BEGINNING

Perl

Simon Cozens

Beginning Perl

Simon Cozens
With

Peter Wainwright

Wrox Press Ltd.

Beginning Perl

© 2000 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embodied in critical articles or reviews.

The authors and publisher have made every effort in the preparation of this book to ensure the accuracy
of the information. However, the information contained in this book is sold without warranty, either
express or implied. Neither the authors, Wrox Press nor its dealers or distributors will be held liable for
any damages caused or alleged to be caused either directly or indirectly by this book.

First Published June 2000

WFrOoX

Published by Wrox Press Ltd
Arden House, 1102 Warwick Road, Acock's Green, Birmingham B27 6BH, UK
Printed in USA
ISBN 1-861003-14-5

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee the
accuracy of this information.

Credits

Author
Simon Cozens

Contributing Authors
Peter Wainwright

Additional Material
Joshua Schachter

Technical Architect
Daniel Maharry

Technical Editors
Dan Squier
David Mercer

Technical Reviewers
Matt Busigin

Yoz Grahame

Jerry Heyman
David Hudson
Matthew Kirkwood
Nick Perry

Will Powvell

Kirrily Roberts
Adam Turoff

Bruce Varney

Paul Warren

Category Manager
Viv Emery

Author Agent
Rob Miller

Proofreader
Carol Pinchefsky

Production Manager
Laurent Lafon

Project Administrators
Marsha Collins
Nicola Phillips

Production Coordinator
Mark Burdett

llustrations
William Fallon

Cover
Shelley Frazier

Index
Martin Brooks

About the Authors

Simon Cozens

Simon Cozens has been programming PCs as a freelance contractor since the age of 10. He was
introduced to Perl and Linux little over three years ago and has been using both exclusively ever since.

He is regularly contracted by Oracle Corporation to develop Perl scripts, including low-administration
web server systems and tools to automate administration of Oracle databases, web servers and UNIX
systems.

He has a special interest in documentation and literate programming, and has written a literate
programming environment for Perl. His other Perl programs include a set of networking tools, a
program to trap unsolicited email, and a series of varied Perl modules. He is currently working on a
system to read English descriptions of markup languages and generate translators between them, and
also a Perl version of the TeX typesetting utility.

Simon lives in Oxford, where he investigates computer processing of Japanese. His interests include
music, typesetting and the modern Greek language and culture.

This book, like its author, is

For Evangelia Derou.

Peter Wainwright

Peter Wainwright is a software consultant and developer, living in London. He gained most of his early
programming experience on Solaris, writing C applications. He then discovered Linux, shortly followed
by Perl and Apache, and has been programming happily there ever since.

When he is not developing software or writing professionally, he spends much of his free time pursuing his
interest in space tourism and maintaining the ever-growing Space Future website at www.spacefuture.com,
which is based on a Linux server running Apache, naturally. Someday, he hopes he'll get the time to
actually implement some of the stuff he writes about.

Source code available at : www.wrox.com
Peer discussion at : lamplists.com

Also from Wrox

2 £k
o ImAA™
7 TVPHIR

FROTISSIONAL PROFISSIONAL

Perl Per

Programming Development

W AT

BEGINNING

Perl

http:/imwww.wrox.com/books/1861003145.htm

lamplists.com

The Open Source Programmer’s Res ource Centre

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

Summary of Contents

Introduction

Chapter 1: First Steps In Perl

Chapter 2: Working with Simple Values
Chapter 3: Lists and Hashes

Chapter 4: Loops and Decisions
Chapter 5: Regular Expressions
Chapter 6: Files and Data

Chapter 7: References

Chapter 8: Subroutines

Chapter 9: Running and Debugging Perl
Chapter 10: Modules

Chapter 11.: Object-Oriented Perl
Chapter 12: Introduction to CGlI
Chapter 13: Perl and Databases
Chapter 14: The World of Perl
Appendix A: Regular Expressions
Appendix B: Special Variables
Appendix C: Function Reference
Appendix D: The Perl Standard Modules
Appendix E: Command Line Reference
Appendix F: The ASCII Character Set
Appendix G: Licenses

Appendix H: Solutions to Exercises
Appendix J: Support, Errata and P2P.Wrox.Com
Index

19

37

75
113
147
179
217
243
279
309
335
377
433
487
523
531
539
567
579
585
593
603
623
631

Table of Contents

Introduction 1
A Potted History 1
Why Perl? 2

It's Free 3
What Is Perl Used For? 3
Windows, UNIX, and Other Operating Systems 4
The Prompt 4
What Do | Need To Use This Book? 5
How Do I Get Perl? 6
How To Get Help 10
Perl Resources 13
Conventions 15
Downloading the Source Code 16
Exercises 16
Errata 17
Customer Support 17

Chapter 1.: First Steps In Perl 19

Programming Languages 19
Interpreted vs. Compiled Source Code 20
Libraries, Modules and Packages 21

Why is Perl Such A Great Language? 22
It's Really Easy 22
Flexibility Is Our Watchword 22
Perl on the Web 22
The Open Source Effort 23
Developers Releases and Topaz 23

Table of Contents

Our First Perl Program 24
Program Structure 28
Documenting Your Programs 28
Keywords 29
Statements and Statement Blocks 29
ASCII and Unicode 31
Escape Sequences 32
White Space 32
Number Systems 33
The Perl Debugger 34
Summary 34
Exercises 35
Chapter 2: Working with Simple Values 37
Types of Data 37
Numbers 38
Binary, Hexadecimal and Octal Numbers 39
Strings 41
Single- vs Double-quoted strings 41
Alternative Delimiters 44
Here-Documents 44
Converting between Numbers and Strings 45
Operators 46
Numeric Operators 46
Arithmetic Operators 46
Bitwise Operators 49
Truth and Falsehood 51
Boolean Operators 53
String Operators 55
String Comparison 57
Operators To Be Seen Later 59
Operator Precedence 59
Variables 60
Modifying A Variable 61
Operating and Assigning at Once 62
Autoincrement and Autodecrement 63
Multiple Assignments 64

Table of Contents

Scoping 65
How It Works 66
Variable Names 67
Variable Interpolation 68
Currency Converter 69
Introducing <STDIN> 70
Summary 71
Exercises 72
Chapter 3: Lists and Hashes 75
Lists 75
Simple Lists 76
Less Simple Lists 77
Accessing List Values 80
List Slices 82
Ranges 84
Combining Ranges and Slices 86
Arrays 86
Assigning Arrays 87
Scalar vs List Context 89
Adding to an Array 90
Accessing an Array 91
Accessing Single Elements 91
Accessing Multiple Elements 94
Running Through Arrays 96
Array Functions 99
Hashes 104
Creating a Hash 104
Working with Hash Values 106
Adding, Changing and Taking Values Away from a Hash 107
Accessing Multiple Values 108
Summary 110
Exercises 111
Chapter 4: Loops and Decisions 113
Deciding If... 114
Logical Operators Revisited 119

Comparing Numbers 120

Table of Contents

Comparing Strings 121
Other Tests 123
Logical Conjunctions 123
Running Unless... 124
Statement Modifiers 124
Using Logic 125
Multiple Choice 125

if elsif else 126
More Elegant Solutions 128

1, 2, Skip A Few, 99, 100 128
for Loops 129
Choosing an Iterator 130
What We Can Loop Over 131
Aliases and Values 131
Statement Modifiers 132
Looping While... 134
while (<STDIN>) 135
Infinite Loops 136
Running at Least Once 138
Statement Modifying 138
Looping Until 139
Controlling Loop Flow 139
Breaking Out 140
Going onto the Next 141
Goto 144
Summary 144
Exercises 145
Chapter 5: Regular Expressions 147
What Are They? 148
Patterns 148
Interpolation 151
Escaping Special Characters 152
Anchors 153
Shortcuts and Options 155
Posix and Unicode Classes 158
Alternatives 158
Repetition 159
Summary Table 161
Backreferences 162

How the Engine Works 163

Table of Contents

Working with RegExps 166
Substitution 166
Changing Delimiters 167
Modifiers 168
Split 169
Join 170
Transliteration 171
Common Blunders 171

More Advanced Topics 172

Inline Comments 172

Inline Modifiers 172
Grouping without Backreferences 173
Lookaheads and Lookbehinds 174
Backreferences (again) 176
Summary 176
Exercises 177
Chapter 6: Files and Data 179

Filehandles 179
Reading Lines 181
Creating Filters 183
Reading More Than One Line 185
What's My Line (Separator)? 186

Reading Paragraphs at a Time 188
Reading Entire Files 189

Writing To Files 189
Opening a File for Writing 189
Writing on a Filehandle 190

Accessing Filehandles 195
Writing Binary Data 196
Selecting a Filehandle 197
Buffering 199
Permissions 200
Opening Pipes 201
Piping In 202
Piping Out 205
File Tests 207

Table of Contents

Directories 212
Globbing 212
Reading Directories 213

Summary 214

Exercises 215

Chapter 7: References 217
What Is a Reference? 217
Anonymity 218
The Lifecycle of a Reference 218
Reference Creation 218
Anonymous References 220
Using References 222
Array Elements 224
Reference Modification 225
Hash References 226
Notation Shorthands 227
Reference Counting and Destruction 230
Counting Anonymous References 231
Using References for Complex Data Structures 231
Matrices 231
Autovivification 232
Trees 236
Linked Lists 239
Summary 240
Exercises 241
Chapter 8: Subroutines 243
The 'Difference' Between Functions and Subroutines 244
Usually 244

In Perl 244
Understanding Subroutines 245
Defining a Subroutine 245
Order of Declaration 247

vi

Table of Contents

Subroutines for Calculation 249
Parameters and Arguments 249
Return Values 250

The return Statement 252
Caching 252
Context 253
Subroutine Prototypes 254

Understanding Scope 255
Global Variables 255
Lexical Variables 258

Runtime Scope 258
When to Use my() And When to Use local 260

Passing More Complex Parameters 260
@_ Provides Aliases! 260
Lists Always Collapse 261
Passing References to a Subroutine 262
Passing Arrays and Hashes to a Subroutine 263
Passing Filehandles to a Subroutine 264
Default Parameter Values 265
Named Parameters 266

References to Subroutines 266
Declaring References to Subroutines 266

Calling a Subroutine Reference 266
Callbacks 267
Arrays and Hashes of References to Subroutines 268

Recursion 268

Style Point: Writing Big Programs 275

Summary 276

Exercises 277

Chapter 9: Running and Debugging Perl 279

Error Messages 280

Syntax Error Checklist 281
Missing Semicolons 281
Missing Open/Close Brackets 281
Runaway String 282
Missing Comma 283
Brackets around Conditions 283

Barewords 283

vii

Table of Contents

Diagnostic Modules 283
warnings 284
strict 286
diagnostics 289

Perl Command Line Switches 290
e 291
-nand -p 292
-C 294
-i 295
M 295
-s 296
-I and @INC 298
-aand -F 298
-land -0 299
-T 299

Debugging Techniques 300
Before the Debugger... 300

Debugging Prints 300
Pare It Down 300
Context 301
Scope 301
Precedence 301

Defensive Programming 302

Strategy 302
Check Your Return Values 303

Be Prepared for the Impossible 303
Never Trust the User 303
Definedness and Existence 303

Have Truthful, Helpful Comments 304

Keep the Code Clean 304
Summary 305
Exercises 305
Chapter 10: Modules 309
Types of Module 309

viii

Table of Contents

Why Do | Need Them? 310
Including Other Files 310
do 310
require 311

use 312
Changing @INC 312
Package Hierarchies 312
Exporters 313
The Perl Standard Modules 314
File::Find 314
Getopt::Std 316
Getopt::Long 317
File::Spec 318
Benchmark 318
Win32 320
CPAN 322
Installing Modules with PPM 323
Installing a Module Manually 324
The CPAN Module 326
Bundles 329
Bundle::LWP 330
Bundle::libnet 331
Submitting Your Own Module to CPAN 331
Summary 332
Chapter 11.: Object-Oriented Perl 335
Working with Objects 335
Turning Tasks into OO Programs 336
Are Your Subroutines Tasks? 336

Do You Need Persistence? 336

Do You Need Sessions? 336

Do You Need OO? 336

Do You Want The User To Be Unaware Of The Object? 337

Are You Still Unsure? 337
Improving Your Vocabulary 337
Objects 337
Attributes 338
Methods 338
Classes 339
Polymorphism 339

ix

Table of Contents

Encapsulation 340
Inheritance 340
Constructors 341
Destructors 341
Rolling Your Own 345
Bless You, My Reference 345
Storing Attributes 347
The Constructor 348
Considering Inheritance 349
Providing Attributes 349
Creating Methods 351
Distinguishing Class and Object Methods 353
Get-Set Methods 354

Class Attributes 355
Privatizing Your Methods 358
Utility Methods 360
Death of an Object 361

Our Finished Class 362
Inheritance 364
What is it? 364
Adding New Methods 365
Overriding Methods 366
Ties 369
Summary 374
Exercises 375
Chapter 12: Introduction to CGI 377
How Do | Get It to Work? 377
Setting Up CGI on UNIX 377
Apache 378
Starting and Stopping Apache 378
DocumentRoot and cgi-bin 379
Setting up Perl CGI on Windows 379
Internet Information Server 380
Personal Web Server 380
Using Windows Web Servers 381
Writing CGI Scripts 381
Basic CGI 381
Plain Text 382
HTML Text 382

Table of Contents

The CGI Environment 384
HTTP Commands 388
The GET Method 388

The POST Method 389
Writing Interactive CGI Scripts 389
A Form-Based Example 390
Passing Parameters with CGL.pm 390
Checking the HTTP Method 391
Determining the Execution Environment 392
Generating HTML Programmatically 392
The Environment Dumper Rewritten 397
Generating the HTTP Header 398
Generating the Document Header 400
Producing Human-Readable HTML 403
Generating HTML Forms 404
Generating Self-Referential URLs 405
Using the Same Script to Generate and Process Forms 407
Saving and Loading CGI State 409
Redirecting from a CGI Script 411
Regenerating Pages with Server Push 412
Cookies and Session Tracking 415
Debugging CGl Scripts 420
Using CGlLpm to Debug Scripts from the Command Line 421
CGI Security 422
An Example of an Insecure CGI Script 422
Executing External Programs 423
Reading and Writing to External Programs 425
Taint Checking 426
An Example of a More Secure CGI Script 428
CGI Wrappers 429

A Simple Security Checklist 429
Summary 431
Chapter 13: Perl and Databases 433
Perl and DBM 434
Which DBM Implementation to Use 434
Accessing DBM Databases 435
Opening a DBM Database 435
Checking the State of a DBM Database 436

Xi

Table of Contents

Creating DBM Databases 437
Emptying the Contents of a DBM Database 437
Closing a DBM Database 437
Adding and Modifying DBM Entries 437
Reading DBM Entries 438
Deleting from a DBM Database 438
Writing Portable DBM Programs with the AnyDBM Module 443
Copying from One DBM Format to Another 444
Complex Data Storage 445
Multi-Level DBM (MLDBM) 446
Beyond Flat Files and DBM 449
Introducing Relational Databases 450
Introducing DBI 450
So What Do We Need? 451
Installing DBI 452
What's Available 454
Our DB of Choice - MySQL 456
Installing on Windows 457
Installing on Linux 457
Setting up the Root Account 459
Testing Our MySQL Server 459
Installing DBD::MySQL 459
What's Available Again? 460
First Steps - The Database Cycle 460
Connecting To A Database 460
Connecting To A Remote Database 461
Connecting With The Environment 462
The Fourth Parameter — Connection Flags 463
Disconnecting From a Database 464
Interacting With The Database 465
Creating a Table 467
Populating a Table With Information 470

A Note on Quoting 472
Keeping the Table up to Date 474
Pulling Values from the Database 475
Where Do the Records Go? 478
Fetching a Single Value 480
Binding Columns 480
Fetching All Results 482
Extracting Column Information From Statements 482
Removing Information From The Table 484
Summary 485

Xii

Table of Contents

Chapter 14: The World of Perl 487
IPC and Networking 487
Running Programs 488
system 489
Processes and IPC 490
Signals 490
Trapping Signals 492

Fork, Wait and Exec 493
Networking 494

IP Addresses 495
Sockets and Ports 495
Domain Name Service 496
Networking Clients 496
Writing Clients 497
10::Socket 497
Blocking and IO::Select 498
Servers with 10::Socket 499
Graphical Interfaces 502
Widgets 502
Perl/Tk 503
Perl/GTK+ and Perl/ GNOME 503
Glade 504
Perl/Qt 505
Perl Win32 Module 506
Perl Math 506
BigInt and BigFloat 506
Perl Data Language (PDL) 510
Simple Trigonometry 510
Adding Complex Number Support 512
Security and Cryptography 513
crypt — Password Security 513
Public Key Cryptography 515
Working With Data 518
LDAP 518
Different Types of Data - One Way to Present It 519
Working on the Web 520
Log Files 520
PerlScript 520
Communicating with C 520
Using C from Perl 520
Embedding Perl 521

The End of the Beginning 521

xiii

Table of Contents

Appendix A: Regular Expressions 523
Appendix B: Special Variables 531
Appendix C: Function Reference 539
Appendix D: The Perl Standard Modules 567
Appendix E: Command Line Reference 579
Appendix F: The ASCII Character Set 585
Appendix G: Licenses 593
Appendix H: Solutions to Exercises 603
Appendix J: Support, Errata and P2P.Wrox.Com 623
Index 631

Xiv

Table of Contents

XV

Source code available at : www.wrox.com
Peer discussion at : lamplists.com

Also from Wrox

2 £k
o ImAA™
7 TVPHIR

FROTISSIONAL PROFISSIONAL

Perl Per

Programming Development

W AT

BEGINNING

Perl

http:/imwww.wrox.com/books/1861003145.htm

lamplists.com

The Open Source Programmer’s Res ource Centre

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

Introduction

A Potted History

Perl was originally written by Larry Wall while he was working at NASA's Jet Propulsion Labs. Larry is
an Internet legend: Not only is he well-known for Perl, but as the author of the UNIX utilities rn, which
was one of the original Usenet newsreaders, and patch, a tremendously useful utility that takes a list of
differences between two files and allows you to turn one into the other. The word 'patch' used for this
activity is now widespread.

Perl started life as a 'glue' language, for the use of Larry and his officemates, allowing one to 'stick’
different tools together by converting between their various data formats. It pulled together the best
features of several languages: the powerful regular expressions from sed (the UNIX stream editor), the
pattern-scanning language awk, and a few other languages and utilities. The syntax was further made up
out of C, Pascal, Basic, UNIX shell languages, English and maybe a few other things along the way.

Version 1 of Perl hit the world on December 18, 1987, and the language has been steadily developing
since then, with contributions from innumerable people. Perl 2 expanded the regular expression
support, while Perl 3 allowed Perl to deal with binary data. Perl 4 was released so that the Camel Book
(see the Resources section at the end of this chapter) could refer to a new version of Perl.

Perl 5 has seen some rather drastic changes in syntax and some pretty fantastic extensions to the
language. Perl 5 is (more or less) backwardly compatible with previous versions of the language, but at
the same time, makes a lot of the old code obsolete. Perl 4 code may still run, but Perl 4 style is
definitely frowned upon these days.

At the time of writing, the current stable release of Perl is 5.6, which is what this book will detail. That
said, the maintainers of Perl are very careful to ensure that old code will run, perhaps all the way back
to Perl 1 — changes and features that break existing programs are evaluated extremely seriously.
Everything you see here will continue to function in the future.

I say 'maintainers' because Larry no longer looks after Perl by himself - there is a group of 'porters' who
maintain the language and produce new releases. The 'perl5-porters' mailing list is the main
development list for the language, and you can see the discussions archived at
http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/. For each release, one of the porters will carry
the 'patch pumpkin' - the responsibility for putting together and releasing the next version of Perl.

Introduction

Where is Perl going in the future? Well, we expect Perl to develop steadily up the 5.x release series,
adding more useful features and steadily deprecating more and more of the accumulated old-
fashionedness, making it harder for people to justify the myth that Perl 4 is still alive and well.

There is at least one existing project to rewrite Perl from scratch: Chip Salzenberg is heading up a team
called the Topaz project, which aims to produce a faster, more efficient Perl. Topaz is being written in
C++, rather than C, but hopes to remain compatible with Perl 5. At the moment, the Topaz team isn't
planning to add any new features to the language, but I'm sure that as the project gains momentum,
more features will be added. You might sometimes hear Topaz referred to as Perl 6, but it'll only really
become Perl 6 if Larry likes it — the way things are going, Topaz won't be in common use for quite some
time yet, and I expect that Perl 6 will be the natural development of the current Perl.

Why Perl?

Just like the Basic programming language, the name 'Perl' isn't really an acronym. People like making
up acronyms though, and Larry has two favorite expansions. According to its creator, perl is the
Practical Extraction and Report Language, or the Pathologically Eclectic Rubbish Lister. Either way, it
doesn't really matter. Perl is a language for doing what you want to do.

The Perl motto is 'There's More Than One Way To Do It', emphasizing both the flexibility of Perl and
the fact that Perl is about getting the job done. We can say that one Perl program is faster, or more
idiomatic, or more efficient than another, but if both do the same thing, Perl isn't going to judge which
one is 'better'. It also means that you don't need to know every last little detail about the language in
order to do what you want with it. You'll probably be able to achieve a lot of the tasks you might want
to use Perl for after the first four or five chapters of this book.

Perl has some very obvious strengths

QO It's very easy to learn, and learning a little Perl can get you a long way.

0 Perl was designed to be easy for humans to write, rather than easy for computers to
understand. The syntax of the language is a lot more like a human language than the strict,
rigid grammars and structures of other languages, so it doesn't impose a particular way of
thinking upon you.

Q Perl is very portable; That means what it sounds like — you can pick up a Perl program and
carry it around between computers. Perl is available for a huge variety of operating systems
and computers, and properly written programs should run almost anywhere that Perl does
without any change.

Q Perl talks text. It thinks about words and sentences, where other languages see the character at
a time. It also thinks about files in terms of lines, not individual bytes. Its 'regular expressions'
allow you to search for and transform text in innumerable ways with ease and speed.

Q Perl is what is termed a 'high-level language'. Some languages like C concern you with
unnecessary, 'low-level' details about the computer's operation: making sure you have enough
free memory, making sure all parts of your program are set up properly before you try to use
them, and leaving you with strange and unfriendly errors if you don't do so. Perl cuts you free
from all this.

However, since Perl is so easy to learn and to use, especially for quick little administrative tasks, 'real’
Perl users tend to write programs for small, specific jobs. In these cases, the code is meant to have a
short lifespan and is for the programmer's eyes only. The problem is, these programs

Introduction

may live a little longer than the programmer expects and be seen by other eyes too. The result is a
cryptic one-liner that is incomprehensible to everyone but the original programmer. Because of the
proliferation of these rather concise and confusing programs, Perl has developed a reputation for being
arcane and unintelligible — one that I hope we can dispel during the course of this book.

This reputation is unfair. It's possible to write code that is tortuous and difficult to follow in any
programming language, and Perl was never meant to be difficult. In fact, Perl is one of the easiest
languages to learn, especially given its scope and flexibility.

Throughout this book you will learn how to avoid the stereotypical 'spaghetti code' and how to write
programs that are both easy to write and easy to follow. Let's work to kill off this negative image.

It's Free

Larry started (and indeed, continued) Perl with the strong belief that software should be free — freely
available, freely modifiable, and freely distributable. Perl is developed and maintained by the porters,
who are volunteers from the Perl user community, all of whom strive to make Perl as good as possible.

This has a few nice side effects — the porters are working for love, rather than merely because it's their
job, so they're motivated solely by their desire to see a better Perl. It also means Perl will continue to be
free to use and distribute.

This doesn't mean that Perl is part of the GNU suite of utilities. The GNU ("GNU's Not UNIX")
project was set up to produce a freely usable, distributable, and modifiable version of the UNIX
operating system and its tools. It now produces a lot of helpful, free utilities. Perl is included in
distributions of GNU software, but Perl itself is not a product of the Free Software Foundation, the
body that oversees GNU.

While Perl can be distributed under the terms of the GNU Public License (which you can find at
http://www.gnu.org/), it can also be distributed under the Artistic License (found either with the perl
sources or at http://www.opensource.org/licenses/), which purports to give more freedom to users and
more security to developers than the GPL. You may judge for yourself — we've included these licenses
in Appendix G.

Of course, those wanting to use Perl at work might be a little put off by this — managers like to pay
money for things and have pieces of paper saying that they can get irate at someone if it all stops
working. There's a question in the Perl FAQ (Frequently Asked Questions) about how to get a
commercial version or support for Perl, and we'll see how you can find out the answer for yourself
pretty soon.

What Is Perl Used For?

Far and away the most popular use of Perl is for CGI programming — that is, dynamically generating
web pages. A whole chapter is devoted to introducing CGI programming in Perl. Perl is the power
behind some of the most popular sites on the web: Slashdot (http://www.slashdot.org/), Amazon
(http://www.amazon.com/), and Deja (http://www.deja.com/), and many others besides are almost
entirely Perl-driven. We'll also look at some of the more recent extensions to the Perl/CGI concept:
PerlScript, mod_perl and HTML: : Mason, which are becoming widely used.

Introduction

Of course Perl is still widely used for its original purpose: extracting data from one source and
translating it to another format. This covers everything from processing and summarizing system logs,
through manipulating databases, reformatting text files, and simple search-and-replace operations, to
something like alien, a program to port Linux software packages between different distributors'
packaging formats. Perl even manages the data from the Human Genome Project, a task requiring
massive amounts of data manipulation.

For system administrators, Perl is certainly the 'Swiss Army chainsaw' that it claims to be. It's great for
automating administration tasks, sending automatically generated mails and generally tidying up the
system. It can process logs, report information on disk usage, produce reports on resource use and
watch for security problems. There are also extensions that allow Perl to deal with the Windows registry
and run as a Windows NT service, not to mention functions built into that allow it to manipulate UNIX
passwd and group file entries.

However, as you might expect, that's not all. Perl is becoming the de facto programming language of the
Internet its networking capabilities have allowed it to be used to create clients, servers, and proxies for
things such as IRC, WWW, FTP, and practically every other protocol you wish to think of. It's used to
filter mail, automatically post news articles, mirror web sites, automate downloading and uploading, and
so on. In fact, it's hard to find an area of the Internet in which Perl isn't used.

Windows, UNIX, and Other Operating Systems

Perl is one of the most portable, if not k¢ most portable programming languages around. It can be
compiled on over 70 operating systems, and you can get binary distributions for most common
platforms. Over the course of the book, we'll be looking at programs that can run equally well on almost
any operating system.

When we're setting up Perl and running our examples, we'll concentrate particularly on UNIX and
Windows. By UNIX, I mean any commercial or free UNIX-like implementation — Solaris, Linux, Net-,
Free- and OpenBSD, HP/UX, A/IX, and so on. Perl's home platform is UNIX, and 90% of the world
uses Windows. That said, the Perl language is the same for everyone. If you need help with your
particular platform, you will probably be able to find a README file for it in the Perl source
distribution. We'll see how to get hold of that in the next chapter.

While we're talking about operating system specifics, we'll use the filename extension .plx for our
examples. Traditionally, UNIX programs take no extension, and Windows files take a three-letter
extension to indicate their type. .plx is used by ActiveState to indicate a Perl program. Since UNIX
isn't fussy, we'll use that idiom. You may also see the extension .pl in use for Perl programs (and, in
fact, I use it myself from time to time to remind me that a given program is in fact a Perl one), but to be
really pedantic, that's more properly used for Perl 4 libraries. These have, for the most part, been
replaced by Perl 5 modules, which generally have the extension . pm. To avoid confusion, we won't use
the .pl extension.

You can also get more information on portable Perl programming from the perlport documentation.
Again, we'll see how to access this documentation very soon.

Introduction

The Prompt

If you're primarily using your computer in a graphical environment like Windows or X, you may not be
familiar with using the command line interface, or 'shell'. Before these graphical environments came
into common use, users had to start a new program, not by finding its icon and clicking on it but by
typing its name. The 'shell' is the program that takes the name from you. The 'shell prompt' (or just
'prompt') refers specifically to the text that prompts you to enter a new program name, and more
generally, to working with the shell instead of using a graphical interface. Some people still find working
with the shell much easier, and sophisticated shells have developed to simplify common tasks. In fact,
on UNIX, the shell is programmable, and Perl takes some of its inspiration from standard 'Bourne Shell'
programming practices.

To get to a prompt in Windows, look for Command Prompt or DOS Prompt in the Start Menu. UNIX
users should look for a program called something like console, terminal, konsole, xterm, eterm
or kterm. You'll then be faced with a usually black screen with a small amount of text that may say:

$

%
C:\>

#
bash$

For the purposes of this book, however, we'll use a prompt that looks like this:

>

We'll show text that you type in is bold. The text the computer generates is in a lighter typeface, like
this:

> perl helloworld.plx
Hello World!

The command line may look scary at first, but you'll quickly get used to it as we go through the
following examples and exercises. Note that ActiveState Perl will allow you to click on Perl programs
and run them directly from the GUI if they have a .pl or . plx extension. (Later in the introduction,
we'll show how you can manually configure Windows to do this.) However, the window containing the
output will disappear as soon as the program has finished (try it!), and you won't be able to see what's
happened, so I encourage you to use the shell instead.

What Do | Need To Use This Book?

As we've said, Perl is available for almost any kind of computer that has a keyboard and a screen, but
we will be concentrating on perl for Windows and UNIX. Perl 5.6 will run on Windows 95 and 98 as
well as NT and 2000. It'll run on more or less any UNIX, although you may find compilation is difficult
if you don't have the latest C libraries. Any 2.x Linux kernel should be fine, likewise Solaris 2.6 or
higher.

As well as Perl itself, you'll need a text editor to write and edit Perl source files. We look at a couple of
options in Chapter 1.

Introduction

To get the most out of some chapters, you'll also need to have an Internet connection.

For the chapter on CGI, you'll need a web server that supports CGI scripting. Apache is a good bet on
UNIX machines (and it's included in most Linux distributions). Windows users could also use Apache,
or alternatively, Microsoft's Personal Web Server (for 95 and 98). Internet Information Server (for NT
and 2000) can be configured to run Perl CGIs. To use mod_perl, you'll have to use Apache, which you
can obtain from http://www.apache.org.

How Do | Get Perl?

Perl has been ported to many, many platforms. It will almost certainly build and run on anything that
looks like (or pretends to be) UNIX, such as Linux, Solaris, A/IX, HP/UX, FreeBSD, or even the
Cygwin32 UNIX environment for Windows. Most other current operating systems are supported:
Windows 95, 98, NT, and 2000, OS/2, VMS, DOS, BeOS, the Apple MacOS, and AmigaOS to name
but a few.

Q You can get the source to the latest stable release of Perl from http://www.perl.com/CPAN-
local/src/stable.tar.gz.

QO Binary distributions for some ports will appear in http://www.perl.com/CPAN-local/ports.
These ports may differ in implementation from the original sources.

O You can get binary packages of Perl for Linux, Solaris, and Windows from ActiveState at
http://www.activestate.com/ActivePerl/download.htm.

0 Linux users should be able to get binary packages from the contrib section of their
distributor's FTP site.

Installing on Linux/UNIX

As I said, Perl is freely available. If you're running a Linux system, then you probably got Perl packaged
with your distribution. Type perl -v from a shell prompt to check this. If you see something that
starts with the text This is perl, then congratulations - you already have Perl. It should, however,
go on to give you a version number. If that's less than v5. 6.0 then you'll need to upgrade to a newer
version to run the code as we've written it in this book. A few minor tweaks will get it running in earlier
versions of Perl, but there's nothing like starting with the most up-to-date version of a toy, is there?

If you are running a package-based Linux system, such as Red Hat, SuSE, or Debian, then you have the
choice of installing Perl using your system package manager, which makes upgrading and uninstalling
simple. However, at the time of writing, this was complicated by the lack of availability of Perl 5.6
binary packages. ActiveState (http://www.activestate.com) makes packages in both RPM and Debian
format, and if you don't already have Perl installed, these are fine. However, you may find it difficult to
upgrade an existing Perl installation to ActivePerl using the package manager. In this case, installation
from source may be your only option. The major distributors should, however, be making Perl 5.6
packages available from their FTP sites soon, which will allow you to upgrade.

Installing/Upgrading an RPM Installation
If you are installing the ActivePerl RPM from ActiveState, you need to type:

> rpm --prefix=/usr/local -Uvh ActivePerl-5.6.0.613.rpm
ActivePerl HHHHH R AR AR AR

Introduction

The # marks appear to show the installation's progress. Using the - -prefix option shown tells RPM to
install the perl binaries in /usr/local/bin, libraries in /usr/local/1lib, and so on, rather than
their default locations under /usr/local/perl-5.6. If you already have a Perl package installed
with your distribution, RPM won't let you overwrite the files with ActiveState's versions, though.

Once you've installed ActivePerl in this way, you may find it useful to add a soft link, or shortcut, from
/usr/bin/perl to the /usr/local/bin/perl executable, since some scripts assume the perl
interpreter is located there. To do this, you need to type:

> In -sf /usr/local/bin/perl /usr/bin/perl

If you have obtained an RPM from your distributor, then you should be able to upgrade your existing
perl installation using:

>rpm -Uvh perl-5.6.0.613.rpm
perl HHHHHHIHH IR R R R

Building Perl from Source

If none of these apply, you may have to build Perl from source. To do this, you need to obtain the
stable.tar.gz file from any CPAN mirror. One such location is http://www.perl.com/CPAN-
local/src/stable.tar.gz.

The build process on most UNIX systems, and especially for relatively current versions of Linux, is
simple. Extract the archive and untar it:

> gunzip stable.tar.gz
> tar -xvf stable.tar
> cd perl-5.6.0

Now we need to run the Configure program. By supplying the -d switch, we tell Configure to
probe our system and work out default settings for us. The e tells the Configure program not to
bother us with any questions:

> ./Configure -de
Sources for perl5 found in "/root/perl-5.6.0".

Beginning of configuration questions for perl5.

There will now be a considerable amount of text scrolling up the screen, which shouldn't stop until the
following appears:

Now you must run a make.

If you compile perl5 on a different machine or from a different object
directory, copy the Policy.sh file from this object directory to the
new one before you run Configure -- this will help you with most of
the policy defaults.

Introduction

So, we do what the program says, and we run make.

> make
AutoSplitting perl library
Jminiperl -llib -e 'use AutoSplit; \

The build process itself will take the longest of all the steps. Once it's finished, it is worth running the
built-in diagnostics with make test, as follows:

> make test
Finally, running make install puts all the files in the correct places.

> make install
AutoSplitting perl library
Jminiperl -llib -e 'use AutoSplit; \

If you need or want finer control about how Perl should be compiled, then run . /Configure with no
switches instead. The installer will ask you a few questions. If you don't know the answer at any stage,
you can just hit Return, and let the system guess.

After the interrogation, you should now run make, or make test if you prefer, and then type make
install. On most modern systems, Perl should compile and install within the space of a lunch break.

Now, if we type perl -v, we should see something like:

This is perl, v5.6.0 built for i686-linux

Installing on Windows

Installing ActivePerl is quite straightforward. Download ActiveState's Perl 5.6 installer for
Windows/Intel from http://www.activestate.com/ActivePerl/download.htm. You'll need the latest
version of Windows Installer from Microsoft as well, unless you're running Windows 2000.

On Windows NT or 2000, you should make sure you are logged in as an administrator, as the installer
needs administrator privileges to set up your Perl installation.

Simply double-click the installer and follow the instructions. You can elect to install documentation and
examples, as well as the Perl language itself. You can also choose anywhere on your system to install the
Perl programs.

The only options that might cause some confusion are those related to installing Perl support into IIS
(Internet Information Server) or PWS (Personal Web Server), if you have either of them installed.
Setting up script mapping and ISAPI associations will enable you to run Perl programs within the web
server. For development purposes, you should check all the boxes. We'll look at how to use Perl as a
web scripting language in Chapter 12.

You can also run the installer program to modify or remove Perl at a later date.

Introduction

Windows Troubleshooting

If you're following this book from beginning to finish, this may not have troubled you yet, but in true
Windows style, it may be true that while installing, Perl was unable to associate itself with the .plx
extension. Or, in English, when you double-click on a perl file icon in Windows, nothing happens.
Similarly, you may have not noticed the pearl icon beside your perl files in Windows Explorer. If this is
the case, don't panic. Just follow these instructions:

For Windows 9x users...
1. Open Windows Explorer and choose Folder Options... from the View menu.
2. When the Folder Options dialog box appears, click on the File Types tab. Now click on New
Type.

3. In the Add New File Type dialog, add 'PLX file' to the Description Of Type box, and ".pIX' to
the Associated Extension text box. Then select the text/plain option for Content
Type(MIME):

4. Now click New, and type Open in the Hew Action HE||
Action text box, and
c:\Perl\bin\Perl.exe "%1" $*
(or whatever location you chose when
installing Perl) under Application used .) Cancel

. Application uzed to perform action:
to perform action as shown below.

Action:
IDpen

I

Ic:\F'erI\bin\F'erI.e:-:e RN E Browse. ..
™ UseDDE
5. Click on OK to exit the New Action Add New File Type EHE|

dialog, and now your screen will look

something like this: 2 Change lcan... I

Description of type: IF'L>< file

Agzociated extension: |.|:|I:-:

Content Type [MIME]: Itth.n’pIain j
Default Extension for Content Tepe: it j
Actions:

open

Edit.,. Hemove | St Default |

[~ Enable Quick Yiew ¥ Confitm open after download

[Alwaps show extension [Browee in same window

Cloze | [Caticel |

Introduction

6. Finally, close the Add New File Type dialog, and you should now be able to see the
following window:

Folder Options 2] I
General I iew File Types |

Fegiztered file twpes:

[@ FICSRules File A Hew Type...
EPKCS #7 Certificates
PKCS #7 MIME Message Bemove

7 Sighature
Edi...

Wl

roveger File i
Public K.ey Security Object
P File
@ Quicken Import File LI
~ File type detail:

Extension: PL<

Content Tupe [MIME]: text/plain

2 Opens with: PERL

ak. I Cancel | Apply !

Notice that your .plx file displays the pearl icon, which means that we are finished, and everything
will work according to plan.

For Windows NT / 2000 Users...

1. Open the Start menu and choose Control Panel from the Settings menu. Double click on the
Folder Options control panel.

. Select the File Types tab and hit New.

In the Create New Extension dialog, type PLX as your new extension.

Finally, select Advanced >> and Perl File from the drop-down list that eventually appears.

2 I N

» Hit OK, and for confirmation, the extension, along with a pearl icon and the associated
File Type, 'Perl File' should have appeared in the main list box. Hit Close to leave the
control panel.

How To Get Help

Perl comes with an excellent set of documentation. The interface to this system is through a command,
itself a Perl program, called perldoc. UNIX users can also use the man command to get at the same
information, but perldoc allows you to do interesting things, as you're about to see.

10

Introduction

Peridoc

Typing perldoc perl from a command prompt will get you the table of contents and some basic
information about Perl. The pages you're probably going to use the most are the Perl FAQ and
'perlfunc', which describes the built-in functions.

Because of this, perldoc has a special interface to these two pages. perldoc -f allows you to see
information about a particular function, like this:

> perldoc -f print

print FILEHANDLE LIST

print LIST

print Prints a string or a comma-separated list of strings. Returns TRUE if successful. . . .

Similarly, perldoc -gq allows you to search the Perl Frequently Asked Questions (FAQ) for any
regular expression or keyword.

> perldoc -q reverse
Found in /usr/lib/perl5/5.6.0/pod/perlfag4.pod
How do | reverse a string?
Use reverse() in scalar context, as documented in the reverse
entry in the perlfunc manpage

$reversed = reverse $string;
Now see if you can find that question about commercial Perl support that I mentioned earlier.

As well as the documentation pages for the language itself, whose names all start 'perl’, there's an awful
lot of other documentation out there, too. The reason for this is modules: files containing Perl code that
can be used to help with a certain task. Later on we'll examine what modules are available and what
they can help us do, but you should know that each Perl module, whether a core module that comes
with the Perl package or one you download from the Internet, should contain its own documentation.
We'll see how that's constructed later — for now though, know that you can use perldoc to get at this
too. Here's the beginning of the documentation for the Text : : Wrap module, which is used to wrap
lines into paragraphs.

> perldoc Text::Wrap
5.6.0::Text User Contributed Perl Documentation Text::Wrap(3)

NAME
Text::Wrap - line wrapping to form simple paragraphs

The pages are written in a special mark-up language called 'POD' (which sounds mysterious, but in fact
stands for 'Plain Old Documentation'). The perldoc utility attempts to translate this into ordinary text
when you view it, but if for some reason it cannot, you may need to specify the -t option to perldoc.
If your documentation ends up looking like this:

11

Introduction

> perldoc -q reverse
=headl Found in /usr/lib/perl5/5.6.0/pod/perlfaq4.pod
=head2 How do | reverse a string?
Use reverse() in scalar context, as documented in
e<perlfunc/reverse>

$reversed = reverse $string;

then you will need to run perldoc -t -g reverse instead.

Manpages

As well as the perldoc system, perl may well have installed its documentation in some other places as
well. UNIX people can get at the standard documentation as man pages (providing the MANPATH
environment variable includes the correct location), and ActiveState users should be able to find the
documentation under ActivePerl| | Online Documentation on the Start menu.

There's an exorbitant wealth of knowledge in these pages, and some are well beyond the scope of this
book. Here then is a list of those relevant to this book, in roughly the order we touch on the topics in
the book, plus one or two others that are handy and may satisfy your curiosity.

Documentation Page Subject

perl Introduction to Perl, and 'cover sheet'
perltoc Table of contents — what's in the other pages
perlfaqg Index to the Frequently Asked Questions
perlfaql, perlfag2.. The Perl Frequently Asked Questions
perlfaqg9

perlpod Plain Old Documentation and how to write it
perlbook Information on Perl books

perlstyle Perl style guide

perllexwarn A guide to the new use warnings feature of Perl.
perlsyn Perl's syntax rules

perldata Perl's data types

perlvar Perl's special variables

perlop Perl's built-in operators

perlunicode Perl's support for Unicode

perlre Regular expression reference

perlopentut Tutorial on opening files

perlreftut Tutorial on using references

perllol Lists of lists using references

perlref Perl references

12

Introduction

Documentation Page Subject

perlfunc Perl's built-in functions

perlsub Creating subroutines

perlrun Run-time options to perl

perlmod Perl modules — what they are
perlmodinstall How to install Perl modules

perlmodlib Guide to the standard modules

perlboot Randal Schwartz's Object Oriented Tutorial
perltoot Tom Christiansen's Object Oriented Tutorial
perltootc Tom Christiansen's Object Oriented Tutorial on Classes
perlobj Object oriented programming in Perl
perlbot The Bag of Object Tricks

perltie A walk through tied objects

perlipc Talking to other programs or networks
perldbmfilter Controlling how Perl writes to databases
perldiag What the error messages mean

perldebug Debugging Perl programs

perltrap Traps for the unwary programmer
perlhist Perl's development history

If the Perl FAQ and the various documentation pages don't help answer your question, it's time to look
for other sources of information.

Perl Resources

There is a tremendous amount of Perl information available in books and on the Internet. Let's have a
look at some of the more prominent ones.

Websites

On the web, the first port of call is http://www.perl.com/, the main Perl community site, run by the
publisher O'Reilly. This contains some good articles of interest to the Perl community and news from
Perl's major developers, as well as a wealth of links, tips, reviews, and documentation.

It is also home to CPAN, the Comprehensive Perl Archive Network, a collection of ready-made
programs, documents, notably the latest edition of the FAQ, some tutorials, and the Far More Than
Everything You Wanted To Know About (FMTEYWTKA) series of more technical notes. Most useful
of all, this site contains a huge (and they don't call it comprehensive for nothing!) collection of those
Per]l modules mentioned above. We'll fully cover the use of modules and some of the best ones in a
later chapter.

13

Introduction

Because CPAN is a network of sites, thereare mirror sites around theworld —the
CPAN multiplexer takes you to your nearest site. Find it at
http://www.perl.com/CPAN (note: no trailing slash!)

Other important Per] sites are:

Q http://www.perlclinic.com/ — Paul Ingram's Perl Clinic, providing commercial Perl support and

training
Q http://www.perlfag.com/ — an alternative, and very comprehensive, FAQ site
Q http://www.tpj.com/ — the home of the Perl Journal
Q http://www.activestate.com/ - the home of Perl on Windows
Q http://www.perl.org/ - Perl Mongers, a worldwide umbrella organisation for Perl user groups
Q http://www.perlarchive.com/ - another great source of articles, tutorials and information
Newsgroups

Perl is so cool it has its own Usenet hierarchy, comp.lang.perl.*. The groups in it are:

Q comp.lang.perl.announce for Perl-related announcements: new modules, new versions of
Perl, conferences and so on.

Q comp.lang.perl.misc for general Perl chat and questions.

0 comp.lang.perl.moderated, which requires prior registration before posting, but is excellent
for sensible questions and in-depth discussion of Perl's niggly bits.

Q comp.lang.perl.modules, for discussion and queries relating to creating and using Perl
modules.

0 comp.lang.perl.tk, for discussion and queries relating to the Tk graphical extensions.

IRC

If you've got a more urgent mindbender, or just want to hang around like-minded individuals, come join
#perl on Efnet (See http://www.efnet.org/). Make sure you read the channel rules (at
http://pound.perl.org/RTFM/) and the Perl documentation thoroughly first, though. Asking questions
about CGI or topics covered in the FAQ or the perldoc documentation is highly inflammatory behavior.

If that hasn't put you off, come over and say hi to me. (I have no imagination, so my nick is usually
Simon.)

Books

Of course, reading stuff from the net is a great way to learn, but I can't curl up in bed with a good web
site. Not until I get myself a laptop, anyway.

In the meantime, there are a few good treeware resources available, too. O'Reilly has published some of
the definitive books on Perl — Learning Perl (the Llama book), Programming Perl (the Camel book), and
the Perl Cookbook are well known and well respected in the Perl community. Check out the book reviews
pages housed at the http://www.perl.com/ and http://www.perl.org/ sites.

14

Introduction

As for the best book for teaching yourself Perl, just keep reading...

Conventions

We have used a number of different styles of text and layout in the book to help differentiate between
the different kinds of information. Here are examples of the styles we use and an explanation of what
they mean:

Try It Out — A 'Try It Out' Example
"Try It Out' is our way of presenting a practical example.

How It Works

Then the 'How It Works' section explains what's going on.

Advice, hints and background information come in an indented, italicized font like this.

Important bits of information that you really shouldn't ignore come in boxes like this!

Important Words are in a bold typeface.

Words that appear on the screen in menus like the File or Window menu are in a similar font
to what you see on screen.

O Keys that you press on the keyboard, like Ctrl and Enter, are in italics.

Perl code has two fonts. If it's a word that we're talking about in the text, for example, when discussing
the sub greeting {..} subroutine, it's in a distinctive font. If it's a block of code that you can type in
as a program and run, then it's shown in a gray box like this:

sub greeting {

print "Hello, world!\n";
1

Sometimes you'll see code in a mixture of styles, like this:

sub greeting {
print "Hello, world!\n";

}

&greeting() ;

This is meant to draw your attention to code that's new or relevant to the surrounding discussion (in the
gray box), while showing it in the context of the code you've seen before (on the white background).

15

Introduction

Where we show text to be entered at the command prompt, this will be shown as follows:
> perl helloworld.plx
And the output from the program will be shown in the same font, but lighter:

Hello World!

Downloading the Source Code

As you work through the examples in this book, you might decide that you prefer to type all the code in
by hand. Many readers prefer this, because it's a good way to get familiar with the coding techniques
that are being used.

Whether you want to type the code in or not, we have made all the source code for this book available
at our web site, at the following address:

http://www.wrox.com

If you're one of those readers who likes to type in the code, you can use our files to check the results
you should be getting. They should be your first stop if you think you might have typed in an error. If
you're one of those readers who doesn't like typing, then downloading the source code from our web
site is a must! Either way, it'll help you with updates and debugging.

Exercises

16

At the end of each of the first eleven chapters, you'll find a number of exercises. It is highly
recommended you work through them. This book will give you the knowledge you need - but it is only
through practice that you will hone your skills and get a true feel for what Perl can help you achieve.
You can find our suggested solutions to the exercises in Appendix H at the back of the book and also
for download from http://www.wrox.com, but remember that there's more than one way to do it, so
they're not the only ways to solve the exercises.

Introduction

Errata

We've made every effort to make sure that there are no errors in the text or the code. However, to err is
human, and as such we recognize the need to keep you informed of any mistakes as they're spotted and

corrected. Errata sheets are available for all our books at http://www.wrox.com/. If you find an error that
hasn't already been reported, please let us know, by emailing support@wrox.com.

Our web site acts as a focus for other information and support, including the code from all our books,
sample chapters, previews of upcoming titles, news of Wrox conferences, and articles and opinion on
related topics. For a more in-depth look at our online support and errata, turn to Appendix J.

Customer Support

Our commitment to our readers doesn't stop when you walk out of the bookstore. We want you to get
the most out of this book, and we provide a selection of support services for all our readers. See
Appendix J for information about our support process and our community P2P mailing lists.

We've tried to make this book as accurate and enjoyable as possible, but what really matters is what the

book actually does for you. Please let us know your views, either by returning the reply card in the back
of the book, or by emailing us at feedback@wrox.com.

17

Source code available at : www.wrox.com
Peer discussion at : lamplists.com

Also from Wrox

2 £k
o ImAA™
7 TVPHIR

FROTISSIONAL PROFISSIONAL

Perl Per

Programming Development

W AT

BEGINNING

Perl

http:/imwww.wrox.com/books/1861003145.htm

lamplists.com

The Open Source Programmer’s Res ource Centre

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

First Steps In Perl

Vitually all programming languages have certain things in common. The fundamental concepts of
programming are the same, no matter what language you do them in. In this chapter, we'll investigate
what you need to know before you start writing any programs at all. For instance:

What is programming anyway? What does it mean to program?

What happens to the program that we write?

How do we structure programs and make them easy to understand?

How do computers see numbers and letters?

0O 0 U 0 O

How do we find and eliminate errors in our programs?

Of course, we'll be looking at these from a Perl perspective, and we'll look at a couple of basic Perl
programs, and see how they're constructed and what they do. At the end of this chapter, I'm going to
ask you to write a couple of simple Perl programs of your own.

Programming Languages

The first question I suppose we really should ask ourselves when we're learning programming is, 'What
is programming?' That may sound particularly philosophical, but the answer is easy. Programming is
telling a computer what you want it to do. The only trick, then, is to make sure that the program is
written in a way the computer can understand. and to do this, we need to write it in a language that it
can comprehend - a programming language, such as Perl.

Writing a program does not require special skills, but it does call for a particular way of thinking. When
giving instructions to humans, you take certain things for granted.

Humans can ask questions if we don't understand instructions.
We can break up complex tasks into manageable ones.

We can draw parallels between the current task and ones we have completed in the past.

U 0 0 o

Perhaps most importantly, we can learn from demonstrations and from our own mistakes.

Ch

apter 1

Computers can't yet do any of these things very well — it's still much easier to explain to someone how
to tie their shoelaces than it is to set the clock on the video machine.

The most important thing you need to keep in mind, though, is that you're never going to be able to
express a task to a computer if you can't express it to yourself. Computer programming leaves little
room for vague specifications and hand waving. If you want to write a program to, say, remove useless
files from your computer, you need to be able to explain how to determine whether a file is useless or
not. You need to examine and break down your own mental processes when carrying out the task for
yourself: Should you delete a file that hasn't been accessed for a long time? How long, precisely? Do
you delete it immediately, or do you examine it? If you examine it, how much of it? And what are you
examining it for?

The first step in programming is to stop thinking in terms of 'T want a program that removes useless
files,' but instead thinking 'I want a program that looks at each file on the computer in turn and deletes
the file if it is over six months old and if the first five lines do not contain any of the words 'Simon',
'Perl' or 'important'. In other words, you have to specify your task precisely.

When you're able to restructure your question, you need to translate that into the programming
language you're using. Unfortunately, the programming language may not have a direct equivalent for
what you're trying to say. So, you have to get your meaning across using what parts of the language are
available to you, and this may well mean breaking down your task yet further. For instance, there's no
way of saying 'if the first five lines do not contain any of the following words' in Perl. However, there is
a way of saying 'if a line contains this word', a way of saying 'get another line', and 'do this five times'.
Programming is the art of putting those elements together to get them to do what you want.

So much for what you have to do — what does the computer have to do? Once we have specified the
task in our programming language, the computer takes our instructions and performs them. We call this
running or executing the program. Usually, we'll specify the instructions in a file, which we edit with an
ordinary text editor; sometimes, if we have a small program, we can get away with typing the whole
thing in at the command line. Either way, the instructions that we give to the computer - in our case,
written in Perl - are collectively called the source code (or sometimes just code) to our program.

Interpreted vs. Compiled Source Code

20

What exactly does the computer do with our source code, then? Traditionally, there were two ways to
describe what computer languages did with their code: You could say they were compiled, or that they
were interpreted.

An interpreted language, such as Basic, needs another program called an interpreter to process the
source code every time you want to run the program. This translates the source code down to a lower
level for the computer's consumption as it goes along. We call the lower-level language machine code,
because it's for machines to read, whereas source code is for humans. While the latter can look relatively
like English, for example, ("do_this () if $that"), machine code looks a lot more like what you'd
expect computers to be happier with, for example, "4576616E67656C6961", and that's the easy-to-
read version! The exact machine code produced depends on the processor of the computer and the
operating system it runs, the translation would be very different for an x86 computer running Windows
NT compared to a Sun or Digital computer running Unix.

A compiled language, on the other hand, such as C, uses a compiler to do all this processing one time
only before the code is ever run. After that, you can run the machine code directly, without needing the

First Steps In Perl

compiler any more. Because you don't need to process the source code every time you run it, compiled
code will usually run faster than an interpreted equivalent. You can also give the compiled code to
people who don't have a compiler themselves. This will prevent other people from reading your source
code — handy if you're using a proprietary algorithm or if your code is particularly embarrassing.
However, because you're distributing machine code that not all types of computers can understand, this
isn't necessarily portable.

