
Bioinformatics
Biocomputing and

Perl
An Introduction to Bioinformatics

Computing Skills and Practice

Michael Moorhouse
Post-Doctoral Worker from Erasmus MC,

The Netherlands

Paul Barry
Department of Computing and Networking,

Institute of Technology,
Carlow, Ireland

Copyright 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988
or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests
to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the Publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is required,
the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-85331-X

Typeset in 9.5/12.5pt Lucida Bright by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

For my parents, who taught me the value of
knowledge – MJM

For three great kids: Joseph, Aaron and Aideen – PJB

Contents

Preface xv

1 Setting the Biological Scene 1

1.1 Introducing Biological Sequence Analysis 1
1.2 Protein and Polypeptides 4
1.3 Generalised Models and their Use 5
1.4 The Central Dogma of Molecular Biology 6

1.4.1 Transcription 6
1.4.2 Translation 7

1.5 Genome Sequencing 10
1.5.1 Sequence assembly 11

1.6 The Example DNA-gene-protein system we will use 12
Where to from Here 13

2 Setting the Technological Scene 15

2.1 The Layers of Technology 15
2.1.1 From passive user to active developer 16

2.2 Finding perl 17
2.2.1 Checking for perl 17
Where to from Here 18

I Working with Perl 19

3 The Basics 21

3.1 Let’s Get Started! 21
3.1.1 Running Perl programs 22
3.1.2 Syntax and semantics 23
3.1.3 Program: run thyself! 25

3.2 Iteration 26
3.2.1 Using the Perl while construct 26

3.3 More Iterations 30
3.3.1 Introducing variable containers 31
3.3.2 Variable containers and loops 32

viii Contents

3.4 Selection 34
3.4.1 Using the Perl if construct 35

3.5 There Really is MTOWTDI 36
3.6 Processing Data Files 41

3.6.1 Asking getlines to do more 43
3.7 Introducing Patterns 44

Where to from Here 46
The Maxims Repeated 46

4 Places to Put Things 49

4.1 Beyond Scalars 49
4.2 Arrays: Associating Data with Numbers 49

4.2.1 Working with array elements 51
4.2.2 How big is the array? 51
4.2.3 Adding elements to an array 52
4.2.4 Removing elements from an array 54
4.2.5 Slicing arrays 54
4.2.6 Pushing, popping, shifting and unshifting 56
4.2.7 Processing every element in an array 57
4.2.8 Making lists easier to work with 59

4.3 Hashes: Associating Data with Words 60
4.3.1 Working with hash entries 61
4.3.2 How big is the hash? 61
4.3.3 Adding entries to a hash 62
4.3.4 Removing entries from a hash 62
4.3.5 Slicing hashes 63
4.3.6 Working with hash entries: a complete example 64
4.3.7 Processing every entry in a hash 66
Where to from Here 68
The Maxims Repeated 68

5 Getting Organised 71

5.1 Named Blocks 71
5.2 Introducing Subroutines 73

5.2.1 Calling subroutines 73
5.3 Creating Subroutines 74

5.3.1 Processing parameters 76
5.3.2 Better processing of parameters 78
5.3.3 Even better processing of parameters 80
5.3.4 A more flexible drawline subroutine 83
5.3.5 Returning results 84

5.4 Visibility and Scope 85
5.4.1 Using private variables 86
5.4.2 Using global variables properly 88
5.4.3 The final version of drawline 89

5.5 In-built Subroutines 90
5.6 Grouping and Reusing Subroutines 92

5.6.1 Modules 93
5.7 The Standard Modules 96
5.8 CPAN: The Module Repository 96

5.8.1 Searching CPAN 97
5.8.2 Installing a CPAN module manually 98

Contents ix

5.8.3 Installing a CPAN module automatically 99
5.8.4 A final word on CPAN modules 99
Where to from Here 100
The Maxims Repeated 100

6 About Files 103

6.1 I/O: Input and Output 103
6.1.1 The standard streams: STDIN, STDOUT and STDERR 103

6.2 Reading Files 105
6.2.1 Determining the disk-file names 106
6.2.2 Opening the named disk-files 108
6.2.3 Reading a line from each of the disk-files 110
6.2.4 Putting it all together 110
6.2.5 Slurping 114

6.3 Writing Files 116
6.3.1 Redirecting output 117
6.3.2 Variable interpolation 117

6.4 Chopping and Chomping 118
Where to from Here 119
The Maxims Repeated 119

7 Patterns, Patterns and More Patterns 121

7.1 Pattern Basics 121
7.1.1 What is a regular expression? 122
7.1.2 What makes regular expressions so special? 122

7.2 Introducing the Pattern Metacharacters 124
7.2.1 The + repetition metacharacter 124
7.2.2 The | alternation metacharacter 126
7.2.3 Metacharacter shorthand and character classes 127
7.2.4 More metacharacter shorthand 128
7.2.5 More repetition 130
7.2.6 The ? and * optional metacharacters 130
7.2.7 The any character metacharacter 131

7.3 Anchors 132
7.3.1 The \b word boundary metacharacter 132
7.3.2 The ^ start-of-line metacharacter 133
7.3.3 The $ end-of-line metacharacter 133

7.4 The Binding Operators 134
7.5 Remembering What Was Matched 135
7.6 Greedy by Default 137
7.7 Alternative Pattern Delimiters 138
7.8 Another Useful Utility 139
7.9 Substitutions: Search and Replace 140

7.9.1 Substituting for whitespace 141
7.10 Finding a Sequence 142

Where to from Here 146
The Maxims Repeated 146

8 Perl Grabbag 147

8.1 Introduction 147
8.2 Strictness 147

x Contents

8.3 Perl One-liners 149
8.4 Running Other Programs from perl 152
8.5 Recovering from Errors 153
8.6 Sorting 155
8.7 HERE Documents 159

Where to from Here 160
The Maxims Repeated 161

II Working with Data 163

9 Downloading Datasets 165

9.1 Let’s Get Data 165
9.2 Downloading from the Web 165

9.2.1 Using wget to download PDB data-files 167
9.2.2 Mirroring a dataset 168
9.2.3 Smarter mirroring 168
9.2.4 Downloading a subset of a dataset 169
Where to from Here 171
The Maxims Repeated 171

10 The Protein Databank 173

10.1 Introduction 173
10.2 Determining Biomolecule Structures 174

10.2.1 X-Ray Crystallography 174
10.2.2 Nuclear magnetic resonance 176
10.2.3 Summary of protein structure methods 177

10.3 The Protein Databank 177
10.4 The PDB Data-file Formats 179

10.4.1 Example structures 180
10.4.2 Downloading PDB data-files 181

10.5 Accessing Data in PDB Entries 182
10.6 Accessing PDB Annotation Data 183

10.6.1 Free R and resolution 184
10.6.2 Database cross references 186
10.6.3 Coordinates section 188
10.6.4 Extracting 3D coordinate data 191

10.7 Contact Maps 192
10.8 STRIDE: Secondary Structure Assignment 196

10.8.1 Installation of STRIDE 197
10.9 Assigning Secondary Structures 197

10.9.1 Using STRIDE and parsing the output 200
10.9.2 Extracting amino acid sequences using STRIDE 204

10.10 Introducing the mmCIF Protein Format 205
10.10.1 Converting mmCIF to PDB 206
10.10.2 Converting mmCIFs to PDB with CIFTr 206
10.10.3 Problems with the CIFTr conversion 208
10.10.4 Some advice on using mmCIF 208
10.10.5 Automated conversion of mmCIF to PDB 208
Where to from Here 210
The Maxims Repeated 210

Contents xi

11 Non-redundant Datasets 211

11.1 Introducing Non-redundant Datasets 211
11.1.1 Reasons for redundancy 211
11.1.2 Reduction of redundancy 212
11.1.3 Non-redundancy and non-representative 212

11.2 Non-redundant Protein Structures 213
Where to from Here 217
The Maxims Repeated 217

12 Databases 219

12.1 Introducing Databases 219
12.1.1 Relating tables 220
12.1.2 The problem with single-table databases 222
12.1.3 Solving the one-table problem 222
12.1.4 Database system: a definition 224

12.2 Available Database Systems 224
12.2.1 Personal database systems 225
12.2.2 Enterprise database systems 225
12.2.3 Open source database systems 225

12.3 SQL: the Language of Databases 226
12.3.1 Defining data with SQL 226
12.3.2 Manipulating data with SQL 227

12.4 A Database Case Study: MER 227
12.4.1 The requirement for the MER database 231
12.4.2 Installing a database system 232
12.4.3 Creating the MER database 233
12.4.4 Adding tables to the MER database 235
12.4.5 Preparing SWISS-PROT data for importation 238
12.4.6 Importing tab-delimited data into proteins 245
12.4.7 Working with the data in proteins 246
12.4.8 Adding another table to the MER database 248
12.4.9 Preparing EMBL data for importation 249
12.4.10 Importing tab-delimited data into dnas 253
12.4.11 Working with the data in dnas 253
12.4.12 Relating data in one table to that in another 254
12.4.13 Adding the crossrefs table to the MER database 255
12.4.14 Preparing cross references for importation 256
12.4.15 Importing tab-delimited data into crossrefs 259
12.4.16 Working with the data in crossrefs 259
12.4.17 Adding the citations table to the MER database 263
12.4.18 Preparing citation information for importation 265
12.4.19 Importing tab-delimited data into citations 268
12.4.20 Working with the data in citations 268
Where to from Here 269
The Maxims Repeated 269

13 Databases and Perl 273

13.1 Why Program Databases? 273
13.2 Perl Database Technologies 274
13.3 Preparing Perl 275

13.3.1 Checking the DBI installation 275

xii Contents

13.4 Programming Databases with DBI 276
13.4.1 Developing a database utility module 279
13.4.2 Improving upon dump results 280

13.5 Customising Output 282
13.6 Customising Input 285
13.7 Extending SQL 289

Where to from Here 292
The Maxims Repeated 292

III Working with the Web 295

14 The Sequence Retrieval System 297

14.1 An Example of What’s Possible 297
14.2 Why SRS? 298
14.3 Using SRS 298

Where to from Here 300
The Maxims Repeated 300

15 Web Technologies 303

15.1 The Web Development Infrastructure 303
15.2 Creating Content for the WWW 305

15.2.1 The static creation of WWW content 308
15.2.2 The dynamic creation of WWW content 308

15.3 Preparing Apache for Perl 310
15.3.1 Testing the execution of server-side programs 312

15.4 Sending Data to a Web Server 315
15.5 Web Databases 320

Where to from Here 327
The Maxims Repeated 327

16 Web Automation 329

16.1 Why Automate Surfing? 329
16.2 Automated Surfing with Perl 330

Where to from Here 335
The Maxims Repeated 336

IV Working with Applications 337

17 Tools and Datasets 339

17.1 Introduction 339
17.2 Sequence Databases 340

17.2.1 Understanding EMBL entries 343
17.2.2 Understanding SWISS-PROT entries 346
17.2.3 Summarising sequences databases 347

17.3 General Concepts and Methods 347
17.3.1 Predictions and validation 348
17.3.2 True/False/Negative/Positive 348

Contents xiii

17.3.3 Balancing the errors 351
17.3.4 Using multiple algorithms to improve performance 352
17.3.5 tRNA-ScanSE, a case study 353

17.4 Introducing Bioinformatics Tools 357
17.4.1 ClustalW 358
17.4.2 Algorithms and methods 359
17.4.3 Installation and use 360
17.4.4 Substitution/scoring matrices 361

17.5 BLAST 362
17.5.1 Installing NCBI-BLAST 364
17.5.2 Preparation of database files for faster searching 365
17.5.3 The different types of BLAST search 369
17.5.4 Final words on BLAST 371
Where to from Here 371
The Maxims Repeated 371

18 Applications 373

18.1 Introduction 373
18.2 Scientific Background to Mer Operon 374

18.2.1 Function 374
18.2.2 Genetic structure and regulation 374
18.2.3 Mobility of the Mer Operon 375

18.3 Downloading the Raw DNA Sequence 377
18.4 Initial BLAST Sequence Similarity Search 378
18.5 GeneMark 380

18.5.1 Using BLAST to identify specific sequences 382
18.5.2 Dealing with false negatives and missing proteins 386
18.5.3 Over-predicted genes and false positives 387
18.5.4 Summary of validation of GeneMark prediction 388

18.6 Structural Prediction with SWISS-MODEL 388
18.6.1 Alternatives to homology modelling 390
18.6.2 Modelling with SWISS-MODEL 390

18.7 DeepView as a Structural Alignment Tool 396
18.8 PROSITE and Sequence Motifs 401

18.8.1 Using PROSITE patterns and matrices 402
18.8.2 Downloading PROSITE and its search tools 403
18.8.3 Final word on PROSITE 407

18.9 Phylogenetics 407
18.9.1 A look at the HMA domain of MerA and MerP 407
Where to from Here? 410
The Maxims Repeated 411

19 Data Visualisation 413

19.1 Introducing Visualisation 413
19.2 Displaying Tabular Data Using HTML 415

19.2.1 Displaying SWISS-PROT identifiers 417
19.3 Creating High-quality Graphics with GD 422

19.3.1 Using the GD module 424
19.3.2 Displaying genes in EMBL entries 426
19.3.3 Introducing mogrify 429

xiv Contents

19.4 Plotting Graphs 431
19.4.1 Graph-plotting using the GD::Graph modules 432
19.4.2 Graph-plotting using Grace 433
Where to from Here 439
The Maxims Repeated 439

20 Introducing Bioperl 441

20.1 What is Bioperl? 441
20.2 Bioperl’s Relationship to Project Ensembl 442
20.3 Installing Bioperl 442
20.4 Using Bioperl: Fetching Sequences 444

20.4.1 Fetching multiple sequences 445
20.4.2 Extracting sub-sequences 447

20.5 Remote BLAST Searches 448
20.5.1 A quick aside: the blastcl3 NetBlast client 449
20.5.2 Parsing BLAST outputs 450
Where to from Here 451
The Maxims Repeated 452

A Appendix A 453

B Appendix B 457

C Appendix C 459

D Appendix D 461

E Appendix E 467

F Appendix F 471

Index 475

Preface

Welcome to Bioinformatics, Biocomputing and Perl, an introduction and guide to
the computing skills and practices collectively known as Bioinformatics.

Bioinformatics is the application of computing techniques to the study of
biology, and in particular biology research. Although the study of biology is
hundreds of years old, the application of computing techniques to biology
research is relatively new, with major advances occurring within the last decade.
Consequently, the Bioinformatics field is evolving and maturing rapidly, and this
has highlighted the need for a good, all-round introductory textbook. We believe
that Bioinformatics, Biocomputing and Perl meets this need.

What is in this Book?

After two introductory chapters, Bioinformatics, Biocomputing and Perl is divided
into four main parts:

1. Working with Perl.

2. Working with Data.

3. Working with the Web.

4. Working with Applications.

Part I, Working with Perl, introduces programming to the student of Bioinfor-
matics. Note that the intention is not to turn Bioinformaticians into software
engineers. Rather, the emphasis is on providing Bioinformaticians with program-
ming skills sufficient to enable them to produce bespoke programs when required
in the course of their research.

The programming language of choice among Bioinformaticians, Perl, is used
throughout Part I. Perl is popular because of its combination of excellent file-
handling capabilities, native support for POSIX regular expressions and powerful

xvi Preface

scripting capabilities. If that sounds like techno babble, do not worry; the impor-
tance of these programming language features is explained in a less technical way
later. Fortunately, Perl is not particularly difficult to learn. For instance, by the
end of Chapter 3, the reader will know enough Perl to be able to produce simple,
but useful, programs. This early material is then developed so that by the end
of Part I, readers will be able to confidently create customised and customisable
programs to solve diverse Bioinformatics problems.

In Part II, Working with Data, the emphasis shifts from creating bespoke
Bioinformatics programs to exploring the tools and techniques used to organise,
store, retrieve and process data. After explaining how to download datasets from
the Internet, the Protein DataBank (PDB) is described in detail. A short chapter
follows on the importance of non-redundant datasets, before discussion shifts to
cover relational database management systems. How to create and use databases
with the popular MySQL tool is described. In addition to using standard tools to
interact with databases, the use of Perl programs to interrogate databases is also
covered.

Part III, Working with the Web, covers a collection of web-based technologies
that, once mastered, can be used to publish research -- both findings and data -- on
the Internet. Electronic mechanisms allowing interaction with, and interrogation
of, web-based data are explained. Perl again plays an important role in this part
of the book, with HTML and CGI also covered.

Part IV, Working with Applications, describes a set of standard Bioinformatics
tools and applications. Although it is often useful to be able to create a new tool
from scratch, it can sometimes be more appropriate to take existing tools and
control their execution and interaction. Scripting technologies, of which Perl is
only one type, are particularly useful in this area. A discussion of ‘‘The Bioperl
Project’’, and its importance, completes Bioinformatics, Biocomputing and Perl.

Maxims, Commentaries, Exercises and Appendices

All but the first two chapters contain a collection of maxims. These are your
authors’ snippets of wisdom. At the end of each chapter, the maxims are repeated
in list form. If, having worked through a chapter, the maxims are understood, it
is an indication that the associated material has been understood. If, however, a
maxim is not understood, it indicates that there is a need to review the material
to which the particular maxim relates.

In addition to the maxims, chapters include technical commentaries. Unlike
maxims, it is not necessary to fully understand the commentaries on first reading.
If a technical commentary is not immediately understood, it is possible to safely
continue to work through the text without too much difficulty.

The majority of chapters conclude with a set of exercises that are designed
to expand upon the material introduced. It is highly recommended that these

Preface xvii

exercises are worked through, as it is only through practice and review that
Bioinformatics computing skills are developed and honed.

A collection of appendices completes the book, providing information on,
among other things, installing Perl on various platforms, the Perl on-line doc-
umentation and a list of Perl operators. An annotated list of references and
suggestions for further reading are also presented as an appendix.

Who Should Read this Book

This book targets three distinct readerships.
The main target is the student of biology, both under- and post-graduate. Bioin-

formatics, Biocomputing and Perl is designed to be the must-have, introductory
Bioinformatics textbook. The biology student taking a Bioinformatics module will
find this book to be a useful starting point and an essential desktop reference.

Another target is the qualified, professional or academic biologist who needs
to understand more about Bioinformatics. The field of Bioinformatics is still
relatively new and it is only now appearing as a feature within biology course
outlines and syllabi. However, there are many qualified biologists ‘‘in the field’’
requiring a good primer. This book is designed to meet that need.

The final target is the computer scientist curious to understand how computing
skills might be used within this growing field.

What you Should know Already

It is assumed that some knowledge of computer use has already been acquired,
including understanding the concept of a disk-file and knowing how to create one
using an editor. On the Linux operating system, popular editors are vi, pico and
emacs. On any of the Windows operating systems, Notepad, WordPad and Word
are all editors, although the latter is a more sophisticated example. Macintosh
users have SimpleText and BBedit. Any of these will suffice, so long as it allows
for the creation and manipulation of plain text files. Later chapters (Parts III and
IV) assume a working knowledge of HTML.

Platform Notes

All of the examples in Bioinformatics, Biocomputing and Perl are designed to
operate on the Linux operating system, in keeping with the current trend within
the Bioinformatics community. There is no attempt to explain all that the reader
needs to know about Linux, as the emphasis in this book is on explaining how
to exploit the growing collection of tools that run on top of the Linux operating

xviii Preface

system. Two additional appendices provide a list of essential Linux commands
and a quick reference to the vi text editor, respectively.

Accompanying Web-site

Details of the book’s mailing list, its source code, any errata and other related
material can be found on the book’s web-site, located at:

http://glasnost.itcarlow.ie/~biobook/index.html

Your Comments are Welcome

The authors welcome all comments about Bioinformatics, Biocomputing and Perl.
Send an e-mail to either of the following addresses:

m.moorhouse@erasmusmc.nl

paul.barry@itcarlow.ie

Acknowledgements

Michael thanks his parents for their unwavering support, be it material, practical
or emotional. Their endless hours of reading and re-reading the draft chapters
and manuscript produced many points of very welcome constructive criticism.
Although completing a PhD., moving country and starting a new job while writing
a book is not something he’d recommend, Michael thanks those around him for
helping when they could and for understanding why he was so busy. Also, thanks
to all in the new Department of Bioinformatics, Erasmus MC, the Netherlands,
who have offered their support and understanding.

Paul thanks his father, Jim Barry, for taking the time to proofread the text
(multiple times). As with Paul’s first book, this one is better for his father’s
involvement. Thanks go to Karen Mosman (formerly with Wiley’s Computing
Division) for suggesting Paul when the Biology Division came looking for an
author with Perl experience. The Institute of Technology, Carlow, was again
supportive of Paul working on a textbook, and thanks are due to Dr Dave
Dowling and Joe Kehoe for enthusiastically reviewing some of the early material.
Paul’s wife, Deirdre, held everything else together while the production of the
manuscript consumed more and more of his time, while Joseph, Aaron and
Aideen kept reminding Paul that there’s more to life than computers and writing.

Both authors thank the team at Wiley. Joan Marsh, this book’s publishing editor,
arranged for the authors to work together and never once complained when the
draft manuscript went from being days late to weeks late to -- eventually -- six

Preface xix

months late! This book’s editorial assistant was Layla Paggetti, and both authors
thank Layla for her prompt and efficient responses to their many queries. Robert
Hambrook acted as production editor. As with Paul’s first book, this one has
benefited greatly from Robert’s management of the production process.

A special word of thanks to those members of the computing and biology
communities who produce such wonderfully useful software technologies and
tools. There are many such individuals. Specific thanks to Richard Stallman, Linus
Torvalds, Larry Wall, Tom Boutell, Andy Lester and Dr Lincoln D. Stein for sharing
their software with the world and for providing the authors with technologies to
write about. Paul also thanks Bill Joy (for vi) and Leslie Lamport (for LATEX).

1

Setting the
Biological Scene

Introducing DNA, RNA, polypeptides, proteins and sequence
analysis.

1.1 Introducing Biological Sequence Analysis

Among other things, this book describes a number of techniques used to analyse
DNA, RNA and proteins.

To a molecular biologist, DNA is a very physical molecule: a polymer of
nucleotides that are collectively called deoxyribose nucleic acid. It coils, bends,
flexes and interacts with proteins, and is generally interesting. RNA is similar to
DNA in structure, but for the fact that RNA contains the sugar ribose as opposed
to deoxyribose. DNA has a hydrogen at the second carbon atom on the ring; RNA
has a hydrogen linked through an oxygen atom.

In DNA and RNA, there are four nucleotide bases. Three of these bases
are the same: guanine (G), adenine (A) and cytosine (C). The fourth base for
DNA is thymine (T), whereas in RNA, the fourth base lacks a methyl group
and is called uracil (U). Each base has two points at which it can join cova-
lently to two other bases on either end, forming a linear chain of monomers.
These chains can be quite long, with many millions of bases common in most
organisms.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

2 Setting the Biological Scene

Figure 1.1 Adenine (A) and thymine (T) nucleotide bases (where the thin black lines
indicate the three hydrogen bonds between the two bases).

Another interesting feature of nucleotide bases is that the four bases hydrogen-
bond together in two exclusive pairs because of the position of the charged atoms
along their edges, as shown in Figure 1.1 on page 2 and Figure 1.2 on page 31.
Three of these bonds form between C and G, whereas two form between A and T
(or A and U in RNA).

These bonds, while considerably weaker than the covalent bonds between
atoms, are enough to stabilise structures such as the famous double helix, in
which the bases line up nearly perpendicular to the axis of the helix, as shown
in Figure 1.3 on page 4. There are several important consequences of the double
helix:

• Where there is a G in one chain, there is a C in the corresponding location in
the other, and the two chains are said to be complementary to each other.
The chains are often referred to as strands.

• This complementarity means that there is 50% redundancy in the informa-
tion stored in both chains; consequently, only one chain is needed to store
all the information for both (as one can be deduced from the other)2.

• Because of the structure of the nucleotide bases, DNA molecules have
direction. This is a subtle, but important, point. The phosphate backbones
attach to the sugar rings at different locations: the 3’ and 5’ hydroxyl groups.

1
These diagrams were produced with Open Rasmol on the basis of protein structure 1D66.

2
Of course, in an evolutionary world, where DNA can be damaged, keeping a spare copy is

an evolutionary advantage as an organism can often reconstruct the damaged regions from any
intact parts.

Introducing Biological Sequence Analysis 3

Figure 1.2 Guanine (G) and cytosine (C) nucleotide bases (where the thin black lines
indicate the three hydrogen bonds between the two bases).

When DNA is run in opposite directions, one end of the helix is the 3’ end
of one chain and the 5’ end of the other. When the order of the nucleotide
bases is written down, it is conventional to start at the nucleotides at the 5’
(the ‘left-most’ nucleotide) end of the DNA molecule and work towards the
3’ end at the right (the ‘right-most’ base). The importance of this directional
feature will become clear later in this chapter, when open reading frames
are described.

In general, RNA copies of DNA are made by a process known as transcription.
For most purposes, RNA can be regarded as a working copy of the DNA master
template. There is usually one or a very small number of examples of DNA in the
cell, whereas there are multiple copies of the transcribed RNA.

A common term related to the number of nucleotide bases in a particular
sequence is a reference to base pairs3, for example ‘‘400 base pairs’’. This term
is a generic term that can literally mean ‘‘400 paired bases’’. More often, though,
it is used to acknowledge that while there are 400 nucleotides in a particular
sequence being actively considered, there are another 400 nucleotides on the
complementary strand running in the other direction. In this context, the use of
base pairs is a tacit acknowledgement of their existence that may be of great
importance, as the feature under investigation may be on the other strand. In
nearly all cases, both strands should be considered.

There are many interesting features of DNA. As this discussion is an overview, a
description of some of these features (such as promoters, splice sites, intron/exon
boundaries and genes) is deferred until later chapters.

3
Or ‘‘bp’’, for short.

4 Setting the Biological Scene

Figure 1.3 The DNA ‘‘double helix’’ (where the backbones, in black, run in opposite
directions).

1.2 Protein and Polypeptides

DNA is the nobility of the cellular world. Proteins are the worker-serfs.
To a biochemist, proteins are the functioning units of cellular life. Proteins

do physically useful things such as catalysing reactions, processing energy rich
molecules, pumping other molecules across cellular barriers and forming con-
nective and motility structures. Proteins do just about anything else in the cell
that can be considered ‘‘real work’’.

In molecular terms, proteins are chains technically termed polypeptides and
formed from 20 different types of amino acids. These may be modified in different
ways to alter their properties, the structure that is formed and the final function
of the molecule. For example, certain amino acids can be glycosylated4, which can
be used as recognition tags, while other proteins associate with small molecules
called ligands that have special properties useful in the catalysis of reactions.

The structure of a protein is generally more variable than DNA. It is at the level
of proteins that the variety of the information contained in the order of DNA bases
is used. The result is that the amino acid chain produced fold into structures that
are closely linked to that particular protein’s functional role within the cell (and
these can vary enormously). This folding has another important consequence in
that parts of a protein (i.e. its amino acids) can be physically close together in
space, but distant in terms of their location in the sequence of the amino acids.

Consider, as an example, the well-studied catalytic triad of chymotrypsin. The
critical parts of the protein for its function (which is to degrade other proteins)
are the amino acids asparate at position 102 in the polypeptide chain, histidine
at 57 and serine at 195. The triad is presented in Figure 1.4 on page 5. The right-
hand side of the image shows the catalytic site in close-up, with the three critical
amino acids located closely in physical space, but distant in sequence. The inset
(left-hand image) shows the general structure of the protein demonstrating how
the complex folding of the chain brings these residues together.

4
Have sugars added.

Generalised Models and their Use 5

Histidine 57

Serine 195

Asparate 102

Figure 1.4 The catalytic triad of chymotrypsin (PDB ID: 1AFQ).

1.3 Generalised Models and their Use
The relationships between DNA, RNA, protein, structure and function follow a
generalised model. Unfortunately, like most generalisations, it is oversimplistic
for many situations. If this is the case, why use it? There are two good reasons:

1. The model is a ‘‘good enough’’ description of what happens most of the time.
Certainly, there are important exceptions. There are non-standard amino
acids included in proteins via some other mechanism (which are ignored in
this book). Possibilities such as the section of DNA coding for single protein
being discontinuous are additional complexities that are considered later.
However, overall, the model is a valuable approximation to reality that has
useful predictive power when working with new systems.

2. The model is a ‘‘lie-to-children’’5: it allows the basic features to be under-
stood without confusing things by considering exceptions and enhance-
ments. Once such a simple system is understood, it can be extended to
cover more complex aspects and specific examples. In short, a start has to
be made somewhere, and the generalised model is as good a place to start
as anywhere.

Before considering the mechanisms by which information is conserved and
converted along the pathway, let’s consider another important point about the
abstract nature of the data to be used.

Bioinformaticians are generally concerned with information at an abstract
level: DNA, RNA and amino acid sequences are ‘‘just’’ strings of letters. It is
sometimes easy to forget that these are actual representations of molecules that
exist in the cellular world and, consequently, must interact with the physical

5
Jack Cohen, Ian Stewart and Terry Pratchett discuss this concept and some general theories

of science in their Science of the Discworld books. These are well worth a read if you fancy a
laugh while pretending to work.

6 Setting the Biological Scene

universe in general, let alone existing within a cellular environment. How much
a Bioinformatician needs to know about the real-world context of the data
being analysed depends on the analysis that is performed6. In some cases, quite
superficial knowledge suffices, while others require a deeper understanding of
the fundamental physical and biological processes at work.

Only through experience can the Bioinformatician hone the skill and profes-
sional judgement necessary to decide how much understanding of the underlying
biological system is needed for any particular analysis. The idealistic response
is ‘‘the more the better’’, which is like all ideals: something to aim at but rarely
achieved in practice. Time is often a factor for the Bioinformatician. If too long is
spent becoming versed in the biological background, the risk of not completing
an analysis within a useful timescale will increase. Conversely, there is also the
risk of an analysis being compromised because too little is known about the
system under study. This is where the balance between the two extremes comes
in. This book attempts to guide the reader in this regard through the examples
presented and provide useful pointers beyond. However, in the end, it all comes
down to experience and professional judgement.

1.4 The Central Dogma of Molecular Biology

The DNA to Functional Protein Structure Model discussed above is often referred
to as the ‘‘Central Dogma of Molecular Biology’’. It is summarised in a slightly
extended form in Figure 1.5 on page 6. The arrows represent information flow
from that stored in the order of the DNA bases through the folding of the
polypeptide chain to a fully functional protein.

1.4.1 Transcription

Transcription is the conversion of information from DNA to RNA, and is straight-
forward because of the direct correspondence between the four nucleotide bases
of DNA and those of RNA.

Transcription Translation

Reverse
transcription

Folding

Structure

Function

ProteinRNADNA

Figure 1.5 The central dogma of molecular biology.

6
This is so obvious that it is often forgotten.

The Central Dogma of Molecular Biology 7

There is an interesting exception in RNA Retroviruses, the most famous example
being HIV (the Human Immunodeficiency Virus) that causes AIDS. In retroviruses,
RNA is used as the information storage material. This is then copied (badly in
the case of HIV) into DNA, which then integrates into the nucleic acid material
of the cell under attack. This ‘‘trick’’ allows the virus (and its information) to lie
dormant for long periods in relative safety, whereas the original RNA material is
more likely to be actively degraded by cellular enzymes.

This RNA to DNA conversion ability is also useful for molecular biologists, as
DNA can be more easily stored or manipulated using standard techniques. This
has important implications, which are discussed later.

1.4.2 Translation

In a protein-coding region of DNA, three successive nucleotide bases, called
triplets or codons, are used to code for each individual amino acid. Three bases
are needed because there are 20 amino acids but only four nucleotide bases:
with one base there are four possible combinations; with two bases, 16 (42); with
three, 64 (43), which is more than the number of amino acids.

The RNA transcript is used by a complex molecular machine called the ribosome
to translate the order of successive codons into the corresponding order of amino
acids. Special stop codons, such as UAA, UAG and UGA, induce the ribosome to
terminate the elongation of the polypeptide chain at a particular point. Similarly,
the codon for the amino acid methionine (AUG in RNA) is often used as the start
signal for translation.

The section of DNA between the start and stop codons is called an open
reading frame. There is a complication in that the codons found depend on how
the sequence of nucleotide bases is divided. This is dependent on where the
count starts. There is no biological reason why the first nucleotide base reported
in a DNA sequence should be related to the protein coding regions.

A common solution is to calculate the codons produced from all possible open
reading frames and select the most plausible on the basis of the results. The
correct open reading frame for a particular region of DNA is generally that which
has the longest distance between any start and stop codons. Though there are
exceptions, especially in some viruses and bacteria, each nucleotide is involved
in coding for only one amino acid and, hence, only one open reading frame is
correct. The incorrect reading frames are generally short and as a consequence,
do not resemble recognisable proteins.

With three nucleotide bases in each codon, it is reasonable to assume that there
are reading frames starting at the first, second and third nucleotide bases relative
to a particular nucleotide. This is due to the fact that all subsequent reading
frames are repeated and could start to occur anywhere else in the sequence.
Consequently, it is easiest to start at the beginning. It is also important to
consider the other DNA chain that base-pairs with the one that you have as an
example, as this has another three reading frames. By convention, the reading on

8 Setting the Biological Scene

Figure 1.6 The EMBOSS/Transeq page at the EBI.

the sequence under study are referred to as +1, +2 and +3, while those on the
complement strand are −1, −2 and −3.

The effects of choosing the correct and incorrect reading frames can be
investigated using the Transeq tool contained in the EMBOSS suite of programs.
As these tools are discussed later in this book, a number of the details are
glossed over here in favour of illustrating the point at hand. Figure 1.6 on
page 8 shows the Transeq interface provided by the EBI at the following Internet
address:

http://www.ebi.ac.uk/emboss/transeq/

For this example, consider bases Bases 1501 through 1800 from EMBL entry
M245940. This sequence is chosen because it contains the MerP protein. These
particular bases are easy to extract from a disk-file using any text editor. From
the entry, the six lines of DNA bases (near the end of the EMBL data-file) can
be copied. The line numbers at the end of each line can be removed and then
the resulting data can be pasted into the box on EMBOSS/Transeq WWW form
(refer to Figure 1.6). Here’s what the data looks like before the editing takes
place:

ggatttccct acgtcatgcc atttttctat taatcacagg agttcatcat gaaaaaactg 1560
tttgcctctc tcgccatcgc tgccgttgtt gcccccgtgt gggccgccac ccagaccgtc 1620

The Central Dogma of Molecular Biology 9

acgctgtccg taccgggcat gacctgctcc gcttgtccga tcaccgttaa gaaggcgatt 1680
tccaaggtcg aaggcgtcag caaagttaac gtgaccttcg agacacgcga agcggttgtc 1740
accttcgatg atgccaagac cagcgtgcag aagctgacca aggccaccga agacgcgggc 1800
tatccgtcca gcgtcaagaa gtgaggcact gaaaacggca gcgcagcaca tctgacgccc 1860

If desired, the space between each group of ten letters can be removed using
any editor’s search-and-replace function. However, in the raw sequence, space
characters and newlines are ignored, so it is OK to leave them as-is when pasting
the data into the form.

The stand-alone, command-line version of Transeq has a parameter, called
-regions, that restricts translation to a specified range of bases. To use this
feature on the WWW form, insert ‘‘1501-1860’’ into the ‘‘Regions’’ box.

Technical Commentary: Note that the line numbers on the right-hand side of the
above extracted data are actually the index of the last base on the line. This means
that 1501 is the first base on the line that ends with 1560, as the bases are arranged
in six blocks of ten per line.

The results of this web-run are not shown. Here is the correct result, which is
reading frame +1 relative to the start point of the sequence just selected:

GFPYVMPFFY*SQEFIMKKLFASLAIAAVVAPVWAATQTVTLSVPGMTCSACPITVKKAI
SKVEGVSKVNVTFETREAVVTFDDAKTSVQKLTKATEDAGYPSSVKK*GTENGSAAHLTP

The underlined section is the MerP protein sequence. It starts with a Methionine
(M) start signal codon, which is ATG, as this is the DNA representation, not RNA.
It ends with * stop codon (which is TGA in DNA). The start and stop codons
are underlined in the original sequence block above. The rest of the triplet of
bases (the other codons) are translated by looking them up in standard codon
translation tables. These vary very little between organisms.

This translation of the DNA for the MerP protein is also documented in the
EMBL disk-file in annotation included with the original M15049 EMBL entry’s FT
annotation (where ‘‘F’’ and ‘‘T’’ are taken from ‘‘feature’’):

FT CDS 1549..1824
FT /codon_start=1
FT /db_xref="GOA:P13113"
FT /db_xref="SWISS-PROT:P13113"
FT /transl_table=11
FT /gene="merP"
FT /product="mercury resistance protein"
FT /protein_id="AAA98223.1"
FT /translation="MKKLFASLAIAAVVAPVWAATQTVTLSVPGMTCSACPITVKKAIS
FT KVEGVSKVNVTFETREAVVTFDDAKTSVQKLTKATEDAGYPSSVKK"

Note that all of the hard work is already done, including a cross reference to the
SWISS-PROT database (the ‘‘/db xref=SWISS-PROT:P13113’’ bit) as well as the
official translation of the DNA sequence7.

7
We will have more to say about SWISS-PROT and EMBL in later chapters.

10 Setting the Biological Scene

This introduction is purposefully straightforward. Things become more dif-
ficult when all that’s at hand is a small piece of DNA, the order of the bases
and, maybe, the name of the organism. Using these data to identify a protein is
returned to later in Bioinformatics, Biocomputing and Perl.

Once produced, the polypeptide chain must by folded in order to become
an active protein in the functional form. A common assertion is that all the
information needed to produce the defined structure of the fully functional
protein is contained in the amino acid sequence. In a very general sense, this
is true. However, it is only correct when the environment within which the
polypeptide exists is taken into account.

1.5 Genome Sequencing

The sequencing of an entire genome – the DNA content of a particular organ-
ism – is now relatively routine. Originally, it was performed in a very ‘‘cottage
industry’’ way, with small groups of researchers working away, in relative isola-
tion, at sequencing small sections of the complete genome.

Today, genome sequencing is ‘‘big science’’, and there are numerous specialised
genome sequencing centres around the world, such as The Welcome Trust Sanger
Institute in the United Kingdom and The Center for Genome Research in the
United States. A number of commercial organisations sequence genomes on a
for-profit basis, with Celera Genomics the most famous – some would say ‘‘infa-
mous’’ – because of the company’s efforts to beat the publicly funded Human
Genome Project in being first to publish the draft human genome sequence. This
was in an effort to copyright and/or patent the information and, consequently,
charge money for the usage rights8.

In Bioinformatics, Biocomputing and Perl, the emphasis is on analysing the
DNA and protein sequences rather than understanding the technical details of
the methods by which the sequences are produced. However, it is important to
have (at least) a rudimentary knowledge of the technologies used to produce the
sequences. This allows the reader to better understand both the successes and
the problems associated with the processes, as well as how they influence the
data analysed. This description is very brief and intended to summarise the more
thorough treatments found in any general biochemistry or molecular biology
textbook.

Nowadays, most DNA is sequenced using the Dideoxynucleotide (Chain Termi-
nation) Method developed by Fredrick Sanger and his colleagues. This method
uses a modified DNA polymerase enzyme to make copies of the DNA present in
an original sample. As well as the normal DNA nucleotide bases present in the
reaction mixture, special di-deoxy versions are also included. These have hydro-
gen atoms instead of hydroxyl groups in the ribose sugar at two positions: the

8
The scoundrels! Jeez . . . why didn’t we think of that?

Genome Sequencing 11

2’ (as per normal DNA bases) and also at the 3’ position. This means that when
the DNA polymerase adds a di-deoxy base to the elongating DNA chain, no more
bases can be added to that chain. This is because the hydrogen at the 3’ position
is non-reactive compared to the hydroxyl group normally present. The result is
that the chain is essentially blocked from further extension at this length. As all
four di-deoxy nucleotides are added to the reaction mixture, there will be blocked
examples of the DNA molecules that terminate at every base.

These molecules can be separated from each other by the use of a polyacry-
lamide gel lattice, as shorter DNA molecules pass through it quickly, while longer
ones take more time. Each di-dedoxy nucleotide is labelled with a different flu-
orescent marker corresponding to the base type: A, T, G and C. This tag can be
excited by a laser scanning at a particular location and the base passing that point
at a particular time can be read off. The length of this ‘‘read’’ is typically about 500
bases before the separation between the molecules becomes too poor to deter-
mine which molecule is passing under the laser excitation position. Actually,
longer reads are possible but can result in reduced accuracy if special techniques
are not employed. For the purposes of this book, 500 bases is assumed to be
enough. Even if this were 250 or 1000, it would not algorithmically affect the
next step, which is sequence assembly. All that’s required is to do more or less
depending on the actual value chosen.

1.5.1 Sequence assembly

500 bp (base pairs nucleotides) is a short piece of DNA compared to the total
found in organisms. This can code for a protein of slightly over 165 aminos9,
which is a ‘‘none-too-large protein’’. Yet even viruses that are not self sufficient
have many kilobases of DNA that have been sequenced. The general technique
is to sequence many 500 bp regions and then stitch them back together. This
has allowed the DNA sequence for a particular organism, commonly referred to
as ‘‘The Genome’’, to be found. Nowadays, sequencing the genome is one of the
standard stages in the analysis of any sufficiently interesting organism, and the
threshold of interest that must be reached before resources are committed to
such a project continues to fall. The process is as follows:

• An individual organism (or a range of individual organisms) is selected as a
representative sample.

• The DNA of the organism is extracted.

• The DNA is fragmented and stored in biological vector molecules. Typically,
a series is used from those such as bacterial artificial chromosomes (BAC)
to store large amounts of DNA (up to many hundred of thousands of bases)
to cosmids containing up to 40,000 bases.

9
500/3 = 166.67, recalling that there are three bases in each codon.

12 Setting the Biological Scene

• The DNA stored in these vectors are sequenced in sections of around 500
bases at a time and then re-assembled. This is accomplished by the use of
the di-deoxy chain termination sequencing method, as described above.

There are differences in the methods employed here, particularly the type and
size of vectors used and the strategy used for their selection. All these factors
influence the re-assembly process and the coverage of the resultant sequence,
which may contain large ‘‘gaps’’ that need filling. Determining the first example
genome for an organism is the hard part. After that, it is relatively easy to
re-sequence the parts of the organism that different research projects find
interesting, even if these ‘‘interesting parts’’ tend to be a tiny fraction of the
whole genome. So, a genome is the complete DNA content of a cell that codes
from an organism. As an indication of the relative sizes involved in sequencing
a protein, consider that a human cell contains about two billion bases, while the
Escherichia coli bacterium has approximately four million. Viruses tend to have a
few tens of thousands.

1.6 The Example DNA-gene-protein System We Will Use

Throughout Bioinformatics, Biocomputing and Perl, a relatively ‘‘nice’’ example of
DNA and protein sequences is used to explain the basic concepts of sequence
analysis. The DNA-gene-protein system we will use is the Mer Operon. This is a
set of genes often found in bacteria that are important for the detoxification of
mercury by the conversion of Hg2+ ions to the less toxic Hg metal.

The system has been well characterised and the following genes have been
identified in it (refer to Figure 1.7 on page 13):

• MerA is mercury reductase (Enzyme Classification Number: 1.16.1.1). This
is the protein that uses NADPH to reduce Hg2+ (mercury) ions.

• MerR is the regulator protein that represses the production of the Mer
proteins. When Hg2+ ion binds to this protein, the transcription of the other
Mer genes is stimulated.

• MerP, MerT and MerC are membrane-associated proteins that sequester free
Hg2+ ions until they can be detoxified by MerA.

• MerB is the protein organomercurial lyase (Enzyme Classification Number:
4.99.1.2). This cleaves the carbon–mercury bond formed in other structures
releasing Hg2+ ions for detoxification.

The specific examples used are from the bacteria Serratia Marcescens, and
their DNA sequences span the two EMBL database entries, M15049 and M24940.
Although these entries contain most of the genes that have been identified in the

The example DNA-gene-protein system we will use 13

359 1012 1489 2153

11243741

M15049

1 500 1000 1500 2000 2500

677 1183 1549 1896

1111 1533 1824 2923

M24940

DNA Base Index

MerR

MerA MerB MerD

MerT MerP MerA

Figure 1.7 The Mer Operon example DNA–gene–protein.

Mer Operon, some are still absent. However, the MerA and MerT genes that form
the ‘‘core’’ of the system are always present. Refer to the following web-site for
more information on Mer Operon:

http://www.uga.edu/cms/FacAOS.html

As stated earlier, an advantage to studying this system is that it has been so well
characterised. So, after a particular analysis is complete, it is possible to look
up the ‘‘right answer’’ and compare it with what was found as the result of the
analysis. If the two results are similar, then the assumption is that the analysis
worked.

Where to from Here

This chapter sets the scene for this book from a biological perspective. In the next
chapter, the scene is set again, this time from a technological perspective.

2

Setting the
Technological Scene

Perl’s relationship to operating systems and applications.

2.1 The Layers of Technology

An objective of this book is to enable the reader to acquire an understanding
of, and ability in, the Perl programming language as the main enabler in the
development of bespoke computer programs for use in the area of Bioinformatics.
As a prelude, let’s set the technology scene.

Modern computers are organised around two main components: hardware
and software. The hardware is the stuff that can be seen and touched: screens,
keyboards, printers, mice, and so on. Hardware also includes network connec-
tions, hard disks and ZIP drives. In order to use hardware, technology is required
to drive it. This is the role of software. Without software, hardware is all but
useless.

Software is typically categorised by type. It is useful to think of the types of
software as being organised into technology layers (see Figure 2.1 on page 16).

The category of software that is closest to the hardware is the operating
system. This interacts directly with the hardware and is responsible for ensuring
the efficient and equitable use of all hardware resources available. Example
operating systems, of which there are many, include Linux, UNIX, Windows, Mac

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

16 Setting the Technological Scene

Applications

Tools

Operating system

Hardware

Network Printer Keyboard Screen Mouse

Figure 2.1 The layers of technology.

OS X, MS-DOS and VMS. Like hardware, operating systems on their own are not
very useful.

Another category of software, known as tools, takes advantage of what the
operating system has to offer, enabling a set of services to be made avail-
able to application builders, that is, programmers. The tools category includes
programming languages, databases, editors and interface builders. So Perl is,
first and foremost, a software tool. Tools provide an environment within which
applications can be created and deployed.

Applications are, by far, the most useful category of software. The application
layer also has the largest diversity, and includes software such as web browsers,
e-mail clients, web servers, word processors, spreadsheets and so on. It is this
layer that users interact with to get their work done.

The overall process is that applications are built with tools that use the services
provided by the operating system, which in turn interacts with the hardware.

2.1.1 From passive user to active developer

Since it is often the case that pre-existing applications do not provide a sufficiently
specific solution to a user’s needs, there continues to be a need to develop
bespoke computer programs tailored to meet the particular, and sometimes
unique, requirements identified in the user environment. The emphasis in this
book is on acquiring an understanding of, and ability in, the Perl programming
language.

By the end of Bioinformatics, Biocomputing and Perl, the reader will no longer
be a passive user who simply clicks web-page links and selects an option from a
menu, but will instead be an active developer, capable of building web-pages and
bespoke computer programs.

Finding perl 17

2.2 Finding perl

As mentioned in the Preface, this book assumes that the Linux operating system
is being used. If so, the Perl programming language and its environment should
already be installed. A method of confirming this is detailed below. If Linux is not
running, don’t worry: the vast majority of the program code in this book should
work on any version of perl, regardless of the operating system used. Please
refer to the Installing Perl appendix on page 453 for instructions on installing
Perl onto any one of a variety of operating systems.

2.2.1 Checking for perl

On Linux, check if something is installed by using the whereis command. Take
care to use the correct case since Linux operating systems are case-sensitive
(generally system tool names such as whereis are all lower case, as here, but not
always):

whereis perl

When the above command is executed on Paul’s computer (which is running a
recent version of RedHat Linux)1, the results are:

perl: /usr/bin/perl /usr/share/man/man1/perl.1.gz

This confirms that ‘‘perl’’ is in the /usr/bin/ directory location, and there is
also ‘‘perl.1.gz’’ in the /usr/share/man/man1/ directory location. The former
is the actual perl program, the latter is part of the Perl documentation2.

Another Linux command, which, reports on the version of perl that executes
when the perl program is invoked. Again, using Paul’s computer, this command:

which perl

produces this result:

/usr/bin/perl

1
Michael’s computer, which is running SuSE Linux, also reports this directory location for

perl. Other computers may report /usr/bin/perl5.00503 as the location for perl, which
looks a little strange. This is an older version of perl, which will run most of the Perl in this
book, except for those programs that require the installation of some very specific modules.

2
This sentence serves to illustrate a convention in the Perl programming community: when

referring to the tool that executes a Perl program, we refer to it as ‘‘perl’’, whereas the
programming language itself is referred to as ‘‘Perl’’.

18 Setting the Technological Scene

The actual location of the perl program is confirmed to be the /usr/bin/
directory location. Note that it is possible to have more than one perl installed
on a computer, so the whereis command may report more than one directory
location. The which command confirms which of the alternatives is actually
executed. Note that another very popular directory location for perl is:

/usr/local/bin/perl

Now, make a note of the perl directory location reported by your computer, as
this information is needed in the next chapter.

Where to from Here

Having lulled the reader into a rather comforting, but false, sense of security
with this less-than-demanding technical chapter, the next chapter introduces the
more taxing subject of the basics of programming, Perl style. It is time to get
your hands dirty.

Part I

Working with Perl

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

3

The Basics
Getting started with Perl for Bioinformatics programming.

3.1 Let’s Get Started!

There is no substitute for practical experience when first learning how to program.
So, here is our first Perl program, called welcome:

print "Welcome to the Wonderful World of Bioinformatics!\n";

When executed by perl1, this small program displays the following, perhaps
rather not unexpected, message on screen:

Welcome to the Wonderful World of Bioinformatics!

This program could not be easier. A single Perl command, print in this program,
tells perl to display on screen the phrase found within the double-quotes. Use
any text editor to create the welcome disk-file on a computer (it is required in the
next section). Now, let’s look at another way to write welcome:

print "Welcome ";
print "to ";
print "the ";
print "Wonderful ";
print "World ";
print "of ";
print "Bioinformatics!";
print "\n";

1
We will learn how to do this is in just a moment.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

22 The Basics

This considerably longer program, called welcome2, displays exactly the same
message as our first Perl program. Rather than displaying the phrase as a whole,
as was the case with welcome, this program displays each word from the phrase
individually, that is, with its own print command. Of note is the last print
command, which displays \n. Just what exactly is \n? It’s how to tell perl to
display, or take, a new line.

These two programs serve to illustrate and highlight our first programming
maxim2.

Maxim 3.1 Programs execute in sequential order.

The welcome2 program displays the word ‘‘Wonderful’’ before displaying the
word ‘‘World’’. That is, the print commands are executed in sequence, one after
the other.

Technical Commentary: Within Perl, and almost all other programming languages,
each line in a program is referred to as a ‘‘statement’’. Perl statements end with, and
are separated from any other statements by, a semicolon, that is, the ‘‘;’’ character.

Here’s another programming maxim highlighted by these two programs.

Maxim 3.2 Less is better.

As far as these programs are concerned, the smaller of the two, welcome, is the
better of the two. By giving each word in the phrase its own print command,
the welcome2 program is more complex than it needs to be. It is also harder to
understand. This is in spite of the fact that it is functionally identical to welcome.
Adding complexity to programs for no benefit is a practice to be avoided. Put
another way, the second maxim could be rewritten as follows.

Maxim 3.3 If you can say something with fewer words, then do so.

3.1.1 Running Perl programs

Prior to actually running a program, it is prudent to first check Perl programs
for obvious errors. To do this for welcome, type the following at the Linux
command-line (where the -c stands for ‘‘check’’):

perl -c welcome

If all is well, perl responds with:

welcome syntax OK

2
A maxim is a general truth or a rule of thumb expressed as a sentence.

Let’s Get Started! 23

Let’s assume that the welcome program contains an error, specifically that the
word ‘‘print’’ is entered as ‘‘pint’’. When the syntax-checking command-line is
entered, the following messages appear:

String found where operator expected at welcome line 3,
near "pint "Welcome to the Wonderful World of Bioinformatics!\n""

(Do you need to predeclare pint?)
syntax error at welcome line 3,

near "pint "Welcome to the Wonderful World of Bioinformatics!\n""
welcome had compilation errors.

When messages such as this appear, don’t panic! This is perl’s way of indicating
that there is something wrong with the program. Look at the messages and the
program again and check the spaces, as quotation marks and semicolons are
most likely to get left out or misplaced. Commands can also be misspelt, as is
the case here, resulting in a syntax error. Now, just what exactly is ‘‘syntax’’, and
why is it OK or in error?

In any written language, syntax refers to the way words are arranged to form
phrases and sentences. When referring to computer programs in any program-
ming language, syntax refers to the arrangement of program statements. Specifi-
cally, the arrangement of statements as defined by the programming language’s
rules and regulations is known as its syntax.

So, the perl program is happy that the welcome program contains only
legitimate Perl statements, and that no syntax rules have been violated.

3.1.2 Syntax and semantics

It is important to understand that a Perl program may be syntactically correct,
but semantically wrong. Semantics has to do with the meaning of language. For
a Perl program to be syntactically correct but semantically wrong means that the
program satisfies the rules and regulations of the programming language, but
does not do what you expected it to do.

For example, here is a syntactically correct but semantically wrong Perl pro-
gram, called whoops:

print ; "Welcome to the Wonderful World of Bioinformatics!\n";

When ‘‘perl -c whoops’’ is executed, the familiar ‘‘whoops syntax OK’’ mes-
sage appears. So syntactically, everything is OK. However, try executing this
command-line, which actually runs the program (note: the -c is missing):

perl whoops

And nothing appears on screen. Oh dear.
The whoops program is semantically incorrect, in that it does not do what

we were expecting it to do. In fact, it does nothing. The problem is that the

24 The Basics

print command has been terminated too early. Look at that ‘‘;’’ character right
after the word print in the program. What that tells perl is that the print
command has finished printing. As print has nothing to print, nothing displays
on screen! And as the program has not told perl what to do with the friendly
message, perl does nothing with it. Which is probably the safest thing for the
program to do.

Surely, perl should spot that something is not quite right here? The fact that
perl sees the message and then decides not to do anything with it should mean
something and – if nothing else – should be reported to the programmer.

You are right, it should. But, as programs go, perl is the strong, silent type.
The problem is that perl has not been asked to highlight anything out of
the ordinary. All that was required was a syntax check. In contrast, this next
command-line instructs perl to report potential problems (where -w stands for
‘‘warnings’’):

perl -c -w whoops

Now, in addition to performing a syntax check (with -c), we have asked perl to
look for and report on anything else that might be strange. Here’s what perl has
to say about whoops now:

Useless use of a constant in void context at whoops line 1.
whoops syntax OK

The perl program informs the programmer that a ‘‘useless use’’ of something
has occurred. In this case, it is the friendly message that is of no use. Note that
the syntax is still OK, but the warning message is a clue to look at the program
for possible semantic errors.

Technical Commentary: Programmers often refer to semantic errors by another
name: logic errors.

In learning about syntax and semantics, we rather sneakily demonstrated just
how easy it is to execute any Perl program: simply invoke perl without the -c
switch, as follows:

perl welcome

This command-line produces this rather triumphant output, which is repeated
from the start of this chapter:

Welcome to the Wonderful World of Bioinformatics!

Let’s Get Started! 25

3.1.3 Program: run thyself!

It is possible, on computers running Linux and other UNIX-like operating sys-
tems, to arrange for a program to automatically invoke perl when necessary.
Look at this command-line3, which is executed against the soon-to-be-discussed
welcome3:

chmod u+x welcome3

This chmod command tells Linux that the welcome3 program can be executed,
and it assumes that the following line4 appears as the first line of welcome3:

#! /usr/bin/perl -w

The welcome3 program can now be invoked like this, in which the leading ./
tells the Linux operating system to find the welcome3 program in the current
directory:

./welcome3

But it is perfectly OK to still invoke the program like this:

perl welcome3

Both techniques are valid and either may be used. Try them for yourself. This
leads in rather nicely to the next maxim.

Maxim 3.4 There’s more than one way to do it.

This is also the Perl programming language’s motto. It is actually more of a philos-
ophy. The central idea being that whatever works for the Perl programmer works
for Perl, assuming – of course – it is legitimate Perl. There are many references to
this maxim throughout Bioinformatics, Biocomputing and Perl

Technical Commentary: The Linux chmod command changes the mode of a disk-
file. Typically, a disk-file is not created as a program, but rather as an ordinary
disk-file that can be read from or written to. When the mode of the disk-file is
changed to executable, the disk-file is turned into something that can be executed
from the command-line. That is the purpose of ‘‘chmod u+x’’. The ‘‘u’’ refers to
the user (or owner) of the disk-file, and the ‘‘+x’’ turns on the disk-file’s ability to
execute.

3
As the welcome2 program is essentially the same program as welcome, we have nothing

further to do with it at this stage. That said, it does make a short comeback later in this chapter
when used with another example program.

4
As discussed at the end of the previous chapter, this may not be where your perl is, so be

sure to substitute the correct location here.

26 The Basics

3.2 Iteration

In the previous section, in addition to learning how to syntax check and execute
programs, the concept that programs are a sequence of statements was also
introduced5. If all that could be accomplished by a program was to execute a
simple sequence of statements, the vast majority of programs would not be very
useful. So, programming languages support additional mechanisms, known as
programming constructs, to do more interesting things. One such mechanism is
called iteration, which is just another word for repetition. Here is an example of
an iteration from the non-programming world:

Heat the pie in the oven until the sugar glazes.

We do something, that is, heat the pie, until something is true, that is, the sugar
glazes. Another way of expressing this iteration is:

While the sugar is still sugar, heat the pie in the oven.

or:

While the sugar is not glazed, heat the pie in the oven.

These latter iterations are less intuitive when compared to the first, mainly
because the test to see if something is true occurs first, that is, check the state of
the sugar, before the something to do, that is, heat the pie. The second ‘‘while’’
iteration is the least intuitive, as the check is for a negative, that is, the sugar is
not glazed and, as a result of this check being true, that is, a positive, the pie
continues to heat.

Compared to the original iteration, which used ‘‘until’’, the two ‘‘while’’ itera-
tions seem to have things the wrong way around. It is more natural to say ‘‘I’ll
stand by the fire until I warm up’’, as opposed to ‘‘While I’m cold, I’ll stand by the
fire’’, or the truly awful ‘‘While I’m not hot, I’ll stand by the fire’’.

Unfortunately, programming languages favour the use of iterations based on
the use of ‘‘while’’. Although it is possible to write iterations using ‘‘until’’, such
usage tends to be less common in practice.

3.2.1 Using the Perl while construct

A quick example illustrates the use of the while construct in Perl. This next
program is called forever:

5
Note that this sequence is a very different sequence to the Bioinformatics sequences we

encounter later in this book. Here, ‘‘sequence’’ simply means ‘‘one after the other’’.

Iteration 27

#! /usr/bin/perl -w

The ’forever’ program - a (Perl) program,
which does not stop until someone presses Ctrl-C.

use constant TRUE => 1;
use constant FALSE => 0;

while (TRUE)
{

print "Welcome to the Wonderful World of Bioinformatics!\n";
sleep 1;

}

Using the chmod command from earlier, make forever executable and execute it
as follows:

chmod u+x forever
./forever

The screen should start to fill with copies of the message, and the program keeps
printing the message once every second until Ctrl-C is pressed. Think of Ctrl-C
as meaning ‘‘cancel’’. Press and hold down the Ctrl key on your keyboard, then
tap the C key to stop the program:

Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!

.

.

.

The forever program repeatedly prints the message on screen, and it continues
to print the message while TRUE is true. So the program runs forever. The Ctrl-C
key combination must be pressed to stop the program executing.

Technical Commentary: Rather than use the word iteration or repetition to refer to
this mechanism, many programmers favour the use of the word loop. In this context,
loop is both a noun and a verb. Typical programmer utterances might be ‘‘the loop
prints the message five times’’ or ‘‘this program loops forever’’. Programs that loop
forever, just like the forever program in this section, are referred to as an infinite
loop. The infinite loop is generally regarded as a very bad thing, and programmers
are encouraged not to introduce such loops into programs.

28 The Basics

There is a lot going on in the forever program and we are introducing a number
of new concepts, so let’s look at forever in more detail.

The first three lines of the program all start with the # character. The first
line is the run thyself! line from the last section. The other two require further
explanation:

#! /usr/bin/perl -w

The ’forever’ program - a (Perl) program,
which does not stop until someone presses Ctrl-C.

In Perl, the # character denotes the start of a comment that runs from the #
character to the end of the current line. A comment is targeted at the person
reading the program, not perl. This means that perl ignores lines that start
with #.

Technical Commentary: Actually, the # character can appear anywhere on the line,
not just at the start. When perl encounters the # character, everything from the #
character to the end of the current line is ignored by perl.

Good programmers always add comments to their programs. In effect, comments
help document the program and, in doing so, facilitate the application of future
changes to a program, especially when the programmer making the changes is
not the original author. Time for another maxim.

Maxim 3.5 Add comments to make future maintenance
of a program easier

for other programmers and for you.

Having said that, the program code that appears throughout Bioinformatics,
Biocomputing and Perl is notable in that it is devoid of comments. This is
deliberate, as the book is itself a comment on the program code. Two constant
definitions come after the comment lines:

use constant TRUE => 1;
use constant FALSE => 0;

Unlike other programming languages, Perl has a rather strange notion of what
is true and what is false. To keep things simple, for now, note that Perl treats a
value of 1 as true and a value of 0 as false. Since it is not desirable for the values
of true and false to change within a program, it is prudent to take advantage of
Perl’s mechanism to define these two values as constants. A constant is a value
that cannot change while a program is running. If we try to change a constant
value by, for instance, trying to add 1 to the value chosen to represent false, the
perl program complains loudly and refuses to process the program further.

Iteration 29

Rather than using 1 and 0 as true and false, we give the constants nice,
human-friendly names: TRUE and FALSE. It is a convention to give constants all
UPPERCASE names, although the use of UPPERCASE is not required. However,
when programming, it is always advisable to follow existing conventions.

Technical Commentary: Perl is case-sensitive. This means that when naming
variables in Perl, case is significant. So, ‘‘TRUE’’ is a different symbol to ‘‘true’’.
Other programming languages – notably Pascal – are not as fussy.

Having declared the truth values to be constants, the program uses the value for
true in the very next line:

while (TRUE)

Which is much easier to read and understand than this:

while (1)

Isn’t it? Even though we are yet to describe this line in detail, ‘‘while (TRUE)’’
should mean more than ‘‘while (1)’’. Could we possibly use this program to
demonstrate another maxim? Yes, we can.

Maxim 3.6 When using constant values, refer to them with a nice,
human-friendly name as opposed to the actual value.

This practice has a very important implication. To understand the implication,
imagine writing a program that is 3000 lines long. Throughout the program TRUE
has been used extensively, appearing in 42 different places in the program. Next,
imagine that throughout the program, TRUE has been used, in error, for FALSE.
Changing all 42 occurrences of TRUE is as easy as instructing an editor to execute
a global search-and-replace, changing all occurrences of TRUE to FALSE.

Now imagine that 1 has been used as the value for true. Now there is a problem.
A global search-and-replace cannot be used to change all the occurrences of 1 to
0, since 1 may not have been used to mean true at every point in the program that
1 appears. For instance, 1 might be added to some other value in the program
to increment its value, and if this occurrence of 1 is changed to 0, the increment
will no longer work, since adding zero to some value does not change the value.
The program will be syntactically correct but semantically wrong, and all because
constants were not used when it was appropriate to do so. The conclusion is
clear: use constants!

To return to the ‘‘while (TRUE)’’ line from forever, an iteration is started
that will run for as long as TRUE is true. In other words, the iteration runs forever.

In Perl, the while construct encloses a collection of lines to repeat within a
block. A block in Perl is any collection of program statements enclosed in curly
braces, which are also known as squigglies. The start of the block is marked by

30 The Basics

the ‘‘{’’ character and the end of the block is marked by the ‘‘}’’ character. Here’s
the block associated with the while statement from forever:

{
print "Welcome to the Wonderful World of Bioinformatics!\n";
sleep 1;

}

This block contains two program statements; one is the familiar print command
that displays the message, and the other is an invocation of Perl’s sleep com-
mand, which pauses the program for the indicated number of seconds, which, in
this case, is 1. So, the forever program prints the message every second, and
keeps printing the message every second until Ctrl-C is pressed.

Think of blocks as a way of grouping program statements together, allowing
them to be treated (and repeated) as a single entity.

Maxim 3.7 Use blocks to group program statements together.

To hammer home the point recommending the use of constants for the truth
values, note that the length of time to sleep for has the same value as TRUE, that
is, 1. However, its meaning is very different. We are asking perl to ‘‘sleep for
one second’’, not to ‘‘sleep true’’, the latter being another example of syntactic
correctness, but incorrect semantics.

3.3 More Iterations

Iterating forever is occasionally useful. However, it is more common for iterations
to execute for a specific number of occurrences. The loop in the forever program
kept going while the value of TRUE remained true, which meant that forever was
designed never to stop6. The thing to check at the top of the loop has a generic
name: condition. The general form of a while loop in Perl is:

while (some condition is true)
{

do something
}

Note that as this isn’t actual Perl code, it is not shown in the usual program
font.

We enclose the something to do in a block enclosed in curly braces. Note that
the condition is itself enclosed in parentheses, the ‘‘(’’ and ‘‘)’’ characters. Just

6
Of its own accord, that is. Remember: we were able to stop it by pressing Ctrl-C.

More Iterations 31

as curly braces are required around a block, parentheses are required around a
condition. But just what is a condition?

The short answer is anything that can result in a value of true or false. This is
an answer worthy of another maxim.

Maxim 3.8 A condition can result in a value of true or false.

The longer answer is a little more complicated. It is complicated by the fact
that conditions can themselves be complicated, of which more later. However,
before starting to use and learn about more complex conditions, we first need to
introduce variable containers.

3.3.1 Introducing variable containers

Earlier in this chapter, constants were described. To recap, a constant is a con-
tainer within a program whose value cannot be changed under any circumstance.
The opposite of a constant is a variable container, or variable for short. A
variable’s value can change over the lifetime of the program. In other words, a
variable’s value can vary.

Maxim 3.9 When you need to change the value of an item,
use a variable container.

For instance, it might be a requirement to repeat a loop ten times. A count is
kept of the number of iterations. When the count reaches ten, the loops ends and
stops iterating. To do this, use a variable.

Perl, probably more than any other programming language, has excellent sup-
port for all types of variable containers. The simplest type of variable container is
the scalar . In Perl, scalars can hold, for example, a number, a word, a sentence or
a disk-file. Within Perl programs, scalars are given a name prefixed with a dollar
sign ($). Here are some example scalar names:

$name
$_address
$programming_101
$z
$abc
$count

Scalar variable container names always start with the dollar sign ($) followed by
at least one other character, as long as that character is a lowercase letter (a - z),
an uppercase letter (A - Z) or an underscore ().

Look at the list of six example scalar names. They all are correctly formed.
However, they are not all equally descriptive of the contents of the variable.
Simply by looking at them, a reasonably good idea of what $name, $ address
and $count will be used for can be formed. Equally, an assumption can be made

32 The Basics

about what the $programming 101 scalar is being used for. But not so with $z
and $abc.

Without examining the program within which $z appears, it is impossible to
determine what the variable is being used for, and reading the program within
which $z appears may not help at all. Using a single letter for a variable name
is rarely justified, as a single letter is not enough to convey any sort of meaning.
Even though more than a single letter has been used to name $abc, this is also a
poor choice of name. Both $z and $abc highlight a key maxim.

Maxim 3.10 Don’t be lazy: use good, descriptive names for variables.

3.3.2 Variable containers and loops

To demonstrate the use of variable containers within loops, a version of forever
that displays ten messages and then stops can be created. This new program is
called tentimes, and here it is:

#! /usr/bin/perl -w

The ’tentimes’ program - a (Perl) program,
which stops after ten iterations.

use constant HOWMANY => 10;

$count = 0;

while ($count < HOWMANY)
{

print "Welcome to the Wonderful World of Bioinformatics!\n";
$count++;

}

To run this program, use the now familiar chmod command to make it executable,
then invoke it as follows:

chmod u+x tentimes
./tentimes

This program displays the following on screen:

Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!

More Iterations 33

Welcome to the Wonderful World of Bioinformatics!
Welcome to the Wonderful World of Bioinformatics!

The tentimes program is not very different from the forever program. The
usual first line is followed by two lines of comment. A constant is then defined:

use constant HOWMANY => 10;

The HOWMANY constant is used to control the number of times the loop iterates.
Once the program has displayed the message HOWMANY times, it stops. A scalar
variable container called $count is used to count how many times the loop
iterates. Before starting the loop, the $count scalar is given a value of zero:

$count = 0;

Read this line as ‘‘set the $count scalar to equal zero’’ or ‘‘$count becomes equal
to zero’’. The = symbol is referred to as the assignment operator .

Technical Commentary: In Perl, it is not necessary to set the value of a variable
container before it’s used. Perl has a number of rules that are applied to the first
usage of a variable container, and perl sets a scalar to zero if it is first used within
a numeric context. This feature can be very convenient. However, it is always a good
idea to give variable containers an explicit starting value, as it indicates precisely
what the intentions for the variable are. Any programmer reading the tentimes
program should be in no doubt that the $count scalar is to be used within a numeric
context (not that the use of the word ‘‘count’’ wasn’t a big enough clue already).

With the $count scalar set and the HOWMANY constant defined, the condition for
the loop can now be written:

while ($count < HOWMANY)

The loop continues to iterate while the value of $count is less than the value of
HOWMANY. Note the use of the standard symbol (borrowed from Mathematics) for
less than, namely, <.

Technical Commentary: The use of such symbols is common to all programming
languages, not just Perl. Rather than refer to them as symbols, programming lan-
guages use the word operator. Throughout this part of Bioinformatics, Biocomputing
and Perl, a number of operators are used accompanied by appropriate explana-
tion. For a review of the list of operators supported by Perl, see Appendix A: Perl
Operators on page 457.

The block executed by the loop comes next:

{
print "Welcome to the Wonderful World of Bioinformatics!\n";
$count++;

}

34 The Basics

The block contains two program statements. The first displays the usual message.
The other applies the ++ operator to the $count scalar. This operator is the
increment operator , and when used, adds 1 to the value of a numeric scalar. As
$count started out with a value of zero, this statement sets its value to 1. The
next time the loop iterates, $count will have the value 2, and so on.

So, as the loop iterates, the message displays and the value for $count increases
until it reaches the value of 10. At this point, the value of $count is no longer
less than the value of HOWMANY, and the loop then ends, as does the program.

By employing the services of a simple scalar variable container and two oper-
ators (< and ++), a loop has been written that iterates a specified number of
times.

3.4 Selection

The third basic building block of programming is selection. The use of a selection
mechanism allows a program to choose one of a number of possible courses of
action. Here’s a simple selection from the real world:

I’ll eat if I’m hungry, otherwise, if I’m not hungry, I’ll sleep.

Another way of saying this would be:

If I’m hungry, I’ll eat, otherwise I’ll sleep.

And here’s the general form of the selection statement in Perl:

if (some condition is true)
{

do something
}
else
{

do something else
}

The first point to note is that the else part of the selection is entirely optional.
As expected, the else block is only executed if the condition fails. The if block
is executed if the condition is true. Note that, as with loops, blocks of program
statements are associated with each part of the selection.

The use of a condition is central to the workings of the selection mechanism,
just as it is with loops. If the condition is true, the first block of program
statements is executed. If the condition is false, the second block of program
statements executes.

Selection 35

3.4.1 Using the Perl if construct

Here is another variation on the forever program that prints the message five
times. This program is called fivetimes:

#! /usr/bin/perl -w

The ’fivetimes’ program - a (Perl) program,
which stops after five iterations.

use constant TRUE => 1;
use constant FALSE => 0;

use constant HOWMANY => 5;

$count = 0;

while (TRUE)
{

$count++;
print "Welcome to the Wonderful World of Bioinformatics!\n";
if ($count == HOWMANY)
{

last;
}

}

The first three lines are as expected: the standard first line followed by two
comment lines. Then come three constant definitions that require no explanation
as they have been seen before. As in the tentimes program, the $count scalar is
initially set to zero. The loop then begins:

while (TRUE)
{

$count++;
print "Welcome to the Wonderful World of Bioinformatics!\n";

Note that the loop condition is simply TRUE, which is defined as a constant value
of 1. The value of 1 represents a true value in Perl, which results in this block
looping forever. As in the tentimes program, the first two program statements in
the block increment $count and display the message. Then comes the selection:

if ($count == HOWMANY)
{

last;
}

}

36 The Basics

The if selection statement uses the numeric equality operator (==) to check if
the value of $count is equal to the value of the HOWMANY constant. If it is not
equal, that is, if the condition fails, the block associated with the if statement
is not executed, which results in another iteration beginning. If $count is equal
to HOWMANY, the block associated with the if statement is executed. This block
contains a single Perl command, last, which forces perl to exit from the current
loop regardless of whether or not the loops condition is true or false. In effect,
the last command is a loop short-circuit, and its use here ensures that the
fivetimes program stops after five iterations.

If you are wondering which ‘‘stop the loop’’ technique is the best to use, either
(a), the iteration condition test from tentimes or (b), the selection condition
test combined with the last command from fivetimes, the maxim on page 25
provides the answer.

3.5 There Really is MTOWTDI

Where MTOWTDI stands for ‘‘more than one way to do it’’. This philosophy is
one of the great strengths of Perl, but care is needed. Let’s illustrate the good
and the bad of this philosophy, by example, starting with a couple of not so good
examples followed by a couple of much improved ones. Here’s another example
program, called oddeven:

#! /usr/bin/perl -w

The ’oddeven’ program - a (Perl) program,
which iterates four times, printing ’odd’ when $count
is an odd number, and ’even’ when $count is an even
number.

use constant HOWMANY => 4;

$count = 0;

while ($count < HOWMANY)
{

$count++;
if ($count == 1)
{

print "odd\n";
}
elsif ($count == 2)
{

print "even\n";
}
elsif ($count == 3)
{

print "odd\n";

There Really is MTOWTDI 37

}
else # at this point $count is four.
{

print "even\n";
}

}

The comments at the top of the program explain its purpose. The program
iterates, and as it iterates it examines the value of the $count scalar. When
$count is an odd number, the word ‘‘odd’’ displays on screen. When $count is
an even number, the word ‘‘even’’ displays on screen.

Of note is that the if selection statement is a multi-way selection. It has four
blocks, with one of the blocks executing when the value of $count is 1, 2, 3 or
4. When $count has a value of 2 or 3, the blocks associated with Perl’s elsif
are executed7. The trailing else block does not have a condition associated with
it, as it assumes that $count is not 1, 2 or 3, so it must be 4. Note the use of a
comment to document this assumption.

This long if statement also highlights another property of this selection
mechanism, that only one block is executed on each iteration. The value of the
$count scalar controls which block is executed.

Use chmod to turn the oddeven program into a file that can be executed, then
invoke it with the ‘‘./oddeven’’ command-line. As expected, the program displays
the following on screen:

odd
even
odd
even

Whew! We can all sleep tonight: the oddeven program has confirmed that 1 and
3 are odd numbers, and 2 and 4 are even numbers.

Now, let’s look at another program that does exactly the same thing as oddeven.
This program is called terrible:

#! /usr/bin/perl -w
The ’terrible’ program - a poorly formatted ’oddeven’.
use constant HOWMANY => 4; $count = 0;
while ($count < HOWMANY) { $count++;
if ($count == 1) { print "odd\n"; } elsif ($count == 2)
{ print "even\n"; } elsif ($count == 3) { print "odd\n"; }
else # at this point $count is four.
{ print "even\n"; } }

7
Note the strange spelling. Other programming languages use elseif or else if, which are

both illegal syntax as far as Perl is concerned.

38 The Basics

Yikes! What a mess. Look closely. Notice that the program statements that make
up the terrible program are exactly the same as those that make up the
oddeven program. The results produced from terrible are exactly the same as
those produced by oddeven, namely:

odd
even
odd
even

The difference between the two programs has to do with how they are laid out,
or formatted. The oddeven program uses plenty of whitespace, blank lines and
indentation to present the program statements in such a way that they are easy
for another programmer, and you, to read. The use of indentation helps the
reader of oddeven see which blocks of code are associated with which condition
tests. The terrible program, on the other hand, squeezes as much as possible
onto as few lines as possible. It is just about readable, but it is all but impossible
to see which blocks are associated with which condition tests, let alone work out
what the program actually does.

Technical Commentary: Like a lot of modern programming languages, Perl is
classified as free format. This means that you can write a program using whatever
formatting you prefer, as perl can just as easily process a well-formatted program,
such as oddeven, as it can a poorly formatted program, such as terrible. Do
yourself and everyone else a favour, and be sure to format your programs to be as
readable as possible.

It is time for a new maxim, as it has been quite a while since the last one.

Maxim 3.11 Use plenty of whitespace, blank lines and indentation
to make your programs easier to read.

Do not be misled into thinking that comments are central to the future under-
standing of a program, as suggested by an earlier maxim. Certainly, comments
are important, but all the comments in the world will not make up for improperly
formatted and poorly laid out code. Take another quick look at the terrible
program. It really is a mess.

Now for the good. Here is another version of oddeven. This program is
called oddeven2 and it produces exactly the same output as both oddeven
and terrible:

#! /usr/bin/perl -w

The ’oddeven2’ program - another version of ’oddeven’.

use constant HOWMANY => 4;

$count = 0;

There Really is MTOWTDI 39

while ($count < HOWMANY)
{

$count++;
if ($count % 2 == 0)
{

print "even\n";
}
else # $count % 2 is not zero.
{

print "odd\n";
}

}

The key program statements are these:

if ($count % 2 == 0)
{

print "even\n";
}
else # $count % 2 is not zero.
{

print "odd\n";
}

That percentage sign (%) is another Perl operator, the modulus, % operator. Given
two numbers, ‘‘A % B’’ returns the remainder after A has been divided by B,
assuming both are positive numbers.

Technical Commentary: The use of the word ‘‘return’’ in the last paragraph
requires further explanation. When programmers state that some program state-
ment ‘‘returns’’ some value, they mean that the program statement produces some
result that then becomes available to the program. That is, the program statement
actually has a value associated with it. In the examples that follow, each statement
results in the remainder being ‘‘returned’’ to the program, which then prints the
resulting value, that is, the value of the remainder after the modulus operator has
executed.

Here are some examples of the modulus operator in action:

print 5 % 2, "\n"; # prints a ’1’ on a line.
print 4 % 2, "\n"; # prints a ’0’ on a line.
print 7 % 4, "\n"; # prints a ’3’ on a line.

The key point is that an odd number divided by 2 yields a remainder of 1, whereas
an even number divided by 2 yields a remainder of 0.

The oddeven2 program exploits this mathematical property, thanks to Perl’s
modulus operator and the $count scalar. When ‘‘$count % 2’’ yields zero, the
word ‘‘even’’ is printed, and when ‘‘$count % 2’’ yields anything other than zero,
the word ‘‘odd’’ is printed.

40 The Basics

The oddeven2 program is shorter than oddeven. But is this enough to make it
better? On its own, it is not. However, the oddeven2 program is better because
it is easier to extend. Specifically, if the program is changed to iterate 20 times,
we need only make one change: the value for HOWMANY becomes 20 instead of 4.
Contrast this to the changes required to the oddeven program: adding 16 new
elsif blocks for each of the new values of $count, 4 through 19. This is probably
too much work to be worth the effort. However, the change to oddeven2 is trivial,
which is an excellent example of taking the maxims to heart. And we can do even
better. Take a look at this program, called oddeven3:

#! /usr/bin/perl -w

The ’oddeven3’ program - yet another version of ’oddeven’.

use constant HOWMANY => 4;

$count = 0;

while ($count < HOWMANY)
{

$count++;
print "even\n" if ($count % 2 == 0);
print "odd\n" if ($count % 2 != 0);

}

Let’s take a look at the print commands more closely. Here’s the first:

print "even\n" if ($count % 2 == 0);

Read this program statement as ‘‘print the word ‘even’ if and only if the value
of $count modulus 2 is equal to zero’’. Unlike the if statements that appeared
in oddeven and oddeven2, in which the condition test comes before the block,
in oddeven3, the condition test comes after the program statement. Such an
arrangement is known as a statement qualifier in Perl. The second print statement
in the oddeven3 program is this:

print "odd\n" if ($count % 2 != 0);

This program statement introduces a new operator, !=, which means ‘‘not equal
to’’. This statement can be read as ‘‘print the word ‘odd’ if and only if the value
of $count modulus 2 is not equal to zero’’.

When the block of program statements associated with a particular if condition
test is small (as is the case with oddeven), it is often more natural to use
a statement qualifier, specifying ‘‘print if’’ as opposed to ‘‘if print’’. Both
work, of course.

Processing Data Files 41

3.6 Processing Data Files

The programs developed thus far have served their purpose in demonstrating the
basic programming mechanisms of sequence, iteration and selection. However,
although academically interesting, these programs have not really performed
any useful function. It is only when data from outside a program comes into
the picture that this changes. Getting data into a Perl program is surprisingly
easy.

In order to demonstrate just how easy, we need to introduce another, rather
special, Perl operator. The input operator looks like this:

<>

When perl encounters this operator within a program, it looks for and returns
a line of input from standard input. This is the name given to the mechanism
that is currently providing input data to the program. Unless perl is told
otherwise, the default input mechanism is the keyboard. This means that a
program takes a line of data from the keyboard whenever the input operator is
used.

It is useful to think of a program’s input as its data. Conversely, think of a
program’s output as its results. Consider this program statement:

$line = <>;

The scalar variable container, called $line, is assigned its value from the input
operator. In other words, a line is read from the keyboard and put into the $line
scalar. Here is a small program called getlines that exploits the above program
statement:

#! /usr/bin/perl -w

The ’getlines’ program which processes lines.

while ($line = <>)
{

print $line;
}

The first line of this program is the usual run thyself! line. A one-line comment
follows, then the remainder of the program is a loop. What is strange about this
loop is that the condition part does not result in a numeric value, unlike the other
loops seen so far in this chapter. Instead, the getlines program has a condition
part that uses <> to look for and return a line from standard input. The line, when
available, is assigned to the $line scalar, which is then checked for trueness. But
how can a line be checked for trueness?

42 The Basics

Earlier in this chapter, we alluded to the fact that the values for true and false
in Perl are a little strange. It turns out that, in addition to using numerics to
represent true and false, strings8 also have a truth value. The rule is simple: A
string with no characters is false, otherwise it is true.

Returning to the getlines program, note that the <> operator returns a
line from standard input and assigns it to $line. The trueness of the $line
scalar is then tested. If $line contains one or more characters it is considered
to be true, otherwise it is considered to be false. That is, if it contains no
characters, it is an empty string, and ‘‘empty’’ implies false. Obviously! Remember
the earlier warning in this chapter that Perl had its own unique notion of
truth.

So, the loop in getlines keeps iterating while there are lines of input arriving
from standard input, that is, the keyboard. The single program statement within
the loop simply displays the line on screen using Perl’s print command.

Technical Commentary: In addition to standard input, Perl has standard output,
the default place to display normal messages, and standard error, the default place
to display error messages. Unless told otherwise, perl uses the screen as the default
for both standard output and standard error. To make things convenient, standard
input, standard output and standard error go by the shorthand names of STDIN,
STDOUT and STDERR respectively.

The now familiar command makes getlines executable:

chmod u+x getlines

Run the getlines program as follows:

./getlines

The program takes a new line, then nothing appears to happen. What is actually
happening is that getlines is waiting for some input to arrive from standard
input. Go ahead and type something at the keyboard, remembering to press the
Enter key at the end of each line typed. Immediately upon pressing Enter, the
getlines program displays what is typed on screen. It iterates for as long as
lines are typed at the keyboard, as the <> operator takes what was typed and
assigns it to the $line scalar, which is then checked for trueness. As long as
there is something typed, $line results in a true value.

To signal to the getlines program that typing is finished, press Ctrl-D.
This sends an end-of-file message to the current program. Think of Ctrl-D as
signalling ‘‘Done’’.

8
Sequences of zero or more characters.

Processing Data Files 43

3.6.1 Asking getlines to do more

Type the following command-line:

./getlines terrible

And, as awful as it is, the terrible program appears on screen. Try this
command-line:

./getlines terrible welcome3

This time, not only does the terrible program appear on screen but it is also
immediately followed by the welcome3 program. In fact, it is the contents of the
disk-files that appear. The fact that these two disk-files are Perl programs is of
no consequence to the getlines program, it just sees them as a collection of
lines to display. Now, no changes have been made to the getlines program, so
how is this display of disk-files occurring? What are we not telling you?

Nothing, if truth be told. The getlines program is still reading lines from
standard input until there are no more lines to read. However, with the above
command-lines, rather than looking to the keyboard for data, the getlines
program looks to the disk-files for data. What perl does is open the first disk-file
(terrible) and read each line from the disk-file, passing the lines one at a time
to the <> operator within the getlines program. When the data (the lines) within
terrible are exhausted, perl closes the disk-file and then opens the welcome3
disk-file and reads its data one line at a time. When there are no more lines or
disk-files to process, the Ctrl-D end-of-file message is passed to getlines.

This is really cool. As the getlines program uses standard input, it uses the
keyboard by default. When used in association with a named disk-file, it uses the
contents of the disk-file as input, and there can be more than one named disk file.

Technical Commentary: Programmers refer to the list of ‘‘things’’ on the command-
line that follow a program name as its command-line arguments or parameters. The
last invocation of getlines has two command-line arguments, the word ‘‘terrible’’
and the word ‘‘welcome3’’.

As stated at the start of this section, getting data into perl is not difficult.
This is one of Perl’s main strengths – processing disk-files that contain textual
data – and it goes a long way to explaining Perl’s popularity as the programming
language of choice within the Bioinformatics community. This is no accident. Perl
is a very powerful text processor. The icing on the cake is a technology called
regular expressions, which is introduced in the next section.

44 The Basics

3.7 Introducing Patterns

As strange as this may sound, Perl has another programming language built
into it. This language within a language makes extensive use of Perl’s regular
expression, pattern-matching technology.

The Perl on-line documentation9 defines a regular expression to be ‘‘simply a
string that describes a pattern’’. The pattern identifies what it is hoped to match.
The actual how of finding the pattern is taken care of by the perl program.

Technical Commentary: A programming language that allows the programmer
to specify what is required is often referred to as a declarative language. The
programmer ‘‘declares’’ what’s required, and the technology works out the details.
On the other hand, a programming language that allows the programmer to specify
exactly how a result is to be arrived at is often referred to as a procedural language.
The programmer defines the ‘‘procedure’’ to be followed, and the technology blindly
follows the instructions. Most programming languages can be classified as one or
the other, either declarative or procedural. Remarkably, Perl can be one or the other,
or both.

The definition of regular expression patterns is a complex topic, and an entire
chapter is devoted to the details later in Bioinformatics, Biocomputing and Perl.
For now, and by way of introducing regular expressions, a very simple pattern
will be used to demonstrate the potential of this programming mechanism. Take
a look at the next program, called patterns:

#! /usr/bin/perl -w

The ’patterns’ program - introducing regular expressions.

while ($line = <>)
{

print $line if $line =~ /even/;
}

This program is very similar to the getlines program from the last section.
Changes were made to the comment, of course, and to the print command
within the loop’s block. Let’s look at the changed print command in more detail:

print $line if $line =~ /even/;

Before describing this program statement in detail, here’s the English language
equivalent: display the contents of the scalar called $line if and only if the scalar
called $line contains the pattern ‘‘even’’.

Another new operator is introduced here. It is called the binding operator , and
it looks like this: =~. This operator compares something (usually a scalar variable

9
See the perlretut manual page.

Introducing Patterns 45

container) against a pattern10. For now, a pattern is defined as any sequence of
characters surrounded by the forward-leaning slash character (i.e., ‘‘/’’). In the
example above, the pattern is the word ‘‘even’’. Specifically, it is the letter ‘‘e’’,
followed by the letter ‘‘v’’, followed by the letter ‘‘e’’, followed by the letter ‘‘n’’.
If the contents of $line contains the pattern anywhere in the line, it is said to
match.

Technical Commentary: When programmers refer to a character that surrounds
something of interest, such as the forward-leaning slash surrounding the patterns in
this section, they call that character a delimiter. The character delimits the something
of interest. The ‘‘/’’ character is the default delimiter for regular expression patterns
in Perl.

A few examples will illustrate what’s going on. Try this command-line:

./patterns terrible

The patterns program reads the contents of the disk-file called terrible one
line at a time looking for a match on the pattern. When the pattern is found,
patterns displays the matching line. It finds matching lines as follows:

The ’terrible’ program - a poorly formatted ’oddeven’.
{ print "even\n"; } elsif ($count == 3) { print "odd\n"; }
{ print "even\n"; } }

Here’s another invocation of patterns, this time against the oddeven disk-file:

./patterns oddeven

Again, the patterns program reads the contents of the disk-file called oddeven
one line at a time looking for a match on the pattern. When it is found, it displays
the matching line. As with the terrible disk-file, the program finds matching
lines:

The ’oddeven’ program - a (Perl) program,
is an odd number, and ’even’ when $count is an even

print "even\n";
print "even\n";

Note that as the oddeven program is formatted correctly, it is easier to spot
the pattern on the displayed lines. Here is one final invocation of the patterns
program:

./patterns welcome2

10
If you are wondering why this operator is called ‘‘bind’’ and not ‘‘compare’’, wonder no

longer. The word ‘‘compare’’ was already taken, so ‘‘bind’’ was chosen instead. So, we refer to
a scalar binding to a pattern, as opposed to being compared to a pattern. Conceptually here,
‘‘bind’’ and ‘‘compare’’ both mean the same thing.

46 The Basics

This invocation produces no output. This is perfectly OK, as the welcome2
program does not contain the pattern ‘‘even’’.

To finish off this quickie introduction to Perl’s regular expression, pattern-
matching technology, let’s conclude with another maxim.

Maxim 3.12 Patterns tell perl what to look for, not how to find it.

Where to from Here

In this chapter, sequence, iteration and selection and the basic building blocks of
programming, were discussed. The three C’s: constants, comments and conditions
were introduced. The use of simple variable containers helped to keep things
interesting, as did the use of some Perl operators and its pattern-matching
technology.

In the next chapter, additional variable containers are described, and additional
Perl programming constructs are introduced.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• Programs execute in sequential order.

• Less is better.

• If you can say something with fewer words, then do so.

• There’s more than one way to do it.

• Add comments to make future maintenance of a program easier for other
programmers and for you.

• When using constant values, refer to them with a nice, human-friendly name
as opposed to the actual value.

• Use blocks to group program statements together.

• A condition can result in a value of true or false.

• When you need to change the value of an item, use a variable container.

• Don’t be lazy: use good, descriptive names for variables.

• Use plenty of whitespace, blank lines and indentation to make your programs
easier to read.

• Patterns tell perl what to look for, not how to find it.

Exercises 47

Exercises

1. Write a program that displays the message ‘‘Hey, look Ma – I can program!’’
six times, sleeping for three seconds between each iteration.

2. Adapt the program from the last exercise to iterate 30 times. Arrange for
the message to appear only when the iteration count is evenly divisible by
three. To speed things up a little, remove the three-second sleep.

3. Write a program that initialises the $count scalar to ten, then iterates,
displaying a message of your choosing, until such time as the value of
$count is zero. [Hint: Review the list of Perl operators in Appendix A on
page 457].

4. Write a program that searches through the terrible program looking
for the word ‘‘count’’. How many times does the word ‘‘count’’ appear in
terrible?

4

Places to Put Things
Exploring Perl’s built-in variable containers: arrays and hashes.

4.1 Beyond Scalars

Chapter 3, The Basics, introduced the scalar variable container: a place to put
one of something. Perl provides a rich collection of places to put things. In this
chapter, two of these other places, arrays and hashes, are explored.

4.2 Arrays: Associating Data with Numbers

It is often convenient to take a number of scalar values and treat them as one
unit. Perl supports this idea with arrays. Whereas a scalar contains a single value,
an array contains a collection of scalar values.

Arrays are named in a similar way to scalars, with the exception that the ‘‘$’’
that prefixes the scalar name is replaced with ‘‘@’’. Keeping the Don’t be lazy: use
good, descriptive names for variables maxim in mind, here are some good array
names:

@list_of_sequences
@totals
@protein_structures

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

50 Places to Put Things

An array is typically populated with a list. Lists in Perl are a collection of scalar
values separated by commas and enclosed in parentheses. Here is a small list of
three short DNA sequences:

(’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’)

Note that these short DNA sequences are strings of letters, so it is necessary to
enclose them in single quotes (’) to have them treated as a scalars. The reader
needs to develop a good understanding of lists, as they are extensively used in
Perl.

Maxim 4.1 Lists in Perl are comma-separated collections of scalars.

To put the list of DNA sequences into an array, assign the list to the array as
follows:

@list_of_sequences = (’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’);

Note the use of the assignment operator (=) and the semicolon at the end of the
line. It is now possible to refer to this entire list of DNA sequences with one
name, namely, @list of sequences.

