
script computes $salestax at .5 times the cost of the order.

The break statements are essential in the case section. If a case section
does not include a break statement, the script does not stop executing at
the end of the case section. The script continues executing statements past
the end of the case section, on to the next case section, and continues until
it reaches a break statement or the end of the switch statement. This is a
problem for every case section except the last one because it will execute
sections following the appropriate section.

The last case section in a switch statement doesn’t actually require a break
statement. You can leave it out. However, it’s a good idea to include it for clar-
ity and consistency.

Repeating Actions by Using Loops
Loops are used frequently in scripts to set up a block of statements that
repeat. The loop can repeat a specified number of times. For example, a loop
that echoes all the state capitals needs to repeat 50 times. Or the loop can
repeat until a certain condition is met. For example, a loop that echoes the
names of all the files in a directory needs to repeat until it runs out of files,
regardless of how many files there are. Here are three types of loops:

� A for loop: Sets up a counter; repeats a block of statements until the
counter reaches a specified number

� A while loop: Sets up a condition; checks the condition, and if it’s true,
repeats a block of statements until the condition becomes false

� A do..while loop: Sets up a condition; executes a block of statements;
checks the condition; if the condition is true, repeats the block of state-
ments until the condition becomes false

I describe each of these loops in detail in the following few sections.

145Chapter 7: Controlling the Flow of the Script

541668 Ch07.qxd 3/25/04 10:24 PM Page 145

146 Part III: Basic PHP Programming

Using for loops
The most basic for loops are based on a counter. You set the beginning value
for the counter, set the ending value, and set how the counter is incremented
each time the statement block is executed. The general format is as follows:

for (startingvalue;endingcondition;increment)
{

block of statements;
}

Within the for statement, you need to fill in the following values:

� startingvalue: The startingvalue is a statement that sets up a vari-
able to be your counter and sets it to your starting value. For example,
the statement $i=1; sets $i as the counter variable and sets it equal to 1.
Frequently, the counter variable is started at 0 or 1. The starting value can
be a number, a combination of numbers (like 2 + 2), or a variable.

� endingcondition: The endingcondition is a statement that sets your
ending value. As long as this statement is true, the block of statements
keeps repeating. When this statement is not true, the loop ends. For
example, the statement $i<10; sets the ending value for the loop to 10.
When $i is equal to 10, the statement is no longer true (because $i is no
longer less than 10), and the loop stops repeating. The statement can
include variables, such as $i<$size;.

� increment: A statement that increments your counter. For example, the
statement $i++; adds 1 to your counter at the end of each block of state-
ments. You can use other increment statements, such as $i=+1; or $i—;.

A basic for loop sets up a variable, like $i, that is used as a counter. This
variable has a value that changes during each loop. The variable $i can be
used in the block of statements that is repeating. For example, the following
simple loop displays Hello World! three times:

for ($i=1;$i<=3;$i++)
{
echo “$i. Hello World!
”;

}

The statements in the block do not need to be indented. PHP doesn’t care
whether they’re indented. However, indenting the blocks makes it much
easier for you to understand the script.

The following is the output from these statements:

1. Hello World!
2. Hello World!
3. Hello World!

541668 Ch07.qxd 3/25/04 10:24 PM Page 146

147Chapter 7: Controlling the Flow of the Script

Nesting for loops
You can nest for loops inside of for loops. Suppose you want to print out
the times tables from 1 to 9. You can use the following statements:

for($i=1;$i<=9;$i++)
{

echo “\nMultiply by $i \n”;
for($j=1;$j<=9;$j++)
{

$result = $i * $j;
echo “$i x $j = $result\n”;

}
}

The output is as follows:

Multiply by 1
1 x 1 = 1
1 x 2 = 2
...
1 x 8 = 8
1 x 9 = 9

Multiply by 2
2 x 1 = 2
2 x 2 = 4
...
2 x 8 = 16
2 x 9 = 18

Multiply by 3
3 x 1 = 3

and so on.

Designing advanced for loops
The structure of a for loop is quite flexible and allows you to build loops for
almost any purpose. A for loop has this general format:

for (beginning statements; conditional statements; ending
statements)

{
block of statements;

}

The statements within a for loop have the following roles:

� The beginning statements execute once at the start of the loop. They
can be statements that set any needed starting values or other state-
ments that you want to execute before your loop starts running.

541668 Ch07.qxd 3/25/04 10:24 PM Page 147

148 Part III: Basic PHP Programming

� The conditional statements are tested for each iteration of your loop.

� The ending statements execute once at the end of the loop. They can be
statements that increment your values or any other statements that you
want to execute at the end of your loop.

Each statement section is separated by a semicolon (;). Each section can con-
tain as many statements as needed, separated by commas. Any section can
be empty.

The following loop has statements in all three sections:

$t = 0;
for ($i=0,$j=1;$t<=4;$i++,$j++)
{
$t = $i + $j;
echo “$t
”;

}

The two statements in the first section are the beginning statements; the con-
ditional statement in the second section is the conditional statements; and
the two statements in the third section are the ending statements.

The output of these statements is as follows:

1
3
5

The loop is executed in the following order:

1. The beginning section containing two statements is executed.

$i is set to 0, and $j is set to 1.

2. The conditional section containing one statement is evaluated.

Is $t less than or equal to 4? Yes, so the statement is true. The loop con-
tinues to execute.

3. The statements in the statement block are executed.

$t becomes equal to $i plus $j, which is 0 + 1, which equals 1. Then $t
is echoed to give the output 1.

4. The ending section containing two statements ($i++ and $j++) is
executed.

Both $i and $j are incremented by one, so $i now equals 1, and $j now
equals 2.

5. The conditional section is evaluated.

Is $t less than or equal to 4? Because $t is equal to 1 at this point, the
statement is true. The loop continues to execute.

541668 Ch07.qxd 3/25/04 10:24 PM Page 148

149Chapter 7: Controlling the Flow of the Script

6. The statements in the statement block are executed.

$t becomes equal to $i plus $j, which is 1 + 2, which equals 3. Then $t
is echoed to give the output 3.

7. The ending section containing two statements ($i++ and $j++) is
executed.

Both $i and $j are incremented by one, so $i now equals 2, and $j now
equals 3.

8. The conditional section is evaluated.

Is $t less than or equal to 4? Because $t now equals 3, the statement is
true. The loop continues to execute.

9. The statements in the statement block are executed.

$t becomes equal to $i plus $j, which is 2 + 3, which equals 5. Then $t
is echoed to give the output 5.

10. The ending section containing two statements ($i++ and $j++) is
executed.

Both $i and $j are incremented by 1, so $i now equals 2, and $j now
equals 3.

11. The conditional section is evaluated.

Is $t less than or equal to 4? Because $t now equals 5, the statement is
not true. The loop does not continue to execute. The loop ends, and the
script continues to the next statement after the end of the loop.

Using while loops
A while loop continues repeating as long as certain conditions are true. The
loop works as follows:

1. You set up a condition.

2. The condition is tested at the top of each loop.

3. If the condition is true, the loop repeats. If the condition is not true, the
loop stops.

The following is the general format of a while loop:

while (condition)
{

block of statements
}

541668 Ch07.qxd 3/25/04 10:24 PM Page 149

150 Part III: Basic PHP Programming

The following statements set up a while loop that looks through an array for
an apple:

$fruit = array (“orange”, “apple”, “grape”);
$testvar = “no”;
$k = 0;
while ($testvar != “yes”)
{
if ($fruit[$k] == “apple”)
{
$testvar = “yes”;
echo “apple\n”;

}
else
{
echo “$fruit[$k] is not an apple\n”;

}
$k++;

}

These statements generate the following output:

orange is not an apple
apple

The script executes the statements as follows:

1. The variables are set before starting the loop.

$fruit is an array with three values, $testvar is a test variable set to
“no”, and $k is a counter variable set to 0.

2. The loop starts by testing whether $testvar != “yes” is true.

Because $testvar was set to “no”, the statement is true, so the loop
continues.

3. The condition in the if statement is tested.

Is $fruit[$k] == “apple” true? At this point, $k is 0, so the script
checks $fruit[0]. Because $fruit[0] is “orange”, the statement is
not true. The statements in the if block are not executed, so the script
skips to the else statement.

4. The statement in the else block is executed.

The else block outputs the line “orange is not an apple”. This is
the first line of the output.

5. $k is incremented by one.

Now $k becomes equal to 1.

541668 Ch07.qxd 3/25/04 10:24 PM Page 150

151Chapter 7: Controlling the Flow of the Script

6. The bottom of the loop is reached.

Flow returns to the top of the loop.

7. The condition $testvar != “yes” is tested again.

Is $testvar != “yes” true? Because $testvar has not been changed
and is still set to “no”, it is true, so the loop continues.

8. The condition in the if statement is tested again.

Is $fruit[$k] == “apple” true? At this point, $k is 1, so the script
checks $fruit[1]. Because $fruit[1] is “apple”, the statement is
true. So the loop enters the if block.

9. The statements in the if block are executed.

These statements set $testvar to “yes” and output “apple”. This is
the second line of the output.

10. $k is incremented again.

Now $k equals 2.

11. The bottom of the loop is reached again.

Once again, the flow returns to the top of the loop.

12. The condition $testvar != “yes” is tested one last time.

Is $testvar != “yes” true? Because $testvar has been changed and
is now set to “yes”, it is not true. The loop stops.

It’s possible to write a while loop that is infinite — that is, a loop that loops
forever. You can easily, without intending to, write a loop in which the condi-
tion is always true. If the condition never becomes false, the loop never ends.
For a discussion of infinite loops, see the section “Avoiding infinite loops,”
later in this chapter.

Using do..while loops
A do..while loop is very similar to a while loop. Like a while loop, a
do..while loop continues repeating as long as certain conditions are true.
Unlike while loops, however, those conditions are tested at the bottom of
each loop. If the condition is true, the loop repeats. When the condition is
not true, the loop stops.

The general format for a do..while loop is as follows:

do
{

block of statements
} while (condition);

541668 Ch07.qxd 3/25/04 10:24 PM Page 151

152 Part III: Basic PHP Programming

The following statements set up a loop that looks for an apple. This script
does the same thing as the script in the preceding section that uses a while
loop:

$fruit = array (“orange”, “apple”, “grape”);
$testvar = “no”;
$k = 0;
do
{
if ($fruit[$k] == “apple”)
{
$testvar = “yes”;
echo “apple\n”;

}
else
{
echo “$fruit[$k] is not an apple\n”;

}
$k++;

} while ($testvar != “yes”);

The output of these statements in a browser is as follows:

orange is not an apple
apple

This is the same output shown for the while loop example. The difference
between a while loop and a do..while loop is where the condition is checked.
In a while loop, the condition is checked at the top of the loop. Therefore, the
loop will never execute if the condition is never true. In the do..while loop,
the condition is checked at the bottom of the loop. Therefore, the loop always
executes at least once, even if the condition is never true.

For example, in the preceding loop that checks for an apple, suppose the
original condition is set to yes, instead of no, by using this statement:

$testvar = “yes”;

The condition tests false from the beginning. It is never true. In a while loop,
there is no output. The statement block never runs. However, in a do..while
loop, the statement block runs once before the condition is tested. Thus, the
while loop produces no output, but the do..while loop produces the fol-
lowing output:

orange is not an apple

The do..while loop produces one line of output before the condition is
tested. It does not produce the second line of output because the condition
tests false.

541668 Ch07.qxd 3/25/04 10:24 PM Page 152

153Chapter 7: Controlling the Flow of the Script

Avoiding infinite loops
You can easily set up loops so that they never stop. These are called infinite
loops. They repeat forever. However, seldom does anyone create an infinite
loop intentionally. It is usually a mistake in the programming. For example,
a slight change to the script that sets up a while loop can make it into an
infinite loop.

Here is the script shown in the section, “Using while loops,” earlier in this
chapter, with a slight change:

$fruit = array (“orange”, “apple”, “grape”);
$testvar = “no”;
while ($testvar != “yes”)
{
$k = 0;
if ($fruit[$k] == “apple”)
{
$testvar = “yes”;
echo “apple\n”;

}
else
{
echo “$fruit[$k] is not an apple\n”;

}
$k++;

}

The small change is moving the statement $k = 0; from outside the loop to
inside the loop. This small change makes it into an endless loop. This changed
script has the following output:

orange is not an apple
orange is not an apple
orange is not an apple
orange is not an apple
...

This will repeat forever. Every time the loop runs, it resets $k to 0. Then it
gets $fruit[0] and echoes it. At the end of the loop, $k is incremented to 1.
However, when the loop starts again, $k is set back to 0. Consequently, only
the first value in the array, orange, is ever read. The loop never gets to the
apple, and $testvar is never set to “yes”. The loop is endless.

Don’t be embarrassed if you write an infinite loop. I guarantee that the best
programming guru in the world has written many infinite loops. It’s not a big
deal. If you are testing a script and get output repeating endlessly, there’s no
need to panic. Do one of the following:

541668 Ch07.qxd 3/25/04 10:24 PM Page 153

154 Part III: Basic PHP Programming

� If you’re using PHP on a Web page: Wait. It will stop by itself in a short
time. The default time is 30 seconds, but the timeout period may have
been changed by the PHP administrator. You can also click the Stop
button on your browser to stop the display in your browser.

� If you’re using PHP CLI: Press Ctrl + C. This stops the script from run-
ning. Sometimes the output will continue to display a little longer, but it
will stop very shortly.

Then figure out why the loop is repeating endlessly and fix it.

A common mistake that can result in an infinite loop is using a single equal
sign (=) when you mean to use double equal signs (==). The single equal sign
stores a value in a variable; the double equal signs test whether two values
are equal. The following condition using a single equal sign is always true:

while ($testvar = “yes”)

The condition simply sets $testvar equal to “yes”. This is not a question
that can be false. What you probably meant to write is this:

while ($testvar == “yes”)

This is a question asking whether $testvar is equal to “yes”, which can be
answered either true or false.

Another common mistake is to leave out the statement that increments the
counter. For example, in the script earlier in this section, if you leave out the
statement $k++;, $k is always 0, and the result is an infinite loop.

Breaking out of a loop
Sometimes you want your script to break out of a loop. PHP provides two
statements for this purpose:

� break: Breaks completely out of a loop and continues with the script
statements after the loop.

� continue: Skips to the end of the loop where the condition is tested.
If the condition tests positive, the script continues from the top of the
loop.

The break and continue statements are usually used in conditional state-
ments. In particular, break is used most often in switch statements, dis-
cussed earlier in this chapter.

541668 Ch07.qxd 3/25/04 10:24 PM Page 154

155Chapter 7: Controlling the Flow of the Script

The following statements show the difference between continue and break.
This first section is an example of the break statement:

$counter = 0;
while ($counter < 5)
{
$counter++;
If ($counter == 3)
{

echo “break\n”;
break;

}
echo “Last line in loop: counter=$counter\n”;

}
echo “First line after loop\n\n”;

The output of this statement is the following:

Last line in loop: counter=1
Last line in loop: counter=2
break
First line after loop

Notice that the first loop ends at the break statement. It stops looping and
jumps immediately to the statement after the loop. That’s not true of the
continue statement.

The following section is an example of the continue statement:

$counter = 0;
while ($counter < 5)
{
$counter++;
If ($counter == 3)
{

echo “continue\n”;
continue;

}
echo “Last line in loop: counter=$counter\n”;

}
echo “First line after loop\n”;

The output of this statement is the following:

Last line in loop: counter=1
Last line in loop: counter=2
continue
Last line in loop: counter=4
Last line in loop: counter=5
First line after loop

541668 Ch07.qxd 3/25/04 10:24 PM Page 155

156 Part III: Basic PHP Programming

Unlike the break statement loop, this loop does not end at the continue
statement. It just stops the third repeat of the loop and jumps back up to the
top of the loop. It then finishes the loop, with the fourth and fifth repeats,
before it goes to the statement after the loop.

One use for break statements is insurance against infinite loops. The follow-
ing statements inside a loop can stop it at a reasonable point:

$test4infinity++;
if ($test4infinity > 100)
{

break;
}

If you’re sure that your loop should never repeat more than 100 times, these
statements will stop the loop if it becomes endless. Use whatever number
seems reasonable for the loop you’re building.

541668 Ch07.qxd 3/25/04 10:24 PM Page 156

Chapter 8

Reusing PHP Code
In This Chapter
� Including files in scripts

� Understanding security for included files

� Writing functions

� Using functions

Often scripts need to perform the same actions in several different loca-
tions in the script. For example, a script may need to get data from a

database several different times. It may even be the case that you use the
same code in different scripts. If you find yourself typing the same ten lines of
code over and over (or cutting and pasting it repeatedly), you can move that
code into a separate file and get it from that file whenever you need it. Here
are several reasons to reuse code:

� Less typing: Less work is always a good reason for anything.

� Debug once: You can write the code once, debug it so you know it works,
and then use it whenever you need it. It’s rare to write code that doesn’t
have a typo or two in it, let alone occasional peculiar logic, so code always
has to be debugged. It saves time to use proven code when possible,
instead of writing new code that will have to be debugged.

� Easier to understand: A shorter script that is less cluttered with code is
easier for people to read and understand. For example, one line in your
script that says getData() is easier to understand than the ten lines
that actually get the data.

� Easier to maintain: If you reuse code and you need to change something
in the code, you only need to change it in one external file, instead of
having to find and change it in a dozen places in your script. For exam-
ple, if you change the name of your database, you can change the name
in one file, rather than having to change it repeatedly in many scripts.

You can reuse code two ways: by inserting a file containing code into a script
or by writing and calling a function. In this chapter, you find out how to use
both methods.

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 157

Inserting Code in Your Script
You can put as many lines of code as you need into a file, separate from your
script, and include that file in the script wherever you need it. PHP provides
the include statement to insert code where it’s needed.

Including files
Suppose you’re writing an online product catalog and your application con-
tains many pages that display pictures of your products. You can define the
height and width for the pictures in constants and use the constants in your
HTML image tags, thereby displaying all your pictures consistently. By using
constants, you can change the size of the graphics simply by changing the
constant definition; you don’t have to change every image tag in your script.
You can define these constants by using the following statements in the top
of your script:

define(“HEIGHT”,60);
define(“WIDTH”,60);

You can then use the constants in your HTML image tags as follows:

<img src=”mypic.jpg” height=”<?php echo HEIGHT?>”
width=”<?php echo WIDTH?>” />;

If you display the product pictures in many different scripts, you don’t have to
add the define statements in the top of every script. Instead, you can put the
statements into a separate file and include the file in the top of the scripts.
You can create a file called size.inc (you can use any extension for include
files, but .inc is often used by convention) that contains the following:

<?php
define(“HEIGHT”,60);
define(“WIDTH”,60);
?>

You can then include the file at the top of each script with the following
statement:

include(“size.inc”);

When PHP sees the include statement, it reads the code from the file so the
code is inserted at the location where the include statement is used. That
means that the constants are defined when size.inc is included, and the
image tags in your file will be output as follows:

158 Part III: Basic PHP Programming

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 158

This HTML code displays the image on your Web page. If you want to change
the height or width at any time, just change the definitions of HEIGHT and
WIDTH in size.inc, and all the images will automatically change size. Actually,
because the image tag that displays the picture is rather complex, you could
put the image statement into a file called displayPix.inc and include the file
whenever you want to display an image. You could have the image tag alone
in displayPix.inc and include both size.inc and displayPix.inc at the
beginning of each script, or you could include size.inc in displayPix.inc
and only include displayPix.inc in your script.

Forgetting the PHP tags in the include file is a common mistake. It’s also a
security problem because without the PHP tags, the code in the file is dis-
played to the user as HTML. If the user sees the size of the graphic files, it’s
not much of a problem. However, suppose you had the password for your
database in the include file — that would be a problem.

Instead of the standard include statement, you can use the following similar
statement:

include_once(“filename”);

This statement prevents included files with similar variables from overwrit-
ing each other. For example, you can use include_once to include your func-
tion definitions (which are discussed later in this chapter) to be sure that
they are only defined once.

PHP also provides the require and require_once statements that work just
like include statements, differing only in the way errors are handled. This dif-
ference arises when you use an include or a require statement that calls a
file that doesn’t exist. If you require a file that doesn’t exist, it is a fatal error,
and your script stops running. If you include a file that doesn’t exist, you only
receive a warning, and the script continues to run.

You can use a variable name for the filename as follows:

include (“$filename”);

For example, you might want to display different messages on different days:
You might store these messages in files that are named for the day on which
the message should display. For example, you could have a file named
Sun.inc with the following contents:

echo “Go ahead. Sleep in. No work today.”;

And similar files for all days of the week. The following statements can be
used to display the correct message for the current day:

$today = date(“D”);
include(“$today”.”inc”);

159Chapter 8: Reusing PHP Code

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 159

After the first statement, $today contains the day of the week in abbreviation
form. The date statement is discussed in Chapter 5. The second statement
includes the correct file, using the day stored in $today. If $today contains
Sun, the statement includes a file called Sun.inc.

Storing include files
Where you store include files can be a security issue, especially for Web sites.
Files stored on Web sites can be downloaded by any user, unless the files are
protected. Theoretically, a user could connect to your Web site by using the
following type of URL:

http://yourdomain.com/secretpasswords.inc

Suppose you happen to have a file in your Web space named
secretpasswords.inc that contains the following statements:

<?php
$mysecretaccount=”account48756”;
$mypassword=”secret”;

?>

In most cases, the Web server is not configured to process PHP sections in
files with any extensions other than PHP. Therefore, the Web server would
not process these statements. Instead, it would obligingly display the con-
tents of secretpasswords.inc to the user, as if the lines were HTML code.
You can protect against this in one of the following ways:

� Name include files with .php extensions. The Web server will then
process the PHP sections, rather than treat them the same as the HTML
sections. However, you need to think carefully about the contents of the
include files if you name them with a .php extension. In some cases, run-
ning the PHP sections in an include file independently, without the con-
text provided when they are run by including them in a script, can be a
problem. For example, suppose you had code in your include file that
deleted a record in the database (highly unlikely). Running the code out-
side of a script might have negative consequences. Another drawback is
that it can be convenient to name files with an .inc extension so you
can see at a glance that the file is a fragment, not a script intended to
run by itself.

� Configure the Web server to scan for PHP sections in files with the
.inc extension, as well as the .php extension. This allows you to rec-
ognize include files by their name. However, you still have the problem
of possible unintended consequences of running the file independently,
as discussed in the preceding bullet.

160 Part III: Basic PHP Programming

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 160

� Store the file in a location that is not accessible to outside users. This
is the preferred solution, but it may not be possible in some environ-
ments, such as when you’re using a Web hosting company.

The best place to store include files is in a directory that outside users can’t
access. For example, for your Web site, you can set up an include directory
that is outside your Web space. That is, you can create a directory in a location
that outside users can’t access with their browsers. For example, the default
Web space for Apache — unless it has been changed in the configuration file
(usually called httpd.conf) — is apache/htdocs. If you store your include
files in a directory that is not in your Web space, such as d:\include, you can
protect the files from outside users.

Setting up include directories
You can set up an include directory where PHP looks for any files specified
in an include statement. If you are the PHP administrator, you can set up an
include directory in the php.ini file (the PHP configuration file in your system
directory, as described in Appendix A). Find the setting for include_path and
change it to the path to your preferred directory. If there is a semicolon at the
beginning of the line, before include_path, remove it. The following are exam-
ples of include_path settings in the php.ini file:

include_path=”.;d:\include”; # for Windows
include_path=”.:/user/local/include”; # for Unix/Linux/Mac

Both of these statements specify two directories where PHP looks for include
files. The first directory is dot (meaning the current directory), followed by
the second directory path. You can specify as many include directories as you
want, and PHP will search them for the include file in the order in which they
are listed. The directory paths are separated by a semicolon for Windows and
a colon for Unix/Linux.

If you don’t have access to php.ini, you can set the path in each individual
script by using the following statement:

ini_set(“include_path”,”d:\hidden”);

This statement sets the include_path to the specified directory only while
the script is running. It doesn’t set the directory for your entire Web site.

To access a file from an include directory, just use the file name, as follows.
You don’t need to use the full path name.

include(“secretpasswords.inc”);

161Chapter 8: Reusing PHP Code

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 161

If your include file is not in an include directory, you may need to use the
entire path name in the include statement. If the file is in the same directory
as the script, the file name alone is sufficient. However, if the file is located in
another directory, such as a subdirectory of the directory the script is in or a
hidden directory outside the Web space, you need to use the full path name
to the file, as follows:

include(“d:/hidden/secretpasswords.inc”);

Creating Reusable Code (Functions)
Applications often perform the same task at different points in the script or in
different scripts. This is when functions come in handy. A function is a group
of PHP statements that perform a specific task. You can use the function
wherever you need to perform the task.

For example, suppose you add a footer to the bottom of every Web page by
using the following statements:
.
echo ‘
<address>My Great Company

1234 Wonderful Rd.

San Diego, CA 92126
</address>
<p>or send questions to

sales
’;

It’s not uncommon for Web pages to have headers or footers much longer
than this. So, rather than type this code into the bottom of every Web page,
probably incurring at least a couple of typos in the process, you can create a
function that contains the preceding statements and name it add_footer.
Then at the end of every page, you can just use the function (a process
referred to as calling the function) that contains the footer statements. The
code for this simple function call is as follows:

add_footer();

Notice the parentheses after the function name. These are required in a func-
tion call because they tell PHP that this is a function.

162 Part III: Basic PHP Programming

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 162

Defining functions
You can create a function by putting the code into a function block. The gen-
eral format is as follows:

function functionname()
{

block of statements;
return;

}

For example, you create the function add_footer() that I discuss in the pre-
ceding section with the following statements:

function add_footer()
{

echo ‘
<address>My Great Company

1234 Wonderful Rd.

San Diego, CA 92126
</address>
<p>or send questions to

sales
’;
return;

}

The return statement stops the function and returns to the main script. (The
return statement at the end of the function is not required, but it makes the
function easier to understand. The return statement is discussed in more
detail in the section “Returning a value from a function,” later in this chapter.)

You can write a function anywhere in the script, but the usual practice is to
put all the functions together at the beginning or the end of the script file.
Functions that you plan to use in more than one script can be in a separate
file, and you can include the file in any scripts that need to use the functions.

At this point, you’re probably wondering, “Why can’t I just put the footer state-
ments into a separate file called footer.inc and include footer.inc at the
end of each Web page?” Good question! Actually, you can. In fact, you should.
In this case, the instructions for creating the footer consist of a simple block
of statements that echo static HTML code. You could just put the HTML in the
include file and include it at the end of the page. You wouldn’t even need to use
PHP tags in the include file.

163Chapter 8: Reusing PHP Code

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 163

However, suppose the company has three divisions and you want to include
the division name in the footer and have the e-mail address send the e-mail
to the appropriate division. You could write three different include files and
include the correct one. However, a function works better in this situation
because functions are more flexible and faster. You can send information to
the function (called passing values), telling it which division to use in the
output. The function looks like this:

function add_footer($division)
{

echo ‘
<p>’.$division.’ Division</p>
<address>My Great Company

1234 Wonderful Rd.

San Diego, CA 92126
</address>
<p>or send questions to
’

.$division.’
’;
return;

}

In this version, the function is expecting a value to be passed to it. It stores
the passed value in a variable called $division and uses the variable for the
text that needs to change. When you use this function, you must pass it a
value, as follows:

add_footer(“Sales”);

You can change the division by calling the function with a different value:

add_footer(“Accounting”);

Notice the format of the echo statement. The string is enclosed in single
quotes. In the previous function, without variables, the format was simple —
just a single quote at the beginning and another single quote at the end. In
this function example, using a variable, the quoted string is ended when
$division is used and reopened after the variable. Remember, variables are
not evaluated inside single quotes. If $division were used inside single
quotes, the output would show $division Division, instead of Sales
Division.

You can pass a value back from a function, called returning a value. Values are
returned by using the return statement. For example, suppose you want the
function to put the footer into a variable rather than echo the footer. In that
case, the function looks like this:

164 Part III: Basic PHP Programming

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 164

function add_footer($division)
{

$str=’
<p>’.$division.’ Division</p>
<address>My Great Company

1234 Wonderful Rd.

San Diego, CA 92126
</address>
<p>or send questions to
’

.$division.’
’;
return $str;

}

In this case, you could use these statements:

$footer = add_footer(“Sales”);
echo $footer;

When you echo $footer, you output the entire footer string that was created
in the function.

The rest of this chapter describes in detail how to create and use functions.
A good programmer looks for opportunities to put script code into functions,
which improves readability and maintainability, as well as makes the script
run faster.

Using variables in functions
You can create and use a variable inside your function. Such a variable is
called local to the function A local variable is not available outside of the
function, so it’s not available to the main script. (If you want to use the vari-
able outside the function, you have to make the variable global, rather than
local, by using a global statement.) For example, the variable $name is cre-
ated in the following function:

function format_name($first_name,$last_name)
{

$name = $last_name.”, “.$first_name;
}

You can then call the function, passing it values, and attempt to echo the
value of the variable $name:

format_name(“Jess”,”Jones”);
echo “$name”;

165Chapter 8: Reusing PHP Code

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 165

However, these statements do not produce any output. In the echo state-
ment, $name doesn’t contain any value. The variable $name was created
inside the function, so it doesn’t exist outside the function.

You can create a variable inside a function that does exist outside the func-
tion by using the global statement. The following statements contain the
same function with a global statement added:

function format_name($first_name,$last_name)
{

global $name;
$name = $last_name.”, “.$first_name;

}

You can now call the function, passing it the same values, and echo the value
of the variable $name:

format_name(“Jess”,”Jones”);
echo “$name”;

The script now echoes the value of the variable $name:

Jones, Jess

You must make the variable global before you can use it. If the global state-
ment follows the $name assignment statement, the script does not produce
any output. That is, in the preceding function, if the global statement fol-
lowed the $name = statement, the function wouldn’t work correctly.

Similarly, if a variable is created outside the function, you can’t use it inside
the function unless it is global. You can make the variable global as shown in
the following statements:

$first_name = “Jess”;
$last_name = “Jones”;
function format_name()
{

global $first_name, $last_name;
$name = $last_name.”, “.$first_name;
echo “$name”;

}
format_name();

If you don’t use the global statement, $last_name and $first_name inside
the function are different variables than $last_name and $first_name cre-
ated outside the script. The local variables $last_name and $first_name
inside the function are created when you name them and have no values.
Therefore, $name would echo only a comma.

You need the global statement for the function to work correctly.

166 Part III: Basic PHP Programming

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 166

Passing values to a function
You pass values to a function by putting the values between the parentheses
when you call the function, as follows:

functionname(value1,value2,...);

Of course, the variables can’t just show up. The function must be expecting
them. The function statement includes variable names for the values it’s
expecting, as follows:

function functionname($varname1,$varname2,...)
{

statements
return;

}

Passing the right type of values
Values can be variables or values, including values that are computed. The
values passed can be any type of data, including arrays or objects (objects
are discussed in Chapter 9).

The following statements call a function that computes the sales tax. A
salestax function needs to know the amount of the purchase, so it can
compute the amount of tax. It also needs to know the state, so it can use the
correct tax rate to compute the sales tax. The values you need to pass are a
number (the purchase amount) and a string (the state’s name). The following
calls are valid:

� compute_salestax(2000,”CA”); This function is being passed two
values, 2000 and CA, CA.

� compute_salestax(2*1000,””); This function is being passed two
values, 2000 and ???, an empty value. The function must include code
that handles the empty variable.

� compute_salestax(2000,”C”.”A”); This function is being passed two
values, 2000 and ???, CA.

You can pass arrays to functions. (Arrays are discussed in Chapter 6.) For
example, the following function uses an array that is passed to it:

function add_numbers($numbers)
{

for($i=0;$i <sizeof($numbers);$i++)
{

@$sum = $sum + $numbers[$i];
}
return $sum;

}

167Chapter 8: Reusing PHP Code

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 167

This function adds all the numbers passed to it in an array of numbers. If the
value passed to it is not an array, PHP stores the value in $numbers as its cor-
rect data type — an integer or a string. When the function gets to the statement
sizeof($numbers), it fails because $numbers is not an array and sizeof
requires an array. A well-written function checks the values that are passed to
it make sure they are the type of value needed before executing the statements
in the function. For example, the following statement can be added to the func-
tion block, immediately before the for statement:

If(!is_array($numbers)
{

echo “The value passed is not an array”;
exit();

}

Similarly, this function should check whether the elements of the array are
numbers, using some of the functions described in Chapter 5.

You can use the following statements to define an array that is then passed to
the add_numbers function:

$arrayofnumbers = array(100,200);
$total = add_numbers($arrayofnumbers);

After these statements, $total equals 300.

Passing values in the correct order
The function receives the values in the order they are passed. That is, suppose
you have the following function:

function functionx($x,$y,$z)
{

do stuff
}

You call the function as follows:

functionx($var1,$var2,$var3);

The function sets $x=$var1, $y=$var2, and $z=$var3.

If the values you pass aren’t in the expected order, the function uses the wrong
value when performing the task. For example, suppose that your definition for
a function to compute sales tax looks like the following:

function compute_salestax($orderCost,$custState)
{

compute tax
}

168 Part III: Basic PHP Programming

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 168

But suppose you call it by using the following call:

compute_salestax($custState,$orderCost);

The function uses the state as the cost of the order, which it sets to 0 because
it is a string. It sets the state to the number in $orderCost, which would not
match any of its categories. The output would be 0.

Passing the right number of values
A function is designed to expect a certain number of values to be passed to
it. If you don’t send enough values, the function sets the missing one(s) to
NULL. If you have your warning message level turned on, a warning message
is displayed. (See Chapter 4 for a description of error levels.) For example,
you might see a message similar to the following:

Warning: Missing argument 2 for format_name() in testing.php
on line 9

Remember, warnings don’t stop the script; it continues to run. Suppose that
you call the format_name function described in the section “Using variables
in functions,” earlier in this chapter, by using the following statement:

format_name(“Jess”);

The output is as follows:

Jess,

If you send too many values, the function ignores the extra values. In most
cases, you do not want to pass the wrong number of values.

You can set default values to be used when a value isn’t passed. The defaults
are set when you write the function, be assigning a default value for the value(s)
it is expecting, as follows:

function add_2_numbers($num1=1,$num2=1)
{

$total = $num1 + $num2;
return $total;

}

If one or both values are not passed, the function uses the assigned defaults.
But if a value is passed, it is used instead of the default. For example, you
could use one of the following calls:

add_2_numbers(2,2);
add_2_numbers(2);
add_2_numbers();

169Chapter 8: Reusing PHP Code

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 169

The result are, in consecutive order:

$total = 4
$total = 3
$total = 2

The first $total is 4, because 2 and 2 are passed. The second $total is
three because 2 is passed and the default 1 is used for $num2. The third
$total is 2 because neither value is passed and, therefore, the defaults of 1
are used for both $num1 and $num2.

Passing values by reference
When you pass values into variables in the function definition, you are pass-
ing by value. Passing by value is the most common way to pass values to a
function, as in the following example:

function add_1($num1)
{

$num1 = $num1 + 1;
}

When passing by value, a copy is made of a value and the copy is passed
to the function. The value passed into the function is stored in the variable
$num1, and 1 is added to it in the function. However, the value of the variable
outside the function is not changed. Suppose that you call the function with
the following statements:

$orig_num = 3;
add_1($orig_num);
echo $orig_num;

The output from the echo statement is 3. A copy of the value stored in
$orig_num was passed to add_1, but nothing in the function affected
$orig_num. It is unchanged. You can change $orig_num by adding a return
statement to the function, as follows:

return $num1;

You then store the returned value in $orig_num as follows:

$orig_num = 3;
$orig_num = add_1($orig_num);
echo $orig_num;

Now, the echo statement outputs 4.

In some cases, you may want to change the values of variables directly, chang-
ing their values outside the function. That is, in the first example above, you
may want $orig_value changed from inside the function, without having to

170 Part III: Basic PHP Programming

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 170

pass it back. In this simple case, you could make the variable global, but you
can also do it using a technique called passing by reference. To pass a variable
by reference, add & before the variable name, as follows:

function add_1(&$num1)
{

$num1 = $num1 + 1;
}

When you call this function, a value is passed that tells PHP where the variable
is stored, (that is, a pointer to the container called $orig_num where the
value 3 is stored) rather than a copy of the value. The variable $num1 then
becomes another name for $orig_num, rather than a different variable that
contains 3. When you assign something to $num1, it is stored in $orig_num.
$num1 and $orig_num are two names for the same storage location. When
you change the variable by using statements inside the function, the value at
the original location is changed as well. For example, suppose you call the
function by using the following statements:

$orig_num = 3;
add_1($orig_num);
echo $orig_num;

The output of the echo statement is 4.

Because you’re passing a pointer to a variable, the following doesn’t make
sense:

add_1(&7);

Passing by reference is used mainly when passing really large values, such as
an object or a large array. It’s more efficient to pass a pointer than to pass a
copy of really large values.

Returning a value from a function
If you want a function to send a value back to the main script, you use the
return statement. The main script can put the returned value in a variable
or use it in any manner it would use any value.

A return statement returns any values specified and ends the function,
returning to the main script. The general format is as follows:

return value;

171Chapter 8: Reusing PHP Code

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 171

For example, the add2numbers function looks like this:

function add_2_numbers($num1,$num2)
{

$total = $num1 + $num2;
return $total;

}

The total of the two numbers is returned and the function ends. You call the
function as follows:

$sum = add_2_numbers(5,6);

$sum then equals the value in $total that was returned from the function,
which is 11 in this case. In fact, you could use a shortcut when defining the
function and send the total back to the main script with one statement:

return $num1 + $num2;

The main script can use the value in any of the usual ways. The following
statements use the function call in valid ways:

$total_height = add_2_numbers($height1,$height2);

$totalSize = $current_size + add_2_numbers($size1,$size2);

if (add_2_numbers($costSocks,$costShoes) > 200.00)
$echo “No sale”;

A return statement can return only one value. However, the value returned
can be an array, so you can actually return many values from a function.

You can use a return statement in a conditional statement to end a function,
as follows:

function find_value($array,$value)
{
for($i=1;$i<sizeof($array);$i++)
{

if($array[$i] = $value)
{
echo “$i. $array[$i]
”;
return;

}
}

}

172 Part III: Basic PHP Programming

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 172

The function checks an array to see if it contains a particular value. For exam-
ple, you can call the function with the following statements:

$names = array(“Joe”,”Sam”,”Juan”);
find_value($names,”Sam”);

The function searches through the values in the array looking for Sam. If it
finds Sam, it stops searching. The output shows the array item where Sam
is found, as follows:

1. Sam

Often functions are designed to return Boolean values, as in the following
function:

function is_over_100($number)
{
if($number > 100)
{

return TRUE;
}
else {

return FALSE;
}

}

Numbers 100 or less return FALSE; numbers over 100 return TRUE.

Another common function design returns a value if the function succeeds,
but returns FALSE if the function does not succeed. For example, you could
design the find_value function as follows:

function find_value($array,$value)
{
for($i=1;$i<sizeof($array);$i++)
{

if($array[$i] == $value)
{
return i$;

}
}
return FALSE;

}

If the function finds the value in the array, it returns the number of the array
element where it found $value. However, if it does not find the value any-
where in the array, it returns FALSE.

173Chapter 8: Reusing PHP Code

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 173

Using built-in functions
PHP’s built-in functions are one reason why PHP is so powerful and useful.
The functions included with PHP are normal functions. They are no different
than functions you create yourself. It’s just that PHP has already done all the
work for you.

Rather than discussing built-in functions here, out of context, I discuss spe-
cific PHP functions where I describe tasks in which functions can be very
helpful. For example, in Chapter 7, I discuss several functions that can be
used to check whether a variable exists or whether it is empty. Here are a
couple of those functions:

isset($varname)
empty($varname)

Also, in Chapter 5 I describe several functions that are useful for formatting
and manipulating numbers and strings. And other PHP built-in functions are
discussed throughout the book.

Appendix B is a reference list of many useful functions. Keep this list handy
when writing scripts so you can quickly look up PHP built-in functions. Although
you could write functions yourself to perform the tasks, take advantage of
PHP’s functions whenever possible. The reference in Appendix B does not
include all the functions, of course — there are hundreds — but it includes
the functions I have found to be most useful. All the functions are listed and
described in the PHP documentation on the PHP Web site at
www.php.net/docs.php.

Handling Errors
Sometimes functions fail. Sad, but true. You write them to carefully handle all
possibilities, but something can still go wrong. For example, a function that
connects to a database might fail because the database is currently down.
It’s not the function’s fault; the situation is beyond its control. A well-written
function tries to anticipate all possible situations, but recognizes that the
unexpected can happen by including a statement that returns FALSE when
the function is unable to carry out its mission for unexpected reasons.

Your script should anticipate any possible function failure and handle the situa-
tion. One possible action is to display your own message, rather than allow the
user to see the warning message provided by PHP. PHP provides the die state-
ment, which displays the message you specify. The format of the die statement
is as follows:

die(“message”);

174 Part III: Basic PHP Programming

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 174

The die statement stops the script and prints out whatever you have entered
in the place of message. When you use it with a function, you use it with or,
as follows:

functionname() or die(“message”);

If the function returns FALSE, the die statement stops the script and prints
out the message.

For example, if you use a function to connect to a MySQL database, you could
use the following statement:

mysql_connect(“host”,”user”,”password”)
or die(“Database is not available. Try again later.”);

Remember, if the function fails, PHP will display a warning message. If you
want your message to be displayed instead of the PHP warning message,
you need to change your error-reporting level so that warning messages are
not displayed, or shut off the display of all error messages, as described in
Chapter 4. Otherwise, both the PHP warning and your message will be
displayed.

You can use die with any function, but it doesn’t make sense to use it when
FALSE is a legitimate return value. Remember, die stops the script dead in its
tracks.

You can also handle possible function failures by using the function call as a
condition. For example, you can get the same result as the previous example
by using the following statements instead:

if(!mysql_connect(“host”,”user”,”password”))
{

echo “Database is not available. Try again later\n”;
exit();

}

Notice the exclamation point before the function call, making it a negative
condition. The condition is TRUE if the function returns FALSE.

The exit statement does the same thing as the die statement. Keep in mind
that you can use any statement in the if block; you can even have the script
send you an e-mail if the database is unreachable.

175Chapter 8: Reusing PHP Code

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 175

176 Part III: Basic PHP Programming

13 541668 Ch08.qxd 3/25/04 2:49 PM Page 176

Chapter 9

Object-Oriented Programming
Meets PHP

In This Chapter
� Understanding object-oriented programming

� Identifying objects

� Writing classes

� Using classes

P HP began life as a simple set of scripts. Over the course of its life, PHP
has added some object-oriented programming features, and object-

oriented programming became possible with PHP 4. With the introduction of
PHP 5, the PHP developers have really beefed up the object-oriented features
of PHP, resulting in both more speed and added features. Much of this
improvement is invisible — changes introduced with the Zend 2 engine that
powers PHP 5, that make scripts using objects run much faster and more
efficiently than they did in PHP 4. In addition, to speeding up scripts, object-
oriented functionality has been added to PHP that object-oriented program-
mers have been waiting for.

Introducing Object-Oriented
Programming

Object-oriented programming is an approach to programming that uses objects
and classes, which are discussed in more detail later in this chapter. Object-
oriented programming is widespread today, and many universities teach
object-oriented programming in beginning programming classes. Currently,
Java and C++ are the most prevalent languages used for object-oriented
programming.

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 177

Object-oriented programming is not just a matter of using different syntax.
It’s a different way of analyzing programming problems. The program is
designed by modeling the programming problem. For example, a programmer
designing a program to support a company’s sales department may look at
the programming problem in terms of the relationships between customers
and sales and credit lines — in other words, in terms of the design of the
sales department itself.

In object-oriented programming, the elements of a program are objects. The
objects represent the elements of the problem your program is meant to
solve. For example, if the program is related to a used-car lot, the objects are
probably cars and customers. Or if the program is related to outer space, the
objects would probably be stars and planets.

Object-oriented programming developed new concepts and new terminology
to represent those concepts. Understanding the terminology is the road to
understanding object-oriented programming.

Objects and classes
The basic elements of object-oriented programs are objects. It’s easiest to
understand objects as physical objects. For example, a car is an object. A car
has properties, such as color, model, engine, and tires, also called attributes.
A car has things it can do, too, such as move forward, move backward, park,
roll over, and play dead (well, mine does anyway).

In general, objects are nouns. A person is an object. So are animals, houses,
offices, customers, garbage cans, coats, clouds, planets, and buttons. However,
objects are not just physical objects. Often objects, like nouns, are more con-
ceptual. For example, a bank account is not something you can hold in your
hand, but it can be considered an object. So can a computer account. Or a
mortgage. A file is often an object. So is a database. Orders, e-mail messages,
addresses, songs, TV shows, meetings, and dates can all be objects.

A class is the script that serves as the template, or the pattern, that is used to
create an object. The class defines the properties, the attributes, of the
object. It also defines the things the object can do — its responsibilities. For
example, you write a class that defines a car as four wheels and an engine
and lists the things it can do, such as move forward and park. Then, given
that class, you can write a statement that creates a car object. Your new car
is created following the pattern in your class. When you use your car object,
you may find that it is missing a few important things, like a door or a steer-
ing wheel or a reverse gear. That’s because you left those out of the class
when you wrote it.

As the person who writes a class, you know how things work inside the class.
But it’s not necessary to know how an object accomplishes its responsibili-
ties in order to use it; anyone can use a class. I have no clue how a telephone

178 Part III: Basic PHP Programming

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 178

object works, but I can use it to make a phone call. The person who built the
telephone knows what’s happening inside it. When there’s new technology,
the phone builder can open my phone and improve it. As long as he doesn’t
change the interface — the keypad and buttons — it doesn’t affect my use of
the phone at all.

Properties
Objects have properties, also sometimes called attributes. A car may be red,
green, or covered in polka dots. Properties — such as color, size, or model
for a car — are stored inside the object. Properties are set up in the class as
variables. For example, the color attribute is stored in the object in a vari-
able, given the descriptive name such as $color. Thus, the car object may
contain $color = red.

The variables that store properties can have default values, can be given
values when the object is created, or values can be added or modified later.
For example, a car is created red, but when it is painted later, $color is
changed to chartreuse.

Methods
The things objects can do are sometimes referred to as responsibilities. For
example, a car object can move forward, stop, backup, and park. Each thing
an object can do — each responsibility — is programmed into the class and
called a method.

In PHP, methods use the same syntax as functions. Although the code looks
like the code for a function, the distinction is that methods are inside a class.
It can’t be called independently of an object. PHP won’t allow it. This type of
function can perform its task only when called with an object.

When creating methods, give them names that are descriptive of what they
do. Methods often have names like parkCar or getColor. Methods, like
other PHP entities, can be named with any valid name, but are often named
with camel caps, by convention.

The methods are the interface between the object and the rest of the world.
The object needs methods for all its responsibilities. Objects should interact
with the outside world only through their methods. If your neighbor object
wants to borrow a cup of sugar, you want him to knock on your door and
request the sugar. You don’t want him to just climb in the kitchen window and
help himself. Your house object should have a front door, and neighbor
objects should not be able to get into your house without using the front
door. In other words, your house object has a method for openFrontDoor that

179Chapter 9: Object-Oriented Programming Meets PHP

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 179

the neighbor must use. There should not be any other way the neighbor can
get into the house. Opening the front door is something your house object
can do, via a method called openDoor. Don’t leave any open windows in your
object design.