Recent languages have blurred the compiled/interpreted distinction. Java and Perl both class as 'byte-
compiled' languages so they have been particularly blurry. In the case of Perl, where the interpreter
(which we'll always call perl with a small 'p') reads your source code, it actually compiles the whole
program at once. However, instead of compiling into the machine code spoken by the computer you
happen to be on, it compiles into a special virtual machine code for a fictitious computer. Java's
'virtual machine' is quite like a normal computer's processor in terms of what it can do, and people
have tried building processors that can speak the Java virtual machine code 'natively'. In comparison,
Perl's virtual machine doesn't much resemble any existing computer processor and is far less likely to

be built.

Once you've got this machine code, which we call bytecode, you can do a number of things with it.
You can:

Save it away to be run later.
Translate it to the native machine code of your computer, and run that instead.

Run it through a program that pretends to be the virtual machine and steps through the
bytecode, and performs the appropriate actions.

We don't really do the first of these in Perl, although Java does. The 'Perl compiler' tries to do the
second, but it's a very tricky job, and hasn't quite accomplished it. Normally, however, we do the third,
and so after perl has finished compiling the source into bytecode, it then takes on the role of interpreter,
translating the virtual machine code into real code. Hence Perl isn't strictly a compiled language or an
interpreted one.

What some people will say is that Perl is a 'scripting' language, by which they probably mean an
interpreted language. As we've seen, that's not actually true. However, be aware that you might hear the
word 'script' where you might expect 'program'.

Libraries, Modules, and Packages

A lot of people use Perl. One consequence of this is that, unsurprisingly, a lot of Perl code has been
written. In fact, a lot of the Perl code that you will ever need to write has probably already been written
before. To avoid wasting time reinventing the wheel, Perl programmers package up the reusable
elements of their code and distribute it, notably on CPAN - the Comprehensive Perl Archive Network -
which you can find online at http://www.perl.com/CPAN/.

The biggest section of CPAN deals with Perl modules. A module is a file or a bundle of files that helps
accomplish a task. There is a module for laying out text in paragraphs, one for drawing graphs, and
even one for downloading and installing other modules. Your programs can use these modules and
acquire their functionality. Later on, we'll devote the whole of Chapter 10 to using, downloading, and
writing modules.

21

Chapter 1

Closely linked to the idea of a module is the concept of a package, which is another way to divide up
a program. By using packages, you can be sure that what you do in one section of your program does
not affect another section. Whereas a module works with a file or bunch of files on your disk, a
package is purely part of the source code. A single file, for instance, can contain several packages.
Conversely, a package can be spread over several files. A module typically lives in its own package,
to keep it distinct from the code that you write and to keep it from interfering. Again, we'll come to
this later on in Chapter 10.

Every Perl installation comes with a collection of 'core modules'. The core, unsurprisingly, is the
collective term for the files that are installed with your Perl distribution. At times, they're also referred
to as the 'module library', although this could cause confusion if you intend to look back at older Perl
code: 'library files' were used in Perl in versions 4 and earlier until replaced by modules in Perl 5. They
are the same thing — pieces of code that you can use in your program to do a job that's been done
before. However, they didn't have a package of their own, and so they put themselves in the same
package as the rest of your program. It's also fairly simple to spot which file is a library and which is a
module - the extension for a library file is usually .pl, whereas the extension for a module is . pm.

The result of this is that the module library contains library files as well as modules, and so it's
hopelessly unclear what 'library' refers to any more. From now on, if we talk about a 'library', we're
referring to the collection of files distributed with Perl, rather than Perl 4 library files; we won't be doing
any work with library files (while library files have more or less been replaced by modules, they can still
be useful) but will use the new-style modules instead.

Why Is Perl Such A Great Language?

Perl is in use on millions of computers, and it's one of the fastest-growing programming languages
available. Why is this? We've already seen a number of reasons for this in the introduction, but I think
it's worth restating them briefly here.

It's Really Easy

Perl is not a difficult language to learn. It's a language that tries to shape itself around the way humans
think about problems and provides nothing contrary to their expectations. Perls' designers believe that
Perl is a populist language — and not just for the mathematicians and computer scientists of this world.
I know plenty of people with scientific and non-scientific backgrounds alike who successfully use Perl.

Flexibility Is Our Watchword

Perl doesn't want you to see things the way the computer does — that's not what it's for. Instead, Perl
allows you to develop your personal approach to programming. It doesn't say that there's one right or
wrong way to get a job done. In fact, it's quite the opposite — the Per]l motto is "There's more than one
way to do it", and Perl allows you to program whichever way makes most sense to you.

Perl on the Web

Perl's influence is not felt among the shell scripters of the world alone. Not only can it be used for
rooting around in directories or renaming files, it also has massive importance in the world of CGI

22

First Steps In Perl

scripting out on the World Wide Web. You'll find lots of Per]l automating communication between
servers and browsers world-wide and in more than one form. Perlscript is a (relatively new)
derivation of Perl into a proper scripting language that can run both client- and server-side web
routines, just as Javascript can. As we've said however, Perl's main function on the web is as a way to
script CGI routines.

For a while, CGI was the standard way for a web server to communicate with other programs on the
server, allowing the programs to do the hard work of generating content in a web page while the server
dedicated itself to pass that content onto browsers as fast as it could. Of course, web pages are
completely text-based and, thanks to its excellent text-handling abilities, PerlCGI set the standard for
web server automation in the past. It's CGI (and Perl) that we have to thank for the wonderfully
dynamic web pages we have become accustomed to on the Internet.

Later on in Chapter 12, we will explore the world of CGI in some detail, and among other things, we'll
also see how to write CGI scripts using Perl. For the moment, however, let's get back to learning about
Perl itself. If you would like to take a look, more information on PerlCGI and PerlScript is available at
www.fastnetltd.ndirect.co.uk/Perl/index.html.

The Open Source Effort

Perl is free. It belongs to the world. It's Larry Wall's creation language, of course, but anyone in the
world can download it, use it, copy it, and help make improvements. Roughly six hundred people are
named in the changes files for assisting in the evolution from Perl 4.0 to Perl 5.0 to Perl 5.6, and that
doesn't include the people who took the time to fill in helpful bug reports and help us fix the
problems they had.

When I say 'anyone can help', I don't mean anyone who can understand the whole of the Perl source
code. Of course, people who can knuckle down and attack the source files are useful, but equally useful
work is done by the army of volunteers who offer their services as testers, documenters, proofreaders
and so on. Anyone who can take the time to check the spelling or grammar of some of the core
documentation can help, as can anyone who can think of a new way of explaining a concept, or anyone
who can come up with a more helpful example for a function.

Perl development is done in the open, on the perl5-porters mailing list. The perlbug program,
shipped with Perl, can be used to report problems to the list, but it's a good idea to check to make
sure that it really is a problem and that it isn't fixed in a later or development release of Perl.

Developers Releases and Topaz

Perl is a living language, and it continues to evolve. The development happens on two fronts:

Stable releases of Perl, intended for the general public, have a version number x.y.z where z is less
than 50. Currently, we're at 5.6.0; the next major stable release is going to be 5.8.0. Cases where z

is more than 0 are maintenance releases issued to fix any overwhelming bugs. This happens extremely
infrequently. For example, the 5.5 series had three maintenance releases in approximately one year

of service.

23

Chapter 1

Meanwhile between stable releases, the porters work on the development track, (where y is odd). When
5.6.0 was released, work began on 5.7.0 (the development track) to eventually become 5.8.0. Naturally,
releases on the development track happen much more frequently than those on the stable track, but
don't think that you should be using a development Perl to get the latest and greatest features or just
because your stable version of last year seems old in comparison to the bright and shiny Perl released
last week. No guarantees whatsoever are made about a development release of Perl.

Releases are coordinated by a 'patch pumpkin holder', or 'pumpking' — a quality controller who, with
help from Larry, decides which contributions make the grade and when and bears the heavy
responsibility of releasing a new Perl. He or she maintains the most current and official source to Perl,
which they sometimes make available to the public: Gurusamy Sarathy is the current pumpkin, and
keeps the very latest Perl at ftp://ftp.linux.activestate.com/pub/staff/gsar/APC
/perl-current/

Why a pumpkin? To allow people to work on various areas of Perl at the same time and to avoid
two people changing the same area in different ways, one person has to take responsibility for bits of
development, and all changes are to go through them. Hence, the person who has the patch pumpkin
is the only person who is allowed to make the change. Chip Salzenburg explains:

'David Croy once told me once that at a previous job, there was one tape drive and multiple systems
that used it for backups. But instead of some high-tech exclusion software, they used a low-tech
method to prevent multiple simultaneous backups: a stuffed pumpkin. No one was allowed to make

backups unless they had the "backup pumpkin'.'

So what development happens? As well as bug fixes, the main thrust of development is to allow Perl to
build more easily on a wider range of computers and to make better use of what the operating system
and the hardware provides for example support for 64-bit processors. (The Perl compiler, mentioned
above, is steadily getting more useful but still has a way to go.) There's also a range of optimizations to
be done, to make Perl faster and more efficient, and work progresses to provide more helpful and more
accurate documentation. Finally, there are a few enhancements to Perl syntax that are being debated -
the 'Todo' file in the Perl source kit explains what's currently on the table.

The other line of development that's going on is the Topaz project, led by Chip Salzenburg, an attempt
to rewrite the entirety of Perl in C++. Compared to the main development track, this is going slowly but
steadily. Topaz is by no means ready for use; currently, it can merely emulate some of the Perl internals;
there is no interpreter or compiler yet and probably will not be for some time. However, it's expected
that Topaz development will speed up in the near future. The homepage of the Topaz project is
http://topaz.sourceforge.net/.

Our First Perl Program

I'm assuming that by now you've got a copy of Perl installed on your machine after following the
instructions in the introduction. If so, you're ready to go. If not, go back and follow the instructions.
What we'll do now is set up a directory for all the examples we'll use in the rest of the book and write
our first Perl program.

Here's what it'll look like:
#!/usr/bin/perl -w

print "Hello, world.\n";

24

First Steps In Perl

The 'Hello World' example is the traditional incantation to the programming gods and will ensure your
quick mastery of the language, so please make sure you actually do this exercise, instead of just reading
about it.

Before we go any further however, a quick note on editors. Perl source code is just plain text and should
be written with a plain text editor, rather than a word processor. If you're using Windows, you really
will want to investigate getting hold of a good programmer's editor. Notepad may be fine for this
example, despite its annoying tendency to want to rename file extensions to . plx. txt for you, but I
wouldn't recommend its use beyond that. WordPad also renames file extensions for you, and
additionally, you must remember to save as plain text, not Word format. Edit was bearable, but no
longer ships with Windows versions after 95.

A decent editor will help you with bracket matching indentation and may even use different colors to
point out different parts of your code. You will almost certainly want to view and edit your code in a
fixed-width font. The usual Unix editors, vi, emacs, and so on are perfectly suitable, and versions
('ports") of these are available for Windows — I personally use a port of vim a vi-like editor — available at
http://shareware.cnet.com -, when programming on Windows.

Right then, back to the code.

If You are a Windows User
1. Open Windows Explorer. Left click on the icon for your C: drive and choose New | Folder
from the File menu.

2. Give the folder the name 'BegPerl' and press Return.

3. Open Notepad, which you'll find in the Programs | Accessories menu under the Start button,
and type in the two lines of code as shown above.

4. Choose Save As from the File menu and change the menu option in Save as type to All Files
(*.*). Find your BegPerl folder, and save the file as hellol.plx. The caption box should
look this.

Save As H

Save jn: |ﬁ BegPerl j @ E

File hame: |hell0.p\x
Save as type: |AII Files [%.7] j Cancel

5. Click save and then exit Notepad.
6. It's possible that Notepad will have renamed your file he11lol.plx.txt, so in Windows

Explorer, go to the BegPer1 folder. If it has been renamed, right-click on the file and select
Rename. Rename the file back to hellol.plx

25

Chapter 1

7.

The icon should change to a picture of a pearl < — double click on it, and you'll see a window
appear briefly and disappear before you have time to read it. This is your first lesson about
clicking on Perl programs — a window will open to run them in, run them, and then close as
soon as they are finished. In order to actually keep the results of our program on screen, we
need to open an MS-DOS Prompt window first. So let's do that.

Click Start and select MS-DOS Prompt from the Programs menu. Type cd c:\BegPerl
and press Return.

Type perl hellol.plx - If Perlis in your path and all is well, this is what you should see
on screen:

>perl hellol.plx
Hello, World.

>

Congratulations. You've successfully run your first piece of code!

If You're A Unix User

26

1.

Open up a terminal window if you haven't already got one open, and cd to your home
directory.

Type mkdir begperl; cd begperl

Open your favorite editor and edit hellol.plx — for example, vi hellol.plx

Confirm that your Perl distribution has been installed in /usr/bin/perl as the first line
suggests, by typing which perl - if this doesn't give you anything, try whence perl. If the
result is not /usr/bin/perl, be prepared to make appropriate changes.

Type in the two lines of code as shown above, save, and exit.

Run the file by typing perl hellol.plx - you should get similar output to the Windows
users:

>perl hellol.plx
Hello, World.
>

Note that from this point on, we'll not run through these steps again. Instead, the
name we've given the file will be shown as a comment on the second line of the
program.

Y ou may also have noticed that the output for hellol.plx on Windows and Unix differs
in that Windows adds a silent print \n to all its perl programs. From now on, we'll
only print the Unix output that is more strict. Windows user s please be awar e of this.

First Steps In Perl

How It Works

So, all being well, your Perl program has greeted the light of day. Let's see how it was done, by going
through it a line at a time. The first line is:

#!/usr/bin/perl -w

Now normally, Perl treats a line starting with # as a comment and ignores it. However, the # and !
characters together at the start of the first line tell Unix how the file should be run. In this case the file
should be passed to the perl interpreter, which lives in /usr/bin/perl.

Perl also reads this line, regardless of whether you are on Unix, Windows, or any other system. This is
done to see if there are any special options it should turn on. In this case, -w 1is present, and it instructs
perl to turn on additional warning reporting. Using this flag, or its alternative, is a very good habit to get
into, and we shall see why in just a moment. But first, let's have a look at the second line of our
program:

print "Hello, world.\n";

The print function tells perl to display the given text without the quotation marks. The text inside the
quotes is not interpreted as code (except for some 'special cases') and is called a string. As we'll see
later, strings start and end with some sort of quotation mark. The \n at the end of the quote is one of
these 'special cases' —it's a type of escape sequence, which stands for 'new line'. This instructs perl to
finish the current line and take the prompt to the start of a new one.

You may be wondering why -w is so helpful. Well, suppose we altered our program to demonstrate this
and made two mistakes by leaving out -w and by typing printx instead of print. Then hellol.plx
would look like this:

#!/usr/bin/perl
printx "Hello, world.\n";

Remember to save these changes in Hello2.plx before exiting your file. Now let's get back to the
command prompt, and type:

>perl Hello2.plx
Instead of getting the expected

Hello, world.
>

the output we get has a plethora of rather-nasty looking statements like this:

String found where operator expected at hello.plx line 2, near "printx "hello, world. \n
(Do you need to predeclare printx?)

syntax error at hello.plx line 2, near "printx "Hello, world. \n
Execution of Hello.plx aborted due to compilation errors.

>

27

Chapter 1

If we now correct one of our mistakes by including —-w in our program, then Hello2.plx looks
like this:

#!/usr/bin/perl -w
printx "Hello, world. \n";

Once we have saved this new change into the program, we can run it again. The output that we get now
contains a warning as well as the error message, so the screen looks like this:

>perl hello2.plx

Unquoted string "printx" may clash with future reserved word at hello2.plx line 3.
String found where operator expected at hello.plx line 2, near "printx "hello, world. \n""
(Do you need to predeclare printx?)

Syntax error at hello2.plx line 2, near "printx "Hello, world. \n""

Execution of Hello2.plx aborted due to compilation errors.

On the surface of things, it may seem that we have just given ourselves more nasty-looking lines to deal
with. But bear in mind that the first line is now a warning message and is informing us that perl has
picked something up that may (or may not) cause problems later on in our program. Don't worry if you
don't understand everything in the error message at the moment, just so long as you are beginning to
see the usefulness of having an early-warning system in place.

For versions of Perl 5.6.x and higher, the -w switch should be replaced with ause warnings
directive, which follows after the shebang line. Although -w will still be recognized by perl, it has been
deprecated, and for arguments sake we will assume from now on that you have Perl 5.6.x or higher. The
resulting "en vogue" (and correct) version of hello.plx then, will look like this:

#!/usr/bin/perl
use warnings;

print "Hello, world. \n";

Program Structure

One of the things we want to develop throughout this book is a sense of good programming practice.
Obviously this will not only benefit you while using Perl, but in almost every other programming
language, too. The most fundamental notion is how to structure and lay out the code in your source
files. By keeping this tidy and easy to understand, you'll make your own life as a programmer easier.

Documenting Your Programs

As we saw earlier, a line starting with a sharp (#) is treated as a comment and ignored. This allows you
to provide comments on what your program is doing, something that'll become extremely useful to you
when working on long programs or when someone else is looking over your code. For instance, you
could make it quite clear what the program above was doing by saying something like this:

#!/usr/bin/perl
use warnings;

Print a short message
print "Hello, world.\n";

28

First Steps In Perl

Actually, this isn't the whole story. A line may contain some Perl code, and be followed by a comment.
This means that we can document our program 'inline' like this:

#!/usr/bin/perl
use warnings;

print "Hello, world.\n"; # Print a short message

When we come to write more advanced programs, we'll take a look at some good and bad
commenting practice.

Keywords

There are certain instructions that perl recognizes and understands. The word print above was one
such example. On seeing print, perl knew it had to print out to the screen whatever followed in
quotes. Words that perl is already aware of are called keywords, and they come in several classes.
print is one example of the class called functions. These are the verbs of a programming language,
and they tell perl what to do. There are also control keywords, such as if and else. These are used in
context like this:

if Condition;
do this;

else
do this;

It's a good idea to respect keywords and not reuse them as names. For example, a little later on we'll
learn that you can create and name a variable, and that calling your variable $print is perfectly
allowable. The problem with this is that it leads to confusing and uninformative statements like print
$print. It is always a good idea to give a variable a meaningful name, one that relates to its content in
a logical manner. For example $my_name, Stelephone_number, @shopping_list, and so on,
rather than $a, $b and %c.

Statements and Statement Blocks

If functions are the verbs of Perl, then statements are the sentences. Instead of a full stop, a statement in
Perl usually ends with a semicolon, as we saw above:

print "Hello, world.\n";
To print something again, we can add another statement:

print "Hello, world.\n";
print "Goodbye, world.\n";

There are times when you can get away without adding the semicolon, such as when it's absolutely clear
to perl that the statement has finished. However, it is good practice to put a semicolon at the end of
each statement. For example, you can miss out the final semicolon in the example above, without
causing a problem. Missing out the first would be incorrect.

29

Chapter 1

We can also group together a bunch of statements into a block — which is a bit like a paragraph - by
surrounding them with braces: {..}. We'll see later how blocks are used to specify a set of statements
that must happen at a given time and also how they are used to limit the effects of a statement. Here's
an example of a block:

print "This is";
print "a block";
print "of statements.\n";

Do you notice how I've used indentation to separate the block from its surroundings? This is because,
unlike paragraphs, you can put blocks inside of blocks, which makes it easier to see on what level things
are happening. This:

print "Top level\n";

{

print "Second level\n";

{
}

print "Where are we?";

print "Third level\n";

is easier to follow than this:

print "Top level\n";
{

print "Second level\n";

{

print "Third level\n";

}

print "Where are we?";

}

As well as braces to mark out the territory of a block of statements, you can use parentheses to mark out
what you're giving a function. We call the set of things you give to a function the arguments, and we say
that we pass the arguments to the function. For instance, you can pass a number of arguments to the
print function by separating them with commas:

print "here ", "we ", "print ", "several ", "strings.\n";

The print function happily takes as many arguments as it can, and it gives us the expected answer:
here we print several strings.

Surrounding the arguments with brackets clears things up a bit:

print ("here ", "we ", "print ", "several ", "strings.\n");

30

First Steps In Perl

We can also limit the amount of arguments we pass by moving the brackets:
print ("here ", "we ", "print "), "several ", "strings.\n";
We only pass three arguments, so they're the ones that get printed:
here we print

What happens to the others? Well, we didn't give perl instructions, so nothing happens.

In the cases where semicolons or brackets are optional, the important thing to do is to use your
judgment. Sometimes code will look perfectly clear without the brackets, but when you've got a
complicated statement and you need to be sure of which arguments belong to which function, putting in
the brackets can clarify your work. Always aim to help the readers of your code, and remember that
these reader will more than likely include you.

ASCII and Unicode

Computers are, effectively, lumps of sand and metal. They don't know much about the world. They
don't understand words or symbols or letters. They do, however, know how to count. As far as a
computer is concerned, everything is a number, and every character, albeit a letter or a symbol, is
represented by a number in a sequence. This is called a 'character set', and the character set that
computers predominantly use these days is called the 'ASCII' sequence. If you're interested, you can
find the complete ASCII character set in Appendix F for reference.

The ASCII sequence consists of 256 characters, running from character number 0 (all computers, and
plenty of computer users, start counting from zero) to character number 255. The letter 'E', for instance,
is number 69 in the sequence, and a plus sign (+) is number 43. 255 is a key number for computers and
computer programmers alike, because it's the largest number you can store in one 'byte'.

The big problem with ASCII is that it's American. Well, that's not entirely the problem; the real reason
is that it's not particularly useful for people who don't use the Roman alphabet. What used to happen
was that particular languages would stick their own alphabet in the upper range of the sequence,
between 128 and 255. Of course, we then ended up with plenty of variants that weren't quite ASCII,
and the whole point of standardization was lost.

Worse still, if you've got a language like Chinese or Japanese that has hundreds or thousands of
characters, then you really can't fit them into a mere 256. This meant that programmers had to forget
about ASCII altogether and build their own systems using pairs of numbers to refer to one character.

To fix this, Unicode was developed by a number of computer companies, standards organizations, and
bibliographic interests. It is currently maintained and developed by the Unicode Consortium, an
organization in California. They have also produced a couple of new character sets, UTF8 and UTF16.
UTFS8 uses two bytes instead of one, so it can contain 65536 characters, which is enough for most
people. You can learn more about Unicode at http://www.unicode.org/

31

Chapter 1

Perl 5.6 introduces Unicode support. Previously, you could print any data that you were capable of
producing in your editor or from external sources. However, the functions to translate between lower
and upper case wouldn't necessarily work with Greek letters without a lot of support from your
operating system. Now, if you have Unicode data, you can consider a single Japanese kana to be one
character instead of two. So, if you use a Unicode editor for your programming:

O You can write your variable names in your native alphabet.

O You can match certain classes of symbol or character regardless of language, while processing
data.

Escape Sequences

So, UTFS8 gives us 65536 characters, and ASCII gives us 256 characters, but on the average keyboard,
there only a hundred or so keys. Even using the shift keys, there will still be some characters that you
aren't going to be able to type. There'll also be some things that you don't want to stick in the middle of
your program, because they would make it messy or confusing. However, you'll want to refer to some of
these characters in strings that you output. Perl provides us with mechanisms called 'escape sequences'
as an alternative way of getting to them. We've already seen the use of \n to start a new line. Here are
the more common escape sequences:

Escape Sequence M eaning

\t Tab

\n Start a new line (Usually called 'newline')
\b Back up one character ('backspace')

\a Alarm (Rings the system bell)

\x{1F18} Unicode character

In the last example, 1F18 is a hexadecimal number (see 'Number Systems' just below) referring to a
character in the Unicode character set, which runs from 0000-FFFF. As another example, \x{2620} is
the Unicode character for a skull-and-crossbones!

White Space

White space is the name we give to tabs, spaces, and new lines. Perl is very flexible about where you put
white space in your program. We have already seen how we're free to use indentation to help show the
structure of blocks. You don't need to use any white space at all, if you don't want to. If you prefer, your
programs can all look like this:

print"Top level\n";{print"Second level\n";{print"Third level\n"; }print"Where are
we?"; }

Personally, though, I'd call that a bad idea. White space is another tool we have to make our programs
more understandable. Let's use it as such.

32

First Steps In Perl

Number Systems

If you thought the way computers see characters is complicated, we have a surprise for you.

The way most humans count is using the decimal system, or what we call base 10; we write 0, 1, 2, 3, 4,
5,6,7,8,9, and then when we get to 10, we carry 1 in the 10s column and start from 0 again. Then
when the 10s column gets to 9 and the 1s column gets to 9, we carry 1 in the 100s column and start
again. Why 10? We used to think it's because we have 10 fingers, but then we discovered that the
Babylonians counted up to 60, which stopped that theory.

On the other hand, computers count by registering whether or not electricity flows in a certain part of
the circuit. For simplicity's sake, we'll call a flow of electricity a 1, and no flow a 0. So, we start off with
0, no flow. Then we get a flow, which represents 1. That's as much as we can do with that part of the
circuit: 0 or 1, on or off. Instead of base 10, the decimal system, this is base 2, the binary system. In the
binary system, one digit represents one unit of information: one binary digit, or bit.

When we join two parts of the circuit together, things get more interesting. Look at them both in a row,
when they are both off, the counter reads 00. Then one comes on, so we get 01. Then what? Well,
humans get to 9 and have to carry one to the next column, but computers only get to 1. The next
number, number two, is represented as 10. Then 11. And we need some more of our circuit. Number
four is 100, 5 is 101, and so ad infinitum. If we got used to it, and we used the binary system naturally,
we could count up to 1023 on our fingers.

This may sound like an abnormal way to count, but even stranger, counting mechanisms are all around
us. As I write this, it's 7:59pm. In one minute, it'll be 8:00pm, which seems unremarkable. But that's a
base 60 system. In fact, it's worse than that — time doesn't stay in base 60, because hours carry at 24
instead of 60. Anyone who's used the Imperial measurement system, a Chinese abacus, or pounds,
shillings, and pence knows the full horror of mixed base systems, which are far more complicated than
what we're dealing with here.

As well as binary, there are two more important sequences we need to know about when talking to
computers. We don't often get to deal with binary directly, but the following two sequences have a
logical relationship to base 2 counting. The first is octal, base 8.

Eight is an important number in computing. Bits are organized in groups of eight to form bytes, giving
you the range of 0 to 255 that we saw earlier with ASCII. Each ASCII character can be represented by
one byte. As we said in the paragraph before, octal is one way of counting bits — it has, however, fallen
out of fashion these days. Octal numbers all start with 0, (that's a zero, not an oh) so we know they're
octal and proceed as you'd expect: 00, 01, 02, 03, 04, 05, 06, 07, carry one, 010, 011, 012...017, carry
one, 020 and so on. Perl recognizes octal numbers if you're certain to put that zero in front, like this:

print 01101;
prints out the decimal number:
577

The second is called the hexadecimal system, as mentioned above. Of course, programmers are lazy, so
they just call it hex. (They like the wizard image.)

33

Chapter 1

Decimal is base 10, and hexagons have six sides, so this system is base 16. As you might have guessed
from the number 1F18 above, digits above 9 are represented by letters, so A is 10, B is 11, and so on, all
the way through to F which is 15. We then carry one and start with 10 (which, in decimal, is 16) all the
way up through 19, 1A, 1B, 1C, 1D, 1E, IF, and carry one again to get 20 (which in decimal is 32). The
magic number 255, the maximum number we can store in one byte, is FF. Two bytes next to each other
can get you up to FFFF, better known as 65535. We met 65535 as the highest number in the Unicode
character set, and you guessed it, a Unicode character can be stored as a pair of bytes.

To get perl to recognize hex, place 0x in front of the digits so that:

print OxBEEF;

gives the answer:

48879

The Perl Debugger

One thing you'll notice about programming is that you'll make mistakes; mistakes in programs are
called bugs. Bugs are almost entirely unavoidable, and creating bugs does not mean you're a bad
programmer. Windows 2000 allegedly shipped with 65,000 bugs (but then that's a special case) and even
the greatest programmers in the world have problems with bugs. Donald Knuth's typesetting software
TeX has been in use for 18 years, and bugs were still found until a couple of years ago.

While we will be showing you ways to avoid getting bugs in your program, Perl provides you with a tool
to help find and trace the causes of bugs. Naturally, any tool for getting rid of bugs in your program is
called a 'debugger'. Mundanely enough, the corresponding tool for putting bugs into your program is
called a 'programmer’.

Summary

We've started on the road to programming in Perl, and programming in general. We've seen our first
piece of Perl code, and hopefully, you've had it running. If you haven't, please do get through it and all
the examples to come; trying everything yourself is the best way to learn.

Programming is basically telling a computer what to do in a language it comprehends. It's about
breaking down problems or ideas into byte-sized chunks (as it were) and examines the task at hand in
order to communicate them clearly to the machine.

Thankfully, Perl is a language that allows us a certain degree of freedom in our expression, and so long
as we work within the bounds of the language, it won't enforce any particular method of expression on
us. Of course, it may judge what we're saying to be wrong, because we're not speaking the language
correctly, and that's how the majority of bugs are born. Generally though, if a program does what we
want, that's enough - There's More Than One Way To Do It.

34

First Steps In Perl

We've also seen a few ways of making it easy for ourselves to spot potential problems, and we know
there are tools that can help us if we need it. We have examined a little bit of what goes on inside a
computer, how it sees numbers, and how it sees characters, as well as what it does to our programs
when and as it executes them.

I'm now going to ask you to write a simple program for yourself, nothing strenuous, and nothing

harder than we've already seen. But it's important that you take that psychological step into
programming right now.

Exercises

1. Look through the documentation installed with your Perl distribution.

2. Create a program newline.plx containing print "Hi Mum.\nThis is my second program. \n".
Run this and then to replace \n with a space or an Enter and compare the results.

3. Download the code for this book from the wrox website at http://www.wrox.com.

4. Have alook around the Perl homepage at www.perl.com and at our Beginning_Perl mailing
list at http://p2p.wrox.com.

35

Source code available at : www.wrox.com
Peer discussion at : lamplists.com

Also from Wrox

2 £k
o ImAA™
7 TVPHIR

FROTISSIONAL PROFISSIONAL

Perl Per

Programming Development

W AT

BEGINNING

Perl

http:/imwww.wrox.com/books/1861003145.htm

lamplists.com

The Open Source Programmer’s Res ource Centre

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

Working with Simple Values

The essence of programming is computation — we want the computer to do some work with the input
(the data we give it). Very rarely do we write programs that tell us something we already know. Even
more rarely do we write programs that do nothing interesting with our data at all. So, if we're going to
write programs that do more than say "hello" to us, we're going to need to know how to perform
computations, or operations, on our data. The things that perform these operations are called operators,
and the second part of this chapter will be dedicated to looking at some common operators in Perl.

Variables are another key topic we'll introduce in this chapter. Variables give us somewhere to store a
value while we're doing calculations on it, allowing us to do long computations with intermediary stages.
As their name suggests, they also allow us to change their contents at will. Variables are the basis for all
serious programming, so we need to meet them sooner rather than later.

Finally in the chapter, we'll see one way of getting data from the user, and we'll use that to build our
first 'useful' program.

Types of Data

A lot of programming jargon is about familiar words in an unfamiliar context. We've already seen a
string, which was a series of characters. We could also describe that string as a scalar literal constant.
What does that mean?

It's a literal, because it's something that means what it says, as opposed to a variable. A variable is more
like a pigeonhole for data; the important thing is to look inside it and see what it contains. A variable,
such as $fish, is probably not going to stand for the word 'fish' preceded by a dollar sign, it's more
likely to contain 'trout', 42, or —10. A literal, on the other hand, such as the string "Hello, world" is
the piece of paper that goes into a pigeonhole — it doesn't stand for something else. It represents literally
those twelve characters.

It's also a constant, because it can't change. Variables, as their name implies, may change their contents,
but constants are written into the text of your program once and for all, and the program can't change
that. Another way of expressing this is that the data is hard-coded into the program. We will see later
how it's almost always better to avoid hard-coding information.

Chapter 2

By calling a variable a scalar, we're describing the type of data it contains. If you remember your math
(and even if you don't) a scalar is a plain, simple, one-dimensional value. In math, the word is used to
distinguish it from a vector, which is expressed as several numbers. Velocity, for example, has a pair of
co-ordinates (speed and direction), and so must be a vector. In Perl, a scalar is the fundamental, basic
unit of data of which there are two kinds — numbers and strings.

We use the term scalar' to distinguish it from aggregates, like lists or hashes, which are single
entities made up of several scalars. We'll look at what we can do with these two data types and how
to manipulate them in the next chapter.

Numbers

Numbers are...well, they're numbers. Now there are two types of number that we're interested in as Per]
programmers: integers and floating-point numbers. The latter we'll come to in a minute, but let's work
with integers right now. Integers are whole numbers with no numbers after the decimal point like 42, -1,
or 10. The following program prints a couple of integer literals in Perl.

#!/usr/bin/perl
#numberl.plx
use warnings;
print 25, -4;

> perl numberl.plx
25-4>

Well, that's what you see, but it's not exactly what we want. Our program has a bug. Fortunately, this is
a pretty easy bug to understand and fix. First, we didn't tell perl to separate the numbers with a space,
and second, we didn't tell it to insert a new line at the end. Let's change the program so it does that:

#!/usr/bin/perl
#number2.plx

use warnings;

print 25, " ", -4, "\n";

This will do what we were thinking of:

> perl number2.plx
25 -4
>

For very large integers, we might find it easier to split the number up. So when we write out ten million,
we're likely to split up the thousands with commas, like this: 10,000,000. We can also do this in Perl, but
with an underscore (_) instead of a comma. Note that this is only to help us make our code clearer — perl
ignores it. Change your program to look like the following, and then save it.

#!/usr/bin/perl

#number3.plx

use warnings;

print 25_000_000, " ", -4, "\n";

38

Working with Simple Values

Notice, that those underscores don't appear in the output:

> perl number3.plx
25000000 -4
>

As well as integers, there's another class of number - floating-point numbers. These contain everything
else, like 0.5, -0.01333, and 1.1. Now, floating-point numbers have a big problem. Take what happens
when you divide 1 by 7, you get a number that starts off 0.14285714285714... and keeps going. It's an
infinite sequence, and you can't possibly write out all of it. You have to stop somewhere, and this means
you lose accuracy.

We've seen that computers represent numbers internally in binary form, and this is true for fractional
numbers too. 0.1 is equivalent to a 1/2, or what we would call 0.5 in decimal; 0.01 is 1/4, or 0.25 in
decimal; 0.001 is 1/8, and so on. The upshot of all this is that numbers we can express perfectly
accurately in decimal, such as one-fifth (0.2), cannot be accurately expressed by a computer, as its
binary representation is 0.001100110011.... Because of this, you need to be careful when working with
floating-point numbers. While perl does try to provide sensible looking answers whenever possible,
you may get the odd occasion where you end up with a number like 24.999999999999, instead of 25,
which is what you should see. There's an old programming adage that goes 'don't compare floating-
point numbers solely for equality' — allow for a bit of 'fudge factor'. We'll see how this is done when
we get to comparisons.

The other potential inaccuracy is that Perl, by default, only uses a set number of bits to store each of
your numbers in. To see how much storage your computer allows, change your program again to this:

#!/usr/bin/perl

#number4 .plx

use warnings;

print 25_000_000, " ", 3.141592653589793238462643383279, "\n";

Here's what happens on my computer:

> perl number4.plx
25000000 3.14159265358979
>

As you can see, what we put in is only good to 14 decimal places. Some computers may have more than
that, but those that don't may emulate arbitrarily long storage with the core Math: :BigFloat module.
Integers are also limited by the computer's storage, the maximum available size for storing a single
integer is typically 32 bits, or 4294967295, and everything above that gets stored as a floating-point
number. There's also a Math: : BigInt module, included in the standard Perl distribution, for allowing
larger integers than this. We will see more of modules in Chapter 10.

Binary, Hexadecimal, and Octal Numbers

As we saw in the previous chapter, we can express numbers as binary, hexadecimal, or octal numbers in
our programs. We can mix the various representations in our program at will.

39

Ch

apter 2

Try it out — Number systems

Here we'll create a simple program to demonstrate how we use the various number systems. Type in the
following code, and save it as goodnums . plx:

How It Works

40

#!/usr/bin/perl
#goodnums .plx
use warnings;

print
print
print
print

255, "\n";
0377, "\n";
0b11111111, "\n";
0xFF, "\n";

All of these are representations of the number 255, and accordingly, we get the following output:

> perl goodnums.plx

255
255
255
255
>

When perl reads your program, it reads and understands numbers in any of the allowed number
systems: 0 for octal, 0b for binary, and 0x for hex.

What happens, you might ask, if you specify a number in the wrong system? Well, let's try it out. Edit
goodnums . plx to give you a new program badnums . plx that looks like this:

#!/usr/bin/perl
#badnums .plx
use warnings;

print
print
print
print

255, "\n";
0378, "\n";
0b11111112, "\n";
0XFG, "\n";

Since octal digits only run from 0 to 7, binary digits from 0 to 1, and hex digits from 0 to F, none of the
last three lines make any sense. Let's see what perl makes of it:

> perl badnums.plx

Illegal octal digit ‘8" at badnums.plx line 5, at end of line

lllegal binary digit '2' at badnums.plx line 6, at end of line

Bareword found where operator expected at badnums.plx line 7, near "OxFG"
(Missing operator before G?)

syntax error at badnums.plx line 7, near "OxFG"

Execution of badnums.plx aborted due to compilation errors.

>

Working with Simple Values

Now, let's match those errors up with the relevant lines:
Illegal octal digit '8' at badnums.plx line 5, at end of line

And line 5 is:
print 0378, "\n";

As you can see, perl thought it was dealing with an octal number, but then along came an 8, which
stopped it from making sense, so perl quite rightly complained. The same thing happened on the next
line:

Illegal binary digit '2' at badnums.plx line 6, at end of line

And line 4 is:

print 0b11111112, "\n";

The problem with the next line is even bigger:

Bareword found where operator expected at badnums.plx line 7, near "OxFG"
(Missing operator before G?)
syntax error at badnums.plx line 7, near "OXFG"

'What's a bareword?' I hear you asking. A bareword is a series of characters outside of a string that perl
doesn't recognize. The word could mean a number of things, and Perl can usually understand what you
mean. In this case, the bareword was 'G': perl had understood 0xF, but couldn't see how the 'G' fitted in.
We might have wanted an operator do something with it, but there was no operator there. In the end,
perl gave us a 'syntax error', which is the equivalent of it giving up in disgust saying, 'How do you
expect me to understand this?'

Strings

The other type of scalar available to us is the string, and we've already seen a few examples of them. In
the last chapter, we met the string "Hello, world\n" and I mentioned that a string was a series of
characters surrounded by some sort of quotation marks. Strings can contain ASCII (or Unicode) data
and escape sequences such as the \n of our example, and there is no maximum length restriction on a
string imposed by Perl. Practically speaking, there is a limit imposed by the amount of memory in your
computer, but it's quite hard to hit.

Single- vs Double-Quoted Strings

The quotation marks you choose for your string are significant. So far we've only seen double-quoted
strings, like this: "Hello, world\n". There is another type of string — one which has been single-
quoted. Predictably, they are surrounded by single quotes: ' '. The important difference is that no
processing is done within single quoted strings, except on \\ and \ ' . We'll also see later that variable
names inside double-quoted strings are replaced by their contents, whereas single-quoted strings treat
them as ordinary text. We call both these types of processing interpolation, and say that single-quoted
strings are not interpolated.

41

Chapter 2

Consider the following program, bearing in mind that \t is the escape sequence that represents a tab.

#!/usr/bin/perl

#tquotes.plx

use warnings;

print'\tThis is a single quoted string.\n';
print "\tThis is a double quoted string.\n";

The double-quoted string will have its escape sequences processed, and the single-quoted string will not.
The output we get is:

> perl quotes.plx
\tThis is a single quoted string.\n This is a double quoted string.
>

What do we do if we want to have a backslash in a string? This is a common concern for Windows
users, as a Windows path looks something like this: C: \WINNT\Profiles\.... In a double-quoted
string, a backslash will start an escape sequence, which is not what we want it to do.

Well, there is, of course, more than one way to do it. We can either use a single-quoted string, as above,
or we can escape the backslash. One principle that we'll see often in Perl, and especially when we get to
regular expressions, is that we can use a backslash to turn off any special effect a character may have.
For example, a full stop in a regular expression denotes 'any character'. If you escape the full stop by
placing a backslash in front of it, like so \ . you get the ordinary meaning of 'a full stop'. This operation
is called escaping, or more commonly, backwhacking.

In this case, we want to turn off the special effect a backslash has, and so we escape it:

#!/usr/bin/perl

#quotes2.plx

use warnings;
print"C:\\WINNT\\Profiles\\\n";
print 'C:\WINNT\Profiles\ ', "\n";

This prints:

> perl quotes2.plx
C:\WINNT\Profiles\
C:\WINNT\Profiles\
>

Aha! Some of you may have got this message instead:
Can't find string terminator "' " anywhere before EOF at quotes2.plx line 5.

The reason for this is that you have probably left out the space character in line 5 before the second
single quote. Remember that \ ' tells perl to escape the single quote, and so it merrily heads off to
look for the next quote, which of course is not there. Try this program to see how perl treats these
special cases:

#!/usr/bin/perl

#asidel.plx

use warnings;

print 'ex\\ er\\' , ' ci\' se\'' , "\n";

42

Working with Simple Values

The output you get this time is:

> perl asidel.plx
ex\ en ci' se'
>

Can you see how perl did this? Well, we simply escaped the backslashes and single quotes. It will help
you to sort out what is happening if you look at each element individually. Remember, there are three
arguments in this example. Don't let all the quotes confuse you.

Actually, there's an altogether sneakier way of doing it. Internally, Windows allows you to separate
paths in the Unix style with a forward slash, instead of a backslash. If you're referring to directories in
Perl on Windows, you may find it easier to say C: /WINNT/Profiles/ instead. This allows you to get
the variable interpolation of double-quoted strings without the 'Leaning Toothpick Syndrome' of
multiple backslashes.

So much for backslashes, what about quotation marks? The trick is making sure perl knows where the
end of the string is. Naturally, there's no problem with putting single quotes inside a double-quoted
string, or vice versa:

#!/usr/bin/perl

#quotes3.plx

use warnings;

print"It's as easy as that.\n";
print '"Stop," he cried.', "\n";

This will produce the quotation marks in the right places:

> perl quotes3.plx
It's as easy as that.
"Stop," he cried.

>

The trick comes when we want to have double quotes inside a double-quoted string or single quotes
inside a single-quoted string. As you might have guessed, though, the solution is to escape the quotes on
the inside. Suppose we want to print out the following quote, including both sets of quotation marks:

"'Hi," said Jack. "Have you read Slashdot today?"

Here's a way of doing it with a double-quoted string:

#!/usr/bin/perl

#quotes4 .plx

use warnings;

print"'\"Hi,\" said Jack. \"Have you read Slashdot today?\"'\n";

Now see if you can modify this to make it a single-quoted string — don't forget that \n needs to go in
separate double quotes to make it interpolate.

43

Chapter 2

Alternative Delimiters

Of course, it would be nicer if you could select a completely different set of quotes so that there would
be no ambiguity and no need to escape any quotes inside the text. The first operators we're going to
meet are the quote-like operators that do this for us. They're written as gq// and gg//, the first acting
like a single-quoted string and the second, like a double-quoted string. Now instead of the above, we
can write:

#!/usr/bin/perl

#quotes5.plx

use warnings;

print gg/'"Hi," said Jack. "Have you read Slashdot today?"'\n/;

That's all very well, of course, until we want a / in the string. Suppose we want to replace 'Slashdot'
with '/." — now we're back where we started, having to escape things again. Thankfully, Perl allows us to
choose our own delimiters so we don't have to stick with //. Any non-alphanumeric (that is, non-
alphabetic and non-numeric) character can be used as a delimiter, provided it's the same on both sides
of the text. Furthermore, you can use {}, [1, () and <> as left and right delimiters. Here are a few
ways of doing the above, all of which have the same effect:

#!/usr/bin/perl

#quotes6.plx

use warnings;

print gg|'"Hi," said Jack. "Have you read /. today?"'\n|;
print gg#'"Hi," said Jack. "Have you read /. today?"'\n#;
print gg('"Hi," said Jack. "Have you read /. today?"'\n);
print gg<'"Hi," said Jack. "Have you read /. today?"'\n>;

We'll see more of these alternative delimiters when we start working with regular expressions.

Here-Documents

There's one final way of specifying a string — by using a here-document. This idea was taken
from the Unix shell, and works on any platform. Effectively, it means that you can write a large
amount of text within your program, and it will be treated as a string provided it is identified
correctly. Here's an example.

#!/usr/bin/perl
#heredoc.plx
use warnings;
print<<EOF;

This is a here-document. It starts on the line after the two arrows,
and it ends when the text following the arrows is found at the beginning
of a line, like this:

EOF

A here-document must start with << and then a label. The label can be anything you choose, but is
traditionally EOF (End Of File). The label must follow directly after the arrows with no spaces between,
unless the same number of spaces precedes the end marker. It ends when the label is found at the
beginning of

a line. In our case, the semicolon does not form part of the label, because it marks the end of the
print statement.

44

Working with Simple Values

By default, a here-document works like a double-quoted string. In order for it to work like a single-
quoted string, surround the label in single quotes. This will become important when variable
interpolation comes into play, as we'll see later on.

Converting between Numbers and Strings

The perl interpreter treats numbers and strings on an equal footing, and where necessary, perl converts
between strings, integers, and floating-point numbers behind the scenes. This means that you don't have
to worry about making the conversions yourself, like you do in other languages. If you have a string
literal "0.25", and multiply it by four, perl treats it as a number and gives you the expected answer, 1.

There is, however, one area where this doesn't take place. Octal, hex, and binary numbers in string
literals or strings stored in variables don't get converted automatically:

#!/usr/bin/perl
#octhexl.plx
use warnings;
print"0x30\n";
print "030\n";

gives you

> perl octhex1.plx
0x30

030

>

If you ever find yourself with a string containing a hex or octal value that you need to convert into a
number, you can use the hex () or oct () functions accordingly:

#!/usr/bin/perl
#octhex2.plx
use warnings;

print hex ("0x30"), "\n";
print oct ("030"), "\n";
This will now produce the expected answers, 48 and 24. Note that for hex () or oct (), the prefix 0x

or 0, respectively, is not required. If you know that what you have is definitely supposed to be a hex or
oct number, then hex (30) and oct (30) will produce the results above. As you can see from that, the
string "30" and the number 30 are treated as the same.

Furthermore, these functions will stop reading when they get to a digit that doesn't make sense in that
number system:

#!/usr/bin/perl
#octhex3.plx

use warnings;

print hex ("FFG"), "\n";
print oct("178"), "\n";

These will stop at FF and 17, respectively, and convert to 255 and 15.

45

Chapter 2

What about binary numbers? Well, there's no corresponding bin () function, but there is actually a
little trick here. If you have the correct prefix in place for any of the number systems, (0, 0b, or 0x) you
can use oct () to convert it to decimal. For example print oct ("0b11010") prints 26.

Operators

Now we know how to specify our strings and numbers, let's see what we can do with them. The majority
of the things we'll be looking at here are numeric operators (operators that act on and produce numbers)
like plus and minus, which take two numbers as 'arguments' and add or subtract them. There aren't as
many string operators, but there are plenty of string functions. Perl doesn't draw a very strong
distinction between functions and operators, but the main difference between the two is that operators
tend to go in the middle of their arguments — for example: 2 + 2. Functions go before their arguments
and have them separated by commas. Both of them take arguments, do something with them, and
produce a new value. We generally say they return a value. Let's take a look:

Numeric Operators

The numeric operators take at least one number as an argument and return another number. Of course,
because perl automatically converts between strings and numbers, the arguments may appear as string
literals or come from strings in variables. We'll group these operators into three types: ordinary
arithmetic operators, bitwise operators, and logic operators.

Arithmetic Operators

The arithmetic operators are those that deal with basic mathematics like adding, subtracting,
multiplying, dividing, and so on. To add two numbers together, we would write something like this:

#!/usr/bin/perl
#arithopl.plx
use warnings;
print 69 + 118;

And, of course, we would see the answer 187. Subtracting numbers is easy, too, and we can subtract at
the same time:

#!/usr/bin/perl

#arithop2.plx

use warnings;

print "21 from 25 is: ", 25 - 21, "\n";
print "4 + 13 - 7 is: ", 4 + 13 - 7, D\ g

>perl arithop2.plx
21 from 25is: 4
4+13-7is:10

>

Our next set of operators (multiplying and dividing) is where it gets interesting. We use the * and /
operators to multiply and divide, respectively.

46

Working with Simple Values

#!/usr/bin/perl

#arithop3.plx

use warnings;

print"7 times 15 is ", 7 * 15, "\n";
print "249 over 3 is ", 249 / 3, "\n";

The fun comes when you want to multiply something and then add something, or add then divide.
Here's an example of the problem:

#!/usr/bin/perl
#arithop4 .plx

use warnings;

print 3 + 7 * 15, "\n";

Now this could mean one of two things: either perl must add the three and the seven and then multiply
by fifteen, or it must multiply seven and fifteen first, then add. Which does Perl do? Try it and see.

So, perl should have given you 108, as it did the multiplication first. The order in which perl performs
operations is called precedence. Multiply and divide have a higher precedence than add and subtract,
and so they get performed first. We can start to draw up a table of precedence as follows:

*/

+ -

To force perl to perform an operation of lower precedence first, we need to use brackets, like so:

#!/usr/bin/perl
#arithop5.plx

use warnings;
print (3 + 7) * 15;

Unfortunately, if you run that, you'll get a warning and 10 is returned. What happened? The problem is
that print is itself an operator as well, and the precedence of operators like print is highest of all.

print as an operator takes a list of arguments and performs an operation (printing them to the screen).
It returns a 1 if it succeeds or no value if it does not. Perl calculated 3 plus 7, printed the result, and then
multiplied the result of the returned value (1) by 15, throwing away the final result of 15.

To get what we actually want then, we need another set of brackets:

#!/usr/bin/perl
#arithopé6.plx

use warnings;

print ((3 + 7) * 15);

This now gives us the correct answer, 150, and we can put another entry in our table of precedence:

List operators
* /

+ -

47

Chapter 2

Next we have the exponentiation operator, **, which simply raises one number to the power of another
- squaring, cubing, and so on. Here's an example of some exponentiation:

#!/usr/bin/perl

#arithop7.plx

use warnings;

print 2**4, n u, 3**5, n "1 _2**4, n\nn;

That's 2*2*2*2, 3*3*3*3*3, and -2*-2*-2*-2. Or is it?
The output we get is:

>perl arithop7.plx
16 243 -16
>

Hmm, the first two look OK, but the last one's a bit wrong. -2 to the 4" power should be positive.
Again, it's a precedence issue. Turning a number into a negative number requires an operator, the
'unary minus' operator. It's called 'unary' because unlike the ordinary minus operator, it only takes one
argument. Although unary minus has a higher precedence than times and divide, it has a lower
precedence than exponentiation. What's actually happening, then, is - (2**4) instead of (-2) **4.
Let's put these two operators in the table as well:

List operators

* %

Unary minus
* /

+ -

The last arithmetic operator is %, the remainder, or 'modulo' operator. This calculates the remainder
when one number divides another. For example, six divides into fifteen twice, with a remainder of
three, as our next program will confirm:

#!/usr/bin/perl

#arithop8.plx

use warnings;

print"15 divided by 6 is exactly ", 15 / 6, "\n";

o

print "That's a remainder of ", 15 % 6, "\n";

>perl arithop8.plx

15 divided by 6 is exactly 2.5
That's a remainder of 3

>

The modulo operator has the same precedence as multiply and divide.

48

Working with Simple Values

Bitwise Operators

Those operators worked on numbers in the way we think of them. However, as we already know,
computers don't see numbers the same as we doj; they see them as a string of bits. These next few
operators perform operations on numbers one bit at a time — that's why we call them bitwise. These
aren't used quite so much in Perl as in other languages, but we'll see them when dealing with things
like low-level file access.

First, let's have a look at the kind of numbers we're going to use in this section, just so we get used
to them:

0 in binary is 0, but let's write it as 8 bits: 00000000

51 in binary is 00110011
85 in binary is 01010101
170 in binary is 10101010
204 in binary is 11001100
255 in binary is 11111111

Does it surprise you that 10101010 (170) is twice as much as 01010101 (85)? It shouldn't, when we
multiply a number by 10 in base 10, all we do is slap a zero on the end, so 21 becomes 210. Similarly, to
multiply a number by 2 in base 2, we do exactly the same.

Bitwise operators work from right to left. The rightmost bit is called the 'least significant bit', and the
leftmost is called the 'most significant bit'".

The 'and' Operator

The easiest operator to fathom is called the 'and' operator and is written &. This compares pairs of bits
as follows:

1 and 1 gives 1
1 and 0 gives 0
0 and 1 gives 0
0 and 0 gives 0

For example, 51 & 85 looks like this:

51 00110011
85 01010101
17 00010001

Sure enough, if we ask Perl:

#!/usr/bin/perl

#bitopl.plx

use warnings;

print"51 ANDed with 85 gives us", 51 & 85, "\n";

49

Ch

apter 2

It'll tell us the answer is 17. Notice that since we're comparing one pair of bits at a time, it doesn't really
matter which way around the arguments go, 51 & 85 is exactly the same as 85 & 51. Operators with
this property are called associative operators.

Here's another example, look at the bits, and see what you get:
51 00110011

170 10101010
34 00100010

The 'or' Operator

As well as checking whether the first and the second bits are 1, we can check whether one or another is
1. The 'or' operator in Perl is |, and this is how we would calculate 204 | 85

204 11001100
85 01010101
221 11011101

Now we produce zeros only if both the bits are zero, if either or both are one, we produce a one. As a
quick rule of thumb, X & Y will always be smaller or equal to the smallest value of X and Y, and X | Y
will be bigger than or equal to the largest value of X or Y.

The 'exclusive or' Operator

What if you really want to know if one or the other, but not both, are set to one? For this, you need the
'exclusive or' operator, written as the * operator:

204 11001100
170 10101010
102 01100110

The 'not’ Operator

50

Finally, you can flip the number completely, and replace all the ones by zeros and vice versa. This is
done with the 'not', or ~ operator:

85 01010101
170 10101010

Let's see, however, what happens when we try this in Perl:

#!/usr/bin/perl

#bitop2.plx

use warnings;

print"NOT 85 is", ~85, "\n";

On my computer, I get:

NOT 85 is 4294967210
>

Working with Simple Values

Your answer might be different, and I'll explain why in a second.