Figure 4.1 shows pictorially the current state of the @list of sequences array.
Not only does perl arrange to put the three short DNA sequences into the array
but perl also numbers them. Starting at zero, each value in the array has a unique
number associated with it, as indicated in the figure. This number is referred to
as the value’s array index. Consequently, each scalar value in the array is now
associated with a unique number.

The array index is used to refer to an individual value of the named array.
Here’s a very important maxim.

Maxim 4.2 Perl starts counting from zero, not one.

Here’s how to display ‘‘GCTCAGTTCT’’ on the screen:

print "$list_of_sequences[1]\n";

[0]

[1]

[2]

TTATTATGTT

GCTCAGTTCT

GACCTCTTAA

Figure 4.1 The @list of sequences array.

Arrays: Associating Data with Numbers 51

The scalar value is accessed via its array index. Take another look at this line of
Perl code: notice how list of sequences is prefixed with ‘‘$’’ and not ‘‘@’’. What
is going on? Surely, arrays need to be prefixed with ‘‘@’’? That’s correct, they do.
When referring to an entire array, it is necessary to prefix the array name with
‘‘@’’. However, when referring to an individual value stored in an array, commonly
referred to as an array element, the value being referred to is a scalar value and,
in Perl, scalar values are prefixed with ‘‘$’’.

4.2.1 Working with array elements

In addition to accessing an individual element within an array, it is also possible
to assign a new value to an array element. Consider these two Perl statements:

$list_of_sequences[1] = ’CTATGCGGTA’;
$list_of_sequences[3] = ’GGTCCATGAA’;

The first statement changes the value associated with array index 1 to the
value indicated, another short, but different, DNA sequence. The previous value
of $list of sequences[1], which was ‘‘GCTCAGTTCT’’, is overwritten by this
assignment statement. Recall that it is an individual element of the array that is
being accessed, so it is necessary once again to prefix the array name with ‘‘$’’.

The second Perl statement is interesting. Until this statement was executed,
the array contained three scalar values. By referencing a new array index, perl
arranges to dynamically grow the size of the @list of sequences array as
needed. After these two statements execute, the original array has changed and
grown to look like Figure 4.2.

4.2.2 How big is the array?

It is often useful to determine the size of an array, where ‘‘size’’ refers to the
number of elements currently in the array. In true Perl style, and remembering

[0]

[1]

[2]

[3]

TTATTATGTT

CTATGCGGTA

GACCTCTTAA

GGTCCATGAA

Figure 4.2 The grown @list of sequences array.

52 Places to Put Things

the There’s more than one way to do it maxim, determining the size of an array
can be accomplished in a number of ways, as follows:

print "The array size is: ", $#list_of_sequences+1, ".\n";
print "The array size is: ", scalar @list_of_sequences, ".\n";

When executed by perl, both statements display the following message on
screen:

The array size is: 4.

When the name of the array is prefixed with ‘‘$#’’, the value returned by perl
is equal to the largest array index associated with the named array. The largest
array index for the @list of sequences array is 3. Array indexes are numbered
from 0, so 1 is added to the $# value to calculate the number of elements in the
array, which is 4 in this case.

Typically, a list is always assumed to be operating within what is known as list
context. In other words, a list is treated just like, well, a list. That said, it can
sometimes make sense to treat a list as something other than a list, specifically,
to treat it is a scalar, using it in what’s known as scalar context. Here’s a new
maxim to highlight the importance of context in Perl.

Maxim 4.3 There are three main contexts in Perl: numeric, list and scalar.

Perl’s scalar subroutine forces perl to treat a list as in scalar context. When
used with an array, the scalar subroutine first takes the array and turns it into
a list, then evaluates the list as a scalar. Doing this has to make some sense to
perl, and the only thing that makes sense is for perl to look at the list, count
the number of elements in the list, then return the resulting scalar value, which
is 4 in this case, the number of elements in the @list of sequences array.

4.2.3 Adding elements to an array

Once an array has been created, adding elements to it is not difficult. As demon-
strated in the last section, the introduction of a new array index adds an element
into a named array. Another technique for adding single elements is as follows:

@sequences = (’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’);
@sequences = (@sequences, ’CTATGCGGTA’);

After the first line of code, the @sequences array contains three short DNA
sequences. After the second line of code, @sequences contains an additional array
element, one which holds the scalar value ‘‘CTATGCGGTA’’. Unlike the previous
technique, this method does not require the programmer to specify the next array
index. The perl interpreter looks at the @sequences array and works out the

Arrays: Associating Data with Numbers 53

value of the next available array index. Read the second line of code as ‘‘take the
current elements of the @sequences array and add the element ‘CTATGCGGTA’,
then assign all the elements back to the @sequences array, overwriting any
elements that were there previously’’.

To confirm that the addition of the element has indeed occurred, display the
entire array on screen with the following line of Perl code:

print "@sequences\n";

This line of code produces the expected outcome:

TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA

Now, watch what happens if we forget to include @sequences on the right-hand
side of the assignment operator:

@sequences = (’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’);
@sequences = (’CTATGCGGTA’);
print "@sequences\n";

The following is displayed:

CTATGCGGTA

Whoops! This code inadvertently deletes the original contents of the array. So be
careful. Adding a list of elements to an existing array is accomplished like this:

@sequences = (’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’);
@sequences = (@sequences, (’CTATGCGGTA’, ’CTATTATGTC’));
print "@sequences\n";

Which, as expected, produces this output:

TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA CTATTATGTC

Finally, two existing arrays are combined into a third array as follows:

@sequence_1 = (’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’);
@sequence_2 = (’GCTCAGTTCT’, ’GACCTCTTAA’);
@combined_sequences = (@sequence_1, @sequence_2);
print "@combined_sequences\n";

This produces the following output:

TTATTATGTT GCTCAGTTCT GACCTCTTAA GCTCAGTTCT GACCTCTTAA

54 Places to Put Things

4.2.4 Removing elements from an array

Perl’s splice subroutine removes any number of elements from an array and can,
optionally, replace the removed elements with new ones. Interestingly, splice
returns the removed elements.

The splice subroutine takes one mandatory parameter and three optional
ones. The mandatory parameter1 is the name of the array. The optional param-
eters indicate where in the array to start removing elements (the OFFSET), how
many elements to remove (the LENGTH) and an array of elements (the LIST) with
which to replace the removed ones. Let’s see splice in action:

@sequences = (’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’, ’TTATTATGTT’);
@removed_elements = splice @sequences, 1, 2;
print "@removed_elements\n";
print "@sequences\n";

The array @removed elements contains the value ‘‘GCTCAGTTCT’’ and the value
‘‘GACCTCTTAA’’. The @sequences array is two elements shorter, as confirmed by
the output generated:

GCTCAGTTCT GACCTCTTAA
TTATTATGTT TTATTATGTT

Look closely at the call to splice. The value of OFFSET is 1 and LENGTH is 2.
Recalling that Perl starts counting from zero, an OFFSET of 1 refers to the
second element in the array. The LENGTH value controls how many elements are
removed from the array starting at the element referred to by OFFSET. In this
case, LENGTH is 2 so this code removes two elements from the named array,
returns the removed elements and assigns them to @removed element.

Be careful with splice. If no value for LENGTH is provided, every array element
from the OFFSET to the end of the array is removed. Similarly, if no value for
OFFSET is provided, every array element is removed. In effect, the array is emptied
of all its elements.

However, if emptying an array is the required action, assigning an empty list to
the array also empties it. This method has the added advantage of being much
faster than using splice:

@sequences = ();

4.2.5 Slicing arrays

To access a number of array elements but not remove them, use an array slice.
Unlike splice, which is a special purpose subroutine built into perl, slicing is an
extension to the array indexing mechanism. Rather than providing a contiguous
string of array elements as does splice, a slice can refer to a list or range of array

1
Mandatory parameters are also referred to as ‘‘required parameters’’.

Arrays: Associating Data with Numbers 55

indexes. Additionally, the @ prefix is used when referring to the named array, as
a slice produces a list, not a scalar.

For example, to access the values at the second, fifth and tenth array index
locations for an array called @dnas, specify the slice as follows:

@dnas[1, 4, 9]

Use Perl’s range operator , .., to specify a sequential collection of array indexes.
Here’s how to access the second through tenth array elements of @dnas:

@dnas[1 .. 9]

Here’s some code that highlights the differences between slicing and splice:

#! /usr/bin/perl -w

The ’slices’ program - slicing arrays.

@sequences = (’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’,
’CTATGCGGTA’, ’ATCTGACCTC’);

print "@sequences\n";
@seq_slice = @sequences[1 .. 3];
print "@seq_slice\n";
print "@sequences\n";
@removed = splice @sequences, 1, 3;
print "@sequences\n";
print "@removed\n";

Which, when executed, produces the following results:

TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA ATCTGACCTC
GCTCAGTTCT GACCTCTTAA CTATGCGGTA
TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA ATCTGACCTC
TTATTATGTT ATCTGACCTC
GCTCAGTTCT GACCTCTTAA CTATGCGGTA

Let’s go through this program in detail. After the standard first line and a short
comment, a five element list is assigned to the @sequences array, and the entire
array is displayed on screen:

@sequences = (’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’,
’CTATGCGGTA’, ’ATCTGACCTC’);

print "@sequences\n";

Note that the list is on two lines. This is a perfectly acceptable practice, as Perl is
a free-format language. Here, the list is written in this way to fit within the width
of this page, but it could also have been written on a single line.

The next line takes a slice of the @sequences array, requesting the val-
ues at array index 1 through 3 (that is, the second through fourth values in

56 Places to Put Things

the array). The list of values returned from the slice is assigned to an array
called @seq slice, then displayed on screen together with the @sequences
array:

@seq_slice = @sequences[1 .. 3];
print "@seq_slice\n";
print "@sequences\n";

Refer back to the output from this program to confirm that the @sequences array
has not been modified by the creation of this slice. The next line does indeed
modify @sequences because of the use of the splice subroutine:

@removed = splice @sequences, 1, 3;
print "@sequences\n";
print "@removed\n";

As opposed to slicing, which requested a copy of the values stored in each of
the array elements, the splice subroutine removes the array elements from
@sequences. These are assigned to another array, this one called @removed,
which is displayed on screen after displaying what’s left of @sequences. Refer
back to the output generated by this program to confirm this.

Maxim 4.4 To access a list of values from an array, use a slice.

Maxim 4.5 To remove a list of values from an array, use splice.

4.2.6 Pushing, popping, shifting and unshifting

Although splicing and slicing are useful, more often single values need to be
added or removed either at the start or the end of the array. The techniques used
in the previous subsections can be used to do this. However, as the requirement
is so common, Perl provides four subroutines to make adding and/or removing
from the start and/or end of an array convenient:

shift – removes and returns the first element from an array.

pop – removes and returns the last element from an array.

unshift – adds an element (or a list of elements) onto the start of an array.

push – adds an element (or a list of elements) onto the end of an array.

Here’s a quick example that demonstrates the use of these subroutines:

#! /usr/bin/perl -w

The ’pushpop’ program - pushing, popping, shifting
and unshifting.

@sequences = (’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’,

Arrays: Associating Data with Numbers 57

’CTATGCGGTA’, ’ATCTGACCTC’);

print "@sequences\n";
$last = pop @sequences;
print "@sequences\n";
$first = shift @sequences;
print "@sequences\n";
unshift @sequences, $last;
print "@sequences\n";
push @sequences, ($first, $last);
print "@sequences\n";

Which results in the following output:

TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA ATCTGACCTC
TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA
GCTCAGTTCT GACCTCTTAA CTATGCGGTA
ATCTGACCTC GCTCAGTTCT GACCTCTTAA CTATGCGGTA
ATCTGACCTC GCTCAGTTCT GACCTCTTAA CTATGCGGTA TTATTATGTT ATCTGACCTC

After printing the original contents of the @sequences array, the pop subroutine
removes the last element from the array and assigns it to the $last scalar. The
@sequences array is printed again to show that it is now one element shorter.
A call to the shift subroutine then removes the first element from the array
and assigns it to the $first scalar. Again, the @sequences array is printed to
confirm that this is indeed the case.

The unshift subroutine is then called, with the @sequences array and the
$last scalar as its parameters. This results in the value of the scalar being added
to the start of the array. The value that was originally in the last array element is
now in the first. The @sequences array is again printed to confirm that this has
happened. Finally, the push subroutine is called to add a two-element list onto
the end of the @sequences array. Note that the two-element list contains the
values of the $first and $last scalars. The parentheses around the two scalars
are not strictly required here, but their use helps clarify what the programmer’s
intention is.

4.2.7 Processing every element in an array

The while statement from the previous chapter can be used to iterate over an
entire array and process every element. Here’s how to display each of the short
DNA sequences from the @sequences array on a separate line:

#! /usr/bin/perl -w

The ’iterateW’ program - iterate over an entire array
with ’while’.

@sequences = (’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’,

58 Places to Put Things

’CTATGCGGTA’, ’ATCTGACCTC’);

$index = 0;
$last_index = $#sequences;

while ($index <= $last_index)
{

print "$sequences[$index]\n";
++$index;

}

When executed, the iterateW program produces the following results:

TTATTATGTT
GCTCAGTTCT
GACCTCTTAA
CTATGCGGTA
ATCTGACCTC

After the usual first line and a short comment, the @sequences array is populated
with the list of short DNA sequences. A scalar called $index is initialised to
zero, and the $last index scalar is initialised to the largest array index value
associated with the @sequences array, which, in this case, is 4.

The loop condition is true for as long as the value of $index is less than or
equal to (<=) the value of $last index. Obviously, at this stage, zero is less than
or equal to 4, so the statements inside the loop execute. The value of the element
at array index $index is printed and then the $index scalar is incremented using
the ++ operator.

The $index scalar now has the value 1, and the loop condition is checked again
to see if another iteration is to occur. In this way, each element in the array is
processed until the value of $index exceeds the value of $last index. When this
occurs, the loops ends.

As processing arrays in this way is so common, Perl provides another looping
mechanism in support of this activity: the foreach statement. Here’s how to
rewrite the iterateW program to use foreach instead of while:

#! /usr/bin/perl -w

The ’iterateF’ program - iterate over an entire array
with ’foreach’.

@sequences = (’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’,
’CTATGCGGTA’, ’ATCTGACCTC’);

foreach $value (@sequences)
{

print "$value\n";
}

Arrays: Associating Data with Numbers 59

The results produced by iterateF are exactly the same as those produced by
the iterateW program. Take a moment to compare this program with iterateW.

With each iteration, the foreach statement arranges to assign the value from
each array element in the @sequences array to the $value scalar. Once assigned,
the $value is used as if referring to the actual array element. The implication
of this statement is that a change to the $value scalar is also reflected in the
corresponding array element in the @sequences array.

Although the use of the while statement is perfectly acceptable, most perl
programmers prefer foreach.

Maxim 4.6 Use foreach to process every element in an array.

4.2.8 Making lists easier to work with

Recall the Lists in Perl are comma-separated collections of scalars maxim. When
the @sequences array was first defined, the advice given was to surround the
initialising list values in single quotes (’), as follows:

@sequences = (’TTATTATGTT’, ’GCTCAGTTCT’, ’GACCTCTTAA’,
’CTATGCGGTA’, ’ATCTGACCTC’);

The use of single quotes is not strictly necessary. If the list value is a string
that contains no whitespace2, the single quotes are optional. As the short DNA
sequences contain no whitespace, the list can also be written as:

@sequences = (TTATTATGTT, GCTCAGTTCT, GACCTCTTAA,
CTATGCGGTA, ATCTGACCTC);

As a further relaxation of the rules, it is also acceptable to remove the commas
(,) separating the list elements. Assuming, that is, that Perl’s qw operator is used,
where qw is shorthand for ‘‘quote words’’. The following is another (generally
preferable) way to specify the list of items used to initialise the @sequences
array:

@sequences = qw(TTATTATGTT GCTCAGTTCT GACCTCTTAA
CTATGCGGTA ATCTGACCTC);

which is generally preferable because it involves less typing3, in addition to
reducing the likelihood of typographical errors.

2
Whitespace: a space, tab, line feed, carriage return or form feed character.

3
Developing techniques that require less typing is a uniquely Perlish way of being lazy. This

type of laziness is regarded as a good thing in the Perl programming community.

60 Places to Put Things

4.3 Hashes: Associating Data with Words

In addition to arrays, Perl provides another very useful variable container: the
hash. Unlike arrays that associate scalars with numbers, hashes associate scalars
with words.

Technical Commentary: In Computer Science circles, variable containers that
associate values with words are called associative arrays. In Perl circles, they are
called hashes. Technically, a hash is a collection of name and value pairings4. Think
of the word as the name, and the data as the value.

Maxim 4.7 A hash is a collection of name/value pairings.

Whereas scalars are prefixed with $ and arrays are prefixed with @, hashes are
prefixed with %. Here are some good hash names:

%bases
%genomes
%nucleotide_bases

A hash is populated in a number of ways. The simplest method is to use a list, as
follows:

%nucleotide_bases = (A, Adenine, T, Thymine);

When assigned to a hash, the list is turned into a series of name/value pairings.
The first element in the list is a name, the second is a value, the third is a name,
the fourth is a value, and so on. Figure 4.3 shows pictorially the current state of
the %nucleotide bases hash, after the above line of code is executed by perl.
The figure clearly shows the relationship between the words (names) and the data
(values).

A hash entry has a name part and a value part. Referring to Figure 4.3, the
name parts are ‘‘A’’ and ‘‘T’’. The value parts are ‘‘Adenine’’ and ‘‘Thymine’’.

Hashes have a restriction on how they are used: hash name parts must be
unique.

Maxim 4.8 Hash name parts must be unique.

4
Also referred to as ‘‘key-value pairs’’.

Hashes: Associating Data with Words 61

Adenine

Thymine

A

T

Figure 4.3 The %nucleotide bases hash.

4.3.1 Working with hash entries

Once a hash is populated, individual values in the hash can be accessed by
referring to their names, as follows5:

print "The expanded name for ‘A’ is $nucleotide_bases{ ’A’ }\n";

Given a name (‘‘A’’ in this case), refer to the value associated with the name in the
hash using the syntax shown. That is, start with $, then provide the individual
hash name (nucleotide bases), then provide the name inside curly braces (‘‘{’’
and ‘‘}’’).

Hashes, just like arrays, store scalar values. So, when referring to an individual
value associated with a name in a hash, prefix the hash name with $. Prefix the
hash name with % when referring to the entire hash.

4.3.2 How big is the hash?

Perl has a built-in subroutine called keys that, when called in list context, returns
a list of the names in the hash, as follows:

%nucleotide_bases = (A, Adenine, T, Thymine);

@hash_names = keys %nucleotide_bases;

print "The names in the %nucleotide_bases hash are: @hash_names\n";

When executed, the preceding three lines of code produce the following result:

The names in the %nucleotide_bases hash are: A T

When the keys subroutine is called in scalar context (by assigning the result to
$hash size below), it returns the number of entries in the hash, that is, the hash
size:

%nucleotide_bases = (A, Adenine, T, Thymine);

$hash_size = keys %nucleotide_bases;

print "The size of the %nucleotide_bases hash is: $hash_size\n";

5
Another popular name for the name part of a hash entry is ‘‘key’’. Your authors prefer

‘‘name’’.

62 Places to Put Things

Adenine

Thymine

Cytosine

Guanine

A

T

C

G

Figure 4.4 The grown %nucleotide bases hash.

Which, when executed by perl, produces:

The size of the %nucleotide_bases hash is: 2

4.3.3 Adding entries to a hash

Additional entries can be added to an existing hash one at a time. Here’s how to
add the other bases:

$nucleotide_bases{ ’G’ } = ’Guanine’;
$nucleotide_bases{ ’C’ } = ’Cytosine’;

Following the execution of these two statements, the %nucleotide bases hash
has grown to look like Figure 4.4. Notice anything strange about Figure 4.4? The
bases were added to the hash in the following order: ATGC, whereas the figure
shows the order as ATCG. What’s going on?

It turns out that hashes in Perl are not maintained in insertion order, as is
the case with arrays. This means it is not possible to rely on the hash being in
any particular order when working with it. A strategy for dealing with this hash
‘‘shortcoming’’ is discussed later in this chapter.

As using a list is such a useful method for populating a hash, Perl offers a
convenient alias for comma (‘‘,’’), which can be used to improve the human
readability of hash assignments within a program. The ‘‘=>’’ combination can be
used anywhere a comma is used, and is often used as follows:

%nucleotide_bases = (A => Adenine, T => Thymine,
G => Guanine, C => Cytosine);

Compare this with the earlier use of a list to populate the hash. Notice how the
use of ‘‘=>’’ accentuates which names associate with which values.

4.3.4 Removing entries from a hash

A hash entry can be removed from a hash using Perl’s built-in delete subroutine,
which removes both the name part and value part from the hash:

delete $nucleotide_bases{ ’G’ };

Hashes: Associating Data with Words 63

The hash entry has now been removed, and the hash is one entry shorter. It is
also possible to nullify the value part of an individual hash entry by setting the
value part to an undefined value:

$nucleotide_bases{ ’C’ } = undef;

Here, a special undefined value is assigned to the value part of the hash entry
associated with ‘‘C’’.

Just what is undef? In actual fact, undef is a Perl subroutine that returns the
undefined value, a special ‘‘nothing value’’ that can be assigned to any variable,
be that variable a hash, array or scalar. When a variable has undef as its value,
the variable exists but does not contain a value. Its value is undefined, or void.

4.3.5 Slicing hashes

As with arrays, it is also possible to slice a hash. When a hash is sliced, a list
of hash value parts is returned, so prefix the hash name with @ when slicing, as
opposed to $. Remember: what’s returned from a slice is a list.

To slice from a hash, prefix the hash name with @, and provide a list of name
parts between the curly braces. Here’s some code that demonstrates hash slicing:

%gene_counts = (Human => 31000,
’Thale cress’ => 26000,
’Nematode worm’ => 18000,
’Fruit fly’ => 13000,
Yeast => 6000,
’Tuberculosis microbe’ => 4000);

@counts = @gene_counts{ Human, ’Fruit fly’, ’Tuberculosis microbe’ };

print "@counts\n";

In addition to providing an example of hash slicing, these lines of code serve
to highlight some other hash characteristics. Of note is the formatting that the
programmer has chosen to use when populating the %gene counts hash. The
comma alternative, =>, helps identify the name and value pairings. Additionally,
the alignment of the values also aids the reader’s understanding. Take a closer
look at the names. Some are enclosed in single quotes (’), while others are not.
The rule is straightforward: if a hash name has no whitespace, the single quotes
are optional, as is the case with ‘‘Human’’, otherwise they are required, as is the
case with ‘‘Tuberculosis microbe’’. Of the three lines of code, the hash slice is
of most interest:

@counts = @gene_counts{ Human, ’Fruit fly’, ’Tuberculosis microbe’ };

64 Places to Put Things

Note how the hash name is prefixed with @, not $ nor %. The names of the three
values to be sliced are provided as a list within the curly braces and, once sliced,
the values are assigned to the @counts array. This array is then printed, which
results in the following:

31000 13000 4000

4.3.6 Working with hash entries: a complete example

Here’s a short program, called bases, which uses the %nucleotide bases hash
to expand a short DNA sequence into a list of base names:

#! /usr/bin/perl -w

The ’bases’ program - a hash of the nucleotide bases.

%nucleotide_bases = (A => Adenine, T => Thymine,
G => Guanine, C => Cytosine);

$sequence = ’CTATGCGGTA’;

print "\nThe sequence is $sequence, which expands to:\n\n";

while ($sequence =~ /(.)/g)
{

print "\t$nucleotide_bases{ $1 }\n";
}

When executed, the bases program produces the following results:

The sequence is CTATGCGGTA, which expands to:

Cytosine
Thymine
Adenine
Thymine
Guanine
Cytosine
Guanine
Guanine
Thymine
Adenine

Let’s work through bases and see what’s going on. After the usual first line and
a short comment, the %nucleotide bases hash is populated with names equal
to the abbreviated bases and values equal to the associated baseword. A string,
‘‘CTATGCGGTA’’, is assigned to a scalar variable called $sequence and a message
is displayed on screen:

Hashes: Associating Data with Words 65

%nucleotide_bases = (A => Adenine, T => Thymine,
G => Guanine, C => Cytosine);

$sequence = ’CTATGCGGTA’;

print "\nThe sequence is $sequence, which expands to:\n\n";

A loop then iterates over the string in the $sequence scalar:

while ($sequence =~ /(.)/g)

The condition of the loop needs further explanation. The binding operator, =~,
is used to check the value in $sequence against the pattern ‘‘/(.)/g’’. Perl’s
pattern-matching technology was introduced in the last chapter, and has an
entire chapter devoted to it later. Here’s what this pattern does:

1. The ‘‘.’’ in the pattern tells Perl to find any character except newline (i.e.
any character except the ‘‘\n’’ character).

2. The parentheses, the ‘‘(’’ and ‘‘)’’ characters, tell perl to remember the
character found by ‘‘.’’ and put it into a special variable called $1.

3. The ‘‘g’’ after the pattern6 tells Perl to apply the pattern globally. The ‘‘g’’
is not technically part of the pattern, it’s a qualifier that changes how the
pattern works. In this case, the qualifier tells perl to apply the pattern
globally, that is, to the entire string.

The significance of this last point is that when used within a loop condition,
the pattern is applied at every possible location that it can be applied to within
the string on each iteration. That is, each time through the loop, the ‘‘.’’ pattern
matches each of the characters in the string one at a time. The effect of this is
that each time the loop iterates, the $1 scalar is assigned a character from the
string contained in $sequence. This allows the program to process the string
‘‘CTATGCGGTA’’ one character at a time.

As the pattern matches each character, the $1 scalar contains the match. This
is then used to refer to the value part associated with the name part in the
%nucleotide bases hash, which is then printed to the screen:

{
print "\t$nucleotide_bases{ $1 }\n";

}

Once the loop has exhausted all the characters in the $sequence scalar, it ends,
and the program terminates. Note the use of the tab character, ‘‘\t’’, to indent
each line.

6
Remember: patterns are delimited by the ‘‘/’’ character.

66 Places to Put Things

4.3.7 Processing every entry in a hash

Use either while or foreach to process every name/value pairing in a hash.
The genes program, which processes a hash twice, demonstrates both looping
mechanisms:

#! /usr/bin/perl -w

The ’genes’ program - a hash of gene counts.

use constant LINE_LENGTH => 60;

%gene_counts = (Human => 31000,
’Thale cress’ => 26000,
’Nematode worm’ => 18000,
’Fruit fly’ => 13000,
Yeast => 6000,
’Tuberculosis microbe’ => 4000);

print ’-’ x LINE_LENGTH, "\n";

while (($genome, $count) = each %gene_counts)
{

print "‘$genome’ has a gene count of $count\n";
}

print ’-’ x LINE_LENGTH, "\n";

foreach $genome (sort keys %gene_counts)
{

print "‘$genome’ has a gene count of $gene_counts{ $genome }\n";
}

print ’-’ x LINE_LENGTH, "\n";

Before working through the genes program in detail, take a look at the results
produced by this program:

--
‘Human’ has a gene count of 31000
‘Tuberculosis microbe’ has a gene count of 4000
‘Fruit fly’ has a gene count of 13000
‘Nematode worm’ has a gene count of 18000
‘Yeast’ has a gene count of 6000
‘Thale cress’ has a gene count of 26000
--
‘Fruit fly’ has a gene count of 13000
‘Human’ has a gene count of 31000
‘Nematode worm’ has a gene count of 18000
‘Thale cress’ has a gene count of 26000

Hashes: Associating Data with Words 67

‘Tuberculosis microbe’ has a gene count of 4000
‘Yeast’ has a gene count of 6000
--

Take particular note of the order of the two sets of results: they are different.
The genes program begins with the usual first line, a comment, a constant

definition and the population of a hash called %gene counts. An unfamiliar-
looking print statement comes next:

print ’-’ x LINE_LENGTH, "\n";

This print statement demonstrates another Perl operator: x, the repetition
operator . Given something to do (in this case, print ’-’) and a number of
times to do it (in this case, LINE LENGTH, which has a constant value of 60), this
repetition operator arranges to display a dash 60 times on the screen. Once done,
the print statement takes a newline with ‘‘\n’’.

The first loop processes the %gene counts hash, one name/value pairing at a
time. As with the bases program, understanding the loop condition is the key to
understanding what is occurring here. Perl’s each subroutine returns the name
and value of the next entry in the hash and in this code, assigns the name part
to the $genome scalar and the value part to the $count scalar. These scalars
are then used in the print statement to display the gene count for each of the
genomes in the hash:

while (($genome, $count) = each %gene_counts)
{

print "‘$genome’ has a gene count of $count\n";
}

With each iteration, the each subroutine returns the next name/value pairing
until there are no more name/value pairings left. In this way, every entry in the
hash is processed by the loop.

The repetition operator is again used with a print statement to display 60
dashes and a newline before the second loop is executed. This loop is a foreach
statement:

foreach $genome (sort keys %gene_counts)
{

print "‘$genome’ has a gene count of $gene_counts{ $genome }\n";
}

To understand what is going on here, concentrate on the loop condition. The
keys subroutine is used to generate a list of names from the %gene counts hash,
then the list of names is sorted into alphabetical order by Perl’s built-in sort
subroutine. The list resulting from the call to sort is then assigned one element

68 Places to Put Things

at a time to the $genome scalar, which is then used in the body of the foreach
loop to display the gene count for each of the genomes in the hash.

This use of sort within the loop condition explains why the results from this
program produces lists in two different orders. The while statement did not
order the results, so the hash is displayed in the order that it is currently used by
perl, whereas the foreach statement explicitly instructed perl to sort the hash
names alphabetically prior to their use. This resulted in the internal hash order
being overridden by the foreach statement.

The genes program concludes with another repeated print statement, dis-
playing 60 dashes and a newline.

Where to from Here

This chapter described Perl’s arrays, lists and hashes. The population, removal
and accessing of data in arrays and hashes was demonstrated with a small
collection of programs. Together with scalar variable containers, arrays and
hashes provide a useful collection of places to put things. Often, however, a more
complex structure for data is required, and we return to this subject in Part II.

In the next chapter, subroutines are described. What are subroutines, and why
are they useful? Read on to find out.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• Lists in Perl are comma-separated collections of scalars.

• Perl starts counting from zero, not one.

• There are three main contexts in Perl: numeric, list and scalar.

• To access a list of values from an array, use a slice.

• To remove a list of values from an array, use splice.

• Use foreach to process every element in an array.

• A hash is a collection of name/value pairings.

• Hash name parts must be unique.

Exercises

1. Define a hash called %genome speak, which associates the following abbrevi-
ations with the phrase in parentheses: AA (amino acid), BAC (bacterial artifi-
cial chromosome), BLAST (basic local alignment search tool), cDNA (comple-
mentary DNA), DNA (deoxyribonucleic acid), EST (expressed sequence tag),

Exercises 69

FISH (fluorescence in situ hybridization), mRNA (messenger RNA), rDNA
(recombinant DNA), RNA (ribonucleic acid), STS (sequence tagged site), SNP
(single nucleotide polymorphism) and YAC (yeast artificial chromosome)7.

2. Create a small file, called abbrevs, with the following contents:

DNA
SNP
rDNA
AA
BLAST
RNA
YAC
mRNA

Write a program to process abbrevs and display the correct phrase from
the %genome speak hash for each abbreviation.

3. On the basis of the results produced by your solution to the previous
exercise, does it matter in which order the abbreviations are checked against
the hash name parts?

7
This list is taken from pages 135–136 of The Human Genome, Dennis, C. and Gallagher, R.

(editors), published 2001 by Nature Publishing Group, ISBN: 0-333-97143-4.

5

Getting Organised

Subroutines, modules and the wonder of CPAN.

5.1 Named Blocks

As programs get larger, they become harder to maintain. The process of main-
taining an existing program can involve:

1. fixing existing problems

2. adding new functionality

3. enhancing existing functionality

4. removing obsolete functionality or

5. any combination of the above activities.

The trick – of course – is to maintain the program without adding any additional
problems to it. Such problems are commonly referred to as bugs.

Recall the genes program from the last chapter (on page 66). This line of code
occurs three times throughout the program:

print ’-’ x LINE_LENGTH, "\n";

Its purpose is pretty straightforward: it draws a line across the screen using the
‘‘-’’ character. The length of the line is determined by the LINE LENGTH constant,

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

72 Getting Organised

which is set to 60 at the top of the program. The use of a constant in this way
allows the length of the line to be changed globally for all lines in the program. For
instance, changing the length of the line from 60 dashes to 40 is straightforward:
just change the constant value.

Let’s assume that a requirement exists to produce fancier lines. For example,
in addition to the standard dashed line, thus:

a collection of line styles need to be supported, such as:

==
-o0o--o0o--o0o--o0o--o0o--o0o--o0o--o0o--o0o--o0o--o0o--o0o-
- -
>>==<<==>>==<<==>>==<<==>>==<<==>>==<<==>>==<<==>>==<<==>>==<<==

This functionality can be provided by changing the above line of Perl code. The
single dash is changed to the character (or selection of characters), and the
constant value can either be left as it is, or changed to an appropriate value.
These next four lines of Perl code produce the lines shown above:

print "=" x LINE_LENGTH, "\n";
print "-o0o-" x 12, "\n";
print "- " x 30, "\n";
print ">>==<<==" x 8, "\n";

Look closely at the code. Although the four lines produced by these four program
statements are different, the program statements are similar. Each statement
takes a string of one or more characters and prints it a fixed number of times
(followed by a newline). It would be great if these fours lines could be replaced
with the following:

drawline "=", LINE_LENGTH;
drawline "-o0o-", 12;
drawline "- ", 30;
drawline ">>==<<==", 8;

That is, a new command (called drawline) allows one or more characters to be
defined together with a count of the number of times to repeat the character(s).
In fact, when shown in this context, ‘‘LINE LENGTH’’ is a poor name for this
particular constant. ‘‘REPEAT COUNT’’ is a much better name.

A good question to ask at this point is: Is it possible to create a new, custom
command like drawline with Perl? The answer is yes, new custom commands
can be created using subroutines.

Introducing Subroutines 73

5.2 Introducing Subroutines

Think of a subroutine as a collection of statements that has been given a name.
Because the collection is named, the subroutine can be called in much the same
way as any in-built Perl command. In addition to the name, it is possible to send
data to the subroutine as well as get results returned from the subroutine. Both
these features are optional – you do not have to send data to the subroutine or
accept any results.

Technical Commentary: Other popular names for subroutine include method,
procedure and function. Which is used often depends on the programming language
in use at the time. In many programming languages, the word function is reserved
for those subroutines that return a value, whereas the use of the word procedure
or subroutine indicates that no value is returned. The word method is more closely
associated with object-oriented programming technologies. But that’s another story
(which is very much beyond the scope of Bioinformatics, Biocomputing and Perl).
Most Perl programmers freely mix the use of the words subroutine and function.

Here’s a maxim to help you understand when to create subroutines.

Maxim 5.1 Whenever you think you will reuse some code,
create a subroutine.

5.2.1 Calling subroutines

Let’s assume that drawline already exists as a subroutine. To call (or invoke)
drawline, use either of the following:

drawline "=", REPEAT_COUNT;
drawline("=", REPEAT_COUNT);

Subroutines are invoked with or without parentheses1. It is also possible to
invoke drawline like this:

drawline;
drawline();

Which may do nothing, print a blank line or produce some sort of default line
(such as sixty dashes), depending on how the programmer has coded the subrou-
tine. Note that it is also legal (more correctly, ‘‘official’’) Perl syntax to prefix the
name of the subroutine with ‘‘&’’. However, as such usage is optional, the vast
majority of Perl programmers do not bother. There are a number of places where
the ‘‘&’’ is required, and perl is pretty good at providing a warning message when
such requirements are violated.

1
The reasons for the use of one style over the other are not something we need to go into

right now. The important point is that both styles are OK, and both work. Some programmers
prefer one style over the other. Our advice: pick one style and try to use it consistently. But be
aware of the other style.

74 Getting Organised

5.3 Creating Subroutines

Creating a subroutine is straightforward once a name has been decided upon.
As with variable containers, the trick here is to use good, descriptive names for
subroutines, such as:

drawline
find_a_sequence
convert_data

as opposed to:

my_subroutine
sub1
tempsub

which do not provide any clue as to the role of the subroutine, whereas the good
names do. It is generally not a good idea to give a subroutine a name that is
already used as a Perl command (such as ‘‘print’’). Of course, Perl does not stop
a programmer from doing this, but the subroutine cannot be expected to work
the way it is supposed to.

With a good name decided upon, create a subroutine by prefixing the name
with the word ‘‘sub’’, and postfixing it with the block of statements to execute,
recalling that blocks are contained within curly braces. Here’s an empty version
of drawline:

sub drawline {

}

This subroutine is ‘‘empty’’ because the block contains nothing.
Note the style of indentation used here. The opening curly brace appears

immediately after the subroutine name (on the same line), while the closing curly
brace appears below, and aligned to, the ‘‘s’’ in ‘‘sub’’. This is the indentation
style preferred by the majority of Perl programmers. However, as with most Perl
things, style is personal, so alternative indentation techniques are common, for
example:

sub drawline { }

sub drawline
{

}

Creating Subroutines 75

sub drawline
{

}

Pick an indentation style and try to use it consistently. To have the drawline
subroutine do something, add statements to the block, as follows:

sub drawline {
print "-" x REPEAT_COUNT, "\n";

}

To use drawline within a program, simply include the subroutine within the
program’s code, then invoke it as needed. When invoked, the program goes off
and executes the statement(s) in the subroutine, then returns to the statement
immediately after the invocation. Here’s a program called first drawline that
does just that2:

1. #! /usr/bin/perl -w

2. # first_drawline - the first demonstration program for "drawline".

3. use constant REPEAT_COUNT => 60;

4. sub drawline {
5. print "-" x REPEAT_COUNT, "\n";
6. }

7. print "This is the first_drawline program.\n";
8. drawline;
9. print "Its purpose is to demonstrate the first version of drawline.\n";
10. drawline;
11. print "Sorry, but it is not very exciting.\n";

When executed by perl, this program prints the following:

This is the first_drawline program.
--
Its purpose is to demonstrate the first version of drawline.
--
Sorry, but it is not very exciting.

The placement of the drawline subroutine within the program is worth explain-
ing. By and large, perl does not care where in your program a subroutine is
included. Some programmers like to include all of their subroutines near the top
of their program (as is the case here), while others prefer to place subroutines

2
Note that line numbers are included here for illustrative purposes only; they are not part of

the program code.

76 Getting Organised

at the bottom. Yet others place them in any arbitrary location (which is syntacti-
cally legal, but hard to justify). Although perl typically does not care where the
subroutine is placed, programmers should care. As already advised, consistency
is important here, so pick either near the top of your program or at the bottom3.

No matter where a subroutine is placed, its code is not executed until it is
invoked by some calling code. So, even though drawline is defined on line 4 of
first drawline, it is not executed until it is invoked on line 8.

As is stands, drawline works, but is not very flexible. For instance, if drawline
is invoked like this:

drawline "=== ", 10;

it still prints 60 dashes instead of ten copies of the ‘‘=== ’’ pattern. The reason
for this is that drawline has not been told what to do with any data that is sent
to it. When working with subroutines, this data is referred to as parameters or
arguments.

5.3.1 Processing parameters

When parameters are sent to a subroutine, perl puts the individual data items
into a special array, the default array, called @ 4. Once there, the parameters can
be accessed using standard array indexing syntax, as follows:

print "$_[0]"; # The first parameter.
print "$_[1]"; # The second parameter.
print "$_[2]"; # The third parameter, and so on.

That is, prefix the name of the array (which is ‘‘ ’’) with a dollar sign, then indicate
the array index that is to be accessed within the square brackets. This may
look strange, but is perfectly fine Perl syntax. Armed with this information, let’s
rewrite the drawline subroutine to process some parameters:

sub drawline {
print $_[0] x $_[1], "\n";

}

This version of drawline has the advantage of supporting any character pattern
and any value for the repeat count, but the disadvantage of no longer supporting
the invocation of drawline without parameters5. It is no longer enough to call
drawline like this:

drawline;

3
And it’s your choice. Just because we place our subroutines near the top of our programs does

not mean that we are right and everyone else is wrong. It just means that this is our preference.
4

We already know that the default scalar is $ and now we know that the default array is @ .
So, does this mean that the default hash is % ? No, it does not. There is no default hash in Perl.

5
And if you try to, perl complains quite loudly.

Creating Subroutines 77

It has to be invoked like this:

drawline "-", REPEAT_COUNT;

or like this:

drawline("-", REPEAT_COUNT);

Which is a bit of a drag, until you realize that it can now be called like any of
these:

drawline "=", REPEAT_COUNT;
drawline("-o0o-", 12);
drawline "- ", 30;
drawline(">>==<<==", 8);

This new version of drawline is used to replace the one from first drawline,
producing a new program, called second drawline. The four example invoca-
tions of the drawline subroutine above are also added to the program:

#! /usr/bin/perl -w

second_drawline - the second demonstration program for "drawline".

use constant REPEAT_COUNT => 60;

sub drawline {
print $_[0] x $_[1], "\n";

}

print "This is the second_drawline program.\n";
drawline "-", REPEAT_COUNT;
print "Its purpose is to demonstrate the second version of drawline.\n";
drawline "-", REPEAT_COUNT;
print "Sorry, but it is still not exciting. However, it is more useful.\n";

drawline "=", REPEAT_COUNT;
drawline "-o0o-", 12;
drawline "- ", 30;
drawline ">>==<<==", 8;

Which, when executed, produces the following output:

This is the second_drawline program.
--
Its purpose is to demonstrate the second version of drawline.
--
Sorry, but it is still not exciting. However, it is more useful.
==
-o0o--o0o--o0o--o0o--o0o--o0o--o0o--o0o--o0o--o0o--o0o--o0o-
- -
>>==<<==>>==<<==>>==<<==>>==<<==>>==<<==>>==<<==>>==<<==>>==<<==

78 Getting Organised

By accessing the individual elements of the default array (@), the drawline
subroutine is now able to support repeatedly printing any sequence of characters,
which is quite useful. In fact, ‘‘accessing the individual elements of the default
array’’ is so common that Perl provides an alternative technique for achieving
the same thing without having to use the strange looking $ [0] syntax. Recall
the shift function from the Places To Put Things chapter that when invoked,
removes and returns the first element from a named array. When used on its own
(that is, without referring to a named array), as follows:

shift; # Or like this: shift();

the function returns and removes the first element from the default array6. It
is now possible to rewrite drawline for the third time to take advantage of the
shift function:

sub drawline {
print shift() x shift(), "\n";

}

Note the use of the parentheses after shift, which are required in this instance
by perl.

It is left as an exercise for the reader to replace the drawline from the
second drawline program with this new subroutine, creating third drawline.
When executed, third drawline produces the same output as that provided by
second drawline.

5.3.2 Better processing of parameters

The third version of drawline is good, but it can be made better. Specifically, let’s
arrange to support default behaviour that ensures something sensible happens
when no (or incomplete) parameters are provided to drawline. This sensible
behaviour involves printing 60 dashes. Take a look at this, the fourth version of
drawline:

sub drawline {
$chars = shift || "-";
$count = shift || REPEAT_COUNT;

print $chars x $count, "\n";
}

6
If you were able to guess this, congratulations: you are beginning to think like a Perl

programmer. If you did not guess this but understand what’s going on, congratulations: you are
beginning to think like a Perl programmer. If you are somewhat lost, congratulations: go back
and reread this section.

Creating Subroutines 79

There are a few (new) things going on here. Two scalar variables are used within
the subroutine, and they take their value from the two parameters supplied to
drawline. The $chars scalar is assigned the first parameter (thanks to shift),
and the $count scalar is assigned the second parameter (again, thanks to shift).
These scalars are then used with the print command to draw the appropriate
linestyle.

The || symbol is another Perl operator, and it means ‘‘or’’. Here, it is used to
provide default values to the two scalars. The assignment to the $chars scalar
takes its value either from the first parameter or, if no parameter is provided, is
set to a single dash. The assignment to the $count scalar takes its value either
from the second parameter or, if no parameter is provided, is set to the value of
REPEAT COUNT. So, it is now possible to invoke drawline like this:

drawline "=== ", 10;

to print ten copies of the ‘‘=== ’’ pattern or, like this:

drawline;

to print the default line of 60 dashes. It is also possible to print 60 of any pattern
by not providing a value for the second parameter, as follows:

drawline "="; # Prints sixty equal signs.
drawline "*"; # Prints sixty stars.
drawline "$"; # Prints sixty dollars.

Which is neat. However, the ordering of the parameters is important, as this
version of drawline expects the character(s) first, and the repeat count second.
So, invoking drawline like any of these causes a problem:

drawline 40; # Does NOT print forty dashes!
drawline 20, "-"; # Does NOT print twenty dashes!

Consider that this most recent version of drawline agrees a contract with
programmers that use it. If the parameters are in the correct order, the contract
holds. If they are not, the contract is broken (and who knows what will happen?).
Here’s another program, called fourth drawline, that uses the fourth version
of the drawline subroutine (and honours the contract):

#! /usr/bin/perl -w

fourth_drawline - the fourth demonstration program for "drawline".

use constant REPEAT_COUNT => 60;

sub drawline {
$chars = shift || "-";

80 Getting Organised

$count = shift || REPEAT_COUNT;

print $chars x $count, "\n";
}

print "This is the fourth_drawline program.\n";
drawline;
print "Its purpose is to demonstrate the fourth version of drawline.\n";
drawline;
print "Sorry, but it is still not exciting. However, it is more useful.\n";

drawline "=", REPEAT_COUNT;
drawline "-o0o-", 12;
drawline "- ", 30;
drawline ">>==<<==", 8;

When executed, the output from fourth drawline is similar to that of both
second drawline and third drawline. This version is better, but still not the
best. It would be helpful if drawline allowed the parameters to be supplied in
any order. With Perl, this too is possible.

5.3.3 Even better processing of parameters

To provide a means whereby parameters are provided in any order, a parameter
naming mechanism is required. Look at these invocations of drawline:

drawline;
drawline(Pattern => "*");
drawline(Count => 20);
drawline(Count => 5, Pattern => " -oOo- ");
drawline(Pattern => "===", Count => 10);

The first invocation prints the default 60 dashes. The second prints 60 stars. The
third prints 20 dashes. The fourth invocation prints five copies of the ‘‘ -oOo- ’’
pattern. And the sixth invocation prints ten copies of the ‘‘===’’ pattern.

Note that with these invocations of the next version of drawline, the sub-
routine now supports zero, one or two parameters. In addition, the param-
eters are named and, as such, can appear in any order. When parameters
are missing, the subroutine does the most sensible thing by substituting rea-
sonable default values. It’s up to the programmer calling the subroutine to
use whichever parameter ordering makes most sense. How’s that for a flexible
contract?

When data is passed to any subroutine, perl takes the data and populates the
default array. So, if the invocation of drawline looks like this:

drawline(Count => 5, Pattern => " -oOo- ");

Creating Subroutines 81

Count

5

Pattern

" -oOo- "

[0]

[1]

[2]

[3]

Figure 5.1 The default array, @ , with assigned values.

the default array is assigned a list of items that looks like this7:

"Count", 5, "Pattern", " -oOo- "

That is, four values are assigned to the default array, which looks like Figure 5.1.
The default array is now available within the subroutine. What happens next is
the key to the entire parameter naming mechanism. Recall from the Places To Put
Things chapter that an array can be used to initialise a hash. If the first statement
in a subroutine is this:

%arguments = @_;

the %arguments hash is assigned the values in the default array, namely, the
string ‘‘Count’’ as a name, with 5 as its value, and the string ‘‘Pattern’’ as a name,
with ‘‘ -oOo- ’’ as its value. After the assignment, the hash looks like Figure 5.2.
The %arguments hash now associates values with parameter names. When com-
bined with the || operator, the %arguments hash can be used to assign values to
scalar variables:

$chars = $arguments{ Pattern } || "-";
$count = $arguments{ Count } || REPEAT_COUNT;

Count 5

Pattern " -oOo- "

Figure 5.2 The %arguments hash, with assigned values.

7
If this looks strange, recall that Perl’s => symbol is another representation for comma.

Additionally, note that perl is correctly (and sensibly) surrounding the words ‘‘Count’’ and
‘‘Pattern’’ with double quotes, since they are strings.

82 Getting Organised

The first statement sets the $chars scalar to equal the value associated with
‘‘Pattern’’ or, if no value is associated, sets it to a single dash. The second
statement sets the $count scalar equal to the value associated with ‘‘Count’’ or,
if no value is associated, sets it to the value of REPEAT COUNT. Here’s the fifth
version of drawline:

sub drawline {
$chars = $arguments{ Pattern } || "-";
$count = $arguments{ Count } || REPEAT_COUNT;

print $chars x $count, "\n";
}

The fifth drawline program shows the latest version of drawline in action:

#! /usr/bin/perl -w

fifth_drawline - the fifth demonstration program for "drawline".

use constant REPEAT_COUNT => 60;

sub drawline {
%arguments = @_;

$chars = $arguments{ Pattern } || "-";
$count = $arguments{ Count } || REPEAT_COUNT;

print $chars x $count, "\n";
}

print "This is the fifth_drawline program.\n";
drawline;
print "Its purpose is to demonstrate the fifth version of drawline.\n";
drawline;
print "Things are getting a little more interesting.\n";

drawline(Pattern => "*");
drawline(Count => 20);
drawline(Count => 5, Pattern => " -oOo- ");
drawline(Pattern => "===", Count => 10);
drawline;

which, when executed, produces the following output:

This is the fifth_drawline program.
--
Its purpose is to demonstrate the fifth version of drawline.
--
Things are getting a little more interesting.
**

-oOo- -oOo- -oOo- -oOo- -oOo-
==============================
--

Creating Subroutines 83

which confirms that drawline can be invoked with zero, one or two named
parameters, supplied in any order. When parameters are not supplied, this
version of drawline does the sensible thing.

5.3.4 A more flexible drawline subroutine

As a final twist to this subroutine, consider the inclusion of the newline at the
end of the print command on the subroutine’s last line. This ensures that any
line drawn includes a newline, which is a reasonable assumption to make until
an attempt is made to draw something like this:

+---------------+
| |
| |
| |
| |
| |
+---------------+

In an attempt to produce the first line, it is not possible to do something like this:

print "+";
drawline(Count => 15);
print "+";

as these three statements produce the following:

+---------------
+

which is not what is required because of the inclusion of the newline at the
end of the print command within drawline. Removing the newline results in a
version of drawline that is more flexible (in that it fixes this particular problem)
at the expense of requiring the programmer to worry about newlines. As long as
this forms part of the contract, this is OK. Assuming a non-newline version of
drawline, here’s the code to draw the first line of the box:

print "+";
drawline(Count => 15);
print "+\n";

A common temptation is to rewrite these three lines as one single print com-
mand:

print "+", drawline(Count => 15), "+\n";

which seems like a reasonable thing to do, until the statement is executed and it
produces this:

---------------+1+

84 Getting Organised

Whoops! What’s going on here? Well, let’s take a look at what the statement is
doing: it’s a single print command that includes a literal ‘‘+’’, an invocation of
drawline, another literal ‘‘+’’ and a newline.

When perl processes this statement, it looks at the parameters to print8, and
determines that drawline is a subroutine call, so perl invokes drawline before
continuing with the invocation of print. This results in 15 dashes appearing on
screen. Having finished with drawline, perl then returns to the print command
and starts printing. The first thing printed is the literal ‘‘+’’. Next up is the result
of the invocation of drawline. As drawline succeeded in printing its 15 dashes,
the result of the invocation was true, which in Perl is the value 1, so ‘‘1’’ is
printed. The print command concludes by printing the second literal ‘‘+’’ and a
newline. This explains the unexpected output. Of course, Perl has a solution to
this problem, as discussed below.

5.3.5 Returning results

Rather than have drawline actually draw (that is, print) the line, let’s have
drawline return the correctly formatted line to the caller. The calling code can
then do what it likes with the line, which may or may not include printing it. The
change is trivial: change the call to print within drawline to a call to return.

The return command, when invoked, causes the current subroutine to termi-
nate immediately. When provided with a value, return sends the value to the
caller. Here’s another version of drawline that implements these changes:

sub drawline {
%arguments = @_;

$chars = $arguments{ Pattern } || "-";
$count = $arguments{ Count } || REPEAT_COUNT;

return $chars x $count;
}

A program, called boxes, uses this version of drawline to draw the box from
the last section:

#! /usr/bin/perl -w

boxes - the box drawing demonstration program for "drawline".

use constant REPEAT_COUNT => 15;

sub drawline {
%arguments = @_;

8
Note: print is a subroutine, too.

Visibility and Scope 85

$chars = $arguments{ Pattern } || "-";
$count = $arguments{ Count } || REPEAT_COUNT;

return $chars x $count;
}

print "+", drawline, "+\n";
print "|", drawline(Pattern => " "), "|\n";
print "|", drawline(Pattern => " "), "|\n";
print "|", drawline(Pattern => " "), "|\n";
print "|", drawline(Pattern => " "), "|\n";
print "|", drawline(Pattern => " "), "|\n";
print "+", drawline, "+\n";

Note the clever adjustment to the value of the REPEAT COUNT constant.

5.4 Visibility and Scope

No discussion of subroutines would be complete without describing scope. Scop-
ing relates to the visibility of a variable throughout the lifetime of a program (that
is, as it runs). It is best described by way of example. However, first a maxim.

Maxim 5.2 When determining the scope of a variable,
think about its visibility.

Consider this small program, called global scope:

#! /usr/bin/perl -w

global_scope - the effect of "global" variables.

sub adjust_up {
$other_count = 1;
print "count at start of adjust_up: $count\n";
$count++;
print "count at end of adjust_up: $count\n";

}

$count = 10;
print "count in main: $count\n";
adjust_up;
print "count in main: $count\n";
print "other_count in main: $other_count\n";

When executed, the global scope program prints these messages on screen:

count in main: 10
count at start of adjust_up: 10

86 Getting Organised

count at end of adjust_up: 11
count in main: 11
other_count in main: 1

The $count scalar is accessible within the entire program, including any sub-
routines (such as adjust up). Additionally, the $other count scalar, which is
assigned a value of 1 within the adjust up subroutine is also accessible within
the entire program. Both of these statements are confirmed by the messages
produced by global scope. The reason for this behaviour is that by default, and
if not told otherwise, perl treats all variables as being global in scope, where
‘‘global’’ is defined as accessible from anywhere within the disk-file that contains
the program code.

This behaviour can be very convenient, but also very dangerous. For instance, it
might well be the case that the programmer who wrote the adjust up subroutine
did not intend the $other count scalar to be visible outside adjust up. After
all, it is created within adjust up, so perhaps the intention was to have the value
visible only within that subroutine.

Also, consider trying to track accesses and adjustments to a global. Within a
small program, like global scope, keeping track of each of the variables is not
a difficult task. However, consider a program that is 10,000 lines long. It is much
more difficult to ‘‘keep track of things’’ when programs grow large. Is it possible
to be sure that all of the program’s variables (which are all global by default) are
being accessed appropriately? Probably not.

Many computer scientists are aghast at Perl’s default attitude regarding variable
scope. This is due to the fact that the vast majority of programmers are taught
from a very young age that ‘‘globals are bad’’ and are told ‘‘don’t use globals’’.
As a result, programmers grow up avoiding the use of globals at all costs, which
is a shame. The truth is that globals are bad if used incorrectly but when used
correctly, can greatly simplify some programs. In an effort to be as flexible as
possible, the creators of Perl went against the groove and made all variables
global by default. Despite this, it is possible to limit the likelihood of error in this
area, as described below.

5.4.1 Using private variables

To help keep things organised, Perl provides a number of mechanisms that limit
the visibility of a variable. The most common is the use of the my command,
which limits the scope of a variable to within its enclosing block (curly braces),
subroutine or file. When you use my to declare a variable, it tells perl to treat the
variable as private to its enclosing scope.

Technical Commentary: Within the Perl world, such variables are often referred to
as lexicals or mys, as in ‘‘use a lexical’’ or ‘‘set the my variable to 10’’.

Visibility and Scope 87

As will be shown in the Perl Grabbag chapter, perl can force the programmer to
always use my variables. For now, let’s rewrite global scope to use my and see
what effect it has. This new program is called private scope:

#! /usr/bin/perl

private_scope - the effect of "my" variables.

sub adjust_up {
my $other_count = 1;
print "count at start of adjust_up: $count\n";
$count++;
print "other_count within adjust_up: $other_count\n";
print "count at end of adjust_up: $count\n";

}

my $count = 10;
print "count in main: $count\n";
adjust_up;
print "count in main: $count\n";
print "other_count in main: $other_count\n";

The $other count scalar within the adjust up subroutine is now private to the
subroutine, because of the use of my. The $count scalar within the main code is
also declared as a my when it is set to 10. Now, take a look at the output produced
by this program by perl:

count in main: 10
count at start of adjust_up:
other_count within adjust_up: 1
count at end of adjust_up: 1
count in main: 10
other_count in main:

The value of the private $count (which is set to 10) is printed. The adjust up
subroutine is then called. After creating a private scalar called $other count and
setting it to 1, the value of the global variable $count is printed. But look at what
happened: no value was printed. Why did the value 10 not print?

Well, at this point in the program’s execution cycle, the $count scalar does not
yet exist. A private scalar (which also happens to be called $count) does exist,
but its visibility has been limited to the main code by the use of my, which means
it is not accessible from within any subroutines. It is a private variable, after all.

Recall that when a variable is first used, it is assigned a default value (usually
nothing). When $count is first used within the adjust up subroutine, it is created
as a global variable (remember: the private $count cannot be accessed), and given
a default value. When printed, nothing appears, as the default value is nothing.
At this point, two $count scalars exist: one is private to the main code, and the

88 Getting Organised

other is global. Within adjust up, the global $count is increment with the ++
operator. This causes the value of nothing to have 1 added to it, so the global
$count now has a value of 1. The private $other count scalar is then printed,
giving a value of 1, as is the global $count (which is also 1). The adjust up
subroutine then ends.

Returning to the main code, the next statement prints the value of the private
$count, which is 10 (not 1). Note that although a global $count variable now exists
(thanks to adjust up), the private variable of the same name takes precedence.

The final statement of the private scope program attempts to print the
value of $other count. Again, nothing prints for the same reason as nothing
printed for the access of $count at the start of the adjust up subroutine. The
$other count scalar within the subroutine is private to the subroutine, which
means its value cannot be accessed outside of the subroutine. So, in the main
code, when $other count is accessed, it is first created as a global, given a default
value of nothing and then printed, which has the effect of printing nothing, as
confirmed by the last line of output from the program.

Using my variables as a general rule is highly recommended. So much so, in
fact, that it warrants another maxim.

Maxim 5.3 Unless you have a really good reason not to,
always declare your variables with my.

5.4.2 Using global variables properly

There are times, of course, when a global is warranted. Rather than declare a
variable without my and get a default global, a better practice is to specifically
state that a global is required by use of the our command (which is only available
in Perl version 5.6.0 and higher).

Let’s look at a program that uses our, is based on private scope and is called
hybrid scope:

#! /usr/bin/perl

hybrid_scope - the effect of "our" variables.

sub adjust_up {
my $other_count = 1;
print "count at start of adjust_up: $count\n";
$count++;
print "other_count within adjust_up: $other_count\n";
print "count at end of adjust_up: $count\n";

}

our $count = 10;
print "count in main: $count\n";
adjust_up;

Visibility and Scope 89

print "count in main: $count\n";
print "other_count in main: $other_count\n";

The $count scalar within this program’s main code is now declared with our.
Let’s see the effect this has on the output produced:

count in main: 10
count at start of adjust_up: 10
other_count within adjust_up: 1
count at end of adjust_up: 11
count in main: 11
other_count in main:

Unlike private scope, the $count within hybrid scope is deliberately global,
so when accessed within the adjust up subroutine, its value is accessible. The
subroutine prints the value (10), increments $count and prints it again (11). Note
that the value of $count within the main code is also 11, as it is the same variable.
The $other count variables behave exactly as they did in the private scope
program. Here’s another maxim:

Maxim 5.4 If you must use a global variable,
declare it with our.

It is also possible to use the local command to limit the visibility of variables,
but it has been superseded by my and common wisdom appears to suggest that
the use of local be avoided. So, the use of local is quietly avoided within
Bioinformatics, Biocomputing and Perl.

From this point on, all of the presented code will use my and our as appropriate.

5.4.3 The final version of drawline

Now that scoping is understood, let’s return to the drawline subroutine and
produce a final version that uses my9.

Referring back to page 84, there really is no reason why the %arguments,
$chars and $count variables within drawline need to have global scope, so let’s
make them private:

sub drawline {
my %arguments = @_;

my $chars = $arguments{ Pattern } || "-";
my $count = $arguments{ Count } || REPEAT_COUNT;

return $chars x $count;
}

9
We promise that this is in fact the final version of drawline. However, we reserve the right

to change our minds.

90 Getting Organised

This tidies up the coding considerably. As the three variables within drawline
are private to the subroutine, the use of my instructs perl to ensure that they
are.

Thinking about the visibility of variables and the scope within which they
operate is important and when used properly, leads to good software design.

5.5 In-built Subroutines

In addition to letting programmers create their own subroutines, Perl also has
a large collection of in-built subroutines. The entire collection is documented in
the perlfunc on-line documentation, which comes with Perl. Use this command
on Linux to view the document:

man perlfunc

Alternatively, use the perldoc program (which also comes with Perl) to search
the perlfunc document for the documentation specific to a subroutine. For
instance, to view the documentation for the in-built sleep subroutine, use this
command:

perldoc -f sleep

The in-built subroutines take a varying number of parameters, so always check
the documentation for specifics. Be aware that some in-built subroutines can
perform differently on the basis of how they are invoked and used. This book
has already used some of the more popular in-built subroutines (which have been
referred to as ‘‘Perl commands’’). Here is an abbreviated list10:

alarm – Signals an alarm to occur a number of seconds in the future.

chomp – Deletes the trailing newline character from a scalar.

chop – Deletes the last character from a scalar.

close – Closes a previously opened filehandle.

defined – Returns ‘‘true’’ if a variable has a value associated with it.

delete – Deletes elements/entries from an array/hash.

die – Exits the current program after displaying a user-specified message.

do – Executes a block of statements as one, or reads in a collection of statements
from another disk-file and executes them.

10
Which is based on a similar list from Paul’s first book, Programming the Network with Perl,

Wiley, 2002.

In-built Subroutines 91

each – Used to iterate over a hash.

eof – Tests for the end-of-file condition when working with disk-files.

eval – Evaluates a block of code and provides for exception handling.

exists – Returns ‘‘true’’ if a specific array element or hash entry exists.

exit – Exits the current program.

gmtime – Returns the date and time relative to GMT.

join – Joins a list of strings together.

keys – Returns a list of keys for a specified hash.

last – Exits from the current loop.

length – Returns the length of a scalar variable.

localtime – Returns the date and time relative to the local time zone.

my – Marks a variable as being lexically scoped.

next – Starts the next iteration of the current loop.

open – Opens a file, and associates a filehandle with it.

our – Declares a global variable.

pack – Converts a collection of variables into a string of bytes.

package – Declares a new namespace.

pop – Treats an array like a stack, and pops the last element off the end of the
array.

print – Prints something.

printf – Prints to a particular format.

push – Treats an array like a stack, then pushes an element onto the end of the
array.

read – Reads a specified number of bytes from a filehandle.

redo – Restarts the current loop iteration.

ref – Checks to see whether a scalar is a reference, and if it is, returns the type
of reference as a string.

return – Returns a value from a subroutine.

scalar – Forces a list to be treated as if it were a scalar.

shift – Treats an array like a stack, and pops the first element off the start of
the array.

92 Getting Organised

sleep – Pauses execution for a specified number of seconds.

sort – Sorts a list using string comparison order (by default), or by using some
user-specified ordering.

splice – Removes specified elements from an array.

split – Splits a delimited string into a list of individual elements.

sprintf – Like printf, above, except the result is assigned to a scalar.

sub – Declares a subroutine.

substr – Extracts a sub-string from a string.

system – Calls an operating system command, and returns its exit status to the
calling program.

time – Returns the number of non-leap seconds since the operating systems
‘‘epoch’’11.

undef – Takes a previously defined variable, and undefines it.

unpack – The reverse of pack, above, which extracts a list of values from a string
of bytes.

unshift – Treats an array like a stack, and pushes an element onto the start of
the array.

wantarray – Returns ‘‘true’’ if a subroutine was called within a list context,
‘‘false’’ otherwise.

warn – Sends output to standard error (which may or may not be the screen).

write – Writes a specified number of bytes to a filehandle.

To reiterate, this list is not complete. See perlfunc for the complete list.

5.6 Grouping and Reusing Subroutines

The drawline subroutine is quite useful, and if a requirement exists to draw
lines in a lot of different programs, it may well be a subroutine in each. Although
this is a strategy that works, that is, cutting ‘n’ pasting the subroutine into every
program that needs it, it introduces a problem. What happens if, at some stage
in the future after the subroutine has been used in 443 programs, a decision
is made to change how drawline works12. Furthermore, imagine a decision is

11
What the operating system thinks is the start of time. It varies from system to system. This

means that the start of time is different on Linux, Windows and Mac OS. Yes, they could not
even agree on that!

12
Don’t worry, we aren’t going to. A promise is a promise, after all.

Grouping and Reusing Subroutines 93

made to ensure that the change is a global one, in that every program that
uses drawline needs to be changed. That’s 443 changes, or 443 cuts and 443
pastes, or whatever. Let’s further assume that each change takes (on average) one
minute – that’s 443 minutes! And, that’s before each of those 443 programs are
re-tested now that they have changed.

Let’s face it. Given such a situation, a reason will be found not to make
the change. But it need not be like this. Most modern programming languages,
including Perl, provide a mechanism to reuse a subroutine in multiple programs
while maintaining a master copy of the code. If a change is required, the master
copy of the subroutine is changed, tested and then released. The other programs
are not even touched.

Say ‘‘hello’’ to the Perl module.

5.6.1 Modules

At its most basic (and useful), a module in Perl is a place to put subroutines that
can then be used by many programs.

Maxim 5.5 When you think you will reuse a subroutine,
create a custom module.

Let’s assume that the drawline subroutine is part of a module called UsefulU-
tils. A program can access drawline by first using the module, then calling the
subroutine, with code something like this:

#! /usr/bin/perl -w

use lib "$ENV{’HOME’}/bbp/";
use UsefulUtils;

drawline;

As drawline is part of the UsefulUtils module, it does not appear in the
source code of the program that wishes to use it. The use statement ‘‘pulls in’’
the drawline subroutine as required.

The use lib statement tells perl where to find custom modules. More on this
later.

Creating a custom module in Perl has been standardised. Every module starts
with the following ‘‘blank’’ template:

package;

require Exporter;

our @ISA = qw(Exporter);

94 Getting Organised

our @EXPORT = qw();
our @EXPORT_OK = qw();
our %EXPORT_TAGS = ();

our $VERSION = 0.01;

1;

The module template starts with a package statement. This introduces and names
the module, and creates a new namespace. To start creating UsefulUtils, start
with a package statement like this:

package UsefulUtils;

The rest of the module template needs only minor changes. The require state-
ment, together with the our @ISA statement, tells perl that the custom module
draws on the facilities offered by a standard Perl module, called Exporter. It is
not important that module writers understand what these two lines do. However,
it is really important that they are included within each custom module, so leave
these lines as they are.

Three ‘‘export’’ variables are then declared. The first, an array called @EXPORT,
is set to the empty list. By adding to this list, it is possible to have a subroutine
automatically imported into the program that uses the custom module.

The second variable, an array called @EXPORT OK, is again set to the empty list.
By adding to this list, it is possible to allow the program that uses the custom
module to specify the subroutine(s) to import.

The final ‘‘export’’ variable, a hash called %EXPORT TAGS, can be used to group
related subroutines within the module into tagged categories. These can then be
used to import the groups into the program that uses the custom module.

The UsefulUtils module is designed to house a collection of loosely related
utilities. As such, there’s no requirement to automatically export any subroutines,
so the @EXPORT array is left empty. Users of the module are required to specifically
identify the utility subroutine they wish to import into a program, so let’s add
the name of the only subroutine that we have to the @EXPORT OK array:

our @EXPORT_OK = qw(drawline);

The $VERSION scalar is used to track the maturity of the module. Typically, when
the module is under development, the version number is less than 1. As the
module matures, the version number is increased. For now, the version number
is set to 0.01, as the module is under development and very new.

The ‘‘1;’’ at the end of the module ensures that the module returns true when
it is used. Again, this is a detail that must be included, so make sure the last
statement of every custom module is ‘‘1;’’. The subroutines to be included in the
module are placed between the $VERSION scalar and the ‘‘1;’’.

Grouping and Reusing Subroutines 95

Here’s the first version of the UsefulUtils module, which includes the draw-
line subroutine:

package UsefulUtils;

UsefulUtils.pm - the useful utilities module from "Bioinformatics,
Biocomputing and Perl".

require Exporter;

our @ISA = qw(Exporter);

our @EXPORT = qw();
our @EXPORT_OK = qw(drawline);
our %EXPORT_TAGS = ();

our $VERSION = 0.01;

use constant REPEAT_COUNT => 60;

sub drawline {
Given: a character string and a repeat count.
Return: a string that contains the character string
"repeat count" number of times.
#
Notes: For maximum flexibility, this routine does NOT include
a newline ("\n") at the end of the line.

my %arguments = @_;

my $chars = $arguments{ Pattern } || "-";
my $count = $arguments{ Count } || REPEAT_COUNT;

return $chars x $count;
}

1;

Note the inclusion of a number of comments, which is always a good idea.
Note also the requirement to give the module a name that ends in ‘‘.pm’’. The
REPEAT COUNT constant is also included in the module.

Before continuing, let’s put any custom modules that are created into a standard
location. Create a directory under your home directory called ‘‘bbp’’, and copy
the module there:

mkdir ~/bbp/
cp UsefulUtils.pm ~/bbp/

The UsefulUtils module can now be used by any program. Here’s another
version of the boxes program, called boxes2, that uses the module:

96 Getting Organised

#! /usr/bin/perl -w

boxes2 - the box drawing demonstration program for "drawline".

use lib "$ENV{’HOME’}/bbp/";
use UsefulUtils qw(drawline);

print "+", drawline(Count => 15), "+\n";
print "|", drawline(Pattern => " ", Count => 15), "|\n";
print "|", drawline(Pattern => " ", Count => 15), "|\n";
print "|", drawline(Pattern => " ", Count => 15), "|\n";
print "|", drawline(Pattern => " ", Count => 15), "|\n";
print "|", drawline(Pattern => " ", Count => 15), "|\n";
print "+", drawline(Count => 15), "+\n";

The use lib statement tells perl where to find any custom modules. When
UsefulUtils is used, a list of subroutines to import is provided. Note that
unlike boxes, this program has to explicitly provide a value for the ‘‘Count’’
parameter, as the default repeat count is 60, not 15.

In later chapters, the UsefulUtils module is extended with more subroutines.

5.7 The Standard Modules

The Perl programming environment comes with a large collection of standard
modules. Take a look at the perlmodlib document for a complete list using this
command:

man perlmodlib

Each standard module described in the perlmodlib document comes with its
own documentation. It is highly recommended that every Perl programmer take as
much time as is needed to become familiar with the standard modules. The reason
for this advice is simple: if a standard module already implements a particular
piece of functionality, it is always better to use the standard module than to
attempt to write a subroutine or module that provides the same functionality.

Maxim 5.6 Don’t reinvent the wheel;
use or extend a standard module whenever possible.

So, don’t waste time – take advantage of the excellent functionality that is
included with Perl by way of the standard modules.

5.8 CPAN: The Module Repository

In addition to the standard modules, the Perl programming community, via a large
web-site, provides a facility for programmers to share their work with others.

CPAN: The Module Repository 97

What sets the Perl community apart from others is the extent to which this
sharing is coordinated and practised. The Comprehensive Perl Archive Network,
more commonly referred to as ‘‘CPAN’’13, contains a vast collection of modules
pertaining to every conceivable task that Perl can be put to. So, whether the
requirement is to manipulate graphics images or interact with a web server, a
CPAN module more than likely exists to assist in the task. To start exploring what
CPAN has to offer, visit this web-site and start reading:

http://www.cpan.org

All the modules on CPAN are donations made by a growing community of
Perl programmers from around the globe, and any Perl programmer is free to
download a module of interest and use it. As with the standard modules, the
advice is straightforward: use a CPAN module rather than creating a custom
module to do the same thing. Even if a CPAN module does not do exactly what
is needed, it may be worthwhile downloading and tweaking it to meet a specific
requirement. After all, CPAN modules are distributed in source code form, so
it is simply a matter of editing the module and including the changes that are
required.

Maxim 5.7 Don’t reinvent the wheel;
use or extend a CPAN module whenever possible.

If the changes made to a CPAN module are considered of use to others, program-
mers are encouraged to submit the changed module to CPAN so that the entire
community can benefit from the enhancements. In this way, the truly useful
modules available on CPAN get better with time. Programmers who submit their
work to CPAN are referred to as CPAN authors.

Maxim 5.8 When you think others might benefit from a custom
module you have written, upload it to CPAN.

5.8.1 Searching CPAN

In addition to the main CPAN web-site, another interface to the repository can be
found at

http://search.cpan.org

This web-site provides a mechanism to search CPAN by module, keyword, author
and so on. It also provides a browseable categorisation of all of the modules that
are available. Take some time to experiment and explore this web-site.

13
Pronounced ‘‘see-pan’’.

98 Getting Organised

5.8.2 Installing a CPAN module manually

To use a CPAN module, it needs to be installed into your Perl installation. This
process has been standardised. Let’s assume that a requirement exists to install
a module called ExampleModule into a Perl installation14. To begin, decompress
and unpack the downloaded file:

tar zxvf ExampleModule-0.03.tar.gz

CPAN modules are typically distributed in a packed, compressed format. The
above command decompresses the disk-file and then unpacks its contents. A
directory called ExampleModule-0.03 is created, and all of the disk-files needed
to install ExampleModule are put into this directory. To prepare for the install,
change into this directory and use Perl to create the required makefile:

cd ExampleModule-0.03
perl Makefile.PL

It should now be possible to build and test ExampleModule using the standard
Linux make command:

make
make test

It is usual for a collection of messages to appear on screen as a result of issuing
these commands. If things go well, the module is now ready to install. For the
next command to succeed, superuser privilege is required. If not already logged
in as root, temporarily become the superuser as follows:

su

The root password will be required. As superuser, finish the install by issuing
this command:

make install
<Ctrl-D>

Note the use of the <Ctrl-D> key-combination after the make install com-
mand. This logs out the superuser. As a general rule, work in superuser mode
(i.e., as root) only for as long as is needed. It is generally a bad idea to do regular
work logged in as root. Trust us when we tell you that if you spend a lot of time
logged in as root, sooner or later, bad things will happen.

The installation of the module can be tested using either of these two com-
mands:

14
As with the other example commands in this book, the assumption is that you are running

Linux. These commands should also work with Mac OS X and UNIX. If you are running Windows,
use the Perl Package Manager (ppm) to install CPAN modules.

CPAN: The Module Repository 99

man ExampleModule
perl -e ’use ExampleModule’

The first command should display the documentation for ExampleModule. The
second command should display nothing – the Linux command-prompt should
reappear after a short delay. If the second command displays a message some-
thing along the lines of the following:

Can’t locate ExampleModule.pm in @INC.
BEGIN failed--compilation aborted at -e line 1.

this means that the module has been installed incorrectly. If the on-line docu-
mentation is missing, this too means that the module has been installed incor-
rectly. Check that the above instructions have been followed correctly. If they
have, check any README and INSTALL disk-files that came with the module for
additional installation instructions.

5.8.3 Installing a CPAN module automatically

In addition to manually installing CPAN modules, it is also possible to have perl
do the work for you. The fictitious module from the previous section can be
installed into Perl with this single command:

perl -MCPAN -e "install ’ExampleModule’"

Use of this command assumes the following: the computer upon which this
command is executed has to have an active Internet connection, and the com-
mand is issued by the superuser. This command downloads the ExampleModule
distribution disk-file, decompresses and unpacks it, then installs it into Perl. And
it does it automatically, allowing you to sit back and relax15.

Which begs the question: why spend time describing the manual installation
technique when CPAN modules can be installed automatically with commands
such as this one? The answer to this reasonable question is that not all modules
successfully install automatically. So, it is important to understand the manual
installation process should anything go wrong during an automatic install.

5.8.4 A final word on CPAN modules

Not all CPAN modules are created equal. Some are well supported, have an
active user community and are of high quality. Some are test modules, proof
of concepts and are (sometimes) of dubious quality. It is important to test any

15
Well, almost. If this is the first time you have executed a command like this, you will be

prompted to answer a series of questions. Read the prompts and pick the appropriate answer
from those provided. Also, keep an eye on the messages produced by the automatic installation,
just in case an error occurs.

100 Getting Organised

module downloaded from CPAN to ensure it works the way it is expected to. Do
not blindly trust that a module works in a certain way simply because it says so
in its documentation. Test, test and test again.

Maxim 5.9 Always take the time to test downloaded CPAN modules
for compliance with specific requirements.

Having said that, CPAN really is a wonderful resource. It is the collected wisdom
and work of the Perl community as a whole. Many Perl programmers, when
asked why they continue to use and favour Perl, respond with a single word:
CPAN.

Where to from Here

In this chapter, the idea of code reuse was explored, first with subroutines and
then with modules. Additionally, the standard modules and CPAN were described.
This was a large chapter, and it covered a lot of important material. In the next
chapter, another important topic is introduced: input/output.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• Whenever you think you will reuse some code, create a subroutine.

• When determining the scope of a variable, think about its visibility.

• Unless you have a really good reason not to, always declare your variables
with my.

• If you must use a global variable, declare it with our.

• When you think you will reuse a subroutine, create a custom module.

• Don’t reinvent the wheel; use or extend a standard module whenever possible.

• Don’t reinvent the wheel; use or extend a CPAN module whenever possible.

• When you think others might benefit from a custom module you have written,
upload it to CPAN.

• Always take the time to test downloaded CPAN modules for compliance with
specific requirements.

Exercises 101

Exercises

1. Write a subroutine, called drawbox, that draws boxes. The subroutine should
accept two named parameters, Height and Width, which are used to specify
the dimensions of the box. In the absence of either or both of the named
parameters, the drawbox subroutine should substitute appropriate default
values.

2. Add the drawbox subroutine to the UsefulUtils module.

3. The Plain Old Documentation (POD) technology, included with Perl, supports
the addition of documentation to a program or module. Use the ‘‘man
perlpod’’ command to access the POD documentation to read and learn
about POD. Use POD to add appropriate documentation to the UsefulUtils
module.

4. Explore the CPAN repository. Find a module that interests you, then down-
load and install it into your Perl installation. Examine the disk-files that are
included with the module, paying particular attention to the CPAN author’s
use of POD. Be sure to test the CPAN module to ensure it works the way you
expect it to.

5. Use the perldoc command to search the perlfunc document for informa-
tion on a subroutine called wantarray. Experiment with wantarray, then
write a small subroutine that accepts a list of words as its parameters. Have
the subroutine return the list of words when invoked in list context. When
called in scalar context, the subroutine returns a count of the number of
words provided as parameters to it. Can you think of a good name for such
a subroutine?

6

About Files
Input, output and other things.

6.1 I/O: Input and Output

Data entering a program is referred to as its input, while data produced by a
program is its output. Rather than refer to (and write) ‘‘input/output’’, most
programmers simply say ‘‘IO’’, which is written as I/O.

The majority of the programs presented in the previous chapters have been
self-contained, in that they do not rely on data from any external source in order
to work. On top of this, these programs have been happy to send their results
to the screen. This is fine when all that is important is the demonstration of
programming concepts. However, real programs work on real data, and data is
typically stored in disk-file. In this chapter, the I/O facilities provided by Perl are
described.

I/O facilities are often referred to as streams. It is possible to have many
streams associated with a program, with some of them classed as input streams
and others classed as output streams. As a minimum, every Perl program has
three standard streams available to it.

6.1.1 The standard streams: STDIN, STDOUT and STDERR

Before creating streams of our own, let’s review the standard streams, which
were touched on briefly in Chapter 3.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

104 About Files

The standard input stream (STDIN) is the default place from which data enters
a program. Typically, STDIN is the keyboard, but it can also be a disk-file. To read
data from STDIN, use the input operator:

my $data = <STDIN>;

As STDIN is the default input stream, the following is identical to the above:

my $data = <>;

perl is smart enough to know that an ‘‘empty’’ input operator actually refers to
STDIN by default.

The standard output stream (STDOUT) is the default place to which data is sent
by a program. Typically, STDOUT is the screen, but it can also be a disk-file. To
write data to STDOUT, use print:

print STDOUT $data;

As STDOUT is the default output stream, the following is identical to the above:

print $data;

Again, perl is smart enough to know that print sends data to STDOUT by default.
The standard error stream (STDERR) is the default place to send error messages

to. As with STDOUT, STDERR is typically the screen, but error messages can be
sent to any other output stream (with a disk-file the most common case). To write
data to STDERR, use print:

print STDERR "Something terrible has happened ... aborting.\n";

As this is such a common requirement, Perl provides a special subroutine (called
warn) that makes this more convenient:

warn "Something terrible has happened ... aborting.\n";

Why provide two output streams, namely, STDOUT and STDERR? Surely, both
streams do essentially the same thing, that is, output data? Well, ‘‘essentially the
same’’ does not mean ‘‘exactly the same’’. The former output stream is designed
to be used for data, the latter is reserved for error messages, and data and error
messages are not the same thing. If a program is happily outputting data, then
spots an error and generates a message and then continues to happily output
data again, it is reasonable to expect that the error message will not corrupt
the output data, especially if the output data is being written to a disk-file.
By separating the error message from standard output, the error message can
display on screen while the (uncorrupted) data can safely end up in a disk-file.

Reading Files 105

6.2 Reading Files

The getlines program from The Basics chapter (on page 41) demonstrates a
standard technique for taking data one line at a time from a disk-file and feeding
it as standard input to a program one line at a time. By specifying one or more
filenames on the command-line, perl is able to process disk-files sequentially
(that is, one disk-file at a time), taking the data one line at a time from a disk-file
whenever the input operator is used.

Now, imagine a requirement exists to merge two disk-files. For the purposes
of this discussion, imagine that merging the two disk-files is defined as reading
a line from the first disk-file and sending it to STDOUT, then reading a line from
the second disk-file and sending it to STDOUT, then reading the next line from
the first disk-file and sending it to STDOUT, then reading the next line from the
second disk-file and sending it to STDOUT and so on, until there are no more lines
to read from either of the disk-files. If the first disk-file contains these lines:

This is the first disk-file, line 1.
This is the first disk-file, line 2.
This is the first disk-file, line 3.
This is the first disk-file, line 4.
This is the first disk-file, line 5.

and the second disk-file contains these lines:

This is the second disk-file, line 1.
This is the second disk-file, line 2.
This is the second disk-file, line 3.

then the merged output should look like this:

This is the first disk-file, line 1.
This is the second disk-file, line 1.
This is the first disk-file, line 2.
This is the second disk-file, line 2.
This is the first disk-file, line 3.
This is the second disk-file, line 3.
This is the first disk-file, line 4.
This is the first disk-file, line 5.

Given this requirement, the sequential behaviour of getlines will not work when
merging two disk-files, as getlines is programmed to deal with a disk-file in
its entirety before processing another. Some other strategy is required when two
disk-files are to be merged. Let’s start by trying a strategy based on these steps:

• Determine the names of the two disk-files to be merged.

• Open the two disk-files to enable data to be read from them.

106 About Files

• Read a line from the first disk-file, then write it to STDOUT.

• Read a line from the second disk-file, then write it to STDOUT.

• Repeat the last two steps until there are no more lines to read.

Each of these steps is discussed in the subsections that follow. The merge
program is called merge2files.

6.2.1 Determining the disk-file names

One technique for determining the names of the disk-files is to avoid determining
them at all, and write the program in such a way that the two names are always
the same. The user of the program must make sure that the two disk-files are
named in a way that the program expects. Such a practice is referred to as
hard coding, and is best avoided as it tends to lead to inflexible solutions. The
merge2files program needs to work with any two disk-files. The two disk-files
to be merged are named on the command-line as parameters to the merge2files
program.

As with subroutines, parameters passed to a program are made available in a
special array. Unlike subroutines, where the @ default array is used, the array
of command-line parameters is called @ARGV, and is automatically populated by
perl. Here’s a small program, called determine args, that determines the values
of one or two command-line parameters:

#! /usr/bin/perl -w

determine_args - print out the names of the disk-files named on
the command-line.

if ($#ARGV != 1)
{

warn "Please supply the names of two disk-files on the command-line.\n";
exit;

}

my ($first_filename, $second_filename) = @ARGV;

print "first disk-file name is: $first_filename\n";
print "second disk-file name is: $second_filename\n";

As @ARGV is an array like any other, the $# prefix is used to provide the value of
the last array index. Recalling that Perl starts counting from zero, a value of 1 for
$#ARGV means that the array contains two values. A check for this is performed
at the start of the determine args program, and if anything other than two
command-line parameters are provided, the program displays an error message
(thanks to warn) and then terminates by invoking the exit subroutine.

Reading Files 107

As the warn and exit combination is so common, Perl provides the die
subroutine, which does the same thing. The two lines from determine args can
be replaced with this single line:

die "Please supply the names of two disk-files on the command-line.\n";

After determining that exactly two command-line parameters are provided to the
program, the elements of the @ARGV array are assigned to two lexical variables
with this line:

my ($first_filename, $second_filename) = @ARGV;

By surrounding the two lexical variables with parentheses, a temporary list is
created on the left-hand side of the assignment operator. As an array is already
on the right-hand side of the assignment operator, perl is smart enough to take
the individual elements of the @ARGV array and assign each of them (in turn) to
the named lexicals in the list. This is a very convenient and compact shorthand
technique, which is equivalent to this:

my $first_filename = $ARGV[0];
my $second_filename = $ARGV[1];

and to this:

my $first_filename = shift;
my $second_filename = shift;

as shift, when used within the main code of a program, works with @ARGV by
default. The determine args program concludes by displaying the two disk-file
names on STDOUT. When invoked as follows:

perl determine_args first_file.txt second_file.txt

the program produces this output:

first disk-file name is: first_file.txt
second disk-file name is: second_file.txt

When invoked with anything other than two command-line parameters, the
program complains:

Please supply the names of two disk-files on the command-line.

108 About Files

6.2.2 Opening the named disk-files

The determine args program, despite the messages that it produces, does not
actually check that the command-line parameters supplied to it refer to existing
disk-files. It is certainly the intention that they do, but ‘‘intentions’’ are difficult, if
not impossible, to program. Ideally, the parameters need to be checked to ensure
that they refer to a disk-file and that if they do, the disk-file can be opened and
read from. It is not sensible to try to open a disk-file that does not exist, or that
cannot be read from.

Perl provides a number of file test operators that can help here1. Here is an
expanded version of determine args, renamed check args, that uses three file
test operators to:

1. Check that a disk-file associated with the name exists, and

2. Check that the disk-file is a plain disk-file, and

3. Check that the disk-file can in fact be read from.

Here is the entire source code to the check args program:

#! /usr/bin/perl -w

check_args - check that the disk-files named on the command-line exist.

if ($#ARGV != 1)
{

die "Please supply the names of two disk-files on the command-line.\n";
}

my ($first_filename, $second_filename) = @ARGV;

unless (-e $first_filename && -f $first_filename && -r $first_filename)
{

die "$first_filename cannot be accessed. Does it exist?\n";
}

unless (-e $second_filename && -f $second_filename && -r $second_filename)
{

die "$second_filename cannot be accessed. Does it exist?\n";
}

The key statement is this one:

unless (-e $first_filename && -f $first_filename && -r $first_filename)

which checks if the disk-file named in the $first filename scalar exists using
the -e file operator. This statement also checks to see if the disk-file is a plain
disk-file using the -f file operator in combination with the && ‘‘and’’ operator.
Finally, the statement checks to see if the disk-file can be read from, using the
-r file operator together with &&. If all three of these conditions hold, then the
disk-file can be opened. If any one of these three conditions is false, the disk-file

1
These are sometimes referred to as the dash operators.

Reading Files 109

cannot be opened, which explains the use of unless instead of the more usual
if, that is, unless all three conditions hold, the program dies.

With the status of the disk-files determined, it is now possible to open each of
them and assign them to filehandles:

open FIRSTFILE, "$first_filename";
open SECONDFILE, "$second_filename";

The filehandles in these examples are FIRSTFILE and SECONDFILE. These are a
convenient way of referring to a disk-file, and can be thought of as variable names
for open disk-files. Any word can be used as a filehandle, and it is a convention
to use all UPPERCASE when naming filehandles.

Technical Commentary: The use of the word ‘‘handle’’ is sometimes confusing.
Think of a handle as a simple way of referring to something that is often more
complex. CB radio hams know all about handles: they think up simple names to
refer to themselves, as opposed to using a more complex identification mechanism.

The open subroutine is part of Perl, and it expects two parameters: the name of a
filehandle to be created and the name of a disk-file to be opened. The invocations
of open can also be written like this:

open FIRSTFILE, "<$first_filename";
open SECONDFILE, "<$second_filename";

The ‘‘less-than’’ symbol tells open to open the disk-file for reading. When no
symbol is provided, it is assumed to be a less-than symbol. That is, open defaults
to reading disk-files.

Even though care was taken to ensure that the disk-file could be opened,
something can still go wrong2. It is prudent to check that the open on the
disk-file succeeded, but appending a check to the open invocation:

open FIRSTFILE, "$first_filename"
or die "Could not open $first_filename. Aborting.\n";

open SECONDFILE, "$second_filename"
or die "Could not open $second_filename. Aborting.\n";

Now, if either disk-file cannot be opened, the program aborts with an appropriate
error message.

In addition to opening disk-files prior to using them, it is prudent to close
them as soon as they are no longer needed. Closing disk-files is straightforward:
invoke Perl’s close subroutine and pass the filehandle as its sole parameter:

close FIRSTFILE;
close SECONDFILE;

2
Perhaps the disk-file does not belong to you and, as a result, the operating system is happy

to let you check that it exists, is a plain disk-file and can be read from. However, the operating
system may not be happy to let you open the disk-file since it is not yours.

110 About Files

Surprisingly, it is not absolutely necessary to specifically close disk-files when
finished with them, as perl automatically closes any open filehandles when a
program ends, thereby closing the associated disk-file. Despite this convenience,
many programmers advise that a disk-file should be kept open only for as long as
it is needed. This is sensible advice, so here’s a maxim to highlight its importance:

Maxim 6.1 Open a disk-file for as long as needed, but no longer.

And here’s another, just to be sure:

Maxim 6.2 If you open a disk-file, be sure to close it later.

6.2.3 Reading a line from each of the disk-files

To read from STDIN, place STDIN inside the input operator. To read from any
filehandle, place the filehandle name inside the input operator, as follows:

my ($linefromfirst, $linefromsecond);

$linefromfirst = <FIRSTFILE>;
$linefromsecond = <SECONDFILE>;

which could not be any more straightforward, could it? Two lexical variables are
declared using my, then each is assigned a line from each of the filehandles.

6.2.4 Putting it all together

With the disk-file names determined, the filehandles opened and a mechanism in
place to read from them, it’s now time to attempt to bring everything together to
create merge2files. The only missing piece is a loop to read from the filehandles
until there are no more lines to read:

#! /usr/bin/perl -w

merge2files - merge the two disk-files named on the command-line.

if ($#ARGV != 1)
{

die "Please supply the names of two disk-files on the command-line.\n";
}

my ($first_filename, $second_filename) = @ARGV;

unless (-e $first_filename && -f $first_filename && -r $first_filename)
{

die "$first_filename cannot be accessed. Does it exist?\n";
}

unless (-e $second_filename && -f $second_filename && -r $second_filename)

Reading Files 111

{
die "$second_filename cannot be accessed. Does it exist?\n";

}

open FIRSTFILE, "$first_filename"
or die "Could not open $first_filename. Aborting.\n";

open SECONDFILE, "$second_filename"
or die "Could not open $second_filename. Aborting.\n";

my ($linefromfirst, $linefromsecond);

while ($linefromfirst = <FIRSTFILE>)
{

$linefromsecond = <SECONDFILE>;

print $linefromfirst;
print $linefromsecond;

}

close FIRSTFILE;
close SECONDFILE;

The while loop keeps going while there are lines to read from the FIRSTFILE
filehandle. Every time through the loop, the $linefromfirst scalar is set to a
line from the first disk-file, and the $linefromsecond scalar is set to a line from
the second disk-file. Let’s make the merge2files program executable and run it
against the two disk-files to see what happens:

chmod +x merge2files
./merge2files first_file.txt second_file.txt

The following messages appear:

This is the first disk-file, line 1.
This is the second disk-file, line 1.
This is the first disk-file, line 2.
This is the second disk-file, line 2.
This is the first disk-file, line 3.
This is the second disk-file, line 3.
This is the first disk-file, line 4.
Use of uninitialized value in print at merge2files line 35, <SECONDFILE> line 3.
Use of uninitialized value in print at merge2files line 35, <SECONDFILE> line 3.
This is the first disk-file, line 5.
Use of uninitialized value in print at merge2files line 35, <SECONDFILE> line 3.
Use of uninitialized value in print at merge2files line 35, <SECONDFILE> line 3.