A good object should contain all it needs to perform its responsibilities, but
not a lot of extraneous data. It should not perform actions that are another
object’s responsibility. The car object should travel and should have every-
thing it needs to perform its responsibilities, such as gas, oil, tires, engine,
and so on. The car object should not cook and does not need to have salt or
frying pans. Nor should the cook object carry the kids to soccer practice.

Inheritance
Objects should contain only the properties and methods they need. No more.
No less. One way to accomplish that is to share properties and methods
between classes by using inheritance. For example, suppose you have two
rose objects: one with white roses and one with red roses. You could write
two classes: a redRose class and a whiteRose class. However, a lot of the
information is the same for both objects. Both are bushes, both are thorny,
and both bloom in June. Inheritance enables you to eliminate the duplication.

You can write one class called Rose. You can store the common information
in this class, such as $plant = bush, $stem=thorns, and $blooms=June.
Then you can write subclasses for the two rose types. The Rose class is
called the master class or the parent class. redRose and whiteRose are the
subclasses, which are referred to as child classes, or the kids, as my favorite
professor fondly referred to them.

Child classes inherit all the properties and methods from the parent class. But
they can also have their own individual properties, such as $color=white for
the whiteRose class and $color=red for the redRose class.

A child class can contain a method with the same name as a method in a
parent class. In that case, the method in the child class takes precedence for
a child object. You can specify the method in the parent class for a child
object if you want, but if you don’t, the child class method is used.

Object-oriented concepts PHP 5 omits
If you’re familiar with object-oriented programming in other languages, you
may find that some features you’re accustomed to using aren’t available in
PHP. Things are getting better — many of the features missing in PHP 4 have
been added in PHP 5. The still-missing features include the following:

180 Part III: Basic PHP Programming

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 180

� Polymorphism: PHP does not allow more than one method, even a con-
structor, to have the same name in a class. Therefore, you can’t imple-
ment polymorphism as you’re used to doing. You can’t have two or more
methods with the same name in the same class that accept different
types or number of variables. Some people use switches and other mecha-
nisms to implement the functionality of polymorphism.

� Multiple inheritance: PHP does not allow multiple inheritance. A class
can inherit from only one parent class.

Developing an Object-Oriented Program
Object-oriented programs require a lot of planning, even more than procedural
programs that process statement from beginning to end, without using classes.
You need to plan your objects and their properties and what they can do. Your
objects need to cover all their responsibilities without encroaching on the
responsibilities of other objects. For complicated projects, you may have to do
some model building and testing before you can feel reasonably confident that
your project plan includes all the objects it needs.

Choosing objects
Your first task is to develop the list of objects needed for your programming
project. If you’re working alone and your project is small, the objects may be
obvious. However, if you’re working on a large, complex project, selecting the
list of objects can be more difficult. For example, if your project is developing
the software for a bank, your list of possible objects is large: account, teller,
money, checkbook, wastebasket, guard, vault, alarm system, customer, loan,
interest, and so on. But, do you need all those objects? What is your program
going to do with the wastebasket in the front lobby? Or the guard? Well, per-
haps your program needs to schedule shifts for the guards.

One strategy for identifying your objects is to list all the objects you can think
of — that is, all the nouns that may have anything to do with your project.
Sometimes programmers can take all the nouns out of the project proposal
documentation to develop a pretty comprehensive list of possible objects.

After you have a long list of possible objects, your next task is to cross off
as many as possible. You should eliminate any duplicates, objects that have
overlapping responsibilities and objects that are unrelated to your project.
For example, if your project relates to building a car, your car project proba-
bly needs to have objects for every part in the car. On the other hand, if your
project involves traffic control in a parking garage, you probably only need a
car object that you can move around; the car’s parts don’t matter for this
project.

181Chapter 9: Object-Oriented Programming Meets PHP

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 181

Selecting properties and
methods for each object
After you have a comprehensive list of objects, you can begin to develop the
list of properties for each object. Ask yourself what you need to know about
each object. For example, for your car repair project, you probably need to
know things like when the car was last serviced, its repair history, any acci-
dents, details about the parts, and so on. For your parking garage project,
you probably need to know only the car’s size. How much room does the car
take up in the parking garage?

You need to define the responsibilities of each object, and each object needs
to be independent. It needs methods for actions that handle all of its respon-
sibilities. For example, if one of your objects is a bank account, you need to
know what a bank account needs to do. Well, first, it needs to be created, so
you can define an openNewAccount method. It needs to accept deposits and
disburse withdrawals. It needs to keep track of the balance. It needs to report
the balance when asked. It may need to add interest to the account periodi-
cally. Such activities come to mind quickly.

However, a little more thought, or perhaps testing, can reveal activities that
were overlooked. For example, the account stores information about its
owner, such as name and address. Did you remember to include a method to
update that information when the customer moves? It may seem trivial com-
pared to moving the money around, but it won’t seem trivial if you can’t do it.

Creating and using the class
After you have decided on the design of an object, you can create and then
use the object. The steps for creating and using an object are shown below:

1. Write the class statement.

The class statement is a PHP statement that is the blueprint for the
object. The class statement has a statement block that contains PHP
code for all the properties and methods that the object has.

2. Include the class in the script where you want to use the object.

The class statement can be written in the script itself. However, it is
more common to save the class statement in a separate file and use an
include statement to include the class at the beginning of the script
that needs to use the object.

3. Create an object in the script.

You use a PHP statement to create an object based on the class. This is
called instantiation.

182 Part III: Basic PHP Programming

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 182

4. Use the new object.

After you create a new object, you can use it to perform actions. You can
use any method that is inside the class statement block.

The rest of this chapter provides the details needed to complete these steps.

Defining a Class
After you’ve determined the objects, properties, and methods your project
requires, you’re ready to define classes. The class is the template (pattern)
for the object.

Writing a class statement
You write the class statement to define the properties and methods for the
class. The class statement has the following general format:

class className
{

Add statements that define the properties
Add all the methods

}

You can use any valid PHP identifier for the class name, except the name
stdClass. PHP uses the name stdClass internally, so you can’t use this
name.

All the property settings and method definitions are enclosed in the opening
and closing curly brackets. If you want a class to be a subclass that inherits
properties and methods, use a statement similar to the following:

class whiteRose extends Rose
{

Add the property statements
Add the methods

}

The object created from this class has access to all the properties and
methods of both the whiteRose class and the Rose class. The Rose class,
however, does not have access to properties or methods in the child class,
whiteRose. Imagine, the child owns everything the parent owns, but the
parent owns nothing of the child’s. What an idea.

183Chapter 9: Object-Oriented Programming Meets PHP

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 183

The next few sections show you how to set properties, and define methods,
within the class statement. For a more comprehensive example of a com-
plete class statement, see the section, “Putting it all together,” later in this
chapter.

Setting properties
When you’re defining a class, you declare all the properties in the top of the
class, as follows:

class Car
{

var $color;
var $tires;
var $gas;

Method statements
}

PHP does not require you to declare variables. In the other PHP scripts dis-
cussed in this book, variables are not declared; they’re just used. You can do
the same thing in a class. However, it’s much better to declare the properties
in a class. By including declarations, classes are much easier to understand.
It’s poor programming practice to leave this out.

If you want to set default values for the properties, you can, but the values
allowed are restricted. You can declare a simple value, but not a computed
one, as detailed in the following examples:

� The following variable declarations are allowed as default values:

var $color = “black”;
var $gas = 10;
var $tires = 4;

� The following variable declarations are not allowed as default values:

var $color = “blue”.” black”;
var $gas = 10-3;
var $tires = 2*2;

An array is allowed in the variable declaration, as long as the values are
simple, as follows:

var $doors = array(“front”,”back”);

184 Part III: Basic PHP Programming

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 184

You can set or change a variable’s value when you create an object, by using
the constructor (described in “Writing the constructor,” later in this chapter)
or a method you write for this purpose.

Using $this
Inside a class, $this is a special variable that refers to the properties of the
same class. $this can’t be used outside of a class. It’s designed to be used in
statements inside a class to access variables inside the same class.

The format for using $this is the following:

$this->varname

For example, in the Car class that has an attribute $gas, you would access
$gas in the following way:

$this->gas

Using $this refers to $gas inside the class. You can use $this in any of the
following statements as shown:

$this->gas = 20;
if($this->gas > 10)
$product[$this->size] = $price

As you can see, you use $this->varname in all the same ways you would use
$varname.

Notice that a dollar sign ($) appears before this but not before gas. Don’t
use a dollar sign before gas — as in $this->$gas — because it changes your
statement’s meaning. You may or may not get an error message, but it isn’t
referring to the variable $gas inside the current class.

Adding methods
Methods define what an object can do and are written in the class by using
the function format. For example, your car may need a method that puts gas
in the gas tank. You can have a variable called gas that contains the amount
of gas currently in the gas tank. You can write a method that adds an amount
of gas to $gas. You could add such a method to your class as follows:

185Chapter 9: Object-Oriented Programming Meets PHP

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 185

class Car
{
var $gas = 0;
function addGas($amount)
{

$this->gas = $this->gas + $amount;
echo “$amount gallons added to gas tank”;

}
}

This looks just like any other function, but it’s a method because it’s inside a
class.

PHP provides some special methods with names that begin with __ (two
underscores). These methods are handled differently by PHP internally.
This chapter discusses three of these methods: construct, destruct, and
clone. Don’t begin the names of any of your own methods with two under-
scores unless you are taking advantage of a PHP special method.

Writing the constructor
The constructor is a special method that is executed when an object is created
using the class as a pattern. A constructor is not required, and you don’t need
to use a constructor if you don’t want to set any property values or perform
any actions when the object is created. Only one constructor is allowed.

The constructor has a special name so that PHP knows to execute the
method when an object is created. Constructors are named __construct.
(Note the two underscores.) A constructor method looks similar to the
following:

function __construct()
{

$this->gas = 10; # starts with a full gas tank
$this->openDoor();

}

This constructor defines the new car. When the car is created, it has a full gas
tank and an open door.

Prior to PHP 5, constructors had the same name as the class. You may run
across classes written in this older style. PHP 5 looks first for a method called
__construct() to use as the constructor. If it doesn’t find one, it looks for a
method that has the same name as the class and uses that method for the
constructor. Thus, older classes still run under PHP 5.

186 Part III: Basic PHP Programming

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 186

Putting it all together
Your class can have as few or as many properties and methods as it needs.
These methods can be very simple or very complicated, but the goal of
object-oriented programming is to make the methods as simple as is reason-
able. Rather than cram everything into one method, it’s better to have sev-
eral smaller methods and have one method call another.

The following is a simple class:

class MessageHandler
{
var $message = “No message”;
function __construct($message)
{

$this->message = $message;
}
function displayMessage()
{

echo $this->message.”\n”;
}

}

The class has one property — $message — that stores a message. The mes-
sage is stored in the constructor.

The class has one method — displayMessage. This is the only thing the
messageHandler object is able to do — echo the stored message.

Suppose you want to add a method that changes the message to lowercase
and then automatically displays the message. The best way to write that
expanded class is as follows:

class MessageHandler
{
var $message = “No message”;
function __construct($message)
{

$this->message = $message;
}
function displayMessage()
{

echo $this->message.”\n”;
}
function lowerCaseMessage()
{

$this->message = strtolower($this->message);
$this->displayMessage();

}
}

187Chapter 9: Object-Oriented Programming Meets PHP

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 187

Note the lowerCaseMessage() method. Because the class already has
a method to display the message, this new method uses the existing
displayMessage() method rather than include the statements in the new
method. Any time you write a method and find yourself writing code that you
have already written elsewhere in a different method in the same class, you
need to redesign the methods. In general, you should not have any duplicate
code in the same class.

The Listing 9-1 example is a more complicated class that can be used to
create an HTML form. To simplify the example, the form contains only text
input fields.

Listing 9-1: A Script That Contains a Class for a Form Object

<?php
/* Class name: Form
* Description: A class that creates a simple HTML form
* containing only text input fields. The
* class has 3 methods.
*/
class Form
{
var $fields=array(); # contains field names and labels
var $processor; # name of program to process form
var $submit = “Submit Form”; # value for the submit button
var $Nfields = 0; # number of fields added to the form

/* Constructor: User passes in the name of the script where
* form data is to be sent ($processor) and the value to show
* on the submit button.
*/
function __construct($processor,$submit)
{

$this->processor = $processor;
$this->submit = $submit;

}

/* Display form function. Displays the form.
*/
function displayForm()
{

echo “<form action=’{$this->processor}’ method=’post’>”;
echo “<table width=’100%’>”;
for($j=1;$j<=sizeof($this->fields);$j++)
{

echo “<tr><td align=\”right\”>
{$this->fields[$j-1][‘label’]}: </td>\n”;

echo “<td>
<input type=’text’
name=’{$this->fields[$j-1][‘name’]}’>

</td></tr>\n”;
}

188 Part III: Basic PHP Programming

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 188

echo “<tr><td colspan=2 align=’center’>
<input type=’submit’

value=’{$this->submit}’></td></tr>\n”;
echo “</table>”;

}

/* Function that adds a field to the form. The user needs to
* send the name of the field and a label to be displayed.
*/
function addField($name,$label)
{
$this->fields[$this->Nfields][‘name’] = $name;
$this->fields[$this->Nfields][‘label’] = $label;
$this->Nfields = $this->Nfields + 1;

}
}
?>

This class contains four properties and three methods. The properties are as
follows:

� $fields: An array that holds the fields as they are added by the user.
The fields in the form are displayed from this array.

� $processor: The name of the script that the form is sent to. This vari-
able is used in the action attribute when the form tag is displayed.

� $submit: The text that the user wants displayed on the submit button.
This variable’s value is used when the submit button is displayed.

� $Nfields: The number of fields that have been added to the form so far.

The methods in this class are as follows:

� __construct: The constructor, which sets the values of $processor
and $submit from information passed in by the user.

� addField: Adds the name and label for the field to the $fields array. If
the user added fields for first name and last name to the form, the array
may look as follows:

$fields[1][name]=first_name
$fields[1][label]=First Name
$fields[2][name]=last_name
$fields[2][label]=Last Name
and so on

� displayForm: Displays the form. It echoes the HTML needed for the
form and uses the values from the stored variables for the name of the
field and the label that the user sees by the field.

The next section describes how to use a class, including the form class
shown in Listing 9-1.

189Chapter 9: Object-Oriented Programming Meets PHP

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 189

Using a Class
The class code needs to be in the script that uses the class. Most commonly,
the class is stored in a separate include file and is included in any script that
uses the class.

To use an object, you first create the object from the class. Then that object
can perform any methods that the class includes. Creating an object is called
instantiating the object. Just as you can use a pattern to create many similar
but individual dresses, you can use a class to create many similar but individ-
ual objects. To create an object, use statements that have the following format:

$objectname = new classname(value,value,...);

$Joe = new Person(“male”);
$car_Joe = new Car(“red”);
$car_Sam = new Car(“green”);
$customer1 = new Customer(“Smith”,”Joe”,$custID);

The object is stored in the variable name, and the constructor method is
executed. You can then use any method in the class with statements of the
following format:

$Joe->goToWork();
$car_Joe->park(“illegal”);
$car_Sam->paintCar(“blue”);
$name = $customer1->getName();

Different objects created from the same class are independent individuals.
Sam’s car gets painted blue, but Joe’s car is still red. Joe gets a parking ticket,
but it doesn’t affect Sam.

The script shown in Listing 9-2 shows how to use the form class that was cre-
ated in the previous section and shown in Listing 9-1.

Listing 9-2: A Script That Creates a Form By Using the Form Class

<?php
/* Script name: buildForm
* Description: Uses the form to create a simple HTML form
*/
require_once(“form.inc”);
echo “<html><head><title>Phone form</title></head><body>”;
$phone_form = new Form(“process.php”,”Submit Phone”);
$phone_form->addField(“first_name”,”First Name”);
$phone_form->addField(“last_name”,”Last Name”);
$phone_form->addField(“phone”,”Phone”);

190 Part III: Basic PHP Programming

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 190

echo “<h3>Please fill out the following form:</h3>”;
$phone_form->displayForm();
echo “</body></html>”;
?>

First, the script included the file containing the class into the script. The
class is stored in the file form.inc. The script creates a new form object called
$phone_form. Three fields are added. The form is displayed. Notice that some
additional HTML code was output in this script. That HTML could have been
added to the displayForm method just as easily.

The script creates a form with three fields, using the form class. Figure 9-1
shows the resulting Web page.

Making Properties and Methods Private
Properties and methods can be public or private. Public means that methods
or properties inside the class can be accessed by the script that is using the
class or from another class. For example, the following class has a public
attribute and a public method as shown:

class Car
{
var $gas = 0;
function addGas($amount)
{

$this->gas = $this->gas + $amount;
echo “$amount gallons added to gas tank”;

}
}

Figure 9-1:
The form

displayed by
the script in
Listing 9-2.

191Chapter 9: Object-Oriented Programming Meets PHP

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 191

The public attribute in this class can be accessed by a statement in the script
outside the class, as follows:

$mycar = new Car;
$gas_amount = $mycar->gas;

After these statements are run, $gas_amount contains the value stored in
$car inside the object. The attribute can also be modified from outside the
class, as follows:

$mycar->gas = 20;

Allowing script statements outside the class to directly access the properties
of an object is poor programming practice. All interaction between the object
and the script or other classes should take place using methods. The example
class has a method to add gas to the car. All gas should be added to the car
using the addGas method, which is also public, using statements similar to
the following:

$new_car = new Car;
$new_car->addGas(5);

You can prevent access to properties by making them private. PHP provides
two options for making properties and methods private, as follows:

� private: No access from outside the class, either by the script or from
another class.

� protected: No access from outside except from a class that is a child of
the class with the protected attribute or method.

You can make an attribute private as follows:

private $gas = 0;

With the attribute specified as private, a statement like the previous statement
that attempts to access the attribute directly gets the following error message:

Fatal error: Cannot access private property car::$gas in
c:\testclass.php on line 17

Now, the only way gas can be added to the car is using the addGas method.
Because the addGas method is part of the class statement, it can access the
private attribute.

In the same way, you can make methods private or protected. In this case,
you want the outside world to use the addGas method. However, you may
want to be sure that people buy the gas that is added. You don’t want any
stolen gas in your car. You could write the following class:

192 Part III: Basic PHP Programming

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 192

class Car
{
private $gas = 0;
private function addGas($amount)
{

$this->gas = $this->gas + $amount;
echo “$amount gallons added to gas tank”;

}
function buyGas($amount)
{

$this->addGas($amount);
}

}

With this class, the only way gas can be added to the car from the outside is
with the buyGas method. The buyGas method uses the addGas method to
add gas to the car, but the addGas method can’t be used outside the class
because it is private. If a statement outside the class attempts to use addGas,
as follows, a fatal error is displayed, as it was for the private attribute:

$new_car = new Car;
$new_car->addGas(5);

However, you can now add gas to the car using the buyGas method, as follows:

$new_car = new Car;
$new_car->buyGas(5);

You see the following output:

5 gallons added to gas tank

It’s good programming practice to hide as much of your class as possible.
Make all properties private. Only make methods public that absolutely need
to be public.

PHP also provides an option to make properties and methods public. Although
you don’t need to use the public option, because public is the default, it helps
to make the class more readable. The following statement:

public $gas = 0;

has the same effect as:

var $gas = 0;

193Chapter 9: Object-Oriented Programming Meets PHP

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 193

Using Exceptions
PHP provides an error-handling class called Exception. You can use this class
to handle undesirable things that happen in your script. When the undesirable
thing that you define happens, a routine you have written is performed. In
object-oriented talk, this is called throwing an exception.

In the car class, you keep track of the gas in the car and stop the car when it
runs out of gas. You expect your program to detect 0 gallons and react. You
don’t expect the gas in the gas tank to be a negative amount. You consider
that to be an exception, and you want to be sure that won’t happen in your
script. To deal with this, you can write a routine that uses the Exception
class to watch for a negative gas amount. The following statements check for
this situation:

$this->gas = $this->gas – 5;
try
{

if ($this->gas < 0)
{
throw new Exception(“Negative amount of gas.”);

}
}
catch (Exception $e)
{

echo $e->getMessage();
echo “\n
\n”;
exit();

}

The preceding script contains a try block and a catch block:

� In the try block, you test a condition. If the condition is TRUE, you throw
an exception — in other words, you create an Exception object. The
Exception object has a property that stores the message you sent when
you threw the exception.

� In the catch block, you catch the exception and call it $e. Then you exe-
cute the statements in the catch block. One of the statements is a call to
a method called getMessage in the Exception class. The getMessage
function returns the message that you stored, and your statement echoes
the returned message. The statements then echo the end-of-line charac-
ters so the message is displayed correctly. The script stops on the exit
statement.

If no exception is thrown, the catch block has nothing to catch, and it is
ignored. The script proceeds to the statements after the catch block.

194 Part III: Basic PHP Programming

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 194

Copying Objects
PHP provides a method you can use to copy an object. The method is __clone,
with two underscores. You can write your own __clone method in a class if
you want to specify statements to run when the object is copied. If you don’t
write your own, PHP uses it’s default __clone method that copies all the
properties as is. The two underscores indicate that the clone method is a
different type of method, and thus is called differently, as shown in the follow-
ing example.

For example, you could write the following class:

class Car
{
private $gas = 0;
private $color = “red”;
function addGas($amount)
{

$this->gas = $this->gas + $amount;
echo “$amount gallons added to gas tank”;

}
function __clone()
{

$this->gas = 0;
}

}

Using this class, you could create an object and copy it as follows:

$firstCar = new Car;
$firstCar->addGas(10);
$secondCar=clone $firstCar;

After these statements, you have two cars:

� $firstCar: This car is red and contains 10 gallons of gas. The 10 gallons
were added with the addGas method.

� $secondCar: This car is red, but contains 0 gallons of gas. The duplicate
car is created using the __clone method in the Car class. This method
sets gas to 0 and doesn’t set $color at all.

If you did not have a __clone method in the Car class, PHP would use a default
__clone method that would copy all the properties, making $secondCar both
red and containing 10 gallons of gas.

195Chapter 9: Object-Oriented Programming Meets PHP

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 195

Destroying Objects
You can destroy an object with the following statement:

unset($objName);

For example, you could create and destroy an object of the Car class with the
following statements:

$myCar = new Car;
unset($myCar);

After $myCar is unset, the object no longer exists at all.

PHP provides a method that is automatically run when an object is destroyed.
You add this method to your class and call it __destruct. For example, the
following class contains a __destruct method:

class Bridge
{
function __destruct()
{
echo “The bridge is destroyed”;

}
}

If you use the following statements, the object is created and destroyed:

$bigBridge = new Bridge;
unset($bigBridge);

The output from these statements is:

The bridge is destroyed

The output is echoed by the __destruct method when the object is unset.

The __destruct method is not required. It’s just available for you to use if
you want to execute some statements when the object is destroyed. For
example, you might want to close some files or copy some information to
your database.

196 Part III: Basic PHP Programming

14 541668 Ch09.qxd 3/25/04 2:48 PM Page 196

Part IV
Common PHP
Applications

15 541668 PP04.qxd 3/25/04 2:57 PM Page 197

In this part . . .

Part IV shows how to apply the features and function-
ality of PHP to common programming tasks. You find

out how to write scripts to do the tasks that programmers
most often need to do, and you also discover how PHP
can interact with databases, operating systems, and e-mail
applications. When you finish this part, you will know how
to write scripts by using HTML forms to interact with your
user, how to handle data, and many other tasks commonly
performed with PHP.

15 541668 PP04.qxd 3/25/04 2:57 PM Page 198

Chapter 10

The Basics of Web Applications
In This Chapter
� Understanding Web site security

� Displaying static pages

� Collecting information from users with HTML forms

� Processing information received from users

P HP was originally designed for Web programming, and although its use
for general-purpose scripts is growing, PHP is still used most frequently

to develop dynamic Web sites. Static Web pages — pages where all users see
the same Web page — don’t allow for interaction between the user and the
Web page. Dynamic Web pages, on the other hand, allow users to interact
with the Web page. Users may see different Web pages, based on information
they type into the Web page. For example, users might be required to type in
valid usernames and passwords before they can see any Web pages on the
Web site, allowing the site to customize Web pages based on users’ previous
preferences or profiles. Alternatively, users may select a type of product from
an online catalog and see only the Web pages containing products of the type
they select.

A dynamic Web page collects information from the user with an HTML form.
The information that the user types into the form is then processed, depend-
ing on what the information will be used for. The information may be stored
(see Chapter 12 for more on storing data using PHP) or used in a conditional
statement to display alternative Web pages.

In this chapter, I do not tell you about the HTML required to display a form; I
assume you already know HTML. (If you don’t know HTML or need a refresher,
check out HTML 4 For Dummies, 4th Edition, by Ed Tittel and Natanya Pitts
[Wiley Publishing, Inc.].) What I do tell you is what you need to consider to
keep your Web site secure and how to use PHP to display HTML forms and to
process the information that users type into the form.

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 199

Securing Your Web Site
Web applications are particularly vulnerable to attacks from the outside.
Most Web sites are open to the public, offering services, products, or infor-
mation to anyone who visits. Dynamic Web sites are particularly vulnerable
because they accept information from visitors to the site. Although the vast
majority of visitors are good guys, trying to use the Web site for its intended
purpose, a few people out have intentions that are not so pure, including the
following groups:

� People who want to steal things: These are the folks who hope to find a
file sitting around full of valid credit card numbers or a map to the pot of
gold at the end of the rainbow.

� People who want to destroy your Web site: These saboteurs may think
it’s funny to wreck your site, or they may cause damage just to prove
how smart they are.

� People who want to harm your users: These folks add things to your
Web site that harm or steal from the people who visit your site.

This is not a security book. Security is a large, complex issue, and I am not a
security expert. Nevertheless, I want to call a few issues to your attention and
make some suggestions to help you protect your Web site. The following mea-
sures will increase the security of your Web site, but if your site handles really
important, secret information, read some security books and talk to some
experts:

� Ensure the security of the computer that hosts your Web site. This is the
responsibility of the system administrator, which may or may not be you.

� Keep information private. Don’t be more public than necessary. Store
your information so it can’t be easily accessed from the Web.

� Be cautious of information from users. Always clean any information
that you didn’t generate yourself.

� Use a secure Web server. This requires extra work, but it’s important if
you have top-secret information.

These topics are covered in more detail in the following sections.

Ensuring the security of the host computer
Your first line of defense is to make sure that the computer that hosts the Web
site is secure. The computer’s system administrator is responsible for keeping
unauthorized visitors and vandals out of the system. Security measures include
such things as firewalls, encryption, password shadowing, scan detectors, and

200 Part IV: Common PHP Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 200

so on. In most cases, the system administrator is not you. If it is, you need to
do some serious investigation into security issues. If you’re using a Web host-
ing company, you may want to discuss security with those folks, to reassure
yourself that they’re using sufficient security measures.

Keeping information private
Keep information as private as possible. Of course, the Web pages you want
visitors to see must be stored in your public Web space directory. However,
users don’t need to see the names of the files stored there. You may have
noticed that sometimes a site shows you a list of all the files in the directory.
This is generally not a good idea. Your Web site isn’t very secure if a visitor
can look at any file on your site.

This list of files is displayed when the URL that the visitor types in points at a
directory, rather than a specific file, and the directory doesn’t contain a file
with the default directory name. Most Web servers look first in a directory for
a default name, specified in the server configuration, often index.html. If the
directory doesn’t contain a file with this default name, the server may display
a list of files in the directory. A better choice is to have the Web server display
a message telling visitors that they can’t access the directory, similar to the
following message:

Forbidden
You don’t have permission to access /secretdirectory on this

server.

A setting in the configuration of the Web server determines whether users
see a list of files or a message. The Web server administrator can change the
behavior. For example, in Apache, you control what is displayed by using an
option called Indexes, which can be turned on or off in the httpd.conf file
as follows:

Options Indexes // turns file listing on
Options -Indexes // turns file listing off

See the documentation for your Web server to allow or not allow directory
listings in the user’s Web browser.

It’s also not wise to name a file an obvious, guessable name. For example, if
you have a file containing secret passwords, it’s not a good idea to name it
passwords.php. You may want to call the file something odd or boring, such
as vegetableRecipes.php. I know this suggestion violates other parts of
the book where I promote informative filenames, but this is a special case.
Malicious people sometimes do obvious things like typing www.yoursite.
com/passwords.html into their browsers to see what happens.

201Chapter 10: The Basics of Web Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 201

Not everything needs to be public. For example, your database should not be
stored in a public location. In fact, it can be stored on a totally different com-
puter. Also, as discussed in Chapter 8, include files can be stored in a sepa-
rate location, a space on the computer that can’t be accessed from the Web.

Being cautious of information from users
Users can enter dangerous information into forms, either accidentally or with
malicious intent. Therefore, never store or use information from forms without
checking it first. Check it for reasonable formats and dangerous characters.
Even characters entered accidentally can sometimes cause problems in your
database or scripts. In particular, you don’t want to accept HTML tags — such
as <script> tags — from forms. Using script tags, a user can enter an actual
script, perhaps a malicious one. If you accept the form field without checking
it and store it in your database, you could have any number of problems, par-
ticularly if the stored script was sent in a Web page to a visitor to your Web
site. For more on checking data from forms, see the section “Checking the
information” later in this chapter.

Using a secure Web server
Communication between your Web site and its visitors is not totally secure.
When the files on your Web site are sent to the user’s browser, it is possible
for someone on the Internet between you and the user to read the contents of
these files as they pass by. For most Web sites, this isn’t an issue, but if your
site collects or sends credit card numbers or other secret information, use a
secure Web server to protect this data.

Secure Web servers use SSL (Secure Sockets Layer) to protect communication
sent to and received from browsers. This is similar to the scrambled telephone
calls you hear about in spy movies. The information is encrypted (translated
into coded strings) before it is sent across the Web. The receiving software
decrypts it into its original content. In addition, your Web site uses a certifi-
cate that verifies your identity. Using a secure Web server is extra work, but
it’s necessary for some applications.

You can tell when you’re communicating using SSL because the URL begins
with https rather than http.

Information about secure Web servers is specific to the Web server you’re
using. To find out more about using SSL, look at the Web site for the Web server
you’re using. For example, if you’re using Apache, check out two open source
projects that implement SSL for Apache at www.modssl.org and www.apache-
ssl.org. Commercial software is also available that provides a secure server

202 Part IV: Common PHP Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 202

based on the Apache Web server. If you’re using Microsoft IIS, search for SSL
on the Microsoft Web site at www.microsoft.com.

Displaying Static Web Pages
The simplest Web page design is a static Web page. If you need only static Web
pages on your Web site, you don’t need PHP. However, you may need static
Web pages interspersed with your dynamic pages.

PHP can be used to display any Web pages, including static pages. You simply
use echo statements to echo the appropriate HTML. If you have a Web page
containing only HTML that needs to be displayed in a PHP script, the most
efficient way to display the static Web page is to include it where it’s needed
with the following statement:

include(“filename”);

If you need to turn an existing static Web page into a PHP script, for some
unlikely reason, you can add PHP tags at the beginning and end of the file.
Then add echo at the top of the file and enclose the existing HTML code in
single quotes.

Working with HTML Forms
For a Web page to be interactive, it must collect information from the user,
which is done with HTML forms. The information collected may simply be a
username and password for a user login. A form can also be long and elabo-
rate, collecting a great deal of information from a user, such as shipping and
credit card information for an online purchase application or a survey form
asking many questions for research purposes.

To use HTML forms to collect information, your script displays the form on
the Web site, and the user types information into text fields or selects items
from a list. The user then clicks a button to submit the form information. When
the form is submitted, the information in the form is passed to a second sepa-
rate script, which processes the information.

This chapter provides basic information on using forms in a dynamic Web site.
Often the information collected is stored in a database, or the form is displayed
by using information retrieved from a database. If you’re planning to use HTML
forms teamed with a MySQL database, you can find more detailed information
and more complex solutions in PHP & MySQL For Dummies by yours truly
(Wiley Publishing, Inc.).

203Chapter 10: The Basics of Web Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 203

Collecting information
from Web site visitors
HTML forms are used to collect information from Web site visitors. If you’re
unfamiliar with HTML forms, check out HTML 4 For Dummies, 4th Edition, by
Ed Tittel and Natanya Pitts.

Displaying HTML Forms
To display a form by using PHP, you can do one of the following:

� Use echo statements to echo the HTML for a form. The following state-
ments echo a form by using this method:

echo “<form action=’processform.php’ method=’POST’>\n
<input type=’text’ name=’name’>\n
<input type=’submit’ value=’Submit Name’>\n
</form>\n”;

� Use plain HTML outside the PHP sections. For a plain static form, you
don’t need to include it in a PHP section. For example, the following
statements produce the same form as the preceding example:

<?php
statements in PHP section

?>
<form action=”processform.php” method=”POST”>
<input type=”text” name=”fullname”>
<input type=”submit” value=”Submit Name”>
</form>
<?php
statements in PHP section

?>

Both of these examples display the same form, which is shown in Figure 10-1.

Figure 10-1:
A form

produced
by HTML

statements.

204 Part IV: Common PHP Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 204

The form in Figure 10-1 has one text field, which is blank. It also has a button
labeled Submit Name. The user types a name into the text field and clicks the
button. When the user submits the form, the information in the form is passed
to the script designated in the action attribute of the form tag. In this example,
the action attribute is action=”processform.php”, so when the user clicks
the submit button, the script processform.php is called, and the information
in the form is passed to it. (I am using processform.php as an example name
here. You can name the script that processes the form with any name you
want.)

PHP allows you to use variables in PHP forms, making the forms more power-
ful. Using variables, you can display information in the input text fields and
build dynamic lists for selection boxes, radio buttons, and check boxes.

Displaying information in text fields
In some cases, you may want to display information in the text fields rather
than just display blank fields. For example, you may want to display a default
value in a field. Or, when displaying a form to a user to reenter incorrect
information, you want to retain the correct information so that the user has
to retype information only in the field with the error.

To display text fields that contain information, you use the following format
for the input field HTML statements:

<input type=”text” name=”fieldname” value=”content”>

For example, suppose you’re displaying a form to collect a customer’s name
and address. You know that most of your customers live in the U.S., so you
decide to display the field with US as the default. If customers are from the
U.S., you save them some typing and avoid errors they may type in. If cus-
tomers are not from the U.S., they can just replace US with the correct coun-
try. You can display the country field with the following statement:

<input type=”text” name=”country” value=”US”>

In some cases, you may want to display variable information in a text field.
You can use a PHP variable to display information. For example, suppose you
have customer information (such as a phone number) stored in a database,
and you want to display the information in a form so that the user can update
any incorrect or outdated information. First, you retrieve the customer infor-
mation from a database (see Chapter 12 for the lowdown on using a database)
and store the information in variables. Next, you can display the form by using
the information in the variables in one of two ways. You can create an input
field in an HTML section by using a short PHP section for the value only, as
follows:

<input type=”text” name=”phone” value=”<?php echo $phone ?>”>

205Chapter 10: The Basics of Web Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 205

Alternatively, you can create an input field by using an echo statement inside
a PHP section:

echo “<input type=’text’ name=’phone’ value=’$phone’>”;

If you’re using a long form with only an occasional variable, it’s more efficient
to use the first format. If your form uses many variables, it’s more efficient to
use the second format.

The script in Listing 10-1 displays a form containing customer information.
Figure 10-2 shows the output from this script.

Listing 10-1: A Script That Displays an HTML Form

<?php
/* Script name: displayForm
* Description: Script displays a form and populates the
* form fields with the values of an array.
*/
echo “<html>

<head><title>Customer Address</title></head>
<body>”;

$customer = array(“firstName”=>”John”,
“midName”=>”Jay”,
“lastName”=>”Smith”,
“street”=>”1234 Oak St.”,
“city”=>”Smalltown”,
“state”=>”ID”,
“zip”=>”88888”);

Figure 10-2:
A form

showing a
customer’s

address.

206 Part IV: Common PHP Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 206

$labels = array(“firstName”=>”First Name:”,
“midName”=>”Middle Name:”,
“lastName”=>”Last Name:”,
“street”=>”Street Address:”,
“city”=>”City:”,
“state”=>”State:”,
“zip”=>”Zipcode:”);

echo “<h2 align=’center’>Address for
{$customer[‘firstName’]}
{$customer[‘midName’]}
{$customer[‘lastName’]}</h2>\n”;

echo “<p align=’center’>
Please check the information below and change any

information that is incorrect.
<hr>
<form action=’processform.php’ method=’POST’>
<table width=’95%’ border=’0’ cellspacing=’0’

cellpadding=’2’>\n”;
foreach($customer as $field=>$value)
{
echo “<tr>

<td align=’right’> {$labels[$field]} </br></td>
<td><input type=’text’ name=’$field’ size=’65’

maxlength=’65’ value=’{$customer[$field]}’></td>
</tr>”;

}
echo “</table>

<div align=’center’><p><input type=’submit’
value=’Submit Address’> </p></div>

</form>”;
?>
</body></html>

Notice the following in displayForm.php, shown in Listing 10-1:

� An array is created at the start of the script, which contains the infor-
mation that is displayed in the form. In real-life applications, you proba-
bly obtain this information from a database, a file, or other sources.

� An array is created that contains the labels that are used in the form.

� The script processform.php is named as the script that runs when the
form is submitted. The information in the form is sent to processform.
php, which processes the information.

� The form is formatted with an HTML table. Tables are an important
part of HTML. If you’re not familiar with HTML tables, check out HTML 4
For Dummies, 4th Edition, by Ed Tittel and Natanya Pitts.

� The script loops through the $customer array with a foreach state-
ment. The HTML code for a table row is output in each loop. The appro-
priate array values are used in the HTML code.

207Chapter 10: The Basics of Web Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 207

For security reasons, always include maxlength — which defines the number
of characters users are allowed to type into the field — in your HTML state-
ment. Limiting the number of characters helps prevent the bad guys from
typing malicious code into your form fields. If the information will be stored
in a database, set maxlength to the same number as the width of the column
in the database table.

Adding selection lists, radio buttons, and check boxes to forms
Other elements in HTML forms, such as selection lists, radio buttons, and
check boxes, can be used with variables. To use one of these elements in your
form, you echo the HTML that creates the form element and use variables for
information that changes. For example, you can use a selection list in your
form with the following statements:

echo “<select name=’dinner’ >
<option>$dinner1</option>
<option>$dinner2</option>

</select>”;

The selections in this selection list are the values in the variables. For example,
$dinner1 could display chicken, and $dinner2 could display fish. When
the user submits the form, the selected value is passed to the next script.

Similarly, you can use radio buttons in your form, as follows:

echo “<input type=’radio’ name=’dinner’
value=’$dinner1’>$dinner1

<input type=’radio’ name=’dinner’
value=’$dinner2’>$dinner2”;

The radio buttons that users can select are chicken and fish.

Check boxes allow users to check more than one box. Therefore, when you
use check boxes, the name attribute must be an array, as in the following
example:

echo “<input type=’checkbox’ name=’dinner[]’
value=’$dinner1’>$dinner1

<input type=’checkbox’ name=’dinner[]’
value=’$dinner2’>$dinner2”;

The form stores all the checked boxes in an array called $dinner. If both of the
values above are selected, the form stores both values in the array as follows:

$dinner[0]=chicken
$dinner[1]=fish

The script in Listing 10-2 displays a Web page with a selection list that allows
the user to select a date. In this form, the current date is selected by default.

208 Part IV: Common PHP Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 208

Listing 10-2: A Script That Displays a Date Selection List

<?php
/* Script name: displayDate
* Description: Script displays a selection list, with
* three parts--months, days, and years. The
* current date is selected by default.
*/
echo “<html>

<head><title>Date</title></head>
<body>”;

/* Create an array of month numbers and names */
$monthName = array(1=> “January”, “February”, “March”,

“April”, “May”, “June”, “July”,
“August”, “September”, “October”,
“November”, “December”);

$today = Time(); #stores today’s date
echo “<div align=’center’>Select a date:

<form action=’processform.php’ method=’POST’>\n”;
/* Build selection list for month */
$todayMO = date(“m”,$today); #get the month from $today
echo “<select name=’dateMO’>\n”;
for ($n=1;$n<=12;$n++)
{
echo “<option value=$n”;
if ($todayMO == $n) #adds selected attribute if today
{
echo “ selected”;

}
echo “> $monthName[$n]\n”;

}
echo “</select>”;

/* build selection list for the day */
$todayDay= date(“d”,$today); #get the day from $today
echo “<select name=’dateDay’>\n”;
for ($n=1;$n<=31;$n++)
{
echo “ <option value=$n”;
if ($todayDay == $n)
{
echo “ selected”;

}
echo “> $n\n”;

}
echo “</select>\n”;

/* build selection list for the year */
$startYr = date(“Y”, $today); #get the year from $today
echo “<select name=’dateYr’>\n”;
for ($n=$startYr;$n<=$startYr+3;$n++)

(continued)

209Chapter 10: The Basics of Web Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 209

Listing 10-2 (continued)

{
echo “ <option value=$n”;
if ($startYr == $n)
{
echo “ selected”;

}
echo “> $n\n”;

}
echo “</select>\n”;
echo “</form>\n”;

?>
</body>
</html>

The script creates $monthName, an array with elements that have all the
month numbers for keys and month names for values. Next it stores today’s
date in $today.

The rest of the script echoes a form that contains three selection lists, in drop
down boxes, for the three parts of the date: month, day, and year. For the
month, the foreach list creates a list of all the months, taken from the array
$monthName. Each month is compared with the month of today’s date stored
in $today. If the month is the same as today’s month, then the “selected”
attribute is added to the selection, so the month is the default selection.

Similar lists are created for day and year. These lists are just numbers, so a for
loop is used to create the list of numbers for the selection list. Again, each day
and year are compared to the day and year in today’s date and the current
day and year are selected as the default.

The form displayed by the script in Listing 10-2 is shown in Figure 10-3.

Figure 10-3:
A form that

allows a
user to
select

a date.

210 Part IV: Common PHP Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 210

Receiving the information
In the form tag, you tell PHP which script to run when the user clicks the
submit button. You do this with the attribute action=”scriptname” in the
form tag. For example, in Listings 10-1 and 10-2 earlier in this chapter, I use
action=”processform.php”. When the user clicks the submit button, the
script runs and receives the information from the form.

The form data is available in the processing script in the PHP built-in arrays,
as described in Chapter 6. Information from forms that use the POST method
is available in the built-in array called $_POST. If your form uses the GET
method, the information is available in the array $_GET. Both types of form
information are also stored in an array called $_REQUEST. Each array index is
the name of the input field in the form. You get information from the array by
using the form field name as the array key. For example, suppose that you
echo the following field in your form that uses the POST method:

echo “<input type=’text’ name=’firstName’>”;

Setting name to firstName allows the processing script to use the variable
$_POST[‘firstName’], which contains the text the user typed into the field.
The information the user selects from selection drop-down lists or radio but-
tons is similarly available for use. Because the user can check more than one
check box, information in check boxes is an array in the $_POST array and
available as a multidimensional array. For example, if two check boxes for
dinner choices (as described in the previous section) are both checked and
submitted, the information is available in the following array:

$_POST[‘dinner’][0] = chicken
$_POST[‘dinner’][1] = fish

The script in Listing 10-3 displays the values for all the fields in a form dis-
played in Figure 10-2 earlier in the chapter.

Listing 10-3: A Script That Displays All the Fields from a Form

<?php
/* Script name: displayFormFields
* Description: Script displays all the information passed
* from a form.
*/
echo “<html>

<head><title>Customer Address</title></head>
<body>”;

foreach ($_POST as $field => $value)
{

echo “$field = $value
”;
}

?>
</body></html>

211Chapter 10: The Basics of Web Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 211

You can use this script to process the information from the form displayed
in Figure 10-2, which displays a customer’s address. To do so, you must use
the action attribute action=”displayFormFields.php” in the script
displayForm.php, which is shown in Listing 10-1. Then when the user clicks
the Submit Address button in the form, the script in Listing 10-3 runs and pro-
duces the following output on a new Web page:

firstName = John
lastName = Smith
street = 1234 Oak St.
city = Smalltown
state = ID
zip = 88888

The script shown in Listing 10-3 displays all the values passed via the form in
Figure 10-2. In most cases, you don’t want to just display the values. Usually,
you want to use the values for a purpose. Either you use the values in a con-
ditional statement or you store the values, usually in a database.

212 Part IV: Common PHP Applications

POST versus GET
You use one of two methods to submit form
information. The methods pass the form data
differently and have different advantages and
disadvantages:

� GET method: The form data is passed by
adding it to the URL that calls the form-
processing script. For example, the URL may
look like this:

processform.php?lname=Smith&fname=Gol
iath

The advantages of this method are simplic-
ity and speed. The disadvantages are that
less data can be passed and the informa-
tion is displayed in the browser, which can
be a security problem in some situations.

� POST method: The form data is passed as a
package in a separate communication with
the processing script.

The advantages of this method are unlim-
ited information passing and security of the
data. The disadvantages are the additional
overhead and slower speed.

For CGI programs other than PHP, the program
that processes the form must find the informa-
tion and put the data into variables. In this case,
the GET method is much simpler and easier to
use. Many programmers use the GET method
for this reason. However, PHP does all this work
for you. The GET and POST methods are equally
easy to use in PHP scripts. Therefore, when
using PHP, it’s almost always better to use the
POST method, because you have the advantages
of the POST method (unlimited data passing,
better security) without its main disadvantage
(more difficult to use).

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 212

Checking the information
Before you use the values in your script, you need to check the variables to
make sure they contain what you expect them to contain. The user may have
left required fields blank when entering information. The user may have made
mistakes in typing information, so the information makes no sense. Or, the user
may even have typed in malicious information that can cause problems for
you or for visitors using your Web site. Thus, never trust information received
from outside sources. Always check any information received in a form.

Validating information
Checking the information is called validating the information and includes
checking for empty fields and checking the format of the information, as
described in the following list:

� Checking for empty fields: You can require users to enter information
in a field. If the field is blank, the user is told that the information is
required, and the form is displayed again so the user can type the miss-
ing information.

� Checking the format of the information: Whenever users must type
information in a form, you can expect a certain number of typos. You
can detect some of these errors when the form is submitted and then
point out errors to users and request that they type the information
again. For example, ab3&*xx is clearly not a valid zip code.

You can check for empty fields by using the following function:

empty($_POST[‘fieldname’])

For example, you could use the following code in your processing script:

if(empty($_POST[‘fieldname’]))
{

echo “Field is blank”;
statements that redisplay the field

}

Checking the format of information passed into a form can help identify typos.
For example, if the user types 8899776 in the zip code field, you know this is
not a valid zip code. This information is too long to be a zip code and too short
to be a zip + 4 code.

213Chapter 10: The Basics of Web Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 213

Checking the format also helps protect you from malicious users — users
who want to damage your Web site or your database or steal information
from you or your users. For example, you don’t want users to enter HTML
tags into a form field, something that can have unexpected results when sent
to a browser. (A script tag that allows a user to enter a script into a form field
is a particularly dangerous tag.)