Why is it so big? Well, let's look at that number in binary to see if we can find a clue as to what's
going on:

4294697210 11111111111111111111111110101010

Aha! The last part is right, but it's a lot wider than we're used to. That's because in the examples, I've
only used 8 bits across, whereas my computer stores integers as 32 bits across, what's actually happened
is this:

85 00000000000000000000000001010101
4294697210 11111111111111111111111110101010

If you get a much bigger number, it's because your computer represents numbers internally with 64 bits
instead of 32, and Perl has been configured to take advantage of this.

Truth and Falsehood

"What is truth?" If we had asked that of a Perl programmer, we could be sure that he would have
replied something like this: "Truth is anything that is not zero, an empty string, an undefined value, or
an empty list."

Later, we will want to perform actions based on whether something is true or false, for example if one
number is bigger than another, or, unless a problem has occurred, or, while there is data left to
examine. We will use comparison operators to evaluate whether these things are true or false so that we
can make decisions based on them.

It's customary to represent false as 0 and true as 1. This allows us to use operators very similar to those
bitwise operators we've just met to combine our comparisons, to say 'if this or this is true', 'if this is no¢
true', and so on. The idea of combining values that represent truth and falsehood is called Boolean logic,
after George Boole, who invented the concept in 1847, and we call the operators that do the combining
'Boolean operators.

Comparing Numbers for Equality

The first simple comparison operator is ==. Two equals signs tells perl to 'return true if the two numeric
arguments are equal.' If they're not equal, return false. Boolean values of truth and falsehood aren't very
exciting to look at, but let's see them anyway:

#!/usr/bin/perl

#booll.plx

use warnings;

print"Is two equal to four? ", 2 == 4, "\n";

print "OK, then, is six equal to six? ", 6 == 6, "\n";
This will produce:

>perl booll.plx

Is two equal to four?

OK, then, is six equal to six? 1
>

51

Ch

apter 2

The second line is definitely true, and as we'd expect, we get a one back from the operator. But what
happened in the first line? Well, there's a special value in Perl that is conspicuous by its absence. Can
you guess what it is? You might have noticed before that I mentioned "... an undefined value or an
empty list." This next paragraph will help you work it out.

The undefined value isn't simply a string with nothing in it — it's nothing at all. In a very Zen-like way, a
string with no characters is still a string. The undefined value isn't zero either, although it gets converted
to zero if you use it as a number in the same way that an empty string does. The undefined value
represents nothing, empty, void.

The obvious counterpart to test whether things are equal is to test whether they're not equal. The way
we do this is with the ! = operator. Note that there's only one = this time. We'll find out later why there
had to be two before.

#!/usr/bin/perl

#bool2.plx

use warnings;

print"So, two isn't equal to four? ", 2 != 4, "\n";

>perl bool2.plx
So, two isn't equal to four? 1
>

There you have it - irrefutable proof that two actually isn't four. Good.

Comparing Numbers for Inequality

52

So much for equality, let's check if one thing is bigger than another. Just like in mathematics, we use the
greater-than and less-than signs to do this: < and >.

#!/usr/bin/perl

#bool3 .plx

use warnings;

print"Five is more than six? ", B s 6, "\al

print "Seven is less than sixteen? ", 7 < 16, "\n"
print "Two is equal to two? ", 2 == 2, "\n"
print "One is more than one? ", 1> 1, "\n"
print "Six is not equal to seven? ", 6 != 7, "\n"

The results should hopefully not be very new to you:

>perl bool3.plx

Five is more than six?

Seven is less than sixteen? 1
Two is equal to two? 1

One is more than one?

Six is not equal to seven? 1
>

Let's have a look at one last pair of comparisons. We can check greater-than-or-equal-to and less-than-
or-equal-to with the >= and <= operators, respectively.

Working with Simple Values

#!/usr/bin/perl

#bool4 .plx

use warnings;

print"Seven is less than or equal to sixteen? ", 7 <= 16, "\n";
print "Two is more than or equal to two? ", 2 >= 2, "\n";

As expected, perl faithfully prints out:

>perl bool4.plx

Seven is less than or equal to sixteen? 1
Two is more than or equal to two? 1

>

There's also a special operator that isn't really a Boolean comparison because it doesn't give us a true-or-
false value. Instead it returns 0 if the two are equal, -1 if the right hand side is bigger, and 1 if the left-
hand side is bigger. It is denoted by <=>. Think of it as a balance, pointing towards the lower number:

#!/usr/bin/perl

#bool5.plx

use warnings;

print"Compare six and nine? ", 6 <=> 9, "\n";

print "Compare seven and seven? ",7 <=> 7, "\n";

print "Compare eight and four? ", 8 <=> 4, "\n";
Gives us:

>perl bool5.plx

Compare six and nine? -1
Compare seven and seven? 0
Compare eight and four? 1

>

We'll see this in more detail when we look at sorting things, where we have to know whether something
goes before, after, or in the same place as something else.

Boolean Operators

As well as being able to evaluate the truth and falsehood of some statements, we can also combine such
statements. For example, we may want to do something if one number is bigger than another and
another two numbers are the same. The combining is done in a very similar manner to the bitwise
operators we saw earlier. We can ask if one value and another value are both true, or if one value or
another value are true, and so on.

The operators even resemble the bitwise operators. To ask if both truth-values are true, we would use
&& instead of &.

In many cases, & and the other bitwise operatorswill work just fine, if you are sure
that the values are either one or zero. But aswe know, truth is anything that is not
zero, an empty string, an undefined value, or an empty list, rather than just one or
zero. For example, -2 isatrue value. However, ~-2 isalso a true value. When testing
truths, always use the Boolean rather than the bitwise operators.

53

Chapter 2

So, to test whether six is more than three and twelve is more than four, we can write:

6 > 3 && 12 > 4

To test if nine is more than seven or eight is less than six, we use the doubled form of the | operator, | |:
9>7 || 6 >8

To negate the sense of a test, however, use the slightly different operator !. This has a higher

precedence than the comparison operators, so use brackets. For example, this tests whether two is
not more than three,

1(2>3)
while this one tests whether ! 2 is more than three:
1253
2 is a true value. !2 is therefore a false value, the undefined value, which gets converted to zero when

we do a numeric comparison. We're actually testing if zero is more than three, which has the opposite
effect to what we wanted.

Instead of those forms, &&, | |, and !, we can also use the slightly easier-to-read versions, and, or, and

not. There's also xor, for exclusive or (one or the other but not both are true) which doesn't have a
symbolic form. However, you need to be careful about precedence again:

#!/usr/bin/perl

#bool6 .plx

use warnings;

print"Test one: ", 6 > 3 && 3 > 4, "\n";
print "Test two: ", 6 > 3 and 3 > 4, "\n";

This prints, somewhat surprisingly:

> perl bool6.plx

Test one:

Test two: 1>

Well, we can tell from the position of the prompt (or least Unix users can — Windows users need to be a

bit more alert) that something is amiss because the second newline did not get printed. The trouble is
that and has a lower precedence than &&. What has actually happened is this:

print ("Test two: ", 6 > 3) and 3 > 4, "\n";

54

Working with Simple Values

Now, six is more than three, so that returned 1, print then returned one, and the rest was irrelevant.
However, we can use this fact to our advantage.

Perl uses a technique called lazy evaluation. As soon as it knows the answer to the question, it stops
working. If you ask if x and y are both true, and it finds that x isn't, it doesn't need to look at y. No
matter whether y is true or not, it can't make them both true, so there's no point testing. Similarly, if you

ask whether x or y is true, you can stop if you find that x is true. Whether y is true or not will not affect
matters at all. So, we can write something like this:

4 >= 2 and print "Four is more than or equal to two\n";
If the first test is true, perl has to check if the other side is true as well, and that means printing our
message. If the first test is false, there's no need to check, so the message doesn't get printed. It's a crude

way of saving time if a condition is met. We won't use that for the moment, until we've seen a less crude
way to do it.

String Operators

After that lot, there are surprisingly few string operators. Actually, for the moment, we're only going to
look at two.

The first one is the concatenation operator, which glues two strings together into one. Instead of saying:
print "Print ", "several ", "strings ", "here", "\n";

we could say:
print "Print " . "one ". "string " . "here" . "\n";

As it happens, printing several strings is slightly more efficient, but there will be times you really do
need to combine strings together, especially if you're putting them into variables.

What happens if we try and join a number to a string? The number is evaluated and then converted:

#!/usr/bin/perl

#stringl.plx

use warnings;

print"Four sevens are ". 4*7 ."\n";

which tells us, reassuringly, that:

> perl string1.plx
Four sevens are 28
>

55

Chapter 2

The other string operator is the repetition operator, marked with an x. This repeats a string a given
number of times:

#!/usr/bin/perl
#string2.plx

use warnings;

print "GO! "x3, "\n";

will print:

> perl string2.plx
GO! GO! GO!
>

We can, of course, use it in conjunction with concatenation. Its precedence is higher than the
concatenation operator's, as we can easily see for ourselves:

#!/usr/bin/perl
#string3.plx

use warnings;

print "Ba". "na"x4 ,"\n";

On running this, we'll get:

> perl string3.plx
Banananana
>

In this case, the repetition is done first ("nananana") and is then concatenated with the "Ba". The
precedence of the repetition operator is the same as the arithmetic operators, so if you're working out
how many times to repeat something, you're going to need brackets:

#!/usr/bin/perl
#string4.plx
use warnings;

print“Ba". "na"x4*3 , Il\nll;
print "Ba". "na"x(4*3) ,"\n";
Compare:

>perl string4.plx

Ba0
Banananananananananananana
>

Why was the first one Ba0? Well, think what happened. The first thing was the repetition, giving us
"nananana". Then the multiplication - What's nananana times three? When perl converts a string to a
number, it takes any spaces, an optional minus sign, and then as many digits as it can from the
beginning of the string, and ignores everything else. Since there were no digits here, the number value
of nananana was zero.

That zero was then multiplied by three, to give zero. Finally, the zero was turned back into a string to be
concatenated onto the Ba.

56

Working with Simple Values

Try it out — Converting Strings to Numbers

You can see how other strings convert to numbers by adding zero to them:

#!/usr/bin/perl
#str2num.plx
use warnings;

print"12 monkeys" + 0, "\n";
print "Eleven to fly" + 0, "\n";
print "UB40" + 0, "\n";
print "-20 10" + 0, "\n";
print "O0x30" + 0, "\n";

You get a warning for each line saying that the strings aren't 'numeric in addition (+)', but what can be
converted is. Ignoring the warnings then, here's what they come out as:

>perl str2num.plx
12

0

0

-20

0

>

How It Works

Our first string, "12 monkeys", did pretty well. Perl understood the 12 and stopped after that. The
next one was not handled so well — English words don't get converted to numbers. Our third string was
also a non-starter, as perl only looks for a number at the beginning of the string. If something other than
a number is there, it's evaluated as a zero. Similarly, perl only looks for the first number in the string.
Any numbers after that are discarded. Finally, perl doesn't convert binary, hex. or octal to decimal
when it's stringifying a number, so you have to use the hex () or oct () functions to do that. On our
last effort, perl stopped at the x, returning 0. If we had an octal number, such as 030, that would be
treated as the decimal number 30.

String Comparison

As well as comparing the value of numbers, we can compare the value of strings. By this, I don't mean
we convert a string to a number, although if you say something like "12" > "30", perl will convert to
numbers for you. What I mean is, we can compare the strings alphabetically: "Bravo" comes after
"Alpha" but before "Charlie", for instance.

In fact, it's more than alphabetical order: The computer is using either ASCII or Unicode internally to
represent the string and has converted it to a series of numbers in the relevant sequence. This means, for
example, "Fowl" comes before "fish", because a capital F has a smaller ASCII value (70) than a lower
case f (102). See Appendix F for the full ASCII table.

We can find the character's value by using the ord () function, which tells us where in the (ASCII)
order it comes. Let's see which comes first, a # or a *?

#!/usr/bin/perl

#ascii.plx

use warnings;

print"A # has ASCII value ", ord("#"),"\n";
print "A * has ASCII value ", ord("*"),"\n";

57

Chapter 2

This should say:

>perl ascii.plx

A # has ASCII value 35
A * has ASCII value 42
>

I suppose if we're only concerned with one character at a time we can compare the return values of
ord () using the < and > operators. However, when comparing entire strings, it may get a bit tedious. If
the first character of each string is the same, you would move onto the next character in each string, and
then the next, and so on.

Instead, there are string comparison operators that do this all for us. Whereas the comparison operators
for numbers were mathematical symbols, the operators for strings are abbreviations. To test whether
one string is less than another, use 1t. 'Greater than' becomes gt, 'equal to' becomes eq, and 'not equal'
becomes ne. There's also ge and 1e for 'greater than or equal to' and 'less than and equal to'. The
three-way-comparison becomes cmp.

Here are a few examples of these:

#!/usr/bin/perl

#strcompl.plx

use warnings;

print"Which came first, the chicken or the egg? ";

print "chicken" cmp "egg", "\n";
print "Are dogs greater than cats? ";
print ||dog|l gt llcatll , Il\nll ’.

A

print "Is less than + ? ";
print nAn 1t |I+Il , n \nll g

And the results:

>perl strcompl.plx

Which came first, the chicken or the egg? -1
Are dogs greater than cats? 1

Is N less than + ?

>

But watch this carefully:

#!/usr/bin/perl

#strcomp2.plx

use warnings;

print "Test one: ", "four" eq "six", "\n";
print "Test two: ", "four" == "six", "\n";

>perl strcomp2.plx
Test one:

Test two: 1

>

58

Working with Simple Values

Is the second line really claiming that four is equal to six? No, but if you compare them as numbers,
they get converted to numbers. "four" converts to 0, and "six" converts to 0. The 0Os are equal, so
our test returns true and we get a couple of warnings telling us that they were not numbers to begin
with. The moral of this story is, compare strings with string comparison operators, and compare
numbers with numeric comparison operators. Otherwise, your results may not be what you anticipate.

Operators To Be Seen Later

There are a few operators left that we are not going to go into in detail right now. Don't worry, we'll
come across the more important ones again in time.

Q The ternary hook operator looks like this: a?b:c. It returns b if a is true, and c if it is false.
Q The range operators, . .. and . . ., make a range of values.

Q We've seen the comma for separating arguments to functions like print. In fact, the comma
is an operator that builds a list, and print works on a list of arguments. The operator =>
works like a comma with certain additional properties.

Q The =~ and ! ~ operators are used to 'apply' a regular expression to a string.

Q As well as providing an escape sequence and backwhacking special characters, \ is used to
take a reference to a variable, to examine the variable itself rather than its contents.

Q The >> and << operators 'shift' a binary number right and left a given number of bits.

Q -> is hairy voodoo. We will get to it later on.

Operator Precedence

Here, finally, is a full table of precedence for all the operators we've seen so far, listed in descending
order of precedence.

Remember that if you need to get things done in a different order, you will need to use brackets. Also
remember that you can use brackets even when they're not strictly necessary, and you should certainly
do so to help keep things readable. While perl knows full well what order to do 7+3*2/6-3+5/24&3 in,
you may find it easier on yourself to spell it out, because next week you may not remember everything
you have just written.

59

Chapter 2

List Operators

->

* %
L
= 1~
* /% X
+ -

<< >>

< > <= >= 1t gt le ge
== l= <=> eqg ne cmp

Variables

Variables! We've talked about them all the time, but what are they? As I've explained, a variable is
storage for your scalars. Once you've calculated 42+*7, it's gone. If you want to know what it was, you
must do the calculation again. Instead of being able to use the result as a halfway point in more
complicated calculations, you've got to spell it all out in full. That's no fun.

What we need to be able to do, and what variables allow us to do, is store a scalar away and refer to it

again later. As previously mentioned, there are three types of data: scalars, lists, and hashes. There are
also three types of variable to put them in: scalar variables, arrays, and hashes. We'll look at the latter

two in chapters to come and just concentrate on scalar variables for now.

A scalar variable starts with a dollar sign. Here's a simple scalar variable: $name. We can put certain
types of data into it. Scalar variables can hold either numbers or strings and are only limited by the size
of your computer's memory. To put data into our scalar, we assign the data to it, with the assignment
operator =. (Incidentally, this is why numeric comparison is ==, because = was taken to mean the
assignation operator.)

What we're going to do here is tell Perl that our scalar contains the string "fred". Now we can get at
that data by simply using the variable's name:

#!/usr/bin/perl

#varsl.plx

use warnings;

$name = "fred";

print "My name is ", $name, "\n";

60

Working with Simple Values

Lo and behold, our computer announces to us that:
>perl varsl1.plx

My name is fred

>

Now we're cut free at last from the problem of once-off data. We've got somewhere to store our data,
and some way to get it back again. The next logical step is to be able to change it.

Modifying a Variable

Modifying the contents of a variable is easy, just assign something different to it. We can say:

#!/usr/bin/perl
#vars2.plx
use warnings;

Sname = "fred";

print "My name is ", $name, "\n";
print "It's still ", Sname, "\n";
$name = "bill";

print "Well, actually, it's ", Sname, "\n";
Sname = "fred";

print "No, really, it's ", $name, "\n";

And watch our computer have an identity crisis:

>perl vars2.plx

My name is fred

It's still fred

Well, actually, it's bill
No, really, it's fred

>

We can also do a calculation in several stages:

#!/usr/bin/perl

#vars3.plx

use warnings;

Sa = 6*9;

print "Six nines are ", $a, "\n";

Sb = $Sa + 3;

print "Plus three is ", $b, "\n";

$c = $b / 3;

print "All over three is ", S$c, "\n";
sd = Sc + 1;

print "Add one is ", $d, "\n";

print "\nThose stages again: ", $a, " ", Sb, " ", Sc, " ", $d4, "\n";

>perl vars3.plx
Six nines are 54
Plus three is 57
All over three is 19
Add one is 20

61

Chapter 2

Those stages again: 54 57 19 20
>

While this works perfectly fine, it's often easier to stick with one variable and modify its value, if you
don't need to know the stages you went through at the end:

#!/usr/bin/perl

#varsd .plx

use warnings;

Sa =6 * 9;

print "Six nines are ", $a, "\n";
Sa = Sa + 3;

print "Plus three is ", $a, "\n";
$a = $a / 3;

print "All over three is ", $a, "\n";
Sa = Sa + 1;

print "Add one is ", $a, "\n";

The assignment operator =, has very low precedence. This means that perl will do the calculations on
the right hand side of it, including fetching the current value, before assigning the new value. To

illustrate this, take a look at the sixth line of our example. perl takes the current value of $a, adds three
to it, and then stores it back in $a.

Operating and Assigning at Once

Operations, like fetching a value, modifying it, or storing it, are very common, so there's a special
syntax for them. Generally:

Sa = $a <some operators> $b;
can be written as
Sa <some operator>= Sb;

For instance, we could rewrite the example above as follows:

#!/usr/bin/perl
#vars5.plx
use warnings;

Sa = 6 * 9;
print "Six nines are ", 3a, "\n";
Sa += 3;
print "Plus three is ", $a, "\n";
$a /= 3;
print "All over three is ", $a, "\n";
Sa += 1;
print "Add one is ", $Sa, "\n";
This works for **= *=, +=, -=, /=, .=, %=, &=, |=, "=, <<=, >>=, &&= and | | =. These all have the

same precedence as the assignment operator =.

62

Working with Simple Values

Autoincrement and Autodecrement

There are two more operators, ++ and - -. They add and subtract one from the variable, but their
precedence is a little strange. When they precede a variable, they act before everything else. If they
come afterwards, they act after everything else. Let's examine these:

Try it out — The autoincrement and autodecrement operators

Type in and run the following code:

#!/usr/bin/perl

#autol.plx

use warnings;

$a=4;

Sb=10;

print "Our variables are ", $Sa, " and ", $b, "\n";
Sb=Sa++;

print "After incrementing, we have ", $a, " and ", $b, "\n";
Sb=++Sa*2;

print "Now, we have ", $a, " and ", $b, "\n";
Sa=--Sb+4;

print "Finally, we have ", $a, " and ", $b, "\n";

You should see the following output:

>perl autol.plx

Our variables are 4 and 10

After incrementing, we have 5 and 4
Now, we have 6 and 12

Finally, we have 15 and 11

>

How It Works

Let's work this through a piece at a time. First we set up our variables, giving the values 4 and 10 to $a
and $b, respectively. :

$a=4;
Sb=10;
print "Our variables are ", $a, " and ", $b, "\n";

Now in the following line, the assignment happens before the increment. So $b is set to $a's current
value, 4 and then $a is autoincremented, becoming 5.

Sb=Sa++;
print "After incrementing, we have ", $a, " and ", $b, "\n";

This time, however, the incrementing takes place first. $a is now 6, and $b is set to twice that, 12.

Sb=++Sa*2;
print "Now, we have ", $a, " and ", Sb, "\n";

63

Chapter 2

Finally, $b is decremented first and becomes 11. $a is set to $b plus 4, which is 15.

Sa=--$b+4;
print "Finally, we have ", $a, " and ", $b, "\n";

The autoincrement operator actually does something interesting if the variable contains a string of only
alphabetic characters, followed optionally by numeric characters. Instead of converting to a number,
perl 'advances' the variable along the ranges a-z, A-Z, and 0-9. This is more easily understood from a
few examples:

#!/usr/bin/perl

#auto2.plx
use warnings;
$a = "A9"; print ++$a, "\n";
$a = "bz"; print ++$a, "\n";
$a = "Zz"; print ++$a, "\n";
$a = "z9"; print ++$a, "\n";
$a = "9z"; print ++$a, "\n";

Should produce:

>perl auto2.plx

BO

ca

AAa

aal

10

>

This shows that a 9 turns into a 0 and increments the next digit left. A 'z' turns into an 'a' and
increments the next digit left. If there are no more digits to the left, either an 'a' or an 'A" is created,
depending on the case of the current leftmost digit.

Multiple Assignments

We've said that = is an operator, but does that mean it returns a value? Well, actually it does. It returns
whatever was assigned. This allows us to set up several variables at once. Here's a simple example of
this (read it from right to left):

$d = $c = $b = $a = 1;
First we set $a to 1, and the result of this is 1. $b is set with that, the result of which is 1. And so it goes.

A slightly more complicated version occurs when you operate on the return value of the assignment. As
usual, we need to pay attention to precedence. This won't work:

which is just as well, because it's horribly confusing. Perl complains that it '‘Can't modify addition (+)

in scalar assignment'. That is to say, it's trying to assign 1 to 4+$a, and you can only assign to a
variable, not to an addition. We say that addition is not a legal lvalue. It is not allowed on the left-hand
side of an assignment.

64

Working with Simple Values

If you wanted to do this, you'd have to say:

This sets $a to 1 and $b to 5 as expected, but it's considered a bit messy. The reason for this is that
setting various different variables with different values in one go is complicated to read and just the sort
of thing that gives Perl a bad name.

Scoping

All the variables we've seen so far in our programs have been global variables, that is, they can be seen
and changed from anywhere in the program. For the moment, that's not too much of a problem, since
our programs are very small, and we can easily understand where things get assigned and used.
However, when we start writing larger programs, this becomes a problem.

Why is this? Well, suppose one part of your program uses a variable, $counter. If another part of your
program wants a counter, it can't call it $counter as well for fear of clobbering the old value. This
becomes more of an issue when we get into subroutines, which are little sections of code we can
temporarily call upon to accomplish something for us before returning to what we were previously
doing. Currently, we'd have to make sure all the variables in our program had different names, and with
a large program, that's not desirable. It would be easier to restrict the life of a variable to a certain area
of the program. Let's see how this is done.

Try it out - Lexical variables

To achieve this, Perl provides another type of variable, called lexical variables. These are constrained to
the enclosing block and all blocks inside it. If they're not currently inside a block, they are constrained
to the current file. To tell perl that a variable is lexical, we say 'my $variable;'. This creates a brand-
new lexical variable for the current block and sets it to the undefined value. Here's an example:

#!/usr/bin/perl

#scopel.plx

use warnings;

Srecord = 4;

print "We're at record ", Srecord, "\n";

{

my Srecord;
Srecord = 7;
print "Inside the block, we're at record ", S$record, "\n";

}

print "We're still at record ", $record, "\n";

And this should tell you:

>perl scopel.plx

We're at record 4

Inside the block, we're at record 7
We're still at record 4

>

65

Chapter 2

How It Works

Firstly, we set our global variable $record to 4.

Srecord = 4;
print "We're at record ", $record, "\n";

Now we enter a new block and create a new lexical variable. Important! This is completely and utterly
unrelated to the global variable $record as my creates a new lexical variable. This exists for the
duration of the block only, and has the undefined value.

my Srecord;

Next, the lexical varable is set to 7 and printed out. The global is unchanged.

Srecord = 7;
print "Inside the block, we're at record ", S$record, "\n";

Finally, the block ends, and the lexical ends with it. We say that it has gone 'out of scope'. The global
remains, however, and so $record has the value 4.

}

print "We're still at record ", $record, "\n";

In order to make us think clearly about our programming, we will ask Perl to be strict about our
variable use. The statement 'use strict;'checks that, among other things, we've declared all our
variables. We declare lexicals with my, and we can also declare globals in the same way with our.
Here's what happens if we change our program to 'use strict'format:

#!/usr/bin/perl

#scope2.plx

use strict;

use warnings;

Srecord = 4;

print "We're at record ", $record, "\n";

{

my Srecord;
Srecord = 7;
print "Inside the block, we're at record ", $record, "\n";

}

print "We're still at record ", $record, "\n";
Now, the global srecord is not declared. So sure enough, perl complains about it, telling us that:

Global symbol "$record” requires explicit package name.

66

Working with Simple Values

We'll see exactly what this means in later chapters, but for now it suffices to declare $record as either
a global or a lexical. Normally, we'd try and avoid globals as much as possible, but let's make it a global
this once:

#!/usr/bin/perl

#scope3.plx

use strict;

use warnings;

our Srecord;

Srecord = 4;

print "We're at record ", $record, "\n";

{
my Srecord;
Srecord = 7;
print "Inside the block, we're at record ", Srecord, "\n";

}

print "We're still at record ", $record, "\n";

Now perl is happy, and we get the same output as before. You should almost always start your programs
with those two lines - turn on warnings, and then turn on strictness. Of course nobody's going to force
you to use them, but they will help you avoid a lot of mistakes and will certainly give other people who
have to look at your code more confidence in it.

Variable Names

We've not really examined yet what the rules are regarding what we can call our variables. We know
that scalar variables have to start with a dollar sign, but what next? The next character must be a letter
(uppercase or lowercase) or an underscore. After that, any combination of numbers, letters, and
underscores is permissible, up to a total of 251 characters.

Be aware that Perl's variables are case-sensitive so $user is different from $User, and both are
different from $USER.

The following are legal variable names: $I_am_a_long_variable_name, $simple, $box56,
$S__hidden, $B1

The following are not legal variable names: $10c (doesn't start with letter or underscore), $mail-
alias (- is not allowed), Syour name (spaces not allowed).

The Special Variable $_

There are certain variables, which Perl provides internally, that you either are not allowed to, or do not
want to, overwrite. One which is allowed by the naming conventions above is $_, a very special
variable indeed. $_ is the 'default variable' that a lot of functions read from and write to if no other
variable is given. We'll see plenty of examples of it throughout the book. For your reference, Appendix
B lists all the special variables that perl uses and what they do.

Apart from the prefix, the same restrictions apply to arrays and hashes. Scalar variables are prefixed by
a dollar sign ($), arrays begin with an at sign (@), and hashes begin with a percent sign (%).

67

Chapter 2

Variable Interpolation

We said earlier that double-quoted strings interpolate variables. What does this mean? Well, if you
mention a variable, sa,y $name in the middle of a double-quoted string, you get the value of the

variable, rather than the actual characters. Interpolation happens for scalar variables and arrays but not

for hashes. As an example, see what perl does to this:

#!/usr/bin/perl
#varintl.plx

use warnings;

use strict;

my Sname = "fred";

print "My name is $name\n";

This is what comes out:

>perl varintl.plx
My name is fred
>

Perl interpolates the value of $name into the string. Note that this doesn't happen with single-quoted
strings, just like escape sequence interpolation:

#!/usr/bin/perl
#varint2.plx

use warnings;

use strict;

my $name = "fred";

print 'My name is $name\n';

Here we get:

>perl varint2.plx
My name is $name\n
>

This doesn't just happen in things we print, it happens every time we construct a string:

#!/usr/bin/perl

#varint3.plx

use warnings;

use strict;

my sSname = "fred";

my $salutation = "Dear Sname,";
print $salutation, "\n";

This gives us:
>perl varint3.plx

Dear fred,
>

68

Working with Simple Values

This has exactly the same effect as:
my $salutation = "Dear ". S$name. ",";

but is more concise and easier to understand.

If you need to place text immediately after the variable, you can use braces to delimit the name of the
variable. Take this example:

#!/usr/bin/perl

#varint4.plx

use warnings;

use strict;

my Stimes = 8;

print "This is the $timesth time.\n";

This won't work, because perl looks for a variable $timesth that hasn't been declared. In this case, we
have to change the last line to this:

print "This is the ${times}th time.\n";
Now we get the right thing:

>perl varint4.plx
This is the 8th time.
>

Currency Converter

Let's begin to wind up this chapter with a real example - a program to convert between currencies. This
is our very first version, so we won't make it do anything too complex. As we get more and more
advanced, we'll be able to hone and refine it.

Try it out — Currency Converter

Open your editor, and type in the following program:

#!/usr/bin/perl
#currencyl.plx
use warnings;
use strict;

my Syen = 180;

print "49518 Yen is ", (49_518/$yen), " pounds\n";
print "360 Yen is ", (360/Syen), " pounds\n";
print "30510 Yen is ", (30_510/$yen), " pounds\n";

Save this, and run it through perl. This is what you should see:

> perl currencyl.plx
49518 Yen is 275.1 pounds
360 Yen is 2 pounds
30510 Yen is 169.5 pounds
>

69

Chapter 2

How It Works

First, we start our program in the usual way:
#!/usr/bin/perl
use warnings;

use strict;

Next, we declare the exchange rate to be a lexical variable and set it to 180. (At the time I wrote this,
there were roughly 180 Yen to the Pound.)

my S$yen = 180;

Notice that we can declare and assign a variable at the same time. Now we do some calculations based
on that exchange rate:

print "49518 Yen is ", (49_518/$yen), " pounds\n";
print "360 Yen is ", (360/Syen), " pounds\n";
print "30510 Yen is ", (30_510/$yen), " pounds\n";

And amazingly, the calculations come out to roughly round numbers!

Of course, this is currently of limited use, because the exchange rate fluctuate, and we might want to
change some different amounts at times. To do either of these things, we need to be able to ask the user
for additional data when we run the program.

Introducing <STDIN>

The way we do this is with the construct <STDIN>. We'll explain it in detail when we look at file
handling in Chapter 6, but it reads a line from the file called standard input. Usually, the standard input
is not really a file, but the user's keyboard. Similarly, the print function by default writes to the file
called standard output, which is usually the user's screen.

So, in order to ask the user for a line of text, we say something like:

print "Please enter something interesting\n";
Scomment = <STDIN>;

This will read one line from the user and assign the string that was read to the variable $comment. Let's
use this to get the exchange rate from the user when the program is run.

Try it out - Currency Converter, Mark 2

Using your editor, change the file currencyl.plx to currency2.plx as follows:

#!/usr/bin/perl

#currency2.plx

use warnings;

use strict;

print "Currency converter\n\nPlease enter the exchange rate: ";
my Syen = <STDIN>;

print "49518 Yen is ", (49_518/$yen), " pounds\n";
print "360 Yen is ", (360/Syen), " pounds\n";
print "30510 Yen is ", (30_510/$yen), " pounds\n";

70

Working with Simple Values

Now when you run the program, you'll be asked for the exchange rate. The currency values will be
calculated using the rate you entered:

> perl currency2.plx
Currency converter

Please enter the exchange rate: 100
49518 Yen is 495.18 pounds

360 Yen is 3.6 pounds

30510 Yen is 305.1 pounds

>

How It Works

This time we read the exchange rate from the user's keyboard, and perl converts the string to a number
in order to perform the calculation.

So far, we haven't done any checking to make sure that the exchange rate given makes sense; This is
something we'll need to think about in future.

Summary

Perl has three main data types — scalars, lists, and hashes. Lists and hashes are made up of scalars, which
are in turn made up of integers, floating-point numbers, and strings. Perl converts between these three
automatically, so we don't need to distinguish between them.

Double- and single-quoted strings differ in the way they process the text inside them. Single-quoted
strings do little to no processing at all, whereas double-quoted strings interpolate escape sequences and
variables. We can use alternative delimiters and here-documents as alternative ways of entering strings.

We can operate on these scalars in a number of ways — ordinary arithmetic, bitwise arithmetic, string
manipulation, and logical comparison. We can also combine logical comparisons with Boolean
operators. These operators vary in precedence, which is to say that some take effect before others, and
as a result we must use brackets to enforce the precedence we want.

Scalar variables are a way of storing scalars so that we can get at them and change them. Scalar
variables begin with a dollar sign ($) and are followed by one or more alphanumeric characters or
underscores. There are two types of variables — lexical and global. Globals exist all the way through the
program and so can be troublesome if we don't keep very good track of where they are being used.
Lexicals have a life span of the current block, so we can use them safely without worrying about
clobbering similarly named variables somewhere else in the program.

Finally, we've seen a way of getting input from the user, storing it into a variable, and acting upon it.
Try the exercises that follow. They are a good indication of how much you have learned.

71

Chapter 2

Exercises

72

1.

2.

Change the currency conversion program so that it asks for an exchange rate and three prices
to convert.

Write a program that asks for a hexadecimal number and converts it to decimal. Then change
it to convert an octal number to decimal.

Write a program that asks for a decimal number less than 256 and converts it to binary. (Hint:
You may want to use the bitwise and operator, 8 times.)

Without the aid of the computer, work out the order in which each of the following
expressions would be computed and their value. Put the appropriate parentheses in to reflect
the normal precedence:

2+6/4-3*5+1
17+-3**3/2
26+374*2

4+3>=T7] | 2&4*2<4

[T R

Working with Simple Values

73

Source code available at : www.wrox.com
Peer discussion at : lamplists.com

Also from Wrox

2 £k
o ImAA™
7 TVPHIR

FROTISSIONAL PROFISSIONAL

Perl Per

Programming Development

W AT

BEGINNING

Perl

http:/imwww.wrox.com/books/1861003145.htm

lamplists.com

The Open Source Programmer’s Res ource Centre

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

Lists and Hashes

As we saw from the previous chapter, there are three types of data: scalars, lists, and hashes. So far
we've only been working with scalars - single numbers or strings. We've joined two single strings
together to make one, converted one currency only, and held one number in a variable.

There are times, when we'll want to group together information or express correspondences between
information. Just like the ingredients in a recipe or the pieces in a jigsaw, some things belong together in
a natural sequence, for example, individual lines in a file, or the names of players in a squash ladder. In
Perl, we represent these relationships in lists — series of scalars. They can be stored in another type of
variable called an array, and we call each piece of data in the list an element.

Alternatively, some things are better expressed as a set of one-to-one correspondences. A phone book,
for example, is a set of correspondences between addresses and phone numbers. In Perl, structures like
the phone book are represented as a hash. Some people call them 'associative arrays' because they look
a bit like arrays where each element is associated with another value. Most Perl programmers find that a
bit too long-winded and just call them hashes.

In this chapter, we'll see how we build up lists and hashes and what we can do with them when we've
got them. We'll also begin to look at some control structures, which will enable us to step through lists
and arrays. As well as all this, we'll learn how to process data more than once without having to write
out the relevant sections of our program again and again.

Lists

We're all familiar with lists from everyday life. Think about a shopping list, what properties does it
have? First of all, it's a single thing, one piece of paper. Secondly, it's made up of a number of values. In
the case of a shopping list, you might want to say that these values are actually strings - "ketchup",
"peanut butter", "ice cream", and so on. Finally, it's also ordered, which means that there's a
first item and a last item.

Lists in Perl aren't actually that much different: They're counted as a single thing, but they're made up
of a number of values. In Perl, these values are scalars, rather than purely strings. They're also stored in
the order they were created.

Ch

apter 3

Si

76

We'll specify lists in our program code as literals, just like we did with strings and numbers. We'll also
be able to perform certain operations on them. Let's begin by looking at a few simple lists and how we
create them.

mple Lists

The simplest shopping list is one where you have nothing to buy. Similarly, the simplest list in Perl has
no elements in it. Here's what it looks like:

0

A simple pair of parentheses — that's how we denote a list. However, it's not very interesting. Let's try
putting in some values:

(42)
("cheese")

As you can see, we have created two lists, one containing a number, and one containing a string — so far
so good. Now, remember that I said print was a list operator? The magic about operators like print
is that you can omit the brackets. Saying print "cheese" is just the same as saying

print ("cheese") . So what we give to print is really a list. We're allowed to leave out the
parentheses if we wish.

From this, we should be able to work out how to put multiple values into a list. When we said:
print ("Hello, ", "world", "\n");
we were actually passing the following list to the print operator:

(“Hello ||, “world", u\nu)

As you can see, this is a three-element list, and the elements are separated with commas. Computers and
computer people start counting from zero, so here's your chance to practise. The zeroth element is
"Hello ", the firstis "world", and the second is "\n". Now, let's do that again with numbers instead
of strings:

(123, 456, 789)

This is exactly the same as before, and if we were to print this new list, this is what would happen:

#!/usr/bin/perl
numberlist.plx
use warnings;
use strict;

print (123, 456, 789);

>perl numberlist.plx
123456789>

Lists and Hashes

As before, perl doesn't automatically put spaces between list elements for us when it prints them out, it
just prints them as it sees them. Similarly, it doesn't put a new line on the end for us. If we want to add
spaces and new lines, then we need to put them into the list ourselves.

More Complex Lists

We can also mix strings, numbers, and variables in our lists. Let's see an example of a list with several
different types of data in it:

Try It Out — Mixed Lists

Although this isn't very different from what we were doing with print in the last chapter, this example
reinforces the point that lists can contain any scalar literals and scalar variables. So, type this in, and
save it as mixedlist.plx.

#!/usr/bin/perl
mixedlist.plx
use warnings;
use strict;

my Stest = 30;
print
"Here is a list containing strings, (this one) ",
"numbers (",
3.6,
") and variables: ",
Stest,
"\D"

When you run that, here's what you should see:

> perl mixedlist.plx
Here is a list containing strings, (this one) numbers (3.6) and variables: 30
>

How It Works

This is how we're going to start programs from now on, in order to make sure that we have both
warnings and extra checks turned on. Remember that if you're using a version of Perl less than 5.6
you'll need to say #! /usr/bin/perl -w for the first line to turn on warnings, and also leave out the
use warnings; line:

#!/usr/bin/perl
mixedlist.plx
use warnings;
use strict;

Next, we initialize our variable. Note that we can declare the variable and give it a value on the same
statement. It's exactly the same as doing this:

my Stest = 30;

77

Chapter 3

but is just as clear and saves a line, so it's a common thing to do — it's one of Perl's many idioms:

my Stest;
Stest = 30;

Perl ismore like a human language than most programming languages. Perl was
designed to be easy for humansto write, not for computersto read. Just like human
languages, Perl has shortcuts and idioms. Per| programmers do tend to use a lot of
theseidiomsin their code, and you may come across them if you're reading other
people's programs. As aresult of this, we're not going to shy away from those idioms,
even if they can be dlightly confusing at times. Instead, we'll try taking them apart to
see how they work.

Finally, we have our list. It's a list of six elements, including literal strings, literal numbers, and a scalar
variable for good measure:

print
"Here is a list containing strings, (this one) ",
"numbers (",
3.6,
") and variables: ",
Stest,
"\I'l"

Since variables interpolate in double-quoted strings inside lists just as well as at any other time, we could
have done that all as one long single-element list:

print ("Here is a list containing strings, (this one) numbers (3.6) and variables:
Stest\n") ;

There is a disadvantage of writing your code this way. New lines in your string literals will turn into new
lines in your output. So, if you keep the maximum length of the lines in your source code to about 80
columns (it's a good idea to keep your programs readable), one long string will wrap over, and you'll see
this sort of thing:

> perl mixedlist.plx
Here is a list containing strings, (this one) numbers (3.6) and

variables: 30
>

So if you're ever printing long strings, consider splitting it up into a list of smaller strings on separate
lines as we've done above.

In the same way, single-quoted strings act no differently when they're list elements: ('A number: ',
'stest ') will actually give you two strings, and if you print out that list, you will see this:

A number:$test

78

Lists and Hashes

Similarly, g/ / and gg// can be used to delimit strings when you're using them as list elements. There's
absolutely no difference between the previous example and (g/A number:/, g/$test/)

However, there's another trick. When your lists are made up purely from single words, you can specify
them with the qw// operator. Just like the g// and qq// operators, you can choose any paired
brackets or non-word characters as your delimiters. The following lists are all identical:

('one', 'two', 'three', 'four')
gw/one two three four/
gw (one two three four)
gw<one two three fours
gw{one two three four}
gw [one two three four]
qw|one two three four|

You shouldn't separate your words with commas inside gw/ /. In fact, if you do, perl will complain,
especially since we always have warnings turned on! For example, if we ran this:

#!/usr/bin/perl

badlist.plx

use warnings;

use strict;

print gw(one, two, three, four) ;

we would quickly see

> perl badlist.plx

Possible attempt to separate words with commas at badlist.plx line 5.
Possible attempt to separate words with commas at badlist.plx line 5.
Possible attempt to separate words with commas at badlist.plx line 5.
one,two,three,four>

You can use any white space, tabs, or new lines to separate your elements. The same list as above

(‘one', 'two', 'three', 'four') can also be written like this:
aw (
one
two
three
four

One last thing to note is that perl automatically flattens lists. That is, if you try putting a list inside
another list, the internal list loses its identity. In effect, perl removes all the brackets apart from the
outermost pair. There's no difference at all between any of these three lists:

(3, 8, 5, 15)
((3, 8), (5, 15))
(3, (8, 5), 15)

79

Chapter 3

Similarly, perl sees each of these lists as exactly the same as the others:

('one', 'two', 'three', 'four')
(('one', 'two', 'three', 'four'))
(gw(one two three), 'four')

(gw (one two), g(three), 'four')
(gw (one two three four))

This doesn't mean that you can't store a list inside another list and keep the structure of the first list
intact. For the moment we can't do it, but we'll see how it's done when we look at references in

Chapter 7.

Accessing List Values

We've now seen most of the ways of building up lists in Perl, and we can throw lists at list operators like
print. But another thing we need to be able to do with lists is access a specific element or set of
elements within it. The way to do this is to place the number of the elements we want in square brackets
after the list, like this:

#!/usr/bin/perl
access.plx
use warnings;
use strict;

print (('salt', 'vinegar', 'mustard', 'pepper') [2]);
print "\n";

Before you run this, though, see if you can work out which word will be printed.

>perl access.plx
mustard
>

Did you think it was going to be 'vinegar'? Don't forget that computers start counting things from zero!

You should also notice that we had to put brackets around the whole thing. This is because the
precedence of print is extremely high. Without the brackets, perl groups the statement in two parts
like this:

print ('salt', 'vinegar', 'mustard', 'pepper') [2];

This means the whole of the list is passed to print, after which perl attempts to retrieve the second
element of print. The problem is, you can only take an element from a list, and as we already know,
print isn't a list.

So, since print needs to be passed a list, we make a list out of the element we want:

print (
('salt', 'vinegar', 'mustard', 'pepper') [2]

)

80

Lists and Hashes

The element you want doesn't have to be given as a literal — variables work just as well. Here's an
example we'll draw on later:

Try It Out — Months Of The Year

We'll create a list of the months of the year, and then use a variable to access them. Save this file as
months.plx:

#!/usr/bin/perl
months.plx
use warnings;
use strict;

my Smonth = 3;

print gw(
January February March
April May June
July August September
October November December
) [$month] ;

When this is run, you should now be expecting it to give you 'April', and it does:

>perl months.plx
April>

How It Works

The key piece of code for this example is the last statement:

print gw(
January February March
April May June
July August September
October November December
) [$month] ;

We have $month as 3, and so we are telling perl to print out the third element of the list, starting from
zero. Because we're using gw// we can use arbitrary whitespace, tabs, and new lines to separate each
list element, which allows us to present the months in a neat table.

This is exactly the sort of situation that gw// was created for. We have a list comprised completely of
single words, and we want a way to represent that to perl in a tidy way in our source code. It's far easier

to read than spelling the list out longhand, even though these statements are equivalent:

print (('January', 'February', 'March', 'April', 'May', 'June', 'July', 'August',
'September', 'October', 'November', 'December') [Smonth]) ;

What do you think would happen if we chose a non-integer value for our element? Let's use a value
with a fractional part. Change the above file so that line 5 reads:

my Smonth = 2.2;

81

Chapter 3

Per] will round the number in this case, and you should get the answer March. In fact, perl always
rounds towards zero, so anything between 2 and 3 will get you March.

What about negative numbers? Actually, something interesting happens here — perl starts counting
backwards from the end of the list. So element -1 is the last one, -2 the second before last, and so on.

#!/usr/bin/perl
backwards.plx
use warnings;
use strict;

print qw(
January February March
April May June
July August September
October November December
) [-11;

And, true to form, we'll get the last element of the array when we run the program.

>perl backwards.plx
December>

List Slices

So much for getting a single element out of a list. What if we want to get several? Well, instead of
putting a number or a scalar variable inside those square brackets, you can actually put a list there
instead. For example, this:

(19, 68, 47, 60, 53, 51, 58, 55, 47)[(4, 5, 6)]

returns another list consisting of elements four, five, and six: (53, 51, 58). Actually, inside the
square brackets, we don't need the additional set of parentheses, so you might as well say:

(19, 68, 47, 60, 53, 51, 58, 55, 47)[4, 5, 6]

We call this getting a list slice, and the same methods work with lists of strings:

Try It Out — Multiple Elements Of A List

This program is called multilist .plx. Just like the above examples, we're taking several elements
from a list:

#!/usr/bin/perl
multilist.plx
use warnings;
use strict;

my Smone; my Smtwo;

($mone, $mtwo) = (1, 3);
print (("heads ", "shoulders ", "knees ", "toes ") [Smone, Smtwo]);
print "\n";

82

Lists and Hashes

Try and think what it's going to produce before you run it. Here's what happens:

> perl multilist.plx
shoulders toes
>

As you may have realized, we simply printed out the first and the third elements from the list, if you
start counting from zero.

How It Works

There are two key tricks in this example. The first is on line seven:

($Smone, $mtwo) = (1, 3);

You might be able to see what this line does, from how the rest of the program runs. The value of
$mone is set to 1, and $mtwo to 3. But how does this work?

Perl allows lists on the left-hand side of an assignment operator — we say that lists are legal lvalues.
When we assign one list to another, the right-hand list is built up first. Then perl assigns each element in
turn, from the right hand side of the statement to the left. So 1 is assigned to $mone, and then 3 is

assigned to $mtwo.

If you're okay with that, then now's a good time for a quick quiz. Suppose we've done the above: $mone
is 1 and $mtwo is 3. What do you think would happen if we said this:

(Smone, S$mtwo) = (Smtwo, Smone) ;
Well, the right-hand list is built up first, so perl looks at the values of the variables and constructs the list
(3, 1). Then the 3 is assigned to $mone, and the 1 assigned to $mtwo. In effect, we've swapped the
values of the variables around - a handy trick to learn and remember. Chances are that it's something

you'll need to do again and again over time.

Back to our example! Once we've set $mone to 1 and $mtwo to 3, we can pick out these elements from
a list. There's nothing that says that we have to use literals to pick out the elements we want. This:

print (("heads ", "shoulders ", "knees ", "toes ") [Smone, $mtwol);
is interpreted by perl just the same as this:
print (("heads ", "shoulders ", "knees ", "toes ")[1, 31);

Indeed, both statements equate to the same thing — picking out a list consisting of the first and third
elements of our original list and printing them. In effect, we call:

print ("shoulders ", "toes ");

which is indeed what happens.

83

Chapter 3

Ranges

Often our lists will be a lot simpler than a group of different values. We'll want to talk about "the
numbers 1 to 10" or "the letters a to z." Rather than write them out longhand, Perl gives us the ability to
specify a range of numbers or letters. Suppose we say:

(1 .. 6)

This will give us a list of 6 elements from 1 to 6, exactly the same as if we had said (1, 2, 3, 4, 5,
6) . This can really save time when you're dealing with a few hundred elements, but note that this only
works for integers. If you'll recall our efforts to use lists to get at elements of another list, the fractional

values in the list were rounded towards zero. Exactly the same thing happens here:

(1.4 .. 6.9)

would produce (1, 2, 3, 4, 5, 6) again. There's no problems with using negative numbers in
you ranges, though. For example:

(-6 .. 3)
produces the list (-6, -5, -4, -3, -2, -1, 0, 1, 2, 3)

The right-hand number must, however, be higher than the left-hand one, so we can't use this technique
to count down. Instead, you can reverse any list using the reverse operator, as we'll see very shortly.

We can do the same for letters as well:

This will give us an 11-element list, consisting of each letter from 'a' to 'k’ inclusive. Note that we can't
mix letters and numbers within a range. If we try, perl will interpret the string as a number, and treat it
as zero:

Try It Out — Counting Up And Down

Here's a demonstration of all the things we can do with ranges:

#!/usr/bin/perl
ranges.plx
use warnings;
use strict;

print "Counting up: ", (1 .. 6), "\n";

print "Counting down: ", (6 .. 1), "\n";

print "Counting down (properly this time) : ", reverse(l .. 6), "\n";
print "Half the alphabet: ", ('a' .. 'm'), "\n";

print "The other half (backwards): ", reverse('n' .. 'z'), "\n";

print "Going from 3 to z: ", (3 .. 'z'), "\n";

print "Going from z to 3: ", ('z' .. 3), "\n";

84

Lists and Hashes

Which of those will work and which won't? Let's find out...:

> perl ranges.plx

Argument "z" isn't numeric in range (or flop) at ranges.plx line 13.

Argument "z" isn't numeric in range (or flop) at ranges.plx line 14.
Counting up: 123456

Counting down:

Counting down (properly this time): 654321

Half the alphabet: abcdefghijkim

The other half (backwards): zyxwvutsrgpon

Going from 3to z

Going from z to 30123

>

How It Works

After the usual opening, we first count upwards with a range:

print "Counting up: ", (1 .. 6), "\n";
We've seen the range in action before, and we know this produces (1, 2, 3, 4, 5, 6). We pass

print a list containing the string "Counting up: ", the six elements, and a new line. Because a list
inside a list gets flattened, we're actually just passing an eight-element list. It's the same as if we'd done:

print "Counting up: ", 1, 2, 3, 4, 5, 6, "\n";
And we get the expected result:
Counting up: 123456
Next, we try and count down:
print "Counting down: ", (6 .. 1), "\n";
This doesn't work because the right hand side needs to be bigger than the left, and all that's produced is

the empty list, (). To count down properly, we need to make a list using (1 .. 6) as before and turn
it around. The reverse operator turns any list on its head. For example:

reverse (gw(The cat sat on the mat))
produces the same as:
gw (mat the on sat cat The)

In this case, reverse (1. .6) produces (1, 2, 3, 4, 5, 6) and then turns it around to become
(6, 5, 4, 3, 2, 1),and we see the list appear in that order:

Counting down (properly this time) : 654321

Next we demonstrate a simple alphabetic range:

print "Half the alphabet: ", ('a' .. 'm'), "\n";

85

Chapter 3

1

This range expands to the values 'a’', 'b', 'c', and so, on all the way to 'm'. Doing that backwards is easy:
print "The other half (backwards): ", reverse('n' .. 'z'), "\n";

Now we come to the ones that don't work, and it's no surprise that perl warns us against them:

Argument "z" isn't numeric in range (or flop) at ranges.plx line 13.
Argument "z" isn't numeric in range (or flop) at ranges.plx line 14.

The lines in question are:

print "Going from 3 to z: ", (3 .. 'z'), "\n";

print "Going from z to 3: ", ('z' .. 3), "\n";
What does the error message mean? Well, pretty much what it says: we gave an argument of 'z' to a

range, when it was expecting a number instead. The interpreter converted the 'z' to a number, as per the
rules in the last chapter, and got a 0. It's equivalent to this:

’

print "Going from z to 3: " (0 .. 3), "\n";

’

print "Going from 3 to z: " (3 .. 0), "\n";

The first one produces an empty list, and the second one counts up from 0 to 3.
Combining Ranges and Slices
We can, of course, use ranges in our list slices. The following gets March through September:
(gw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec) [2..8])

And this gets November through February via December and January (remember that -2 is the second
to last, and -1 the last):

(gw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec) [-2..1])

We can also use a mixture of ranges and literals in our slice. This gives you January, April, and August
to December:

(gw (Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec) [0,3,7..11])

It may be a bit confusing, but have a go at slicing your own arrays, and you'll get the hang of it in no
time at all.

Arrays

Just as with scalars, there's only so much you can do with literals. Literal lists get cumbersome to repeat
and don't allow us to manipulate them at all. If we wanted to say 'the same list, but without the last
element', we couldn't do it. As before, we need to find a way to store them in a variable.

The variable storage we use for lists is called an array. Whereas the name of a scalar variable started
with a dollar sign, arrays start with an at sign (@). The same rules for naming your arrays apply as for
any other variables: start with an alphabetic character or underscore, followed by one or more
alphabetic characters, underscores, or numbers:

86

Lists and Hashes

A scalar variable is An array variable is like a like a terrace of
like a single house. It houses. It houses several families joined
houses one family. together, but each are in their own

separate house.

P
T N T

NOOR Ao OO OO OO 00

U U0 U U U

Assigning Arrays

We store a list in an array just like we store a scalar literal into a scalar variable, by assigning it with =:

@array = (1,2,3);
Once we've assigned our array, we can use our array where we would use a list:

#!/usr/bin/perl
dayarray.plx
use warnings;
use strict;

my @days;
@days = gw(Monday Tuesday Wednesday Thursday Friday Saturday Sunday) ;
print @days, "\n";

This prints:

> perl dayarray.plx
MondayTuesdayWednesdayThursdayFridaySaturdaySunday
>

Note that $days is a completely different variable from @days - setting one does nothing to the other.
In fact, if you were to do this:

#!/usr/bin/perl

baddayarrayl.plx
use warnings;

use strict;

my @days;
@days = gw(Monday Tuesday Wednesday Thursday Friday Saturday Sunday) ;
sdays = 31;

87

Chapter 3

you would get the following error:

Global symbol "$days" requires explicit package name at dayarray.plx line 8.