Oh dear, some of these messages were not expected.
The ‘‘Use of uninitialized value in print ... ’’ messages are gener-

ated by perl, not by merge2files. The line numbers are significant. The 35
refers to the line 35 in the merge2files program, specifically, this one:

print $linefromsecond;

112 About Files

and the 3 refers to the number of lines that have been read from the SECONDFILE
filehandle. The problem is that the two disk-files being merged are of differing
lengths: there are five lines in the first and three in the second. By continuing to
loop while there are lines in the first disk-file, the program gets into difficulty
when it runs out of lines in the second disk-file, which results in the messages
from perl. This is bad enough, but look what happens when the order of the
disk-files is reversed on the command-line:

./merge2files second_file.txt first_file.txt

This execution of merge2files produces the following output:

This is the second disk-file, line 1.
This is the first disk-file, line 1.
This is the second disk-file, line 2.
This is the first disk-file, line 2.
This is the second disk-file, line 3.
This is the first disk-file, line 3.

Which looks OK, as the error messages are gone. However, this is not correct
either: lines four and five from the first disk-file are missing in the output!
The reason for this is that the loop terminates when it runs out of lines from
second file.txt, so lines four and five from the first file.txt are never
read. This is actually worse than the previous execution of the merge2files
program, as this output looks OK, when, in fact, it is not.

There are a number of strategies that can be used to solve this problem3. One
is to stop the offending line from printing if the second file has already reached
the end of the file. Perl’s eof subroutine returns true if a named filehandle has
run out of lines. The next version of the merge program, called merge2files v2,
replaces the offending statement (line 35) with these:

if (!eof(SECONDFILE))
{

$linefromsecond = <SECONDFILE>;
print $linefromsecond;

}

This code checks to see that the SECONDFILE has reached the end of the file or not.
If it has not, another line is read and assigned to the $linefromsecond scalar and
then printed. If the filehandle has reached the end of the file, nothing happens,
as there are no more lines to read. When executed with this command-line:

./merge2files_v2 first_file.txt second_file.txt

3
The implementation of one of them is included as one of this chapter’s exercises.

Reading Files 113

this version of the merge program produces this output:

This is the first disk-file, line 1.
This is the second disk-file, line 1.
This is the first disk-file, line 2.
This is the second disk-file, line 2.
This is the first disk-file, line 3.
This is the second disk-file, line 3.
This is the first disk-file, line 4.
This is the first disk-file, line 5.

which is correct. When the order of the disk-files is reversed on the command-line,
the following output is produced:

This is the second disk-file, line 1.
This is the first disk-file, line 1.
This is the second disk-file, line 2.
This is the first disk-file, line 2.
This is the second disk-file, line 3.
This is the first disk-file, line 3.

which is still incorrect. In fact, this version of the merge program produces correct
output only when the first disk-file has the same or more lines than the second
disk-file, which, clearly, will not do.

The problem is that when the second disk-file has more lines than the first, the
merge program finishes too early. By introducing another loop, immediately after
the existing loop, it is possible to ensure that any ‘‘forgotten’’ lines are processed.
Here’s the second loop, which continues to process the second disk-file after
the lines from the first are exhausted. The loop ends when the second disk-file
reaches the end of the file:

while (!eof(SECONDFILE))
{

$linefromsecond = <SECONDFILE>;
print $linefromsecond;

}

This code is added to merge2files v2, creating merge2files v3, as follows:

#! /usr/bin/perl -w

merge2files_v3 - third version of merge2files: merge the disk-files named
on the command-line (with some help from eof).
Make sure all lines are read from both disk-files.

if ($#ARGV != 1)
{

die "Please supply the names of two disk-files on the command-line.\n";
}

my ($first_filename, $second_filename) = @ARGV;

114 About Files

unless (-e $first_filename && -f $first_filename && -r $first_filename)
{

die "$first_filename cannot be accessed. Does it exist?\n";
}

unless (-e $second_filename && -f $second_filename && -r $second_filename)
{

die "$second_filename cannot be accessed. Does it exist?\n";
}

open FIRSTFILE, "$first_filename"
or die "Could not open $first_filename. Aborting.\n";

open SECONDFILE, "$second_filename"
or die "Could not open $second_filename. Aborting.\n";

my ($linefromfirst, $linefromsecond);

while ($linefromfirst = <FIRSTFILE>)
{

print $linefromfirst;
if (!eof(SECONDFILE))
{

$linefromsecond = <SECONDFILE>;
print $linefromsecond;

}
}

while (!eof(SECONDFILE))
{

$linefromsecond = <SECONDFILE>;
print $linefromsecond;

}

close FIRSTFILE;
close SECONDFILE;

The merge2files v3 program now satisfies the merging requirement as specified
at the start of this chapter, and the ordering of disk-file names on the command-
line no longer matters. Any two disk-files (of varying lengths) can be merged
with this program. Take a few moments to run this program against a number of
different disk-files to check this claim.

6.2.5 Slurping

The ability to read a line of data from a disk-file is very useful. However, there
are occasions when it is convenient to read an entire disk-file in one go. This is
referred to as ‘‘slurping’’.

To slurp a disk-file, use the input operator and, instead of assigning what’s
read to a scalar, assign what’s read to an array:

@entire_file = <>;

Reading Files 115

As the input operator is invoked in list context, perl reads the entire disk-file and
assigns it, one line at a time, to an array called entire file. Here is a program,
called slurper, which uses this technique. Note the inclusion of drawline from
the UsefulUtils module:

#! /usr/bin/perl -w

slurper - a program which demonstrates disk-file "slurping".

use lib "$ENV{’HOME’}/bbp/";
use UsefulUtils qw(drawline);

open FIRSTSLURPFILE, "first_file.txt"
or die "Could not open first slurp disk-file. Aborting.\n";

open SECONDSLURPFILE, "second_file.txt"
or die "Could not open second slurp disk-file. Aborting.\n";

my @linesfromfirst = <FIRSTSLURPFILE>;
my @linesfromsecond = <SECONDSLURPFILE>;

print drawline(Count => 40), "\n";
print @linesfromfirst;
print drawline(Count => 40), "\n";
print @linesfromsecond;
print drawline(Count => 40), "\n";

close FIRSTSLURPFILE;
close SECONDSLURPFILE;

Unlike the merge2files programs, this program ignores the maxims from earlier
and hard codes the names of the disk-files as part of the open statements, a
practice that is best avoided4. When executed, that slurper program produces
the following:

--
This is the first disk-file, line 1.
This is the first disk-file, line 2.
This is the first disk-file, line 3.
This is the first disk-file, line 4.
This is the first disk-file, line 5.
--
This is the second disk-file, line 1.
This is the second disk-file, line 2.
This is the second disk-file, line 3.
--

4
Rest assured, your authors have slapped themselves on the wrist for this.

116 About Files

In addition to the single statement that reads the entire disk-file into its associated
array, look at how the single print statement is used to display the entire array
on screen (STDOUT). Recall that print takes a ‘‘list of things to display’’ as its
parameters. The single array is a list of lines.

Be careful when slurping disk-files, especially if the disk-file contains a lot
of material. When data is read into a variable, it is allocated a small piece of
the computer’s memory. This memory is a finite space and, while a program is
running, will start to fill-up with the data that the program is using. A small
slurped disk-file is (usually) easily accommodated. A large slurped disk-file may
cause a ‘‘memory overflow’’, resulting in a program terminating because of this.
Consequently, it is often better to read one line at a time from a large disk-file.
You have been warned, so be careful.

6.3 Writing Files

To write to a disk-file, use the ‘‘greater-than’’ symbol when invoking open, as
follows:

my $file_to_open = "errors.log";

...

open(LOGFILE, ">$file_to_open")
or die "Could not write to/create errors log disk-file.\n";

This open statement creates the errors.log disk-file and opens it for writing.
If the disk-file already exists, it is discarded. This is affectionately known as
clobbering5. If the disk-file does not already exist, the call to open creates it.

It is often the case that a disk-file needs to retain the content that it already
has, something that is particularly true of logs. When open is called like this:

open(LOGFILE, ">>$file_to_open")
or die "Could not append to/create errors log disk-file.\n";

the disk-file is opened in append mode (note the double greater-than symbols,
known as chevrons). Anything written to the disk-file is appended to the content
that already exists within it. In this way, the disk-file grows (and is not clobbered).
To write to a disk-file, use print to send data to it:

print LOGFILE "Error: something terrible has happened.\n";

The filehandle to write to is the first parameter to print. By including the
filehandle, perl sends data to a disk-file as opposed to STDOUT.

5
‘‘Slurping’’ . . . ‘‘clobbering’’ . . . who says Perl’s not fun?

Writing Files 117

6.3.1 Redirecting output

It is also possible to create a disk-file as a result of executing any program. For
example, by executing the merge2files program with the following command-
line, anything written to STDOUT is sent to a disk-file called merge.out, clobbering
it if it already exists. Unlike the example code just described, be aware that the
operating system, not perl, is creating, and then writing to, the disk-file:

./merge2files first_file.txt second_file.txt > merge.out

To append to the disk-file, use chevrons on the command-line, as opposed to the
greater-than symbol:

./merge2files first_file.txt second_file.txt >> merge.out

The above commands take anything written to STDOUT and redirect it to the
named disk-file. Anything written to STDERR still appears on screen. To redirects
anything written to STDERR, use a command-line like this:

./merge2files first_file.txt second_file.txt > merge.out 2> merge.err

which redirects standard output to merge.out and any error messages (standard
error) to merge.err. Chevrons can be used to append to the disk-files as opposed
to clobbering them:

./merge2files first_file.txt second_file.txt >> merge.out 2>> merge.err

6.3.2 Variable interpolation

This is an appropriate place to discuss the process of variable interpolation.
When a variable is written to a filehandle, what prints depends on whether or not
the variable is enclosed within single or double quotes. Consider these program
statements:

my $sequence = "TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA";

print "The sequence is: $sequence\n";
print ’The sequence is: $sequence\n’;

When executed by perl, the following output displays:

The sequence is: TTATTATGTT GCTCAGTTCT GACCTCTTAA CTATGCGGTA
The sequence is: $sequence\n

By using double quotes to surround that which is to be printed, perl knows to
replace the $sequence scalar with its contents, as well as turn the ‘‘\n’’ into a
newline. This process is known as interpolation. When single quotes surround
that which is to be printed, no interpolation occurs, and the string prints as-is
(that is, it prints literally).

118 About Files

6.4 Chopping and Chomping

When working with input data, two useful in-built subroutines are chop and
chomp6.

The chop subroutine, when provided with a scalar variable, removes the last
character from the scalar and returns it. Consider this code:

my $dna = "ATGTGCGGTATTGCTGACCTCTTA\n";

my $last = chop $dna;

$dna is now "ATGTGCGGTATTGCTGACCTCTTA";

my $next = chop $dna;

$dna is now "ATGTGCGGTATTGCTGACCTCTT";

With each invocation of chop, the $dna scalar is shortened by one character, and
the character is assigned to the named scalar. The $last scalar is assigned ‘‘\n’’
and $next is assigned ‘‘A’’.

The chomp subroutine, when provided with a scalar variable, removes the last
character from the scalar if, and only if, that character is the newline, ‘‘\n’’.
Consider this code:

my $dna = "ATGTGCGGTATTGCTGACCTCTTA\n";

my $last = chomp $dna;

$dna is now "ATGTGCGGTATTGCTGACCTCTTA";

my $next = chomp $dna;

$dna is still "ATGTGCGGTATTGCTGACCTCTTA";

There is no point in the chomp subroutine returning the character removed,
as it can only ever remove the newline. Instead, chomp returns the number
of characters removed as a result of its invocation. After executing the above
statements, the $last scalar has a value of 1, whereas the $next scalar has the
value 0. The $dna scalar has been chomped.

6
As if the ability to slurp and clobber were not enough, with Perl we can chop and chomp, too.

Who do we thank for such linguistic frivolity? Larry Wall, the creator of Perl. Larry’s use of such
terminology is enough to make him an honorary Yorkshireman, as such words were in common
use where Michael grew up.

Exercises 119

Where to from Here

Perl’s I/O mechanisms are very convenient and, once mastered, not difficult
to use. Many programmers have extended the in-built mechanisms with cus-
tom modules, which are available on CPAN. A number of standard I/O mod-
ules are included with the Perl environment, and these include IO::File
and IO::Handle. Take some time to read the documentation describing these
modules.

In addition to the wonder that is CPAN and convenient, easy to use I/O, there is
one other Perl feature that endears the language to more programmers than any
other language: Perl’s support for regular expressions. Perl’s regular expression,
pattern-matching technology forms the basis of the next chapter.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• Open a disk-file for as long as needed, but no longer.

• If you open a disk-file, be sure to close it later.

Exercises

1. Amend the merge2files program to slurp the two disk-files prior to
performing the merge. Does this make the merge any easier?

2. Amend the merge2files program to enable it to merge three disk-files. Call
your new program merge3files.

3. Create a new program, called merge2alpha, that can merge two disk-files
alphabetically. Given a disk-file like this:

a start
is generally not the end
of a disk-file
it’s the start

and another one like this:

the end of a disk-file
usually comes after
the start of a disk-file
but, not always

120 About Files

your program should produce the following output:

a start
but, not always
is generally not the end
it’s the start
of a disk-file
the end of a disk-file
the start of a disk-file
usually comes after

4. Create a program called reverse it that takes a named disk-file (the input)
and reverses the order of the lines contained therein. The output from this
program is written to a new disk-file (the output), which takes its name from
the inverse of the name of the input disk-file. That is, if the input disk-file is
called ‘‘input.data’’, the output disk-file should be called ‘‘atad.tupni’’.

7

Patterns, Patterns
and More Patterns

Exploiting Perl’s built-in regular expression technology.

7.1 Pattern Basics

Earlier in this book, a simple regular expression searched for and found a
collection of characters within an input stream (recall the patterns program on
page 44). At the time, the regular expression details were glossed over, and a
discussion of them was deferred to this chapter.

Before exploring regular expressions, be advised that many people find the
technology strange at first. Work slowly through this chapter, taking time to
understand and learn the technology as it is presented. Regular expressions are
very powerful, in that an awful lot of work results from very little effort on the
part of the programmer. Regular expressions often seem quite cryptic at first,
but persevere: the reward is worth the extra effort required to understand them.
Of course, once understood, you’ll wonder how you ever managed without them.

Technical Commentary: Perl is one of a small, select group of programming lan-
guages that directly embed pattern-matching, regular expression technology into
their core. Some programming languages provide similar technologies as bolted-on,
optional add-ons. However, with Perl, regular expressions are an integral compo-
nent. Programmers often refer to Perl’s regular expression engine, which is the
piece of technology that provides all this, but the engine is not really a separate
component – it’s built-in. It is this feature that defines Perl as much as any other.

What are regular expressions and what’s so special about them?

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

122 Patterns, Patterns and More Patterns

7.1.1 What is a regular expression?

From the perspective of a Perl programmer, a regular expression is, first and
foremost, a pattern. The pattern tells perl to look for something, and this
‘‘something’’ can be any sequence of characters. The patterns program looked
for the word ‘‘even’’ within an input stream using this regular expression:

/even/

Typically, the pattern that makes up a regular expression is enclosed within two
forward-leaning slash characters, as is the case above. It is important to realise
that the pattern is just a sequence of characters to perl. Even though ‘‘even’’ is a
word (for us), it is four individual characters (for perl). Specifically, the pattern
/even/ looks for the character ‘‘e’’, followed by the character ‘‘v’’, followed by
the character ‘‘e’’, followed by the character ‘‘n’’. When the pattern is compared
against something (such as an input stream or a string), it is said to match if this
sequence of four characters appears. Here are some successful matches to the
/even/ pattern:

eleven # matches at end of word
eventually # matches at start of word
even Stevens # matches twice: an entire word and within a word

And here are some unsuccessful matches (or non-matches):

heaven # ’a’ breaks the pattern
Even # uppercase ’E’ breaks the pattern
EVEN # all uppercase breaks the pattern
eveN # uppercase ’N’ breaks the pattern
leave # not even close!
Steve not here # space between ’Steve’ and ’not’ breaks the pattern

Most regular expression technologies (and Perl’s is no exception) are extended by
a collection of special characters, referred to as metacharacters. Metacharacters
influence how the pattern is matched, and are described later.

Technical Commentary: The term ‘‘regular expression’’ is often shortened to
‘‘regex’’, and is pronounced ‘‘reg’’, as in ‘‘beg’’, and ‘‘ex’’ as in . . . well, ‘‘x’’.

7.1.2 What makes regular expressions so special?

Let’s answer this question with a demonstration. Imagine the requirement to
write a subroutine to find the first occurrence of a pattern, such as ‘‘even’’, within
a given string. Given the Perl that has been covered thus far, a reasonable strategy
is to approach the problem in the following way (note that before any processing
occurs, perl starts from the beginning of the string to search and has yet to read
any characters from it):

Pattern Basics 123

1. Examine the next character of the string.

2. If the character under consideration is not ‘‘e’’, return to step 1.

3. If the character under consideration is ‘‘e’’, consider the next character of
the string.

4. If the character under consideration is not ‘‘v’’, go back one character (that
is, back to the found ‘‘e’’), and return to step 1.

5. If the character under consideration is ‘‘v’’, consider the next character of
the string.

6. If the character under consideration is not ‘‘e’’, go back two characters (that
is, back to the first found ‘‘e’’), and return to step 1.

7. If the character under consideration is ‘‘e’’, consider the next character of
the string.

8. If the character under consideration is not ‘‘n’’, go back three characters
(that is, back to the first found ‘‘e’’), and return to step 1.

9. If the character under consideration is ‘‘n’’ – rejoice! – a match has been
found.

Using a pencil and some paper, use this strategy to search for the pattern ‘‘even’’
in the strings ‘‘Steven’’, ‘‘heaven’’ and ‘‘eleven’’, convincing yourself that it does
indeed work1.

Now, imagine further that a subroutine called find it is based on the above
strategy and searches a given string for a given pattern, returning ‘‘true’’ upon
success. The subroutine could be invoked like this:

my $pattern = "even";
my $string = "do the words heaven and eleven match?";

if (find_it($pattern, $string))
{

print "A match was found.\n";
}
else
{

print "No match was found.\n";
}

Assuming, of course that the subroutine did indeed exist, which it does not. The
reason it does not exist is that no Perl programmer, even the most masochistic,
would ever dream of creating a subroutine such as find it. Writing such a
subroutine is tedious, tricky and totally unnecessary. The Perl programmer uses
a regular expression, and writes the above code like this:

1
Even though it is not the most efficient strategy. Can you think of an improvement?

124 Patterns, Patterns and More Patterns

my $string = "do the words heaven and eleven match?";

if ($string =~ /even/)
{

print "A match was found.\n";
}
else
{

print "No match was found.\n";
}

And then the Perl programmer promptly gets on with whatever else needs doing.
The requirement to write a subroutine to perform the searching is nullified.

The key point is that by using a regular expression, Perl programmers are able
to specify what it is they are interested in finding, without having to spell out
how it should be found. The ‘‘how’’ is left to perl, which performs the search on
the basis of the specified regular expression.

Maxim 7.1 Use a regular expression to specify what you want to find,
not how to find it.

At first glance, many think that this is not such an important thing. However,
finding things in other things is such a common occurrence that any programming
technology that makes it quick and easy is to be welcomed. And the significance
of this for Bioinformaticians should be clear: finding patterns in sequences is a
very big deal indeed!

Simple patterns, such as ‘‘even’’, are known as concatenations. To concatenate
is to link together or form a sequence of. So, any sequence of characters is a
pattern, specifically a concatenation pattern. There are other types of patterns.
Unlike concatenations, the other types of patterns are associated with a particular
pattern metacharacter.

7.2 Introducing the Pattern Metacharacters

In addition to concatenations, patterns can represent repetitions and alternations.
It is also possible to state that a pattern may or may not be there, in that it is
optional.

7.2.1 The + repetition metacharacter

The + metacharacter is read as one or more of. The following regular expression
matches one or more occurrence of the letter ‘‘T’’:

/T+/

Introducing the Pattern Metacharacters 125

Which matches any of the following:

T
TTTTTT
TT

But does not match any of these:

t
this and that
hello
tttttttttt

Repetitions can be combined with concatenations. This next pattern matches the
letter ‘‘e’’, followed by the letter ‘‘l’’, followed by one or more occurrences of the
letter ‘‘a’’:

/ela+/

In the above example, the repetition is said to bind more closely than the
concatenation, in that only the letter immediately preceding the + symbol is
repeated. So, these strings successfully match the pattern:

elation
elaaaaaaaa

If a requirement exists to bind the repetition to more than one character (i.e.,
to a concatenation), use parentheses to indicate how many characters to repeat.
Consider this regular expression:

/(ela)+/

Now, if the combination of the letter ‘‘e’’, followed by the letter ‘‘l’’, followed by
the letter ‘‘a’’ occurs one or more times, there’s a match, as with these strings:

elaelaelaela
ela

This means that the ‘‘(’’ and ‘‘)’’ characters are also metacharacters, which is
fine until a requirement exists to match either of these characters (or any other
metacharacter, for that matter). When such a requirement exists, a metacharacter
can have its special meaning switched off by the use of the \ character (which is
known as escaping). Consider this regular expression:

/\(ela\)+/

126 Patterns, Patterns and More Patterns

which now matches an opening parenthesis, ‘‘(’’, followed by the letter ‘‘e’’,
followed by the letter ‘‘l’’, followed by the letter ‘‘a’’, followed by one or more
occurrences of the closing parenthesis, ‘‘)’’. So, this string matches:

(ela))))))

and this does not:

(ela(ela(ela

7.2.2 The | alternation metacharacter

Another important metacharacter is the vertical bar, |, which indicates alterna-
tion. Alternation offers choice. Here’s an example that matches any one of the
digit characters:

/0|1|2|3|4|5|6|7|8|9/

That is, the digit 0 or, alternatively, the digit 1 or, alternatively, the digit 2 or,
alternatively, the digit 3, and so on, up to and including the digit 9 can match.
So, if a single digit occurs anywhere in the string, there’s a match. All of these
strings match (as they all contain at least one digit):

0123456789
there’s a 0 in here somewhere
My telephone number is: 212-555-1029

As can be imagined, looking for any digit is a common requirement, as is trying
to match any single lowercase or uppercase letter. It is possible to match any
lowercase letter with this regular expression:

/a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z/

Just as it is possible to use this regular expression to match any single uppercase
letter:

/A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z/

Both seem like an awful lot of work just to match a single character. Perl’s regular
expression shorthand to the rescue!

Introducing the Pattern Metacharacters 127

7.2.3 Metacharacter shorthand and character classes

In order to reduce the amount of work required, Perl provides the character class,
which is a shorthand notation for a long list of alternatives. Rather than using
this regular expression to match any digit:

/0|1|2|3|4|5|6|7|8|9/

it is possible to define a character class, which means the same thing, as follows:

/[0123456789]/

That is, place the digits (or letters or whatever) between the ‘‘[’’ and ‘‘]’’ charac-
ters, to indicate a series of alternations. This regular expression:

/[aeiou]/

is exactly the same as this one:

/a|e|i|o|u/

Most Perl programmers prefer the character class version of the regular expres-
sion. When the first character of a character class is the ˆ symbol (known as hat),
the character class is inverted. This regular expression:

/[^aeiou]/

matches any single character that is not one of the five vowels. The ˆ character
can be included within a character class as a literal character by positioning it
anywhere but the first position. Ranges can also be specified within character
classes using the - symbol. This character class:

/[0123456789]/

can also be written as:

/[0-9]/

which is shorter, more convenient and less prone to a typing error2. As the
letters are also ranges, the long ‘‘any letter’’ regular expressions from earlier in
this section can be rewritten as

/[a-z]/

2
Although we never make any of thsoe ... em, eh, sorry ... those.

128 Patterns, Patterns and More Patterns

which matches any single lowercase letter, and like this:

/[A-Z]/

to match any single uppercase letter. If a requirement exists to match a literal
‘‘-’’ character, position the dash at the start of the character class:

/[-A-Z]/

The above regular expression now matches for any single uppercase letter or the
dash. Combining character classes defines very specific concatenations. Consider
this regular expression:

/[BCFHST][aeiou][mty]/

which matches any three-letter word that starts with an uppercase letter from
the first character class, has a vowel in the middle (the second character class)
and ends in either the letter ‘‘m’’, ‘‘t’’ or ‘‘y’’ (the third character class). Each of
the following words matches this regular expression:

Bat
Hit
Tot
Cut
Say

while these words do not:

Hog
Can
May
bat

Note the last word, ‘‘bat’’, which almost matches but does not as regular expres-
sions are case-sensitive. To match words that start with either an uppercase or a
lowercase word, rewrite the regular expression like this:

/[BbCcFfHhSsTt][aeiou][mty]/

which now allows for both ‘‘bat’’ and ‘‘Bat’’ to match.

7.2.4 More metacharacter shorthand

The character classes that match any single digit and any single letter (either
lowercase or uppercase) are so common that Perl provides further convenient
shorthand related to them. Rather than using this character class to match any
single digit:

/[0-9]/

Introducing the Pattern Metacharacters 129

Perl provides the slash-d shorthand:

/\d/

So, \d means the same as [0-9], and it is easy to remember, as ‘‘d’’ is short for
digit.

When it comes to lowercase and uppercase letters, Perl groups these together
with the digits and the underscore character to form the word character class.
Instead of having to specify this character class:

/[a-zA-Z0-9_]/

all that’s required is Perl’s slash-w shorthand:

/\w/

as both regular expressions mean the same thing. Again, this is easy to remember,
as ‘‘w’’ is short for word.

Another special character class is the slash-s shorthand, where ‘‘s’’ is short for
space. This regular expression:

/\s/

is short for this regular expression:

/[^ \t\n\r\f]/

These characters are generally referred to as the space (or whitespace) characters.
Each of these special character classes3 has an inverted form. To match any

single character that is not a digit, use this regular expression:

/\D/

That is, the ‘‘\D’’ regular expression is ‘‘\d’’ inverted. Likewise, ‘‘\W’’ is ‘‘\w’’
inverted and ‘‘\S’’ is ‘‘\s’’ inverted.

The beauty of these special shorthands becomes clear when they are seen
in action. Consider a regular expression that must match a digit, followed by
any whitespace character, followed by two word characters and then any other
character that is not a digit. Without the specials, the following regular expression
does the trick:

/[0-9][^ \t\n\r\f][a-zA-Z0-9_][a-zA-Z0-9_][^0-9]/

3
Sometimes referred to as the classic character classes.

130 Patterns, Patterns and More Patterns

Here’s the above regular expression rewritten to use the specials:

/\d\s\w\w\D/

Note: less typing, less chance of error and more convenience. As this is such an
important point, here’s a new maxim to drive the message home.

Maxim 7.2 Use regular expression shorthand to reduce the risk of error.

7.2.5 More repetition

Character classes can be combined with the repetition metacharacter to great
effect. This regular expression matches a word of any length:

/\w+/

and is read as one or more word characters. Knowing this, the regular expression
from the last section could be rewritten as:

/\d\s\w+\D/

However, this matches any number of word characters, not exactly two as was the
requirement. Perl provides a facility to match a specific number of occurrences
of something. The { and } metacharacters are used to specify the number of
occurrences to match. Here’s the above regular expression rewritten to match
exactly two word characters, as required:

/\d\s\w{2}\D/

If a requirement exists to match two but not more than four word characters, use
this regular expression:

/\d\s\w{2,4}\D/

And finally, if the requirement is to match at least two metacharacters (or
characters) with no upper limit on the number of word characters to match, use
this:

/\d\s\w{2,}\D/

7.2.6 The ? and * optional metacharacters

The optional metacharacters are used to specify that some part of a regular
expression may or may not be there. Consider this example:

/[Bb]art?/

Introducing the Pattern Metacharacters 131

which matches any of the following words:

bar
Bar
bart
Bart

That is, the letter ‘‘t’’ is optional. More correctly, Perl programmers read the ?
metacharacter as: match zero or one time. In other words, it is either there or it
is not; it’s optional.

The * metacharacter matches zero or more times. Rewriting the above regular
expression as follows has the effect of matching any number of occurrences of
the letter ‘‘t’’, including not matching it at all:

/[Bb]art*/

Any of the following now match this regular expression:

bar
Bart
barttt
Bartttttttttttttttttttt!!!

Note that even though the last example appends three exclamation marks, there’s
still a match, as regular expressions match anywhere in a string. More on this
behaviour later.

Care is needed when using the * metacharacter. Consider this regular expres-
sion, which always matches successfully:

/p*/

When applied against any string, the p* regular expression always matches, as
the pattern is looking for zero or more occurrences of the letter ‘‘p’’. If the string
matched against contains a ‘‘p’’, there’s a match. Equally, if the string does not
contain a ‘‘p’’, there is also a match! Remember: the * matches zero or more times,
and something – whether it is the letter ‘‘p’’ or anything else, for that matter – is
always not there.

7.2.7 The any character metacharacter

There is often a requirement to match any character, regardless of whether it is
a word, digit or whitespace character. The . metacharacter does just that:

/[Bb]ar./

132 Patterns, Patterns and More Patterns

The use of the any character metacharacter allows the above pattern to success-
fully match any of these strings4:

barb
bark
barking
embarking
barn
Bart
Barry

Appending the ? optional metacharacter to the pattern, thus:

/[Bb]ar.?/

allows words such as ‘‘bar’’ and ‘‘Bar’’ also to match .

7.3 Anchors

The last example from the last section highlights, once again, the fact that
the match is successful if the pattern is found anywhere in the string under
consideration. Note that ‘‘bark’’, ‘‘barking’’ and ‘‘embarking’’ are all successful
matches. This can often result in patterns matching when they were not expected
to, which can sometimes be a surprise. But what if a requirement exists to match
an entire word, such as ‘‘bark’’, but not match ‘‘barking’’ and ‘‘embarking’’ (as the
word ‘‘bark’’ is embedded in them)?

The word boundary metacharacters allow a regular expression to be anchored
at a word boundary – that is the space between a word and something else, which
is defined in Perl as the position between ‘‘\w’’ and ‘‘\W’’.

7.3.1 The \b word boundary metacharacter

To match an entire word, surround the word to be matched with the \b word
boundary metacharacter, as follows:

/\bbark\b/

This string now successfully matches:

That dog sure has a loud bark, doesn’t it?

as the word ‘‘bark’’ is surrounded by word boundaries, whereas it does not match:

That dog’s barking is driving me crazy!

4
The temptation to use the letter ‘‘f’’ in this example was great, but you’ll be glad to know we

resisted.

Anchors 133

The \b metacharacter has an inverse in \B, which matches at any position that is
not a word boundary. Note that this regular expression:

/\Bbark\B/

matches ‘‘embarking’’ but not ‘‘bark’’ or ‘‘barking’’.

7.3.2 The ^ start-of-line metacharacter

To anchor the regular expression to the start of a string (or line), use the ^
metacharacter:

/^Bioinformatics/

which states that a successful match to a string must begin with the word
‘‘Bioinformatics’’, as follows:

Bioinformatics, Biocomputing and Perl is a great book.

The next string does not match, as the match cannot be made at the start of the
string:

For a great introduction to Bioinformatics, see Moorhouse, Barry (2004).

7.3.3 The $ end-of-line metacharacter

To anchor the regular expression to the end of a string (or line), use the $
metacharacter:

/Perl$/

which matches successfully with this string:

My favourite programming language is Perl

but not this one:

Is Perl your favourite programming language?

A common regular expression to match against a blank line is:

/^$/

That is, the line has a start, an end and nothing between the two: it’s blank.

134 Patterns, Patterns and More Patterns

7.4 The Binding Operators

Consider this simple program, called simplepat:

#! /usr/bin/perl -w

The ’simplepat’ program - simple regular expression example.

while (<>)
{

print "Got a blank line.\n" if /^$/;
print "Line has a curly brace.\n" if /[}{]/;
print "Line contains ’program’.\n" if /\bprogram\b/;

}

The simplepat program keeps reading lines of input from STDIN until there are
no more lines to read. As perl has not been told otherwise, the line is assigned
to the default scalar, $. Three print statements form the body of the loop,
with each statement qualified with an if conditional statement. Each of the if
statements tries to match to a specific regular expression5.

Let’s execute the simplepat program, specifying the program’s disk-file as the
input to the program, with this command-line:

perl simplepat simplepat

Here’s the output produced by the above command-line:

Got a blank line.
Line contains ’program’.
Got a blank line.
Line has a curly brace.
Line has a curly brace.
Line contains ’program’.
Line has a curly brace.

This program demonstrates that in the absence of any named scalar, perl uses
$ as the thing to match against. If a match is successful, perl returns true to the
program. The simplepat program exploits this behaviour in each of its print
statements.

It is often the case that the thing to match against is the value of some scalar
variable, not $. The binding operator, written as =~, is used to tell perl that a
regular expression is to be applied (or bound) to a named scalar. For example,
this statement:

if ($line =~ /^$/)

5
The meaning of each should be clear. If they are not, you are advised to go back to the

beginning of this chapter and start again.

Remembering What Was Matched 135

checks to see if the $line scalar contains a blank line. In addition to =~, there’s
also a not binding operator, !~, which is the logical negation of =~. This statement:

if ($line !~ /^$/)

checks to see if the $line scalar contains anything other than a blank line. The
binding operators are very useful, but really come into their own when combined
with grouping parentheses.

7.5 Remembering What Was Matched

The grouping parentheses were introduced earlier, when they were used to group
a number of letters together so that they could be repeated:

/(ela)+/

It wasn’t mentioned then, but when the parentheses are used to group in this way,
perl remembers the value that matched that part of the regular expression, often
referred to as a subpattern. For each set of parentheses, perl creates a special
scalar variable to hold what matched. These special variables, often referred to
as the after-match variables, are numbered upward from 1.

Here’s a small program, called grouping that demonstrates how the after-
match variables are used:

#! /usr/bin/perl -w

The ’grouping’ program - demonstrates the effect of parentheses.

while (my $line = <>)
{

$line =~ /\w+ (\w+) \w+ (\w+)/;

print "Second word: ’$1’ on line $..\n" if defined $1;
print "Fourth word: ’$2’ on line $..\n" if defined $2;

}

Each line read into this program is assigned to the $line scalar, which is then
bound against a regular expression. The pattern looks for a word, \w+, a space,
another word that is to be remembered (note the use of parentheses), another
space, another word, another space and another remembered word6.

After a successful pattern match, the two remembered values are automatically
assigned by perl to the special scalars $1 and $2. The print statement displays

6
As you can see, it is often easier to write a regular expression using shorthand than it is to

actually describe it in words.

136 Patterns, Patterns and More Patterns

what was found. Note the use of if defined, which ensures output is generated
only as a result of a successful match. Note, too, the use of the ‘‘$.’’ scalar, another
internal Perl scalar, which contains the current line number of the input file being
processed. Given the following input data (contained in the test.group.txt
data-file):

This is a sample file for use with
the grouping program that is included
with the Patterns
Patterns and More Patterns chapter
from Bioinformatics, Biocomputing and Perl.

the following command-line:

perl grouping test.group.data

produces the following results:

Second word: ’is’ on line 1.
Fourth word: ’sample’ on line 1.
Second word: ’grouping’ on line 2.
Fourth word: ’that’ on line 2.
Second word: ’and’ on line 4.
Fourth word: ’Patterns’ on line 4.

There is no match on line 3 as there are only three words on that line, and the
regular expression is trying to match four words (two of which are remembered).
Line 5 does not match either, as the regular expression does not take into
consideration the comma. Note the program is able to use the values that were
remembered.

It is possible to nest parentheses. Consider this version of grouping, which
has the rather imaginative name grouping2:

#! /usr/bin/perl -w

The ’grouping2’ program - demonstrates the effect of more parentheses.

while (my $line = <>)
{

$line =~ /\w+ ((\w+) \w+ (\w+))/;

print "Three words: ’$1’ on line $..\n" if defined $1;
print "Second word: ’$2’ on line $..\n" if defined $2;
print "Fourth word: ’$3’ on line $..\n" if defined $3;

}

which when executed against the test.group.txt data-file produces the follow-
ing output:

Greedy by Default 137

Three words: ’is a sample’ on line 1.
Second word: ’is’ on line 1.
Fourth word: ’sample’ on line 1.
Three words: ’grouping program that’ on line 2.
Second word: ’grouping’ on line 2.
Fourth word: ’that’ on line 2.
Three words: ’and More Patterns’ on line 4.
Second word: ’and’ on line 4.
Fourth word: ’Patterns’ on line 4.

When working with nested parentheses, count the opening parentheses, starting
with the leftmost, to determine which parts of the pattern are assigned to which
after-match variables. That last sentence is worth another maxim:

Maxim 7.3 When working with nested parentheses,
count the opening parentheses, starting with the leftmost,

to determine which parts of the pattern
are assigned to which after-match variables.

7.6 Greedy by Default

Consider this regular expression:

/(.+), Bart/

matched against this string:

Get over here, now, Bart! Do you hear me, Bart?

The pattern matches one or more of any character, .+, a literal comma, a space
character, then the word ‘‘Bart’’. The parentheses ensure that anything matched
by .+ is remembered in the $1 after-match variable. After performing the match,
$1 contains this string:

Get over here, now, Bart! Do you hear me

This may come as a bit of a surprise, as it would be reasonable to think that
the match succeeds when the first ‘‘Bart’’ is encountered, not the second. A
reasonable assumption indeed, but incorrect. By default, perl performs greedy
matching, in that an attempt is always made to match as much of the string as
possible, that is, the longest possible match. To specify that non-greedy (or lazy)
matching should be applied to part of the regular expression (or subpattern),
qualify it with the ? character:

/(.+?), Bart/

138 Patterns, Patterns and More Patterns

Note that the ? character when used in this way does not mean optional. It means
non-greedy. Rather than match as much as possible, this part of the regular
expression now matches as little as possible. When matched against the string
from earlier, this non-greedy regular expression remembers the following value
in the $1 after-match variable:

Get over here, now

In addition to the use of the ? non-greedy qualifier with the + metacharacter, it
can also be used with the * and ? metacharacters. It can also be used with the {x},
{x,y} and {x,} repetition specifiers (where ‘‘x’’ and ‘‘y’’ specify the minimum and
maximum number of matches, respectively). Being able to control when perl is
and is not greedy is important.

7.7 Alternative Pattern Delimiters

The use of the / character as a regular expression delimiter suffices for most
needs. However, consider writing a regular expression to match against a string
like this:

/usr/bin/perl

It is not possible to write the regular expression as follows:

//\w+/\w+/\w+/

as perl will treat the second / character as the end of the pattern and ignore the
\w+/\w+/\w+/ bit. Whoops! It is possible to escape the / characters that are part
of the pattern:

/\/\w+\/\w+\/\w+/

to ensure that the leftmost and rightmost / characters are treated as pattern
delimiters. Unfortunately, the pattern is now harder to read and understand, and
it gets worse when each of the matched words is remembered:

/\/(\w+)\/(\w+)\/(\w+)/

In situations such as this, Perl allows alternative delimiters to be specified, where
the delimiter character is drawn from the set that includes any non-alphabetic,
non-whitespace character. To use an alternative delimiter, prefix the regular
expression with the letter ‘‘m’’ to signify the start of the pattern. The above
escaped example regular expression can be rewritten as:

m#/\w+/\w+/\w+#

or if the matched words are to be remembered:

m#/(\w+)/(\w+)/(\w+)#

Another Useful Utility 139

There is now no confusion as to the inclusion of the / characters within the
regular expression: they are to be treated literally, not as delimiters.

Other common delimiter characters include !, |, , and :. It is also possible to
use any of the following bracket-pairings as delimiters:

m{ }
m< >
m[]
m()

As the use of the ‘‘m’’ prefix signifies the start of a pattern, it is possible to use it
with the standard delimiter characters:

/even/

is the same (and can be written) as:

m/even/

However, as the use of the ‘‘m’’ prefix is implied when used with /, the majority
of Perl programmers omit it.

7.8 Another Useful Utility

Let’s extend the UsefulUtils module from the Getting Organised chapter to
include a subroutine that relies on a regular expression to get its work done.

Later in this book, a subroutine is required to convert from one date format to
another. A date in DD-MMM-YYYY format needs to be converted to YYYY-MM-DD
format. Here’s a subroutine, called biodb2mysql, that performs the conversion:

sub biodb2mysql {
#
Given: a date in DD-MMM-YYYY format.
Return: a date in YYYY-MM-DD format.
#

my $original = shift;

$original =~ /(\d\d)-(\w\w\w)-(\d\d\d\d)/;

my ($day, $month, $year) = ($1, $2, $3);

$month = ’01’ if $month eq ’JAN’;
$month = ’02’ if $month eq ’FEB’;
$month = ’03’ if $month eq ’MAR’;
$month = ’04’ if $month eq ’APR’;
$month = ’05’ if $month eq ’MAY’;

140 Patterns, Patterns and More Patterns

$month = ’06’ if $month eq ’JUN’;
$month = ’07’ if $month eq ’JUL’;
$month = ’08’ if $month eq ’AUG’;
$month = ’09’ if $month eq ’SEP’;
$month = ’10’ if $month eq ’OCT’;
$month = ’11’ if $month eq ’NOV’;
$month = ’12’ if $month eq ’DEC’;

return $year . ’-’ . $month . ’-’ . $day;
}

As this subroutine only ever expects a single parameter, there’s no need to go to
the trouble of supporting named parameters. Any parameter supplied is assigned
to the $original lexical variable by invoking shift. For the purposes of this
discussion, the key statements are these:

$original =~ /(\d\d)-(\w\w\w)-(\d\d\d\d)/;

my ($day, $month, $year) = ($1, $2, $3);

The value of $original is matched against a regular expression that looks for two
digits, followed by a dash, followed by three word characters, followed by another
dash, followed by four digits. Three sets of parentheses ensure that the $1, $2 and
$3 after-match variables remember the values matched by each subpattern. The
three after-match variables are then assigned (as a list) to the $day, $month and
$year lexicals. The rest of the subroutine performs the conversion and returns
the converted date string. Note that the regular expression could just as easily
be written as follows:

/(\d{2})-(\w{3})-(\d{4})/

As always with Perl, there’s more than one way to do it. However, owing to
greediness considerations, it would be considered dangerous to write the regular
expression like this:

/(\d+)-(\w+)-(\d+)/

7.9 Substitutions: Search and Replace

In addition to the match operator (m//), Perl supports the substitution operator
(s///) as part of its regular expression technology. Unlike the match operator,
which surrounds the regular expression with a pair of delimiters, the substitution
operator adds a third. The pattern to search for is delimited by the first two /
characters, while the string to use as a replacement is delimited by the last two
/ characters. Here’s an example that searches for a simple concatenation and
replaces it with another:

s/these/those/

Substitutions: Search and Replace 141

By default, the substitution stops replacing after the first successful match. So, if
a string has this value:

Give me some of these, these, these and these. Thanks.

the substitution as shown above transforms the string into this:

Give me some of those, these, these and these. Thanks.

If a requirement exists to search for and replace all occurrences of a pattern,
the behaviour of the substitution can be modified with a trailing ‘‘g’’. This is the
global modifier7, and it is used as follows:

s/these/those/g

When applied to the string, a global search and replace is performed, resulting in
this string:

Give me some of those, those, those and those. Thanks.

Another important modifier is the ignore case modifier, which matches regardless
of case. Modifiers can be combined, so if the substitution is:

s/these/those/gi

any of the following words would match: ‘‘these’’, ‘‘These’’, ‘‘THESE’’, ‘‘ThEsE’’
and so on. That is, the capitalisation and case of the string are ignored.

7.9.1 Substituting for whitespace

A common use for the substitution operator is to remove unwanted whitespace
from a scalar. This regular expression removes any leading whitespace:

s/^\s+//

while this substitution removes any trailing whitespace:

s/\s+$//

One final variation compresses (or collapses) any number of whitespace charac-
ters into a single space character:

s/\s+/ /g

Note the use of ‘‘g’’, the global modifier.

7
This can be applied to any regular expression, not just substitutions. This is true of most

modifiers.

142 Patterns, Patterns and More Patterns

7.10 Finding a Sequence

Let’s conclude this chapter with a complete example that demonstrates a real-
world usage of regular expressions.

The data for this example is taken from the EMBL Nucleotide Sequence
Database8, is identified as ID AF213017 and is described as: Acinetobacter cal-
coaceticus KHP18 partial pKLH2 plasmid including aberrant mercury resistance
transposon TnPKLH2, truncated insertion sequence IS1011.D1 and determinants
for CinH resolution system. The data contained in the EMBL database associated
with this entry looks like this:

gccacagatt acaggaagtc atatttttag acctaaatca ctatcctcta tctttcagca 60
agaaaagaac atctacttgg tttcgttccc tatccaagat tcagatggtg aaacgagtga 120
tcatgcacct gatgaacgtg caaaaccaca gtcaagccat gacaaccccg atctacagtt 180

...
gcatctgtct gtatccgcaa cctaaaatca gtgctttaga agccgtggac attgatttag 6660
gtacgtgtag agcaagactt aaatttgtac gtgaaactaa aagccagttg tatgcattag 6720
ctttttcaat ttgtataacg tataacgtat ataatgttaa ttttagattt tcttacaact 6780
tgatttaaaa gtttaagatt catgtattta tattttatgg ggggacatga atagatct 6838

There is a readily identifiable pattern here. Each line starts with some whitespace.
The sequence data is then presented in groups of up to ten letters (with up to six
groups on a line) and the line ends with a count of the size of the sequence up to
that point.

The real-world requirement is to take any arbitrary sequence and determine
if it appears within the sequence as extracted from the EMBL database. This is
complicated by the fact that the sequence is presented as a group of ten-letter
strings over multiple lines, as opposed to one single stringed sequence on one
line. If the sequence data was on one line, and contained in a scalar called
$sequence, a line of code similar to this:

if ($sequence =~ /acttaaatttgtacgtg/)

would do the trick. Unfortunately, the sequence data is presented as groups of
ten-letter strings over multiple lines, as opposed to one single stringed sequence
on one single line. All of those spaces complicate things somewhat and need to
be removed if there is to be any chance of matching a sequence that is greater
than ten letters in length. Even if the matching sequence is less than ten letters
long, it may fail if the spaces remain, as part of the matching sequence may
match the end of one group and continue into the next (or worse still, straddle
two separate lines). Look closely at the sample data, above, for examples of these
problems.

Rather than try to solve all of the challenges posed by this example in one go,
let’s deal with each one at a time. The only assumption made is that the sequence

8
We cover this in detail later.

Finding a Sequence 143

data has been extracted from the EMBL database entry and stored in a data-file
called embl.data9.

Removing the number at the end of each line is accomplished with the following
substitution:

s/\s*\d+$//

The regular expression matches zero or more whitespace characters (\s*), fol-
lowed by one or more digits (\d+) positioned at the end of the line ($). When it is
found, it is replaced with nothing, that is, removed.

Removing the unwanted spaces within a line involves another substitution,
which looks for any amount of whitespace (\s*) and replaces it with nothing:

s/\s*//g

Note the use of the global modifier, which ensures all space characters are
removed. Let’s use these two substitutions within a program, called pre-
pare embl:

#! /usr/bin/perl -w

The ’prepare_embl’ program - getting embl.data ready for use.

while (<>)
{

s/\s*\d+$//;
s/\s*//g;
print;

}

The two substitutions are performed on each line that is read in. In the absence
of a named variable, the line is assigned to the $ default variable. After the two
substitutions have been performed, the adjusted line is printed to STDOUT. Use
this command-line to process the embl.data disk-file, and redirect STDOUT to
another data-file, producing embl.data.out:

perl prepare_embl embl.data > embl.data.out

Use the Linux wc utility to request some statistics on the newly created disk-file:

wc embl.data.out

which produces the following results:

0 1 6838 embl.data.out

9
Available for download from the Bioinformatics, Biocomputing and Perl web-site.

144 Patterns, Patterns and More Patterns

The wc utility reports that the newly created disk-file contains 6838 characters.
This matches the total at the end of the extracted EMBL database entry, so
it appears as if the entire sequence has been processed. Interestingly, wc also
reports that the disk-file contains a single line. This is an interesting, and
somewhat pleasing, side effect of executing the prepare embl program.

With the sequence now stored as a single line of data in the embl.data.out
data-file, it is a relatively straightforward exercise to produce a small program
to check arbitrary sequences against the EMBL database entry. This program is
called match embl:

#! /usr/bin/perl -w

The ’match_embl’ program - check a sequence against the EMBL
database entry stored in the
embl.data.out data-file.

use constant TRUE => 1;

open EMBLENTRY, "embl.data.out"
or die "No data-file: have you executed prepare_embl?\n";

my $sequence = <EMBLENTRY>;

close EMBLENTRY;

print "Length of sequence is: ", length $sequence, " characters.\n";

while (TRUE)
{

print "\nPlease enter a sequence to check.\nType ’quit’ to end: ";

my $to_check = <>;

chomp($to_check);
$to_check = lc $to_check;

if ($to_check =~ /^quit$/)
{

last;
}

if ($sequence =~ /$to_check/)
{

print "The EMBL data extract contains: $to_check.\n";
}
else
{

print "No match found for: $to_check.\n";
}

}

Let’s review a sample usage session with this program. Execute the match embl
program with this command-line:

perl match_embl

Finding a Sequence 145

Here’s a captured usage session, showing the messages produced and the input
provided by the user (which is shown in italics):

Length of sequence is: 6838 characters.

Please enter a sequence to check.
Type ’quit’ to end: aaatttgggccc
No match found for: aaatttgggccc.

Please enter a sequence to check.
Type ’quit’ to end: acttaaatttgtacgtg
The EMBL data extract contains: acttaaatttgtacgtg.

Please enter a sequence to check.
Type ’quit’ to end: TATCATGAT
No match found for: tatcatgat.

Please enter a sequence to check.
Type ’quit’ to end: accttaaatttgtacgtg
No match found for: accttaaatttgtacgtg.

Please enter a sequence to check.
Type ’quit’ to end: cagcaagaaaa
The EMBL data extract contains: cagcaagaaaa.

Please enter a sequence to check.
Type ’quit’ to end: caGGGGGgg
No match found for: caggggggg.

Please enter a sequence to check.
Type ’quit’ to end: tcatgcacctgatgaacgtgcaaaaccacagtcaagccatga
The EMBL data extract contains: tcatgcacctgatgaacgtgcaaaaccacagtcaagccatga.

Please enter a sequence to check.
Type ’quit’ to end: quit

Even on a relatively slow computer10, the matching occurs in the blink of an eye.
Imagine how long this matching would take to do by hand!

Rather than describe the workings of the match embl program in detail, it
is left as an exercise for the reader to work out what is going on. At this
stage in the book, most of what you need to know has already been cov-
ered. Attention is drawn to the use of the in-built lc subroutine, which takes
a scalar variable and converts it to lowercase, returning the lowercase ver-
sion to the caller. Note also the use of the $to check scalar as the regular
expression against which to match. The value of the scalar is used as the
regular expression against which to match and, in this case, it is a concatena-
tion.

10
By the standard of the day (Summer 2003). The match embl program was tested on a ‘‘slow’’

Pentium III.

146 Patterns, Patterns and More Patterns

Where to from Here

Perl’s regular expression technology is often referred to as a programming
language within a programming language. This is a cute sound bite. However, it
masks the fact that the integration of a full-featured regular expression engine
into the core of Perl is what makes it the programming language it is. There is a
lot more to regular expressions than described in this chapter, which presented
the core technology to whet your appetite. The Suggestions for Further Reading
appendix contains pointers to more thorough treatments. As can be expected,
example uses of Perl’s regular expression technology appear throughout the
remainder of Bioinformatics, Biocomputing and Perl.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• Use a regular expression to specify what you want to find, not how to find it.

• Use regular expression shorthand to reduce the risk of error.

• When working with nested parentheses, count the opening parentheses, start-
ing with the leftmost, to determine which parts of the pattern are assigned to
which after-match variables.

Exercises

1. Work through the perlretut documentation included with Perl, trying out
each of the example regular expressions as they are presented. This is a
large document that will take some time to read. Pay particular attention to
the regular expression example that matches DNA stop codons.

2. In addition to Perl, many other programs and tools utilise regular expres-
sions in interesting ways. One such tool (included with Linux) is grep,
the ‘‘generalised regular expression parser’’, which can be used to search
for a pattern within any selection of disk-files. Read the manual page for
grep to learn how to use it, then use grep to search for the existence of
arbitrary sequences in the embl.data.out disk-file. [Be advised that upon
success and by default, grep prints the matching line to STDOUT. Check
the options, documented in the manual page, to learn how to change this
default behaviour.]

8

Perl Grabbag

Some useful bits ‘n’ pieces that every Perl programmer should
know.

8.1 Introduction

Rather than discuss a specific topic or feature of Perl in detail, this chapter
presents a collection of Perl topics. There’s much more to Perl than what’s been
covered so far in this book and, even when this chapter is worked through, there’s
still more Perl to learn. However, the core of the language has been covered and,
as demonstrated in the rest of Bioinformatics, Biocomputing and Perl, this core is
more than enough to perform a varied number of programming tasks vital to the
work of Bioinformaticians.

8.2 Strictness

Perl is often considered too loose a programming language to be taken seriously
by ‘‘real’’ computing folk. True, in its own unique way, Perl happily breaks a
number of the ‘‘golden rules’’ of the traditional programming language. For
instance, Perl allows variables to be used before they are declared, magically
assigning default values to variables and then making them immediately available
to the program within which they appear. The same goes for subroutines: they
can be invoked before they are defined. And then there are those sticky global
variables: everything is a global by default1.

1
Many a computer scientist considers this to be an unspeakable sin.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

148 Perl Grabbag

As described in Chapter 5, the use of my variables turns a global variable into
a lexical. By default, the use of my variables is optional. However, it is possible to
have perl insist on the use of my variables, making their use mandatory.

This insistence is referred to as strictness, and is switched on by adding this
line to the top of a program:

use strict;

This is a directive that, among other things, tells perl to insist on all variables
being declared before they are used2, as well as requiring that all subroutines be
declared (or defined) before they are invoked.

Why do such a thing? Why restrict the programmer, when Perl is all about
freedom? The answer has to do with scale. As programs get bigger, they become
harder to maintain. The use of use strict helps keep things organised and
reduces the risk of errors being introduced into programs. And anything that
helps reduce errors is a good thing, even if it is sometimes inflexible. Think of
the use strict directive as a gentle reminder to take the time to limit the scope
of any variables used in a program. Thinking about the scope of variables, and
using my and our to control the visibility of variables, really becomes important
as a program grows in size.

When strictness is enabled, perl takes the time to check the declaration of
each of a program’s variables before execution occurs. Consider this program,
called bestrict:

#! /usr/bin/perl -w

bestrict - demonstrating the effect of strictness.

use strict;

$message = "This is the message.\n";

print $message;

Note that the $message scalar is not declared as a lexical (my) or global (our)
variable. When an attempt is made to execute the bestrict program, perl
complains loudly that the strictness rules have been broken:

Global symbol "$message" requires explicit package name at bestrict line 7.
Global symbol "$message" requires explicit package name at bestrict line 9.
Execution of bestrict aborted due to compilation errors.

These ‘‘compilation errors’’ are fixed by simply declaring the $message scalar as
a my variable, thus:

my $message = "This is the message.\n";

2
Either as a my or our variable.

Perl One-liners 149

which really isn’t that big a deal, is it? As a program grows in size (and,
consequently, complexity), the benefits of switching on strictness far outweigh
the disadvantage (and perceived inconvenience) of having to declare all variables
with either my or our.

Defining all subroutines at the top of a program ensures that perl sees
them before they are invoked. However, as discussed earlier in this book, the
placement of subroutines is a personal preference: some programmers place
them near the top, others near the bottom, while others place subroutines at any
location within a program’s disk-file. The use of use strict forces programmers
to place subroutines near the top of their programs. Something that ‘‘forces’’
programmers to behave in a particular way is decidedly ‘‘unperlish’’ and inflexible.

To retain the flexibility of being able to place subroutines anywhere in a
program’s disk-file, while still taking advantage of the use strict directive,
Perl provides the use subs directive that can be used in combination with use
strict to declare a list of subroutines at the top of a program. Subroutine
definitions can then appear anywhere in a program’s disk-file. Here’s an example:

use strict;
use subs qw(drawline biodb2mysql);

The use subs directive declares a list of subroutine names that are later defined
somewhere in the program’s disk-file.

Although the Perl documentation advises the use of use strict for everything
but the most ‘‘casual’’ of programs, your authors’ advice is, well, more strict:
always use use strict.

Maxim 8.1 Unless you have a really good reason not to,
always switch on strictness at the top of your program.

It is left as an exercise for the reader to think up a really good reason for not
using use strict.

8.3 Perl One-liners

Most of the example programs seen thus far in Bioinformatics, Biocomputing and
Perl start with the following line:

#! /usr/bin/perl -w

The -w switch is one of a large collection of directives that can be provided to
perl on the command-line3. The ‘‘w’’ stands for ‘‘warnings’’, and instructs perl
to warn the programmer when it notices any dubious programming practices

3
Refer to the perlrun manual page, included with Perl, for all the gory details.

150 Perl Grabbag

(such as defining a subroutine twice). It is always a good idea to switch on
warnings, as it makes for better programs.

When discussing the installation of third-party CPAN modules during Chapter
5, the -e switch was used to check that the module had installed correctly, as
follows:

perl -e ’use ExampleModule’

The ‘‘e’’ stands for ‘‘execute’’, and instructs perl to execute the program state-
ments included within the single quotes. Here’s another example command-line:

perl -e ’print "Hello from a Perl one-liner.\n";’

The ability to use the -e switch on the command-line in this way creates what’s
known in the Perl world as a one-liner. That is, a single line of Perl code is
provided to perl to execute immediately from the command-line. Here’s another
one-liner that turns perl into a simple command-line calculator:

perl -e ’printf "%0.2f\n", 30000 * .12;’

which calculates 12% of 30,000 and displays the result (3600.00). The printf
subroutine is a variant of the more common print, and prints to a specified
format. Use these commands to learn more about printf and formats:

perldoc -f printf
perldoc -f sprintf

Another useful switch is -n, which, when used in combination with -e, treats the
one-liner as if it is enclosed with a loop. Consider this one-liner:

perl -ne ’print if /ctgaatagcc/;’ embl.data

which is equivalent to the following program statements:

while (<>)
{

print if /ctgaatagcc/;
}

That is, the code between the single quotes (the one-liner) is equivalent to
the above loop. The embl.data part of the command-line is just that: part of
the command-line, not part of the one-liner. When the one-liner is executed, the
following output is generated:

attgtaatat ctgaatagcc actgattttg taggcacctt tcagtccatc tagtgactaa 5880

Perl One-liners 151

as there’s a match. Of course, for those readers who took the time to complete
the exercises from the last chapter4, they already know that there’s an easier way
to do this using the grep utility:

grep ’ctgaatagcc’ embl.data

which produces output identical to that produced by the one-liner. Note: less
typing, less risk of error.

When the -n switch is combined with -p, the loop has a print statement added
to the end. Here’s a one-liner that prints only those lines from the embl.data
disk-file that do not end in four digits:

perl -npe ’last if /\d{4}$/;’ embl.data

When executed, the following output is produced:

gccacagatt acaggaagtc atatttttag acctaaatca ctatcctcta tctttcagca 60
agaaaagaac atctacttgg tttcgttccc tatccaagat tcagatggtg aaacgagtga 120
tcatgcacct gatgaacgtg caaaaccaca gtcaagccat gacaaccccg atctacagtt 180
tgatgttgaa actgccgatt ggtacgccta cagtgaaaac tatggcacaa gtgaagaaaa 240
acgctttgtt aagtttgttg caactcaaat tgacgagctt aaatcacgct acaagggtgc 300
agagatttac ctgatacgga atgaactcga ttattggttg tttagcccta aagatggtcg 360
tagattcagc cctgactaca tgctgatcat taatgatgct gaaaatagtg aaatgtacta 420
tcaatgctta attgagccta aaggtggtca tttgcttgaa aaggatactt ggaaagagga 480
agtattgatt agtttggatg atgaaagcca aattgttttt gatgcagatc aagatgattc 540
acaaaactat gttgagttct taaatgaagt taaagagcat ggttataagg aagttaaatg 600
tttaggcttc aaattctaca ataccgaacc acgatctgaa tcagattttg ctattgattt 660
tcacaatagg atgccgagtt aatctaggtt tctcactgta acctgctgat tattatcttt 720
ttgtgaagtt gctacataat attgttttta agatcattga ataaaaaagc cagctctata 780
ctggcttttt tattgcttaa aattatattc cgatgcttgg tcaaaactgc aagtatgcag 840
tcttgaccag gcatctaggg gtcgtctcag aattcggaaa ataaagcacg ctaaggcgta 900
gtcaccccgt gactcccccg cgccgatgca gcgagcttcg ttccgtcttg cagtgacgca 960

The above one-liner is equivalent to this program:

while (<>)
{

last if /\d{4}$/;
}
continue {

print $_;
}

The one-liner is a little harder to do with grep. Your authors came up with this
grep equivalent5:

grep -v ’[0123456789][0123456789][0123456789][0123456789]$’ embl.data

4
You mean to say you didn’t do the exercises?!? Quick: go back and do them now, before we

ask again.
5

This can probably be improved, depending on the version of grep available to you.

152 Perl Grabbag

Note: more typing for the grep equivalent this time. The Perl one-liner involves
less typing and, consequently, less risk of error.

8.4 Running Other Programs from perl

Another feature that helps maintain Perl’s prominent position as a ‘‘glue lan-
guage’’ is its ability to execute other programs. There are two main ways to
do this:

1. By invoking the program in such a way that after execution, the calling
program can determine whether the called program successfully executed.

2. By invoking the program in such as way that after execution, any results
from the called program are returned to the calling program.

Perl’s in-built system subroutine behaves as described in point 1 above, while
Perl’s backticks and qx// operator behave as described in point 2.

Here’s an example program, called pinvoke, that demonstrates each of these
mechanisms by invoking the Linux utility program, ls, that lists disk-files in the
current directory6:

#! /usr/bin/perl -w

pinvoke - demonstrating the invocation of other programs
from Perl.

use strict;

my $result = system("ls -l p*");

print "The result of the system call was as follows:\n$result\n";

$result = ‘ls -l p*‘;

print "The result of the backticks call was as follows:\n$result\n";

$result = qx/ls -l p*/;

print "The result of the qx// call was as follows:\n$result\n";

The invocation of system results in the ls program executing. Any output from
ls is displayed on screen (STDOUT) as normal (as that’s what ls does), then, as
ls executed successfully, a value of zero is returned to pinvoke and assigned to

6
Specifically, this invocation of the ls program lists, in long format, any disk-file whose name

starts with the letter ‘‘p’’.

Recovering from Errors 153

the $result scalar. The $result scalar is then printed to STDOUT as part of an
appropriately worded message. If the ls program fails, the $result scalar is set
to −1.

Perl’s backticks (`and`) also execute external programs from within Perl. Unlike
system, the results from the program are captured and returned to the program.
In the pinvoke program, the results are assigned to the $result scalar, and then
printed to STDOUT as part of an appropriately worded message.

The qx// operator is another way to invoke the backticks behaviour: it works
exactly the same way as backticks, which is confirmed by the output produced
by the pinvoke program (as shown and discussed below).

Note that the pinvoke program enforces strictness, requiring the programmer
to declare any variables as lexicals. There is only one, $result, which is declared
as a my variable. When executed, the pinvoke program produces the following
output:

-rw-rw-r-- 1 barryp barryp 403 Aug 16 16:48 pinvoke
-rw-rw-r-- 1 barryp barryp 145 Aug 7 12:36 prepare_embl
-rw-rw-r-- 1 barryp barryp 422 Jul 22 15:10 private_scope
The result of the system call was as follows:
0
The result of the backticks call was as follows:
-rw-rw-r-- 1 barryp barryp 403 Aug 16 16:48 pinvoke
-rw-rw-r-- 1 barryp barryp 145 Aug 7 12:36 prepare_embl
-rw-rw-r-- 1 barryp barryp 422 Jul 22 15:10 private_scope

The result of the qx// call was as follows:
-rw-rw-r-- 1 barryp barryp 403 Aug 16 16:48 pinvoke
-rw-rw-r-- 1 barryp barryp 145 Aug 7 12:36 prepare_embl
-rw-rw-r-- 1 barryp barryp 422 Jul 22 15:10 private_scope

Note that the first invocation of ls results in the production of the first three
lines on STDOUT, which are produced before the appropriately worded message
(which is produced by pinvoke, not ls).

It is also possible to invoke a disk-file containing Perl code from within a Perl
program. Use Perl’s in-built do subroutine.

8.5 Recovering from Errors

It is not always appropriate to die whenever an error occurs. Sometimes it makes
more sense to spot, and then recover from, an error. This is referred to as
handling exceptional cases, or exception handling. Consider the following code:

my $first_filename = "itdoesnotexist.txt";

open FIRSTFILE, "$first_filename"
or die "Could not open $first_filename. Aborting.\n";

154 Perl Grabbag

When executed, the above code produces the following message:

Could not open itdoesnotexist.txt. Aborting.

This assumes that the itdoesnotexist.txt disk-file does not exist. The program
terminates as a result of the invocation of die. It is possible to protect this code
by enclosing it within an eval block.

The in-built eval subroutine takes a block of code and executes it (or evaluates
it). This is exactly what perl does to code. When perl invokes eval, anything
that happens within the eval block that would usually result in a program
terminating7 is caught by perl and does not terminate the program. Here’s the
above code surrounded by an eval block:

eval {
my $first_filename = "itdoesnotexist.txt";

open FIRSTFILE, "$first_filename"
or die "Could not open $first_filename. Aborting.\n";

};

When executed, this code does not produce the error message from earlier, nor
does it die. This has nothing to do with the fact that the itdoesnotexist.txt
disk-file now exists. It has everything to do with the fact that the code is now
protected by the eval block, which is a great facility, as potentially troublesome
code can now be protected.

Maxim 8.2 Use eval to protect potentially erroneous code.

What completes the eval facility is the addition of a mechanism to check if a fatal
error did indeed occur during the eval block. If die is invoked within an eval
block, the block immediately terminates and perl sets the internal $@ variable
to the message generated by die. After the eval block, it is a simple matter to
check the status of $@ and act appropriately. Adding this if statement after the
above eval block:

if ($@)
{

print "Calling eval produced this message: $@";
}

prints the following message to STDOUT when the itdoesnotexist.txt disk-file
does not exist:

Calling eval produced this message: Could not open itdoesnotexist.txt. Aborting.

7
Perl programmers refer to the program dieing.

Sorting 155

Typically, the code within the if block associated with the eval does more than
print a message to STDOUT. That’s where recovery comes in. It would be a good
idea in this particular example to try to open another disk-file or, perhaps, create
itdoesnotexist.txt as an empty disk-file, and attempt to open it again. The
program can then continue as normal.

8.6 Sorting

Perl provides powerful in-built support for sorting8. Two subroutines, sort and
reverse, can be used to sort lists of strings or numbers into ascending order,
descending order or any other customized order. To demonstrate the power of
Perl’s sorting technology, let’s step through a program, called sortexamples,
that demonstrates what’s possible.

The sortexamples program starts in the usual way: the magic first line is
followed by a short comment, then strictness is switched on. A list of four short
DNA sequences is assigned to an array called @sequences, which is then printed
to STDOUT:

#! /usr/bin/perl -w

sortexamples - how Perl’s in-built sort subroutine works.

use strict;

my @sequences = qw(gctacataat attgttttta aattatattc cgatgcttgg);

print "Before sorting:\n\t-> @sequences\n";

This print statement produces the following output:

Before sorting:
-> gctacataat attgttttta aattatattc cgatgcttgg

that is, the four short sequences are displayed in the order that they were
assigned to the array. The next three lines of code produce three new arrays from
the @sequences array:

my @sorted = sort @sequences;
my @reversed = sort { $b cmp $a } @sequences;
my @also_reversed = reverse sort @sequences;

The first array, @sorted, is created as a result of invoking the in-built sort
subroutine, passing the @sequences array as its sole parameter. This sorts the

8
Only readers who have had to implement the Quicksort algorithm in any other programming

language can truly appreciate what a treat this actually is.

156 Perl Grabbag

@sequences array in Perl’s default order, which is to sort alphabetically in
ascending order (from ‘‘a’’ through to ‘‘z’’).

The second array, @reversed, is also created as a result of invoking sort.
However, in addition to providing an array to sort, this invocation also supplies
a small block of code that is used to specify the sort order to be applied to the
array. The small block of code on this line is:

{ $b cmp $a }

To understand this block of code, consider that the $a and $b scalars are special
scalars, reserved for use with sort. On the basis of the comparison operator
applied to the two scalars and the order in which it is applied, the block of code
can customise the sort order. In this example, $b is being compared (cmp) to $a,
which results in the sort being applied in descending order (from ‘‘z’’ through to
‘‘a’’).

The third array, @also reversed, is created by first sorting the @sequences
array (using the default sort order), then reversing the sorted list by invoking
the in-built reverse subroutine. Note that the reverse subroutine reverses the
order of elements in a list; it does not sort in reverse order. With the three sorted
lists created and assigned to arrays, they are printed to STDOUT using these
statements:

print "Sorted order (default):\n\t-> @sorted\n";
print "Reversed order (using sort { \$b cmp \$a }):\n\t-> @reversed\n";
print "Reversed order (using reverse sort):\n\t-> @also_reversed\n";

which results in the following output:

Sorted order (default):
-> aattatattc attgttttta cgatgcttgg gctacataat

Reversed order (using sort { $b cmp $a }):
-> gctacataat cgatgcttgg attgttttta aattatattc

Reversed order (using reverse sort):
-> gctacataat cgatgcttgg attgttttta aattatattc

Note that the output shows the original unsorted list of sequences in the
various sort orders. Both the second and the third array (@reversed and
@also reversed) contain the same list of sorted elements.

It is also possible to sort in numerical order using sort. To demonstrate
the standard method of sorting in numerical order, the sortexamples program
defines a list of chromosome pair numbers and assigns them to another array,
called @chromosomes. The array is then printed to STDOUT:

my @chromosomes = qw(17 5 13 21 1 2 22 15);

print "Before sorting:\n\t-> @chromosomes\n";

Sorting 157

This results in the following output:

Before sorting:
-> 17 5 13 21 1 2 22 15

Two invocations of the sort subroutine sort the @chromosomes array into numer-
ical order, with the first in ascending order (from 1 through to the largest number
in the array) and the second in descending order (from the largest number in the
array down to 1). These numerically sorted lists are assigned to the @sorted and
@reversed arrays respectively:

@sorted = sort { $a <=> $b } @chromosomes;
@reversed = sort { $b <=> $a } @chromosomes;

Note the requirement to provide a block of code to each of the invocations of sort
in order to define the correct sort order. Unlike earlier, the numerical comparison
operator (<=>) is used, as opposed to cmp, as the requirement here is to sort
numerically, not alphabetically. Note, too, the use of $a and $b when defining the
sort order. Two print statements display the results of the numerical sorting to
STDOUT, and conclude the sortexamples program:

print "Sorted order (using sort { \$a <=> \$b }):\n\t-> @sorted\n";
print "Reversed order (using sort { \$b <=> \$a }):\n\t-> @reversed\n";

The two print statements result in the following output:

Sorted order (using sort { $a <=> $b }):
-> 1 2 5 13 15 17 21 22

Reversed order (using sort { $b <=> $a }):
-> 22 21 17 15 13 5 2 1

Perl’s ability to sort is powerful and highly customizable. Of course, there’s much
more to sort than is presented in this short example. To learn more, use the
following command-line to read the on-line documentation for sort that comes
with Perl:

perldoc -f sort

Here’s a small program, called sortfile, that takes any disk-file and sorts the
lines in the disk-file in ascending order9:

#! /usr/bin/perl -w

sortfile - sort the lines in any file.

use strict;

9
It should be easy for you to work out what’s going on in this program. Everything you need

to know has already been covered in Bioinformatics, Biocomputing and Perl.

158 Perl Grabbag

my @the_file;

while (<>)
{

chomp;
push @the_file, $_;

}

my @sorted_file = sort @the_file;

foreach my $line (@sorted_file)
{

print "$line\n";
}

Given a disk-file, called sort.data, with the following contents:

Zap! Zoom! Bang! Bam!
Batman, look out!
Robin, behind you!
Aaaaah, it’s the Riddler!

The following command-line sorts the lines in sort.data into ascending order:

perl sortfile sort.data

and produces the following output:

Aaaaah, it’s the Riddler!
Batman, look out!
Robin, behind you!
Zap! Zoom! Bang! Bam!

Of course, the savvy Linux user would use the sort utility to do the same thing,
using this command-line:

sort sort.data

which illustrates, as with the grep examples from earlier, that some of the effort
required in creating a custom program can be avoided when the operating system
utilities are used instead.

Maxim 8.3 Take the time to become familiar with
the utilities included in the operating system.

Refer to the Suggestions for Further Reading appendix (page 461) for some
advice on learning more about the utilities included with Linux. A short list of
Linux commands and utilities is provided in the appendix entitled Essential Linux
Commands, beginning on page 467. Use this command-line to learn more about
the sort utility:

man sort

HERE Documents 159

8.7 HERE Documents

Consider the requirement to display the following text on screen in exactly the
format shown from within a program:

Shotgun Sequencing

This is a relatively simple method of reading
a genome sequence. It is ’’simple’’ because
it does away with the need to locate
individual DNA fragments on a map before
they are sequenced.

The Shotgun Sequencing method relies on
powerful computers to assemble the finished
sequence.

Utilising the Perl features already known, a sequence of print statements would
do the trick, as follows:

print "Shotgun Sequencing\n\n";
print "This is a relatively simple method of reading\n";
print "a genome sequence. It is ’’simple’’ because\n";
print "it does away with the need to locate\n";
print "individual DNA fragments on a map before\n";
print "they are sequenced.\n\n";
print "The Shotgun Sequencing method relies on\n";
print "powerful computers to assemble the finished\n";
print "sequence.\n";

By enclosing each line in double quotes and appending the appropriate number
of newlines to the end of each line, the above sequence of print statements
satisfies the requirement defined at the start of this section. Of course, there is a
better way to do this using Perl’s HERE document mechanism. Rather than try to
describe what a HERE document is, let’s look at an example:

my $shotgun_message = <<ENDSHOTMSG;
Shotgun Sequencing

This is a relatively simple method of reading
a genome sequence. It is ’’simple’’ because
it does away with the need to locate
individual DNA fragments on a map before
they are sequenced.

The Shotgun Sequencing method relies on
powerful computers to assemble the finished

160 Perl Grabbag

sequence.
ENDSHOTMSG

print $shotgun_message;

The above code assigns a HERE document to the $shotgun message scalar. The
HERE document starts with the << chevrons, which has a programmer-chosen
identifier (written in uppercase by convention) attached to it. Note that there
should be no space character between the chevrons and the start of the identifier.
Everything between the identifier and the repetition of the identifier is the HERE
document. This means that the message describing Shotgun Sequencing is a HERE
document assigned to the $shotgun message scalar. It is then printed to STDOUT
using a simple print statement.

Of note is the fact that the HERE document does not need to include all
those newlines, as was the case above with the sequence of print statements. In
addition, the double quotes surrounding each string are also missing from the
HERE document. All that programmers using the HERE document have to worry
about is formatting the text in the way that they wish it to display. It is possible to
improve upon the HERE document example above by removing the need for the
$shotgun message scalar and printing the HERE document directly, as follows:

print <<ENDSHOTMSG;
Shotgun Sequencing

This is a relatively simple method of reading
a genome sequence. It is ’’simple’’ because
it does away with the need to locate
individual DNA fragments on a map before
they are sequenced.

The Shotgun Sequencing method relies on
powerful computers to assemble the finished
sequence.
ENDSHOTMSG

HERE documents are surprisingly useful, especially when it comes to dynamically
producing HTML documents. This use of HERE documents is discussed later in
the Working with the Web part of Bioinformatics, Biocomputing and Perl.

Where to from Here

This chapter ends Part I, Working with Perl. Readers who worked through this
and the preceding five chapters now know enough Perl to confidently perform a
variety of programming tasks. The remainder of this book builds upon this base
and applies what has been learnt about Perl to a number of Bioinformatics tasks.

Exercises 161

As the authors of Programming Perl, the classic Perl reference, advise at the end
of the first chapter of their book: Have the appropriate amount of fun.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• Unless you have a really good reason not to, always switch on strictness at
the top of your program.

• Use eval to protect potentially erroneous code.

• Take the time to become familiar with the utilities included in the operating
system.

Exercises

1. Add the use strict directive to a selection of programs that you have
written. What effect does the addition of the directive have?

2. Write a one-liner that scans a disk-file for any blank lines, printing the words
‘‘Got one!’’ as soon as a blank line is found.

3. Write a program to do the same thing as the one-liner from the last question.

4. Can grep be used to perform the same task as the one-liner? Why or why
not?

5. Write a program that invokes the ls utility in long format, captures its
output, then displays a total count for the number of bytes in all of the
listed disk-files.

6. Write a program that writes another program, then uses eval to execute it.

7. Change the sortexamples program to sort the @chromosomes array alpha-
numerically, both in ascending and descending order. That is, given the
following list of values: 17, 5, 13, 21, 1, 2, 22 and 15, your program should
produce ‘‘1 13 15 17 2 21 22 5’’ and ‘‘5 22 21 2 17 15 13 1’’.

8. Consider the following HTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>

<meta http-equiv="content-type"
content="text/html; charset=ISO-8859-1">
<title>Check out this great resource!</title>

</head>

162 Perl Grabbag

<body>
A great introduction to Bioinformatics Computing Skills and Practice is
to be had by reading <i>Bioinformatics, Biocomputing and Perl</i> by
Michael Moorhouse and Paul Barry, published by Wiley, 2004.
<p> Check out the book’s web-site here. </p>
</body>
</html>

Write a program using print statements to produce the above HTML
exactly as shown. Write a second program to do the same thing using a
HERE document. Which technique do you prefer?

Part II

Working with Data

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

9

Downloading
Datasets

Fetching datasets from the Internet.

9.1 Let’s Get Data

This chapter shows the reader how to download Bioinformatics datasets from
the Internet1. A small selection of datasets is used in the chapters that follow this
one, so it is best if the datasets are downloaded now, before they are required.

9.2 Downloading from the Web

While downloading individual data-files from a World Wide Web (WWW) site is
often useful, there are times when downloading a large number of data-files
makes the use of such a highly interactive mechanism cumbersome.2. Some
technologies allow the easy integration of data sources across the Internet.
Despite this, it is often convenient to download frequently used datasets and
store them locally. The advantages of such a strategy are:

1
Throughout this chapter, the terms ‘‘Internet’’ and ‘‘WWW’’ are used interchangeably to mean

the same thing.
2

Having said that, the Web Automation chapter, later in this book, shows how to automate
interactive web browsing.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

166 Downloading Datasets

Ease of access – It is easier to access data-files on a local hard disk than it is to
write an interface routine to download them as needed from a – possibly
congested – location on the Internet.

Speed – Local hard-disk access, even over a shared file system, is usually faster
than operating through external networks to Internet locations. When the
processing is performed locally, it may be possible to allocate extra compu-
tational resources to the analysis.

Reliability – Accessing local hard-disk copies of data-files is more reliable than
network connections and WWW servers. This allows processing even in the
event of network failures, as the network is not required to run the analysis.

Stability – If the data changes frequently, it is often helpful to ‘‘freeze’’ it by
downloading a copy and using it locally until all analyses are completed.

Flexibility – Often the search facilities that exist on the WWW lack certain
required functionality. With the datasets available locally, it is possible
to develop bespoke search programs using, for example, Perl.

Security – Data or results are often sensitive, and sending them to a remote,
third-party Internet site may be unacceptable.

There are also disadvantages to this strategy:

Stale data – The local copy is a one-time ‘‘snapshot’’ of the dataset at a particular
point in time. At some stage, it will need to be updated or replaced by newer
data.

Storage – The dataset has to be stored somewhere, and some datasets can be
large. The Protein Databank (PDB), which is discussed in detail in the
next chapter, is close to four gigabytes, and the PDB is one of the smaller
databases! Consequently, storing multiple copies of the PDB is often imprac-
tical.

Performance – The centralised specialist services accessible from the WWW are
often configured with dedicated parallelised systems, designed to service
requests as quickly as possible. If the stored dataset is designed with such
systems in mind, it is unlikely that a local system will be able to match
this advanced processing capability. Consequently, some analyses may be
slower locally when compared to those performed on the WWW.

Downloading datasets can be accomplished in a number of ways. Some of
the more established sequence analysis programs, such as EMBOSS3, which is
available from:

http://www.emboss.org

3
The commercial equivalent of this program is called GCG.

Downloading from the Web 167

have specific methods for performing downloads. Typically, datasets are accessed
via a standard network connection to remote Internet sites. Frequently, down-
loads are automated to occur at regular intervals. The wget program, included
with most Linux systems, can be used to do just this.
wget is an excellent example of GNU software as distributed by the Free

Software Foundation. It is free, reliable and fully featured, yet simple to use. The
Administrators Guide, written by David Martin for use with the EMBOSS program,
uses wget within its automatic dataset update script. To learn about wget, issue
this command at the Linux command-line:

man wget

This displays the wget manual page. Use the arrow keys, PgUp and/or PgDn to
scroll through the manual page. When done, press the ‘‘q’’ key to quit. As can be
seen from reading the manual page, wget can accomplish a lot. Let’s start with
some simple examples.

9.2.1 Using wget to download PDB data-files

To download a single data-file via anonymous FTP, simply provide the URL4 of the
data-file required after the wget command. To download the two PDB structures
used in the chapters that follow, use these commands:

mkdir structures
cd structures
wget ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb1m7t.ent.Z
wget ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb1lqt.ent.Z

Note that a directory called structures is first created (with the make directory
command, mkdir) then entered (with the change directory command, cd) prior
to invoking wget. An ‘‘ls -l’’ command confirms the download and creation of
the two data-files in the structures directory5:

-rw-r----- 1 michael users 574440 2003-11-04 16:05 pdb1lqt.ent.Z
-rw-r----- 1 michael users 592220 2003-11-04 16:05 pdb1m7t.ent.Z

The ‘‘.Z’’ at the end of the downloaded data-files is significant. It indicates that the
data-files have been compressed with the popular ZIP compression technology.
The gzip program can unzip compressed data-files, as follows:

gzip -d pdb1m7t.ent.Z pdb1lqt.ent.Z

4
URL stands for ‘‘Uniform Resource Locator’’, the technical name for all those web addresses

you type into the Location Bar of your favourite web browser.
5

The disk-file sizes shown here may not match those you download, as there is every possibility
that these entries will have changed by the time this book appears in print.

168 Downloading Datasets

Another ls -l command confirms that the data-files have been decompressed:

-rw-r----- 1 michael users 2470986 2003-11-04 16:05 pdb1lqt.ent
-rw-r----- 1 michael users 2843181 2003-11-04 16:05 pdb1m7t.ent

9.2.2 Mirroring a dataset

The wget program can be used to mirror datasets. Here is all that is required to
download the entire PDB, which is four gigabytes of data, stored in over 18,000
data-files:

wget --mirror ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb

Obviously, such a command should be invoked only when there is a real need to
mirror the PDB. Remember: a download of this size takes a considerable amount
of time, not to mention disk space. If such a need exists, once complete, another
invocation of the same command downloads only additions or updates to the
PDB since the last mirror.

Before mirroring a dataset, check with other users on the network to see if a
local mirror already exists. If a fellow researcher from ‘‘down the hall’’ has a PDB
mirror, it is better to use that than download another copy. This important piece
of advice warrants its very own maxim.

Maxim 9.1 Download a dataset only when absolutely necessary.
Consider the implications of doing so first.

9.2.3 Smarter mirroring

While the wget command described in the previous subsection works, it results
in a deep directory tree. The actual data-files are found in locations similar to
this:

structures/ftp.rcsb.org/pub/pdb/data/structures/all/pdb

Such a deep directory structure can be very inconvenient and frustrating to
navigate. Another wget invocation can help with this problem. Let’s look at the
command-line first, then describe what wget is being asked to do:

wget --output-file=log --mirror --http-user=anonymous \
--http-passwd=email@where.ever.net \
--directory-prefix=structures/mmCIF \
--no-host-directories \
--cut-dirs=6 ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb

Technical Commentary: Note that the ‘\’ characters at the end of each line are
continuation markers used to indicate that the command continues on the next
line. These are used here to allow your authors to fit this command onto this page.

Downloading from the Web 169

When entering the command, remember to put it all on one line and remove the
continuation markers. This technique of spreading a long line over multiple lines in
order to fit the printed page is common practice within the computing world.

The above wget command sets a number of options:

--output-file – a disk-file into which any message produced by wget is placed.

--mirror – turns on mirroring.

--http-user – sets the web username to use (if needed).

--http-passwd – sets the web password to use (if needed).

--directory-prefix – the place to put the downloaded data-files.

--no-host-directories – the instruction not to use the hostname when creat-
ing a mirrored directory structure, which is the ‘‘ftp.rcsb.org’’ part.

--cut-dirs – instructs wget to ignore the indicated number of directory levels.
In the above example, six directory levels are to be ignored, that is, the
‘‘pub/pdb/data/structures/all/pdb’’ part.

9.2.4 Downloading a subset of a dataset

On many occasions, the entire contents of an FTP site might not be required, in
which case wget can fetch a specific data-file, placing it in the current directory.
Use a command similar to this:

wget ftp://beta.rcsb.org/pub/pdb/uniformity/data/mmCIF/all/1ger.cif.Z

While multiple URLs to data-files can be supplied on the command-line (separated
by spaces), it is often more convenient to place the URLs in a data-file and use
the ‘‘--input file=’’ switch.

The pdbselect program takes the PDB-Select list produced in the Non-
Redundant Datasets chapter (coming soon), builds a list of URLs, removes the
duplicates (as more than one chain may be contained in the same PDB data-file)
and then downloads them:

#! /usr/bin/perl

pdbselect <list of PDB IDs> - a program that takes a list of PDB ID
codes; build a list of URLs for them;
and automates the downloading of them
using ’wget’.

use strict;

my $Base_URL = "ftp://ftp.rcsb.org/pub/pdb/data/structures/all/pdb";

my $Output_Dir = "structures";

open URL_LIST, ">pdb_select_url.lst"

170 Downloading Datasets

or die "Cannot write to file: ’pdb_select_url.lst’\n";

while (<>)
{

if (/Failed/)
{

next;
}

s/ //g;

my ($Structure, $Length) = split (":", $_);
my ($ID, $Chain) = split (",", $Structure);

$ID =~ tr /[A-Z]/[a-z]/;

print URL_LIST "$Base_URL/pdb$ID.ent.Z\n";
}

close URL_LIST;

if (!-e $Output_Dir)
{

system "mkdir $Output_Dir";
}

if (!-w $Output_Dir or !-d $Output_Dir)
{

die "ERROR: Cannot access directory: ’$Output_Dir’. Exiting\n";
}

system "sort -u pdb_select_url.lst > unique_urls.lst";

system "rm $Output_Dir/* > /dev/null";

system "wget --output-file=log --http-user=anonymous \
--http-passwd=email\@some.where.net \
--directory-prefix=$Output_Dir -i unique_urls.lst";

This program takes a list of PDB ID codes from STDIN and downloads them
from the URL specified in the scalar variable $Base URL6. Those structures
marked as ‘‘Failed’’ are skipped, otherwise a URL is built and written to the
pdb select url.lst file. Duplicate structures are filtered out using the ‘‘sort
-u’’ operating system utility, as it is pointless downloading the same structure
more than once (even though it contains multiple chains that might be useful). It
is easier to do it by using the system subroutine to invoke the sort utility, rather
than to perform the same operation in Perl.

Error-checking is performed to see if the output directory exists (otherwise it
is created) and that the directory can be accessed. All previous files in it are then

6
In this case, this is the home RCSB FTP site. If you are going to do this for yourself on

a regular basis, then use one of the geographically close mirror sites advertised on the RCSB
homepage.

Exercises 171

deleted using the rm system call7. Finally, wget is invoked with the list of URLs.
It should then be a case of sitting back, relaxing and waiting for the download
to complete. This may take some time: there are some hundreds of megabytes of
disk-files to download!

This short demonstration of how to use a pre-packaged download tool should
be useful not only for downloading PDB data-files but also in many other contexts.
With wget, the difficult part is building the URLs, which can be automated by
using Perl. The mirroring power of wget is best suited to bulk downloading of
data-files.

Where to from Here

This chapter introduced the powerful wget utility, which is used to download
large collections of data-files from the Internet, specifically PDB data-files. Having
secured the data, let’s investigate what it comprises in the next chapter.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• Download a dataset only when absolutely necessary. Consider the implica-
tions of doing so first.

Exercises

1. Issue the command ‘‘man cron’’ to learn about the cron facility provided
by most Linux distributions. Once you understand how cron works, write
a small Perl script to automatically download a PDB structure of your
choosing, then add a ‘‘crontab entry’’ to your system in order to download
the structure once a week, every week.

2. Visit CPAN and download a copy of the libwww-perl library (also known
as LWP). Install the library and its associated modules into Perl. Use the
‘‘man LWP’’ command to learn about the facilities provided by the library,
then rewrite the script created in answering the previous exercise to use the
facilities of LWP.

3. Rewrite the pdbselect program to use LWP instead of wget. Was it worth
the effort?

7
Even if there were none to start with: the redirection to /dev/null silences any complaining

messages of protest from rm.

10

The Protein
Databank
Working with protein data-files.

10.1 Introduction

The similarity between the amino acid sequence of a ‘‘new’’ protein and one
previously characterised can give an indication of the function of the new protein.
Sequence search algorithms assume some groups of amino acids have similar
functional roles and consequently, occur in both sequences. It is also assumed
that these amino acids have similar local structures, where ‘‘structure’’ refers
to the amino acids arrangement in space. It is these structures that determine
the function of a protein. Although these assumptions are far from perfect and
ignore many subtle details, they are useful as a working model.

Determining the detailed structure (or more technically, the conformation) of a
protein is difficult for various technical reasons, especially compared to finding
a DNA or amino acid sequence. Despite this, the wonderfully detailed knowledge
that can result from determining the structure of the protein often justifies the
hard work. The aim of some structural studies is often more than to know how
the protein (or other biomolecule) ‘‘does what it does’’, it is also to alter its
function. A classic application of this knowledge is to design a small molecule
that binds to the protein, more commonly known as a ‘‘drug’’.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

174 The Protein Databank

10.2 Determining Biomolecule Structures

There are many methods used for gaining information about the structure of
a biomolecule1, but the two major methods by which the location of atoms
can be determined to a useful accuracy (against the overall shape) are X-Ray
Crystallography and Nuclear Magnetic Resonance (NMR).

As the reader of Bioinformatics, Biocomputing and Perl may not be familiar
with the underlying methods, the briefest of descriptions are given here. These
descriptions are far from complete and a myriad of the finer details are intention-
ally omitted. The aim of these descriptions is to help the reader appreciate the
strengths and weaknesses of the models found in The Protein Databank (PDB),
so that they can be used intelligently.

Modern protein structures as found in the PDB are of very good quality. Those
researchers working in this field go to great lengths to demonstrate that the data
is a valid representation of the functional protein it describes.

10.2.1 X-Ray Crystallography

This is the most common method by which the 3D spatial locations of atoms
within proteins are determined. As its name implies, both crystals and x rays are
needed, although both of these cause problems.

The need for crystals is a major limiting factor for this method, as not
all proteins crystallise easily. Some proteins, such as membranes, are nearly
impossible to crystallise with current methods. A general rule is: no crystal,
no 3D structure. Many of the world’s: structural biologists, in their attempts
to become crystallographers, get stressed as they ‘‘Have not found any crys-
tals yet’’. Sometimes the process of finding the right set of conditions (ini-
tial concentration, salinity, co-factors, temperature and so on) under which
a particular protein will crystallise well enough to be useful in a structural
study can take years of effort. This seems to be a science-directed art and,
in many cases, luck plays an important role. At times, suitable conditions for
a useful protein crystal are not found in time, the money to do the trials
runs out and there is frustration all around. That is life in the life sciences
for you.

The use of x rays creates another problem in that they cannot be focused. The
overall set-up of an X-Ray Crystallographic structural diffraction study is that x
rays are directed at a protein crystal and some of them are said to be reflected2.
Bragg’s Law states:

2d sin θ = nλ

1
In this chapter, the examples used are proteins. Many of the general points and principles

apply equally to pure DNA or RNA structures, as well as DNA, RNA and protein complexes.
2

The correct term is diffracted.

Determining Biomolecule Structures 175

and when the conditions of the law are satisfied, constructive interference
takes place. That is, for certain combinations of x-ray wavelength (λ), angles
of deflection (θ) and distance (d) between the planes of atoms in the protein
structure, multiple reflections have taken place. These can be detected using,
traditionally, electronic devices or photographic film. The pattern observed is
specific to the particular set of experimental parameters, so rotating the crys-
tal gives different diffraction patterns or sets of reflections. A protein crystal is
required for two reasons:

1. The reflections from an individual protein are very weak. This means that
lots of protein molecules arranged in the same orientation, as well as being
reasonably static, are needed to ensure that the contribution from each
atom, in every protein molecule, reinforces each other.