If you check each field for its expected format, you can catch typos and pre-
vent most malicious content. However, checking information is a balancing
act. You want to catch as much incorrect data as possible, but you don’t want
to block legitimate information. For example, when you’re checking a phone
number, you limit it to numbers. The problem with this check is that it would
screen out legitimate phone numbers in the form such as 555-5555 or (888)
555-5555. So, you also need to allow hyphens parentheses, and spaces. You
could limit the field to a length of 14 characters, including parentheses, spaces,
and hyphens, but this screens out overseas numbers or numbers that include
an extension. The bottom line: You need to think carefully about what infor-
mation you want to accept or screen out for any field.

Using regular expressions to check user input
You can check field information by using regular expressions, which are
described in Chapter 7. You compare the information in the field to a pattern
to see if it matches. If it does not match, you have determined that the infor-
mation in the field is incorrect, and you can ask the user to reenter it.

For example, suppose you want to check an input field that contains the user’s
last name. You can expect names to contain letters, not numbers, and possibly
apostrophes (O’Hara), hyphens (Smith-Jones), and spaces (Van Dyke). Also,
it’s difficult to imagine a name longer than 50 characters. Thus, you can use
the following statements to check a name:

$last_name = trim($_POST[‘last_name’]);
if (!ereg(“[A-Za-z’ -]{1,50}”,$last_name)
{

do stuff to require user to reenter last name;
}

First, use the trim function to remove any beginning or trailing blank spaces —
they’re not needed. Notice that the condition in the if statement is negative.
That is, the exclamation mark (!) means not. So, the if statement says: If the
variable does not match the pattern, execute the if block.

If you want to list a hyphen (-) as part of a set of allowable characters sur-
rounded by square brackets ([]), you must list the hyphen at the beginning
or at the end of the list. Otherwise, if you put it between two characters, the
script will interpret it as the range between the two characters, such as A-Z.

214 Part IV: Common PHP Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 214

Using a script to create, display, and validate a form
The script in Listing 10-4 validates data received from a form. The script dis-
plays the empty form when it is first run. When the user submits the form, the
same script is run again, and the form information is passed to it. The script
checks the form fields for blank fields and for incorrectly formatted fields. If it
finds errors, it displays an error message and redisplays the form. If all the
form information passes the checks, the script displays the user’s name and
address.

The script requires two include files. One file, shown in Listing 10-5, creates
an array that is used to build the form. The other include file, shown in Listing
10-6, displays the form.

Listing 10-4: A Script That Checks All the Data in the Form Fields

<?php
/* Script name: validateForm
* Description: Displays and validates a form that
* collects a name and address.
*/
include(“info.inc”); #6
#################################
First display of empty form
#################################
if(!isset($_POST[‘Submit’])) #10
{
include(“addressForm.inc”);

}
##
Check information when form is submitted. Build
arrays of blank and incorrectly formatted fields.
If any errors are found, display error messages
and redisplay form. If no errors found, display
the submitted information.
##
else #21
{
foreach($_POST as $field=>$value) #23
{
if(empty($_POST[$field])) #25
{
if($field != “midName”)
{
$blanks[$field] = “blank”; #29

}
}

(continued)

215Chapter 10: The Basics of Web Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 215

Listing 10-4 (continued)

else #33
{
$value = trim($value);
if($field != “zipcode”)
{
if(!ereg(“^[A-Za-z0-9’ .-]{1,65}$”,$value))
{
$formats[$field] = “bad”;

}
}
elseif($field == “zipcode”)
{
if(!ereg(“^[0-9]{5}(\-[0-9]{4})?”,$value))
{
$formats[$field] = “bad”;

}
}

}
} #51
if any fields were not okay, display error
message and redisplay form
if (@sizeof($blanks) > 0 or @sizeof($formats) > 0) #54
{
if (@sizeof($blanks) > 0)
{
echo “You didn’t fill in one or more

required fields. You must enter:
”;
foreach($blanks as $field => $value)
{
echo “ {$labels[$field]}
”;

}
}
if (@sizeof($formats) > 0)
{
echo “One or more fields have information that

appears to be incorrect. Correct the
format for:
”;

foreach($formats as $field => $value)
{
echo “ {$labels[$field]}
”;

}
}
echo “<hr>”;
include(“addressForm.inc”);

}
else #78
{

216 Part IV: Common PHP Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 216

If no errors in the form, display the
name and address submitted by user
echo “<html><head><title>Name and Address

</title></head><body>\n”;
foreach($_POST as $field=>$value)
{
if($field != “Submit”)
{
echo “{$labels[$field]} $value
\n”;

}
}
echo “</body></html>”;

}
}

?>

I have added line numbers at the end of some of the lines in Listing 10-4 to
point out some important points in the script, as described in the following
list:

� Line 6: This statement includes a file called info.inc that creates
an array called labels with information used later in the script. The
included file is shown in Listing 10-5. (See Chapter 8 for more on includ-
ing files in scripts.)

� Line 10: This if statement checks for the existence of Submit in the
$_POST array. The submit button in the form is given the name Submit.
Therefore, if the form has been submitted, Submit will be in $_POST. The
condition is negative, so if Submit does not exist, the block is executed.
The block just includes a file called addressForm.inc that displays the
form. The include file is shown in Listing 10-6. This block is executed the
first time the script is called and displays a blank form.

� Line 21: This line starts the else block in which Submit does exist in
$_POST. This section executes when the user submits a form and vali-
dates the data.

� Line 23: This line starts a loop through each element in $_POST. This
foreach block checks each field in the form.

� Line 25: This if statement checks whether each field is empty. If the
field is not blank, the script goes to line 33, which begins a block that
checks the format of the field.

� Line 29: This statement adds an element to the array $blanks for each
field that is blank. However, notice that this line does not execute if
the field name is midName. That is because Middle Name is not a required
field, so it can be blank.

217Chapter 10: The Basics of Web Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 217

� Line 33: This is an else statement. If a field is not blank, this else state-
ment checks whether the format is acceptable. It checks all the fields,
except zip code, to look for unacceptable characters. Acceptable charac-
ters are letters, numbers, an apostrophe, a space, a dot, and a hyphen.
The zip code field is checked separately for its exact format. If any fields
have unacceptable characters or the zip code doesn’t have the correct
format, an element for the field is added to the $formats array.

� Line 51: This is the end of the section that checks the form fields. At this
point, the script has created two arrays, $blanks and $formats, that
contain entries for any errors that were found. If no errors were found,
the arrays were not created.

� Line 54: This if statement checks to see if any errors were found by
checking to see if the arrays $blanks and $formats were created. If
either array is found, the error message is displayed, and the form is
redisplayed, retaining the information that the user typed so it can be
corrected.

� Line 78: This else statement executes if no errors were found in the
form information. The else block displays all the information that the
user submitted in the form.

Notice that the script in Listing 10-4 is quite generic. That is, it processes infor-
mation from any form, with the exception of the section that checks the format
of the data in the fields. The section between lines 33 and 50 is customized
for the specific form being validated. However, the other sections remain the
same for most forms.

Listing 10-5 shows the file that is included, which creates the array used to
display the form and the error messages.

Listing 10-5: An Include File That Creates the Array

<?php
/* Script name: info.inc
* Description: creates an array of labels for use in a
* form.
*/
$labels = array(“firstName”=>”First Name:”,

“midName”=>”Middle Name:”,
“lastName”=>”Last Name:”,
“street”=>”Street Address:”,
“city”=>”City:”,
“state”=>”State:”,
“zipcode”=>”Zipcode:”);

?>

218 Part IV: Common PHP Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 218

Listing 10-6 shows the script that displays the form. This is based on the
script shown in Listing 10-1 that displays the form shown in Figure 10-2.

Listing 10-6: An Include File That Displays the Form

<?php
/* Script name: addressForm.inc
* Description: Script displays a form.
*/
echo “<html>

<head><title>Customer Address</title></head>
<body>”;

echo “<p align=’center’>
<form action=’validateForm.php’ method=’POST’>
<table width=’95%’ border=’0’ cellspacing=’0’

cellpadding=’2’>\n”;
foreach($labels as $field=>$value)
{
if(isset($_POST[$field])) #13
{

$value = $_POST[$field];
}
else
{

$value = “”;
}
echo “<tr><td align=’right’>{$labels[$field]}</br></td>

<td><input type=’text’ name=’$field’ size=’65’
maxlength=’65’
value=’$value’> </td> </tr>”;

}
echo “ </table>

<div align=’center’>
<p><input type=’Submit’ name=’Submit’

value=’Submit Address’></p></div>
</form>”;

?>
</body></html>

Notice that an if-else block begins on line 13. The block sets the values
that are displayed in the form fields. The first time the form is displayed, the
$_POST array does not exist, because the form has not been submitted yet.
Therefore, the if statement on line 13 checks whether the $_POST element
for the field exists. If it does not exist, $value is set to blank. If the $_POST
entry does exist, $value is set to the information that the user typed in. The
variable $value is then used when the form is displayed.

219Chapter 10: The Basics of Web Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 219

Notice that the line that creates the submit button includes a name attribute,
in this case, name=’Submit’, as follows:

<p><input type=’Submit’ name=’Submit’
value=’Submit Address’></p></div>

This causes the submit value to be included in the $_POST array. You can
include two submit buttons in your form, with the same name but different
values, and perform different actions based on which submit button the user
clicked. That is, you can use an if statement such as if($_POST[‘Submit’]
== “Submit Address”).

The Web page in Figure 10-4 results when users accidentally type their first
names into the middle name field and also type nonsense for their zip codes.
Notice that two error messages appear, indicating that the First Name field is
blank and that the zip code field contains incorrect information.

Cleaning information
If you check the format of the data carefully, you can often prevent the bad
guys from typing malicious characters into your form fields. If you can limit the
format of the input you accept, such as checking for a format for a zip code
or a telephone number, or limit the input characters to letters and numbers,
you can protect yourself fairly well. However, sometimes you need to accept
anything the user enters. Your users might need to type in mathematical sym-
bols or HTML code. For example, you might be writing a script for a bulletin
board and want users to be able to enter anything into their messages.

When user input can’t be restricted much, bad guys are able to enter malicious
code into your form fields. For example, they could enter an actual script by
using script tags. Depending on what you do with the information from the
form, the malicious script can run on your system or be downloaded to run
on the system of a visitor to your Web site.

PHP provides two functions that can clean the data, rendering it harmless:

� strip_tags: This function removes all tags from the text, although you
can tell it to allow specific tags.

� htmlspecialchars: This function changes some special characters with
meaning to HTML into an HTML format that allows them to be displayed
without any special meaning. The changes are as follows:

• < becomes <

• > becomes >

• & becomes &

220 Part IV: Common PHP Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 220

It’s safest to remove all tags from the user input. To remove all tags, use the
following type of statement:

$last_name = strip_tags($last_name);

PHP looks for an opening < and removes it and everything else, until it finds a
closing > or reaches the end of the string. You can tell PHP that specific tags
are okay by using a statement like the following:

$last_name = strip_tags($last_name,”<i>”);

This statement tells PHP to remove all tags from the string in $last_name
except and <i>.

You may need to allow users to enter < or > characters. For example, if users
are entering text that will be displayed in a Web page and they need to display
< or >, such as in a mathematical formula or to display HTML code, you don’t
want to remove the tags. You can change the tags to HTML entities, which
HTML will display on a Web page as symbols and will not interpret as tags.
You can change the tags with the following type of statement:

$message = htmlspecialchars($message);

The following example shows the difference between the two functions.
Suppose $message contains the following text, typed into your form by a user:

Use the <?php ?> tags to enclose PHP statements.

Figure 10-4:
The result of

processing
a form

with both
missing and

incorrect
information.

221Chapter 10: The Basics of Web Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 221

You can use the following statements to strip the tags from $message and
then echo the updated value:

$message = strip_tags($message);
echo $message;

The output of the echo statement is as follows:

Use the tags to enclose PHP statements.

However, you can use the following statements instead:

$message = htmlspecialchars($message);
echo $message;

In this case, the output is different:

Use the <?php ?> tags to enclose PHP statements.

This output displays in the browser as follows:

Use the <?php ?> tags to enclose PHP statements.

This source is displayed correctly, but because the browser does not interpret
it as a tag, the browser doesn’t try to process the text as a PHP section. It just
displays the source.

Another function useful for cleaning input is the trim function. Users often
accidentally add spaces to the beginning or ending of a form field. These extra
spaces sometimes cause problems, such as when you compare the input to a
pattern. Use a statement like the following to remove these spaces:

$last_name = trim($last_name);

222 Part IV: Common PHP Applications

16 541668 Ch10.qxd 3/25/04 2:57 PM Page 222

Chapter 11

Other Web Applications
In This Chapter
� Passing information from page to page

� Using cookies

� Using hidden fields in HTML forms

� Using PHP session functions

� Adding JavaScript to PHP scripts

The simplest Web applications collect information from users in HTML forms
and then utilize the information by displaying it, storing it, or using it in

conditional statements. (Some simple applications are shown in Chapter 10.)
However, Web applications can be much more complex than this. For example,
a shopping cart must collect different types of information; display this infor-
mation; keep track of what users have ordered; calculate prices, taxes, and
shipping; charge credit cards; and perform other tasks. Such complex appli-
cations consist of several scripts that share information. And applications
may also accept complete files from users rather than just information in a
form.

This chapter discusses the basics of these complex Web applications.

Overcoming Statelessness
HTML pages are stateless. That is, HTML pages are independent from one
another. When a user clicks a link, the Web server sends a new page to the
user’s browser, but the browser doesn’t know anything about the previous
page. As far as the browser knows, this could be the first Web page ever in
the history of the world. For static Web pages, where the user simply views a
document, statelessness works fine. However, many dynamic Web applications
need information to pass from page to page. For example, you may want to
save a user’s name and then display the name on another page.

The next few sections discuss methods of passing information from page
to page.

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 223

Navigating Web Sites
with Multiple Pages

Most Web sites consist of more than one Web page. A static multipage Web
site provides a navigation system, consisting of links (which sometimes look
like buttons) that users click to move around in the Web site and to find the
desired page. A dynamic Web page can use links to move from one page to
another, but uses additional methods as well. The following methods are
used in PHP scripts to move users from one page to another on a Web site:

� Echoing links: Links send users to a new page when the user clicks
the link.

� Using forms: Forms move users from one page to another when the user
clicks the submit button.

� Relocating users: PHP provides the header function that takes the user
to a new page without needing an action from the user.

These methods are described in more detail in the following sections.

Echoing links
Using PHP, you can echo HTML links, which the user can then click to see vari-
ous pages in your Web site. This is no different than echoing any other HTML
code. Just send the HTML for the links, as in the following:

echo “New Page”;

Using forms
You can also use an HTML form to display another page, as described in
Chapter 10. The form tag specifies a script that processes the form informa-
tion. When the submit button is clicked, the specified script receives the data
from the form and displays a new Web page.

The form does not have to collect information in order to display a new page.
You can use an empty form on a Web page to provide a button that a user can
click to move to another page. For example, you may want to provide a button
labeled Cancel or Next for the user to click, even when you don’t want to col-
lect any information from the user. To do so, just use the HTML form tags and
include only an input statement for a submit button. The button then appears
by itself on the Web page, and the script specified in the form tag displays
when the user clicks the submit button.

224 Part IV: Common PHP Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 224

Relocating users
PHP also provides a method to move a user from one page to another in your
Web site without requiring the user to click a link or a button. You can send a
message to the Web server that tells it to send a new page by using the PHP
header statement. The format of the header function that sends the user to
a new page is as follows:

header(“Location: URL”);

225Chapter 11: Other Web Applications

Statements that must come before output
Some PHP statements can only be used before
sending any output to the browser. Header
statements, setcookie statements, and
session functions, all described in this chap-
ter, must all come before any output is sent. If
you use one of these statements after sending
output, you may see the following message:

Warning: Cannot modify header
information - headers
already sent by (output
started at /test.php:2) in
/test.php on line 3

The message provides the name of the file and
indicates which line sent the previous output. Or
you may not see a message at all; the new page
may just not appear. (Whether you see an error
message depends on what error message level
is set in PHP; see Chapter 4 for details.) The fol-
lowing statements fail because the header mes-
sage is not the first output (an HTML section
comes before the header statement):

<html>
<head><title>testing

header</title></head>
<body>
<?php

header(“Location:
http://janetscompany.com”);

?>
</body></html>

As you can see, three lines of HTML code
are sent before the header statement. The

following statements work, although they don’t
make much sense, because the HTML lines are
after the header statement — that is, after the
user has already been taken to another page:

<?php
header(“Location:
http://janetscompany.com”);

?>
<html>
<head><title>testing

header</title></head>
<body>
</body>
</html>

The following statements fail:

<?php
header(“Location:
http://company.com”);

?>
<html>
<head><title>testing

header</title></head>
<body>
</body></html>

The reason these statements fail is not easy to
see, but if you look closely, you will notice a
single blank space before the opening PHP tag.
This blank space is output to the browser,
although the resulting Web page looks empty.
Therefore, the header statement fails because
there is output before it. This is a common mis-
take and difficult to spot.

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 225

The header statement sends the message, Location: URL, to the Web server.
In response, the file located at URL is sent to the user’s browser. Either of the
following statements are valid header statements:

header(“Location: newpage.php”);
header(“Location: http://company.com/catalog/catalog.php”);

The header function has a major limitation. The header statement can only
be used before any other output is sent. You can’t echo output — such as
some HTML code — to the Web page and then send a message requesting a
new page in the middle of the script. The header statement is not the only
PHP statement that has this restriction. See the nearby sidebar for a discus-
sion of the header statement and other statements like it that must come
before output.

In spite of its limitations, the header statement is useful. It’s the only way to
move users to a new page without requiring an action from the user. Therefore,
it’s really the only statement that can be used in conditional statements to
display alternate pages to different users. The following example shows how
to display alternate pages based on the type of user account:

<?php
if ($typeAcct == “admin”)
{

header(“Location: AdminPage.php”);
}
else
{

header(“Location: SiteHomePage.php”);
}

?>

These statements run a script that displays an admin page for users with an
admin account, but displays a general page for other users. You can have as
many PHP statements as you want before the header function, as long as
they don’t send output. You can’t have any HTML sections before the header,
because HTML is always sent to the browser.

Moving Information from Page to Page
No matter how the user gets from one page to the next, you may need infor-
mation from the first page to be available on the next page. With PHP, you can
move information from page to page by using any of the following methods:

226 Part IV: Common PHP Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 226

� Adding information to the URL: You can add specific information to the
end of the URL of the new page. This method is most appropriate when
you need to pass only a small amount of information.

� Storing information via cookies: You can store cookies — small amounts
of information containing variable=value pairs — on the user’s com-
puter. After the cookie is stored, you can retrieve it from any Web page.
However, users can refuse to accept cookies, so this method doesn’t
work in all environments.

� Passing information using HTML forms: You can pass information that
is in a form. When the user clicks the submit button, the information in
the form is sent to the next script. This method is useful when you need
to collect information from users.

� Using PHP session functions: Beginning with PHP 4, PHP functions are
available that set up a user session and store session information on the
server; this information can be accessed from any Web page. This method
is useful for sessions in which you expect users to view many pages.

The next few sections discuss these options in greater detail.

Adding information to the URL
A simple way to move any information from one page to the next is to add the
information to the URL you’re linking to. To do so, you put the information in
the following format:

variable=value

In this case, the variable is a variable name, but you do not use a dollar sign
($) in it. The value is the value to be stored in the variable. You can add the
variable=value pairs anywhere you use a URL. You signal the start of the
information with a question mark (?). The following statements are all valid
ways of passing information in the URL:

� go to next page

� header(“Location: nextpage.php?age=14”);

� <form action=”nextpage.php?age=14” method=”POST”>

These examples all send the variable $age with the value 14 assigned to it.
The variable/value pair is sent to nextpage.php by adding the pair to the
end of the URL.

227Chapter 11: Other Web Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 227

You can add several variable=value pairs, separating each pair with an
ampersand (&) as follows:

<form action=”nextpage.php?state=CA&city=Mall” method=”POST”>

Any information passed into a URL is available in the built-in array $_GET. In
the preceding example, the script nextpage.php could use the following
statements to display the information passed to it:

echo “{$_GET[‘city’]}, {$_GET[‘state’]};

The output is as follows:

Mall, CA

The information is also available in the built-in array $_REQUEST. You can use
the following statements to get the same result:

echo “{$_REQUEST[‘city’]}, {$_REQUEST[‘state’]};

Passing information in the URL is easy, especially for small amounts of infor-
mation. However, this method has some disadvantages, including some
important security issues. Here are some reasons you may not want to pass
information in the URL:

� The whole world can see it. The URL is shown in the address line of the
browser, which means that the information you attach to the URL is also
shown. If the information needs to be secure, you don’t want it shown so
publicly. For example, if you’re moving a password from one page to the
next, you probably don’t want to pass it in the URL.

� A user can send information in the URL, just as easily as you can. For
example, suppose that after a user logs into your restricted Web site, you
add auth=yes to the URL. On each Web page, you check to see if $_GET
[‘auth’] = yes. If so, you let the user see the Web page. However, any
user can type http://www.yoursite.com/page.php?auth=yes into
his browser and be allowed to enter without logging in.

� The user can bookmark the URL. You may not want your users to save
the information you add to the URL.

� The length of the URL is limited. The limit differs for various browsers
and browser versions, but a limit always exists. Therefore, if you’re pass-
ing a lot of information, the URL may not have room for it.

228 Part IV: Common PHP Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 228

Passing information via cookies
You can store information as cookies, which are small amounts of information
containing variable=value pairs, similar to the pairs you can add to a URL.
The user’s browser stores cookies on the user’s computer. Your scripts can
then use the cookie information.

At first glance, cookies seem to solve the problem of moving data from page
to page. Just stash a cookie on the user’s computer and get it whenever you
need it. In fact, the cookie can be stored so that it remains there after the user
leaves your site and will still be available when the user enters your Web site
a month later. Problem solved? Well, not exactly. Cookies are not under your
control. They are under the user’s control. The user can at any time delete the
cookie. In fact, users can set their browsers to refuse to allow any cookies,
and many users do refuse cookies or routinely delete them. Many users are
not comfortable with the idea of a stranger storing things on their computers,
especially files that remain after they leave the stranger’s Web site. This is an
understandable attitude. However, it definitely limits the usefulness of cook-
ies. If your application depends on cookies and the user has cookies shut off,
your application won’t work for that user.

Cookies were originally designed for storing small amounts of information for
short periods of time. Unless you specifically set the cookie to last a longer
period of time, the cookie will disappear when the user leaves your Web site.
Although cookies are useful in some situations, consider the following points
before deciding to use them:

� Users may set their browsers to refuse cookies. Unless you know for
sure that all your users will have cookies turned on or you can request
that they turn on cookies and expect them to follow your request, cook-
ies are a problem. If your application depends on cookies, it won’t run if
cookies are turned off.

� PHP has features that work better than cookies. Beginning with
PHP 4, PHP sessions can store information that is available for the
entire session — in other words, as long as the user stays at your Web
site. Session functions store information on the server, where it is not
at the mercy of the user. Sessions, however, don’t work for long-term
storage of information.

� You can store data in a database. If you have access to a database where
you can store and retrieve data, this is often a better solution than cook-
ies. Users can’t delete the data in your database unexpectedly.

229Chapter 11: Other Web Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 229

Storing and retrieving information in cookies
You store cookies by using the setcookie function. The general format is as
follows:

setcookie(“variable”,”value”);

The variable is the variable name, but you do not include the dollar sign
($).This statement stores the information only until the user leaves your Web
site. For example, the following statement stores the pair state=CA in the
cookie file on the user’s computer:

setcookie(“state”,”CA”);

When the user moves to the next page, the cookie information is available in
the built-in array called $_COOKIE. The next Web page can display the infor-
mation from the cookie by using the following statement.

echo “Your home state is “.$_COOKIE[‘state’];

The output from this statement is as follows:

Your home state is CA

The cookie is not available in the script where it is set. The user must go to
another page or redisplay the current page before the cookie information is
available.

Setting expiration dates
If you want the information stored in a cookie to remain in a file on the user’s
computer after the user leaves your Web site, set your cookie with an expira-
tion time, as follows:

setcookie(“variable”,”value”,expiretime);

The expiretime value sets the time when the cookie expires. The value for
expiretime is usually set by using either the time or mktime function as
follows:

� time: This function returns the current time in a format the computer can
understand. You use the time function plus a number of seconds to set
the expiration time of the cookie, as shown in the following statements:

setcookie(“state”,”CA”,time()+3600); #expires in one hour
setcookie(“Name”,$Name,time()+(3*86400)) #expires 3 days

230 Part IV: Common PHP Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 230

� mktime: This function returns a date and time in a format that the com-
puter can understand. You must provide the desired date and time in
the following order: hour, minute, second, month, day, and year. If any
value is not included, the current value is used. You use the mktime
function to set the expiration time of the cookie, as shown in the follow-
ing statements:

setcookie(“state”,”CA”,mktime(3,0,0,4,1,2003)); #expires
at 3:00 AM on April 1, 2003

setcookie(“state”,”CA”,mktime(13,0,0,,,)); /#expires at
1:00 PM

today

You can remove a cookie by setting its value to nothing. Either of the follow-
ing statements removes the cookie:

setcookie(“name”);
setcookie(“name”,””);

The setcookie function has a major limitation, however. The setcookie
function can only be used before any other output is sent. You cannot set a
cookie in the middle of a script, after you have echoed some output to the
Web page. For more information, see the see the sidebar in this chapter
called “Statements that must come before output.”

Passing information using HTML forms
The most common way to pass information from one page to another is by
using HTML forms. An HTML form is displayed with a submit button. When
the user clicks the submit button, the information in the form fields is passed
to the script included in the form tag. The general format is as follows:

<form action=”processform.php” method=”POST”>
tags for one or more fields

<input type=”submit” value=”string”>
</form>

The most common use of a form is to collect information from users and pass
it to the next page (discussed in detail in Chapter 10). However, forms can also
be used to pass other types of information.

Hidden fields are fields in forms that send information to the next page with-
out appearing in the form on the Web page. Hidden fields can be included in
the form along with other types of fields, or can be the only type of field in the
form. When the user clicks the submit button, the information in the hidden

231Chapter 11: Other Web Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 231

field is sent to the next page. For example, the following statements pass the
user’s account type to the next page when the user clicks a button that says
Next Page:

<?php
$acct = “admin”;
echo “<form action=’nextpage.php’ method=’POST’>

<input type=’hidden’ name=’acct’ value=’$acct’>
<input type=’submit’ value=’Next Page’>
</form>\n”;

?>

The Web page shows a submit button that says Next Page, but it doesn’t ask
the user for any information. When the user clicks the button, nextpage.php
runs, and the account type is available in $_POST[‘acct’]. In this way, you
can pass information that you need to use other places in the Web site from
page to page. In this example, you could use this code as part of a script that
displays some products. When the user clicks the Next Page button, the
account type is sent to the new page for use in that script.

Using PHP sessions
A session is the time that a user spends at your Web site. Users may view many
Web pages between the time they enter your site and leave it. Often you want
information to be available for a complete session. Beginning with version 4.0,
PHP provides a way to do this.

Understanding how PHP sessions work
PHP allows you to set up a session and store session variables. After you
create a session, the session variables are available for your use on any other
Web page. To make session information available, PHP does the following:

1. PHP assigns a session ID number.

The number is a really long nonsense number that is unique for the user
and that no one could possibly guess. The session ID is stored in a PHP
system variable named PHPSESSID.

2. PHP stores the variables that you want saved for the session in a file on
the server.

The file is named with the session ID number. It’s stored in a directory
specified by session.save_path in the php.ini file. The session direc-
tory must exist before session files can be saved in it.

3. PHP passes the session ID number to every page.

232 Part IV: Common PHP Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 232

If the user has cookies turned on, PHP passes the session ID by using
cookies. If the user has cookies turned off, PHP behavior depends on
whether trans-sid is turned on in php.ini. (You find out more about
trans-id in the section “Using sessions without cookies,” later in this
chapter.)

4. PHP gets the variables from the session file for each new session page.

Whenever a user opens a new page that is part of the session, PHP
gets the variables from the file by using the session ID number that
was passed from the previous page. The variables are available in the
$_SESSION array.

For PHP 4.1.2 or earlier, trans-sid is not available unless it was enabled by
using the option --enable-trans-sid when PHP was compiled.

Opening and closing sessions
You should open a session at the beginning of each Web page. Open the ses-
sion with the session_start function, as follows:

session_start();

The function first checks for an existing session ID number. If it finds one, it
sets up the session variables. If it doesn’t find one, it starts a new session by
creating a new session ID number.

Because sessions use cookies, if the user has them turned on, session_start
is subject to the same limitation as cookies. That is, to avoid an error, the
session_start function must be called before any output is sent. For com-
plete details, see the sidebar in this chapter called “Statements that must
come before output.”

You can tell PHP that every page on your site should automatically start with a
session_start statement. You can do this with a setting in the configuration
file php.ini. If you’re the PHP administrator, you can edit this file; otherwise,
ask the administrator to edit it. Look for the variable session.auto_start
and set its value to 1. You may have to restart the Web server before this
setting takes effect. With auto_start turned on, you do not need to add a
session_start at the beginning of each page.

You may want to restrict your site to users with a valid user ID and password.
For restricted sessions that users log into, you often want users to log out
when they’re finished. To close a session, use the following statement wher-
ever to want to close the session:

session_destroy();

233Chapter 11: Other Web Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 233

This statement gets rid of all the session variable information that is stored in
the session file. PHP no longer passes the session ID number to the next page.
However, the statement does not affect the variables set on the current page;
they still hold the same values. If you want to remove the variables from the
current page, as well as prevent them from being passed to the next page,
unset them by using this statement:

unset($variablename1,$variablename2,...);

Using PHP session variables
To save a variable in a session so that it’s available on later Web pages, store
the value in the $_SESSION array, as follows:

$_SESSION[‘varname’] = “John Smith”;

When you open a session on any subsequent Web page, the values stored in
the $_SESSION array are available.

If you want to stop storing any variable at any time, you can unset the variable
by using the following statement:

unset($_SESSION[‘varname’];

The following two scripts show how to use sessions to pass information from
one page to the next. The script in Listing 11-1 shows the first page of a ses-
sion. Listing 11-2 shows the second page in a session.

Listing 11-1: Starting a Session

<?php
/* Script name: sessionTest1.php
* Description: Starts a session. Saves a session variable.
*/
session_start();
$_SESSION[‘session_var’] = “testing”;

?>
<html>
<head><title>Testing Sessions page 1</title></head>
<body>
<p>This is a test of the sessions feature.
<form action=”sessionTest2.php” method=”POST”>
<input type=”text” name=”form_var” value=”testing”>
<input type=”submit” value=”Go to Next Page”>
</form>

</body>
</html>

234 Part IV: Common PHP Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 234

In this script, a session is started and one session variable is stored called
session_var. A form is also displayed with one text field where the user can
enter some text. When the submit button from this form, labeled “Go to Next
Page” is clicked, the sessionTest2.php script runs.

Listing 11-2: The Second Page of a Session

<?php
/* Script name: sessionTest2.php
* Description: Gets a variable from an existing session.
*/
session_start();

?>
<html>
<head><title>Testing Sessions page 2</title></head>
<body>
<?php
$session_var = $_SESSION[‘session_var’];
$form_var = $_POST[‘form_var’];
echo “session_var = $session_var
\n”;
echo “form_var = $form_var
\n”;

?>
</body>
</html>

This script displays the variables that were passed from the previous script
(sessionTest1.php).

If users pointed their browsers at sessionTest1.php and clicked the submit
button that says Go to Next Page, they’d see the following output from
sessionTest2.php:

session_var = testing
form_var = testing

As you can see, both the session variable, session_var and the form variable,
form_var are available in the built-in arrays to be echoed from this script.

Using sessions without cookies
Many users turn off cookies in their browsers. PHP checks the user’s browser
to see whether cookies are allowed and behaves accordingly. If the user’s
browser allows cookies, PHP does the following:

� It sets the variable $PHPSESSID equal to the session ID number.

� It uses cookies to move $PHPSESSID from one page to the next.

235Chapter 11: Other Web Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 235

If the user’s browser is set to refuse cookies, PHP behaves differently:

� It sets a constant called SID. The constant contains a variable=value
pair that looks like PHPSESSID=longstringofnumbers. (The long string
of numbers is the session ID.)

� It may or may not move the session ID number from one page to the
next, depending on whether trans-sid is turned on. If trans-sid is
turned on, PHP passes the session ID number; if it is not turned on, PHP
does not pass the session ID number.

trans-sid is turned off by default. You can turn it on by editing your php.
ini file. Search for the line that begins with session.use_trans_id = . If
the setting is 0, trans_id is off; if the setting is 1, trans_id is on. To turn the
setting on when it is off, change 0 to 1. You may have to restart your Web
server before the new setting takes effect.

Turning trans-sid on has advantages and disadvantages:

� Advantages: Sessions work seamlessly even when users turn cookies
off. You can script sessions easier, without being concerned about the
user’s browser setting for cookies.

� Disadvantages: The session ID number is often passed in the URL. In
some situations, for security reasons, the session ID number should not
be shown in the browser address. Also, when the session ID number is
in the URL, it can be bookmarked by the user. Then, if the user returns to
your site by using the bookmark with the session ID number in it, the new
session ID number from the current visit can get confused with the old
session ID number from the previous visit and possibly cause problems.

Sessions with trans-sid turned on
When trans-sid is turned on and the user has cookies turned off, PHP auto-
matically sends the session ID number in the URL or as a hidden form field.
If the user moves to the next page by using a link, a header function, or a
form with the GET method, the session ID number is added to the URL. If the
user moves to the next page by using a form with the POST method, the ses-
sion ID number is passed in a hidden field. PHP recognizes PHPSESSID as the
session ID number and handles the session without any special programming
on your part.

The session ID number is added only to the URLs for pages on your Web site.
If the URL of the next page includes a server name, PHP assumes that the URL
is on another Web site and does not add the session ID number. For example,
suppose your link statement is as follows:

PHP will add the session ID number. However, suppose your statement is as
follows:

236 Part IV: Common PHP Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 236

PHP will not add the session ID number.

Sessions without trans-sid turned on
When trans-sid is not turned on and the user has cookies turned off, PHP
does not send the session ID number to the next page. Instead, you must send
the session ID number yourself.

Fortunately, PHP provides a constant that you can use to send the session ID
yourself. This constant is named SID and contains a variable=value pair
that you can add to the URL, as follows:

<a href=”nextpage.php?<?php echo SID?> > next page

This link statement includes the question mark (?) at the end of the filename
and the constant SID added to the URL. SID contains the session ID number.
The output from echo SID looks something like this:

PHPSESSID=877c22163d8df9deb342c7333cfe38a7

Therefore, the URL of the next page looks as follows:

nextpage.php?PHPSESSID=877c22163d8df9deb342c7333cfe38a7

The session ID is added to the end of the URL. For one of several reasons
(discussed earlier in this chapter), you may not want the session ID number
to appear on the URL shown by the browser. To prevent this, you can send
the session ID number in a hidden field in a form by using the POST method.
First, get the session ID number, and then send it in a hidden field. The follow-
ing statements do this:

<?php
$PHPSESSID = session_id();
echo “<form action=’nextpage.php’ method=’POST’>

<input type=’hidden’ name=’PHPSESSID’
value=’$PHPSESSID’>

<input type=’submit’ value=’Next Page’>
</form>”;

?>

These statements do the following:

1. The function session_id, which returns the current session ID number,
stores the session ID number in the variable $PHPSESSID.

2. $PHPSESSID is sent in a hidden form field.

On the new page, PHP automatically finds PHPSESSID without any special
programming needed from you.

237Chapter 11: Other Web Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 237

Creating sessions for members only
PHP session functions are ideal for Web sites that are restricted and require
users to login with a login name and password. These types of Web sites
undoubtedly have many pages, and you don’t want the user to have to login
to each page. PHP sessions can keep track of whether the user has logged in
and refuse access to users who aren’t logged in. Using PHP sessions, you can
do the following:

1. Show users a login page.

2. If a user logs in successfully, set and store a session variable.

3. Whenever a user goes to a new page, check the session variable to see if
the user has logged in.

4. If the user has logged in, show the page.

5. If the user has not logged in, bring up the login page.

To check whether a user has logged in, add the following statements to the
top of every page:

<?php
session_start()
if (@$_SESSION[‘login’] != “go”)
{
header(“Location: loginPage.php”);
exit();

}
?>

In these statements, PHP checks a session variable called login — which was
set at login — to see whether $_SESSION[‘login’] is equal to “go”. If it is
not, it means the user is not logged in, and the user is sent to the login page.
If $_SESSION[‘login’] equals “go”, the script proceeds with the rest of the
statements on the Web page.

Uploading Files
You may want users to upload files to your Web site. For example, you may
want users to be able to upload resumes to your job-search Web site or pic-
tures to your photo album Web site.

238 Part IV: Common PHP Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 238

Using a form to upload a file
You can display a form that allows a user to upload a file by using an HTML
form designed for that purpose. The general format of the form is as follows:

<form enctype=”multipart/form-data”
action=”processfile.php” method=”POST”>

<input type=”hidden” name=”MAX_FILE_SIZE” value=”30000”>
<input type=”file” name=”user_file”>
<input type=”submit” value=”Upload File”>

</form>

Notice the following points regarding the form:

� The enctype attribute is used in the form tag. You must set this attribute
to multipart/form-data when uploading a file to ensure the file arrives
correctly.

� A hidden field is included that sends a value (in bytes) for MAX_FILE_
SIZE. If the user tries to upload a file that is larger than this value, it
won’t upload. When sending the value for MAX_FILE_SIZE in your form,
you need to consider two size settings in php.ini, as follows

• upload_max_filesize: The MAX_FILE_SIZE you send in your
upload form can’t be larger than the value of upload_max_
filesize. If you are uploading a larger file and need to send a MAX_
FILE_SIZE larger than the current value of upload_max_filesize,
you need to increase the value of upload_max_filesize by editing
the php.ini file. The default value for this setting is 2M.

• post_max_size: The total amount of information you send in a
POST form can’t be larger than the value of post_max_size. The
default value for this setting is 8M. You can increase this value if
necessary by editing your php.ini file.

� The input field that uploads the file is of type file.

The value for MAX_FILE_SIZE must be sent before the file is uploaded if you
want the file size limit to apply to the uploading file.

When the user submits the form, the file is uploaded to a temporary location.
The script that processes the form needs to copy the file to another location
because the temporary file is deleted as soon as the script is finished. You
can use phpinfo() to see where the temporary files are stored. If you don’t
like the location of the temporary directory, you can change it by changing
upload_tmp_dir in the php.ini file. If no directory is specified in php.ini,
a default temporary directory is used. Because the temporary files are deleted
almost immediately, the location of the temporary directory is not likely to
be very important.

239Chapter 11: Other Web Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 239

Accessing information about
an uploaded file
Along with the file, information about the file is sent with the form. This infor-
mation is stored in the PHP built-in array called $_FILES. An array of informa-
tion is available for each file that was uploaded. As with any other form, you
can obtain the information from the array by using the name of the field. For
example, you can get information about the uploaded file from the following
array:

$_FILES[‘fieldname’][‘name’]
$_FILES[‘fieldname’][‘type’]
$_FILES[‘fieldname’][‘tmp_name’]
$_FILES[‘fieldname’][‘size’]

For example, suppose you use the following field to upload a file:

<input type=”file” name=”user_file”>

If the user uploads a file named test.txt by using the form, the resulting
array that can be used by the processing script looks something like this:

$_FILES[user_file][name] = test.txt
$_FILES[user_file][type] = text/plain
$_FILES[user_file][tmp_name] = D:\WINNT\php92C.tmp
$_FILES[user_file][size] = 435

In this array, name is the name of the file that was uploaded, type is the type
of file, tmp_name is the path/filename of the temporary file, and size is the
size of the file. Notice that name contains only the filename, while tmp_name
includes the path to the file as well as the filename.

If the file is too large to upload, the tmp_name in the array is set to none, and
the size is set to 0.

By default, PHP stores the temporary uploaded file in your system directory
on Windows (Windows for Win98/XP and Winnt for Win2000) or /tmp on Unix/
Linux. You can change the location where the temporary files are stored by
setting the location in php.ini. Look in your php.ini file for the following
line:

;upload_tmp_dir =

240 Part IV: Common PHP Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 240

Remove the semicolon at the beginning of the line so that the line becomes
active. Add the path to the directory where you want the temporary files to
be stored. Your active line looks similar to the following:

upload_tmp_dir = d:\tempfiles

The directory tempfiles must exist. If it doesn’t, PHP ignores the setting and
continues to save the files in the default location.

Moving uploaded files to their destination
The general format of the statement that moves the file is as follows:

move_uploaded_file(path/tempfilename,path/permfilename);

The tmp_file element in $_FILES stores the temporary filename and loca-
tion, so you can use the following statement to move the file to your desired
location, in this case, c:\data\new_file.txt:

move_uploaded_file($_FILES[‘user_file’][‘tmp_name’],
‘c:\data\new_file.txt’);

The destination directory (in this case, c:\data) must exist before the file
can be moved to it. This statement doesn’t create the destination directory.

Security can be an issue when uploading files. Allowing strangers to load files
onto your computer is risky; malicious files are possible. So, you probably
want to check the files for as many factors as possible after they are uploaded,
using conditional statements to check file characteristics, such as checking
for the expected file type and for the size. In some cases, for even more secu-
rity, it may be a good idea to change the name of the file to something else so
users don’t know where their files are or what they’re called.

Putting it all together
A complete example script is shown in Listing 11-3. This script displays a
form for the user to upload an image file, saves the uploaded file, and then
displays a message after the file has been successfully uploaded. This script
expects the uploaded file to be an image file, and tests to make sure that it is
an image file, but any type of file can be uploaded. The form displayed by this
script is shown in Figure 11-1.

241Chapter 11: Other Web Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 241

Listing 11-3: A Script That Uploads a File Using a POST Form

<?php
/* Script name: uploadFile.php
* Description: Uploads a file via HTTP using a POST form.
*/
if(!isset($_POST[‘Upload’])) #5
{
include(“form_upload.inc”);

} # endif
else #9
{
if($_FILES[‘pix’][‘tmp_name’] == “none”) #11
{
echo “File did not successfully upload. Check the

file size. File must be less than 500K.
”;
include(“form_upload.inc”);
exit();

}
if(!ereg(“image”,$_FILES[‘pix’][‘type’])) #16
{
echo “File is not a picture. Please try another

file.
”;
include(“form_upload.inc”);
exit();

}
else #23
{
$destination = ‘c:\data’.”\\”.$_FILES[‘pix’][‘name’];
$temp_file = $_FILES[‘pix’][‘tmp_name’];
move_uploaded_file($temp_file,$destination);
echo “<p>The file has successfully uploaded:

{$_FILES[‘pix’][‘name’]}
({$_FILES[‘pix’][‘size’]})</p>”;

}
}

?>

I have added line numbers at the end of some of the lines in the script. The
script is discussed below with reference to these line numbers:

� Line 5: This line is an if statement that tests whether the form has been
submitted. If not, the form is displayed by including the file containing
the form code. The include file is shown in Listing 11-4.

� Line 9: This line starts an else block that executes if the form has been
submitted. This block includes the rest of the script and processes the
submitted form and uploaded file.

� Line 11: This line is an if statement that tests whether the file was suc-
cessfully uploaded. If not, an error message is displayed, and the form is
redisplayed.

242 Part IV: Common PHP Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 242

� Line 16: This line is an if statement that tests whether the file is a pic-
ture. If not, an error message is displayed, and the form is redisplayed.

� Line 23: This line starts an else block that executes if the file has been
successfully uploaded. The file is moved to its permanent destination,
and a message is displayed that the file has been uploaded.

Listing 11-4 shows the include file used to display the upload form.

Listing 11-4: An Include File That Displays the File Upload Form

<!-- Script Name: form_upload.inc
Description: Displays a form to upload a file -->

<html>
<head><title>File Upload</title></head>
<body>
Enter the name of the picture you want to upload

to our picture archive or use the browse button
to navigate to the picture file.

When the path to the picture file shows in the text
field, click the Upload Picture button.

<div align=”center”><hr>
<form enctype=”multipart/form-data”

action=”uploadFile.php” method=”POST”>
<input type=”hidden” name=”MAX_FILE_SIZE” value=”500000”>
<input type=”file” name=”pix” size=”60”>
<p><input type=”submit” name=”Upload”

value=”Upload Picture”>
</form>
</body></html>

Figure 11-1:
A form that

allows users
to upload an

image file.

243Chapter 11: Other Web Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 243

Notice that the include file doesn’t contain PHP code, just HTML code.

The form that allows users to select a file to upload is shown in Figure 11-1.
The form has a text field for inputting a filename and a browse button that
enables the user to navigate to the file and select it.

Using JavaScript with PHP
You may want to use JavaScript in your Web page. For example, you may want
your Web page to change based on the position of the mouse pointer or a click
of the mouse. Or you may want to modify some information on your Web page
without redisplaying the entire page. You can’t achieve these effects with PHP
because it’s strictly a server-side scripting language. PHP doesn’t know what
is happening on the user’s PC; it only knows what’s happening on the Web site
server. If you want to make changes to the Web page display without resending
the Web page from the server, you need to use a client-side scripting language,
like JavaScript.

The user can turn off JavaScript so that the browser doesn’t execute the
JavaScript statements. It’s not wise for your Web application to depend
on JavaScript unless you can ensure that all your users have JavaScript
enabled in their browsers.

I don’t talk about the JavaScript language in this chapter. I assume that you
either know JavaScript or can learn the actual JavaScript code elsewhere. In
this chapter, I talk about how to use JavaScript in a PHP script. (For more
information on JavaScript, check out JavaScript For Dummies, 3rd Edition, by
Emily A. Vander Veer.)

Adding JavaScript code to a PHP script
JavaScript code, just like HTML code, is understood and executed by the
browser on the user’s computer (the client side). Therefore, you add
JavaScript to a PHP script in the same way that you add HTML to a PHP
script. In fact, JavaScript is basically part of the HTML code for the Web
page. You add JavaScript to the HTML by using an HTML tag, as follows:

<script language=”JavaScript”>
JavaScript code

</script>

244 Part IV: Common PHP Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 244

JavaScript code is used in your PHP script in the same way HTML code is
used — namely, it is echoed. For example, the following statements send
some JavaScript to the browser:

<?php
echo “<script language=\”JavaScript\”>

<!--
document.write(‘This page last updated: ‘
+ document.lastModified + ‘
’)

// -->
</script>”;

?>

When a browser receives these JavaScript statements, it executes them and
produces the following output:

This page last updated: 03/24/2003 12:01:47

This is the date and time that the file containing the script was last modified.

You can use JavaScript statements alone, outside of PHP tags, just as you can
HTML code. You could add the preceding statements to a PHP file without
using PHP tags or an echo statement. If the JavaScript statement is not added
in a PHP section, it is sent to the browser exactly as is, without being passed
to the PHP script, just as HTML code is when it’s outside of a PHP section.