This is because you have declared @days to be a lexical variable, but not $days. Even when you

declare them both, setting one has no effect on the other:

#!/usr/bin/perl

baddayarray2.plx
use warnings;

use strict;

my @days;

my sdays;

@days = gw(Monday Tuesday Wednesday Thursday Friday Saturday Sunday) ;
Sdays = 31;

print @days, "\n";

print $days, "\n";

prints:

MondayTuesdayWednesdayThursdayFridaySaturdaySunday
31

What would happen if you assigned an array to a scalar variable? Well, let's see:

Try It Out - Assigning An Array To A Scalar

Here's an example of two arrays that we will assign to two different scalar variables:

#!/usr/bin/perl
arraylen.plx
use warnings;
use strict;

my @arrayl;

my S$scalarl;

@arrayl = gw(Monday Tuesday Wednesday Thursday Friday Saturday Sunday) ;
S$scalarl = @arrayl;

print "Array 1 is @arrayl\nScalar 1 is $scalarl\n";

my @array2;

my S$scalar2;

@array2 = gw(Winter Spring Summer Autumn) ;
Sscalar2 = @array2;

print "Array 2 is @array2\nScalar 2 is $scalar2\n";
Save this as arraylen.plx, and run it through perl:

> perl arraylen.plx

Array 1 is Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Scalar1is 7

Array 2 is Winter Spring Summer Autumn

Scalar 2 is 4

>

88

Lists and Hashes

Hmm... The first array has seven elements, and the scalar value is 7. The second has four elements, and
the scalar value is 4.

How It Works

Note how array variables interpolate in a double-quoted string. We've seen that if you put a scalar-
variable name inside a string, perl will fill in the value of the variable. Now we've put an array variable
in a string, and perl has filled it in, but it has placed spaces between the elements. Look at the following
two print statements:

@array = (4, 6, 3, 9, 12, 10);
print @array, "\n";
print "@array\n";

The first one does exactly what we've seen with lists, printing all the elements next to each other. The
second statement, however, inserts a space between each element:

46391210
46391210

This adding of spaces between elements is what happens when an array is interpolated in a double-
quoted string. As with scalars, interpolation is not confined to print. For example:

$scalar = "e@array\n";

is the same as:

$scalar = "4 6 3 9 12 10\n";

Forcing variables to make sense in a string is called stringifying them.

Scalar vs List Context

What happens when we assign an array to a scalar variable? Well, one key point to remember is that
perl knows exactly what type of value you want, whether a scalar or an array, at any stage in an
operation, and will do its best to make sure you get it.

For example, if we're looking to assign to a scalar variable, we need to have a scalar value — the
assignment is taking place in scalar context. On the other hand, for example, print expects to see a list
of arguments. Those arguments are in list context. However, some operations may return different
values depending on which context they are called. That's what's happening in this case:

print @arrayl;
$scalarl = @arrayl;

The first line is in list context. In list context, an array returns the list of its elements. In the second line,
however, the assignment wants to see a single result, or scalar value, and therefore it is in scalar context.
In scalar context, an array returns the number of its elements, in our case, 7 for the days and 4 for the
seasons.

89

Chapter 3

If we were to do this:
@array2 = @arrayl;

we would be assigning to an array. So we're looking for a list of values to fill @array2. Here, we're
back in list context, and so @array2 gets filled with all of the values of @array1l.

We can force something to be in scalar context when it expects to be in list context by using the
scalar operator. Compare these two statements:

print @arrayl;
print scalar @arrayl;

As we've explained before, print usually wants a list, so perl evaluates print's arguments in list
context. In the example above, print is looking to get a list from each of arguments. That's why the
first statement prints the contents of @arrayl. If we force @array1 into scalar context, then the
number of elements in the array is passed to print and not the contents of the array:

Per| distinguishes between operationsthat want a list and operations that want a
scalar. Those that want alist, such asprint or assigningtoan array, are said to be
in list context. Those that want a scalar are said to bein scalar context. The value of
an array in list context isthelist of its elements—thevaluein scalar context isthe
number of its elements.

Adding to an Array

How do we add elements to an array? Well, one way to do it is by using the 'list flattening' principle and
treating our arrays as lists. This isn't a particularly good way to do it, but it works:

#!/usr/bin/perl
addelem.plx
use warnings;
use strict;

my @arrayl = (1, 2, 3);
my @array2;
@array2 = (@arrayl, 4, 5, 6);

print "earray2\n";

@array2 = (3, 5, 7, 9);
@array2 = (1, @array2, 11);
print "earray2\n";

>perl addelem.plx
123456
1357911

>

20

Lists and Hashes

It's far better, however, to use the functions we're going to see later on — push, pop, shift,
and unshift.

Accessing an Array

Once we've got our list of scalars into an array, it would make sense to be able to get them back out
again. We do this slightly differently to the way we get values out of lists.

Accessing Single Elements

So, we can now put elements into an array:

my @array = (10, 20, 30);
If we look at the array in scalar context, we get the number of elements in it. So:

print scalar @array;

will print the value 3. But how do we get at one of those elements? We could use the list assignment we
were looking at earlier:

my Sscalarl; my S$scalar2; my S$scalar3;
($scalarl, S$scalar2, $scalar3) = @array;
print "Scalar one is S$scalarl\n";

print "Scalar two is S$scalar2\n";

print "Scalar three is $scalar3\n";

This will print out each of the elements:

Scalar one is 10
Scalar two is 20
Scalar three is 30

To get at a single element, we do something quite similar to what we did with a list. To get a single
element from a list, if you remember, we put the number we want in square brackets after it:

$a = (10, 20, 30)[0];

This will set $a to the zeroth element, 10. We could do this:
$a = (@array) [0];

in exactly the same way. However, it's more usual to write that as follows:
$a = Sarray[0];

Look carefully at that. Even though @array and $array are different variables, we use the sarray[]
form. Why?

921

Chapter 3

Theprimeruleisthis: the prefix represents what you want to get, not what you've got.
So @ represents a list of values, and $ represents a single scalar. Hence, when we're
getting a single scalar from an array, we never prefix the variable with @ — that would
mean alist. A single scalar is always prefixed with a $.

$array [0] and @array aren't related — $array [0] can only refer to an element of the @array
array. If you try and use the wrong prefix, perl will complain with a warning:

#!/usr/bin/perl
badprefix.plx
use warnings;
use strict;

my earray = (1, 3, 5, 7, 9);
print @array[1];

will print:

>perl badprefix.plx
Scalar value @array[1] better written as $array[1] at badprefix.plx line 8.
3>

We call the number in the square brackets the array index or array subscript. The array index is the
number of the element that we want to get hold of. Back in our little street, we could explain arrays
like so:

The collection of houses is
@ array; each house is a
scalar, and is therefore

ﬁ ﬂ E ﬂ ﬁ ﬁ E ﬂ $array [0]...$array[3]

o |0 0) | et {D 0] Je2) | O0) | s | O,
o0l _ |00 I I

il 00 il

Just like extracting elements from lists, we can use a scalar variable as our subscript:

#!/usr/bin/perl
scalarsub.plx
use warnings;
use strict;

my @array = (1, 3, 5, 7, 9);
my S$subscript = 3;

print Sarray([$subscript], "\n";
Sarray [$Ssubscript] = 12;

This prints the third element from zero, which has the value 7. It then changes that 7 to a 12. Negative
subscripts work from the end; as before, Sarray [-1] will give you the last element in the array.

92

Lists and Hashes

Now let's write something to extract a given element from an array:

Try It Out — The Joke Machine

We'll use arrays to write a program to tell us some (really bad) jokes. We actually set up two arrays —
one containing the question, and one containing the answer:

#!/usr/bin/perl
jokel.plx
use warnings;
use strict;

my @questions = gw(Java Python Perl C);

my @punchlines = (
"None. Change it once, and it's the same everywhere.",
"One. He just stands below the socket and the world revolves around him.",
"A million. One to change it, the rest to try and do it in fewer lines.",
'"CHANGE?!!"!'

) 8

print "Please enter a number between 1 and 4: ";

my Sselection = <STDIN>;

Sselection -= 1;

print "How many S$questions[$selection] ";

print "programmers does it take to change a lightbulb?\n\n";
sleep 2;

print $punchlines[$selection], "\n";

> perl jokel.plx
Please enter a number between 1 and 4: 3
How many Perl programmers does it take to change a lightbulb?

A million. One to change it, the rest to try and do it in fewer lines.

Hmm. I don't think I'm ready for the move into stand-up comedy quite yet.

How It Works

We first set up our arrays. One is a list of words and so we can use qw// to specify it. The other is a list
of strings, so we use the ordinary list style:

my @questions = gw(Java Python Perl C);

my @punchlines = (
"None. Change it once, and it's the same everywhere.",
"One. He just stands below the socket and the world revolves around him.",
"A million. One to change it, the rest to try and do it in fewer lines.",
'"CHANGE? ! ! ™!

)i

We now ask the user to choose their joke:
print "Please enter a number between 1 and 4: ";

my Sselection = <STDIN>;
Sselection -= 1;

23

Chapter 3

Why take one from it? Well, we've asked for a number between one and four, and our array subscripts
go from zero to three.

Next we display the set-up line:

print "How many Squestions[$selection] ";
print "programmers does it take to change a lightbulb?\n\n";

From the first line, we see that array elements stringify just like scalar variables. Next, this new
function sleep:

sleep 2;

What sleep does, as you'll know if you've run the program, is pause the program's operation for a
number of seconds. In this case, we're telling it to sleep for two seconds.

After the user has had time to think about it, we display the punchline:

print $punchlines[$selection], "\n";
Hopefully, you're starting to see alternative ways we can use arrays by now. Of course, we've only

been pulling single values from arrays so far. The next logical step is to start working with multiple
array elements.

Accessing Multiple Elements

If you'll recall, we created and used a list slice by putting ranges or several numbers in brackets to get
multiple elements from a list. If we want to get multiple elements from an array, we can use the
analogous concept, an array slice.

List slices, if you remember, looked like this:

(gw (Jan Feb Mar May Apr Jun Jul Aug Sep Oct Nov Dec)) [3,5,7..9]
Can you work out which elements the slice above consists of? If not, write a short Perl program to print
them out, and see if you can get it to separate them with spaces. (Hint: Only arrays stringify with spaces,

so you'll need to use one.)

Array slices look very similar. However, now that we are accessing multiple elements and expecting a
list, we no longer want to use $ as the prefix - now we should be using @.

We can get the same list as the above like this:

my @array = gw(Jan Feb Mar May Apr Jun Jul Aug Sep Oct Nov Dec) ;

print @arrayl[3,5,7..9];

Array slices act like any normal list, and so can be used as an lvalue. Here's a load of slices to mess
around with:

24

Lists and Hashes

Try It Out - Array Slices

Here are a year's sales results for a fictitious bathroom tile shop:

#!/usr/bin/perl
aslice.plx
use warnings;
use strict;

my @sales = (69, 118, 97, 110, 103, 101, 108, 105, 76, 111, 118, 101);
my @months = gw(Jan Feb Mar May Apr Jun Jul Aug Sep Oct Nov Dec) ;

print "Second quarter sales:\n";
print "@months[3..5] \ne@sales[3..5]\n";
my @g2=@sales[3..5];

Incorrect results in May, August, Oct, Nov and Dec!
@sales[4, 7, 9..11] = (68, 101, 114, 111, 117);

Swap April and May
@months [3,4] = @months|[4,3];

Most of the work is behind the scenes, but this is what you'd see if you run it:
Second quarter sales:

May Apr Jun

110 103 101

Let's take a look at what's actually going on.

How It Works

We set up our two arrays — one holding our sales figures, and the other holding the names of the
months:

my @sales = (69, 118, 97, 110, 103, 101, 108, 105, 76, 111, 118, 101);
my @months = gw(Jan Feb Mar May Apr Jun Jul Aug Sep Oct Nov Dec) ;

To extract the information about the second quarter, we use an array slice for the months in question:

print "Second quarter sales:\n";
print "e@months[3..5]\n@sales[3..5]\n";
my @g2=@sales[3..5];

In addition to saving the relevant elements to another array, we can also print out the slice and it will be
stringified. We can also assign values to an array slice, as well as getting data from it:

@sales([4, 7, 9..11] = (68, 101, 114, 111, 117);

This sets new values for $sales[4], $sales[7], $Ssales[9], $sales[10] and $sales[11].

95

Chapter 3

Finally, we can use something similar to the ($a, $b) = (3$b, $a) list trick to swap two
array elements:

@months [3,4] = e@months[4,3];

This is exactly the same as the following statement:

(Smonths [3], Smonths[4]) = (Smonths[4], S$months[3]);

As you can see, this isn't all that far from the list assignment to swap two variables:

(Smone, S$mtwo) = (Smtwo, S$Smone) ;

Watch your parentheses and square brackets, though.

Running through Arrays

One thing we'll want to do quite often is run over each of the elements in an array or list in turn. If
we want to double every value in an array, then for each element we come across, we multiply by
two. The keyword to use here is for. Here's a for loop, which prints each element of an array,
followed by a new line:

#!/usr/bin/perl
forloopl.plx
use warnings;
use strict;

my @array = gw(America Asia Europe Africa);
my Selement;
for $element (@array) {
print S$element, "\n";
}

We set up an array, and we declare another scalar variable, $element. What we then say is 'set each

element of @array to $element in turn, and then do all the statements in the following block'. So, on
our first iteration, $element is set to America, and then the print statement is run. Then $element
is set to Asia, and the print statement runs again. This continues until the end of the array is reached.

This should print:

>perl forloopl.plx
America

Asia

Europe

Africa

>

$element is called an iterator variable or loop variable. It's what we 'see' when we look at each
element in turn. This is the syntax of the for loop:

for <ITERATOR> (<LIST OR ARRAY>) <BLOCK>

96

Lists and Hashes

The block must start with an opening brace and end with a closing brace, and the list or array that we're
running over must be surrounded by parentheses. If we don't supply an iterator variable of our own,
perl uses the special $_ variable, which is often used in Perl functions as a 'default value'. Note that the
for loop doesn't require a semicolon after the block.

So, when processing a for loop, perl makes the iterator a copy of each element of the list or array in
turn, and then runs the block. If the block happens to change the value of the iterator, the
corresponding array element changes as well. We can double each element of an array like this:

#!/usr/bin/perl
forloop2.plx
use warnings;
use strict;

my @array=(10, 20, 30, 40);
print "Before: @array\n";
for (e@array) { $_ *= 2 }
print "After: @array\n";

This prints:

>perl forloop2.plx
Before: 10 20 30 40
After: 20 40 60 80
>

If you need to know the number of the element you're currently processing, it's usually best to have the
iterator as the range of numbers you're processing — from 0 up to the highest element number in the
array. Let's rewrite the joke machine so that it tells @/l the bad jokes, without prompting:

Try It Out — Joke Machine Il — The Revenge

Here we use the same jokes tell each of them in turn:

#!/usr/bin/perl
joke2.plx
use warnings;
use strict;

my @gquestions = gw(Java Python Perl C);

my @punchlines = (
"None. Change it once, and it's the same everywhere.",
"One. He just stands below the socket and the world revolves around him.",
"A million. One to change it, the rest to try and do it in fewer lines.",
' "CHANGE? ! ! "'

)i

for (0..$%#questions) {
print "How many S$questions[$_1 ";
print "programmers does it take to change a lightbulb?\n";
sleep 2;
print $punchlines[$_], "\n\n";
sleep 1;

97

Ch

apter 3

The changes to our old jokel.plx program produce this result:
> perl joke2.plx

How many Java programmers does it take to change a lightbulb?
None. Change it once, and it's the same everywhere.

How many Python programmers does it take to change a lightbulb?
One. He just stands below the socket and the world revolves around him.

How many Perl programmers does it take to change a lightbulb?
A million. One to change it, the rest to try and do it in fewer lines.

How many C programmers does it take to change a lightbulb?
"CHANGE?!!"

>

I promise I'll keep my day-job....

How It Works

98

The for loop is now the main part of our program. Let's have a look at it again:

for (0..S#questions)
print "How many Squestions[S$_]1 ";
print "programmers does it take to change a lightbulb?\n";
sleep 2;
print $punchlines[$_]1, "\n\n";
sleep 1;

The key thing about this example is that we need to match the questions to the punchlines. This means
we can't just go through one or the other of the arrays, but we have to go through them both together.
We do this by using a list, which counts up from 0 to the highest element of one of the arrays. Since the
arrays are both the same size, it doesn't matter which one. The line that does this is:

for (0..$#questions)

S#questions is the index of the highest element in the @questions array. That's different from the
value we get when we look at @questions in a scalar context. Look:

#!/usr/bin/perl
elems.plx
use warnings;
use strict;

my @array = gw(alpha bravo charlie delta) ;

print "Scalar value : ", scalar @array, "\n";
print "Highest element: ", S#array, "\n";

Lists and Hashes

>perl elems.plx

Scalar value 14
Highest element: 3
>

Why? There are four elements in the array — so that's the scalar value. Their indices are 0, 1, 2, and 3.
Since we're starting at zero, the highest element ($#array) will always be one less than the number of
elements in the array.

So, we count up from 0 to the index of the highest element in @questions, which happens to be 3. We
set the iterator to each number in turn. Where's the iterator? Since we didn't give one, perl will use $_.
Now we do the block four times, once when $_ is 0, once when itis 1, and so on:

print "How many S$questions[$_1 ";

This line prints the zeroth element of @questions the first time around, then the first, then the second,
third, and fourth:

print $punchlines[$_]1, "\n\n";
And so it is with the punchlines. If we'd just said:

for (e@questions) {

$_ would have been set to each question in turn, but we would not have advanced our way through
the answers.

Array Functions

It's time we met some more of the things we can do with arrays. These are variously called array
functions and array operators. As mentioned previously, perl doesn't draw much distinction between
functions and operators. The important part is that they all do some kind of work on an array. We've
already met one of them: reverse, which we used to count down ranges instead of counting up. We
can use reverse on arrays as well as lists:

#!/usr/bin/perl
countdown.plx
use warnings;
use strict;

my @count = (1..5);

for (reverse (@count)) {
print "$_...\n";
sleep 1;

}

print "BLAST OFF!\n";

29

Chapter 3

Hopefully, you should have a good idea of what this will print out before you run it.

>perl countdown.plx

-I:AST OFF!

VEREN®sO

Now a while back I mentioned some useful functions for adding elements to arrays. Here they are now,
along with a couple of other useful tips and tricks.

Pop and Push
Now we've already seen a simple way to add elements to an array: @array = (@array, $scalar).
One of the original metaphors that computer programmers like to use to analyze arrays is a stack of

spring-loaded plates in a canteen. You push down when you put another plate on the top, and the stack
pops up when a plate is taken away:

Pop

0
Following this metaphor, push is the operator that adds an element, or list of elements, to the end

of an array. Similarly, to remove the top element — the element with the highest index, we use the
pop operator:

Try It Out — Paper Stacks

Stacks are all around us. In my case, they're all stacks of paper. We can manipulate arrays just as we can
manipulate these stacks of paper:

#!/usr/bin/perl
stacks.plx
use warnings;
use strict;

my Shand;
my @pileofpaper = ("letter", '"newspaper", "gas bill", "notepad");

100

Lists and Hashes

print "Here's what's on the desk: @pileofpaper\n";

print "You pick up something off the top of the pile.\n";
$hand = pop @pileofpaper;
print "You have now a $hand in your hand.\n";

print "You put the $hand away, and pick up something else.\n";
Shand = pop @pileofpaper;
print "You picked up a $hand.\n";

print "Left on the desk is: @pileofpaper\n";

print "You pick up the next thing, and throw it away.\n";
pop @pileofpaper;

print "You put the $hand back on the pile.\n";
push @pileofpaper, $hand;

print "You also put a leaflet and a bank statement on the pile.\n";
push @pileofpaper, "leaflet", "bank statement";

print "Left on the desk is: @pileofpaper\n";
Watch what happens:

>perl stacks.plx

Here's what's on the desk: letter newspaper gas bill notepad
You pick up something off the top of the pile.

You have now a notepad in your hand.

You put the notepad away, and pick up something else.
You picked up a gas bill.

Left on the desk is: letter newspaper

You pick up the next thing, and throw it away.

You put the gas bill back on the pile.

You also put a leaflet and a bank statement on the pile.
Left of the desk is: letter gas hill leaflet bank statement
>

How It Works

Let's take this play-by-play. First off, we initialize our $hand and our @pileofpaper. Since the pile
of paper is a stack, the zeroth element (the letter), is at the bottom, and the notepad is at the top:

my Shand;
my @pileofpaper = ("letter", "newspaper", "gas bill", "notepad");

We use pop @array to remove the top element from the array and it returns that element, which we
store in $hand. So, we take the notepad from the stack and put it into our hand. What's left? The letter
at the bottom of the stack, then the newspaper and gas bill:

print "You pick up something off the top of the pile.\n";
Shand = pop @pileofpaper;
print "You have now a $hand in your hand.\n";

101

Chapter 3

As we pop again, we take the next element (the gas bill) off the top of the stack and store it again in
$hand. Since we didn't save the notepad from last time, it's lost forever now:

print "You put the $hand away, and pick up something else.\n";
Shand = pop @pileofpaper;
print "You picked up a $hand.\n";

The next item is the newspaper. We pop this as before, but we never store it anywhere:

print "You pick up the next thing, and throw it away.\n";
pop @pileofpaper;

We've still got the gas bill in $hand from previously. push @array, $scalar will add the scalar
onto the top of the stack. In our case, we're putting the gas bill on top of the letter:

print "You put the $hand back on the pile.\n";
push @pileofpaper, $hand;

push can also be used to add a list of scalars onto the stack - in this case, we've added two more strings.
We could add the contents of an array to the top of the stack with push @arrayl, @array2.Sowe
now know that we can replace a list with an array:

print "You also put a leaflet and a bank statement on the pile.\n";
push @pileofpaper, "leaflet", "bank statement";

As you might suspect, you can also push lists of lists onto an array: They simply get flattened first into a
single list and then added.

Shift and Unshift

While the functions push and pop deal with the 'top end' of the stack, adding and taking away elements
from the highest index of the array — the functions unshift and shift do the corresponding jobs for
a similar job for the bottom end:

#!/usr/bin/perl
#shift.plx

use warnings;
use strict;

my @array = ();

unshift (@array, "first");

print "Array is now: @array\n";
unshift @array, "second", "third";
print "Array is now: @array\n";
shift @array ;

print "Array is now: @array\n";

>perl shift.plx

Array is now: first

Array is now: second third first
Array is now: third first

>

102

Lists and Hashes

First we unshift () an element onto the array, and the element appears at the beginning of the list. It's
not easy to see this since there are no other elements, but it does. We then unshift two more
elements. Notice that the entire list is added to the beginning of the array all at once, rather than one
element at a time. We then use shift to take off the first element, ignoring what it was.

Sort

One last thing you may want to do while processing data is put it in alphabetical or numeric order. The
sort operator takes a list and returns a sorted version:

#!/usr/bin/perl
#sortl.plx

use warnings;
use strict;

my @unsorted = gw(Cohen Clapton Costello Cream Cocteau) ;
print "Unsorted: @unsorted\n";

my @sorted = sort @unsorted;

print "Sorted: @sorted\n";

>perl sortl.plx

Unsorted: Cohen Clapton Costello Cream Cocteau
Sorted: Clapton Cocteau Cohen Costello Cream
>

This is only good for strings and alphabetic sorting. If you're sorting numbers, there is a problem. Can
you guess what it is? This may help:

#!/usr/bin/perl
#sort2.plx

use warnings;
use strict;

my @unsorted = (1, 2, 11, 24, 3, 36, 40, 4);
my @sorted = sort @unsorted;
print "Sorted: @sorted\n";

>perl sort2.plx
Sorted: 111224336440
>

What? 11 doesn't come between 1 and 2. What we need to do is compare the numeric values instead of
the string ones. Cast your mind back to last chapter and recall how to compare two numeric variables,
$a and $b. Here, we're going to use the <=> operator. sort allows us to give it a block to describe how
two values should be ordered, and we do this by comparing $a and $b.These two variables are given to
us by the sort function:

#!/usr/bin/perl

#sort3.plx

use warnings;

use strict;

my @unsorted = (1, 2, 11, 24, 3, 36, 40, 4);

103

Chapter 3

my @string = sort { $a cmp $b } @unsorted;
print "String sort: @string\n";

my @number = sort { $a <=> $b } @unsorted;
print "Numeric sort: @number\n";

>perl sort3.plx

String sort: 1112 24 336 4 40
Numeric sort: 12 34 11 24 36 40
>

Another good reason for using string comparison operators for strings and numeric comparison
operators for numbers!

Hashes

The final variable type we have is the hash. In the introduction, I said that the hash was like a dictionary
or a phone book, but that's not quite right. There is a slight difference in that a phone book is normally
ordered - the names are sorted alphabetically. In a hash the data is totally unsorted and has no intrinsic
order. In fact, it's more like directory enquiries than a phone book in that you can easily find out what
the number is if you have the name. Someone else keeps the order for you, and you needn't ask what
the first entry is.

Here's where a diagram helps:

'Scalars' 'Arrays’

A scalar is one piece of data; it's like a single block. An array or a list is like a tower of blocks: it's kept
in order, and it's kept together as a single unit. A hash, on the other hand, is more like the diagram on
above. It contains several pairs of data. The pairs are in no particular order (no pair is 'first' or 'top'),
and they're all scattered around the hash.

Creating a Hash

A hash looks very similar to a list, and it also behaves very much like a list. It's only actually effective as
a hash when you store it in a hash variable. Just like scalar variables have a $ prefix, and arrays have a
@ prefix, hashes have their own prefix — a percent sign %. Again, the same naming rules apply, and the
variables $hash, $hash, and @hash are all different.

104

Lists and Hashes

There are two ways of writing a hash. First, just like an ordinary list of pairs:

$where= (
"Gary" , "Dallas",
"Lucy" , "Exeter",
"Tan" , "Reading",
"Samantha" , "Oregon"

)i

In this case, the hash could be saying that "Gary's whereabouts is Dallas", "Lucy lives in Exeter" and so
on. All it really does is pair Gary and Dallas, Lucy and Exeter, and so on. How the pairing is interpreted
is up to you.

If we want to make the relationship a little clearer, as well as highlighting the fact that we're dealing with
a hash, we can use the => operator. That's not >=, which is greater-than-or-equal-to; the => operator
acts like a 'quoting comma'. Essentially, it's a comma, but whatever appears on the left hand side of it -
and only the left - is treated as a double-quoted string:

$where= (
Gary => "Dallas",
Lucy => "Exeter",
Ian => "Reading",

Samantha => "Oregon"
)i

The scalars on the left of the arrow are called the hash keys, the scalars on the right are the values. We
use the keys to look up the values:

Hash keys must be unique. You cannot have more than one entry for the same name,
and if you try to add a new entry with the same key as an existing entry, the old one
will be over-written. Hash values meanwhile need not be unique.

Key uniqueness is more of an advantage than a limitation. Every time the word 'unique' comes into
a problem, like counting the unique elements of an array, your mind should immediately echo 'use
a hash!'

Because hashes and arrays are both built from structures that look like lists, you can convert between
them, from array to hash like this:

@array = gw(Gary Dallas Lucy Exeter Ian Reading Samantha Oregon) ;
%where = @array;

And then back to an array, like so:

@array = %where;

However, you need to be careful when converting back from a hash to an array. Hashes do not have
a guaranteed order. Although values will always follow keys, you cannot tell what order the keys will
come in. Since hash keys are unique, however, we can be sure that $hashl = %hash2 will copy a
hash accurately.

105

Chapter 3

If you need to turn your hash around, to look up people by location, you can use this list-like structure to
your advantage... just reverse the list. Be careful though - if you have two values that are the same,
then converting them to keys means that one will be lost. Remember that keys must be unique:

@array = gw(Gary Dallas Lucy Exeter Ian Reading Samantha Oregon) ;
$where = @array;

$where now holds the same value as if the following call had been made:

$where= (
Gary => "Dallas",
Lucy => "Exeter",
Ian => "Reading",

Samantha => "Oregon"

) ;
Likewise, $who will hold the same values no matter which of the two calls below were made:

$who = reverse @array;

$who = (
Oregon => "Samantha",
Reading => "Ian",
Exeter => "Lucy",
Dallas => "Gary"

)

Working with Hash Values

To look up a value in a hash, we use something similar to the index notation for arrays. However,
instead of locating elements by number, we're now locating them by name; instead of using square
brackets, we use braces (curly brackets):

Try It Out — Using Hashes

Here's a simple example of looking up details in a hash:

#!/usr/bin/perl
#hashl.plx

use warnings;
use strict;

my $place = "Oregon";

my $where=(
Gary => "Dallas",
Lucy => "Exeter",
Ian => "Reading",

Samantha => "Oregon"
) 8

my %$who = reverse S%where;

print "Gary lives in ", $where{Gary}, "\n";
print "Ian lives in $where{Ian}\n";

print "$who{Exeter} lives in Exeter\n";
print "$who{$place} lives in S$place\n";

106

Lists and Hashes

> perl hash1.plx

Gary lives in Dallas
lan lives in Reading
Lucy lives in Exeter

Samantha lives in Oregon
>

How It Works

First, we set up our main hash, which tells us where people live:

my $where=(

Gary => "Dallas",
Lucy => "Exeter",
Ian => "Reading",

Samantha => "Oregon"

)i
By reversing the order of the list, we produce a hash that tells us who lives where:

my %who = reverse %where;

When doing this you need to be careful, as I have already mentioned. You must not have two values the
same, since they will need to become keys, and keys must be unique — one or other of them will get lost.

Now we can look up an entry in our hashes — we'll ask "Where does Gary live?":
print "Gary lives in ", $where{Gary}, "\n";

This is almost identical to looking up an array element, except for the brackets and the fact that we are
now allowed to use strings as well as numbers to index our elements.

print "Ian lives in $where{Ian}\n";
print "$who{Exeter} lives in Exeter\n";

The braces of a hash look-up can also quote what is inside them in double quotes if we do not provide
the quotes ourselves:

print "$who{$place} lives in $place\n";

Just as with array elements, we need not use a literal to index the element — we can look-up using a
variable as well.

Adding, Changing, and Taking Values Away from a Hash

Hash entries are very much like ordinary scalar variables, except that you need not declare an
individual hash key before assigning to it or using it. We can add a new person to our hash just by
assigning to their hash entry:

$where{Eva} = "Uxbridge";
print "Eva lives in $where{Eva}\n";

107

Chapter 3

A new entry springs into existence, without any problems. We can also change the entries in a hash just
by reassigning to them. Let's move people around a little:

$where{Eva} = "Denver";
$where{Samantha} = "California";
$where{Lucy} = "Tokyo";
$where{Gary} = "Las Vegas";
$where{Ian} = "Southampton";

print "Gary lives in $where{Gary}\n";

To remove an entry from a hash, you need to use the delete () function, as we do in this little variant
on hashl.plx:

#!/usr/bin/perl
#badhashl.plx
use warnings;
use strict;

my $where=(

Gary => "Dallas",
Lucy => "Exeter",
Ian => "Reading",

Samantha => "Oregon"
)i

delete Swhere{Lucy};
print "Lucy lives in $where{Lucy}\n";

Now here we delete Lucy's entry in %where before we access it. So after running it, we should get an
error. Sure enough, we get:

> perl badhashl.plx

Use of uninitialized value in concatenation (.) at badhash1.plx line 11
Lucy lives in Exeter

>

It's not that we haven't initialized poor Lucy, but rather that we've decided to get rid of her.

Accessing Multiple Values

The problem with hashes looking like lists is that we can't really use for loops on them directly. If we
did, we would get both keys and values with no indication as to which was which. To help us, Perl
provides three functions for iterating over hashes.

First, there is keys (%hash). This gives us a list of the keys (all of the scalars on the left-hand
side). This is usually what we want when we wish to visit each hash entry in turn:

108

Lists and Hashes

Try It Out — Looping Over A Hash

Let's leave the computer to run over hash and tell us where each person lives:

#!/usr/bin/perl
#hash2.plx

use warnings;
use strict;

my $where=(

Gary => "Dallas",
Lucy => "Exeter",
Ian => "Reading",

Samantha => "Oregon"
) §

for (keys $where) ({
print "$_ lives in S$Swhere{s$_}\n";
1

Currently, this tells me:

>perl hash2.plx
Samantha lives in Oregon
Gary lives in Dallas

Lucy lives in Exeter

lan lives in Reading

>

You may find that the output appears in a different order on your machine. Don't worry, as I said,
hashes are unordered, and there's no guarantee that the keys will come out in the same order each time.
It really depends on the particular version of Perl that you are using.

How It Works
Here is the part that does all the work:

for (keys %where) {
print "$_ lives in $where{$_}\n";
1

keys is a function which, like sort and reverse, returns a list. The list in my case was
gw (Samantha Gary Lucy Ian), and for visited each of those values in turn. As $_ was set to each
one, we could print the name and look up that entry in the hash.

The counterpart to keys is values, which returns a list of all of the values in the hash. This is
somewhat less useful, since you can always find the value if you have the key, but you cannot easily find

the key if you have the value. It's almost always advantageous to use keys instead.

The final function is each, which we will look at later. It returns each hash entry as a key-value pair.

109

Chapter 3

Summary

Lists are a series of scalars in order. Arrays are variable incarnations of lists. Both lists and arrays are
flattened, so we cannot yet have a distinct list inside another list. We get at both lists and arrays with
square-bracket subscripts. These can be single numbers, or a list of elements. If we're looking up a single
scalar in an array, we need to remember to use the form $array[$element], because the variable
prefix always refers to what we want, not what we have got. We can also use ranges to save time and to
specify list and array slices.

Perl differentiates between scalar and list context and returns different values depending on what the
statement is expecting to see. For instance, the scalar context value of an array is the number of
elements in it; the list context value is of course the list of the elements themselves.

Hashes are unordered structures made up of pairs, each pair consisting of a key and a value. Given the
key, we can look up the entry. Generally, Shash{$key} = $value. We can loop over all the
elements of a list or array using a for loop. We need to modify this when looping over two lists at once
or when looking for the keys or values of a hash.

110

Lists and Hashes

Exercises

1. When you assign to a list, the elements are copied over from the right to the left:
(sa, $b) = (10, 20);

will make $a become 10 and $b become 20. Investigate what happens when:

Q There are more elements on the right than on the left.
Q There are more elements on the left than on the right.
Q Thereis alist on the left but a single scalar on the right.
Q There is a single scalar on the left but a list on the right.
2. What elements make up the range ('aa' .. 'bb')? Whatabout ('a0' .. 'b9')?

3. Store your important phone numbers in a hash. Write a program to look up numbers by the
person's name.

4. Turn the joke machine program from two arrays into one hash. While doing so, write some
better lightbulb jokes.

111

Source code available at : www.wrox.com
Peer discussion at : lamplists.com

Also from Wrox

2 £k
o ImAA™
7 TVPHIR

FROTISSIONAL PROFISSIONAL

Perl Per

Programming Development

W AT

BEGINNING

Perl

http:/imwww.wrox.com/books/1861003145.htm

lamplists.com

The Open Source Programmer’s Res ource Centre

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

Loops and Decisions

Most of the programs so far have been very simply structured - they've done one statement after
another in turn. If we were to represent statements as boxes, our programs would look like this:

Statement

) 4

Statement

Statement

v

This sort of diagram is called a flow chart, and programmers have used them for a long time to help
design their programs. They're considered a bit passé these days, but they're still useful. The path Perl
(or any other language) takes by following the arrows is called the flow of execution of the program.
Boxes denote statements (or a single group of statements), and diamonds denote tests. There are also a
whole host of other symbols for magnetic tapes, drum storage, and all sorts of wonderful devices, now
happily lost in the mists of time.

Chapter 4

In the last chapter, we introduced the for loop to our growing repertoire of programming tools. Instead
of taking a straight line through our program, perl did a block of statements again and again for each
element of the list. The for loop is a control structure - it controls the flow of execution. Instead of
going in a straight line, we can now go around in a loop:

for each
element

A

Do something

Not only that, but we can choose our path through the program depending on certain things, like the
comparisons we looked at in Chapter 2. For instance, we'll do something if two strings are equal:

Strings are
equal?

YT l\f
Do this Do that

We'll take a look at the other sorts of control structures we have in Perl, for example, structures that do
things if or unless something is true. We'll see structures that do things while something is true or until it
is true. Structures that loop for a certain number of times, or for each element in a list. Each of the
words in bold is a Perl keyword, and we'll examine each of them in this chapter.

Deciding If...

Let's first extend our previous currency conversion program a little, using what we learned about hashes
from the previous chapter.

114

Loops and Decisions

Try It Out : Multiple Currency Converter

We'll use a hash to store the exchange rates for several countries. Our program will ask for a currency to
convert from, then a currency to convert to, and the amount of currency we would like to convert:

#!/usr/bin/perl
convertl.plx
use warnings;
use strict;

my ($value, $from, Sto, Srate, %rates);

$rates = (

pounds => 1,
dollars => 1.6,
marks => 3.0,
"french francs" => 10.0,
yven => 174.8,
"swiss francs" => 2.43,
drachma => 492.3,
euro => 1.5

) 5

print "Enter your starting currency: ";
Sfrom = <STDIN>;

print "Enter your target currency: ";
Sto = <STDIN>;

print "Enter your amount: ";

Svalue = <STDIN>;

chomp ($from, $Sto, $value) ;
$rate = $rates{$to} / Srates{Sfrom};

print "$value S$from is ", $value*S$rate," sSto.\n";
Here's a sample run of this program:

> perl convertl.plx

Enter your starting currency: dollars
Enter your target currency: euro
Enter your amount: 200

200 dollars is 187.5 euro.

>

Let's first see how this all works, and then we'll see what's wrong with it.

How It Works
The first thing we do is to declare all our variables. You don't have to do this at the start of the program,

but it helps us organize:

my ($value, $from, S$to, Srate, S%$rates);

115

Chapter 4

Note that you do need to put brackets when you're declaring more than one variable at once. Once
again it's a question of precedence — my has a lower precedence than a comma. Now we can set out our
rates table:

$rates = (

pounds = 1,
dollars => 1.6,
marks => 3.0,
"french francs" => 10.0,
ven => 174.8,
"swiss francs" => 2.43,
drachma => 492.3,
euro => 1.5

) ;

Using <STDIN> as we did in the last chapter to read a line from the console, we'll ask for two currencies
and the amount:

print "Enter your starting currency: ";
Sfrom = <STDIN>;

print "Enter your target currency: ";
Sto = <STDIN>;

print "Enter your amount: ";

S$value = <STDIN>;

Now we have a problem. We read in entire lines, and lines end with a new line character. In order for
us to look up the currencies in the hash and to display the currencies back properly, we have to get rid
of this. The way we do this is to use the chomp operator on the values we've just read in — chomp gets
rid of a final new line if one is present but does nothing if there is no new line. For instance, it turns
"euro\n", which isn't in the hash, into "euro™", which is:

chomp ($from, $to, Svalue) ;
Note that it actually changes the value of the variables passed to it. Instead of returning the new string,
it modifies the variable, and actually returns the number of new lines removed. Now we don't actually
need to remove the new line from $value. All we do is use it in calculation and perl will convert it to a
number. When we do that the new line will automatically be lost. However, since we might want to

print out, '200 marks', we need to make sure there is no new line after '200'.

Next we calculate the exchange rate, which is just the rate of the target currency divided by the rate of
the initial currency:

$rate = $Srates{Sto} / Srates{Sfrom};
Finally, we multiply the value by the exchange rate and print out the results:

print "$value S$from is ", $value*$rate," Sto.\n";

116

Loops and Decisions

Now, this is all well and good, but watch what happens if one of the currencies we ask for isn't in
the hash:

> perl convertl.plx

Enter your starting currency: dollars

Enter your target currency: lira

Enter your amount: 300

Use of uninitialized value in division (/) at convertl.plx line 26, <STDIN> line 3.
300 dollars is O lira.

What was that warning? Well, the message tells us that something we used during the division at line 26:

$rate = Srates{Sto} / Srates{Sfrom};

was not defined. We know in this case it's the target currency. $rates{lira} is not in the hash. When
the other currency is undefined, then we get more serious problems:

> perl convertl.plx

Enter your starting currency: lira

Enter your target currency: dollars

Enter your amount: 132000

Use of uninitialized value in division (/) at convertl.plx line 26, <STDIN> line 3.
Illegal division by zero at convert.plx line 26, <STDIN> line 3.

This time the other side of the division is undefined, and Perl converts the undefined value to zero.
Unfortunately, you can't divide by zero. To solve both these problems we really want to be able to stop

the program when an unknown currency is entered - that is, if a certain string does not exist in the
hash.

We now need to find out if something happened, and perform a certain action if it did. This expression
is called an if statement. Here's what an if statement looks like in Perl:

if (<some test>) {
<do something>
}

In our case, we want to ensure a hash key exists. Now Perl isn't a difficult language; to sort a list, you
use the sort keyword, to find the length of a string, you use the 1ength keyword. To see if a hash key
exists, we use the aptly named exists keyword for our test - exists $rates{$to} and exists
$rates{S$from}:

Try It Out : Testing Invalid Keys

Let's now put the if statement to use and test to make sure we are given valid, existing keys:

#!/usr/bin/perl
convert2.plx
use warnings;
use strict;

117

Chapter 4

my ($Svalue, $from, S$to, Srate, Srates);

$rates = (
pounds => 1,
dollars => 1.6,
marks => 3.0,
"french francs" => 10.0,
ven => 174.8,
"swiss francs" => 2.43,
drachma => 492.3,
euro => 1.5

)

print "Enter your starting currency: ";
Sfrom = <STDIN>;

print "Enter your target currency: ";
Sto = <STDIN>;

print "Enter your amount: ";

Svalue = <STDIN>;

chomp ($from, Sto, $value) ;

if (not exists $rates{$to}) {
die "I don't know anything about $to as a currency\n";
}

if (not exists $rates{$from})
die "I don't know anything about $from as a currency\n";
}

$rate = $rates{$to} / $rates{S$from};

print "$value S$from is ", $value*S$rate," Sto.\n";
Now if we enter a currency that is unknown, we get our own error message and the program ends:

> perl convert2.plx

Enter your starting currency: dollars

Enter your target currency: lira

Enter your amount: 300

I don't know anything about lira as a currency
>

How It Works

After we've got the currency names, and before we try to divide, we use the following code to see if the
currencies are valid entries in the hash. We do two very similar comparisons, one for the start currency
and one for the target, so let's just examine one of them:

if (not exists Srates{sto}) {
die "I don't know anything about $to currency\n";
}

118

Loops and Decisions

This is our if statement: if the entry $to does not exist in the $rates hash, then we give an error
message. die is a way of making Perl print out an error message and finish the program. It also reports
to the operating system — Windows, Unix, or whatever it may be, that the program finished with an
error. The part in brackets, not exists $rates{$to} is known as the condition. If that condition is
true, we do the action in braces and terminate the program.

How do we construct conditions, then?

Logical Operators Revisited

The if statement, and all the other control structures we're going to visit in this chapter, test to see if a
condition is true or false. They do this using the Boolean logic mentioned in Chapter 2, together with
Perl's ideas of true and false. To remind you of these:

An empty string, " ", is false.
The number zero and the string "0" are both false.
An empty list, (), is false.

The undefined value is false.

O 0 U 0 O

Everything else is true.

However, you need to be careful for a few traps here. A string containing invisible characters, like
spaces or new lines, is true. A string that isn't "0" is true, even if its numerical value is zero, so "0.0"
for instance, is true.

Larry Wall has said that programming Perl is an empirical science — you learn things about it by trying
it out. Is (()) a true value? You can look it up in books and the online documentation, or you can
spend a few seconds writing a program like this:

#!/usr/bin/perl
use strict;
use warnings;

if ((0)) |
print "Yes, it is.\n";
1

This way you get the answer right away, with a minimum of fuss. (If you're interested, it isn't a true
value.) We'll see in later chapters how to make this sort of test program easier and faster to write, but
what we know now is sufficient to test the hypothesis. I'm continually writing these little programs to
check out facets of Perl I'm not sure about. Try getting into the habit of doing it, too.

We've also seen that conditional operators can test things out, returning 1 if the test was successful and
the undefined value if it was not. Let's see more of the things we can test.

119

Chapter 4

Comparing Numbers

We can test whether one number is bigger, smaller, or the same as another. Assuming we have two
numbers, stored in the variables $a and $b, here are the operators we can use for this:

Sa > $b $a is greater than $b

Sa < $b $a is less than $b

$a == $b $a has the same numeric value as $b

Sa != $b $a does not have the same numeric value as $b

Don't forget that the numeric comparison needs a doubled equals sign (==), so that Perl doesn't think
you're trying to set $a to the value of $b:

Also remember that Perl converts $a and $b to numbers in the usual way. It reads numbers or decimal
points from the left for as long as possible, ignoring initial spaces, and then drops the rest of the string.
If no numbers were found, the value is set to zero.

Try It Out : Guess My Number

This is a very simple guessing game. The computer has a number, and the user has to guess what it is. If
the user doesn't guess correctly, the computer gives a hint. As we learn more about Perl, we'll add the
opportunity to give more than one try and to pick a different number each game:

#!/usr/bin/perl
guessnum.plx
use warnings;
use strict;

my Starget = 12;

print "Guess my number!\n";
print "Enter your guess: ";
my Sguess = <STDIN>;

if (Starget == $guess)
print "That's it! You guessed correctly!\n";
exit;

if ($guess > S$target)
print "Your number is bigger than my number\n";
exit;

if (Sguess < $target) {
print "Your number is less than my number\n";
exit;

Let's have a few go's at it:

120

Loops and Decisions

> perl guessnum.plx

Guess my number!

Enter your guess: 3

Your number is less than my number
> perl guessnum.plx

Guess my number!

Enter your guess: 15

Your number is bigger than my number
> perl guessnum.plx

Guess my number!

Enter your guess: 12

That's it! You guessed correctly!

>

How It Works

First off, we set up our secret number. OK, at the moment it's not very secret, since it's right there in the
source code, but we can improve on this later. After this, we get a number from the user:

my Sguess = <STDIN>;

Then we do three sorts of comparisons with the numeric operators we've just seen. We use the basic

pattern of the if statement again, 1f (<condition>) { <action> }:
if (Starget == $guess) {
print "That's it! You guessed correctly!\n";
exit;

}

Since only one of the tests can be true — the user's number can't be both smaller than our number and
the same as it — we may as well stop work after a test was successful. The exit operator tells perl to
stop the program completely. You can optionally give exit a number from 0 to 255 to report back to
the operating system. Traditionally, 0 denotes success and anything else is failure. By default, exit
reports success.

Comparing Strings

When we're comparing strings, we use a different set of operators to do the comparisons:

$a gt $b $a sorts alphabetically after $b
$a le sb $a sorts alphabetically before $b
$a eq $b $a is the same as $b

$a ne $b $a is not the same as $b

Here's a very simple way of testing if a user knows a password. Don't use this for anything you value,
since the user can just read the source code to find it!

121

Chapter 4

#!/usr/bin/perl
password.plx
use warnings;
use strict;

my Spassword = "foxtrot";
print "Enter the password: ";
my Sguess = <STDIN>;
chomp S$Sguess;
if ($password eq $guess) {
print "Pass, friend.\n";
1
if ($password ne S$Sguess) {
die "Go away, imposter!\n";

Here's our security system in action:

> perl password.plx

Enter the password: abracadabra
Go away, imposter!

> perl password.plx

Enter the password: foxtrot

Pass, friend.

>

How It Works

As before, we ask the user for a line:
my S$guess = <STDIN>;

Just a warning: this is a horrendously bad way of asking for a password, since it's echoed to the screen,
and everyone looking at the user's computer would be able to read it. Even though you won't be using a
program like this, if you ever do need to get a password from the user, the Perl FAQ provides a better
method. In perlfags, type perldoc -g password to find it.

chomp S$Sguess;
We must never forget to remove the new line from the end of the user's data. We didn't need to do this
for numeric comparison, because Perl would remove that for us anyway during conversion to a number.

Otherwise, even if the user had put the right password in, Perl would have tried to compare
"foxtrot" with "foxtrot\n" and it could never be the same:

if ($password ne $guess)
die "Go away, imposter!\n";

Then if the password we have isn't the same as the user's input, we send out a rude message and
terminate the program.

122

Loops and Decisions

Other Tests

What other tests can we perform? We've seen exists at the beginning of this chapter, for determining
whether a key exists in a hash. We can test if a variable is defined (It must contain something other than
the undefined value), by using defined:

#!/usr/bin/perl
defined.plx
use warnings;
use strict;

my ($a, $b);
Sb = 10;
if (defined $a) {

print "\$a has a value.\n";

1
if (defined $b) {

print "\Sb has a value.\n";
1

Not surprisingly, the result we get is this:

>perl defined.plx
$b has a value.
>

You can use this to avoid the warnings that occur when you try and use a variable that doesn't have a
value. If we'd tried to say if ($a == $b), Perl would have said:

Use of uninitialized value in numeric eq (==

So we have our basic comparisons. Don't forget that some functions will return a true value if they were
successful and the undefined value if they were not. You will often want to check whether the return
value of an operation (particularly one that relates to the operating system) is true or not.

How do you actually test whether something is a true value or not? You may want to see if a user's input
isn't empty after being chomped, for example. Well, don't do it like this:

my Strue = (1 =

=1);
if ($a == Strue) { ..

}

The whole point of if is that it does the action if something is true. You should just say 1£ (sa) {..}

Logical Conjunctions

We also saw in Chapter 2 that we can join together several tests into one, by the use of the logical
operators. Here's a summary of those:

$a and $b True if both $a and $b are true.
$a or $b True if either of $a or $b, or both are true.
not Sa True if $a is not true.

123

Chapter 4

In fact, we saw not earlier:

if (not exists S$Srates{s$to})

There is also another set of logical operators: && for and, | | for or, and ! for not. However, I find the
first set easier to read and understand. Don't forget there is a difference in precedence between the two
- and, or, and not all have lower precedence than their symbolic representations.

Running Unless...

There's another way of saying 1f (not exists $rates{$to}). Asalways in Perl, there's more
than one way to do it. Some people prefer to think 'if this doesn't exist, then { ... }', but other
people think 'unless this does exist, then { ... }'. Perl caters for both sets of thought patterns, and we
could just as easily have written this:

unless (exists S$rates{sto}) {
die "I don't know anything about {$to} as a currency\n";
}

The psychology is different, but the effect is the same: unless ($a) is effectively if (not (sa)).
We'll see later how Perl provides a few alternatives for these control structures to help them more
effectively fit the way you think.

Statement Modifiers
When we're talking in English, it's quite normal for us to say

Q If this doesn't exist, then this happens, or

O Unless this exists, this happens.

Similarly, it's also quite natural to reverse the two phrases, saying

QO This happens, if this doesn't exist, or

Q This happens unless this exists.

Going back to our currency converter example, convert2.plx, we could turn around the if statements
within to read:

die "I don't know anything about S$rates{sto} as a currency\n"
if not exists $rates{$to};

Notice how the syntax here is slightly different, it's <action> if <conditions. There is no need
for brackets around the condition, and there are no braces around the action. Indeed, the indentation
isn't part of the syntax, so we could even put the whole statement on one line. Only a single
statement will be covered by the condition. The condition modifies the statement, and so is called a
statement modifier.

We can turn unless into a statement modifier, too. So instead of this:

124

Loops and Decisions

if (not exists $rates{$to}) {
die "I don't know anything about {$to} as a currency\n";
}

if (not exists $rates{$from}) {
die "I don't know anything about{$from} as a currency\n";
1

you may find it more natural to write this:

die "I don't know anything about $to as a currency\n"
unless exists $rates{$to};

die "I don't know anything about $from as a currency\n"
unless exists S$rates{$from};

Sure enough, if you swap those lines into convert2.plx, you'll get the same results.

Using Logic

There is yet another way to do something if a condition is true, and we saw it briefly in Chapter 2. By
using the fact that perl stops processing a logical conjunction when it knows the answer for definite, we
can create a sort of unless conditional:

exists Srates{sto}
or die "I don't know anything about {$to} as a currency\n";

How does this work? Well, it's reliant on the fact that perl uses lazy evaluation to give a logical
conjunction its value. If we have the statement X or Y, thenif X is true, it doesn't matter what Y is, so
perl doesn't look at it. If X isn't true, perl has to look at Y to see whether or not that's true. So if
$rates{sSto} exists in the hash, then our currency converter won't die with an error message. Instead,
it will do nothing and continue executing the next statement.

This form of conditional is most often used when checking that something we did succeeded or returned
a true value. We will see it often when we're handling files.

To create a positive 1 f conditional this way, use and instead of or. For example, to add one to a
counter if a test is successful, you may say:

$success and Scounter++;

If you recall, and statements are reliant on both sub-statements being true. So, if $success is not true,
perl won't bother evaluating Scounter++ and upping its value by one. If $success was true, then it
would.

Multiple Choice

If you look back to when we did our password tester, you'll see the following lines:

if (Spassword eqg Sguess) {
print "Pass, friend.\n";
1

if ($password ne $guess) {
die "Go away, imposter!\n";
1

125

Chapter 4

While this does what we want, we know that if the first one is true, then the second one will not be —
we're asking exactly opposite questions: Are these the same? Are they not the same?

In which case, it seems wasteful to do two tests. It'd be much nicer to be able to say 'if the strings are the
same, do this. Otherwise, do that.' And in fact we can do exactly that, although the keyword is not
'otherwise' but 'else':

if ($password eqg S$Sguess) {
print "Pass, friend.\n";
} else {
die "Go away, imposter!\n";
}

That's:
if (<condition>) { <action> } else { <alternative action> }
if elsif else

In some cases, we'll want to test more than one condition. When looking at several related possibilities,
we'll want to ask questions like "Is this true? If this isn't, then is that true? If that's not true, how about
the other?" Note that this is distinct from asking three independent questions; whether we ask the
second depends on whether or not the first was true. In Perl, we could very easily write something like
this:

if (<condition 1>) {
<action>
} else {

if (<condition 2>) {
<second actionx>
} else {
if (<condition 3>) {
<third action>
} else {
<if all else fails>
}

}

I hope you'll agree though that this looks pretty messy. To make it nicer, we can combine the else
and the next if into a single word: elsif. Here's what the above would look like when rephrased in
this way:

if (<condition 1>) {
<action>

} elsif (<condition 2>) {
<second action>

} elsif (<condition 3>) {

} else {
<if all else fails>
}

Much neater! We don't have an awful cascade of closing brackets at the end, and it's easier to see what
we're testing and when we're testing it.

126

Loops and Decisions

Try It Out : Want To Go For A Walk?