2. The reflection must be intense enough to be detectable.

A major problem with the use of x rays is that they cannot be focused using a
lens, in a method similar to the way light can be in a microscope. Light cannot
be used, as the protein molecules are too small to reflect them. This leads to
the so-called Phase Problem. The reflections are unfocused images of the protein
molecules in the crystal. Correcting this requires the use of complex mathematics
to regenerate the actual image of an individual protein. In fact, what is observed
is the x rays’ interaction with the electrons that surround the atomic nuclei in the
molecules, not the nuclei themselves3. The result of this ‘‘complex-maths-lens
processing’’ is an electron density map inside which the protein structure can
be fitted.

A series of iterations of refinement improves the electron density map, by
fitting the atoms that are known to be present within the protein inside the
exoskeleton mesh of the electron density map. The result is a series of structural
models that (hopefully) fit progressively better inside progressively better electron
density maps. As the electron density map improves, the reflections that contain
more detailed information, that is, those that are observed further from the
incident x-ray beam, can be included. At some stage, no more reflections can
be observable because of the limitations of the crystal or apparatus used to
collect the data. This limit is referred to as the resolution of the structure and it
refers to the minimum observable distance between two objects in the structure.
Any distances below this (such as 1.41 Angstrom bond lengths in a 2-Angstrom
resolution structure) are educated guesses based on what has been observed in
other molecular structures. For instance, it has been observed that bond lengths
between carbon atoms do not change much.

Another important measure is the R Factor. This indicates how well the pro-
posed structure matches the observed reflections. The recently devised Free R

3
This relates to the ‘‘electronic environment’’ referred to in the NMR discussion that follows.

176 The Protein Databank

measure has advantages over R Factor, as the calculation of Free R uses reflec-
tions that are not used in producing the structural model, effectively avoiding
the ‘‘over-refinement’’ of the model. A comparison of the Free R factor and the
resolution is made in one of the PDB parsing examples discussed later in this
chapter.

The result of an X-Ray Crystallographic study is a single protein structure in
which the variations of individual atoms from their point locations are described
by temperature factors. Some parts of the protein are distorted by crystallisation.
This is especially true of loops that in solution ‘‘hang out’’ away from the core of
the protein. When it is impossible to identify the actual locations of some amino
acids, perhaps due to the fact that the electron density maps are so poor, these
atoms are omitted. The electron density map is said to be disordered and such
‘‘omitted’’ parts are left out of the reported structure.

The size of the protein that can be studied is many hundreds of amino acid
residues. The practical upper limit is set by the complexity of the data.

10.2.2 Nuclear magnetic resonance

NMR uses a very different approach to that of X-Ray Crystallography. No crystals
are used in the process, and the protein remains in solution throughout the entire
experiment. An intense and very linear magnetic field aligns the atomic nuclei of
the protein into one of two spin states. A series of radio frequency pulses is used
to perturb these by ‘‘flipping’’ some of the nuclei from one spin state to the other.
As the total amount of energy absorbed is low, the protein remains undamaged
and functions as normal. Eventually, the ‘‘flipped’’ spin state of the nuclei realigns
to the normal state, emitting a radio frequency pulse as it does so. The timing
of this re-emission of energy is determined by the electronic environment in
which the nucleus is embedded. A feature of this environment is the electrostatic
shielding effects of the surrounding nuclei. The nuclei, in addition to the bonds
linking them, can be identified by their spin decay properties.

A series of preparation pulses can be used to probe different environments
within the protein and eventually, a series of constraints is produced that describe
which nuclei exist in what type of environments. A series of models is then
proposed using the amino acid sequence of the protein, then the observed bond
lengths and angles as compared to those observed in other proteins (or small
molecules). The models are energy minimised using the identified constraints
and act as a guide to which of the model structures are most consistent with the
experimental data. Over time, some of the models converge upon a set of similar
structures. These, if all is well, are the series of configurations of the protein as
observed during the experiment. The models are, quite literally, the protein in
motion and, often, the structures partition into two or more sets corresponding
to different functional states.

As to which is ‘‘best’’, the answer is that they are all consistent with the
experimental data and general assumptions about proteins (such as the bond

The Protein Databank 177

lengths and angles)4. Also, as with X-Ray Crystallographic structures, some parts
of the structure are more reliable than others. For instance, the number of
restraints observed in the loop regions can be so low that the reported structure
might be more a function of the minimisation process than of the experimental
data. A problem with NMR methods is the size of the proteins that can be studied.
Using current techniques, this equates to a maximum of 200 amino acids. This is
low compared to the many hundreds of amino acids that can be studied using
X-Ray Crystallography.

10.2.3 Summary of protein structure methods

The X-Ray Crystallography and NMR systems are complementary in many
respects, as both determine, to a high accuracy, the coordinates of the atoms
in protein structures. If protein structures determined by X-Ray Crystallography
and NMR are compared, they are generally consistent with each other and more-
over are biologically plausible. This should give the researcher confidence when
using them.

10.3 The Protein Databank

The PDB contains a large collection of previously determined biological struc-
tures. For inclusion in the PDB, the spatial locations of the atoms have to be
determined with sufficient accuracy to usefully describe protein structures. The
PDB also includes experimental details of how the structure was determined,
what publications and other databases to consult for more information on the
structure, some ‘‘derived data’’ information (such as notable secondary structure
features) and details of any ill-defined regions. While this information is meant
to be included in the PDB, some of it may be missing, incomplete or – in extreme
cases – incorrect for some database entries.

The PDB is one of the oldest bioscience data stores, dating back to 1971. It
originally stored the 3D coordinates of protein structures as determined by the X-
Ray Crystallography method. Prior to the PDB, structures were typically published
in journals, and many researchers re-entered the information manually into their
computers so as to facilitate further manipulation of them. As can be imagined,
this was less than ideal!

The original PDB data-file format adopted was a ‘‘flat’’ textual disk-file that was
80 columns wide.

Technical Commentary: The choice of 80 columns is no accident. Back in 1971,
data was stored on paper cards that had to have the information punched onto
them. Until the mid 1990s, most computer screens were still designed to display 80

4
There might be a structure nominated as ‘‘the most representative’’ in some NMR PDB

data-files.

178 The Protein Databank

columns, usually with 25 rows of information, so it made sense to restrict the width
of PDB disk-files to 80 characters when the format was devised.

Today, the structures in the PDB are determined by either X-Ray Crystallography
or NMR. Often, many years of effort go into determining an individual structure.
This is reflected in the growth of the number of entries in the PDB over some
30 years. There are currently over 18,000 entries in the database, as shown in
Figure 10.1 on page 178.

The structures of some macromolecules, such as the membrane-bound proteins
that are thought to make up over 30% of the protein complement of cells, are
particularly difficult to obtain using current methods. These macromolecules are
poorly represented with less than five ‘‘good structures’’ in the entire databank5.
Against this background, it is not surprising that the contents of the PDB are
somewhat biased towards certain types of proteins. This point is returned to later.

The PDB has been through many changes since its inception. The two most
notable are the inclusion of structural data from NMR studies (starting in the
mid 1980s) and the transfer of the databank’s administration from the original
Brookhaven National Laboratories (BNL) to Research Collaboratory Structural
Biology (RCSB) at the end of the 1990s. On the horizon is the adoption of the new
mmCIF data format, which is designed to replace the legacy PDB flat data-file. It is

20,000

18,000

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0

19
72

19
73

19
74

19
75

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

Year

Deposited structures for the year
Total available structures

Last updated : 21-Aug-2002

Figure 10.1 The PDB growth chart.

5
Though the non-membrane domains of some receptors have been determined by cutting off

their membrane-bound parts and expressing them separately.

The PDB Data-file Formats 179

unclear how great or widespread the impact of the introduction of this new data
format will be.

Some problems exist with the data in the PDB, mainly in terms of its overall
quality and presentation. This is to be expected with a data-store as old as the PDB
is. These problems are being addressed with great success by the valiant efforts
of those involved in the Data Uniformity Project. More recently, there has been
a tightening of the PDB procedures relating to the acceptance of structures, and
new tools have been developed to help depositors ensure their data is consistent.
Even so, be cautious when intending to make a large-scale survey of the biological
structures available in the databank. The unwary researcher can fall into many
traps, some of which are discussed later in this chapter. The biggest trap awaits
those researchers who rely on the PDB Header Section information (akin to the
annotation section in the sequence databases). As this is an important point, let’s
have a maxim to help keep everyone on the straight and narrow.

Maxim 10.1 Beware of anything in the PDB Header Section.

10.4 The PDB Data-file Formats

Data from the PDB is available in one of two formats. To some degree, these
formats are inter-convertible:

PDB flat file – The original, generic and highly unstructured PDB data-file format
that is still widely used by researchers. When biologists talk of ‘‘PDB files’’
or ‘‘PDB format’’, they are referring to this data-file format. The current
standard format is the 2.3 version.

mmCIF – The new PDB data-file format that is designed to offer a highly struc-
tured, modern replacement to the original PDB Flat File format. The mmCIF
format is often informally referred to as the ‘‘new PDB format’’.

PDB data-files conforming to the mmCIF standard store their data as key-value
pairings, with additional relationships between the data items defined in a sep-
arate data-file. This separation of document structure from document content
allows researchers to verify that the data-file is complete and that no unautho-
rised additions have been made. A considerable amount of work has gone into
defining the mmCIF standard, and it is returned to in detail later in this chapter.

For now, let’s concentrate on the original PDB format. Newer structures, those
added to the PDB after 1996, conform to the v2.3 standard. Despite this, most
older structures do not. These ‘‘legacy’’ structures have been painstakingly con-
verted6 into modern data structures conforming to the mmCIF standard. To

6
By those involved in the PDB Data Uniformity Project.

180 The Protein Databank

maintain compatibility with older software, researchers often convert the newer
mmCIF data-files into v2.3 of the PDB format.

Within the PDB, a structure is identified by a unique code. The code has two
parts: a single number, followed by three letters. Example unique codes are 1AFI
and 1LQT. Structure 1AFI is used in the Tools and Datasets chapter, as is the
NMR structure of ‘‘MerP’’, the mercury ion-binding protein. Structure 1LQT is a
high quality X-ray Crystallographic structure entitled ‘‘A covalent modification
of NADP+ revealed by the atomic resolution structure of FPRA, a mycobacterium
tuberculosis oxidoreductase’’.

10.4.1 Example structures

For the purposes of explanation, a range of structures is used to illustrate the
similarities and differences between PDB data-files. These differences are due
mainly to the method by which the structure was determined, in addition to
the details of the proteins they describe. The example PDB data-files are as
follows:

1LQT – A modern, high-resolution ‘‘Oxidoreductase’’ enzyme structure produced
using X-Ray Crystallographic techniques. This structure is shown in Fig-
ure 10.2 on page 180.

1M7T – A modern protein structure of ‘‘Thioredoxin’’ produced using NMR. This
structure is shown in Figure 10.3 on page 181.

Figure 10.2 Example PDB structure 1LQT.

The PDB Data-file Formats 181

Figure 10.3 Example PDB structure 1M7T.

Take the time to download the data-files containing 1LQT and 1M7T, as it is helpful
to have them available while working through the remainder of this chapter. The
overall arrangement of the structures is shown in ‘‘cartoon form’’ in the figures
(thanks to the use of the Open Rasmol program). These figures highlight the
helices (corkscrews) and the sheets (flat ribbons). Note that even these simple
molecular graphics help give an appreciation of the structure.

10.4.2 Downloading PDB data-files

PDB structure data-files can be downloaded from many web-site locations on the
Internet. As described in the previous chapter, the RCSB web-site is always a good
place to start:

http://www.rcsb.org/pdb/

Alternatively, the EBI hosts a European mirror. Follow the links from:

http://www.ebi.ac.uk/services/

182 The Protein Databank

to access the PDB from the EBI.

Technical Commentary: On the Internet, most busy web-sites are geographically
replicated a number of times, primarily to lighten the load on the main, central web-
site. Such replicated web-sites are known as mirrors within the Internet community.
It is assumed that users of a busy web-site will contact the mirror geographically
closest to their current location, as opposed to always sending requests to the central
web-site. The RCSB has a number of such mirrors. Always try to use a mirror close
to you: they are listed on the main RCSB web page (http://www.rcsb.org/pdb/).

There is quite a variation in the size of PDB data-files. Some contain no more than
a few kilobytes, while others contain many megabytes of data. The NMR entries
tend to be large, as instead of just one set of coordinates, they often contain 20
or more.

Technical Commentary: A kilobyte is 1024 bytes, where a byte is commonly
considered to be the amount of space required to hold a single character. A
megabyte is 1,048,576 bytes (technically 1024 by 1024 bytes). It is common practice
to refer to a kilobyte as 1000 bytes and a megabyte as 1,000,000 bytes. Although
common, such practice is technically inaccurate and is best avoided.

If a small number of data-files is required, the extensive search facilities provided
by the RCSB web-site are an excellent method for finding specific PDB entries.
For a more extensive study, perhaps involving many different proteins, it is often
more convenient to download a PDB-Select non-redundant data set (described in
the next chapter).

10.5 Accessing Data in PDB Entries

There are some common sections to all PDB entries: those concerned with
indexing, bibliographic data, notable features and 3D coordinates. Other sections
are radically different from each other, as they depend on the experimental
technique (X-Ray Crystallography or NMR) used to determine the structure.
Rather than give a verbose description of each subsection, a summary of the
most important sections is provided. Note that in a PDB data-file there is a
left-right split (per line) and a top-bottom split (per data-file):

• Left-right – The left-most characters (a maximum of nine) on each line
indicate what information is present on the right-hand side.

• Top-bottom – There is an upper HEADER section that contains the annotation
about the structure (top) and a lower coordinates section that contains the
3D spatial locations of the atoms in the structure (bottom). The boundary
between these is taken as the first ‘‘ATOM’’ or ‘‘HETATM’’ line found in the
entry.

Accessing PDB Annotation Data 183

A short description of the most important fields in the PDB data-file is presented
below. An important point is that the ‘‘REMARK’’ field contains most of the
information about the structure in a series of subsections (or sub-remarks). The
most important fields include:

HEADER – Contains a brief description of the structure, the date and the PDB ID
code.

TITLE – The title of the structure.

COMPND – Brief details of the structure.

SOURCE – Identifies which organism the structure came from.

KEYWDS – Lists a set of useful words/phrases that describe the structure.

AUTHOR – The scientists depositing the structure.

REVDAT – The date of the last revision.

JRNL – One or more literature references that describe the structure.

REMARK 1 through REMARK 999 – Details of the experimental methods used to
determine the structure are contained in this subsection (see the example
in the next section).

DBREF – Cross links to other databases.

SEQRES – The official amino acid sequence (protein, RNA or DNA) of the structure.

HELIX/SHEET – Details of the regions of secondary structure found in the protein.

ATOM/HETATM – The 3D spatial coordinates of particular atoms in the protein
structure (the ‘‘ATOM’’ lines) or other molecules such as water or co-factors
(the ‘‘HETATM’’ lines).

10.6 Accessing PDB Annotation Data

There are many examples of parsing data from the HEADER section of PDB
data-files, all of which involve pattern matching. Perl is exceptionally good at
this. Rather that repeating the same basic procedure over and over again, two
representative examples are described in detail in this section. These examples
explore:

1. The relationship between the resolution of a structure and its Free R value,
both of which are measures of the quality of the X-Ray Crystallographic
structures.

2. The database cross-referencing section used to link to other databases.

184 The Protein Databank

10.6.1 Free R and resolution

The REMARK tag, type 2 subsection stores resolution, whereas the Free R value is
quoted in REMARK tag, type 3. Here’s a small extract from the 1LQT entry:

REMARK 2
REMARK 2 RESOLUTION. 1.05 ANGSTROMS.

Note that in NMR structures, REMARK tag, type 2 and type 3 are present, but the
data in them is ‘‘NOT APPLICABLE’’ for REMARK tag, type 2 and ‘‘NULL’’ or free
text for REMARK tag, type 3. This is a historic quirk of the PDB. Originally, the
requirement was for these fields to be filled in, which was the case when the PDB
contained only crystallographic structures. When NMR structures started to be
added, rather than leave the fields out (which in many cases would make more
sense), the approach adopted specified that they be set to ‘‘NULL’’. By way of
example, consider this ‘‘note’’ from the 1M7T structure’s HEADER:

REMARK 215 NMR STUDY
REMARK 215 THE COORDINATES IN THIS ENTRY WERE GENERATED FROM SOLUTION
REMARK 215 NMR DATA. PROTEIN DATA BANK CONVENTIONS REQUIRE THAT
REMARK 215 CRYST1 AND SCALE RECORDS BE INCLUDED, BUT THE VALUES ON
REMARK 215 THESE RECORDS ARE MEANINGLESS.

Structural Refinement is the process of iteratively fitting the model structure into
the electron density map, and details of this refinement are stored in REMARK tag,
type 3. Of these, the Free R value is very useful, as it measures the agreement
between the model and the observed x-ray reflection data. The lower the Free
R Value, the better the fit between the model and the observed data. Here’s an
extract:

.

.

.
REMARK 3 FIT TO DATA USED IN REFINEMENT.
REMARK 3 CROSS-VALIDATION METHOD : THROUGHOUT
REMARK 3 FREE R VALUE TEST SET SELECTION : RANDOM
REMARK 3 R VALUE (WORKING + TEST SET) : 0.134
REMARK 3 R VALUE (WORKING SET) : 0.134
REMARK 3 FREE R VALUE : 0.153
REMARK 3 FREE R VALUE TEST SET SIZE (%) : NULL
REMARK 3 FREE R VALUE TEST SET COUNT : 2200

.

.

.

Older structures may lack a Free R Value, as it was often not calculated.
A program, called free res, extracts the resolution and Free R Value from

any PDB data-files contained in a named directory. The entire source code to
free res is as follows:

Accessing PDB Annotation Data 185

#! /usr/bin/perl -w

free_res - Designed to extract the ’Free R Value’ and ’Resolution’
quantities from ’PDB data-files’ containing structures
produced by ’Diffraction’.

use strict;

my $PDB_Path = shift;

opendir (INPUT_DIR, "$PDB_Path")
or die "Error: Cannot read from mmCIF directory: ’$PDB_Path’\n";

my @PDB_dir = readdir INPUT_DIR;

close INPUT_DIR;

my @PDB_Files = grep /\.pdb/, @PDB_dir;

foreach my $Current_PDB_File (@PDB_Files)
{

my $Free_R;
my $Resolution;

open (PDB_FILE, "$PDB_Path/$Current_PDB_File")
or die "Cannot open PDB File: ’$Current_PDB_File’\n";

while (<PDB_FILE>)
{

if (/^EXPDTA / and !/DIFFRACTION/)
{

last;
}
if (/^REMARK 2 RESOLUTION/)
{

(undef, undef, undef, $Resolution) = split (" ", $_);
}
if (/^REMARK 3 FREE R VALUE /)
{

$Free_R = substr ($_, 47, 6);
$Free_R =~ s/ //g;

if ($Free_R =~ /NULL/ or $Resolution eq "")
{

last;
}
else
{

printf ("%7s %4.2f %7.3f \n", $Current_PDB_File,
$Resolution, $Free_R);

last;
}

}
}
close (PDB_FILE);

}

186 The Protein Databank

0.4

0.35

0.3

0.25

0.2

0.15

0.1
0 0.5 1 1.5 2 2.5 3 3.5

Resolution

Plot of Free R against resolution

Fr
ee

 R

Figure 10.4 Plotting free R values against resolution.

When executed against a directory containing PDB data-files, specified as a
command-line parameter, the free res program checks each data-file in turn as
to whether the structure was determined by X-Ray Crystallography. It does this by
looking for ‘‘DIFFRACTION’’ in the EXPDTA field. If there’s no match, the program
skips to the next disk-file. Otherwise it parses (and extracts) the resolution and
Free R values from the current data-file. Before displaying the results in an ‘‘easy-
to- parse’’ format, using Perl’s printf subroutine, the program checks to see if
both the $Free R and $Resolution scalar variables actually contain data. The
idea here is that the output from free res be redirected to a disk-file.

When Free R and Resolution are plotted against each other, they show a good
correlation of 0.666 (Pearson Correlation Coefficient). Figure 10.4 on page 186
presents the plot. This is an improvement on the poorer value of 0.36 between
the standard R value and Resolution as found by others. The reason for the
difference between the R value and Free R factors is multi-factorial, but is mainly
due to the difficulty with which a low Free R factor can be obtained, relative to a
standard R factor, from poorer x-ray resolution data.

10.6.2 Database cross references

The DBREF subsection gives a list of cross references to other Bioinformatics
databases. This makes it easier for researchers to integrate biological datasets.
The present deposition policy of the PDB requires that all proteins longer than
ten residues should be cross referenced. This means that short peptides, which
may be synthetic, are excluded.

Accessing PDB Annotation Data 187

The second value on the DBREF line is the PDB identifier. By examining this
value, researchers and automatic parsing programs can tell to which structure
the entry belongs. The DBREF lines from our example structures are shown here:

DBREF 1LQT A 1 456 GB 13882996 AAK47528 1 456
DBREF 1LQT B 1 456 GB 13882996 AAK47528 1 456

DBREF 1AFI 1 72 SWS P04129 MERP_SHIFL 20 91

DBREF 1M7T A 1 66 SWS P10599 THIO_HUMAN 0 65
DBREF 1M7T A 67 106 SWS P00274 THIO_ECOLI 68 107

To what does SWS and GB from these extracts refer? The PDB publishes a table
(reproduced below) of database names and their associated, abbreviated codes.
It can be useful to have this table close at hand when working with cross
references:

Database Name Database Code

BioMagResBank BMRB
BLOCKS BLOCKS
European Molecular Biology Laboratory EMBL
GenBank GB
Genome Data Base GD
Nucleic Acid Database NDB
PROSITE PROSIT
Protein Data Bank PDB
Protein Identification Resource PIR
SWISS-PROT SWS
TREMBL TREMBL

The DBREF lines identify the following fields, working from left to right:

• PDB ID code.

• Chain identifier (if needed).

• The start of the sequence.

• Insertion code (absent in all our examples).

• End of the sequence.

• The external database to which the cross reference refers.

• The external database accession code.

• The database external accession name (the more human-memorable version
of the accession code in many cases).

188 The Protein Databank

• The start, insertion (absent in all our examples) and end of the sequence in
the external database.

The field boundary positions can be found in the PDB documentation. By way of
illustration, use code similar to the following to extract the structure name, chain,
accession code and the external database the accession code refers to from the
DBREF line. This code assumes the DBREF is stored in Perl’s default variable, $:

my ($Struct, $Chain, $Dbase, $AC_code) = (substr($_, 7, 4),
substr($_, 12, 1),
substr($_, 26, 6),
substr($_, 33, 8));

$Struct =~ s/ //g;
$Chain =~ s/ //g;
$Dbase =~ s/ //g;
$AC_code =~ s/ //g;

The four substitutions ‘‘clean up’’ the parsed data by removing any and all
unwanted space. Note that for the 1M7T structure, the start and stop positions
have not been extracted. This structure is a chimera between the two example
entries, producing the following results if printed:

’1M7T’, ’A’, ’SWS’, ’P10599’
’1M7T’, ’A’, ’SWS’, ’P00274’

It is worth mentioning that the 1AFI structure contains a Heavy Metal Associated
sequence motif that is indexed in the PROSITE database as PS01047. The deposi-
tors of the structure knew about this motif as it gives the protein its mercury ion
scavenging ability. This also explains why much effort was expended on deter-
mining the protein’s structure. A SITE entry is included later in the data-file, but
a database reference to PROSITE is not. Be aware that just because a database
cross-reference field is absent does not mean that a reference does not exist.

10.6.3 Coordinates section

The coordinate data for the locations of atoms in the macromolecular structure
is straightforward, especially when compared to the annotation contained in
the HEADER section of the PDB data-file. Recall that while the coordinates are
presented as points in space, the atoms they represent are actually in motion. In
crystallographic structures, isotropic B-factors, commonly referred to as ‘‘Tem-
perature Factors’’, give us an idea of the vibration of the molecule. For very
high-resolution structures, Anisotropic Temperature Factors may be included in
the ANISOU lines. These provide an idea of the vibration of the molecule in the
directions of the coordinate axes. In NMR structures, the variation in position of

Accessing PDB Annotation Data 189

a particular atom between different models in the ensemble can be used as a sim-
ilar measure of motion or as an indication of the error between the minimisation
models. It is sometimes easy to tell the difference, while other times it is not.

Another major difference found in NMR structures is the inclusion of the
ensemble of models delimited by the MDL and ENDMDL lines. There are some entries
that contain a single NMR structure, but this is only the most representative
model; others have a nominated ‘‘most representative structure’’. Here is an
example from 1M7T:

REMARK 210
REMARK 210 BEST REPRESENTATIVE CONFORMER IN THIS ENSEMBLE : 21
REMARK 210

Referring to the 1LQT x-ray structure, an extract of lines from the coordinate
section looks like this:

ATOM 1 N ARG A 2 26.318 -8.010 39.090 1.00 20.71 N
ANISOU 1 N ARG A 2 2040 3071 2755 114 -339 -393 N
ATOM 2 CA ARG A 2 25.150 -8.702 38.505 1.00 18.85 C
ANISOU 2 CA ARG A 2 2029 2677 2455 67 -321 -209 C
ATOM 3 C ARG A 2 24.846 -8.176 37.123 1.00 17.23 C
ANISOU 3 C ARG A 2 1689 2429 2429 143 -282 -258 C
ATOM 4 O ARG A 2 25.151 -7.048 36.775 1.00 18.14 O

.

.

.
TER 7215 GLY A 456
ATOM 7216 N ARG B 2 -19.423 25.709 6.980 1.00 21.57 N
ANISOU 7216 N ARG B 2 2476 3012 2707 -165 -370 95 N
ATOM 7217 CA ARG B 2 -18.718 26.510 8.024 1.00 19.01 C
ANISOU 7217 CA ARG B 2 2127 2672 2424 -63 -285 91 C
ATOM 7218 C ARG B 2 -17.250 26.207 8.002 1.00 17.22 C
ANISOU 7218 C ARG B 2 1955 2392 2196 -91 -299 121 C
ATOM 7219 O ARG B 2 -16.851 25.158 7.535 1.00 18.15 O

.

.

.
TER 14289 GLY B 456
HETATM14290 C ACT 1866 -13.075 1.733 10.218 1.00 27.25 C
ANISOU14290 C ACT 1866 3493 3560 3299 -39 -36 -44 C

.

.

.
CONECT14290142911429214293
CONECT1429114290
CONECT1429214290
TER

.

.

.
CONECT1469014663
MASTER 389 0 15 46 38 0 0 620280 2 401 72
END

190 The Protein Databank

Likewise for the 1M7T NMR structure, and extract of the coordinates looks
like this:

MODEL 1
ATOM 1 N MET A 1 3.110 -4.682 -3.025 1.00 0.00 N
ATOM 2 CA MET A 1 2.546 -3.712 -2.053 1.00 0.00 C
ATOM 3 C MET A 1 1.134 -3.295 -2.450 1.00 0.00 C
ATOM 4 O MET A 1 0.882 -2.130 -2.758 1.00 0.00 O
ATOM 5 CB MET A 1 3.466 -2.491 -2.002 1.00 0.00 C
ATOM 6 CG MET A 1 3.781 -1.903 -3.370 1.00 0.00 C
ATOM 7 SD MET A 1 4.256 -0.166 -3.285 1.00 0.00 S
ATOM 8 CE MET A 1 6.004 -0.307 -2.920 1.00 0.00 C
ATOM 9 1H MET A 1 2.906 -4.327 -3.980 1.00 0.00 H
ATOM 10 2H MET A 1 2.650 -5.601 -2.859 1.00 0.00 H
ATOM 11 3H MET A 1 4.134 -4.738 -2.858 1.00 0.00 H
ATOM 12 HA MET A 1 2.517 -4.178 -1.079 1.00 0.00 H
ATOM 13 1HB MET A 1 2.996 -1.724 -1.405 1.00 0.00 H
ATOM 14 2HB MET A 1 4.397 -2.778 -1.536 1.00 0.00 H
ATOM 15 1HG MET A 1 4.596 -2.461 -3.807 1.00 0.00 H
ATOM 16 2HG MET A 1 2.907 -1.993 -3.998 1.00 0.00 H
ATOM 17 1HE MET A 1 6.344 -1.302 -3.167 1.00 0.00 H
ATOM 18 2HE MET A 1 6.169 -0.120 -1.869 1.00 0.00 H
ATOM 19 3HE MET A 1 6.553 0.416 -3.505 1.00 0.00 H
ATOM 20 N VAL A 2 0.215 -4.256 -2.446 1.00 0.00 N

.

.

.
TER 1659 VAL A 107
ENDMDL
MODEL 2
ATOM 1 N MET A 1 2.750 -6.779 -1.627 1.00 0.00 N
ATOM 2 CA MET A 1 2.487 -5.475 -2.290 1.00 0.00 C

.

.

.
TER 1660 VAL A 107
ENDMDL

In each ATOM line, the fields7 are as follows:

COLUMNS DATA TYPE FIELD DEFINITION

1 - 6 Record name "ATOM(s)
7 - 11 Integer serial Atom serial number.

13 - 16 Atom name Atom name.
Character altLoc Alternate location indicator.

18 - 20 Residue name resName Residue name.
22 Character chainID Chain identifier.
23 - 26 Integer resSeq Residue sequence number.
27 AChar iCode Code for insertion of residues.
31 - 38 Real(8.3) x Orthogonal coordinates for X in

Angstroms.
39 - 46 Real(8.3) y Orthogonal coordinates for Y in

7
These are extracted from the PDB’s on-line documentation.

Accessing PDB Annotation Data 191

Angstroms.
47 - 54 Real(8.3) z Orthogonal coordinates for Z in

Angstroms.
55 - 60 Real(6.2) occupancy Occupancy.
61 - 66 Real(6.2) tempFactor Temperature factor.
73 - 76 LString(4) segID Segment identifier, left-justified.
77 - 78 LString(2) element Element symbol, right-justified.
79 - 80 LString(2) charge Charge on the atom.

Some fields are separated by whitespace, while others are not. Note that there is
space between the second and third columns, while there is none between the
last three LString fields. This can make the parsing of the data more difficult than
it would normally be, although Perl’s substr subroutine can work wonders here.

10.6.4 Extracting 3D coordinate data

Extracting coordinate data from PDB data-files, despite the lack of whitespace,
is straightforward. The technique involves extracting the three substrings from
each line that contains the X, Y and Z coordinates. Assuming the data is in $,
three invocations of Perl’s substr subroutine do the trick:

my ($X, $Y, $Z) = (substr($_, 30, 8),
substr($_, 38, 8),
substr($_, 46, 8));

The X, Y and Z coordinates are now held in appropriately named scalar variables
for later use by a program. It is also good practice to remove any additional
(and unwanted) whitespace from the three variables. The standard technique is
demonstrated in the simple coord extract program, which follows:

#! /usr/bin/perl -w

simple_coord_extract <PDB File> - Demonstrates the extraction of
C-Alpha co-ordinates from a PDB
data-file.

use strict;

while (<>)
{

if (/^ATOM/ && substr($_, 13, 4) eq "CA ")
{

my ($X, $Y, $Z) = (substr($_, 30, 8),
substr($_, 38, 8),
substr($_, 46, 8));

$X =~ s/ //g;
$Y =~ s/ //g;
$Z =~ s/ //g;

192 The Protein Databank

print "X, Y & Z: $X, $Y, $Z\n";
}

}

This program binds against the ‘‘ATOM’’ at the start of the line, in addition to a
value of ‘‘CA ’’ at position 13 in the line. This latter test ensures that the atom
is of type carbon-alpha. When both tests pass, that is, the pattern is found and
the line represents a carbon-alpha atom, the X, Y and Z coordinates of the atom
are extracted from the line as a result of the three invocations of substr. The
resulting scalar variables ($X, $Y and $Z) have any spaces removed from them
in the three substitution statements. Finally, the coordinates are displayed on
STDOUT. When executed, the simple coord extract produces this output for the
1LQT structure:

X, Y & Z: 25.150, -8.702, 38.505
X, Y & Z: 23.675, -8.497, 35.069
X, Y & Z: 20.747, -6.252, 34.332
X, Y & Z: 17.545, -8.297, 34.292
X, Y & Z: 15.182, -7.484, 31.454
X, Y & Z: 11.736, -8.952, 30.942
X, Y & Z: 10.261, -9.014, 27.451
X, Y & Z: 6.507, -9.548, 27.173

Note that the program makes no attempt to test for the protein chain marker.
Consequently, in the case of 1LQT, all of the coordinates for both the A and B
chains are displayed.

10.7 Contact Maps

The simple coord extract program is amended in this section to create a
Contact Map. In a contact map, the distances between all the amino acids are
calculated (using the standard Pythagoras equation), then those within a certain
distance of each other are marked with an ‘‘O’’ character. Those outside the
distance are marked with a space character.

One aspect to consider is whether this is computationally possible: is the
computer being asked to do too much? Calculating the distances between all
possible amino acids seems to be complicated. How many calculations need to be
performed? How much memory is needed? Will the program become much more
complicated?

Although consideration of these questions is reasonable, there is no need
to panic. Proteins at the level of abstraction of fixed 3D spatial coordinates
are computationally small. As there are 450 carbon-alpha atom points in the
test protein, there are 450 by 450 potential distance calculations, which gives
a total of 202,500. Although large, performing this number of calculations is

Contact Maps 193

practical using modern PCs. It is also possible to omit half the calculations, as
the distance from amino acid number 4 to amino acid number 5 is the same
as that from number 5 to number 4. Also, it is possible to omit the diagonal,
which calculates the distances between the same amino acid and itself which is,
unsurprisingly, zero.

The strategy used is an extension of those from earlier programs: the ‘‘CA’’
(carbon-alpha) atoms are extracted from the PDB data-file. These are loaded into
memory and a loop iterates over them, calculating the distance to a currently
nominated reference atom. A second nested (or inner) loop changes this reference
point as required. A test verifies whether the two amino acids are closer than
a particular distance and, if they are, prints a ‘‘0’’ marker, otherwise a space is
printed8. For the purposes of demonstration, a distance of 12 Angstroms is used.
This value is used by many other contact maps and, while somewhat arbitrary,
is close to the maximum distance that one part of a protein can directly affect
another part. Additionally, it is close to the maximum distance across two closely
packed secondary structures, such as α helices. Here is the entire source code to
the Contact map.pl program, which implements this strategy:

#! /usr/bin/perl -w

Contact_map.pl - based on the CA_dist_calc.pl program. Produces a
triangular diagram of all the distances between c-alpha
atoms under a certain threshold.
#
Usage: Contact_map.pl <PDB FILE> [Chain]

use strict;

use constant CONTACT_DEFINITION => 12;

my $Chain = "*";

my $Previous_Res = ’’;

if ($#ARGV == -1)
{

die "Usage: CA_dist_calc.pl <PDB FILE> [Chain]\n";
}
elsif ($#ARGV == 1)
{

$Chain = pop @ARGV;
}

my %Atoms;

my @Res_List;

while (<>)
{

8
This strategy, rather conveniently, preserves any existing spacing.

194 The Protein Databank

if (/^ENDMDL/ or /^TER/)
{

last;
}

if (!/^ATOM/ or substr($_, 13, 3) ne "CA ")
{

next;
}

if ((substr($_, 21, 1) ne $Chain) and ($Chain ne "*"))
{

next;
}

my $Res_Number = substr($_, 22, 4);

if ($Res_Number eq $Previous_Res)
{

next;
}
else
{

$Previous_Res = $Res_Number;
}

$Res_Number =~ s/ //g;

push @Res_List, $Res_Number;

my ($X, $Y, $Z) = (substr($_, 30, 8),
substr($_, 38, 8),
substr($_, 46, 8));

$X =~ s/ //g;
$Y =~ s/ //g;
$Z =~ s/ //g;

$Atoms{ $Res_Number }{ X } = $X;
$Atoms{ $Res_Number }{ Y } = $Y;
$Atoms{ $Res_Number }{ Z } = $Z;

}

print "Number of Residues: ", $#Res_List+1, "\n";

foreach my $Current_Res_Column (@Res_List)
{

printf "%03d: ", $Current_Res_Column;

foreach my $Current_Res_Row (@Res_List)
{

my $Dist = sqrt(($Atoms{ $Current_Res_Column }{ X } -
$Atoms{ $Current_Res_Row }{ X }) ** 2 +

($Atoms{ $Current_Res_Column }{ Y } -
$Atoms{ $Current_Res_Row }{ Y }) ** 2 +

($Atoms{ $Current_Res_Column }{ Z } -
$Atoms{ $Current_Res_Row }{ Z }) ** 2);

Contact Maps 195

if ($Dist < CONTACT_DEFINITION)
{

print "O";
}
else
{

print " ";
}

}
print "\n";

}

The Contact map.pl program is executed against the 1LQT structure with the
following command-line:

perl Contact_map.pl pdb/1LQT.pdb

The first 25 lines of output are shown here:

Number of Residues: 452
002: OOOO OOOOO
003: OOOOO OO OO OOOOOOO
004: OOOOOO OO OO OOOOOOO
005: OOOOOOO O OO O OOOOOOO
006: OOOOOOO O OO OOO OOOOOOO
007: OOOOOOOO OO OO O OOOOOOO
008: OOOOOOOOOOOOOOOO O OOOOOOO
009: OOOOOOOOOOO OO OOOOOOO OOO
010: OOOOOOOOOOOOO OOOOOOOOOOOO
011: OOOOOOOOOOOOO OOOOOOOOOOOOOOOO O OO O
012: OOOOOOOOOOOO OOOOO OOOOOOOOOO O OO OOO
013: OOOOOOOOOOOOO OOOOOO O OOOOOOOOO O
014: OOOOOOOOOOOOOO O OOOOO O
015: OOOOOOOOOOOOOOOOO OOOOO OOOOO O O
016: OOOOOOOOOOOOOOOOO OOOOO OOO O OOOOOOOO
017: O OOOOOOOOOOOOOOO O O OO OOOOO
018: OOOOOOOOOOOOOOOOOOOO OOO O O
019: OOOOOOOOOOOOOOOOOOOOOO OOOOOO OOOOO
020: O OOOOOOOOOOOOOOO OOO O OOOOO
021: O OOOOOOOOOOOOOOO O O O
022: OOOOOO OOOOOOOOOOOOOOO OOOOOO O
023: OOOO OOOOOOOOOOOOOO OOOOOO OO
024: OOOOOOOOOOOOOO OOOOO O
025: O OOOOOOOOOOOOOOOOOO

Examine the grouping of the zeroes along the diagonal. These indicate that amino
acids close together in sequence are close together in physical space, too. Of more
interest are the off-diagonal contacts, which show how the protein has folded
back on itself and which part associates with which. A far better representation
than this textual printout is to plot an image using Perl’s GD module and the
gdlib library, as described later in the Data Visualisation chapter. By way of a
taster of what is possible, a preview of the image is shown in Figure 10.5 on
page 196.

196 The Protein Databank

Figure 10.5 The graphic image contact map.

10.8 STRIDE: Secondary Structure Assignment

In this section, the STRIDE program9, maintained by Dmitrij Frishman, is used
to find the secondary structural elements in the example proteins. The results
should be similar to those in the HELIX, SHEET and TURN subsections of the
HEADER annotation for the PDB data-file. Why go to the trouble of using STRIDE
when the information is already available? There are a number of reasons:

1. The annotation may be missing or was, for some reason, never generated.

2. It is often easier to run STRIDE on the structure than reconstitute the
assignments from the HEADER section.

3. The STRIDE output has a residue-by-residue assignment (as described
below).

9
Available from the http://mips.gsf.de/mips/staff/frishman/ web-site.

Assigning Secondary Structures 197

4. STRIDE can find ‘‘turns’’ that exist in a structure that are often not listed in
the HEADER section.

5. STRIDE can produce extra derived information as part of its output. For
example, the location of hydrogen bonds, the dihedral angles in backbone
or the solvent accessibility. STRIDE can also report the amino acid sequence
in protein.

Maxim 10.2 It is often easier and desirable to
regenerate database annotation than trawl through entries

reconstituting the annotation using custom code.

Do not assume that because it is not acknowledged in the database annotation
the information is absent from the entire data set. Often, data can be found using
better analysis tools.

10.8.1 Installation of STRIDE

The installation of STRIDE is straightforward. Either download one of the many
pre-compiled binaries or compile the program from source. As the compilation
process is standardised under Linux, compiling from source is often preferred.
To do so, download the source code data-file, then decompress the archive using
this command-line:

tar -zxvf stride.tar.gz

Change into the newly created stride directory, then type make:

cd stride
make

Messages will appear on screen as the compilation process starts. Assuming
success, a new executable, also called stride, is created. Issue the following
command to execute STRIDE :

./stride

10.9 Assigning Secondary Structures

STRIDE, which is short for ‘‘STRuctual IDEntification’’, was originally created by
Dmitrij Frishman and Patrick Argos. It automatically finds secondary structure
elements in proteins using a set of supplied coordinates.

Technical Commentary: Another commonly used algorithm in this area is DSSP,
short for ‘‘Define Secondary Structure of Proteins’’, which was created by Wolfgang

198 The Protein Databank

N

NHC
C O

d−
d+

θ

r

Figure 10.6 Simplified definition of a hydrogen bond.

Kabsch and Christian Sander. DSSP is now maintained by Elmar Krieger at CMBI,
in Nijmegen, the Netherlands10. It is the personal preference of the researcher as
to which to use. Your authors decided to cover STRIDE because of its convenient
downloading. Contrast the free download of STRIDE to DSSP, which requires poten-
tial users to complete licensing forms, then submit a request which must (some
time later) be processed. Non-academic users may also have to pay a licence fee.

STRIDE works by identifying hydrogen bonds within the structure.
Hydrogen bonds form when a hydrogen atom attached to a donor atom is

attracted by an acceptor atom because of the partial charge present on the
hydrogen and the acceptor, as shown in Figure 10.6 on page 198. Despite the
use of the name ‘‘bond’’, it is really a loose association compared to the other
covalent bonds that are present in protein structures. In the protein backbone,
the donors are typically carbonyl oxygen atoms, and the hydrogen is attached to
amide nitrogen atoms.

With reference to Figure 10.6, the partial negative charge on the oxygen and
the partial positive charge on the hydrogen result in the formation of a hydrogen
bond if the distance (r) and angle θ are realistic.

The hydrogen bonds are diagnostic of the type of structure: in the α Helix they
bond between successive turns of the Helix and in the ‘‘turn’’, there is one across
the ends of the turn. In case of the β sheet, hydrogen bonds form between two
strands, in this case, between residues 3 and 9 and between residues 74 and 80.

First STRIDE searches for characteristic hydrogen bonding patterns in the
protein structure, as shown in Figure 10.7 on page 199. This molecular graphic,
as produced by Open Rasmol, shows four different types of secondary structure.
For simplicity, the cartoon representation of the backbone is used with the
hydrogen bond between atoms, which are shown by black rods. Residues 21 to
28 form an α Helix, 28 to 31 and 31 to 33 form a generic Coil and 33 to 38 form
a piece of a β sheet. For a particular amino acid K, these are:

α Helices – There is a hydrogen bond between K and K+4 as well as one between
K + 1 and K + 5.

β Sheets – STRIDE searches for hydrogen bonds that form bridges between dif-
ferent parts of the protein structure: residues K and K + 1 must bond to at

10
See http://www.cmbi.kun.nl/gv/dssp/ for more details.

Assigning Secondary Structures 199

Hydrogen bonds α helix

74

80

40

21
29

34

319

4
β sheet Turn

Figure 10.7 Example of secondary structure elements in proteins.

least two consecutive amino acids somewhere else in the backbone. Conse-
quently, the two regions can be quite distantly related in terms of amino
acid sequence.

The assessment of other less common secondary structure types: π helices,
3–10 helices or turns is performed in a similar way11. Any patterns of hydrogen
bonds that are unrecognised are referred to as a Coil, which in many ways is
the ‘‘catch-all’’ state: anything not recognised as anything else gets called Coil in
structural biology terminology. STRIDE then attempts to extend the structural
element along the chain.

To improve the accuracy at the end of the structural elements, STRIDE uses
the dihedral angles ψ and φ of the protein backbone, as shown in Figure 10.8
on page 200. These are specific examples of Torsion Angles, that measure the
rotation around a particular bond with reference to four atoms.

With reference to Figure 10.8, the rotational angle about the N-Cα bond (φ) is
calculated with reference to the C-N-Cα-C atoms; the rotational angle about the
Cα-C bond (called ψ) is calculated with reference to the N-Cα-C-N atoms. The
rotational angle around the C-N bond measured by the ω angle is calculated with
reference to the Cα-C-N-Carbon-α, and it varies little because of the resulting
planar structure.

If the φ and ψ angles found in α helical or beta sheets are plotted against each
other, they group together in certain regions. This type of diagram is called a
Ramachandran Plot. It is often used as a progress measure during the process
of structural refinement, as certain regions correspond to more energetically
favourable conformations. This also means that assessment of modern structures

11
Curious readers are referred to the original STRIDE and DSSP papers for details. Both

programs use broadly the same system.

200 The Protein Databank

H

H

N

N

Cα

CαC

C

O

R

Ψ

φ

ω

Partial double
bond character

Figure 10.8 Definition of dihedral angles in the backbone of protein structures.

using Ramachandran Plots for correctness might not be useful, as they all have
good Ramachandran angles! How else would the refinement programs have
proposed the structure you see12?

Many protein structure analysis programs, including DeepView, can generate
these plots. Built into STRIDE is a probability map constructed in the same way
from the observation of the dihedral angles in real proteins. This is then used
in a scoring procedure to link particular combinations of ω, φ and ψ angles
with structural states. The hydrogen bonding patterns and the Ramachandran
probabilities are weighted and combined together, such that a good hydrogen
bonding potential can compensate for a less than optimal geometry and vice-
versa. If neither score exceeds a threshold, and none of the rules for other
secondary structures indicate an alternative, then the ‘‘catch-all’’ designation of
Coil is used.

10.9.1 Using STRIDE and parsing the output

Running STRIDE without any input displays the program’s usage information.
The message indicates that the user is expected to specify an input data-file, as
follows:

You must specify input file

Action: secondary structure assignment
Usage: stride [Options] InputFile [> file]
Options:
-fFile Output file
-mFile MolScript file

12
By ignoring the experimental evidence in favour of a nice Ramachandran Plot perhaps? Be

careful to keep your training and validation datasets separate.

Assigning Secondary Structures 201

-o Report secondary structure summary Only
-h Report Hydrogen bonds
-rId1Id2.. Read only chains Id1, Id2 ...
-cId1Id2.. Process only Chains Id1, Id2 ...
-q[File] Generate SeQuence file in FASTA format and die

Options are position and case insensitive

Executing STRIDE against the 1LQT structure, with the requirement that just the
‘‘A’’ chain be processed, is accomplished with a command like this:

stride -cA 1lqt.pdb

The resulting output contains a number of sections.
The first section contains a header section containing instructions on how to

cite the program and the methods it uses, which are identified by the REM tag.
This is followed by information in a very similar form to the original PDB data-file,
and it includes the name and date of the structure (HDR); the Compound (CMP),
the Source (SRC) and the Authors (AUT):

REM -- 1LQT
REM 1LQT
REM STRIDE: Knowledge-based secondary structure assignment 1LQT
REM Please cite: D.Frishman & P.Argos, Proteins 23, 566-579, 1995 1LQT
REM 1LQT
REM Residue accessible surface area calculation 1LQT
REM Please cite: F.Eisenhaber & P.Argos, J.Comp.Chem. 14, 1272-1280, 1993 1LQT
REM F.Eisenhaber et al., J.Comp.Chem., 1994, submitted 1LQT
REM 1LQT
REM ------------------------ General information ----------------------- 1LQT
REM 1LQT
HDR OXIDOREDUCTASE 13-MAY-02 1LQT 1LQT
CMP ...
SRC ...
AUT ...

The next section contains a summary of the secondary structure allocation. Each
CHN line marks the start of a new summary for a particular chain. Each part of
the summary is split across pairs of lines. The first SEQ tag identifies the amino
acids. The second STR tag line uses a one-letter code to indicate the corresponding
structural state, of which the most common are ‘‘H’’ for α helix, ‘‘E’’ for extended
(one strand of a sheet), ‘‘T’’ for turn, ‘‘G’’ for 3-10 helix and a space character
for Coil:

REM -------------------- Secondary structure summary ------------------- 1LQT
REM 1LQT
CHN ../exp_st A 1LQT
REM 1LQT
REM 1LQT
SEQ 1 RPYYIAIVGSGPSAFFAAASLLKAADTTEDLDMAVDMLEMLPTPWGLVRS 50 1LQT
STR EEEEEE HHHHHHHHHHHHHHHHTTTT EEEEEE HHHH 1LQT
REM 1LQT

202 The Protein Databank

REM 1LQT
SEQ 51 GVAPDHPKIKSISKQFEKTAEDPRFRFFGNVVVGEHVQPGELSERYDAVI 100 1LQT
STR H TTTTTGGGGGGGHHHHHHHTTTEEEEETTTTTTTTTHHHHHHHTTEEE 1LQT

Each structural element in this section is then listed in LOC tagged lines. These
correspond to those residues displayed by Figure 10.8. There are some noticeable
differences between the assignments in the PDB data-file, as created by the
depositors, and those produced by STRIDE. This is due to slightly different
definitions of the secondary structure used, especially at the ends of the elements.
However, all the items are present, and the variation is not great:

LOC AlphaHelix PRO 13 A THR 28 A 1LQT
LOC 310Helix LYS 59 A LYS 65 A 1LQT
LOC Strand TYR 4 A VAL 9 A 1LQT
LOC TurnII THR 29 A LEU 32 A 1LQT
LOC Strand MET 34 A LEU 39 A 1LQT
LOC Strand PHE 76 A GLY 80 A 1LQT

The third and final section provides a detailed description of each residue,
providing an easy-to-parse space-delimited format with actual space characters
between the columns (unlike the PDB data-files the data was derived from).
The remark line should (hopefully) explain what most of the fields contain. The
4th and 5th fields need further explanation. The 4th is the residue number as
reported in the PDB data-file. The 5th is an ordinal number, which starts at one
and increments by one per residue processed, and is created by STRIDE. The 10th
‘‘Area’’ field identifies the area of the amino acid exposed to the solvent:

REM --------------- Detailed secondary structure assignment------------- 1LQT
REM 1LQT
REM |---Residue---| |--Structure--| |-Phi-| |-Psi-| |-Area-| 1LQT
ASG ARG A 2 1 C Coil 360.00 156.52 121.3 1LQT
ASG PRO A 3 2 C Coil -75.72 161.36 35.7 1LQT
ASG TYR A 4 3 E Strand -71.26 145.24 21.2 1LQT

.

.

.
ASG GLY A 12 11 C Coil -83.55 -168.87 8.7 1LQT
ASG PRO A 13 12 H AlphaHelix -53.20 -47.88 16.0 1LQT
ASG SER A 14 13 H AlphaHelix -63.16 -38.61 8.3 1LQT

This format is so straightforward that to extract data from it using a bespoke
Perl program seems excessive. As an alternative, the gawk utility can be used
from the command-line to quickly parse the STRIDE data-file and create a custom
Ramachandran Plot, as shown here:

gawk ’/^ASG/ {print $8 " " $9}’ 1lqt.A.stride

The gawk utility detects the ASG tag at the start of the line13 and prints out the 8th
and 9th fields. The surrounding single-quote marks are required to prevent the

13
Note the use of a regular expression.

Assigning Secondary Structures 203

operating system’s shell from incorrectly interpreting the gawk program options.
Here is an extract of the results produced by the execution of gawk:

360.00 156.52
-75.72 161.36
-71.26 145.24
-111.08 119.10
-118.65 131.78

.

.

.

This example can be extended to extract a subset of the data. To extract just
those residues involved in ‘‘Strand’’ or ‘‘AlphaHelix’’ states, use command-lines
like these:

gawk ’(/^ASG/ && /Strand/) {print $8 " " $9}’ 1lqt.A.stride

gawk ’(/^ASG/ && /AlphaHelix/) {print $8 " " $9}’ 1lqt.A.stride

Figure 10.9 on page 203 shows the grouping of the close to 450 amino acids.
The figure shows a distinct grouping into certain regions. Those angles resulting
from ‘‘AlphaHelix’’ are surround by a circle and those from ‘‘Strand’’ are
shown surrounded by diamonds. This gives an impressive demonstration of the
grouping of the dihedral angles in a two-dimensional virtual space and the power
of derived data.

Almost any protein structural analysis program will create Ramachandran
Plots, as they are a fundamental diagnostic test used to determine if a protein

150

−150 −100 50 0

100

50

−50

−100

−150

15010050
0

All
Helix
Strand

PHI/PSI plot 1LQT, Chain A

P
H

I

PSI

Figure 10.9 Ramachandran plot of dihedral angles of chain A from structure 1LQT.

204 The Protein Databank

structure is correct. In this context, a Ramachandran Plot may reveal parts of
the structure that are outside of the low-energy areas. This can be taken as
an indication of a region of poor structure or that there is a good reason for
the conformation to be as it is: for example, it is structurally important to the
function of the protein.

10.9.2 Extracting amino acid sequences using STRIDE

Another common use of STRIDE is to extract the primary structure, that is, the
amino acid sequence, from a PDB data-file. This is also straightforward, and is
invoked using the -q command-line switch. The results are produced in FASTA
format14. The following command-line:

stride -q 1lqt.pdb

produces this output:

>1lqt.pdb A 452 1.050
RPYYIAIVGSGPSAFFAAASLLKAADTTEDLDMAVDMLEMLPTPWGLVRSGVAPDHPKIK

.

.

.
>1lqt.pdb B 454 1.050
RPYYIAIVGSGPSAFFAAASLLKAADTTEDLDMAVDMLEMLPTPWGLVRSGVAPDHPKIK

.

.

.

If a particular chain is to be reported on, the -c option is used to specify which
chain is required, as follows:

stride -cA -q 1lqt.pdb

resulting in the following output:

>1lqt.pdb A 452 1.050
RPYYIAIVGSGPSAFFAAASLLKAADTTEDLDMAVDMLEMLPTPWGLVRSGVAPDHPKIK

.

.

.

This simplicity makes STRIDE the preferred method for obtaining the amino acid
sequence from a PDB data-file.

14
Described elsewhere in Bioinformatics, Biocomputing and Perl.

Introducing the mmCIF Protein Format 205

10.10 Introducing the mmCIF Protein Format

The mmCIF data format is intended to be a replacement for the legacy PDB data-
file format. Designed using modern data management techniques, the contents
of an mmCIF data-file are expressed in a series of key-value pairings. The meaning
of these pairings is stored in a separate data-file called a ‘‘Dictionary’’, which, in
essence, allows mmCIF to store data15.
mmCIF is designed to store structures created as a result of crystallography

investigations. While the storage of atom locations is the same as those in the
NMR structures, the experimental details associated with the production of the
structures differ. Even today, the additions needed for the mmCIF dictionaries
to support this extra NMR data are still the subject of much debate. If mmCIF
data-files need to be accessed directly, software libraries to process them do
exist, although these are still under active development.

The mmCIF data-file format is not designed to be ‘‘easily’’ read by humans;
computer programs are the main target audience. A side effect of this decision
is that the strict format definition makes it easy to ‘‘unwind’’ the data-file into
a software data structure. From a quality control perspective, this makes the
absence or addition of data easy to verify. The mmCIF data-file format is also that
which is the ‘cleaned-up’’ version of the PDB from the PDB Uniformity Project is
being made available.

The decision as to which format to use, either mmCIF or the legacy PDB data-file
format, depends on the requirements of the researcher. For now, a good rule
of thumb is to use the legacy PDB data-files, unless a very specialist application
demands otherwise. One interesting caveat relates to accessing the 3D coordinate
positions of atoms in the structure, together with their type/chain/residue des-
ignations. Unlike the PDB data-file, the mmCIF structure has fields that are space
delimited with absent information marked by a special ‘‘spacer’’ character (such
as ‘‘.’’). Therefore, the simple Perl statement

@Fields = split(".", $_);

will split, for example, the ‘‘ATOM’’ line into separate entries in the @Fields array.
It is then possible to use a statement like this:

$X_Coordinate = $Field[7];

15
This is similar to XML’s Document Type Definition (DTD), upon which mmCIF is based.

206 The Protein Databank

to access the coordinates. For applications in which data is used or needs to be
converted en masse to another data format, the precision inherent in the mmCIF
structures can be helpful.

10.10.1 Converting mmCIF to PDB

There are a number of programs that convert between mmCIF and the PDB data-file
format. Two of the most common are:

1. CIFTr – The RCSB distributes the CIFTr program, which can be used to
convert from the mmCIF structure to the PDB data-file format16.

2. pdb2cif – Again from the RCSB, the pdb2cif program can convert from
the PDB data-file format to mmCIF17.

In an ideal world, these two tools should be capable of processing each other’s
output, forming a closed cycle. That is, an mmCIF data-file can be converted
into its PDB equivalent by CIFTr. The resulting PDB data-file should then be
capable of being converted back to mmCIF using the pdb2cif, resulting in the
original data-file. Although a reasonable assumption, this is in fact overoptimistic,
but – hey – few things in life are perfect!

10.10.2 Converting mmCIFs to PDB with CIFTr

The installation of the CIFTr program is straightforward. A pre-compiled binary
version of the program will suffice for most purposes. Browse to the CIFTr web-
site, download the binary distribution for Linux, then unpack the downloaded
file into its own directory. The RCSBROOT environment variable is then set:

cd
tar -zxvf ciftr-v2.0-linux.tar.gz
cd ciftr-v2.0-linux/
setenv RCSBROOT ~/ciftr-v2.0-linux
export RCSBROOT = ~/ciftr-v2.0-linux

To convert a mmCIF data-file to its PDB equivalent, supply the data-file name on
the command-line as follows:

./CIFTr -i 1lqt.cif

16
CIFTr is written by Zukang Feng and John Westbrook, and is available on-line at

http://pdb.rutgers.edu/mmcif/CIFTr/index.html.
17
pdb2cif is written by P. E. Bourne, H. J. Bernstein and F. C. Bernstein, and is available on-line

at http://www.bernstein-plus-sons.com/software.

Introducing the mmCIF Protein Format 207

Note the use of the ‘‘-i’’ command-line switch (where ‘‘i’’ stands for ‘‘input’’). If
successful, a data-file called 1lqt.cif.pdb is created in the current directory.
Let’s try this with an example mmCIF data-file, which initially looks like this:

data_1LQT
#
loop_
_audit_author.name
’Bossi, R.T.’
’Aliverti, A.’
’Raimondi, D.’
’Fischer, F.’
’Zanetti, G.’
’Ferrari, D.’
’Tahallah, N.’
’Maier, C.S.’
’Heck, A.J.R.’
’Rizzi, M.’
’Mattevi, A.’
#
_pdbx_database_status.status_code REL
_pdbx_database_status.entry_id 1LQT
_pdbx_database_status.recvd_deposit_form N
_pdbx_database_status.date_deposition_form ?
_pdbx_database_status.recvd_coordinates Y

.

.

.

Using an appropriately formed command-line, the above entry is converted into
its PDB equivalent data-file, which looks like this:

HEADER OXIDOREDUCTASE 13-MAY-02 XXXX
TITLE A COVALENT MODIFICATION OF NADP+ REVEALED BY THE ATOMIC
TITLE 2 RESOLUTION STRUCTURE OF FPRA, A MYCOBACTERIUM TUBERCULOSIS
TITLE 3 OXIDOREDUCTASE
CAVEAT 1LQT CHIRALITY ERROR AT THE CA CENTER OF ASP A 31.
COMPND MOL_ID: 1;
COMPND 2 MOLECULE: FPRA;
COMPND 3 CHAIN: A, B;
COMPND 4 SYNONYM: FERREDOXIN NADP REDUCTASE;
COMPND 5 ENGINEERED: YES
SOURCE MOL_ID: 1;
SOURCE 2 ORGANISM_SCIENTIFIC: MYCOBACTERIUM TUBERCULOSIS;
SOURCE 3 ORGANISM_COMMON: BACTERIA;
SOURCE 4 EXPRESSION_SYSTEM: ESCHERICHIA COLI;
SOURCE 5 EXPRESSION_SYSTEM_COMMON: BACTERIA
KEYWDS NADP+ DERIVATIVE, TUBERCULOSIS, OXIDOREDUCTASE

.

.

.
REMARK 4 1LQT COMPLIES WITH FORMAT V. 2.3, 09-JULY-1998

.

.

.

208 The Protein Databank

10.10.3 Problems with the CIFTr conversion

On the whole, CIFTr works well. However, it does have a number of problems:

1. The PDB identifier is missing from the HEADER line of the resultant PDB
data-file, having been replaced by ‘‘XXXX’’ instead. As a result, the statement
in REMARK tag, type 4 (above) is invalid.

2. Each time CIFTr executes, it creates a temporary disk-file in the /tmp
directory. This temporary disk-file is not removed when CIFTr exits. As the
temporary disk-file is uniquely named, it remains on the hard disk until
deleted manually. As a result, during large automated conversion runs, the
amount of available disk space can be dramatically reduced18.

3. The CIFTr error log is appended to each time the program is executed.
There is no maximum limit set on the size of this error log. As with the
previous point, if not regularly deleted, the error log grows until it occupies
a large amount of disk space. Be sure to prune it regularly.

While preparing Bioinformatics, Biocomputing and Perl, the authors downloaded
the entire PDB from the Data Uniformity Project’s FTP site. This collection of data-
files is in mmCIF format, and CIFTr converted all of them. All of the resultant
PDB data-files conformed to the v2.3 standard, apart from the omission of the
PDB identifier code as described above.

10.10.4 Some advice on using mmCIF

As suggested earlier, as a general guideline, plan to work with the PDB data-files,
unless you have good reason to do otherwise. Experience has shown that working
with the legacy PDB data-files is straightforward and well established. If the most
up-to-date set of ‘‘super-standardised’’ PDBs are required, download the mmCIF
versions from the PDB Uniformity Project and convert them using CIFTr.

10.10.5 Automated conversion of mmCIF to PDB

The convert pdb program demonstrates how to use Perl to control the CIFTr
program to expand a complete directory of compressed mmCIF files. Here’s the
source code to convert pdb:

#! /usr/bin/perl

convert_pdb - Convert PDB script. Uses ciftr V.2.0 to convert

18
Michael recently purchased a bigger hard disk after noticing that his current one was full.

It was only after purchasing the new one that Michael noticed a large collection of temporary
disk-files in his old hard-disk’s /tmp directory. After deleting these, the amount of free disk-disk
increased dramatically, negating the need for the new hard disk. As chance would have it,
Michael’s new hard-disk failed under warranty, and he returned it for a full refund!

Introducing the mmCIF Protein Format 209

mirrored PDB from mmCIF into Legacy PDB format. The
CIFTr program should be installed at the indicated path.

use strict;

my $CIFTr_path = "~/ciftr-v2.0-linux";
my $PDB_Path = "~/structures/pdb-select/pdbs";
my $mmCIF_Path = "~/structures/pdb-select/structures";

$ENV{ RCSBROOT } = $CIFTr_path;

opendir(INPUT_DIR, "$mmCIF_Path")
or die "Error: Cannot read from mmCIF directory: ’$mmCIF_Path’\n";

my @mmCIFdir = readdir(INPUT_DIR);

close INPUT_DIR;

open(OUTPUT_DIR, $PDB_Path)
or die "Error: Cannot read from PDB directory: ’$PDB_Path’\n";

foreach my $Current_mmCIF_file (@mmCIFdir)
{

if (!($Current_mmCIF_file =~ m/cif/i))
{

next;
}

my $PDB_ID = ($Current_mmCIF_file) =~ m/(\d\w\w\w).cif/;
my $PDB_name = $PDB_ID . ".pdb";

print "Now Processing ’$Current_mmCIF_file’ ";
print "into pdb file: ’$PDB_name’\n";

my @CP_return =
‘cp $mmCIF_Path/$Current_mmCIF_file .‘;

my @Ciftr_run =
‘$CIFTr_path/bin/CIFTr -uncompress gzip -i ./$Current_mmCIF_file‘;

chomp(@Ciftr_run);

print join ",", @Ciftr_run,"\n";

if (-e "./$PDB_ID.cif.pdb")
{

my @Move_Result = ‘mv $PDB_ID.cif.pdb $PDB_Path/$PDB_name‘;
}
else
{

die "ERROR: PDB file ’$PDB_Path/$PDB_name’ was not created!\n";
}

system "rm cif2pdb.err";

system "rm /tmp/file* > /dev/null";
}

210 The Protein Databank

The result of executing this program is a list of converted PDBs in the specified
directory. It is left as an extended exercise for the reader to work through this
program and determine how it works19. Note that the backticks surrounding the
cp, CIFTr and mv invocations cause perl to execute the specified command at
the operating system level, returning any results to this program. It is very similar
in operation to Perl’s system subroutine, which is also used here.

Where to from Here

This chapter introduced the Protein Databank, commonly referred to as the PDB.
Both the legacy PDB data format and the modern replacement data format, mmCIF,
were described, and a number of programs – some custom, bespoke and others
available for download as utilities – were used to learn about the PDB and the
data it holds. In the chapters that follow, the theme of Bioinformatics data and
its usage is continued.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• Beware of anything in the PDB Header Section.

• It is often easier and desirable to regenerate database annotation than trawl
through entries reconstituting the annotation using custom code.

19
This is not a cop-out on the part of your authors. You will often be presented with not much

more than the source code to a program that requires amending. Learning to ‘‘read’’ another
programmer’s source code is a skill worth developing.

11

Non-redundant
Datasets

The importance of non-redundant data.

11.1 Introducing Non-redundant Datasets

This chapter discusses the need for, the problems associated with and the
practical aspects of using non-redundant datasets. The focus of this chapter is
on the PDB, as this is where the redundancy problems are most acute, because
of the limitations of some of the processes used to determine protein structures.
The fundamental concepts described here apply in a wider context.

11.1.1 Reasons for redundancy

There may be many reasons for redundancy in a dataset. With specific reference
to the PDB, these include the following:

1. Scientific – It is often advantageous to study molecules with similar struc-
tures. This is a classic scientific investigative methodology: change a small
part, then identify the change in structure or function to form hypotheses
about the reasons for the change. Consequently, researchers are encouraged
to study similar molecules to those studied previously.

2. Technological limitations – In X-Ray Crystallography, it is easier to obtain
the structure of a molecule that is similar to one that is already known, as

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

212 Non-redundant Datasets

molecules with similar conformations are likely to have similar crystallisa-
tion conditions. This, conveniently, allows two of the most difficult aspects
of using X-Ray Crystallography to be dealt with.

11.1.2 Reduction of redundancy

There are two reasons for supporting the reduction of a database:

1. Conceptually, to remove bias within the database. The statistical analysis
based upon the non-redundant dataset will be more representative of all the
items in the database, rather than just the largest dominant group. In the
PDB, the classic example of this activity is the removal of the many (several
hundred) similar Lysozyme structures.

2. As a practical measure, to reduce the computational requirements caused
by analysing examples that are unnecessary. For example, the PDB-Select
structural non-redundant dataset (described below) contains approximately
1600 protein structures, whereas the entire PDB contained approximately
18,000. This ten-fold reduction in size is particularly welcome should an
‘‘all-against-all’’ dataset comparison be undertaken. For 1600 items, there
are 1.27926 (calculated as comparisons 1,600×1,599/2), whereas for 18,000
examples, there are 161.9916 (calculated as 18,000×17,999/2). The full com-
parison takes approximately 126 times longer than the reduced redundancy
set.

11.1.3 Non-redundancy and non-representative

It is important to realise that a ‘‘non-redundant’’ dataset can contain a subset of
only the parent dataset from which it was produced. Information absent from
the parent database will remain in the dataset, and is not ‘‘magically’’ created by
the removal of other repeated items. Although this may seem obvious, it is an
important point that is easy to forget.

Maxim 11.1 A non-redundant dataset is a subset of its parent dataset.

It is unwise to claim that the conclusions drawn from a non-redundant PDB
dataset is directly applicable to all proteins. Consider the case of membrane-
associated proteins: these exist in close proximity to a lipid environment (inside it
for some sections), which is radically different to the aqueous solution conditions
of most proteins in the PDB. Membrane-bound proteins form less than 1% (about
10 structures) by proportion of the PDB, compared to the 15−30% expected
from genomic prediction studies of trans-membrane helices. However, let’s be
optimistic. Despite what may be missing from a non-redundant version of the
PDB, it still contains a lot of useful information. It is important to acknowledge
that it is actually representative of globular proteins that have structures. If you

Non-redundant Protein Structures 213

avoid over-extending any conclusions in which they are inappropriate, then any
conclusions drawn should be valid.

11.2 Non-redundant Protein Structures

The two most widely used algorithms to prepare non-redundant protein datasets
are PDB-Select and CD-HIT/CD-HI. Both algorithms work in a similar, three-step
way as follows:

1. Calculation of the similarity of the proteins in the PDB based upon their
sequence similarity to each other.

2. Stipulation of a threshold over which proteins are deemed ‘‘similar’’ and
below which they are not.

3. Grouping – or clustering – the proteins and selecting a representative pro-
tein from each group.

PDB-Select lists are prepared every six months1 and are widely used for testing
and development of protein structure prediction algorithms. The advanced search
form on the PDB web-sites allows the results returned to be filtered by lists of
different similarity levels, as prepared by the CD-HIT algorithm. This preparation
occurs on a weekly basis. The PDB-Select list at 25% similarity from April 2002 is
used as an example. The list itself can be downloaded via FTP from the PDB-Select
site:

ftp://ftp.embl-heidelberg.de/pub/databases/protein_extras/pdb_select

There is nothing fundamentally wrong with the CD-HIT lists, it is your author’s
personal preference that they are not used.

The above definition of ‘‘25% similar’’ is widely known as the practical limit at
which the commonly used pairwise protein sequence comparison algorithms can
identify related proteins on the basis of amino acid sequence alone. This removes
many copies of the most similar proteins reducing the number of included
examples to something more computationally manageable2, while still giving a
wide spread of structures. Extracts from the downloaded data file are shown in
Figure 11.1 on page 214.

The meanings of the columns are given in the README data file, stored in the
same directory as the downloaded dataset. The first seven columns are of most
interest, and are described as follows:

1
And have been since 1992.

2
Or at least manageable in terms of bandwidth, especially if you have to download them over

a slow connection!

214 Non-redundant Datasets

Fi
g
u

re
1
1
.1

Ex
tr

ac
te

d
n

o
n

-r
ed

u
n

d
an

t
d

at
as

et
.

Non-redundant Protein Structures 215

1. The threshold value used to prepare the list (25% identity).

2. The PDB identifier of the protein. The first four characters are the PDB
identifier code, the last is the chain identifier with the structure (or ‘‘ ’’, if it
is the only chain).

3. The number of amino acids in the structure.

4. The Resolution of the structure for crystallographic structures (or −1.00 to
signal ‘‘not applicable’’ for NMR structures).

5. The R-Factor of the structure for crystallographic structures (or −1.00 to
signal ‘‘not applicable’’ for NMR structures).

6. The number of residues that have backbone atoms reported.

7. The number of residues that have side chain atoms reported.

In the PDB-Select lists, protein chains in the same PDB data file are treated inde-
pendently. Whether this is a tolerable or an unacceptable assumption depends on
what is being studied or researched. For instance, this assumption may well be
a problem when studying the interaction of protein sub-units. Some structures,
such as 1C53 contain only carbon-alpha positions, as shown in the bottom-half of
Figure 11.1 on page 214, while others (1TIA) have a small number of side chains
reported.

The 1TIA structure is particular intriguing: it is an alpha-carbon trace, except
for three of the 271 amino acids that have full side chains. The title of this PDB
is ‘‘An unusual buried polar cluster in a family of fungal lipases’’, indicating that
this structure was created for a very specific purpose. While very suitable for
this specific study, its use in more general studies is probably limited. It can
be excluded from the study by requiring that over 70% of the side chains be
reported. The program that follows, called select filter, filters the PDB-Select
list in this way:

#! /usr/bin/perl

select_filter: designed to filter the PDB-Select list
of alpha-carbon traces.

use strict;

while (<>)
{

if (!/^ 25/)
{

next;
}

my @Fields = split(" ", $_ ,8);

216 Non-redundant Datasets

if ($Fields[7] / $Fields [2] > 0.7)
{

my $ID = substr($Fields[1], 0, 4);
my $Chain = substr($Fields[1], 4, 1);

printf("%3s,%1s: %4i\n", $ID, $Chain, $Fields[7]);
}
else
{

print "Excluded: ", $Fields[1], "\n";
}

}

This program processes all lines that start with three spaces and ‘‘25’’, skipping
those lines that do not. The split subroutine, provided by Perl, breaks the line
into a collection of scalars that are then assigned to the @Fields array. A test is
then performed to see if the ratio of the number of amino acids in the structure
(field 2) relative to the number with side chains (field 7) exceeds 0.7 (or 70%). If
they do, then the chain and ID are split from each other. Note that the combined
code/ID is contained in field 1. An appropriately formatted message is then
displayed on STDOUT.

The select filter program produces a list that contains the PDB identifier
code, the chain within the data file3 and the number of amino acids in that chain.
Here is some sample output:

1KBF,A: 49
1KBH,A: 47
1KBH,B: 59
2A93,A: 32
1C9Q,A: 117
1C9F,A: 87
1G84,A: 105
2ADX,_: 40
2AF8,_: 86

.

.

.
Excluded: 1C53_
Excluded: 1TIA_

.

.

.

Of interest is the fact that, as this program executes, it catches other structures
such as 1TIA that has 271 amino acids but only 3 complete side chains. The lines
created by the excluded structures/chains can be removed by piping the output

3
Remember: PDB data files may contain one or more protein chains.

Non-redundant Protein Structures 217

of select filter through the grep utility. This command-line excludes, rather
than reports, all lines that contain the pattern ‘‘Excluded’’, thanks to the use of
the ‘‘-v’’ switch:

./select_filter 2002_Apr.25 | grep -v ’Excluded’

Similarly, select only the excluded structures by removing the ‘‘-v’’ switch, as
follows:

./select_filter 2002_Apr.25 | grep ’Excluded’

It is always a good idea to inspect which structures are being excluded to make
sure the filters are not too stringent.

Maxim 11.2 Be sure to double-check the list of excluded structures.

The 34 structures failing the test criterion are

1C53, 2AT2(A), 1BAX, 1JQ1(A), 2ILA, 2MAD(H), 1JQS(B), 1JQS(C),
1QCR(F), 1QCR(D), 1QCR(K), 1QCR(G), 1QCR(C), 1EFM, 1TIA, 1FFK(S),
1FFK(U), 1FFK(W), 1FFK(V), 1FFK(J), 1DPI, 1FFK(B), 1FFK(G),
1FFK(F), 1FFK(D), 1FFK(C), 1ILT(A), 3HTC(I), 1AAT, 1IAN, 1JEW(2),
1JEW(4), 1JEW(3), 2DTR.

Ten are in structure 1FFK (the Large Ribosome Sub-unit from ‘‘HALOARCULA
MARISMORTUI’’) and contain only carbon-alpha atoms. With the list of required
non-redundant protein structures at hand, it is now possible to download them
from the Internet.

Where to from Here

This chapter presented the idea of non-redundant datasets, with specific refer-
ence to the PDB. Of course, storing Bioinformatics data in PDB data files is not
the only option. There are other data formats. Some of these are described in the
next chapter, which also presents a tutorial introduction to an important data
technology: relational database management systems.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• A non-redundant dataset is a subset of its parent dataset.

• Be sure to double-check the list of excluded structures.

12
Databases

Learning to talk database.

12.1 Introducing Databases

Many modern computer systems store vast amounts of structured data. Typically,
this data is held in a database system. Before defining what’s meant by the term
database system, let’s begin with the term ‘‘database’’:

A database is a collection of one or more related tables.

The use of the word ‘‘related’’ is important here, as is ‘‘table’’. The significance of
‘‘related’’ will soon become clear. For now, let’s define ‘‘table’’:

A table is a collection of one or more rows of data.

The rows of data are arranged in columns, with each intersection of a row and
column containing a data item. Therefore, the definition of ‘‘row’’ is:

A row is a collection of one or more data items, arranged in columns.

Within a row, the columns conform to a structure. For example, if the first column
in a row holds a date, then every first column in every row must also hold a date.
If the second column holds a name, then every second column must also hold a
name, and so on.

The following data corresponds to the structure just identified, in that there
are two columns, the first holding a date, the second holding a name:

1960-12-21 P. Barry
1954-6-14 M. Moorhouse

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

220 Databases

To further cement the notion of structure, each column is given a descriptive
name. Here’s an expanded table of data, with descriptive column names indicated
(additional rows of data have also been added):

-------------- ---------
Discovery_Date Scientist
-------------- ---------
1960-12-21 P. Barry
1954-6-14 M. Moorhouse
1970-3-4 J. Blow
2001-12-27 J. Doe

In addition to naming each column, the structure requires that each data item
held in a column be of a specific type. Here’s the type information for the data in
the above table:

----------- ----------------
Column name Type restriction
----------- ----------------
Discovery_Date a valid Date
Scientist a String no longer than 64 characters

This type information generally goes by one of two names: metadata or schema.
Think of the word structure as a synonym for both metadata and schema.
Note that the structure restricts the type of data that can be stored in each
column, in addition to – for some columns – specifying the maximum length of
the data item.

Consequently, with the example structure presented above, it is not possible
to store a name in a column that’s expecting a date. Additionally, when a name is
stored in the correct column, it cannot be longer than 64 characters.

In addition to assigning descriptive names and type restrictions to each column,
the entire table is given a name. Let’s call this table Discoveries. It is now
possible to answer a question like ‘‘What is the structure of Discoveries?’’.

12.1.1 Relating tables

Let’s extend the Discoveries table to include details of the discovery. An
additional column is needed to hold the data, as follows:

-------------- --------- ---------
Discovery_Date Scientist Discovery
-------------- --------- ---------
1960-12-21 P. Barry Flying car
1954-6-14 M. Moorhouse Telepathic sunglasses
1970-3-4 J. Blow Self cleaning child
2001-12-27 J. Doe Time travel

Introducing Databases 221

The inclusion of this new column requires an update to the structure of the table.
Here is a revised structure for Discoveries:

----------- ----------------
Column name Type restriction
----------- ----------------
Discovery_Date a valid Date
Scientist a String no longer than 64 characters
Discovery a String no longer than 128 characters

Now, let’s assume there is a requirement to maintain additional data about each
scientist, specifically their date of birth and telephone number. This data is
referred to as the scientist’s identification information, and guards against the
problems that can occur when two scientists have the same name. For instance, if
there are two (mad) scientists called ‘‘M. Moorhouse’’, the original table structure
cannot distinguish between them. However, as it is highly unlikely that both
scientists share the same date of birth and telephone number, these data items
can be added to the table to guard against incorrect identifications. The structure
of the Discoveries table is now:

----------- ----------------
Column name Type restriction
----------- ----------------
Discovery_Date a valid Date
Scientist a String no longer than 64 characters
Discovery a String no longer than 128 characters
Date_of_birth a valid Date
Telephone_number a String no longer than 16 characters

The data in the table now looks like this1:

-------------- --------- --------- ------------- ----------------
Discovery_Date Scientist Discovery Date_of_birth Telephone_number
-------------- --------- --------- ------------- ----------------
1960-12-21 P. Barry Flying car 1966-11-18 353-503-555-91910
1954-6-14 M. Moorhouse Telepathic sunglasses 1970-3-24 00-44-81-555-3232
1970-3-4 J. Blow Self cleaning child 1955-8-17 555-2837
2001-12-27 J. Doe Time travel 1962-12-1 -
1974-3-17 M. Moorhouse Memory swapping toupee 1970-3-24 00-44-81-555-3232
1999-12-31 M. Moorhouse Twenty six hour clock 1958-7-12 416-555-2000

This version of the Discoveries table contains three rows for scientist M.
Moorhouse. By examining the Date of birth column, it is clear that there are
two different scientists.

1
If you’re thinking these dates correspond to your author’s actual birth dates, think again.

This data is obviously fictitious. Of course, if anyone has managed to invent a self-cleaning child,
please let Paul know.

222 Databases

12.1.2 The problem with single-table databases

Although the above table structure solves the problem of uniquely identifying
each scientist, it introduces some other problems, including:

1. If a scientist is responsible for a large number of discoveries, their identi-
fication information has to be entered into every row of data that refers to
them. This is time-consuming and wasteful.

2. Every time identification information is added to a row for a particular
scientist, it has to be entered in exactly the same way as the identification
information added already. Despite the best of efforts, this level of accuracy
is often difficult to achieve. In most cases, the slightly different identification
information will be assumed to refer to a different scientist.

3. If a scientist changes any identification information, every row in the table
that refers to the scientist’s discoveries has to be changed. This is drudgery.

12.1.3 Solving the one-table problem

Ideally, the identification information should exist in only one place. A mechanism
should provide for linking each scientist referred to in the Discoveries table to
the identification information.

The problems described in the previous section are solved by breaking the
all-in-one Discoveries table into two tables. Here is a new structure for Dis-
coveries:

----------- ----------------
Column name Type restriction
----------- ----------------
Discovery_Date a valid Date
Scientist_ID a String no longer than 8 characters
Discovery a String no longer than 128 characters

The Discoveries table reverts to three columns per row of data. The second
column, originally called Scientist, is now called Scientist ID. Its type infor-
mation has also changed, from a string of up to 64 characters to one of up to 8
characters. Here is the structure for a new table, called Scientists:

----------- ----------------
Column name Type restriction
----------- ----------------
Scientist_ID a String no longer than 8 characters
Scientist a String no longer than 64 characters
Date_of_birth a valid Date
Address a String no longer than 256 characters
Telephone_number a String no longer than 16 characters

Introducing Databases 223

The Scientists table also critically contains a column called Scientist ID,
which has type information identical to the corresponding column in the Dis-
coveries table. The Scientist column from the original Discoveries table,
as well as the identification information from the all-in-one Discoveries table,
makes up the remainder of the columns in Scientists, together with a new
column called Address.

When a new scientist comes along, a row of data is added to the Scientists
table. A unique 8-character Scientist ID is assigned to the scientist. When the
same scientist discovers something, the details of the discovery are added to the
Discoveries table. The unique Scientist ID is used to link, or relate, the row of
data in Discoveries to the scientist’s identification information in Scientists.
So Discoveries now contains data like this:

-------------- ------------ ---------
Discovery_Date Scientist_ID Discovery
-------------- ------------ ---------
1954-6-14 MM Telepathic sunglasses
1960-12-21 PB Flying car
1969-8-1 PB A cure for bad jokes
1970-3-4 JB Self cleaning child
1974-3-17 MM Memory swapping toupee
1999-12-31 MM2 Twenty six hour clock
2001-12-27 JD Time travel

While the Scientists table contains this data:

------------ --------- ------------- ------- ----------------
Scientist_ID Scientist Date_of_birth Address Telephone_number
------------ --------- ------------- ------- ----------------
JB J. Blow 1955-8-17 Belfast, NI 555-2837
JD J. Doe 1962-12-1 Sydney, AUS -
MM M. Moorhouse 1970-3-24 England, UK 00-44-81-555-3232
MM2 M. Moorhouse 1958-7-12 Toronto, CA 416-555-2000
PB P. Barry 1966-11-18 Carlow, IRL 353-503-555-91910

Note that despite the fact that there are two scientists called M. Moorhouse, the
rows of data that refer to their respective discoveries (in the Discoveries table)
are easily distinguished, as ‘‘MM’’ identifies the English Moorhouse, whereas
‘‘MM2’’ identifies the Canadian.

Changes to any scientist’s identification information no longer impact the
Discoveries table, as only the data in the Scientists table is changed.

Technical Commentary: Obviously, this last statement is not true when the change
to the row in Scientists results in the value for Scientist ID changing. In this
case, every row of data in Discoveries that refers to the old Scientist ID needs
to change. Such changes, while certainly possible, are rarely justifiable.

224 Databases

This technique of relating data in one table to that in another forms the basis
of modern database theory. It also explains why so many modern database tech-
nologies are referred to as Relational Database Management Systems (RDBMS).

When a collection of tables is designed to relate to each other, as is the case with
Discoveries and Scientists, they are collectively referred to as a database. It
is usually a requirement to give the database a descriptive name.

Taking the time to think about how data relates to other data in a database is
important and very worthwhile. It is so important that it warrants its very own
maxim.

Maxim 12.1 A little database design goes a long way.

12.1.4 Database system: a definition

With the terms database, table, row, column and structure defined, it is now
possible to return to the definition of ‘‘database system’’:

A database system is a computer program (or a group of programs) that
provides a mechanism to define and manipulate one or more databases.

Recall from the last section that a database contains one or more tables, and that
a table contains one of more rows of columned data that conform to a defined
structure. A database system allows databases, tables and columns to be created
and named, and structures to be defined. It provides mechanisms to add, remove,
update and interact with the data in the database. Data stored in tables can be
searched, sorted, sliced, diced and cross-referenced. Reports can be generated,
and calculations can be performed.

Many database systems can be extended, allowing automated interaction to
occur from many programming technologies. As the next chapter will show,
combining a database system with Perl is a powerful combination. But let’s not get
ahead of ourselves. There’s additional foundation material to work through first.

After a brief survey of available database systems, the remainder of this chapter
is dedicated to presenting a database case study. Bioinformatics data is used to
populate a database, and then a series of interactions with the data are described.
Along the way, the reader is exposed to SQL and the MySQL database system.

12.2 Available Database Systems

There are a large number of database systems to choose from. A simple categori-
sation by type of database system is as follows:

• Personal

• Enterprise

• Open source.

Available Database Systems 225

Which type of database system is chosen depends on a number of factors,
including (but not limited to):

1. The amount of data to be stored in the database.

2. Whether the data supports a small personal project or a large collabora-
tive one.

3. How much funds (if any) are available towards the purchase of a database
system.

12.2.1 Personal database systems

The database systems in this category are designed to run on any personal com-
puter, and they typically – though not exclusively – target the Microsoft Windows
graphical environment. Because of their PC heritage, they are good for small per-
sonal projects, but generally scale poorly: as the amount of data in the database
grows, the performance of these database systems degrade to the point where
they become unusable. That said, most databases in the category can comfortably
handle a multi-megabyte database.

Example technologies in this category include Access, Paradox, FileMaker and
the dBase family of databases.

12.2.2 Enterprise database systems

At the other end of the spectrum, the database systems in this category are
designed to support the efficient storage and retrieval of vast amounts of data.
Unlike the technologies in the Personal category, Enterprise database systems
can handle multi-gigabyte and increasingly multi-terabyte databases, and are
designed to provide access for multiple, simultaneous users. It is possible to
use an Enterprise database system for a personal project, but such practice is
generally considered to be overkill. It is also possible to run the database systems
in this category on standard personal computers (running operating systems
such as Windows, Mac OS X and Linux), but they are designed to execute on larger
enterprise-class computers such as mainframes, mini-computers or high-end
servers.

Example technologies in this category include InterBase, Ingres, SQL Server,
Informix, DB2 and Oracle.

12.2.3 Open source database systems

A significant factor differentiates the database systems found in the Personal
and Enterprise categories from those found in the Open Source category: cost.
The database technologies in the Personal category typically cost several hun-
dred euro, whereas those in the Enterprise category range in cost from several

226 Databases

thousands to several tens of thousand euro (and sometimes more). In stark
contrast, Open Source database systems are freely available on-line.

As a direct result of their Linux heritage, Open Source database technolo-
gies tend to perform equally well within a personal and an enterprise setting.
Consequently, Open Source database technologies neatly fill the gap that exists
between the personal and enterprise database worlds. Multi-megabyte and giga-
byte databases can be accommodated without too much difficulty.

Example technologies in this category include PostgreSQL and MySQL.

12.3 SQL: The Language of Databases

If there is one technology that unites all of the technologies found in the Personal,
Enterprise and Open Source database categories, that technology is SQL. SQL is
shorthand for Structured Query Language and has a heritage that dates to the
late 1960s.

The SQL component built into most modern database systems typically pro-
vides two facilities:

1. A Database Definition Language (DDL) and

2. A Data Manipulation Language (DML).

Prior to the arrival of SQL, every database system provided proprietary mech-
anisms for defining databases and then manipulating the data stored within
them. To use these database systems efficiently, some knowledge of how the
data was stored within the database system was required, and the effort required
to acquire this specialised knowledge was considerable. Moving data from one
database system to another was possible, but rarely considered, as the learn-
ing curve associated with the transition to an alternative database technology
was often considerable. The skills acquired when working with one particular
database system were generally not transferable to another.

The introduction, promotion and subsequent adoption of SQL as an integrated
database system component changed all this.

Not only did SQL provide a standard mechanism for defining and manipulating
data but also removed the requirement to understand the way in which the
data within the database system was stored. This was a huge advantage. As the
majority of database systems adopted SQL, users acquired a transferable skill
that no longer bound them to a single database system (or database vendor).

12.3.1 Defining data with SQL

The data definition component of SQL provides a mechanism whereby databases
can be created. Within a created database, SQL allows tables to be defined as rows

A Database Case Study: MER 227

of columned data conforming to a structure. Table structures can be changed,
and tables can be renamed or deleted.

12.3.2 Manipulating data with SQL

The data manipulation component of SQL provides a mechanism to work with
data in tables. Mechanisms exist to add data to tables a single row at a time, or
in bulk (more than one row at a time). Rows can also be removed from tables.

SQL provides a powerful mechanism to search data in tables and extract row
data. It is possible to extract an entire row of columned data or to specify
that only certain columns are to be included in the extract. Critically, the SQL
search-and-extract mechanism can be used to relate data in one table to that in
another.

Technical Commentary: A common question centres around the correct pro-
nunciation of ‘‘SQL’’. Typically – although not exclusively – persons of a European
persuasion tend to pronounce each letter individually: ‘‘S Q L’’. North Americans
tend to pronounce SQL as ‘‘sequel’’, in honour of one of the earliest database tech-
nologies that provided SQL as an integrated component. It does not really matter
which pronunciation is used, just so long as the use is consistent.

12.4 A Database Case Study: MER

The Swiss Institute of Bioinformatics maintains SWISS-PROT, an annotated protein
sequence database. Unlike the example database from the start of this chapter,
the SWISS-PROT database is not maintained as a collection of tables. Instead,
the SWISS-PROT database uses what’s commonly referred to as a flat-file (or
text-based) format to represent protein structures. The protein data is stored as
text in data files.

The SWISS-PROT database does define a specific structure for the contents of
the data file, which can contain one or more protein structures. Each structure is
referred to as an entry. The SWISS-PROT data format is described in detail in the
SWISS-PROT manual, which is available at:

http://www.expasy.org/sprot/userman.html

Obviously, the definition of ‘‘database’’ as it relates to SWISS-PROT is somewhat
different to the definition from earlier in this chapter. Although the SWISS-PROT
definition of ‘‘database’’ may be confusing to some readers, it is acceptable as the
meaning of the word ‘‘database’’ can vary depending on context. When working
with RDBMSs, ‘‘database’’ is defined as a collection of one or more related tables.
When working with SWISS-PROT data files, ‘‘database’’ is defined as a collection
of similarly formatted flat files.

The SWISS-PROT structure is designed to be highly compatible with that of
the EMBL Nucleotide Sequence Database. The EMBL database is maintained by

228 Databases

the EMBL Outstation at the European Bioinformatics Institute. Unlike SWISS-PROT,
which stores data on protein structures, the EMBL database stores DNA sequence
data. Like SWISS-PROT, the data in the EMBL database is a collection of similarly
formatted, text-based data files.

With modern database systems now in widespread use, one might be forgiven
for asking why the data in these two important databases is provided in its
current form. Why not use an RDBMS? This answer is taken from the on-line
documentation to the EMBL database:

‘‘An attempt has been made to make the collected data as easily acces-
sible as possible without restricting their usefulness to a particular
type of computing environment. For this reason, the simplest possible
organisation (‘flat file’) has been chosen.’’