Using PHP variables with JavaScript
You can use PHP variables with JavaScript the same way you do with HTML.
You can add the variable to the JavaScript code. For example, the JavaScript
example in the preceding section can include a PHP variable, as follows:

<?php
$string = “This page last updated: “;
echo “<script language=\”JavaScript\”>

<!--
document.write(‘$string’
+ document.lastModified + ‘
’)

// -->
</script>”;

?>

245Chapter 11: Other Web Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 245

The JavaScript language itself uses variables. You can set a JavaScript variable
to the value of a PHP variable to use in your JavaScript code. For example, the
JavaScript could be sent as follows:

<?php
$string = “This page last updated: “;
echo “<script language=\”JavaScript\”>

<!--
var message = \”$string\”;
document.write(message
+ document.lastModified + ‘
’)

// -->
</script>”;

?>

Because JavaScript code is not executed until it reaches the browser on the
client side, passing values from JavaScript variables to PHP variables can’t
take place in the current page. The JavaScript value must be passed on to the
next PHP script before PHP can receive it. JavaScript can pass the values on
so that PHP can use them by adding them to the URL, by storing them in a
cookie that PHP can read, or by sending them as a form element.

246 Part IV: Common PHP Applications

17 541668 Ch11.qxd 3/25/04 2:54 PM Page 246

Chapter 12

Storing Data with PHP
In This Chapter
� Writing and reading flat files

� Exchanging data between PHP and other programs

� Understanding database support in PHP

� Using PHP to interact with a database

� Handling database-connection errors

Many applications require the long-term storage of information. In PHP
scripts, you can make information available within sessions — periods

of time that users spend at your Web site — by using methods such as PHP
session functions and by submitting forms. However, eventually you need to
store information for use tomorrow or next week. You can store it in a cookie
that you set to last after the session is ended (as discussed in Chapter 11), but
the information is vulnerable. It’s not under your control. The user can delete
or change the information at any time or can refuse to accept the cookie. To be
available and stable, the information needs to be stored somewhere secure,
where no one can access or tamper with it. The information needs to be stored
on the server.

Information can be stored on the server in flat files or in databases. Flat files
are text files stored in the computer file system. Humans can read flat files by
using the operating system commands that display files, such as cat in Linux
and Unix. You can access and edit these files by using any text file editor, such
as Notepad or vi. The information in the flat file is stored as strings, and the
PHP script that retrieves the data needs to know how the data is stored. For
example, to retrieve a customer name from a file, the PHP script needs to
know that the customer name is stored in the first 20 characters of every line.

Using a database for data storage requires you to install and learn to use data-
base software, such as MySQL or Oracle. The data is stored in files created by
the database software and can only be accessed by the database software.
Databases can store very complex information that you can retrieve easily.

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 247

You don’t need to know how the data is stored, just how to interact with the
database software. For example, to retrieve a customer name, the PHP script
needs to know only how to tell the database software that it wants the cus-
tomer name, using a standard communication language called SQL, The data-
base software handles the storage and delivers the data, without the script
needing to know exactly where or how the customer name is stored.

Flat files have some advantages over databases:

� Available and versatile: You can create and save data in any operating
system’s file system. You don’t need to install any extra software.
Additionally, text data stored in flat files can be read by a variety of
software programs, such as word processors or spreadsheets.

� Easy to use: You don’t need to do any extra preparation, such as install
database software, design a database, create a database, and so on. Just
create the file and store the data with statements in your PHP script.

� Smaller: Flat files store data by using less disk space than databases.

In summary, a flat file is quick and easy and takes less space than a database.
It is ideal for storing small amounts of information quickly, such as a simple
list or small piece of information. Flat files are particularly useful for making
information available to other software, such as an editing program or a
spreadsheet. Flat files can be looked at by anyone with access to the com-
puter directory where they are stored, so they are useful when information
needs to be made available to other people.

Databases have some advantages as well:

� Security: A database provides a security layer of its own, in addition to
the security provided by the operating system. A database protects the
data from outside intrusion better than a flat file.

� Accessibility of data: You can store data in a database by using a very
complex data structure, specifying data types and relationships among
the data. The organization of the data makes it easy to search the data
and retrieve what you need.

� Ability to handle multiple users: When many users store or access data
in a single file, such as a file containing names and addresses, a database
ensures that users take their turn with the file to avoid overwriting each
other’s data.

In summary, databases require more start-up effort and use more space than
a flat file, but are much more suitable for handling complex information. The
database handles the internal organization of the data, making data retrieval

248 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 248

much simpler. A database provides more security, making it more suitable for
sensitive, private information. Databases can more easily and efficiently handle
high traffic when many users may try to access the data almost simultaneously.

In PHP 5, SQLite, an extension for data storage that combines the main advan-
tages of flat files and databases, is included by default. SQLite stores the data
in a flat file, so you don’t need to install database software, but you store data
using SQL, the standard database communication language. SQLite is a quick
option for storing and retrieving small amounts of data in a flat file using SQL.
SQLite is not a good option for really huge, complicated databases.

Using Flat Files
Flat files are simple to use, simpler than databases. You don’t need any other
software, such as database software. You just use PHP statements to read
from or write to the file.

Using a flat file requires three steps:

1. Open the file.

2. Write data into the file or retrieve data from the file.

3. Close the file.

These steps are discussed in detail in the following sections.

Accessing files
The first step, before you can write information into or read information from
a file, is to open the file. The following is the general format for the statement
that opens a file:

$fh = fopen(“filename”,”mode”)

The variable, $fh, referred to as a file handle, is used in the statements that
write data to or read data from the open file so that PHP knows which file
to write into or read from. $fh contains the information that identifies the
location of the open file.

You use a mode when you open the file to let PHP know what you intend to
do with the file. Table 12-1 shows the modes you can use.

249Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 249

Table 12-1 Modes for Opening a File
Mode What it does What happens when the file doesn’t exist

r Read only. If the file does not exist, a warning message
is displayed.

r+ Reading and writing. If the file does not exist, a warning message
is displayed.

w Write only. If the file does not exist, PHP attempts to
create it. If the file exists, PHP overwrites it.

w+ Reading and writing. If the file does not exist, PHP attempts to
create it. If the file exists, PHP overwrites it.

a Append data at the end If the file does not exist, PHP attempts to
of the file. create it.

a+ Reading and appending. If the file does not exist, PHP attempts to
create it.

The filename can be a simple filename (filename.txt), a path to the file
(c:/data/filename.txt), or a URL (http://yoursite.com/filename.txt).

Opening files in read mode
You can open the file file1.txt to read the information in the file with the
following statement:

$fh = fopen(“file1.txt”,”r”);

Based on this statement, PHP looks for file1.txt in the current directory,
which is the directory where your PHP script is located. If the file can’t be
found, a warning message, similar to the following, may or may not be dis-
played, depending on the error level set, as described in Chapter 4:

Warning: fopen(file1.txt): failed to open stream: No such
file or directory in d:\test2.php on line 15

Remember, a warning condition does not stop the script. The script contin-
ues to run, but the file doesn’t open, so any later statements that read or
write to the file aren’t executed.

You probably want the script to stop if the file can’t be opened. You need to
do this yourself with a die statement, as follows:

250 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 250

$fh = fopen(“file1.txt”,”r”)
or die(“Can’t open file”);

As explained in Chapter 8, the die statement stops the script and displays the
specified message.

Opening files in write mode
You can open a file in a specified directory to store information by using the
following type of statement:

$fh = fopen(“c:/testdir/file1.txt”,”w”);

If the file does not exist, it is created in the indicated directory. However, if
the directory doesn’t exist, the directory is not created, and a warning is dis-
played. (You must create the directory first, before you try to write a file into
the directory.)

You can check whether a directory exists before you try to write a file into it
by using the following statements:

If(is_dir(“c:/tester”))
{

$fh = fopen(“c:/testdir/file1.txt”,”w”);
}

With these statements, the fopen statement is executed only if the directory
exists and is a directory.

Opening files on another Web site
You can also open a file on another Web site by using a statement such as the
following:

$fh = fopen(“http://janet.valade.com/index.html”,”r”);

You can use a URL only with a read mode, not with a write mode.

Closing a file
To close a file after you have finished reading or writing it, use the following
statement:

fclose($fh);

In this statement, $fh is the file handle variable you created when you
opened the file.

251Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 251

Writing to a file
After you open the file, you can write into it by using the fwrite statement,
which has the following general format:

fwrite($fh,datatosave);

In this statement, $fh is the file handle that you created when you opened
the file, containing the pointer to the open file, and datatosave is the infor-
mation to be stored in the file. The information can be a string or a variable.
For example, you can use the following statements:

$today = date(“Y-m-d”);
$fh = fopen(“file2.txt”,”a”);
fwrite($fh,$today);
fclose($fh);

These statements store the current date in a file called file2.txt. Notice
that the file is opened in append mode. If the file doesn’t exist, it is created,
and the date is written as the first line. If the file exists, the data is added to
the end of the file. In this way, you create a log file, which stores a list of the
dates on which the script is run. The fwrite statement stores exactly what
you send, so the second time these statements are run, file2.txt contains
the following:

2003-04-222003-04-22

You probably want the two dates to be stored on separate lines. To do so, use
the following fwrite statement rather than the previous one:

fwrite($fh,$today”\n”);

With the new line character added, file2.txt contains the following:

2003-04-22
2003-04-22

Be sure to open the file with the a mode if you want to add information to a
file. If you use a write mode, the file is overwritten each time it’s opened.

Reading from a file
You can read from a file by using the fgets statement, which has the following
general format:

$line = fgets($fh)

252 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 252

In this statement, $fh holds the pointer to the open file. This statement reads
a string until it encounters the end of the line or the end of the file, whichever
comes first, and stores the string in $line. To read an entire file, you keep
reading lines until you get to the end of the file. PHP recognizes the end of the
file, and provides a function feof to tell you when you reach the end of the
file. The following statements read and display all the lines in the file:

while(!feof($fh))
{

$line = fgets($fh);
echo “$line;

}

In the first line, feof($fh) returns TRUE when the end of the file is reached.
The exclamation point negates the condition being tested, so that the while
statement continues to run as long as the end of the file is not reached. When
the end of the file is reached, while stops.

If you use these statements to read the log file created in the preceding sec-
tion, you get the following output:

2003-04-22
2003-04-22

As you can see, the new line character is included when the line is read. In
some cases, you don’t want the end of line included. If so, you need to remove
it by using the following statements:

while(!feof($fh))
{

$line = rtrim(fgets($fh));
echo “$line;

}

The rtrim function removes any trailing blank spaces and the new line char-
acter. The output from these statements is as follows:

2003-04-222003-04-22

Reading files piece by piece
Sometimes you want to read strings of a certain size from a file. You can tell
fgets to read a certain number of characters by using the following format:

$line = fgets($fh,n)

This statement tells PHP to read a string that is n-1 characters long until it
reaches the end of the line or the end of the file.

253Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 253

For example, you can use the following statements:

while(!feof($fh))
{

$char4 = fgets($fh,5);
echo “$char4\n”;

}

These statements read each four-character string until the end of the file. The
output is as follows:

2003
-04-
22

2003
-04-
22

Notice that there is a new line at the end of each line of the file.

Reading a file into an array
It’s often handy to have the entire file in an array. You can do that with the
following statements:

$fh = fopen(“file2.txt”,”r”);
while(!feof($fh))
{

$content[] = fgets($fh);
}
fclose($fh);

The result is the array $content with each line of the file as an element of
the array. The array keys are numbers.

PHP provides a shortcut function for opening a file and reading the entire
contents into an array, one line in each element of the array. The following
statement produces the same results as the preceding five lines:

$content = file(“file2.txt”);

The statement opens file2.txt, puts each line into an element of the array
$content, and then closes the file.

The file function can slow down your script if the file you’re opening is really
large. How large depends on the amount of available computer memory. If
your script seems slow, try reading the file with fgets rather than file and
see if that speeds up the script.

254 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 254

You can direct the file function to automatically open files in your include
directory (described in Chapter 8) by using the following statement:

$content = file(“file2.txt”,1);

The 1 tells PHP to look for file2.txt in the include directory rather than in
the current directory.

Reading a file into a string
Sometimes it’s useful to put the entire contents of a file into one long string.
For example, you may want to send the file contents in an e-mail message.
PHP provides a function for reading a file into a string, as follows:

$content = file_get_contents(“file2.txt”,1);

The file_get_contents function works the same as the file function,
except that it puts the entire contents of the file into a string rather than an
array. After this statement, you can echo $content as follows:

echo $content;

The output is the following:

2003-04-22
2003-04-22

The output appears on separate lines because the end of line characters are
read and stored as part of the string. Thus, when you echo the string, you
also echo the end of line characters, which start a new line.

The file_get_contents function was introduced in version 4.3.0. It isn’t
available in older versions of PHP.

Exchanging data with other programs
Flat files are particularly useful for providing information to other programs
or reading information into PHP from other programs. Almost all software has
the ability to read information from flat files or write information into flat files.
For example, by default your word processor saves your documents in its own
format, which only the word processor can understand. However, you can
choose to save the document in text format instead. The text document is a
flat file containing text that can be read by other software. Your word proces-
sor can also read text files, even ones that were written by other software.

255Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 255

When your PHP script saves information into a text file, the information can be
read by any software that has the capability of reading text files. For example,
any text file can be read by most word processing software. However, some
software requires a specific format in the text file. For example, an address
book software application may read data from a flat file but require the infor-
mation to be in specified locations — for example, the first 20 characters in a
line are read as the name, and the second 20 characters are read as the street
address, and so on. You need to know what format the software requires in
a flat file. Then write the flat file in the correct format in your PHP script by
using fwrite statements, as discussed in the section “Writing to a file,” earlier
in this chapter.

A CSV (comma-separated values) file — also called a comma-delimited file —
is a common format used to transfer information between software programs.
A CSV file is used to transfer information that can be structured as a table,
organized as rows and columns. For example, spreadsheet programs organize
data as rows and columns and can read and write CSV files. A CSV file is also
often used to transfer data between different database software, such as
between MySQL and MS Access. Many other software programs can read and
write data in CSV files.

A CSV file is organized with each row of the table on a separate line in the file,
and the columns in the row are separated by commas. For example, an address
book can be organized as a CSV file as follows:

John Smith,1234 Oak St.,Big City,OR,99999
Mary Jones,5678 Pine St.,Bigger City,ME,11111
Luis Rojas,1234 Elm St.,Biggest City,TX,88888

Excel can read this file into a table with five columns. The comma signals the
end of one column and the start of the next. Outlook can also read this file
into its address book. And many other programs can read this file.

The following PHP statements create the CSV file:

$address[] = “John Smith,1234 Oak St.,Big City,OR,99999”;
$address[] = “Mary Jones,5678 Pine St.,Bigger City,ME,11111”;
$address[] = “Luis Rojas,1234 Elm St.,Biggest City,TX,88888”;
$fh = fopen(“addressbook.txt”,”a”);
for ($i=0;$i<3;$i++)
{

fwrite($fh,$address[$i].”\n”);
}
fclose($fh);

PHP can read the CSV file by using either the file or the fgets function, as
described in the section “Reading a file into an array,” earlier in this chapter.
However, PHP provides a function called fgetcsv that is designed specifically
to read CSV files. When you use this function to read a line in a CSV file, the
line is stored in an array, with each column entry in an element of the array.

256 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 256

For example, you can use the function to read the first line of the address
book CSV file, as follows:

$address = fgetcsv($fh,1000);

In this statement, $fh is the file handle, and 1000 is the number of characters
to read. To read an entire line, use a number of characters that is longer than
the longest line. The result of this statement is an array as follows:

$address[0] = John Smith
$address[1] = 1234 Oak St.
$address[2] = Big City
$address[3] = OR
$address[4] = 99999

The CSV file works well for transferring data in many cases. However, if a
comma is part of the data, commas can’t be used to separate the columns.
For example, suppose one of data lines is as follows:

Smith Company, Inc.,1234 Fir St.,Big City,OR,99999

The comma in the company name would divide the data into two columns —
Smith Company in the first and Inc. in the second — making six columns
instead of five. When the data contains commas, you can use a different char-
acter to separate the columns. For example, tabs are commonly used to sepa-
rate columns. This file is called a TSV file or a tab-delimited file. You can write
a tab-delimited file by storing “\t” in the output file rather than a comma.

You can read a file containing tabs by specifying the column separator in the
statement, as follows:

$address = fgetcsv($fh,1000,”\t”);

You can use any character to separate columns.

The script in Listing 12-1 contains a function that converts any CSV file into a
tab-delimited file.

Listing 12-1: A Script That Converts a CSV File into a Tab-Delimited File

<?php
/* Script name: Convert
* Description: Reads in a CSV file and outputs a
* tab-delimited file. The CSV file must have a .
* CSV extension.
*/
$myfile = “testing”; #7
function convert($filename) #8

(continued)

257Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 257

Listing 12-1 (continued)

{
if(@$fh_in = fopen(“{$filename}.csv”,”r”)) #10
{
$fh_out = fopen(“{$filename}.tsv”,”a”); #12
while(!feof($fh_in)) #13
{
$line = fgetcsv($fh_in,1024); #15
if($line[0] == “”) #16
{
fwrite($fh_out,”\n”);

}
else { #20
fwrite($fh_out,implode($line,”\t”).”\n”); #21

}
}
fclose($fh_in);
fclose($fh_out);

}
else { #27
echo “File doesn’t exist\n”;
return FALSE;

}
echo “Conversion completed!\n”;
return TRUE; #32

}
convert($myfile); #34

?>

Listing 12-1 has numbers at the end of some lines. The following points refer
to the line numbers in the listing:

� Line 7: This line defines the filename as testing.

� Line 8: This line defines a function named convert() with one parame-
ter, $filename.

� Line 10: This line opens a file that has the filename that was passed to
the function with a .csv extension. The file is opened in read mode. If the
file is opened successfully, the conversion statements in the if block
are executed. If the file is not found, the else block beginning on line 27
is executed.

� Line 12: This line opens a file that has the filename that was passed to
the function with a .tsv extension. The file is opened in append mode.
The file is in the current directory in this script. If the file is in another
directory where you think there is any possibility the file might not open
in write mode, use an if statement here to test where the file opened
and perform some action if it did not.

� Line 13: This line starts a while loop that continues to the end of the file.

258 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 258

� Line 15: This statement reads one line from the input file into the array
$line. Each column entry is stored in an element of the array.

� Line 16: This statement tests whether the line from the input file has any
text on it. If the line doesn’t have any text, a new line character is stored
in the output file. Thus, any empty lines in the input file are stored in the
output file.

� Line 20: If the line from the input file is not empty, it’s converted to a
tab-delimited format and written into the output file.

� Line 21: This statement converts the line and writes it to the output file
in one statement. The implode function converts the array $line into a
string, with the elements separated by a tab.

� Line 27: This else block executes when the input file can’t be found. An
error message is echoed, and the function returns FALSE.

� Line 32: The function has completed successfully, so it returns TRUE.

� Line 34: This line calls the function, passing a filename to the function in
the variable $myfile.

Working with Databases
If you need to store complex information, keep the information very secure,
or handle many users accessing the data at once, a database is much better
than a flat file for long-term storage. Also, if you already know and use data-
base software, it’s almost as simple to use a database as a flat file.

Understanding database software
A database is an electronic file cabinet that stores information in an organized
manner so that you can find it when you need it. A database can be small,
with a simple structure, such as a database containing the names, addresses,
and phone numbers of all your friends. Or a database can be huge with an
extremely complex structure, such as the database Amazon must have to
hold all its information.

Technically, the term database refers to the file or group of files that holds the
actual data. The data is accessed by using a set of programs called a Database
Management System (DBMS). Almost all DBMSs these days are Relational
Database Management Systems (RDBMSs), in which data is organized and
stored in a set of related tables.

259Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 259

One of PHP’s strengths is its support for many different DBMSs. PHP supports
over 20 databases. It supports the following popular RDBMSs, as well as others
that are less well known:

� IBM DB2

� Informix

� Ingres

� Microsoft SQL Server (MS SQL)

� mSQL

� MySQL

� Oracle

� PostgreSQL

� Sybase

In addition, PHP offers support for ODBC, which stands for the Open Database
Connectivity standard, a standard database access method developed by
Microsoft. Many DBMSs understand ODBC, particularly Windows DBMSs. Using
ODBC support in PHP, you can access some databases that are not specifically
supported, such as DB2 and Access. Also, you can use ODBC to access several
different databases with the same code. To use ODBC to communicate with a
database, the database needs to have an ODBC driver installed. See the docu-
mentation for your database to find out how to install ODBC support for your
database.

If you currently have a database set up and know how to use it, you can
undoubtedly store and retrieve data from your existing database by using
PHP scripts. If you don’t have an existing database, you need to choose one.
Selecting and installing a database is independent of PHP. You install the data-
base, make sure it’s working, and learn to use it. After your database is work-
ing, you can store and retrieve data with PHP scripts.

Choosing a RDBMS depends on your needs. The RDBMS that is right for you
may not be the best option for someone else. You need to research your
options and choose the one with the characteristics that suit your situation.
You may need to consider some of the following issues:

� Cost: The cost of the RDBMS software ranges from free to quite pricey.
MySQL, mSQL, and PostgreSQL are open source software, meaning they’re
free. Other RDBMSs, such as Sybase, MS SQL Server, and Oracle, are com-
mercial software with prices that range from moderate to astronomical.

260 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 260

� Features: The features provided by an RDBMS vary. For example, mSQL
has a small set of features, but this may be enough for some purposes.
On the other hand, Oracle can do everything but drive your car. In gen-
eral, the more features the RDBMS has, the more computer resources it
requires and the higher its cost. Therefore, you may not want to install
software with a huge feature set that you don’t need.

� Resources: Some RDBMSs require more resources, such as disk space and
memory, than others. For example, mSQL is very small and lightweight,
requiring very little overhead. MySQL was also developed to be small.
On the other hand, Oracle, depending on which products and tools you
install, can require many resources.

� Support: Commercial software and open source software provide support
differently:

• Commercial: Commercial software provides a method for customers
to get technical support from the company that sold them the soft-
ware. Sometimes customers have to pay for the technical support
or wait in phone queues, but the company answers their questions
and assists with troubleshooting.

• Open source: Open source software does not provide a direct phone
line to a software company. Open source software is supported by
the community of users. E-mail lists and forums offer access to many
people who are using the software and who are willing to answer
questions and assist each other with problems. Sometimes asking
a question on an e-mail list gets you an answer faster than phoning
a technical-support phone number at a software company.

After you choose which database you’re going to use, you need to install
the database software and figure out how to use it. You need to know how to
design and create a database that you can then access from a PHP script. In
general, a database has two parts: a structure to hold the data and the data
itself.

The structure consists of the database itself and tables within the database
that hold the data. You need to design the database structure before you can
store data in it. RDBMS tables are organized like other tables you’re used to —
in rows and columns. For example, suppose you want to provide an online cat-
alog, containing all your products, so users can see what you have and place
orders. You create a database called Catalog. In the Catalog database, you
create a table called Product that contains all your products. The Product table
has a different product in each row. The columns of the row contain informa-
tion about each product. For example, if the product is a shirt, each row of the
table contains information about a different shirt you sell. The columns con-
tain information about the shirt, such as the name of the shirt (T-shirt, dress
shirt, polo shirt, and so on), the description, the size, the color, and so on.

261Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 261

When you create a table, you give each column a name, called the field name.
For your Product table containing shirts, you name the columns as follows:

� Type

� Description

� Size

� Color

� Price

Your Catalog database can have other tables in it, such as a table containing
shipping costs and a table containing sales tax information.

In addition to the database design and creation, you need to understand the
security used by your RDBMS. One of the advantages of databases is the secu-
rity provided for the data, but the security makes storing and retrieving data
more complicated. The RDBMS doesn’t allow just anyone to get data from your
database. You need to have a valid account name and password before you
can use the database. If you’re using a database on a Web hosting company,
those folks need to provide you with a valid account and password. If you’re
installing the database software yourself, you need to understand how to
administer the accounts.

After you have designed and created the database structure, you can add
data to the tables and retrieve stored data from the tables. PHP makes data
storage and retrieval quite simple.

Understanding database support in PHP
PHP communicates with databases by using functions designed specifically
to interact with databases. PHP includes a set of functions for each database
it supports. For example, to communicate with MySQL 4.0 or earlier, you use
functions such as mysql_connect() and mysql_query() and to communi-
cate with MySQL 4.1 or later, you use functions such as mysqli_connect()
and mysqli_query(). To communicate with Sybase, you use functions such
as sybase_connect() and sybase_query().

By default, PHP includes support for ODBC. For database support other than
ODBC, you must add support for the database you plan to use. If you’re using
a Web hosting company, those folks must provide the database support. If
you’re running your Web site on your own computer, you need to add data-
base support to PHP. You can include database support by using the methods
described in the following sections.

262 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 262

Setting up database support in Unix/Linux/Mac
Support for a database is an installation option that is included in the config-
ure step during installation. Appendix A includes a section that discusses
the installation options. For example, to include support for mSQL, use the
following command line options in the configuration step during installation:

./configure --with-msql=/usr/msql

Table 12-2 shows many of the database installation options available. If the
database is installed in the default location, you don’t need to include the
DIR parameter. You can use the option without the parameter, as follows:

./configure --with-msql

Table 12-2 PHP Database Installation Options
Database Installation Option Default DIR

IBM DB2 with-ibm-db2=DIR /home/db2inst1/sqllib

Informix with_informix=DIR No default

Ingres II with-ingres=DIR /II/ingres

mSQL with-msql=DIR /usr/local/Hughes

MySQL 4.0 or earlier with-mysql=DIR /usr/local/mysql

MySQL 4.1 or greater with-mysqli=DIR No default. DIR must be the
path to the file mysql_
config that is installed with
MySQL 4.1 or greater.

Oracle 7 and newer with-oci8 Default DIR is contained in
versions the environmental variable,

ORACLE_HOME

Earlier versions of with-oracle=DIR Default DIR is contained in
Oracle the environmental variable,

ORACLE_HOME

PostgreSQL with-pgsql=DIR /usr/local/pgsql

Sybase with-sybase=DIR /home/sybase

Sybase-CT with-sybase-ct=DIR /home/sybase

263Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 263

After you compile PHP using the appropriate installation option, you can check
that database support was correctly activated with the phpinfo function. The
database support and settings appears in the output from phpinfo.

Setting up database support in Windows
Enabling PHP support for a database in Windows requires two steps:

1. Copy the dll (Dynamic Link Library) file for the database into the
main directory.

2. Activate the database support.

After performing the steps, as described below, you can use the phpinfo
function to check that the database support has been activated. Information
and settings for the database are displayed in the output from phpinfo.

Copying the dll
The dlls are included in the zip file you download from the PHP Web site.
Downloading and installing PHP manually from the zip file is described in
Appendix A. After installing manually, a directory called ext is in the direc-
tory where PHP is installed. The path will be something like c:\php\ext, and
the dlls for the databases are in this directory.

Copy the dll you need into the main directory where PHP is installed, such as
c:\php. For example, to add support for PostgreSQL to PHP on a Windows
2000 system, copy c:\php\ext\php_pgsql.dll into the main directory
where PHP is installed. To do this, CD into c;\php\ext and type:

copy php_pgsql.dll

If you used the installer to install PHP, the database dlls were not downloaded.
You need to download the zip file, as described for installing PHP manually.
Then unzip the file, find the appropriate dll, and copy it into the system
directory.

Activating the database support
Database support is activated in the php.ini file. Look for a list of statements
that have the following form:

;extension=php_pgsql.dll
;extension=php_msql.dll

This list includes a statement for every database that is supported. Notice
the semicolon at the beginning of each line. The semicolon is the comment
character in the php.ini file, so the statements in the list are comments and
are not active. Find the statement for the database support you need and
then remove the semicolon from the statement for the database support you
want to activate, as in the following example

264 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 264

extension=php_pgsql.dll

This statement activates PostgreSQL support. After you save the php.ini file,
you may need to restart your Web server before the database support goes
into effect.

If you activate the database support line in php.ini, but haven’t copied the
dll into the main directory, you will see an error message similar to the fol-
lowing when you try to run a PHP script:

Unknown(): Unable to load dynamic library ‘php_pgsql.dll’.
The specified module could not be found.

If you perform both steps correctly (copy the dll into the main directory and
activate the correct line in php.ini), but the database software isn’t
installed, you will get an error message similar to the following when you try
to run a PHP script:

The dynamic link library msql.dll could not be found in the
specified path

For MS SQL users only: You need to install the MS SQL Server Client Tools,
as well as the database server. Microsoft provides these tools on the CD.

For MySQL users only: Be sure you use the correct dll: php_mysql.dll for
MySQL 4.0 or earlier or php_mysqli.dll for MySQL 4.1 or later.

Communicating with your database
Most database software understands SQL (Structured Query Language), a
computer language you use to communicate with a database. You send an SQL
statement, called a query, to the RDBMS that tells it what you want to do. SQL
queries can instruct the RDBMS to create a database, create tables in a data-
base, store data, retrieve data, delete data, and perform many other actions.

Although most databases understand SQL, there may be differences in the
SQL you can use with different databases. For example, mSQL understands a
limited set of SQL queries, but Oracle and Sybase each have an extended set
of SQL queries they understand, beyond the standard SQL.

A complete description of SQL is beyond the scope of this book. If you’re
using MySQL as your database, you may want to look at my other book, PHP
& MySQL For Dummies (Wiley Publishing, Inc.). A description of the SQL you
need to work with databases is contained in this book. Or, for a complete
description of SQL and all its capabilities and features, see SQL For Dummies,
5th Edition, by Allen Taylor (Wiley Publishing, Inc.).

265Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 265

Although I do not discuss SQL in detail, I will describe a couple of simple SQL
queries so that I can use some real examples in this book to show you how to
use your database. To get data from your database, you can use the following
query:

SELECT * FROM tablename

This query retrieves all the data that is contained in the table. The * is a spe-
cial character called a wild card that selects all the fields in the table. Suppose
you want to retrieve data from the Catalog database discussed in the section
“Understanding database software,” earlier in this chapter. This database has
a table named Product that contains the information for all the products in
the catalog. You can use the following SQL query to retrieve all the data from
the Product table:

SELECT * FROM Product

To add a new record to a table, you can use the following query:

INSERT INTO tablename (fieldname1,fieldname2, ...) VALUES
(value1,value2, ...)

This query creates a new row in the table with the specified values and adds
the values provided to the named fields. For example, for the Catalog database
discussed previously, you can add a new product with the following query:

INSERT INTO Product (Type,Description,Size,Color,Price)
VALUES (“T-shirt”,”100% cotton”,”L”,”Black”,20)

Notice that there are quotes around the strings, but not around the number.
Also, notice that there is a value listed for every field named. The database
gives an error message if the number of values is not equal to the number of
fields.

In the next section, I discuss how to use a PHP script to interact with a
database.

Using PHP with a database
Whichever database you’re using, the steps to interact with a database are
similar:

1. Connect to the database.

2. Send an SQL query that contains instructions for the database software.

3. If you retrieved data from the database, process the data.

4. Close the connection to the database.

266 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 266

These steps are discussed in more detail in the following sections.

Connecting to the database
The first step in a database interaction is connecting to the database. You use
a PHP function to connect to the database. To make the connection, you need
to supply the function with four things:

� Location: The database does not need to be on the same computer where
PHP is installed. Therefore, you need to tell the PHP connect function the
name of the computer where the database is located (the hostname).
You can supply either a domain name (such as mycompany.com) or an
IP address (such as 172.17.204.2). If the database is on the same com-
puter as PHP, you can use localhost for the hostname.

� Account name: You must provide a valid account name that can be used
to access the database. The database administrator sets this up. If you’re
using a Web hosting company, you will be given a valid account name.

� Password: You have to have a valid password to access the database.
The database administrator sets this up. If you’re using a Web hosting
company, you will be given a valid password for your account.

� Database name: An RDBMS can create and maintain many databases, so
you need to tell it which database you want to use.

For security reasons, it’s best to keep your database connection information
in a separate file and use it in your PHP script with an include statement.
As long as your include files are stored in a secure location, as discussed in
Chapter 8, your information is more secure than if it were stored in the PHP
script itself. For the following examples, I create an include file called info.
inc with the following statements:

$host = “localhost”;
$account = “admin”;
$password = “secret”;
$dbname = “Catalog”;

Then I can include this file in any PHP script that needs to access the database
by using the following statement:

include(“info.inc”);

The PHP function to connect to the database software is not the same for all
RDBMSs. That would be too simple. However, although the functions may
differ for different databases, the form is similar. For example, the most popu-
lar software for Web site database applications is MySQL. For MySQL 4.0 or
earlier you use two statements as follows, to connect to the database,:

$connect = mysql_connect($host,$account,$password);
$db = mysql_select_db(“Catalog”,$connect);

267Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 267

The first statement connects to the database management software and the
second statement tells it which database you want to access. For MySQL 4.1
or later, the format is slightly different, as follows:

$connect = mysqli_connect($host,$account,$password);
$db = mysqli_select_db($connect,"Catalog");

Notice that the order of the items passed in the function is reversed for the
second line. Mysql passes ("Catalog",$connect) and mysqli passes
($connect,"Catalog").

Several databases,require two separate functions to connect to the database,
as shown for MySQL above. For example, mSQL and Sybase use similar state-
ments, as shown in the following statements:

$connect = msql_connect($host,$account,$password);
$db = msql_select_db(“Catalog”,$connect);

$connect = sybase_connect($host,$account,$password);
$db = sybaseselect_db(“Catalog”,$connect);

For other databases, only one function is needed, as shown in the following
statement for postgreSQL:

$connect = pg_connect(“host=$host user=$user
password=$password dbname=Catalog”);

The format for connecting to other database management systems is similar
with small variations. Connecting to Oracle using the OCI8 interface differs
even more, as follows:

$connect = OCILogon($account,$password);

The Oracle connection also requires an environment variable ORACLE_SID
set to the desired Oracle instance.

To determine the correct format to connect to the database that you’re using,
see the PHP manual on the PHP Web site (www.php.net) for the appropriate
function for your RDBMS.

Sending a query to the database
After PHP has established a connection to the database, you can perform
whatever action you desire, such as get data, change data, or insert new data.
The SQL query tells the database what action you want to perform. You
send the SQL query to the by using another PHP function for your RDBMS.
Again, the format of these statements varies, but they are similar. For exam-
ple, for MySQL, you can send the query by using the following statements:

268 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 268

$sql = “SELECT * FROM Product”;
$result = mysql_query($sql,$connect);

The first statement stores the SQL query in a variable $sql. The SQL state-
ment gets all the data in the table Product. The mysql_query function sends
the query in $sql to the database over the database connection established
earlier and stored in $connect. The data is stored in a temporary table l, with
rows and columns, and $result (or whatever you chose to call this variable)
contains a pointer to the temporary table.

For PostgreSQL, the statements are similar, as follows:

$sql = “SELECT * FROM Product”;
$result = pg_query($connect,$sql);

The first statement creates the SQL query and stores it in $sql. The second
statement executes the query and returns the data. For Oracle, two PHP func-
tions are needed to execute a query, as follows:

$sql = “SELECT * FROM Product”;
$query = OCIParse($connect,$sql);
$result = OCIExecute($query);

The first statement creates the SQL query. Notice that the first statement is
the same for all three databases. For Oracle, the second two statements are
required to execute the statement and return the results.

Any SQL query is sent by using the same functions. The query in these three
examples returns data, but queries that don’t return data are sent with the
same function, as in the following example:

$first_name = “John”;
$last_name = “Smith”;
$sql = “INSERT INTO Customer (firstName,lastName) VALUES

(‘$first_name’,’$last_name’)”;
$result = mysql_query($sql);

When no data is returned by the query, $result contains TRUE, rather than a
pointer to the retrieved data.

To determine the correct way to send the query, see the PHP manual on the
PHP Web site (www.php.net) for the appropriate functions for your RDBMS.

Processing data
If you send a query that retrieves data, you undoubtedly intend to use that
data in your PHP script. You may want to display a list of check boxes based
on data taken from the database, display data in a Web page so users can edit
it, use the data from the database as default text in an HTML form, and so on.

269Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 269

To process the returned data, you need to get it from the temporary table
where it was placed when the SQL query was executed. You use PHP data-
base functions to get the data from the temporary table.

The data is stored in the temporary table in rows and columns. You can use
PHP functions to retrieve one row from the table and store it in an array, with
the field names as the array keys. For MySQL, the statement is as follows:

$row = mysql_fetch_array($result);

In the previous section, we saved the results and stored the location in a vari-
able named $result. In this statement, we tell PHP which results to fetch by
using $result. The mysql_fetch_array returns one row of data from the
temporary table specified by $result.

After this statement, $row is an array containing all the fields in the temporary
table, such as the following:

$row[‘firstName’] = John
$row[‘lastName’] = Smith

To process all the data in the temporary table, you can use a loop to get one
row at a time, processing each row until the end of the table is reached. For
PostgreSQL, the while loop looks like this:

while($row=pg_fetch_asoc($result))
{

foreach($row as $value)
{

echo “$value
”;
}

}

The while loop executes once for each row in the temporary table. An array
called $row is created in each loop, containing the data in that row. The
foreach loop travels through the $row array and displays each field name
and the data in each field.

The following example for PostgreSQL uses a for loop to process the data,
giving the same result as the preceding example that uses a while loop:

$Nrows = pg_num_rows($result);
for($i=0;$i<$Nrows;$i++)
{

$row = pg_fetch_row($result,$i);
foreach($row as $value)
{

echo “$value
”;
}

}

270 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 270

In this example, the function pg_num_rows returns the number of rows that
are in the temporary table. (MySQL has a similar function, mysql_num_rows
($result).) The for loop is set up to loop once for each row in the tempo-
rary table. Inside the for loop, a row is selected from the table, and foreach
is used to process each row. Notice that $i is passed to pg_fetch_row to tell
it which row to fetch.

The following example produces the same results with Oracle:

$Nfields = OCINumCols($result);
while (OCIFetch($result))
{

for($i=1;$i<=$Nfields;$i++)
{

$value = OCIResult($result,$i);
echo “$value
”;

}
}

In this example, $Nfields is the number of fields in the result table. OCIFetch
gets one row from the result table. The while loop continues looping until
there are no more rows to get. OCIResult returns the value from one field
in the row. The for loop travels through the row, getting the value for each
field in the row and displaying it.

The previous examples show the bare-minimum PHP functions that you need
for interacting with an RDBMS. PHP offers many functions for each RDBMS,
such as mysql_affect_rows, which returns the number of rows changed by
the query, or pg_field_name, which returns the names of the fields.

Although the PHP database functions are similar, they are different enough
that you need to learn the correct functions to use for your RDBMS. Read
through the documentation on the PHP Web site for the functions for your
RDBMS. The documentation includes some examples. If you’re using MySQL,
PHP & MySQL For Dummies contains details and many examples.

Closing the connection
Any open database connections are closed when the script ends. However, it
is good programming practice to close the connections in the script, to avoid
any possible problems. You close database connections the same way you
open them — with a PHP function. For example, for MySQL, use the following
function to close a database connection:

mysql_close($connect);

The following are examples of other closing functions:

271Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 271

ocilogoff($connect); # Oracle
pg_close($connect); # PostgreSQL
mssql_close($connect); # MS SQL

Handling errors
When you use a connect function in PHP, the function attempts to make a
connection to the database, but it is not always successful. For example, the
database software may be down, or you may be using an invalid account name
or password. For example, if you attempt to connect to a MySQL database
with an invalid password, the following message is displayed:

Warning: mysql_connect(): Access denied for user:
‘root@localhost’ (Using password: YES) in
c:\test12.php on line 10

The message shows the account name you’re attempting to use and indicates
whether you’re using a password. In this case, it shows that you used a pass-
word, but it doesn’t show what password you used. The statement means that
MySQL will not allow you to access the database because the account name
and password are not valid.

The message is a warning, not an error. Therefore, after displaying the mes-
sage, PHP continues to execute the rest of the script. This is not usually what
you want. In general, if you are unable to connect to the database, the rest of
the script will fail as well. So, you can use a die statement to stop the script if
the script fails to connect to the database. The following example shows the
use of a die statement when connecting to a PostgreSQL database:

$connect = pg_connect(“host=$host user=$user
password=$password dbname=Catalog”)

or die(“Can’t connect to database”);

Using this statement, the script stops if the connection attempt fails, and the
message in the die statement is displayed. It’s a good idea to use a die state-
ment with all the database functions so the script stops if the function is
unable to execute successfully.

When you use a function to get data from the temporary result table, you
may see a warning message. For example, suppose you include the following
statements in your script:

$sql = “SELECT * FROM Productt”;
$result = mysql_query($sql);
$row = mysql_fetch_array($result);

In this case, the typo in the table name (notice the tt in Product) results in
the following message:

272 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 272

Warning: mysql_fetch_array(): supplied argument is not a
valid MySQL result resource in test.php on line 9

The warning tells you that $result does not contain a valid result resource.
That is, $result does not contain a pointer to a table with rows and columns.
The warning usually means that the SQL query did not execute as intended
or that the results were different than you expected. For this example, the
incorrect table name caused the query to fail to execute, returning FALSE.
Thus, $result contains FALSE, an invalid result when used in the mysql_
fetch_array function.

No warning was displayed when the mysql_query function was executed,
even though the SQL query failed. A MySQL error message is generated when
the SQL fails, but it is not displayed unless your script specifically displays it.
A better format for your script is to stop the script if the SQL query fails and
display the MySQL error message to see what the problem is. You can display
the MySQL error message by using the mysql_error function. Therefore, you
might modify the previous statements as follows:

$sql = “SELECT * FROM Productt”;
$result = mysql_query($sql)

or die(“Query failed: “.mysql_error());
$row = mysql_fetch_array($result);

The output from these statements is as follows:

Query failed: Table ‘Catalog.productt’ doesn’t exist

With these statements, when the query fails to execute, the die statement dis-
plays its message, which includes the MySQL error message that is displayed
by mysql_error, and the script stops.

The general error-handling procedures recommended for PHP apply to the
database functions as well. For example, you may not want to display errors
to users but send errors to a log file instead. (Error handling is described in
Chapter 4.)

Putting it all together
The previous sections describe the separate functions needed to interact with
a database in your PHP application scripts. This section provides examples
that put the functions together into complete scripts.

273Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 273

For the first example, assume you have a PostgreSQL database called Sales
with a table called Customer. The first name, last name, and phone number
for each customer are stored in the table. The script in Listing 12-2 displays
all the names and phone numbers in a Web page.

Listing 12-2: A Script That Displays a Customer List

<?php
/* Script name: DisplayCustomers
* Description: Gets all customer records from a
* PostgreSQL database and displays the
* Customer list in a Web page.
*/
include(“info.inc”); # contains connect variables
$connect = pg_connect(“host=$host user=$user

password=$password dbname=Sales”)
or die(“Can’t connect to database”);

$sql = “SELECT * from Customer”;
$result = pg_query($sql)

or die(“Query failed: “.mysql_error());
$Nrows = pg_num_rows($result);
echo “<html>

<head><title>Customer List</title></head>
<body>
<table width=\”100%\” border=\”0\”>\n”;

for($i=0;$i<$Nrows;$i++)
{

echo “<tr>”;
$row = pg_fetch_row($result,$i);
echo “<td>{$row[1]}, {$row[0]}</td>

<td>{$row[2]}</td>”;
echo “</tr>\n”;

}
echo “</table></body></html>”;
?>

The script gets all the customer information from the Customer table. It then
uses a for loop to output the customer information to the Web page in an
HTML table.

The second example creates a list of check boxes in a Web page where users
can select the type of product they want to view. The script shown in Listing
12-3 gets the list of product types from a MySQL database. The table has two
fields: ProductType and Description.

274 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 274

Listing 12-3: A Script That Creates Check Boxes

<html>
<head><title>Testing Files</title></head>
<body>
<?php
/* Script name: DisplayCheckboxes
* Description: Gets all items for check boxes from a
* MySQL database and creates the list of
* check boxes in a Web page.
*/
include(“info.inc”); # contains connect variables
$connection = mysql_connect($host,$user,$password)

or die (“Couldn’t connect to server”);
$db = mysql_select_db(“Catalog”,$connection)

or die (“Couldn’t select database”);
$query = “SELECT * FROM ProductType”;
$result = mysql_query($query)

or die(“Query failed: “.mysql_error());
echo “<html><head><title>Product Type</title></head>
<body><div style=’margin-left: .2in’>
<h3>Which product are you interested in?</h3>\n”;

create form containing check boxes
echo “<form action=’processform.php’ method=’post’>\n”;
echo “<hr><table width=’100%’>”;
while ($row = mysql_fetch_array($result))
{

echo “<tr>”;
echo “<td width=’20%’><input type=’checkbox’
name=\”interest[‘ProductType’]\”
value=\”{$row[‘ProductType’]}\”>{$row[‘ProductType’]}
</td>\n”;

echo “<td>{$row[‘Description’]}</td>”;
echo “</tr>\n”;

}
echo “</table>”;
echo “<p><input type=’submit’ value=’Select Product’>

</form>\n”;
?>
</div></body></html>

The script creates an HTML form, containing an HTML table. A while loop
creates each row of the table and populates the table with the information
retrieved from the database. Notice the while condition etches a row from
the temporary table stored at the location contained in $result. The while
loop will continue to execute as long as there are rows in the table. When the
loop reaches the last row, the while loop will end.

275Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 275

Notice the array variables that are echoed into the table cells. The name of
the array elements needs to be enclosed in curly brackets; otherwise, a parse
error results.

The script in Listing 12-3 produces the Web page shown in Figure 12-1. The
list of check boxes contains all the types in the database table. If more prod-
uct types are added to the database, they will be displayed by this script.

Using SQLite
SQLite allows you to interact with your data as if it were a database, using func-
tions, without requiring you to install database software. You use SQL, as you
do when you store your data in a database, but the data is actually stored in
a flat file. Thus, SQLite has the advantages of a flat file — fewer resources
required. In addition, it provides the advantage of using SQL — you don’t need
to learn the operating system commands required to open and manipulate a
flat file directly. SQLite is also faster than a database for some of the most
common tasks. However, it has the flat file disadvantages: poor security and
inability to handle really complex data. In summary, SQLite provides a quick,
easy way to store data in a flat file, but is not a replacement for a database if
you have really large amounts or really complex data or need to keep your
data secure.

Storing and retrieving data with SQLite is very similar to the methods
described in the preceding section for using databases with PHP. You use SQL
to communication with the data file and use PHP functions to send the SQL
and retrieve the data. You interact with the data using the same steps that
you use with a database, as follows:

Figure 12-1:
A Web page

with check
boxes

produced by
the script in
Listing 12-3.

276 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 276

1. Connect to the data file.

As with a database, first you establish a connection to the data file. To
connect to the data file, use the following PHP function:

$db = sqlite_open(“testdb”);

This statement opens the data file testdb. If the file doesn’t exist, it is
created.