I'll certainly not go outside if it's raining, but I'll always go out for a walk in the snow. I'll not go outside
if it's less than 18 degrees Celsius. Otherwise, I'll probably go out unless I've got too much work to do.
Do I want to go for a walk?

#!/usr/bin/perl
walkies.plx
use warnings;
use strict;

print "What's the weather like outside? ";

my Sweather = <STDIN>;

print "How hot is it, in degrees? ";

my Stemperature = <STDIN>;

print "And how many emails left to reply to? ";
my Swork = <STDIN>;

chomp ($weather, S$temperature) ;

if ($weather eqg "snowing") ({
print "OK, let's go!\n";
} elsif ($weather eq "raining") {
print "No way, sorry, I'm staying in.\n";
} elsif ($temperature < 18)
print "Too cold for me!\n";
} elsif ($work > 30) {
print "Sorry - just too busy.\n";
} else {
print "Well, why not?\n";
1

It's 20 degrees, I've got 27 emails to reply to, and it's cloudy out there. Let's see what the Simulated
Simon would do:

> perl walkies.plx

What's the weather like outside? cloudy
How hot is it, in degrees? 20

And how many emails left to reply to? 27
Well, why not?

>

Looks like I can fit a walk in after all. Maybe after I show you how this program works.

How It Works

The point of this rather silly little program is that once it has gathered the information it needs, it runs
through a series of tests, each of which could cause it to finish. First, we check to see if it's snowing:

if (Sweather eg "snowing") ({
print "OK, let's go!\n";

If so, then we print our message and, this is the important part, do no more tests. If not, then we move
onto the next test:

} elsif ($weather eq "raining") {
print "No way, sorry, I'm staying in.\n";

127

Chapter 4

Again, if this is true, we stop testing; otherwise, we move on. Finally, if none of the tests are true, we get
to the else:

} else {
print "Well, why not?\n";

Please remember that this is very different to what would happen if we used four separate if
statements. The tests overlap, so it is possible for more than one condition to be true at once. For
example, if it were snowing and I have over 30 emails to reply to, we'd get two conflicting answers.
elsif tests should be read as 'Well, how about if...?'

Just in case you were curious, there is no elsunless. This is a Good Thing.

More Elegant Solutions

For three or four tests, it's reasonable to use if-elsif-elsif-..-else. But for any more than that, it
starts to look ugly. What happens if we get input from the user and there are ten options? There are two
general solutions to this, the first of which is to use a hash. We'll see in a few chapters time how you can
store code to be executed inside a hash. If you can't use a hash, you're pretty much stuck with a chain of
elsifs. You may, however, find it easier to do it like this:

print "Please enter your selection (1 to 10): ";
my $Schoice = <STDIN>;
for (Schoice) {

$_ == 1 && print "You chose number one\n";
$_ == 2 && print "You chose number two\n";
$_ == 3 && print "You chose number three\n";

}
We're using a for loop just like in the last chapter, but with a list of one thing. Why? Two reasons really:

0 To give our program a bit of structure — brackets and indenting should make you realize
there's a control structure going on.

QO To alias Schoice to $_ for more convenient access.

Let's have a look in more detail about how the for loop works.

1, 2, Skip A Few, 99, 100

Now we know how to do everything once. But what if we need to repeat an operation or series of
operations? Of course, there are methods available to specify this in perl too. We saw the for loop in
Chapter 3, and this is one example of a class of control structures called loops.

In programming, there are various types of loop. Some loop forever and are called infinite loops, while
most, in contrast, are finite loops. We say that a program 'gets into' or 'enters' a loop and then 'exits' or
'gets out' when finished. Infinite loops may not sound very useful, but they certainly can be -
particularly because most languages, Perl included, provide you with a 'site door' by which you can exit

128

Loops and Decisions

the loop. They will also be useful for when you just want the program to continue running until the user
stops it manually, the computer powers down, or the heat death of the universe occurs, whichever is
sooner.

There's also a difference between 'definite' loops and 'indefinite' loops. In a definite loop, you know
how many times the block will be repeated in advance - a for loop is definite, because it will always
iterate for each item in the array. An indefinite loop will check a condition in each iteration to whether
it should do another or not.

There's also a difference between an indefinite loop that checks before the iteration and one that checks
afterward. The latter will always go through at least one iteration in order to get to the check, whereas
the former checks first and so may not go through any iterations at all.

Perl supports ways of expressing all of these types of loop. First, let's examine again the for loops we
saw in the previous chapter.

for Loops

The for loop executes the statements in a block for each element in a list. Because of this, it's also
known as the foreach loop, and you can use foreach anywhere you'd use for. For example:

#!/usr/bin/perl
#forloopl.plx
use warnings;
use strict;

my @array = (1, 3, 5, 7, 9);
my $i;
for $i (@array) ({

print "This element: $i\n";
1

This does exactly the same thing, and gives exactly the same output as this:

#!/usr/bin/perl
#forloop2.plx
use warnings;
use strict;

my @array = (1, 3, 5, 7, 9);
my $1i;
foreach $i (earray) ({

print "This element: $i\n";
1

It's mainly a question of personal style — you won't go wrong if you use foreach all the time when
talking about arrays. There's another form of for that does something completely different, and we'll
see that a bit later on. We borrowed the syntax from a language called C, and so people who are used to
programming in C can sometimes be confused by seeing for used with an array. If you use foreach,
you'll keep them happy.

129

Chapter 4

However, foreach is longer to type, and Perl programmers are notoriously lazy. And what's more, this
is Perl, not C. Personally, I try and use for for constant lists and ranges like (1...10), and foreach

for arrays, but I'm not really consistent in that. Use whatever suits you.

As we mentioned above, the for loop is definite. You can work out, before you enter the loop, how
many times you are going to repeat. It's also finite, since it's not possible to construct an infinitely long

list.

Choosing an Iterator

We can specify the iterator variable ourselves as we did in the examples above, or we can use the

default one, $_ . Furthermore, if we're being good and using strict, we can make our iterator variable

a lexical, my variable as we go along. That is, we could write the above like this:

#!/usr/bin/perl
#forloop3.plx
use warnings;
use strict;

my @array = (1, 3, 5, 7, 9);
foreach my $i (e@array) {
print "This element: $i\n";

}

There's actually a very subtle difference between declaring your iterator inside and outside of the loop.
If you declare your iterator outside the loop, any value it had then will be restored afterwards. We can

check this out by setting the variable and testing it afterwards:

#!/usr/bin/perl
#forloop4.plx
use warnings;
use strict;

my @array = (1, 3, 5, 7, 9);
my $i="Hello there";
foreach $i (@array) (

print "This element: $i\n";
1

print "All done: S$i\n";
This will produce the following output:

> perl forloop4.plx
This element:
This element:
This element:
This element:
This element:
All done: Hello there
>

O~NOOTWeE

130

Loops and Decisions

Meanwhile declaring the iterator within the loop, as in forloop3.plx, will create a new variable $1
each time, which will only exist for the duration of the loop.

As a matter of style, it's usual to keep the names of iterator variables very short. The traditional
iterator is $1, as I've used here. The length of a variable name should be related to the importance of
the variable; iterators are throwaway variables that only exist for one block, so they shouldn't be
prominently named.

What We Can Loop Over

We can use foreach and for loops on any type of list whatsoever: A constant list:

my @array = gw(the quick brown fox ran over the lazy dog) ;
for (6, 3, 8, 2, 5, 4, 0, 7) {

print "Sarrayl[$_] ";
}

an array:

my @array = gw(the quick brown fox ran over the lazy dog) ;
my Sword;
for $word (earray) ({
print "Sword ";
}

even a list generated by a function, like sort or keys:

my %$hash = (car => 'voiture', coach => 'car',6 bus => 'autobus');
for (keys %hash) {

print "English: $_\n";

print "French: shash{s_}\n\n";

}

It's a very powerful tool for those of you who need to list or 'enumerate' the contents of a hash or array,
but there is a proviso before you go and use your for loops unwisely.

Aliases and Values

Be aware that the for loop creates an alias, rather than a value. Any changes you make to the iterator
variable, whether it be $_ or one you supply, will be reflected in the original array. For instance:

#!/usr/bin/perl
forloop5.plx
use warnings;
use strict;

my @array = (1..10);
foreach (@array) f{
S_++;

}

print "Array is now: @array\n";

131

Chapter 4

will change the actual contents of the array, as follows:

> perl forloop5.plx
Arrayisnow: 234567891011
>

Naturally, you can't change things that are constant, so doing the following will give an error:

#!/usr/bin/perl
forloop6.plx
use warnings;
use strict;

foreach (1, 2, 3) {
S_++;
1

> perl forloop6.plx
Modification of a read-only value attempted at forloop6.plx line 7
>

This means exactly what it says — we tried to modify (by adding one) to something that we could only
read from, and not write to — in this case, the literal value of one. If you need to change the iterator for
any reason, make a local copy, like this:

#!/usr/bin/perl
forloop7.plx
use warnings;
use strict;

foreach (1, 2, 3) {
my $i = $_;

Si++;

}

Because $1i is unrelated to the original list, we don't run into this problem.

Statement Modifiers
Just as there was a statement modifier form of if, like this:

die "Something wicked happened" if S$error;

there's also a statement modifier form of for. This means you can iterate an array, executing a single
statement every time. Here, however, you don't get to choose your own iterator variable: it's always $_.
Let's create a simple totalling program using this idiom:

Try It Out : Quick Sum

The aim of this program is to take a list of numbers and output the total. For ease of use, we'll take the
numbers from the command line.

132

Loops and Decisions

#!/usr/bin/perl
quicksum.plx
use warnings;
use strict;

my Stotal=0;
Stotal += $_ for @ARGV;
print "The total is S$total\n";

Now when we give the program a few numbers to sum, it does just that:

>perl quicksum.plx 15623 8 4
The total is 92
>

How It Works - @ARGV Explained

The whole trickery of this program is in that one line:
Stotal += $_ for @ARGV;

The first key point is the @ARGV array. This contains everything that's on the command line after the
name of the program we're running. Perl receives, from the system, an array containing everything on
the command line. This is split up a little like a Perl array without the commas. A single word is one
element, as is a number, or a string in quotes. Depending on the shell, which is the thing that talks to the
system in the first place, you may be able to backslash a space to stop it separating. Let's quickly write
something that prints out each element of @ARGV separately, so we can see how they're split up:

#!/usr/bin/perl
whatsargv.plx
use warnings;
use strict;

foreach (@ARGV) ({
print "Element: |$_|\n";
1

Why the strange parallel bars? You'll be pleased to hear it's not some arcane Perl
syntax for doing anything special. All we're doing is placing a symbol on either side of
our element. Thisisan oft-used debugging trick: theideaisthat it allowsyou to seeif
there are any spaces at the start of end of the data, and allows you to tell the
difference between an empty string and a string consisting entirely of spaces.

Now let's try a few examples:

> perl whatsargv.plx one two three
Element: |one|

Element: |two]|

Element: |three|

> perl whatsargv.plx "a string" 12
Element: |a string|

Element: |12]

> perl whatsargv.plx

>

133

Chapter 4

In the first case, the three words were split up into separate elements. In the second, we kept two words
together by giving them as a string in quotes. We also had another element afterwards, and the amount
of white space between them made no difference to the number of elements. Finally, if there is nothing
after the name of the program, there's nothing in @ARGV.

Let's get back to our program. We've now got an array constructed from of the command line, and
we're going over it with a for loop:

Stotal += $_ for @ARGV;

With these statement modifiers, if they're not obviously clear, think how they'd be written normally. In
this case:

for (@ARGV) ({
Stotal += S$_;
}

that is, for each element, add that element to the total. This is more or less exactly how you take
a total.

Looping While...

Now we come to the indefinite loops. As mentioned above, these check a condition, then do an action.
The first one is while. As you might be able to work out from the name, this means anaction continues
while a condition is true. The syntax of while is much like the syntax of 1 f:

while (<condition>) { <action> }
Here's a very simple while loop:

#!/usr/bin/perl
whilel.plx
use warnings;
use strict;

my Scountdown = 5;

while ($countdown > 0) {
print "Counting down: $countdown\n";
Scountdown- - ;

!
And here's what it produces:

>perl whilel.plx
Counting down:
Counting down:
Counting down:
Counting down:
Counting down:
>

R NWRO

134

Loops and Decisions

Let's see a flow chart for this program:

)

Set $countdown
to5

Is $countdown >07?

Yes

v

Print message

No

Decrease
$countdown

While there's still a value greater than zero in the $counter variable, we do the two statements:

print "Counting down: $countdown\n";
Scountdown--;

Perl goes through the loop a first time when $countdown is 5 — the condition is met, so a message gets
printed, and $countdown gets decreased to 4. Then, as the flow chart implies, back we go to the top of
the loop. We test again: $countdown is still more than zero, so off we go again. Eventually,
$countdown is 1, we print our message, $countdown is decreased, and it's now zero. This time
around, the test fails, and we exit the loop.

while (<STDIN>)

Of course, another way to ensure that your loop is going to terminate is to make the condition do the
change. This is sometimes thought of as bad style, but there's one example that is extremely widespread:

while (<STDIN>) ({
}

Actually, this is a bit of shorthand; another example of a common Perl idiom. To write it out fully, it
would look like this:

while (defined($_ = <STDIN>)) ({

}

135

Chapter 4

Since <STDIN> reads a new line from the user, the condition itself will depend on changing
information. What we're doing is setting $_ to each new line of input until we run out. We'll see in

Chapter 6 how this is used to process files.

Infinite Loops

The important but obvious point is that what we're testing gets changed inside the loop. If our condition
is always going to give a true result, we have ourselves an infiniteloop. Let's just remove the second of

those two statements:

#!/usr/bin/perl
while2.plx
use warnings;
use strict;

my Scountdown = 5;

while ($countdown > 0)
print "Counting down: $countdown\n";

}

$countdown never changes. It's always going to be 5, and 5 is, we hope, always going to be more than
zero. So this program will keep printing its message until you interrupt it by holding down Ctrl and C.
Hopefully, you can see why you need to ensure that what you do in your loop affects your condition.

Should we actually want an infinite loop, there's a fairly standard way to do it. Just put a true value —
typically 1 — as the condition:

while (1) {
print "Bored yet?\n";

}

The converse of course is to say while (0) in the loop's declaration, but nothing will ever happen
because this condition is tested before any of the commands in the loop are executed. A bit silly, really.

Try It Out : English — Sdrawkcab Translator

In this example, we'll use our newly-introduced while (<STDIN>) construction to take a line of text
from the user and produce the equivalent sentence translated into a language called Sdrawkcab.
Sdrawkcab is a word in Sdrawkcab meaning 'backwards' — I hope you can see why.

#!/usr/bin/perl
sdrawkcabl.plx
use warnings;
use strict;

while (<STDIN>) {

chomp ;
die "!enod 11A\n" unless $_;
my S$sdrawkcab = reverse $_;

print "S$sdrawkcab\n";

136

Loops and Decisions

And here's a sample run.

> perl sdrawkcab1.plx
Hello

olleH

How are you?

?uoy era woH

lenod IIA
>

(foot ,rotalsnart hsilgnE-backwardS a sa ti esu yllautca nac uoy taht si rotalsnart siht tuoba gniht
taerg ehT)

How It Works

The main part of this program is a loop that takes in a line from the user and places it in $_:

while (<STDIN>) ({
}

Inside that loop, what do we do? First, we remove the new line. If we're going to turn it into Sdrawkcab,
we want the new line at the end, not the beginning:

chomp ;

If, after removing that new line, there's nothing left, $_ is an empty string, a false value, we then
finish the program:

die "!enod 11A\n" unless $_;

Next, we do our actual translation — we can't just do print reverse $_however, because reverse
in a list context, such as supplied by print, treats its arguments as a list and reverses the order of the
items. Since we've only got one item here, that wouldn't be very interesting. You'll just get what you

typed in:
my S$sdrawkcab = reverse $_;

Then, finally, we print it out, and go back to get another line.
print "$sdrawkcab\n";

It's not very elegant, granted, but it gets the job done. Of course, there's more than one way to do it as
I'll show you in the next section. But before you read on, you might like to make the translator a little
'prettier', prompting the user for a phrase to translate and prefacing the translation with a suitable
phrase. From streams of such small improvements to an established core, most programs came.

137

Chapter 4

Running at Least Once

When we were categorizing our lists, we divided indefinite loops into two catagories: those that those
that execute at least once and those that may execute zero times. The while loop we've seen so far tests
the condition first; if the condition isn't true the first time around, the 'body" of the loop never gets
executed. There's another way to write our loop to ensure that the body is always executed at least
once:

do { <actions> } while (<conditions)

Now we do the test after the block. This is equivalent to moving the diamond in our flow chart from the
top to the bottom.

You may find it more natural to write the previous program like this:

#!/usr/bin/perl
sdrawkcab2.plx
use warnings;
use strict;

do {
$_ = <STDIN>;

chomp;
my $sdrawkcab = reverse $_;

print "S$sdrawkcab\n";
} while ($_);

print "l!enod 11A\n";
This does more or less the same thing, but in a slightly different way. First a line is read, then the
translation produced, then we see if we need to get another line. There's one slight problem with this,

when we want to end, we input a blank line that Perl 'translates' and prints out. See if you can fix this,
and then see if you prefer the end result with the first program.

Statement Modifying

As before, you can use while as a statement modifier. Following the pattern of for and if, here's
what you'd do with while:

while (<condition>) { <statements> }
becomes:

<statement> while <condition>

So, here's a way of writing our countdown program in three lines (if you exclude 'use strict'and
'use warnings', of course):

#!/usr/bin/perl
my Scountdown = 5;
print "Counting down: $countdown\n" while $countdown-- > 0;

138

Loops and Decisions

Don't be confused by the fact that the while is at the end - the condition is tested first, just as an
ordinary while loop.

Looping Until

The opposite of if is unless, and the opposite of while is until. It's exactly the same as while
(not <condition>) { ... }:

#!/usr/bin/perl
until.plx
use warnings;
use strict;

my Scountdown = 5;

until ($countdown-- == 0) {
print "Counting down: $countdown\n";
}

Controlling Loop Flow

When we wrote our Sdrawkcab translator, the only way we could stop the loop was to end the program
with a die command. Of course, there is another way to do it — by keeping a variable set to tell us
whether or not we want to go through another loop. We can test this in our while condition. This kind
of Boolean variable is called a flag, because it indicates something about the status of our program. We
set a flag when we change its value.

Here's a version of the Sdrawkcab program that sets a flag when it's time to finish:

#!/usr/bin/perl
sdrawkcab3.plx
use warnings;
use strict;

my S$stopnow = 0;
until ($stopnow) {
$_ = <STDIN>;

chomp ;
if (8) {
my S$sdrawkcab = reverse $_;
print "$sdrawkcab\n";
} else {
Sstopnow = 1;
1
1

print "!enod 11A\n";

When $_ becomes the empty string, and hence a false value, the if ($_) test fails. This sets
$stopnow to 1 and will end the until loop.

139

Chapter 4

There's a school of thought, called 'structured programming' that urges strict adherence to these loops
and conditionals. Unfortunately, you end up with code like on the previous page. Most programmers,
though, take a less strict approach. When it's time to leave the loop, they don't wait for the test to come
around again, they just leave.

Breaking Out

The keyword last, in the body of a loop, will make perl immediately exit, or 'break out of' that loop.
The remaining statements are not processed, and you up right at the end. This is exactly what we want
to do to make the above program easier to deal with:

#!/usr/bin/perl
sdrawkcab4.plx
use warnings;
use strict;

while (<STDIN>) {
chomp ;
last unless S$_;
my $sdrawkcab = reverse $_;

print "$sdrawkcab\n";

}

and now we can carry on with something else...

You can use this in a for loop as well:

#!/usr/bin/perl
forlast.plx
use warnings;
use strict;

my @array = ("red", "blue", "STOP THIS NOW", "green");

for (@array) ({
last if $_ eqg "STOP THIS NOW";

print "Today's colour is $_\n";

>perl forlast.plx
Today's colour is red
Today's colour is blue
>

If you try to do a 1ast when you're not in a loop, perl will complain, even if you have forgotten to use
use warnings:

#!/usr/bin/perl
badlast.plx

last;

Can't "last" outside a block at badlast.plx line 4.

140

Loops and Decisions

Going onto the Next

If you want to skip the rest of the processing of the body, but don't want to exit the loop, you can use
next to immediately go back to the start of the loop, passing the next value to the iterator. This is an
oft-used technique to process only selected elements:

#!/usr/bin/perl
next.plx

use strict;

use warnings;

my @array = (8, 3, 0, 2, 12, 0);
for (e@array) f{
if ($_ == 0) {
print "Skipping zero element.\n";
next;
1
print "48 over $_ is ", 48/$_, "\n";

}

In next.plx then, we have set a trap for all those dastardly zeroes that want to cause our divisions
to fail:

>perl next.plx

48 over 8 is 6

48 over 3is 16
Skipping zero element.
48 over 2 is 24

48 over 12 is 4
Skipping zero element.
>

Be careful: whilenext takes you to the next iteration of theloop, 1ast doesn't take
you to thelast iteration, it takes you past it.

On rare occasions, you'll want to go back to the top of the loop, but without testing the condition (in the
case of a for loop) or getting the next element in the list (as in a while loop). If you feel you need to
do this, the keyword to use is redo:

Try It Out - Debugging Loops 101

It's perfectly possible to have a loop inside a loop. The interesting part comes when you need to go to
the end or the beginning of a external loop from an internal loop. For example, if you're reading some
input from the user, and the input is any one of a series of pre-determined 'safe words', you end the
loop. Here's what you might want to do:

#!/usr/bin/perl

looploopl.plx

use warnings;

use strict;

my @getout = gw(quit leave stop finish);

141

Chapter 4

while (<STDIN>) {
chomp;
for my $check (@getout) {
last if S$check eqg $_;
}

print "Hey, you said $_\n";

}

The problem with this is that it doesn't work. Now, 'it doesn't work' is possibly the worst way to
approach finding a bug. What do we mean by 'it doesn't work'? Does it sit on the couch all day
watching TV? We need to be specific! What doesn't work about it?

How It Doesn't Work and Why

Well, even if we put in one of the words that's supposed to let us quit, Perl carries on, like this:

>perl looploopl.plx
Hello

Hey, you said Hello
quit

Hey, you said quit
stop

Hey, you said stop
leave

Hey, you said leave
finish

Hey, you said finish

We've specifically isolated the problem. Now, let's see if we can find any clues as to what's causing it.
The fact that it's printing out means it's finished the for loop. Let's add in a couple of print
statements to help us investigate what the for loop is actually doing:

for my $check (egetout) ({
print "Testing $check against $_\n";
last if Scheck eq $_;
print "Well, it wasn't $check\n";

}

Now run it again:

Hello

Testing quit against Hello
Well, it wasn't quit

Testing leave against hello
Well, it wasn't leave
Testing stop against Hello
Well, it wasn't stop
Testing finish against Hello
Well, it wasn't finish

Hey, you said Hello

quit

Testing quit against quit
Hey, you said quit

142

Loops and Decisions

Aha, more clues. So it's testing properly, and it's finishing when it sees 'quit', which is one of the stop
words. That's a relief to know, but it's only finishing the for loop, rather than finishing the while loop.
This is the root of the problem:

'It doesn't work' isnot a bug report. First you need to be specific about what doesn't
work. Then you need to detail what doesn't work about it. Then you can start to
examine why it doesn't work. When you've got over the 'doesn't work' feeling and
fully investigated what it's really doing and how that differs from your expectations,
only then can you begin to fix it.

So, how do we fix this one? What we need to do is to distinguish between the two loops, the inner
for loop and the outer while loop. The way we distinguish between them is by giving them names,
or labels.

A label goes before the for, while, or until of a loop, and ends with a colon. The rules for naming
labels are the same as for naming variables, but it's usual to construct labels from uppercase letters.

Here's our program with labels attached:

#!/usr/bin/perl
looploop2.plx
use warnings;
use strict;

my @getout = gw(quit leave stop finish);

OUTER: while (<STDIN>) ({
chomp;
INNER: for my $check (@getout) ({
last if $check eqg S$_;
}

print "Hey, you said $_\n";

}

Now for the finale, we can direct last, next, and redo to a particular loop by giving them the label.
Here's the fixed version:

#!/usr/bin/perl
looploop3.plx
use warnings;
use strict;

my @getout = gw(quit leave stop finish);

OUTER: while (<STDIN>) ({
chomp ;
INNER: for my $check (@getout) {
last OUTER if $check eq $_;

}

print "Hey, you said $_\n";

}

Now when we find a matching word, we don't just jump out of the for loop — we go all the way to the
end of the outer while loop as well, which is exactly what we wanted to do.

143

Chapter 4

Goto

As a matter of fact, you can put a label before any statement whatsoever. If you want to really mess
around with the structure of your programs, you can use goto LABEL to jump anywhere in your
program. Whatever you do, don't do this. This is not to be used. Don't go that way.

I'm telling you about it for the simple reason that if you see it in anyone else's Perl, you can laugh
heartily at them. There are other, more acceptable forms of goto, which we'll see when we come to
subroutines. But goto with a label is to be avoided like the plague.

Why? Because not only does it turn the clock back thirty years (the structured programming movement
started with the publication of a paper called 'Use of goto considered harmful'), but it tends to make
your programs amazingly hard to follow. The flow of control can shoot off in any direction at any time,
into any part of the file, perhaps into a different file. You can even find yourself jumping into the middle
of loops, which really doesn't bear thinking about. Don't use it unless you really, really, really
understand why you shouldn't. And even then, don't use it. Larry Wall has never used goto with a
label in Perl, and he wrote it.

Don't. (He's watching - Ed)

Summary

Before this chapter, our programs plodded along in a straight line, following one statement with another.

We've now seen how we can react to different circumstances in our programs, which is the start of
flexible and powerful programming. We can test whether something is true or false using if and
unless and take appropriate action. We've also examined how to test multiple related conditions,
using elsif.

We can repeat areas of a program, in several different ways: once per element of a list, using for, or
continually while a condition is true or false, using while and until.

Finally, we've examined some ways to alter the flow of perl's execution through these loops. We can

break out of a loop with last, skip to the next element with next, and start processing the current
element again with redo.

144

Loops and Decisions

Exercises

1. Modify the currency program convert2.plx to keep asking for currency names until a valid
currency name is entered.

2. Modify the number-guessing program guessnum.plx so that it loops until the correct answer is
entered.

3. Write your own program to capture all the prime numbers between 2 and a number the user
gives you.

145

Source code available at : www.wrox.com
Peer discussion at : lamplists.com

Also from Wrox

2 £k
o ImAA™
7 TVPHIR

FROTISSIONAL PROFISSIONAL

Perl Per

Programming Development

W AT

BEGINNING

Perl

http:/imwww.wrox.com/books/1861003145.htm

lamplists.com

The Open Source Programmer’s Res ource Centre

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

Regular Expressions

"11:15. Restate my assumptions:

~

Mathematics is the language of nature.
2. Everything around us can be represented and understood through numbers.
3. Ifyou graph these numbers, patterns emerge. Therefore: There are patterns everywhere in nature."

- Max Cohen in Pi, 7998

Whether or not you agree that Max's assumptions give rise to his conclusion is your own opinion, but
his case is much easier to follow in the field of computers — there are certainly patterns everywhere in
programming.

Regular expressions allow us look for patterns in our data. So far we've been limited to checking a single
value against that of a scalar variable or the contents of an array or hash. By using the rules outlined in
this chapter, we can use that one single value (or pattern) to describe what we're looking for in more
general terms: we can check that every sentence in a file begins with a capital letter and ends with a full
stop, find out how many times James Bond's name is mentioned in 'Goldfinger', or learn if there are any
repeated sequences of numbers in the decimal representation of greater than five in length.

However, regular expressions are a very big area — they're one of the most powerful features of Perl.
We're going to break our treatment of them up into six sections:

Basic patterns

Special characters to use

Quantifiers, anchors and memorizing patterns

Matching, substituting, and transforming text using patterns

Backtracking

0o 0 0 U 0 O

A quick look at some simple pitfalls

Generally speaking, if you want to ask perl something about a piece of text, regular expressions
are going to be your first port of call — however, there's probably one simple question burning in
your head...

Chapter 5

What Are They?

The term "Regular Expression" (now commonly abbreviated to "RegExp" or even "RE") simply refers
to a pattern that follows the rules of syntax outlined in the rest of this chapter. Regular expressions are
not limited to perl — Unix utilities such as sed and egrep use the same notation for finding patterns in
text. So why aren't they just called 'search patterns' or something less obscure?

Well, the actual phrase itself originates from the mid-fifties when a mathematician called Stephen
Kleene developed a notation for manipulating 'regular sets'. Perl's regular expressions have grown and
grown beyond the original notation and have significantly extended the original system, but some of
Kleene's notation remains, and the name has stuck.

Patterns

History lessons aside, it's all about identifying patterns in text. So what constitutes a pattern? And how
do you compare it against something?

The simplest pattern is a word — a simple sequence of characters — and we may, for example, want to
ask perl whether a certain string contains that word. Now, we can do this with the techniques we have
already seen: We want to split the string into separate words, and then test to see if each word is the one
we're looking for. Here's how we might do that:

#!/usr/bin/perl
matchl.plx
use warnings;
use strict;

my $found = 0;
$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

my S$sought = "people';

foreach my $word (split) {
if ($word eqg $sought) {
Sfound = 1;
last;

}

if ($found)
print "Hooray! Found the word 'people'\n";

Sure enough the program returns success:

>perl matchl.plx
Hooray! Found the word 'people’
>

But that's messy! It's complicated, and it's slow to boot! Worse still, the split function (which breaks
each of our lines up into a list of 'words' — we'll see more of this, later on in the chapter) actually keeps all
the punctuation — the string 'you' wouldn't be found in the above, whereas 'you. . ." would. This looks
like a hard problem, but it should be easy. Perl was designed to make easy tasks easy and hard things
possible, so there should be a better way to do this. This is how it looks using a regular expression:

148

Regular Expressions

#!/usr/bin/perl
matchl.plx
use warnings;
use strict;

S_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

if ($_ =~ /people/) {
print "Hooray! Found the word 'people'\n";

This is much, much easier and yeilds the same result. We place the text we want to find between
forward slashes — that's the regular expression part — that's our pattern, what we're trying to match. We
also need to tell perl which particular string we're looking for in that pattern. We do this with the =~
operator. This returns 1 if the pattern match was successful (in our case, whether the character sequence
'people’ was found in the string) and the undefined value if it wasn't.

Before we go on to more complicated patterns, let's just have a quick look at that syntax. As we noted
previously, a lot of Perl's operations take $_ as a default argument, and regular expressions are one such
operation. Since we have the text we want to test in $_, we don't need to use the =~ operator to 'bind'
the pattern to another string. We could write the above even more simply:

$S_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";
if (/people/) {

print "Hooray! Found the word 'people'\n";
1

Alternatively, we might want to test for the pattern not matching — the word not being found.
Obviously, we could say unless (/people/), but if the text we're looking at isn't in $_, we may also
use the negative form of that =~ operator, which is ! ~. For example:

#!/usr/bin/perl
nomatch.plx
use warnings;
use strict;

my Sgibson =
"Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

if ($gibson !~ /fish/) {
print "There are no fish in William Gibson.\n";
1

True to form, for cyberpunk books that don't regularly involve fish, we get the result.

>perl nomatch.plx
There are no fish in William Gibson.
>

Literal text is the simplest regular expression of all to look for, but we needn't look for just the one word

— we could look for any particular phrase. However, we need to make sure that we exactly match all the
characters: words (with correct capitalization), numbers, punctuation, and even whitespace:

149

Chapter 5

#!/usr/bin/perl
match2.plx
use warnings;
use strict;

$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";

if (/I do/) {
print "'I do' is in that string.\n";
}

if (/sometimes Case/)
print "'sometimes Case' matched.\n";
1

Let's run this program and see what happens:

>perl match2.plx
'l do'is in that string.
>

The other string didn't match, even though those two words are there. This is because everything in a
regular expression has to match the string, from start to finish: first "sometimes", then a space, then
"Case". In $_, there was a comma before the space, so it didn't match exactly. Similarly, spaces inside
the pattern are significant:

#!/usr/bin/perl
match3.plx
use warnings;
use strict;

my Stestl = "The dog is in the kennel";
my Stest2 = "The sheepdog is in the field";
if (Stestl =~ / dog/) {

print "This dog's at home.\n";

}

if ($test2 =~ / dog/) {
print "This dog's at work.\n";
1

This will only find the first dog, as perl was looking for a space followed by the three letters, 'dog':

>perl match3.plx
This dog's at home.
>

So, for the moment, it looks like we shall have to specify our patterns with absolute precision. As
another example, look at this:

#!/usr/bin/perl
match4.plx
use warnings;
use strict;

150

Regular Expressions

$_ = "Nobody wants to hurt you... 'cept, I do hurt people sometimes, Case.";
if (/case/) {
print "I guess it's just the way I'm made.\n";
} else {
print "Case? Where are you, Case?\n";
}

> perl match4.plx
Case? Where are you, Case?
>

Hmm, no match. Why not? Because we asked for a small 'c' when we had a big 'C' - regexps are
(if you'll pardon the pun) case-sensitive. We can get around this by asking perl to compare
insensitively, and we do this by putting an 'i' (for 'insensitive') after the closing slash. If we alter
the code above as follows:

if (/case/i) {

print "I guess it's just the way I'm made.\n";
} else {

print "Case? Where are you, Case?\n";
}

then we find him:

>perl match4.plx
| guess it's just the way I'm made.
>

This 'i' is one of several modifiers that we can add to the end of the regular expression to change its
behavior slightly. We'll see more of them later on.

Interpolation

Regular expressions work a little like double-quoted strings; variables and metacharacters are
interpolated. This allows us to store patterns in variables and determine what we are matching when we
run the program — we don't need to have them hard-coded in:

Try it out — Pattern Tester

This program will ask the user for a pattern and then test to see if it matches our string. We can use this
throughout the chapter to help us test the various different styles of pattern we'll be looking at:

#!/usr/bin/perl
matchtest.plx
use warnings;
use strict;

$_ = g("I wonder what the Entish is for 'yes' and 'no'," he thought.) ;
Tolkien, Lord of the Rings

print "Enter some text to find: ";

my Spattern = <STDIN>;
chomp (Spattern) ;

151

Chapter 5

if (/$pattern/)

print "The text matches the pattern '$pattern'.\n";
} else {

print "'S$pattern' was not found.\n";
}

Now we can test out a few things:

> perl matchtest.plx
Enter some text to find: wonder
The text matches the pattern 'wonder'.

> perl matchtest.plx
Enter some text to find: entish
'‘entish' was not found.

> perl matchtest.plx
Enter some text to find: hough
The text matches the pattern 'hough'.

> perl matchtest.plx
Enter some text to find: and 'no’,
The text matches the pattern 'and 'no".

Pretty straightforward, and I'm sure you could all spot those not in $_ as well.

How It Works

matchtest .plx has its basis in the three lines:

my Spattern = <STDIN>;
chomp ($pattern) ;

if (/$pattern/) {

We're taking a line of text from the user. Then, since it will end in a new line, and we don't necessarily
want to find a new line in our pattern, we chomp it away. Now we do our test.

Since we're not using the =~ operator, the test will be looking at the variable $_. The regular expression
is /$pattern/, and just like the double-quoted string "$pattern", the variable $pattern is
interpolated. Hence, the regular expression is purely and simply whatever the user typed in, once we've
got rid of the new line.

Escaping Special Characters

Of course, regular expressions can be more than just words and spaces. The rest of this chapter is
going to be about the various ways we can specify more advanced matches — where portions of the
match are allowed to be one of a number of characters, or where the match must occur at a certain
position in the string. To do this, we'll be describing the special meanings given to certain characters
- called metacharacters — and look at what these meanings are and what sort of things we can express
with them.

152

Regular Expressions

At this stage, we might not want to use their special meanings — we may want to literally match the
characters themselves. As you've already seen with double-quoted strings, we can use a backslash to
escape these characters' special meanings. Hence, if you want to match '. . ." in the above text, you
need your pattern to say '\ .\ .\ .". For example:

> perl matchtest.plx
Enter some text to find: Ent+
The text matches the pattern 'Ent+'.

> perl matchtest.plx
Enter some text to find: Ent\+
'Ent\+' was not found.

We'll see later why the first one matched - due to the special meaning of +.

These arethe charactersthat are given special meaning within aregular expression,
which you will need to backslash if you want to use literally:

* 2+ [1 () {} " s |\

Any other characters automatically assume their literal meanings.

You can also turn off the special meanings using the escape sequence \Q. After perl sees \Q, the 14
special characters above will automatically assume their ordinary, literal meanings. This remains the
case until perl sees either \E or the end of the pattern.

For instance, if we wanted to adapt our matchtest program just to look for literal strings, instead of
regular expressions, we could change it to look like this:

if (/\Q$pattern\E/) ({
Now the meaning of + is turned off:

> perl matchtest.plx

Enter some text to find: Ent+
'Ent+' was not found.

>

Note that all \Q does is turn off the regular expression magic of those 14 characters above — it doesn't
stop, for example, variable interpolation.

Don't forget to change this back again: We'll be using matchtest . plx throughout the chapter,
to demonstrate the regular expressions we look at. We'll need that magic fully functional!

Anchors

So far, our patterns have all tried to find a match anywhere in the string. The first way we'll extend our
regular expressions is by dictating to perl where the match must occur. We can say 'these characters
must match the beginning of the string' or 'this text must be at the end of the string'. We do this by
anchoring the match to either end.

153

Chapter 5

The two anchors we have are *, which appears at the beginning of the pattern anchor a match to the
beginning of the string, and $ which appears at the end of the pattern and anchors it to the end of the
string. So, to see if our quotation ends in a full stop — and remember that the full stop is a special
character — we say something like this:

>perl matchtest.plx
Enter some text to find: \.$
The text matches the pattern \.$'".

That's a full stop (which we've escaped to prevent it being treated as a special character) and a dollar
sign at the end of our pattern — to show that this must be the end of the string.

Try, if you can, to get into the habit of reading out regular expressions in English. Break them into
pieces and say what each piece does. Also remember to say that each piece must immediately follow the
other in the string in order to match. For instance, the above could be read 'match a full stop
immediately followed by the end of the string'.

If you can get into this habit, you'll find that reading and understanding regular expressions becomes a
lot easier, and you'll be able to 'translate’ back into Perl more naturally as well.

Here's another example: do we have a capital I at the beginning of the string?

> perl matchtest.plx
Enter some text to find: I
'"Al' was not found.

>

We use * to mean 'beginning of the string', followed by an I. In our case, though, the character at the
beginning of the string is a ", so our pattern does not match. If you know that what you're looking for
can only occur at the beginning or the end of the match, it's extremely efficient to use anchors. Instead
of searching through the whole string to see whether the match succeeded, perl only needs to look at a
small portion and can give up immediately if even the first character does not match.

Let's see one more example of this, where we'll combine looking for matches with looking through the
lines in a file:

Try it out : Rhyming Dictionary

Imagine yourself as a poor poet. In fact, not just poor, but downright bad — so bad, you can't even think
of a rhyme for 'pink'. So, what do you do? You do what every sensible poet does in this situation, and
you write the following Perl program:

#!/usr/bin/perl
rhyming.plx
use warnings;
use strict;

my $syllable = "ink";

while (<>) {
print if /$syllable$/;
}

154

Regular Expressions

We can now feed it a file of words, and find those that end in 'ink':

>perl rhyming.plx wordlist.txt
blink

bobolink

brink

chink

clink

>

For a really thorough result, you'll need to use a file containing every word in the dictionary - be
prepared to wait though if you do! For the sake of the example however, any text-based file will do
(though it'll help if it's in English). A bobolink, in case you're wondering, is a migratory American
songbird, otherwise known as a ricebird or reedbird.

How It Works

With the loops and tests we learned in the last chapter, this program is really very easy:

while (<>) {
print if /$syllable$/;

}

We've not looked at file access yet, so you may not be familiar with the while (<>) {. ..}
construction used here. In this example it opens a file that's been specified on the command line, and
loops through it, one line at a time, feeding each one into the special variable $_ - this is what we'll
be matching.

Once each line of the file has been fed into $_, we test to see if it matches the pattern, which is our
syllable, 'ink’, anchored to the end of the line (with $). If so, we print it out.

The important thing to note here is that perl treats the 'ink' as the last thing on the line, even though
there is a new line at the end of $_. Regular expressions typically ignore the last new line in a string —
we'll look at this behavior in more detail later.

Shortcuts and Options

All this is all very well if we know exactly what it is we're trying to find, but finding patterns means
more than just locating exact pieces of text. We may want to find a three-digit number, the first word on
the line, four or more letters all in capitals, and so on.

We can begin to do this using character classes — these aren't just single characters, but something that
signifies that any one of a set of characters is acceptable. To specify this, we put the characters we
consider acceptable inside square brackets. Let's go back to our matchtest program, using the same
test string:

$_ = g("I wonder what the Entish is for 'yes' and 'no'," he thought.);
> perl matchtest.plx
Enter some text to find: w[aoi]lnder

The text matches the pattern 'w[aoi]nder".
>

155

Chapter 5

What have we done? We've tested whether the string contains a 'w', followed by either an 'a’, an 'o', or
an '1', followed by 'nder'; in effect, we're looking for either of 'wander', 'wonder', or 'winder'. Since the
string contains 'wonder’, the pattern is matched.

Conversely, we can say that everything is acceptable except a given sequence of characters — we can
'negate the character class'. To do this, the character class should start with a *, like so:

> perl matchtest.plx

Enter some text to find: th[*eo]
‘th[*eo]' was not found.

>

So, we're looking for 'th' followed by something that is neither an 'e' or an 'o'. But all we have is 'the'
and 'thought', so this pattern does not match.

If the characters you wish to match form a sequence in the character set you're using - ASCII or
Unicode, depending on your perl version — you can use a hyphen to specify a range of characters,
rather than spelling out the entire range. For instance, the numerals can be represented by the character
class [0-9]. A lower case letter can be matched with [a-z]. Are there any numbers in our quote?

> perl matchtest.plx

Enter some text to find: [0-9]
'[0-9]' was not found.

>

You can use one or more of these ranges alongside other characters in a character class, so long as they
stay inside the brackets. If you wanted to match a digit and then a letter from 'A" to 'F', you would say
[0-9] [A-F]. However, to match a single hexadecimal digit, you would write [0-9A-F] or
[0-9A-Fa-f] if you wished to include lower-case letters.

Some character classes are going to come up again and again: the digits, the letters, and the various
types of whitespace. Perl provides us with some neat shortcuts for these. Here are the most common
ones, and what they represent:

Shortcut Expansion Description

\d [0-9] Digits 0 to 9.

\w [0-9A-Za-z_] A 'word' character allowable in a Perl variable name.

\s [\t\n\r] A whitespace character that is, a space, a tab, a newline or
a return.

also, the negative forms of the above:

Shortcut Expansion Description

\D ["0-9] Any non-digit.

\W ["0-9A-Za-z_] A non-'word' character.
\S [* \t\n\r] A non-blank character.

156

Regular Expressions

So, if we wanted to see if there was a five-letter word in the sentence, you might think we could do this:

> perl matchtest.plx

Enter some text to find: \w\w\w\w\w

The text matches the pattern "\w\w\w\w\w'.
>

But that's not right — there are no five-letter words in the sentence! The problem is, we've only asked for
five letters in a row, and any word with at least five letters contains five in a row will match that
pattern. We actually matched 'wonde', which was the first possible series of five letters in a row. To
actually get a five-letter word, we might consider deciding that the word must appear in the middle of
the sentence, that is, between two spaces:

> perl matchtest.plx

Enter some text to find: \s\w\w\w\w\w\s
\s\wiw\w\w\w\s' was not found.

>

Word Boundaries

The problem with that is, when we're looking at text, words aren't always between two spaces. They can
be followed by or preceded by punctuation, or appear at the beginning or end of a string, or otherwise
next to non-word characters. To help us properly search for words in these cases, Perl provides the
special \b metacharacter. The interesting thing about \b is that it doesn't actually match any character
in particular. Rather, it matches the point between something that isn't a word character (either \W or
one of the ends of the string) and something that is (a word character), hence \b for boundary. So, for
example, to look for one-letter words:

> perl matchtest.plx
Enter some text to find: \s\w\s
\s\w\s' was not found.

> perl matchtest.plx
Enter some text to find: \b\w\b
The text matches the pattern "\b\w\b'.

As the I was preceded by a quotation mark, a space wouldn't match it — but a word boundary does the
job. Later, we'll learn how to tell perl how many repetitions of a character or group of characters we
want to match without spelling it out directly.

What, then, if we wanted to match anything at all? You might consider something like [\w\W] or
[\s\8], for instance. Actually, this is quite a common operation, so Perl provides an easy way of
specifying it — a full stop. What about an 'r' followed by two characters — any two characters — and
then a 'h'?

> perl matchtest.plx

Enter some text to find: r..h

The text matches the pattern 'r..h'.
>

Is there anything after the full stop?

> perl matchtest.plx
Enter some text to find: \..
\.." was not found.

>

157

Chapter 5

What's that? One backslashed full stop to mean a full stop, then a plain one to mean 'anything at all'.

Posix and Unicode Classes

Perl 5.6.0 introduced a few more character classes into the mix — first, those defined by the POSIX
(Portable Operating Systems Interface) standard, which are therefore present in a number of other
applications. The more common character classes here are:

Shortcut Expansion Description

[[:alpha:]] [a-2zA-Z] An alphabetic character.

[[:alnum:]] [0-9A-Za-z] An alphabetic or numeric character.

[[:digit:]] \d A digit, 0-9.

[[:lower:]] [a-z] A lower case letter.

[[:upper:]] [A-2Z] An upper case letter.

[[:punct:]] [PU#S%&" () *+, - A punctuation character — note the
/ri<=>2@\ [\\\17_~{ | }~] escaped characters [, \, and].

The Unicode standard also defines ‘properties’, which apply to some characters. For instance, the
'IsUpper ' property can be used to match any upper-case character, in whichever language or
alphabet. If you know the property you are trying to match, you can use the syntax \p{ } to match
it, for instance, the upper-case character is \p { IsUpper}.

Alternatives

Instead of giving a series of acceptable characters, you may want to say 'match either this or that'. The
'either-or' operator in a regular expression is the same as the bitwise 'or' operator, |. So, to match either
'yes' or 'maybe' in our example, we could say this:

> perl matchtest.plx

Enter some text to find: yes|maybe

The text matches the pattern 'yes|maybe'.
>

That's either 'yes' or 'maybe'. But what if we wanted either 'yes' or 'yet'? To get alternatives on
part of an expression, we need to group the options. In a regular expression, grouping is always
done with parentheses:

> perl matchtest.plx

Enter some text to find: ye(s|t)

The text matches the pattern 'ye(s|t)".
>

If we have forgotten the parentheses, we would have tried to match either 'yes' or 't'. In this case, we'd

still get a positive match, but it wouldn't be doing what we want — we'd get a match for any string with a
't" in it, whether the words 'yes' or 'yet' were there or not.

158

Regular Expressions

You can match either 'this' or 'that' or 'the other' by adding more alternatives:

> perl matchtest.plx

Enter some text to find: (this)|(that)|(the other)
'(this)|(that)|(the other)' was not found.

>

However, in this case, it's more efficient to separate out the common elements:

> perl matchtest.plx
Enter some text to find: th(is|at|e other)
‘th(is|at|e other)' was not found.

You can also nest alternatives. Say you want to match one of these patterns:

Q 'the' followed by whitespace or a letter,

vorv

You might put something like this:

> perl matchtest.plx

Enter some text to find: (the(\s|[a-z]))|or

The text matches the pattern '(the(\s|[a-z]))|or".
>

It looks fearsome, but break it down into its components. Our two alternatives are:

Q the(\s|la-z])

a or

The second part is easy, while the first contains 'the' followed by two alternatives: \s and [a-2z].
Hence 'either "the" followed by either a whitespace or a lower case letter, or "or"'. We can, in fact, tidy
this up a little, by replacing (\s| [a-z]) with the less cluttered [\sa-z] .

> perl matchtest.plx

Enter some text to find: (the[\sa-z])|or

The text matches the pattern '(the[\sa-z])|or".
>

Repetition

We've now moved from matching a specific character to a more general type of character - when we
don't know (or don't care) exactly what the character will be. Now we're going to see what happens
when we want to talk about a more general quantity of characters: more than three digits in a row; two
to four capital letters, and so on. The metacharacters that we use to deal with a number of characters in
a row are called quantifiers.

159

Chapter 5

Indefinite Repetition

The easiest of these is the question mark. It should suggest uncertainty — something may be there, or it
may not. That's exactly what it does: stating that the immediately preceding character(s) - or
metacharacter(s) - may appear once, or not at all. It's a good way of saying that a particular character or
group is optional. To match the word 'he or she', you can put:

> perl matchtest.plx

Enter some text to find: \bs?he\b

The text matches the pattern \bs?he\b'.
>

To make a series of characters (or metacharacters) optional, group them in parentheses as before. Did
he say 'what the Entish is' or 'what the Entish word is'? Either will do:

> perl matchtest.plx

Enter some text to find: what the Entish (word)?is

The text matches the pattern 'what the Entish (word)?is".
>

Notice that we had to put the space inside the group: otherwise we end up with two spaces between
'Entish' and 'is', whereas our text only has one:

> perl matchtest.plx

Enter some text to find: what the Entish (word)? is
‘what the Entish (word)? is' was not found.

>

As well as matching something one or zero times, you can match something one or more times. We do
this with the plus sign — to match an entire word without specifying how long it should be, you can say:

> perl matchtest.plx

Enter some text to find: \b\w+\b

The text matches the pattern \b\w+\b'.
>

In this case, we match the first available word — 1.

If, on the other hand, you have something which may be there any number of times but might not be
there at all — zero or one or many - you need what's called 'Kleene's star': the * quantifier. So, to find a
capital letter after any — but possibly no — spaces at the start of the string, what would you do? The start
of the string, then any number of whitespace characters, then a capital:

> perl matchtest.plx

Enter some text to find: M\s*[A-Z]
'‘Ms*[A-Z]' was not found.

>

Of course, our test string begins with a quote, so the above pattern won't match, but, sure enough, if you
take away that first quote, the pattern will match fine.

160

Regular Expressions

Let's review the three qualifiers:

/bea?t/ Matches either 'beat' or 'bet’'
/bea+t/ Matches 'beat', 'beaat', 'beaaat'...
/bea*t/ Matches 'bet', 'beat, 'beaat'...

Novice Perl programmers tend to go to town on combinations of dot and star, and the results often
surprise them, particularly when it comes to searching-and-replacing. We'll explain the rules of the
regular expression matcher shortly, but bear the following in mind:

A regular expression should hardly ever start or finish with a starred character.

You should also consider the fact that . * and . + in the middle of a regular expression will match as
much of your string as they possibly can. We'll look more at this 'greedy' behavior later on.

Well-Defined Repetition

If you want to be more precise about how many times a character or roups of characters might be
repeated, you can specify the maximum and minimum number of repeats in curly brackets. '2 or 3
spaces' can be written as follows:

> perl matchtest.plx

Enter some text to find: \s{2,3}
\s{2,3}' was not found.

>

So we have no doubled or trebled spaces in our string. Notice how we construct that — the minimum, a
comma, and the maximum, all inside braces. Omitting either the maximum or the minimum signifies 'or
more' and 'or fewer' respectively. For example, {2, } denotes '2 or more', while {, 3} is '3 or fewer". In
these cases, the same warnings apply as for the star operator.

Finally, you can specify exactly how many things are to be in a row by simply putting that number
inside the curly brackets. Here's the five-letter-word example tidied up a little:

> perl matchtest.plx

Enter some text to find: \b\w{5}\b
\b\w{5}\b" was not found.

>

Summary Table

To refresh your memory, here are the various metacharacters we've seen so far:

M etachar acter M eaning
[abc] any one of the characters a, b, or c.
["abc] any one character other than a, b, or c.

Table continued on following page

161

Chapter 5

M etachar acter Meaning

[a-z] any one ASCII character between a and z.

\d \D a digit; a non-digit.

\w \W a 'word' character; a non-'word' character.

\s \s a whitespace character; a non-whitespace character.

\b the boundary between a \w character and a \W character.

any character (apart from a new line).

(abc) the phrase 'abc' as a group.

? preceding character or group may be present 0 or 1 times.

+ preceding character or group is present 1 or more times.

* preceding character or group may be present 0 or more times.
{x,v} preceding character or group is present between x and y times.
{.v} preceding character or group is present at most y times.

{x,} preceding character or group is present at least x times.

{x} preceding character or group is present x times.

Backreferences

What if we want to know what a certain regular expression matched? It was easy when we were
matching literal strings: we knew that 'Case' was going to match those four letters and nothing else. But
now, what matches? If we have /\w{3}/, which three word characters are getting matched?

Perl has a series of special variables in which it stores anything that's matched with a group in
parentheses. Each time it sees a set of parentheses, it copies the matched text inside into a numbered
variable - the first matched group goes in $1, the second group in $2, and so on. By looking at these
variables, which we call the backreference variables, we can see what triggered various parts of our
match, and we can also extract portions of the data for later use.

First, though, let's rewrite our test program so that we can see what's in those variables:

Try it out : A Second Pattern Tester

#!/usr/bin/perl
matchtest2.plx
use warnings;
use strict;

$S_ = 'l: A silly sentence (495,a) *BUT* one which will be useful. (3)';
print "Enter a regular expression: ";

my S$pattern = <STDIN>;
chomp (Spattern) ;

162

Regular Expressions

if (/$pattern/) ({
print "The text matches the pattern 'S$pattern'.\n";
print "\$1 is '$S1'\n" if defined $1;
print "\$2 is '$2'\n" if defined $2;
print "\S$3 is '$3'\n" if defined $3;
print "\$4 is '$4'\n" if defined $4;
print "\S$5 is '$5'\n" if defined $5;
} else {
print "'Spattern' was not found.\n";
1

Note that we use a backslash to escape the first dollar' symbol in each print statement, thus
displaying the actual symbol, while leaving the second in each to display the contents of the
appropriate variable.

We've got our special variables in place, and we've got a new sentence to do our matching on. Let's see
what's been happening:

> perl matchtest2.plx

Enter a regular expression: ([a-z]+)
The text matches the pattern '([a-z]+)".
$1 is 'silly’

> perl matchtest2.plx

Enter a regular expression: (\w+)
The text matches the pattern '(\w+)'".
$1is'1'

> perl matchtest2.plx

Enter a regular expression: ([a-z]+)(.*)([a-z]+)

The text matches the pattern '([a-z]+)(.*)([a-z]+)".