The entire EMBL manual is available at this web-site:

http://www.ebi.ac.uk/embl/Documentation/User_manual/home.html

By choosing a simple, open format, the SWISS-PROT and EMBL databases can be
put to many different uses. Here’s an example SWISS-PROT entry:

ID MERT_ACICA STANDARD; PRT; 116 AA.
AC Q52106;
DT 01-NOV-1997 (Rel. 35, Created)
DT 01-NOV-1997 (Rel. 35, Last sequence update)
DT 15-JUN-2002 (Rel. 41, Last annotation update)
DE Mercuric transport protein (Mercury ion transport protein).
GN MERT.
OS Acinetobacter calcoaceticus.
OG Plasmid pKLH2.
OC Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales;
OC Moraxellaceae; Acinetobacter.
OX NCBI_TaxID=471;
RN [1]
RP SEQUENCE FROM N.A.
RX MEDLINE=94134837; PubMed=8302940;
RA Kholodii G.Y., Lomovskaya O.L., Gorlenko Z.M., Mindlin S.Z.,
RA Yurieva O.V., Nikiforov V.G.;
RT "Molecular characterization of an aberrant mercury resistance
RT transposable element from an environmental Acinetobacter strain.";
RL Plasmid 30:303-308(1993).
CC -!- FUNCTION: INVOLVED IN MERCURIC TRANSPORT. PASSES A HG(2+) ION
CC FROM THE PERIPLASMIC MERP PROTEIN TO THE MERCURIC REDUCTASE
CC (MERA).
CC -!- SUBCELLULAR LOCATION: INTEGRAL MEMBRANE PROTEIN. INNER MEMBRANE
CC (BY SIMILARITY).
CC --
CC This SWISS-PROT entry is copyright. It is produced through a collaboration
CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC the European Bioinformatics Institute. There are no restrictions on its
CC use by non-profit institutions as long as its content is in no way
CC modified and this statement is not removed. Usage by and for commercial
CC entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC or send an email to license@isb-sib.ch).
CC --

A Database Case Study: MER 229

DR EMBL; AF213017; AAA19679.1; -.
DR InterPro; IPR003457; Transprt_MerT.
DR Pfam; PF02411; MerT; 1.
KW Transport; Mercuric resistance; Inner membrane; Mercury; Plasmid;
KW Transmembrane.
FT TRANSMEM 16 36 POTENTIAL.
FT TRANSMEM 46 66 POTENTIAL.
FT TRANSMEM 94 114 POTENTIAL.
FT METAL 24 24 HG(2+) (BY SIMILARITY).
FT METAL 25 25 HG(2+) (BY SIMILARITY).
FT METAL 76 76 HG(2+) (BY SIMILARITY).
FT METAL 82 82 HG(2+) (BY SIMILARITY).
SQ SEQUENCE 116 AA; 12510 MW; 2930A92CF88EB10F CRC64;

MSEPQNGRGA LFAGGLAAIL ASACCLGPLV LIALGFSGAW IGNLTVLEPY RPIFIGAALV
ALFFAWRRIV RPTAACKPGE VCAIPQVRTT YKLIFWFVAV LVLVALGFPY VMPFFY

//

The exact meaning of each line type in this SWISS-PROT entry is described in
the SWISS-PROT manual. Although convenient for humans (the entry is easy to
read), processing the entry by computer is complicated by a number of factors,
including the following:

1. Not all SWISS-PROT line types are required. A number of the line types are
optional. The above entry, for example, does not contain the optional RC
line type, which refers to a Reference Comment.

2. Some of the line types can extend over any number of lines. For example,
the CC line type, which refers to a Comment, extends over 14 lines in the
above entry.

3. Other line types, for example the RN line type, which refers to a citation
Reference Number, contain a block of line types, some of which are optional
and some of which can extend over a number of lines. Note that the RA line
type, which refers to the Reference Author(s), and the RT line type, which
refers to the Reference Title, both extend over two lines in the above entry.
As described in point 1, the RC line type is not used in this RN entry.

These factors make processing SWISS-PROT entries a challenge. Luckily, Perl is
on our side and, as will be demonstrated shortly, Perl is a natural at working with
this type of data.

The EMBL data format is similar to SWISS-PROT2. Here’s an abridged example
EMBL entry:

ID PPMERR standard; DNA; UNC; 2923 BP.
XX
AC M24940;
XX
SV M24940.1
XX
DT 02-FEB-1990 (Rel. 22, Created)

2
In fact, the SWISS-PROT format was designed to be highly complementary to the EMBL format,

which predates the SWISS-PROT database by a number of years.

230 Databases

DT 06-JUL-1999 (Rel. 60, Last updated, Version 3)
XX
DE Plasmid pDU1358 (from Serratia marcescens) mercury resistance protein genes
DE merR, merP and merT, complete cds, and merA gene, 5’ end.
XX
KW merA gene; mercury resistance protein; merP gene; merR gene; merT gene.
XX
OS Plasmid pDU1358
OC plasmids.
OG Plasmid pDU1358
XX
RN [1]
RP 1-2923
RX MEDLINE; 89327136.
RA Nucifora G., Chu L., Silver S., Misra T.K.;
RT "Mercury operon regulation by the merR gene of the organomercurial
RT resistance system of plasmid pDU1358";
RL J. Bacteriol. 171(8):4241-4247(1989).
XX
DR GOA; P08662; P08662.
DR GOA; P13111; P13111.
DR GOA; P13112; P13112.
DR GOA; P13113; P13113.
DR SWISS-PROT; P08662; MERA_SERMA.
DR SWISS-PROT; P13111; MERR_SERMA.
DR SWISS-PROT; P13112; MERT_SERMA.
DR SWISS-PROT; P13113; MERP_SERMA.
XX
CC Draft entry and computer-readable sequence for [1] kindly provided
CC by Nucifora,G. 13-JUN-1989.
XX
FH Key Location/Qualifiers
FH
FT source 1..2923
FT /db_xref="taxon:2547"
FT /organism="Plasmid pDU1358"
FT /plasmid="pDU1358"
FT /specific_host="Serratia marcescens"
FT gene complement(677..1111)
FT /gene="merR"
FT CDS complement(677..1111)
FT /codon_start=1
FT /db_xref="GOA:P13111"
FT /db_xref="SWISS-PROT:P13111"
FT /transl_table=11
FT /gene="merR"
FT /product="mercury resistance protein"
FT /protein_id="AAA98221.1"
FT /translation="MEKNLENLTIGVFAKAAGVNVETIRFYQRKGLLPEPDKPYGSIRR
FT YGEADVTRVRFVKSAQRLGFSLDEIAELLRLDDGTHCEEASSLAEHKLQDVREKMTDLA
FT RMETVLSELVFACHARQGNVSCPLIASLQGEKEPRGADAV"

.

.

.
XX
SQ Sequence 2923 BP; 617 A; 882 C; 820 G; 604 T; 0 other;

ttaatctgct caacaagata gtgataatgc tgttgtaatt tagcaataac tggctaggta 60
aagaggcaaa ctattatcct caagaatggt actcagtcgg ctaataacgg cagctcctcg 120
gggaacgcta atgccaaatt ccagcagaaa agcatgcatt tgattggttg ttttcacctt 180
atcctgaacc agggattcac ggacacgatg cagagcccgc attgcctgct gagattccgt 240

.

.

.

A Database Case Study: MER 231

acccgtccat cggcgaggcc gtcacagccg ctttccgtgc cgaagggatc aaggtactgg 2880
aacacacgca agccagccag gtcgcgcatg tgaacggcga att 2923

//

Processing EMBL entries is complicated by similar factors to those discussed
above in relation to the SWISS-PROT entries. However, the inclusion of the XX line
type, which refers to a separator line, can help when processing EMBLs.

12.4.1 The requirement for the MER database

A small collection of SWISS-PROT and EMBL entries are taken from the Mer
Operon, a bacterial gene cluster that is found in many bacteria for the detoxifica-
tion of Mercury Hg2+ ions. These provide the raw data to a database, which is
called MER. The MER database contains four tables:

proteins – A table of protein structure details, extracted from a collection of
SWISS-PROT entries.

dnas – A table of DNA sequence details, extracted from a collection of EMBL
entries.

crossrefs – A table that links the extracted protein structures to the extracted
DNA sequences.

citations – A table of literature citations extracted from both the SWISS-PROT
and EMBL DNA entries.

Once the raw data is in the database, SQL can be used to answer questions about
the data, for instance:

1. How many protein structures in the database are longer than 200 amino
acids in length?

2. How many DNA sequences in the database are longer than 4000 bases in
length?

3. What’s the largest DNA sequence in the database?

4. Which protein structures are cross-referenced with which DNA sequences?

5. Which literature citations reference the results from the previous question?

Of course, it is possible to determine answers to these questions manually, as
follows:

• Print out all the SWISS-PROT and EMBL entries of interest.

• Sift through the printouts visually, noting the data of interest.

232 Databases

which is probably (depending on the number of entries examined) no more than a
few hours’ work. A computer program could be written to automate the collection
of the interesting pieces of data, which would probably reduce the amount of
time required from hours to tens of minutes, depending on how complicated
the computer programs are and whether they have to be written from scratch.
Compare tens of minutes and a few hours to the length of time it takes an
SQL-capable database system to answer each of these questions: no more than a
few seconds.

12.4.2 Installing a database system

MySQL is a modern, capable and SQL-enabled database system. It is Open Source
and freely available for download from the MySQL web-site:

http://www.mysql.com

Especially well-written documentation, in the form of the MySQL Manual, is
also available for download in a number of formats, including HTML and PDF.
At over 800 pages, this may be all the documentation most MySQL users ever
need. However, a good collection of third-party texts also exist (see Appendix D,
Suggestions for Further Reading, for some recommendations).

MySQL is so popular that it comes as a standard, installable component of most
Linux distributions, and is the database system of choice within Bioinformatics,
Biocomputing and Perl. However, as far as is possible, the material presented in
this chapter is database system neutral: most commands should work unaltered
with any modern database system, not just with MySQL.

The following commands switch on MySQL on RedHat and RedHat-like Linux
distributions3:

chkconfig --add mysqld
chkconfig mysqld on

If the first chkconfig4 command produces an error messages like this:

error reading information on service mysqld: No such file or directory

This means that MySQL is not installed and the second command will also fail.
Check the CD-ROMs that came with the Linux distribution to see if the required
software is available, or download MySQL from its web-site. Be careful to read
and follow the installation instructions as described on the MySQL web-site and
in the MySQL Manual.

3
But may not work on your Linux distribution: check your documentation.

4
To learn about chkconfig, type ‘‘man chkconfig’’ at the Linux prompt.

A Database Case Study: MER 233

Once MySQL is installed, it needs to be configured. The first requirement is to
assign a password to the MySQL superuser, known as ‘‘root’’. The mysqladmin
program does this, as follows:

mysqladmin -u root password ’passwordhere’

It is now possible to securely access the MySQL Monitor command-line utility
with the following command, providing the correct password when prompted:

mysql -u root -p

The MySQL Monitor is an interactive, command-line tool that comes with MySQL. It
can be used to issue SQL queries5 to the MySQL database system. If the password
was entered successfully, the MySQL Monitor command-prompt appears. It looks
like this:

mysql>

Certain actions can be performed only within MySQL when operating as the
superuser. These actions include the ability to create a new database.

12.4.3 Creating the MER database

SQL queries can be entered directly at the MySQL Monitor prompt. Let’s use an
SQL DDL query, CREATE DATABASE, to create a database called MER. Note that
throughout this section, the typed query is shown in an italic font:

mysql> create database MER;

This, if successful, should produce the following – rather cryptic – message from
MySQL:

Query OK, 1 row affected (0.36 sec)

MySQL confirms that the entered SQL query was OK. Be advised that interactive
SQL queries are terminated by a semicolon, the ‘‘;’’ character. The MySQL Monitor
does not execute the query until it sees the semicolon, so be careful to always
include it at the end of each query.

The ‘‘1 row affected’’ part of the message refers to the fact that MER has
been added as a database within the system. As might be expected, MySQL uses
internal tables to store this ‘‘system information’’. To view the list of databases
in the system, use the SHOW DATABASES query. Here’s the query, together with
the results returned from the MySQL Monitor :

5
In SQL-speak, the word ‘‘query’’ has the same meaning as ‘‘command’’.

234 Databases

mysql> show databases;
+------------+
| Databases |
+------------+
| MER |
| test |
| mysql |
+------------+
3 rows in set (0.00 sec)

A list of databases is returned by MySQL. This particular list was produced on
Paul’s laptop, which is running a default installation of MySQL (version 3.23).
There are three identified databases:

MER – The just-created database that will store details on the extracted protein
structures, DNA sequences, cross references and literature citations.

test – A small test database that is used by MySQL and other technologies to
test the integrity of the MySQL installation.

mysql – The database that stores the internal ‘‘system information’’ used by the
MySQL database system.

Technical Commentary: Throughout this chapter, when a snippet of SQL or an
SQL query is described in the text, it is always shown in UPPERCASE. As can be seen
from the interactive examples, SQL queries can be entered into the MySQL Monitor
in lowercase. It makes no difference to MySQL whether uppercase or lowercase is
used when entering SQL. With some other database systems, case is important, so
be sure to check the documentation.

It is possible to use the MySQL superuser to create tables within the MER database.
However, it is better practice to create a user within the database system to have
authority over the database, and then perform all operations on the MER database
as this user. The queries to do this are entered at the MySQL Monitor prompt.
Here are the queries and the messages returned:

mysql> use mysql;
Database changed

mysql> grant all on MER.* to bbp identified by ’passwordhere’;
Query OK. 0 rows affected (0.00 sec)

The first query tells MySQL that any subsequent queries are to be applied to the
named database, which in this case is the mysql database. The message returned
confirms this. The second query does three things:

1. It creates a new MySQL user called ‘‘bbp’’.

2. It assigns a password with the value of ‘‘passwordhere’’ to user ‘‘bbp’’.

3. It grants every available privilege relating to the MER database to ‘‘bbp’’.

A Database Case Study: MER 235

Note that all of the above queries are terminated by the required semicolon. With
the ‘‘bbp’’ user created, and appropriate rights granted, the MySQL Monitor can
be exited by typing QUIT at the prompt:

mysql> quit
Bye

The MER database and the ‘‘bbp’’ user now exist within the MySQL database
system. The next task is to create the required tables within the database.

12.4.4 Adding tables to the MER database

The ability to interactively type an SQL query into the MySQL Monitor and execute
it can be very convenient, especially when the amount to type is small. For larger
tasks (which involve more typing), it is often better to put the SQL query in a text
file and then ‘‘feed’’ it to the MySQL Monitor from the Linux command-line. For
instance, assume a text file called create proteins.sql contains the SQL DDL
queries to create an appropriately structured proteins table. This text file can
be fed to the MySQL Monitor with the following command:

mysql -u bbp -p MER < create_proteins.sql

The ‘‘<’’ character redirects the contents of the create proteins.sql text file
and sends it to the MySQL monitor as standard input. Note how the database to
use, MER, is specified on the command-line.

Technical Commentary: If a message similar to ‘‘ERROR 1045: Access denied for
user: ‘bbp@localhost’ (Using password: YES)’’ appears at this stage, don’t fret. MySQL
is supplied with an anonymous user enabled, and this user can sometimes cause
problems. Remove the anonymous user from the MySQL system by issuing these
commands as root: ‘‘use mysql;’’, ‘‘delete from user where User = ’’;’’ and
‘‘flush privileges;’’. That should fix the problem.

The create proteins.sql text file contains a valid CREATE TABLE query. This
is the SQL DDL query that defines the structure for, and creates a new table in, a
database.

Before examining the contents of create proteins.sql, let’s return to the
SWISS-PROT entry from earlier and highlight the data that populates the pro-
teins table. However, before proceeding, let’s have another maxim.

Maxim 12.2 Understand the data before designing the tables.

As the intention is to show the correct process to go through when designing,
creating and populating a table, only a subset of the available line types are
extracted from each SWISS-PROT entry for eventual inclusion in the table.

Referring back to the SWISS-PROT entry on page 228, the line types to be
extracted are as follows:

236 Databases

• ID – The identification tag, specifically the mnemonic code and species
sub-parts of the ID tag.

• AC – The accession number.

• DT – The date, specifically the last of the three dates provided.

• DE – The description.

• SQ – The sequence header, with a specific extraction of the sequence length.

• The actual sequence data (which has a blank line type).

For reasons that will become clear later, the order of these line types in the
proteins table is AC, ID (code sub-part), ID (species sub-part), DT, DE, SQ,
sequence length and then the sequence data.

That’s a total of eight columns per row of data in the table. With this in mind,
let’s examine the contents of the create proteins.sql text file (which has been
formatted with plenty of whitespace to make it easy to read):

create table proteins
(

accession_number varchar (6) not null,
code varchar (4) not null,
species varchar (5) not null,
last_date date not null,
description text not null,
sequence_header varchar (75) not null,
sequence_length int not null,
sequence_data text not null

)

A single CREATE TABLE query defines and creates the proteins table. Note the
format used on each column specification line:

Column name – This is also referred to as the field name, and it uniquely identi-
fies the columned data item within the table row.

Column type – This restricts the type of data that can be stored in the column.
There are a number of different column types supported by MySQL, and the
proteins table uses four of them:

1. The varchar type restriction is a string, which can vary in length from
0 to 255 characters.

2. The date type restriction is a valid date in YYYY-MM-DD format.

3. The text type restriction is a sequence of text from 0 to 65,535
characters in size.

A Database Case Study: MER 237

4. The int type restriction is a number in the range −2,147,483,648 to
2,147,483,647.

Column length – An optional maximum length for the data item stored in the
column. For the proteins table, each of the varchar columns indicates the
largest string that can be stored in the data item, by including the maximum
length value in parentheses.

Column specifier – An optional null specifier that can be used to indicate that
data must be entered into the column. All of the columns in proteins are
specified to be NOT NULL, which means that data must be provided for
every column in the row.

Each column specification (expect for the last) ends with a comma, ‘‘,’’, and the
entire list of fields is enclosed in parentheses, ‘‘(’’ and ‘‘)’’. Note that when fed to
the MySQL Monitor from the command-line, this SQL DDL query does not need to
end with a semicolon, as the use of the semicolon is implied.

With the table created, use the MySQL Monitor to access the MER database and
issue a SHOW TABLES query against the database, as follows:

mysql -u bbp -p MER

mysql> show tables;
+-----------------+
| Tables_in_MER |
+-----------------+
| proteins |
+-----------------+
1 row in set (0.00 sec)

It is also possible to ask MySQL to provide details on the structure of the
proteins table using the DESCRIBE query, as follows:

mysql> describe proteins;
+------------------+-------------+------+-----+------------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------+-------------+------+-----+------------+-------+
accession_number	varchar(6)				
code	varchar(4)				
species	varchar(5)				
last_date	date			0000-00-00	
description	text				
sequence_header	varchar(75)				
sequence_length	int(11)			0	
sequence_data	text				
+------------------+-------------+------+-----+------------+-------+
8 rows in set (0.04 sec)

238 Databases

Additional information is provided on each column, over and above the name and
type restriction. Refer to the MySQL Manual for more details and the meaning of
these additional data.

With the table ready, the next task is to populate it with data derived from a
collection of SWISS-PROT entries.

12.4.5 Preparing SWISS-PROT data for importation

There are two common techniques for populating a table with data. The first is
to use an SQL DML query, INSERT, to add data one row at a time, via MySQL
Monitor. This is effective only when a small amount of row data is to be added
to a table. When a large amount of data is to be added, most modern database
systems provide a mechanism to import data in bulk from a correctly formed
data file. Such a mechanism is provided by MySQL.

MySQL expects data files that contain importable data to be tab-delimited, with
each row of data on its own line. This means that each piece of columned data
in a row is separated from the next by the tab character (often written as ‘‘\t’’),
and each row is separated from the next by the newline character (often written
as ‘‘\n’’).

Obviously, this is a very different format to that used by SWISS-PROT. What’s
required is a mechanism to convert the SWISS-PROT entry into a tab-delimited line
of data that MySQL can import into the proteins table. As described on page 229,
this is complicated by a number of factors. However, with Perl, these complicating
factors can be dealt with without too much difficulty. The conversion strategy is
as follows:

1. Process the SWISS-PROT data file by examining each entry one line at a time.

2. For each line, perform a series of pattern matches against the line in order
to determine the line type.

3. When a line type of interest is matched, extract any interesting data from
the line, and use the extracted data to construct the tab-delimited line of
data.

4. When an entire tab-delimited line has been constructed, print it to the
screen.

5. Process the next SWISS-PROT entry by returning to point 2 above, and
iterate.

6. Finish when there are no more lines of input.

The tab-delimited line must conform to the following format in order to allow
for bulk-importation into the proteins table:

• An accession number, extracted from the AC line.

• A tab character.

A Database Case Study: MER 239

• The mnemonic code of the protein name, extracted from the ID line.

• A tab character.

• The mnemonic species identification code, extracted from the ID line.

• A tab character.

• A date (in YYYY-MM-DD format) extracted and converted from the last DT
line. Note: the SWISS-PROT date format is DD-MMM-YYYY.

• A tab character.

• A description copied from any DT lines.

• A tab character.

• A sequence header copied from the SQ line.

• A tab character.

• The sequence length, extracted from the SQ line.

• A tab character.

• The sequence data copied from any sequence data lines.

• A newline character.

With the strategy determined, let’s examine the get proteins program, which
takes any collection of SWISS-PROT entries and converts them into correctly
formatted tab-delimited lines:

#! /usr/bin/perl -w

get_proteins - given a list of SWISS-PROT files, extract data
from them in preparation for importation into a database system.
#
Note that the results produced are TAB-delimited.

BEGIN {
push @INC, "$ENV{’HOME’}/bbp/";

}
use UsefulUtils qw(biodb2mysql);

use strict;

my ($table_line, $code, $species);

while (<>)
{

if (/^ID (.+)_(.+?) /)
{

($code, $species) = ($1, $2);

240 Databases

}
if (/^AC (.+?);/)
{

$table_line = $1 . "\t" . $code . "\t" . $species . "\t";

while (<>)
{

last unless /^AC/;
}

}
if (/^DT/)
{

my $date_line = $_;

while (<>)
{

last unless /^DT/;
$date_line = $_;

}
$date_line =~ /^DT (.+?) /;
$table_line = $table_line . biodb2mysql($1) . "\t";

}
if (/^DE (.+)/)
{

my $descr_lines = $1;

while (<>)
{

last unless /^DE (.+)/;
$descr_lines = $descr_lines . ’ ’ . $1

}
$table_line = $table_line . $descr_lines . "\t";

}
if (/^SQ (.+)/)
{

my $header = $1;

$header =~ /(\d+)/;

$table_line = $table_line . $header . "\t" . $1 . "\t";
}
if (/^ (.+)/)
{

my $sequence_lines = $1;

while (<>)
{

if (m[^//])
{

last;
}

A Database Case Study: MER 241

else
{

/^ (.+)/;
$sequence_lines = $sequence_lines . $1;

}
}
$table_line = $table_line . $sequence_lines;

}
if (m[^//])
{

print "$table_line\n";
$table_line = ’’;

}
}

Let’s describe the workings of this program in detail. Take a moment to print
out a SWISS-PROT entry so that it can be referred to while working through the
description of this program.

After the standard first line and a comment, a BEGIN block pushes the location
of the Bioinformatics, Biocomputing and Perl shared code directory onto the @INC
array. This allows the program to find the utilities module developed in the
Getting Organised chapter6. A use of the utilities module comes immediately
after the BEGIN block. Note the explicit mention of the biodb2mysql subroutine,
which is used to convert the SWISS-PROT formatted date into a date format that
is acceptable to MySQL:

BEGIN {
push @INC, "$ENV{’HOME’}/bbp/";

}
use UsefulUtils qw(biodb2mysql);

Strictness is switched on, then three scalar variables are declared:

use strict;

my ($table_line, $code, $species);

The $table line scalar holds the (soon to be constructed) tab-delimited line,
whereas the $code and $species scalars hold the extracted mnemonic protein
code and species values, respectively.

A loop is started that continues to execute while there are lines of data arriving
from standard input:

while (<>)
{

6
We could also use a use lib statement here (as described in Getting Organised), but we

wished to show the other popular technique for including ‘‘local’’ modules.

242 Databases

The current line of data is assigned to the Perl’s default scalar variable, $. Once
assigned, the line is matched against a series of patterns. The first of these
patterns looks for the ID line type:

if (/^ID (.+)_(.+?) /)
{

($code, $species) = ($1, $2);
}

Specifically, the pattern attempts to match against a line that starts with the
letter ‘‘I’’, followed by the letter ‘‘D’’ and three space characters. After the space
characters, the match looks for two series of one or more characters (the ‘‘.+’’
pattern), separated from each other by an underscore character, and followed by
a single-space character. If the pattern matches, the program knows it has found
an identification line type within the SWISS-PROT entry.

Note that the second series of characters near the end of the pattern is non-
greedy because of the use of the ‘‘?’’ qualifier. This stops the second ‘‘.+’’ pattern
from attempting to match as much of the line as possible by forcing the pattern
to match as soon as possible.

The parentheses ‘‘(’’ and ‘‘)’’ that surround the two ‘‘.+’’ patterns arrange for
perl to remember the matched values in the $1 and $2 scalars. These values
correspond to the mnemonic code for the protein and its associated species, and
they are used within the if block to initialise the $code and $species scalars.

The second pattern looks for the AC line type, and upon a match, the pro-
gram starts to construct the tab-delimited line. The matched accession number,
together with the code and species values, with each data value separated from
the next by a tab character, is assigned to the $table line scalar7:

if (/^AC (.+?);/)
{

$table_line = $1 . "\t" . $code . "\t" . $species . "\t";

while (<>)
{

last unless /^AC/;
}

}

Processing the AC line type is complicated by the fact that a SWISS-PROT entry
can have more than one AC line type. Additionally, there can be more than
one accession number on each AC line. Only the first accession number is of
interest, so the pattern non-greedily matches against the first, which is a series
of characters immediately followed by a semicolon, which is matched by the
non-greedy pattern ‘‘(.+?);’’.

7
Remember that ‘‘.’’ is the Perl concatenation operator.

A Database Case Study: MER 243

The second while loop within the if block (often referred to as an inner loop)
reads and discards any additional lines that match the letters ‘‘AC’’ at the start
of the line. In this way, any additional AC line types are ignored. Note the use of
last, which when invoked ensures that the inner loop ends as soon as a line that
starts with anything other than ‘‘AC’’ is encountered.

When it comes to extracting the last date from any DT lines, the program first
needs to find the last date line. Once found, it matches against the date part of
the line, then calls the biodb2mysql subroutine to convert the SWISS-PROT date
into a format that is acceptable to MySQL. The converted date is then added to
the $table line scalar, together with a tab character:

if (/^DT/)
{

my $date_line = $_;

while (<>)
{

last unless /^DT/;
$date_line = $_;

}
$date_line =~ /^DT (.+?) /;
$table_line = $table_line . biodb2mysql($1) . "\t";

}

Note that unlike the AC line type, in which the requirement was to extract the first
accession number from the first AC line than ignore the rest, this if block ignores
all but the last DT line. As each DT line is read, the current line is temporarily
stored in the $date line scalar, then the pattern match is applied to $date line
once there are no more DT lines to process. Again, the use of non-greedy pattern
qualifiers ensure that only the required information is matched and remembered
in the $1 scalar.

The DE line type contains the description of the protein structure. As there
can be more than one DE line type, the if block matches a pattern against the
description text, remembers the description in the $descr lines scalar, then
processes any remaining DE line types, concatenating the matched description to
the description already in $descr lines:

if (/^DE (.+)/)
{

my $descr_lines = $1;

while (<>)
{

last unless /^DE (.+)/;
$descr_lines = $descr_lines . ’ ’ . $1

}
$table_line = $table_line . $descr_lines . "\t";

}

244 Databases

With all the description lines determined, they are added to $table line,
together with a tab character.

The SQ line type provides sequence header details for the SWISS-PROT entry.
The first number in this line is the sequence length, and it is extracted from the
sequence header in order to import it into the proteins table as a separate data
item. The if block starts by remembering the sequence header in a scalar called
$header. A second pattern match is then performed against the value in $header
to determine the first number, which is matched against the ‘‘\d+’’ pattern:

if (/^SQ (.+)/)
{

my $header = $1;

$header =~ /(\d+)/;

$table_line = $table_line . $header . "\t" . $1 . "\t";
}

The sequence header (in $header) and the determined sequence length (in $1)
are then added to the $table line scalar, separated from each other by the
required tab character.

The actual data associated with the protein structure is in the sequence data
line type, which does not have a two-letter line tag (unlike the line types ID, AC,
DT, DE and SQ). As with the DE line type, there can be more than one line of
data in the sequence. The strategy for determining the entire sequence is similar
to that used to determine the entire description. The sequence data is located
immediately before the end of the SWISS-PROT entry, which is indicated by a
double slash (//) at the start of a line on its own. The if block looks for this
pattern, and when it is found, it uses last to break out of the inner loop. Note
the use of the square brackets as delimiters around the ‘‘//’’ pattern, because the
forward-leaning slash character is the default pattern-matching delimiter:

if (/^ (.+)/)
{

my $sequence_lines = $1;

while (<>)
{

if (m[^//])
{

last;
}
else
{

/^ (.+)/;
$sequence_lines = $sequence_lines . $1;

}

A Database Case Study: MER 245

}
$table_line = $table_line . $sequence_lines;

}

When all the sequence data lines are in the $sequence lines scalar, they are
added to the $table line scalar. As the sequence data is at the end of a row of
data within the proteins table, there is no need to add a tab character. Instead,
the line of data will be terminated by the newline character.

The final pattern match in get proteins checks for the end of entry double
slash. When it is found, the if block prints out the value of $table line with the
required newline. Once printed, the value of $table line is reset to the empty
string, in preparation for processing the next SWISS-PROT entry (if there is one):

if (m[^//])
{

print "$table_line\n";
$table_line = ’’;

}
}

When provided with the names of a collection of data files containing one or more
SWISS-PROT entries, the get proteins program converts all the entries in each
of the data files into individual tab-delimited lines of data, one line per entry.
The line of data is then printed to standard output. Assume that a collection of
SWISS-PROT data files are named as follows:

acica_ADPT.swp.txt
serma_abdprt.swp.txt
shilf_seq_ACDP.swp.txt

The following invocation of the get proteins program takes these files, performs
the conversion on each entry and then writes the output to a data file called
proteins.input:

./get_proteins *swp* > proteins.input

The ‘‘>’’ character on the command-line redirects the output away from standard
output and towards the named file.

12.4.6 Importing tab-delimited data into proteins

There now exists a collection of tab-delimited rows of data in proteins.input.
Importing this data into the proteins table is straightforward:

mysql -u bbp -p MER

mysql> load data local infile "proteins.input" into table proteins;

Query OK, 14 rows affected (0.07sec)
Records: 14 Deleted: 0, Skipped: 0, Warnings: 0

246 Databases

After logging-in to the MER database as the ‘‘bbp’’ user, a LOAD DATA query is
issued to import the data in the file proteins.input into the proteins table.
MySQL responds by stating that the query was OK, and indicates that 14 records
were affected. 14 rows of data have been successfully added to the proteins
table. Of note is the fact that the addition of the 14 rows of data took all of 0.07
seconds.

12.4.7 Working with the data in proteins

The SQL DML query, SELECT, allows data in a table to be displayed8. The basic
form of the SELECT query involves specifying the names of the columns to
display, together with the table name. Here is a SELECT query that displays the
accession number and sequence length values for all the rows in the proteins
table:

mysql> select accession_number, sequence_length
-> from proteins;

+------------------+-----------------+
| accession_number | sequence_length |
+------------------+-----------------+
Q52109	561
Q52110	121
Q52107	91
Q52106	116
P08662	460
P08664	212
P08654	121
P13113	91
P13111	144
P13112	116
P08332	564
P04337	60
P20102	120
P04129	91
+------------------+-----------------+
14 rows in set (0.06 sec)

The SELECT query extracts the columns from the proteins table and displays
the data in the form of a table. As expected, this new (temporary) table has two
columns and 14 rows of data. The word FROM has special meaning when used
with SELECT: it identifies the table against which to execute the query.

Note how this query is entered into the MySQL Monitor over two lines. If,
when entering a query, the Enter key is pressed, the MySQL Monitor prompts
for an additional line of input with the ‘‘->’’ symbol. Remember, the query is

8
It may be helpful to refer to the description of the proteins table on page 237 while working

through this section.

A Database Case Study: MER 247

not executed until the required semicolon is encountered. In this query, the
semicolon appears at the end of the second line. The MySQL Monitor treats the
two lines as one single query.

SELECT queries can be qualified in a number of ways9. The ORDER BY qualifier
sorts the results on the basis of a column name. In this next query, the results
from the query are sorted by accession number:

mysql> select accession_number, sequence_length
-> from proteins
-> order by accession_number;

+------------------+-----------------+
| accession_number | sequence_length |
+------------------+-----------------+
P04129	91
P04337	60
P08332	564
P08654	121
P08662	460
P08664	212
P13111	144
P13112	116
P13113	91
P20102	120
Q52106	116
Q52107	91
Q52109	561
Q52110	121
+------------------+-----------------+
14 rows in set (0.01 sec)

A further qualifier, WHERE, filters the results from the query on the basis of a
condition. In this next example query, only those results in which the length of
the sequence is greater than 200 are displayed:

mysql> select accession_number, sequence_length
-> from proteins
-> where sequence_length > 200
-> order by sequence_length;

+------------------+-----------------+
| accession_number | sequence_length |
+------------------+-----------------+
P08664	212
P08662	460
Q52109	561
P08332	564
+------------------+-----------------+
4 rows in set (0.04 sec)

9
Refer to the MySQL Manual for the full list of qualifiers.

248 Databases

And with this query, Question 1 from page 231 is answered: How many protein
structures in the database are longer than 200 amino acids in length?. The answer
is 4. Note that the results from this query are sorted by sequence length, as
opposed to accession number (as they were with the last query).

12.4.8 Adding another table to the MER database

More data is required to answer the rest of the questions on page 231. Another
table needs to be created in the MER database to accommodate this additional
data. Specifically, this table holds DNA sequences extracted from a series of EMBL
entries.

The create dnas.sql text file contains a CREATE TABLE query that defines
the structure for a new table, called dnas:

create table dnas
(

accession_number varchar (8) not null,
entry_name varchar (9) not null,
sequence_version varchar (16) not null,
last_date date not null,
description text not null,
sequence_header varchar (75) not null,
sequence_length int not null,
sequence_data text not null

)

This table structure is not unlike that for the proteins table (on page 237).
However, it is different. The accession number in the dnas table can be 8
characters long, whereas the similarly named column in proteins is restricted
to a maximum of 6 characters. Also, the second and third columns in this table
hold data on the EMBL entries name and the version number, respectively. Recall
that columns 2 and 3 in the proteins table hold data on the mnemonic code and
species for a protein structure.

As with the creation of the proteins table, the create dnas.sql text file can
be fed to the MySQL Monitor to create the dnas table. The MySQL Monitor is then
used to issue a SHOW TABLES and DESCRIBE query to confirm that the dnas table
exists within the MER database, as follows:

mysql -u bbp -p MER < create_dnas.sql

mysql -u bbp -p MER

mysql> show tables;
+-----------------+
| Tables_in_MER |
+-----------------+
| dnas |

A Database Case Study: MER 249

| proteins |
+-----------------+
2 rows in set (0.00 sec)

mysql> describe dnas;
+------------------+-------------+------+-----+------------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------+-------------+------+-----+------------+-------+
accession_number	varchar(8)				
entry_name	varchar(9)				
sequence_version	varchar(16)				
last_date	date			0000-00-00	
description	text				
sequence_header	varchar(75)				
sequence_length	int(11)			0	
sequence_data	text				
+------------------+-------------+------+-----+------------+-------+
8 rows in set (0.00 sec)

12.4.9 Preparing EMBL data for importation

The strategy for populating the dnas table with data is very similar to that used
with proteins. A program called get dnas (which is based on get proteins)
processes any number of EMBL entries and converts each entry into an appropri-
ately formatted tab-delimited line of data. Here is the get dnas program:

#! /usr/bin/perl -w

get_dnas - given a list of EMBL files, extract data
from them in preparation for importation into a database system.
#
Note that the results produced are TAB-delimited.

BEGIN {
push @INC, "$ENV{’HOME’}/bbp/";

}
use UsefulUtils qw(biodb2mysql);

use strict;

my ($table_line, $name);

while (<>)
{

if (/^ID (.+?) /)
{

$name = $1;
}
if (/^AC (.+?);/)
{

250 Databases

$table_line = $1 . "\t" . $name . "\t";

while (<>)
{

last unless /^AC/;
}

}
if (/^SV (.+)/)
{

$table_line = $table_line . $1 . "\t";
}
if (/^DT/)
{

my $date_line = $_;

while (<>)
{

last unless /^DT/;
$date_line = $_;

}
$date_line =~ /^DT (.+?) /;
$table_line = $table_line . biodb2mysql($1) . "\t";

}
if (/^DE (.+)/)
{

my $descr_lines = $1;

while (<>)
{

last unless /^DE (.+)/;
$descr_lines = $descr_lines . ’ ’ . $1

}
$table_line = $table_line . $descr_lines . "\t";

}
if (/^SQ (.+)/)
{

my $header = $1;

$header =~ /(\d+)/;

$table_line = $table_line . $header . "\t" . $1 . "\t";
}
if (/^ (.+?)\s+\d+/)
{

my $sequence_lines = $1;

while (<>)
{

if (m[^//])
{

last;

A Database Case Study: MER 251

}
else
{

/^ (.+?)\s+\d+$/;
$sequence_lines = $sequence_lines . ’ ’ . $1;

}
}
$table_line = $table_line . $sequence_lines;

}
if (m[^//])
{

print "$table_line\n";
$table_line = ’’;

}
}

Rather than describe the workings of this program in detail (it is very similar to
get proteins, after all), let’s examine the differences between this program and
the get proteins program.

The ID line in the EMBL entry is easy to process because there is no mnemonic
code nor species sub-parts to extract, as there was with the SWISS-PROT entry.
The identification of the EMBL entry is non-greedily matched against the line and
assigned to the $name scalar:

if (/^ID (.+?) /)
{

$name = $1;
}

Note that the value of $name is added to the tab-delimited line during the
processing of the AC line type.

The SV line is not found within SWISS-PROT entries, so the get dnas program
adds a pattern match to first find, and then extract, the EMBL sequence version
and add it to the tab-delimited line of data:

if (/^SV (.+)/)
{

$table_line = $table_line . $1 . "\t";
}

Refer back to the sample EMBL entry on page 229, and note the format of the
sequence data. Unlike the sequence data within a SWISS-PROT entry, each line of
EMBL sequence data ends with a number. These numbers indicate the number of
the last base in each line of sequence data, and are included to allow readers to
quickly locate a particular region of interest. There is no requirement to include
these numbers in the dnas table, so the pattern match used within the if block
ensures that the numbers are not concatenated with the list of bases:

252 Databases

if (/^ (.+?)\s+\d+/)
{

my $sequence_lines = $1;

while (<>)
{

if (m[^//])
{

last;
}
else
{

/^ (.+?)\s+\d+$/;
$sequence_lines = $sequence_lines . ’ ’ . $1;

}
}
$table_line = $table_line . $sequence_lines;

}

The pattern used to extract these bases are:

/^ (.+?)\s+\d+/

This matches five space characters at the start of a line, ‘‘^’’, followed by a
collection of one or more characters, ‘‘.+?’’, followed by one or more space
characters, ‘‘\s+’’, followed by one or more digits, ‘‘\d+’’, positioned at the end of
a line, ‘‘$’’. The collection of characters is remembered in the $1 scalar, then used
to construct the line of sequence data. When all the lines that contain sequence
data are exhausted, the list of bases is added to the tab-delimited line.

The rest of get dnas is as per the description of the get proteins program.
Let’s assume a small series of EMBL entries is contained in a collection of data
files with the following names:

AF213017.EMBL.txt
J01730.embl.txt
M15049.embl.txt
M24940.embl.txt

The following invocation of the get dnas program takes these files, performs
the conversion on each entry, and then writes any output to a data file called
dnas.input:

./get_dnas *EMBL* *embl* > dnas.input

Remember that the ‘‘>’’ character on the command-line redirects the output away
from standard output and towards the named file.

A Database Case Study: MER 253

12.4.10 Importing tab-delimited data into dnas

There now exists a collection of tab-delimited rows of data in dnas.input.
Importing this data into the dnas table is accomplished by logging-in to the MER
database (using MySQL Monitor), and issuing the following LOAD DATA query:

mysql> load data local infile "dnas.input" into table dnas;

Query OK, 4 rows affected (0.01sec)
Records: 4 Deleted: 0, Skipped: 0, Warnings: 0

MySQL responds by stating that the query is OK, and indicates that 4 rows of
data were added to the dnas table.

12.4.11 Working with the data in dnas

Answering Question 2 from page 231 is easy, as the SQL DML query is based on
the query used to answer Question 1 from the last section. Here’s the SELECT
query and the results returned from MySQL:

mysql> select accession_number, sequence_length
-> from dnas
-> where sequence_length > 4000
-> order by sequence_length;

+------------------+-----------------+
| accession_number | sequence_length |
+------------------+-----------------+
| J01730 | 5747 |
| AF213017 | 6838 |
+------------------+-----------------+
2 rows in set (0.00 sec)

Which answers the question: How many DNA sequences in the database are longer
than 4000 bases in length?

Answering Question 3, What’s the largest DNA sequence in the database?, is
complicated by the fact that MySQL, version 3, does not yet support a technology
called sub-select. This is the ability of SQL to take the results of one SELECT query
and use them as part of another. For instance, this SELECT query returns the
largest sequence length value from the dnas table:

select max(sequence_length) from dnas;

It would be convenient to embed the result from this query into another SELECT
query, and then extract a list of columns, like this:

select accession_number, entry_name, sequence_length
from dnas
where sequence_length = (select max(sequence_length) from dnas);

254 Databases

That is, the sub-select determines the largest sequence length value, which is
then used to extract the accession number, entry name and sequence length
columns from the dnas table for the row that contains a value equal to the
maximum. This would be nice, if only MySQL supported this feature10.

Other than using another database system, this MySQL limitation can be
worked around using a number of techniques. One is to simply order the results
by sequence length, and arrange to display the list in descending order. That
way, the row (or rows) with the largest sequence length appear at the top of
the results. Here, again, is the query that answered Question 2, this time with
the ORDER BY clause qualified by the word DESC, which orders the results in
descending order:

mysql> select accession_number, sequence_length
-> from dnas
-> where sequence_length > 4000
-> order by sequence_length desc;

+------------------+-----------------+
| accession_number | sequence_length |
+------------------+-----------------+
| AF213017 | 6838 |
| J01730 | 5747 |
+------------------+-----------------+
2 rows in set (0.00 sec)

Another technique is to arrange to display only a single row from the results. The
LIMIT query qualifier does just this:

mysql> select accession_number, entry_name, sequence_length
-> from dnas
-> order by sequence_length desc
-> limit 1;

+------------------+------------+-----------------+
| accession_number | entry_name | sequence_length |
+------------------+------------+-----------------+
| AF213017 | AF213017 | 6838 |
+------------------+------------+-----------------+
1 row in set (0.01 sec)

And there it is, the answer to Question 3: What’s the largest DNA sequence in the
database?

12.4.12 Relating data in one table to that in another

The real power of a database system comes from its ability to relate the data in
one table to that in another. As they stand, the proteins and dnas tables are

10
Version 4.1 of MySQL is under active development as this book is being written. Current

plans call for the inclusion of sub-select.

A Database Case Study: MER 255

independent of one another. Although the table structures are similar in that, for
instance, they both contain a column called accession number, this alone does
not allow the tables to be related to each other. The AC values in proteins are
unique to the SWISS-PROT database, just as those in dnas are unique to the EMBL
database.

Both the SWISS-PROT and EMBL entries contain an optional DR line type, which
contains a list of database cross references for the entry. Here are the DR lines
from the sample SWISS-PROT entry (page 228):

DR EMBL; AF213017; AAA19679.1; -.
DR InterPro; IPR003457; Transprt_MerT.
DR Pfam; PF02411; MerT; 1.

Note the EMBL line, which cross-references this SWISS-PROT entry to an identified
EMBL entry. It is this information that can be used to relate the data in the
proteins table to that in dnas. Here are the DR lines from the sample EMBL entry
(page 229):

DR GOA; P08662; P08662.
DR GOA; P13111; P13111.
DR GOA; P13112; P13112.
DR GOA; P13113; P13113.
DR SWISS-PROT; P08662; MERA_SERMA.
DR SWISS-PROT; P13111; MERR_SERMA.
DR SWISS-PROT; P13112; MERT_SERMA.
DR SWISS-PROT; P13113; MERP_SERMA.

Again, notice that there are DR lines that cross-reference this EMBL entry to a
small collection of SWISS-PROT entries. It is this information that can be used to
relate the data in the dnas table to that in proteins.

12.4.13 Adding the crossrefs table to the MER database

The create crossrefs.sql text file contains a CREATE TABLE query that defines
the structure for a new table, called crossrefs:

create table crossrefs (
ac_protein varchar (6) not null,
ac_dna varchar (8) not null

)

The crossrefs table contains two columns. The first, ac protein, holds the
accession number extracted from a SWISS-PROT entry, while the second, ac dna,
holds the accession number extracted from an EMBL entry. This table is added to
the MER database with the now familiar commands:

256 Databases

mysql -u bbp -p MER < create_crossrefs.sql

mysql -u bbp -p MER

mysql> show tables;
+-----------------+
| Tables_in_MER |
+-----------------+
| crossrefs |
| dnas |
| proteins |
+-----------------+
3 rows in set (0.00 sec)

mysql> describe crossrefs;
+------------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+------------+------+-----+---------+-------+
| ac_protein | varchar(6) | | | | |
| ac_dna | varchar(8) | | | | |
+------------+------------+------+-----+---------+-------+
2 rows in set (0.00 sec)

The create crossrefs.sql text file is fed to the MySQL Monitor, then the
database is logged into by the ‘‘bbp’’ user. The SHOW TABLES query confirms that
the database now contains three tables, and a DESCRIBE query issued against the
crossrefs table provides details on the structure of crossrefs.

12.4.14 Preparing cross references for importation

The strategy for determining cross-reference data from both the SWISS-PROT
and EMBL entries is the same. Each entry is processed one line at a time in
order to determine the AC line type. When this is found, the accession number
is remembered in a scalar variable container called $ac. A pattern then matches
against the DR line type.

For SWISS-PROT entries that cross-reference the EMBL database, the DR line
begins with ‘‘DR EMBL;’’, followed by the accession number of the cross-referenced
EMBL entry. If a match is found on this pattern, the current SWISS-PROT accession
number (stored in $ac), a tab character and the EMBL accession number (stored in
$1) are printed to standard output.

Here is a small program, called get protein crossrefs, that implements this
algorithm for any collection of SWISS-PROT entries:

#! /usr/bin/perl -w

get_protein_crossrefs - given a list of SWISS-PROT files, extract
data in preparation for importation into a database system.
The AC number is extracted, together with any EMBL AC’s.

A Database Case Study: MER 257

#
Note that the results produced are TAB-delimited.

use strict;

my ($ac);

while (<>)
{

if (/^AC (.+?);/)
{

$ac = $1;

while (<>)
{

last unless /^AC/;
}

}
if (/^DR EMBL; (.+?); /)
{

print "$ac\t$1\n";
}

}

Similarly, for EMBL entries that cross-reference the SWISS-PROT database, the
DR line begins with ‘‘DR SWISS-PROT;’’, followed by the accession number of
the cross-referenced SWISS-PROT entry. If a match is found on this pattern, the
current SWISS-PROT accession number (stored in $1), a tab character and the
EMBL accession number (stored in $ac) are printed to standard output.

Here is a program, called get dna crossrefs, that implements this algorithm
for any collection of EMBL entries:

#! /usr/bin/perl -w

get_dna_crossrefs - given a list of EMBL files, extract data
from them in preparation for importation into a database system.
The AC number is extracted, together with any SWISS-PROT AC’s.
#
Note that the results produced are TAB-delimited.

use strict;

my ($ac);

while (<>)
{

if (/^AC (.+?);/)
{

$ac = $1;

258 Databases

while (<>)
{

last unless /^AC/;
}

}
if (/^DR SWISS-PROT; (.+?); /)
{

print "$1\t$ac\n";
}

}

Note that both programs produce a list of cross references, one cross reference
per line, in SWISS-PROT, EMBL order.

The following invocations of both programs produce two cross-referenced lists
from the same collection of SWISS-PROT and EMBL entries used earlier in this
chapter:

./get_protein_crossrefs *swp* > protein_crossrefs

./get_dna_crossrefs *embl* *EMBL* > dna_crossrefs

Two lists of cross references now exist. It is possible to load each of these
lists into the crossrefs table. However, as there is a high likelihood that the
combination of the two lists will result in some duplicate cross references, it is
prudent to remove the duplicates before loading the data into the database.

Another small program, called unique crossrefs, does just this. Using a very
popular Perl programming idiom, it reads any number of cross references and
inserts them into a hash called %unique. The name part of %unique is set to
the cross-reference value, while the value part is set to 42 (for want of a better
value11). The unique crossrefs program ignores the value part of the hash, and
takes advantage of the fact that the name parts must be unique:

#! /usr/bin/perl -w

unique_crossrefs - read the cross reference files produced by
get_dna_crossrefs and get_protein_crossrefs and produce a unique
list by removing duplicates.

use strict;

my %unique;

while (<>)
{

chomp;
$unique{ $_ } = 42;

11
It does not really matter which value we set the value part to, as the value is never used.

However, the use of 42 on this occasion may have something to do with Douglas Adams.

A Database Case Study: MER 259

}

foreach my $crossref (keys %unique)
{

print "$crossref\n";
}

The cross references are read one line at a time and added to the hash. Note
the use of chomp to remove the newline character from the end of each line
of input. Once the list of cross references is exhausted, a foreach statement
extracts the name parts from the %unique hash using keys, then prints them
to standard output (one at a time). The following command-line takes the
data files produced by protein crossrefs and dna crossrefs and runs the
unique crossrefs program against them. The results are written to a new data
file, called unique.input:

./unique_crossrefs protein_crossrefs dna_crossrefs > unique.input

12.4.15 Importing tab-delimited data into crossrefs

Importing the unique.input data into the crossrefs table is accomplished by
logging-in to the MER database (using MySQL Monitor), and issuing the following
LOAD DATA query:

mysql> load data local infile "unique.input" into table crossrefs;
Query OK, 22 rows affected (0.04 sec)
Records: 22 Deleted: 0 Skipped: 0 Warnings: 0

A total of 22 distinct cross references now exist in the database.

12.4.16 Working with the data in crossrefs

A quick way to view all the data in a table is to use the wildcard version of
the SELECT query. Use this SELECT query to view every row and column in the
crossrefs table:

mysql> select * from crossrefs;
+------------+----------+
| ac_protein | ac_dna |
+------------+----------+
P04336	J01730
P08332	J01730
P08654	M15049
P20102	X03405
Q52107	AF213017
P03827	J01730
P13113	M24940
P04129	J01730

260 Databases

P13112	M24940
P04337	J01730
P04129	K03089
P08662	M24940
P08662	M15049
P13111	M24940
P08332	K03089
P20102	L29404
P03830	J01730
Q52109	AF213017
P20102	J01730
Q52106	AF213017
P04337	K03089
P08664	M15049
+------------+----------+
22 rows in set (0.02 sec)

The crossrefs table provides the needed link to relate the proteins table
to dnas. Specifically, the SWISS-PROT accession number stored in the pro-
teins table can be related to the SWISS-PROT accession number in cross-
refs. The EMBL accession number cross-referenced with the same SWISS-PROT
accession number in crossrefs can be used to relate the EMBL accession
number in crossrefs with the EMBL accession number stored in the dnas
table.

Here’s a SELECT query to extract data from the proteins and dnas tables on
the basis of the existence of a cross reference:

mysql> select proteins.sequence_header, dnas.sequence_header
-> from proteins, dnas, crossrefs
-> where proteins.accession_number = crossrefs.ac_protein
-> and dnas.accession_number = crossrefs.ac_dna
-> order by proteins.sequence_header;

The sequence header columns from both tables are explicitly identified by pre-
fixing each column name with its associated table name. Unlike the SELECT
queries from earlier, this query extracts its data from three tables: proteins,
dnas and crossrefs, and these tables are identified as part of the FROM
clause.

The WHERE qualifier relates the data in all three tables to each other. If the
SWISS-PROT accession number in crossrefs is identical to the SWISS-PROT
accession number in proteins, in addition to the EMBL accession number in the
same row in crossrefs being identical to that in dnas, a link can be established
between the protein structure and the DNA sequence.

The ORDER BY qualifier arranges to display the results sorted by SWISS-PROT
sequence header. The results from this query are shown in Figure 12.1 on
page 261.

A Database Case Study: MER 261

Fi
g
u

re
1
2
.1

T
h

e
cr

o
ss

-r
ef

er
en

ce
d

se
q

u
en

ce
h

ea
d

er
s

fr
o
m

th
e
p
r
o
t
e
i
n
s

an
d
d
n
a
s

ta
b

le
s.

262 Databases

A variation on the last SELECT query may produce more meaningful results.
This query extracts the code and species values from the proteins table,
together with any associated DNA entry name for all cross references:

mysql> select proteins.code, proteins.species, dnas.entry_name
-> from proteins, dnas, crossrefs
-> where proteins.accession_number = crossrefs.ac_protein
-> and dnas.accession_number = crossrefs.ac_dna;

+------+---------+------------+
| code | species | entry_name |
+------+---------+------------+
MERA	SHIFL	EC4
MERD	SERMA	PPMER
MERP	ACICA	AF213017
MERP	SERMA	PPMERR
MERP	SHIFL	EC4
MERT	SERMA	PPMERR
MERC	SHIFL	EC4
MERA	SERMA	PPMERR
MERA	SERMA	PPMER
MERR	SERMA	PPMERR
MERA	ACICA	AF213017
MERD	SHIFL	EC4
MERT	ACICA	AF213017
MERB	SERMA	PPMER
+------+---------+------------+
14 rows in set (0.05 sec)

The presentation of these results can be improved. Specifically, sorting the results
by SWISS-PROT mnemonic code improves readability. Also, the ability to provide
more descriptive names for each column of results also helps. Here’s a variation
on the last query that implements both improvements:

mysql> select
-> proteins.code as ’Protein Code’,
-> proteins.species as ’Protein Species’,
-> dnas.entry_name as ’DNA Entry Name’
-> from proteins, dnas, crossrefs
-> where proteins.accession_number = crossrefs.ac_protein
-> and dnas.accession_number = crossrefs.ac_dna
-> order by proteins.code;

+--------------+-----------------+----------------+
| Protein Code | Protein Species | DNA Entry Name |
+--------------+-----------------+----------------+
MERA	SERMA	PPMERR
MERA	SERMA	PPMER
MERA	ACICA	AF213017
MERA	SHIFL	EC4
MERB	SERMA	PPMER
MERC	SHIFL	EC4

A Database Case Study: MER 263

MERD	SERMA	PPMER
MERD	SHIFL	EC4
MERP	ACICA	AF213017
MERP	SERMA	PPMERR
MERP	SHIFL	EC4
MERR	SERMA	PPMERR
MERT	ACICA	AF213017
MERT	SERMA	PPMERR
+--------------+-----------------+----------------+
14 rows in set (0.08 sec)

The use of the ‘‘as’’ keyword allows for the renaming of each column in the results
table, and an appropriate ORDER BY qualifier sorts the results by SWISS-PROT
mnemonic code. And with that query, Question 4 is answered: Which protein
structures are cross-referenced with which DNA sequences?

12.4.17 Adding the citations table to the MER database

To answer Question 5, Which literature citations reference the results from the
previous question? (that is, Question 4), more data is required than currently
exists in the MER database. A new table, called citations, stores data on the
citation information extracted from a collection of SWISS-PROT and EMBL entries.
Here is the content of the create citations.sql text file:

create table citations (
accession_number varchar (8) not null,
number int not null,
author text not null,
title text not null,
location text not null,
annotation text

)

The citations table is populated with data from any reference lines that exist
in either type of entry. These are easily identified: simply look for a series of
lines that start with the RN line type. Let’s refer to this series of lines as a
reference record. Here is the reference record from the sample SWISS-PROT entry
on page 228:

RN [1]
RP SEQUENCE FROM N.A.
RX MEDLINE=94134837; PubMed=8302940;
RA Kholodii G.Y., Lomovskaya O.L., Gorlenko Z.M., Mindlin S.Z.,
RA Yurieva O.V., Nikiforov V.G.;
RT "Molecular characterization of an aberrant mercury resistance
RT transposable element from an environmental Acinetobacter strain.";
RL Plasmid 30:303-308(1993).

264 Databases

And here is the reference record from the sample EMBL entry on page 229:

RN [1]
RP 1-2923
RX MEDLINE; 89327136.
RA Nucifora G., Chu L., Silver S., Misra T.K.;
RT "Mercury operon regulation by the merR gene of the organomercurial
RT resistance system of plasmid pDU1358";
RL J. Bacteriol. 171(8):4241-4247(1989).
XX

Notice how both reference records are similar in that each has the same sequence
of line types, presented in the following order: RN, RP, RX, RA, RT and RL. However,
not all of these line types are required within the reference record and, to make
matters slightly more complicated, the SWISS-PROT manual identifies a different
set of mandatory and optional line types for its reference records than does the
EMBL manual.

The citations table, as defined above, provides columns to hold the refer-
ence number (RN), author (RA), title (RT) and location (RL). The other columns
store an accession number (extracted from the AC line type) and an optional
annotation.

The usual sequence of commands is used to create the citations table, check
to see that the table has been added to the database (using SHOW TABLES) and
display the structure of the newly created table (using DESCRIBE):

mysql -u bbp -p MER < create_citations.sql

mysql -u bbp -p MER

mysql> show tables;
+---------------+
| Tables_in_MER |
+---------------+
| citations |
| crossrefs |
| dnas |
| proteins |
+---------------+
4 rows in set (0.00 sec)

mysql> describe citations;
+------------------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------+------------+------+-----+---------+-------+
accession_number	varchar(8)				
number	int(11)			0	
author	text				
title	text				
location	text				

A Database Case Study: MER 265

| annotation | text | YES | | NULL | |
+------------------+------------+------+-----+---------+-------+
6 rows in set (0.00 sec)

Note that the annotation column accepts NULL values, as it is defined as
optional.

12.4.18 Preparing citation information for importation

The get citations program processes any collection of SWISS-PROT and EMBL
entries, extracting any found reference records. Both types of entry can contain
zero, one or more reference records, and the get citations program needs to
accommodate this. Additionally, the RT line type, which contains the reference
title, is – somewhat surprisingly – optional within SWISS-PROT entries, but not
within an EMBL entry. This also has to be taken into consideration. Here’s the
entire get citations program:

#! /usr/bin/perl -w

get_citations - given a list of SWISS-PROT and EMBL files, extract
data in preparation for importation into a database system.
Specifically, extract the RN citation information from the files.
#
Note that the results produced are TAB-delimited.

use strict;

my ($table_line, $ac, $title_lines);

while (<>)
{

if (/^AC (.+?);/)
{

$ac = $1;

while (<>)
{

last unless /^AC/;
}

}
if (/^RN \[(\d+)\]/)
{

print "$table_line\t\n" if defined $table_line;

$table_line = $ac . "\t" . $1 . "\t";

while (<>)
{

if (/^RA (.+)/)

266 Databases

{
my $author_lines = $1;

while (<>)
{

last unless /^RA (.+)/;
$author_lines = $author_lines . ’ ’ . $1

}
$table_line = $table_line . $author_lines . "\t";

}
if (/^RT (.+)/)
{

$title_lines = $1;

while (<>)
{

last unless /^RT (.+)/;
$title_lines = $title_lines . ’ ’ . $1

}
$table_line = $table_line . $title_lines . "\t";

}
if (/^RL (.+)/)
{

my $location_lines = $1;

if (!defined($title_lines))
{

$table_line = $table_line . ’(no title)’ . "\t";
}
$title_lines = undef;

while (<>)
{

last unless /^RL (.+)/;
$location_lines = $location_lines . ’ ’ . $1

}
$table_line = $table_line . $location_lines;

if (/^RN \[(\d+)\]/)
{

print "$table_line\t\n" if defined $table_line;

$table_line = $ac . "\t" . $1 . "\t";

redo;
}
else
{

last;
}

}

A Database Case Study: MER 267

}
}

}
print "$table_line\t\n" if defined $table_line;

The accession number is extracted from the AC line type in the usual way, and
stored in the $ac scalar. A pattern match then looks for ‘‘RN’’ at the start of a line.
If this is not found, the entry has no reference records and the get citations
program ends, producing no results. This explains the use of the if defined
statement qualifier appended to each of the print statements. That is, if there’s
no $table line to print, don’t print it.

If the pattern is found, the program processes the reference record. Recall that
more than one reference record can exist in either entry. With SWISS-PROT entries,
the first, second (and subsequent) reference records are positioned immediately
after each other in the entry. With EMBL entries, the first, second (and subsequent)
reference records are separated from each other by a XX line type. This helps
explain the inclusion of a pattern match for ‘‘RN’’ at the start of the line within
the inner loop, as follows:

if (/^RN \[(\d+)\]/)
{

print "$table_line\t\n" if defined $table_line;

$table_line = $ac . "\t" . $1 . "\t";

redo;
}
else
{

last;
}

If another RN line type is encountered within the inner loop (that is, while already
processing a reference record), it is highly likely that a SWISS-PROT entry is
being processed. The if block prints the current $table line, starts another
$table line and then invokes Perl’s redo subroutine. This causes the current
(inner) loop to restart without re-evaluating the loop condition. As the program
has determined that a new reference record is starting, and as the program has
already read the first line of the record (the RN line type), this is the most sensible
thing to do at this stage.

If, having reached the end of a reference record and having read a line that
starts with something other than ‘‘RN’’, the program can assume that it is reading
an EMBL entry or that it has reached the end of the reference records in the SWISS-
PROT file. Either way, the invocation of last within the else block ensures that
the inner loop ends.

268 Databases

The following command-line executes the get citations program against all
the files in the current directory12. The results are written to a new data file,
called citations.input:

./get_citations * > citations.input

12.4.19 Importing tab-delimited data into citations

Importing citations.input into the crossrefs table is accomplished by
logging-in to the MER database (using MySQL Monitor), and issuing the following
LOAD DATA query:

mysql> load data local infile "citations.input" into table citations;
Query OK, 34 rows affected (0.08 sec)
Records: 34 Deleted: 0 Skipped: 0 Warnings: 0

Thirty-four citations are now stored in the table.

12.4.20 Working with the data in citations

It is possible to exploit the fact that the citations table includes a column of data
that contains a mix of SWISS-PROT and EMBL accession numbers. Specifically, the
accession number column in citations can be related to the similarly named
column in both proteins and dnas, as well as the ac protein and ac dna
columns in crossrefs.

Here is a SELECT query that answers Question 5, Which literature citations
reference the results from the previous question?:

mysql> select
-> proteins.code as ’Protein Code’,
-> proteins.species as ’Protein Species’,
-> dnas.entry_name as ’DNA Entry Name’,
-> citations.location as ’Citation Location’
-> from proteins, dnas, crossrefs, citations
-> where proteins.accession_number = crossrefs.ac_protein
-> and dnas.accession_number = crossrefs.ac_dna
-> and dnas.accession_number = citations.accession_number
-> order by proteins.code;

This query is the longest in this chapter. Despite this, it is not too difficult to
understand. In essence, it is the same query that answered Question 4, with the
main difference being that the accession number column in the dnas table is

12
The assumption is that the current directory contains the collection of SWISS-PROT and

EMBL data files.

A Database Case Study: MER 269

also related to the accession number column in the citations table. The FROM
clause includes the citations table in its list, and the location column of
data (from citations) is included in the results for this query as the ‘‘Citation
Location’’ column.

The abridged results from this query are shown in Figure 12.2 on page 270.

Where to from Here

A lot of ground has been covered in this chapter. Despite this, there is much
more to databases – this chapter is merely an introduction. No consideration has
been given to important database topics such as primary/secondary keys, indices
and normalisation. Nevertheless, the simple technique described in this chapter
can be applied to many situations. The mechanism is as follows:

• Design the table structures.

• Prepare the data for importation.

• Import the data.

• Process the data.

In the next chapter, the emphasis shifts from interacting with MySQL manually
(using the MySQL Monitor) to interacting automatically with the Perl programming
language. However, before moving on, take a moment to consider one more
maxim.

Maxim 12.3 The SELECT query can do no harm.

All SELECT can do is extract data from a collection of database tables. SELECT
cannot be used to insert, delete, replace or update data, which has the effect
of making SELECT a relatively safe database query to work with. Readers are
encouraged to do just that: experiment with SELECT, safe in the knowledge that
it can do no harm.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• A little database design goes a long way.

• Understand the data before designing the tables.

• The SELECT query can do no harm.

270 Databases

Fi
g
u

re
1
2
.2

T
h

e
re

su
lt

s
o
f

th
e

ci
ta

ti
o
n

cr
o
ss

re
fe

re
n

ce
b

et
w

ee
n

th
e
p
r
o
t
e
i
n
s

an
d
d
n
a

ta
b

le
s.

Exercises 271

Exercises

1. Create a new MySQL database called MAD. Within MAD, create two tables,
one called Discoveries and another called Scientists. Model the struc-
ture of these tables on the descriptions from the start of this chapter. Use
the MySQL Monitor to add ten rows of data to each table.

2. If you have not already done so, create the MER database and its four
tables. Populate the tables with your own selection of SWISS-PROT and
EMBL entries.

13

Databases and Perl
Using Perl to talk to databases.

13.1 Why Program Databases?

Why would anybody want to program a database? Paul Dubios, a highly respected
member of the MySQL community1, suggests four reasons:

1. Customised output handling – The standard output produced by most
database systems (including MySQL) is often bland, as demonstrated by the
examples in the last chapter. To ‘‘fancy things up a little’’, programs can be
written to post-process the results of any SQL query and display them in
any number of preferred formats.

2. Customised input handling – This can provide a more intuitive (and easier
to use) mechanism for getting data into a database and for issuing queries.
Users of customised input handling programs do not need to know anything
about SQL – all they need to know and understand is their data.

3. Extending SQL – Some tasks that are difficult or impossible to do with SQL
can be programmed more easily.

4. Integrating MySQL into custom applications – Having the power of MySQL
as a component of an application can be very powerful. This is especially
true of web-based applications (which is covered in Part III, Working with
the Web).

1
He is also the author of some excellent books on MySQL.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

274 Databases and Perl

This chapter presents a collection of Perl programs written to communicate
directly with a database system (specifically, with MySQL).

13.2 Perl Database Technologies
A number of third-party CPAN modules provide access to MySQL from within
a Perl program. One such module is Net::MySQL by Hiroyuki Oyama, which,
despite being at release 0.08, provides a stable programming interface to MySQL
functionality. In fact, nearly every database system provides a specific technol-
ogy for programmers to use when programming their particular database. This
technology is referred to as an API, an application programming interface.

Unfortunately, the effort expended in learning how to use Net::MySQL is
of little use when a program has to be written to interface with Oracle or
Sybase (or any other database system, for that matter). Imagine spending six
months designing and writing a large series of programs to work with MySQL
(utilising Net::MySQL) only to be informed that a decision has been made in your
organisation to store all data in Oracle, not MySQL.

In order to avoid such situations while working with Perl, Tim Bunce developed
a module called DBI. The DBI module provides a database independent interface
for Perl. By providing a generalised API, programmers can program at a ‘‘higher
level’’ than the API provided by the database system, in effect insulating programs
from changes to the database system. To connect the high-level DBI technology to
a particular database system, a special driver converts the general DBIAPI into the
database system-specific API. These drivers are implemented as CPAN modules.

Alligator Descartes wrote the first version of the DBD::mysql module to allow
DBI programs to interface with MySQL. Today, Jochen Wiedmann is primar-
ily responsible for the ongoing development of DBD::mysql. DBD stands for
database driver.

The theory is that if a program is written to use DBI and then connected
to a particular database system using the appropriate driver module, then the
database system can be changed at any time without severely impacting the
program2. All that is required is to change the program to use the driver module
for the newly selected database system. This typically involves changing only a
single line of code. Everything else stays the same.

In practice, each driver includes a series of ‘‘enhancements’’ that provide a
mechanism to access database system-specific functionality. Although this can
be very convenient, it is best avoided, as accessing database system-specific
functionality defeats the whole purpose of using DBI in the first place.

Maxim 13.1 If at all possible,
avoid the use of database driver ‘‘enhancements’’.

2
A similar theory underlies the ODBC technology from Microsoft. However, the use of ODBC

requires more work from the programmer than does DBI.

Preparing Perl 275

13.3 Preparing Perl

Depending on the version of Linux installed, the DBI module and any associated
DBD drivers may already be installed3. Paul was pleasantly surprised to find
that the installation of MySQL from the up2date service provided by RedHat
Linux included the downloading, installation and configuration of the DBI and
DBD::mysql modules for Perl.

The manual installation of the DBI and DBD::mysql modules conforms to the
standard method discussed in the Getting Organised chapter in Part I. To check
if DBI and DBD::mysql are installed on a computer, try these commands to view
the associated documentation:

man DBI
man DBD::mysql

Of course, it is possible that the modules are installed, but that the documentation
is missing or incorrectly installed. If the above commands produce ‘‘No manual
entry for . . . ’’ messages, use these command-lines to search your computer for
installations of the DBI and DBD::mysql modules:

find ‘perl -Te ’print "@INC"’ ‘ -name ’*.pm’ -print | grep ’DBI.pm’
find ‘perl -Te ’print "@INC"’ ‘ -name ’*.pm’ -print | grep ’mysql.pm’

or use the locate utility provided by most Linux distributions:

locate DBI.pm
locate mysql.pm

If these commands produce no output, then the missing modules need to be
installed from CPAN4.

13.3.1 Checking the DBI installation

A simple program, called check drivers, checks the status of the DBI installa-
tion, listing any installed database drivers. Here it is:

#! /usr/bin/perl -w

check_drivers - check which drivers are installed with DBI.

3
Microsoft Windows users will find ActivePerl from ActiveState provides excellent support to

the DBI programmer in the form of PPM modules.
4

Note that a similar find command can be used to locate any installed Perl module. However,
custom modules cannot be found by find in this way. Instead, they can often be found with
locate. Unfortunately, not all Linux distributions include, nor enable, the locate utility.

276 Databases and Perl

use strict;

use DBI;

my @drivers = DBI->available_drivers;

foreach my $driver (@drivers)
{

print "Driver: $driver installed.\n";
}

After enabling strictness, the check drivers program uses the DBI module. A
call is then made to the available drivers subroutine included with the DBI
module. This returns a list of installed database drivers, which are assigned to
an array called @drivers. This array is then iterated over using foreach to
display a formatted list of installed drivers. Here’s the output produced on Paul’s
computer5:

Driver: ExampleP installed.
Driver: Pg installed.
Driver: Proxy installed.
Driver: mysql installed.

The first three drivers are included with DBI. The final driver, referred to as
mysql, is the DBD::mysql driver. So, Paul’s database programming environment
is ready to go!

13.4 Programming Databases with DBI

Let’s start with a simple example. A program, called show tables, connects to
the MER database (created during the last chapter) and determines the list of
tables in the database. Obviously, this can easily be achieved using the MySQL
Monitor, as it is just a matter of logging in to MySQL, using the MER database
and issuing a SHOW TABLES query, effectively negating the need for a custom
program. But bear with us, as all this example is designed to do is get things
going. Here is the entire show tables program:

#! /usr/bin/perl -w

show_tables - list the tables within the MER database.
Uses "DBI::dump_results" to display results.

use strict;

5
This is running release 9 of RedHat Linux, version 3.23.56 of MySQL, version 1.32 of DBI and

version 2.1021 of DBD::mysql.

Programming Databases with DBI 277

use DBI qw(:utils);

use constant DATABASE => "DBI:mysql:MER";
use constant DB_USER => "bbp";
use constant DB_PASS => "passwordhere";

my $dbh = DBI->connect(DATABASE, DB_USER, DB_PASS)
or die "Connect failed: ", $DBI::errstr, ".\n";

my $sql = "show tables";

my $sth = $dbh->prepare($sql);

$sth->execute;

print dump_results($sth), "\n";

$sth->finish;

$dbh->disconnect;

Let’s take a look at what’s going on.
After the usual first line, a comment and the switching on of strictness, the

DBI module is used. Note the inclusion of the ‘‘:utils’’ tag, which brings in a
collection of DBI database utility routines. Three constants are defined:

DATABASE – Identifies the data source to use. In show tables, the data source is
identified as DBI, the mysql driver, and the MER database.

DB USER – Identifies the username to use when connecting to the data source.

DB PASS – Identifies the password to use when authenticating to the data source.

An invocation of the connect subroutine (included with DBI) establishes a
database connection (or session) between the show tables program and MySQL:

my $dbh = DBI->connect(DATABASE, DB_USER, DB_PASS)
or die "Connect failed: ", $DBI::errstr, ".\n";

Note the specification of the three constants as parameters to connect.
If the connection cannot be established, connect returns undef and the

show tables program dies with an appropriate error message, which includes
a message from DBI (included in the $DBI::errstr scalar). If the connection
succeeds, connect returns a database handle, which is assigned to the $dbh
scalar. Database handles have specific DBI functionality associated with them.
The functionality is accessed through subroutine calls6.

6
Which are referred to as methods within the DBI documentation. For our purposes, method

and subroutine mean the same thing.

278 Databases and Perl

Bearing in mind that it is always a good idea to use good, descriptive names for
variables, why use $dbh instead of the more descriptive $database handle? In
this case, the earlier maxim is considered, but ignored, because of the convention
within the DBI programming community to use specifically named variables
for certain purposes. When established conventions exist within a programming
community, it is often better to follow them since nearly ever published work
on DBI uses $dbh as the database handle variable name. Another example of a
standard DBI variable name is $sth, which is used with statement handles.

Maxim 13.2 Be sure to adhere to any established naming conventions
within a programming community.

With a connection established to the database, the show tables program assigns
the SQL query to a scalar called $sql. This scalar is then used in a call to the
database handle’s prepare subroutine that gets the SQL query ready for use.
Note that the requirement to terminate the SQL query with a semicolon (as is the
case with the MySQL Monitor) is typically not required when working with DBI.
The prepared SQL query is assigned to a statement handle called $sth.

As with database handles, statement handles also have functionality associated
with them (in the form of invokable subroutines). The execute subroutine takes
the prepared SQL query and asks the database system to execute it. Any results
are returned to the show tables program and stored within the statement handle
identified by $sth.

To access the results returned from the database, the show tables program
invokes the DBI utility dump results, made available to the program as a result
of the :utils tag. The dump results subroutine displays the results of the
executed query in a relatively raw, unformatted way.

The program concludes by calling the finish subroutine on the statement
handle, which tells the database system that the query session is over, and
disconnects from the database by calling disconnect on the database handle.

Use the following command-lines to turn the show tables program into an
executable, then invoke it:

chmod +x show_tables
./show_tables

The following results are displayed on STDOUT:

’citations’
’crossrefs’
’dnas’
’proteins’
4 rows
4

Programming Databases with DBI 279

This is the default (raw) format produced by the call to dump results, and it
provides the names of the four tables currently included within the MER database.
It also confirms that four rows of data were processed. As shown, it is just a
dump of the results, including any extra messages produced by the database
(which helps explain the last two lines of output).

13.4.1 Developing a database utility module

The three constants at the top of the show tables program, together with the
call to connect, are used by every other program in this chapter. Rather than cut
‘n’ paste these five lines of code into every program, a small database utilities
module is created to store them in a central location. As well as eliminating
all that cutting ‘n’ pasting, this strategy avoids the situation whereby a large
collection of programs include the username and password. Generally, it is not a
good idea to litter disk-files with username/password combinations (for obvious
security reasons). Also, by specifying the username and password in a single
location, they can easily be changed as required.

Maxim 13.3 Avoid littering programs with username/password combinations.

Here’s another custom module, called DbUtilsMER, which is stored in the same
directory as the UsefulUtils module (introduced in the Getting Organised
chapter from Part I):

package DbUtilsMER;

DbUtilsMER.pm - the database utilities module from "Bioinformatics,
Biocomputing and Perl".
#
Version 0.01: module created to hold MERconnectDB.

require Exporter;

our @ISA = qw(Exporter);

our @EXPORT = qw(MERconnectDB);
our @EXPORT_OK = qw();
our %EXPORT_TAGS = ();

our $VERSION = 0.01;

use constant DATABASE => "DBI:mysql:MER";
use constant DB_USER => "bbp";
use constant DB_PASS => "passwordhere";

sub MERconnectDB {
#
Given: nothing.

280 Databases and Perl

Return: a "connected" database handle to the MER database or
if no connection is possible, return "undef".
#

return DBI->connect(DATABASE, DB_USER, DB_PASS);
}

1;

In addition to defining the three constants, this module also defines a small sub-
routine called MERconnectDB, which either successfully establishes a connection
to the MER database using the specified username/password pairing, or returns
undef if the connection cannot be established. With the DbUtilsMER module
available, each program that wishes to communicate with the database includes
the following code:

use lib "$ENV{’HOME’}/bbp/";
use DbUtilsMER;

my $dbh = MERconnectDB
or die "Connect failed: ", $DBI::errstr, ".\n";

as opposed to this code:

use constant DATABASE => "DBI:mysql:MER";
use constant DB_USER => "bbp";
use constant DB_PASS => "passwordhere";

my $dbh = DBI->connect(DATABASE, DB_USER, DB_PASS)
or die "Connect failed: ", $DBI::errstr, ".\n";

which despite ‘‘saving’’ only one line, does significantly improve the maintain-
ability of any program using it.

13.4.2 Improving upon dump results

A second version of show tables, called show tables2, uses the DbUtilsMER
module and the MERconnectDB subroutine. It also processes the results from the
query within a loop and, as such, reformats the output to be more presentable.
Here’s the code:

#! /usr/bin/perl -w

show_tables2 - list the tables within the MER database.
Uses "fetchrow_array" to display results.

use strict;

use DBI;

Programming Databases with DBI 281

use lib "$ENV{’HOME’}/bbp/";
use DbUtilsMER;

my $dbh = MERconnectDB
or die "Connect failed: ", $DBI::errstr, ".\n";

my $sql = "show tables";

my $sth = $dbh->prepare($sql);

$sth->execute;

print "The MER database contains the following tables:\n\n";

while (my @row = $sth->fetchrow_array)
{

foreach my $column_value (@row)
{

print "\t$column_value\n";
}

}

$sth->finish;

$dbh->disconnect;

When executed, show tables2 produces the following on STDOUT:

The MER database contains the following tables:

citations
crossrefs
dnas
proteins

The interesting (and new) lines of code are these:

print "The MER database contains the following tables:\n\n";

while (my @row = $sth->fetchrow_array)
{

foreach my $column_value (@row)
{

print "\t$column_value\n";
}

}

A simple print statement displays a friendly message, then a while loop
displays the results from the database. With each iteration, the fetchrow array

282 Databases and Perl

subroutine (which is part of DBI) is invoked against the statement handle7.
This subroutine returns a single row from the results as an array. When used
within a loop, as is the case within show tables2, each iteration results in
fetchrow array returning the next row of data from the results (until there are
no more rows).

Each row is assigned to an array called @row. The body of the while loop
contains another loop, this time a foreach that iterates over the @row array and
prints the values contained therein. In this case, there’s only one value per row
(that is, one column in the table). Each value is printed to STDOUT, with the tab
(\t) and newline (\n) characters helping out with the required formatting.

Unlike the output produced by show tables, which used the dump results
utility, the show tables2 program does not see the ‘‘4 rows’’ and ‘‘4’’ messages
from earlier. The use of fetchrow array produces only the results that are likely
to be of interest to the user, as opposed to all the messages generated by the
database system.

13.5 Customising Output

There are a number of ways to process the results returned to a statement
handle from a database system. To demonstrate the most common techniques,
the crossrefs table from the MER database is used in the examples in this
section. A very simple query is issued against the database to retrieve every row
of data from the table:

select * from crossrefs

The which crossrefs program processes the results from the query and displays
them in a nice, human-friendly format. Here’s what the output looks like:

There are 22 cross references in the database.

The protein P04336 is cross referenced with J01730.
The protein P08332 is cross referenced with J01730.
The protein P08654 is cross referenced with M15049.
The protein P20102 is cross referenced with X03405.
The protein Q52107 is cross referenced with AF213017.
The protein P03827 is cross referenced with J01730.
The protein P13113 is cross referenced with M24940.
The protein P04129 is cross referenced with J01730.
The protein P13112 is cross referenced with M24940.
The protein P04337 is cross referenced with J01730.
The protein P04129 is cross referenced with K03089.
The protein P08662 is cross referenced with M24940.

7
Remember: any results from the database are stored in the statement handle.

Customising Output 283

The protein P08662 is cross referenced with M15049.
The protein P13111 is cross referenced with M24940.
The protein P08332 is cross referenced with K03089.
The protein P20102 is cross referenced with L29404.
The protein P03830 is cross referenced with J01730.
The protein Q52109 is cross referenced with AF213017.
The protein P20102 is cross referenced with J01730.
The protein Q52106 is cross referenced with AF213017.
The protein P04337 is cross referenced with K03089.
The protein P08664 is cross referenced with M15049.

A message indicates the number of cross references in the database8. After
producing a blank line, a series of messages is produced, one for each cross ref-
erence. Here’s the source code to the which crossrefs program, which produces
the above output:

#! /usr/bin/perl -w

which_crossrefs - nicely displayed list of protein->dna
cross references.

use strict;

use DBI;

use lib "$ENV{’HOME’}/bbp/";
use DbUtilsMER;

my $dbh = MERconnectDB
or die "Connect failed: ", $DBI::errstr, ".\n";

my $sql = "select * from crossrefs";

my $sth = $dbh->prepare($sql);

$sth->execute;

print "There are ", $sth->rows, " cross references in the database.\n\n";

while (my @row = $sth->fetchrow_array)
{

print "The protein $row[0] is cross referenced with $row[1].\n";
}

$sth->finish;

$dbh->disconnect;

As can be seen, other than the fact that the $sql scalar has a different SQL query
assigned to it, this program is very similar to the show tables2 program. The
lines of interest are these:

8
More correctly, the number of cross references in the crossrefs table within the database.

284 Databases and Perl

print "There are ", $sth->rows, " cross references in the database.\n\n";

while (my @row = $sth->fetchrow_array)
{

print "The protein $row[0] is cross referenced with $row[1].\n";
}

The rows subroutine, invoked through the statement handle, returns the number
of rows contained in the results, and the value is used within the opening
message.

The while loop processes the results, employing fetchrow array to return
each row of data and assign it to @row. The crossrefs table has two columns, so
knowing this, each column’s data can be accessed using standard array indexing
notation. The first column is therefore referred to as $row[0] and the second
column is referred to as $row[1]. The which crossrefs program exploits this
when producing the message for each cross reference.

An alternative to using array indices is to assign the array returned from
fetchrow array to a list of named scalars. This technique is implemented in
which crossrefs2 and involves changing the condition-part of the loop, as well
as the print statement within the loop block:

while (my ($protein, $dna) = $sth->fetchrow_array)
{

print "The protein $protein is cross referenced with $dna.\n";
}

This loop produces the same output as the loop used in which crossrefs.
The third technique uses the names of the columns to reference the values

contained in them. Rather than invoke fetchrow array, the which crossrefs3
program employs fetchrow hashref to return a reference to a hash. The name-
parts of this referenced hash are set to the names of the columns in the table,
while the value-parts in the referenced hash are set to the values associated with
each individual row. The hash reference is assigned to the $row scalar, then the
values are accessed as follows:

while (my $row = $sth->fetchrow_hashref)
{

print "The protein $row->{ ac_protein } is cross referenced ";
print "with $row->{ ac_dna }.\n";

}

The hash name-parts are identical to the column names as defined in the cross-
refs table within the MER database.

The output produced by which crossrefs3 is the same as that produced by
both which crossrefs and which crossrefs2. Which technique is used often
depends on personal preference, as they all work. The final technique, using a

Customising Input 285

hash reference, guards against changes to the ordering of the columns within
a table. For example, the ordering of the columns within the crossrefs table
is ac protein followed by ac dna. If for some reason this ordering was to
be changed to ac dna, then ac protein, of the three cross-referencing pro-
grams, only which crossrefs3 would continue to produce correct output9. The
which crossrefs and which crossrefs2 programs assume the ordering of the
columns within the table never changes.

Maxim 13.4 Use fetchrow hashref to guard against
changes to the structure of a database table.

13.6 Customising Input

The ability to process the results produced by the execution of a query allows a
programmer to customise them for any particular purpose. It is also possible to
customise the input to a query.

The specific crossref program provides a mechanism whereby a user of the
program can check the crossrefs table for a specific protein cross reference.
Here’s a captured usage session, showing the messages produced and the input
provided by the user (which is shown in italics):

Provide a protein accession number to cross reference (’quit’ to end): p03377
Not found: there is no cross reference for that protein in the database.

Provide a protein accession number to cross reference (’quit’ to end): p04337
Found: P04337 is cross referenced with J01730.

Provide a protein accession number to cross reference (’quit’ to end): q52109
Found: Q52109 is cross referenced with AF213017.

Provide a protein accession number to cross reference (’quit’ to end): x6587
Not found: there is no cross reference for that protein in the database.

Provide a protein accession number to cross reference (’quit’ to end): quit

The user is prompted (with an appropriate message) to provide the accession
number of a protein to cross reference. Once entered, the cross reference is
searched for within the table and either a ‘‘found’’ or ‘‘not found’’ message is
generated. Of interest is the fact that any input provided by the user is converted
to uppercase, in order to match the data in the table (which is stored in all
uppercase). Critically, the use of the specific crossrefs program does not
require the user to know anything about SQL syntax nor queries (which is not
the case when using The MySQL Monitor). All the user of this program needs

9
Although, frankly, it is hard to imagine a situation whereby such a reordering would be

justified. Then again, you never know.

286 Databases and Perl

to understand is the meaning of the data contained in the table, that is, that
it contains protein to DNA cross references. In effect, the specific crossrefs
program shields its users from the technical details of SQL, MySQL and database
systems. Before discussing how the specific crossrefs program works in
detail, consider its source code:

#! /usr/bin/perl -w

specific_crossref - allow for the "interactive" checking
of crossrefs from the command-line.
Keep going until the user enters "quit".

use strict;

use DBI;

use lib "$ENV{’HOME’}/bbp/";
use DbUtilsMER;

use constant TRUE => 1;

my $dbh = MERconnectDB
or die "Connect failed: ", $DBI::errstr, ".\n";

my $sql = qq/ select ac_dna from crossrefs where ac_protein = ? /;

my $sth = $dbh->prepare($sql);

while (TRUE)
{

print "\nProvide a protein accession number to cross ";
print "reference (’quit’ to end): ";

my $protein2find = <>;

chomp $protein2find;

$protein2find = uc $protein2find;

if ($protein2find eq ’QUIT’)
{

last;
}

$sth->execute($protein2find);

my $dna = $sth->fetchrow_array;

$sth->finish;

if (!$dna)
{

print "Not found: there is no cross reference for that protein ";
print "in the database.\n";

}

Customising Input 287

else
{

print "Found: $protein2find is cross referenced with $dna.\n";
}

}

$dbh->disconnect;

Despite the fact that specific crossrefs is longer than the programs discussed
so far in this chapter, it conforms to the same design. Strictness is enabled, the
DBI and DbUtilsMER modules are used and a connection is established with the
database system. The SQL query (assigned to $sql) is a little more complicated:

my $sql = qq/ select ac_dna from crossrefs where ac_protein = ? /;

The above line uses Perl’s qq generalised quote operator, delimiting the SQL
query with slash characters. This has the effect of double-quoting the string and
removing the need to escape any otherwise escapable characters within the SQL
query. Note the use of the ‘‘?’’ character. This is referred to as a placeholder within
DBI. A placeholder (which is always identified by the ‘‘?’’ character) indicates a
place where a value in the SQL query will be provided later in the program, after
the statement has been prepared but before it is executed.

An infinite while loop provides a mechanism within which the user of the
program is repeatedly asked to supply the accession number of a protein to cross
reference. Entering ‘‘quit’’ results in the program terminating. The input from
the user is assigned to a scalar called $protein2find, then processed:

my $protein2find = <>;

chomp $protein2find;

$protein2find = uc $protein2find;

if ($protein2find eq ’QUIT’)
{

last;
}

Any trailing newline character is removed from the user’s input using chomp,
then Perl’s in-built uc subroutine is used to convert the input to uppercase. If the
value in $protein2find is now ‘‘QUIT’’, the loop is exited by calling last. If the
value in $protein2find is anything else, the loop continues.

The execute subroutine associated with the statement handle is then executed,
and the $protein2find scalar is passed as a parameter to execute:

$sth->execute($protein2find);

288 Databases and Perl

The above statement has the effect of taking the value of $protein2find and
using it within the SQL query at the position indicated by the placeholder. So, if
the value of $protein2find is entered as ‘‘p04377’’, the SQL query that starts
out looking like this:

select ac_dna from crossrefs where ac_protein = ?

is transformed into the following as a result of the invocation of execute:

select ac_dna from crossrefs where ac_protein = P04377

So, each time a different protein accession number is provided by the user, it is
used to execute a slightly different SQL query against the database. As before,
the fetchrow array subroutine is used to retrieve the results returned to the
program and stored within the statement handle. Rather than assign the row
returned by fetchrow array to an array, the specific crossrefs program
assigns any results to a scalar:

my $dna = $sth->fetchrow_array;

At first, this may appear to be a strange thing to do. However, when used in
this way, fetchrow array does not return an array of row values; instead it
provides a single value equal to the first (or last) column value in the row.
As it is known from the query that only a single column is retrieved (the
column holding the ac dna values), the specific crossref program exploits
the scalar context behaviour of fetchrow array and assigns the value returned
to the $dna scalar. If no cross reference is found, the $dna scalar is assigned
undef.

The remaining code in the loop checks the value of $dna, printing an appropri-
ate message to STDOUT depending on whether the SQL query resulted in a found
cross reference:

if (!$dna)
{

print "Not found: there is no cross reference for that protein ";
print "in the database.\n";

}
else
{

print "Found: $protein2find is cross referenced with $dna.\n";
}

As with all DBI programs, the specific crossrefs program concludes by closing
the connection, invoking the disconnect subroutine on the database handle.

Extending SQL 289

13.7 Extending SQL

The ability to integrate the features of a relational database with the features
of a programming language can leverage the best of both, leading to powerful
programming solutions.

Recall the match embl program from page 144, which provides a mechanism
to interactively match a small DNA sequence against a sequence entry from the
EMBL database, reporting successful matches and failures. The problem with
match embl is that it works only with a single EMBL entry. It would be nice if the
program could be extended to look for matches in more than one EMBL entry.
It would be great if the program could be extended to look for matches in the
EMBL entries stored within the dnas table, which is part of the MER database.
Achieving this is straightforward with Perl and DBI.

The db match embl program extends match embl to communicate with the
MER database and attempts to match a user-supplied sequence against any of
the EMBL sequences in the dnas table. Here’s the source code to db match embl:

#! /usr/bin/perl -w

The ’db_match_embl’ program - check a sequence against each EMBL
database entry stored in the dnas
table within the MER database.

use strict;

use DBI;

use lib "$ENV{’HOME’}/bbp/";
use DbUtilsMER;

use constant TRUE => 1;
use constant FALSE => 0;

my $dbh = MERconnectDB
or die "Connect failed: ", $DBI::errstr, ".\n";

my $sql = qq/ select accession_number, sequence_data,
sequence_length from dnas /;

my $sth = $dbh->prepare($sql);

while (TRUE)
{

my $sequence_found = FALSE;

print "Please enter a sequence to check (’quit’ to end): ";

my $to_check = <>;

chomp($to_check);
$to_check = lc $to_check;

290 Databases and Perl

if ($to_check =~ /^quit$/)
{

last;
}

$sth->execute;

while (my ($ac, $sequence, $sequence_length) = $sth->fetchrow_array)
{

$sequence =~ s/\s*//g;

if ($sequence =~ /$to_check/)
{

$sequence_found = TRUE;

print "The EMBL entry in the database: ",
$ac,

" contains: $to_check.\n";
print "[Lengths: ",

length $sequence,
"/$sequence_length]\n\n";

}
}

if (!$sequence_found)
{

print "No match found in database for: $to_check.\n\n";
}

$sth->finish;
}

$dbh->disconnect;

Before describing the inner workings of the db match embl program, let’s take
a look at the program in action. Here’s a captured usage session, showing the
messages produced and the input provided by the user (again shown in italics):

Please enter a sequence to check (’quit’ to end): aattgc
The EMBL entry in the database: AF213017 contains: aattgc.
[Lengths: 6838/6838]

Please enter a sequence to check (’quit’ to end): aatttc
The EMBL entry in the database: AF213017 contains: aatttc.
[Lengths: 6838/6838]

The EMBL entry in the database: J01730 contains: aatttc.
[Lengths: 5747/5747]

Please enter a sequence to check (’quit’ to end): accttaaatttgtacgtg
No match found in database for: accttaaatttgtacgtg.

Please enter a sequence to check (’quit’ to end): tcatgcacctgatgaacgtgcaaaaccacagtca
The EMBL entry in the database: AF213017 contains: tcatgcacctgatgaacgtgcaaaaccacagtca.
[Lengths: 6838/6838]

Please enter a sequence to check (’quit’ to end): aatgc
The EMBL entry in the database: AF213017 contains: aatgc.

Extending SQL 291

[Lengths: 6838/6838]

The EMBL entry in the database: J01730 contains: aatgc.
[Lengths: 5747/5747]

The EMBL entry in the database: M15049 contains: aatgc.
[Lengths: 2153/2153]

The EMBL entry in the database: M24940 contains: aatgc.
[Lengths: 2923/2923]

Please enter a sequence to check (’quit’ to end): quit

The user is asked to enter a sequence, which is then checked against the dnas
table. For each successful match found, the db match embl program displays the
accession number of the EMBL entries that do match. Alternatively, a ‘‘no match
found’’ message is printed. Note how the ‘‘aatttc’’ and ‘‘aatgc’’ sequences match
more than one EMBL entry in the table.