2. Send an SQL query.

To send an SQL query, use the sqlite_query function, as follows:

$sql = “SELECT * FROM Product”;
$result = sqlite_query($db,$sql);

3. If you retrieved data from the data file, process the data.

As with a database, the retrieved data is stored in ae temporary table in
rows and columns. You can use PHP functions to retrieve one row from
the temporary data table and store it in an array, with the field names as
the array keys. The statement is as follows:

$row = sqlite_fetch_array($result);

After this statement, $row is an array containing all the fields in the tem-
porary table, such as the following:

$row[‘firstName’] = John
$row[‘lastName’] = Smith

To process all the data in the temporary table, you can use a loop to
get one row at a time, processing each row until the end of the table is
reached, as follows.

while($row=sqlite_fetch_array($result))
{

foreach($row as $value)
{

echo “$value
”;
}

}

4. Close the connection to the data file.

When you finish storing and/or retrieving data, you can close the data
file with the following statement:

sqlite_close($db);

Error handling as discussed in the previous section refers to SQLite, as well as
to databases. For instance, the die statement discussed in the Error Handling
section is useful with SQLite. Also, as discussed, when the query fails, an

277Chapter 12: Storing Data with PHP

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 277

SQLite error message is generated, but not displayed unless you use a func-
tion developed specifically to display it. Thus, the following statements
handle errors, as well as send the SQL query:

$sql = “SELECT * FROM Product”;
$result = sqlite_query($sql)

or die(“Query failed: “.sqlite_error());
$row = sqlite_fetch_array($result);

Read the preceding section that describes using databases with PHP. Most of
the information applies to the use of SQLite as well. What makes SQLite differ-
ent is that the data is stored in a flat file, rather than stored by the database
software in files that are unique to the specific database used.

278 Part IV: Common PHP Applications

18 541668 Ch12.qxd 3/25/04 2:55 PM Page 278

Chapter 13

PHP and Your Operating System
In This Chapter
� Manipulating files

� Running programs outside PHP

� Transferring files from one machine to another

� Sending e-mail and e-mail attachments

P HP provides all the file-handling features that any full-featured language
offers. Using PHP, you can do anything you need to do with the informa-

tion on your system. You can manage your information in files — you can
create, copy, delete, find, move, and more. You can run any program that’s
on your computer, regardless of whether it’s a PHP program. You can transfer
files between computers. Or you can send information via e-mail. This chapter
gives you the information you need to use PHP to do pretty much anything
you can think of on your computer.

Managing Files
The information you save on your hard disk is organized into files. Rather
than storing files in one big “file drawer,” making them difficult to find, files
are stored in many drawers, called directories or folders. The system of files
and directories is called a file system. A file system is organized in a hierarchi-
cal structure. A file system has a top level that is a single directory called
root, such as c:\ on Windows or / on Linux. The root directory contains
other directories, and each directory can contain other directories, and so
on. The file system’s structure can go down as many levels as you want.

A directory is a specific type of file that you use to organize other files. A direc-
tory contains a list of files and the information needed for the operating system
to find those files. A directory can contain both files and other directories.

PHP includes functions that allow you to open files and read what’s in them
or write information into them (as discussed in Chapter 12). Files also can be
checked, copied, deleted, and renamed, among other things. Functions for

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 279

performing these additional file-management tasks are described in the fol-
lowing sections. You also find out about functions that allow you to manage
directories and discover what’s inside them.

In this chapter, I cover the most useful functions for managing files, but more
functions are available. When you need to perform an action on a file or direc-
tory, check the documentation on the PHP Web site to see if there’s a function
that does what you need to do. If such a function does not exist, you can use
your operating system commands or a program in another language, as
described in “Using Operating System Commands,” later in this chapter.

Getting information about files
Often you want to know information about a file. PHP has functions that allow
you to find out file information from within a script.

You can find out whether a file exists with the file_exists statement, as
follows:

$result = file_exists(“stuff.txt”);

After this statement, $result contains either TRUE or FALSE. The function is
often used in a conditional statement, such as the following:

if(!file_exists(“stuff.txt”))
{

echo “File not found!\n”;
}

After you know the file exists, you can find out information about it.

Table 13-1 shows many of the functions that PHP provides for checking files.

Table 13-1 Functions That Get Information about a File
Function What It Does Output

is_file Tests whether the file is a TRUE or FALSE
(“stuff.txt”) regular file, rather than a

directory or other special
type of file

is_dir Tests whether the file is a TRUE or FALSE
(“stuff.txt”) directory

is_executable Tests whether the file is TRUE or FALSE
(“do.txt”) executable

280 Part IV: Common PHP Applications

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 280

Function What It Does Output

is_writable Tests whether you can write TRUE or FALSE
(“stuff.txt”) to the file

is_readable Tests whether you can read TRUE or FALSE
(“stuff.txt”) the file

fileatime Returns the time when the UNIX timestamp (like
(“stuff.txt”) file was last accessed 1057196122) or FALSE

filectime Returns the time when the UNIX timestamp or FALSE
(“stuff.txt”) file was created

filemtime Returns the time when the UNIX timestamp or FALSE
(“stuff.txt”) file was last modified

filegroup Returns the group ID of the Integer that is a group
(“stuff.txt”) file ID or FALSE

fileowner Returns the user ID of the Integer that is a user ID
(“stuff.txt”) owner of the file or FALSE

filesize Returns the file size in bytes Integer or FALSE
(“stuff.txt”)

filetype Returns the file type File type (such as file, dir,
(“stuff.txt”) file, dir, link, char), or

FALSE if error or can’t iden-
tify type

basename Returns the filename from do.txt
(“/t1/do.txt”) the path

dirname Returns the directory name /t1
(“/t1/do.txt”) from the path

Some of the information is relevant only for Linux/Unix/Mac, and some is
returned on Windows as well.

A function that returns useful info about a path/filename is pathinfo(). You
can use the following statement:

$pinfo = pathinfo(“/topdir/nextdir/stuff.txt”);

After the statement, $pinfo is an array that contains the following three
elements:

$pinfo[dirname] = /topdir/nextdir
$pinfo[basename] = stuff.txt
$pinfo[extension] = txt

281Chapter 13: PHP and Your Operating System

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 281

When you’re testing a file with one of the is_something functions, any typing
error, such as a misspelling of the filename, gives a FALSE result. For example,
is_dir(“tyme”) returns FALSE if “tyme” is a file, not a directory. But, it also
returns FALSE if “tyme” does not exist, because you meant to type “type”.

Unix timestamps are returned by some of the functions in the list. You can
convert these timestamps to dates with the date function, as described in
Chapter 5.

Copying, renaming, and deleting files
Chapter 12 describes how to create a file and write information into it. In this
section, I describe some other things you can do with a file, such as copy it
or delete it.

You can copy an existing file into a new file. After copying, you have two
copies of the file with two different names. Copying a file is often useful for
backing up important files. To copy a file, use the copy statement, as follows:

copy(“fileold.txt”,”filenew.txt”);

This statement copies fileold.txt, an existing file, into filenew.txt. If a
file with the same name as filenew.txt already exists, it is overwritten. If
you don’t want to overwrite an existing file, you can prevent it by using the
following statements:

If(!file_exists(“filenew.txt”))
{

copy(“fileold.txt”,”filenew.txt”);
}
else
{

echo “File already exists!\n”;
}

You can rename a file by using the rename statement, as follows:

rename(“oldname.txt”,”newname.txt”);

If you attempt to rename a file with the name of a file that already exists, a
warning is displayed, as follows, and the file is not renamed.

Warning: rename(fileold.txt,filenew.txt): File exists in
c:test.php on line 17

282 Part IV: Common PHP Applications

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 282

To remove an unwanted file, use the unlink statement, as follows:

unlink(“badfile.txt”);

After this statement, the file is deleted. However, if the file doesn’t exist to start
with, unlink doesn’t complain. It acts the same as if it had deleted the file.
PHP does not let you know if the file doesn’t exist. So, watch out for typos.

Organizing files
Files are organized into directories, also called folders. This section describes
how to create and remove directories and how to get a list of the files in a
directory.

Creating a directory
To create a directory, use the mkdir function, as follows:

mkdir(“testdir”);

This statement creates a new directory named testdir in the same directory
where the script is located. That is, if the script is /test/test.php, the new
directory is /test/testdir. If a directory already exists with the same name,
a warning is displayed, as follows, and the new directory is not created:

Warning: mkdir(): File exists in d:/test/test.php on line 5

You can check first to see whether the directory already exists by using the
following statements:

If(!is_dir(“mynewdir”))
{

mkdir(“mynewdir”);
}
else
{

echo “Directory already exists!”;
}

After the directory is created, you can organize it’s contents by copying files
into and out of the directory. Copying files is described in the section “Copying,
renaming, and deleting files,” earlier in this chapter.

To create a directory in another directory, use the entire path name, as follows:

mkdir(“/topdir/nextdir/mynewdir”);

283Chapter 13: PHP and Your Operating System

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 283

You can use a relative path to create a new directory, as follows:

mkdir(“../mynewdir”);

With this statement, if your script is /topdir/test/makedir.php, the new
directory is /topdir/mynewdir.

To change to a different directory, use the following statement:

chdir(“../anotherdir”);

Building a list of all the files in a directory
It’s often useful to get a list of the files in a directory. For example, you may
want to provide a list of files for users to download or want to display images
from files in a specific directory.

PHP provides functions for opening and reading directories. To open a direc-
tory, use the opendir statement, as follows:

$dh = opendir(“/topdir/testdir”);

If you attempt to open a directory that doesn’t exist, a warning is displayed,
as follows:

Warning: opendir(testdir): failed to open dir: Invalid
argument in test13.php on line 5

In the previous statement, the variable $dh is a directory handle, a pointer to
the open directory that you can use later to read from the directory. To read
a filename from the directory, use the readdir function, as follows:

$filename = readdir($dh);

After this statement, $filename contains the name of a file. Only the file-
name is stored in $filename, not the entire path to the file. To read all the
filenames in a directory, you can use a while loop, as follows:

while($filename = readdir($dh))
{

echo $filename.”\n”;
}

The readdir function does not provide any control over the order in which
filenames are read, so you don’t always get the filenames in the order you
expect.

Suppose you want to create a gallery that displays in a Web page all the images
in a specified directory. You can use the opendir and readdir functions to
do this. Listing 13-1 shows a script that creates an image gallery.

284 Part IV: Common PHP Applications

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 284

Listing 13-1: A Script That Creates an Image Gallery

<?php
/* Script name: displayGallery
* Description: Displays all the image files that are
* stored in a specified directory.
*/
echo “<html><head><title>Image Gallery</title></head>

<body>”;
$dir = “../test1/testdir/”; #8
$dh = opendir($dir); #9
while($filename = readdir($dh)) #10
{
$filepath = $dir.$filename; #12
if(is_file($filepath) and ereg(“\.jpg$”,$filename)) #13
{

$gallery[] = $filepath;
}

}
sort($gallery); #16
foreach($gallery as $image) #17
{
echo “<hr>”;
echo “
”;

}
?>
</body></html>

Notice the line numbers at the end of some of the lines in Listing 13-1. The fol-
lowing discussion of the script and how it works refers to the line numbers in
the script listing:

� Line 8: This line stores the name of the directory in $dir for use later in
the program. Notice that the / is included at the end of the directory name.
Don’t use \, even with Windows.

� Line 9: This line opens the directory.

� Line 10: This line starts a while loop that reads in each file name in the
directory.

� Line 12: This line creates the variable $filepath, which is the complete
path to the file.

If the / is not included at the end of the directory name on line 8,
$filepath will not be a valid path.

� Line 13: This line checks to see whether the file is a graphics file by look-
ing for the .jpg extension. If the file has a .jpg extension, the complete
file path is added to an array called $gallery.

� Line 16: This line sorts the array so the images are displayed in alphabet-
ical order.

� Line 17: This line starts the foreach loop that displays the images in
the Web page.

285Chapter 13: PHP and Your Operating System

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 285

Using Operating System Commands
Your operating system has many commands you can use by typing the com-
mands at the command-line prompt. If you want to see what files are in a
directory, for example, you can use the dir command in a Windows command
prompt window or the ls command in Unix/Linux. Or to make a copy of a file,
you can use the copy command in the Windows command prompt window or
the cp command in Unix/Linux. (To access the command prompt window in
Windows 2000, choose Start➪Programs➪Accessories➪Command Prompt.)

In this section, I assume that you know the format and use of the system com-
mands for your operating system. Describing operating system commands is
outside the scope of this book. If you know that you need to run an operating
system command from your PHP script, this section shows you how.

PHP has functions to perform the most widely used actions. For example, you
can see what files are in a directory by using the opendir and readdir func-
tions, as described earlier in the chapter. Or, you can make a copy of a file with
the copy function.

286 Part IV: Common PHP Applications

Error messages from system commands
None of the methods for executing system com-
mands displays or returns an informational error
message when the system command fails. You
know the system command didn’t work because
you didn’t get the outcome you expected. But
because the functions don’t return error mes-
sages, you don’t know what went wrong.

You can return or display the operating system
error message by adding a few extra characters
to the system command you’re executing. On
most operating systems, if you add the charac-
ters 2>&1 after the system command, the error
message is sent to wherever the output is
directed. For example, you can use the following
statement:

$result = system(“di c:\php”);

The system function displays the directory
when the system command executes. However,

notice that dir is mistyped. It is di rather than
dir. No system command called di exists, so
the system command can’t execute, and nothing
is displayed. Suppose you used the following
statement instead:

$result = system(“di c:\php
2>&1”);

In this case, the error message is displayed. On
Windows 2000, the error message displayed is
as follows:

‘di’ is not recognized as an
internal or external com-
mand, operable program or
batch file.

Be sure you don’t include any spaces in 2>&1.
The format requires the characters together,
without any spaces.

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 286

However, you may want to perform an action not provided by PHP, such as
making a copy of an entire directory, including files; looking at or changing
your path; or clearing the screen. Or, you may think it’s easier to use a system
command, such as using ls or dir to see your directory, rather than write
the loop required with opendir and readdir. Or, you may want to run a
program in another language. You may have a program written in Perl, for
example, that does exactly what you need, and you don’t want to write a new
program in PHP to do the same thing. No problem. You can do all of these
things through PHP.

PHP allows you to use system commands or run programs in other languages
by using any of the following methods:

� backticks: PHP executes the system command that is between two
backticks (`) and displays the result.

� system function: This function executes a system command, displays
the output, and returns the last line of the output.

� exec function: This function executes a system command, stores the
output in an array, and returns the last line of the output.

� passthru function: This function executes a system command and dis-
plays the output.

You can execute any command that you can type into the system prompt. The
command is executed exactly as is. You can execute simple commands: ls or
dir. rename or mv, rm or del. If your operating system allows you to pipe or
redirect output, you can pipe or redirect in the system command you’re exe-
cuting in PHP. If your operating system allows you to enter two commands on
one line, you can put two commands into the single command you’re execut-
ing from PHP. The following sample commands are valid to execute from PHP,
depending on the operating system:

dir
rm badfile.txt
dir | sort
cd c:\php ; dir (Not valid in Windows)
“cd c:\php && dir” (Windows 2000)
dir > dirfile
sort < unsortedfile.txt

On some occasions, you want to run a system command that takes a long
time to finish. You can run the system command in the background (if your
operating system supports such things) while PHP continues with the script.
If you do this, you need to redirect the output to a file, rather than return it to
the script, so that PHP can continue before the system command finishes.

The following sections describe the preceding methods in greater detail.

287Chapter 13: PHP and Your Operating System

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 287

Using backticks
A simple way to execute a system command is to put the command between
two backticks (`), as follows:

$result = `dir c:\php`;

The variable $result contains the statement’s output, in this case a list of
the files in the c:\php directory. If you echo $result, the following output is
displayed:

Volume in drive C has no label.
Volume Serial Number is 394E-15E5

Directory of c:\php

02/25/2004 10:48a <DIR> .
02/25/2004 10:48a <DIR> ..
02/25/2004 04:30p <DIR> dev
02/25/2004 04:30p <DIR> ext
02/25/2004 04:30p <DIR> extras
02/25/2004 04:30p 417,792 fdftk.dll
02/25/2004 04:30p 90,112 fribidi.dll
02/25/2004 04:30p 346,624 gds32.dll
02/25/2004 04:30p 70 go-pear.bat
02/25/2004 04:30p 32,081 install.txt
02/25/2004 04:30p 876,544 libeay32.dll
02/25/2004 04:30p 47,027 libintl-1.dll
02/25/2004 04:30p 165,643 libmhash.dll
02/25/2004 04:30p 233,472 libmysql.dll
02/25/2004 04:30p 3,208 license.txt
02/25/2004 04:30p 57,344 msql.dll
02/25/2004 04:30p 18,151 news.txt
02/25/2004 04:30p 278,800 ntwdblib.dll
02/25/2004 04:30p <DIR> PEAR
02/25/2004 04:30p 53,248 php-cgi.exe
02/25/2004 04:30p 28,672 php-win.exe
02/25/2004 04:30p 28,672 php.exe
02/25/2004 04:30p 3,872 php.gif
02/25/2004 04:30p 39,284 php.ini-dist
02/25/2004 04:30p 40,899 php.ini-recommended
02/25/2004 04:30p 40,960 php5activescript.dll
02/25/2004 04:30p 36,864 php5apache.dll
02/25/2004 04:30p 36,864 php5apache2.dll
02/25/2004 04:30p 53,248 php5apache_hooks.dll
02/25/2004 04:30p 503,320 php5embed.lib
02/25/2004 04:30p 28,672 php5isapi.dll
02/25/2004 04:30p 28,672 php5nsapi.dll
02/25/2004 04:30p 3,452,928 php5ts.dll
02/25/2004 04:30p 1,224 snapshot.txt

288 Part IV: Common PHP Applications

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 288

02/25/2004 04:30p 159,744 ssleay32.dll
02/25/2004 04:30p 49,152 php_mysql.dll

30 File(s) 7,153,163 bytes
6 Dir(s) 251,727,872 bytes free

The backtick operator is disabled when safe_mode is enabled. safe_mode is
set to Off by default when PHP is installed. safe_mode is not set to On unless
the PHP administrator deliberately turns it on.

Using the system function
The system function executes a system command, displays the output, and
returns the last line of the output from the system command. To execute a
system command, use the following statement:

$result = system(“dir c:\php”);

When this statement executes, the directory listing is displayed, and $result
contains the last line that was output from the command. If you echo $result,
you see something like the following:

11 Dir(s) 566,263,808 bytes free

The contents of $result with the system function is the last line of the
output from the dir command.

Using the exec function
The exec function executes a system command but does not display the
output. Instead, the output can be stored in an array, with each line of
the output becoming an element in the array. The last line of the output is
returned.

Perhaps you just want to know how many files and free bytes are in a direc-
tory. You can execute a command without saving the output in an array with
the following statement:

$result = exec(“dir c:\php”);

The command executes, but the output is not displayed. The variable $result
contains the last line of the output. If you echo $result, the display looks
something like this:

11 Dir(s) 566,263,808 bytes free

289Chapter 13: PHP and Your Operating System

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 289

The output is the last line of the output of the dir command. If you want to
store the entire output from the dir command in an array, use the following
command:

$result = exec(“dir c:\php”,$dirout);

After this statement, the array $dirout contains the directory listing, with
one line per item. You can display the directory listing as follows:

foreach($dirout as $line)
{

echo “$line\n”;
}

The loop displays the following:

Volume in drive D has no label.
Volume Serial Number is 394E-15E5

Directory of d:\php

02/25/2004 10:48a <DIR> .
02/25/2004 10:48a <DIR> ..
02/25/2004 04:30p <DIR> dev
02/25/2004 04:30p <DIR> ext
02/25/2004 04:30p <DIR> extras
02/25/2004 04:30p 417,792 fdftk.dll

You can also use the following statements to get specific elements from the
output array:

echo $dirout[3];
echo $dirout[7];

The output is as follows:

Directory of C:\PHP
02/25/2004 04:30p <DIR> dev

Using the passthru function
The passthru function executes a system command and displays the output
exactly as it is returned. To execute a system command, use the following
statement:

passthru(“dir c:\php”);

290 Part IV: Common PHP Applications

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 290

The statement displays the directory listing but does not return anything.
Therefore, you don’t use a variable to store the returned data because noth-
ing is returned.

The output is displayed in raw form; it is not processed. Therefore, this func-
tion can be used when binary output is expected.

Understanding security issues
When you execute a system command, you allow a user to perform an action
on your computer. If the system command is dir c:\php, that’s okay.
However, if the system command is rm /bin/* or del c:*.*, you won’t be
happy with the results. You need to be careful when using the functions that
execute system commands outside your script.

As long as you only execute commands that you write yourself, such as dir
or ls, you’re okay. But when you start executing commands that include data
sent by users, you need to be extremely careful. For example, suppose you
have an application in which users type a name into a form and your applica-
tion then creates a directory with the name sent by the user. The user types
Smith into the form field named directoryName. Your script that processes
the form has a command as follows:

$directoryName = $_POST[‘directoryName’];
exec(“mkdir $directoryName”);

Because $directoryName = Smith, mkdir Smith is the system command
that is executed. The directory is created, and everybody is happy.

However, suppose the user types Smith; rm * into the form. In this case,
$directoryName =Smith;rm *. The system command that executes is now
mkdir Smith;rm *. On many operating systems, such as Unix/Linux, the semi-
colon is the character that separates two commands so that two commands
can be entered on one line. Oops! The commands are executed as follows:

mkdir Smith
rm *

Now you have a problem. The directory Smith is created, and all the files in
the current directory are removed.

If you use a variable in a system command, you must use it carefully. You
must know where it came from. If it comes from outside the script, you need
to check the value in the variable before using it. In the preceding example,
you could add code so the script checks the variable to be sure it contains
only letters and numbers before using it in the mkdir command.

291Chapter 13: PHP and Your Operating System

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 291

Using FTP
Transferring files from one computer to another happens a gazillion times a
day on the Internet. When colleagues on opposite sides of the country need
to share files, it’s not a problem. A quick transfer takes only seconds, and all
parties have the files they need.

Files can be transferred by using your Web server or FTP. Transferring files
via your Web server is described in Chapter 11. In this section, I discuss how
to transfer files using FTP.

FTP is independent of the Web. You can use FTP to transfer files in a script
running in PHP for the Web or in an independent, stand-alone script. FTP
allows you to get a directory listing from another computer, or to download
or upload a single file or several files at once.

FTP is client/server software. To use FTP to transfer files between your com-
puter and a remote computer, you connect to an FTP server on the remote
computer and send it requests.

To use FTP in your scripts, FTP support needs to be enabled when PHP is
installed. If you installed PHP for Windows, you don’t need to do anything
extra to enable FTP support. If you’re compiling PHP on Unix/Linux/Mac, and
you want to enable FTP support, you can use the FTP support installation
option, as follows:

--enable-ftp

For more information on this and other installation options, see Appendix A.

Logging in to the FTP server
To connect to the FTP server on the computer you want to exchange files
with, use the ftp_connect function, as follows:

$connect = ftp_connect(“janet.valade.com”);

Or, you can connect by using an IP address, as follows:

$connect = ftp_connect(“172.17.204.2”);

After you connect, you log into the FTP server. You need a user ID and a pass-
word to log in. You may have your own personal ID and password, or you may
be using a general ID and password that anyone can use. Some public sites

292 Part IV: Common PHP Applications

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 292

on the Internet let anyone login by using the user ID of anonymous and the
user’s e-mail address as the password. It’s best to put the user ID and pass-
word into a separate file and include the file when needed. (See Chapter 8 for
more details.)

The ftp_login function allows you to login to an FTP server after you’ve
made the connection. This statement assumes you have your account ID and
password stored in variables, as follows:

$login_result = ftp_login($connect,$userid,$passwd);

If you try to login without establishing a connection to the FTP server first,
you see the following warning:

Warning: ftp_login() expects parameter 1 to be resource,
boolean given in d:\test1\test13.php on line 9

The warning does not stop the program. The login fails, but the script contin-
ues, which is probably not what you want. Because the rest of your script
probably depends on your successful FTP connection, you may want to stop
the script if the functions fail. The following statements stop the script if the
function fails:

$connect = ftp_connect(“janet.valade.com”)
or die(“Can’t connect to server”);

$login_result = ftp_login($connect,$userid,$passwd)
or die(“Can’t login to server”);

After you login to the FTP server, you can send it requests to accomplish
tasks, such as getting a directory listing or uploading and downloading files,
as described in the following sections.

Getting a directory listing
One common task is to get a directory listing. The ftp_nlist statement gets
a directory listing from the remote computer and stores it in an array, as
follows:

$filesArr = ftp_nlist($connect,”data”);

The second parameter in the parentheses is the name of the directory. If you
don’t know the name of the directory, you can request the FTP server to send
you the name of the current directory, as follows:

$directory_name = ftp_pwd($connect);
$filesArr = ftp_nlist($connect,$directory_name);

293Chapter 13: PHP and Your Operating System

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 293

The directory listing that FTP sends after the ftp_nlist statement runs is
stored in an array, one filename in each element of the array. You can then
display the directory listing from the array, as follows:

foreach($filesArr as $value)
{

echo $value\n;
}

Downloading and uploading files with FTP
You can download a file from the remote computer with the ftp_get function.
The following statement downloads a file from the remote computer after
you’re logged into the FTP server:

ftp_get($connect,”newfile.txt”,”data.txt”,FTP_ASCII);

The first filename, newfile.txt, is the name the file will have on your com-
puter after it’s downloaded. The second filename, data.txt, is the existing
name of the file that you want to download.

The FTP_ASCII term in the statement tells FTP what kind of file is being down-
loaded. The choices for file mode are FTP_ASCII or FTP_BINARY. Binary files
are machine language files. You can determine which file mode you need by
examining the contents of the file. If the contents are characters that you can
read and understand, the file is ASCII. If the contents appear to be garbage,
the file is binary. Graphic files, for example, are binary.

You can upload a file with a similar function called ftp_put. The following
statement uploads a file.:

ftp_put($connect,”newfile.txt”,”data.txt”,FTP_ASCII);

The first filename, newfile.txt, is the name the file will have on the remote
computer after it’s uploaded. The second filename, data.txt, is the existing
name of the file that you want to upload.

When you’re finished transferring files over your FTP connection, you can
close the connection with the following statement:

ftp_close($connect);

The script in Listing 13-2 downloads all the files in a directory that have a
.txt extension. The files are downloaded from the remote computer over an
FTP connection.

294 Part IV: Common PHP Applications

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 294

Listing 13-2: A Script to Download Files via FTP

<?php
/* Script name: downloadFiles
* Description: Downloads all the files with a txt
* extension in a directory via FTP.
*/
$dir_name = “data/”;
$connect = ftp_connect(“janet.valade.com”)

or die(“Can’t connect to FTP server”);
$login_result = ftp_login($connect,$userID,$passwd)

or die(“Can’t log in”);
$filesArr = ftp_nlist($connect,$dir_name);
foreach($filesArr as $value)
{

if(ereg(“\.txt$”,$value))
{
if(!file_exists($value))
{

ftp_get($connect,$value,$dir_name.$value,FTP_ASCII);
}
else
{

echo “File $value already exists!\n”;
}

}
}
ftp_close($connect);
?>

The script gets a directory listing from the remote computer and stores it in
$filesArr. The foreach statement loops through the filenames in $filesArr
and checks to see whether files have a .txt extension. If so, the scripts tests
to see whether a file with the same name already exists. If such a file doesn’t
already exist, the file is downloaded; if such a file does exist, a message is
printed, and the file is not downloaded.

Other FTP functions
Additional FTP functions perform other actions, such as change to another
directory on the remote computer or create a new directory on the remote
computer. Table 13-2 contains most of the FTP functions that are available.

295Chapter 13: PHP and Your Operating System

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 295

Table 13-2 FTP Functions
Function What It Does

ftp_cdup($connect) Changes to the directory directly above the
current directory.

ftp_chdir($connect, Changes directories on the remote computer.
”directoryname”)

ftp_close($connect) Closes an FTP connection.

ftp_connect(“servername”) Opens a connection to the computer.
servername can be a domain name or an
IP address.

ftp_delete($connect, Deletes a file on the remote computer.
”path/filename”)

ftp_exec($connect, Executes a system command on the remote
”command”) computer.

ftp_fget($connect,$fh, Downloads the file contents from the remote
”data.txt”,FTP_ASCII) computer into an open file. $fh is the file

handle of the open file. (See Chapter 12 for
more on file handles.)

ftp_fput($connect, Uploads an open file to the remote computer.
”new.txt”,$fh,FTP_ASCII) $fh is the file handle of the open file.

ftp_get($connect,”d.txt”, Downloads a file from the remote computer.
”sr.txt”,FTP_ASCII) sr.txt is the name of the file to be down-

loaded, and d.txt is the name of the down-
loaded file.

ftp_login($connect, Logs into the FTP server.
$userID,$password)

ftp_mdtm($connect, Gets the time when the file was last modified.
”filename.txt”)

ftp_mkdir($connect, Creates a new directory on the remote
”directoryname”) computer.

ftp_nlist($connect, Gets a list of the files in a remote directory.
”directoryname”) Files are returned in an array.

ftp_put($connect,”d.txt”, Uploads a file to the remote computer.
”sr.txt”,FTP_ASCII) sr.txt is the name of the file to be

uploaded, and d.txt is the filename on the
remote computer.

ftp_pwd($connect) Gets the name of the current directory on the
remote computer.

296 Part IV: Common PHP Applications

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 296

Function What It Does

ftp_rename($connect, Renames a file on the remote computer.
”oldname”,”newname”)

ftp_rmdir($connect, Deletes a directory on the remote computer.
”directoryname”)

ftp_size($connect, Returns the size of the file on the remote
”filename.txt”) computer.

ftp_systype($connect) Returns the system type of the remote file
server, for example Unix.

Using E-Mail
E-mail is the most widely used application on the Internet. Many PHP applica-
tions require the use of e-mail. Applications that allow customers to order
products send e-mail messages to customers to acknowledge their orders.
When users create a new account, the application sends them e-mail to verify
their accounts. When users click the “I forgot my password” link on a login
screen, the application sends the users e-mail with their passwords. Applica-
tions send monthly newsletters to lists of subscribers. And e-mail has many
other uses as well.

PHP provides a function that makes sending e-mail simple. This section tells
you how to send e-mail from your application.

Setting up PHP to send e-mail
E-mail is sent by an outgoing e-mail server. To send e-mail, you need access to
an outgoing server. If you can send e-mail from your own computer right now,
you’re using an outgoing server. You just need to tell PHP the name of the out-
going e-mail server so PHP can find it when you send mail from your script.

Your outgoing mail server is typically an SMTP (Simple Mail Transfer Protocol)
server. Whether you use a LAN at work, a cable modem at home, or an ISP via
a modem, you send your mail with an SMTP server, and the server has an
address that you need to know.

You can usually find out the name of your outgoing server through your
e-mail software. The e-mail software must know the name of your e-mail
server so it can store the name somewhere. Look for the settings for your
e-mail software and find the name of your outgoing server. In Outlook
Express, you can usually find it by performing the following steps:

297Chapter 13: PHP and Your Operating System

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 297

1. Choose Tools➪Services.

2. In the list of services, highlight Internet Email.

3. Click Properties.

4. Click the Servers tab.

You see a field that shows the name of your outgoing mail server.

If you can’t find the name of your outgoing mail server, you can ask your e-mail
administrator for the name. If you use an ISP, you can ask the ISP. The name is
likely to be in a format similar to the following:

mail.ispname.net

If you’re using a Linux/Unix computer connected to a network, the mail server
is probably sendmail.

With the name of your outgoing mail server in front of you, open php.ini.
Look for the following lines:

[mail function]
; For Win32 only.
SMTP = localhost

; For Win32 only.
;sendmail_from = me@localhost.com

; For Unix only. You may supply arguments as well (default:
“sendmail -t -i”).

;sendmail_path =

Windows users need to change the first two settings. The first setting is
where you put the name of your outgoing server, as follows:

SMTP = mail.ispname.com

The second setting is the return address that is sent with all your e-mail.
Change the setting to the e-mail address you want to use for your return
address, as follows:

sendmail_from = Janet@Valade.com

The third setting is for Unix users. The default is usually correct. If it doesn’t
work, you need to talk to your system administrator about the correct path
to your outgoing mail server.

298 Part IV: Common PHP Applications

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 298

For Unix users: Some paths to sendmail that may be correct are /usr/sbin/
sendmail or /usr/lib/sendmail. If your system doesn’t use sendmail,
there is usually a wrapper for the e-mail server you are using. For example,
Qmail users may try /var/qmail/bin/sendmail or /var/qmail/bin/
qmail-inject.

You may have to restart your Web server before the e-mail settings in
php.ini go into effect.

Sending e-mail messages
PHP provides a function called mail that sends e-mail from your script. The
format is as follows:

mail(address,subject,message,headers);

These are the values you need to fill in:

� address: The e-mail address that receives the message

� subject: A string that goes on the subject line of the e-mail message

� message: The content that goes in the e-mail message

� headers: A string that sets values for e-mail headers

You may set up and send an e-mail message as follows:

$to = “janet@valade.com”;
$subj = “Test”;
$mess = “This is a test of the mail function”;
$headers = bcc:techsupport@mycompany.com\r\n
$mailsend = mail($to,$subj,$mess,$headers);

The message is sent to the address in the $to variable. You can send the mes-
sage to more than one person by using the following statement:

$to= “janet@valade.com,me@mycompany.com”;

The $headers string in this example also sends a blind copy of the message
to techsupport. You can include more than one header as follows:

$header = “cc:tech@mycompany.com\r\nbcc:sales@mycompany.com”;

Headers are optional. Only the first three parameters are required.

299Chapter 13: PHP and Your Operating System

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 299

The $mailsend variable contains TRUE or FALSE. However, TRUE is no guar-
antee that the mail will get to where it’s going. It just means that it started
out okay.

Sending e-mail attachments
Sometimes you may prefer to send information as an e-mail attachment rather
than as an e-mail message. For example, you may want to send the 30-page
service contract to all your customers as an attachment, rather than as a
30-page e-mail message.

To send a message as an attachment, you send a mail header instructing that
the e-mail be sent as an attachment. The header is as follows:

Content-disposition: attachment; filename=test.txt

The header tells the e-mail software to send the message as an attachment
with the filename of test.txt. The following example shows how to send a
short message as an attachment, although it’s very unlikely that you’d actu-
ally want to do this:

$to = “janet@valade.com”;
$subj = “Testing an attachment”;
$mess = <<< END
This is the test message.
This message should arrive as an attachment.
Let’s see what happens.
END;
$headers = “Content-disposition: attachment;

filename=test.txt\n”;
$headers .= “cc:sales@mycompany.com\n”;
$mailsend = mail($to,$subj,$mess,$headers);

This e-mail message has two headers: the Content-disposition header and
the cc header. The headers are written together into one string, stored in the
variable $headers. Each header ends with \n. With some e-mail software, to
get the same effect you may need to use \r\n at the end.

If you want to send e-mail as an attachment, it’s probably because you want
to send the contents of a file. To do this, you simply read the file into a vari-
able that you then send as the message. Reading data from a file is discussed
in more detail in Chapter 12.

For the purpose of sending e-mail, you can store the read file as one long string.
PHP provides the file_get_contents function for that purpose, as follows:

$mess = file_get_contents(“filename”);

Listing 13-3 shows a script that sends a text file as an attachment.

300 Part IV: Common PHP Applications

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 300

Listing 13-3: A Script to Send a Text File As an E-Mail Attachment

<?php
/* Script name: mailTest
* Description: Sends a text file as an e-mail
* attachment.
*/

$filename = “mydata.txt”;
$mess = file_get_contents($filename);
$to = “janet@valade.com”;
$subj = “Sending mydata as an attachment “;
$headers = “Content-disposition: attachment;

filename=mydata.txt\n”;
if(!$mailsend = mail($to,$subj,$mess,$headers))
{

echo “Mail not sent\n”;
}
else
{

echo “Mail sent\n”;
}
?>

This script reads the contents into a string with file_get_contents. The
header is stored in $headers. Then the mail is sent with the mail function.
An if statement tests whether the mail function succeeds, printing the
appropriate message.

You may want to send another type of file as an attachment, not just a text
file. To do this, you need to send headers that tell the e-mail software what
type of file you’re sending. One such header is the Content-type header,
which you can send as follows:

Content-type: contenttype

The content type for plain text is text/plain, the type of file in the previous
examples. In most cases, text/plain is the default. Another type of text file
is an HTML file, which has the content type of text/html.

Other types of files you may want to send are binary files. For example, image
files, audio files, and video files are binary files. Some of the file types for these
files are as follows:

image/gif
image/jpeg
audio/x-wav
audio/vnd.rn-realaudio
video/mpeg
video/avi

You also may want to send application files. Some are text files, and some are
binary files. For example, an RTF file is a text file, whereas a Word document

301Chapter 13: PHP and Your Operating System

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 301

or an Excel spreadsheet are binary files. A general type for binary files is
application/octet-stream. If the file is binary and you’re unsure what
application generated it, try application/octet-stream.

Binary files should be encoded when sent over e-mail, to ensure that they arrive
in good shape. PHP provides functions that encode files for you, as follows:

$mess = chunk_split(base64_encode($string));

The variable $string contains the contents of the binary file stored with the
fread function.

In addition, if you send an encoded file, you need to let the mail software know
about that as well, with the following header:

Content-Transfer-Encoding: base64

The script in Listing 13-4 shows how to send a graphics file (binary and
encoded) as an e-mail attachment.

Listing 13-4: A Script to Send a Graphics File as an E-Mail Attachment

<?php
/* Script name: mailGraphic
* Description: Sends a graphic file as an e-mail
* attachment.
*/

$filename = “logo.gif”;
$fh = fopen($filename,”rb”);
$fileContent = fread($fh,filesize($filename));
fclose($fh);
$mess = chunk_split(base64_encode($fileContent));
$to = “janet@valade.com”;
$subj = “Sending an image as an attachment”;
$headers = “Content-disposition: attachment;

filename=logo.gif\n”;
$headers .= “Content-type: image/gif\n”;
$headers .=”Content-Transfer-Encoding: base64\n”;
if(!$mailsend = mail($to,$subj,$mess,$headers))
{

echo “Mail not sent\n”;
}
else
{

echo “Mail sent\n”;
}
?>

This script encodes the file contents to store in $mess. It includes the addi-
tional headers needed for transferring information that’s not text.

302 Part IV: Common PHP Applications

19 541668 Ch13.qxd 3/25/04 2:53 PM Page 302

Chapter 14

PHP Extensions
In This Chapter
� Understanding extensions

� Installing PEAR

� Using PEAR packages

The PHP architecture consists of a PHP core and PHP extensions. The PHP
core provides the basic functionality of the language.

PHP’s great flexibility and power depend greatly on its hundreds of functions,
which consist of built-in functions and functions available in a PHP extension.
Many PHP built-in functions are discussed throughout this book, and Appendix
B provides a reference list of many functions. However, many more functions
are available in PHP through the use of extensions.

Most PHP functions are contained in the PHP extensions. Extensions broaden
the capabilities of PHP. Several core extensions are compiled into PHP and are
always there by default. Other standard extensions are included in the PHP
distribution, but you must add them to PHP before you can use their functions.
PHP database functions are among those included in the PHP distribution
that must be activated before they can be used (as discussed in Chapter 12).
In addition, many extensions are written and made available by individuals.
Many of the best of these are part of PEAR, the PHP Extension and Application
Repository.

This chapter discusses available extensions and how to get and use them.

Investigating the Basic Extensions
The basic PHP distribution includes several extensions. These are compiled
into PHP, and their functions are available for your use. You don’t actually need
to know about these extensions. You don’t need to do anything to activate
them; you can just use their functionality. (In fact, if you don’t want them, you

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 303

have to do something to deactivate them, as discussed in Appendix A.) Many
of the functions that are made available by extensions are discussed through-
out this book.

To determine which extensions are activated in your PHP installation, look at
the information that is output by phpinfo(). It shows a list of settings for the
PHP core, and then it shows the settings for the PHP extensions that are acti-
vated. The following list of extensions is activated by default:

� BCMath: A math library that has more precision than PHP floating point
numbers provide.

� calendar: A library that provides functions for converting between vari-
ous calendar formats, such as Julian, Gregorian, French Republican, and
so on.

� COM: Provides access to COM objects.

� ctype: Functions that check characters, such as checking whether char-
acters are alphabetic characters or punctuation.

� ftp: Functions that connect and send requests to an FTP server. Can be
used to transfer files between computers.

� odbc: Functions for using ODBC databases.

� pcre: Functions for Perl-compatible regular expressions.

� session: Functions for creating and using PHP built-in sessions.

� SQLite: Functions for storing data in flat files using SQL.

� tokenizer: Functions that parse PHP code.

� wddx: Functions for use with WDDX, an XML-based standard for
exchanging data between applications.

� xml: A library to parse XML documents.

� zlib: A library to read and write gzip-compressed files.

This list shows the extensions that are currently compiled into PHP. However,
this list of extensions can change. By the time you read this, the list may be
longer or shorter.

If you downloaded and installed Windows binaries for PHP, the preceding
extensions were compiled into the binaries. If you compile your own PHP on
Unix or Linux, these extensions are included by default. If you want to exclude
one of them, you must exclude it when you compile. For example, if you are
not using sessions and don’t want sessions support compiled into your ver-
sion of PHP, you need to use an installation option, as described in Appendix
A, as follows:

304 Part IV: Common PHP Applications

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 304

--disable-session

In general, the built-in extensions are the ones that users are most likely to
use. It’s rarely wise to exclude any of them.

PHP is included on most Linux computers when purchased and in most Linux
distributions when you install the operating system. However, if you are using
PHP provided by your Web hosting company and thus didn’t install PHP your-
self, you can’t be sure which extensions were installed. Usually the extensions
listed in this section are included, but there are no guarantees. You can find
documentation for these extensions in the on-line PHP manual at the PHP
Web site.

Taking a Look at Standard Extensions
Many extensions are included in the PHP distribution but not compiled into
PHP. That is, you have the necessary files, but support for the extensions is
not built-in. You need to activate them before you can use them. Generally,
these extensions are needed less frequently than the basic extensions. The
PHP developers provide the extensions for your use but don’t compile them
into PHP to conserve resources.

If you need to use any of the extensions in the PHP distribution, adding an
extension to your PHP installation is not difficult. If you compile PHP when
installing it, use the installation option for the extension you need. (The instal-
lation instructions in Appendix A discuss installation options.) Most Unix and
many Linux and Mac users compile PHP at installation. Very few Windows
users compile PHP.

If you download and install a binary copy of PHP, rather than compile your
own, you can install any of the standards extensions as follows:

1. Copy the appropriate dll file from the ext subdirectory into your main
directory.

The ext subdirectory is in a location such as c:\php\ext.

2. Open your php.ini file and look for a line similar to the following:

;extension=php_gd2.dll

3. Remove the semicolon at the beginning of the line.

305Chapter 14: PHP Extensions

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 305

The following are some of the most popular extensions:

� Database extensions: Many people use database extensions. They pro-
vide functions for interacting with a specific type of database. As men-
tioned previously, the ODBC database extension is included in PHP by
default. (Database extensions are discussed in Chapter 12.)

� GD library: One of the most popular extensions is the GD library. It pro-
vides functions so you can output graphics, as well as HTML. You can
create and manipulate images in several formats, such as JPEG, GIF, PNG,
and others.

PHP versions since (and including) PHP 4.3.0 include a bundled version
of GD, which is preferable to other versions of GD. You can use this bun-
dled version rather than installing an external version of GD. To do this,
compile with the installation option with-gd2, as described in Appendix
A, and do not specify a path to a directory (do not use =DIR).

� PDF extension: This is a library of functions that allow you to create a
PDF document. You can set fonts, write text to the document, and add
graphics.

� cURL: This library allows you to communicate with many kinds of
servers, such as HTTPS, Telnet, FTP, LDAP, and others.

Most extensions provide functions that interact with software libraries. For
example, the database extensions provide functions that interact with specific
database software. For extensions to work, the software they interact with
must be installed. (For example, for the Oracle database extensions to work,
the Oracle software must be installed.) On occasion, the software libraries
are already installed on your computer. If not, you must download and install
the required library. Be sure to look at the documentation in the PHP manual
on the PHP Web site for any extension you are considering using. Look for
information about the required libraries and where to get them and to see any
other specific requirements for the extension. Some libraries are provided in
the PHP distribution, so that you don’t need to find them and download them
yourself. Such libraries are available in the main directory where PHP is
installed. For example, MySQL support requires that the library
libmysql.dll (MySQL 4.0 or earlier) or libmysqli.dll (MySQL 4.1 or later)
be available. This library is included in the main PHP directory, allowing the
mysql and mysqli functions to work correctly.

Table 14-1 provides a list of most of the extensions provided with the PHP dis-
tribution, with the exception of the database extensions, which are described
in Chapter 12.

In the table, all dll names start with php_ and are found in the php/ext direc-
tory. DIR is the directory where the software library is installed. If DIR is not
included, a default is used.

306 Part IV: Common PHP Applications

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 306

Table 14-1 PHP Extensions
Extension Description dll name Install option

bzip2 Read/write bzip2- _bz2.dll --with-bz2=DIR
Compression compressed files.

ClibPDF Create PDF _cpdf.dll --with-cpdflib=DIR
documents.

Crack Test the strength _crack.dll --with-crack=DIR
of a password.

cURL Communicate _curl.dll --with-curl=DIR
with various types
of servers.

Domxml Read/create XML _domxml.dll --with-dom=DIR
documents.

FDF Handle forms with _fdf.dll --with-fdftk=DIR
PDF document.

GD Output images. _gd2.dll --with-gd2

gettext Native language _gettext.dll --with-gettext=DIR
support.

iconv Convert strings _iconv.dll --with-iconv=DIR
between charac-
ter set encoding.

IMAP Manage e-mail. _imap.dll --with-imap=DIR

JAVA Integrate Java _java.dll --with-java=DIR
support.

LDAP Access directory _ldap.dll --with-ldap=DIR
servers.

Multi-byte Handle Japanese _mbstring.dll --with-mbstring=
String and (default is LANG

Japanese) other
characters.

Mcrypt Encrypt strings. _mcrypt.dll --with-mcrypt=DIR
Encryption

Mhash Create check- _mhash.dll --with-mhash=DIR
sums and more.

(continued)

307Chapter 14: PHP Extensions

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 307

Table 14-1 (continued)
Extension Description dll name Install option

Mime type Guess the content _mime_magic.dll --with-mime-magic
type.

Ming for Create Flash _ming.dll --with-ming
Flash format movies.

OpenSSL Provide secure _openssl.dll --with-openssl=
data transfer. DIR

PDF Create PDF files. _pdf.dll --with-pdflib=DIR

Printer Write data to _printer.dll N/A
printer. Windows
only.

Shared Read/write _shmop.dll --enable-shmop
Memory shared memory

segments.

SNMP Manage SNMP _snmp.dll --with-snmp=DIR
objects.

Sockets Low-level inter- _sockets.dll --enable-sockets
face to socket
communication.

XML-RPC Write XML-RPC _xmlrpc.dll --with-xmlrpc=DIR
servers and
clients.

XSLT Extensible Style- _xslt.dll --enable-xslt
sheet Language
Transformations.

Zip Files Read zip files. _zip.dll --with-zip=DIR

At any time, some of these extensions can be removed from the PHP distribu-
tion or new extensions can be added.

308 Part IV: Common PHP Applications

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 308

Using PEAR
PEAR is the PHP Extension and Application Repository, and it maintains a
structured library of open source code. The code itself is provided by devel-
opers outside PEAR, but PEAR handles the management and distribution of
code from the various projects.