$1 is 'silly’

$2 is ' sentence (495,a) *BUT* one which will be usefu’
$3is'T'

> perl matchtest2.plx

Enter a regular expression: e(\w|n\w+)
The text matches the pattern 'e(\w|n\w+)".
$lis'n'

How It Works

By printing out what's in each of the groups, we can see exactly what caused perl to start and stop
matching, and when. If we look carefully at these results, we'll find that they can tell us a great deal
about how perl handles regular expressions.

How the Engine Works

We've now seen most of the syntax behind regular expression matching and plenty of examples of it in
action. The code that does all the matching is called perl's 'regular expression engine'. You might now

be wondering about the exact rules applied by this engine when determining whether or not a piece of
text matches. And how much of it matches what. From what our examples have shown us, let us make

some deductions about the engine's operation.

163

Chapter 5

Odur first expression, ([a-z]+) plucked out a set of one-or-more lower-case letters. The first such set
that perl came across was 'silly'. The next character after 'y' was a space, and so no longer matched
the expression.

0 Rule one: Once the engine starts matching, it will keep matching a character at a time for as
long as it can. Once it sees something that doesn't match, however, it has to stop. In this
example, it can never get beyond a character that is not a lower case letter. It has to stop as
soon as it encounters one.

Next, we looked for a series of word characters, using (\w+). The engine started looking at the
beginning of the string and found one, '1". The next character was not a word character (it was a colon),
and so the engine had to stop.

0 Rule two: Unlike me, the engine is eager. It's eager to start work and eager to finish, and it
starts matching as soon as possible in the string; if the first character doesn't match, try and
start matching from the second. Then take every opportunity to finish as quickly as possible.

Then we tried this: ([a-z]+) (.*) ([a-2z]+). The result we got with this was a little strange. Let's look
at it again:

> perl matchtest2.plx

Enter a regular expression: ([a-z]+)(.*)([a-z]+)

The text matches the pattern '([a-z]+)(.*)([a-z]+)".

$1 is 'silly’

$2 is ' sentence (495,a) *BUT* one which will be usefu’
$3is I

>

Our first group was the same as what matched before — nothing new there. When we could no longer
match lower case letters, we switched to matching anything we could. Now, this could take up the rest
of the string, but that wouldn't allow a match for the third group. We have to leave at least one lower-
case letter.

So, the engine started to reverse back along the string, giving characters up one by one. It gave up
the closing bracket, the 3, then the opening bracket, and so on, until we got to the first thing that
would satisfy all the groups and let the match go ahead — namely a lower-case letter: the 'l' at the
end of 'useful'.

From this, we can draw up the third rule:

0O Rule three: Like me, in this case, the engine is greedy. If you use the + or * operators, they
will try and steal as much of the string as possible. If the rest of the expression does not match,
it grudgingly gives up a character at a time and tries to match again, in order to find the fullest
possible match.

We can turn a greedy match into a non-greedy match by putting the ? operator after either the plus or
star. For instance, let's turn this example into a non-greedy version: ([a-z]+) (.*?) ([a-z]+). This
gives us an entirely different result:

164

Regular Expressions

> perl matchtest2.plx

Enter a regular expression: ([a-z]+)(.*?)([a-z]+)
The text matches the pattern '([a-z]+)(.*?)([a-z]+)".
$1 is 'silly’

$2is""’

$3 is 'sentence’

>

Now we've shut off rule three, rule two takes over. The smallest possible match for the second group
was a single space. First, it tried to get nothing at all, but then the third group would be faced with a
space. This wouldn't match. So, we grudgingly accept the space and try and finish again. This time the
third group has some lower case letters, and that can match as well.

What if we turn off greediness in all three groups, and say this: ([a-z]+?) (.*?) ([a-2z]+?)

> perl matchtest2.plx

Enter a regular expression: ([a-z]+?)(.*?)([a-z]+?)
The text matches the pattern '([a-z]+?)(.*?)([a-z]+?)".
$lis's'

$2is"

$3isi'

>

What about this? Well, the smallest possible match for the first group is the 's' of silly. We asked it to
find one character or more, and so the smallest it could find was one. The second group actually
matched no characters at all. This left the third group facing an 'i', which it took to complete the match.

Our last example included an alternation:

> perl matchtest2.plx

Enter a regular expression: e(\w|n\w+)
The text matches the pattern 'e(\w|n\w+)".
$lis'n'

>

The engine took the first branch of the alternation and matched a single character, even though the
second branch would actually satisfy greed. This leads us onto the fourth rule:

Q Rule four: Again like me, the regular expression engine hates decisions. If there are two

branches, it will always choose the first one, even though the second one might allow it to gain
a longer match.

To summarize:

Theregular expression engine starts as soon asit can, grabs as much asit can, then
triesto finish as soon asit can, while taking the first decision available to it.

165

Chapter 5

Working with RegExps

Now that we've matched a string, what do we do with it? Well, sometimes it's just useful to know
whether a string contains a given pattern or not. However, a lot of the time we're going to be doing
search-and-replace operations on text. We'll explain how to do that here. We'll also cover some of the
more advanced areas of dealing with regular expressions.

Substitution

Now we know all about matching text, substitution is very easy. Why? Because all of the clever things
are in the 'search' part, rather than the 'replace’: all the character classes, quantifiers and so on only
make sense when matching. You can't substitute, say, a word with any number of digits. So, all we need
to do is take the 'old' text, Our match, and tell perl what we want to replace it with. This we do with the
s/// operator.

The s is for 'substitute' — between the first two slashes, we put our regular expression as before. Before
the final slash, we put our text replacement. Just as with matching, we can use the =~ operator to apply
it to a certain string. If this is not given, it applies to the default variable $_:

#!/usr/bin/perl
substl.plx
use warnings;
use strict;

$S_ = "Awake! Awake! Fear, Fire, Foes! Awake! Fire, Foes! Awake!";
Tolkien, Lord of the Rings

s/Foes/Flee/;
print $_,"\n";

>perl substl.plx
Awake! Awake! Fear, Fire, Flee! Awake! Fire, Foes! Awake!
>

Here we have substituted the first occurrence of 'Foes' with the word 'Flee'. Had we wanted to change
every occurrence, we would have needed to use another modifier. Just as the /i modifier for matching
case-insensitively, the /g modifier on a substitution acts globally:

#!/usr/bin/perl
substl.plx
use warnings;
use strict;

$_ = "Awake! Awake! Fear, Fire, Foes! Awake! Fire, Foes! Awake!";
Tolkien, Lord of the Rings

s/Foes/Flee/g;
print $_,"\n";

> perl substl.plx
Awake! Awake! Fear, Fire, Flee! Awake! Fire, Flee! Awake!
>

166

Regular Expressions

Like the left-hand side of the substitution, the right-hand side also works like a double-quoted string and
is thus subject to variable interpolation. One useful thing, though, is that we can use the backreference
variables we collected during the match on the right hand side. So, for instance, to swap the first two
words in a string, we would say something like this:

#!/usr/bin/perl
subst2.plx
use warnings;
use strict;

$_ = "there are two major products that come out of Berkeley: LSD and UNIX";
Jeremy Anderson

s/ (\w+) \s+ (\w+) /$2 $1/;

print $_, "?\n";

>perl subst2.plx
are there two major products that come out of Berkeley: LSD and UNIX?
>

What would happen if we tried doing that globally? Well, let's do it and see:

#!/usr/bin/perl
subst2.plx
use warnings;
use strict;

$_ = "there are two major products that come out of Berkeley: LSD and UNIX";
Jeremy Anderson

s/ (\w+) \s+ (\w+) /$2 $1/g;

print $_, "?\n";

>perl subst2.plx
are there major two that products out come Berkeley of: and LSD UNIX?
>

Here, every word in a pair is swapped with its neighbor. When processing a global match, perl always
starts where the previous match left off.

Changing Delimiters

You may have noticed that // and s/// looks like g/ / and gqgq//. Well, just like g// and qgq//, we
can change the delimiters when matching and substituting to increase the readability of our regular
expressions. The same rules apply: Any non-word character can be the delimiter, and paired delimiters
such as <>, (), {}, and [] may be used — with two provisos.

First, if you change the delimiters on //, you must put an m in front of it. (m for 'match'). This is so that
perl can still recognize it as a regular expression, rather than a block or comment or anything else.

167

Chapter 5

Second, if you use paired delimiters with substitution, you must use two pairs:

s/old text/new text/g;

becomes:

s{old text}{new text}g;

You may, however, leave spaces or new lines between the pairs for the sake of clarity:

s{old text}
{new text}g;

The prime example of when you would want to do this is when you are dealing with file paths, which
contain a lot of slashes. If you are, for instance, moving files on your Unix system from
/usr/local/share/ to /usr/share/, you may want to munge the file names like this:

s/\/usr\/local\/share\//\/usr\/share\//g;

However, it's far easier and far less ugly to change the delimiters in this case:

s#/usr/local/share/#/usr/share/#g;

Modifiers

We've already seen the /i modifier used to indicate that a match should be case insensitive. We've also
seen the /g modifier to apply a substitution. What other modifiers are there?

O /m - treat the string as multiple lines. Normally, * and $ match the very start and very end of
the string. If the /m modifier is in play, then they will match the starts and ends of individual
lines (separated by \n). For example, given the string: "one\ntwo", the pattern /*two$/
will not match, but /*two$/m will.

Q /s - treat the string as a single line. Normally, . does not match a new line character; when
/s is given, then it will.

Q /g - as well as globally replacing in a substitution, allows us to match multiple times. When
using this modifier, placing the \G anchor at the beginning of the regexp will anchor it to the
end point of the last match.

Q /x - allow the use of whitespace and comments inside a match.
Regular expressions can get quite fiendish to read at times. The /x modifier is one way to stop them
becoming so. For instance, if you're matching a string in a log file that contains a time, followed by a

computer name in square brackets, then a message, the expression you'll create to extract the
information may easily end up looking like this:

Time in $1, machine name in $2, text in $3

/7 (10-21\d: [0-5]1\d: [0-5]\Ad) \s+\ [(["\11+)\]\s+(.*)$/

168

Regular Expressions

However, if you use the /x modifier, you can stretch it out as follows:

/”
(# First group: time
[0-2]\d
[0-5]\d
[0-5]\d
)
\s+
\ I # Square bracket

(# Second group: machine name
[*\11+ # Anything that isn't a square bracket
)

\1 # End square bracket

(# Third group: everything else

Another way to tidy this up is to put each of the groups into variables and interpolate them:

my Stime_re = ' ([0-2]\d:[0-5]\d:[0-5]\d)"';
my $host_re = '\[[*\11+)\1"';
my S$mess_re V(.*)

/" $time_re\s+Shost_re\s+$mess_res/;

Split

We briefly saw split earlier on in the chapter, where we used it to break up a string into a list of
words. In fact, we only saw it in a very simple form. Strictly speaking, it was a bit of a cheat to use it at
all. We didn't see it then, but split was actually using a regular expression to do its stuff!

Using split on its own is equivalent to saying:
split /\s+/, $_;
which breaks the default string $_ into a list of substrings, using whitespace as a delimiter. However, we

can also specify our own regular expression: perl goes through the string, breaking it whenever the
regexp matches. The delimiter itself is thrown away.

For instance, on the UNIX operating system, configuration files are sometimes a list of fields separated
by colons. A sample line from the password file looks like this:

kake:x:10018:10020: : /home/kake: /bin/bash

169

Chapter 5

To get at each field, we can split when we see a colon:

#!/usr/bin/perl
split.plx
use warnings;
use strict;

my $passwd = "kake:x:10018:10020: :/home/kake: /bin/bash";
my @fields = split /:/, Spasswd;

print "Login name : $fields[0]\n";

print "User ID : $fields[2]\n";

print "Home directory : $fields[5]\n";

>perl split.plx

Login name : kake

User ID : 10018

Home directory : /home/kake
>

Note that the fifth field has been left empty. Perl will recognize this as an empty field, and the
numbering used for the following entries takes account of this. So $fields [5] returns /home/kake,
as we'd otherwise expect. Be careful though - if the line you are splitting contains empty fields at the
end, they will get dropped.

Join

To do the exact opposite, we can use the join operator. This takes a specified delimiter and interposes
it between the elements of a specified array. For example:

#!/usr/bin/perl
join.plx

use warnings;
use strict;

my $passwd = "kake:x:10018:10020::/home/kake: /bin/bash";
my @fields = split /:/, S$passwd;

print "Login name : $fields[0]\n";

print "User ID : $fields[2]\n";

print "Home directory : $fields([5]\n";

my Spasswd2 = join "#", @fields;
print "Original password : Spasswd\n";
print "New password : $passwd2\n";

>perl join.plx

Login name : kake

User ID : 10018

Home directory : /home/kake

Original password : kake:x:10018:10020::/home/kake:/bin/bash
New password : kake#x#10018#10020##/home/kake#/bin/bash
>

170

Regular Expressions

Transliteration

While we're looking at regular expressions, we should briefly consider another operator. While it's not
directly associated with regexps, the transliteration operator has a lot in common with them and adds a
very useful facility to the matching and substitution techniques we've already seen.

What this does is to correlate the characters in its two arguments, one by one, and use these pairings to
substitute individual characters in the referenced string. It uses the syntax tr/one/two/ and (as with
the matching and substitution operators) references the special variable $_ unless otherwise specified
with =~ or ! ~. In this case, it replaces all the 'o's in the referenced string with 't's, all the 'n's with 'w's,
and all the 'e's with 'o's.

Let's say you wanted to replace, for some reason, all the numbers in a string with letters. You might say
something like this:

$string =~ tr/0123456789/abcdefghij/;

This would turn, say, "2011064" into "cabbage". You can use ranges in transliteration but not in any of
the character classes. We could write the above as:

$string =~ tr/0-9/a-j/;

The return value of this operator is, by default, the number of characters matched with those in the first
argument. You can therefore use the transliteration operator to count the number of occurrences of
certain characters. For example, to count the number of vowels in a string, you can use:

my $vowels = $string =~ tr/aeiou//;

Note that this will not actually substitute any of the vowels in the variable $string. As the second
argument is blank, there is no correlation, so no substitution occurs. However, the transliteration
operator can take the /d modifier, which will delete occurrences on the left that do not have a
correlating character on the right. So, to get rid of all spaces in a string quickly, you could use this line:

$string =~ tr/ //4;

Common Blunders

There are a few common mistakes people tend to make when writing regexps. We've already seen
that /a*b*c*/ will happily match any string at all, since it matches each letter zero times. What else
can go wrong?

Q Forgetting To Group
/Bam{2}/ will match 'Bamm’', while / (Bam) {2}/ will match 'BamBam', so be careful when
choosing which one to use. The same goes for alternation: /Simple | on/ will match 'Simple'
and 'on', while /Sim(ple|on) / will match both 'Simple' and 'Simon' Group each option
separately.

Q Getting The Anchors Wrong
* goes at the beginning, $ goes at the end. A dollar anywhere else in the string makes perl try
and interpolate a variable.

171

Chapter 5

Q Forgetting To Escape Special Characters.
Do you want them to have a special meaning? These are the characters to be careful of: . *
2+ [1 () {} " $ | and of course \ itself.

Q Not Counting from Zero
The first entry in an array is given the index zero.

Q Counting from Zero
I know, I know! All along I've been telling you that computers start counting from zero.
Nevertheless, there's always the odd exception - the first backreference is $1. Don't blame
Perl though - it took this behavior from a language called awk which used $1 as the first
reference variable.

More Advanced Topics

We've not actually plumbed the depths of the regular expression language syntax — Perl has a habit of
adding wilder and more bizarre features to it on a regular basis. All of the more off-the-wall extensions
begin with a question mark in a group - this is supposed to make you stop and ask yourself: 'Do I really
want to do this?'

Some of these are experimental and may change from perl version to version (and may soon
disappear altogether), but there are others that aren't so tricky. Some of these are extremely useful, so
let's dive in!

Inline Comments

We've already seen how we can use the /x modifier to add comments and whitespace to our regular
expressions. We can also do this with the (?#) pattern:

/"Today's (?# This is ignored, by the way)date:/

Unfortunately, there's no way to have parentheses inside these comments, since perl closes the comment
as soon as it sees a closing bracket. If you want to have longer or more detailed comments, you should
consider using the /x modifier instead.

Inline Modifiers

If you are reading patterns from a file or constructing them from inside your code, you have no way of
adding a modifier to the end of the regular expression operator. For example:

#!/usr/bin/perl
inline.plx
use warnings;
use strict;

my S$string = "There's more than One Way to do it!";

print "Enter a test expression: ";
my S$pat = <STDIN>;

chomp ($pat) ;

if ($string =~ /$pat/) {

print "Congratulations! 'S$pat' matches the sample string.\n";
} else {

print "Sorry. No match found for 'S$pat'";

172

Regular Expressions

If we run this and momentarily forgot how our sample string had been capitalized, we might get this:

>perl inline.plx

Enter a test expression: one way to do it!
Sorry. No match found for ‘one way to do it!
>

So how can we make this case-insensitive? The solution is to use an inline modifier, the syntax for which
is (?1). This will make the enclosing group match case-insensitively. Therefore we have:

>perl inline.plx

Enter a test expression: (?i)one way to do it!

Congratulations! '(?i)one way to do it!' matches the sample string.
>

If, conversely, you have a modifier in place that you temporarily want to get rid of, you can say, for
example, (?-1) to turn it off. If we have this:

/There's More Than ((?-1i)One Way) To Do It!/i;

the words 'One Way' alone are matched case-sensitively.

Note that you can also inline the /m, /s, and /x modifiers in the same way.

Grouping without Backreferences

Parentheses perform the function of grouping and populating the backreference variables. If you have a
portion of your match in parentheses, it will, if successful, be placed in one of the numbered variables.
However, there may be times when you only want to use brackets for grouping. For example, you're
expecting the first backreference to contain something important, but there may be some preceding text
in the way. You could have something like this:

/(X-)?Topic: (\w+)/;

You can't be certain whether your first defined backreference is going to end up in $1 or $2 — it
depends on whether the 'X-' part is present or not. For example, if we tried to match the string "Topic:
the weather", we'd find that $1 was left undefined. If we'd tried to do something with its contents, we'd
get the warning:

Use of uninitialized value in concatenation

Now that's not necessarily a problem here. After all, we'll find our word in $2 whether or not there's
anything preceding "Topic: ". Surely we can just be careful not to use $1?

But what if there's more than one optional field? Say we had an expression that left all but the 2" and 6"
groups optional. We then have to look in $2 for our first word and $6 for our second, while $1, $3, $4,
and $5 are left undefined. This really isn't good programming style and is asking for trouble! We really
shouldn't backreference fields if we don't need to.

173

Chapter 5

We can resolve this problem very simply, by adding the characters ? : like this:

/(?:X-)?Topic: (\w+)/;

This ensures that the first set of brackets will now group only and not fill a backreference variable. Our
word will always be put into $1.

Lookaheads and Lookbehinds

Sometimes you may want to say something along the lines of 'substitute the word "fish" with "cream",
"

but only if the next word is "cake".' You can do this very simply by saying:

s/fish cake/cream cake/

What does this do? The regular expression engine scans a referenced string, looking for a match on "fish
cake" On finding one, it substitutes the text "cream cake". Not too bad - it does the job. In this case it's
not too big a deal that it has to substitute five characters from each match with five identical characters
from the substitution string. It's not hard to see how this sort of inefficiency could really start to bog a
program down if we used substitutions excessively.

What we want is a way of putting an assertion into the match — a 'match the text only if the next word
is "cake"' clause — without actually matching the assertion itself. Having matched "fish", we really just
want to look ahead, to see if it says " cake" (and give the match a thumbs-up if it does), then forget
about "cake" altogether.

In life, that's not so easy. Fortunately in Perl we have an operator for just this sort of thing:

/fish(?= cake)/

will match exactly what we want - it looks for "fish", does a positive lookahead on" cake", and matches
"fish" only if that succeeds. For example:

#!/usr/bin/perl
lookl.plx
use warnings;
use strict;

$_ = "fish cake and fish pie";
print "Our original order was ", S_, "\n";

s/fish(?= cake) /cream/;
print "Actually, make that ", $_, " instead.\n";

will return

>perl look1.plx

Our original order was fish cake and fish pie
Actually, make that cream cake and fish pie instead.
>

We can also look ahead negatively, by using an exclamation mark instead of the equals sign:

/fish(?! cake)/

174

Regular Expressions

which will match "fish" only if the following word is not " cake". If we adapt lookl.plx like so:

#!/usr/bin/perl
look2.plx
use warnings;
use strict;

$_ = "fish cake and fish pie";
print "Our original order was ", $_, "\n";

s/fish(?! cake)/cream/;
print "Actually, make that ", $_, " instead.\n";

then sure enough, it's "fish pie" that gets matched this time and not "fish cake".

>perl look2.plx

Our original order was fish cake and fish pie
Actually, make that fish cake and cream pie instead.
>

Lookaheads are very powerful as you'll soon discover if you experiment a little, particularly when you
start to use less specific expressions (using metacharacters) with them.

However, we may also wish to look at the text preceding a matched pattern. We therefore have a
similar pair of lookbehind operators. We now use the < sign to point 'behind' the match, matching
"cake" only if "fish" precedesit. So to find all those boring old fish cakes, we use:

/ (?<=fish)cake/
but to find all the cream cakes and chocolate cakes, do this:

/(?<!fish)cake/
Let's have fish and chips instead of our fish cakes and cream doughnuts instead of cream cakes:

#!/usr/bin/perl
look3.plx
use warnings;
use strict;

S_ = "fish cake and cream cake";
print "Our original order was ", $_, "\n";

s/ (?<=fish)cake/and chips/;
print "No, wait. I'll have ", $_, " instead\n";

s/ (?<!fish)cake/slices/;
print "Actually, make that ", $_, ", will you?\n";

>perl look3.plx

Our original order was fish cake and cream cake

No, wait. I'll have fish and chips and cream cake instead
Actually, make that fish and chips and cream slices, will you?
>

175

Chapter 5

One very important thing to note about lookbehind assertions is that they can only handle fixed-width
expressions. So while you can use most of the metacharacters, indeterminate quantifiers like ., ?, and *
aren't allowed.

Backreferences (again)

Finally, in our tour of regular expressions, let's look again at backreferences. Suppose you want to find
any repeated words in a string. How would you do it? You might think about doing this:

if (/\b(\w+) $1\b/) {
print "Repeated word: $1\n";
1

Except, this doesn't work, because $1 is only set when the match is complete. In fact, if you have
warnings turned on, you'll be alerted to the fact that $1 is undefined every time. In order to match
while still inside the regular expression, you need to use the following syntax:

if (/\b(\w+) \1\b/) {
print "Repeated word: $1\n";
1

However, when you're replacing, you'll get a warning if you try and use the \ <number> syntax on the
wrong side. It'll work, but you'll be told "\1 better written as $1"

Summary

Regular expressions are quite possibly the most powerful means at your disposal of looking for patterns
in text, extracting sub-patterns and replacing portions of text. They're the basis of any text shuffling you
do in Perl, and they should be your first port of call when you need to do some string manipulation.

In this chapter, we've seen how to match simple text, different classes of text, and then different
amounts of text. We've also seen how to provide alternative matches, how to refer back to portions of
the match, and how to substitute and transliterate text.

The key to learning and understanding regular expressions is to be able to break them down into their
component parts and unravel the language, translating it piecewise into English. Once you can fluently
read out the intention of a complex regular expression, you're well on your way to creating powerful
matches of your own.

You can find a summary of regular expression syntax in Appendix A. Section 6 of the Perl FAQ (at
www.perl.com) contains a good selection of regexp hints and tricks.

176

Regular Expressions

Exercises

1.

Write out English descriptions of the following regular expressions, and describe what the
operations actually do:

$var =~ /(\w+)$/
$code !~ /*#/
s/#{2,}/#/9

Using the contents of the gettysburg.txt file (provided in the download for Chapter 6), use
regular expressions to do the following, and print out the result. (Tip: use a here-document to
store the text in your file):

a. Count the number of occurences of the word 'we'.
b. Reformat the text, so that each sentences is displayed as a separate paragraph.
C. Check that there are no multiple spaces in the text, replacing any with single spaces.

When we use groups, the // operator returns a list of all the text strings that have been
matched. Modify our example program matchtest2.plx, so that it produces its output from this
list, rather than using special variables.

If we want to sort a list of words into alphabetical order, one simple and quite effective way is
to write a program that performs a 'bubble sort': working through the whole list, it compares
each pair of consecutive words; if it finds them in the wrong order, it swaps them over. On
reaching the end of the list it repeats the process — unless the previous scan didn't yield any
swaps, in which case the list is already properly ordered. Use regular expressions along with
the other techniques you've seen so far, and write this program so that it will work with a list
of words separated by newline characters. One small hint - the pos() function may come in
useful here. You can use this to adjust the position of the \G boundary, for example: pos($var)
= 10 will set it just after the tenth character in $var. A subsequent global search will therefore
start from this point.

177

Source code available at : www.wrox.com
Peer discussion at : lamplists.com

Also from Wrox

2 £k
o ImAA™
7 TVPHIR

FROTISSIONAL PROFISSIONAL

Perl Per

Programming Development

W AT

BEGINNING

Perl

http:/imwww.wrox.com/books/1861003145.htm

lamplists.com

The Open Source Programmer’s Res ource Centre

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

Files and Data

We're starting to write real programs now, and real programs need to be able to read and write files to
and from your hard drive. At the moment, all we can do is ask the user for input using <STDIN> and
print data on the screen using print. Pretty simple stuff, yes, but these two ideas actually form the basis
of a great deal of the file handling you'll be doing in Perl.

What we want to do in this chapter is extend these techniques into reading from and writing to files, and
we'll also look at the other techniques we have for handling files, directories, and data.

Filehandles

First though, let's do some groundwork. When we're dealing with files, we need something that tells Perl
which file we're talking about, which allows us to refer to and access a certain file on the disk. We need
a label, something that will give us a 'handle' on the file we want to work on. For this reason, the
'something' we want is known as a filehandle.

We've actually already seen a filehandle: the STDIN of <STDIN>. This is a filehandle for the special file
'standard input', and whenever we've used the idiom <STDIN> to read a line, we've been reading from
the standard input file. Standard input is the input provided by a user either directly as we've seen, by
typing on the keyboard, or indirectly, through the use of a 'pipe' that (as we'll see) pumps input into the
program.

As a counterpart to standard input, there's also standard output: STDOUT. Conversely, it's the output we
provide to a user, which at the moment we're doing by writing to the screen. Every time we've used the
function print so far, we've been implicitly using STDOUT :

print STDOUT "Hello, world.\n";

is just the same as our original example in Chapter 1. There's one more 'standard' filehandle: standard
error, or STDERR, which is where we write the error messages when we die.

Chapter 6

Every program has these three filehandles available, at least at the beginning of the program. To read
and write from other files, though, you'll want to open a filehandle of your own. Filehandles are usually
one-way: You can't write to the user's keyboard, for instance, or read from his or her screen. Instead,
filehandles are open either for reading or for writing, for input or for output. So, here's how you'd open
a filehandle for reading:

open FH, S$filename or die $!;

The operator for opening a filehandle is open, and it takes two arguments, the first being the name of
the filehandle we want to open. Filehandles are slightly different from ordinary variables, and they do
not need to be declared with my, even if you're using strict as you should. It's traditional to use all-
capitals for a filehandle to distinguish them from keywords.

The second argument is the file's name - either as a variable, as shown above, or as a string literal,

like this:
open FH, 'output.log' or die $!;

You may specify a full path to a file, but don't forget that if you're on Windows, a backslash in a double-
quoted string introduces an escape character. So, for instance, you should say this:

open FH, 'c:/test/news.txt' or die $!;
rather than:
open FH, "c:\test\news.txt" or die $!;

as \t in a double-quoted string is a tab, and \n is a new line. You could also say
"c:\\test\\news.txt" but that's a little unwieldy. My advice is to make use of the fact that
Windows allows forward slashes internally, and forward slashes do not need to be escaped:
"c:/test/news.txt" should work perfectly fine.

So now we have our filehandle open — or have we? As I mentioned in Chapter 4, the X or Y style of
conditional is often used for ensuring that operations were successful. Here is the first real example of
this.

When you're dealing with something like the file system, it's dangerous to blindly assume that
everything you are going to do will succeed. A file may not be present when you expect it to be, a file
name you are given may turn out to be a directory, something else may be using the file at the time, and
so on. For this reason, you need to check that the open did actually succeed. If it didn't, we die, and
our message is whatever is held in $!.

What's $1? This is one of Perl's special variables, designed to give you a way of getting at various things
that Perl wants to tell you. In this case, Perl is passing on an error message from the system, and this
error message should tell you why the open failed: It's usually something like 'No such file or directory'
or 'permission denied'.

There are special variables to tell you what version of Perl you are running, what user you are
logged in as on a multi-user system, and so on. Appendix B contains a complete description of
Perl's special variables.

180

Files and Data

So, for instance, if we try and open a file that is actually a directory, this happens:

#!/usr/bin/perl

badopen.plx

use warnings;

use strict;

open BAD, "/temp" or die "We have a problem: $!";

>perl badopen.plx

Name "main::BAD" used only once: possible typo at badopen.plx line 5
We have a problem: Permission denied at badopen.plx line 5.

>

The first line we see is a warning. If we were to finish the program, adding further operations on
BAD (or get rid of use warnings), it wouldn't show up.

You should also note that if the argument you give to die does not end with a new line, Perl
automatically adds the name of the program and the location that had the problem. If you want to avoid
this, always remember to put new lines on the end of everything you die with.

Reading Lines

Now that we can open a file, we can then move on to reading the file one line at a time. We do this by
replacing the STDIN filehandle in <STDIN> with our new filehandle, to get <FH>. Just as <STDIN>
reads a single line from the keyboard, <FH> reads one line from a filehandle. This <...> construction is
called the diamond operator, or readline operator:

Try It Out : Numbering Lines

We'll use the <FH> construct in conjunction with a while loop to go through each line in a file. So
then, to print a file with line numbers added, you can say something like this:

#!/usr/bin/perl
nl.plx

use warnings;
use strict;

open FILE, "nlexample.txt" or die $!;
my S$lineno = 1;

while (<FILE>) {
print $lineno++;
print ": $_";

1
Now, create the file nlexample. txt with the following contents:

One day you're going to have to face
A deep dark truthful mirror,

And it's gonna tell you things that I still
Love you too much to say.

####### Elvis Costello, Spike, 1988 #######

181

Chapter 6

This is what you should see when you run the program:
> perl nl.plx

1: One day you're going to have to face

2: A deep dark truthful mirror,

3: And it's gonna tell you things that | still

4: Love you too much to say.

5. ####### Elvis Costello, Spike, 1988 #####HH#
>

How It Works

We begin by opening our file and making sure it was opened correctly:
open FILE, "nlexample.txt" or die $!;

Since we're expecting our line numbers to start at one, we'll initialize our counter:
my $lineno = 1;

Now we read each line from the file in turn, which we do with a little magic:

while (<FILE>) {
This syntax is actually equivalent to:

while (defined ($_ = <FILE>)) {

That is, we read a line from a file and assign it to $_, and we see whether it is defined. If it is, we do
whatever's in the loop. If not, we are probably at the end of the file so we need to come out of the loop.
This gives us a nice, easy way of setting $_ to each line in turn.
As we have a new line, we print out its line number and advance the counter:

print $lineno++;
Finally, we print out the line in question:

print ": $_";

There's no need to add a newline since we didn't bother chomping the incoming line. Of course, using a
statement modifier, we can make this even more concise:

open FILE, "nlexample.txt" or die $!;
my $lineno = 1;

print $lineno++, ": $_" while <FILE>

But since we're going to want to expand the capabilities of our program -adding more operations to the
body of the loop — we're probably better off with the original format.

182

Files and Data

Creating Filters

As well as the three standard filehandles, Perl provides a special filehandle called ARGV. This reads the
names of files from the command line and opens them all, or if there is nothing specified on the
command line, it reads from standard input. Actually, the @ARGV array holds any text after the
program's name on the command line, and <ARGV> takes each file in turn. This is often used to create
filters, which read in data from one or more files, process it, and produce output on STDOUT.

Because it is used so commonly, Perl provides an abbreviation for <ARGV>: an empty diamond, or <>.
We can make our line counter a little more flexible by using this filehandle:

#!/usr/bin/perl
nl2.plx

use warnings;
use strict;

my $lineno = 1;

while (<>) {
print $lineno++;
ozl Tg § Ty

}

Now Perl expects us to give the name of the file on the command line:

> perl nl2.plx nlexample.txt

1: One day you're going to have to face

2: A deep dark truthful mirror,

3: And it's gonna tell you things that | still

4: Love you too much to say.

5. ####### Elvis Costello, Spike, 1988 #######
>

We can actually place a fair number of files on the command line, and they'll all be processed together.
For example:

> perl nl2.plx nlexample.txt nl2.plx

1: One day you're going to have to face
2: A deep dark truthful mirror,

3: And it's gonna tell you things that | still
4: Love you too much to say.

5. ##t#### Elvis Costello, Spike, 1988 ##t###t#
6: #!/usr/bin/perl

7: # nl2.plx

8: use warnings;

9: use strict;

10:

11: my $lineno = 1;

12:

13: while (<>) {

14: print $lineno++;
15: print": $_";
16:}

If we need to find out the name of the file we're currently reading, it's stored in the special variable
$ARGV. We can use this to reset the counter when the file changes.

183

Chapter 6

Try it out : Numbering Lines in Multiple Files

By detecting when $ARGV changes, we can reset the counter and display the name of the new file:

#!/usr/bin/perl
nl3.plx

use warnings;
use strict;

my S$lineno;
my Scurrent = "";

while (<>) {
if ($current ne $ARGV)
Scurrent = SARGV;
print "\n\t\tFile: $ARGV\n\n";
$lineno=1;

print $lineno++;
print ": $_";

}

And now we can run this on our example file and itself:
> perl nl3.plx nlexample.txt nl3.plx
File: nlexample.txt

1: One day you're going to have to face

2 A deep dark truthful mirror,

3: And it's gonna tell you things that | still

4 Love you too much to say.

5. ###### Elvis Costello, Spike, 1988 #######

File: nI3.plx

: #!/usr/bin/perl
1 # nl3.plx

: use warnings;
: use strict;

: my $lineno;
: my $current ="";

©CONOUAWNER

: while (<>) {

10: if ($current ne $ARGV) {
11: $current = SARGV;,
12: print "\n\t\tFile: $ARGV\n\n";
13: $lineno=1;

14: '}

15:

16: print $lineno++;

17: print": $_";

18:}

>

184

Files and Data

How It Works

This is a technique you'll often see in programming to detect when a variable has changed. $current
is meant to contain the current value of $ARGV. But if it doesn't, $ARGV has changed:

if ($current ne SARGV)
so we set Scurrent to what it should be - the new value - so we can catch it again next time:
Scurrent = SARGV;
We then print out the name of the new file, offset by new lines and tabs:
print "\n\t\tFile: $ARGV\n\n";
and reset the counter so we start counting the new file from line one again.

$lineno=1;

}

As with most tricks like these, it's actually really simple to code it once you've seen how it's coded. The
catch is having to solve problems like these for the first time by yourself.

Reading More than One Line

Sometimes we'll want to read more than one line at once. When you use the diamond operator in a
scalar context, as we've been doing so far, it'll provide you with the next line. However, in a list context,
it will return all of the remaining lines. For instance, you can read in an entire file like this:

open INPUT, "somefile.dat" or die $!;
my @data;
@data = <INPUT>;

This is, however, quite memory-intensive. Perl has to store every single line of the file into the array,
whereas you may only want to be dealing with one or two of them. Usually, you'll want to step over a
file with a while loop as before. However, for some things, an array is the easiest way of doing things.
For example, how do you print the last five lines in a file?

The problem with reading a line at a time is that you don't know how much text left you've got to read.
You can only tell when you run out of data, so you'd have to keep an array of the last five lines read and
drop an old line when a new one comes in. You'd do it something like this:

#!/usr/bin/perl
tail.plx

use warnings;
use strict;

open FILE, "gettysburg.txt" or die $!;
my @last5;

while (<FILE>) {
push @last5, $_; # Add to the end
shift @last5 if @last5 > 5; # Take from the beginning

}

print "Last five lines:\n", @last5;

185

Chapter 6

And that's exactly how you'd do it if you were concerned about memory use on big files. Given a
suitably primed gettysburg. txt, this is what you'd get:

>perl tail.plx

Last five lines:

- that from these honored dead we take increased devotion to that cause for
which they gave the last full measure of devotion - that we here highly resolve
that these dead shall not have died in vain, that this nation under God shall
have a new birth of freedom, and that government of the people, by the people,
for the people shall not perish from the earth.

>

However, if memory wasn't a problem, or you knew you were going to be primarily dealing with small
files, this would be perfectly sufficient:

#!/usr/bin/perl
tail2.plx
use warnings;
use strict;

open FILE, "gettysburg.txt" or die $!;
my @speech = <FILE>;

print "Last five lines:\n", @speech[-5 ... -1];

What's My Line (Separator)?

So far we've been reading in single lines — a series of characters ending in a new line. One of the other
things we can do is to alter Perl's definition of what separates a line.

The special variable $/ is called the 'input record separator'. Usually, it's set to be the newline
character, \n, and each 'record' is a line. We might say more correctly that <FILE> reads a single
record from the file. Furthermore, chomp doesn't just remove a trailing new line - it removes a trailing
record separator. However, we can set this separator to whatever we want, and this will change the way
Perl sees lines. So if, for instance, our data was defined in terms of paragraphs, rather than lines, we
could read one paragraph at a time by changing $/.

Try It Out : Fortune Cookie Dispenser

The fortune cookies file for the UNIX fortune program — as well as some 'tagline' generators for e-
mail and news articles — consist of paragraphs separated by a percent sign on a line of its own, like this:

We all agree on the necessity of compromise. We just can't agree on
when it's necessary to compromise.
-- Larry Wall

o
2

All language designers are arrogant. Goes with the territory...
-- Larry Wall

QO ov°

h, get a hold of yourself. Nobody's proposing that we parse English.
-- Larry Wall

= oo

ow I'm being shot at from both sides. That means I *must* be right.
-- Larry Wall

o°

186

Files and Data

Save this as quotes.dat and then write a program to pick a random quote from the file:

#!/usr/bin/perl
fortune.plx
use warnings;
use strict;

$/ = "\n%\n";

open QUOTES, "quotes.dat" or die $!;
my @file = <QUOTES>;

my S$random = rand(@file) ;
my Sfortune = $file[Srandom];

chomp $fortune;

print $fortune, "\n";
This is what you get (or might get — it is random, after all):

> perl fortune.plx

Now I'm being shot at from both sides. That means | *must* be right.
-- Larry Wall

>

How It Works

Once we've set our record separator appropriately, most of the work is already done for us. This is how
we change it:

$/ = "\n%\n";

Now a 'line' is everything up to a newline character and then a percent sign on its own and then another
new line, and when we read the file into an array, it ends up looking something like this:

my @file = (
"We all agree on the necessity of compromise. We just can't agree on
when it's necessary to compromise.\n -- Larry Wall\n%\n",
"All language designers are arrogant. Goes with the territory...\n -- Larry

Wall\n%\n",
)i
We want a random line from the file. The operator for this is rand:

my S$random = rand(@file) ;
my Sfortune = $file[Srandom] ;

rand produces a random number between zero and the number given as an argument. What's the
argument we give it? As you know, an array in a scalar context gives you the number of elements in the
array. rand actually generates a fractional number, but when we look it up in the array, as we've seen
in Chapter 3, Perl ignores the fractional part. Actually, it's more likely that in existing code you'll see
those two statements combined into one, like this:

my Sfortune = $filelrand @filel;

187

Chapter 6

Now we have our fortune, but it still has the record separator on the end, so we need to chomp to
remove it:

chomp $fortune ;

Finally, we can print it back out, remembering that we need to put a new line on the end:

print $fortune, "\n'";

Reading Paragraphs at a Time

If you set the input record separator, $/, to the empty string, "", Perl reads in a paragraph at a time.
Paragraphs must be separated by a completely blank line, with no spaces on it at all. Of course, you can
use split or similar to extract individual lines from each paragraph. This program creates a 'paragraph
summary' by printing out the first line of each paragraph in a file:

Try It Out : Paragraph Summariser

We'll use split to get at the first line in each paragraph, and we'll number the paragraphs:

#!/usr/bin/perl
summary.plx
use warnings;
use strict;

$/ = nn,;

my $counter = 1;

while (<>) {
print Scounter++, ":";
print ((split /\n/, $_) [0]);
print "\n";

When run on the beginning of this chapter, it gives the following output:

> perl summary.plx chapter6

1:We're starting to write real programs now, and real programs
2:What we want to do in this chapter is extend these techniques
3:First though, let's do some groundwork. When we're dealing
4:We've actually already seen a filehandle: the STDIN of <STDIN>.
5:As a counterpart to standard input, there's also standard

6:Every program has these three filehandles available, at least

>

We're assuming here that each line in the paragraph ends with a newline character rather than wrapping
around to the next line. In the latter case, our program would return each of the paragraphs in their
entirety, because split is being based on \n.

How It Works

This time we're reading from files specified on the command line, so we use the diamond operator. We
start by putting the input record separator into paragraph mode:

188

Files and Data

$/ = nn,

For every paragraph we read in, we print a new number, then get the first line of the paragraph:
print ((split /\n/, $_)[0]1);

First we split the paragraph into lines, by splitting around a newline character. Since split just
produces a list, we can take the first element of this list in the same way as any other.

Reading Entire Files

Finally, you may want to read a whole file into a single string. You could do this easily enough using
join, but Perl provides another special value of $/ for this. If we want to say that there is no record
separator, we set $/ to the undefined value. So, for instance, to read the whole of the above quotes file
into a variable, we do this:

$/ = undef;
open QUOTES, "quotes.dat" or die $!;
my $file = <QUOTES>;

You may also see the form undef $/ doing the same job: the undef operator gives a variable the
undefined value.

Writing to Files

We've been using the print operator to print a list to standard output. We'll also use a different form
of the print operator to print to a file. However, as we mentioned above, files are usually open either
for reading or for writing — not both. We've been opening files and reading from them, but how do we
open them for writing?

Opening a File for Writing

We actually use a syntax that's used by the shell for writing to files. In Windows and UNIX, if we want
to put standard output into a file, we add the operator > and the file name to the end of the command.
For example, saying something like this:

> perl summary.plx chapteré > summary6
will create a file called summaryé, which contains the following text:

1:We're starting to write real programs now, and real programs
2:What we want to do in this chapter is extend these techniques
3:First though, let's do some groundwork. When we're dealing
4:We've actually already seen a filehandle: the STDIN of <STDIN>.
5:As a counterpart to standard input, there's also standard

6:Every program has these three filehandles available, at least

189

Chapter 6

Now, to open a file for writing, we do this:
open FH, "> $filename" or die $!;
This will either create a new file or completely wipe out the contents of an already existing file and let

us start writing from the beginning. Don't use this on files you want to keep! If we want to add things to
the end of an existing file, use two arrows, like this:

open FH, ">> $filename" or die $!;
There's no easy way of adding or changing text at the beginning or middle of a file. The typical way to
do this is to read in the original and write the changed data to another file. We'll see shortly how this is
done.
Similarly, you can redirect data to a program's standard input by using the left arrow, like this:

>perl summary.plx < chapter6.txt
As you've probably guessed, this means you can open files for input by saying:

open FH, "< $filename";
This is exactly the same as open FH, $filename;as we've used previously; it's just a little more

explicit.

Writing on a Filehandle

We're now ready to write the file, which we'll do by using a special form of the print operator.
Normally, to print things out from the screen, we say this:

print Iist;
When we want to write to a file, we'll use this instead:
print FH list;

So, for instance, here's one way of copying a file:

Try It Out : File Copying

We'll read in a file one line at a time, writing each line onto the new file:

#!/usr/bin/perl
copy.plx

use warnings;
use strict;

my S$Ssource = shift @ARGV;
my $destination = shift @ARGV;

190

Files and Data

open IN, $source or die "Can't read source file $source: $!\n";
open OUT, ">$destination" or die "Can't write on file $destination: $!\n";

print "Copying $source to Sdestination\n";

while (<IN>) {
print OUT $_;
1

Now there isn't much to see in this program, but let's run it anyway:

> perl copy.plx gettysburg.txt speech.txt
Copying gettysburg.txt to speech.txt
>

How It Works
We get the name of the file to copy from the command line:

my S$source = shift @ARGV;
my Sdestination = shift @ARGV;

The command line arguments to our program are in the @ARGV array, as we saw in Chapter 4, and we
use shift (which pops the top element of an array into a variable) to get an element out. We could
quite easily have said this:

my $source = SARGVI[O0];
my S$destination = $ARGVI[1];

However, shift is slightly more common. Next, open our two files:

open IN, S$source or die "Can't read source file S$source: $!\n";
open OUT, "> $destination" or die "Can't write on file $destination: $!\n";

The first of those lines should be familiar. The second, meanwhile, adds the arrow to show we want to
write on that file. It's a double-quoted string so, as always, the destination file name is interpolated.
Notice that we're taking care to check if the files can be opened for reading and writing; it is essential to
let the user know if, for example, they do not have permission to access a certain file, or the file does
not exist. There's never really good reason not to do this.

The copying procedure is simple enough: read a line from the source file, and then write it to
the destination:

while (<IN>) {
print OUT $_;
}

<IN> returns a list of as many lines as it can in list context. So the while loop steps through this list,
copies each line to memory and printing to the destination file OUT, one at a time for each cycle. So
why don't we just say:

print OUT <IN>;

191

Chapter 6

The trouble is, that's not very memory conscious. Perl would have to read in the whole file at once in
order to construct the list and only then pass it out to print. For small files, this is fine. On the other
hand, if we thought we could get away with reading the whole file into memory at one go, we also could
do it this way:

$/ = undef;
print OUT <IN>;

This will read the whole file as a single entry, which is faster for sure, since Perl won't have to think
about separating each line and building up a list, but still only suited to small files. Since we want to
allow for large files, too, we'll stick with our original technique.

Let's see another example. This time, instead of writing the file straight out, we'll sort the lines in it first.
In this case, we can't avoid reading in every line into memory. We need to have all the lines in an array
or something similar. Let's see how we'd go about doing this.

Try It Out : File Sorter

If you've ever needed to sort the lines in a file, this is for you. The program works in three stages:

QO First, open the files that the user specifies.
Q Next, read in the file and sort it.

Q Finally, write the sorted lines out.

Here's the full listing:

#!/usr/bin/perl
sort.plx

use warnings;
use strict;

my $input = shift;

my Soutput = shift;

open INPUT, S$input or die "Couldn't open file $input: $!\n";

open OUTPUT, "s>Soutput" or die "Couldn't open file $input: $!\n";

my @file = <INPUT>;
@file = sort efile;

print OUTPUT efile;

Now if we have the following file, sortme. txt:

Well, I finally found someone to turn me upside-down

And nail my feet up where my head should be

If they had a king of fools then I could wear that crown
And you can all die laughing, because I'd wear it proudly

192

Files and Data

We can run our program like this:

>perl sort.plx sortme.txt sorted.txt
>

And we'll end up with a file, sorted. txt:

And nail my feet up where my head should be

And you can all die laughing, because I'd wear it proudly
If they had a king of fools then I could wear that crown
Well, I finally found someone to turn me upside-down

How It Works

The first stage, that of opening the files, is very similar to what we did before, with one small change:

my $input = shift;

my $output = shift;

open INPUT, S$input or die "Couldn't open file $input: $!\n";

open OUTPUT, "s>Soutput" or die "Couldn't open file Sinput: $!\n";

We don't tell Perl which array to shift, so it assumes we want @ARGV, which is just as well, because in
this case, we do!

Getting the file sorted is a simple matter of reading it into an array and calling sort on the array:

my @file = <INPUT>;
@file = sort e@file;

In fact, we could just say my @file = sort <INPUT>; and that would be slightly more efficient.
Perl would only have to throw the list around once.

Finally, we write the sorted array out:
print OUTPUT efile;

We could even do all this in one line, without using an array:
print OUTPUT sort <INPUT>;

This is arguably the most efficient solution, and you might think it's relatively easy to understand. What
are we doing after all? We're printing the sorted input file on the output file. But it's the least extensible
way of writing it. We can't change any of the stages when it's written like that.

What could we change? Well, remember that there are at least two ways to sort things: sort usually
does an ASCII-order sort, but this doesn't help us when we're sorting columns of numbers. To do that,

we need to use the numeric comparison operator, <=>, when we're sorting. As we saw in Chapter 3, the
syntax would be something like this:

@sorted = sort { $a <=> $b } @unsorted;

193

Chapter 6

Let's now extend our sort program to optionally sort numerically. Add the following lines:

#!/usr/bin/perl
sort2.plx
use warnings;
use strict;

my Snumeric = 0;

my $input = shift;

if ($input eqg "-n") {
Snumeric = 1;
Sinput = shift;

my Soutput = shift;

open INPUT, S$input or die "Couldn't open file $input: $!\n";
open OUTPUT, "s>Soutput" or die "Couldn't open file $input: $!\n";

my @file = <INPUT>;
if ($numeric)

@efile = sort { $%a <=> $b } efile;
} else

@file = sort efile;

print OUTPUT efile;

What have we done? We've declared a flag, Snumeric, which will tell us whether or not we're to do a
numeric sort. If the first thing we see on the command line after our program's name is the string -n,
then we're doing a numeric sort, and so we set our flag. Now that we've dealt with the -n, the input and
output are the next two things on the command line. So we have to shift again.

Now that we've read the file in, we can choose which way we want to sort it: either normally, if -n was
not given, or numerically if it was. If we have a file containing a list of numbers, called sortnum. txt,
we can see the difference between the two methods:

>perl sort2.plx sortnum.txt sorted.txt

will write

121
1324515
13461
7446
576124

to the file sorted. txt, while:

>perl sort2.plx —n sortnum.txt sorted.txt

gives us:

121
7446
13461
576124
1324515

Try expanding the one-line version of sort .plx to match that.

194

Files and Data

Accessing Filehandles

Before we leave this program, there's one more thing we should do. One piece of programming design
UNIX encourages is that it's better to string together lots of little things than deal with a huge program.
Houses are built from individual bricks, not single lumps of rock. This is a design principle that's useful
everywhere, not just on UNIX, and so let's try and make use of it here.

UNIX invented the use of pipesto connect programs. Perl supports these, and we'll see how they work
later on. To make use of them, though, our program must be able to read lines from the standard input
and put out sorted lines to the standard output in the event that no parameters were specified. Let's
modify our program to do this:

Try It Out : Sort As A Filter

To see how many parameters have been passed, we'll test to see if $input and $Soutput are defined
after we shift them:

#!/usr/bin/perl
sort3.plx
use warnings;
use strict;

my Snumeric = 0;

my $input = shift;

if (defined $input and $input eq "-n") {
Snumeric = 1;
$input = shift;

}

my $output = shift;

if (defined $input) ({

open INPUT, S$input or die "Couldn't open file $input: $!\n";
} else {

*INPUT = *STDIN;
}

if (defined $output)

open OUTPUT, ">$output" or die "Couldn't open file $input: $!\n";
} else {

*QUTPUT = *STDOUT;
1

my @file = <INPUT>;
if ($numeric) {
@file = sort { $a <=> $b } efile;
} else {
@file = sort @file;
1

print OUTPUT efile;

195

Chapter 6

This time, we'll give no parameters but instead pass data on the command-line using the left arrow:

> perl sort.plx < sortme.txt

And nail my feet up where my head should be

And you can all die laughing, because I'd wear it proudly
If they had a king of fools then | could wear that crown
Well, | finally found someone to turn me upside-down

>

As you can see, the data ends up on standard output. But how?

How It Works

The key magic occurs in the following lines:

if (defined $input)

open INPUT, S$Sinput or die "Couldn't open file $input: $!\n";
} else {

*INPUT = *STDIN;

If there's an input file name defined, we use that. Otherwise, we do this strange thing with the stars.
What we're doing is telling Perl that INPUT should be the same filehandle as standard input. If we
wanted to set array @a to be the same as array @b, we'd say @a = @b; With filehandles, we can't
just say INPUT = STDIN; we have to put a star before their names. From now on, everything that
is read from INPUT will actually be taken from STDIN. Similarly, everything that is written to
OUTPUT goes to STDOUT:

What the star —or, to giveit its proper name, the glob — does is actually very subtle:
*a = *b makeseverything called a — that is $a, @a, %a, and thefilehandle called a —
into an alias for everything called b. Thisis morethan just setting them to the same
value — it makes them the same thing. Now everything that alters $a also alters $b

and vice versa. That'swhy it's a good convention to keep filehandles purely upper-
case. That keepsthem distinct from other variables, meaning you won't inadvertently
aliastwo variables.

The reason we have to do this to manipulate filehandles is because there isn't a 'type symbol' for them
as there is for scalars, arrays, and hashes. This is now seen as a mistake, but there's little we can do
about it at this stage.

Writing Binary Data

So far, we've been dealing primarily with text files: speeches, Perl programs, and so on. When we get to
data that's designed for computers to read — binary files - things change somewhat. The first problem is
the newline character, \n. This is actually nothing more than a convenient fiction, allowing you to
denote a new line using ASCII symbols on whatever operating system you're working with. In truth,
different operating systems have differing ideas about what a newline really is when written to a file.

On UNIX, it really is \n — character number 10 in the ASCII sequence. When a Macintosh reads a file,
the lines are separated by character 13 in the ASCII sequence, which you can generate by saying \r. A
Macintosh version of Perl, then, will convert \r on the disk to \n in the program when reading in from
a file, then write \ r to the disk in place of \n when writing out to a file.

196

Files and Data

Windows, on the other hand, is different again. The DOS family of operating systems use \r\n on the
disk to represent a new line. Therefore Perl has to silently drop or insert \ r in the relevant places to
make it look as if you're dealing with \n all the time.

When you're dealing with text, this is exactly what you want to happen. Perl's idea of a newline needs to
correspond with the native operating system's idea of a newline — whatever that may be. However, with
binary files, where every byte is important, you don't want Perl fiddling with the data just because it
looks like the end of a line of text. You want those \rs to stay where they are!

Worse still, on DOS, Windows, and friends, character 26 is seen as the end of a file. Perl will stop
reading once it sees this character, regardless of whether there's any data to follow.