The db match embl program begins by using the appropriate modules, defines
constants for true and false, connects to the database and then assigns the
following SQL query to the $sql scalar:

select accession_number, sequence_data, sequence_length from dnas

A while loop (which is initially infinite) repeatedly asks the user to enter a
sequence to check. Note this line of code:

my $sequence_found = FALSE;

The $sequence found scalar is set to true whenever a match is made, and is used
later in the program to decide whether to display the ‘‘no match found’’ message.
Borrowing code directly from the match embl program, the db match embl pro-
gram reads a sequence to check from STDIN, assigns it to the $to check scalar,
converts it to lowercase and checks to see if the value entered by the user was
‘‘quit’’. If it was, the loop terminates (by invoking last), otherwise the program
continues.

The while loop contains another loop, an inner while loop, which fetches a
row of results from the database and assigns the values from the row to three
scalars: $ac, $sequence and $sequence length. The EMBL entry sequence data
is assigned to the $sequence scalar in this way, which has any space characters
within it removed by a substitution regular expression. The ‘‘sanitised’’ value
in $sequence is then bound against the $to check scalar and, if successfully
matched, the $sequence found scalar is set to true:

while (my ($ac, $sequence, $sequence_length) = $sth->fetchrow_array)
{

$sequence =~ s/\s*//g;

if ($sequence =~ /$to_check/)
{

$sequence_found = TRUE;

292 Databases and Perl

With a match found, two print statements output to STDOUT, confirming that
the match was successful and providing a pair of length values:

print "The EMBL entry in the database: ",
$ac,

" contains: $to_check.\n";
print "[Lengths: ",

length $sequence,
"/$sequence_length]\n\n";

}
}

The first length value is determined by invoking the in-built length subroutine
against the sanitised value of $sequence. The second length value is the value for
the length of the sequence retrieved from the database. This is a simple integrity
check: both values should be the same. If they differ, this may indicate a problem
with the data in the dnas table.

There is a temptation to add last to the end of the inner loop, resulting
in the do match embl program stopping after the first successful match within
the database table. Tempting maybe, but not advisable, as it defeats the whole
purpose of trying to successfully match with as many EMBL entries as possible.

The program ends when the rows of data from the table have been exhausted,
closing the connection with the database by invoking disconnect against the
database handle.

Where to from Here

The ability to program databases is important. Using DBI, it is possible to
produce custom programs that interact with a database system on behalf of
users, producing useful applications with relatively little effort. Indeed, the
combination of MySQL, Perl and DBI is a potent one.

The DBI and DBD::mysql modules provide many more facilities to those
described in this chapter. Take some time to work through the documentation
provided with both modules. The use of DBI is revisited in the Working with the
Web part of Bioinformatics, Biocomputing and Perl.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• If at all possible, avoid the use of database driver ‘‘enhancements’’.

• Be sure to adhere to any established naming conventions within a program-
ming community.

Exercises 293

• Avoid littering programs with username/password combinations.

• Use fetchrow hashref to guard against changes to the structure of a
database table.

Exercises

1. Install the latest version of the Net::MySQLmodule from CPAN, then rewrite
the db match embl program to use Net::MySQL as opposed to DBI.

2. Write a program that prompts a user to supply two values: a protein code
and a protein species value. Using these two values, the program is to use an
appropriately formed SQL query to return a list of citations associated with
the entered protein code/species combination. The program is to continue
prompting for protein code/species combinations until such time as the
user enters ‘‘quit’’. [Hint: review the SQL query used to answer Question 5
from the last chapter].

Part III

Working with the Web

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

14

The Sequence
Retrieval System

The EBI’s web-based sequence retrieval system.

14.1 An Example of What’s Possible

The Sequence Retrieval System (SRS) is often considered by Bioinformaticians
to be the ‘‘next level up’’ from a relational database1. In fact, it is a web-based
database integration system that allows for the querying of data contained in
a multitude of databases, all through a single-user interface. This makes the
individual databases appear as if they are really one big relational database,
organised with different subsections: one called SWISS-PROT, one called EMBL,
one called PDB, and so on. SRS makes it very easy to query the entire data
set, using common search terms that work across all the different databases,
regardless of what they are.

Everything contained within the SRS is ‘‘tied together’’ by the web-based
interface. Figure 14.1 on page 298 is the database selection page from the
EBI’s SRS web-site, which can be navigated to from the following Internet
address:

http://srs.ebi.co.uk

1
SRS is a trademark and the intellectual property of Lion Bioscience.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

298 The Sequence Retrieval System

Figure 14.1 EBI’s SRS database selection page.

14.2 Why SRS?

SRS is presented here for two reasons:

1. It is a useful and convenient service that every Bioinformatician should
know about.

2. It is an excellent example of what can be created when the World Wide Web,
databases and programming languages are combined.

The next two chapters cover the skills required to develop for the web. The
remainder of this chapter is given over to exploring SRS.

14.3 Using SRS

As may be expected, some SRS queries make sense only for certain databases.
For instance, trying to extract X-Ray Crystallographic resolutions is not possible
from the sequence-orientated SWISS-PROT database.

On the basis of the specified query, SRS intelligently presents only those fields
common to the selected databases (or datasets). Obviously, the more dissimilar
the selected data types, the fewer the fields. Figure 14.1 shows the SpTrEMBL
and PDB databases selected. Even when the extended query form is used (refer
to Figure 14.2 on page 299), only a few common fields exist in each of these
datasets, and these include ‘‘ID’’, ‘‘bibliographic details’’ and ‘‘date of
submission’’.

Using SRS 299

Figure 14.2 EBI’s SRS extended query page.

SRS indexes data stored in a variety of formats: flat data files, relational
databases (using either Oracle or MySQL) and/or XML. Special construction tools
allow researchers to add support to SRS for their unique data format, although a
better strategy may be to reformat unique data to map onto an existing standard
as this may be easier than writing a new one from the beginning.

Maxim 14.1 Don’t create a new data format unless absolutely necessary.
Use an existing format whenever possible.

EMBL originally developed SRS, although it is now available from Lion Bioscience2.
Despite being the property of a commercial organisation, usage of SRS is provided
free to academic institutions.

Before showing what SRS can do, let’s look at what SRS cannot do: it cannot
transform information between radically different data types. However, SRS
has extensive control and user interface tools, as well as an internal scripting
language. This makes it straightforward to use the power of external packages
if need be, such as BLAST or EMBOSS. For example, the EBI SRS implementation
offers the facility to do a protein sequence similarity search on the basis of either
a sequence pasted into a text box, as shown on Figure 14.3 on page 300, or by
using the results of another SRS database search.

From an administrative standpoint, the automatic update features of SRS are
very useful when maintaining copies of all the databases (of which there are
currently 150 or more). In summary, SRS is a useful database integration tool

2
This explains the footprint logo at the top right of each page.

300 The Sequence Retrieval System

Figure 14.3 EBI’s SRS BlastP service form.

that presents a uniform search engine interface to a wide range of Bioinformatics
databases.

Once selections have been made to the SRS web-based interface, the user then
clicks on Submit or Query to start the search. The SRS system is then sent a
message that tells it what to do. The message is sent to a server-side program
that communicates automatically with one or more databases, extracting data
of interest. Results are calculated and processed into a HTML page that is then
presented back to the user. As all of this occurs within the user’s web browser, it
is both easy and convenient to use.

Where to from Here

In the next chapter, the automatic creation of web pages is described. When
web pages are linked to server-side programs, they become that program’s user
interface. The next two chapters describe the techniques used in creating this
linkage, with Perl providing the programming technology that ties it all together3.

The Maxims Repeated

Here’s the maxim introduced in this chapter.

3
This helps explain why Perl is often referred to as ‘‘the duct-tape of the Internet’’. This

description is attributed to Sun Microsystems, who are heavy users of Perl, despite their Marketing
Department’s preference for the home-grown Java programming language.

Exercises 301

• Don’t create a new data format unless absolutely necessary. Use an existing
format whenever possible.

Exercises

1. Skip forward to Chapter 18 and use SRS to access the entries for that
chapter’s DNA and protein sequences, using their associated accession
codes. What information is provided by the system? What happens when
the view of the data is changed?

2. Explore SRS’s ability to pass data to external programs. Arrange for the
results of an SRS search to be passed to the ClustalW program (see Chapter
17), performing a multiple sequence analysis of the MerP protein.

3. Experiment with the SRS ‘‘Start with Session’’ feature, which allows for the
saving of individual searches.

4. Download and read the ‘‘Linking to SRS’’ document, then experiment with
the wget program (introduced in Chapter 9) to download specific SWISS-
PROT or EMBL database entries from SRS.

15

Web Technologies
Using the Internet to publish data and applications.

15.1 The Web Development Infrastructure

The ability to publish data and applications on the Internet, in the form of custom
web pages, is now considered an essential skill in many disciplines, including
Biology. The development infrastructure of the World Wide Web (WWW) is well
established and well understood. There is a standard set of components:

The web server – A program that when loaded onto a computer system, provides
for the publication of data and applications (often referred to collectively
as content). Example web-server technologies include Apache, Jigsaw and
Microsoft’s IIS.

The web client – A program that can request content from a web server and
display the content (typically) within a graphical window, providing a mech-
anism whereby users can interact with the content. The common name
for the web client is web browser, and there are many browsers available,
including Mozilla, Netscape Navigator, Microsoft Internet Explorer, KDE
Konqueror, Opera and Lynx.

The transport protocol – The ‘‘language’’ that the web client and web server use
when communicating with each other. Think of this as the set of rules
and regulations to which the client and server must adhere. The transport

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

304 Web Technologies

protocol employed by the WWW is called the HyperText Transport Protocol
(HTTP). The transport protocol is the most abstract of the four components,
since the web client and web server shield users from having to interact
directly with it.

The content – The data and applications published by the web server. At its most
basic level, this is textual data formatted to conform to one of the HyperText
Mark-up Language standards (HTML)1. In addition to textual data, HTML
can be enhanced with embedded graphics (with PNG, GIF, BMP and JPEG
the most common graphic file formats). Data published in the form of
HTML is often referred to as HTML pages or web pages (and both are used
interchangeably in this chapter).

Much can be accomplished with these four infrastructural components, and when
the WWW was invented in 1991 by Tim Berners-Lee, this is all that was available.
Considerably more can be achieved today, as the standard infrastructure has
been enhanced with additional components, specifically:

Client-side programming – A technology used to program the web client, provid-
ing a way to enhance the user’s interactive experience. Common client-side
programming technologies include Java Applets, JavaScript and Macrome-
dia Flash.

Server-side programming – A technology used to program the web server, pro-
viding a mechanism to extend the services provided by the web server.
Common server-side programming technologies include Java Servlets, JSP,
Python, ASP, PHP and Perl (although in practice, just about any programming
technology can be used to support server-side programming).

Backend database technology – A place to store the data to be published, which
is accessed by the server-side programming technology. Although almost
any database system can be used to provide this backend, MySQL is very
popular on the Internet.

Technical Commentary: And it is not just MySQL that is popular. The acronym
LAMP is used to describe the favoured WWW development infrastructure of many
programmers. The letters that form the acronym are taken from the words Linux,
Apache, MySQL and Perl (although the ‘‘P’’ is also used to refer to Python and/or
PHP). O’Reilly & Associates provides an excellent LAMP web-site, available on-line at
http://www.onlamp.com.

These additional components turn the standard web development infrastruc-
ture into a dynamic and powerful application development environment that is
straightforward to learn, use and exploit. One of the reasons the WWW is so pop-
ular is the fact that creating content is so straightforward. Adding a programming

1
There are three versions of HTML in widespread use: 2, 3 and 4.

Creating Content for the WWW 305

language into the mix allows even more to be accomplished and, as this and the
next chapter demonstrate, programming the WWW is not difficult.

This chapter describes how the components introduced above are used to
publish data and applications on the WWW. The examples build upon, and draw
from, the material presented in earlier chapters.

15.2 Creating Content for the WWW

When it comes to producing content for the WWW, a number of techniques can
be employed to create HTML. These include the following:

Creating content manually – Any text editor can be used to create HTML, since
HTML is mostly text. Special tags within the text guide the web browser
when it comes to displaying the web page on screen. The tags are also
textual and any text editor can produce them.

Creating content visually – Special-purpose editors can create HTML pages visu-
ally, displaying the web page as it will appear in the web browser as it is
edited. Programs that work in this way include Netscape Composer, Microsoft
FrontPage and Macromedia Dreamweaver.

Creating content dynamically – Since HTML is text, it is also possible to create
HTML from a program. The need for this technique is illustrated later in
this chapter.

Each technique has advantages and disadvantages. Creating HTML manually
can be time-consuming and tedious, as the creator of the page has to write the
content as well as decide which tags to use and where. However, manually creating
HTML web pages provides the maximum amount of flexibility as the creator has
complete control over the process. It can also be advantageous to know what’s
going on behind the scenes, so learning HTML is highly recommended.

Maxim 15.1 Take the time to learn HTML.

Using a visual HTML editor can be very convenient, as there’s really no need to
know anything about HTML. The editor adds the required tags to the text that’s
entered by the user. Unfortunately, in your author’s experience, the HTML that’s
produced by visual editors adds considerably more tags than typically required,
resulting in the content within the page being obscured by those extra tags.
Additionally, HTML pages produced with a visual editor are typically larger than
a similar page produced manually2.

2
Although this is really a concern only when accessing the Internet over a slow data connection,

which is becoming less of an issue within the developed world but still an issue within developing
nations.

306 Web Technologies

Creating HTML pages dynamically from within a program has the obvious
disadvantage of requiring the web page creator to write a program to produce
even the simplest of pages, which is normally not very clever. However, HTML
pages produced in this way can sometimes be useful when combined with a web
server that allows for server-side programming of a backend database, but more
on this later.

The assumption in this chapter is that the reader is already familiar with the
WWW, and that creating web pages, either manually or with a visual editor, is a
skill that has already been acquired. If this is not the case, take some time to
work through some of the on-line tutorials available on the Internet. A useful
web-site in this regard is:

http://www.htmlprimer.com

Let’s take a look at the simplest of web pages:

<HTML>
<HEAD>

<TITLE>A Simple HTML Page</TITLE>
</HEAD>
<BODY>
This is as simple a web page as there is.
</BODY>
</HTML>

The header part of the HTML page contains a four word title, and the body
of the HTML page contains a single ten word sentence. This web page, called
simple.html, takes no more than a few minutes to produce, whether created
manually, visually or from a program. In fact, using a HERE document to produce
a HTML page is only marginally more effort than producing the same page
manually.

In fact, those readers who completed the Chapter 8 chapter exercises (at the
end of Part I) already know how to produce the above HTML web page with a Perl
program using a HERE document:

#! /usr/bin/perl -w

produce_simple - produces the "simple.html" web page using
a HERE document.

use strict;

print <<WEBPAGE;
<HTML>
<HEAD>

<TITLE>A Simple HTML Page</TITLE>
</HEAD>

Creating Content for the WWW 307

<BODY>
This is as simple a web page as there is.
</BODY>
</HTML>
WEBPAGE

Of course, with Perl, there’s always more than one way to do things, so here’s
another version of produce simple, written to use Perl’s standard CGI module:

#! /usr/bin/perl -w

produce_simpleCGI - produces the "simple.html" web page using
Perl’s standard CGI module.

use strict;

use CGI qw(:standard);

print start_html(’A Simple HTML Page’),
"This is as simple a web page as there is.",

end_html;

Among other things, the CGI module is designed to make the production of
HTML pages as convenient as possible. Written by Lincoln D. Stein, this module
is, more than likely, the most-used module of all of those that come with Perl
(after strict, that is). In fact, CGI can claim to account for Perl’s huge popularity
as a server-side programming technology on the WWW.

Technical Commentary: An interesting aside regarding the CGI module relates
to its creator: Lincoln D. Stein. Dr Stein is a researcher at Cold Springs Harbor
Laboratory, using technology such as Perl to develop sophisticated Bioinformatics
tools. Dr Stein is as well regarded for his contributions to the Perl programming
community as he is for his contributions to, and observations of, the field of
Bioinformatics. Among other things, Dr Stein has worked extensively on the AceDB
database.

The produce simpleCGI program uses the CGI module, importing a set of
subroutines by specifying the :standard tag. Some of these subroutines are
used within the program’s sole print statement:

print start_html(’A Simple HTML Page’),
"This is as simple a web page as there is.",

end_html;

The print statement contains invocation of two CGI subroutines, start html
and end html. When invoked, the start html subroutine produces the tags
that appear at the start of a web page. Any string supplied as a parameter to
start html is used as the web page’s title. The above invocation produces the
following HTML:

<html><head><title>A Simple HTML Page</title></head><body>

308 Web Technologies

The end html subroutine produces the following HTML, representing the tags
that conclude a web page:

</body></html>

As the invocations of both of these subroutines occur as part of a print
statement, they are displayed on STDOUT, together with the one-line message
(which is the actual content). When executed, the produce simpleCGI program
generates the following HTML3:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head><title>A Simple HTML Page</title>
</head><body>This is as simple a web page as there is.</body></html>

What’s all that extra stuff at the start? The first point to make is that it is optional.
The web page displays in any browser regardless. What these extra tags do is
tell the web browser exactly which version of HTML the web page conforms to.
The CGI module includes these tags for web browsers that can interpret the
information, allowing the browser to optimise its behaviour to the version of
HTML identified. Other web browsers simply ignore them.

15.2.1 The static creation of WWW content

The simple.html web page, as well as being simple, is also static. If the web
page is put on a web server, and served up to a web browser, it always appears
in exactly the same way every time it is accessed. It’s static, and remains as it is
until someone takes the time to change it. It rarely makes sense to create such a
web page with a program unless there is some other special requirement.

Maxim 15.2 Create static web pages either manually or visually.

15.2.2 The dynamic creation of WWW content

When the web page includes content that is not static, it’s referred to as a dynamic
web page. An example of a dynamic web page is one that includes the current
date and time. It is not possible to create a web page either manually or visu-
ally that includes dynamic content, and this is where server-side programming
technologies come into their own. Here’s a program, called whattimeisit, that
creates a HTML page that includes the current date and time:

3
Note that HTML tags can be in lower or uppercase.

Creating Content for the WWW 309

#! /usr/bin/perl -wT

whattimeisit - create a dynamic web page that includes the
current date/time.

use strict;

use CGI qw(:standard);

print start_html(’What Date and Time Is It?’),
"The current date/time is: ", scalar localtime,

end_html;

which, when executed, produces the following HTML:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head><title>What Date and Time Is It?</title></head>
<body>The current date/time is: Mon Aug 25 23:21:55 2003</body></html>

And there it is, surrounded by the <BODY> and </BODY> tags, the date and time
when the page was created. Execute the program sometime later, and the date
and time change (as expected):

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head><title>What Date and Time Is It?</title></head>
<body>The current date/time is: Tue Aug 26 08:04:23 2003</body></html>

This web page, if served up by a web server, changes with each serving, as it is
dynamic.

Note the use of the ‘‘T’’ command-line option at the start of whattimeisit.
This switches on Perl’s taint mode, which enables a set of special security checks
on the behaviour of the program. Enabling these checks is particularly important
when it comes to server-side programs. Be advised that although the program is
created by a trusted source (namely, you), when executed as a result of a request
from a user of a web browser on the WWW, the user may or may not be a trusted
source: it could literally be anybody.

If a server-side program does something that could potentially be exploited
and, as a consequence, pose a security threat, Perl refuses to execute the program
when taint mode is enabled. Here’s a really important maxim.

Maxim 15.3 Always enable ‘‘taint mode’’ for server-side programs.

310 Web Technologies

15.3 Preparing Apache for Perl

Arranging for a web server to serve up any web page, whether static or dynamic,
involves configuring the server to display the static web page or execute the
server-side program as a result of a request from a web browser. Before doing
this, let’s ensure a web server is installed and ready to start servicing requests.
As with MySQL earlier in this book, the Linux chkconfig command is used to
add the Apache web server program and get it ready:

chkconfig --add httpd
chkconfig httpd on

On Linux systems, httpd is the name commonly given to the web-serving pro-
gram.

The Apache web server is by far the most widespread web-server imple-
mentation, and its configuration details are maintained within a disk-file called
httpd.conf. It is important to check (and possibly adjust) some of the set-
tings in this disk-file. This can be accomplished only by the superuser (root on
Linux). After becoming the superuser (or logging in as root), find the httpd.conf
disk-file using the locate utility:

locate httpd.conf

On Paul’s computer (running RedHat Linux), the above locate command pro-
duces the following output:

/etc/httpd/conf/httpd.conf
/usr/share/apacheconf/httpd.conf.xsl

The first line of output reveals that the httpd.conf disk-file is located within the
/etc/httpd/conf/ directory4. Using any text editor, edit this disk-file. In Section
2 of the httpd.conf disk-file, adjust the server administrator’s e-mail address
to something other than the default, which may look something like this:

ServerAdmin root@localhost

Whenever a problem occurs with a request on the web server, the web browser
is told about the problem and given an e-mail address to which to send a
‘‘complaint message’’ (when appropriate). The e-mail address to use is set by the
ServerAdmin directive.

Later in the httpd.conf disk-file, the DocumentRoot directive indicates the
default directory location for static web pages:

DocumentRoot "/var/www/html"

4
The second line of output refers to some other disk-file.

Preparing Apache for Perl 311

Any HTML page placed in the directory associated with the DocumentRoot
directive (which is /var/www/html in this case) can be requested by a web
browser. There’s no need for the browser to specify the actual directory location
of the HTML page, as its name is sufficient. For example, assume a web server
called www.example.com and a disk-file called index.html. The disk-file is copied
into the /var/www/html directory, so its name is:

/var/www/html/index.html

whereas it is accessed from any web browser by entering the following into the
web browser’s location/address bar:

http://www.example.com/index.html

That is, the DocumentRoot directive specifies the top level from where the web
server starts looking for content. Unless there’s a really good reason to change
the value associated with the DocumentRoot directive, leave it as it is.

Another important Apache directive is ScriptAlias. This directive has two
objectives: it identifies the directory location that contains any server-side
programs and it provides a shorthand notation for referring to the location.
Here’s the default ScriptAlias line from the httpd.conf configuration disk-
file:

ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"

As with DocumentRoot, a server-side program copied into the /var/www/cgi-
bin/ directory is referred to by a shorthand notation. If the disk-file is:

/var/www/cgi-bin/whattimeisit

the server-side program (again on the www.example.com computer) is accessed
from a web browser by entering the following into the browser’s location/address
bar:

http://www.example.com/cgi-bin/whattimeisit

One of the conditions placed on the server-side program is that it must be set to
executable. More on this later.

Technical Commentary: The name of the directory within which server-side pro-
grams are located is cgi-bin. The ‘‘bin’’ part is short for binary, which is another
name for a disk-file that is set to executable, and the word is a throwback to the
early days of computing. The ‘‘cgi’’ part is short for Common Gateway Interface,
which is an Internet standard that describes a technique for executing server-side
programs on web servers. As will be shown later, this also explains Lincoln D. Stein’s
choice of the name CGI for his module.

312 Web Technologies

To test that the web server is working properly, either reboot the computer (which
arranges to start the web server as the computer boots) or start the web-serving
service using this command-line (while operating as superuser):

/etc/init.d/httpd start

With the web server up-and-running, type the following Internet address into any
browser’s location/address bar (assuming the browser is executing on the same
computer as the web server):

http://localhost/

The name localhost is another name for the current computer being used5.
After a short delay, the Apache ‘‘welcoming’’ web page should appear within
the browser’s window. The web page contains a message similar to this, which
confirms that the web server is ready for action:

This page is used to test the proper operation of the Apache Web
server after it has been installed. If you can read this page, it
means that the Apache Web server installed at this site is working
properly.

Maxim 15.4 Test your web-site on localhost
prior to deployment on the Internet.

15.3.1 Testing the execution of server-side programs

Let’s test that the web server is capable of processing server-side programs by
copying the whattimeisit program into the appropriate directory location, then
setting the disk-file to executable. Use these commands:

su
cp whattimeisit /var/www/cgi-bin
chmod +x /var/www/cgi-bin/whattimeisit
<Ctrl-D>

Note the requirement to issue the cp and chmod commands as root, as it is not
possible to write to the /var/www/cgi-bin directory as a regular user. Now,
using any web browser on the same computer, surf to this web page by typing
the following Internet address into your browser’s location/address bar:

http://localhost/cgi-bin/whattimeisit

5
That is, your computer, the one that you just started running the web server on. The

localhost mechanism allows web-sites to be tested locally on a computer, before unleashing
them onto the Internet.

Preparing Apache for Perl 313

Figure 15.1 The ‘‘Server Error’’ web page.

This requests the execution of the whattimeisit program as stored in the aliased
cgi-bin directory on the web server operating on a computer called localhost.
Unfortunately, the web server responds with the web page as shown on Figure
15.1 on page 313.

Whoops! Something has gone wrong and the web server is not happy with the
request. In fact, the web server attempted to execute the server-side program but
ran into trouble, gave up and produced this error message. What is wrong is that
having a program produce HTML dynamically from the web server is only part
of the solution. A small amount of additional information is required to allow
the web server to process the output produced by the program. Specifically, the
program needs to tell the web server the type of information it is creating. To
fix this problem, add the following line of code to the start of the whattimeisit
program (just before the other print statement):

print header;

The header subroutine is provided by the CGI module and (by default) tells
the web server that the output produced by the program is textual and that
it is formatted as HTML. When the web page is accessed again, the web server
responds with the message as shown in Figure 15.2 on page 314. Click on the
browser’s ‘‘reload’’ button, and the web page should reload with an advanced
date/time value.

Note that the whattimeisit program sends any output to STDOUT. When
executed as a server-side program by the web browser, this output is captured
by the web server and redirected to the web-browser screen.

314 Web Technologies

Figure 15.2 The ‘‘What Date and Time Is it?’’ web page.

Executing the server-side program via the web browser’s location/address bar
is good for testing the functionality of the generated web page. To execute the
server-side program from another web page include its Internet address within
a HTML <A> anchor tag. Here is such a tag, which is part of a HTML page called
time.html:

<HTML>
<HEAD>

<TITLE>Get your data and time here!</TITLE>
</HEAD>
<BODY>
Click here to
get the date and time.
</BODY>
</HTML>

The href part of the anchor tag specifies the hypertext reference that identifies
the whattimeisit program within the cgi-bin directory on the web server.
Now, when the user of a web browser requests the time.html web page from the
server and clicks on the word ‘‘here’’, the web server executes the whattimeisit
program, sending the HTML page produced by the program to the web browser
screen.

This mode of executing a server-side program employs the Common Gateway
Interface, and it is unlikely there’s a web server on the planet that does not support
this standard server-side programming mechanism. Programs that operate using
this mechanism are referred to as CGI programs, CGI scripts or simply CGIs.

Sending Data to a Web Server 315

15.4 Sending Data to a Web Server

Being able to dynamically create a web page as a result of executing a server-
side program is very useful and with the help of Perl and the CGI module, is
not difficult. Of course, the server-side program can produce any amount of
HTML, no matter how simple or complicated. Things become interesting when
the server-side program accepts input from the user of the web browser.

Recall the match embl program from page 144. By providing a short DNA
sequence when prompted, match embl looks for a match within a specific EMBL
entry. Although match emblworks well, it suffers from the drawback that the user
of the program has to be physically using the computer that runs match embl.
The advantage of using the WWW is that the requirement to be physically close
to the content being accessed is nullified. If the match embl program can be
‘‘moved’’ to the WWW, it can be accessed by any user from anywhere, which is
quite an advantage.

Moving the match embl program to the WWW is straightforward and follows a
simple recipe:

• Switch on taint mode on the Perl command-line.

• Use the CGI module, importing (at least) the :standard set of subroutines.

• Ensure the first print statement within the program is ‘‘print header;’’.

• Envelope any output sent to STDOUT with calls to the start html and
end html subroutines.

• Create a static web page to invoke the server-side program, providing input
as necessary.

Except for the last step, there’s not much new to learn here. Before dealing with
the last step, let’s look at the source code to the match emblCGI program:

#! /usr/bin/perl -wT

The ’match_emblCGI’ program - check a sequence against the EMBL
database entry stored in the
embl.data.out data-file on the
web server.

use strict;

use CGI qw/:standard/;

print header;

open EMBLENTRY, "embl.data.out"
or die "No data-file: have you executed prepare_embl?\n";

316 Web Technologies

my $sequence = <EMBLENTRY>;

close EMBLENTRY;

print start_html("The results of your search are in!");

print "Length of sequence is: ", length $sequence,
" characters.<p>";

print h3("Here is the result of your search:");

my $to_check = param("shortsequence");

$to_check = lc $to_check;

if ($sequence =~ /$to_check/)
{

print "Found. The EMBL data extract contains: $to_check.";
}
else
{

print "Sorry. No match found for: $to_check.";
}

print p, hr,p;

print "Press Back on your browser to try another search.";

print end_html;

The match emblCGI program is very similar to the match embl program, except
for all the extra HTML-specific program code. Rather than produce straight text, a
HTML web page is produced instead. Note the use of the h3 subroutine (from CGI)
that adds a level three HTML header to the web page. The p and hr subroutines
(also from CGI) insert a paragraph break and horizontal rule, respectively. The
critical line of code is this one:

my $to_check = param("shortsequence");

which uses the CGI-supplied param subroutine to assign the web browser-
supplied value associated with shortsequence to the $to check scalar. But
just what is shortsequence and when is its value set?

The shortsequence parameter is set within a web page, specifically within
a web page that contains a form. It is a HTML named parameter. Here’s a
HTML page called mersearch.html that associates shortsequence with a HTML
textarea component within a form:

<HTML>
<HEAD>

<TITLE>Search the Sequence for a Match</TITLE>
</HEAD>
<BODY>

Sending Data to a Web Server 317

Figure 15.3 The ‘‘Search the Sequence for a Match’’ web page.

Please enter a sequence to match against:<p>
<FORM ACTION="/cgi-bin/match_emblCGI">

<p>
<textarea name="shortsequence" rows="4" cols="60"></textarea>

</p>
<p>

<input type="reset" value="Clear">
<input type="submit" value="Try it!">

</p>
</FORM>
</BODY>
</HTML>

When loaded into a web browser, the mersearch.html web page should look like
Figure 15.3 on page 317.

The large textarea at the top of the web page is used to enter the sequence to
check6.

The value entered by this page’s user is associated with the shortsequence
named parameter. When the user submits the web page (by clicking on the Try it!
button), the web browser sends the named parameters and their associated values
to the web server. The web server arranges to send the parameter/value pairings
to the server-side program identified by the ACTION attribute of the form. In this
example, the ACTION attribute identifies the match emblCGI server-side program.

6
Or to cut ‘n’ paste that little bit of sequence that you’ve just received via e-mail.

318 Web Technologies

To try out this web page and server-side program combination, use the follow-
ing commands (as root) to copy the disk-files to the appropriate locations on the
web server, noting the requirement to copy the embl.data.out disk-file to the
cgi-bin directory so that the match emblCGI program can find it:

su
cp mersearch.html /var/www/html
cp match_emblCGI /var/www/cgi-bin
chmod +x /var/www/cgi-bin/match_embl
cp embl.data.out /var/www/cgi-bin
<Ctrl-D>

Load the mersearch.html web page into a browser and enter a short sequence
into the textarea, then click on the Try it! button. If a match is found, the web
browser displays a HTML page similar to Figure 15.4 on page 318. If no match is
found, the web browser displays a HTML page similar to Figure 15.5 on page 319.
Either way, it’s the match emblCGI program on the web server that decides which
of the two HTML pages to return to the web browser and it decides this on the
basis of whether the value associated with the shortsequence named parameter
matches the EMBL sequence contained in the embl.data.out disk-file.

Note the message at the bottom of the returned web page: the user is advised
to click on the Back button to try another search. This is a reasonable strategy
to follow, but quickly becomes tiresome (for the user) when a large number
of sequences have to be checked against the EMBL entry. It would be bet-
ter if the results returned from the web server contained the form from the

Figure 15.4 The ‘‘Results of your search are in!’’ web page.

Sending Data to a Web Server 319

Figure 15.5 The ‘‘Sorry! Not Found’’ web page.

mersearch.html web page, to allow the user to quickly check another sequence
without having to click on Back.

The match emblCGIbetter server-side program and its associated web-page
combination implement this strategy. The only change to the web page (over
mersearch.html) is to arrange to invoke the ‘‘better’’ CGI script from the form’s
ACTION attribute:

<FORM ACTION="/cgi-bin/match_emblCGIbetter">

The match emblCGIbetter program is nearly identical to the match emblCGI
program, except that the end of page message, thus:

print "Press Back on your browser to try another search.";

is replaced with the following HERE document:

print <<MERFORM;

Please enter another sequence to match against:<p>
<FORM ACTION="/cgi-bin/match_emblCGIbetter">

<p>
<textarea name="shortsequence" rows="4" cols="60"></textarea>

</p>
<p>

<input type="reset" value="Clear">
<input type="submit" value="Try it!">

</p>
</FORM>
MERFORM

320 Web Technologies

Figure 15.6 The better version of the ‘‘Results of your search are in!’’ web page.

When the mersearchbetter.html web page is loaded into a web browser and
provided with a sequence to check, clicking on the Try it! button results in the
web server responding with a web page similar to that in Figure 15.6 on page 320.

Note the inclusion of the form at the bottom of the results HTML page. Of
note, too, is the decision within the match emblCGIbetter server-side program
to produce the form using a HERE document. It is a straightforward matter to
create a form using the subroutines provided by CGI but as the static web page
including the form already exists, it makes sense to include the form verbatim as
a HERE document. Remember: with Perl, there’s more than one way to do it.

15.5 Web Databases

The ability to execute a server-side program as a result of a user of a web
browser interacting with a HTML form opens up all types of possibilities. When a
database system is added to the mix, the development environment is augmented
with a powerful backend data repository. To demonstrate what’s possible (while
keeping everything as straightforward as possible), let’s revisit the db match embl
program from page 289.

The db match embl program communicates with the MER database and at-
tempts to match a user-supplied sequence against all the EMBL entries in the dnas
table. As with the match embl program, the db match embl program requires its
user to be using the same computer as that which runs the program. By moving the
db match embl program to a web server and providing a web browser interface
to it, the program can be accessed from anywhere on the Internet, by any user.

Web Databases 321

Here’s a web page called mersearchmulti.html that provides the interface to
the db match embl program:

<HTML>
<HEAD>

<TITLE>Search the "dnas" Table for a Match</TITLE>
</HEAD>
<BODY>

Please enter a sequence to match against the database:<p>
<FORM ACTION="/cgi-bin/db_match_emblCGI">

<p>
<textarea name="shortsequence" rows="4" cols="60"></textarea>

</p>
<p>

Include a border around the results:
<input type="checkbox" name="printborder" value="on"

checked="checked" />
</p>
<p>

<input type="reset" value="Clear">
<input type="submit" value="Try it!">

</p>
</FORM>
</BODY>
</HTML>

This HTML page is very similar to the mersearch.html web page. The page
title is different, and there’s a checkbox under the textarea that provides the
user of the page with a choice as to whether the results produced by clicking
on the Try it! button are surrounded by a border. Note that the checkbox
is named printborder. The ACTION attribute within the FORM tag identifies
db match emblCGI as the server-side program to execute when the user clicks on
the Try it! button. Figure 15.7 on page 322 shows how the web page looks when
loaded into a browser.

Note that as the checkbox is initially selected, any results produced will include
the border. The results are contained within a HTML table, and Figure 15.8 on
page 322 shows the results produced by entering ‘‘aatttc’’ into the textarea,
leaving the checkbox selected and clicking on the Try it! button.

As can be seen in Figure 15.8, two of the four sequences in the dnas table
contained a match. As with the previous server-side programs, the form is
appended to the end of the results to allow the user to quickly execute another
search (without having to press the browser’s Back button). Note that the textarea
is initialised with the previous search value, which is done as a convenience
to the user. Use these commands to prepare the web server to execute the
db match emblCGI server-side program:

su
cp mersearchmulti.html /var/www/html
cp db_match_emblCGI /var/www/cgi-bin

322 Web Technologies

Figure 15.7 Searching all the entries in the dnas table.

Figure 15.8 The ‘‘results’’ of the multiple search on the dnas table.

Web Databases 323

chmod +x /var/www/cgi-bin/db_match_emblCGI
cp /home/barryp/DbUtilsMER.pm /var/www/cgi-bin
<Ctrl-D>

Note the requirement to copy the DbUtilsMER.pm database module to the cgi-
bin directory. Recall that this module lives in the bbp directory. When the
db match embl program executes, it searches this directory location for the
module and uses it. However, when the db match emblCGI server-side program
executes, it runs under the user-id of the web server and, as such, cannot
access the bbp directory and consequently cannot find the module. By copying
the module to the cgi-bin directory, a server-side program can access its
functionality without difficulty. Let’s take a look at the entire source code to the
db match emblCGI program, before describing what it does in detail:

#! /usr/bin/perl -wT

The ’db_match_emblCGI’ program - check a sequence against each EMBL
database entry stored in the dnas
table within the MER database. This
is the CGI version of this program.

use strict;

use CGI qw/ :standard *table /;
use DBI;
use lib ".";
use DbUtilsMER;

print header, start_html("The results of your search are in!");

my $dbh = MERconnectDB
or die "Connect failed: ", $DBI::errstr, ".\n";

my $sql = qq/ select accession_number, sequence_data,
sequence_length from dnas /;

my $sth = $dbh->prepare($sql);

my $to_check = param("shortsequence");
my $print_border = param("printborder");

$to_check = lc $to_check;

$sth->execute;

print h3("You searched the \"dnas\" table for this sequence: $to_check.");

if ($print_border)
{

print start_table({ -border => "1" });
}
else
{

print start_table({ -border => "0" });

324 Web Technologies

}

print Tr({ -align => "CENTER" }), th("Protein Accession Code"),
th("Was it found?"), th("Length Values");

while (my ($ac, $sequence, $sequence_length) = $sth->fetchrow_array)
{

$sequence =~ s/\s*//g;

print Tr({ -align => "CENTER" }), td("$ac");

if ($sequence =~ /$to_check/)
{

print td("yes");
}
else
{

print td("no");
}

my $calced_length = length $sequence;

print td("$calced_length/$sequence_length");
}

print end_table;

print p, hr,p;

print <<MERFORM;

Please enter another sequence to match against:<p>
<FORM ACTION="/cgi-bin/db_match_emblCGI">

<p>
<textarea name="shortsequence" rows="4" cols="60">$to_check</textarea>

</p>
<p>

Include a border around the results:
<input type="checkbox" name="printborder" value="on"

checked="checked" />
</p>
<p>

<input type="reset" value="Clear">
<input type="submit" value="Try it!">

</p>
</FORM>
MERFORM

print end_html;

$sth->finish;

$dbh->disconnect;

Obviously, the majority of db match emblCGI resembles that of db match embl.
Consequently, this description concentrates on the differences between the two

Web Databases 325

programs. The first important point to make is that the magic first line turns
taint mode on (always a good idea when it comes to server-side programs). The
CGI module is used, importing the :standard set of subroutines as well as those
subroutines that allow for the automatic generation of HTML tables. The DBI
module is also used, together with the DbUtilsMER module developed earlier in
Bioinformatics, Biocomputing and Perl. Note the use lib statement that specifies
that the current working directory (‘‘.’’) is to be searched for any custom modules.
This allows the db match emblCGI server-side program to find the DbUtilsMER
module in the cgi-bin directory:

use CGI qw/ :standard *table /;
use DBI;
use lib ".";
use DbUtilsMER;

After starting to create the HTML page and making a connection to the database,
the appropriate SQL query is assigned to the $sql scalar:

my $sql = qq/ select accession_number, sequence_data,
sequence_length from dnas /;

A straightforward SELECT query extracts three named columns of data from the
dnas table. After preparing the statement, the program determines the values
associated with the textarea and the checkbox interface elements from the HTML
form within the mersearchmulti.html web page. The param subroutine from
the CGI module handles this for us:

my $to_check = param("shortsequence");
my $print_border = param("printborder");

The value associated with the printborder checkbox is then used to determine
whether the table includes a border around each table entry. If printborder is
checked, the table is created by invoking the start table subroutine (included
with CGI) with a referenced parameter that sets the -border attribute to one. If
the checkbox is not checked, the -border attribute is set to zero:

if ($print_border)
{

print start_table({ -border => "1" });
}
else
{

print start_table({ -border => "0" });
}

326 Web Technologies

With the table started, the next thing to do is create a table row for the column
headings. Again, the CGI module provides subroutines to help with this: Tr
creates a new table row, and th creates a new table heading. Note the table row
has its alignment attribute set to centred:

print Tr({ -align => "CENTER" }), th("Protein Accession Code"),
th("Was it found?"), th("Length Values");

A while loop iterates over each row of the results, assigning the three col-
umn values returned from the database system to the $ac, $sequence and
$sequence length scalars. Within the loop’s body, these scalar values are used
to determine the content of each of the rows of the HTML table. The $sequence
scalar has any space character removed from its value. The table row is then
started, with the protein accession number (contained in $ac) positioned within
the first cell of the table (thanks to the td subroutine from CGI). If the value
contained in $to check is found within the $sequence scalar, the next table
cell is assigned the value ‘‘yes’’, otherwise it is assigned ‘‘no’’. After calculat-
ing the length of the $sequence scalar, the value is used together with the
$sequence length scalar to populate the final table cell of the table row:

$sequence =~ s/\s*//g;

print Tr({ -align => "CENTER" }), td("$ac");

if ($sequence =~ /$to_check/)
{

print td("yes");
}
else
{

print td("no");
}

my $calced_length = length $sequence;

print td("$calced_length/$sequence_length");

When the loop ends, that is, when there are no more rows of data to process
from the database system, the db match emblCGI program ends the table and
then displays the HTML form from the mersearchmulti.html web page. Note
the use of the $to check scalar within the HERE document to set the value of the
textarea within the form7. The program ends by concluding the HTML page, then
finishing the SQL query and terminating the database connection.

7
We did tell you that any variable can be used within a HERE document, didn’t we? No?

Well – shame on us – we should have. It’s a very useful feature of HERE documents.

Exercises 327

Where to from Here

As stated at the start of this chapter, it is not difficult to produce a static HTML
page, either manually or with a visual HTML editor. The ability to install server-
side programs onto a web server, thereby extending its services in any number
of ways, is also extremely useful, albeit more difficult.

The examples in this chapter can be extended in any number of ways. Start
with the exercises at the end of this chapter and take the time to work through
the extensive documentation included with the CGI module.

The next chapter extends the last example program, db match emblCGI, by
automating the user’s interaction with the HTML form.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• Take the time to learn HTML.

• Create static web pages either manually or visually.

• Always enable ‘‘taint mode’’ for server-side programs.

• Test your web-site on localhost prior to deployment on the Internet.

Exercises

1. Take any program that you have written and move it to the web. What
advantages does this new version of your program have over the previous
one?

2. Rewrite the db match emblCGI program to use the object-oriented style of
programming supported by the CGI module. [Hint: see the CGI documenta-
tion for all the details.]

16

Web Automation
Using Perl to automate web surfing.

16.1 Why Automate Surfing?

Good question, especially as surfing the web for most is so much fun and already
very convenient. Recall the db match emblCGI program from the end of the
last chapter. When combined with the mersearchmulti.html web page, this
program allows the user of a web browser to quickly check if a short sequence
of DNA matches any of the EMBL entries in the dnas table within the MER
database. The user can be anywhere on the Internet, as all that is needed is
access to a web browser and the name of the web page to type into the browser’s
location/address bar.

Now, imagine that a user has 100 sequences to check. Given an average of
45 seconds1 to enter the sequence into the textarea, click on the Try it! button
and review the results (noting those of interest), checking the sequences takes a
whopping 75 minutes! Yikes! Surely this user’s precious time can be better spent?
Of course it can, but work is work and the sequences have to be checked. Let’s
turn to Perl for help and take the grind out of this type of activity. Say ‘‘hello’’ to
the WWW::Mechanize module.

1
45 seconds? Surely we are joking? Well, consider that the HTML form has to load into a

graphical browser, the sequence has to be typed into the textarea and the Try it! button pressed.
Once the results appear, any matches need to be noted (or, perhaps, printed). We think this will
take at least 45 seconds.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

330 Web Automation

16.2 Automated Surfing with Perl

Written by Andy Lester, the WWW::Mechanize module is a wonderful example
of Perl at its most potent. In brief, the WWW::Mechanize module allows the Perl
programmer to automate interactions with any web-site. It draws a lot of its
power and functionality from the libwww-perl library that is available on CPAN
and written by Gisle Aas (and often referred to as LWP). The libwww-perl library
provides a collection of web-programming modules to the Perl programmer.
The WWW::Mechanize module leverages the facilities of the library to provide a
mechanism to turn Perl into an automated web browser.

Both the libwww-perl library and the WWW::Mechanize module install into
Perl from CPAN, following the standard install procedure described earlier.

It is not difficult to solve the problem of the fictitious user sitting in front of
a web browser. Rather than have this user type 100 sequences into a form on a
web page, let’s put the sequences into a disk-file, one line per sequence. By way
of example, the sequences.txt disk-file contains just 15 sequences and looks
like this:

attccgattagggcgta
aattc
aatgggc
aaattt
acgatccgcaagtagcaacc
gggcccaaa
atcgatcg
tcatgcacctgatgaacgtgcaaaaccacag
agtcgttaaatgttgtaaa
tggtcccgctact
agtactattcccta
cagcaagaaaa
aaattcccgagc
agtagcaacc
ccaaat

The sequences in this disk-file are processed one line at a time by a Perl program.
Each time the sequence is determined, it is placed by Perl (with some help from
the WWW::Mechanize module) into the textarea field within the form on the
mersearchmulti.html web page. Once placed there, the Try it! button is clicked,
the request goes off to the web server where it is processed and any results are
returned to the Perl program. These are scanned by the Perl program and any
matched results are extracted.

Sounds complicated, doesn’t it? Well, here’s a 26-line program, called
automatch, that takes any number of sequences within a named disk-file and
attempts to match each of them against the EMBL entries stored in the dnas table
within the MER database, using the mersearchmulti.html web-page interface:

Automated Surfing with Perl 331

#! /usr/bin/perl -w

The ’automatch’ program - check a collection of sequences against
the ’mersearchmulti.html’ web page.

use strict;

use constant URL => "http://pblinux.itcarlow.ie/mersearchmulti.html";

use WWW::Mechanize;

my $browser = WWW::Mechanize->new;

while (my $seq = <>)
{

chomp($seq);

print "Now processing: ’$seq’.\n";

$browser->get(URL);
$browser->form(1);
$browser->field("shortsequence", $seq);
$browser->submit;

if ($browser->success)
{

my $content = $browser->content;

while ($content =~
m[<tr align="CENTER" /><td>(\w+?)</td><td>yes</td>]g)

{
print "\tAccession code: $1 matched ’$seq’.\n";

}
}
else
{

print "Something went wrong: HTTP status code: ",
$browser->status, "\n";

}
}

Let’s go through the automatch program in detail. After the standard first
line and the switching on of strictness, a constant called URL is defined. This
constant value is a web address, specifying the mersearchmulti.html web page
on the pblinux.itcarlow.ie web server2. The WWW::Mechanize module is
then used.

A scalar value called $browser is assigned a value as a result of calling the
new subroutine associated with the WWW::Mechanize module. In programming
terms, this creates a WWW::Mechanize object and assigns it to $browser. Do not

2
Obviously, this constant value needs to change on the basis of the web server on which the

web page is installed.

332 Web Automation

worry about the terminology: when the word object is used, think thingy. So, this
statement creates a WWW::Mechanize thingy and assigns it to $browser:

my $browser = WWW::Mechanize->new;

A while loop reads one line at a time from STDIN and assigns it to the $seq
scalar. Within the loop body, the value within $seq is chomped, and a message is
displayed on screen to provide some feedback to the user. The $browser object
is used in the next four statements:

$browser->get(URL);
$browser->form(1);
$browser->field("shortsequence", $seq);
$browser->submit;

The nice thing about objects is that they have functionality associated with them
in the form of subroutines that can be invoked against the object. The get
subroutine (which is part of the WWW::Mechanize module) takes a web address
and retrieves the web page returned from the web server. The web page returned
is associated with the $browser object, which highlights another nice thing about
objects: they can have data associated with them.

Technical Commentary: Objects are useful, and clever programmers use them to
encapsulate a thingy’s data and behaviour (in the form of subroutines). It is beyond
the scope of this book to cover the object-creating techniques available to Perl
programmers. However, it is not necessary to know how to create objects in order
to be able to exploit and use them, as witnessed by the automatch program.

With the returned web page contained in the $browser object, the form sub-
routine selects the first form contained within the returned web page. Unlike
almost everything else in Perl, the form subroutine starts counting from one,
not zero. It is possible to have more than one form on a HTML page, but the
mersearchmulti.html web page has only one, so automatch selects it. The
field subroutine provides a mechanism to set a specific field on the form to
a value. The invocation within automatch sets the value of the shortsequence
textarea to the value contained within the $seq scalar. With this done, the submit
subroutine clicks the forms main button, which is the Try it! button from the
mersearchmulti.html web page.

At this point, the automatch program sends a request to the web server.
This results in the CGI on the web server executing, using the $seq value as a
parameter. The CGI executes and produces the results page. This is then returned
to the automatch program and is assigned, by the WWW::Mechanize module, to
the $browser object. An if statement checks to see if the request was successful
by calling the success subroutine associated with the $browser object. If it is
not, a message is displayed on STDOUT. Note that the message contains a status
code from the $browser object:

Automated Surfing with Perl 333

print "Something went wrong: HTTP status code: ",
$browser->status, "\n";

If the request is successful, the results returned are assigned to a scalar called
$content:

my $content = $browser->content;

Note that the $content scalar has as its value the HTML results page returned
from the web server. A rather scary-looking regular expression is used to look for
the word ‘‘yes’’ within the HTML table included within the results. Specifically,
the word ‘‘yes’’ has to appear within a table cell (between the <td> and </td>
tags). In the table cell immediately before the one that contains ‘‘yes’’, there is the
protein accession code associated with the EMBL entry, again surrounded by <td>
and </td> tags. Ahead of this is the <tr> tag, which specifies the characteristics
of table row. The following regular expression is used to extract the protein
accession number from the matched results returned from the web server:

<tr align="CENTER" /><td>(\w+?)</td><td>yes</td>

Note the use of the grouping parentheses around the \w+? part. This is what
allows Perl to extract the protein accession number and remember it in the $1
scalar. Note, too, the use of the non-greedy operator, the ? character. This ensures
that the protein accession code and nothing else is extracted3. When integrated
into the automatch program, the above regular expression is delimited by the
[and] characters. This avoids the need to escape all the forward-leaning slash
characters. Assuming a match, a print statement produces a message indicating
success:

while ($content =~
m[<tr align="CENTER" /><td>(\w+?)</td><td>yes</td>]g)

{
print "\tAccession code: $1 matched ’$seq’.\n";

}

The regular expression is contained within the condition part of a while loop,
and is qualified by the use of the g quantifier, which ensures that the regular
expression is applied globally. This has the effect of continuing to find matches
while there are matches to be found within the $content scalar. So, a message is
produced for each successful match contained in the HTML results.

The automatch program can be made executable and run against the sequences
in the sequences.txt disk-file with these commands:

chmod +x automatch
./automatch sequences.txt

3
Try removing the ? from the regular expression and see what happens.

334 Web Automation

which produces the following output:

Now processing: ’attccgattagggcgta’.
Now processing: ’aattc’.

Accession code: AF213017 matched ’aattc’.
Accession code: J01730 matched ’aattc’.
Accession code: M24940 matched ’aattc’.

Now processing: ’aatgggc’.
Now processing: ’aaattt’.

Accession code: AF213017 matched ’aaattt’.
Accession code: J01730 matched ’aaattt’.
Accession code: M24940 matched ’aaattt’.

Now processing: ’acgatccgcaagtagcaacc’.
Accession code: M15049 matched ’acgatccgcaagtagcaacc’.

Now processing: ’gggcccaaa’.
Now processing: ’atcgatcg’.
Now processing: ’tcatgcacctgatgaacgtgcaaaaccacag’.

Accession code: AF213017 matched ’tcatgcacctgatgaacgtgcaaaaccacag’.
Now processing: ’agtcgttaaatgttgtaaa’.
Now processing: ’tggtcccgctact’.

Accession code: M15049 matched ’tggtcccgctact’.
Now processing: ’agtactattcccta’.
Now processing: ’cagcaagaaaa’.

Accession code: AF213017 matched ’cagcaagaaaa’.
Now processing: ’aaattcccgagc’.
Now processing: ’agtagcaacc’.

Accession code: M15049 matched ’agtagcaacc’.
Now processing: ’ccaaat’.

Accession code: AF213017 matched ’ccaaat’.
Accession code: J01730 matched ’ccaaat’.
Accession code: M24940 matched ’ccaaat’.

This took less than 15 seconds on Paul’s computer to execute. Remember the
75 minutes from the start of this chapter? Well, by employing Perl and the
WWW::Mechanize module in the automatch program, each sequence check now
takes about 1 second. Now, how long would you rather spend completing this
task: 75 minutes or 100 seconds?4

Another question to ask is this: if it is straightforward to mechanise interaction
with the mersearchmulti.html web page, why not any other? Why not, indeed.
Typically, all that’s required is an understanding of HTML and an ability to view
a web page in source form, that is, as HTML. To do this, simply use the Page
Source option from the browser’s View menu to display any web page as HTML
(as opposed to graphically within a browser window). Figure 16.1 on page 335
shows the Mozilla browser’s page source window. Once viewed in this way, it is
a straightforward matter to read the displayed HTML and determine the names
of the interface elements in the form (such as shortsequence). Of course, if it
is possible to view the source to the mersearchmulti.html web page, then it is
possible to view the source of any web page that is viewed in a graphical browser,
regardless of the author.

4
For those readers having trouble answering this question, please complete the following

simple exercise: find the nearest brick wall and continue banging your head off of it!

Automated Surfing with Perl 335

Figure 16.1 Viewing the source of the mersearchmulti.html web page.

The strategy to follow when automating interaction with any web page follows
this simple recipe:

• Load the web page of interest into a graphical browser.

• View the HTML used to display the web page by selecting the Page Source
option from the browser’s View menu.

• Read the HTML and make a note of the names of the interface elements and
form buttons that are of interest.

• Write a Perl program that uses WWW::Mechanize to interact with the web
page (based on automatch, if need be).

• Use an appropriate regular expression to extract the ‘‘interesting bits’’ from
the results returned from the web server.

And, of course, find something productive to do with those saved 75 minutes!
As long as the web page interacted with remains unchanged, the automation
program continues to work and save time. Even if a web page does change, the
effort required to amend the automation program should be minimal.

Where to from Here

This chapter showed just how easy it is to automate interaction with web pages
on the WWW using Perl and the WWW::Mechanize module. Employing a web

336 Web Automation

automation strategy when repeatedly working with data and web pages on the
WWW can be a huge time-saver. The time spent creating a custom program to
automate surfing is quickly recovered when there are many manual interactions
to perform.

Maxim 16.1 Automate repetitive WWW interactions whenever possible.

And with that maxim, this part of Bioinformatics, Biocomputing and Perl con-
cludes. The final part of this book presents a collection of ready-to-use Bioinfor-
matics programs, many of which are available for download from the Internet.

The Maxims Repeated

Here’s the maxim introduced in this chapter.

• Automate repetitive WWW interactions whenever possible.

Exercises

1. Search CPAN and read about the HTML::Parser and HTML::TokeParser modules.
Is it worthwhile using either of these modules to rewrite the automatch program?

2. Pick your favourite Bioinformatics web-site and, using WWW::Mechanize, automate
an interaction with it.

3. Move the automatch program to the WWW. Among other things, you will need
to provide a mechanism that allows users of your web page to specify multiple
sequences without having to type them into a HTML form. [Hint: explore the HTML
file-upload feature.]

4. Automate interaction with the SRS web-site from the SRS: The Sequence Retrieval
System chapter.

Part IV

Working with Applications

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

17

Tools and Datasets
Exploring the tools of the trade.

17.1 Introduction

This chapter introduces a collection of Bioinformatics databases and associated
tools that are used in the next chapter to characterise a piece of ‘‘mystery’’ DNA.
The descriptions here concentrate on installing and running the tools, rather
than describing the algorithms they use. This chapter is designed to augment
any ‘‘installation and usage notes’’ included with the tools by giving example
input data, showing how to run the tools and describing the results expected.
For more details on a particular algorithm, consult the original research papers,
many of which are available on the Internet1. It can also be helpful to talk to
other researchers in the field who have used these tools, as there is no substitute
for a first-hand account from an expert!

Examples of extracting sequence data are provided elsewhere in this book, and
are not repeated here. Although a useful technique (of which every Bioinformati-
cian needs to be aware of), ‘‘manually’’ trawling through a sequence disk-file is at
best archaic, and more likely wasteful for everything other than the simplest of
searches. The modern Bioinformatician loads the data into a relational database
(as described in the Databases chapter) and then employs SQL to extract data
in a nice, easy-to-use form. Many researchers use technologies such as EMBOSS,
Ensembl or Bioperl to do the database populating for them. Such systems tend
to scale better, are more flexible and more reliable, while still being generally
faster and more robust. That said, the creation of custom programs to process

1
Refer to the appendix entitled Suggestions for Further Reading.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

340 Tools and Datasets

Protein Databank (PDB) disk-files is still needed, as the information relating to
protein structures within it does not store particularly well in relational databases
without the structure (of the database!) becoming overly complicated. Also the
mmCIF format/database and its associated tools, although often easier to work
with, are not widely accepted and used, so expect to trawl through PDB disk-files
for some time to come. The remainder of this chapter is split into three broad
areas of study, as follows:

1. Sequence databases – EMBL, TrEMBL and SWISS-PROT. This section
describes what these databases are, what they contain, how to access
them and what they are used for.

2. General concepts and methods – The concepts relevant to prediction and
subsequent validation of those predictions. This section describes the con-
cepts of true and false predictions, using the tRNA gene-finding package
tRNAScan-SE as an extended example. The use of the two-stage approach is
also covered: a fast but inaccurate first stage, coupled to a slow but careful
second stage which attains speed with precision.

3. Bioinformatics tools – ClustalW and BLAST. ClustalW aligns multiple
sequences to identify phylogenetic relationships between them, while
BLAST, the Basic Local Alignment Search Tool, is one of the standard
tools used to do sequence-similarity searches of databases.

17.2 Sequence Databases

There used to be three very distinct types of Bioinformatics databases: Primary,
Secondary and Tertiary. The three types still exist, but the boundaries between
them are becoming blurred, especially as they become increasingly cross-linked
to each other. Add to this the fact that many references between databases
are presented as ‘‘clickable web-links’’ and that databases are combined into
metadatabases. Meta-search systems are also popular, for instance, Sequence
Retrieval System (SRS), and to a lesser extent, Bioperl and EMBOSS. Consequently,
it is often hard to know from which particular database the information being
accessed is originally coming from. The answer is often, at some level, all of them!

Even when systems such as SRS are not used, the cross references built into
many of the more popular sequence databases make it easy for a system to
build links on the fly, this being one of the ‘‘informatics’’ parts of Bioinformatics.
The ‘‘bio’’ part is knowing which links make biological sense. For many years,
Bioinformaticians grappled with the informatics part. Nowadays, the availability
of scalable relational databases, coupled with the desire and technical competence
to use them, has greatly reduced the complexity of many of the raw informatics
problems. This allows researchers to concentrate on biology, which is, after all,
the whole point of investing time in studying the Bioinformatics tools of the trade.

Sequence Databases 341

Given the excellent user guides included with the larger and more popular
databases, a detailed discussion of their structures and contents is beyond the
scope of this book. Consequently, the description of the EMBL, TrEMBL and
SWISS-PROT databases is confined to quoting a few examples of the data found
in them, describing why the data are useful and exploring how to use (the data)
to do more interesting activities.

There are three main sequence databases:

1. EMBL/GenBank – The primary sequence databases for nucleotide
sequences, DNA and RNA. If a sequence is published, then it is in one
of these databases. The DDBJ nucleotide database in Japan exchanges data
with these sequence databases on a nightly basis. While the accession num-
bers between the three databases are quite different, the contents are very
similar because of the constant exchange of information.

2. TrEMBL – Short for ‘‘Translated EMBL’’, this database was originally
designed to bridge the gap between the nucleotide sequences stored in
EMBL and the manually curated SWISS-PROT entries. The TrEMBL database
relies on more automatic methods to generate annotation than does SWISS-
PROT (and PIR), allowing new sequences to be added quickly. Note that this
speed of entry is at the expense of the completeness (and, in some cases,
accuracy) of the annotation.

3. SWISS-PROT/PIR – Originally the work of researchers working in the field
of protein sequence analysis, Amos Barioch, along with a team of experts,
has lovingly curated the SWISS-PROT database for many years. Margrate
Dayhoff created the first amino acid substitution matrices, the Atlas of
Protein Structure2, which eventually became the PIR (Protein Information
Resource) database. Both SWISS-PROT and PIR have richer and more accurate
annotation than their TrEMBL counterparts. However, this accuracy comes
at a price: there can be a considerable delay between the DNA entry for
a protein sequence being published in EMBL/GenBank and its appearance
in SWISS-PROT/PIR. As humans take time to gather and evaluate evidence,
SWISS-PROT users need patience.

The TrEMBL, SWISS-PROT and PIR databases overlap in some respects and are
complementary in others. All are essential to modern Bioinformatics research and,
obviously, have to be funded. SWISS-PROT highlighted this point some years ago
as a serious ‘‘funding crisis’’. In 2002, the UniProt Consortium was granted over
US$15 Million towards the task of merging all three of these databases into one.

So what of the Primary, Secondary and Tertiary categories? With all the cross-
linking, mergers and general increase in complexity of Bioinformatics data, these
terms seem a little obsolete. However, they still have some meaning:

2
Originally published on paper when there were less than 1000 known protein sequences.

342 Tools and Datasets

• Primary – These are the ground-level databases that contain actual experi-
mental results, such as DNA sequences, protein structures and micro array
expression data. Examples are the EMBL/TrEMBL and ArrayExpress, the
micro array database and its access software.

• Secondary – These contain ‘‘derived data’’. This is information that has
been extracted from the primary sequence databases, even though doing
so may duplicate material from the primary databases. Examples include
SWISS-PROT, PROSITE and HSSP (a compendium of the alignments of similar
sequences to known protein structures).

• Tertiary – These contain highly abstracted data, such as molecular func-
tions. Examples are GO (Gene Ontology) classification, KEGG (Pathway infor-
mation) and literature references such as PubMed.

Reproduced below are selected sections of the EMBL data-file for the Tn501
Transposon3 and one of the SWISS-PROT entries cross-linked to it. Accessing
these through a database search engine has its disadvantages, as is often the
case in the modern Bioinformatics world. One of the biggest is that to for-
mulate search terms, it is necessary to know what to look for before com-
mencing the search. This may be difficult if you are unsure of what you
are looking for and there is always the risk of missing something important
because the search (inadvertently) excludes the very items you were actu-
ally seeking! In such cases, reading the actual data-files themselves is help-
ful because this presents all the data at once. Such an activity is slow and
tedious though, and your author’s advice is to do this only as a last resort!
That said, this method can often yield surprising insights, allowing for the for-
mulation of hypotheses and the creation of more useful and specific search
terms.

1. Header/annotation – This is parsable text that stores curation and biblio-
graphic information about the sequence, which is often a general description
of the sequence including an indication of its function, cross references to
other databases and interesting features (such as open reading frames or
sequence motifs) found in the sequence. This section can be split up, stored
and searched easily using normal informatics methods such as pattern
matching, regular expressions and relational databases searches using SQL.
It is often quite useful to read the annotation to get an idea as to what the
sequence is and how it relates to other database entries. For instance (and
as will be shown), the DE and DR lines in EMBL, TrEMBL and SWISS-PROT
are used to store brief descriptions of the sequence and cross references to
other databases.

3
This is used as an example in the next chapter.

Sequence Databases 343

2. DNA/protein sequence – This records the original experimental data as
well as acting as a record of the sequence to meet publication or legal
requirements. This is the ‘‘I found it first and it is now of the Art’’ section.

Technical Commentary: If you publish a sequence in an open access
database, this creates ‘‘Prior Art’’, which cannot then be protected by a
patent. The advantage of a patent is that you can charge for the use of your
‘‘invention’’. Publication and the creation of ‘‘Prior Art’’ can also be used as a
blocking technique to prevent someone else taking out patents on sequences.
This was one of the motivations behind the reporting of new sequences from
the ‘‘public’’ Human Genome Project every night in a publicly accessible form
on the WWW. If you have a novel sequence that you think is useful, for
example, as a therapeutic target for curing a disease, you may wish to keep
quiet about it until you consult a patent lawyer. After the consultation, decide
whether publication or patenting (or both) is appropriate.

While the sequence can be searched by common algorithms as used in
the Header section, such general tools perform poorly because they are
designed for exact pattern matching. While a DNA or protein sequence
can be regarded as a digital bit string (and therefore searched using con-
ventional informatics algorithms), it is a very abstract representation of a
real molecule that exists in the world of solutions, solutes concentration
and thermodynamic vibrations. In this (literally) chaotic environment, many
molecules are ‘‘nearly the same’’ in many different ways at some time or
another. While cells are tolerant of this, exact matching algorithms tend not
to be. Special sequence comparison and alignment algorithms have been
developed to locate similar rather than exact matches (these are discussed
later in this chapter).

17.2.1 Understanding EMBL entries

The on-line entry in this section is accessible through the EBI SRS system. Here are
selected parts and extracts from EMBL entry ID ISTN501 and Accession Number
Z00027. Many sections in the entry’s disk-file have XX spacer lines between them.
To conserve space, many of these markers, together with some of the sections
describing the coding regions, have been removed. It would be helpful while
reading this section to have the full entry available, as this will help navigate
between the sections highlighted in the discussion here.

The entry starts by indicating the identification and accession number. These
are the targets for automatic referencing from some outside source, such as
another database or a publication:

ID ISTN501 standard; genomic DNA; PRO; 8355 BP.

As well as indicating the accession number, the AC line lists previous entries that
have been incorporated into this entry:

344 Tools and Datasets

AC Z00027; K00031; K01725; X01297; X03406;

The SV line specifies the ‘‘current’’ name, the official reference to the entry. Note,
too, the create and last updated date:

SV Z00027.1
XX
DT 02-JUL-1986 (Rel. 09, Created)
DT 07-JUL-2002 (Rel. 72, Last updated, Version 14)

The descriptions in the DE lines and the keywords in the KW lines are often good
to search against. The R lines describe the official published references (only the
first of six are shown here):

DE Transposon Tn501 from Pseudomonas aeruginosa plasmid pVS1 encoding mercuric
DE ion resistance determinant. Genes: merR (regulation), merT and merP
DE (transport), merA (reductase), merD (not known); two open reading frames of
DE unknown function (possibly one is merE); res site, tnpR and tnpA
DE (transposition).
KW mercury resistance; plasmid; reductase; transposon;
KW unidentified reading frame.
OS Pseudomonas aeruginosa
OC Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales;
OC Pseudomonadaceae; Pseudomonas.
OG Plasmid pVS1
XX
RN [1]
RP 1302-3048
RX MEDLINE; 84000429.
RX PUBMED; 6311258.
RA Brown N.L., Ford S.J., Pridmore R.D., Fritzinger D.C.;
RT "Nucleotide sequence of a gene from the Pseudomonas transposon Tn501
RT encoding mercuric reductase";
RL Biochemistry 22(17):4089-4095(1983).

.

.

.

The DR lines contain the database cross references that link to entries in other
sequences databases:

DR GOA; P00392.
DR GOA; P04131.
DR GOA; P04140.
DR GOA; P06688.
DR GOA; P06689.
DR GOA; P06690.
DR GOA; P06691.
DR GOA; P06695.
DR GOA; Q48362.
DR SPTREMBL; Q48362; Q48362.
DR SWISS-PROT; P00392; MERA_PSEAE.
DR SWISS-PROT; P04131; MERP_PSEAE.
DR SWISS-PROT; P04140; MERT_PSEAE.

Sequence Databases 345

DR SWISS-PROT; P06688; MERR_PSEAE.
DR SWISS-PROT; P06689; MERD_PSEAE.
DR SWISS-PROT; P06690; MERE_PSEAE.
DR SWISS-PROT; P06691; TNR5_PSEAE.
DR SWISS-PROT; P06695; TNP5_PSEAE.

The FT lines describe features found in the sequence (those after the first CDS
have been omitted):

FH Key Location/Qualifiers
FH
FT source 1..8355
FT /db_xref="taxon:287"
FT /mol_type="genomic DNA"
FT /organism="Pseudomonas aeruginosa"
FT /plasmid="pVS1"
FT repeat_region 1..5355
FT /transposon="Tn501"
FT repeat_unit 1..38
FT /note="terminal repeat"
FT misc_signal 505..520
FT /note="potential binding site for inducer"
FT repeat_unit 505..510
FT /note="inverted repeat a"
FT repeat_unit 515..520
FT /note="inverted repeat a’"
FT CDS complement(114..548)

Here is the first of the features, which is a coding sequence:

FT /db_xref="GOA:P06688"
FT /db_xref="SWISS-PROT:P06688"
FT /transl_table=11
FT /product="merR protein (repressor/inducer)"
FT /gene="merR"
FT /protein_id="CAA77320.1"
FT /translation="MENNLENLTIGVFAKAAGVNVETIRFYQRKGLLLEPDKPYGSIRR
FT YGEADVTRVRFVKSAQRLGFSLDEIAELLRLEDGTHCEEASSLAEHKLKDVREKMADLA
FT RMEAVLSELVCACHARRGNVSCPLIASLQGGASLAGSAMP"

The rest of the features (omitted here) follow, and in this entry are mostly coding
sequences. The sequence data then starts, with an SQ line indicating the start:

XX
SQ Sequence 8355 BP; 1560 A; 2709 C; 2650 G; 1436 T; 0 other;

gggggaaccg cagaattcgg aaaaaatcgt acgctaagct aacggtgttc tcgtgacagc 60
.
.
.

ttctgcgagc ccccc 8355
//

346 Tools and Datasets

and ends with the ‘‘//’’ end-of-entry marker. This acts as a delimiter between
separate entries.

17.2.2 Understanding SWISS-PROT entries

Here are selected parts and extracts from the MERP PSAE/P04131 entry from
SWISS-PROT. The overall format is very similar to that of the EMBL, but it tends to
be shorter because it describes a single protein. The SWISS-PROT line types have
almost identical meaning to the EMBL line types:

ID MERP_PSEAE STANDARD; PRT; 91 AA.
AC P04131;
DT 01-NOV-1986 (Rel. 03, Created)
DT 01-NOV-1986 (Rel. 03, Last sequence update)
DT 15-JUN-2002 (Rel. 41, Last annotation update)
DE Mercuric transport protein periplasmic component precursor
DE (Periplasmic mercury ion binding protein) (Mercury scavenger protein).
GN MERP.
OS Pseudomonas aeruginosa.
OG Plasmid pVS1.
OC Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales;
OC Pseudomonadaceae; Pseudomonas.
OX NCBI_TaxID=287;
RN [1]
RP SEQUENCE FROM N.A.
RC TRANSPOSON=TN501;
RX MEDLINE=85014891; PubMed=6091128;
RA Misra T.K., Brown N.L., Fritzinger D.C., Pridmore R.D., Barnes W.M.,
RA Haberstroh L., Silver S.;
RT "Mercuric ion-resistance operons of plasmid R100 and transposon Tn501:
RT the beginning of the operon including the regulatory region and the
RT first two structural genes.";
RL Proc. Natl. Acad. Sci. U.S.A. 81:5975-5979(1984).

The CC lines contain human-readable text that gives a fuller description of the
protein than do the DE lines:

CC -!- FUNCTION: MERCURY SCAVENGER THAT SPECIFICALLY BINDS TO ONE HG(2+)
CC ION AND WHICH PASSES IT TO THE MERCURIC REDUCTASE (MERA) VIA THE
CC MERT PROTEIN.
CC -!- SUBUNIT: MONOMER.
CC -!- SUBCELLULAR LOCATION: PERIPLASMIC (PROBABLE).
CC -!- SIMILARITY: CONTAINS 1 HMA DOMAIN.
CC --
CC This SWISS-PROT entry is copyright. It is produced through a collaboration
CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC the European Bioinformatics Institute. There are no restrictions on its
CC use by non-profit institutions as long as its content is in no way
CC modified and this statement is not removed. Usage by and for commercial
CC entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC or send an email to license@isb-sib.ch).
CC --

General Concepts and Methods 347

The first DR points to the EMBL entry Z00027:

DR EMBL; Z00027; CAA77322.1; -.
DR EMBL; K02503; AAA27434.1; -.
DR PIR; A03557; RGPSHA.
DR HSSP; P04129; 1AFJ.
DR InterPro; IPR001802; HG_scavenger.
DR InterPro; IPR001934; HeavyMe_transpt.
DR Pfam; PF00403; HMA; 1.
DR PRINTS; PR00944; CUEXPORT.
DR PRINTS; PR00946; HGSCAVENGER.
DR PROSITE; PS01047; HMA_1; 1.
DR PROSITE; PS50846; HMA_2; 1.
KW Transport; Mercuric resistance; Periplasmic; Metal-binding; Signal;
KW Transposable element; Plasmid.
FT SIGNAL 1 19 POTENTIAL.
FT CHAIN 20 91 MERCURIC TRANSPORT PROTEIN PERIPLASMIC
FT COMPONENT.
FT DOMAIN 23 89 HMA.
FT METAL 33 33 HG(2+) (POTENTIAL).
FT METAL 36 36 HG(2+) (POTENTIAL).

The actual protein sequence is contained in the last section, along with a CRC
code, which is a computer-generated verification key:

SQ SEQUENCE 91 AA; 9491 MW; 6D6DB86B5FCA20CE CRC64;
MKKLFASLAL AAVVAPVWAA TQTVTLSVPG MTCSACPITV KKAISEVEGV SKVDVTFETR
QAVVTFDDAK TSVQKLTKAT ADAGYPSSVK Q

//

Again, the end-of-entry marker, ‘‘//’’, terminates the entry.

17.2.3 Summarising sequences databases

Databases (and datasets) are the foundations upon which Bioinformatics is built.
They create a ‘‘record of history’’: what has been found, when and by whom, what
it did or did not do. Such information is always useful to individual researchers
concerned with specific problems. It also allows for the extraction of information
that can help in the compilation of new databases, especially those containing
knowledge.

Because of the increasing cross referencing of modern databases, the bound-
aries between the individual databases are becoming blurred, particularly when
multiple databases are loaded into a metadatabase such as InterPro, or a Meta
Database System such as SRS. More on these tools later.

17.3 General Concepts and Methods

In this section, the tRNAScan-SE prediction system is used to help explain and
provide real-world examples of important general philosophical concepts. tRNA-
ScanSE is an analysis system that finds transfer RNA (tRNA) genes in Genomic

348 Tools and Datasets

DNA and it is both accurate and fast. The actual details of how tRNA-ScanSE
works are described below in the subsection titled tRNA-ScanSE, a case study.
First, though, a few general concepts that are useful to know.

17.3.1 Predictions and validation

‘‘. . . on the Nature of Prediction and Validation of Nature. . . ’’

Bioinformatics often involves making accurate predictions from highly abstract
data. In ‘‘information space’’, there are no physical limits to the universe, apart
from our ability to represent and handle the amount of data (both of which are
important practical limitations). A philosophically fundamental limitation is that
any isolated system that can be demonstrated to be self-consistent cannot also be
self-validating. To validate a system (or model), external information is needed
to act as a reference against which predictions can be tested. In Bioinformatics,
the preferred way to do this is to take the predictions generated in silico (in a
computer) and test them in vivo (in life) or in vitro (in isolation). Practically, for
example, this means purifying the predicted enzyme and testing for catalytic
activity in the laboratory (in vitro testing) or cloning a homolog gene from one
organism into another and finding out if it works in the same way (in vivo
testing).

Whether the problems of prediction are more acute in Bioinformatics than for
mainstream biology is debatable. Certainly, these are things that every competent
Bioinformatician needs to think about. Ask the following question. Are the
predictions relevant to the context in which they are made? All scientists have the
same problem4.

Validating a Bioinformatical model with a biological one is, in effect, a merging
of the two. This means that the combined model cannot itself be self-validating,
just self-consistent. In many cases, this is enough, so long as the combined model
is useful.

Maxim 17.1 Recognise the difference between the validation of a model and
the testing of it for self-consistency.

One thing is certain: such discussion rapidly becomes too deep to be useful. So,
here are some examples to help clarify things.

17.3.2 True/False/Negative/Positive

The terms ‘‘False Positive’’ and ‘‘False Negative’’ are often found in Bioinformatics
discussions, particularly those connected with the analysis of large datasets. Both

4
Those who believe the grass is greener on the other side are in for a shock: it never is!

General Concepts and Methods 349

relate to predictions made and their subsequent testing. Logically, there are four
possible outcomes for a comparison between a prediction and the outcome of
an event. These are referred to as: True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN).

As an example, consider predicting tRNA sequences in a piece of DNA. There
are two possible options:

1. To predict a tRNA gene at a particular location, which is called a positive
result.

2. Not to predict a tRNA gene at the same location, which is a negative result5.

The important points are that the results are just predictions, and that they
may or may not be correct. Ideally, the results should be tested in some way.
Traditionally, this is performed by either going into the laboratory and doing work
with the real DNA and organisms or by using test datasets from previous, reliable
investigations. In the development of the algorithms (there are actually two
coordinated by tRNAScan-SE, as discussed below), both validation methods were
used. The extra information brought in from outside allowed each individual
positive/negative classification to be characterised on the basis of True (the
prediction was correct) or False (the prediction was wrong). Consequently, each
result can be assigned one of four possible outcomes:

1. True Positive – This means that a tRNA gene was predicted at a specific
location and one did exist and is functional there. Certain non-functional
tRNA genes can be detected but tRNAScan-SE places them into the next
category.

2. True Negative – No tRNA was reported and, indeed, none was present. As
the frequency of tRNAs in DNA is low, False Negatives are not reported as
they would just clutter the output.

3. False Positive – The algorithm predicted a tRNA gene, but a corresponding
one was not found. A very similar term you may come across is the ‘‘False
Discovery Rate’’. From the context and the definition your authors have seen
this used in, this term seems to be analogous to what would be called the
False Positive Rate in the discussion here: the rate at which the algorithm
makes False Positive errors.

4. False Negative – In this case, the algorithm failed to report a tRNA gene
when one was present. In everyday language, it was ‘‘missed’’.

While it depends on the particular circumstances, False Positives are, generally,
the most troublesome type of prediction. The algorithm and, as a consequence,

5
It is usual for programs to print only the positives in their results, as the negatives are so

frequent that they would obscure the positives, not to mention that they take up too much
space.

350 Tools and Datasets

statements made by researches using it is claiming a tRNA gene to be present,
when it is not. Imagine the potential for wasted research effort, not to mention
the professional embarrassment, of chasing these particular ‘‘ghosts’’.

While any error is undesirable, False Negatives are generally more acceptable,
although it depends on the circumstances. With False Negatives (or False Posi-
tives) you can argue that a more sensitive system is needed. When an improved
algorithm is developed, the same dataset can be analysed again and false negative
reports reduced. Further investigation may show that the algorithm is correct
and a false report is due to deficiencies in the validation. It is never as reliable as
assumed in this discussion. Of course, both the algorithm and the data used for
validation may be wrong. This is the way science works.

Maxim 17.2 Generally, False Negative predictions are considered
more acceptable than False Positives.

In some situations, the high False Positive rate can be reduced by a second
processing step, either Bioinformatics- or wet-lab-based, but the initial phase is
needed to maintain a high True Negative rate6.

One point to be aware of when predictions are validated is that the data used
for this, often referred to as a Standard of Truth or the Gold Standard, must
be truly independent of the data used to build the model. This is a particular
problem if the dataset of experimentally validated items (sequences, structures
or functions) is small because this limits both the training and testing datasets.
If the same data is used to build the model as well as test it, then the model can
be over-fitted. This means that the model describes the features of the dataset
well and is self-consistent, but is not generally applicable in a wider context. Two
commonly used procedures that help avoid this problem are as follows:

1. The available data can be partitioned into a ‘‘training set’’, from which the
model is built, and a ‘‘test set’’, against which it is tested.

2. If the amount of data is too small to exclude a proportion (possibly up
to half) as a ‘‘test set’’ during the training procedure, special techniques
such as ‘‘Jackknifing’’ or ‘‘leave N out’’ can be used. Here, the available data
is partitioned into ‘‘training’’ and ‘‘test’’ sets in multiple ways. Different
partitions are used so that all the data is used in both sets, but never at
the same time. This is held to be considerably more reliable than a simple
self-consistency test, but not as good as a fully independent test.

Figure 17.1 on page 351 summarises the assessment/validation procedure, along
with the possible outcomes.

6
See the subsection entitled The use of multiple algorithms to improve performance, later in

this chapter.

General Concepts and Methods 351

Prediction based
on current
knowledge

Item

Positive Negative

True
negative

False
negative

False
positive

True
positiveOutcome:

Current
information
/knowledge

Decisions

Examples
for assessment

/validation

Figure 17.1 Assessment/validation procedure and possible outcomes.

17.3.3 Balancing the errors

Predictions may contain errors. Unfortunately, this goes with the territory of
making predictions. Often, there is a need to strike a balance between False
Positive and False Negative results, and this can be accomplished by ‘‘tweaking’’
the parameters of the prediction algorithm. In the case of tRNAScan-SE, there
are at least three Threshold Scores that determine whether a particular piece
of DNA will be reported as a gene. Let’s consider the two extreme cases of
‘‘over-tweaking’’:

• A zero False Positive rate can be achieved by simply reporting ‘‘No’’ (Negative)
for any particular sequence. The trouble is that the true positive rate is zero
as well!

• A zero False Negative rate can also be achieved by answering ‘‘Yes’’ for any
particular sequence. The problem here is an extremely high False Positive
rate.

It follows that some optimisation needs to be done to set the reporting threshold,
which determines the ratio of False Positives to False Negatives. Publications tend
to include statements or sections that paraphrase to ‘‘. . . the threshold(s) was set
empirically to allow for a conservative number of False Positives, while maintain
the True Negative/True Positive rate. . . ’’. Often, the threshold is described as
‘‘conservative’’. Usually, this means accepting some False Negatives to prevent
too many False Positives. Deciding on the balance between the two is often more
a matter of professional judgement than hard statistics. Here’s a maxim to be
kept in mind when trying to balance the False Positive/False Negative ratio.

352 Tools and Datasets

Maxim 17.3 With False Negatives, we could come back next year
and find the ones we missed,

and these are preferred to False Positives,
where we can waste time studying them this year,

only to find out that the time was wasted.
It all depends on the circumstances.

And here’s another maxim to consider (albeit somewhat tongue in cheek).

Maxim 17.4 Sometimes, all those False Positives are maybe, just maybe,
trying to tell you something. So, if you aspire to a Nobel prize. . . .

17.3.4 Using multiple algorithms to improve performance

The performance of an algorithm can be measured in different ways. One way
is to examine the prediction accuracy as described in the previous subsections:
the True/False and Positive/Negative rates. Another very important way is to
examine the algorithm’s speed. While computational power doubles on average
every 18 months or so, the rate of increase of biological databases can match
and in many cases exceed this. In essence, new, modern Bioinformatics analyses
must run faster simply to stand still. To compound this problem further, as the
subject data becomes more complex, so too do the analyses researchers want to
perform. There are three alternatives:

1. Do not perform the analysis at all. This is really the zeroth option, but in
some ways it’s the ultimate optimisation. If you cannot win, do not play the
game. This is less than ideal for many reasons. It is included here because
sometimes, just sometimes, it is the best (only) solution.

2. Invent better algorithms or improve the implementation of existing ones.
This is very much easier to say than do! Yet there have been cases where
optimisation of code has really made an improvement. An excellent example
is tRNA-Scan, see the quotation from the tRNAScan-SE manual later in this
chapter.

3. Use multiple algorithms with complementary performance characteristics.
A fast screening stage is used to filter the data to prevent a slower, but
more accurate, later stage from processing large amounts of data.

The third option has been used most successfully and to great effect in sequence-
search algorithms (that align sequences to each other and rank the results in
order). Good rigorous algorithms, for example, ‘‘dynamic programming algo-
rithms’’, exist for doing this. When searching large databases, such rigour is to all
intents and purposes, useless for the vast majority of paired sequences. If they

General Concepts and Methods 353

are dissimilar, they will never match well and will, inevitably, have low scores.
Running a computationally expensive algorithm with such sequences is very
wasteful. Some method of discontinuing the analysis as soon as the discrepancy
is clear is often used.

Maxim 17.5 Use a fast, if inaccurate, algorithm to prevent your slow, accurate
second-stage algorithm from being overwhelmed with the testing of wholly

unsuitable candidate regions/items.

17.3.5 tRNA-ScanSE, a case study

The tRNA-ScanSE application searches for transfer RNA (tRNA) genes in Genomic
DNA. In essence, tRNAs molecules are adaptor molecules that carry individual,
specific, amino acids on their ‘‘acceptor stems’’ for incorporation into new pro-
teins under the direction of Ribosomes, during the process called Translation. A
set of three nucleotide bases (called the anticodon) in the anticodon arm denotes
specifically which amino acid is attached on the acceptor stem.

During protein synthesis, these anticodons base-pair with the codons in mRNA
(messenger RNA) that encode the order of the amino acids in the protein. The

(a) In 2D: Classical “clover leaf’’
diagrammatic structure

(b) Example of 3D structure

Acceptor
Stem
D-arm

D-arm T-Ψ-c arm

Anticodon
arm

Anticodon

(c) Linear tRNA gene structure

Acceptor
arm

D-arm Anti-codon
arm

Variable arm
‘T’ arm Acceptor

arm

Termination
signal

11-30 bases

A Box Intron B Box

∼80 bases (+ Intron)

3

21

4

Variable
loop

IVS
/ Intron

A

C

C

72

71

1

2

70

694

3

5

6

7 66

67

U

9

1011

65

49

64 63 62 61

53525150

C

59

A

57

C

T
55

68

1213

A

151617B

17A

G

G

20

20A 20B

A
22 23 21 25

26

27

28

29

30

31

32

U

34

38

39

40

41

35

36

G

42

43
44

45

46
47

48

Figure 17.2 An overview of tRNA: 2D, 3D and gene structure.

354 Tools and Datasets

ribosomes administer this process and catalyse the formation of peptide bonds.
An overview of both the physical and gene structures of tRNAs is shown in Figure
17.2 on page 353.

With reference to Figure 17.2, part (a) is the classic ‘‘Clover leaf’’ two-
dimensional diagram of a tRNA. Shaded circles are semi-invariant nucleotide
bases. Note how the anticodon is marked at the bottom of the ‘‘Anticodon Arm’’.
Part (b) is a three-dimensional structure of PDB entry 1EHZ. The phosphate back-
bone is traced in black, while the bases forming the anticodon are in heavier
‘‘wireframe’’. Note how they face into solution ready for binding to the codons
in the mRNA. Part (c) is the tRNA gene structure. The large numbers indicate the
regions targeted by the original tRNAscan program.

An excellent description of how tRNA-ScanSE achieves its increase in perfor-
mance is given in the first paragraph of its manual, which is distributed along
with the program code. Rather than attempt to paraphrase the description, here
it is verbatim:

--
tRNAscan-SE: a program for improved detection of transfer RNA
genes in genomic sequence

Todd Lowe (1) & Sean Eddy (2)

(1) Dept. of Genetics, Stanford University, Palo Alto, CA
(2) Dept. of Genetics, Washington U. School of Medicine, St. Louis
--
Current release: 1.21 (October 2000)

Note: An HTML version of this manual can be found on the
web at http://genome.wustl.edu/lowe/tRNAscan-SE-Manual/Manual.html

1. Introduction

A. Brief Description

tRNAscan-SE identifies transfer RNA genes in genomic DNA or RNA
sequences. It combines the specificity of the Cove probabilistic RNA
prediction package (Eddy & Durbin, 1994) with the speed and
sensitivity of tRNAscan 1.3 (Fichant & Burks, 1991) plus an
implementation of an algorithm described by Pavesi and colleagues
(1994) that searches for eukaryotic pol III tRNA promoters (our
implementation referred to as EufindtRNA). tRNAscan and EufindtRNA
are used as first-pass prefilters to identify "candidate" tRNA regions
of the sequence. These sub-sequences are then passed to Cove for
further analysis, and output if Cove confirms the initial tRNA
prediction. In this way, tRNAscan-SE attains the best of both worlds:
(1) a false positive rate of less than one per 15 billion nucleotides
of random sequence, (2) the combined sensitivities of tRNAscan and
EufindtRNA (detection of 99% of true tRNAs), and (3) a search speed
1000 to 3000 times faster than Cove analysis and 30 to 90 times
faster than the original tRNAscan 1.3 (tRNAscan-SE uses both a
code-optimised version of tRNAscan 1.3, which gives a 650-fold increase

General Concepts and Methods 355

in speed, and a fast C implementation of the Pavesi et al. algorithm).
This program and results of its analysis of a number of genomes have
been published in Nucleic Acids Research (4).

The numbered references, just mentioned, are included at the end of the MANUAL
disk-file, and are repeated here:

1. Fichant, G.A. and Burks, C. (1991) "Identifying potential tRNA
genes in genomic DNA sequences", J. Mol. Biol., 220, 659-671.

2. Eddy, S.R. and Durbin, R. (1994) "RNA sequence analysis using
covariance models", Nucl. Acids Res., 22, 2079-2088.

3. Pavesi, A., Conterio, F., Bolchi, A., Dieci, G., Ottonello, S. (1994)
"Identification of new eukaryotic tRNA genes in genomic DNA databases
by a multistep weight matrix analysis of transcriptional control
regions", Nucl. Acids Res., 22, 1247-1256.

4. Lowe, T.M. & Eddy, S.R. (1997) "tRNAscan-SE: A program for
improved detection of transfer RNA genes in genomic sequence",
Nucl. Acids Res., 25, 955-964.

In the tRNAscan-SE search system, tRNAscan-SE, the fast-steps are the Eufindt and
tRNAscan algorithms. The slow-step is then the Cove algorithm which screens the
results more thoroughly.

This fast-step, slow-step system is also used in other sequence identification
tools such as FASTA and BLAST (see the next section). The FASTA search algorithm
also uses k-tuple words to identify sequence pairs whose alignment can be
improved to a ‘‘useful level’’ by the application of a dynamic programming
algorithm.

An example of the type of output obtained from tRNAScan-SE is shown below.
This output was produced as a result of testing contig c1676 from Chromosome
3 of the yeast S. Pombe. This a 1,369,435 bp section of sequence that has been
created by the combination of other shorter cosmid sequences7. To check the
results, use the annotation in the original EMBL file. Here are the results produced:

tRNAscan-SE v.1.23 (April 2002) - scan sequences for transfer RNAs

Please cite:
Lowe, T.M. & Eddy, S.R. (1997) "tRNAscan-SE: A program for
improved detection of transfer RNA genes in genomic sequence"
Nucl. Acids Res. 25: 955-964.

This program uses a modified, optimized version of tRNAscan v1.3
(Fichant & Burks, J. Mol. Biol. 1991, 220: 659-671),
a new implementation of a multistep weight matrix algorithm
for identification of eukaryotic tRNA promoter regions
(Pavesi et al., Nucl. Acids Res. 1994, 22: 1247-1256),

7
Download the sequence from http://www.sanger.ac.uk/Projects/S pombe/

DNA download.shtml, then convert it to FASTA format for use with tRNAScan-SE.

356 Tools and Datasets

as well as the RNA covariance analysis package Cove v.2.4.2
(Eddy & Durbin, Nucl. Acids Res. 1994, 22: 2079-2088).

--
Sequence file(s) to search: ../c1676.contig
Search Mode: Eukaryotic
Results written to: ../c1676.op
Output format: Tabular
Searching with: tRNAscan + EufindtRNA -> Cove
Covariance model: TRNA2-euk.cm
tRNAscan parameters: Strict
EufindtRNA parameters: Relaxed (Int Cutoff= -32.1)
--

Sequence tRNA Bounds tRNA Anti Intron Bounds Cove
Name tRNA # Begin End Type Codon Begin End Score
-------- ------ ---- ------ ---- ----- ----- ---- ------
c1676 1 8989 9059 Asp GTC 0 0 70.49
c1676 2 9486 9568 Val AAC 9524 9532 64.30
c1676 3 19361 19461 Leu CAA 19399 19417 56.07
c1676 4 22392 22463 Thr AGT 0 0 75.01
c1676 5 22879 22951 Arg ACG 0 0 75.46
c1676 6 169745 169839 Ser GCT 169784 169794 74.09
c1676 7 391586 391668 Lys CTT 391625 391632 74.69
c1676 8 606265 606361 Ser TGA 606302 606316 78.22
c1676 9 606369 606440 Met CAT 0 0 69.52
c1676 10 618451 618524 Asn GTT 0 0 86.64
c1676 11 705501 705572 Pro AGG 0 0 64.72
c1676 12 761191 761262 His GTG 0 0 69.87
c1676 13 779683 779754 Gln TTG 0 0 69.22
c1676 14 953904 953974 Gly TCC 0 0 64.15
c1676 15 988632 988726 Ser GCT 988671 988681 74.09
c1676 16 1056030 1055960 Asp GTC 0 0 70.49
c1676 17 991614 991543 Gln TTG 0 0 69.22
c1676 18 692625 692544 Ser AGA 0 0 80.47
c1676 19 277713 277642 Thr TGT 0 0 79.00
c1676 20 123371 123299 Val TAC 0 0 76.36
c1676 21 58816 58744 Phe GAA 0 0 69.56
c1676 22 56170 56088 Lys CTT 56131 56124 74.69
c1676 23 23109 23039 Asp GTC 0 0 70.49
c1676 24 22612 22530 Val AAC 22574 22566 64.30
c1676 25 14122 14051 Glu CTC 0 0 74.15
c1676 26 12737 12637 Leu CAA 12699 12681 56.07
c1676 27 9706 9635 Thr AGT 0 0 75.01
c1676 28 9219 9147 Arg ACG 0 0 75.46

The column headers explain their contents and purpose. The two most interesting
points to note are:

1. The tRNA gene structure is consistent enough for tRNAScan-SE to be able to
predict the amino acid the tRNA will carry, see the ‘‘tRNA Type’’ and ‘‘Anti
Codon’’ columns.