PEAR has developed a consistent method of distribution. Code for a project
is distributed in packages. Developers who want to contribute an extension
or application must conform to standards. They must include specified
elements in their packages, such as documentation, and use PEAR coding
standards and methods for handling errors. The standard structure makes
maintaining code more feasible over the long run. If the developer who is
maintaining a PEAR application wins the lottery and goes on a permanent
vacation to Tahiti, someone else can assume the maintenance of the aban-
doned code more easily because its structure and standards are consistent.

Before a project is added to PEAR, it must be accepted. PEAR only accepts
high-quality code that conforms to the coding standards. Code contributors
must be willing to maintain the code and provide documentation. Code con-
tributors submit their code to the PEAR developers, who must accept it
before it is added to PEAR. After it’s accepted, the code contributors add it to
PEAR and maintain it.

Finding a PEAR Package
According to the PEAR Web site (http://pear.php.net), PEAR currently
holds 263 packages. Six packages are included with the PHP software when
you download it:

� DB: Database abstraction layer. Allows you to interact with different
databases by using the same set of functions.

� Net_Socket: Net Socket Interface. A class interface to TCP sockets.

� Net_SMTP: Provides an implementation of the SMTP (Simple Mail
Transfer Protocol) protocol using Net_Socket.

� Mail: Provides various methods for checking and sending e-mail.

� XML_Parser: An XML parser based on PHP’s built-in XML extension.

� PHPUnit: Used to automate testing of PHP functions and classes.

309Chapter 14: PHP Extensions

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 309

You can find these PEAR packages in the directory where PHP is installed in
PEAR/packages or PEAR/go-pear-bundle. The packages are in zipped files.
You can use the PEAR installer, described in the following section, to install
the PEAR package.

Descriptions of all the PEAR packages are available on the PEAR Web site
(pear.php.net). You can browse through categories to look for packages,
or you can search the package database.

Notice two links in the left column of the Web page: List Packages and Search
Packages. To browse, click List Packages; you see the following categories:

310 Part IV: Common PHP Applications

Authentication

Benchmarking

Caching

Configuration

Console

Database

Date and Time

Encryption

File Formats

File System

Gtk Components

HTML

HTTP

Images

Internationalization

Logging

Mail

Math

Networking

Numbers

Payment

PEAR

PHP

Processing

Science

Streams

Structures

Text

Tools and Utilities

Web Services

XML

If you click a category, you see a page showing all the packages in that cate-
gory. If you click a package, you see a page showing package information. The
dependencies section lists packages that must be installed before this pack-
age will run. You also see links to where you can download the package.
However, you don’t need to download it manually. The PEAR installer will
download it for you.

If you click Search Packages, you see a search form that allows you to search
for a package by name, category, maintainer, or date. The search results give

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 310

you a list of links to packages that match your search. If you click one of
these links, it takes you to the information page for the package.

The information page provides a short description about the package, which
may or may not be enough information to determine whether it’s the package
you need. You can find more information about the package in the manual.
One of the links in the left panel on the PEAR home page is Manual, under
Documentation. Clicking this link takes you to the PEAR manual table of con-
tents (after you select a language). Section IV, Packages, has a link for each
package category. The category manual page contains documentation for the
packages in the category. More package information is available in the manu-
als, including instructions for using the classes/functions in the package.

You can return to the PEAR Web site home page at any point by clicking the
pear in the upper-left corner of any page.

After you have identified the package you want, write down its exact name.
You find out how to install it in the following sections.

Setting up PEAR
PEAR includes a package manager that administers PEAR packages. The pack-
age manager is included in your PHP distribution. The installer can install,
uninstall, and update packages. It maintains a registry of installed packages. It
can display a list of available packages, check information about packages,
check dependencies, and perform other management tasks.

Setting up PEAR when compiling PHP
If you compiled PHP yourself, the PEAR installer was included, and the six bun-
dled PEAR applications were installed. You can check the PEAR installer by
running pear.php from your PHP directory. To do this, type pear, and a list
of options for PEAR is displayed. Alternatively, you can type pear list-all,
in which case a list of all packages available is displayed. (This process some-
times takes a minute or two because the list is downloaded over the Internet.)

For versions of PHP prior to 4.3.0, the PEAR installer is not installed when PHP
is compiled and installed. You can find a script that downloads and installs
the PEAR components at go-pear.org.

Setting up PEAR on Windows
If you installed PHP using the installer or the zip file, PEAR was not installed.
To set up PEAR on Windows, you need to perform the following steps:

311Chapter 14: PHP Extensions

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 311

1. Download the PEAR components.

You need to download the Windows zip file for manual installation, as
described in Appendix A. Then unzip the PEAR directory into the direc-
tory where PHP is installed, which is generally a directory such as c:\
php\pear. If you installed PHP by using the manual installation instruc-
tions from Appendix A, all the pieces of PEAR should be there already;
you don’t need to download them again.

2. Add the PEAR directory to your include file path.

Open php.ini and look for the following line:

include_path = “.;c:\php\includes;c:\php\PEAR”

If the path shown does not include the PEAR directory, add it as shown
in this example php.ini line.

3. Download and install the PEAR Installer.

Double-click go-pear.php (or go-pear.bat) in the directory where
PHP is installed. The go-pear script opens a command prompt window
and displays the following:

Welcome to go-pear!

Go-pear will install the ‘pear’ command and all the files
needed by it. This command is your tool for PEAR
installation and maintenance.

Go-pear also lets you download and install the PEAR
packages bundled with PHP: DB, Net_Socket, Net_SMTP,

Mail,
XML_Parser, phpUnit.

If you wish to abort, press Control-C now, or press
Enter:

The program asks you a few questions and installs the PEAR installer. It
also gives you the option of installing the six bundled packages if you
want. When the program is finished, it displays a final message.

The code in the go-pear.bat script includes the following line that sets the
path to PHP CLI. In previous versions of PHP, PHP CLI was located in a subdi-
rectory called /cli. If the script line shows the old path, as follows:

Set PHP_BIN=cli/php.exe

the go-pear script will fail. If so, you can edit the file so the path is correct.

After you finish installing the PEAR installer (and the 6 programs if you chose
to install them), you should have a program called pear.bat in the directory
where PHP is installed. You can test pear.bat by running it from the Command

312 Part IV: Common PHP Applications

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 312

Prompt window. To do this, type pear, and a list of options for PEAR is dis-
played. Alternatively, you can type pear list-all, in which case a list of all
packages available is displayed. (This process sometimes takes a minute or
two because the list is downloaded over the Internet.)

When you use list-all with the PEAR installer, it displays a list of all avail-
able programs. Remember the name of any program that looked useful for
you. You need to know the exact name in order to install the program.

Installing a PEAR package
You install a PEAR package using the PEAR installer (the pear.bat program
installed in the previous section). You test the installer in the previous section
by getting a list of all the packages available. In this section, you find out how
to install a package using the PEAR installer.

To install a package, type the following in your PHP directory (c:\php):

pear install packagename

The PEAR installer downloads the package file from the PEAR Web site and
installs it. For example, you can install Mail by typing the following:

pear install Mail

pear then displays the following:

downloading Mail-1.0.2.tgz ...
...done: 12,287 bytes
requires package ‘Net_SMTP’
Mail: dependencies failed

This output says that Mail was downloaded. It also tells you that Mail requires
Net_SMTP in order to run and that Net_SMTP is not installed. Therefore, it did
not install Mail. You need to install Net_SMTP and then install Mail.

After you have installed Net_SMTP and then installed Mail, if you try to install
Mail again, the PEAR installer displays:

Mail already installed

You can get a list of all the PEAR packages currently installed by typing the
following:

pear list

313Chapter 14: PHP Extensions

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 313

You can update a package with the following command:

pear upgrade Mail

In this case, the following output is displayed:

downloading Mail-1.0.2.tgz ...
...done: 12,287 bytes
upgrade to a newer version (1.0.2 is not newer than 1.0.2)

If you try to install without being connected to the Internet, the PEAR
installer displays the following message:

Connection to pear.php.net:80 failed

You can uninstall any package, as follows:

pear uninstall Mail

The following is displayed:

uninstall ok: Mail

Using a PEAR package
After a package has been installed, you can use its functions or methods.

Accessing a PEAR package
After a package has been installed, a file with the package name (with a .php
extension) resides in the PEAR directory. For example, after you install Mail,
the PEAR directory contains a file named Mail.php. To use a PEAR package,
you include that file in your script. For example, you can use the Mail pack-
age in your script after you use the following statement:

require_once(“Mail.php”);

Use require_once to be sure the entire Mail.php file is not included more
than once. Using require causes the script to stop if the Mail.php file can’t
be found.

For the details on using the methods or functions of a package, see the PEAR
manual on the PEAR Web site.

DB is one of the most popular PEAR packages. Therefore, I use DB in the
next section to demonstrate the use of a PEAR package. I don’t provide a

314 Part IV: Common PHP Applications

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 314

comprehensive explanation of the DB package — just a short program to
show you the principles of using a PEAR package.

Introducing DB — an example of a PEAR package
DB is a library that allows you to interact with different databases by using
the same functions. In Chapter 12, you discover that PHP has several sets of
database functions, a different set for each database. Consequently, you use
functions such as mysql_connect and pg_connect. Database access is very
simple with database functions.

The problem with using database functions arises if you change your database.
Suppose you have your database application humming along using MySQL,
and one morning your boss walks in and says, “I just bought Oracle. We need
to move all our data into Oracle.” Not only must you move all the data, but
you must also find all the places in your PHP scripts where you use MySQL
database functions and change them all to Oracle functions. Some of the
functions may have a different format, and some may have parameters in a
different order. This is certain to cause problems for a while.

If you’re positive you will never change to another database, you don’t need to
concern yourself with this specter. However, if there’s any possibility of chang-
ing your database in the future, you may want to use a database-independent
database interface instead. DB is popular for database interaction.

Interacting with a database
Using PEAR DB, you use steps similar to those that are described in Chapter 12
to interact with a database:

1. Connect to the database

2. Send the database a query that tells it to perform an action.

3. If information is returned from the query, process the information.

To connect to a database using PEAR DB, you just provide the parameters,
such as the account and password, and the SQL to be executed and tell PEAR
DB which type of database it’s communicating with. The required information,
formatted correctly, is the Data Source Name (DSN). Using the information in
the DSN, DB handles the exact syntax. To give DB the necessary information,
you can use the following statements:

$host = “localhost”;
$user = “admin”;
$passwd = “secret”;
$dbname = “Sales”;
$dbtype = “mysql”;
$dsn = “$dbtype://$dbuser:$dbpasswd@$host/$dbname”;

315Chapter 14: PHP Extensions

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 315

The $dsn variable contains the information PEAR DB needs to connect to a
database. You can connect to the database as follows:

$db = DB::connect($dsn);

After you are connected to the database you can send an SQL query as follows:

$sql = “SELECT * from Customer”;
$result = $db->query($sql);

If the query returns data, as the SELECT query does, you can access the infor-
mation using the following DB statement:

$row = $result->fetchRow(DB_FETCHMODE_ASSOC);

In this statement, the method fetchRow returns one row of the results in an
associative array with the field names as the keys to the array. You can then
use the data in the array in the same way as you use any other array.

As you can see, if you change your database, the only thing you need to change
is the value for $dbtype. Nothing else in your script needs to be changed. So
by doing a little extra work up front, you eliminate the problems created by
changing from one RDBMS to another. As of this writing, PEAR DB supports
the following types of databases:

� mysql (MySQL)

� pgsql (PostgreSQL)

� ibase (InterBase)

� msql (Mini SQL)

� mssql (Microsoft SQL Server)

� oci8 (Oracle 7/8/8I)

� odbc (ODBC — Open Database Connectivity)

� sybase (Sybase)

� ifx (Informix)

� fbsql (FrontBase)

To change to another database (say from MySql to Sybase), you can just
change $dbtype = “mysql”; to $dbtype = “sybase”; and you’re done.

Handling errors
As described in Chapter 12, statements that interact with a database can fail.
For example, the database software may be down when your script attempts
to connect. You want your script to stop when the database interaction fails,
and you want to receive an informative message.

316 Part IV: Common PHP Applications

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 316

DB provides the method isError that you can use to check for errors. The
method checks the variable to see whether it is TRUE or an error object. If
the variable contains an error object, you can use a method called getMessage
to see what the error message is. The following statements show how to use
isError:

$db = DB::connect($dsn);
if(DB::isError($db))
{

die($db->getMessage());
}

The method isError checks the contents of $db. If $db contains TRUE, the
connect function succeeded, and the statements in the if block are not exe-
cuted. However, if $db contains an error object, the if block executes. In this
case, the if block contains a die statement, which displays a message and
stops the script. $db->getMessage gets the error message stored in $db.
Suppose the information you used in building the DSN included a typo in the
database name. The connect statement fails, and the die statement displays
the following message:

DB Error: no such database

Putting it all together
The script shown in Listing 14-1 displays a customer list taken from a data-
base. A script to produce the same output was shown in Chapter 12, using
PostgreSQL database functions. The script from Chapter 12 is shown here, in
altered form, by using the PEAR DB library.

Listing 14-1: A Script That Displays a Customer List

<?php
/* Script name: DisplayCustomer-DB
* Description: Gets all customer records from a
* database and displays the
* Customer list in a Web page.
*/
require_once(“DB.php”); # includes PEAR DB classes
$host = “localhost”;
$dbuser = “admin”;
$dbpasswd = “secret”;
$dbname = “Sales”;
$dbtype = “pgsql”;
$dsn = “$dbtype://$dbuser:$dbpasswd@$host/$dbname”;
$db = DB::connect($dsn);
if(DB::isError($db))
{
die($db->getMessage());

}

(continued)

317Chapter 14: PHP Extensions

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 317

Listing 14-1 (continued)

$sql = “SELECT * from Customer”;
$result = $db->query($sql);
if(DB::isError($result))
{
die($result->getMessage());

}
echo “<html>

<head><title>Customer List</title></head>
<body>
<table width=\”100%\” border=\”0\”>\n”;

while($row = $result->fetchRow(DB_FETCHMODE_ASSOC))
{

if(DB::isError($row))
{

die($row->getMessage());
}
echo “<tr>”;
echo “<td>{$row[‘lastname’]}, {$row[‘firstname’]}</td>

<td>{$row[‘phone’]}</td>”;
echo “</tr>\n”;

}
echo “</table></body></html>”;
?>

The output is a list of customer names in the following format:

Lastname, Firstname phonenumber

Using PEAR libraries is easy in terms of getting access to them. The PEAR
installer installs the package, and you just include it with a require_once
statement. However, each package has its own functions and classes and
methods for accomplishing tasks. In a way, each new package is like learning
a new language. The things you know about PHP may not help you at all. Some
PEAR packages are documented well in the PEAR manual, online documenta-
tion, and books. Other PEAR packages are not documented as thoroughly.

318 Part IV: Common PHP Applications

20 541668 Ch14.qxd 3/25/04 2:54 PM Page 318

Part V
The Part of Tens

21 541668 PP05.qxd 3/25/04 2:56 PM Page 319

In this part . . .

The chapters in this part extend your knowledge of
PHP. This part provides hints and warnings to keep

in mind while programming and pointers to the mega-
information on PHP that is available on the Web. PHP itself
is a growing, expanding language. As a PHP programmer,
you will grow and expand along with it.

21 541668 PP05.qxd 3/25/04 2:56 PM Page 320

Chapter 15

Ten Things to Look For When
Troubleshooting a Script

In This Chapter
� Recognizing common PHP errors

� Interpreting error messages

I guarantee that you will do all the things that I mention in this chapter. You
just can’t write scripts without making these mistakes. The trick is to train

yourself to recognize them, roll your eyes, say, “Not again,” and just fix them.
One error message that you’ll see many times is

Parse error: parse error in c:\test.php on line 7

This is PHP’s way of saying “Huh?” It means that it doesn’t understand some-
thing. This message helpfully points to the file and the line number where PHP
got confused. Sometimes it’s directly pointing at the error, but sometimes
PHP’s confusion results from an error earlier in the script.

Here are ten of the most common errors and how to avoid them.

Missing Semicolons
Every PHP statement ends with a semicolon (;). PHP doesn’t stop reading a
statement until it reaches a semicolon. If you leave out the semicolon at the
end of a line, PHP continues reading the statement on the following line. For
example, consider the following statement:

$test = 1
echo $test;

22 541668 Ch15.qxd 3/25/04 2:57 PM Page 321

These statements don’t make sense to PHP; it reads the two lines as one
statement, so it complains with an error message, such as the following:

Parse error: parse error in c:\test.php on line 2

This is a very common error. Before you know it, you’ll be writing your home
address with semicolons at the end of each line.

Not Enough Equal Signs
In a comparison statement, in which you ask whether two values are equal,
you need two equal signs in a row. Using one equal sign is a common mistake.
It’s a perfectly reasonable error because you have been using one equal sign
to mean equal since the first grade when you learned that 2 + 2 = 4. This is a
difficult mistake to recognize because it doesn’t cause an error message. It
just makes your script do odd things, like infinite loops or if blocks that
never execute. I am continually amazed at how long I can stare at

$test = 0;
while ($test = 0)
{

$test++;
}

and not see why it’s looping endlessly.

Misspelled Variable Names
This is another PHP gotcha that doesn’t result in an error message, just odd
script behavior. If you misspell a variable name, PHP considers it a new vari-
able and does what you ask it to do. Here’s another clever way to write an
infinite loop:

$test = 0;
while ($test == 0)
{

$Test++;
}

Remember, to PHP, test is not the same as Test.

322 Part V: The Part of Tens

22 541668 Ch15.qxd 3/25/04 2:57 PM Page 322

Missing Dollar Signs
A missing dollar sign in a variable name is really hard to see, but at least it
usually results in an error message so that you know where to look for the
problem. It usually results in the old familiar parse error:

Parse error: parse error in test.php on line 7

Troubling Quotes
You can have too many, too few, or the wrong kind of quotes. You have too
many when you put quotes inside of quotes, such as this example:

$test = “<table width=”100%”>”;

PHP sees the second double quote (“) — before 100 — as the ending double
quote (“) and reads the 1 as an instruction, which makes no sense. Voilà!
Another parse error. The line must be either

$test = “<table width=’100%’>”;

or

$test = “<table width=\”100%\”>”;

You have too few quotes when you forget to end a quoted string, such as

$test = “<table width=’100%’>;

PHP continues reading the lines as part of the quoted string until it encoun-
ters another double quote (“), which may not occur for several lines. This is
one occasion when the parse error that points to where PHP got confused is
not pointing to the actual error. The actual error occurred some lines previ-
ously, when you forgot to end the string.

You have the wrong kind of quotes when you use a single quote (‘) when you
meant a double quote (“) or vice versa. The difference between single and
double quotes is sometimes important and is explained in Chapter 5.

323Chapter 15: Ten Things to Look For When Troubleshooting a Script

22 541668 Ch15.qxd 3/25/04 2:57 PM Page 323

Invisible Output
Some statements, such as the header statement, must execute before the
script produces any output. If you try to use such statements after sending
output, they fail. The following statements fail because the header message is
not the first output:

<html>
<?php

header(“Location: http://company.com”);
?>

<html> is not in a PHP section and is therefore sent as HTML output. The fol-
lowing statements work:

<?php
header(“Location: http://company.com”);

?>
<html>

The following statements fail:

<?php
header(“Location: http://company.com”);

?>
<html>

It’s not easy to see, but there’s one, single blank space before the opening PHP
tag. The blank space is output to the browser, although the resulting Web page
looks empty. Therefore, the header statement fails because there is output
before it. This is a common mistake and is difficult to spot.

Numbered Arrays
PHP believes that the first value in an array is numbered zero (0). Of course,
humans tend to believe that lists start with the number one (1). This funda-
mentally different way of viewing lists results in us humans believing an array
isn’t working correctly when it is indeed working just fine. For example, con-
sider the following statements:

$test = 1;
while ($test <= 3)
{

$array[] = $test;
$test++;

}
echo $array[3];

324 Part V: The Part of Tens

22 541668 Ch15.qxd 3/25/04 2:57 PM Page 324

No output (or an error notice) results. I leap to the conclusion that there is
something wrong with my loop. Actually, it’s fine. It just results in the follow-
ing array:

$array[0]=1
$array[1]=2
$array[2]=3

and doesn’t set anything into $array[3].

Including PHP Statements
When a file is read in by using an include statement in a PHP section, it seems
reasonable to me that the statements in the file will be treated as PHP state-
ments. After all, PHP adds the statements to the script at the point where I
include them. However, PHP doesn’t see it my way. If a file named file1.inc
contains the following statements:

if ($test == 1)
echo “Hi”;

and I read it in with the following statements in my main script:

<?php
$test = 1;
include (“file1.inc”);
?>

I expect the word Hi to display on the Web page. However, the Web page actu-
ally displays this:

if ($test == 1) echo “Hi”;

Clearly, the file that is included is seen as HTML. To send Hi to the Web page,
file1.inc needs to contain the PHP tags.

<?php
if ($test == 1)

echo “Hi”;
?>

Missing Mates
Parentheses and curly brackets must come in pairs. Opening with a (that
has no closing) or a { without a } results in an error message. One of my

325Chapter 15: Ten Things to Look For When Troubleshooting a Script

22 541668 Ch15.qxd 3/25/04 2:57 PM Page 325

favorite examples of this is when I use one closing parenthesis where two are
needed, as in the following statement:

if (isset($test)

This statement needs a closing parenthesis at the end. It’s much more diffi-
cult to spot that one of your blocks didn’t get closed when you have blocks
inside of blocks inside of blocks. For example, consider the following:

while ($test < 3)
{
if ($test2 != “yes”)
{
if ($test3 > 4)
{
echo “go”;
}
}

You can see there are three opening curly brackets but only two closing ones.
Imagine that 100 lines of code are inside these blocks. It can be difficult to spot
the problem — especially if you think the last closing bracket is closing the
while loop, but PHP sees it as closing the if loop for $test2. Somewhere
later in your script, PHP may be using a closing bracket to close the while
loop that you aren’t even looking at. It can be difficult to trace the problem in
a large script.

Indenting blocks makes it easier to see where closing brackets belong. Also, I
often use comments to keep track of where I am, such as

while ($test < 3)
{
if ($test2 != “yes”)
{
if ($test3 > 4)
{
echo “go”;
} # closing if block for $test3
} # closing if block for $test2
} # closing while block

Confusing Parentheses and Brackets
I’m not sure whether this is a problem for everyone or just a problem for me
because I refuse to admit that I can’t see as well as I used to. Although PHP
has no trouble distinguishing between parentheses and curly brackets, my
eyes are not so reliable. Especially while staring at a computer screen at the
end of a 10-hour programming marathon, I can easily confuse (and {. Using
the wrong one gets you a parse error message.

326 Part V: The Part of Tens

22 541668 Ch15.qxd 3/25/04 2:57 PM Page 326

Chapter 16

Ten PHP Resources You
Can’t Live Without

In This Chapter
� Where to find articles and tutorials

� Where to find code libraries

One advantage of PHP is its growing developer community. Many people
use it, and the PHP community is helpful. Many resources are available

online. This chapter describes the most useful resources. Remember that you
are not alone.

The PHP Web Site
This is the official PHP Web site. Here, new versions of PHP are released for
download, and the PHP manual is online. You can find anything that you need
to know about PHP here.

www.php.net

PHP Lists
When you’ve struggled for days with some recalcitrant code that stubbornly
refuses to run, take it to the lists. Hundreds of PHP developers frequent the
lists, and these folks know everything. Post a question to a PHP list, and you
often have the answer before your finger is off your mouse key. You’ll find
different lists for different subjects: php-general, php-db, php-install,
php-windows, and others. You can sign up for the lists on the PHP Web site.

The PHP lists have a lot of traffic. You can easily get more than 100 e-mail mes-
sages per day. However, when you are starting with PHP, reading the messages
that other coders ask and the solutions that they receive can greatly help you

23 541668 Ch16.qxd 3/25/04 2:55 PM Page 327

learn PHP. At the very least, subscribe to the announce list to be informed of
new versions and important releases. The announce list won’t deluge you with
e-mail; it only sends a message every now and then.

www.php.net/mailing-lists.php

Zend
The Zend engine is the core scripting engine of PHP. This Web site is full of
information about PHP. You can find tutorials, articles, news, online seminars,
and even a PHP job board.

http://zend.com

PHP Builder
PHP Builder is a Web site containing a variety of resources for PHP coders.
You can find news there and a list of useful articles. In addition, PHP Builder
has a code library where you can obtain snippets of code or functions for a
broad range of uses. You can search for code in such categories as databases,
calendars, shopping carts, games, graphics, and many others.

www.phpbuilder.com

Black Beans
If you could only have one resource, the Black Beans Web site would be a
good candidate. Black Beans is a Web site that provides lists of resources. It
has links to articles, forums, user groups, tools, and many other resources.

www.black-beans.com.br/php_home_eng.htm

PHP Beginners
PHP Beginners is a collection of articles on PHP and related subjects. Articles
there are oriented specifically toward beginners.

www.phpbeginner.com

328 Part V: The Part of Tens

23 541668 Ch16.qxd 3/25/04 2:55 PM Page 328

PHP Dev Center
PHP Dev Center is a repository of very good PHP articles and tutorials on
subjects from beginners to quite advanced levels. The authors are always
knowledgeable.

www.onlamp.com/php

PHPMac.com
This Web site has articles and instructions for installing and using PHP for
the Mac. This information is invaluable and much harder to find than infor-
mation on PHP for Windows and Unix/Linux.

www.phpmac.com

PHP Editors
This Web site provides a list of all the editors and IDEs (Integrated Development
Environments) that you can use to write PHP scripts. As of this moment, 105
are listed, both free and commercial. The list includes comments from users.

http://phpeditors.linuxbackup.co.uk

SourceForge.net
SourceForge.net is the largest repository of Open Source code and applica-
tions available on the Internet. You can find software for all purposes at this
site. You can find software written specifically in PHP by using the following
method:

1. Click the Software Map tab.

2. Click Programming Language in the column on the right.

3. Click PHP in the column of alphabetically listed programming lan-
guages on the left.

As of today, SourceForge.net shows almost 7,000 projects in PHP.

www.sourceforge.net

329Chapter 16: Ten PHP Resources You Can’t Live Without

23 541668 Ch16.qxd 3/25/04 2:55 PM Page 329

Free PHP Hosting Directory
This site is a list of free Web hosting companies that offer PHP. Hosts are
rated up to five stars.

www.oinko.net/freephp

My Web Site
I provide a Web site where I support my books. There I post the scripts from
the book and additional code for download by readers, as well as a list of any
necessary error corrections. I also provide PHP news and links to important
PHP-related Web sites.

http://janet.valade.com

330 Part V: The Part of Tens

23 541668 Ch16.qxd 3/25/04 2:55 PM Page 330

Part VI
Appendixes

24 541668 PP06.qxd 3/25/04 2:57 PM Page 331

In this part . . .

This part provides the instructions for installing PHP, as
well as a complete reference of essential PHP functions.

In Appendix B, you can quickly find any function that you
need, including functions that I didn’t have room to discuss
in the book.

24 541668 PP06.qxd 3/25/04 2:57 PM Page 332

Appendix A

Installing PHP

In this Appendix, I describe how to install PHP on the Unix/Linux, Windows,
and Mac platforms, both for use with Web sites and with PHP command

line interface (CLI). For Web sites, although PHP runs with several Web servers,
I discuss Apache and IIS (Microsoft Internet Information Server), which
together power almost 90 percent of the Web sites on the Internet. If you need
instructions for other operating systems or Web servers, see the PHP Web
site (www.php.net).

This appendix provides installation instructions for PHP 5. If you are installing
an earlier version, the installation may be slightly different; in this case, please
read the file install.txt that is provided with the PHP distribution.

Installing PHP on Computers
Running Unix/Linux

You can install PHP as a partner with Apache for use in Web pages or as a
stand-alone interpreter. If you want to use PHP for both Web sites and as
a stand-alone language, you need to install PHP with Apache and PHP CLI,
which are two separate types of PHP. The instructions below include informa-
tion for both types of PHP installations — PHP for the Web and PHP CLI.

You install PHP by downloading the source files, compiling them, and then
installing the compiled programs. This process isn’t as technical and daunting
as it may appear. I provide step-by-step instructions in the next few sections.
Read all the way through the steps before you begin the installation procedure
to be sure that you understand it all clearly. Try to have everything prepared
so you don’t have to stop in the middle of the installation.

For Linux users only: Many Linux distributions automatically install both
Apache and PHP, thus saving you the trouble of installing them yourself. In
addition, PHP for Linux is available in an RPM as well as in source files. It may
be in RPM format on your distribution CD. However, when PHP is preinstalled
or when you install it from an RPM, you can’t control the options that PHP
is installed with. For example, in these instances, PHP CLI may not have been

25 541668 AppA.qxd 3/25/04 2:56 PM Page 333

installed. Or perhaps an RPM doesn’t install PHP with support for the database
that you plan to use. In addition, an RPM usually enables all the most popular
options, so an RPM may enable options that you don’t need. And Linux distri-
butions and RPMs are likely to be slightly older versions; they probably don’t
install the most recent version of PHP that is available. Consequently, the sim-
plest and most efficient way to install PHP may be from the source. If you’re
familiar with RPMs, by all means feel free to find an RPM and install it. RPMs
are available. However, I provide steps for source code installation, not RPMs.

Before installing on Unix/Linux
If you want to use PHP with Apache for your Web site, Apache must be
installed. Most Unix/Linux operating systems install Apache by default when
the operating system is installed. Before beginning to install PHP, check the
following:

� The Apache version is 1.3.0 or newer. To check the version, type the
following at the command line:

httpd --v

You may have to be in the directory where httpd is located before the
command will work.

Because of security issues with Apache, it is much better to use Apache
1.3.27 or newer.

PHP with Apache 2 is still considered experimental. For use on produc-
tion Web sites, it’s better to use Apache 1.3 than Apache 2.

� The Apache module mod_so is installed. It usually is. To display a list of
all the modules, type the following:

httpd –l.

You may have to be in the directory where httpd is located before the
command will work. The output usually shows a long list of modules. All
you need to be concerned with for PHP is mod_so. If mod_so is not loaded,
Apache must be reinstalled using the option enable-module=so.

� The apxs utility is installed. (Or apxs2 for use with Apache 2.) apxs
is often installed when Apache is installed. To determine whether it’s
installed on your computer, you should look for a file called apxs, possi-
bly at /usr/sbin/apxs. If you can find the file apxs, it’s installed; if not,
it’s not. If Apache was installed on Linux from an RPM, apxs may not have
been installed. Some RPMs for Apache consist of two RPMs: one for the
basic Apache server and one for Apache development tools. Possibly
the RPM with the development tools, which installs apxs, needs to be
installed.

334 Part VI: Appendixes

25 541668 AppA.qxd 3/25/04 2:56 PM Page 334

Installing on Unix/Linux
To install PHP 5 on Unix/Linux, follow these steps:

1. Point your Web browser to www.php.net, which is the PHP home page.

2. Click Downloads.

3. Click the latest version of the PHP source code, which is version 5.0.0
as of this writing.

A dialog box opens.

4. Select the option to save the file.

A dialog box opens that lets you select where the file is to be saved.

5. Navigate to where you want to save the source code (for example,
/usr/src). Then click Save.

6. After the download, change to the download directory (for example,
cd-/usr/src).

You see a file named php-, followed by the version name and tar.gz.
This file is called a tarball because it contains many files compressed
into one file using the tar command.

7. Unpack the tarball.

The command to unpack the tarball for PHP version 5.0.0 is the following:

gunzip -c php-5.0.0.tar.gz | tar -xf –

A new directory called php-5.0.0 is created with several subdirectories.

8. Change to the new directory that was created when you unpacked the
tarball.

For example, you can use a command like the following:

cd php-5.0.0

9. Type the configure command:

The configure command consists of ./configure followed by all the
necessary options. If you are installing PHP for use with Apache, use the
following configure command:

./configure --with-apxs

You will see many lines of output. Wait until the configure command
has completed. This may take a few minutes.

If the apxs utility is not installed in the expected location, you see an error
message, indicating that apxs could not be found. If you get this message,
check the location where apxs is installed (find / -name apxs)
and then include this path in the with-apxs option of the configure
command: —with-apxs=/usr/sbin/apxs.

335Appendix A: Installing PHP

25 541668 AppA.qxd 3/25/04 2:56 PM Page 335

If you decide to use Apache 2, you need to use apxs2.

You may need to use many other options, such as options for the data-
base that you’re using or options that change the directories where
PHP is installed. These configure options are discussed in the section,
“Installation Options for Unix/Linux/Mac,” later in this Appendix.

10. Type make.

You will see many lines of output. Wait until it is finished. This may take
a few minutes.

By default, both the CLI and CGI versions of PHP are built. The file
libphp5.so is built for use with Apache. PHP CLI is named php and is
located in the directory where php is intalled (e.g. user/local/php).
If you don’t want both versions, you can disable one or the other with a
configure option, as described in the section, “Installation Options for
Unix/Linux/Mac,” later in this chapter.

11. Type make install.

The files are moved to the correct locations. For instance, the Web
version of PHP is installed in the directory where Apache is installed
(e.g. /usr/local/apache/libexec/libphp5.so).

Alternative method for installing
with Apache
Occasionally, you can’t install PHP using apxs. This section provides an alter-
native method of installation for situations in which apxs isn’t available or
refuses to work. The preceding installation method is easier and usually works
fine. This section is just here to provide an alternative in case the first section
fails you. Follow these steps:

1. Point your Web browser to www.php.net, which is the PHP home page.

2. Click Downloads.

3. Click the latest version of the PHP source code — version 5.0.0 as of
this writing.

A dialog box opens.

4. Select the option to save the file.

A dialog box opens that lets you select where the file is to be saved.

5. Navigate to where you want to save the source code (for example,
/usr/src/php), and then click Save.

6. After the download is complete, change to the download directory
(for example, cd-/usr/src/php).

336 Part VI: Appendixes

25 541668 AppA.qxd 3/25/04 2:56 PM Page 336

You see a file named php-, followed by the version number and tar.gz.
This type of file is called a tarball.

7. Unpack the tarball.

The command to unpack the tarball for the current PHP version 5.0.0 is
as follows:

gunzip -c php-5.0.0.tar.gz | tar -xf –

A new directory called php-5.0.0 is created with several subdirectories.

8. Repeat Steps 1 through 5, but this time, download the Apache source
code into the directory where the PHP source code was unpacked.

You can find the Apache source code at httpd.apache.org.

For the rest of this example, I use the current version, 1.3.27. By the time
you read this, a later version may be available.

As of this writing, using PHP with Apache 2 is not recommended for a
production Web site. Check the PHP Web site before downloading to
see whether the recommendation has changed about using PHP with
Apache 2.

9. Unpack the Apache tarball. For the current version, the command is
as follows:

gunzip -c apache_1.3.27.tar.gz | tar -xf –

Now there are two directories: php-5.0.0 and apache_1.3.27. Each
has several subdirectories.

10. Type cd apache_1.3.27.

11. Type ./configure.

The options do not matter for this command. This is a preliminary con-
figuration of Apache that should be done before you configure PHP. The
Apache configure will be run again in a later step with the appropriate
options. Wait until the configure has completed. This may take a while.

12. Type cd ../php-5.0.0.

13. Type the following:

./configure --with-apache=../apache_1.3.27

If you need to type the configure command on two lines, type a \ at
the end of the first line.

You may need to use many other options, such as options for the data-
base that you are using or options that change the directories where
PHP is installed. The configure options are discussed in the section,
“Installation Options,” later in this Appendix.

14. Type make.

You see many lines of output. You will be informed when it is finished
running. It may take some time.

337Appendix A: Installing PHP

25 541668 AppA.qxd 3/25/04 2:56 PM Page 337

15. Type make install.

This finishes quickly.

16. Type cd ../apache_1.3.27 to return to the Apache directory tree.

17. Type the following command to configure Apache again:

./configure --prefix=/www
--activate-module=src/modules/php5/libphp5.a

You can type this command on one line. If you type it on two lines, type
a \ at the end of the first line. Be sure there is at least one space between
the end of one option and the beginning of the next.

18. Type make.

You see many lines of output. You will be informed when it is finished
running. It may take some time.

The final step depends on whether Apache is already installed on your
system or whether this is the first installation of Apache.

19. For a first installation of Apache, type make install.

If Apache is currently installed and running, do the following:

a. Shut down Apache.

You can stop the Apache Web server by running a script that was
installed on your system during installation. This script is usually
called apachectl. It may be located in the bin directory in the
directory where Apache was installed — for example, /usr/local/
apache/bin or in /sbin or in /usr/sbin. You also may be able to
find it in the directory on your system where startup scripts are
located — for example, /etc/rc.d/init.d. If you find the script,
you can stop the server by typing the name of the script, followed
by stop, for example: apachectl stop. You may need to be in the
directory with the script in order to run it.

b. Find the new file named httpd that you just created in Step 18.

This file will be somewhere under the apache directory tree that
you just created — for example, /usr/src/php/apache_1.3.27/
bin/httpd.

c. Find the existing file named httpd.

This file will be somewhere on your disk, possibly in
/usr/local/apache/bin or /sbin or /usr/sbin.

d. Copy the new file named httpd over the old one — that is,
replace the old one with the new one.

You may want to make a backup copy of the old one before you copy
over it.

338 Part VI: Appendixes

25 541668 AppA.qxd 3/25/04 2:56 PM Page 338

If you decide to upgrade PHP to a newer version, you must use this
installation method. You can’t use this method to install now; you’ll need
it next time.

Installing PHP on Computers
Running Mac OS X

With the release of PHP 4.3, you can install PHP on Mac OS X as easily as on
Unix/Linux. You can install PHP as a partner with Apache (for use in Web
pages) or as a stand-alone interpreter. If you want to use PHP for both Web
sites and as a stand-alone language, you need to install PHP with Apache and
PHP CLI, which are two separate types of PHP. The instructions below include
information for both types of PHP installations: PHP for the Web and PHP CLI.

You install PHP by downloading source files, compiling the source files, and
installing the compiled programs. This process isn’t as technical and daunting
as it may appear. I provide step-by-step instructions in the next few sections.
Read all the way through the steps before you begin the installation procedure
to be sure that you understand it all clearly and have everything prepared so
you don’t have to stop in the middle of the installation.

Before installing on Mac
If you want to use PHP with Apache for your Web site, Apache must be
installed. Most Mac OS X systems come with Apache already installed. Before
beginning to install PHP, check the following:

� The Apache version is 1.3.0 or newer: To check the version, type the
following on the command line:

httpd --v

You may have to be in the directory where httpd is located before the
command will work.

Because of security issues with Apache, it is much better to use Apache
1.3.27 or newer.

PHP with Apache 2 is still considered experimental. For use on produc-
tion Web sites, it’s better to use Apache 1.3 than Apache 2.

� The Apache module mod_so is installed. It usually is. To display a list of
all the modules, type the following:

httpd –l.

You may have to be in the directory where httpd is located before the
command will work. The output usually shows a long list of modules. All

339Appendix A: Installing PHP

25 541668 AppA.qxd 3/25/04 2:56 PM Page 339

you need to be concerned with for PHP is mod_so. If mod_so is not loaded,
Apache must be reinstalled with the --enable-module=so option.

� The apxs utility is installed. apxs often is installed when Apache is
installed. To determine whether it’s installed on your computer, you
should look for a file called apxs, usually in the /usr/sbin/apxs direc-
tory. If you can find the file apxs, it’s installed; if not, it’s not.

. � The files from the Developer’s Tools CD are installed. This CD is sup-
plemental to the main Mac OS X distribution. If you can’t find the CD,
you can download the tools from the Apple Developer Web Site at
developer.apple.com/tools/macosxtools.html.

Installing on Mac
To install PHP on Mac, follow these steps:

1. Point your Web browser to www.php.net, which is the PHP home page.

2. Click Downloads.

3. Click the latest version of the PHP source code, which is version 5.0.0
as of this writing.

A dialog box opens.

4. Select the option to save the file.

A dialog box opens that lets you select where the file is to be saved.

5. Navigate to where you want to save the source code (for example,
/usr/src), and then click Save.

6. After the download, change to the download directory (for example,
cd-/usr/src).

You see a file named php-, followed by the version name and tar.gz.
This file is called a tarball. The file may have been unpacked by the Stuffit
Expander automatically so that you see the directory php-5.0.0. If so,
skip to Step 8.

7. Unpack the tarball.

The command to unpack the tarball for PHP version 5.0.0 is the following:

tar xvfz php-5.0.0.tar.gz

A new directory called php-5.0.0 is created with several subdirectories.

8. Change to the new directory that was created when you unpacked the
tarball.

For example, you can use a command like the following:

cd php-5.0.0

340 Part VI: Appendixes

25 541668 AppA.qxd 3/25/04 2:56 PM Page 340

9. Type the configure command:

The configure command consists of ./configure followed by all the
necessary options. The minimum set of options are as follows:

• Location options: Because the Mac stores files in different locations
than the PHP default locations, you need to tell PHP where files are
located. Use the following options:

--prefix=/usr
--sysconfdir=/etc
--localstatedir=/var
--mandir=/usr/share/man

• zlib option: —with-zlib

• Apache option: If you are installing PHP for use with Apache, use
the following option: —with-apxs.

Therefore, the most likely configuration command that you should use is

./configure --prefix=/usr --sysconfdir=/etc
--localstatedir=/var --mandir=/usr/share/man
--with-apxs –with-zlib

You can type the configure command on one line. If you use more than
one line, type a \ at the end of each line.

You will see many lines of output. Wait until the configure command
has completed. This may take a few minutes.

If the apxs utility is not installed in the expected location, you will see
an error message, indicating that apxs could not be found. If you get this
message, check the location where apxs is installed (find / -name
apxs) and include the path in the with-apxs option of the configure
command: —with-apxs=/usr/sbin/apxs.

If you decide to use Apache 2, you need to use apxs2.

You may need to use many other options, such as options for the data-
base that you’re using or options that change the directories where
PHP is installed. These configure options are discussed in the section,
“Installation Options for Unix/Linux/Mac,” later in this Appendix.

10. Type make.

You will see many lines of output. Wait until it is finished. This may take
a few minutes.

By default, both the CLI and CGI versions of PHP are built. The file
libphp5.so is built for use with Apache. PHP CLI is named php and is
located in the directory where php is intalled (such as user/local/php).
If you don’t want both versions, you can disable one or the other with a
configure option, as described in the section, “Installation Options for
Unix/Linux/Mac,” later in this chapter.

11. Type sudo make install.

341Appendix A: Installing PHP

25 541668 AppA.qxd 3/25/04 2:56 PM Page 341

Installation Options for Unix/Linux/Mac
The previous sections give you steps to quickly install PHP. However, PHP
can be installed with many options, and you may want to use some of these
options during installation. For example, you may want to install PHP with
support for the database that you plan to use, such as MySQL or Oracle. Or,
all the PHP programs and files are installed in their default locations, but you
need to install PHP in different locations. Or you may be planning applications
using additional software.

You can use additional command line options if you need to configure PHP for
your specific needs. Just add the options to the configure command shown in
Step 13 of the Linux/Unix installation instructions or Step 9 of the Mac instal-
lation instructions. In general, the order of the options in the command line
doesn’t matter. Table A-1 shows the most commonly used options for PHP.
To see a list of all possible options, type configure –help in the directory
where PHP is installed.

Table A-1 PHP Configure Options
Option Tells PHP To . . .

prefix=PREFIX Set main PHP directory to PREFIX. Default PREFIX
is /usr/local.

infodir=DIR Install info documentation in DIR. Default is
PREFIX/info.

mandir=DIR Install man files in DIR. Default is PREFIX/man.

with-config-file- Look for the configuration file (php.ini) in DIR.
path=DIR Without this option, PHP looks for the configuration

file in a default location, usually /usr/local/lib.

disable-cgi Don’t build the PHP CGI binary program.

disable-cli Don’t build the PHP CLI binary program.

disable-libxml Disables XML support.

enable-debugger Enable support for internal debugger.

enable-ftp Enable FTP support.

enable-magic-quotes Enable automatic escaping of quotes with a backslash.

enable-url-includes Allow the include() function to get files from HTTP
and FTP locations, as well as from the include
directory.

342 Part VI: Appendixes

25 541668 AppA.qxd 3/25/04 2:56 PM Page 342

Option Tells PHP To . . .

with-msql=DIR Enable support for mSQL databases. Default DIR
where mSQL is located is /usr/local/Hughes.

with-mysql=DIR Enable support for MySQL 4.0 or earlier databases.
Default DIRwhere MySQL is located is /usr/local.

with-mysqli=DIR Enable support for MySQL 4.1 or later databases. No
default. DIR must be the path to the file mysql_
config that is installed with MySQL 4.1 or greater.
Do not enable both mysql and mysqli.

with-openssl=DIR Enable OpenSSL support for a secure server.
Requires OpenSSL version 0.9.5 or later.

with-oracle=DIR Enable support for Oracle. Default DIR is contained
in the environmental variable, ORACLE_HOME.

with-pgsql=DIR Enable support for PostgreSQL databases. Default
DIR where PostgreSQL is located is /usr/local/
pgsql.

with-servlet=DIR Include servlet support. DIR is the base install direc-
tory for the JSDK. The Java extension must be built as
a shared dll.

with-xml Enable XML support.

Configuring on Unix/Linux/Mac
PHP has configuration settings that allow you to change some of its behavior.
The configuration settings are read by PHP at startup from a file called
php.ini. The default location where php.ini should be located is /usr/
local/lib/php.ini. However, you can change this default location by using
an installation option, as I describe in the previous section. If PHP doesn’t
find the php.ini file in the expected directory, default settings are used.

You may have to copy the php.ini file to the correct location. The default
file is in the php directory called php.ini-dist. Copy it by using the follow-
ing command:

cp php.ini-dist /usr/local/lib/php.ini

On the Mac, use the following:

sudo cp php.ini-dist /usr/local/lib/php.ini

343Appendix A: Installing PHP

25 541668 AppA.qxd 3/25/04 2:56 PM Page 343

You can edit php.ini to change the settings for PHP. In general, the defaults
are okay. PHP settings are discussed throughout the book when the settings
are relevant to PHP features. For example, you can change the settings in
php.ini to control how PHP handles and displays error messages. The error
handling settings are discussed in Chapter 4 when PHP error handling is
discussed.

If you’re using PHP with Apache, you must configure Apache to recognize
PHP files. To configure Apache, follow the steps below:

1. Locate the Apache configuration file, called httpd.conf.

It is on your system, possibly in /etc or in /usr/local/apache/conf.
On Mac, it is probably located in /etc/httpd. You must edit this file
before PHP can run properly.

2. Add a line to the file that tells Apache to load the PHP module.

Find the list of LoadModule statements. You load the PHP module with
the line:

LoadModule php5_module libexec/libphp5.so

Check to be sure that this line is there. If it is not there, add it. If it is
there with a pound sign (#) at the beginning of the line, remove the
pound sign.