To get a round both these problems, you need to tell Per]l when you're reading from and writing to
binary files, so that it can compensate. You can do this by using the binmode operator:

binmode FILEHANDLE;

To ensure your files are read and written correctly, always use binmode on binary files, never on
text files.

Selecting a Filehandle

Normally, when you print, the data goes to the STDOUT filehandle. To send it somewhere else, you
say print FILEHANDLE ...; However, if you're sending a lot of data to a file, you might not want
to have to give the filehandle every time, it would be useful if it were possible to change the default
filehandle. You can do this very simply by selecting the filehandle:

select FILEHANDLE;
This will change the default location for print to FILEHANDLE. Remember to set STDOUT back

when you're done. A good use of this is to optionally send your program's output to a log file instead
of the screen:

Try It Out : Selecting A Log File

This program does very little of interest; however, it does it using a log file. We'll use select to control
where its output should go.

#!/usr/bin/perl
#logfile.plx
use warnings;
use strict;

my $logging = "screen"; # Change this to "file" to send the log to a file!

if ($logging eq "file") {
open LOG, "> output.log" or die $!;

select LOG;
1
print "Program started: ", scalar localtime, "\n";
sleep 30;
print "Program finished: ", scalar localtime, "\n";

select STDOUT;

197

Chapter 6

As it is, the program will print something like this:

> perl logfile.plx
Program started: Sun Apr 22 14:17:07 2000

Program finished: Sun Apr 22 14:17:37 2000
>

However, if we change line 6 to this:
my $logging = "file";
we apparently get no output at all:

> perl logfile.plx
>

However, we'll find the same style output in the file output . log. How?

How It Works

Since the value of $1ogging has changed, it's reasonable to assume that the difference is due to
something acting on $1ogging - Perl is nice and deterministic like that. So, sure enough, on line 8,
$logging gets examined:

if ($logging eq "file") {

If $1ogging has the value £ile, which it does now:
open LOG, "> output.log" or die $!;

We open a filehandle for writing, on the file output . log:
select LOG;

Then we select that filehandle. Now any print statements that don't specify which filehandle to
print to go out on LOG. If we wanted to write on standard output from now on, we'd have to write:

print STDOUT "This goes to the screen.\n";

Or, alternatively, we could select standard output again:
select STDOUT;

How did we get Perl to print out the time? The key is in this line:
print "Program started: ", scalar localtime, "\n";

localtime is a function that returns the current time in the local time zone. Ordinarily, it returns a list
like this:

198

Files and Data

($sec, Smin, Shour,
Sday_of_month,

Smonth_minus_one,
Syear_minus_nineteen_hundred,
Sday_of_week,

Sday_of_year,
$is_this_daylight_savings_time)

Right now it would return:

53, 47, 14, (It's 14:47:53.)

22, (It's the 22™)

3, (April is the third month of the year, counting from the zeroth)

100, (It's the year 2000.)

6, (It's a Saturday. Sunday is the first day of the week, day zero.)

112, (It's the 112" day of the year, counting from the zeroth. January the first is day zero.)
0 (It's not daylight savings time right now.)

Always be car eful when dealing with 1ocaltime. Hopefully by now you see the merit
in counting from zero when you're dealing with computers, but it can sometimes catch
you out —the month of theyear, day of the week and day of the year start from zero,
but the day of the month starts from one.

Thankfully, it's now a lot harder to imagine that the fifth element returned is the year. Last year
(localtime) [5] returned 99, which some foolhardy programmers assumed was the last two digits of
the year. Fortunately, Perl turned out to be perfectly Y2K compliant, unfortunately, those programmers
weren't. (localtime) [5] is (and has always been) the year minus 1900. If you find this weird and
inconsistent, you can blame it all on the fact that Perl bases its idea on how to represent time from C,
which first perpetrated this insanity.

In scalar context however, localtime provides a much easier value to deal with: It's a string
representing the current time in a form designed for human consumption. This allows us to easily
produce timestamps to mark when operations happened. However, we must remember that since
print takes a list, we need to explicitly tell localtime to be in scalar context in order to force it to
return this string.

Buffering
Try this little program:

#!/usr/bin/perl
#time.plx

use warnings;
use strict;

for (1...20) {
oredmiz U, Up
sleep 1;

}

print "\n";

199

Chapter 6

You'd probably expect it to print twenty dots, leaving a second's gap between each one — on Windows
with ActiveState Perl, that's exactly what it does. However, this is something of an exception. On most
other operating systems, you'll have to wait for twenty seconds first, before it prints all twenty at once.

So what's going on? Operating systems often won't actually write something to (or read something from)
a filehandle until the end of the line. This is to save doing a lot of short, repetitious read/write
operations. Instead, they keep everything you've written queued up in a buffer and access the filehandle
once only.

However, you can tell Perl to stop the OS doing this, by modifying the special variable $ |. If this is set
to zero, which it usually is, Perl will tell the operating system to use output buffering if possible. If it's set
to one, Perl turns off buffering for the currently selected filehandle.

So, to make our program steadily print out dots — as you might do to show progress on a long operation
- we just need to set $ | to 1 before we do our printing:

#!/usr/bin/perl
#time2.plx

use warnings;
use strict;

$| = 1;

for (1...20) {
print ".";
sleep 1;

}

print "\n";

If you need to turn off buffering when writing to a file, be sure to select the appropriate filehandle
before changing $ |, possibly selecting STDOUT again when you've done so.

Permissions

Before going on, let's look briefly at the issue of file permissions. If you use UNIX or other multi-user
systems, you'll almost certainly be familiar with the very specific access controls that can be imposed,
determining who's allowed to do what with any given file or directory. It's most likely that a file or
directory on such a system will have at least three sets of permissions for each of three sets of users:

Q The file owner,
Q The group with which the owner is associated, and

0 Everyone else on the system.

Each of these can have 'read', 'write' and 'execute' permissions assigned. You may have seen these
displayed along with other file information as a sequence like:

ArwXTrwXrwx

which denotes full access on a directory (denoted by the prefix 'd") for all users or:

200

Files and Data

which denotes a file (prefix '- ') to which the owner has full access, members of their group can execute
(but not read or modify), and everyone else has no access at all.

In fact, the subtleties of permission hierarchies mean that it's not always quite this clear cut. For
example, a UNIX file without public ‘write' permissions can actually be deleted by any user at all if
the file's parent directory has granted them the relevant permission. Take care.

Perl gives us the function umask (expr), which we can use to set the permission bits to be used when
we create a file. The expression it will expect is a three digit octal number, representing the state of the
nine flags we've seen. If we consider these as bits in a binary number, we can interpret our second
example above as:

111001000

which breaks down groupwise as:

(111) (001) (000)

and in octal as:
710

We can therefore specify umask (0710) ; and subsequent files will be created with any permissions it
has been specifically given ANDed with the umask value. In a nutshell, by setting the umask value, we
have set the default permissions for all files or directories on top of which other permissions can be set.

In general, it's a good idea to set the umask to 0666 for creating regular files. If you work backwards
from the file, you realize that this equates to giving everyone read and write access to the file but no-one
execute permissions. Likewise, it's a fairly safe bet to set umask to 0777 - full control for everyone -
for the creation of directories and, of course, executable files.

Opening Pipes

open can be used for more than just plain old files. You can read data from and send data to programs
as well. Anything that can read from or write to standard output can talk directly to Perl via a pipe.

Pipes were invented by a man called Doug Macllroy for the UNIX operating system and were soon
carried over to other operating systems. They're one of those things that sound amazingly obvious once
someone else has thought of it:

A pipeissomething that connects two filehandles together.

That's it. Usually, you'll be connecting the standard output of one program to the standard input
of another.

201

Chapter 6

For instance, we've written two filters in this chapter: one to number lines in a file and one to sort files.
Let's see what happens when we connect them together:

> perl sort3.plx < sortme.txt | perl nl3.plx

File: -
1: And nail my feet up where my head should be
2: And you can all die laughing, because I'd wear it proudly
3: If they had a king of fools then | could wear that crown
4: Well, | finally found someone to turn me upside-down

>

That bar in the middle is the pipe. Here's a diagram of what's going on:

sortme.txt — STDIN—P| sort3.plx STDOUT»DSTDIN ni3.plx —STDOUT—»

The pipe turns the standard output of sort3.plx into input for n13.plx.

While pipes are usually used for gluing programs together on the shell command line, exactly as we've
just done above, we can use them in Perl to read from and write to programs.

Piping In

To read the output of a program, simply use open and the name of the program (with any command
line you want to give it), and put a pipe at the end. For instance, the program lynx is a command-line
web browser, available via http://lynx.browser.org/. If I say 1ynx -source http://www.perl.com/,
lynx gets the HTML source to the page and sends it to standard output. I can pick this up from Perl
using a pipe.

If you're using Windows, you may need to modify your global path settings — the list of directory paths
in which Windows will look for perl, or lynx, or any other executable that you want to call without
specifying it's location. It's only because PATH contains C: \Perl\bin)\ that we can say:

>per| <filename>

without saying anything about where perl.exe lives. On Windows 9x you can edit the default value of
PATH inside the file autoexec.bat, which you'll find in the root directory. On Windows 2000, you'll
find this under Start Menu|Program Files|Administrative Tools|Computer Management — call up
Properties for the local machine, and it's on the Advanced tab, in Environment Variables.

Simply add the full path of the directory into which you've installed 1ynx.exe, separated from

previous entries (you should see C:\Perl\bin\ there already) by a semicolon. Mine now looks
like this:

C:\PERL\BIN\;C:\PERL\BIN; C:\WINDOWS; C: \WINDOWS\COMMAND; C: \LYNX\DIST\

202

Files and Data

One simpler alternative is to enter this at the DOS command line:

set PATH=%PATH%; <add directory path to lynx.exe here>

This has the benefit of being quicker. It's also safer, as any modification you make like this is local
to the current DOS shell, but that means you'll have to do it again next shell around...

You may still find that lynx still won't run from outside it's own directory and gives you a message like:
Configuration file ./lynx.cfg is not available.

You can get round this problem by copying the relevant file from the lynx directory into your current
one. It's a bit of a fudge, but it does the trick:

Try it out : Perl headline

#!/usr/bin/perl

headline.plx

Display the www.perl.com top story.
use warnings;

use strict;

open LYNX, "lynx -source http://www.perl.com/ |" or die "Can't open lynx: S$!";
Define $_ and skip through LYNX until a line containing "standard.def"
$7 = nn;

$_ = <LYNX> until /standard\.def/;

The headline is in the following line:
my Shead = <LYNX>;

Extract "Headline" from "Headline..."
$head =~ m|”"]+>(.*?)|1i;

print "Today's www.perl.com headline: $1\n";
Run today, this tells me:
>perl headline.plx

Today's www.perl.com headline: What's New in 5.6.0.
>

Note that this program will work with the layout of www.perl.com at the time of writing. If the
site's layout changes, it might not work in the future.

How It Works
The important thing, for our purposes, is the pipe:

open LYNX, "lynx -source http://www.perl.com/ |" or die "Can't open lynx: $!";

203

Chapter 6

What it's saying is that, instead of a file on the disk, the filehandle LYNX should read from the standard
output of the command lynx -source http://www.perl.com. The pipe symbol | at the end of
the string tells Perl to run the command and collect the output. The effect is just the same as if we'd had
lynx write the output to a file and then had Perl read in that file. Each line we read from LYNX is the
next line of source in the output.

Let's now have a look at how we extracted the headline from the source.

The site is laid out in a standard format, and the headline is on the line following the text "standard.def".
So we can happily keep getting new lines until we come across one matching that text:

$_ = <LYNX> until /standard\.def/;

Note that we have to assign the new line to $_ ourselves. The assignment to S_ is only done
automatically when you say something like while (<FILEHANDLE>).

The headline is in the next line, so we get that:

my Shead = <LYNX>;

The line containing the headline will look something like this:

Perl used in wombat sexing

To retrieve the headline from the middle, we use a regular expression. Generally speaking, reading
HTML with a regular expression is a really bad idea, as per1faqg9 explains. HTML tags are far more
complex than just "start at an open bracket and end with a close bracket". That definition would fail
spectacularly with tags in comments, tags split over multiple lines, or tags containing a close bracket
symbol as part of a quoted string. It's a much harder problem than it first appears, due to the scope of
the HTML language.

To read HTML to any degree of accuracy, you need to use an extension module like HTML: : Parser.
However, when the scope of the problem is as limited as the one we're faced with, we can get away with
taking a few liberties.

We know that the piece of HTML in question is a single line. We know that the tag we're looking for
starts at the beginning of the line and that there are no close brackets within it. So, our regular
expression finds "<A HREF=" at the beginning of the line. After that, we read anything that's not a
closing bracket, followed by a closing bracket.

Next, we want our headline: This is the smallest amount of text that will be directly followed by .
Since there's a forward slash in what we're trying to match, we use alternate delimiters to make the
expression more understandable. As we're using alternate delimiters, we need to put an m on the front to
make it clear that this is a match:

$head =~ m|"]+>(.*?)|;

We could have said: Shead =~ /“]+>(.*?)<\/A>/; backslashing the
Sorward slash to avoid it being treated as the end of the regular expression, but that would have
been unnecessarily confusing. This is exactly the sort of situation that alternate delimiters were
provided for, so we're right to make the most of them.

204

Files and Data

Why do we use [”>] + instead of . * or similar? Consider what would happen if there were two stories
on the line:

Perl is really coolStory 2

 matches as much as possible before a close bracket. In this case, the most it can
get before a close bracket would be to match everything up until just before Story 2, and we'd miss
the main headline altogether. This is because . means everything, and everything includes a closing
bracket. By saying [*>]+ we're making it clear that there can be no closing brackets in the text
we're matching.

Piping Out

As well as reading data in from external programs, we can write out to the standard input of another
program. For instance, we could send mail out by writing to a program like sendmail, or we could be
generating output that we'd like to have sorted before it gets to the user. We'll deal with the second
example because, while it's easy enough to collect the data into an array and sort it ourselves before
writing it out, we know we have a sorting program handy. After all, we wrote one a few pages ago!

Try It Out : Taking Inventory

Things hide in the kitchen cabinet. Tins of tomatoes can lurk unseen for weeks and months, springing to
vision only after I've bought another can. Every so often, then, I need to investigate the cabinets and
take inventory to enumerate my baked beans and root out reticent ravioli. The following program can
help me do that:

#!/usr/bin/perl
inventory.plx
use warnings;
use strict;

my %inventory;
print "Enter individual items, followed by a new line.\n";
print "Enter a blank line to finish.\n";
while (1) {
my Sitem = <STDIN>;
chomp $item;
last unless S$item;
$inventory{lc $item}++;

}

open (SORT, "| perl sort.plx") or *SORT = *STDOUT;
select *SORT;
while (my ($item, $quantity) = each %inventory) {

if ($quantity > 1) {
Sitem =~ s/” (\w+)\b/$1ls/ unless $item =~ /"“\w+s\b/;
1

print "$item: Squantity\n";

205

Chapter 6

Now let's take stock:

>perl inventory.plx

Enter individual items, followed by a new line.
Enter a blank line to finish.
jar of jam

loaf of bread

tin of tuna

packet of pancake mix
tin of tomatos

tin of tuna

packet of pasta

clove of garlic

packet of pasta

clove of garlic: 1

jar of jam: 1

loaf of bread: 1

packet of pancake mix: 1
packets of pasta: 2

tin of tomatos: 1

tins of tuna: 2

As you can see, we get back a sorted list of totals.

How It Works

Whenever you're counting how many of each items you have in a list, you should immediately think
about hashes. Here we use a hash to key each item to the quantity; each time we see another one of
those items, we add to the quantity in the hash:

while (1) {
my Sitem = <STDIN>;
chomp Sitem;
last unless S$Sitem;
$inventory{lc $item}++;

The only way this infinite loop will end is if $item contains nothing after being chomped - it was
nothing more than a new line.

To ensure that the capitalization of our item isn't significant, we use the operator 1c to return a lower-
case version of the item. Otherwise, "Tin of beans", "TIN OF BEANS" and "tin of beans" would be
treated as three totally separate items, instead of three examples of the same thing. By forcing them into
lower case, we remove the difference.

The 1c operator returns the siring it was given, but with upper-case characters turned into lower
case. So print lc ("FuNnY StRiNg"); should give you the output funny string'. There's
also a uc operator that returns an upper-cased version of the string, so print uc ("FuNnY
StRiNg"); will output 'FUNNY STRING'.

206

Files and Data

Next, we open our pipe. We're going to pass data from our program to another, external program. If
you look up at the pipe diagrams above, you'll see that the data flows from left to right. Therefore, we
want to put the command to run that external program on the right-hand side of the pipe:

open (SORT, "| perl sort.plx") or *SORT = *STDOUT;

If we can't successfully open the pipe — the program wasn't found or we couldn't execute Perl — we alias
SORT to STDOUT to get an unsorted version.

Now we can print the data out:

while (my ($item, $quantity) = each %inventory) {

We use each to get each key/value pair from the hash, as explained in chapter 3.

if (Squantity > 1) {
Sitem =~ s/ (\w+)/$1ls/ unless $item =~ /\w+s\b/;
1

This will make the output a little more presentable. If there is more than one of the current item, the
name should be pluralized, unless it already ends in an 's'. \w+ will get the first word in the string, and
we add an 's' after it.

This is a relatively crude method for pluralizing English words, If you want to do it properly, there's a
module on CPAN called Lingua: : EN: : Inflect that will do the trick.

print "$item: Squantity\n";

Last of all, we print this out. It's actually going to the SORT filehandle, because that's the one that's
currently selected — that filehandle is, in turn, connected to the sort program.

File Tests

So far, we've just been reading and writing files, and dieing if anything bad happens. For small
programs, this is usually adequate, but if we want to use files in the context of a larger application, we
should really check their status before we try and open them and, if necessary, take preventative
measures. For instance, we may want to warn the user if a file we wish to overwrite already exists, giving
them a chance to specify a different file. We'll also want to ensure that, for instance, we're not trying to
read a directory as if it was a file.

This sort of programming — anticipating the consequences of future actions — is called defensive
programming. Just like defensive driving, you assume that everything is out to get you. Files
will not exist or not be writeable when you need them, users will specify things inaccurately,
and so on. Properly anticipating, diagnosing, and working around these areas is the mark of a
top class programmer.

207

Chapter 6

Perl provides us with file tests, which allow us to check various characteristics of files. These act as
logical operators, and return a true or false value. For instance, to check if a file exists, we write this:

if (-e "somefile.dat") {...}

The test is -e, and it takes a file name as its argument. Just like open, this file name can also be
specified from a variable. You can just as validly say:

if (-e $filename) {...}
where $filename contains the name of the file you want to check.

For a complete list of file tests, see Appendix C. The table below shows the most common ones:

Test M eaning

-e True if the file exists.

-f True if the file is a plain file — not a directory.

-d True if the file is a directory.

-z True if the file has zero size.

-s True if the file has nonzero size - returns size of file in bytes.
-r True if the file is readable by you.

-w True if the file is writable by you.

-X True if the file is executable by you.

-o True if the file is owned by you.

The last four tests will only make complete sense on operating systems for which files have meaningful
permissions, such as UNIX and Windows NT. If this isn't the case, they'll frequently @/l return true
(assuming the file or directory exists). So, for instance, if we're going to write to a file, we should check
to see whether the file already exists, and if so, what we should do about it.

Note that on systems that don't use permissions comprehensively, -w is the most likely of the last
Sour tests to have any significance, testing for Read-only status. On Windows 9x, this can be found
(and modified) on the General tab of the file's Properties window:

Try It Out : Paranoid File Writing

This program does all it can to find a safe place to write a file:

#!/usr/bin/perl
filetestl.plx
use warnings;
use strict;

208

Files and Data

my Starget;
while (1) {

}

print "What file should I write on? ";
Starget = <STDIN>;
chomp Starget;
if (-d $target) {
print "No, S$Starget is a directory.\n";
next;

if (-e $target) {
print "File already exists. What should I do?\n";
print " (Enter 'r' to write to a different name, ";
print "'o' to overwrite or\n";
print "'b' to back up to $target.old)\n";
my Schoice = <STDIN>;
chomp S$choice;
if ($choice eqg "r") ({
next;
} elsif ($choice eqg "o") {
unless (-o $target) {
print "Can't overwrite S$Starget, it's not yours.\n";
next;
1
unless (-w $target) {
print "Can't overwrite Starget: $!\n";
next;
1

} elsif ($choice eg "b") {

if (rename ($target, $target.".old")) {
print "OK, moved Starget to $target.old\n";
} else {
print "Couldn't rename file: $!\n";
next;
1
} else {
print "I didn't understand that answer.\n";
next;

1

last if open OUTPUT, "> Starget";

print "I couldn't write on Starget: $!\n";
and round we go again.

print OUTPUT "Congratulations.\n";
print "Wrote to file Starget\n";

So, after all that, let's see how it copes, first of all with a text file that doesn't exist:

> perl filetestl.plx
What file should | write on? test.txt
Wrote to file test.txt

>

209

Chapter 6

Seems OK. What about if I 'accidentally' give it the name of a directory? Or give it a file that already
exists? Or give it a response it's not prepared for?

> perl filetestl.plx

What file should | write on? work

No, work is a directory.

What file should | write on? filetestl.plx

File already exists. What should | do?

(Enter 'r' to write to a different name, 'o' to overwrite or
'b' to back up to filetestl.plx.old)

r

What file should | write on? test.txt

File already exists. What should | do?

(Enter 'r' to write to a different name, 'o' to overwrite or
'b' to back up to test.txt.old)

g

| didn't understand that answer.

What file should | write on? test.txt

File already exists. What should | do?

(Enter 'r' to write to a different name, 'o' to overwrite or
'b’ to back up to test.txt.old)

b

OK, moved test.txt to test.txt.old

Wrote to file test.txt

>

How It Works

The main program takes place inside an infinite loop. The only way we can exit the loop is via the
last statement at the bottom:

last if open OUTPUT, "> S$target";

That 1ast will only happen if we're happy with the file name and the computer can successfully open
the file. In order to be happy with the file name, though, we have a gauntlet of tests to run:

if (-d $target) {

We need to first see whether or not what has been specified is actually a directory. If it is, we don't want
to go any further, so we go back and get another file name from the user:

print "No, Starget is a directory.\n";
next;

We print a message and then use next to take us back to the top of the loop.

Next, we check to see whether or not the file already exists. If so, we ask the user what we should do
about this.

210

Files and Data

if (-e $target) {
print "File already exists. What should I do?\n";
print "(Enter 'r' to write to a different name, ";
print "'o' to overwrite or\n";
print "'b' to back up to $target.old\n";
my Schoice = <STDIN>;
chomp sSchoice;

If they want a different file, we merely go back to the top of the loop:

if (Schoice eq "r") {
next;

If they want us to overwrite the file, we see if this is likely to be possible:
} elsif (Schoice eg "o") {

First, we see if they actually own the file; it's unlikely they'll be allowed to overwrite a file that they do
not own.

unless (-o $target) {
print "Can't overwrite S$Starget, it's not yours.\n";
next;

Next we check to see if there are any other reasons why we can't write on the file, and if there are, we
report them and go around for another file name:

unless (-w $target) {
print "Can't overwrite Starget: $!\n";
next;

If they want to back up the file, that is, rename the existing file to a new name, we see if this
is possible:
} elsif ($choice eq "b") {

The rename operator renames a file; it takes two arguments: the current file name and the new name.

if (rename (Starget, Starget.".old")) {
print "OK, moved Starget to $target.old\n";
} else {

If we couldn't rename the file, we explain why and start from the beginning again:

print "Couldn't rename file: $!\n";
next;

211

Chapter 6

Otherwise, they said something we weren't prepared for:

} else {
print "I didn't understand that answer.\n";
next;

You may think this program is excessively paranoid, after all, it's 50 lines just to print a message on a
file. In fact, it isn't paranoid enough: it doesn't check to see whether the backup file already exists before
renaming the currently existing file. This just goes to show you can never be too careful when dealing
with the operating system. Later, we'll see how to turn big blocks of code like this into reusable elements
so we don't have to copy that lot out every time we want to safely write to a file.

Directories

As well as files, we can use Perl to examine directories on the disk. There are two major ways to look at
the contents of a directory:

Globbing

If you're used to using the command shell, you may well be used to the concept of a glob. It's a little like
a regular expression, in that it's a way of matching file names. However, the rules for globs are much
simpler. In a glob, * matches any amount of text.

So, if I were in a directory containing files: 00INDEX 3com.c 3com.txt perl mail Mail

0 * would match everything.

Q 3* would match 3com. ¢ and 3com. txt.
Q ?ail would match mail and Mail.
d

*1 would match perl, mail and Mail.

We can do this kind of globbing in Perl: the glob operator takes a string and returns the matching files:

#!/usr/bin/perl
glob.plx

use warnings;
use strict;

my @files = glob("*1");
print "Matched *1 : efiles\n";

>perl glob.plx
perl mail Mail
>

To get all the files in a directory, you would say my @files = glob("*");

212

Files and Data

Reading Directories

That's the simple way. For more flexibility, you can read files in a directory just like lines in a file.
Instead of using open, you use opendir. Instead of getting a filehandle, you get a directory handle:

opendir DH, "." or die "Couldn't open the current directory: $!";

Now to read each file in the directory, we use readdir on the directory handle:

Try It Out : Examining A Directory

This program lists the contents of the current directory and uses filetests to examine each file.

#!/usr/bin/perl
directory.plx
use warnings;
use strict;

print "Contents of the current directory:\n";

opendir DH, "." or die "Couldn't open the current directory: $!";
while ($_ = readdir (DH)) ({

next 1f $_ eqg "." or $_eq "..";

print $_, " " x (30-length(s_));

print "d" if -d $_;
print "r" if -r _;

print "w" if -w _;

print "x" if -x _;

print "o" if -o _;

print M\EN;

print -s _ if -r _ and -f _;
print "\n";

Part of its output looks like this:

>perl directory.plx
Contents of the current directory:

directory.plx rwxo 449
filetestl.plx rwxo 1199
inventory.plx rwxo 515
mail drwxo

nl.plx rwxo 240
todo.log rwo 3583
>

The number at the end is the size of the file in bytes; as for the letters, 'd' shows that this is a directory,
'r' stands for readable, 'w' for writable, 'x' for executable, and '0' shows that I am the owner.

213

Chapter 6

How It Works

As we've seen on the previous page, once we've opened our directory handle, we can read from it. We read
one file name at a time into $_, and while there's still some information there, we examine it more closely:

while ($_ = readdir(DH)) (

The files . and . . are special directories on DOS and UNIX, referring to the current and parent
directories, respectively. We skip these in our program:

next if $_ eg "." or $_eq "..";

We then print out the name of each file, followed by some spaces. The length of the file name plus the
number of spaces will always add up to thirty, so we have nicely arranged columns:

print $_, " " x (30-length(s_));
First we test to see if the file is a directory, using the ordinary filetests we saw above:

print "d" if -4 $_;
No, this isn't a typo: I do mean _ and not $_ here. Just as $_ is the default value for some operations,
such as print, _ is the default filehandle for filetests. It actually refers to the last file explicitly tested.

Since we tested $_ above, we can use _ for as long as we're referring to the same file:

print "r" if -r _;
print "w" if -w _;

When Perl does a filetest, it actually looks up all the data at once — ownership, readability,
writeability and so on; this is called a stat of the file. _ tells Perl not to do another stat, but to use
the data from the previous one. As such, it's more efficient that stat-ing the file each time.

Finally, we print out the file's size. This is only possible if we can read the file and only useful if the file
is not a directory:

print -s _ if -r _ and -f _;

Summary

Files give our data permanence by allowing us to store it on the disk. It's no good having the best
accounting program in the world, if it loses all your accounts every time the computer is switched off.
What we've seen here are the fundamentals of getting data in and out of Perl. In our chapter on
Databases, we'll see more practical examples of how to read structured files into Perl data structures and
write them out again.

Files are accessed through filehandles. To begin with, we have standard input, standard output, and

standard error. We can open other filehandles, either for reading or for writing, with the open operator,
and we must always remember to check what happened to the open call.

214

Files and Data

The diamond operator <FILEHANDLE > reads a line in from the specified filehandle. We can control the
definition of a line by altering the value of the record separator, held in special variable $/.

Writing to a file is done with the print operator. Normally, this writes to standard output, so the
filehandle must be specified. Alternatively, you may select another filehandle as the recipient of
print's output.

Pipes can be used to talk to programs outside of Perl. We can read in and write out data to them as if we
were looking at the screen or typing on the keyboard. We can also use them as filters to modify our data

on the way in or out of a program.

Filetests can be used to check the status of a file in various ways, and we've seen an example of using
filetests to ensure that there are no surprises when we're reading or writing a file.

Finally, we've seen how to read files from directories using the opendir and readdir operators.

Exercises

1. Write a program that can search for a specified string within all the files in a given directory.

2. Modify the file backup facility in filetestl.plx so that it checks to see if a backup already exists
before renaming the currently existing file. When a backup does exist, the user should be asked
to confirm that they want to overwrite it. If not, they should be returned to the original query.

215

Source code available at : www.wrox.com
Peer discussion at : lamplists.com

Also from Wrox

2 £k
o ImAA™
7 TVPHIR

FROTISSIONAL PROFISSIONAL

Perl Per

Programming Development

W AT

BEGINNING

Perl

http:/imwww.wrox.com/books/1861003145.htm

lamplists.com

The Open Source Programmer’s Res ource Centre

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

References

Way back in Chapter 2 we learned that we couldn't get away with putting one list inside another. Perl
flattens lists, and an inner list would get subsumed into whatever we try to put it inside. Similarly,
hashes have a single scalar key attached to a single scalar value; there's apparently no way we can put
several pieces of data in one hash key.

However, these are both things we'll want to do from time to time. For instance, we might want to
represent a chessboard as eight lists of eight squares so that we can address each square by row and
column. We might also want to store information about someone - their address, phone number, and
occupation - and key it to their name.

Of course, we've seen ways we could do this already: We could store our chessboard as an array of 64
squares, and write some code to convert between row-and-column co-ordinates and a number from 0 to
63. For the address book, we could just use three hashes, each using the same set of names as keys — not
a terribly elegant solution but one that does the job with the techniques we've seen so far.

However, in this chapter, we're going to be looking at a very powerful facility in Perl that lets us do this
sort of thing and a whole lot more besides - references.

What Is a Reference?

Put at its very simplest, a reference is a piece of data that tells us the location of another piece of data.
If I told you to "see the first paragraph on page 130", I'd effectively be giving you a reference to the
text in that paragraph. It wouldn't be the text itself, but it would tell us where to find it. This would
also let us talk about (refer to) the text right away, despite the fact that it's somewhere else in the
book. That's why references are so useful — we can specify data once, and they let us access it from
wherever else we are.

In Perl, a reference is always a scalar, although the data it refers to may not be: our cross-reference
above wasn't even a sentence, but referred to an entire paragraph. Likewise, a reference, even though
it's only a scalar, can talk about the data stored in an array or hash.

Chapter 7

Languages like C and C++ have a feature that's similar to references, called pointers. Now if you're
familiar with pointers, please try and put the knowledge aside while you're going through this chapter.
They are similar to references in that both point us to locations in the computer's memory. However,
pointers tend to leave interpretation of what's there for the programmer to disentangle. References, on
the other hand, only store memory locations for specific, clearly defined data structures — maybe not
predefined, but defined nevertheless. They allow you to leave the arrangement of computer memory
to the computer itself. For me, this is a huge relief, as the machine's far better at that sort of thing
than I am.

The main use we have for references is the one we discussed above — as flat-pack storage for arrays and
hashes. We can now refer unambiguously to the contents of an array or a hash, using a single scalar, so
we're now in a position to do things like putting hashes inside hashes, lists inside lists, even hashes in
lists, and vice-versa. But that's not all...

Anonymity

We can also use references to create anonymous data. Anonymous data, as you might have guessed, is
data that doesn't have a variable name attached to it. Instead, it's placed at a certain memory location,
and we're given a simple reference to that location. Our list (or hash or whatever) has no name to speak
of, but we know exactly where to find it, should we need to use it.

This is a bit like literal data, where we had literal scalars and lists in our program, but not quite -
literal data was constant: we couldn't change it.

For example, instead of creating an array (1,2, 3) called @array and then creating a reference to
@array, we can cut out the middle man, by referencing (1,2, 3) directly.

This lets us create real scalars, arrays, and hashes, containing data that we can refer to and modify, just
as if it were a normal variable. This doesn't mean that we leave arrays and hashes floating about
randomly in our program to be plucked out of the air whenever we need them. We know where to find
this anonymous data (we have a reference that's telling us just this), and it only exists for as long as part
of our program is using it.

The Lifecycle of a Reference

To understand how we deal with references, let's look at the three areas of a reference's life cycle -
creation, use, and destruction. After that, we'll see how we can practically use references to create more
complicated data structures than simple arrays and hashes.

Reference Creation

There are two ways to create a reference, one for each of the following situations:

O You've already got the data in a variable.

O You want to use anonymous data to go straight to a reference.

218

References

The simple rule for the first situation where the variable is already defined is:

You create a reference by putting a backslash in front of the variable.

That's it. Let's see some examples:

my @rray = (1, 2, 3, 4, 5);
my $array_r = \@array;

We create a perfectly normal array variable and then take a reference to it by putting a backslash
before the variable's name. That's literally all there is to it. In the same way, we can create a reference
to a hash:

my %hash = (apple => "pomme", pear => "poire");
my $hash r = \%hash;

or a scalar:

my Sscalar = 42;
my Sscalar_r = \S$scalar;

We can treat our references just like ordinary scalars, so we can put them in an array:

my Sa = 3;
my S$b = 4;
my Sc = 5;

my @refs = (\$a, \$b, \$c);

Or, if you don't like putting so many backslashes in your array definitions, you can declare this kind of
array in a second way:

my e@erefs=\(Sa, $b, $c);
So, if you try referencing a list, you won't actually get a reference to the list, but rather a list of
references to each element in the list. If this isn't what you want, you can always put the data into an
array. We can also put references in a hash, but only as values. Perl doesn't yet support references as

hash keys. You can certainly do this, though:

my @english = gw(January February March April May June) ;

my @french = gw(Janvier Fevrier Mars Avril Mai Juin);
my %$months = (english => \e@english, french => \@french);

So what does this give us? We have a hash with two keys, english and french. The english key
contains a reference to an array of English month names, while the french key contains a reference to
an array of French month names. With these references, we can access and modify the original data,
which means that, in effect, we've stored two arrays inside a single hash.

219

Chapter 7

We can use the same trick to store arrays inside arrays:

my @arrayl = (10, 20, 30, 40);
my @array2 = (1, 2, \@arrayl, 3, 4);

Now @array2 is made up of five scalars, and the middle one is a reference to another array. We can do
this over and over again, if we want to:

my @array3 = (2, 4, \earray2, 6, 8);
my @array4 = (100, 200, \@array3, 300, 400);

This gives us a very versatile way to store complex data structures. What we've just done is to store a
structure that looks like this:

@ array4
100
200
@ array3
@ array3 —L
300
2
400
4
@ array2
@ array2 ﬁ
6
1
8
2
@ arrayl
@ arrayl ﬁ
3
10
4
20
30
40
50

Anonymous References

Our next step is to do all this without having to go through the interim stages of creating the variables.
Anonymous references will let us go straight from our raw data to a reference, and the rules here are
just as simple:

To get an array referenceinstead of an array, use square brackets [] instead of
parentheses.

To get a hash referenceinstead of a hash, use curly braces {} instead of parentheses.

220

References

So, referring to our examples above, instead of doing this:

my @array = (1, 2, 3, 4, 5);
my $array r = \@array;

we can go straight to an array reference like this:
my $array. r = [1, 2, 3, 4, 5];
Likewise, to get a hash reference, instead of doing this:

my %$hash = (apple => "pomme", pear => "poire");
my $hash r = \%hash;

we say:
my $hash r = { apple => "pomme", pear => "poire" };
We can put anonymous references inside hashes and arrays, just like references created from variables:

my %$months = (
english => ["January", "February", "March", "April", ",May", ",June"],
french => ["Janvier", "Fevrier", "Mars", "Avril", "Mai", "Juin"]

)i
And we can put references inside references:

my @array = (100,200, 2,4,[1,2,[10,20,30,40,50 1,3,4 1,6,8 1,300,400);

That's exactly the same structure as we created above. Here it is again, with a lot more spacing added:

my @array = (100, 200,
[2, 4,
[1, 2,
[10, 20, 30, 40, 50],
3, 41,
6, 81,
300, 400);

What about creating an anonymous scalar — what happens if we try this? Well, as we saw above, trying
to create a reference to a list gives us a list of references to the list's elements. So if we did this:

my e@refs = \(1, 2, 3, 4);
we'd expect it to give us four references, to 1, 2, 3, and 4. Perl does in fact do this, but while it will let

us retrieve the numbers, it won't allow us to change them — it's almost like trying to modify a literal in
your variable. If we ever want to get a scalar reference, it's best to use a temporary variable.

221

Chapter 7

Using References

Once we've created our references (whether to real variables or anonymous data), we're going to want
to use them. So how do we access the data? The operation we use to get data back from a reference is
called dereferencing, and once again, the rule's very simple:

To dereference data, put thereferencein curly braces wherever you would normally
use a variable's name.

First, we'll see how to do this with arrays. Say we've got an array and a reference:

my @array = (1, 2, 3, 4, 5);
my S$array_r = \@array;

We can get at the array like this:
my @array2 = @{Sarray_ r};

We put the reference, $array_r, inside curly braces, and use that instead of our original array
variable @array. We can use this dereferenced array, @{$array_r}, anywhere we might otherwise
use an array:

Try It Out : Constructing and Dereferencing

For our first attempt, we'll do something simple. We'll just create a reference to an array, then use it as
we'd normally use an array:

#!/usr/bin/perl
derefl.plx
use warnings;
use strict;

my @array = (1, 2, 3, 4, 5);
my $array_r = \@array;

print "This is our dereferenced array: @{$array_r}\n";
for (@{$array r}) {
print "An element: $_\n";

print "The highest element is number $#{$array_r}\n";
print "This is what our reference looks like: Sarray_r\n";

Let's run this:

>perl derefl.plx

This is our dereferenced array: 12345

An element: 1

An element: 2

An element: 3

An element: 4

An element: 5

The highest element is number 4

This is what our reference looks like: ARRAY(0xa063fbc)
>

222

References

How It Works

We've seen a few examples of creating references now, so you should be familiar with this syntax. First,
we define an array variable and its contents and then backslash it to create a reference to it.

my @array = (1, 2, 3, 4, 5);
my $array_r = \@array;

Now we can use @{$array_r} instead of @array. Both refer to exactly the same data, and both do
exactly the same things. For instance, @{ $array_r} will interpolate inside double quotes:

print "This is our dereferenced array: @{sarray_r}\n";

Just as if we'd used the original @array, our dereferenced array prints out the contents of the array,
separated by spaces:

This is our dereferenced array: 12345

In the same way, we can use the array in a for loop, with no surprises:

for (e{$array r}) {
print "An element: $_\n";
1

Finally, we can also get the highest element number in the array, just as if we'd said $#array, like this:
print "The highest element is number $#{$arrayﬁr}\n";

Now, we take a look at what our reference actually looks like itself. After all, it's a scalar, so it must have
a value that we can print out and look at. It does, and this is what we get if we print out the reference:

This is what our reference looks like: ARRAY(0xa063fbc)

Well, the ARRAY part obviously tells us that we have an array reference, but what about the part in
brackets? Well, we know that a reference is a memory location, telling us where the data is stored in the
computer's memory. We generally don't need to worry about this actual value, as we can't do that much
with it. Note also that it's unlikely that you'll get exactly the same value as I have here. It will simply
depend on what hardware your system has, what other software you're running, and what perl is doing.

There is one way you might want to make use of this value directly: to see if two references refer to
the same piece of data, you can compare them as numbers using ==.

If we try and manipulate it, it ceases to be a reference and becomes an ordinary number - the value of
the hexadecimal above. We can see that if we run the following program:

#!/usr/bin/perl
noref.plx
use warnings;
use strict;

my Sref = [1, 2, 3];
print "Before: Sref\n";
print "e{$ref}\n";
Sref++;

print "After: Sref\n";
print "e{sref}\n";

223

Chapter 7

will give us something like this:

>perl noref.plx

Before: ARRAY(0xa041160)
123

After: 168038753

Can't use string ("168038753") as an ARRAY ref while "strict refs" in use at noref.plx line 11.

>

When we tried to modify our reference, it degenerated to the ordinary number 168038752, which is
the 0xa041160 mentioned above. Adding one to that gave us the number above, which is an ordinary
string, rather than a reference. Perl then complains if we try and use it as a reference.

This is why we can't use references as hash keys — these can only be strings, so our references will get
'stringified' to something like the form above. Once that happens, we're not able to use them as

references again.

Array Elements

What about the individual elements in an array? How do we access these? Well, the rule is pretty much
the same as for the array as a whole; just use the reference in curly braces in the same way you would

the array name:

#!/usr/bin/perl
deref2.plx
use warnings;
use strict;

my @band = gw(Crosby Stills Nash Young) ;

my $ref = \@band;

for (0..3) {
print "Array : ", $band[$_] , "\n";
print "Reference: ", ${$ref}[s$_], "\n";

}

As you can see, these refer to the same thing:

>perl deref2.plx

Array : Croshy
Reference : Croshy
Array . Stills
Reference : Stills
Array : Nash
Reference : Nash
Array > Young
Reference : Young
>

The important thing to note here is that these are not two different arrays — they are two ways
of referring to the same piece of data. This is very important to remember when we start

modifying references.

224

References

Reference Modification

If we want to modify the data referred to by a reference, the same rule applies as before. Replace the
name of the array with the reference in curly brackets. However, when we do this, the data in the
original array will change, too:

#!/usr/bin/perl
modifyl.plx
use warnings;
use strict;

my @band = gw(Crosby Stills Nash Young) ;
my Sref = \@band;

print "Band members before: @band\n";
pop @{$ref};

print "Band members after: @band\n";

>perl modifyl.plx

Band members before: Crosby Stills Nash Young
Band members after: Crosby Stills Nash

>

We can still use push, pop, shift, unshift (and so on) to manipulate the array. However, in doing
so, we'll also be changing what's stored in @band.

It's quite possible to have multiple references to the same data. Just as before, if you use one to change
the data, you change it for the others, too. This will give the same results as before:

my @band = gw(Crosby Stills Nash Young) ;
my $refl = \@band;

my $ref2 = \@band;

print "Band members before: @band\n";
pop @{$refl};

print "Band members after: @{$ref2}\n";

The same goes for anonymous references:

my Srefl = [gw(Crosby Stills Nash Young)];
my Sref2 = Srefl;

print "Band members before: @{$ref2}\n";
pop @{$refl};

print "Band members after: @{$Sref2}\n";

Notice here that we're using [gw (..) 1, which is the same as saying
[('Crosby', 'Stills', 'Nash', 'Young')]
and the brackets inside get removed, just like when we said ((1,2,3)) back in Chapter 3.

Because anonymous references give us a reference straight away, it's possible to say things like:

e{[1, 2, 31}

225

Chapter 7

This little bit of trickery (thanks to Randal Schwartz) will, of course, give us the list 1, 2, 3. However, it's
less useless than it seems. An array dereference will interpolate just like an ordinary array, so you can
use this to make functions interpolate inside strings. For example:

print "The time is @{[scalar localtimel} according to my clock";
will display just the same as:

print "The time is ", scalar localtime, " according to my clock";

You can also modify individual elements, using the syntax $ {$reference} [$element]:

#!/usr/bin/perl
modelem.plx
use warnings;
use strict;

my @array = (68, 101, 114, 111, 117);
my $ref = \earray;
${sref}[0] = 100;

print "Array is now : @array\n";

>perl modelem.plx
Array is now 100 101 114 111 117
>

And again, you can do the same with anonymous data:

my s$ref = [68, 101, 114, 111, 117];
${sref} 0] = 100;
print "Array is now : @{$ref}\n";

Hash References

For references to hashes, the rule is exactly the same. So, to access the hash that a reference points to,
you use % {$hash_r}. If you want to get at a hash entry $hash{green}, you say
${hash_r}{green}:

#!/usr/bin/perl
hash.plx

use warnings;
use strict;

my %$hash = (
1 => "January", 2 => "February", 3 => "March", 4 => "April",
5 => "May", 6 => "June", 7 => "July", 8 => "August",

9 => "September", 10 => "October", 11 => "November", 12 => "December"
)i

my S$href = \%hash;
for (keys %{$href}) {

print "Key: ", $_, "\t";
print "Hash: ",S$hash{$_}, "\t";
print "Ref: ",${Shref}{$_}, "\n";

226

References

As expected, we get the same data when using the hash as when using the reference:

>perl hash.plx

Key: 1 Hash: January Ref: January
Key: 2 Hash: February Ref: February
Key: 3 Hash: March Ref: March
Key: 10 Hash: October Ref: October
Key: 4 Hash: April Ref: April

Key: 11 Hash: November Ref: November
Key: 5 Hash: May Ref: May

Key: 12 Hash: December Ref: December
Key: 6 Hash: June Ref: June

Key: 7 Hash: July Ref: July

Key: 8 Hash: August Ref: August
Key: 9 Hash: September Ref: September
>

This should also help to remind you that Perl's hashes aren't ordered as you might expect!

Notation Shorthands

There are two more rules, but they're not essential for understanding and using references. They just
make it easier for us to write programs manipulating references:

You don't have to write the curly brackets.

You may find that it makes your code a little clearer if you omit the curly brackets around the reference.
For example, we could rewrite our original dereferencing example deref1l.plx like this:

#!/usr/bin/perl
dreflalt.plx
use warnings;
use strict;

my @array = (1, 2, 3, 4, 5);
my Sarray_r = \@array;

print "This is our dereferenced array: @$Sarray_r\n";
for (@$array_r) {
print "An element: $_\n";
1
print "The highest element is number S$#S$Sarray_r\n";
print "This is what our reference looks like: S$array_r\n";

Our hash example hash.plx would then look like this:
#!/usr/bin/perl
hashalt.plx

use warnings;
use strict;

227

Chapter 7

my %$hash = (
1 => "January", 2 => "February", 3 => "March", 4 => "April",
5 => "May", 6 => "June", 7 => "July", 8 => "August",

9 => "September", 10 => "October", 11 => "November", 12 => "December"
)

my S$href = \%hash;
for (keys %Shref) {

print "Key: ", $_, " ";

print "Hash: ",$hash{s_}, " ";
print "Ref: ",$Shref{s_}, " ";
print "\n";

However, it may sometimes be clearer to leave the curly brackets in. Consider these three assignments:

$$hashref{KEY} = "VALUE"; # 1
${shashref}{KEY} = "VALUE"; # 2
${shashref{KEY}} = "VALUE"; # 3

Case 1 is the same as case 2, whereas case 3 dereferences the scalar reference stored in
$hashref {KEY}.

You can also run into problems when you have one reference stored inside another. If we have the
following array reference:

$ref = [1, 2, [10, 20] 1;

we can get at the internal array reference by saying ${$ref [2] }. But say we want to get at the second
element of that array — the one containing the value 20. Well, we could store the reference inside
another scalar and then dereference it, like this:

$inside ${sref}[2];
S$element = ${$inside}[1];

Or we could get the element directly, by repeatedly substituting references for array names:

Selement = ${${ref}(2]}[1];

This gets very ugly, very quickly, especially if you're dealing with hash references, where it becomes
hard to tell if the curly braces surround a reference or a hash key.

So, to help us clear it up again, we introduce another rule:

Instead of ${$ref}, wecan say $ref->

Let's demonstrate this, by taking one of our previous examples, modelem. plx, and incorporating this
into the code. Here's the relevant piece of the original:

228

References

my @array

my Sref =
${sref} [0

print "Array is now

= (68, 101, 114, 111,

\@array;
] = 100;

and here it is rewritten:

my @array

my $Sref =
Sref->[0]

print "Array is now

(68, 101, 114, 111,

\@array;
= 100;

@array\n";

@array\n";

117) ;

117) ;

Likewise for hashes, we can use this arrow notation to make things a bit clearer for ourselves. Recall
hash.plx from a little while ago:

for (keys
print
print
print
print

Instead of that,

for (keys
print
print
print
print

Now we can get at our array-in-an-array like this:

Sref = [
Selement

${$href}) {

" Key : " ’ $—I " " ;
"Hash: ", Shash{$_},
"Ref: ",${shref}{s_}
"\n";

we can write:

${$href}) {

"Key: n, $7, n n,.
"Hash: ",$hash{$_},
"Ref: ", $href->{s_},
"\D";

1, 2, [10, 201 1;
= {$ref->[2]1}->[1];

or more simply:

Selement

However, we've got one more sub-rule that can simplify this even further:

= Sref->[2]->[1];

n
’

7

7

Between sets of brackets, the arrow is optional.

We can therefore rewrite the above as:

Selement

= $ref->[2][1];

229

Chapter 7

Personally, I never omit the arrow in this way - it's far too easy to confuse $ref->[0] [1] with
$ref [0] [1], which perl will interpret as a dereference of the first element in the ordinary
array @ref.

Reference Counting and Destruction

We've now seen all the ways you can create and use references. So when and how are references
destroyed? Well, every piece of data in Perl has something called a reference count attached to it. This
keeps track of the number of instances of the executing code accessing that exact chunk of data.

When we create a reference to some data, the data's reference count goes up by one. When we stop
referring to it — we reassign the reference variable or 'break’ it (as we saw above, when we tried to
modify its value) — the reference count goes down. When nobody's using the data, and the reference
count gets down to zero, the data is removed. Consider the following example:

#!/usr/bin/perl
refcount.plx
use warnings;
use strict;

my Sref;

{
my @array = (1, 2, 3);
Sref = \e@array;
my $ref2 = \@array;
Sref2 = "Hello!";

}

undef Sref;

Now, let's look at the references to the array (1, 2, 3) as we go through the program. To start with,
the array is created, and the data (1, 2, 3) has one reference, which is in use by the array @array:

my Sref;

{

my @array = (1, 2, 3);

Now we've created another reference to it, and the reference count increases to two:
$ref = \earray;

Once again we create a reference, and the count goes up to three:

my $ref2 = \@array;

However, we've now changed that reference to be an ordinary string - it's not pointing at our array any
more, so the reference counton (1, 2, 3) goes back down to two. Note that changing $ref2 doesn't
affect the original array. That only happens when we dereference:

Sref2 = "Hello!";

230

References

Now a block ends, and all the lexical variables — the my variables — inside that block go out of scope.
That means that Sref2 and @array are destroyed. The reference count of the data (1, 2, 3) goes
down again because @array is no longer using it. However, $ref still has a reference to it, so the
reference count is still one, and the data itself is not removed from the system. Sref still refers to (1,
2, 3) and can access and change this data as before, that is, of course, until we get rid of it:

Now the final reference to the data (1, 2, 3) is removed, that array is finally freed:

undef Sref;

Counting Anonymous References

Anonymous data works in the same way. However, it doesn't get its initial reference count from being
attached to a variable, but rather from when its first explicit reference is created:

my s$ref = [1, 2, 3];
This data therefore has a reference count of one, rather than:

my @array = (1, 2, 3);
my $ref = \earray;

which has a count of two.

Using References for Complex Data Structures

Now that we've looked at what references are, you might be asking: why on earth would we want to use
them? Well, as we mentioned in the introduction, we often want to create data structures that are more
complex than simple arrays or hashes. We may need to store arrays inside arrays, or hashes inside
hashes, and References help us do this.

So let's now take a look at a few of the complex data structures we can create with references.It won't be
exhaustive by any means, but it should serve to give you ideas as to how complex data structures look
and work in Perl, and it should also help you to understand the most common data structures.

Matrices

What is a matrix? No, not the thing that Keanu Reeves wants out of. A matrix is simply an array of
arrays. You can refer to any single element with a combination of two subscripts, which you might want
to think of as a row number and a column number. It's harking back to the chessboard example we
mentioned in the introduction to this chapter.

If you use the arrow syntax, matrices are very easy to use. You get at an element by saying:

Sarray [Srow] -> [Scolumn]

231

Chapter 7

S$array [$row] is an array reference, and we're derefencing the $column'th element in it. With a
chessboard example, it would look like this:

7 /> O 1 2 3 4 5 6 7
6 —» O 1 2 3 4 5 6 7
5 ——» 0 1 2 3 4 5 6 7
4 ——» O 1 2 3 4 5 6 7
3 —» O 1 2 3 4 5 6 7
2 —» O 1 2 3 4 5 6 7
1 —» 0 1 2 3 4 5 6 7
O —» © 1 2 3 4 5 6 7

So, Sarray [0] ->[0] would be the bottom left hand corner of our chessboard, and Sarray [7] -
>[7] would be the top right.

Autovivification

Now, there's one last thing we need to know about references before we go on. If we assign values to a
reference, perl will automatically create all appropriate references necessary to make it work. So, if we
say this:

my Sref;
$ref->{UK}->{England}->{0xford}->[1999] ->{Population} = 500000;

perl will automatically know that we need $ref to be a hash reference. So, it'll make us a nice new
anonymous hash:

Sref = {};

Then we need $ref ->{UK} to be a hash reference, because we're looking for the hash key England;
that hash entry needs to be an array reference, and so on. Perl effectively does this:

Sref =
S$ref->{
$ref->{UK}->{England
$ref->{UK}->{England
{
{

{}:

Uk} = {};

= {};

->{oxford} = [];

->{oxford}->[1999] = {};
->{0oxford}->[1999] ->{Population} = 500000;

$ref->{UK}->{England
$ref->{UK}->{England

e

What this means is that we don't have to worry about creating all the entries ourselves. So we can just write:

my @chessboard;
Schessboard[0] ->[0] = "WR";

232

References

This is called autovivification - things springing into existence. We can use it to greatly simplify the way
we use references:

Try It Out : A Chess Game

Now that we can represent our chessboard, let's set up a chess game. This will consist of two stages:
setting up the board, and making moves. The computer will have no idea of the rules, but will simply
function as a board, allowing us to move pieces around. Here's our program:

#!/usr/bin/perl
chess.plx
use warnings;
use strict;

my @chessboard;
my @back = qw(R N B Q KN B R);
for (0..7) {

Schessboard[0]->[$_] = "W" . Sback[sS_]; # White Back Row
Schessboard[1]->[S$_] = "WP"; # White Pawns
Schessboard[6]->[$_] = "BP"; # Black Pawns
Schessboard[7]->[$_] = "B" . Sback[$_]; # Black Back Row
1
while (1) {
Print board
for my $i (reverse (0..7)) { # Row
for my $j (0..7) { # Column

if (defined $chessboard[$i]l->[$31)
print S$chessboard[$i]l->[$]];

}oelsif (($i %2) == (%3 %2)) {
print "..";
} else {
print n ",
1
print " "; # End of cell
1
print "\n"; # End of row

}

print "\nStarting square [x,y]l: ";
my Smove = <>;

last unless ($move =~ /"“\s*([1-8]), ([1-81)/);
my $startx = $1-1; my Sstarty = $2-1;

unless (defined $chessboard[$starty]->[$startx])
print "There's nothing on that square!\n";
next;

1

print "\nEnding square [x,y]: ";

Smove = <>;

last unless ($move =~ /([1-8]),([1-81)/);

my Sendx = $1-1; my Sendy = $2-1;

Put starting square on ending square.