2. The ‘‘tRNA Begin’’ marker locations go up and then down again as the
system scans along one strand, then back along the complement strand.

Introducing Bioinformatics Tools 357

17.4 Introducing Bioinformatics Tools

This section describes ClustalW and BLAST, two of the most-used Bioinformat-
ics sequence analysis tools. Both are used extensively in the later chapters of
Bioinformatics, Biocomputing and Perl. The descriptions of how these tools work
and how to install them are provided here to avoid impeding the flow of the
examples using them. The most important concepts of the underlying algorithms
and assumptions are described for both tools. These descriptions are brief and
intended as primers. In the case of BLAST, the NCBI provides an excellent tutorial
that can be accessed from the following web-site:

http://www.ncbi.nlm.nih.gov/Education/

For both ClustalW and BLAST, good, well-maintained services are available on
public web-sites, including those from EBI and NCBI. These types of services typi-
cally have ‘‘copy the sequence(s) into the text box and click Run’’ type functionality.
These are fine for occasional use where the complexity of setting up, running
and maintaining a local service is difficult to justify. For instance, in the case of
BLAST, keeping the databases up-to-date from publicly available sources can be
a major chore. Fortunately, many auto-update systems exist. Even so, these have
to be set up and maintained.

Despite the convenient web-based services, it often arises that both applica-
tions need to be executed locally. This is typically the case when dealing with
confidential or commercially sensitive data. In certain cases, speed is another
motivating factor: there are times when waiting in an on-line queue is acceptable,
and there are times when it is not. When prototyping an analysis or doing a small
number of searches, it is OK to wait 30 seconds or so for the EBI ClustalW service
to align (for example) 12 HMA sequences. However, when performing a large
number of such alignments, a local installation is very advantageous. By way of
example, running the same ClustalW searches on a 2-GHz Laptop (running Linux)
took less than a second!

Another factor is flexibility: if an on-line service does not do what’s required,
then, as a user, there’s very little that can be done about it. In such circumstances,
running the analysis locally can be advantageous. This is especially true with
BLAST when working with a custom database or a subset of a public one. A few
commercial Bioinformatics web-based services allow for the upload of custom
datasets, but this facility can have a high price: many such providers appear and
disappear quite quickly. So, be careful.

Technical Commentary: Some researchers have concerns about the secure trans-
mission of data over the Internet. Using modern informatics and cryptographic
systems, it is possible to secure the link. The problem tends to surface at the
other end of the connection. With network-based services, data is handed to a third
party. This may create legal difficulties with, say, patient confidentiality or regula-
tory requirements. Additionally, very strict management procedures must be used

358 Tools and Datasets

to demonstrate consistency in the analysis for drug-acceptance testing. There are
credible stories where data has ‘‘leaked’’ from supposedly secure on-line services.
One problem is hostile (or otherwise) takeovers of the Bioinformatics outsourcing
firms offering such on-line services. Small biotech companies are notorious for
going bankrupt and getting consumed by other companies. Your authors are aware
of an example where ‘‘technology was transferred’’ between two large commercial
rivals by this mechanism. The result was the loss of a patent application, with no
chance of legal redress by the company that had performed all the work. ‘‘Ouch!’’,
as some would say!

The sections that follow cover how to use these applications8.

17.4.1 ClustalW

ClustalW is a sequence alignment tool that can align two (or more) DNA or
protein sequences. Source code and ‘‘compile-it-yourself’’ versions are available
for Linux/Unix-type operating systems, as are pre-compiled binary packages for
the Microsoft Windows platform. Both ClustalW and its forerunner, ClustalV, are
exclusively command-line orientated tools, though they can run in either auto-
mated or ‘‘interactive’’ mode. Another version, ClustalX, which uses the same
algorithm, has an excellent graphical user interface and postscript output. It also
comes pre-packaged with some elementary tree-drawing software, but be aware
that specialist packages, such as TreeView9, are vastly superior for producing
publication-quality graphics. To draw ‘‘serious’’ trees, the ClustalW documenta-
tion suggests PHYLIP (written by Joe Felsenstein, Department of Genome Sciences,
University of Washington). PHYLIP has a long history in phylogenetics. An alterna-
tive, semi-commercial Phylogenetics package is PAUP package, which is a licensed
academic work. The ClustalW/ClustalX packages can be downloaded from here:

http://www-igbmc.u-strasbg.fr/BioInfo/

or from the EBI:

ftp://ftp.ebi.ac.uk/pub/software

Figure 17.3 on page 359 shows the application running under the Windows XP
graphical user interface. The sequences are the MerP/MerA HMA fragments used
in the phylogenetics demonstration in the next chapter. On screen, the amino
acids are coloured according to type. ClustalX is a preferred method for the
creation of interactive alignments using the ClustalW algorithms.

8
Note that a pre-built, web-based NCBI-BLAST package is available, should a requirement exist

to locally provide a BLAST web-site.
9

For more details, visit the http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
web-site.

Introducing Bioinformatics Tools 359

Figure 17.3 ClustalX operating under Windows XP.

In addition to the references included in the Suggestions for Further Read-
ing appendix, further references and pointers to helpful hints and papers are
included in the documentation that accompanies these packages.

17.4.2 Algorithms and methods

In practice, the alignment of multiple sequences reduces to the comparison of
pairs of sequences in order to make the analysis computationally possible. Full
rigorous alignment using dynamic programming algorithms takes too long for
all but a small number of short sequences. Consequently, a series of ‘‘tricks’’ are
used:

• Initially, pairs of sequences are scored in an approximate manner using a fast
algorithm (on the basis of ‘‘k-tuple words’’) to determine their interrelation-
ships. For ‘‘n’’ sequences, there are (n(n − 1))/2 possible alignments, which
serves to highlight the main bottleneck in the process. For 20 MerA/MerP
HMA sequences, for example, this means 190 separate sequence alignments.
This explains why each test needs to be fast!

• From the scores between pairs of sequences (calculated in the previous
step), a rough phylogenetic guide tree is constructed by what is in essence
a standard average linkage hierarchical clustering method. The guide tree
is used to direct the slow, but accurate, alignment of sequences in the later
stages.

• As a priming step, the two most similar sequences are aligned together, and
the result is converted into a sequence profile.

360 Tools and Datasets

• Using the profile makes it easy to align new sequences to the existing mul-
tiple alignment. The order in which the sequences are added is determined
by the guide tree/clustering step, and it continues until all the sequences
have been merged into the alignment.

• Should it be required, the ‘‘Neighbourhood Joining’’ method is used to
produce a phylogenetic tree from the alignment.

ClustalW is very good and it has become the de facto standard tool when
performing multiple sequence alignment.

There are more recent extensions to the general Clustal algorithm. One example
is COFFEE (Consistency-based Objective Function For alignment Evaluation),
which is now being developed as T-COFFEE (Tree-based-COFFEE). These tools
claim to be better at aligning distantly related sequences. This performance
increase is due, in part, to better gap placement and the use of a position-specific
scoring matrix during the alignment of sequences. The Suggestions for Further
Reading appendix provides pointers to available public references.

17.4.3 Installation and use

The installation of ClustalW follows the classic UNIX install process. The source
code should compile under most distributions of Linux10. Use these commands
to install ClustalW:

gzip -d clustalw1.83.UNIX.tar.gz
tar -xvf clustalw1.83.UNIX.tar
cd clustalw1.83
make

ClustalW can be run in interactive mode, but the interface system is entirely
textual. Simply execute the program without any options to see this:

./clustalw

ClustalX accesses the same underlying alignment but has a vastly superior
interface specifically designed for human interaction. Many may prefer this to the
text-driven menus of ClustalW. That said, for executing ClustalW automatically,
there is a series of command-line switches available. These can be used to set
such options as input and output files, ‘‘k-tuple’’ word length, phylogenetic tree
output format, and so on. All of the command-line options are documented in
the supplied manual. A brief summary can be obtained by running ClustalW with
the following flag:

./clustalw -h

10
Don’t worry if you receive a few warnings, as these tend to be non-fatal.

Introducing Bioinformatics Tools 361

Most of the option names are mnemonic, for example:

-INFILE – Sets the input disk-file that contains the sequences to be aligned.

-OUTFILE – Sets the disk-file to which the alignments are to be directed (saved).

For example, to align the MerP/MerA HMA domains locally, use a command such
as this:

./clustalw -INFILE=../MerAHMAs_MerP.swp -OUTFILE=../Mer.aln

The alignment is placed in the ../Mer.aln disk-file. Note, with this example,
that both the input and output disk-files are created in the directory above
the current one. All of the available options are fully described in the included
documentation.

17.4.4 Substitution/scoring matrices

Substitution matrices are an important component of pairwise sequence align-
ment and it is worth understanding the different forms. The default matrices
currently used by many pairwise alignment systems are the BLOSUM series,
which is produced from the alignment of a series of protein blocks. The
original substitution scoring matrices, the PAM series, were produced from
the alignments of more closely related sequences than those used for BLO-
SUM. For general database searches, the BLOSUM matrices are often more
sensitive.

Amino acid substitution matrices have been the subject of many publications
resulting in some tens of examples in the scientific literature. All encode the
chance of a particular amino acid being found or substituted at the same location
in different proteins. The matrices differ because each uses different assumptions
and/or is compiled from differing datasets. Generally, the matrices are triangular,
also called half matrices, because in most substitution models, it is impossible
to tell which amino acid was substituted for which: A for C, or C for A. Overall,
the amino acid is more likely to be ‘‘conserved’’ or ‘‘substituted for itself’’, rather
than mutate so the diagonal values are the highest value.

In the BLOSUM62 mutation matrix, shown below, this conservation is denoted
by the high positive numbers along the diagonal. For example, C (Cysteine) is
found to have a high frequency of remaining unchanged, that is, it is likely to
be the same, with the ‘‘C to C’’ cell having a score of 9 compared to ‘‘C to G’’
(Glycine) of −3, showing that change is observed less frequently.

Both these examples have been highlighted in bold in the reproduced matrix.
This is the now-classical BLOSUM62 matrix as distributed in the ./data/ direc-
tory of the NCBI-BLAST search tool:

362 Tools and Datasets

A R N D C Q E G H I L K M F P S T W Y V
A 4
R -1 5
N -2 0 6
D -2 -2 1 6
C 0 -3 -3 -3 9
Q -1 1 0 0 -3 5
E -1 0 0 2 -4 2 5
G 0 -2 0 -1 -3 -2 -2 6
H -2 0 1 -1 -3 0 0 -2 8
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

The 62 in BLOSUM62 refers to the number of identical amino acids between two
sequences in the alignments used to produce the matrix.

The PAM250 matrices are included with the ClustalW and ClustalX packages.
As the PAM matrices were originally produced from the alignment of closely
related sequences, they must be extrapolated to score more distantly related
sequences. The number 250 in PAM250 shows that this matrix is more suitable for
general database searching between distantly related sequences. More formally,
the sequence is 250 Point Accepted Mutations (substitutions) per 100 amino acids.
It is possible for amino acids to mutate more than once, as there can be multiple
substitutions at the same location. In general, the lower the PAM number, the
closer the evolutionary distance the matrix is optimised for. Unless a special need
exists, such as making results comparable with a historical analysis, the advice is
to always use the BLOSUM matrices.

The need to select an optimal matrix is avoided by these programs, as they
adapt the matrices used during execution. ClustalW switches between different
matrices in the same series (either BLOSUM or PAM). See the original ClustalW
publication distributed in the ClustalW package as the clustalw.ms disk-file for
more details.

17.5 BLAST

BLAST, the Basic Local Alignment Search Tool, is probably the most widely used
tool/algorithm in Bioinformatics. Like ClustalW, BLAST is a sequence alignment
algorithm. However, whereas ClustalW is designed for the alignment of multiple

BLAST 363

sequences, BLAST is designed to test one query sequence against a database of
sequences in an attempt to find common regions11. ClustalW is a global alignment
algorithm that attempts to align every amino acid or nucleotide base to every
other one, whereas BLAST is a local alignment algorithm that attempts to match
the most similar subsections.

Many variants of the original BLAST algorithm, released in 1990, now exist. All
use the same general approach:

• Initially, regions of similarity between the query sequence being tested and
the sequences from the database are identified. This is accomplished by
finding High Scoring Segment Pairs (HSSP) referred to as ‘‘words’’. These
are analogous to the k-tuple pre-screening step of FASTA and the initial fast
alignment step of ClustalW. Each set of HSSPs can be assigned a score by sum-
ming the similarity values from an appropriate substitution matrix. Substitu-
tion matrices are only useful with protein (amino acid) alignments. For DNA
sequences, a simple identity matrix is used, in which each aligned nucleotide
scores the same value (usually 1), and unaligned nucleotides score zero. The
reason for the different approaches is that there is no adequate model to
capture the modulations of the four DNA nucleotide bases, whereas suitable
models have been found for the more variable amino acid substitutions.

• If the score of two sequences (based on the HSSPs they contain) is high
enough, then an alignment extension step is triggered. Otherwise, the algo-
rithm assumes that the two sequences are too dissimilar and moves on to
the next sequence in the database.initi

• In the BLAST algorithms, alignment extension is the most computationally
expensive step, hence the use of the HSSP scoring step to filter out align-
ments that will always be too poor to be useful. The extension procedure is to
start at the HSSP location and test the surrounding amino acids to determine
if they improve the overall alignment. Dynamic programming algorithms,
which can make allowance for gaps in the sequence, are sometimes used to
accomplish this.

One of the most popular variants of the original BLAST algorithm is NCBI-BLAST.
This is maintained by the National Center for Biotechnology Information (NCBI),
based in Bethesda, MD, USA. NCBI-BLAST is available for free download and is the
version of BLAST described and used within Bioinformatics, Biocomputing and
Perl.

Another popular version is WU-BLAST, in which the ‘‘WU’’ refers to Washington
University (in St Louis, Missouri, not Washington, DC). Despite the use of the
common name BLAST, only the outline principles used by the NCBI version

11
It is possible to use modern variations of the BLAST algorithm to perform multiple align-

ments, as well as use ClustalW to search for a single sequence in a database.

364 Tools and Datasets

and any other version of BLAST are shared. A popular, modern version is PSI-
BLAST, the Pattern Specific Iterative BLAST. With this tool, an initial BLAST search
using a standard matrix (typically BLOSUM62) is used to find similar sequences
that are then used to compile a position-specific matrix of the frequencies
of the amino acids found at particular locations in the alignment. A series
of position-specific matrix production/database scans are then produced. Such
‘‘personalised’’ frequency matrices with one column per amino acid improve the
quality of the alignment and consequently, the performance of the overall search.
Choosing which BLAST tool to use often depends on the individual circumstances
of the researcher.

Maxim 17.6 Exactly which BLAST is best depends on the circumstances.

17.5.1 Installing NCBI-BLAST

The installation of NCBI-BLAST is designed to be as simple as possible and there
are pre-compiled binary packages available for most modern operating systems.
The standard Linux/UNIX installation procedure (with a twist) is used to perform
an installation. Because of the packaging of the downloaded disk-file, some extra
bundled disk-files are included. Use these commands to create a directory for
NCBI-BLAST, then copy the downloaded disk-file into the directory and extract
the bundled contents:

cd
mkdir blast
cp blast-2.2.6-ia32-linux.tar.gz blast
cd blast
gzip -d blast-2.2.6-ia32-linux.tar.gz
tar -xvf blast-2.2.6-ia32-linux.tar

The included documentation suggests the creation of a configuration disk-file,
called .ncbirc12. Typically, configuration disk-files (such as .ncbirc) are found
within a user’s home directory. On Linux, a user called michael typically has a
home directory of /home/michael. The configuration disk-file for NCBI-BLAST
would then reside in /home/michael/.ncbirc. The contents of the default
configuration disk-file may look something like this:

[NCBI]

Data="/home/michael/blast/data"

Note that the documentation ‘‘suggests’’ the creation of the disk-file, though
when Michael didn’t his BLAST installation still worked. So we guess this step is
optional to some extent! But we suggest you do as the manual says, just to be safe.

12
The leading dot ‘‘hides’’ the disk-file within a directory. When the standard ls utility is used

to list the disk-files in any directory, hidden disk-files are not listed. Use ls -a to force the ls
utility to display hidden disk-files.

BLAST 365

17.5.2 Preparation of database files for faster searching

The BLAST algorithm requires the database of protein or nucleotide sequences be
indexed as this significantly improves the speed and efficiency of the searches.
The index is created using the included formatdb program, which stores the
generated indexes in the same directory location from where it is executed.
Conveniently, most of the larger sequence databases are available for download
in a pre-indexed form (from the usual FTP sites, including those maintained
by NCBI, EBI and others). However, a need often exists to create a subset of
sequences, in order to prevent wasteful searches or to include sequences not in
the public databases.

For demonstration purposes, a database subset containing all of the 55 Mer
Operon protein sequences present in the SWISS-PROT database has been created.
This subset is used to illustrate the automation of the BLAST indexing, search
and result- reporting systems.

The sequences were extracted using the SRS service at the EBI, searching for
the string ‘‘Mer’’ within the ID field of SWISS-PROT. The relevant entries (those
starting with ‘‘MerA/B/C/D/E/F/G/P/R/T’’) were selected manually and saved as
FastaSeqs to a disk-file called All Mer Proteins.fsa13.

To avoid cluttering the BLAST directory with index files, create a subdirectory,
called databases, to house them:

mkdir databases
cd databases
mv ../All_Mer_Proteins.fsa .

Then execute the formatdb program to create the index:

../formatdb -i All_Mer_Proteins.fsa -p T -o T -n Merproteins

The options used have the following meaning:

-i – Specifies the input disk-file (database).

-p – Specifies that the input disk-file contains protein sequences (where ‘‘T’’
means true).

-o – Specifies that SeqIdParse and the creation of extra indexes should be set
to true.

-n – Creates a database with the provided name, which is Merprotein in this
example.

13
We could have used Bioperl to do this. However, to do so, we would have needed to know

each ID in full or its corresponding accession code in order to provide the list of them to Bioperl.
This is one example in which the interactive search facilities are more convenient than their
automated, programmed cousins. More on Bioperl in our final chapter.

366 Tools and Datasets

Execution of the above command-line creates a series of five index disk-files in
the databases directory, in addition to the formatdb.log disk-file. The contents
of the databases directory, when listed with the ‘‘ls -l’’ command, should look
something like this:

-rw-r--r-- 1 michael users 17044 2003-10-04 22:12 All_Mer_Proteins.fsa
-rw-r--r-- 1 michael users 4744 2003-10-05 12:19 formatdb.log
-rw-r--r-- 1 michael users 12179 2003-10-05 12:19 Merproteins.psq
-rw-r--r-- 1 michael users 99 2003-10-05 12:19 Merproteins.psi
-rw-r--r-- 1 michael users 2162 2003-10-05 12:19 Merproteins.psd
-rw-r--r-- 1 michael users 520 2003-10-05 12:19 Merproteins.pin
-rw-r--r-- 1 michael users 6340 2003-10-05 12:19 Merproteins.phr

The formatdb.log disk-file records the progress and any errors related to the
indexing process. Here is an example log:

========================[Oct 5, 2003 12:44 PM ========================
Version 2.2.6 [Apr-09-2003]
Started database file "All_Mer_Proteins.fsa"
NOTE: CoreLib [002.003] FileOpen(".formatdbrc","r") failed
NOTE: CoreLib [002.003] FileOpen("/home/michael/.formatdbrc","r") failed
NOTE: [000.000] No number of link bits used found in config file. Ignoring
NOTE: [000.000] No number of membership bits used found in config file. Ignoring
NOTE: ncbiapi [000.000] SeqIdParse Failure at sw|Q52109|MERA_ACICA
NOTE: ncbiapi [000.000] SeqIdParse Failure at sw|P94188|MERA_ALCSP
NOTE: ncbiapi [000.000] SeqIdParse Failure at sw|P16171|MERA_BACCE

.

.

.
NOTE: ncbiapi [000.000] SeqIdParse Failure at sw|P30345|MERT_STRLI
Formatted 55 sequences in volume 0

Of interest is the fact that there are several ‘‘failures’’ reported. Despite this,
the output disk-files were still created. In fact, the failure reports relate to a
trivial problem with parsing the description: the sequence similarity-searching
still works.

As an example, use the MERA PSEFL protein as a test sequence by placing it in
a disk-file called test seq.fsa and do a BLAST search with the command-line:

blastall -p blastp -d databases/Merproteins -i test_seq.fsa

where the command-line options are:

-p blastp – identifies the BLAST type, which is a protein sequence search against
a protein database.

-d databases/Merprotein – identifies the indexed database disk-file.

-i test seq.fsa – identifies the ‘‘query sequence’’ to test against the database.

BLAST 367

When executed, the results were:

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

Query= Test_Seq (MERA_PSEFL)
(548 letters)

Database: All_Mer_Proteins.fsa
55 sequences; 12,123 total letters

Searching.done

Score E
Sequences producing significant alignments: (bits) Value

6_Merproteins Mercuric reductase (EC 1.16.1.1) (Hg(II) reductase). 1001 0.0
5_Merproteins Mercuric reductase (EC 1.16.1.1) (Hg(II) reductase). 863 0.0
1_Merproteins Mercuric reductase (EC 1.16.1.1) (Hg(II) reductase). 854 0.0

.

.

.

The descriptions are poorly handled by the indexing process, as indicated in the
formatdb.log disk-file. When properly formatted, the output should look more
like this:

Score E
Sequences producing significant alignments: (bits) Value
sp|Q51772|MERA_PSEFL Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 1001 0.0
sp|P00392|MERA_PSEAE Mercuric reductase (EC 1.16.1.1) (Hg(II) re...
863 0.0
sp|Q52109|MERA_ACICA Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 854 0.0

.

.

.

This is more descriptive than before and is nearly in standard format. The
standardisation is particularly important if the intention is to automate parsing,
for example, when using the EBI BLAST web-based service to create hyperlinks
to the SRS database. This particular problem is easily solved, and was caused
because of the fact that the formatdb program expected the description line in
the FASTA disk-file to be in a standard format. The table below, reproduced from
the README.formatdb disk-file supplied in the NCBI-BLAST package, specifies the
description line:

Database Name Identifier Syntax

GenBank gb|accession|locus
EMBL Data Library emb|accession|locus
DDBJ, DNA Database of Japan bj|accession|locus
NBRF PIR pir||entry
Protein Research Foundation prf||name

368 Tools and Datasets

SWISS-PROT sp|accession|entry name
Brookhaven Protein Data Bank pdb|entry|chain
Patents pat|country|number
GenInfo Backbone Id bbs|number
General database identifier gnl|database|identifier
NCBI Reference Sequence ref|accession|locus
Local Sequence identifier lcl|identifier

The FASTA sequence format generated by the EBI SRS server is:

sw|Q52109|MERA_ACICA Mercuric reductase (EC 1.16.1.1) (Hg(II) reductase).
MTTLKITGMTCDSCAAHVKEALEKVPGVQSALVSYPKGTAQLAIEAGTSSDALTTAVAGL ...

Apart from using sw instead of sp to denote the database type, this format
is almost the same as the format used by the MERA ACICA report from earlier.
Unfortunately, it is different enough to be wrong. Sadly, there are no defined
standards for FASTA-formatted descriptions. It is possible to use a custom Perl
program to convert the format of the database downloaded from EBI FastaSeqs
to a format that the NCBI BLAST formatdb program can process. However, a
better tool (in this particular instance) is the sed utility. The sed utility is a
‘‘serial editor’’, and it uses the same regular expression syntax as Perl. Execute
this command in the databases directory to convert the FASTA-formatted file
(that performs the necessary substitution on every matching line in the disk-file):

sed ’s/sw|/sp|/’ All_Mer_Proteins.fsa > Mer_db.prot

The newly created MER db.prot disk-file can now be indexed, overwriting the
previous database index disk-file:

../formatdb -i Mer_db.prot -p T -o T -n Merproteins

This command execution results in the following text being appended to the
formatdb.log disk-file:

========================[Oct 6, 2003 1:23 PM]========================
Version 2.2.6 [Apr-09-2003]
Started database file "Mer_db.prot"
NOTE: CoreLib [002.003] FileOpen(".formatdbrc","r") failed
NOTE: CoreLib [002.003] FileOpen("/home/michael/.formatdbrc","r") failed
NOTE: [000.000] No number of link bits used found in config file. Ignoring
NOTE: [000.000] No number of membership bits used found in config file. Ignoring
Formatted 55 sequences in volume 0

which is, thankfully, a lot cleaner than before! There are still some ‘‘failed’’
comments, but these relate to the absence of the disk-files that would modify
the default database and are not serious. Once the database has been created,
the original FASTA disk-file is no longer needed. It is safe to delete it or move it
elsewhere for storage. Re-running the blastp search gives the expected output:

BLAST 369

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

Query= Test_Seq (MERA_PSEFL)
(548 letters)

Database: Mer_db.prot
55 sequences; 12,123 total letters

Searching.done

Score E
Sequences producing significant alignments: (bits) Value

sp|Q51772|MERA_PSEFL Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 1001 0.0
sp|P00392|MERA_PSEAE Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 863 0.0
sp|Q52109|MERA_ACICA Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 854 0.0
sp|P94188|MERA_ALCSP Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 852 0.0

.

.

.

17.5.3 The different types of BLAST search

Using the principle of ‘‘three nucleotides to codon for one amino acid’’, there
are different types of translations/reverse translations that can be performed
internally by the generic blastall program. The type of BLAST search is specified
with a switch. Earlier, ‘‘-p (blastp)’’ was used to search protein databases with
protein query sequences. The full list of switches is as follows:

blastp – Protein (amino acid) query sequence used to search a protein database.

blastn – Nucleotide (DNA) query sequence used to search a nucleotide database.

blastx – Nucleotide query sequence that is translated in all reading frames by
BLAST into an amino acid query sequence that is then used to search a
protein sequence database.

tblastn – Protein query sequence reverse translated in all six reading frames
by BLAST into a nucleotide sequence that is used to search a nucleotide
database.

tblastx – Nucleotide sequence translated in all reading frames by BLAST into a
protein sequence and used to search a nucleotide database that is also being
translated in all reading frames by BLAST.

Of course, not all of these make sense in all situations. For instance, running
blastx against a protein query sequence is meaningless. Note that there are also
considerable differences in execution time. As one would expect, the more the
algorithm has to do, the longer it takes: blastp and blastn are fastest, next
fastest is blastx and blastn, with the slowest being tblastx.

370 Tools and Datasets

The parsing of BLAST outputs and the interpretation of the results is covered
later in this book, when Bioperl is introduced. For now, a working introduction to
these topics is presented, rather than a detailed discussion. For output parsing,
BLAST is probably as good a parser as will ever be needed. Other useful tools,
supplied with the NCBI-BLAST package, include fastacmd and blastclust.

The fastacmd tool

This tool can extract individual sequences from databases indexed by formatdb.
The fastacmd tool can also summarise the contents of the database. By way of
example:

fastacmd -d databases/Merproteins -I

produces the following output:

Database: Mer_db.prot
55 sequences; 12,123 total letters

File name:
databases/Merproteins

Date: Oct 5, 2003 3:50 PM Version: 4 Longest sequence: 631 res

The fastacmd tool can also extract a single sequence from the database. This is a
useful feature when storing the original FASTA disk-file from which the indexed
version was created, either on compressed disk or on a ‘‘slower’’ access medium
such as Tape, CD or DVD. This example command-line:

fastacmd -d databases/Merproteins -s MERA_SHIFL

produces the following output:

sp|P08332|MERA_SHIFL Mercuric reductase (EC 1.16.1.1) (Hg(II) reductase)
MSTLKITGMTCDSCAVHVKDALEKVPGVQSADVSYAKGSAKLAIEVGTSPDALTAAVAGLGYRATLADAPSVSTPGGLLD
KMRDLLGRNDKTGSSGALHIAVIGSGGAAMAAALKAVEQGARVTLIERGTIGGTCVNVGCVPSKIMIRAAHIAHLRRESP
FDGGIAATTPTIQRTALLAQQQARVDELRHAKYEGILEGNPAITVLHGSARFKDNRNLIVQLNDGGERVVAFDRCLIATG
ASPAVPPIPGLKDTPYWTSTEALVSETIPKRLAVIGSSVVALELAQAFARLGAKVTILARSTLFFREDPAIGEAVTAAFR
MEGIEVREHTQASQVAYINGVRDGEFVLTTAHGELRADKLLVATGRAPNTRKLALDATGVTLTPQGAIVIDPGMRTSVEH
IYAAGDCTDQPQFVYVAAAAGTRAAINMTGGDAALNLTAMPAVVFTDPQVATVGYSEAEAHHDGIKTDSRTLTLDNVPRA
LANFDTRGFIKLVVEEGSGRLIGVQAVAPEAGELIQTAALAIRNRMTVQELADQLFPYLTMVEGLKLAAQTFNKDVKQLS
CCAG

The blastclust tool

This tool automatically clusters database sequences using their similarity scores
from a single linkage clustering method. For example:

blastclust -d databases/Merproteins | head

BLAST 371

produces the following output:

Oct 5, 2003 4:21 PM Start clustering of 55 queries
P94700 P04140 P04336 P13112 P94185 Q51769 Q52106
P04129 P04131 P13113 P94186 Q51770
P00392 P94702 Q52109 P94188
P08664 P77072 Q91UN2
P06688 P07044 P13111
P08653 Q8CU52
P06689 P08654
P94703 Q52110
P94701 Q52107

.

.

.

17.5.4 Final words on BLAST

BLAST is a useful algorithm, whether it is available on-line (attached to well-
curated databases), or in use locally (for accessing bespoke or custom sequence
databases). The NCBI-BLAST package is easy to download, configure and use.
Despite this, others, such as WU-BLAST, are worthy of consideration. Pre-built
‘‘drop-in’’ web-based server packages that expose a BLAST server to an internal
(or external) network via the WWW are also available. Be aware that interpretation
of the results can be tricky, as is demonstrated later in this book.

Where to from Here

This chapter provides an introduction to some well-known databases, concepts
and tools commonly used in Bioinformatics sequence analysis. The installation
of two of the tools, ClustalW and BLAST (used extensively in the next chapter)
were described. Some extra features of these tools were also examined. The brief
examples presented in this chapter are expanded upon in the next chapter.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• Recognise the difference between the validation of a model and the testing of
it for self-consistency.

• Generally, False Negative predictions are considered more acceptable than
False Positives.

• With False Negatives, we could come back next year and find the ones we
missed, and these are preferred to False Positives, where we can waste time

372 Tools and Datasets

studying them this year, only to find out that the time was wasted. It all
depends on the circumstances.

• Sometimes, all those False Positives are maybe, just maybe, trying to tell you
something. So, if you aspire to a Nobel prize. . . .

• Use a fast, if inaccurate, algorithm to protect your slow, accurate second-stage
algorithm.

• Exactly which BLAST is best depends on the circumstances.

18

Applications
Using standard Bioinformatics applications.

18.1 Introduction

In this chapter, a common set of Bioinformatics applications are used to analyse
an example piece of DNA. The example used here has already been well char-
acterised experimentally by laboratory work, and it was selected for this very
reason. In the real world, the option to ‘‘look up the answer in the book’’ does
not typically exist: all you get are a set of predictions. For now though, sit back
and relax. Just bear in mind that life won’t always be this easy! Figure 18.1 on
page 374 summarises the activity of this chapter.

Bear in mind that as this chapter’s material is worked through, the results
produced may differ slightly from those presented here. This has to do with
the fact that the underlying databases (and the data contained therein) are
continuously being updated. For instance, the ‘‘missing genes’’ identified later in
this chapter may well be incorporated into the annotation after the publication
of this book.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

374 Applications

EMBL file
Homology
modelled
structures

Tools:
GeneMark, BLAST,
CLUSTALW,
SWISS-MODEL

Databases
EMBL, SWISS-PROT,
PROSITE

FASTA file

+

Figure 18.1 The overall plan for the regeneration of high-quality annotation infor-
mation as contained in the EMBL disk-file ISTN501.

18.2 Scientific Background to Mer Operon

This section describes the Mer Operon, its function, structure, regulation and
mobility.

18.2.1 Function

The Mer Operon is a system by which bacteria can detoxify reactive Hg2+ (mer-
cury) ions into metallic mercury (Hg0) using the compound NADPH, nicotinamide
adenine dinucleotide phosphate. The system has been well characterised in terms
of functionality tests in laboratory experiments, mutagenesis experiments and
the features of the DNA/protein sequences for many different organisms.

The proteins of the Mer Operon are one of the major detoxification mecha-
nisms in mercury-contaminated soils, which often occurs as the result of human
activities, especially gold mining. It is also the principal resistance mechanism
bacteria possess against the mercurial compounds that were used in some of the
first antibiotics, even though it is now somewhat dubious how effective many of
these treatments were in the first place.

18.2.2 Genetic structure and regulation

An operon is a group of genes that are either expressed or not, depending on
environmental conditions. An operon contains an operator to which a series of
control proteins termed repressors or activators binds. In the normal off state,
the control proteins are expressed at low levels and the Structural Genes are not
transcribed1.

When the functionality of the structural genes is needed, the repressors detach
from the second control region and transcription starts, that is, the genes are

1
These are called ‘‘Structural’’ for historic reasons: the first operons were discovered in viruses

coding for the structural parts of the virus coat/head. In this sense, they were the ‘‘structural
proteins’’, rather than an operator concerned with DNA replication.

Scientific Background to Mer Operon 375

expressed. In some systems, other activator proteins may also bind to increase
the level of expression: this is a role postulated for the MerC. Alternatively,
another protein might be required if expression of the operon is to occur at all.
For instance, the CAP (Catabolite Activator Protein) in the Lactose Metabolism
System coded for by the Lac Operon.

18.2.3 Mobility of the Mer Operon

The Mer Operon is found in a very similar form in many bacteria because it exists
in the form of a plasmid (a short section of circular DNA) on transposons (a
mobile piece of DNA) and in cellular DNA, the genome of an organism. Plasmids,
in particular, are frequently transferred between different species of bacteria as
well as within the same species. This is one of the mechanisms by which antibiotic
resistance spreads.

A transposon is a short piece of DNA that has the ability to move around and
between the genomes of cells. A typical feature of transposons is the inverted
terminal repeats, which are complementary sections of sequence found at both
ends of the sequence. These repeats assist with the transpsonon’s integration and
excision from a cell’s genome, and they have a set of enzymes called transponases
that catalyse these processes.

The principal proteins and their functions are summarised in Figure 18.2 on
page 3762.

Cysteine amino acids are highlighted as these are what the Hg2+ ions bind to in
a reversible way, so each one is potentially of great functional significance. The
gene structure (near the bottom of Figure 18.2) is taken from the EMBL database,
entry ISTN501/AC Z00027.

The known genes, as parsed and plotted by the Embl plot.pl program (exclud-
ing the unknown/probable ORFs), are:

[Feat. No] [Gene] [Spans nucleotides]

Feature# 0 merR (548 to 114)
Feature# 1 merT (620 to 970)
Feature# 2 merP (983 to 1258)
Feature# 3 merA (1330 to 3015)
Feature# 4 merD (3033 to 3398)
Feature# 5 tnpR (4792 to 5352)
Feature# 6 tnpA (5356 to 8322)

2
This is based on Figure 1, Hobman, J. L., Brown, N. L., in Metal Ions in Biological Systems

Volume 34 Mercury and its effects on environment and biology (Sigel, A., Sigel, H., editors),
Marcel Dekker Inc, 1997, p. 527–569, and in Operon Mer: Bacterial Resistance to mercury and
potential for bioremediation of contaminated environments, Nascinmento, AMA & E. Chartone-
Souza, Genetics and Molecular Research 2 (1) 92-101, 2003 and Summers, A. O., 1986, Ann. Rev.
Microbiol, 40, p. 607.

376 Applications

Hg0 Hg2+

Structure of Tn501
(Mer Operon)

Outer membrane

Periplasmic space

Inner membrane

Broad spectrum
resistance

Cytoplasm = Cysteine
amino acid

Hg-CH2-X

Hg2+
Hg0

Hg2+
Hg2+

Hg2+

NAPDPH

NAPDP+
MerB

MerA

MerP

MerD

MerR

Repression

Repression /activation

Gene structure of Embl ID: ISTN501

Redox reaction
driven by NADPH

M
erR MerA

M
erT

M
erP

M
erD TnpA

T
npR

P
as

si
ve

 d
iff

us
io

n
MerT

Figure 18.2 The principal proteins, their functions and the arrangement of the genes
in the Mer Operon.

The Mer Operon proteins and their function are summarised as follows:

----------- ---
Protein Function/Comment

----------- ---
MerA Mercury Reductase: Reduces Hg2+ to Hg0

----------- ---
MerP Sequestration Protein: Complexes with Hg2+

----------- ---
MerT Transport Membrane Protein: increases

passive diffusion inner membrane
----------- ---
MerR & MerD Regulatory Proteins
----------- ---

MerB Organo Mercurial Lyase: Cleaves Hg2+ from
Organic compounds (not found in all
bacteria)

Downloading the Raw DNA Sequence 377

----------- ---
MerC & MerE Currently unknown (or uncertain function)

MerC: Regulation?
MerE: Broad spectrum resistance?

----------- ---

18.3 Downloading the Raw DNA Sequence

The starting point for this chapter’s investigation is the full DNA sequence of
the Tn501 transposon from Pseudomonas aeruginosa, EMBL ID ISTN501. Obtain
a copy of this sequence by any of the following methods:

1. Using the Bioperl modules, as discussed in Chapter 20 (starting on 441).

2. Searching one of the on-line retrieval systems such as the SRS at the EBI, as
discussed in Chapter 14 (starting on page 297).

3. Retrieving directly from a ‘‘local copy’’ of the EMBL database3.

For a single sequence, it is often convenient to use SRS, as doing so also provides
access to ‘‘clickable’’ database cross references, which are especially useful for
accessing information about any particular protein found. Use any web browser
to surf to the SRS homepage, start a new session and enter the ISTN501 into
the Quick Text Search box, then click the Search button. The requested sequence
contains the full Tn501 transposon with all the Mer Operon genes, in addition
to a few extra transposon genes, with a total length of close to 8300 bases. To
download the sequence, click on the ID, then follow the Save link. Depending on
how the browser is configured, the entry may be saved directly to a disk-file or
displayed within the browser window. In either case, be sure to save the entry as
Text (not HTML) that is typically selectable in the browser’s download dialogue
box. Download ISTN501 in two different formats4:

1. Complete entries – This format is the EMBL flat file and contains the full
annotation. The disk-file can be named ISTN501.embl. The length of the
saved disk-file indicates that there is a lot known about this particular
sequence. Note that this format is used within this chapter to check predic-
tions.

2. FASTA sequence only – This format contains the name and the DNA
sequence data, which closely mimics the original data (less all the

3
A subject that is beyond the scope of this book. However, a good starting point is the EMBOSS

package, available from http://www.emboss.org.
4

The SRS help pages are very helpful and describe how to save the different formats.

378 Applications

annotations) as obtained from a sequencing project. Name this disk-file
ISTN501.fsa.

The goal for the remainder of this chapter is to obtain the same annotation (or
better!) as in the EMBL-formatted version of the disk-file (ISTN501.embl) from
the raw DNA sequence in the FASTA-formatted disk-file (ISTN501.fsa).

18.4 Initial BLAST Sequence Similarity Search

The first step is to compare the raw DNA sequence in the FASTA disk-file against
the SWISS-PROT database, giving some clues as to the type of proteins that
are coded for by the DNA sequence in the disk-file. Although far from perfect
(discussed in detail later), this analysis is quick and easy, and is usually a good
place to start.

Use the NCBI-BLAST server at EBI to search the SWISS-PROT database using
the BLASTx version of the algorithm. Be sure to do a 6-frame translation. This
ensures that the search covers all the possible ORFs (see section 18.5 for what an
‘ORF’ is).

Note that the valid options on the BLAST web page can change depending on
the selections made, and this can be a little disconcerting at first. For example,
it does not make sense to use the blastn program variant to compare a protein
sequence with the SWISS-PROT database, use blastp instead. Note that exactly
what drives the contents of which box does take a little getting used to but,
remember, the BLAST web page does not know whether the sequence is DNA or
protein, until after the Run button has been clicked.

For a sequence of this size (8300 bases), searched against SWISS-PROT database,
results should be returned within a few of minutes (peak times) or in under a
minute (non-peak times, usually weekends). Here is an extract of the results
returned:

Score E
Sequences producing significant alignments: (bits) Value
SW:TNP5_PSEAE P06695 Transposase for transposon Tn501. 1957 0.0
SW:TNP9_ECOLI P51565 Transposase for transposon Tn1721. 1923 0.0
SW:TNP7_ECOLI P13694 Transposase for transposon Tn3926. 1446 0.0
SW:TNP2_ECOLI P06694 Transposase for transposon Tn21. 1445 0.0
SW:MERA_PSEAE P00392 Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 1092 0.0
SW:TNP5_ECOLI P08504 Transposase for transposon Tn2501. 1040 0.0
SW:MERA_ENTAG P94702 Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 1008 0.0
SW:MERA_ACICA Q52109 Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 1003 0.0
SW:MERA_ALCSP P94188 Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 960 0.0
SW:MERA_SHIFL P08332 Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 931 0.0
SW:MERA_PSEFL Q51772 Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 915 0.0
SW:MERA_THIFE P17239 Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 843 0.0
SW:TNP6_ENTFC Q06238 Transposase for transposon Tn1546. 751 0.0
SW:TNPA_BACTU P10021 Transposase for transposon Tn4430. 699 0.0
SW:MERA_SHEPU Q54465 Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 596 e-169

Initial BLAST Sequence Similarity Search 379

SW:MERA_SERMA P08662 Mercuric reductase (EC 1.16.1.1) (Hg(II) re... 593 e-168
SW:TNPA_ECOLI Q00037 Transposase for transposon gamma-delta (Tra... 462 e-129

.

.

.

The results show that the top ‘‘hits’’ are against the transposase of various
transposons, and Tn501 is the highest scoring hit from the correct organism,
Pseudomonas aeruginosa. In fact, the first few hits are so high, the E-value
(expected value) is reported as 0, which indicates that they are off the scale.
Remember: for BLAST scores, ‘‘smaller, that is, closer to zero, is better’’. This is
somewhat counter-intuitive. However, the score is linked to the probability that
the alignment exists by chance.

Maxim 18.1 With BLAST scores, up is down and smaller is better and more
significant.

Remember that E-values are raised to a negative power: the larger the exponent,
the smaller the number.

The Mercuric Reductase hits are next, with the MERA PSEAE entry achieving
the highest score (as expected), which is the correct organism. These entries are
then followed by other organisms intermixed with the other transposon related
proteins.

If the number of reported hits is increased to the maximum of 250, the
search finds more of the lower-scoring hits corresponding to proteins such as
MerP, MerC and MerD. However, this larger list is full of hits against Mercury
Reductase, Glutathione Reductase and Dihydrolipoamide Dehydrogenase, all of
which are perfectly valid having low scores and good alignments, despite the
fact that all these extra hits do not add significantly to our knowledge. It is
clear that this sequence refers to a particular protein. Further, when different
proteins are reported, there are a lot of them and they are all mixed up among
each other.

The first problem, involving multiple hits, is easily solved. There are simply
too many examples of similar proteins in the SWISS-PROT database. For instance,
there are 12 MerA protein sequences. As demonstrated later, this can be very
useful, but for a simple identification, one example of each protein is all that’s
needed. The solution to this problem is to use a non-redundant dataset, as
discussed elsewhere in this book.

The second problem has to do with the way BLAST scores an alignment. The
longer, higher quality alignments have higher scores. When, as above, there is
a range of protein sizes, many of the shorter but high-scoring alignments are
pushed down to the bottom of the list by lower quality but longer alignments.
It turns out that the BLAST program is doing exactly what it is meant to. The
problem has to do with the way BLAST is being applied.

380 Applications

18.5 GeneMark

It is helpful to pre-cut the DNA into regions that code for individual proteins
before using BLAST (or any other tool) to identify what the particular protein is.
This is a task for gene-prediction programs, of which the GeneMark algorithm
is one example. GeneMark is available through the web-based EBI interface. The
GeneMark homepage is located here:

http://opal.biology.gatech.edu/GeneMark/

In this chapter, a bacterial system is used to demonstrate these tools, as the
accurate prediction of genes is often difficult when not using bacteria. This is
especially true when working with ‘‘higher organisms’’, such as human or yeast.

Bacterial proteins are generally coded for in one continuous long stretch
of amino acids, and has a 1:3 mapping to the corresponding DNA sequence.
Additionally, the Start and Stop codons, as well as the clear initiation/termination
signals5 mark the general region of the gene that codes for the translated protein.
This is the definition of an ORF, open reading frame, we use here. Although
appearing nice and simple, complexities abound in that start/stop codons and
the diagnostic binding site sequences vary slightly between different organisms.
If these are wrong, the predictions are weak unless the algorithm is robust.
Typically, assuming a simple ‘‘look between the start and stop codons’’ strategy
is not sufficient.

It is even more problematic in higher eukaryotic organisms, such as yeast, mice
and men, as the entire gene expression system is more complex. The protein-
coding regions can be discontinuous and for anything more complex than yeast,
they usually are. This means that only a small number of regions of a gene is
transcribed into RNA and hence, into protein. Add to this the fact that different
splice variants exist, and the process becomes more complicated. Gene expression
in Eukaryotes in general is a topic beyond the scope of this book. However, here
we will use a ‘‘simple’’ bacterial system for demonstration.

Technical Commentary: Before moving on, let’s mention GenScan, one of the best
programs for gene prediction in Eukaryotes. While some versions of GeneMark have
been optimised for finding genes in Eukaryotic organisms, GenScan does not operate
on bacterial sequences, as it is optimised for human or vertebrate searching. For
bacteria use GenMark; for higher organisms use GenScan.

For illustration purposes, let’s use the GeneMark web-based interface running
at EBI (refer to Figure 18.3 on page 381). To begin, select an organism to illus-
trate the search. Unfortunately, the Pseudomonas Aeruginosa is not listed. As
an alternative, let’s use Escherichia coli, as this has been known to carry Mer
Operon. Additionally, the plasmids/transposons appear to be quite interchange-
able between different organisms.

5
For example, polymerase binding site sequences.

GeneMark 381

Figure 18.3 The web-based interface to GeneMark as running at EBI.

Set the TEXT OUTPUT FORMAT to ‘‘reading frames’’ and set SELECTING ORFs
to ‘‘protein translations’’. These options ask GeneMark to report the sequences
of the predicted proteins in an appropriate format, and suppress some output
that is less relevant. Set the other options as shown in Figure 18.3, then paste
the ISTN501 sequence fragment into the text box. When the search concludes,
GeneMark returns a series of seven ORFs, which it places in a disk-file called
ISTN501 ecoli(4).orf.txt. The start of the disk-file contains that which is of
interest:

; GENEMARK OUTPUT

; Protein sequences translated from ORFs:

> orf_1 (embl|Z00027|ISTN501 Transposon Tn501 from Pseudomonas aeruginosa \\
plasmid pVS1 encoding mercuric ion resistance determinant. Gene, 538 - \\
164) translated
VETIRFYQRKGLLLEPDKPYGSIRRYGEADVTRVRFVKSAQRLGFSLDEIAELLRLEDGTHCEEASSLAE
HKLKDVREKMADLARMEAVLSELVCACHARRGNVSCPLIASLQGGASLAGSAMP*

> orf_2 (embl|Z00027|ISTN501 Transponson Tn501 ...

382 Applications

18.5.1 Using BLAST to identify specific sequences

The results of the search from the previous section indicate that GeneMark thinks
seven amino acid sequences are proteins. Let’s refer to these as ‘‘hypothetical pro-
teins’’ until there is further confirmation of their validity. One such confirmation
technique is to use BLAST against a well-curated database such as SWISS-PROT.

Once again, the web-based interface at the EBI can be used. On this occasion,
select the NCBI blastp version of the BLAST algorithm, and the SWISSPROT
database. For each of predicted proteins/ORFs in turn, paste the sequence into
the text box and click ‘Run’ to see if a similar protein has already been found.
Assuming the analysis system is operating correctly, the expectation is to receive
several hits. Inspect the top hits and check that:

• they all have high scores and

• they are all broadly consistent with each other.

More generally, an unknown ORF/predicted protein may be found to have simi-
larity to many seemingly disparate proteins, even though they have similar high
scores. This is reasonable: many proteins have regions that have specific func-
tions that are not unique to that particular protein. These regions may be a
few amino acids or an entire subsection of a protein, known as a domain. The
discussion that follows highlights an example of this in relation to the MerA
protein.

Here is a summary of the BLAST outputs. The more interesting results are then
discussed in detail.

--------------- ----------------------- -------------------------------------
GeneMark BLAST SWISS-PROT
Prediction Results Searches
--------------- ----------------------- -------------------------------------

Gaps in Good agreement
Alignment Probable ID Probable between

Sequence Probable of Top (Actually Protein prediction and
Code Length Protein Hit? Correct?) Length reality?
--------------- ----------------------- -------------------------------------
ORF1 124 MerR No P06688 (Y) 144 N (see text)
ORF2 91 MerP No P04131 (Y) 91 Y
ORF3 561 MerA No P00392 (Y) 561 Y
ORF4 128 MerD No P06689 (Y) 121 Y
ORF5 388 TNPM_ECOLI Yes P04162 (?) 116 N (see text)

(Transposon
Modulator)?

ORF6 186 TNR5_PSEAE No P06691 (Y) 186 Y
(Transponoson
Resolvase)

ORF7 988 TNP5_PSEAE No P06695 (Y) 988 Y
--------------- ----------------------- -------------------------------------

In general, GeneMark does a good job of finding those proteins that it was
expected to find. That is, the results provided enough hints to enable an educated

GeneMark 383

guess to be made as to what the proteins were. Before discussing what’s missing,
let’s examine the predictions for ORFs 1 and 5.

The ORF1 (MerR) prediction

Examining the results of the BLAST search, it appears that this protein is the
MerR (regulator) protein, in that ORF1 and MERR PSEAE align almost perfectly. A
subsequent ClustalW alignment of ORF1 against the full SWISS-PROT MerR entry
uncovers that GeneMark incorrectly identified the protein start point, as shown
here:

CLUSTAL W (1.82) multiple sequence alignment

MERR_PSEAE MENNLENLTIGVFAKAAGVNVETIRFYQRKGLLLEPDKPYGSIRRYGEADVTRVRFVKSA 60
ORF1 --------------------VETIRFYQRKGLLLEPDKPYGSIRRYGEADVTRVRFVKSA 40

**

The reasons for this incorrect identification are difficult to determine, but the
sub-optimal settings of the E. coli(4) model may be to blame. This issue is
returned to later in this chapter.

The ORF5 prediction

The selected test system was chosen because it is a good demonstration of what
can happen during analysis. ORF5 is typical of the type of results that can often
be confusing. Except for ORF5, all the other ORFs have similar, well-characterised
sequences within SWISS-PROT. However, in the case of ORF5, high BLAST scores
against many ‘‘hypothetical proteins’’ indicate that similar proteins/ORFs have
been found before, but that they are poorly characterised. The top hits from the
BLAST output, with the two most interesting hits highlighted in bold, are:

Sequences producing significant alignments: (bits) Value

SW:YNTC_AZOCA Q04855 Hypothetical 80.5 kDa protein in ntrC 5’reg... 192 1e-48
SW:YD54_MYCTU Q11024 Hypothetical protein Rv1354c/MT1397/Mb1389c. 183 5e-46
SW:TNPM_ECOLI P04162 Transposon Tn21 modulator protein. 183 6e-46
SW:PHY2_SYNY3 Q55434 Phytochrome-like protein cph2 Bacteriophyt... 182 1e-45
SW:YI95_SYNY3 P74101 Hypothetical protein sll1895. 181 2e-45
SW:Y4LL_RHISN P55552 Hypothetical 91.8 kDa protein Y4LL. 163 7e-40
SW:YDDU_ECOLI P76129 Hypothetical protein yddU. 162 1e-39
SW:YD57_MYCTU Q11027 Hypothetical protein Rv1357c/MT1400/Mb1392c. 160 6e-39

Reproducing the highlighted BLAST alignments gives this:

SW:TNPM_ECOLI P04162 Transposon Tn21 modulator protein.
Length = 116

Score = 183 bits (464), Expect = 6e-46
Identities = 88/116 (75%), Positives = 96/116 (81%), Gaps = 1/116 (0%)

384 Applications

Query: 272 MDVVAEGVETSASLDLLRQADCDTGQGFLFAKPMPAAAFAVFVSQWRGATMNASDSTTTS 331
M+VVAEGVET L LRQA CDT QGFLFA+PMPAAAF FV+QWR TMNA++ +T S

Sbjct: 1 MEVVAEGVETPDCLAWLRQAGCDTVQGFLFARPMPAAAFVGFVNQWRNTTMNANEPST-S 59

Query: 332 CCVCCKEIPLDAAFTPEGAEYVEHFCGLECYQRFEARAKTGNETDADPNACDSLPS 387
CCVCCKEIPLDAAFTPEGAEYVEHFCGLECYQRF+ARA T ET P+ACDS PS

Sbjct: 60 CCVCCKEIPLDAAFTPEGAEYVEHFCGLECYQRFQARASTATETSVKPDACDSPPS 115

and this:

SW:PHY2_SYNY3 Q55434 Phytochrome-like protein cph2 (Bacteriophytochrome cph2).
Length = 1276

Score = 182 bits (462), Expect = 1e-45
Identities = 103/247 (41%), Positives = 145/247 (58%), Gaps = 6/247 (2%)

Query: 72 ELAQAVERGQLELHYQPVVDLRSGGIVGAEALLRWRHPTLGLLPPGQFLPVVESSGLMPE 131
+L QA+ + L++QP V L +G ++G EAL+RW+HP LG + P F+P+ E GL+

Sbjct: 613 DLRQALTNQEFVLYFQPQVALDTGKLLGVEALVRWQHPRLGQVAPDVFIPLAEELGLINH 672

Query: 132 IGAWVLGEACRQMRDWRMLAWRPFRLAVNASASQVGPDFDGWVKGVLADAE---LPAEYL 188
+G WVL AC + + R R+AVN SA Q + W+ VL + +P E L

Sbjct: 673 LGQWVLETACATHQHFFRETGRRLRMAVNISARQFQDE--KWLNSVLECLKRTGMPPEDL 730

Query: 189 EIELTESVAFGD-PAIFPALDALRQIGVRFAADDFGTGYSCLQHLKCCPISTLKIDQSFV 247
E+E+TES+ D L LR+ GV+ A DDFGTGYS L LK PI LKID+SFV

Sbjct: 731 ELEITESLMMEDIKGTVVLLHRLREEGVQVAIDDFGTGYSSLSILKQLPIHRLKIDKSFV 790

Query: 248 AGLANDRRDQTIVHTVIQLAHGLGMDVVAEGVETSASLDLLRQADCDTGQGFLFAKPMPA 307
L N+ D I+ VI LA+GL ++ VAEG+E+ A L L++ C GQG+ +P+PA

Sbjct: 791 NDLLNEGADTAIIQYVIDLANGLNLETVAEGIESEAQLQRLQKMGCHLGQGYFLTRPLPA 850

Query: 308 AAFAVFV 314
A ++

Sbjct: 851 EAMMTYL 857

A good question to ask is which of these is ‘‘the best’’? According to the BLAST
scores, they are both very similar with E-values of 6e-46 and 1e-45. The first
alignment is shorter than the second, and has more identical or similar amino
acids, which normally implies a better alignment. However, this is not always
the case.

The other proteins in the list are all hypothetical and have little or no functional
annotation attached to them. Consequently, little insight can be gained from
these. The two high-scoring hits have such radically different functions that
choosing between them is not easy.

The first hit is against protein TNPM ECOLI/P04162, which is described in SWISS-
PROT as ‘‘transposon Tn21 modulator protein’’. Given that the other proteins
listed identified around it6, it is highly likely that the predicted ORF really is this
protein.

6
Referred to as the ‘‘biological context’’.

GeneMark 385

The second hit is against PHY2 SYNY3/Q55434, which is described in SWISS-
PROT as ‘‘Phytochrome-like protein cph2 (Bacteriophytochrome cph2)’’. Its func-
tion field contains the following:

PHOTORECEPTOR WHICH EXISTS IN TWO FORMS THAT ARE REVERSIBLY INTERCONVERTIBLE
BY LIGHT: THE R FORM THAT ABSORBS MAXIMALLY IN THE RED REGION OF THE SPECTRUM
AND THE FR FORM THAT ABSORBS MAXIMALLY IN THE FAR-RED REGION

Could this realistically be what the ORF predicted? It seems unlikely given the
biological context of a transposon. What is a phytochrome doing in a transposon?
Although it is possible that the second hit is valid, the first hit seems far more
plausible.

Referring back to the original EMBL disk-file that contained the full annotation
of the ISTN501 test sequence, there is an ORF-2 listed that seems to be very
similar to that which GeneMark predicted and called ORF5. Sadly, the link to
SPTREMBL describing ORF-2/ORF5 is uninformative:

FT CDS 3628..4617
FT /db_xref="GOA:Q48362"
FT /db_xref="SPTREMBL:Q48362"
FT /note="orf-2"
FT /transl_table=11
FT /protein_id="CAA77326.1"
FT /translation="MSAFRPDGWTTPELAQAVERGQLELHYQPVVDLRSGGIVGAEALL
FT RWRHPTLGLLPPGQFLPVVESSGLMPEIGAWVLGEACRQMRDWRMLAWRPFRLAVNASA
FT SQVGPDFDGWVKGVLADAELPAEYLEIELTESVAFGDPAIFPALDALRQIGVRFAADDF
FT GTGYSCLQHLKCCPISTLKIDQSFVAGLANDRRDQTIVHTVIQLAHGLGMDVVAEGVET
FT SASLDLLRQADCDTGQGFLFAKPMPAAAFAVFVSQWRGATMNASDSTTTSCCVCCKEIP
FT LDAAFTPEGAEYVEHFCGLECYQRFEARAKTGNETDADPNACDSLPSD"

To help clarify this situation, use ClustalW to do an alignment between the
three protein sequences: the GeneMark predicted ORF5, the protein sequence
from SWISS-PROT for TNPM ECOLI and the translated sequence included in the
ISTN501 EMBL entry (also called orf-2). Here is an extract from the ClustalW
output:

Sequence 1: ORF5 388 aa
Sequence 2: ISTN501 329 aa
Sequence 3: TNPM_ECOLI 116 aa

.

.

.

ORF5 AELPAEYLEIELTESVAFGDPAIFPALDALRQIGVRFAADDFGTGYSCLQHLKCCPISTL 240
ISTN501 AELPAEYLEIELTESVAFGDPAIFPALDALRQIGVRFAADDFGTGYSCLQHLKCCPISTL 181
TNPM_ECOLI --

ORF5 KIDQSFVAGLANDRRDQTIVHTVIQLAHGLGMDVVAEGVETSASLDLLRQADCDTGQGFL 300
ISTN501 KIDQSFVAGLANDRRDQTIVHTVIQLAHGLGMDVVAEGVETSASLDLLRQADCDTGQGFL 241
TNPM_ECOLI -------------------------------MEVVAEGVETPDCLAWLRQAGCDTVQGFL 29

*:********. .* ****.*** ****

386 Applications

ORF5 FAKPMPAAAFAVFVSQWRGATMNASDSTTTSCCVCCKEIPLDAAFTPEGAEYVEHFCGLE 360
ISTN501 FAKPMPAAAFAVFVSQWRGATMNASDSTTTSCCVCCKEIPLDAAFTPEGAEYVEHFCGLE 301
TNPM_ECOLI FARPMPAAAFVGFVNQWRNTTMNANE-PSTSCCVCCKEIPLDAAFTPEGAEYVEHFCGLE 88

:*****. **.***.:****.: .:*******************************

ORF5 CYQRFEARAKTGNETDADPNACDSLPSD 388
ISTN501 CYQRFEARAKTGNETDADPNACDSLPSD 329
TNPM_ECOLI CYQRFQARASTATETSVKPDACDSPPSG 116

*****:***.*..**...*:**** **.

What is apparent is that ORF5 is slightly longer than, and has the same sequence
as, orf-2. The TNPM ECOLI protein has a high amount of similarity in relation
to part of the other two. Why just this region? Are there multiple domains of
the modulator protein? And if so, does our protein here have an extra one?
Does TNPM ECOLI lack this domain? Or is it present but not acknowledged in the
SWISS-PROT annotation? It is not possible to tell from this information alone.

What is clear (from the evidence) is that ORF5/orf-2 is most likely the Tn501
version of the Tn21 modulator protein. This would usually be acknowledged as:

Tn501 modulator protein - by similarity

or some other similar note within a typical annotation scheme.

18.5.2 Dealing with false negatives and missing proteins

It is important to consider if any proteins are missing. According to the published
literature on Tn501, it is normal to find two other proteins:

1. MerT – which codes for a major part of the Mer Operon functionality,
specifically, the transport of Mercury ions through the cell membrane.

2. MerE – which is often found in Tn501, but which has (to date) some unknown
role.

Neither of these was identified in the ORFs column of the BLAST results on page
382. Yet in the EMBL-formatted disk-file, the MerT protein is listed and coded
for by nucleotides 620 through 970. This helps explain its inclusion in the gene
diagram of the Mer Operon presented at the start of this chapter (Figure 18.2 on
page 376). Note that GeneMark failed to predict this protein. This is possibly due
to the sub-optimal settings specified. It could also indicate that the MerT protein
has special features that caused it to be missed. However, given its position
in the operon and its biological function, this seems unlikely and it should be
considered ‘missed’ by GeneMark i.e. MerT is false negative.

In the case of MerE, it is necessary to consider whether there is a gene actually
present to predict at all. MerE genes have been found in Mer Operons, but
only recently, and certainly not in all cases. To date, no specific function has
been associated with them; this is in spite of many years of research. Possibly

GeneMark 387

its function (along with the MerG gene) is to broaden the range of mercury
compounds that the operon is effective against. Although possible, this is a
tentative speculation at best.

It turns out that ISTN501 does have a sequence that might well be a MerE gene,
as the EMBL annotation implies:

FT CDS 3395..3631
FT /db_xref="GOA:P06690"
FT /db_xref="SWISS-PROT:P06690"
FT /note="orf-1 (merE protein?)"
FT /transl_table=11
FT /protein_id="CAA77325.1"
FT /translation="MNNPERLPSETHKPITGYLWGGLAVLTCPCHLPILAVVLAGTTAG
FT AFLGEHWVIAALGLTGLFLLSLSRALRAFRERE"

From this annotation, it is clear that the annotators were unsure as to the
classification of this protein that is identified and listed as orf-1, with the more
speculative (merE protein?) appended as a suggestion of function. It seems
likely that ISTN501 does indeed contain a MerE gene now that this sequence has
been highlighted, so for the sake of argument, let’s assume GeneMark missed
predicting this gene, generating a false negative prediction.

18.5.3 Over-predicted genes and false positives

It is important to consider whether GeneMark incorrectly predicted any regions
that were in fact just pieces of DNA with no seemingly specific purpose. There
were none, but given the test system, there is not much scope for this type of error.
Nearly all the DNA sequence supplied coded for proteins! The identification using
BLAST could have been erroneous, but this would not have altered the GeneMark
false positive rate.

Had the analysis been performed on DNA from higher organisms, then the
false positive rate may well have been a problem, as some organisms have long
stretches of non-coding DNA. Additionally, coding regions are often discontin-
uous (as already noted), that is, they contain Introns, which can be a serious
problem.

A crude ‘‘trick’’ is to perform a quick reality check, to effectively reduce the
false positive rate is to do a BLAST search against the sequence databases for
each ORF. If low scores result from this search, implying that nothing similar has
been seen before, then the ORFs can be dismissed as false positive predictions.
Further, it’s possible to check the alignment to see if the start and end points are
valid.

Unfortunately, this technique has a number of drawbacks, not least of which
is that it excludes anything not previously identified, including truly novel
sequences that are often the most interesting!

388 Applications

18.5.4 Summary of validation of GeneMark prediction

An overview of the results of the GeneMark predictions is as follows:

--------- ------------------- ------------------ --------
Correct Prediction? Missed Prediction?

Gene Name True Positive False Negative ORF Name
--------- ------------------- ------------------ --------
MerP Yes ORF1
MerP Yes ORF2
MerA Yes ORF3
MerD Yes ORF4
TNPM Yes ORF5
TNR5 Yes ORF6
TNP5 Yes ORF7
MerE Yes
MerT Yes

--------- ------------------- ------------------ --------

The test system does not really have sufficient non-coding regions to assess the
False Positive or True Negative rates.

18.6 Structural Prediction with SWISS-MODEL

This section describes how to produce full 3D structural models for the predicted
proteins. SWISS-MODEL is an automated homology modelling server operating at
the ExPASy7 web-site, located at The Swiss Institute of Bioinformatics:

http://www.expasy.org/swissmod/

SWISS-MODEL uses one of the most accurate forms of structural prediction,
using known protein structures as a framework upon which to build the model
of the new sequence. This requires that a suitable template be identified in the
set of known structures. That is, at least one structure with a sequence that
has detectable homology needs to exist with the sequence to be modelled. As a
post-processing step, energy minimisation is performed on the resultant model
to optimise it.

The DeepView program (previously called Swiss-Pdb Viewer) can be used to
prepare sequence alignments to protein structure templates, then submit these
to SWISS-MODEL for modelling. The structural models returned can be viewed
and manipulated. Previously saved models can also be loaded from disk-file and
modelled. The models may be aligned structurally on the basis of selected amino

7
Yes, that’s how it is spelt.

Structural Prediction with SWISS-MODEL 389

acids or atoms, they may have angles or distances between atoms measured and
they can be corrected prior to being rendered to a very high quality using SWISS-
MODEL’s internal (or some other external) Ray Tracing algorithm8. DeepView is
available for free download for most desktop operating systems, including Apple
Macintosh, Microsoft Windows, GNU/Linux and SGI Irix.

Of note is that SWISS-MODEL uses a BLAST search of the Protein Databank
(PDB) structural database to find suitable template structures.

Use the web-based interface to the BLAST service at EBI to mimic the SWISS-
MODEL search. This allows the results to be inspected more easily. Normally,
this would be unnecessary as SWISS-MODEL provides a similar service. However,
when working with a set of unknown proteins, the ability to explore the PDB
using the clickable links returned in the EBI search output is useful. It is possible
to gain an impression of the structures that could be used as templates to model
the sequences. The settings for the BLAST search should be:

Database = PDB
Program = blastp
Search Title = ORF + (the index of the ORF sequence).

Here is a summary of the top BLAST search hits against the PDB database9:

--------- -- ------------------
ORF/ Details of best PDB hits from the NCBI BLAST service
Protein
--------- -- ------------------

Can be used to
PDB ID E-value Description (truncated by BLAST) predict structure?

--------- ------ ------- ----------------------------------- ------------------
ORF1/MerR 1EXJ 0.012 Multidrug-Efflux Transport ... -
ORF2/MerP 2HQI 1e-30 Mercuric Transport Protein Yes
ORF3/MerA 1EBD 1e-63 Diydrolipoamide Dehydroge ... Yes
ORF4/MerD 1JBG 1e-05 Transcription Activator Of ... Yes
ORF5/TNPM - - *** no hits found *** -
ORF6/TNR5 1GDT 2e-21 Gamma-Delta Resolvase Yes
ORF7/TNP5 1COI 2.7 D-Amino Acid Oxidase -
--------- ------ ------- ----------------------------------- ------------------

From these results, it would appear that it is worth submitting SWISS-MODEL
requests for ORFs 2, 3, 4 and 6.

Incidentally, it is rare indeed that BLAST reports ‘‘no hits found’’ for ORF5!
Normally, BLAST finds something, even though it might be with a very poor
E-score, for example, above 0.01. It is worth remembering that the PDB is a small,
specialised database compared to SWISS-PROT or EMBL, and this would often
make the chance of finding something similar quite low.

8
Ray Tracing is a general method used in high-quality image generation.

9
Remember: using the EBI service mimics the search by the SWISS-MODEL homology server,

but allows the results to be inspected.

390 Applications

Maxim 18.2 The major limitation of ‘‘homology modelling’’ is
that homology to a known structure is needed.

18.6.1 Alternatives to homology modelling

In those cases in which BLAST cannot find a similar structure, an alternative
structural prediction technique, such as Ab initio or Threading can be used.
Unfortunately, the results produced by these techniques are sometimes very
speculative. Most of the other common structural prediction techniques will
eventually give a structure that is broadly correct. The problem is that the
structure may be ‘‘buried’’ in a set of 20 or 30 incorrect structures, all of which
have subtle errors that are hard to detect. Recall that the structural prediction
algorithms have already done their best, so non-experts (like us!) working through
the models manually are unlikely to do better.

If secondary structure prediction is OK, there are good methods available
(such as PhD), which are now incorporated into the PredictProtein system. These
assign each amino acid to the same broad classes as the STRIDE algorithm:
Helix, Sheet/Extended and Turn/Coil, but it is uncertain what advantage this is.
Interesting it may be, but is it useful? Well, only for certain special cases – one of
which is as a basis for the prediction of the full 3D structure by another method.

18.6.2 Modelling with SWISS-MODEL

As there is no extra information to optimise the alignment, just copy and paste
the sequence data into the text box on the First Approach mode of the SWISS-
MODEL web page. The system prompts for an e-mail address to send results to
as a PDB data-file10. Enter a meaningful title (such as a tag to identify the ORF)
into the Request Title field, then click on Send Request.

An acknowledgement, in the form of a ‘‘Welcome to SwissModel’’ e-mail,
confirms that the request is being processed. The speed with which any further
e-mails arrive depends on what structures SWISS-MODEL finds as templates.

When the modelling completes, a summary of the process is sent as an e-mail
titled ‘‘Tracelog’’. This e-mail contains two parts:

1. The AlignMaster output lists what similar templates were found, how similar
they are and how they overlapped with each other in the form of a schematic
table. It also shows which part(s) of the protein sequence it will pass
forward for modelling. These are often the most interesting statistics as
they indicate how complete the model will be. If the sequence shows
definite homology to two or more groups of structures (if it is a multi-
domain protein, for example), then AlignMaster initiates modelling on each
section separately.

10
Be careful: each e-mail may be large, often some megabytes, and a lot of them arriving over

a short period of time may rapidly fill up your e-mail inbox.

Structural Prediction with SWISS-MODEL 391

2. The ProMod output takes the alignments produced by AlignMaster (or an
alignment optimised in a package such as DeepView) and does the actual
modelling. Refer to the SWISS-MODEL manual for more details.

When further e-mails then arrive, each region of the sequence modelled will then
arrive in a separate email. These e-mails contain data in PDB format. Here is a
summary of the expected trace logs:

----------- ---------- ---------------------- ------------------
Region(s) modelled Number of accepted

ORF/Protein ORF Length (index of amino acids) templates
----------- ---------- ---------------------- ------------------
ORF2/MerP 91 15 to 91 9
ORF3/MerA 561 1 to 73 (A) 83

95 to 551 (B) 2
ORF4/MerD 128 - 0
ORF6/TNR5 186 23 to 186 7
----------- ---------- ---------------------- ------------------

There are several interesting aspects to these results. With ORF2 and ORF6, the
prediction does not start at amino acid 1, which may seem strange at first.
This is OK, as there is no absolute requirement for it to do so. AlignMaster
detects homology and it has coincident starts for very similar proteins that
have conserved domains, but for less similar proteins, the homology could start
anywhere in the structure.
ORF3/MerA is predicted in two different regions with a gap of nearly 20 amino

acids in between. By inspecting the AlignMaster output, it is possible to determine
a particular template matches either one part or the other, but not both. This
implies that the protein has two distinct domains as shown by this fragment of
the alignment table:

Target Sequence: |===|
1ebdA.pdb | ---------------------------------------

.

.

.
1aw0_.pd |------
2aw0_.pdb |------

ORF4/MerD was not predicted, but the EBI BLAST search found a suitable homol-
ogous structure. SWISS-MODEL imposes stricter criteria than our simple BLAST
search, as follows:

BLAST search P value : < 0.00001
Global degree of sequence identity (SIM) : > 25 %
Minimal projected model length = 25 aa.

While the local BLAST alignment was good enough, with 34 of 109 (31%) of amino
acids identical, the alignment to 1JBG was rejected. This happens when all 128

392 Applications

Figure 18.4 The SWISS-MODEL predicted structure of ORF2/MerP.

amino acids are considered by AlignMaster using the global alignment criterion,
and where too few ‘‘identities’’ were acceptable.

Why the difference? It is important to remember that the NCBI-BLAST and the
AlignMaster BLAST may be the same or different algorithms. Additionally, they
may use different parameters and, consequently, produce different alignments.
In a borderline case (as described here), this difference is important. However, do
not worry about this. The model produced from a single template with so little
homology would probably have been quite poor anyway! Still, any model at all is
often better than no model, and DeepView can always be used to manually prepare
an alignment. Just remember that the resultant model may be of dubious quality.

The next step is to extract the structural models from the e-mails and load
them into a graphical viewer. A useful tool is Open Rasmol, which can be used
to get an impression of the overall structure. Consider the ORF2/MerP example
shown in Figure 18.4 on page 392:

Looking at the model on screen (Figure 18.4), it is often difficult to see any
relationships. However, the model does give some impression of the deviation
between the different templates and the original structures on which the model
was based. This is due to the fact that SWISS-MODEL returns both of these in
the same PDB data-file. This is useful, but it is often necessary to view the target
structure on its own. A good technique is to cut the PDB data-file at the boundary
between the TARGET and the first of the original structure models. To help with
finding the correct position, load the PDB data-file into a text editor and cut as
indicated in this extracted fragment:

SPDBVa 69 70 71 72 73 74 76 77 78 79
SPDBVa 80 81 82 85 5

Structural Prediction with SWISS-MODEL 393

SPDBVn r TARGET
SPDBVE

<<<<<<<<<<<<<<<<<<<<<<<<<<< Cut needed here!

COMPND ?
REMARK File generated by Swiss-PdbViewer 3.70b17
REMARK http://www.expasy.org/spdbv/
CRYST1 1.000 1.000 1.000 90.00 90.00 90.00 P 1 1
ATOM 1 N ALA 1 17.219 2.023 -0.443 1.00 0.00

The code fragment also excludes any extra lines added by SWISS-MODEL that
confuse DeepView. DeepView expects the other structures to be present, Open
Rasmol does not care! Here is a fragment of Perl program code to perform the cut:

while (<>)
{

if (/^SPDBVE/)
{

print "END\n";
last;

}

if (/^SPDBV/) { next; }

if (/^SEQALI/) { next; }

print $_;
}

This while loop terminates when the SPDBVE line is encountered, while skipping
the SPDBV and SEQALI lines. All other lines (up to the SPDBVE line) are printed.

For a low number of structures such as we have here (only five), it is a viable
option to use a text editor to delete all the remaining lines in the file. Be careful
not to ‘‘over-code’’ solutions to problems and create custom programs only when
you really need to.

To distinguish these single structures from those also containing the templates,
use memorable names such as ORF2 Target.pdb and ORF3 A Target.pdb and
so on. A simple shell script can help here, as follows:

#!/usr/bin/tcsh

./Target_Parse.pl ORF2.pdb > ORF2_Target.pdb

./Target_Parse.pl ORF3_A.pdb > ORF3_A_Target.pdb

./Target_Parse.pl ORF3_B.pdb > ORF3_B_Target.pdb

./Target_Parse.pl ORF6.pdb > ORF6_Target.pdb

SWISS-MODEL returns multiple models. The first is the predicted model, and each
subsequent model is of the sections of the original proteins on which the model

394 Applications

Figure 18.5 The SWISS-MODEL predicted structure of ORF2/MerP, second version.

Figure 18.6 The SWISS-MODEL predicted structure of ORF3/MerA (A).

was based. To produce these views in Open Rasmol, the Display is set to Backbone
and Color is set to Structure11. The produced models are shown in Figures 18.5
through 18.8.

Simply by looking at the structures from ORF2/MerP and ORF3/MerA (A), they
seem to be very similar. The next section describes how to confirm or refute this
suspicion.

11
We have rotated the model for publication purposes.

Structural Prediction with SWISS-MODEL 395

Figure 18.7 The SWISS-MODEL predicted structure of ORF3/MerAB.

Figure 18.8 The SWISS-MODEL predicted structure of ORF6/TNR5.

396 Applications

18.7 DeepView as a Structural Alignment Tool

In this section, the DeepView program is used to extract protein sequences,
perform an alignment on the basis of the structure and measure some bond dis-
tances. Assuming DeepView is installed, load the two data-files (ORF2 Target.pdb
and ORF3 A Target.pdb) into DeepView. The resultant display should look like
the screen-shot in Figure 18.9 on page 396.

The images in Figure 18.9 have been rendered to show helices, sheets and
turns in order to demonstrate the rendering capability of DeepView. To generate
a similar view, select Preferences, Ribbons, then check the ‘‘Render as Solid
Ribbon’’ option. In the figure, extensive alterations to the defaults were made to
help distinguish the different secondary structures in black and white. Originally,
helices had a red theme, sheets were yellow and coils were blue. The original image
is quite beautiful12. To separate the two proteins as shown in the Figure 18.9,
be sure to uncheck the ‘‘can move’’ option on the top right of the Control Panel
for one structure and use a combination of the Move and Rotate functions. Some
experimentation with the various options will be necessary.

To align the two structures on the basis of their 3D spatial coordinates, use
the Iterative Magic Fit facility. Select Fit, then Iterative Magic Fit from the menu
system. A dialogue box appears, as shown in Figure 18.10 on page 397.

The result is that the two structures align with a root mean squared deviation
(RMSD) of 1.59 Angstroms. This is very close, but there are still some differences,

Figure 18.9 The ORF2 and ORF3 A structures loaded into DeepView prior to structural
alignment.

12
It can be seen in all its colourful glory on the Bioinformatics, Biocomputing and Perl web-site.

DeepView as a Structural Alignment Tool 397

Figure 18.10 DeepView’s Iterative Magic Fit dialogue box.

see Figure 18.11 on page 398. Poor fits may be greater than 10 Angstroms or
more, although SWISS-MODEL warns when radically different proteins do not fit
well. As an example, attempt the alignment of the ORF3 A and ORF3 B structures
and see what happens. DeepView issues a warning and aborts, effectively saving
us from ourselves!

The two aligned models can be investigated further in DeepView (such as by
measuring the distances between atoms) or exported in their current orientation.
To demonstrate using DeepView, click Select, then All. Then choose Edit, then
Create Merged Layer from Selection13. Then select the new copies of the merged
proteins, which have been created on a new layer called merge , by using the
drop down menu in the Control Panel window, which is marked by a small
black triangle (refer to Figure 18.12 on page 398). When ready, use File, then
Save, then Layer to save the structure to a PDB formatted disk-file. This is a
less-than-obvious process, so refer to Figure 18.12 as necessary.

DeepView also has the ability to export the sequence to a FASTA-formatted
disk-file. This allows two sequences to be aligned in ClustalW to see how the two
models align in terms of sequence. Export each structure (but not the merged
layer) in turn using File, then Save, then Sequence (FASTA) to appropriately named
disk-files, such as ORF2 DeepView.fsa and ORF3 A DeepView.fsa. Perform a

13
DeepView uses the concept of layers. Each structure is on a separate layer, until assigned

otherwise.

398 Applications

Figure 18.11 Structural alignment created using the DeepView’s Iterative Magic Fit
facility.

Figure 18.12 Selecting the current ‘‘layer’’ in DeepView.

sequence-based alignment using ClustalW, producing the following results:

CLUSTAL W (1.82) multiple sequence alignment

Model_ORF2 ATQTVTLSVPGMTCSACPITVKKAISEVEGVSKVDVTFETRQAVVTFDDAKTSVQKLTKA 60
Model_ORF3_A ---MTHLKITGMTCDSCAAHVKEALEKVPGVQSALVSYPKGTAQLAIVPG-TSPDALTAA 56

. *.:.****.:*. **:*:.:* **... *:: . * ::: . ** : ** *

Model_ORF2 TADAGYPSSVKQ 72
Model_ORF3_A VAGLGYKATLAD 68

.*. ** ::: :

DeepView as a Structural Alignment Tool 399

M
erP

Reductase
domain

M
erP

H
M

A

Reductase
domain

Duplication
event

Originally: Currently:

Figure 18.13 Possible explanation behind MerA/HMA duplication event.

These results indicate why the structural alignment was so good. The sequences
are very similar, but not absolutely the same. This latter point is important,
as it indicates that neither we nor GeneMark got confused along the way and
analysed the same thing twice, which is easily done. Now that it is known that
the results are not in error, it is worth investing more time in interpreting them.
The conclusion, thus far, is that the ORF2/MerP and the ORF3 A/MerA sequences
and structures are very similar.

Is this a logical conclusion? Yes, it is because the MerP and MerA domains
are physically next to each other on the piece of DNA. So it is reasonable to
speculate that duplication occurred at some time in the evolutionary past and
became preserved, see Figure 18.13 on page 399. It seems that the function of
the MerP protein is to sequester Hg2+ ions in the Periplasmic space to prevent
them from reacting with anything vital – at least until they can be passed into the
cell interior and detoxified by the Mer system.

It is plausible that otherwise MerT would be may simply be dumping these
reactive ions into the cytoplasm. It would be advantageous to the cell to again
sequester these ions until it detoxifies them . . . and where better to do so than
close to the MerA protein, thus increasing the local concentration in the vicinity
of the detoxification system?

Before moving on, it is worth comparing the results of the homology model to
a real Mercury Reductase structure in a semi-blind test. Recall that neither the
PDB database search nor SWISS-MODEL’s found a similar structure. It turns out
that one does indeed exist, although it is of medium quality and from Bacillus.
On top of this, it is published in the top-quality journal Nature. How can this be?

The explanation has to do with timing. The Mercury Reductase structure was
published in Nature before the editorial policies changed to those that required
submission of the structure to public databases prior to – and as a condition
of – publication. In fact, there has never been any attempt by the researchers to
suppress this structure and it was gladly e-mailed to your authors upon request14.

14
If you want to try the structure yourself, consider its acquisition a modern-day, web-based,

biological treasure hunt. Please do not ask us to send it to you, as it is not ours to give away.

400 Applications

Cysteines:
207 & 212 in X-ray
structure
or 42 & 47 in model

Cysteines:
628 & 629
in X-ray structure
(not predicted
in model)

Figure 18.14 The structural alignment of ORF3 B and the ‘‘official’’ Mercury Reduc-
tase X-ray structure.

Figure 18.14 on page 400 shows the ORF3 B/MerA reductase model aligned to
the ‘‘official’’ Mercury Reductase X-ray structure with an RMSD of close to 1.50
Angstroms.

On Figure 18.14, the X-ray determined structure is coloured grey and the model
structure is coloured black. For clarity, only the backbone traces are shown. The
sulphur atoms of the cysteine amino acids, which are important for catalysis,
are shown spacefilled. In general, the backbone is well predicted and follows the
‘‘real’’ structure closely. However, the important structural details around the
two cysteine residues labelled 628 and 629 in the X-ray structure (corresponding
to residues 558 and 559 in the ORF3 sequence) are missing. The general shapes
are the same, but some regions of the backbone have minor deviations. In fact,
this could well be the case. It should not be expected that the two structures
from different species are absolutely identical.

The main point is that SWISS-MODEL cannot predict the locations of the two
key cysteine amino acids at the end of the structure because this is an apparently
unique arrangement and there cannot be anything similar in the PDB database.
Hence, the model stops just when everything is getting interesting, as can be seen
from this manual alignment with the two key amino acids highlighted in bold:

SWISS-MODEL Can Predict >...GLKLAAQTFN
Actual Sequence >...GLKLAAQTFNKDVKQLS CC AG

Such is life when homology modelling.

PROSITE and Sequence Motifs 401

Maxim 18.3 Homology modelling can only model protein sequences
similar to those that are already known.

To get accurate positions for these residues with current technology, the best
option is to re-determine the structure experimentally. It may be possible to
use molecular modelling techniques, but doing the wet-lab work may be easier.
It is certainly possible, as somebody has already done it! Good luck with your
efforts.

18.8 PROSITE and Sequence Motifs

PROSITE, PRINTS and BLOCKS are sequence motif databases that document short
fragments of protein sequences found in proteins of similar function. A motif
is a short section of protein (or DNA for that matter) that refers to a particular
piece of sequence or structure that re-occurs frequently and, as such, is related
to a particular function. For instance, a group of six or eight amino acids that are
rigorously conserved in or around the active site of an enzyme or binding site.
Longer motifs are also found that are more diagnostic of general domains. These
are generally more variable and stored as sequence-scoring profiles.

The underlying premise is that to obtain an idea of a sequences function, all
that’s required is the identification of a few key amino acids within the sequence
in a particular order. While the rest of the protein is important for supporting
these active residues, from a diagnostic perspective, it is just ‘‘fluff’’.

Simple PROSITE patterns are essentially regular expressions that encode posi-
tions of amino acids relative to each other in the sequence. For example:

PROSITE Pattern: G-M-T-K-[GM]-x-C
Regex: /GMTK[GM].C/

where ‘‘x’’ denotes any amino acid. Patterns are identified by inspecting sequence
alignments of multiple proteins for regions where there is good conservation
at the same position throughout all the examples (that is, in the same column
for a typical ClustalW output). The aim is to produce the longest consensus
pattern possible, one that has the least variability and consequently, the highest
specificity.

The problem of employing pattern matching using short motifs is the high False
Positive Rate. On purely statistical grounds, the probability that short patterns
occur by random chance is high. Consider as an example a pattern with five
amino acids in it (for example, APLIK), that has been identified as a diagnostic
feature of a protein under study. Assuming an equal probability for each amino
acid of 1 in 20, this gives an expected frequency of the pattern occurring once
in every 3,200,000 amino acids by chance alone (as 20 raised to the power of
5 is 3,200,000). When multiplied by three (as three nucleotides are needed to

402 Applications

code for a single amino acid), the chance of a pattern occurring is 9,600,000 to
one. That is one occurrence in every 9.6 million bases. By starting to translate
DNA into protein in all six reading frames, as would be done for a sequence
similarity search analogous to using blastx, there would be an occurrence of
the pattern on average every 1.6 million bases (9.6 divided by 6). This is far too
high a value, especially when scanning entire genomes in the giga-base range!
Even when considering dissimilar proteins, the amino acids are not uniformly
distributed15 and this increases the probability of random matches occurring.

Maxim 18.4 Searching large datasets with non-specific, short
sequence fragments results in many false positives.

The root of this problem is that each of the amino acids in the pattern either
matches or does not. Therefore, the patterns must be kept short, or they fail to
match real examples. That is, the patterns need to be short to help maintain a
high True Positive Rate. When they are less specific, they match other regions in
error, therefore increasing the False Positive Rate, which is not good.

Although more complex, a better solution is the use of Sequence-scoring
Profiles16. Profiles are superior because they use the stored frequency profile
of individual amino acids at a particular location, rather than simply trying
to determine whether a particular amino acid is found or not. Determining the
frequency profile from an alignment is not difficult: count up the number of times
each type of amino acid is found at each location, then divide by the expected
frequency of finding these there. A sequence is then scored by comparing its
amino acid contents to the frequencies stored in the profile, then adding up the
likelihood of finding each amino acid at each location. If the result exceeds a
certain value (usually empirically determined), then the sequence is reported as
containing that profile.

Tricks such as the use of log-odd scores and dynamic programming algorithms
are often used with sequence scoring profiles to make applying them compu-
tationally more efficient. It is worth mentioning that sequence-scoring profile
methods are closely related to Markov Models.

18.8.1 Using PROSITE patterns and matrices

Rather than create new PROSITE patterns or scoring matrices (this is quite easy
to do if you have a multiple sequence alignment), let’s apply some pre-compiled
patterns. When it comes to testing sequences, there are two usual options:

1. Use a web-based interface to a hosted service.

2. Download the programs and run them.

15
The sequence space is biased.

16
This technique is used extensively in the tRNAScan-SE search system and set of programs.

PROSITE and Sequence Motifs 403

In either case, it is a good idea to enable the filter that blocks patterns that
occur frequently, unless specifically interested in them. Running the first search
configured to report these might be useful, so that in the future it is possible
to know what is missing (why there is no need to worry about it). The current
PROSITE homepage is:

http://www.expasy.org/prosite/

Using this web-site is straightforward: simply follow the on-screen instructions.
Supply a sequence (copy and paste a sequence into the text box), supply a SWISS-
PROT accession code or queue a file for upload. It is often prudent to check
the ‘‘Exclude patterns with a high probability of occurrence’’ check box prior to
starting the search, or your results will be buried in a lot of trivial patterns that
are non-specific and occur very frequently.

18.8.2 Downloading PROSITE and its search tools

The PROSITE database and search tools are available for download, which is
free to academics and non-profit organisations. Pre-compiled binary versions
are available for different operating systems, and the source code is also avail-
able. Download the pre-compiled Linux version from the /tools directory and
decompress and unpack it using these commands:

gzip -d ps_scan_linux_x86_elf.tar.gz
tar -xvf ps_scan_linux_x86_elf.tar

These commands create a new directory called ps scan, which contains the main
scanning program (pfscan) and its associated, easy-to-use interface program
(ps scan.pl). The disk-file containing the PROSITE database is also required.
This is called prosite.dat, be sure to place it in the same directory as the
pfscan program.

To start a PROSITE scan, use ps scan.pl against the SWISS-PROT or FASTA-
formatted sequence disk-file of interest. If there are multiple sequences in the
same file, then the -e parameter can be used to identify the particular sequence
to be scanned.

The ps scan.pl program is an administrator interface to pfscan. It also
parses the patterns from the PROSITE database file, converts them into regular
expressions in order to perform the scans and then it calls pfscan, which does
the actual matrix searches.

In its default mode, ps scan.pl prints a list of matches, or prints nothing
when there are no matches. The command lines that follow show how to execute
the PROSITE scan on the ORF sequences predicted by GeneMark. The -s switch
suppresses the most frequent and non-specific patterns.

./ps_scan.pl -s seqs/ORF1.fsa > ../ORF1.prosite

./ps_scan.pl -s seqs/ORF2.fsa > ../ORF2.prosite

404 Applications

No PROSITE patterns or sequence profiles were found in ORF1, ORF4 or ORF7, so,
although these disk-files exist, they are empty. ORF2, ORF3, ORF5 and ORF6 all
produce results, and these are analysed in the subsections that follow.

ORF2 and ORF3

ORF2 (MerP) and ORF3 (MerA) both report the same pattern and sequence
profile for their Heavy-metal-associated domains:

orf_2 : PS01047 HMA_1 Heavy-metal-associated domain.
28 - 57 VpgMtCsACpitVkkaIsevegvskvd.VtF

orf_2 : PS50846 HMA_2 Heavy-metal-associated domain profile.
23 - 89 TVTLSVPGMTCSACPITVKKAISEVEGVSKVDVTFETRQAVVTFDDAKTSVQKLTKATAD L=0

AGYPSSV

Notice how with HMA 1, the sequence pattern is shorter (amino acids 28 through
57). Contained inside HMA 2 is the scoring profile (amino acids 23 through 89). This
is a classic demonstration of patterns being smaller and targeting subsections of
a larger corresponding profile for the reasons discussed earlier.

The results for ORF3 are understandably similar, as would be expected given
the structural evidence from SWISS-MODEL discussed in the previous section.
Here though, HMA 1 runs from amino acid 6 through 35, and HMA 2 runs from
1 through 66. There’s also a PYRIDINE REDOX 1 pattern found at residues 133
through 143:

orf_3 : PS00076 PYRIDINE_REDOX_1 Pyridine nucleotide-disulphide oxidoreductases \\
class-I active site.
133 - 143 GGtCVnvGCVP

This is consistent with the reductase functionality of MerA and the SWISS-MODEL
results.

ORF5

The output for ORF5 contains an EAL domain profile, as follows:

orf_5 : PS50883 EAL EAL domain profile.
66 - 318 DGWTTPELAQAVERGQLELHYQPVVDLRSGGIVGAEALLRWRHPTLGLLPPGQFLPVVES L=0

SGLMPEIGAWVLGEACRQMRDWRMLaWRPFRLAVNASASQV-GPDFDGWVKGVLADAELP
AEYLEIELTESVAF-GDPAIFPALDALRQIGVRFAADDFGTGYSCLQHLKCCPISTLKID
QSFVAGLANDRRDQTIVHTVIQLAHGLGMDVVAEGVETSASLDLLRQADCDTGQGFLFAK
PMPAAAFAVFVSQWR

This output highlights the problem with this method of scanning PROSITE: the
descriptions can be quite brief! To be fair, the prosite.dat disk-file is designed
for super-fast scanning. Consequently, the human-readable descriptions are in
the disk-file called prosite.doc. The two disk-files can be linked together using
the ID code (an example of which is PS50883 from above). Creating a Perl program
to create this linkage is left as an exercise for the reader.