3. Add a line to the file that tells Apache which files may contain
PHP code.

Look for a section describing AddType. You may see one or more AddType
lines for other software. The AddType line for PHP is

AddType application/x-httpd-php .php

Look for this line. If you find it with a pound sign (#) at the beginning of
the line, remove the pound sign (#). If you don’t find this line, add it to
the list of AddType statements. This line tells Apache to look for PHP
code in all files with a .php extension. You can specify any extension or
series of extensions. On Mac, add this line to the bottom of the file.

4. Mac only: If you have been previously running the PHP that came
with the Mac, you need to comment out the following lines.

LoadModule hfs_apple_module
libexec/httpd/mod_hfs_apple.so
AddModule mod_hfs_apple.c

Just add a # at the beginning of each line to make the lines inactive.

5. Start (if it’s not running) or restart (if it is running) the Apache httpd
server.

You can start or restart the server by using a script that was installed
on your system during installation. This script may be apachectl or
httpd.apache, and it may be located in /bin or in /usr/local/
apache/bin. For example, if the script is called apachectl, you can start

344 Part VI: Appendixes

25 541668 AppA.qxd 3/25/04 2:56 PM Page 344

the server by typing apachectl start, restart it by using apachectl
restart, or stop it by using apachectl stop. On Mac, type sudo
apachectl restart. Sometimes restarting Apache doesn’t change your
PHP settings; if your settings didn’t change, you must stop the server
first and then start it again. In addition, your computer is undoubtedly
set up so that Apache starts whenever the computer starts. Therefore, if
you’re having trouble, you can always shut down and then start your
computer to restart Apache.

Whenever you change any of the settings in php.ini, you may have to
restart Apache before the changes go into effect.

Installing PHP on Computers
Running Windows

PHP runs on Windows 98/Me (although it’s not recommended) and Windows
NT/2000/XP. You can use PHP with your Web server for your Web site (PHP
CGI) or you can use PHP as an independent stand-alone scripting language
(PHP CLI). The two types of PHP require different executable files. You can
install either or both types of PHP software.

There are two ways to install PHP — using the Windows Installer or manually
from a Windows .zip file. Which one you use depends on what you are
planning to use PHP for. Use the following guidelines to choose a method of
installation:

� Windows Installer: Installs PHP CGI only. Includes built-in support for a
selected set of popular functions. This installation includes support for
ODBC, which is a method of interacting with some databases, such as
MS Access, and for SQLite, a quick easy way to store data in flat files.
(See Chapter 12 for a discussion of database use with PHP.) Support is
also included for XML, FTP, and COM. PHP CLI is not installed using this
method.

You can use this simpler, faster installation method as long as the follow-
ing criteria are met:

• You are using PHP with your Web site and don’t need to use PHP
CLI independently.

• You are using PHP for simple HTML or to process forms.

• You are not using a database or, if you are using a database, you
are using ODBC for your database interaction.

• You are using only the built-in functionality.

� Manual installation: All the required files are bundled into a Windows
.zip file. You download the .zip file, unzip it, and place the needed files
into the correct locations manually.

345Appendix A: Installing PHP

25 541668 AppA.qxd 3/25/04 2:56 PM Page 345

PHP includes a lot more functionality than is automatically installed by
the installer. If you need to use any of that functionality, then you need to
use the manual installation method. For example, if you need to use PHP
CLI or if you need to interact with a database other than by using ODBC,
you need to install manually. In addition to the built-in functionality of
PHP, extensions are available with a great deal of added functionality. If
you want to use any of this additional functionality, the necessary files
are included in the Windows .zip file. For more discussion of extensions
and how to install them, see Chapter 14.

Installing PHP CGI with the PHP installer
The following steps install PHP on a Windows computer for use on your Web
site but do not install PHP CLI:

1. Point your Web browser at www.php.net.

2. Click Download.

3. Go to the Windows Binaries section. Click the download link for the
installer for the most recent version of PHP (as of this writing, 5.0.0).

4. Click the link for a mirror Web site from which to download the file,
and then choose the site closest to your location.

A dialog box opens.

5. Select the option to save the file.

A dialog box opens that lets you select where the file is to be saved.

6. Navigate to where you want the file to be downloaded. Then click Save.

After the download is complete, you see a file in the download location
containing all the files needed. The file is named php, followed by the
version number and -installer.exe. For the current version, the file is
named php500-installer.exe.

7. If you’re not using IIS or PWS for your Web server and you currently
have your Web server running, shut it down.

8. Navigate to the directory where you downloaded PHP and double-
click php500-installer.exe.

The installer software starts with the screen shown in Figure A-1.

9. Click Next.

The license is displayed.

10. Click I Agree to continue.

You see a screen in which you can choose the type of installation.

346 Part VI: Appendixes

25 541668 AppA.qxd 3/25/04 2:56 PM Page 346

11. Select Standard and then click Next.

You see a screen showing the directory where PHP is to be installed.

12. If you want to install PHP in the default directory, c:\php, click
Next. If you want to install PHP in a different directory, click Browse,
select a directory, and click OK; then click Next.

You see a mail configuration screen.

13. The mail screen has two fields to collect information for use when you
send e-mail from a PHP script. If you plan to send email and know the
address of your SMTP server or the From address you want to use in
your e-mail, enter them now. If you don’t know this information, just
leave the defaults selected.

If you need to, you can change this later by editing the PHP configura-
tion file.

14. Click Next

You see the screen shown in Figure A-2. It shows a list of Web servers
that PHP can be installed with.

15. Select the server that you’re using. If the server that you’re using is
not listed, select None.

16. Click Next.

You see the Ready screen. The installer is now ready to install.

17. Click Next to start the installation.

You see a confirmation message after PHP 5.0.0 has been installed. Any
information that you need is be displayed, such as whether you need to
reboot or restart your server. For example, when I selected Apache, I
saw the screen in Figure A-3.

Figure A-1:
The opening

screen of
the PHP
installer.

347Appendix A: Installing PHP

25 541668 AppA.qxd 3/25/04 2:56 PM Page 347

This message doesn’t mean that Apache was not installed. It just means
that it wasn’t automatically configured, so I have to configure it myself,
as described in the configuration section later in this Appendix. Perhaps
by the time that you install PHP, the configuration for Apache will also
be an automated process, saving you the trouble.

Installing PHP manually
To install PHP5 manually on Windows, you must first download a zip file that
contains all the necessary files for PHP. The following steps show how to
install PHP on Windows.

1. Point your Web browser at www.php.net.

2. Click Download.

3. Go to the Windows Binaries section. Click the download link for the zip
package for the most recent version of PHP (as of this writing, 5.0.0).

If you are familiar with .bz format files and know how to uncompress
them, download the .bz file. It’s smaller and faster to download, but not
all software can uncompress it.

Figure A-3:
An installer

message
about

Apache.

Figure A-2:
The Server

Type screen
in the PHP

installer
program.

348 Part VI: Appendixes

25 541668 AppA.qxd 3/25/04 2:56 PM Page 348

4. Click the link for a mirror Web site from which to download the file,
and choose the site closest to your location.

A dialog box opens.

5. Select the option to save the file.

A dialog box opens that lets you select where the file is to be saved.

6. Navigate to where you want the file to be downloaded. Then click Save.

After the download is complete, you see a file in the download location
containing all the files needed. The file is named php, followed by the ver-
sion number and -win32.zip. For the current version, the file is named
php5.0.0-win32.zip.

7. Extract the files from the .zip file into the directory where you want
PHP to be installed, such as c:\php.

If you double click the .zip file, it should open in the software on your
computer that extracts files from .zip files, such as WinZip or PKzip.
Select the menu item for extract and select the directory into which the
files are to be extracted.

When you extract all files from the .zip file, it may put the contents into
a file called php-5.0.0-win32. If so, you can just rename it to something
more reasonable. For example, you can extract the directory into c:\
and then rename it to php, so your installation is in c:\php. c:\php is a
good choice for installation because many configuration files assume
that’s where PHP is installed, so the default settings are more likely to be
correct.

It’s best not to install PHP in a directory with a space in the path, such
as in Program Files/PHP. It sometimes causes problems.

You now have a directory with several subdirectories that contain the
files that you need.

8. Copy PHP CLI into the directory where you intend to run it. It is cur-
rently located in the directory where PHP is installed and is named
php.exe. You can run it from this directory if you want to.

Configuring PHP and your Web
server on Windows computers
PHP uses a configuration file that you can edit to change some of the behav-
ior of PHP. In addition, if you are using PHP for your Web site, you need to
configure your Web server as well.

Configuring PHP on Windows
PHP uses settings in a file named php.ini to control some of its behavior.
PHP looks for php.ini when it begins and uses the settings that it finds.

349Appendix A: Installing PHP

25 541668 AppA.qxd 3/25/04 2:56 PM Page 349

If you used the Windows Installer, a default php.ini file was installed. If you
installed manually, you need to install the php.ini file yourself. A default
configuration file php.ini-dist is located in the directory where PHP was
installed. Copy this file into one of the following directories, giving it the
name php.ini:

� Windows 98/Me/XP: windows

� Windows NT/2000: winnt

If you have a previous version of PHP installed (such as PHP 4.3), make a
backup copy of the php.ini file before you overwrite it with the new one
for PHP5. You can then see the settings you are currently using and change
the settings in the new php.ini file where needed.

If you’re using PHP with the IIS Web server, you need to change one of the
default settings. Open the php.ini file in the windows or winnt directory.
Find the line:

; cgi.force_redirect = 1

This setting needs to be changed to 0. Also, the above setting has a semicolon
at the beginning of the line, which comments the line so that it isn’t active.
For IIS, you need to use the following line.

cgi.force_redirect = 0

In general, the default settings allow PHP to run okay (with the exception
described in the previous paragraph), but you may need to edit some of the
settings for specific reasons. I discuss settings in the php.ini file throughout
the book when I am discussing a topic that may require you to change settings.
For example, PHP error handling actions can be changed by settings in the
php.ini file. The possible settings and their effects are discussed in Chapter 4.

Configuring your Web server for PHP
Your Web server needs to be configured to recognize PHP files. If you
installed with the Windows Installer and your Web server is IIS or PWS, it was
automatically configured during the installation procedure (except for IIS 6).
If your Web server is Apache or if you used the manual installation proce-
dure, you need to do the configuration yourself.

Configuring Apache
To configure Apache to use PHP, follow these steps:

1. You configure Apache by editing a file called httpd.conf.

You may be able to edit it by choosing Start➪Programs➪Apache HTTP
Server➪Configure Apache Server➪Edit Configuration.

350 Part VI: Appendixes

25 541668 AppA.qxd 3/25/04 2:56 PM Page 350

If you can’t find a menu item at the above location, find the httpd.conf
file on your hard disk, usually in the directory where Apache is installed,
in a subdirectory called conf (for example, c:\program files\Apache
group\Apache\conf). Open this file in an editor, such as Notepad or
WordPad.

2. Your httpd.conf file must instruct Apache to send PHP code to the
PHP program. Two statements work together to do this:

• ScriptAlias: A ScriptAlias statement is used to set up a name
for the directory where PHP is installed. Look for ScriptAlias
statements in the httpd.conf file. You may see some for other
software. If you do not see one for PHP, add the following:

ScriptAlias /php/ “c:/php/”

The first argument is the name, and the second argument is what
it represents. In this statement, the name /php/ is used to mean
c:/php/.

• Action: An Action statement is used to tell Apache where to
find PHP. If you don’t find an Action statement for PHP, add the
following:

Action application/x-httpd-php /php/php-cgi.exe

Notice that the Action statement uses the name defined in the
ScriptAlias statement. It locates php-cgi.exe in /php/, which
means c:/php/. If you change the ScriptAlias statement to say
c:/php27/, the Action statement would then look for php-cgi.
exe in c:/php27.

It’s better to use forward slashes. Apache can find the location on
Windows okay.

3. You need to tell Apache which files may contain PHP code.

In the httpd.conf file, look for a section describing AddType. This sec-
tion may contain one or more AddType lines for other software. The
AddType line for PHP is

AddType application/x-httpd-php .php

Look for this line. If you find it with a pound sign (#) at the beginning of
the line, remove the pound sign. If you don’t find the line, add it to the
list of AddType statements. This line tells Apache to look for PHP code in
all files with a .php extension. You can specify any extension or series of
extensions.

4. Start (if it’s not running) or restart (if it is running) Apache.

You can start it as a service on Windows NT/2000/XP by choosing Start➪
Programs➪Apache HTTP Server➪Control Apache Server.

Or you can start it on Windows 98/Me by choosing Start➪Programs➪
Apache Web Server➪Management.

351Appendix A: Installing PHP

25 541668 AppA.qxd 3/25/04 2:56 PM Page 351

Sometimes restarting Apache doesn’t change the settings; if your set-
tings didn’t change, you must stop it first and then start it. In addition,
your computer is undoubtedly set up so that Apache starts whenever
the computer starts. Therefore, if you’re having trouble, you can always
shut down and then start your computer to restart Apache.

Configuring IIS manually
If you installed PHP with the Windows Installer and are using IIS 5 or before,
IIS was automatically installed. However, if you installed PHP manually, you
need to configure IIS. In addition, if you installed PHP with Windows Installer
and are using IIS 6/Windows Server 2003, IIS was not totally configured, so
you need to perform the steps in this section.

To configure IIS to work with PHP, follow these steps:

1. Enter the IIS Management Console.

You should be able to enter by choosing Start➪Programs➪
Administrative Tools➪Internet Services Manager or Start➪Settings➪
Control Panel➪Administrative Tools➪Internet Services Manager.

2. Right-click your Web site (such as Default Web Site).

3. Select Properties.

4. Select the Home Directory tab.

5. Click the Configuration button.

6. Choose the App Mappings tab.

7. Click Add.

8. In the Executable box, type the path to the PHP interpreter: for exam-
ple, c:\php\php-cgi.exe.

9. In the extension box, type .php.

This will be the extension that is associated with PHP scripts.

10. Select the Script Engine check box.

11. Click OK.

Repeat Steps 6–10 if you want any additional extensions in addition to .php
to be processed by PHP, such as .phtml.

352 Part VI: Appendixes

25 541668 AppA.qxd 3/25/04 2:56 PM Page 352

Appendix B

Useful PHP Built-in Functions

P HP is as powerful as it is because of its many functions. This Appendix
is a reference to the most useful functions.

Some of the functions are discussed at various places in the book; some are
not. If the function is discussed in the book, its definition includes a chapter
reference where a more complete description can be found.

Array Functions
This section describes built-in functions that work with arrays.

array
Creates a new array. (See Chapter 6.)

Format: $array = array(key=>value,key=>value,key=>value,...);

array_count_values
Creates an array that contains a count of the values in the original array.

Format: $array_out = array_count_values($orig_array);

For example, suppose that $orig_array contained the following:

$orig_array[a] = John
$orig_array[b] = Mary
$orig_array[c] = John
$orig-Array[d] = Jose

Then $array_out would contain the following:

$array[John] = 2
$array[Mary} = 1
$array[Jose] = 1

26 541668 AppB.qxd 3/25/04 2:55 PM Page 353

array_diff
Returns $array_out with elements from $array1 that are not present in any
other of the specified arrays ($array2, $array3, and so on). (See Chapter 6.)

Format: $array_out = array_diff($array1,$array2,$array3 . . .);

array_intersect
Creates an array that contains the elements that are the same (rather than
different) in two or more arrays. (See Chapter 6.)

Format: $simArray = array_intersect($array1,$array2, . . .);

array_keys
Creates an array containing all the keys in the $orig_array. If search_key is
included, only keys that match search_key are in the new array.

Format: $array_out = array_keys($orig_array,”search_key”);

For example, suppose that $orig_array contained the following:

$orig_array[a] = CA
$orig_array[b] = OR
$orig_array[c] = TX

Then $array_out would contain the following:

$array_out[0] = a
$array_out[1] = b
$array_out[2] = c

Suppose that search_key= OR, as in the following:

$array_out = array_keys($orig_array,”OR”);

Then $array_out would contain the following:

$array_out[0] = b

array_merge
Merges two or more arrays together. If more than one element has the same
non-numeric key, only the last value for the key is added to the output array.
(See Chapter 6.)

Format: $bigArray = array_merge($array1,$array2, . . .);

354 Part VI: Appendixes

26 541668 AppB.qxd 3/25/04 2:55 PM Page 354

array_merge_recursive
Merges two or more arrays. If more than one element has the same non-
numeric key, an array with all the values for the key is added to the output
array. (See Chapter 6.)

Format: $bigArray = array_merge($array1,$array2, . . .);

array_pop
Removes and returns the last element in an array.

Format: $element = array_pop($orig_array);

array_push
Adds the specified element(s) to the end of the array. Returns the new size of
the array.

Format: $new_size = array_push($orig_array,”el1”,”el2”,”el3”);

array_reverse
Reverses the order of the items in $orig_array.

Format: $array_out = array_reverse($orig_array);

array_search
Searches an array for a value. If value is found, key is returned.

Format: $key = $array_search(“value”,$orig_array);

array_slice
Creates a new array that contains a subset of an existing array. Puts number
of elements, beginning with start, into $subArray. (See Chapter 6.)

Format: $subArray = array_slice($orig_array,start,number);

array_sum
Adds all the values in an array. (See Chapter 6.)

Format: $sum = array_sum($orig_array);

array_unique
Removes duplicate elements from an array. (See Chapter 6.)

Format: $array_out = array_unique($orig_array);

355Appendix B: Useful PHP Built-in Functions

26 541668 AppB.qxd 3/25/04 2:55 PM Page 355

arsort
Sorts an array by value in reverse order. (See Chapter 6.)

Format: arsort($orig_array);

asort
Sorts an array by value, keeping the original keys. (See Chapter 6.)

Format: asort($orig_array);

compact
Creates an array from the specified variables ($var1, $var2, and so on). The
variables can be strings or arrays.

Format: $array_out = compact($var1, $var2, . . .);

count
Returns the number of elements in the array. (See Chapter 6.)

Format: $size = count($orig_array);

current
Returns the value of the array element where the pointer is currently located.
(See Chapter 6.)

Format: $value = current($array);

end
Moves the pointer to the last element in an array and returns the value. (See
Chapter 6.)

Format: $value = end($array);

explode
Creates an array containing substrings of a string. The specified separator,
sep, which is generally something like a comma or a tab, divides the string
into substrings. (See Chapter 6.)

Format: $array_out = explode(“sep”,$string);

extract
Creates a set of variables, one for each element of an array. The key for the
element is used as the variable name. (See Chapter 6.)

Format: extract($array);

356 Part VI: Appendixes

26 541668 AppB.qxd 3/25/04 2:55 PM Page 356

implode
Builds a string containing the values of all the elements in an array, separated
by the specified separator. (See Chapter 6.)

Format: $string = implode($array,”sep”);

in_array
Searches through the values in an array for a specified value. Returns TRUE
or FALSE.

Format: $bool = in_array(“value”,$array);

key
Returns the key of the array element where the pointer is currently located.

Format: $key = key($array);

key_exists
Checks an array to see whether it contains an element with the specified key.
Returns TRUE or FALSE.

Format: $bool = key_exists(“key”,$array);

ksort, krsort
Sorts the array by key. ksort sorts in ascending order, and krsort sorts in
reverse (descending) order. (See Chapter 6.)

Format: ksort($array); krsort($array);

natsort, natcasesort
Sorts an array by value in natural order. The order of the results is n1, n2,
n12, n25, rather than n1, n12, n2, n25 in the usual sort. The function natcas-
esort works the same way but is case-insensitive.

Format: natsort($array); natcasesort($array);

next
Moves pointer in array to next element. (See Chapter 6.)

Format: next($array);

prev
Moves pointer in array to previous element. (See Chapter 6.)

Format: prev($array);

357Appendix B: Useful PHP Built-in Functions

26 541668 AppB.qxd 3/25/04 2:55 PM Page 357

range
Sets up an array with elements spanning a range of values. Possible ranges can
be numerical (such as 1–10 or 10@nd1) or alphabetical (such as a–m or m–a).

Format: $array_out = range(start,end);

reset
Moves pointer to the first element in an array. (See Chapter 6.)

Format: reset($array);

sizeof
Returns the number of elements in an array. (See Chapter 6.)

Format: $size = sizeof($array);

sort, rsort
Sorts array by value. sort sorts in ascending order, and rsort sorts in
reverse (descending) order. (See Chapter 6.)

Format: sort($array); rsort($array);

Date and Time Functions
This sections contains functions that work with date and time values.

checkdate
Checks whether date is valid. Returns TRUE or FALSE.

Format: checkdate(month,day,year);

date, gmdate
Converts a Unix timestamp into a formatted date. The function gmdate
returns Greenwich Mean Time. (See Chapter 5.)

Format: $formatted_date = date(“format”,$timestamp);

getdate
Creates an array from a Unix timestamp, each element containing part of the
array, such as seconds, minutes, month, day of the year, and so on.

Format: $array_date = getdate($timestamp);

358 Part VI: Appendixes

26 541668 AppB.qxd 3/25/04 2:55 PM Page 358

localtime
Creates an array of values related to your local time, such as seconds, min-
utes, day of month, and so on.

Format: $array_date = localtime($timestamp);

microtime
Returns time in seconds and microseconds since January 1, 1970.

Format: $time_out = microtime();

mktime, gmmktime
Returns a Unix timestamp. gmmktime uses Greenwich Mean Time. (See
Chapter 5.)

Format: $timestamp=mktime(“hrs”,”min”,”sec”,”mo”,”da”,”yr”);

time
Returns the Unix timestamp for the current time. (See Chapter 5.)

Format: $timestamp = time();

File System Functions
This section contains functions for use with your file system.

basename
Returns the filename from a full path. (See Chapter 13.)

Format: $filename = basename(“path”);

chdir
Change to a different directory. (See Chapter 13.)

Format: chdir(“pathtodirectory”);

chgrp
Changes the group for a file.

Format: chgrp(“pathtofile”,”group”);

359Appendix B: Useful PHP Built-in Functions

26 541668 AppB.qxd 3/25/04 2:55 PM Page 359

chmod
Changes the permissions of the file.

Format: chmod(“pathtofile”,”octalnumber”);

chown
Changes the owner of a file.

Format: chown(“pathtofile”,”newowner”);

closedir
Closes the directory pointed to by the directory handle $dh. (See Chapter 13.)

Format: closedir($dh);

copy
Copies a file, resulting in two copies of the file. (See Chapter 13.)

Format: copy(“oldfilename”,”newfilename”);

dirname
Returns the directory from a path. (See Chapter 13.)

Format: $directory_name = dirname(“path”);

dis_total_space
Returns the number of bytes of total space on the disk.

Format: $space = disk_total_space(“path”);

disk_free_space
Returns the number of bytes of free (unused) space.

Format: $free = disk_free_space(“pathtodir”);

fclose
Closes an open file pointed to by the file handle $fh. (See Chapter 12.)

Format: fclose($fh);

feof
Returns TRUE when the pointer reaches the end of the file. (See Chapter 12.)

Format: feof($fh);

360 Part VI: Appendixes

26 541668 AppB.qxd 3/25/04 2:55 PM Page 360

fgetc
Returns one character (the current character) and moves the pointer to the
next character in the file.

Format: $char = fgetc($fh);

fgetcsv
Reads a line of no longer than length from a file and returns it as an array,
breaking it into elements at the specified separator, sep. (See Chapter 12.)

Format: $array_out = fgetcsv($fh,length,”sep”);

fgets, fgetss
Reads a line from file of no longer than length. Does not return the end-of-
line character. fgetss also strips tags from line. (See Chapter 12.)

Format: $line = fgets($fh,length); $line=fgetss($fh,length);

file
Reads a file and returns an array with one line per element. (See Chapter 12.)

Format: $array_lines = file($fh);

file_exists
Checks whether a specific file exists. Returns TRUE or FALSE. (See Chapter 13.)

Format: $bool = file_exists(“pathtofile”);

fileatime
Returns the time that the specified file was last accessed. (See Chapter 13.)

Format: $timestamp = fileatime(“pathtofilename”);

filectime
Returns the time that the specified file was created. (See Chapter 13.)

Format: $timestamp = filectime(“pathtofilename”);

filemtime
Returns the time that the specified file was last modified. (See Chapter 13.)

Format: $timestamp = filemtime(“pathtofile”);

361Appendix B: Useful PHP Built-in Functions

26 541668 AppB.qxd 3/25/04 2:55 PM Page 361

fileowner
Returns the user ID of the owner of the file. (See Chapter 13.)

Format: $userID = fileowner(“pathtofile”);

fileperms
Returns the file permissions for the file.

Format: $perms = fileperms(“pathtofile”);

filesize
Returns the file size in bytes. (See Chapter 13.)

Format: $size = filesize(“pathtofile”);

filetype
Returns the file type, such a file or directory. (See Chapter 13.)

Format: $type = filetype(“pathtofile”);

flock
Locks a file so that no one else can access it until it’s unlocked. (See
Chapter 12.)

Format: flock($fh,mode);

fopen
Opens a file and returns a pointer to the specified file. (See Chapter 12.)

Format: $fh = fopen(“pathtofile”,”mode”);

fputs
Writes text to a file. Alias for fwrite. Returns the number of bytes written to
the file or FALSE if the function fails. (See Chapter 12.)

Format: $result = fputs($fh,”text”,length);

fread
Reads number of bytes, unless it reaches the end of the file first, from a file.
(See Chapter 13.)

Format: $file_content = fread($fh,number);

362 Part VI: Appendixes

26 541668 AppB.qxd 3/25/04 2:55 PM Page 362

fscanf
Reads text from a file and returns a formatted string. (See the format and
syntax for sprintf in Chapter 13.)

Format: $string = fscanf($fh,”format”,$v1,$v2, . . .);

fseek
Moves the file pointer, depending on the next two parameters. The value
specified in num is a number of characters. You can set mode to SEEK_SET
(moves to char in position num), SEEK_CUR (moves num characters for-
ward from current position), or SEEK_END (moves num characters back from
the last character).

Format: fseek($fh,num,mode);

fwrite
Writes text to the file indicated by $fh, stopping at length. Specifying
length is optional. (See Chapter 12.)

Format: $bytes_written = fputs($fh,”text”,length);

getcwd
Returns the path to the current directory.

Format: $current_directory = getcwd();

getlastmod
Returns the last modification date of the current script.

Format: $timestamp = getlastmod();

is_dir
Checks whether the specified path is a directory. (See Chapter 13.)

Format: $bool = is_dir(“pathtodir”);

is_file
Checks whether a specified file is a regular file, rather than a directory or
special system file. (See Chapter 13.)

Format: $bool = is_file(“pathtofile”);

363Appendix B: Useful PHP Built-in Functions

26 541668 AppB.qxd 3/25/04 2:55 PM Page 363

is_readable
Checks whether a specified file is readable. (See Chapter 13.)

Format: $bool = is_readable(“pathtofile”);

is_uploaded_file
Checks whether a specified file was uploaded via Web server form.

Format: $bool = is_uploaded_file(“pathtofile”);

is_writable
Checks whether a specified file is writable. (See Chapter 13.)

Format: $bool = is_writable(“pathtofile”);

link
Creates a hard link to path at newpath.

Format: link(“path”,”newpath”);

mkdir
Creates a new directory. The value specified in mode is permissions in octal
form.

Format: mkdir(“pathtonewdir”,mode);

move_uploaded_file
Moves a file from its temporary upload directory to a permanent file. (See
Chapter 11.)

Format: move_uploaded_file(“filename”,”pathtodestination”);

opendir
Opens a directory. Returns a pointer to the open directory. (See Chapter 13.)

Format: $dh = opendir(“pathtodir”);

passthru
Executes a system command and outputs the result. (See Chapter 13.)

Format: passthru(“systemcommand”);

364 Part VI: Appendixes

26 541668 AppB.qxd 3/25/04 2:55 PM Page 364

pathinfo
Creates an array with information about a path. The array contains three ele-
ments: dirname, basename, and extension.

Format: $array_dir = pathinfo(“pathtodir”);

readdir
Reads one filename from the open directory. (See Chapter 13.)

Format: $filename = readdir($dh);

readfile
Reads a file and outputs the contents. Can handle a URL.

Format: $numberOfBytesRead = readfile(“pathtofile”);

rename
Renames a file. (See Chapter 13.)

Format: rename(“oldfilename”,”newfilename”);

rewind
Sets a file pointer to beginning of the file referred to by $fh.

Format: rewind($fh);

rmdir
Removes a directory. (See Chapter 13.)

Format: rmdir(“pathtodir”);

tempnam
Generates a unique filename with a specified prefix in the directory.

Format: $filename = tempnam(“pathtodir”,”prefix”);

tmpfile
Creates a temporary file with a unique name, opens it with write privileges,
and returns a pointer to the open file.

Format: $fh = tmpfile();

365Appendix B: Useful PHP Built-in Functions

26 541668 AppB.qxd 3/25/04 2:55 PM Page 365

touch
Sets the modification date of a file. If time isn’t specified, it sets the date to
the current time. If the file does not exist, it’s created.

Format: $bool = touch(“pathtofile”,time);

umask
Sets the default permissions to mask and returns the previous mask. The pre-
vious defaults are restored at the end of the script.

Format: $old_mask = umask(mask);

unlink
Deletes a file. (See Chapter 13.)

Format: unlink(“pathtofile”);

HTTP and Mail Functions
This section contains functions related to HTTP headers and mail functions.

get_browser
Returns an object containing information about the user’s current browser or
about the browser name if specified.

Format: $string = get_browser(“name”);

get_meta_tags
Creates an array, each element of which is a name attribute for any meta tags
found in a file.

Format: $array_tags = get_meta_tags(“pathtofile”);

header
Sends an HTTP header to the Web server. (See Chapter 10.)

Format: header(“HTTPformattedheader”);

mail
Sends e-mail from a PHP script. (See Chapter 13.)

Format: $success = mail(“to”,”subj”,”message”,”headers”);

366 Part VI: Appendixes

26 541668 AppB.qxd 3/25/04 2:55 PM Page 366

parse_url
Returns an array, each element of which is a part of the URL, such as host,
path, port, user, and so on.

Format: $array_url = parse_url(“url”);

setcookie
Creates a cookie. (See Chapter 10.)

Format:
setcookie(“name”,”value”,exp,”path”,”domain”,is_secure);

Mathematical Functions
This section contains functions that perform mathematical operations. There
are many more functions for advanced math that are not listed in this section,
such as cos for cosine, tan for tangent, and pi.

abs
Returns the absolute value of number.

Format: $absolute = abs(number);

bindec
Converts binary to a decimal value.

Format: $number_decimal = bindec(binary);

exp
Returns the constant e raised to the power specified in exponent.

Format: $number = exp(exponent);

floor
Rounds float to the next lower integer.

Format: $int = floor(float);

hexdec
Converts hex (a number in hexadecimal form) to decimal.

Format: $number_decimal = hexdec(hex);

367Appendix B: Useful PHP Built-in Functions

26 541668 AppB.qxd 3/25/04 2:55 PM Page 367

log
Returns the natural log of number.

Format: $log = log(number);

log10
Returns the base-10 logarithm of number.

Format: $log10 = log10(number);

max
Returns the largest number found in an array or a list of numbers.

Format: $num_large = max($array); or $num_large = max(num1,num2,
. . .);

min
Returns the smallest number found in an array or a list of numbers.

Format: $num_min = min($array); or $num_min = min
(num1,num2, . . .);

number_format
Formats a number with specified decimal (dec) and thousands separators
(thous). The default is a standard decimal point (.) and a comma (,) for the
thousands separators. (See Chapter 5.)

Format: $formatted = number_format(number,”dec”’,”thous”);

octdec
Converts a number in octal form to decimal form.

Format: $number_decimal = octdec(octal);

pow
Returns number raised to power.

Format: $result = pow(number,power);

rand
Returns a random number between min and max.

Format: $number_rand = rand(min,max);

368 Part VI: Appendixes

26 541668 AppB.qxd 3/25/04 2:55 PM Page 368

round
Rounds number to the nearest number with the specified number of decimal
places.

Format: $result = round(number,dec);

sqrt
Returns the square root of number.

Format: $square_root = sqrt(number);

srand
Seeds the random number generator with seed.

Format: srand(seed);

PHP Options and Information Functions
This section contains functions that work with PHP options and information.

getenv
Returns the value of an environmental variable.

Format: $environment_value = getenv(“envvarname”);

getlastmod
Gets the time that the current script was last modified.

Format: $timestamp = getlastmod();

ini_get
Gets the value for a configuration option.

Format: $string = ini_get(“option”);

ini_set
Sets the value of a configuration option. (See Chapter 4.)

Format: ini_set(“option”,”setting”);

369Appendix B: Useful PHP Built-in Functions

26 541668 AppB.qxd 3/25/04 2:55 PM Page 369

phpinfo
Outputs information about your PHP version and settings. (See Chapter 2.)

Format: phpinfo();

phpversion
Returns the current PHP version.

Format: $version = phpversion();

putenv
Sets an environments variable. The value indicated in setting is usually in
the form name=value.

Format: putenv(“setting”);

String Functions
This section contains functions that work with strings.

addslashes
Escapes single quotes, double quotes, backslashes, and \0 in strings.

Format: $string_escaped = addslashes(“string”);

base64_encode, base64_decode
Encodes/decodes a string of base-64–coded characters, usually binary data.
(See Chapter 13.)

Format: $string_encoded = base64_encode(“string”);

chop
Truncates blank spaces at the end of a string.

Format: $chopped = chop(“string”);

chr
Returns a single ASCII character for the number code.

Format: $char = chr(code)

370 Part VI: Appendixes

26 541668 AppB.qxd 3/25/04 2:55 PM Page 370

count_chars
Creates an associative array out of a string. Each element has a character as
a key, and the value is the number of that character in the string. This func-
tion has some options for only returning characters with count 0 or with
nonzero and others. Default, when no options is specified, is all characters.

Format: $array = count_chars($string,option);

echo
Outputs a list of one or more items. (See Chapter 3.)

Format: echo item1,item2,item3, . . .

ereg, eregi
Searches a string for pattern. The function eregi works the same but is
case-insensitive. (See Chapter 7.)

Format: $bool = ereg(“pattern”,$string);

ereg_replace, eregi_replace
Searches a string for pattern and replaces pattern with newchar.
Ereg_replace is case-sensitive; eregi_replace is not. (See Chapter 7.)

Format: $newstring = ereg_replace(“pattern”,”newchars”,
$string);

explode
Creates an array. Each element is part of the string, split at sep.

Format: $array_out = explode(“sep”,$string);

htmlentities
Converts HTML entities to special characters in a string.

Format: $string_out = htmlentities($orig_string);

htmlspecialchars
Converts special characters to HTML entities, such as & to &.

Format: $string_out($string);

implode
Joins every element in an array into a string, separated by sep.

Format: $string_out = ($array,”sep”);

371Appendix B: Useful PHP Built-in Functions

26 541668 AppB.qxd 3/25/04 2:55 PM Page 371

nl2br
Inserts a
 before all new line characters (\n) in $string.

Format: $string_out = ($string);

ord
Returns the ASCII value of the first character in the string.

Format: $integer = ord(“string”);

parse_url
Creates an associative array. Each element is part of the URL.

Format: $array = parse_url($url);

print
Outputs item, where item can be a string, a number, or a variable.

Format: print item;

printf
Outputs a string formatted according to format. (See Chapter 5.)

Format: printf(“format”,arg1,arg2,arg3, . . .);

split, spliti
Creates array. Each element is part of a specified string, split based on the
regular expression pattern. Split is case-sensitive; spliti is not.

Format: $array = split(“pattern”,$string); $array =
spliti(“pattern”,$string);

sprintf
Returns a string formatted according to format. (See Chapter 5.)

Format: $string = sprintf(“format”,arg1,arg2,arg3 . . .);

str_pad
Returns a string that is padded to make it number long. The character speci-
fied by pad is used to pad the string.

Format: $string_out = str_pad($string,numberh,”pad”);

372 Part VI: Appendixes

26 541668 AppB.qxd 3/25/04 2:55 PM Page 372

str_repeat
Returns a string that contains $string repeated number times.

Format: $string_out = str_repeat($string,number);

str_replace
Finds all instances of oldtext in $string and replaces them with newtext.

Format: $string_out = str_replace(“oldtext”,”newtext”,$string)

strchr, strrchar
The function strchr returns part of string from char to end of $string, and
strrchar returns $string from char to start of string.

Format: $string_part = strchr($string,”char”);

strcmp, strcasecmp
Compares two strings on alphabetical and numerical order . Returns @@n1 if
str1 is less, 0 if two strings are equal, or +1 if str1 is greater. strcmp is case-
sensitive; strcasecmp is not.

Format: strcasecmp($str1,$str2);

strcspn
Returns the position of the first occurrence of char in $string.

Format: $int = strcspn($string,”char”);

strip_tags
Removes HTML and PHP tags from string. The value allowed is optional and
specifies tags that should not be stripped. (See Chapter 10.)

Format: $string_stripped = strinp_tags($string,”allowed”);

strlen
Returns the number of characters in $string. (See Chapter 7.)

Format: $length = strlen($string);

strpos, strrpos
strpos returns the position of the first occurrence of char in $string.
strrpos returns position of last occurrence of char in string.

Format: $integer = strpos($string,”char”); $integer =
strrpos($string,”char”);

373Appendix B: Useful PHP Built-in Functions

26 541668 AppB.qxd 3/25/04 2:55 PM Page 373

strspn
Returns the length of the substring in $string that matches text.

Format: $length = strspn($string,”text”);

strstr, stristr
Returns part of $string from the first occurrence of char to end of $string.
Strstr is case-sensitive; trichar is case-insensitive.

Format: $str_part = strstr($string,”char”); $str_part =
strstr($string,”char”);

strtolower, strtoupper
Converts $string to lowercase or uppercase.

Format: $string_lower = strtolower($string);

strtr
Converts from characters in $string to characters in to.

Format: $string_out = strtr($string,”from”,”to”);

substr
Returns a substring of $string. Starts at start and reads number characters.

Format: $substring = substr($string,start,number);

substr_replace
Replaces a substring with newtext. Starts at start and reads number charac-
ters.

Format: $string_new =
substr_replace($string,”newtext”,start,number);

trim, ltrim, rtrim
Removes whitespace characters from $string. The trim function removes
from beginning and end; ltrim removes from beginning; rtrim removes from
end.

Format: $string_new = trim($string);

374 Part VI: Appendixes

26 541668 AppB.qxd 3/25/04 2:56 PM Page 374

ucfirst
Converts first character in $string to uppercase.

Format: $string_new = ucfirst($string);

ucwords
Converts first character of each word in $string to uppercase.

Format: $string_new = ucwords($string);

wordwrap
Inserts end-of-line character (\r\n) into $string every length characters.

Format: $string_out = wordwrap($string,length);

Variable Functions
This section contains functions that work with variables.

empty
Tests whether the variable specified is empty. (See Chapter 7.)

Format: $bool = empty($varname);

get_defined_classes
Creates an array containing the names of all the classes in the script, includ-
ing those in included files.

Format: $array_classes = get_defined_classes();

get_defined_constants
Creates an associative array of all the constants.

Format: $array_constants = get_defined_constants();

get_defined_functions
Creates an array with names of all functions.

Format: $array_functions = get_defined_functions();

375Appendix B: Useful PHP Built-in Functions

26 541668 AppB.qxd 3/25/04 2:56 PM Page 375

get_defined_vars
Creates an array of all variables.

Format: $array_vars = get_defined_vars();

isset
Checks whether variable is set. (See Chapter 7.)

Format: $bool = isset($varname);

print_r
Outputs contents of a variable. (See Chapter 4.)

Format: print_r($varname);

putenv
Sets an environmental variable as specified by setting. setting is usually
name=value.

Format: putenv(“setting”);

serialize
Converts data into a string containing binary data. Used to store data in a file
or database. The specified variable can be any type, including an object or a
function.

Format: $string_ser = serialize($variable);

unserialize
Converts serialized data back to its original form.

Format: $variable = unserialize($string_ser);

unset
Removes a variable. (See Chapter 4.)

Format: unset($varname);

var_dump
Outputs contents of a variable. (See Chapter 4.)

Format: var_dump($varname);

376 Part VI: Appendixes

26 541668 AppB.qxd 3/25/04 2:56 PM Page 376

• Symbols •
+ (addition operator), 77
+= (addition shortcut operator), 78
& (ampersand), 68, 69, 228
&& (ampersand, double), 139
‘ (apostrophe), 84
* (asterisk), 77, 135, 266
*= (asterisk, equal sign), 78
@ (at sign), 57, 105–106
\ (backslash), 84, 135, 342
`` (backticks), 287, 288
^ (caret), 134, 135
, (comma), 76–77. See also CSV file
/*...*/ (comments), 48–50
// (comments), 49
(comments), 49
; (comments), 68
{} (curly braces)

confusing with parentheses, 326
enclosing block of statements, 36–37, 142
enclosing variable names, 60, 121
mismatched, 325–326
in pattern matching, 135

-- (decrement operator), 78
/ (division operator), 77
/= (division shortcut operator), 78
$ (dollar sign), 54, 134, 323
$$ (dollar sign, double), 60
. (dot), 85, 134
.= (dot, equal sign), 85
... (ellipses), 2
= (equal sign), 55, 132, 154, 322
=> (equal sign, right angle bracket),

99, 119–120
=== (equality operator), 131
== (equality operator), 131
! (exclamation point), 142–143
> (greater than operator), 131
>= (greater than or equal operator), 131
<<<heredoc statement, 81
- (hyphen), 77, 89, 135, 214
-= (hyphen, equal sign), 78

-> (hyphen, right angle bracket), 190–191
++ (increment operator), 78
!= (inequality operator), 131
!== (inequality operator), 131
<> (inequality operator), 131
< (less than operator), 131
<= (less than or equal operator), 131
* (multiplication operator), 77
*= (multiplication shortcut operator), 78
\n (new line), 46–47, 82
() (parentheses)

affecting order of comparisons, 139
affecting order of operation, 77–78
confusing with curly braces, 326
indicating function call, 162, 167
mismatched, 325–326
in pattern matching, 134

% (percent sign), 77, 90
<?php...?> tags, 38–39
+= (plus, equal sign), 78
+ (plus sign), 77, 135
++ (plus sign, double), 78
? (question mark), 134, 227
quotes, (“ double) and (‘ single)

enclosing numbers in mathematical
operations, 76

enclosing strings, 55, 59–60, 82–84
escaped characters in, 84
escaping with backslash (\), 342
magic quotes, enabling, 342
in mathematical operations, 76
special characters in, 82
using incorrectly, 323
variables in, 59–60, 82–84

; (semicolon), 36, 68, 321–322
/ (slash), 77
/= (slash, equal sign), 78
[] (square brackets), 98, 134, 135
- (subtraction operator), 77
-= (subtraction shortcut operator), 78
\t (tab), 82, 257
~ (tilde), 68
_ (underscore), 54, 61

Index

27 541668 Index.qxd 3/25/04 2:58 PM Page 377

| (vertical bar), 135
|| (vertical bar, double), 139

• A •
abs function, 367
Access databases, 12, 260
Action statement, 351
addition operator (+), 77
addition shortcut operator (+=), 78
addslashes function, 370
ampersand (&), 68, 69, 228
ampersand, double (&&), 139
and, joining comparisons with, 138
angle brackets, three (<<<), starting

heredoc statement, 81
Apache Web server

benefits of, 25–26
checking if installed, 334, 339–340
configuring, 344–345, 351–352
definition of, 15, 16
installed with Linux, 333–334
installing, 26
installing PHP with, 335–338
SSL and, 202–203
version requirements, 334, 339
versions of, 26
Web site for, 16, 26
Web space, default for, 28, 29

apostrophe (‘), in single-quoted strings, 82.
See also quotes

apxs utility, Apache, 334, 340
apxs2 utility, Apache, 336
Arachnophilia program editor, 33
$argc built-in array, 41, 125–126
$argv built-in array, 41, 125–126
array function, 99, 119–120, 353
array_count_values function, 353
array_diff function, 115, 353
array_diff_assoc function, 115
array_flip function, 117
array_intersect function, 116, 354
array_keys function, 354
array_merge function, 114, 354
array_merge_recursive function,

114, 355
array_pop function, 355
array_push function, 355
array_reverse function, 355

array_search function, 355
array_slice function, 113–114, 355
array_sum function, 116–117, 355
array_unique function, 117, 355
arrays

built-in PHP arrays, 123–126
changing values in, 101–102
comparing, 115–116
conversions to and from, 110–113, 121
copying to another array, 102
creating, 97–100, 119–120
definition of, 97
deleting, 103
displaying values in, 100–101, 120
exchanging keys and values of, 117
functions for, 353–358
intersecting, 116
keys of, 98–99
merging, 114
multidimensional, 114, 118–122
numbering of, starting with zero instead

of one, 324–325
passing to functions, 167–168
reading flat files into, 254–255
referencing values in statements,

105–107, 120–121
removing duplicate values from, 117
removing values from, 102–103
size of, determining, 110
sorting, 103–105
splitting, 113–114
summing values in, 116–117
traversing (iterating), 107–110, 121–122
of words in string, 86

arsort function, 105, 356
asort function, 103–104, 356
asterisk (*), 77, 135, 266
asterisk, equal sign (*=), 78
at sign (@), 57, 105–106
attachments, e-mail, 300–302
attributes. See properties
autoglobal arrays. See superglobal arrays

• B •
background, executing commands in, 287
backslash (\), 84, 135, 342
backticks (``), 287, 288
backups, 23, 34

378 PHP 5 For Dummies

27 541668 Index.qxd 3/25/04 2:58 PM Page 378

base64_decode function, 370
base64_encode function, 370
basename function, 281, 359
BBEdit program editor, 33
BCMath extension, 304
bindec function, 367
Black Beans Web site, 328
books. See publications
Boolean data types, 73, 74, 132

 tag, 46–47
braces ({}). See curly braces
brackets ([]). See square brackets
break statement, 145, 154–156
built-in PHP arrays, 123–126
built-in PHP constants, 66, 68–69, 71
built-in PHP functions

for arrays, 353–358
for date and time, 358–359
for file system, 359–366
for HTTP headers, 366–367
for mathematical operations, 367–369
for PHP options, 369–370
for strings, 370–375
using, 174
for variables, 375–376

Buying a Computer For Dummies
(Gookin), 25

bzip2 Compression extension, 307

• C •
calendar extension, 304
camel caps, in variable names, 54
caret (^), 134, 135
case of constant and variable names, 54, 62
case statement. See switch statement
catch statement, 194
ceil function, 79
character strings. See strings
characters, 81, 304
chdir function, 284, 359
check boxes, 208
checkdate function, 358
checksums, Mhash extension for, 307
chgrp function, 359
chmod function, 360
chop function, 370
chown function, 360
chr function, 370

class statement, 183–184
classes. See also objects

constructor for, 186
creating, 183–189
creating objects from, 190
definition of, 178–179
example of, 186–189
Exception class, 194
inheritance and, 180
methods for, 185–186
properties for, 184–185
using, 190–191