Schessboard[Sendy] ->[$Sendx] = S$chessboard[$starty] ->[Sstartx];
Remove from old square

undef $chessboard[$starty] ->[$Sstartx];

233

Chapter 7

Now let's see the first part of a game in progress:

> perl chess.plx
BR BN BB BQ BK BN BB BR
BP BP BP BP BP BP BP BP

WP WP WP WP WP WP WP WP
WR WN WB WQ WK WN WB WR

Starting square [x,y]: 4,2
Ending square [x,y]: 4,4

BR BN BB BQ BK BN BB BR
BP BP BP BP BP BP BP BP

WP

WP WP WP .. WP WP WP WP
WR WN WB WQ WK WN WB WR

Starting square [x,y]: 4,7
Ending square [x,y]: 4,5
BR BN BB BQ BK BN BB BR
BP BP BP . BP BP BP BP
BP ..
WP

WP WP WP .. WP WP WP WP
WR WN WB WQ WK WN WB WR

How It Works

Odur first task is to set up the chessboard, with the pieces in their initial positions. Remember that we're
assigning Schessboard [$row] -> [$column] = $thing. First, we set up an array of pieces on the
'back row'. We'll use this to make it easier to put each piece in its appropriate column:

my @back = qw(R N B Q K N B R);
Now we'll go over each column:

for (0..7) {

In row zero, the back row for white, we want to place the appropriate piece from the array in
each square:

$chessboard[0]->[$_] = "W" . Sback[$_]; # White Back Row

234

References

In row one of each column, we want a white pawn, WP:
Schessboard([1]->[$_] = "WP"; # White Pawns
Now we do the same again for black's pieces on rows 6 and 7:

= "BP"; # Black Pawns

$chessboard [6] ->[$_]
$_] = "B" . S$back[$_]; # Black Back Row

$chessboard[7] ->[$_
What about the rest of the squares on board? Well, they don't exist right now, but will spring into
existence when we try and read from them.

Next we go into our main loop, printing out the board and moving the pieces. To print the board, we
obviously want to look at each piece. So we loop through each row and each column:

for my $i (reverse (0..7)) { # Row
for my $j (0..7) { # Column

If the element is defined, it's because we've put a piece there, so we print it out:

if (defined $chessboard[$i]l->[$]1) {
print S$chessboard[$i]l->[$]];

Note that at this point, we're accessing all 64 squares. this means any square that didn't exist before will
do from now on. This next piece of prettiness prints out the "checkered" effect. On a checkerboard,
dark squares come on odd rows in odd columns and even rows in even columns. $x % 2 tests whether

$x divides equally by two — whether it is odd or even. If the 'oddness' (or 'evenness') of the row and
column is the same, we print a dark square:

} oelsif (($i %2) == (37 %2)) {
print "..";

Otherwise, we print a blank square consisting of two spaces:

} else {
print " ";
}
To separate the cells, we use a single space:

print " "; # End of cell

}

And at the end of each row, we print a new line:

print "\n"; # End of row

235

Chapter 7

Now we ask for a square to move from:

print "\nStarting square [x,y]: ";
my Smove = <>;

We're looking for two digits with a comma in the middle:
last unless ($move =~ /([1-8]),([1-8])/);

Now we convert human-style coordinates (1 to 8) into computer-style coordinates (0 to 7):
my S$startx = $1-1; my $Sstarty = $2-1;

Next, check if there's actually a piece there. Note that a y coordinate is a row, so it goes first — look back
at the diagram if you're not sure how this works:

unless (defined S$chessboard[$starty]->I[$startx])
print "There's nothing on that square!\n";
next;

We do the same for the ending square, and then move the piece. We copy the piece to the new square:

Schessboard [$endy] -> [$endx] = $chessboard[Sstarty]->[S$startx];
And then we delete the old square:

undef S$chessboard[$starty] ->[$startx];

We've now used a matrix, a two-dimensional array. The nice thing about perl's auto vivification is that
we didn't need to say explicitly that we were dealing with references. Perl takes care of all that behind
the scenes, and we just assigned the relevant values to the right places. However, if we were to look at
the contents of the @chessboard array, we'd see eight array references.

Trees

We're now going to build on the principle of matrices, by introducing tree-like data structures, in which
we use hashes as well as arrays. The classic example of one of these structures is an address book.
Suppose we want to keep someone's address and phone number in a hash. We could say this:

$paddy = (
address => "23, Blue Jay Way",
phone => "404-6599"

) ;
That's all very well, and it makes sense. The only problem is, you have to create a separate hash for

each person in your address book and put each one in a separate variable. This isn't easy at all at run
time, and is very messy to write. So instead, you use references.

236

References

What we do is create a main 'address book' hash, referenced as $addressbook, with everyone else's

hashes as values off that:

$addressbook{"Paddy Malone"} = {
address => "23, Blue Jay Way",
phone => "404-6599"

}i

Note that if you'veincluded theuse strict; pragma, you'll haveto declarethis
hash explicitly asmy %addressbook; beforeusingit.

It's now very easy to take new entries from the user and add them to our address book:

print "Give me a name:"; chomp S$name =<>;
print "Address:"; chomp Saddress=<>;
print "Phone number:"; chomp S$phone =<>;

$addressbook{$name} = {
address => S$address,
phone => Sphone

}i

To print out a single person, we'd use this:

if (exists S$addressbook{s$who}) {
print "$who\n";

print "Address: ", $addressbook{$who}->{address},
print "Phone no: ", $addressbook{$who}->{phone},

}

To print every address, we'd use this:

for $who (keys %addressbook) ({
print "$who\n";

print "Address: ", $addressbook{$who}->{address},
print "Phone no: ", $addressbook{$who}->{phone},

}

Deleting an address is very simple:

delete Saddressbook{swho};

u\nu;
n\nn;

n\nn;
n\nn,.

How about adding another level to our tree. Can we have an array of 'friends' for each person? No

problem. We just use an anonymous array:

$addressbook{"Paddy Malone"} = {
address => "23, Blue Jay Way",
phone => "404-6599",

friends => ["Baba O'Reilly", "Mick Flaherty"]

}i

237

Chapter 7

We can get at each person's friends by saying $addressbook{$who}->{friends}. That will give us
an anonymous array. We can then dereference that to a real array and print it out:

for $who (keys %addressbook) {
print "S$who\n";
print "Address: ", $addressbook{$who}->{address}, "\n";
print "Phone no: ", $addressbook{$who}->{phone}, "\n";
my @friends = @{$addressbook{$who}->{friends}};
print "Friends:\n";
for (@friends) ({
print "\t$_\n";
}

This would now give us something like:

Paddy Malone
Address: 23, Blue Jay Way
Phone no: 404-6599
Friends:

Baba O'Reilly

Mick Flaherty

What we now have is one hash (address book), containing another hash (peoples' details), in turn
containing an array (each person's friends).

We can quite easily traverse the tree structure, that is, move from person to person by following links.
We do this by visiting a link, then adding all of that person's friends onto a 'to do' array. We must be
very careful here not to get stuck in a loop. If one person links to another, and the other links back
again, we need to avoid bouncing about between them indefinitely. One simple way to keep track of the
links we've already processed is to use a hash. Here's how we can do it:

$, = "\t" # Set output field separator for tabulated display
my @todo = ("Paddy Malone"); # Start point
my %seen;

while (@todo) {
my Swho = shift @todo; # Get person from the end
$seen{$who}++; # Mark them as seen.
my @friends = @{$addressbook{$who}->{friends}};
print "$who has friends: ", @friends, "\n";
for (@friends) {
Visit unless they're already visited
push @todo, $_ unless exists S$seen{$_};

The reference $seen is used to build up a hash table of everyone whose name has been held in the
variable $who. The for loop at the bottom only adds names to the @todo list if they're not defined in
that hash, That is, if they've not been displayed already. Given a fairly closed community, we could see
something like this:

238

References

Paddy Malone has friends Baba O'Reilly Mick Flaherty

Baba O'Reilly has friends Bob McDowell Mick Flaherty Andy Donahue
Mick Flaherty has friends Paddy Malone Timothy O'Leary

Bob McDowell has friends Andy Donahue Baba O'Reilly

Andy Donahue has friends Jimmy Callahan Mick Flaherty

Timothy O'Leary has friends Bob McDowell Mick Flaherty Paddy Malone
Jimmy Callahan has friends Andy Donahue Baba O'Reilly Mick Flaherty

Linked Lists

The last thing we're going to look at is creating linked lists. These actually cover quite a broad range of
data structures, but all have one common feature:

One part of each record in thelist refersto at least one other record in thelist.

Just as any good page on the web will link to at least one other page, each record in a linked list will
include a reference to another record in the list, and possibly several. That's all well and good, but
what improvement does this give us on the structures we've seen already? We know how to use a value
held in one record to reference another - rather handy, but not exactly earth-shattering.

The fact is, while this is how linked lists hang together, it's not quite the full story. The examples we've
seen so far have been passing references to and from records in a single root data structure: the
addressbook hash reference. We take the name of a friend and use that as a key in the hash to access
that friend's details.

Now, what if I have a bunch of friends at work, where there's already a data structure in place
containing just this sort of information. Now, I want to include colleagues in my list of friends, but it's
not practical to copy all the data from one to the other. What's more, while the work system uses a
similar structure to the addressbook one, $work (the root reference — equivalent to $addressbook)
uses ID numbers as indicesin an array. For example, my friend Dan is registered as employee 4109, so
his details are referenced by $work [4108] - yes, array indices start at 0. Anyway, it seems I can't
have "Dan Maharry" as one of my friends.

Maybe I could just put '4109' in as his name. What the heck, I'll know who it is. No, of course we'd still
be trying to access the addressbook hash reference, and "4109" isn't in there.

What if we get the program to check both root references for a suitable match? That works fine,
until I'm sending out Christmas mail (automatically, of course. It's what perl does best!), and he
gets one starting:

Dear 4109,
Let me tell you all about this new book I've written....

Hmm. Not really ideal. What we really need is to have our 'friends' key reference a hash table (instead
of a list), with the key "Dan Maharry" assigned the value of the appropriate reference. So, instead of:

friends => ["Baba O'Reilly", "Mick Flaherty"]

239

Chapter 7

we put:
friends => { "Baba O'Reilly" => $addressbook ("Baba O'Reilly"),
"Mick Flaherty" => $addressbook ("Mick Flaherty"),
"Dan Maharry" => $Swork[4109]

The power and versatility (and some would say beauty) of a linked list derives from a very simple fact:

Theinternal structure of any record in alinked list can be independent of all others.

In the simplest case, all our references were from addressbook entries fo0 addressbook entries. This belies
the fact that each of them could actually refer to any data structure at all. As we saw though, the
flexibility of Perl references allows us to link up all sorts of different structures.

Summary

We've looked at references, a way to put one type of data structure inside another. References work
because they allow us to refer to another piece of data. They tell us where Perl stores it and give us a
way to get at it. Because references are always scalars, you can think of them as flat-pack storage for
arrays and hashes.

We can create a reference explicitly by putting a backslash in front of a variable's name: \$hash or
\@array, for example. Alternatively, we can create an anonymous reference by using { } instead of ()
for a hash and [] instead of () for an array. Finally, we can create a reference by creating a need for
one. If a reference needs to exist for what we're doing, Perl will spring one into existence by
autovivification.

We can use a reference by placing it in curly brackets where a variable name should go. @{$array_r}
can replace @array everywhere and we don't even need the brackets if it's clear what we mean. We
can then access elements of array or hash references using the arrow notation: $array_ref-
>[$element] for an array and $hash_ref->{$key} for a hash.

We've also seen a few complex data structures: matrices, which are arrays of arrays; trees, which
may contain hashes or arrays; and linked lists, which contain references to other parts of the data
structure, or even other data structures. For more information on these kinds of data structure,
consult the Perl 'Data Structures Cookbook' documentation (perldsc) or the Perl 'List of Lists'
documentation. (perllol)

If you're really interested in data structures from a computer science point of view, Mastering Algorithms
in Perl by Orwant et al. (O Reilly — ISBN 7-56592-398-7) has some chapters on these kinds of structure,
primarily, trees and tree traversal. The ultimate guide to data structures is still ' The Art Of Computer
Programming, Volume 7', by Donald Knuth (4ddison Wesley - ISBN 0207896834) — affectionately known as
"The Bible'.

240

References

Exercises

1. Construct an array of arrays to form a multiplication table covering from one times one to six
times six but as words. Then ask the user to query it and return the result in words only.

2. Take the chess program and revise it so it checks for the validity of the knight's moves.
Remember that the knight cannot move off the board or take one of its own pieces. The
knight moves in an L-shape — two squares horizontally or vertically and then one square at
ninety degrees to that.

241

Source code available at : www.wrox.com
Peer discussion at : lamplists.com

Also from Wrox

2 £k
o ImAA™
7 TVPHIR

FROTISSIONAL PROFISSIONAL

Perl Per

Programming Development

W AT

BEGINNING

Perl

http:/imwww.wrox.com/books/1861003145.htm

lamplists.com

The Open Source Programmer’s Res ource Centre

This work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd-nc/1.0 or send a letter to Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

The key terms of this license are:

Attribution: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original author credit.

No Derivative Works: The licensor permits others to copy, distribute, display and perform only unaltered copies of the work --
not derivative works based on it.

Noncommercial: The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not
use the work for commercial purposes -- unless they get the licensor's permission.

Subroutines

When programming, there'll naturally be processes you want to do again and again: adding up the
values in an array, stripping extraneous blank spaces from a string, getting information into a hash in a
particular format, and so on. It would be tedious to write out the code for each of these little processes
every time we need to use one, and it would be horrific to maintain too: if there are bugs in the way
we've specified it, we'll have to go through and find each one of them and fix it. It would be better if we
could define a particular process just once, and then be able to call on that just like we've been calling
on Perl's built-in operators.

This is exactly what subroutines allow us to do. Subroutines (or just subs) give us the ability to give a
name to a section of code. Then when we need to use that code in our program, we just call it by name.

Subroutines help our programming for two main reasons. First, they let us reuse code, as we've
described above. This makes it easier to find and fix bugs and makes it faster for us to write programs.
The second reason is that they allow us to chunk our code into organizational sections. Each subroutine
can, for example, be responsible for a particular task.

So, when is it appropriate to use subroutines in Perl? I would say there would be two cases when a piece
of code should be put into a subroutine: first, when you know it will be used to perform a calculation or
action that's going to happen more than once. For instance, putting a string into a specific format,
printing the header or footer of a report, turning an incoming data record into a hash, and so on.

One thing we'll see later on is that we can use subroutines in a similar way to the way we've been using
Perl's built-in operators. We can give them arguments and get scalars and lists returned to us.

Second, if there are logical units of your program that you want to break up to make your program
easier to understand. I can imagine few things worse than debugging several thousand lines of Perl
that are not broken up in any way (well, maybe one or two things). As an extreme example,

sometimes — and only sometimes — I like to have a 'main program', which consists entirely of calls
to subroutines, like this:

#!/usr/bin/perl
use warnings;
use strict;

setup () ;
get_input () ;
process_input () ;
output () ;

Chapter 8

This immediately shows me the structure of my program. Each of those four subroutines would, of
course, have to be defined, and they'd probably call on other subroutines themselves. This allows us to
partition up our programs, to change our single, monolithic piece of code into manageable chunks for
ease of understanding, ease of debugging, and ease of maintaining the program.

The 'Difference' Between Functions and Subroutines

Instead of the term 'subroutine', you're sure to come across the word 'function' many times as you deal
with Perl and Perl resources. So let's have a look at the difference between 'function', 'subroutine', and
'operator'. The problem is that other programming languages use the terms ever so slightly differently.

Usually

In most programming languages, and in computer science in general, the following definitions apply:

O A function is something that takes a number of arguments (possibly zero), does something
with them, and returns a value. A function can either be built into the programming language
or it can be supplied by the user.

Q An operator is a function that is usually represented by a symbol rather than a name and is
almost always built into the programming language.

O A subroutineis some code provided by the user that performs an action and doesn't return a
value. Unfortunately, languages like C have functions that can return nothing. These 'void
functions' could be called subroutines — but they're not. That's life.

In Perl
Because some people who know other languages use the usual terms, Perl's definitions are a little
confusing:

0 If someone mentions a function in Perl, they almost certainly mean something built into Perl.

However, they might be coming from C and mean a subroutine. The main reference
documentation for Perl built-ins is called per1func. You can also find the complete list in
Appendix C.

An operator in Perl can have a name instead of a symbol, so it can look very much like a
function. Hence, some people tend to use the terms interchangeably. Those built-ins that have
symbols instead of names are documented in perlop, which also refers to 'named operators'.
perl itself speaks about the 'print operator', so we've used that terminology in this book.
However, you're equally likely to hear Perl people talk about 'the print function'.

Subroutines in Perl are akin to C's functions — they are sections of code that can take
arguments, perform some operations with them, and may return a meaningful value, but don't
have to. However, they're always user-defined rather than built-ins:

Simply put: Subroutines are chunks of code you give Perl; Functions and Operators
arethingsthat Perl provides.

244

Subroutines

Understanding Subroutines

Now we know what subroutines are, it's time to look at how to define them and how to use them. First,
we'll learnhow to create subroutines.

Defining a Subroutine

So, we can give Perl some code, and we can give it a name, and that's our subroutine. Here's how
we do it:

sub marine {

}

There are three sections to this declaration:

The keyword sub. This is case-sensitive and needs to be in lower case.

The name we're going to give it. The rules for naming a subroutine are exactly those for
naming variables; names must begin with an alphabetic character or an underscore, to be
followed by one or more alphanumerics or underscores. Upper case letters are allowed, but
we tend to reserve all-uppercase names for special subroutines. And again, as for variables,
you can have a scalar $fred, an array @fred, a hash $fred, a filehandle fred, and a
subroutine fred, and they'll all be distinct.

A block of code delimited by curly brackets, just as we saw when we were using while and
if. Notice that we don't need a semicolon after the closing brace.

After we've done that, we can use our subroutine.

Before we go any further, it's worth taking a quick time out to ponder how we name our subroutines.
You can convey a lot about a subroutine's purpose with its name, much like that of a variable. Here are
some guidelines — not hard-and-fast rules — about how you should name subroutines.

a

If they're primarily about performing an activity, name them with a verb, for example,
summarize or download.

If they're primarily about returning information, name them after what they return, for
example, greeting or header.

If they're about testing whether a statment is true or not, give them a name that makes sense
in an if statement; starting with is_... or can_... helps, or if that isn't appropriate, name
them with an adjective: for example, is_available, valid, or readable.

Finally, if you're converting between one thing and another, try and convey both things.
Traditionally this is done with an 2 or _to_ in the middle: text2html, metres_to_feet.
That way you can tell easily what's being expected and what's being produced.

245

Chapter 8

Try It Out : Version Information

It's traditional for programs to tell you their version and name either when they start up or when
you ask them with a special option. It's also convenient to put the code that prints this information
into a subroutine to get it out of the way. Let's take our very first program and update it for this
traditional practice.

Here's what we started with, version 1:

#!/usr/bin/perl
use warnings;
print "Hello, world.\n";

And here it is with warnings and strict modes turned on and version information:

#!/usr/bin/perl
hello2.plx
use warnings;
use strict;

sub version ({
print "Beginning Perl's \"Hello, world.\" version 2.0\n";

my Soption = shift;
version if Soption eq "-v" or Soption eq "--version";
print "Hello, world.\n";

Now, we're starting to look like a real utility:

>perl hello2.plx -v
Beginning Perl's "Hello, world." version 2.0
Hello, world.

How It Works

As before, we have the sub keyword, a name, version, and then the block of code. We've defined the
version subroutine as follows:

sub version {
print "Beginning Perl's \"Hello, world.\" version 2.0\n";
1

It's a simple block of code that calls the print statement. It didn't have to - it could have done
anything. Any code that's valid in the main program is valid inside a subroutine, including:

Q Calling other subroutines

O Calling the current subroutine again — see the section 'Recursion’ at the end of the chapter on
this very subject.

We call this block the body of the subroutine, just like we had the body of a loop; similarly, it stretches
from the open curly bracket after the subroutine name to the matching closing bracket.

246

Subroutines

Now we've defined it, we can use it. We just give the name, and Perl runs that block of code, albeit with
the proviso that we've added the right flag on the command line:

version if Soption eq "-v" or $option eqg "--version";
When it's finished doing version, it comes back and carries on with the next statement:
print "Hello, world.\n";

No doubt version th3ree will address the warnings that Perl gives if you call this program without
appending -V or --version to its name.

Order of Declaration

If we just call our subroutines by name, as we did above, we're forced to declare them before we use
them. This may not sound much of a limitation, but there are times when we'll want to declare our
subroutines after the main part of the program. In fact, that's the usual way to structure a program. This
is because when you open up the file in your editor, you can see what's going on right there at the top of
the file, without having to scroll through a bunch of definitions first. Take the extreme example at the
beginning of this chapter:

#!/usr/bin/perl
use warnings;
use strict;

setup () ;
get_input () ;
process_input () ;
output () ;

That would then be followed, presumably, by something like this:

sub setup {
print "This is some program, version 0.1\n";
print "Opening files...\n";
open_files() ;
print "Opening network connections...\n";
open_network () ;
print "Ready!\n";

}

sub open_files {
}

That's far easier to understand than trawling through a pile of subroutines before getting to the four lines
that constitute our main program. It also encourages the 'top-down' school of programming.

Traditional programming methodology, which I've been using here, states that we should start at the
highest level of our program and break it down into smaller and smaller problems - starting at the
top and working down. There's also a bottom-up school of thought that dictates you should write
your basic operations first, then glue them together. There's even been the suggestion of a 'middle-
out' style that starts at a middle layer and adds smaller operations and higher-level structure at the
same time. I encourage you to start with top-down programming until something else becomes
natural.

247

Chapter 8

However, in order to get this to work, we need to provide hints to Perl as to what we're doing. That's
why the calls to subroutines above have a pair of brackets around them: setup (), open_files (),
and so on. This helps to tell Perl that it should be looking for a subroutine somewhere instead of
referring to a filehandle or anything else it could have been. What happens if we don't do this?

#!/usr/bin/perl
subdecl.plx
use warnings;
use strict;

setup;
sub setup {
print "This is some program, version 0.1\n";

>perl subdecl.plx

Bareword "setup” not allowed while "strict subs" in use at subdecl.plx line 6.
Execution of subdecl.plx aborted due to compilation errors.

>

Perl didn't know what we meant at the time, so it complained. To tell it we're talking about a
subroutine, we use brackets, just like when we want the parameters to an operator like print to
be unambiguous.

There's another way we can tell Perl that we're going to refer to a subroutine and that's to provide a
forward definition — also known as pre-declaring the subroutine. This means 'we're not going to define
this right now, but look out for it later.’

We do this by just saying sub NAME ;. Note that this does require a semicolon at the end. Here's
another way of writing the above:

#!/usr/bin/perl

use warnings;

use strict;

sub setup; sub get_input; sub process_input; sub output;
sub open_files; sub open_network;

From now on, we can happily use the subroutines without the brackets:

setup;
get_input;
process_input;
output;

sub setup {
print "This is some program, version 0.1\n";
print "Opening files...\n";
open_files;
print "Opening network connections...\n";
open_network;
print "Ready!\n";

}

sub open_files {

}

248

Subroutines

Alternatively, you can ask Perl to provide the forwards for you. If we say use subs (..), we can
provide a list of subroutine names to be pre-declared:

#!/usr/bin/perl

use warnings;

use strict;

use subs gw(setup get_input process_input output pen_files open_network) ;

Personally, however, I tend to leave in the brackets to remind me I'm dealing with subroutines. You
may also see yet another way of calling subroutines:

&setup;
&get_input;
&process_input;
&output;

This was popular in the days of Perl 4, and we'll see later why the ampersand is important. For the time
being, think of the ampersand as being the 'type symbol' for subroutines.

Subroutines for Calculation

As we mentioned at the beginning of the chapter, as well as being set pieces of code to be executed
whenever we need them, we can also use subroutines just like Perl's built-in functions and operators.
We can pass parameters to the subroutine and expect an answer back.

Parameters and Arguments

Just like with Perl's built-ins, we pass parameters by placing them between the brackets:
my_sub (10,15) ;

What happens to them there? Well, they end up in one of Perl's special variables, the array @_ and from
there we can get at them:

Try It Out : Totalling a List

We'll write a subroutine that takes a list of values, adds them up, and prints the total:

#!/usr/bin/perl
totall.plx
use warnings;
use strict;

total (111, 107, 105, 114, 69);
total(1...100);

sub total {
my Stotal = 0;
Stotal += $_ for @_;
print "The total is S$total\n";

249

Chapter 8

And to see it in action:

> perl totall.plx
The total is 506

The total is 5050
>

How It Works

We can pass any list to a subroutine, just like we can to print. When we do so, the list ends up in @_
where it's up to us to do something with it. Here, we go through each element of it and add them up:

Stotal += $_ for @_;

This is a little cryptic, but it's how you're likely to see it done in real Perl code. You could write this a
little less tersely as follows:

my @args = @_;

foreach my S$element (@args) {
Stotal = Stotal+Selement;

1

In the first example, @_ would contain (111, 107, 105, 114, 69), and we'd add each value to
Stotal in turn.

Return Values

However, sometimes we don't want to perform an action like printing out the total, but instead we want
to return a result. We may also want to return a result to indicate whether what we were doing
succeeded. This will allow us to say things like:

Ssum_of_100 = total(l...100);

There are two ways to do this: implicitly or explicitly. The implicit way is nice and easy. We just make
the value we want to return the last thing in our subroutine:

#!/usr/bin/perl
total2.plx
use warnings;
use strict;

my Stotal = total (111, 107, 105, 114, 69);
my $sum of_ 100 = total(l...100);

sub total {
my Stotal = 0;
Stotal += $_ for e@_;
Stotal;

}

It doesn't need to be a variable: we could use any expression there. We can also return a list instead of a
single scalar.

250

Subroutines

Try It Out : Splitting Time

Let's split a time in seconds up to hours, minutes, and seconds. We give a subroutine a time in seconds,
and it returns a three-element list with the hours, minutes, and remaining seconds:

#!/usr/bin/perl
secondsl.plx
use warnings;
use strict;

my (Shours, $minutes, S$seconds) = secs2hms(3723);
print "3723 seconds is S$hours hours, S$minutes minutes and $seconds seconds";
print "\n";

sub secs2hms {

my ($h,$m) ;

my S$seconds = shift;

S$h = int (Sseconds/ (60%60)); $seconds %= 60%60;
Sm = int ($seconds/60) ; Sseconds %= 60;

($h, $m, $seconds) ;

This tells us that:

>perl secondsl.plx
3723 seconds is 1 hours, 2 minutes and 3 seconds
>

How It Works

Just like a built-in function, when we're expecting a subroutine to return a list, we can use an array or
list of variables to collect the return values:

my (Shours, $minutes, S$seconds) = secs2hms (3723);

When secs2hms returns, this'll be equivalent to:
my (Shours, $minutes, S$seconds) = (1,2,3);

Now let's look at how the subroutine works. We start in the usual way: sub, the name, and a block:
sub secs2hms {

We have two variables to represent hours and minutes, and we read the parameters in from @_. If you
don't tell shift which array to take data from, it'll read from @_ if you're in a subroutine or @ARGV if

you're not:
my (sh,$m);
my S$seconds = shift;

251

Chapter 8

Then the actual conversion: There are 3600 (60*60) seconds in an hour, and so the number of hours is
the number of seconds divided by 3600. However, that'll give us a floating-point number - if we divided
3660 by 3600, we'd get 1.0341666... we'd rather have 'one and a bit', so we use int () to get the integer
value, the '1' part of the division, and use the modulus operator to get the remainder. After dealing with
the first 3600 seconds, we want to carry on looking at the next 123:

$h = int ($seconds/ (60%*60)); $seconds %= 60%*60;

The second statement on this line sets $seconds to $seconds % (60*60). Ifit was 3723 before,
it'll be 123 now.

The same goes for minutes: we divide to get 'two and a bit', and the remainder tells us that there are
three seconds outstanding. Hence, our values are 1 hour, 2 minutes, and 3 seconds:

$m = int ($seconds/60) ; $seconds %= 60;
We return this just by leaving a list of the values as the last thing in the subroutine:

($h, $m, $seconds) ;

The return Statement

The explicit method of returning something from a subroutine is to say return (. ..). The first
return statement we come across will immediately return that list to the caller. So, for instance:

sub secs2hms {

my ($h,$m) ;

my $seconds = shift;

$h = int ($seconds/ (60%*60)); $seconds %= 60*60;
Sm = int ($seconds/60) ; Sseconds %= 60;

return (Sh,Sm,Sseconds) ;
print "This statement is never reached.";

This also means we can have more than one return statement, and it's often useful to do so.

Caching

One particularly effective use of this is called caching, and it's a technique we can use to make
subroutines that do calculations work faster. To use caching, we store each answer we generate from a
set of parameters into a cache, usually a hash. If we see those parameters again, we can fetch the answer
from the cache rather than work it all out from scratch. For example, here's a subroutine that gets the
first line in a file:

sub first_ line {
my S$filename = shift;
open FILE, S$filename or return "";
my $line = <FILE>;
return S$line;

252

Subroutines

And here's that subroutine with caching:

my %cache;
sub first_line ({
my $filename = shift;
return $cache{$filename} if exists $cache{$filename}
open FILE, $filename or return "";
my $line = <FILE>;
$cache{filename} = $line;
return S$line;

}

Although it's possible that the first lines of those files change while we're running the program, it's not
likely. So, we check to see if we've seen a file before; if we have, we give the answer we got last time
and return. If we haven't seen it before, we open the file, check it out, and then store the answer in the
cache for next time.

If you've got subroutines where the answer is likely to be the same every time you call with a given
parameter, and where you're doing significantly more work than a simple lookup, consider using a
cache like this.

Context

Some of Perl's built-ins do different things in different contexts: localtime, for instance, returns a
string in scalar context and a breakdown of the time in list context. As perlfunc puts it, There is no
rule that relates the behavior of an expression in list context to its behavior in scalar context, or vice versa. It might
do two totally different things.'

We can make our subs sensitive to context as well. Perl provides two functions to allow us to examine
how we were called. The more complex one is caller, and the one we'll look at is wantarray.
Strictly speaking, it tells us whether our caller wants a list. If so, it will be true. If a single scalar is
required, then it will be false. If the caller isn't planning to do anything with what we give it, it will be
the undefined value. So, for instance, we can emulate localtime like this:

#!/usr/bin/perl

seconds2.plx

use warnings;

use strict;

my (S$hours, S$minutes, S$seconds) = secs2hms(3723);

print "3723 seconds is $hours hours, Sminutes minutes and $seconds seconds\n'";
my Stime = secs2hms (6868) ;

print "6868 seconds is $time\n";

sub secs2hms {

my ($h,$m);

my S$seconds = shift;

Sh = int ($seconds/ (60%60)); $seconds %= 60%*60;
Sm = int ($seconds/60) ; $seconds %= 60;

if (wantarray)
return ($h,Sm, $seconds) ;
1

return "$h hours, $m minutes and $seconds seconds";

253

Chapter 8

>perl seconds2.plx

3723 seconds is 1 hours, 2 minutes and 3 seconds
6868 seconds is 1 hours, 54 minutes and 28 seconds
>

To be honest, however, it's pretty unlikely that you'll ever do this: It's best to have a subroutine that
returns the same thing all the time, unless it's being used by someone other than yourself.

Subroutine Prototypes

If your subroutines are likely to be used by someone else, you might want to consider using subroutine
prototypes. You'll also need to think about these if you're planning on passing more than one array to a
subroutine. We'll look later at how that is done.

A subroutine prototype tells Perl what sort of arguments it's expecting. This can be used to check to
ensure that the user is passing the right number of parameters, and it can also change the way Perl reads
your program. For instance, you can make it possible to leave off the brackets from around your
parameters, in the same way that print "one", "two"; isthe same as print ("one","two") ;
and you can chose whether:

print mysub "one", "two";
means:

print (mysub ("one", "two"));
or:

print (mysub("one"), "two");

That is, how many arguments your subroutine should swallow up.

Prototypes talk about the number of scalars we allow, and we use a dollar sign for each one. So, the
prototype for a subroutine that takes two arguments would be $$. Prototypes come between the name
and the block of the subroutine definition, in brackets, like this:

sub sum_of_two_squares ($3) ({
my ($a,$b) = (shift, shift);
return $a**2+$b**2;

}

The problem is, just like when we wanted to use subroutines without the brackets, Perl hadn't read as far
as their definition when it came across the call and so didn't know what to expect. When using
prototypes we need to ensure that Perl gets to read the prototype before we use the subroutine, and to
do this, we can use a forward definition at the top of the program, like so:

#!/usr/bin/perl

sumsquare.plx

use warnings;

use strict;

sub sum_of_two_squares (S$$);

254

Subroutines

Try It Out : Using Prototypes

Now if we try to give any more or less than two parameters, Perl complains even before the
program starts:

#!/usr/bin/perl

sumsquare.plx

use warnings;

use strict;

sub sum_of_two_squares ($$);

my ($first, $second) = @ARGV;
print "The sum of the squares of $first and S$second is ";
print sum_of_two_squares ($first, $second),"\n";

print sum_of_two_squares ($first, $second, 0),"\n";
sub sum_of_two_squares ($$) {
my (Sa,$b) = (shift, shift);

return $a**2+Sb**2;

}
We try to use three parameters, but Perl won't allow it because we've told it only to accept two:
>perl sumsquare.plx 10 20
Too many arguments for main::sum_of_two_squares at sumsquare.plx line 11, near "0)"
Execution of sumsquare.plx aborted due to compilation errors.
>
If we comment out that line, it works as expected:
> perl sumsquare.plx 10 20
The sum of the squares of 10 and 20 is 500

>

You can specify that the number may vary by the use of a semicolon in the prototype. Everything after
the semicolon is tentative; you can also use an @_ sign to denote 'any number of parameters'.

Understanding Scope

It's now time to have a serious look at what we're doing when we declare a variable with my. The truth,
as we've briefly glimpsed it, is that Perl has two types of variable. One type is the global variable (or
package variable), which can be accessed anywhere in the program. The second type is the lexical
variable, which we declare with my.

Global Variables

Global variables are what you get if you don't use my. If we were to say:

#!/usr/bin/perl
Sx = 10;

255

Chapter 8

then $x would be a global variable. They're also called package variables because they live inside a
package (a package is just a convenient place to put subroutines and variables).

When we start programming, we're in a package called main. If we assign $x, as above, then we create
a package variable $x in package main. Perl knows it by its full name, $main: :x — the variable $x in
the main package. But because we're in the main package when we make the assignment, we can just
call it by its short name, $x. It's like the phone system — you don't have to dial the area code when you
call someone in the same region as you.

We can create a variable in another package by using a fully-qualified name. Instead of the main
package, we can have a package called Fred. Here we'll store all of Fred's variables and subroutines.
So, to get at the $name variable in package Fred, we say $Fred: :name, like this:

Sx = 10;
SFred::name = "Fred Flintstone";

The fact that it's in a different package doesn't mean we can't get at it. Remember that these are
global variables, available from anywhere in our program. All packages do is give us a way of
subdividing the namespace.

What do we mean by 'subdividing the namespace'? Well, the namespace is the set of names we can give
our variables. Without packages, we could only have one $name. What packages do is help us make
$name in package Fred different to $name in package Barney and $name in package main.

#!/usr/bin/perl
globals.plx
use warnings;

Smain: :name = "Your Name Here";
SFred: :name = "Fred Flintstone";
$Barney: :name = "Barney Rubble";

print "\S$name in package main is $name\n";
print "\Sname in package Fred is $Fred::name\n";
print "\S$name in package Barney is $Barney::name\n";

> perl globals.plx

$name in package main is Your Name Here
$name in package Fred is Fred Flintstone
$name in package Barney is Barney Rubble

You can change what package you're currently working in with the aptly named package operator. We
could write the above like this:

#!/usr/bin/perl
globals2.plx
use warnings;

Smain: :name = "Your Name Here";
SFred: :name = "Fred Flintstone";
S$Barney: :name = "Barney Rubble";

print "\Sname in package main is $name\n";
package Fred;

print "\Sname in package Fred is $name\n";
package Barney;

print "\Sname in package Barney is $name\n";
package main;

256

Subroutines

When use strict is in force, it makes us use the full names for our package variables. If we try and
say this:

#!/usr/bin/perl
#strictl.plx
use warnings;
use strict;

Sx = 10;

print $x;

Perl will give us an error — Global symbol "$x" requires explicit package name. The package name it's
looking for is main, and it wants us to say $main: :x

#!/usr/bin/perl
#strict2.plx
use warnings;
use strict;
Smain::x = 10;
print Smain::x;

As we've seen before, we can also use the our operator to tell Perl that a given variable should be
treated as a package variable in the current package. This works just as well:

#!/usr/bin/perl
#strict3.plx
use warnings;
use strict;

our S$x;

Sx = 10;

print $x;

Global variables can be accessed and altered at any time by any subroutine or assignment that you care
to apply to it. Of course, this is handy if you want to store a value - for instance, the user's name - and

be able to get it anywhere.

It's also an absolute pain in the neck when it comes to subroutines. Here's why:

Sa = 25;
Sb = some_sub (10) ;
print Sa;

Looks innocent, doesn't it? Looks like we should see the answer 25. But what happens if some_sub uses
and changes the global $a? Any variable anywhere in your program can be wiped out by another part
of your program. We call this 'action at a distance', and it gets real spooky to debug. Packages alleviate
the problem, but to make sure that we never get into this mess, you have to ensure that every variable in
your program has a different name. In small programs, that's feasible, but in huge team efforts, it's a
nightmare. It's far clearer to be able to restrict the possible effect of a variable to a certain area of code,
and that's exactly what lexical variables do.

257

Chapter 8

Lexical Variables

The range of effect that a variable has is called its scope, and lexical variables declared with my are said
to have lexical scope, that is, they exist from the point where they're declared until the end of the
enclosing block, brackets, subroutine, or file. The name 'lexical' comes from the fact that they're
confined to a well-defined chunk of text.

Each block has got a 'pad' in which it keeps its current lexical variables, if any. If Perl doesn't find the
variable you're referring to in the current pad, it'll look to the surrounding blocks until it finds it — or
doesn't. Every time you say my, you're creating a new variable attached to the current pad. It's
completely independent of any variables in other pads, and you use can use it to 'hide' similarly-named
lexicals that exist outside of the current block:

my S$x;
Sx = 30;
{
my $x; # New S$x
$x = 50;
We can't see the old $x, even if we want to.

}

This $x is, and always has been, 30.

Great. We can now use variables in our subroutines in the knowledge that we're not going to upset any
behavior outside them. We know that if we say:

sub strip {
my S$input = shift;
$input =~ s/"\s+//;
$input =~ s/\s+$//;
return $input;

}

that we're not going to clobber any other $input in the program. The highlighted part shows you the
lifespan of the variable: It comes into existence at the my statement and goes away at the end of the
nearest set of braces. We say that it 'goes out of scope' at the end of the subroutine. Once it's out of
scope, we shouldn't expect to be able to get to it again. In a sense, we've created a temporary variable.

Runtime Scope

However, we can't use this trick for global variables, and Perl's special variables such as $_ and $/ are
globals. What can we do to temporarily set their value? One way to do it is like this:

sub slurp {
my $save = $/;
undef $/;
my s$file = <>;
$/ = S$save;
return S$file;

258

Subroutines

That is, we can save away the current contents to a separate variable, and replace $/ with its old
contents when we're finished. Alternatively, we can get Perl to do the saving and restoring for us
automatically: to give a global variable a specific local value, use the 1ocal operator:

sub slurp
local $/ = undef;
my $file = <>;
return $file;

local gives a variable runtime scope. This means that any statement executed between local and the
end of the block will see the new value of the variable. How does this differ from lexical scope? The key
is that, as we've seen in this chapter, program flow doesn't just go straight through blocks of code We
can temporarily bounce off into subroutines, too. So, the difference is:

Runtime scope means a variable has atemporary value for the duration of the current
block, inclusive of any side tripsinto other subroutine blocks, that is seen everywhere
in the program — becauseit's a global. L exical scope, on the other hand, creates a
variablethat isonly visibleto the statementsinside the block.

Try It Out : Runtime Scope

This program uses local to give $_ a runtime scope. You should be able to see how local differs
from my:

#!/usr/bin/perl
runtime.plx
use strict;

use warnings;

my $x = 10; # Line 5
$_ = "alpha";
{

my S$x = 20;

local $_ = "beta";

somesub () ; # Line 10
1
somesub () ;

sub somesub {
print "\sx is s$x\n";
print "\$_ is $_\n";

>perl runtime.plx
$xis 10

$_is beta

$x is 10

$_is alpha

>

259

Chapter 8

How It Works

Can you see what's happening? Although we say my $x = 20; on line 8, that only affects statements
between line 8 and the end of the block, which is line 11. It's a lexical variable that is constrained by the
actual text, not by the order of execution. It doesn't have any effect when we call somesub on line 10.
local, on the other hand, affects everything we do between lines 9 and 11, and that includes calling
somesub. Its scope is determined by the statements that get executed.

When to Use my() and When to Use local

Mark-Jason Dominus gives simple but effective advice:

Don't use local. Always usemy.

This is somewhat of an overstatement, but it's a justified one. Unless you're dealing with special
variables like $/, you usually want to use my. If you need to lie to Perl for some period of time about a
global's value, try rethinking your design.

Passing More Complex Parameters

Sometimes we want to pass things other than an ordinary list of scalars, so it's important to understand
how passing parameters works.

@ Provides Aliases!

Remember when we did something like this:

@array = (1, 2, 3, 4);
for (@array)

S_++;
}

print "e@array\n";

We found that this would print "2, 3, 4, 5". The elements of the array had been affected. We said then
that the iterator variable is an alias to the elements of the list. Well, the same goes for the elements of
@_. They're actually aliases for the things we pass. That's why we've got to be careful when we're
dealing with @_ directly. It's dangerous to say, for example:

sub add_one_and_double {

S_[0]++;
return $_[0]*2;

}

because if we tried:

add_one_and_double (1) ;

260

Subroutines

Perl would try to modify a constant, which is by definition impossible. Hence, we tend to avoid using @_
directly and instead make local copies of the arguments, either wholesale into an array:

my @args = @_;

into named variables as a group:
my ($filename, $title, S$description) = @_;

or individually by calling shift (especially if the number of parameters can vary):
my S$filename = shift;

my S$title shift;
my S$description = shift;

@_ has, effectively, runtime scope. Each subroutine has its own copy of @_, meaning that if one
subroutine calls another, we have not lost the argument values to one of them:

#!/usr/bin/perl
subscope.plx
use warnings;
use strict;

first(1,2,3);

sub first {
print "In first, arguments are @_\n";

second (4,5,6) ;
print "Back in first, arguments are @_\n";

}

sub second {
print "In second, arguments are @_\n";

In first, arguments are 1 2 3
In second, arguments are 4 5 6
Back in first, arguments are 1 2 3

The question of which variable has scope to where can often be quite tricky to answer, but remember
that a lot of trouble may be avoided by naming your variables wisely in the first place.

Lists Always Collapse

We've seen this before, but it's worth saying it again: when you put an array inside a list, the list
collapses. The original structure of the array is lost, even before we start putting anything in the
parameter array @_. That's why you can't say something like:

check_same (@a, @b)

and expect to work out where @a ends and @b starts. As far as Perl's concerned there's just one list
there. To get around this, you can use references.

261

Chapter 8

Passing References to a Subroutine

There's actually nothing special about passing references into a subroutine, so long as we remember that
we can modify the original value when we dereference:

#!/usr/bin/perl
subrefsl.plx
use warnings;
use strict;

my $a = 5;
increment (\$a) ;
print Sa;

sub increment {
my S$reference = shift;
SSreference++;

However, what we can do is use prototypes to take a reference behind the scenes. If in a prototype,
instead of a dollar sign, we give a type symbol followed by a backslash, Perl will automatically take a
reference to that type of variable. So, sub something (\$) will look for a single scalar variable and
take a reference to it. sub something ($\%$) looks for a scalar, a hash, and a scalar and will take a
reference to the hash.

For instance, if we change the above to:

#!/usr/bin/perl

subrefs2.plx

use warnings;

use strict;

sub increment (\$);

my Sa = 5;
increment ($Sa) ;
print Sa;

sub increment (\$) {
my S$reference = shift;
SSreference++;

Notice how we no longer need to take the reference ourselves. We can just say increment ($a)
instead of (\$a) . Other languages call this pass by reference, as opposed to pass by value. Actually, all
we're doing is passing a reference and Perl constructs that for us.

This is exactly how we get arrays and hashes to keep their structure when we're passing them to
a subroutine.

262

Subroutines

Passing Arrays and Hashes to a Subroutine

Because the prototype can make a reference for us, we can actually take arrays, hashes and more
complicated data structures and let them keep their structure.

Try It Out : Passing Arrays

So, to see if two arrays have the same contents, you could do this:

sub check_same
my
Same size?

(Sref_one,

(\e\e)

Sref_two) =

{

@_;

return 0 unless @Sref_one == @Sref_two;

for my Selem

}

(0..$#Sref_one) ({
return 0 unless Sref_one->[S$Selem]

eq Sref_two->[$Selem];

Same if we got this far

return 1;

}

Putting that into a program looks like this:

#!/usr/bin/perl
passarray.plx
use warnings;
use strict;

sub check_same (\e@\@)
my @a = (1, 2, 3, 4,
my @ = (1, 2, 4, 5,
my @ = (1, 2, 3, 4,
print "\@a is the
print "\@a is the

sub check_same
my
Same size?

(Sref_one,

same as \@b"
same as \ec"

(\e\e)
Sref_two) = @_;

7

5);
6);
5);
if check_same (@a, @b) ;
if check_same (@a, @c) ;

{

return 0 unless @Sref_one == @Sref_two;

for my Selem

}

(0..$#Sref_one) ({
return 0 unless Sref_one->[S$Selem]

eq Sref_two->[$Selem];

Same 1if we got this far

return 1;

}

As expected:

>perl passarray.plx
@a is the same as @c
>

263

Chapter 8

How It Works
Using the prototype here and at the top of the program means that Perl will take references to two

arrays. Hence, what we'll see in @_ are two array references:

sub check _same (\e@\e)
my (Sref_one, S$ref_two) = @_;

If you use a prototype at the start of your program as a forward definition, you must
explicitly use the same prototype again at the definition proper, or Perl will complain
of a prototype mismatch.

We can special-case check the size: if our arrays aren't the same size, there's no way they can be the
same.

return 0 unless @Sref_one == @Sref_ two;

Now we come to the comparison. We're going to stop as soon as we find something that differs, since
that proves that they're not the same:

for my $elem (0..S$#S$ref _one)
return 0 unless S$ref_one->[Selem] eq Sref_two->[Selem];
}

If we got to the end of the array and we didn't return, then they didn't differ:

return 1;

This only workswhen we're passing something to a subroutine. We can't do a similar
trick for returning arrays, and hence

(@a, @b) = somesub();
will never work. Thelist will be flattened, there'll be no way to tell where @a ends and

@b begins, and everything will end up in @a. If you need to do this, pass references to
the arrays and have the subroutinefill them.

Passing Filehandles to a Subroutine

Passing filehandles to a subroutine is somewhat special. You can actually either pass a glob or a
reference to a glob. It doesn't make any difference. You can then collect the filehandle into a glob,
like this:

sub say_hello ({
*WHERE = shift;
print WHERE "Hi there!\n"

say_hello (*STDOUT) ;

264

Subroutines

Alternatively, you can also collect the filehandle into an ordinary scalar and use that in place of a
filehandle, as we do below:

sub say_hello ({
my $fh = shift;
print $fh "Hi there!\n"

sub get_line ({
my $fh = shift;
my Sresponse = <S$fh>;
chomp S$response;
$response =~ s/"\s+//;
return S$response;

}

say_hello (*STDOUT) ;
get_line (*STDIN);

Default Parameter Values

One thing that's occasionally useful is the ability to give the parameters for your subroutine a default
value, that is, give the parameter a value to run through the subroutine with if one is not specified when
the subroutine is called. This is very easily done with the | | operator.

The logical or operator, | |, has a very special feature: it returns the last thing it saw. So, for instance, if
wesay $a = 3 || 5,then $a will be set to 3. Because 3 is a true value, it has no need to examine
anything else, and so 3 is the last thing it sees. If, however, we say $a = 0 || 5, then $a will be set to
5; 0 is not a true value, so it looks at the next one, 5, which is the last thing it sees.

Hence, anything we get from @_ that doesn't have a true value can be given a default with the | |
operator. We can create subroutines with a flexible number of parameters and have Perl fill in the
blanks for us:

#!/usr/bin/perl
defaults.plx
use warnings;
use strict;

sub log warning {
my $message = shift || "Something's wrong";
my Stime = shift || localtime; # Default to now.
print " [Stime] S$message\n";

log_warning ("Klingons on the starboard bow", "Stardate 60030.2");
log_warning("/earth is 99% full, please delete more people") ;
log_warning() ;

>perl defaults.plx

[Stardate 60030.2] Klingons on the starboard bow

[Wed May 3 04:07:50 2000] /earth is 99% full, please delete more people
[Wed May 3 04:07:51 2000] Something's wrong

>

One by-product of specifying defaults for parameters is the opportunity to use those parameters as flags.
Your subroutine can then alter its functionality based on the number of arguments passed to it.

265

Chapter 8

Named Parameters

One of the more horrid things about calling subroutines is that you have to remember which order the
parameters are set. Was it username first and then password, or host first and then username, or...?

Named parameters are a neat way of solving this. What we'd rather say is something like this:

logon(username => S$name, password => Spass, host => Shostname) ;

and then give the parameters in any order. Now, Perl makes this really, really easy because that set of
parameters can be thought of as a hash:

sub logon {
die "Parameters to logon should be even" if @_ % 2;

my %args = @_;
print "Logging on to host $args{hostname}\n";

}

Whether and how often you use named parameters is a matter of style. For subroutines that take lots of
parameters, some of which may be optional, it's an excellent idea; For those that take two or three
parameters, it's probably not worth the hassle.

References to Subroutines

Just like variables, you can take references to subroutines. That's where the ampersand (&) type symbol
comes in.

Declaring References to Subroutines

The same rules apply here as for taking references to variables. Put a backslash before the name, but
include the ampersand:

sub something { print "Wibble!\n" }
my $ref = \&something;
Alternatively, we can create an anonymous subroutine by saying sub {BLOCK}:

my Sref = sub { print "Wibble!\n" }

Calling a Subroutine Reference

Just like before, there are two ways to call subroutine references. Directly:

&{$ref};
&{Sref} (eparameters) ;
&Sref (@parameters) ;

266

Subroutines

Or through an arrow notation:

sref->();
Sref->(@parameters) ;

Callbacks

OK, now we can create and use subroutine references. Why would we want to? The usual thing we do
with them is pass them to another subroutine. This is called a callback, because it allows the subroutine
to 'call back' our code at certain times. This means we can turn a very general subroutine into
something that does exactly what we want.

Try It Out : Using a Callback

For instance, the core module File: : Find will give us a subroutine called £ind. This takes two (or
more) parameters: a callback and a list of directories. All it does — and this is a harder task than it
sounds — is go through every file underneath each directory in the list, walk into any directories it finds,
and call the callback with certain variables set. We can use this to create a directory browser:

#!/usr/bin/perl

biglist.plx

use warnings;

use strict;

use File::Find;

find (\&callback, "/") ; # Warning: Lists EVERY FILE ON THE DISK!

sub callback {
print $File::Find::name, "\n";
1

Or we could delete every file whose name ends in .bak: (a typical extension for temporary
backup files):

#!/usr/bin/perl

backupkill.plx

use warnings;

use strict;

use File::Find;

find (\&callback, "/") ;

sub callback {
unlink $_ if /\.bak$/;
1

or indeed, anything we want. We'll see more of File: : Find in Chapter 10, where we'll explain how
these examples work. We'll also see at the end of the book that callbacks are particularly important for
graphical applications.

267

Chapter 8

Arrays and Hashes of References to Subroutines

Another use for subroutine references is to allow us to call one of a selection of subroutines. For
instance, if we're writing a menu system that calls a subroutine related to each menu option. We could
naturally write it like this:

print "Type c¢ for customer menu, s for sales menu and o for orders menu.\n";

chomp (my S$choice = <>);

if ($choice eq "c")
customer_menu () ;

} elsif ($choice eq "s") {
sales_menu() ;

} elsif ($choice eq "o") {
orders_menu () ;

} else {
print "Unknown option.\n";

}

However, that's messy. What we're doing is relating a string to a subroutine, and relating one thing
to another in Perl should always make you think of a hash. Here's how we could use a hash of
subroutine references:

my %$menu = (
¢ => \&customer_menu,
s => \&sales_menu,
o => \&orders_menu
1
print "Type c¢ for customer menu, s for sales menu and o for orders menu.\n";
chomp (my S$choice = <>);
if (exists S$menu{Schoice}) {
Call it!
$menu{$choice}->();
} else {
print "Unknown option.\n";
}

Much neater.

Recursion

recursion, 7n.: See recursion

The above joke, so old it has hair on it, gives you an idea as to what recursion is — it's something that
refers to itself in its definition. Specifically, recursion in computer programming is a subroutine that calls
itself as part of its operation.

Of course, we have to be careful when we're doing this: we've got to make sure we stop somewhere and
that our programs don't loop away into oblivion. The thing that tells us when to stop is called the
terminating condition.

268

Subroutines

Try It Out : Spidering a Web Site

A web site is a collection of pages linked together
in some way. If you're running a web site, you
might want to ensure that all the links work
properly: that the pages inside your site can be read
and that links to other sites on the Internet are still
valid. The general procedure we need to follow is
somethi