CLI (Command Line Interface), 14, 17,
30–31, 31, 40–42

ClibPDF extension, 307
__clone method, 195
closedir function, 360
COM extension, 304
comma (,), 76–77. See also CSV file
Command Line Interface. See CLI
commands. See system commands
comma-separated values file. See CSV file
comments (//), 49
comments (;), 68
comments (#), 49
comments (/*...*/), 48–50
commercial software, 261
compact function, 112–113, 356
comparison operators, 131–132, 322
complex statements, 37
compressed files, extensions for, 307–308
computer, setting up for PHP, 25
concatenation, 85
conditional statements, 130, 140–145
conditions, 131–139, 142–143, 322
configuration file. See php.ini file
configure command

for Apache installation, 337, 338
for Linux and Unix installation, 335
for Mac OS X installation, 341
options for, list of, 263, 342–343

constants, 62–65, 66, 68–69, 71. See also
variables

__construct method, 186
constructor, 186
continue statement, 154–156
conventions used in this book, 2
$_COOKIE built-in array, 124, 230
cookie variables, built-in array for, 124

379Index

27 541668 Index.qxd 3/25/04 2:58 PM Page 379

cookies, 227, 229–231, 233, 235–237
copy function, 282, 360
count function, 110, 356
count_chars function, 371
Crack extension, 307
CSV (comma-separated values) file, 256–259
Ctrl+C, stopping infinite loops with, 154
ctype extension, 304
cURL extension, 306–307
curly braces ({})

confusing with parentheses, 326
enclosing block of statements, 36–37, 142
enclosing variable names, 60, 121
mismatched, 325–326
in pattern matching, 135

current function, 108, 356

• D •
data

accessing from flat files, 249–255
exchanging with other programs, 255–259
passing between Web pages, 226–238
storing in databases, 247–249
storing in flat files, 247–249
storing in SQLite flat files, 249
writing to flat files, 252

data types. See also strings
assigned to variables automatically, 74
Boolean, 73, 74, 132
comparison functions for, 133
comparison operators for, 131
converted automatically, 74
determining for variable, 75
floating point numbers, 73, 75–80, 89–92
integers, 73, 75–80, 89–92
type casting, 74–75
of values passed to functions, 167–168

Database Management System. See DBMS
databases. See also SQLite

accessing, 266–271
advantages of, 248–249
choosing, 260–261
closing connection to, 271
connecting to, 267–268
DB package for, 309, 315–318
definition of, 247, 259
error handling for, 272–273
example script for, 273–276

extensions for, 306
features for, 11–12
functions for, 262
location of, 202
processing queried data, 269–271
provided by Web hosting company, 23
querying, 266, 268–269
security for, 262
setting up, 263–265
structure of, 261–262
supported by PHP, list of, 12, 260

date function, 92–93, 358
dates and times

calendar extension, 304
current date and time, 92
formatting, 92–93
functions for, 358–359
storing a timestamp in a variable, 94–95

DB package, 309, 315–318
DB2 databases (IBM), 12, 260, 263
dBASE databases, 12
DBMS (Database Management System),

259. See also databases
debugger, enabling, 342
decrement operator (--), 78–79
default.htm file, 21
define function, 62
__destruct method, 196
Developer’s Tools CD, Mac OS X, 340
die statement, 72, 174–175
directories

changing current directory, 284
for configuration file, 42, 342–343, 350
creating, 283–284
definition of, 279
determining for file, 281
for documentation, 342
listing with FTP, 293–294
for man files, 342
opening, 284
for PHP programs, 342
reading file names from, 284–285
Web space location, 21, 28

directory handle, 284
directory servers, LDAP extension for, 307
dirname function, 281, 360
discussion lists. See mailing lists
disk space requirements, Web hosting, 23
disk_free_space function, 360

380 PHP 5 For Dummies

27 541668 Index.qxd 3/25/04 2:58 PM Page 380

disk_total_space function, 360
display_errors setting in php.ini file, 69
division operator (/), 77
division shortcut operator (/=), 78
dll (Dynamic Link Library), 264
do..while statement, 145, 151–152
documentation for PHP, 342
dollar sign ($), 54, 134, 323
dollar sign, double ($$), 60
domain name registration, 23
Domxml extension, 307
dot (.), 85, 134
dot, equal sign (.=), 85
double quotes. See quotes
Dreamweaver MX software, 34
Dynamic Link Library. See dll
dynamic variable names, 60–61
dynamic Web pages, 199

• E •
E_ALL built-in constant, 68–69
echo statement

definition of, 36, 44–45, 371
displaying array values with, 106
displaying constants with, 66
displaying HTML forms with, 204–205
displaying multidimensional array values

with, 120–121
displaying strings with, 89
displaying text fields with, 206
displaying variables with, 56–57, 59–60
example scripts using, 57–58

editors. See program editors
EditPlus program editor, 33
ellipses (...), 2
else statement. See if statement
elseif statement. See if statement
Emacs program editor, 33
e-mail, 23, 297–302, 307, 367
embedded scripting language, 15
empty function, 133, 213, 375
encryption, 307
enctype attribute, form tag, 239
end function, 108, 356
E_NOTICE built-in constant, 68–69
$_ENV built-in array, 124–125
equal sign (=), 55, 132, 154, 322

equal sign, right angle bracket (=>), 99,
119–120

equality operator (==), 131
equality operator (===), 131
ereg function, 371
eregi function, 371
eregi_replace function, 371
ereg_replace function, 371
error level, setting, 68–70
error messages. See also troubleshooting

about long arrays, 123
cannot modify header information, 225
customizing, 71–72
database access denied, 272
database results invalid, 272–273
definition of, 67
exception handling, 194
formatting of, 41
in functions, 174–175
functions handling, 72
logging, 70–72
missing argument, 169
no such file or directory, 250
parsing errors, 36, 321
preventing display of, 57, 105–106
SQLite and, 278
from system commands, 286
types of, 67
undefined index, 105
undefined variables, 57

error_log setting, in php.ini file, 70
error_log statement, 71–72
error_reporting setting, in php.ini file,

68–69
error_reporting statement, 69–70
escaped characters, in double-quoted

strings, 84
E_USER_ERROR built-in constant, 71
E_USER_NOTICE built-in constant, 71
E_USER_WARNING built-in constant, 71
Exception class, 194
exclamation point (!), 142–143
exec function, 287, 289–290
executable files, checking for, 280
exit statement, 175
exp function, 367
explode function, 110–111, 356, 371
extension setting in php.ini file, 264–265

381Index

27 541668 Index.qxd 3/25/04 2:58 PM Page 381

extensions to PHP
activating and deactivating, 304–305
list of, 304, 306–308
PEAR repository for, 309–318

extract function, 112, 356

• F •
f formatting instruction, 90
FALSE values, 74. See also Boolean

data types
fclose function, 251, 360
FDF extension, 307
feof function, 253, 360
fgetc function, 361
fgetcsv function, 256–257, 361
fgets function, 252–254, 361
fgetss function, 361
__FILE__ built-in constant, 66
file extensions

for included files, 158, 160
for PHP scripts, 15, 21

file function, 254–255, 361
file handle, 249
file system, 279. See also files
File Transfer Protocol. See FTP
fileatime function, 281, 361
filectime function, 281, 361
file_exists function, 280, 361
file_get_contents function, 255, 300–301
filegroup function, 281
filemtime function, 281, 361
fileowner function, 281, 362
fileperms function, 362
filePro databases, 12
files. See also databases; flat files; FTP

checking for existence of, 280
checking whether executable, 280
checking whether readable, 281
checking whether writable, 281
compressed files, 307
copying, 282
creation time of, determining, 281
current file, built-in constant for, 66
deleting, 283
directory name of, from path, 281
filename of, from path, 281
functions for, 359–366
group ID for, determining, 281

including in scripts, 158–162
last access time of, determining, 281
last modified time of, determining, 281
list of, displayed on Web site, 201
names of, retrieving, 284–285
renaming, 282
security for, 201–202
sending as e-mail attachments, 300–302
size of, determining, 281
transferring with FTP, 292–297
type of, determining, 280, 281
uploaded, built-in array for, 124
uploading to Web site, 238–244
user ID for, determining, 281

$_FILES built-in array, 124, 240–241
filesize function, 281, 362
filetype function, 362
final var statement, 185
Flash movies, 308
flat files, 247–259, 276–278. See also SQLite
(float), type casting to floating point, 75
floating point data types, 73, 75–80, 89–92
flock function, 362
floor function, 79, 367
folders. See directories
font conventions used in this book, 2
fopen function, 249–251, 362
for statement, 145–149
foreach statement, 109–110, 121–122
formatting instructions, 90–92
forms. See HTML forms
fputs function, 362
fread function, 362
Free PHP Hosting Directory Web site, 330
FrontBase databases, 12
fscanf function, 363
fseek function, 363
FTP (File Transfer Protocol), 21, 34,

292–297, 304, 306, 342
ftp_cdup function, 296
ftp_chdir function, 296
ftp_close function, 294, 296
ftp_connect function, 292–293, 296
ftp_delete function, 296
ftp_exec function, 296
ftp_fget function, 296
ftp_fput function, 296
ftp_get function, 294–296
ftp_login function, 293, 296

382 PHP 5 For Dummies

27 541668 Index.qxd 3/25/04 2:58 PM Page 382

ftp_mdtm function, 296
ftp_mkdir function, 296
ftp_nlist function, 293–294, 296
ftp_put function, 294, 296
ftp_pwd function, 296
ftp_rename function, 297
ftp_rmdir function, 297
ftp_size function, 297
ftp_systype function, 297
functions. See also built-in PHP functions;

methods; specific functions
calling, 162, 175
creating, 163–165
definition of, 162
for error handling, 72
error handling in, 174–175
global variables in, 166
local variables in, 165–166
for mail, 367
passing values to, 164, 167–171
returning values from, 164–165, 171–173
sorting arrays by, 105

fwrite function, 252, 363

• G •
GD library extension, 306, 307
general-purpose scripting. See scripting

language, PHP used as
$_GET built-in array, 124, 211, 228
GET method, 211–212
get variables, built-in array for, 124
get_browser function, 366
getcwd function, 363
getdate function, 358
get_defined_classes function, 375
get_defined_constants function, 375
get_defined_functions function, 375
get_defined_vars function, 376
getenv function, 369
getlastmod function, 363, 369
get_meta_tags function, 366
gettext extension, 307
global statement, 166
global variables, 124, 166
$GLOBALS built-in array, 124
gmdate function, 358
gmmktime function, 359

Gookin, Dan
Buying a Computer For Dummies, 25
PCs For Dummies, 25

graphics, extension for, 306–307
greater than operator (>), 131
greater than or equal operator (>=), 131
group ID for file, 281
gvim program editor, 33
gzip-compressed files, extension for, 304

• H •
header function, 225–226, 324, 366
Hello World example, 42–44, 57–58
help file, displaying, 42
<<<heredoc statement, 81
hexdec function, 367
hidden fields in HTML forms, 231
HomeSite program editor, 33
host computer, security for, 200–201
HTML 4 For Dummies, Quick Reference

(Ray; Ray), 3
HTML 4 For Dummies (Tittel; Pitts), 3, 204
HTML forms

books about, 204
check boxes in, 208
collecting data with, 204–212
data entered by users, security for,

202, 213–222
definition of, 203
displaying, 204–205
example script for, 215–220
features for, 11
hidden fields in, 231
passing information to next page,

227, 231–232
post variables in, built-in array for, 124
submit button, displaying new page, 224
uploading files using, 239–244

HTML links. See links, HTML
HTML pages. See Web pages
HTML tags, 202, 203
htmlentities function, 371
HTML-Kit program editor, 33
htmlspecialchars function, 220–222, 371
HTTP headers, 41, 225–226, 324, 366–367
$HTTP_COOKIE_VARS built-in array, 124
$HTTP_ENV_VARS built-in array, 124

383Index

27 541668 Index.qxd 3/25/04 2:58 PM Page 383

$HTTP_FILES_VARS built-in array, 124
$HTTP_GET_VARS built-in array, 124
$HTTP_POST_VARS built-in array, 124
HTTPS server, cURL extension for, 306
https, URL prefixed with, 202
$HTTP_SERVER_VARS built-in array, 124
$HTTP_SESSION_VARS built-in array, 124
hyperlinks. See links, HTML
hyphen (-), 90, 135, 214
hyphen, right angle bracket (->), 190–191

• I •
IBM DB2. See DB2 databases
icons used in this book, 5
iconv extension, 307
IDE (Integrated Development

Environment), 33–34, 329
identifiers. See variables, naming
if statement, 37, 140–143
IIS/PWS Web server

configuring on Windows, 350, 352
definition of, 16
PHP used with, 15
SSL and, 203
Web space, default for, 28

IMAP extension, 307
implode function, 111–112, 121, 357, 371
in_array function, 357
.inc file extension, 158
include directory, 161–162
include statement, 158–160, 203, 325, 342
include_once statement, 159
include_path setting, in php.ini file, 161
including files, 158–162
increment operator (++), 78–79
indenting statements, 37
index of an array. See keys of an array
index.htm file, 21
index.html file, 21, 201
inequality operator (<>), 131
inequality operator (!=), 131
inequality operator (!==), 131
infinite loops, avoiding, 151, 153–154, 156
Informix databases, 12, 260, 263
Ingres databases, 12, 260, 263
inheritance, 180–181

ini_get function, 369
ini_set function, 161, 369
INSERT INTO query, 266
installation

of extensions, 305
of PEAR packages, 313–314
of PHP, 26–27, 333–343, 345–349
of server, 25–26

(int), type casting to integer, 75
integer data types, 73, 75–80, 89–92
Integrated Development Environment.

See IDE
InterBase databases, 12
iPlanet Web server, 15
is_array function, 133
is_dir function, 280, 283, 363
is_executable function, 280
is_file function, 280, 363
is_float function, 133
is_int function, 133
is_null function, 133
is_numeric function, 133
is_readable function, 281, 364
isset function, 133, 376
is_string function, 133
is_uploaded_file function, 364
is_writable function, 281, 364
italic font used in this book, 2

• J •
Japanese characters, extension for, 307
JAVA extension, 307
JavaScript, 11, 12, 244–246
JavaScript For Dummies (Vander Veer), 244

• K •
key function, 107, 357
key_exists function, 357
keys of an array, 98–99. See also arrays
keywords, 63
Komodo software, 34
krsort function, 105, 357
ksort function, 105, 357

384 PHP 5 For Dummies

27 541668 Index.qxd 3/25/04 2:58 PM Page 384

• L •
language support, gettext extension for, 307
LDAP extension, 307
LDAP server, cURL extension for, 306
Lerdorf, Rasmus (PHP developer), 9
less than operator (<), 131
less than or equal operator (<=), 131
line numbers for scripts, 36, 66
__LINE__ built-in constant, 66
link function, 364
links, HTML, 224
Linux

installing PHP, 333–338
running scripts using, 40
setting up database support, 263–264
Web space, default for, 28

list statement, 106–107
local variables, 165–166
localtime function, 359
log file, sending error messages to, 70
log function, 368
log_errors setting, in php.ini file, 70
log10 function, 368
loop statements. See also conditions
break statement, 154–156
continue statement, 154–156
definition of, 130, 145
do..while statement, 151–152
for statement, 146–149
foreach statement, 109–110, 121–122
infinite loops, avoiding, 151, 153–154, 156
while statement, 149–151

lowercase letters. See case of constant
and variable names

ltrim function, 86, 374

• M •
Mac OS X

installing PHP, 339–341
PHPMac Web site, 329
setting up database support, 263–264

magic quotes, enabling, 342
Maguma software, 34
mail. See e-mail
mail function, 299, 367

Mail package, 309
mail server for outgoing mail, 297–299
mailing lists, 17, 25, 30, 327–328
man files, 342
math library, BCMath extension, 304
mathematical operations

built-in functions for, 79, 367–369
on dates, 95
on numbers, 75–79

max function, 368
Mcrypt Encryption extension, 307
messages, e-mail, 299–300
methods

adding to a class, 185–186
choosing, 182
__clone method, 195
__construct method, 186
definition of, 179–180
__destruct method, 196
GET and POST methods, 211–212
private or protected, 191–193

Mhash extension, 307
Microsoft IIS/PWS. See IIS/PWS
Microsoft SQL Server. See SQL Server

databases
microtime function, 359
Mime type extension, 308
min function, 368
Ming for Flash extension, 308
minus, equal sign (-=), 78
minus sign (-), 77
minus sign, double (—), 78
mkdir function, 283–284, 364
mktime function, 94, 359
mod_so module, Apache, 334, 339
modules, on command line, 42
modulus operator (%), 77
move_uploaded_file function, 241, 364
mSQL databases, 12, 260, 263, 265, 342
Multi-byte String extension, 307
multidimensional arrays, 114, 118–122
multiple inheritance, not supported, 181
multiplication operator (*), 77
multiplication shortcut operator (*=), 78
MySQL databases, 12, 17, 203, 260, 263,

265, 343

385Index

27 541668 Index.qxd 3/25/04 2:58 PM Page 385

• N •
\n (new line), 46–47, 82
natcasesort function, 357
native language support, 307
natsort function, 105, 357
nesting, 121–122, 143, 147
Netscape Enterprise Server. See iPlanet

Web server
Net_SMTP package, 309
Net_Socket package, 309
new line character (\n), 46–47, 82
new statement, 190
next function, 108, 357
nl2br function, 372
notices, 67. See also error messages
number_format function, 79–80, 368
numbers

numeric data types, 73, 75–80, 89–92
in variable names, 54

• O •
object-oriented programming

classes, 178–179, 182–191
definition of, 17, 177–178
developing a program using, 181–189
exception handling, 194
inheritance, 180–181
methods, 179–180, 182, 185–186, 191–193
multiple inheritance, not supported, 181
objects, 178–179, 181, 195, 196
polymorphism, not supported, 181
properties, 179, 182, 184–185, 191–193

objects
choosing, 181
copying, 195
creating (instantiating), 190
definition of, 178–179
destroying, 196

octdec function, 368
odbc extension, 304
ODBC (Open Database Connectivity)

standard, 12, 260
open source license for PHP, 10
open source software, 261
opendir function, 284, 364
OpenSSL, 308, 343

operating system commands. See system
commands

operating systems, 10, 26, 124
or, joining comparisons with, 138
Oracle databases, 12, 260, 263, 343
ord function, 372
order of execution, 129–130
order of operations, 77–78
outgoing mail server, 297–299
output statements, 44–48, 79–80, 89–92,

225, 324

• P •
packages. See PEAR
parentheses (())

affecting order of comparisons, 139
affecting order of operation, 77–78
confusing with curly braces, 326
indicating function call, 162, 167
mismatched, 325–326
in pattern matching, 134

parse_url function, 366, 372
parsing errors, 36
parsing, tokenizer extension for, 304
passthru function, 287, 290–291, 364
passwords, 238, 307
pathinfo function, 281, 365
pattern matching (regular expressions)

definition of, 133–134
example patterns, 135–137
Perl-compatible, extension for, 304
special characters for, 134–135
validating HTML form information

with, 214
pcre extension, 304
PCs For Dummies (Gookin), 25
PDF documents, extensions for, 306–308
PEAR (PHP Extension and Application

Repository)
definition of, 309
finding packages in, 309–311
installing packages, 313–314
listing installed packages, 314
packages included with PHP, 309
setting up, 311–313
uninstalling packages, 314

386 PHP 5 For Dummies

27 541668 Index.qxd 3/25/04 2:58 PM Page 386

updating packages, 314
using packages, 314–318

percent sign (%), 77, 90
performance, Zend engine and, 17
period (.), 85, 134
period, equal sign (.=), 85
Perl-compatible regular expressions,

extension for, 304
PHP (Personal Home Page)

applications of, 10–13, 14–15
configuring, 29–30, 32, 343–345, 349–352
definition of, 9, 10, 14–15
extensions to, 304–318
features of, 10, 17, 303
information about, displaying, 42
installing, 26–27, 333–338, 339–341,

345–349
JavaScript and, 11, 12, 244–246
mailing lists, 17, 25, 30, 327–328
program names for, 17
system requirements for, 3, 19
technical support, 10, 16–17, 30
testing, 27–30
updating, 16–17
version 4.x, 18, 22
version 5, 17
version requirements, 22, 27
Web site for, 10, 327

PHP & MySQL For Dummies (Valade),
203, 265

PHP Beginners Web site, 328
PHP Builder Web site, 328
PHP CLI. See CLI
PHP Dev Center Web site, 329
PHP Editors Web site, 329
php- file, 335
.php file extension, 15, 21, 160
PHP files. See scripts
PHP Hypertext Preprocessor. See PHP
php program, 17, 41, 42, 342
PHP scripts. See scripts
<?php...?> tags, 38–39
php5.0.0-win32.zip file, 349
php5ts.dll file, 31, 349
php500-installer.exe file, 346
php-cgi program, 17, 27, 29, 31, 342
PHPEdit software, 34
php.exe file, 17, 31
phpinfo function, 28, 42, 125, 304, 370

php.ini file
activating extensions in, 305
definition of, 32
editing, 32
location of, 42, 342, 343, 350
restarting server after changing, 69
setting error level in, 68–69
setting for long arrays in, 123
setting include directory in, 161
setting outgoing mail server in, 298
setting session save path in, 232
setting sessions automatically

starting, 233
setting temporary upload directory in,

239–240
setting up database support, 264–265
setting whether session ID is passed, 233,

236–237
php.ini-dist directory, 343
php.ini-dist file, 350
PHPMac Web site, 329
$PHPSESSID variable, 232, 235, 236–237
PHPUnit package, 309
phpversion function, 370
.phtml file extension, 15, 21
piping output from system command, 287
Pitts, Natanya (HTML 4 For Dummies), 3, 204
platforms. See operating systems
plus, equal sign (+=), 78
plus sign (+), 77, 135
plus sign, double (++), 78
pointers, traversing an array using, 108–109
polymorphism, not supported, 181
$_POST built-in array, 124, 211
POST method, 211–212
post variables in, built-in array for, 124
PostgreSQL databases, 12, 260, 263, 343
pow function, 368
<pre> tag, 101
prev function, 108, 357
print function, 372
Printer extension, 308
printf function, 80, 89–92, 372
print_r function, 56, 66, 100, 376
privacy. See security
private methods or properties, 191–193
program editors, 32–33, 329
programs, running from PHP, 13
properties, 179, 182, 184–185, 191–193

387Index

27 541668 Index.qxd 3/25/04 2:58 PM Page 387

protected methods or properties, 192–193
publications. See also Web sites

about computers, 25
about HTML, 3
about JavaScript, 244
about PHP with MySQL, 203
about SQL, 265

putenv function, 370, 376

• Q •
queries. See SQL
question mark (?), 134, 227
quotes, (“ double) and (‘ single)

enclosing numbers in mathematical
operations, 76

enclosing strings, 55, 59–60, 82–84
escaped characters in, 84
escaping with backslash (\), 342
magic quotes, enabling, 342
in mathematical operations, 76
special characters in, 82
using incorrectly, 323
variables in, 59–60, 82, 83–84

• R •
radio buttons, 208
rand function, 368
range function, 99–100, 358
Ray, Deborah S. and Ray, Eric J. (HTML 4

For Dummies, Quick Reference), 3
RDBMS (Relational Database Management

System), 259. See also databases
readdir function, 284–285, 365
readfile function, 365
register_globals setting in php.ini

file, 18
register_long_arrays setting in

php.ini file, 123
regular expressions. See pattern matching
Relational Database Management System.

See RDBMS
remainder. See modulus operator
rename function, 282, 365
$_REQUEST built-in array, 124, 211, 228
require statement, 159
require_once statement, 159, 314
reset function, 108, 358

return statement, 163–165, 171–173
reusing code

including files, 158–162
reasons for, 157
using built-in functions, 174
writing functions, 162–173

rewind function, 365
rmdir function, 365
root directory, 279
round function, 369
RPM format for PHP installation, 333–334
rsort function, 104, 358
rtrim function, 86, 253, 374

• S •
s formatting instruction, 90
safe_mode setting, disabling backtick

operator, 288
ScriptAlias statement, 351
scripting language, PHP used as, 14, 15,

30–31. See also php program; scripts
scripts

adding to Web pages, 38–40
building, 37–42
definition of, 35
documenting (comments in), 48–50
error checking for, 42
error level for, 69–70
file extensions for, 15, 21
IDEs for, 33–34, 329
including files into, 158–162
line numbers for, 36
processing of, 45–46
program editors for, 32–33, 329
running with CLI, 40–42
specifying on command line, 42
variables passed into, 125–126
viewing source in browser, 44

Secure Sockets Layer. See SSL
security

of Apache Web server, 26
bugs in PHP versions prior to 4.3.1, 22
of data entered by users, 202, 213–222, 291
of databases, 248, 262
features for, 11
of files, 201–202
of host computer, 200–201
of included files, 160–161

388 PHP 5 For Dummies

27 541668 Index.qxd 3/25/04 2:58 PM Page 388

of passing variables through URL, 228
privacy of information, 201–202
of server, 202–203
sessions requiring user login, 238
of system command execution, 291
of uploading files, 241
of Web site, 200–203

SELECT query, 266
selection lists, 208–210
semicolon (;), 36, 68, 321–322
sendmail_from setting in php.ini file, 298
sendmail_path setting in php.ini file,

298–299
serialize function, 376
server

configuring on Windows, 350
cURL extension for, 306–307
definition of, 11, 15, 16
information about, 123, 124
installing, 25–26
processing of output statements by, 45–46
processing of PHP files by, 38, 39
requirements for, 19
security of, 201–203
supported by PHP, list of, 15, 16

$_SERVER built-in array, 123–125
server-side scripting language, 11
servlets, enabling during installation, 343
$_SESSION built-in array, 124, 234–235
session extension, 304
session ID, 232, 236–237
session.auto_start setting in php.ini

file, 233
session_destroy function, 233–234
sessions

closing, 233–234
cookies and, 233, 235–237
definition of, 232–233
opening, 233
restricted, requiring user login, 238
storing information from, 227
variables for, 124, 234–235

session.save_path setting in php.ini
file, 232

session_start function, 233
setcookie function, 225, 230–231, 367
set_error_handler statement, 72
Shared Memory extension, 308
SID constant, 236–237

Simple Mail Transfer Protocol. See SMTP
simple statements, 36
single quotes. See quotes
sizeof function, 110, 358
slash (/), 77
slash, equal sign (/=), 78
SMTP setting in php.ini file, 298
SMTP (Simple Mail Transfer Protocol),

297, 309
SNMP extension, 308
Sockets extension, 308
sort function, 103–104, 358
SourceForge Web site, 329
special characters

in output statements, 46–48
in pattern matching, 134–135
in strings, 82

split function, 372
spliti function, 372
sprintf function, 80, 89–92, 372
SQL For Dummies (Taylor), 265
SQL Server databases (Microsoft), 12, 260
SQL (Structured Query Language), 265–266
SQLite, 17, 249, 276–278, 304
sqlite_close function, 277
sqlite_fetch_array function, 277
sqlite_open function, 277
sqlite_query function, 277
sqrt function, 79, 369
square brackets ([]), 98, 134, 135
srand function, 369
SSL (Secure Sockets Layer), 202, 308
statelessness, 223
statements. See also specific statements

block of, 36–37
complex statements, 37
conditional statements, 130, 140–145
definition of, 35
indenting, 37
line numbers for, 36
loop statements, 109–110, 121–122, 130,

145–156
order of execution, 129–130
output statements, 44–48, 79–80, 89–92,

225, 324
parsing errors in, 36
running from command line, 42
simple statements, 36
syntax of, 36–37

389Index

27 541668 Index.qxd 3/25/04 2:58 PM Page 389

static Web pages, 199, 203
strcasecmp function, 373
strchr function, 87, 373
strcmp function, 373
strcspn function, 373
(string), type casting to a string, 75
strings

adding characters to, 85
built-in functions for, 86–88, 370–375
case of, modifying, 87, 88
comparing, 132
comparing to patterns, 137
concatenating (joining together), 85
converting arrays into, 111–112
converting into arrays, 110–111
counting words in, 86
as data type, 73
escape characters in, 84
formatting for output, 89–92
length of, determining, 87
new line character (\n) in, 82
numbers converted to when formatting, 80
quotes enclosing, 55, 59–60, 82–84
reading entire flat files into, 255
reading parts of flat files into, 253–254
repeating, 87
replacing substrings in, 87–88
returning substrings from, 87–88
reversing, 87
splitting into words, 86
tab character (\t) in, 82
trimming leading and trailing spaces, 86
type casting to, 75
variables in, evaluation of, 82–84
very long (heredoc statement), 81

strip_tags function, 220–222, 373
stristr function, 87, 374
strlen function, 87, 373
str_pad function, 372
strpos function, 87, 373
strrchar function, 373
strrchr function, 87
str_repeat function, 87, 373
str_replace function, 87, 373
strrev function, 87
strrpos function, 87, 373
strspn function, 374
strstr function, 374
strtolower function, 87, 374

strtotime function, 94–95
strtoupper function, 88, 374
strtr function, 374
Structured Query Language. See SQL
str_word_count function, 86
style arrays, 18. See also superglobal arrays
substr function, 88, 374
substr_count function, 88
substr_replace function, 88, 374
subtraction operator (-), 77
subtraction shortcut operator (-=), 78
superglobal arrays, 18, 123
support, technical. See technical support
switch statement, 144–145
Sybase databases, 12, 260, 263
system commands, 13, 286–291, 296
system function, 287, 289
system requirements, 3, 19

• T •
tab character (\t), 82
tab-separated values file. See TSV file
tags. See HTML tags
tarball for PHP installation, 335
tar.gz file, 335
Taylor, Allen (SQL For Dummies), 265
TCP sockets, Net_Socket package for, 309
technical support

for database software, 261
for PHP, 10, 16–17, 30
for Web hosting company, 22–23

Telnet server, cURL extension for, 306
tempnam function, 365
text fields, 204–208
$this variable, 185
throw statement, 194
tilde (~), 68
time. See dates and times
time function, 359
timestamp, storing in variable, 94–95
Tittel, Ed (HTML 4 For Dummies), 3, 204
tmpfile function, 365
tokenizer extension, 304
touch function, 366
track-vars setting, 125
trans-sid setting in php.ini file,

233, 236–237
trigger_error statement, 71

390 PHP 5 For Dummies

27 541668 Index.qxd 3/25/04 2:58 PM Page 390

trim function, 86, 214, 222, 374
troubleshooting. See also error messages

after installation, 29–30
array numbering, 324–325
error checking scripts, 42
infinite loops, avoiding, 151, 153–154, 156
missing semicolons, 321–322
parentheses and curly braces,

325–326
PHP statements in included file, 325
quotes used incorrectly, 323
single equal sign (=) used in

comparisons, 322
statements that must come before

browser output, 225, 324
variable names, 322–323

TRUE values, 74. See also Boolean
data types

try statement, 194
TSV (tab-separated values) file, 257–259
type casting, 74–75

• U •
ucfirst function, 88, 375
ucwords function, 88, 375
umask function, 366
underscore (_), 54, 61
Uniform Resource Locator. See URL
Unix

installing PHP, 333–338
running scripts using, 40
setting up database support, 263–264

unlink function, 283, 366
unserialize function, 376
unset function, 62, 102–103, 196, 234, 376
upload_tmp_dir setting in php.ini file,

239–240
uppercase letters. See case of constant and

variable names
URL (Uniform Resource Locator)

definition of, 14
passing information with, 227–228
prefixed with https, 202

user ID for file, 281
user sessions. See sessions
usort statement, 105

• V •
Valade, Janet

PHP & MySQL For Dummies, 203, 265
Web site, 330

Vander Veer, Emily A. (JavaScript For
Dummies), 244

var statement, 184–185
var_dump function, 75, 100–101, 120, 376
variable variables. See dynamic variable

names
variables. See also constants; data types;

properties
$this variable, 185
changing information in, 55–56
checking content of, 133
converting arrays into, 112
converting into arrays, 112–113
creating, 55–56
definition of, 53, 55
deleting when session ends, 234
determining data type of, 75
displaying in HTML forms, 205–207, 208
displaying values in, 56–57, 59–60
dynamic variable names, 60–61
empty, 56–57, 61
evaluation of, in strings, 82–84
example scripts using, 57–58
formatted output in, 80, 89–92, 372
formatting for output, 89–92
functions for, 375–376
global, 166
local, 165–166
missing dollar sign ($) in, 323
misspelled, 322
naming, 53–54
passed into scripts, referencing, 125–126
passing at end of URL, 227–228
passing to functions, 164, 167–171
passing with cookies, 229–231
$PHPSESSID variable, 232, 235–237
preventing error messages when

displaying, 57
receiving system command output,

288–290
removing information from, 61
returning from functions, 171–173

391Index

27 541668 Index.qxd 3/25/04 2:58 PM Page 391

variables (continued)
session variables, 234–235
in system commands, 291
uncreating (deleting), 62
using with JavaScript, 245–246
when to use, 65

vertical bar (|), 135
vertical bar, double (||), 139
vi editor, 33
vim program editor, 33

• W •
warning messages, 67. See also error

messages
wddx extension, 304
WDDX standard, extension for, 304
Web applications. See also HTML forms

features for, 11–12
requirements for, 19–20
scripts for, processing, 15, 38
scripts for, writing, 38–40

Web environment
creating for PHP, 20, 25–27
existing, using for PHP, 20–21
requirements for, 19–20
testing, 27–30

Web hosting company, 22–25, 330
Web pages

access speed of, 22
adding scripts to, 38–40
backups of, 23
copying to Web site, 21
default file for, 21, 201
dynamic, 199
location of, 21
navigating, 224–226
passing information between, 226–238
relocating user to another page, 225–226
statelessness of, 223
static, 199, 203

Web server. See server
Web sites

Apache source code, 337
Apache Web server, 16, 26
author’s, 330
Black Beans, 328
Developer’s Tools CD, Mac OS X, 340

error level for, 68–69
Free PHP Hosting Directory, 330
for IDEs, 34
navigating, 224–226
open source SSL, 202–203
opening files on, 251
PEAR, 310
PHP, 10, 327
PHP Beginners, 328
PHP Builder, 328
PHP Dev Center, 329
PHP Editors, 329
PHP mailing lists, 17
PHP technical support, 10
PHPMac, 329
for program editors, 33–34
security for, 200–203
SourceForge, 329
uploading files to, 238–244
Zend, 328

Web space, location of, 28
while statement, 145, 149–151
white space, in statements, 36
Windows

running scripts using, 41
setting up database support, 264–265
setting up PEAR, 312–313

wordwrap function, 375
World Wide Web (WWW), 14

• X •
XML

Domxml extension, 307
enabling during installation, 343
xml extension, 304
XML_Parser package, 309
XML-RPC extension, 308

xor, joining comparisons with, 138
XSLT extension, 308

• Z •
Zend engine, 17
Zend Studio software, 34
Zend Web site, 328
Zip Files extension, 308
zlib extension, 304

392 PHP 5 For Dummies

27 541668 Index.qxd 3/25/04 2:58 PM Page 392

Available wherever books are sold. Go to www.dummies.com or call 1-877-762-2974 to order direct

Plain-English solutions for everyday challenges

HOME & BUSINESS COMPUTER BASICS

Also available:
Excel 2002 All-in-One Desk
Reference For Dummies
(0-7645-1794-5)
Office XP 9-in-1 Desk
Reference For Dummies
(0-7645-0819-9)
PCs All-in-One Desk
Reference For Dummies
(0-7645-0791-5)
Troubleshooting Your PC
For Dummies
(0-7645-1669-8)

Upgrading & Fixing PCs For
Dummies
(0-7645-1665-5)
Windows XP For Dummies
(0-7645-0893-8)
Windows XP For Dummies
Quick Reference
(0-7645-0897-0)
Word 2002 For Dummies
(0-7645-0839-3)

Also available:
CD and DVD Recording
For Dummies
(0-7645-1627-2)
Digital Photography
All-in-One Desk Reference
For Dummies
(0-7645-1800-3)
eBay For Dummies
(0-7645-1642-6)
Genealogy Online For
Dummies
(0-7645-0807-5)
Internet All-in-One Desk
Reference For Dummies
(0-7645-1659-0)

Internet For Dummies
Quick Reference
(0-7645-1645-0)
Internet Privacy For Dummies
(0-7645-0846-6)
Paint Shop Pro For Dummies
(0-7645-2440-2)
Photo Retouching &
Restoration For Dummies
(0-7645-1662-0)
Photoshop Elements For
Dummies
(0-7645-1675-2)
Scanners For Dummies
(0-7645-0783-4)

INTERNET & DIGITAL MEDIA

0-7645-0838-5 0-7645-1663-9 0-7645-1548-9

0-7645-0894-6 0-7645-1642-6 0-7645-1664-7

• Find listings of even more Dummies titles

• Browse online articles, excerpts, and how-to’s

• Sign up for daily or weekly e-mail tips

• Check out Dummies fitness videos and other products

• Order from our online bookstore

Get smart! Visit www.dummies.com

™

28 541668 BOB.qxd 3/25/04 2:55 PM Page 393

Helping you expand your horizons and realize your potential

GRAPHICS & WEB SITE DEVELOPMENT

Also available:
Adobe Acrobat 5 PDF
For Dummies
(0-7645-1652-3)
ASP.NET For Dummies
(0-7645-0866-0)
ColdFusion MX For Dummies
(0-7645-1672-8)
Dreamweaver MX For
Dummies
(0-7645-1630-2)
FrontPage 2002 For Dummies
(0-7645-0821-0)

HTML 4 For Dummies
(0-7645-0723-0)
Illustrator 10 For Dummies
(0-7645-3636-2)
PowerPoint 2002 For
Dummies
(0-7645-0817-2)
Web Design For Dummies
(0-7645-0823-7)

Also available:
Access 2002 For Dummies
(0-7645-0818-0)
Beginning Programming
For Dummies
(0-7645-0835-0)
Crystal Reports 9 For
Dummies
(0-7645-1641-8)
Java & XML For Dummies
(0-7645-1658-2)
Java 2 For Dummies
(0-7645-0765-6)

JavaScript For Dummies
(0-7645-0633-1
Oracle9i For Dummies
(0-7645-0880-6)
Perl For Dummies
(0-7645-0776-1)
PHP and MySQL For
Dummies
(0-7645-1650-7)

SQL For Dummies
(0-7645-0737-0)
Visual Basic .NET For
Dummies
(0-7645-0867-9)

Available wherever books are sold.
Go to www.dummies.com or call 1-877-762-2974 to order direct

PROGRAMMING & DATABASES

Also available:
A+ Certification For Dummies
(0-7645-0812-1)
CCNP All-in-One Certification
For Dummies
(0-7645-1648-5)
Cisco Networking For
Dummies
(0-7645-1668-X)
CISSP For Dummies
(0-7645-1670-1)
CIW Foundations For
Dummies
(0-7645-1635-3)

Firewalls For Dummies
(0-7645-0884-9)
Home Networking For
Dummies
(0-7645-0857-1)
Red Hat Linux All-in-One
Desk Reference For Dummies
(0-7645-2442-9)
UNIX For Dummies
(0-7645-0419-3)

LINUX, NETWORKING & CERTIFICATION

0-7645-1651-5 0-7645-1643-4 0-7645-0895-4

0-7645-0746-X 0-7645-1626-4 0-7645-1657-4

0-7645-1545-4 0-7645-1760-0 0-7645-0772-9

28 541668 BOB.qxd 3/25/04 2:55 PM Page 394

	PHP 5 for Dummies
	Cover

	Table of Contents
	Introduction
	About This Book
	How to Use This Book
	Foolish Assumptions
	How This Book Is Organized
	Part I: Say Hello to the PHP Scripting Language
	Part II: Variables and Data
	Part III: Basic PHP Programming
	Part IV: Common PHP Applications
	Part V: The Part of Tens
	Part VI: Appendixes

	Icons Used in This Book

	Part I: Say Hello to the PHP Scripting Language
	Chapter 1: Getting to Know PHP
	Getting Familiar with PHP
	Considering the Various Uses for PHP
	Using PHP for Web applications
	Using PHP for database applications
	Using PHP with your file system
	Using PHP for system commands

	Understanding How PHP Works
	PHP as a general-purpose language
	PHP for the Web

	Keeping Up with Changes in PHP
	PHP 5
	Previous versions of PHP

	Chapter 2: Setting Up the Environment
	Establishing Your Web Environment
	Using an existing Web environment
	Choosing a Web hosting company
	Setting up your own Web environment
	Testing PHP

	Setting Up PHP for General-Purpose Scripting
	Configuring PHP
	Using Tools to Build PHP Scripts
	Programming editors
	Integrated Development Environment (IDE)

	Chapter 3: Creating Your First PHP Script
	Writing PHP Statements
	Building Scripts
	Adding PHP statements to HTML pages
	Using PHP independent of the Web

	Writing Your First Script
	Discovering More about Output Statements
	Processing PHP output statements
	Using special characters in output statements

	Documenting the Script

	Part II: Variables and Data
	Chapter 4: Using Variables in PHP Scripts
	Naming Variables
	Assigning and Displaying Variable Values
	Creating variables
	Displaying variable values

	Writing Your First Script That Uses Variables
	Discovering More about Output Statements with Variables
	Using Variable Variables
	Removing Variables
	Working with Constants
	Creating constants
	Understanding when to use constants
	Displaying constants
	Utilizing built-in PHP constants

	Handling Error Messages
	Changing the error level for your Web site
	Changing the error level for a script
	Sending messages to a log
	Advanced error handling

	Chapter 5: Working with Data
	Understanding Data Types
	Assigning data types
	Type casting

	Working with Numbers
	Performing mathematical operations
	Formatting numbers for output

	Working with Character Strings
	Using special characters in strings
	Comparing single-quoted strings and double-quoted strings
	Escaping characters
	Joining strings together
	Manipulating strings
	Formatting output strings

	Working with Dates and Times
	Formatting dates
	Storing a timestamp in a variable

	Chapter 6: Storing Data in Groups by Using Arrays
	Creating and Working with Arrays
	Creating arrays
	Viewing arrays
	Modifying arrays
	Removing values from arrays

	Sorting Arrays
	Using Arrays in Statements
	Using arrays in echo statements
	Using arrays in list statements

	Walking through an Array
	Traversing an array manually
	Using foreach to walk through an array

	Finding Array Size
	Converting Arrays into Strings (And Vice Versa)
	Converting Variables into Arrays (And Vice Versa)
	Splitting and Merging Arrays
	Comparing Arrays
	Working with Other Array Operations
	Summing arrays
	Removing duplicate items
	Exchanging keys and values

	Multidimensional Arrays
	Creating multidimensional arrays
	Viewing multidimensional arrays
	Using multidimensional arrays in statements
	Walking through a multidimensional array

	Built-in PHP Arrays
	Using superglobal arrays
	Using $_SERVER and $_ENV
	Using $argv and $argc

	Part III: Basic PHP Programming
	Chapter 7: Controlling the Flow of the Script
	Changing the Order of Statement Execution
	Setting Up Conditions
	Using comparison operators
	Checking variable content
	Pattern matching with regular expressions
	Joining multiple comparisons

	Using Conditional Statements
	Using if statements
	Using switch statements

	Repeating Actions by Using Loops
	Using for loops
	Using while loops
	Using do while loops
	Avoiding infinite loops
	Breaking out of a loop

	Chapter 8: Reusing PHP Code
	Inserting Code in Your Script
	Including files
	Storing include files
	Setting up include directories

	Creating Reusable Code (Functions)
	Defining functions
	Using variables in functions
	Passing values to a function
	Returning a value from a function
	Using built-in functions

	Handling Errors

	Chapter 9: Object-Oriented Programming Meets PHP
	Introducing Object-Oriented Programming
	Objects and classes
	Properties
	Methods
	Inheritance
	Object-oriented concepts PHP 5 omits

	Developing an Object-Oriented Program
	Choosing objects
	Selecting properties and methods for each object
	Creating and using the class

	Defining a Class
	Writing a class statement
	Setting properties
	Using $this
	Adding methods
	Writing the constructor
	Putting it all together

	Using a Class
	Making Properties and Methods Private
	Using Exceptions
	Copying Objects
	Destroying Objects

	Part IV: Common PHP Applications
	Chapter 10: The Basics of Web Applications
	Securing Your Web Site
	Ensuring the security of the host computer
	Keeping information private
	Being cautious of information from users
	Using a secure Web server

	Displaying Static Web Pages
	Working with HTML Forms
	Collecting information from Web site visitors
	Receiving the information
	Checking the information
	Cleaning information

	Chapter 11: Other Web Applications
	Overcoming Statelessness
	Navigating Web Sites with Multiple Pages
	Echoing links
	Using forms
	Relocating users

	Moving Information from Page to Page
	Adding information to the URL
	Passing information via cookies
	Passing information using HTML forms
	Using PHP sessions

	Uploading Files
	Using a form to upload a file
	Accessing information about an uploaded file
	Moving uploaded files to their destination
	Putting it all together

	Using JavaScript with PHP
	Adding JavaScript code to a PHP script
	Using PHP variables with JavaScript

	Chapter 12: Storing Data with PHP
	Using Flat Files
	Accessing files
	Writing to a file
	Reading from a file
	Exchanging data with other programs

	Working with Databases
	Understanding database software
	Understanding database support in PHP
	Communicating with your database
	Using PHP with a database
	Handling errors
	Putting it all together

	Using SQLite

	Chapter 13: PHP and Your Operating System
	Managing Files
	Getting information about files
	Copying, renaming, and deleting files
	Organizing files

	Using Operating System Commands
	Using backticks
	Using the system function
	Using the exec function
	Using the passthru function
	Understanding security issues

	Using FTP
	Logging in to the FTP server
	Getting a directory listing
	Downloading and uploading files with FTP
	Other FTP functions

	Using E-Mail
	Setting up PHP to send e-mail
	Sending e-mail messages
	Sending e-mail attachments

	Chapter 14: PHP Extensions
	Investigating the Basic Extensions
	Taking a Look at Standard Extensions
	Using PEAR
	Finding a PEAR Package
	Setting up PEAR
	Installing a PEAR package
	Using a PEAR package

	Part V: The Part of Tens
	Chapter 15: Ten Things to Look For When Troubleshooting a Script
	Missing Semicolons
	Not Enough Equal Signs
	Misspelled Variable Names
	Missing Dollar Signs
	Troubling Quotes
	Invisible Output
	Numbered Arrays
	Including PHP Statements
	Missing Mates
	Confusing Parentheses and Brackets

	Chapter 16: Ten PHP Resources You Can't Live Without
	The PHP Web Site
	PHP Lists
	Zend
	PHP Builder
	Black Beans
	PHP Beginners
	PHP Dev Center
	PHPMac com
	PHP Editors
	SourceForge net
	Free PHP Hosting Directory
	My Web Site

	Part VI: Appendixes
	Appendix A: Installing PHP
	Installing PHP on Computers Running Unix/Linux
	Before installing on Unix/Linux
	Installing on Unix/Linux
	Alternative method for installing with Apache
	Installing PHP on Computers Running Mac OS X
	Before installing on Mac
	Installing on Mac

	Installation Options for Unix/Linux/Mac
	Configuring on Unix/Linux/Mac
	Installing PHP on Computers Running Windows
	Installing PHP CGI with the PHP installer
	Installing PHP manually
	Configuring PHP and your Web server on Windows computers

	Appendix B: Useful PHP Built-in Functions
	Array Functions
	Date and Time Functions
	File System Functions
	HTTP and Mail Functions
	Mathematical Functions
	PHP Options and Information Functions
	String Functions
	Variable Functions

	Index
	Team DDU