PROSITE and Sequence Motifs 405

In the absence of a program to do this particular ‘‘grunt work’’, a manual text
search of prosite.doc finds this entry:

END
PDOC50883
PS50883; EAL
BEGIN

* EAL domain profile *

The EAL domain is an around 250-amino acid signalling domain. It is made of
four conserved regions and has been named EAL according to a conserved
sequence within the second of these regions. The EAL domain is found in a
large number of eubacterial multi-domain proteins involved in signal
transduction. The EAL domain is found in association with other domains of the
prokaryotic two-component signal transduction systems, such as the GGDEF
domain (see <PDOC50887>), the response regulatory domain (see <PDOC50110>),
the PAS repeat and the PAC domain (see <PDOC50112>), the MHYT domain, the HAMP
domain (see <PDOC50885>), the GAF domain, the TPR repeat, or the FHA domain
(see <PDOC50006>). It has been proposed that the EAL domain might function as
a diguanylate phosphodiesterase. Accordingly, it contains several conserved
acidic residues that could participate in metal binding and potentially might
form a phosphodiesterase active site [1,2,3].

Some proteins known to contain an EAL domain are listed below:

- Acetobacter xylinum diguanylate cyclase (DGC).
- Acetobacter xylinum phosphodiesterase A (gene pdeA).
- Bacillus subtilis hypothetical protein ykoW.
- Bordetella pertussis bvgR protein.
- Escherichia coli rtn protein. It is involved in resistance to phages N4 and
lambda.

- Escherichia coli hypothetical protein yahA.
- Escherichia coli hypothetical protein yciR.
- Escherichia coli hypothetical protein yddU.
- Escherichia coli hypothetical protein yfeA.
- Escherichia coli protein yhjK.
- Escherichia coli hypothetical protein yjcC.
- Klebsiella pneumoniae fimK protein.
- Mycobacterium tuberculosis hypothetical protein Rv1354c.
- Rhizobium sp. strain NGR234 hypothetical protein Y4LL.
- Synechocystis sp. strain PCC 6803 nitrogen fixation positive activator
protein.

- Synechocystis sp. strain PCC 6803 hypothetical protein slr0359.

The profile we developed covers the entire EAL domain.

-Sequences known to belong to this class detected by the profile: ALL.
-Other sequence(s) detected in Swiss-Prot: NONE.
-Last update: December 2002 / First entry.

[1] Tal R., Wong H.C., Calhoon R., Gelfand D., Fear A.L., Volman G.,
Mayer R., Ross P., Amikam D., Weinhouse H., Cohen A., Sapir S.,
Ohana P., Benziman M.
J. Bacteriol. 180:4416-4425(1998).

[2] Merkel T.J., Barros C., Stibitz S.
J. Bacteriol. 180:1682-1690(1998).

[3] Galperin M.Y., Nikolskaya A.N., Koonin E.V.
FEMS Microbiol. Lett. 203:11-21(2001).

406 Applications

+--+
| This PROSITE entry is copyright by the Swiss Institute of Bioinformatics |
| (SIB). There are no restrictions on its use by non-profit institutions as |
| long as its content is in no way modified and this statement is not |
| removed. Usage by and for commercial entities requires a license agreement |
| (See http://www.isb-sib.ch/announce/ or email to license@isb-sib.ch). |
+--+

Considering how the other evidence points to this protein being involved
with Tn501 transposition, in addition to the top BLAST hit from earlier being
against an E-coli protein called TNPM ECOLI (Transposon Modulator), this
particular result is plausible. Two phrases have been highlighted in bold:
response regulatory domain or phosphodiesterase active site. These
phrases could be involved with administering DNA insertion/excision of the
transposon.

ORF6

The ORF6 PROSITE patterns are definitely indicative of the suspected function,
which is Transponoson Resolvase according the BLAST search of SWISS-PROT:

orf_6 : PS00397 RECOMBINASES_1 Site-specific recombinases active site.
8 - 16 YVRVSSfdQ

orf_6 : PS00398 RECOMBINASES_2 Site-specific recombinases signature 2.
55 - 67 GDtvVvhsMDRLA

A quick word about InterPro

Recently, a combined meta-database of sequence pattern and profiles, referred
to collectively as ‘‘signatures’’, has been produced and is called InterPro. This is
an excellent technology, and its home on the Internet is:

http://www.ebi.ac.uk/interpro/

The sequence signatures from all the major protein motif databases (including
PRINTS, Pfam, PROSITE, ProDom, Smart, TIGRFAMs, PIR SuperFamily and SUPER-
FAMILY) are combined and then scanned using a single top-level program called
InterProScan.

InterProScan is written in Perl, and it administers database searches in much
the same manner as scan ps.pl, but does so on a much larger scale. InterProScan
is fully parallelised, allowing each database search to take place in a different
computer. In this way, individual search failures can be handled in a way that
does not impact any of the other searches that are taking place. Take the time to
explore the features of the InterPro system.

Phylogenetics 407

18.8.3 Final word on PROSITE

PROSITE scans are often very useful in clarifying the functions of proteins.
In many circumstances, sequence motif searches are complementary to BLAST
sequence similarity searches. Sequence motif searches identify-specific regions of
sequence similarity that have been associated with a particular function, allowing
these to be linked to specific easy-to-understand human concepts. Sequence
similarity search tools merely identify similar sequences and leave it to the
human researcher (or another analysis system) to interpret any results. Which
method (manual or automated) is most appropriate depends on the particular
task at hand and as shown here, the results of both are often informative.

From a certain perspective, sequence motifs are a digested version of the parts
of previous sequence similarity searches that were found to be useful. These were
annotated and stored in databases such as PROSITE, PRINTS and BLOCKS with
varying levels of human curation. The next level of abstraction is Gene Ontology,
and more details on the GO Consortium can be found here:

http://www.geneontology.org

Ontologies describe what genes (and hence the proteins they code for) actually
do in a cell, with the description presented as a set of linked human conceptual
terms. This research is still in its early stages, but along with the associated work
in the identification of Pathways, the results to date are very encouraging. For
more details and an example, see the KEGG Pathway databases located at:

http://www.kegg.org

18.9 Phylogenetics

No modern Bioinformatics text would be complete without some mention of
phylogenetics, which is the study and identification of relationships between
different forms of life. This section presents an example that investigates the
relationships between the HMA domains from the MerA and MerP proteins.

18.9.1 A look at the HMA domain of MerA and MerP

The evidence garnered so far from the discussion of the MerA and MerP proteins
suggests that the HMA domain of MerA is in fact a duplicated version of the MerP
protein. The most significant points are as follows:

• There is high sequence similarity between the two regions at the protein
level.

408 Applications

• They lie physically next to each other in the Tn501 transposon DNA
sequence. This implies a gene duplication event, giving rise to two copies of
the same gene from a common ancestor.

• Their functions, such as have been characterised experimentally (though
this is tentative at best for the MerA HMA domain), are very similar. Both
complex with Hg2+ ions in a reversible way, thus sequestering them until
they can be detoxified.

Consequently, it is likely that there is some close relationship between the two
domains and this is assumed for the purpose of this demonstration. The first step
is to extract the HMA domain of the MerA proteins from the full MerA sequence.
There are two ways to do this, namely:

1. Automatically, using Bioperl (discussed in this book’s final chapter).

2. Manually, using any text editor.

Whichever method is used, the HMA domain is the first 92 amino acids of the
full MerA protein sequence (more on this assumption later). So, either all residues
after 92 need to be deleted (using a text editor) or just the first 92 need to be
included in the new sequence (using Bioperl). With this example, the proteins
identified below were used:

------------------------------- -------------------------------
SWISS-PROT IDs of MerP Proteins SWISS-PROT IDs of MerA Proteins
------------------------------- -------------------------------

MERP_ACICA MERA_ACICA
MERP_ALCSP MERA_ALCSP
MERP_PSEAE MERA_BACSR
MERP_PSEFL MERA_ENTAG
MERP_SALTI MERA_PSEAE
MERP_SERMA MERA_PSEFL
MERP_SHEPU MERA_SERMA
MERP_SHIFL MERA_SHEPU

MERA_SHIFL
MERA_STAEP
MERA_STRLI
MERA_THIFE

------------------------------- -------------------------------

These proteins were aligned using the EBI ClustalW web-based service and gave
the alignment as shown in Figure 18.15 on page 409.

The alignment in Figure 18.15 indicates that the core of the HMA regions,
centred on the GMTCxxC pattern, contains the two key cysteine amino acids that
complex the Hg2+ ion and are well conserved between the two domains. The large
number of end gaps, denoted by the ‘‘-’’ character, indicate that the ends of the

Phylogenetics 409

Figure 18.15 The multiple sequence alignment of the example proteins.

domain are not conserved. Further, the alignment splits into two groups, MerP
and MerA, with the MerA sequences being padded with end gaps at the start, and
the MerP coming at the end. From this, it is possible to conclude that the two
domains are genuinely different from each other.

Included as a standard report by the EBI web-based service is a tree that shows
graphically how the sequences relate to each other. This gives a better indication
of the phlyogenetic relationships between the sequences than simply ‘‘manually’’
looking at the alignment. ClustalW uses the Neighbour-Joining method to produce
‘‘true’’ phlyogenetic trees (not to be confused with its internal Guide Trees that
direct which pair of sequences to align next). Scrolling down through the results
page of the above alignment reveals the tree shown in Figure 18.16 on page 410:

Technical Commentary: The tree shown in Figure 18.16 is drawn by a flexible Java
applet, called ClustalTree.class, which is available on the EBI WWW Site. This
applet provides various formatting options for changing the view of the tree. Note
that the merge points between sequences are denoted by the vertical lines and the
lengths of the horizontal lines indicate the difference/similarity between one group
(possibly a single sequence) and another.

ClustalW outputs the most similar sequences toward the top. The MerA HMA
domains dominate the upper part of the tree, as expected. These sequences are

410 Applications

MERA_ACICA_CROPPED
MERA_ENTAG_CROPPED
MERA_PSEAE_CROPPED
MERA_SERMA_CROPPED
MERA_SHIFL_CROPPED
MERA_PSEFL_CROPPED
MERA_SHEPU_CROPPED
MERA_BACSR_CROPPED
MERA_THIFE_CROPPED
MERA_STAEP_CROPPED
MERA_STRLI_CROPPED
MERA_ALCSP_CROPPED
MERA_SHEPU
MERA_ACICA
MERA_SALTI
MERA_SHIFL
MERA_PSEAE
MERA_ALCSP
MERA_PSEFL
MERA_SERMA

Figure 18.16 The EBI’s tree graphical display.

more similar to each other than they are to the MerP sequences, which in turn
are more similar to each other than to the MerA sequences.

Where to from Here?

There are many other things that could have been searched for within this
system, both in the DNA and protein sequences, as well as in the structures. Two
interesting areas not looked into are as follows:

1. The terminal repeats at the ends of the DNA sequences that allow the Tn501
to integrate into host genomes.

2. Promoter regions at which transcription begins.

Consider the exploration of these areas as extended exercises for the interested
reader! It is important to be careful not to generalise too much from the small
study presented in this chapter, which is based on a gene-rich region of 8 Kb
of nucleotides, in a single (simple) bacterium. This is far from a representative
sample of all DNA sequences known, even for bacteria! For a more representative
view we would need to study other examples, which leads to this rather tongue-
in-cheek maxim:

Maxim 18.5 Whenever you make a statement, call for more research (money)!

Here, we highlight (deliberately, to add a little light-hearted humour) that the end
of a study always seems to be accompanied by a plea for more money! The point
is that the end of a study, or the money to investigate further, is not the end
of the investigation that the scientific community could do if only it had more
resources. The knowledge gained during one study influences the questions to
be addressed in the next.

The above example is deceptively easy. A well-characterised piece of DNA was
taken and analysed using two standard (state-of-the-art) tools. The results were

Phylogenetics 411

then used to direct and guide standard database queries. Yet as the pages of the
resulting discussion demonstrated, this leads to more questions. There are a lot
of other techniques and analyses, which (owing to space constraints) have not
been covered in this book. The importance of good-quality database annotation
cannot be overstated.

Maxim 18.6 Database annotation is hard to do well,
so be prepared to update it on a regular basis.

The system studied is well characterised, so your authors had a good idea as to
which predictions would be found. In effect, this provided a self-validation of the
analysis tools. Generally, these performed well, but care is needed in interpreting
the results. Automation would have helped in some aspects. For example, the
running of GeneMark on the original DNA sequence in addition to a couple of
BLAST searches on the resultant ORFs. However, the results still need to be
scanned/reviewed by a suitable knowledgeable human.

Maxim 18.7 Automation can be very helpful when creating annotation,
but to achieve the highest quality,

humans are needed to make some value judgements.

Further, the annotation needs to be updated as new knowledge from experiments
or data-mining techniques becomes available. So, the annotation process is an
ongoing one. Also, it is important to acknowledge that any conclusions drawn
at any particular time relate to that time only. It is prudent to re-examine the
predictions by re-analysing the same system at some point in the future, when
either the databases relied upon include new knowledge or the analytical tools
have improved.

Maxim 18.8 Conclusions are based on the available data, which, in this case,
is the database annotation (which may or may not be current).

The study in this chapter required a considerable amount of interpretation, even
though there was a good idea as to what to look for. Now consider the effort and
skill required to annotate a full genome. Such a ‘‘study’’ is not at all trivial.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• With BLAST scores, up is down and lower is better.

• The major limitation of ‘‘homology modelling’’ is that homology to a known
structure is needed.

412 Applications

• Homology modelling can only model protein sequences similar to those that
are already known.

• Searching large datasets with non-specific, short sequence fragments results
in many false positives.

• Whenever you make a statement, call for more research (money)!

• Database annotation is hard to do well, so be prepared to update it on a
regular basis.

• Automation can be very helpful when creating annotation, but to achieve the
highest quality, humans are needed to make some value judgements.

• Conclusions are based on the available data, which, in this case, is the
database annotation (which may or may not be current).

Exercises

1. Repeat the analysis used in this chapter on a Tn21 transposon DNA sequence.
Follow the steps as outlined in this chapter. Are you surprised by the amount of
work this entails?

19

Data Visualisation
A picture is worth a thousand words.

19.1 Introducing Visualisation

Visualisation techniques are an important part of Bioinformatics. The increasing
amounts of data, together with its associated complexity, mean that better
human–data interfaces are needed. The days of simple, flat disk-files printed to
an 80 times 40 character terminal are long gone. In the modern Bioinformatics
world, much more effective presentation systems are required and they usually
need to provide extra interactive capabilities.

Before describing typical examples, it is helpful to first cover some general
concepts. Strictly, ‘‘visualisation’’ means the generation and presentation of
pictures that help people understand a particular feature of a dataset, making
data mean something to people. This definition of visualisation might be a little
too specific as pictures (visions or graphics) are only one of a number of ways
of representing information – it is just that the most successful forms are, well
. . . visual. Visualisation is the most widely used of a general class of perception
technologies.

There is no conceptual reason why the other human senses – smell, taste, touch
or hearing – cannot be used as representations of biological data. However, there
are some very practical limitations:

1. The need for an appropriate method of representation. How would you
hear, taste or feel representations of biological data? Could you hear DNA

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

414 Data Visualisation

intron splicing sites or smell Microarray clustering results? Maybe people
can, but it is the success of the use of visual graphics has discouraged the
use of the other senses for representation of data – but if you have a good
idea we want to hear it.

2. The ‘‘bandwidth’’ of the other senses has an effect. In this context, this
refers to the amount of information that can be communicated per unit
time. The problem with using the other senses is that the vision system in
humans is so highly developed that it has an extremely large processing
capability in comparison to the other senses. Probably the closest is hearing.
However, even this is a poor substitute when compared to vision.

Consider, too, the motivation behind presenting data: in many cases, it is to
summarise information and provide for the identification of patterns. The human
visual system excels at pattern recognition as there has been constant pressure,
over millions of years, to select for this ability. For humans and their ancestors,
a good vision system was essential for survival, both for finding food and for
avoiding becoming something else’s food. Even in the modern technological
world, this is still useful for practical activities such as avoiding cars while
out shopping. This very same visual system is also excellent for analysing
abstract diagrams derived from biological datasets, hence the popularity of
visual representations within the biosciences.

High-end, leading-edge technologies within the visualisation area can be quite
spectacular. Walk-in rooms that display data on three walls and in the central
region in three dimensions are now common1. These allow researchers to have the
sensation of walking around within their datasets, very much like the Holodeck
from the Star Trek TV series.

Why is visualisation so important? The answer – as already hinted at – is
‘‘because people are’’. People ultimately drive science, make it what it is, as
well as shape what it will become. The early successes in the Artificial Intelligence
community encouraged expectations of a utopian future of intelligent thinking
machines. However, this is still the realm of science fiction2. In the real world, it
is people alone who are truly creative and it is people who know when they have
an idea. And it is people who have the resources for scientific development and
people allocate them. Clever algorithms and integrated databases are no more
than useful tools for people who understand how to use them (and know what
they are doing). Visualisation technologies help researchers gain insight into the
world because they present data and information in a way that is meaningful
to humans. In a similar (and somewhat loose) sense, statistics have the same
function in computational numerical analysis.

1
Michael’s department at Erasmus MC is getting one of these. The one up the road he walked

around in at SARA, Amsterdam (see: http://www.sara.nl/projects/projects 07 03 eng.html) was
very nice. Paul is not jealous!

2
One interesting example is the ‘‘Robots’’ books written by Issac Azimov. Dr Azimov’s day job

was as Professor of Biochemistry at Boston University, USA.

Displaying Tabular Data Using HTML 415

Maxim 19.1 People are processing tools, too,
especially when it comes to processing visual information.

In overview, good data visualisation is arguably one of the most important
challenges facing modern biologists. If it troubles biologists and it concerns
computers or databases, then chances are it ends up in the in-tray (or more
likely the ‘‘Inbox’’) of the Bioinformatician. Although entire books have been
written about data visualisation, it is worthwhile including an introduction to
the production of visual representations of biological data. This helps by aiding
researchers in identifying patterns that relate to the underlying processes. Three
simple but effective techniques, by way of example, are presented in this chapter,
and they are:

1. Using HTML tables to list SWISS-PROT IDs.

2. Plotting an EMBL entry to show the arrangement of the Mer Operon genes.

3. Using Grace (a graph drawing program) to draw plots.

All three of these techniques can be used on a home computer with minimal
processing power and free software. So, no walk-in, 3D room here – sorry!

19.2 Displaying Tabular Data Using HTML

In this section, HTML is used to generate meaningful, visual displays. Recall (from
Chapter 15) that there are two common situations in which HTML is used on the
world wide web:

1. To create static web pages. This is the simplest and most common use
of HTML. The browser requests the web page from the web server, which
responds by sending an appropriately formatted text disk-file containing
the HTML mark-up. This disk-file is interpreted by the browser, producing a
more visually pleasing representation of the document than flat text alone
typically does.

2. To create on-the-fly dynamic web pages from server-side programs. In
this case, HTML web pages are generated for every request by a program
executing on the web server. Typically, input is provided to the program as
part of the initial web request from the browser (using a HTML form).

A third situation involves producing HTML dynamically based on data parsed
and processed from some other data source. Rather than store the static HTML
on a web server or produce the dynamic HTML on a web server, with this
technique, HTML is saved to a local disk-file for later viewing as an ‘‘off-line’’
static web page. At some later date, the page can be made available through a web

416 Data Visualisation

server if necessary. However, the use of HTML (in this situation) provides a
local visualisation representation of data. A custom program can take the data
source(s) and produces an HTML visualisation as output. This allows for some
very effective – be they complex or quite simple – visualisations to be easily
created.

Figure 19.1 on page 416 and Figure 19.2 on page 417 present two examples of
what’s possible. The HTML used to present these visualisations was produced by
custom Perl programs, which generated HTML disk-files. The disk-file were then
viewed in the Mozilla web browser3.

Figure 19.1 uses the background colour of the cell (which is grey-scaled in the
figure because of printing restrictions) to identify which of four possible states
each amino acid pair is in:

1. Significantly different from an average state.

2. Similar to an average state.

3. Indeterminate.

4. Those pairs with too few examples for an assessment to be made.

Figure 19.1 Example HTML visualisation: identifying amino acid states.

3
Both of these visualisations are adapted from Michael’s Ph. D. thesis. Colour versions are

available on the Bioinformatics, Biocomputing and Perl web-site.

Displaying Tabular Data Using HTML 417

Figure 19.2 Example HTML visualisation: grouping amino acids.

The production of this HTML representation is the final high-level summary of a
structural analysis pipeline, which itself contains four other stages.

Figure 19.2 describes which groups of amino acids from one analysis can be
combined to give a similar group from another analysis. The bar graph display
(used to represent the scores) is created from two small image disk-files that are
included as many times as necessary using multiple HTML image tags ().
This is a simple ‘‘trick’’ that works very well.

Despite the perceived complexity of these visual representations, the amount
of HTML used in each is quite small: each representation uses no more than ten
individual HTML tags repeated over and over.

19.2.1 Displaying SWISS-PROT identifiers

In this visualisation, ID codes are sourced from the FASTA protein sequence
disk-file containing the 55 Mer operon genes found in the SWISS-PROT database.
The idea is to extract and format these into a HTML table. The original disk-file is
the same one as that used to demonstrate the creation of Basic Local Alignment
Search ToolBLAST indexed databases earlier in this book.

This example was chosen for two reasons: it is relatively straightforward and
it demonstrates an important point, which is that producing the HTML mark-up
is often the easy part. What’s harder is having the idea, the acquisition and
extraction of the data, and its storage within a custom program, and so on. The

418 Data Visualisation

custom program requires the FASTA disk-file to be in the format expected by the
NCBI-BLAST package or supplied by the EBI SRS web-based service, for example:

sw|Q52109|MERA_ACICA Mercuric reduct ...
MTTLKITGMTCDSCAAHVKEALEK ...

Further, the program uses a combination of hard-coded HTML tags, as well as
generated tags produced by the CGI module. Despite the availability of a table
sub-routine with CGI, in your author’s experience, the use of hard-coded <TABLE>
and </TABLE> is more convenient in certain situations. Another useful technique
is the inclusion of newline characters as part of the resulting HTML disk-file.
By default, web browsers generally ignore newline characters (as HTML provides
the
 tag). Including them though makes the resultant HTML disk-file more
readable by a human. Here’s the Mer Table.pl program:

#! /usr/bin/perl -w

Mer_Table.pl - produce a HTML table from the 55 Mer Operon proteins.
#
Designed to take a FASTA formatted protein sequence
file and create and HTML overview table of sequences
it contains. Further demonstrates a mix of CGI.pm
subroutine calls and "hard-coded" HTML tags. Uses a
Hash of Hashes data structure: see "perldoc perldsc"
for further explanation.

use CGI qw/:standard/;
use strict;

my %Seq_Details;

while (<>)
{

unless (/^>s[w|p]\|/)
{

next;
}

my ($tmp, $Accession, $ID) = split(/\|/, $_);

$ID = $ID =~ m/(^[\w\d]*) /;

my $Gene = $ID =~ m/(.*)_/;

$Seq_Details{ $Gene }{ $Accession } = $ID;
}

print start_html("Summary of SWISS-PROT ’Mer’ Operon Genes"), "\n";

print h1("Summary of ’Mer’ Genes");

print "<TABLE WIDTH=100% BORDER = 2>\n";

Displaying Tabular Data Using HTML 419

print Tr, th("Gene"), th("Accession Codes"), th("Gene IDs"), "\n";

foreach my $Gene (sort keys %Seq_Details)
{

print "<TR>\n", th ($Gene), "\n<TD>";

foreach my $Accession (sort keys %{$Seq_Details{$Gene}})
{

print code ($Accession), ", " ;
}

print "</TD>\n<TD>";

foreach my $Accession (keys %{$Seq_Details{$Gene}})
{

print code ($Seq_Details{$Gene}{$Accession}), ", " ;
}
print "</TD></TR>\n";

}

print "</TABLE>\n";
print hr;
print i(system("date"));
print end_html,"\n";

Let’s work through this program to see what’s going on. After the usual first
line and an appropriate comment, the CGI module is imported and strictness is
switched on. A hash, called %Seq Details, is then declared. This hash stores
information on the accession number and gene identifiers extracted from the
program’s input disk-file:

use CGI qw/:standard/;
use strict;

my %Seq_Details;

A while loop cycles through the disk-file, one line at a time:

while (<>)
{

Each iteration begins by skipping any lines that are not header lines:

unless (/^>s[w|p]\|/)
{

next;
}

Assuming the line is a header line, it is split on the pipe symbol, and the results
are used to initialise three scalars (note that the $tmp scalar is not actually used
in this program):

420 Data Visualisation

my ($tmp, $Accession, $ID) = split(/\|/, $_);

Two regular expressions extract the accession code and the gene identifier,
assigning them to appropriately named scalar variables:

$ID = $ID =~ m/(^[\w\d]*) /;

my $Gene = $ID =~ m/(.*)_/;

With the accession code and gene identifier known, the next line of code records
the details in the $Seq Details hash, then the loop iteration ends:

$Seq_Details{ $Gene }{ $Accession } = $ID;
}

The code that updates the hash demonstrates a new technique. Typically (and
by design), hashes contain scalars as the value-part. Here, Perl’s ability to store a
hash within a hash is exploited4.

With the entire disk-file processed, the Mer Table.pl program proceeds to
create the HTML visualisation. It starts by beginning the HTML web page, and
printing a HTML Level 1 header:

print start_html("Summary of SWISS-PROT ’Mer’ Operon Genes"), "\n";

print h1("Summary of ’Mer’ Genes");

A print statement starts the table, then a collection of invocations of the table
row and heading producing subroutines from the CGI module occur:

print "<TABLE WIDTH=100% BORDER = 2>\n";

print Tr, th("Gene"), th("Accession Codes"), th("Gene IDs"), "\n";

A foreach statement is used to cycle through the data stored within the
%Seq Details hash. Note how the name-parts of the hash are extracted (using
keys), sorted (using sort) and then assigned with each iteration to the $Gene
scalar. The body of the foreach loop starts by creating a HTML table row:

foreach my $Gene (sort keys %Seq_Details)
{

print "<TR>\n", th ($Gene), "\n<TD>";

An inner foreach loop then processes the accession codes associated with the
gene, populating another table cell with the list stored within the hash of hashes
that is %Seq Details:

4
A full discussion of these techniques are, sadly, beyond the scope of Bioinformatics, Biocom-

puting and Perl. Refer to the perldsc manual page for a good introduction.

Displaying Tabular Data Using HTML 421

foreach my $Accession (sort keys %{ $Seq_Details{ $Gene } })
{

print code($Accession), ", " ;
}

Of interest, above, is how the CGI module’s code sub-routine is used to display
the accession codes in typewriter font.

The end of the table cell is marked, then another begun. Another inner foreach
loop processes the gene identifiers associated with the gene:

print "</TD>\n<TD>";

foreach my $Accession (keys %{ $Seq_Details{ $Gene } })
{

print code($Seq_Details{ $Gene }{ $Accession }), ", " ;
}

The outer foreach loop concludes by terminating the HTML table row:

print "</TD></TR>\n";
}

Figure 19.3 Overview of the Mer Operon proteins in the SWISS-PROT database.

422 Data Visualisation

With the entire disk-file processed, all that remains is to terminate the table,
insert a horizontal rule, add the date to the web page and then terminate with
the end-of-HTML tag:

print "</TABLE>\n";
print hr;
print i(system("date"));
print end_html,"\n";

When executed, the resultant HTML is displayed within the Mozilla browser as
shown in Figure 19.3 on page 421. Keep in mind that these accession codes and
IDs exist. A refinement to the Mer Table.pl program could include the creation
of HTML hyperlinks to any of the on-line databases for each code. By clicking
on the hyperlink, users are directed (via their web browser) to the appropriate
on-line database.

19.3 Creating High-quality Graphics with GD

High-quality graphics are a very useful aid to data visualisation, both as an
interactive, on-the-fly service attached to web pages, as well as when producing
material for publications.

One of the best interfaces to primitive graphic functions5 from within Perl
programs is the GD module written by Lincoln D. Stein. This well-documented
module hides a lot of the underlying complexity and links to the gd graphics
library written by Tom Boutell. Depending on the functionality required, gd
invokes a series of other libraries installed along with the operating system. For
example, to use gd to create PNG images requires the services of the libpng
library (and the zlib library libpng calls). Likewise, using TypeType fonts requires
the installation of the FreeType library.

For scientific work, libpng (and hence zlib) and FreeType are two of the
most useful libraries to have installed. The gd library can produce also JPEG
images if your system has jpeglib installed. However, as JPEGs tend to ‘blur’
images, the emphasis in this chapter is on producing PNG images, as they tend
to preserve any crisp, sharp lines that exist within the image.

The downside to using the GD module is that installation can be, at best, tricky.
At worst, it fails and nothing works! What with the GD module requiring the
gdlib library, which in turn requires the libpng library, which in turn requires
the services of the zlib compression library, a chain of installation dependencies
is created that often frustrates the user of the easy-to-use GD.pm Perl module.

Your author’s best advice is to start the installation process with the GD module
from CPAN if you are unsure as to which libraries are installed on your system.

5
Graphics primitives include circles, lines and rectangles, as well as colour definitions and

direct pixel access techniques. These can be combined together to make more shapes or effects
that are ‘‘less primitive’’ (more complex).

Creating High-quality Graphics with GD 423

Any missing libraries/functionality should be highlighted during the (attempted)
installation of GD. If something is missing, source it on the Internet and install
it, before returning to the GD module and continuing the installation. See the
Bioinformatics, Biocomputing and Perl WWW site more details if you are still
having problems.

Note that the installation of the GD module follows the standard Perl module
installation process first introduced in Chapter 5:

perl Makefile.PL
make
make test
su
make install
<Ctrl-D>

During the perl Makefile.PL step, the module asks if JPEG, FreeType and XPM
support should be built. Be sure to answer ‘‘yes’’ to these questions so as to match
the libraries that are installed. Included with the module is a demo directory. If
the ttf.pl program within this directory executes with no errors, the module
is very likely successfully installed. If it executes with errors, some additional
installation work is still needed. Be sure to execute the ttf.pl program with this
command-line:

ttf.pl | display6

which should produce the test image shown in Figure 19.4 on page 423.

Figure 19.4 The test image produced by the GD module.

6
The display program is part of the ImageMagick package as used later in the next section.

424 Data Visualisation

19.3.1 Using the GD module

The GD module works around the concept of image canvases. A canvas is a
workspace upon which an image is manipulated. Images can be created, loaded
from an existing disk-file, drawn over, copied from other canvases or written to
a disk-file in any of the supported graphic formats. The module’s documentation
is very extensive and can be viewed on screen using the standard perldoc utility
included with Perl7:

perldoc GD.pm

Some examples help explain how the module is used.
The GD module is loaded, and a new image is created using the module’s new

sub-routine, as shown below. Note the image size is specified as 100 by 100
pixels, and the image accessed by a scalar variable called $image:

use GD;

my $image = new GD::Image(100, 100);

With the image in existence, colours are added to its canvas using a sub-routine
called colorAllocate. Colours are added using the standard RGB notation (Red,
Green, Blue). Note how extra whitespace keeps this code snippet nice and neat:

$white = $image->colorAllocate(255, 255, 255);
$black = $image->colorAllocate(0, 0, 0);
$red = $image->colorAllocate(255, 0, 0);
$blue = $image->colorAllocate(0, 0, 255);

The background is then set to be transparent and interlaced, as follows:

$image->transparent($white);
$image->interlaced(’true’);

A black line (or frame) is drawn around the picture using the rectangle sub-
routine. A blue oval is added to the image using the arc sub-routine, which is
then filled with the colour red:

$image->rectangle(0, 0, 99, 99, $black);

$image->arc(50, 50, 95, 75, 0, 360, $blue);

$image->fill(50, 50, $red);

After ensuring that the output produced by this code is binary (as opposed to the
more normal text), the image is printed to STDOUT in the format of a PNG image:

7
Michael keeps a copy of the module’s documentation close to his computer. It is about 20

A4 pages of text. Constantly referred to, it is invaluable when working with the subroutines
provided by GD, as there can be a lot of parameters to specify when invoking the module’s
functionality.

Creating High-quality Graphics with GD 425

binmode STDOUT;

print $image->png;

The resulting output is a fully compliant PNG image of one box inside another,
which can be viewed with any number of programs. Note how the image stored in
the $image scalar has attributes (colours) and functionality (fill) associated with
it. This is an example of a Perl-based object-oriented interface, which is a very
powerful programming abstraction8.

Often, the most complex part of drawing images is working out where to put
the various drawing components on the canvas, which is always the hardest part
of drawing images using the graphics primitives. There are two techniques that
can help reduce the problems caused by this complexity:

1. Lots of planning – take the time to plan a complex graphic in a vector
graphics program or on paper before starting to code. Make a note of some
meaningful variable names and annotate the drawing with the values of any
constant ‘‘off-sets’’. This can be very helpful!

2. Use multiple canvases – the GD module can create a series of canvases, each
of which can be manipulated separately. These are then merged together
into one parent canvas prior to producing the image on STDOUT. This
prevents many ‘‘off-sets’’ in each graphics call and moves the problem to
one ‘‘copy image’’ statement for each sub-canvas. These calls can still be
formidable, but it is one that has to be right only once. This is where the
image plan described in the previous point is most helpful.

By way of example, Figure 19.5 on page 426 is a simplified version of Michael’s
plan for a piece of code that plots a correlation coefficient matrix as a ‘‘heat
map’’. With reference to Figure 19.5, it is possible to deduce the coordinates of
‘‘P’’, the point at which the Colour Scale image would be included in the final,
merged image. For example, the x coordinate of ‘‘P’’ is calculated as:

Labels_Width + (Title_Bar_Width - Colour_Scale_Width) / 2

The same planning techniques are useful for both determining the positions
of sub-images within a larger canvas and for positioning of elements on an
individual canvas.

Maxim 19.2 Producing plans avoids problems before problems surface.

8
The details of it are beyond the scope of this book. However, it is not necessary to know

how to program objects in order to be able to use and exploit them, as this example code
demonstrates.

426 Data Visualisation

Labels Correlation
coefficient
matrix

Colour Scale

Images

Merged+

+

+

Title bar

Labels_
Width

Title_Bar_Width

Colour_Scale_Width

C
C

_M
at

rix
_H

ei
gh

t

P

Figure 19.5 A sample image plan for a ‘‘heat map’’.

An important point to consider is the eventual size of the image. A general rule of
thumb suggests the bigger the image, the better. It is straightforward to convert
a large image to a smaller size by averaging the information already present than
it is to expand an image. The ‘‘Cost of Canvas’’ in the GD module is low, allowing
large images to be generated. For instance, the program that produces Figure
19.5 produces an image 6500 pixels wide by 3500 pixels high. This results in
an image that prints across four A3 pages, producing a 1-metre wide by 80-cm
high visualisation. On first glance, this seems excessive, but each element in the
matrix is only 10 pixels wide by 10 pixels high (about 4 mm at the print size
mentioned). Even at this size, the labels on the left of the printed output are
barely readable. The image is still generated in seconds on even the most modest
of personal computers. Sadly, it takes a further 15 minutes to print and manually
cut the paper edges away, before taping the resulting image together, producing
the final result!

19.3.2 Displaying genes in EMBL entries

Two images produced by the GD module appear elsewhere in this book: the
contact map on page 196 and the Mer Operon gene arrangement on page 376.
The program used to produce the latter image is described in detail later in this
section. Before presenting the program, some important points to note are as
follows:

• The program is designed to generate the base graphic for the image from the
data contained in the original EMBL entry as a guide. The alternative involves
the (tedious) manual inspection of the EMBL entry, most probably on-line,
followed by significant box-drawing work in a vector graphics package.

Creating High-quality Graphics with GD 427

• The program is designed to demonstrate the GD module’s drawing capa-
bilities in its most general form. However, the program is not a general
solution that can be used with any EMBL entry. Although it may work
with many other EMBL entries, the regular expressions may fail in certain
circumstances, rendering the resulting image incorrect.

• The code uses the object-orientated interface provided by the GD module.
Although strange at first, the object-oriented syntax is comprehensible and
easy to relate to and use.

• The generated image is large. The image is over 8000 pixels wide and is
designed to be resampled (discussed below) rather than used as-is9. The
next section describes how the ImageMagick tool mogrify is used to resize
the image to something more sensible.

• The program uses a specific font, identified in the code as albr85w.ttf
within the /windows/C/WINDOWS/Fonts directory.10 This font may or may
not be installed on every computer and an alternative may need to be substi-
tuted. Note that the GD module provides a generic font called Generic.ttf.

Here is the source code to the program, called Embl plot.pl:

#! /usr/bin/perl -w

Embl_plot.pl <EMBL entry disk-file> - producing a plot of interesting
genes within an EMBL entry.

use GD;
use strict;

my $start;
my $end;

my $Image_Size_X;
my $Image_Size_Y = 600;

my $line_width = 20;

my @Features;

while (<>)
{

chomp;

9
This might seem excessive, maybe even lazy, but working at this scale does save the use of

many scaling factors when producing the drawing. As the graphic is black, white and grey, PNG
compression reduces the disk-file produced to less than 19,000 bytes.

10
In fact this font was installed by a program in a standard location on the Microsoft Windows

section of Michael’s computer that his copy of GNU/Linux automounts as /windows/C. You may
not have this font installed in this specific location in which case: adjust the path is the program
to point to a TrueType font you do have. Remember GD.pm comes with the ‘Generic.ttf’ font in
it’s ‘/t’ directory for testing purposes as shown in Figure 19.4.

428 Data Visualisation

if (/^FT source /)
{

($Image_Size_X) = m/(\d*)$/;
print "D: Image_Size = ’$Image_Size_X’\n";

}
if (/^FT CDS/)
{

($start, $end) = m/(\d*)\.\.(\d*)/;
}
if (/\/gene=/)
{

(my $gene) = m/\"(\w*)\"/;
print "D: Gene = ’$gene’\n";
push @Features, [$start, $end, $gene];

}
}

my $image = new GD::Image($Image_Size_X, $Image_Size_Y);

my $White = $image->colorAllocate(255, 255, 255);
my $Black = $image->colorAllocate(0, 0, 0);
my $Half = $image->colorAllocate(128, 128, 128);

$image->filledRectangle(0, $Image_Size_Y/2 - $line_width,
$end,

$Image_Size_Y/2 + $line_width,
$Black);

foreach my $C_Feature (0 .. $#Features)
{

my $start = $Features[$C_Feature][0];
my $end = $Features[$C_Feature][1];
my $name = $Features[$C_Feature][2];

printf("Feature# %1i %5s (%5i to %5i)\n",
$C_Feature, $name, $start, $end);

$image->filledRectangle($start, 1, $end,
$Image_Size_Y-1, $Black);

$image->filledRectangle($start + $line_width, 1 + $line_width,
$end - $line_width,

$Image_Size_Y-1 - $line_width, $Half);
$image->stringTTF($Black, "/windows/C/WINDOWS/Fonts/albr85w.ttf",

60, 0, $start + 2 * $line_width,
$Image_Size_Y /2, $name);

}

open OUTPUT_FILE, ">Embl_sequence_graphic.png"
or die "Cannot open output file; $!.\n";

print OUTPUT_FILE $image->png;
close OUTPUT_FILE;

which, when executed, produces the image shown in Figure 19.6 on page 429. The
image was originally 8355 pixels wide, with one pixel in the horizontal dimension
representing one nucleotide base.

Creating High-quality Graphics with GD 429

merR merT merP merA merD tnpR tnpA

Figure 19.6 A plot of the interesting genes identified in EMBL entry ISTN501.

Take the time to read through the Embl plot.pl program in conjunction with
the GD module’s on-line documentation. Note the use of an array or arrays when
populating the @Features array11.

Figure 19.6 provides a good overview of the arrangement of the coding regions
in the DNA. It even exposes the gaps where two extra ORFs (open reading frames)
are found. These are probably genes, but this needs to be confirmed.

Other uses for the GD module are limited only by the programmer’s creativity,
imagination and ability. The GD module is very flexible, but be careful not to
reinvent the wheel when it comes to preparing visualisations. For some jobs,
using programs such as ImageMagick or The Gimp can be just as effective.

19.3.3 Introducing mogrify

There are times when a single image is to be produced at a number of different
resolutions or when the resolution of an image is too high, as in the EMBL
visualisation in Figure 19.6. Typically, different resolutions are required when
printing on paper, e-mailing an image or for inclusion on a web page (either as
a full graphic or as a thumbnail). ImageMagick is maintained and developed by
ImageMagick Studio, a non-profit organisation ‘‘ . . . dedicated to making software
imaging solutions freely available . . . ’’ according to the licence agreement. The
interfaces to the ImageMagick Application Program Interface (API) is available for
use with many programming languages, not just Perl. The API is also embedded
within many command-line tools and utilities, such as display, mogrify and
montage.

The mogrify utility, among other things, can transform images by reducing the
number of pixels they use, when invoked with either the -size <geometry> or -
sample <geometry> switches. The following command-line reduces the number
of pixels in the EMBL image from Figure 19.6 to 1600 pixels wide, adjusting the
number of pixels vertically to 115:

mogrify -resize 1600 Embl_sequence_graphic.png

whereas this command-line resizes the image to be 100 pixels high and conse-
quently, 1393 pixels wide:

mogrify -resize x100 Embl_sequence_graphic.png

11
Again, you are referred to the perldsc for more details on complex data structures.

430 Data Visualisation

Figure 19.7 The difference between resampling and resizing. This is resized.

Figure 19.8 The difference between resampling and resizing. This is resampled.

For a complete description of all the options and switches, consult the mogrify
help pages, accessible via the utility’s man page:

man mogrify

or via the ImageMagick web-site:

http://www.imagemagick.org/

An important point is that the resized image overwrites the original image disk-
file. So, if the original, full resolution image is needed, keep a back-up copy as
follows:

cp Embl_sequence_graphic.png Embl_sequence_graphic.original.png
mogrify -resize 1600 Embl_sequence_graphic.png

Plotting Graphs 431

Another point to keep in mind is that there is some difference between the
-sample and -resize functions.

Referring to Figure 19.8, the image is resampled, whereas the image in
Figure 19.7 is resized. The latter image is more blurred, but preserves the text
better, whereas the former image is sharper (look at the lines), whereas the text
is all but unreadable. As to which resolution to use in which circumstances,
the advice is always to consider the output device on which the image will ulti-
mately be displayed. Make the maximum dimension of the image the same as the
maximum dimension of output device.

These command-lines drop the resolution of a 4500 by 3000 pixel image,
designed for printing, to one that is 1024 pixels wide, suitable for use on a
web page or as a reasonably sized e-mail attachment. The original disk-file is
approximately 600,000 bytes in size, whereas the sampled image is 60,000 bytes
in size:

cp large_sequence_graphic.png lite_sequence_graphic.png
mogrify -sample 1024 lite_sequence_graphic.png

19.4 Plotting Graphs

Plotting data in the form of a pictorial graph is often a very useful way to view
numerical data.

Technical Commentary: We use the word ‘‘pictorial’’ here as the word ‘‘graph’’ is
also used in the context of graph theory. This is a general mathematical description
of interlinked vertices (points or nodes) that are connected by edges (links). This
terminology is used from time to time in Bioinformatics and bioscience literature
to represent networks of how things are related to each other or linked together in
pathways. Not knowing the difference between the two can be confusing.

The section describes the Grace program, also known as xmgrace. Grace is an
excellent interactive scientific, open source program developed from the popular
Xmgr (ACE/gr) program, originally written by Paul Turner. Many of the graphs
published in scientific papers, as well as in this book, are produced by one of
these packages – the style of the image produced is quite distinctive. More on
Grace in just a moment.

Another popular plotting tool is gnuplot. This classic scientific graph-plotting
tool has been around for two decades, and has a large, loyal user base. Despite
its usefulness, gnuplot is not discussed further in Bioinformatics, Biocomputing
and Perl, as it has been (in the opinion of your authors), superseded by modern,
GUI-driven alternatives. We cannot help but think that gnuplot is ‘‘yesterday’s
solution’’.

432 Data Visualisation

Quick ‘n’ dirty graphs can be created within a program using Perl’s GD::Graph
modules. The use of these modules is especially advantageous when used within
a server-side CGI program, when creating dynamic web content.

Wavelength (nm)

Numerical X-axis

A
bs

or
ba

nc
e

Thanks to Scott Prahl and Gary Deschaines

Figure 19.9 Example line graph from the GD::Graph module.

19.4.1 Graph-plotting using the GD::Graph modules

The GD::Graph and GD::Graph3d modules, available on CPAN, interface with
the GD library, providing a convenient, programmer-controlled way to produce
high-quality graphs. The GD::Graph module produces the standard set of graph
types: bars, stacked bars, lines, XY points and pies. The GD::Graph3d module
adds extra shading and perspective, simulating a 3D look and feel.

Figure 19.9 on page 432 shows an example line graph included with GD::Graph.
Figure 19.10 on page 434 shows a sample pie chart from the GD::Graph module.

The source code used to produce the image in Figure 19.9 is shown below. To
execute this code, a fully working version of the gdlib library and the GD module,
as well as the GD::Text::Align module (available from CPAN) is required:

use GD::Graph::lines;

require ’save.pl’;

@data = read_data("sample54.dat");

$my_graph = new GD::Graph::lines();

Plotting Graphs 433

$my_graph->set(
x_label => ’Wavelength (nm)’,
y_label => ’Absorbance’,
title => ’Numerical X axis’,
y_min_value => 0,
y_max_value => 2,
y_tick_number => 8,
y_label_skip => 4,
x_tick_number => 14,
x_min_value => 100,
x_max_value => 800,
x_ticks => 1,
x_tick_length => -4,
x_long_ticks => 1,
x_label_skip => 2,
x_tick_offset => 2,
no_axes => 1,
line_width => 2,
x_label_position => 1/2,
r_margin => 15,
transparent => 0

);

$my_graph->set_legend(’Thanks to Scott Prahl and Gary Deschaines’);

my $gd = $my_graph->plot(\@data)
or die $my_graph->error;

open(IMG, ’>file.png’)
or die $!;

binmode IMG;
print IMG $gd->png;

This program extract is taken from the sample56.pl program included with the
GD::Graph distribution (and has been reformatted to make it easier to read). The
read data sub-routine is provided in the sample program, but not reproduced
here, and its function is to retrieve the data to plot on the graph. The values
set in the invocation of the set sub-routine are self-explanatory. Refer to the
documentation included with GD::Graph for additional explanations.

19.4.2 Graph-plotting using Grace

Grace is designed to be used for scientific graphing, and is especially good at XY
scatter plots. It is freely available from the following web-site:

http://plasma-gate.weizmann.ac.il/Grace/

The Grace executable is called xmgrace. There are three common approaches to
plotting graphs with Grace, as described in this section:

1. Interactive graph generation using a GUI-based application program.

2. Command-line ‘‘batch’’ plotting using the xmgrace command-line utility.

434 Data Visualisation

A pie chart

Label

5th

4th

2nd3rd

1st

6th

Figure 19.10 Example pie chart from the GD::Graph module.

3. Programmer-generated graphs using the Chart::Graph::Xmgrace module
from CPAN.

Interactive plotting

Figure 19.11 on page 435 shows the same ‘‘Absorbance’’ test dataset used earlier
(with GD::Graph) within the GUI-based Grace program. To recreate this graph,
load the required data, as follows:

• From the menu, select Data, then Import, then ASCII to identify the sam-
ple54.dat disk-file included with the GD::Graph module.

• Highlight the disk-file name in the Grace: Read Sets dialogue box (as shown
in the screen shot), then click the OK button. The data set loads and the
graph appears, autoscaled to fit within the display.

• Double click on the drawn line to open the Grace: Set Appearance dialogue
box.

• Set the Line Width, in the Line properties section on the Main panel, to 3.

• Sit back and admire your handiwork!

With Grace, all the configuration windows are completely detachable, which is
a wonderful feature, avoiding the incessant opening and closing of two win-
dows/dialogues or tab switching, which is an annoying feature of many other

Plotting Graphs 435

Figure 19.11 The GUI-based Grace application program.

programs. Grace’s interface can result in a fair amount of screen clutter. This can
be reduced by dragging windows off to one side of the screen, or onto another
screen if your computer supports more than one monitor.

Selecting: File: Print Setup displays the Grace: Device setup dialog, in which
PNG can be selected as the ‘Device’. If so, Print -ing the graph creates a PNG
image at 792 by 812 pixel resolution (the default resolution of Michael’s com-
puter), though a better quality image would be created by 1600 by 1200 pixels
(use ‘Size. . . Custom’ and set the dimensions in the Grace: Device setup dialogue
to do this). The created PNG disk-file is named Untitled.png, unless spec-
ified otherwise. Other image formats are supported, including Postscript and
JPEG.

When Grace is instructed to save an image (using File, then Save or Save
As from the menu), the resulting disk-file contains standard ASCII text. The
disk-file produced by saving the above image is called sample56.agr, and it
contains 2146 lines detailing the features of the image. 1842 of the lines are
the actual data to plot, the rest are‘ very useful when automatically generating
plot in ‘‘batch mode’’ or when moving the image from one plotting program to
another.

Batch plotting

Grace has a complex internal command language that can be used to produce
graphs and plots non-interactively. It is possible to avoid the use of this command
language when the plotting requirements are straightforward. For instance, to

436 Data Visualisation

turn the sample54.dat disk-file into a PNG image called sample54.png, colour
the line plotted, then add some axis labels and a title, use this command-
line:

xmgrace sample54.dat -hardcopy -hdevice PNG -batch batch.grace

where each of the parameters each has the following meaning:

sample54.dat – the data disk-file to plot (in tab or space delimited format).

-hardcopy – instructs xmgrace to plot to a disk-file. Without this parameter,
xmgrace plots the graph, then launches Grace in fully interactive mode,
allowing for the plot to be inspected or changed, if need be.

-hdevice PNG – specifies that a PNG image is to be created.

-batch batch.grace – specifies that the series of commands included in the
disk-file batch.grace are to be executed.

The batch.grace disk-file used to produce the ‘‘Absorbance’’ image from earlier
looks like this:

s0 line color 3
s0 line linewidth 3.5
title "Mass Spec Data"
xaxis label "M/Z Ratio"
yaxis label "Relative Intensity"
autoscale
page size 1024, 768

These commands override the default graph-plotting settings configured into
xmgrace. The meaning of most of the above commands is fairly obvious. Refer to
the Grace and xmgrace documentation for details as to their individual meaning
or examine the ASCII disk-file representation of a plot saved by the Grace
application.

Note that Grace datasets are numbered ‘‘s0’’, ‘‘s1’’, ‘‘s2’’, and so on. Addi-
tionally, formatting directives within the saved ASCII disk-file start with an ‘‘@’’
symbol. These should be omitted in xmgrace batch command disk-files. For
example, this extract from the saved disk-file (sample56.agr):

@ s0 line type 1
@ s0 line linestyle 1
@ s0 line linewidth 1.0
@ s0 line color 3
@ s0 line pattern 1

Plotting Graphs 437

is specified as follows within a xmgrace command disk-file:

s0 line type 1
s0 line linestyle 1
s0 line linewidth 1.0
s0 line color 3
s0 line pattern 1

In addition to the Grace documentation, the Chart::Graph::Xmgrace module
from CPAN provides a good overview of those parameters most likely used when
batch plotting a graph. Here’s the colour table extracted from that documen-
tation12. With this table, it is straightforward to see that ‘‘color 3’’ is actually
‘‘green’’:

+---+
| COLORS |
+-------+-----+-------+-----+--------+-----+-----------+----------+
COLOR	VALUE	COLOR	VALUE	COLOR	VALUE	COLOR	VALUE
white	"0"	blue	"4"	violet	"8"	indigo	"12"
black	"1"	yellow	"5"	cyan	"9"	maroon	"13"
red	"2"	brown	"6"	magenta	"10"	turquoise	"14"
green	"3"	grey	"7"	orange	"11"	dark green	"15"
+-------+-----+-------+-----+--------+-----+-----------+----------+

Plotting using Chart::Graph::Xmgrace

As mentioned earlier, Perl provides an interface to the Grace functionality by
way of the Chart::Graph::Xmgrace module from CPAN. This provides the Perl
programmer with a programmable plotting environment. This module works by
populating various arrays with a set of commands to be included in a batch
command disk-file. These commands are ultimately processed by Grace. The
Chart::Graph::Xmgrace module greatly simplifies the formatting of command
disk-files.

To use Chart::Graph::Xmgrace, the xvfb program needs to be installed. This
is the X Windows Virtual Frame Buffer, which provides a dummy X Windows
server used for the non-display of graphics on the command-line during auto-
mated processing. For more details (including instructions for downloading and
installing xvfb), visit this web-site:

http://www.xfree86.org/4.0.1/Xvfb.1.html

Here is an extract from a Perl program used to produce a command disk-file to
plot the ‘‘Absorbance’’ graph:

12
http://search.cpan.org/~caidaperl/Chart-Graph-2.0/Graph/Xmgrace.pm.

438 Data Visualisation

use Chart::Graph::Xmgrace qw(xmgrace);
.
.
.

xmgrace({ "title" => "Absorbance Data",
"subtitle" => "Thanks to Scott Prahl and

Gary Deschaines",
"type of graph" => "XY graph",
"output type" => "png",
"output file" => "sample56_grace.png",
"x-axis label" => "Time",
"y-axis label" => "Relative Intensity",
"grace output file" => "xmgrace1.agr",

},
[{ "title" => "data",

"options" =>
{ "line" =>

{ "color" => "4",
"linewidth" => "3.5"

},
},

"data format" => "file"
},
"sample54.dat"

],
);

which, when executed, results in the visualisation shown in Figure 19.12 on page
439. On closer inspection, there are three problems with the resulting image:

1. The image size – It was not possible to set the image of the visualisation to
anything other than 640 by 480 pixels, which is the default size.

2. The line colour – Despite setting the line colour to ‘‘3’’ (green), no colour is
set.

3. The line thickness – Any specified line thickness is ignored by the module,
which appears to set a maximum thickness of 1.

Inspecting the xmgrace1.agr disk-file revealed that all of the linestyle formatting
information was missing. This may be a bug in the module13.

Technical Commentary: An alternative Perl interface to the functionality provided
by Grace exists in the Chart::GRACE module, available from CPAN. This module is
more orientated towards the display of data stored in arrays or Perl Data Libraries
(PDLs).

13
And it may well be fixed by the time you read this, as popular CPAN modules are always

being updated.

Plotting Graphs 439

2

1.5

1

0.5

0
200 300 400 500

Time

Absorbance data
Thanks to Scott Prahl and Gary Deschaines

R
el

at
iv

e
in

te
ns

ity

600 700

Figure 19.12 The ‘‘Absorbance’’ image as produced by Chart::Graph::Xmgrace.

As suggested by the final maxim in Chapter 514, it is important to realise the
level of functionality provided by a CPAN module. The Chart::Graph::Xmgrace
module has some excellent features, but some functionality is (currently) missing.

Where to from Here

Data visualisation is one of the most active areas of Bioinformatics because of
the ever-increasing size, internal complexity and range of information that must
be presented to and by researchers. The ultimate aim of any data visualisation
is to make the data mean something, so the viewer is in a position to better
understand the data.

Data visualisation is an area of great creativity, both scientifically and compu-
tationally. Take the time to explore what it has to offer.

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

14
Always take the time to test downloaded CPAN modules for compliance to specific require-

ments.

440 Data Visualisation

• People are processing tools, too, especially when it comes to processing visual
information.

• Producing plans avoids problems before problems surface.

Exercises

1. Amend the Mer Table.pl program to automatically insert HTML hyperlinks to
on-line database entries.

2. Develop a strategy to remove those trailing commas at the end of each of the lists
produced by the Mer Table.pl program. Implement the strategy.

20

Introducing Bioperl

Towards the Bioinformatics Perl programmer’s nirvana.

20.1 What is Bioperl?

Bioperl is a very useful set of Perl modules for Bioinformatics that handle common
(and some not so common) Bioinformatics analysis tasks. These tasks include:

• Accessing databases.

• Aligning sequences.

• Accessing literature references.

• Accessing sequence annotation.

• Performing and parsing sequence similarity searches.

In many cases, Bioperl is just a convenient interface to existing software. For
example, storage of the advanced database annotations uses a relational database
(usually MySQL), the graphical output uses gdlib and multiple sequence align-
ment is performed by ClustalW or T-Coffee. Much of Bioperl’s under-the-hood
functionality is also borrowed from other Perl modules, such as the libwww-perl
library when working with the web and xpat when working with XML. There are
also interfaces to fully featured software packages such as EMBOSS and Ensembl.
More on this later.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

442 Introducing Bioperl

Bioperl is an open-source project. As such, it is possible to use Bioperl imme-
diately after downloading the Bioperl modules from the project’s web-site:

http://www.bioperl.org

The Bioperl modules are also on CPAN, but the version found there may lag
behind the latest release from the project1.

When using Bioperl, it is always a good idea to cite the project’s web-site
address and the current official publication that can be found in the web-site’s
FAQ. At the start of September 2003, the citation is:

Stajich, J. E., Block, D., Boulez, K., Brenner, S. E., Chervitz, S. A., Dagdi-
gian, C., Fuellen, G., Gilbert, J. G. R., Korf, I., Lapp, H., Lehvaslaiho, H.,
Matsalla, C., Mungall, C. J., Osborne, B. I., Pocock, M. R., Schattner, P.,
Senger, M., Stein, L. D., Stupka, E. D., Wilkinson, M. and Birney, E., The
Bioperl Toolkit: Perl modules for the Life Sciences, Genome Research,
2002, October 12(10): 1161-8.

20.2 Bioperl’s Relationship to Project Ensembl

The Bioperl modules are the main interface engine behind the excellent Ensembl
Genome Browser, available from this web-site:

http://www.ensembl.org

Originally, the Ensembl project was designed to be a very capable and reliable
annotated data source for the Human Genome, but has since been used for other
genomes, such as the Murine (Mouse) and C. elegans (worm). One of the strengths
of Ensembl is the stability of the automatic annotation it provides, which makes it
easy to link to either a local Ensembl system or a remote system via the Ensembl
web-site.

Another strength is the ease of searching the information contained in Ensembl.
Text, sequence and physical location are all supported on the web-site – the user
literally clicks on the map of the chromosome to zoom in or out on that part
which is of interest. A programmer interface (or portal) provides a mechanism
to perform automated queries. Alternatively, it is possible to download the
underlying database as either flat data-files or as a MySQL dump for import into
a local Ensembl system or other analysis system.

20.3 Installing Bioperl

Installing the core Bioperl modules is, thankfully, straightforward. Download both
the current core stable.tar.gz and current run stable.tar.gz disk-files,

1
Release 1.2.2 of Bioperl is described in this chapter.

Installing Bioperl 443

as these contain the latest stable release from the Bioperl web-site. Once down-
loaded, decompress them, as follows:

tar -zxvf current_core_stable.tar.gz
tar -zxvf current_run_stable.tar.gz

Change into each of the newly created directories2 using the cd command, then
issue the usual Perl module installation commands:

perl Makefile.PL
make
make test
su
make install
<Ctrl-D>

Note the requirement, as usual, to issue the make install command as the
superuser (root). Note, too, that the issuing of this set of installation commands
in each of the directories takes a little while to complete. There may be a
requirement to set the paths to installed programs that Bioperl relies on (such
as ClustalW). Refer to the Bioperl documentation for details on how to do this, if
necessary.

Bioperl, probably more than any other CPAN module, has a large number of
extra dependencies. A number of other programs may or may not be required,
depending on what it is Bioperl is going to be used for. Installing everything that
Bioperl could potentially need is quite a task. For this introduction, your authors
confined themselves to a small subset of all that’s possible. The general advice is
to install those modules needed and no more3.

There is also a special bundle of Bioperl modules, called Bundle::BioPerl
(note the non-standard capitalisation), which can help with installation and is
also available on CPAN. When used with the CPAN module, the bundle automates
the installation of Bioperl, as well as the most common dependencies. Here are
the commands to use:

su
perl -MCPAN -e "shell"
cpan> install Bundle::BioPerl
cpan> quit
<Ctrl-D>

Again, note the requirement to issue these commands while logged in as root.
The assumption in this chapter is that the external modules referenced dur-
ing the Bundle::BioPerl installation have not been installed, except for the

2
These are named bioperl-1.2.2 and bioperl-run-1.2.2 respectively.

3
Bear in mind that it is possible to install modules later without too much difficulty.

444 Introducing Bioperl

libwww-perl library. To try out the RemoteBlast example, the String::IO
module is needed, which (as usual) is available on CPAN.

20.4 Using Bioperl: Fetching Sequences

Bioperl comes in one of two flavours, object-oriented and non-object orientated
(by less functional). The non-object based interface is easier to work with, so it is
initially used within this chapter. Later examples use the object-oriented flavour.

Even though the vast majority of the Bioperl functionality is missing as a result
of excluding the external modules/packages, a basic installation of Bioperl can
still be applied to a number of problems. One of the simplest tasks is to use the
get sequence sub-routine (provided by Bioperl) to download sequences entries
from remote databases such as SWISS-PROT, EMBL and GenBank.

When supplied with either a SWISS-PROT accession number (P00392) or a
SWISS-PROT ID (MERA PSEAE) on the command-line, the following program, called
simple get sequence.pl, downloads the SWISS-PROT sequence and creates two
disk-files. The first contains the verbose SWISS-PROT format together with a
full annotation, and the second contains the sequence in FASTA format. The
Bioperl-supplied write sequence sub-routine creates the disk-files:

#! /usr/bin/perl -w

simple_get_sequence.pl - a simple Bioperl example program, which
downloads SWISS-PROT sequences.

use strict;

use Bio::Perl;

my $ID = shift;

my $Sequence = get_sequence(’swiss’, $ID);

write_sequence(">./seqs/$ID.swp", ’swiss’, $Sequence);
write_sequence(">./seqs/$ID.fsa", ’fasta’, $Sequence);

There’s not much to the simple get sequence.pl program. After switching
on strictness and using the Bio::Perl module, the $ID scalar is assigned a
value from the command-line (thanks to the shift sub-routine). This scalar is
immediately used in a call to Bioperl’s get sequence sub-routine, which goes off
to the Internet and downloads the SWISS-PROT entry associated with the value
of $ID. The entry is assigned to (or associated with) the $Sequence scalar. It is
then used in two calls to Bioperl’s write sequence sub-routine, which each take
the downloaded SWISS-PROT entry in $Sequence and create a disk-file from it.
The first call creates a disk-file containing the verbose format, while the second
creates a disk-file containing the FASTA format.

Using Bioperl: Fetching Sequences 445

To execute this program, create a directory called seqs in the current directory,
make the simple get sequence.pl program executable, and run it, as follows:

mkdir seqs
chmod +x simple_get_sequence.pl
./simple_get_sequence.pl P00392

If everything works as expected, the seqs directory now contains two disk-
files, P00392.swp and P00392.fsa. The Bioperl modules are flexible enough to
work out whether a human-friendly ID or an accession code is supplied on the
command-line and download the correct sequence, as appropriate. Hence, these
two invocations of the program download and create the same disk-files:

./simple_get_sequence.pl P00392

./simple_get_sequence.pl MERA_PSEAE

The diff utility is used to quickly check that any two disk-files are identical.
These command-lines produce no output4, which is diff’s way of indicating that
the disk-files are the same:

diff seqs/P00392.fsa seqs/MERA_PSEAE.fsa
diff seqs/P00392.swp seqs/MERA_PSEAE.swp

The get sequence sub-routine works equally well with DNA sequences from
the GenBank and EMBL databases. To learn more about the other functionality
included in the Bio::Perl module, consult the on-line documentation using this
command-line:

perldoc Bio/Perl.pm

or browse HTML-formatted version available on the Bioperl web-site.

20.4.1 Fetching multiple sequences

Let’s download the sequences used in the ClustalW alignment example from
Section 18.9.1 on page 407 in this book. Note that it’s not an absolute requirement
to use Bioperl to determine the list of required sequences, as it is possible to use
the interactive Sequence Retrieval System (SRS) web service to download the list.

From SRS, extract a list of SWISS-PROT IDs by searching for mera and merp,
copying (using cut ‘n’ paste) the results into two disk-files: one containing the MerA
sequences and the other containing the MerP sequences. The list of determined
proteins should be similar to these:

4
They are the strong, silent type.

446 Introducing Bioperl

MERP_ACICA
MERP_ALCSP
MERP_PSEAE
MERP_PSEFL
MERP_SALTI
MERP_SERMA
MERP_SHEPU
MERP_SHIFL

and:

MERA_ACICA
MERA_ALCSP
MERA_BACSR
MERA_ENTAG
MERA_PSEAE
MERA_PSEFL
MERA_SERMA
MERA_SHEPU
MERA_SHIFL
MERA_STAEP
MERA_STRLI
MERA_THIFE

The lists are stored in the Merp IDs.lst and Mera IDs.lst disk-files respec-
tively. Once the list is determined, the Multi Seq Get.pl program is used to
download each list of sequences from the on-line databases with these command-
lines:

./Multi_Seq_Get.pl Merp_IDs.lst

./Multi_Seq_Get.pl Mera_IDs.lst

The above command-lines create a collection of SWISS-PROT data files in the seqs
directory. Here’s the source code to the Multi Seq Get.pl program:

#! /usr/bin/perl -w

Multi_Seq_Get.pl - when provided with a list of IDs, download them.

use strict;

use Bio::Perl;

while (my $ID = <>)
{

chomp($ID);

print "Fetching Sequence: $ID.\n";

my $Sequence = get_sequence(’swiss’, $ID);

write_sequence(">./seqs/$ID.swp", ’swiss’, $Sequence);
write_sequence(">./seqs/$ID.fsa", ’fasta’, $Sequence);

}

Using Bioperl: Fetching Sequences 447

The Multi Seqs Get.pl program simply wraps a while loop around the source
code from the simple get sequence.pl program.

20.4.2 Extracting sub-sequences

For the phlyogenetics investigation, a requirement exists to align sequences of
the HMA domain that exist as the major part of MerP and the first part of MerA.

In this section, Bioperl is used to download the sequences and ‘‘cut out’’ the
HMA domains from the MerA proteins, creating new sequence disk-files containing
the sections of interest. In an earlier chapter, a text editor is used to do this.
However, there is a better way. One of the fundamental modules that Bioperl
has is called Sequence5, which provides a mechanism to extract sub-sequences.
This is very similar to Perl’s in-built substr sub-routine, which could be used
to program a parser/sequence extractor. The word ‘‘could’’ is used in the last
sentence for a reason: it’s always possible to roll your own with Perl, but not
always advisable.

Maxim 20.1 Don’t reinvent the wheel.
Use Bioperl whenever possible.

As most of the annotation is missing, all Bioperl is asked to do is create a new
sequence with:

1. A particular sequence

2. A supplied ID

3. An accession code (which is actually based on the ID in this case)

Bioperl fills in the basic annotation fields automatically, producing a properly for-
matted SWISS-PROT file, which includes the sequence length, the molecular weight
and the CRC checksum. This is all part of the Bioperl service. A program called
Seq Crop.pl extracts the first 92 amino acids from each MerA sequence ID passed
from STDIN and writes the output to a disk-file called MerAs cropped.swp:

#! /usr/bin/perl -w

Seq_Crop.pl - extract a subsequence example program.

use strict;

use Bio::Perl;

use constant AMINO_COUNT => 92;

while (my $ID = <>)

5
This is often referred to as Seq.

448 Introducing Bioperl

{
chomp($ID);

print "Processing sequence: $ID.\n";

my $Org_Seq = read_sequence("./seqs/$ID.swp", ’swiss’);

my $Protein_Code = $Org_Seq->subseq(1, AMINO_COUNT);

my $Cropped_Seq = new_sequence($Protein_Code, "$ID_CROPPED", $ID);

write_sequence(">>MerAs_cropped.swp", ’swiss’, $Cropped_Seq);
}

When executed against the list of MerA sequences, the resultant disk-file, which is
called MerAs cropped.swp, contains a set of concatenated SWISS-PROT records.
Here’s an extract from the disk-file produced:

ID MERA_ACICA_CROPPED STANDARD; PRT; 92 AA.
AC MERA_ACICA;
DE
SQ SEQUENCE 92 AA; 9363 MW; F2AA11A3B589F55A CRC64;

MTTLKITGMT CDSCAAHVKE ALEKVPGVQS ALVSYPKGTA QLAIEAGTSS DALTTAVAGL
GYEATLADAP PTDNRAGLLD KMRGWIGAAD KP

//
ID MERA_ALCSP_CROPPED STANDARD; PRT; 92 AA.
AC MERA_ALCSP;
DE
SQ SEQUENCE 92 AA; 9119 MW; BD0F5CDA5FB699DC CRC64;

MYLNITGMTC DSCATHVKDA LEKVPGVLSA LVSYPKGSAQ LATDPGTSPE ALTAAVAGLG

.

.

.

Of course, this can also be accomplished using SRS to extract FASTA-formatted
entries, which can then be manually edited. Doing so (manually) shows that the
HMA domain is listed as the first 66 amino acids of the MerA proteins in the
annotation, not 92 as assumed, on the basis of the length of the MerP proteins.
Alternatively, change the AMINO COUNT constant from 92 to 66 in the Crop Seq.pl
program and re-run it. It should be clear that even for the simple sequence
processing tasks such as demonstrated above, the power of Bioperl is clear.

To produce an easy to upload disk-file, simply concatenate the MerP SWISS-
PROT protein disk-files with the pre-concatenated MerA fragments as stored in
the MerAs cropped.swp disk-file.

20.5 Remote BLAST Searches

One of the most useful and interesting sub-routines provided by Bioperl is
blast sequence. As its name implies, this sub-routine performs a sequence

Remote BLAST Searches 449

similarity search using the Basic Local Alignment Search Tool (BLAST) from
the NCBI web-site. There is a complementary sub-routine, called write blast,
which creates a disk-file from the results of the search. Typical usage within a
program is:

$blast_result = blast_sequence($seq);

write_blast($filename, $blast_result);

Note that write blast assumes that the String::IO module is installed within
the local Perl environment. The Bioperl module provides a whole host of sub-
routines for parsing any produced output. As these sub-routines operate on
standard BLAST reports, they can process results generated locally using the
Bio::Tools::Run::StandAloneBlast module and/or from a locally installed
BLAST system.

While preparing this book, these sub-routines initially worked well and then –
abruptly – stopped working. It is very likely that the NCBI BLAST service was
(unintentionally) changed in a way that Bioperl could no longer use it. More than
likely, this particular problem will be fixed with the next release of Bioperl6.
Anyway, your authors wanted to show how to use other programs with Bioplerl!

An alternative strategy is to use the official NCBI remote BLAST solution, which
is downloadable from the NCBI FTP site7, which highlights an important maxim.

Maxim 20.2 Combine Bioperl with other tools to get your work done.

20.5.1 A quick aside: the blastcl3 NetBlast client

The blastcl3 program is extremely flexible, and provides many command-line
parameters. The most important are:

-p – the program name as a string (e.g., blastp)

-d – the database name as a string (e.g., swissprot)

-i – the query file (which defaults to STDIN)

-e – the expectation value (which defaults to 10.0)

-m – the alignment view options.

For example, to BLAST the sequence just downloaded back against the SWISS-
PROT database, use the program blastp, which performs protein-to-protein
comparison. The output can then be redirected into a disk-file, which is called
Swiss-Prot.NetBlast P00392.res. Use the following command-line:

6
And by the time this book is published, this particular problem may no longer be an issue.

7
Use this Internet address: ftp://ftp.ncbi.org.

450 Introducing Bioperl

blastcl3 -i ./seqs/P00392.fsa -d swissprot -p blastp \
> Swiss-Prot.NetBlast_P00392.res

The above invocation of blastcl3 submits the request into the job queue on the
NCBI web-site, uploading the disk-file containing the sequence via the Internet in
the process. This can take some time (often many minutes) to complete.

When performing less than 20 sequences (perhaps as part of a small project or
prototype analysis system), the advice is to use the on-line interactive web-based
BLAST servers. Note that the BLAST client returns a flat data-file containing text
only and it lacks features such as clickable hyper-links that reference the public
databases, a feature that is provided by the web-site.

20.5.2 Parsing BLAST outputs

The structure of the BLAST output from either the on-line services, stand-alone
systems, network clients or the RemoteBlast module follows the same basic
format. There are three main sections:

1. The BLAST copyright message.

2. A summary of the similar sequence and measures of the amount of similar-
ity8.

3. The alignments between the query and database sequences.

Some of the most useful modules in Bioperl are those that parse BLAST output.
One of the more recent and most general is the Bio::SearchIO module. This is
a fully object-orientated module containing a wide variety of sub-routines (that
are called methods).

Let’s discuss a modified version of one of the example programs from the Biop-
erl documentation. This processes the output from the NCBI BLAST programs,
and parses the disk-file passed to it on the command-line:

./Blast_parse.pl Swiss-Prot.NetBlast_P00392.res

Here’s the source code to the Blast parse.pl program9:

#! /usr/bin/perl -w

Blast_parse.pl - post-process/parse BLAST output.

use strict;

8
Inspecting the output in detail, it is unsurprising that the scoring hit is the P00392 entry itself,

which is what we expect: this was the query sequence after all! Also, the other MerA examples
score above anything, so we can conclude that our BLAST search is behaving as expected.

9
Look at the size of this program.

Remote BLAST Searches 451

use Bio::SearchIO;

my $bls_report = shift;

my $in = new Bio::SearchIO(-format => ’blast’,
-file => $bls_report);

while (my $result = $in->next_result)
{

while(my $hit = $result->next_hit)
{

print "Hit = ", $hit->name, "\n";
}

}

After the usual first line, the switching on of strictness and the use of the
Bio::SearchIO module, the name of the disk-file as passed in on the command-
line is assigned to the $bls report scalar. This is then used to create a new
Bio::SearchIO object that is assigned to a scalar called $in. It is this scalar that
provides mechanisms to extract useful information from the BLAST output. In
this program, two while loops cycle through the BLAST data.

Here are the first ten lines of output produced by the above invocation of the
Blast parse.pl program:

Hit = sp|P00392|MERA_PSEAE
Hit = sp|P94702|MERA_ENTAG
Hit = sp|Q52109|MERA_ACICA
Hit = sp|P94188|MERA_ALCSP
Hit = sp|P08332|MERA_SHIFL
Hit = sp|Q51772|MERA_PSEFL
Hit = sp|P17239|MERA_THIFE
Hit = sp|Q54465|MERA_SHEPU
Hit = sp||P08662_1
Hit = sp|P30341|MERA_STRLI

To learn more about the Bio::SearchIO module, use this command-line to view
its documentation:

perldoc Bio/SearchIO.pm

The documentation is quite involved and provides details on the extensive
features of the module. For example, it is a straightforward matter to extract
individual alignments or convert BLAST output into HTML.

Where to from Here

Bioperl is a flexible, extensive, powerful and standard set of Bioinformatics
analysis and control modules for Perl programmers. This chapter touches on a

452 Introducing Bioperl

very small part of Bioperl. There are lots more, including excellent modules for
sequence analysis and data format translation, which are useful in Bioinformatics
and bioscience in general. The real power of Bioperl comes from the external
packages that it presents, in that they are neat, clean interfaces. This allows
programmers to incorporate sophisticated functionality into their own programs
without too much difficulty.

Readers are encouraged to take as much time as necessary to learn about the
extensive features provided by the Bioperl modules. Feel free to get involved in
working for the project, too. Volunteers are always welcome!

The Maxims Repeated

Here’s a list of the maxims introduced in this chapter.

• Don’t reinvent the wheel. Use Bioperl whenever possible.

• Combine Bioperl with other tools to get your work done.

Exercises

1. Download, install and configure Bioperl onto your computer. Take the time
to explore its many features.

Appendix A

Installing Perl

The opening chapters of Bioinformatics, Biocomputing and Perl assume that Perl
is installed on the computer being used. Perl is available in ready-to-run versions
for many operating systems. For the complete list of supported platforms, visit
this web-site:

http://www.perl.com/CPAN/ports/

The good news is that if you are already running some version of Linux or Mac OS
X, then Perl is – most likely – already installed, as it is included in these operating
systems as an integrated component. The section below, entitled Installing Perl
The Hard Way, contains instructions for installing Perl from its source code
distribution/download. The remainder of this section provides instructions for
getting and installing Perl on other platforms.

Mac OS 7, 8 and 9

If the Apple Macintosh is not running Mac OS X (which includes Perl 5.6.0 as
standard), then go to:

http://www.macperl.com

to download MacPerl, which is based on the official 5.6.1 release of Perl. The
MacPerl folk provide ongoing support for this version of Perl (which is tailored
to work with ‘‘older’’ Macintoshes), as well as providing the full, on-line text to a
book called MacPerl: Power and Ease. MacPerl is free to download and use.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

454 Appendix A

Windows 9x/ME/NT/2000/XP

A binary version of Perl, called ActivePerl, is available for the various Microsoft
Windows platforms from ActiveState (a division of SOPHOS). Download ActivePerl
from:

http://www.activeperl.com

The version of Perl available from ActiveState tends to lag behind the officially
released version. For instance, at the time of writing, the Perl community is
‘‘shipping’’ Perl 5.8.2, whereas ActiveState’s version is the 5.8.1 release. This is
due to ActiveState taking the time to enhance the official Perl release with a large
collection of Windows-specific functionality. ActivePerl, like MacPerl, is available
for free download. ActiveState/SOPHOS also provide a collection of tools for use
by professional developers. These tools are not provided free of charge.

Installing Perl the Hard Way

Use the following command to check which version of perl is installed on a
computer:

perl -v

This command results either in the display of a message detailing the version
of Perl installed or in a ‘‘command not found’’ complaint from the operating
system. Here’s what is displayed on Paul’s computer:

This is perl, v5.8.0 built for i386-linux-thread-multi
(with 1 registered patch, see perl -V for more detail)

Copyright 1987-2002, Larry Wall

Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on
this system using ‘man perl’ or ‘perldoc perl’. If you have access to the
Internet, point your browser at http://www.perl.com/, the Perl Home Page.

For purposes of illustration, the assumption is that users of UNIX or Linux
(RedHat, Caldera, Debian, SuSe, Mandrake or whatever) do not have Perl installed,
or that they intend to upgrade an existing implementation to the latest release.
To begin, download this disk-file:

stable.tar.gz

Appendix A 455

from the following web address:

http://www.perl.com/pub/a/language/info/software.html#sourcecode

Unpack the downloaded disk-file with this command-line:

tar zxvf stable.tar.gz

which creates a new directory called perl-5.8.2, into which the entire collection
of Perl source code is placed. Change into this new directory to begin the
installation process:

cd perl-5.8.2

It may be worthwhile taking a few moments to read the supplied README and
INSTALL disk-files. The installation begins with the forced deletion of two con-
figuration commands:

rm -f config.sh Policy.sh

A script, specifically written to check the capabilities of the environment within
which perl is to be installed, is then executed, as follows:

sh Configure -de

Note that the -de command-line switches instruct the Configure script to
execute with the most common and general options set as default. Note that
failing to specify -de results in a long, interactive question-and-answer session
with Configure, whereby the user is asked to confirm (or suggest alternatives
for) the default selections that Configure is using. Unless you know what you
are doing, the advice is to let Configure select defaults automatically. When
Configure is complete, execute the next command to start the building of the
Perl source code:

make

This is a good point to take a break, put on the kettle and make a cup of tea/coffee.
Even on the fastest of personal computers, building the Perl source code with
make takes a number of minutes. Assuming all is well with make, the next step is
to test the newly built perl before installing it. Use this command-line:

make test

This, too, takes a while. So, feel free to have another cup of tea/coffee. When the
tests conclude, temporarily become the superuser (root) and install perl and its
associated environment with these commands:

su
make install

456 Appendix A

Finally, while still logged in as superuser, issue the following command to convert
your system’s header files into something that perl can use, then logout using
the familiar key combination1:

cd /usr/include && h2ph *.h sys/*.h
<Ctrl-D>

The Perl environment (including the perl program) is now installed and ready to
use.

1
It is not important that you know why this has to be done.

Appendix B

Perl Operators

Here is the list of Perl operators in precedence order, starting with those with the
highest precedence.

-> – The infix dereference arrow operator, used when working with references
(and objects).

++ and -- – The increment and decrement operators.

** – The exponential operator.

!, ~, \, + and - – The logical negation (!), bit-wise negation (~), reference (\),
numeric affirmation (+) and arithmetic negation (-) operators.

=~ and !~ – The binding operators (used when working with regular expressions
and pattern matches).

*, /, % and x – The multiply, divide, modulus (%) and repetition (x) operators.

+, - and . – The addition, subtraction and concatenation (.) operators.

<< and >> – The left and right bit shifting operators.

<, >, <=, >=, lt, gt, le and ge – The relational operators. There are two of each,
one for working with numbers and the other for working with strings. Be
careful to use <, >, <= and >= when comparing numbers, and use lt, gt, le
and ge when comparing strings.

==, !=, <=>, eq, ne and cmp – The equality operators. As with the relational oper-
ators, different versions exist for use with numbers and for strings. The
<=> and cmp operators are used for comparison, and are typically used in
conjunction with the inbuilt sort subroutine.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

458 Appendix B

& – The bit-wise AND operator.

| and ^ – The bit-wise OR and exclusive OR operators.

&& – The logical AND operator.

|| – The logical OR operator.

.. and ... – the range operators.

?: – The ternary conditional operator.

=, **=, +=, *=, &= and so on – the assignment operators.

, and => – The comma operator (typically used to separate list items).

not – A lower precedence alternative to !.

and – A lower precedence alternative to &&.

or and xor – Lower precedence alternatives to || and a logical eXclusive OR
operator.

Appendix C

Perl’s On-line
Documentation

A Short Guide to Perl’s Documentation

Perl comes with a large and growing collection of on-line documentation. To
access this documentation, use this command-line:

man perl

The manual page displayed provides a long list of documents, themselves avail-
able as manual pages. Rather than present the entire list here, this appendix
provides a short description of some of the more useful documents (and is based
on the documents that come as standard with release 5.8.2 of Perl).

perlfunc

This is a large document that provides a description of the collection of in built
subroutines provided by perl. If the name of a subroutine is already known,
the perldoc utility can be used to jump directly to the appropriate entry within
perlfunc documentation. For instance, assuming a requirement to look up the
substr subroutine, this command-line displays the appropriate perlfunc entry:

perldoc -f substr

perlreftut

Perl references are a special type of scalar variable that allow for and en-
able the creation of complex data structures (such as an array of arrays or

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

460 Appendix C

a hash of hashes). This short guide provides a guide to the essentials of
references.

perldsc

Following on from the perlreftut document, this guide demonstrates how to
use references with arrays and hashes to create complex data structures. Sample
program code is provided for a number of useful data structures.

perlretut

This is the Perl regular expression tutorial that covers most of what’s required to
be known about Perl’s pattern-matching technology. It complements rather than
replaces the material from Part I of this book.

perldebtut

An excellent (and small) introduction to using the Perl debugger. A debugger is a
software tool that can execute a program one statement at a time while the user
(of the debugger) watches what’s going on. When a program is not behaving the
way it is expected to, running it through the debugger can help identify where
things are going wrong. This manual page presents Perl’s debugger to the new
user.

Appendix D

Suggestions for
Further Reading

In this appendix, those texts, journals, articles and other resources that supple-
ment and support the material in this book are presented. These are ordered by
chapter. Note that not all chapters have further reading suggestions.

There are many excellent Bioscience/Biochemistry/Molecular Biology/Genetics
books available. Usually, one or more of these can be found on the Bioinformati-
cian’s bookshelf (or within their organisation’s library). Here is a short list that
Michael recommends and finds particularly useful:

• Genetics: A Molecular Approach, Brown, T., BIOS Scientific Publishers, 1992.
This ‘‘older’’ book covers all of the fundamental concepts from a molecular
perspective.

• Genes VII, Lewin, B., Oxford University Press, 2000. The ‘‘Genes’’ series of
books are both comprehensive and comprehensible.

• Biochemistry, 5th edition, Stryer, L., Berg, J. M. and Tymoczko, W. H. Freeman,
2002. This is a well established, standard Biochemistry textbook.

• Molecular Cell Biology, Darnell, J. E., W. H. Freeman, 2003. This is a very
useful, modern and up-to-date molecular biology reference text.

Setting the Biological Scene
• 1D66 is described in Marmorstein, R., Carey, M., Ptashne, M. and Harrison,

S. C., Nature, 356, 408, 1992.

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

462 Appendix D

• The Mer Operon is well characterized in Liebert, C. A., Hall, R. M. and Sum-
mers, A. O. , Microbiology and Molecular Biology Reviews, 63, 507–522, 1999,
as well as in Hobman, J. L. and Brown, N. L., Metal Ions in Biological Systems,
Vol. 36, Marcel Dekker. (Sigel, A. and Sigel, H., editors), 1999.

Setting the Technological Scene

• A good, modern introduction to the world of computers is Computers in
Your Future, 4th edition, by Bryan Pfaffenberger, Prentice Hall, 2002.

The Basics

• The definitive, classic reference to Perl, now in its third edition, is Pro-
gramming Perl, by Larry Wall, Tom Christiansen & Jon Orwant, O’Reilly &
Associates, 2000. This book is often referred to as The Camel by practising
Perl programmers. This text is the ‘‘Perl Bible’’,

• An excellent source of advice for new programmers is Perl Debugged, by
Peter Scott & Ed Wright, Addison-Wesley, 2001. The emphasis in this book
is on explaining how to avoid the most common problems encountered by
the Perl programmer.

Places to Put Things

The help files and on-line documentation included with Perl provide good descrip-
tions of Perl variables and data structures. For the standard Perl variable types,
use the perldoc utility to access perldata, as follows:

perldoc perldata

For more complex data structures and representations, consider reading perldsc
or perllol:

perldoc perldsc
perldoc perllol

Getting Organised

• A thorough round-up of module design, creation and maintenance, as well
as programmers’ guide to CPAN, can be found in Writing Perl Modules for
CPAN, by Sam Tregar, Apress (Springer-Verlag), 2002.

Appendix D 463

About Files

A simple description of how to use and work with files and filehandles can be
read by issuing this command-line:

perldoc perlfaq5

An excellent introduction to the open subroutine and its various uses can be
accessed as follows:

perldoc perlopentut

Patterns, Patterns and More Patterns

• To learn most, if not all, of what there is to know about regular expressions,
study Mastering Regular Expressions, 2nd edition, by Jeffrey E. F. Friedl,
O’Reilly & Associates, 2002. This book is a great read.

Perl Grabbag

• The perlfaq8 documentation is a good place to look for more details on
interacting with the operating system (and its hardware) from within a Perl
program.

• The ultimate Perl Grabbag is Perl Cookbook, 2nd edition, by Tom Christiansen
& Nathan Torkington, O’Reilly & Associates, 2003.

The Protein Databank

• The Reference for 1LQT/U is Bossi, R. T., Aliverti, A., Raimondi, D., Fischer,
F., Zanetti, G., Ferrari, D., Tahallah, N., Maier, C. S., Heck, A. J. R., Rissi,
M., Mattevi, A. (2002), A covalent modification of NADP(+) revealed by
the atomic resolution structure of FPRA, a mycobacterium tuberculosis
oxidereductase, Biochemistry, 41, 8807.

• The Reference for 1M7T is Dangi, B., Dobrodumov, A. V., Lousi, J. M., Gro-
nenborn, A. M. (2002), Solution structure and dynamics of the human-
Escherichia coli thioredoxin chimera: insights into thermodynamic stability,
Biochemistry, 41, 9376.

• Weissig, H., Shindyalov, I. N,, Bourne, P. E. (1998), Macromolecular struc-
ture databases: past progress and future challenges, Acta Crystallographica
Section D-Biological Crystallography, 54, 1085–1094.

464 Appendix D

• For an introduction to Free R, see Brunger, A. T. (1992), Free R-value – a novel
statistical quantity for assessing the accuracy of crystal-structures, Nature,
355(6359), 472–475, as well as, Brunger, A. T. (1993), Assessment of phase
accuracy by cross validation – the free R-value – methods and applications,
Acta Crystallographica Section D-Biological Crystallography, 49, 24–36.

• The PDB Data Uniformity Project is best described by Bhat, T. N., Bourne, P. ,
Feng, Z. K., Gilliland, G., Jain, S., Ravichandran, V., Schneider, B., Schneider,
K., Thanki, N., Weissig, H., Westbrook, J., Berman, H. M. (2001), The PDB
data uniformity project, Nucleic Acids Research, 29(1), 214–218.

Databases

• MySQL, 2nd edition by Paul Dubios, SAMS, 2003, is the ultimate printed
reference to the MySQL database management system.

• If you know another database system and want to apply your knowledge to
MySQL, check out The MySQL Cookbook, also by Paul Dubios, but published
by O’Reilly & Associates, 2002.

Databases and Perl

• Programming the Perl DBI by Alligator Descartes & Tim Bunce, O’Reilly,
2000, is the classic DBI reference (although the module’s included on-line
documentation is also very good).

Web Technologies

• A good, all-round text is Programming the World Wide Web, 2nd edition by
Robert W. Sebasta, Addison-Wesley, 2002.

• A book that is specific to Perl is Writing CGI Applications with Perl by Kevin
Meltzer & Brent Michalski, Addison-Wesley, 2001.

Tools and Datasets

• Sander, C. and Schneider, R., (1991), Database of homology-derived protein
structures, Proteins, Structure, Function & Genetics, 9, 56–68.

• Two original papers on dynamic programming sequence searching are: A
general method applicable to the search for similarities in the amino acid
sequence of two proteins, Needleman, S. B. and Wunch, C. D. (1970), Journal
of Molecular Biology, 48, 443–453; and Identification of common molecular

Appendix D 465

subsequences, Smith, T. F. and Waterman, M. S. (1981), Journal of Molecular
Biology, 147, 195–197.

• Improved tools for biological sequence comparison, Pearson, W. R. and Lip-
man, D. J. (1988), Proceedings of the National Academy of Sciences of the
United States of America, 85, 2444–2448.

• The original reference for 1EHZ is Shi, H. and Moore, P. B., (2000), The
crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic
structure revisited, RNA, 6, 1091 .

• The original reference for the ClustalX program is Thompson, J. D., Gibson,
T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G., (1997), The ClustalX
windows interface: flexible strategies for multiple sequence alignment aided
by quality analysis tools, Nucleic Acids Research, 24, 4876–4882.

• Likewise for ClustalW, the reference is Thompson, J. D., Higgins, D. G. and
Gibson, T. J., (1994), ClustalW: improving the sensitivity of progressive mul-
tiple sequence alignment through sequence weighting, positions-specific gap
penalties and weight matrix choice, Nucleic Acids Research, 22, 4673–4680.

• T-Coffee: A novel method for multiple sequence alignments, Notredame,
C., Higgins, D. and Heringa, J., (2000), Journal of Molecular Biology, 302,
205–217.

• COFFEE: A new objective function for multiple sequence alignment,
Notredame, C., Holme, L. and Higgins, D. G., (1998), Bioinformatics, 14 (5),
407–422 .

• Henikoff, S. and Henikoff, J. G., (1992), Amino acid substitution matrices
from protein blocks, Proceedings of the National Academy of Sciences of the
United States of America, 89, 10915–10919.

• For a description of the original PAM matrices, see Dayhoff, M. O., Schwartz,
R. M. and Orcutt, B. C., (1978,) in Atlas of Protein Sequence and Structure,
Vol. 5, Supplement 3, Dayhoff, M.O. (ed.), NBRF, Washington, p. 345.

• Woodwark, K. C., Hubbard, S. J. and Oliver, S. G., (2001), Sequence search
algorithms for single pass sequence identification: Does one size fit all?
Comparative & Functional Genomics, 2(1), 4–9.

Applications

• Durbin, R., Eddy, S., Krogh, A. and Mitchinson, G., (1998), Biological Sequence
Analysis, Cambridge University Press, Cambridge.

• Borodovsky, M. and McIninch J., (1993), GeneMark: parallel gene recognition
for both DNA strands, Computers & Chemistry, 17, 123–133.

466 Appendix D

• Blattner, F. R., Burland, V., Plunkett, III, G., Sofia, H. J. and Daniels, D. L.,
(1993), Analysis of the Escherichia-coli genome .4. DNA-sequence of the
region from 89.2 to 92.8 minutes. Nucleic Acids Research, 21(23), 5408–5417.

• Borodovsky, M., McIninch, J., Koonin, E., Rudd, K., Medigue, C. and Danchin,
A., (1995), Detection of new genes in the bacterial genome using Markov
models for three gene classes, Nucleic Acids Research, 23, 3554–3562.

• Burge, C. and Karlin, S., (1997), Prediction of complete gene structures in
human genomic DNA, Journal of Molecular Biology, 268, 78–94.

• Burge, C. B. and Karlin, S., (1998), Finding the genes in genomic DNA, Current
Opinion in Structural Biology, 8, 346–354.

• Schwede, T., Kopp, J., Guex, N., et al. (2003), SWISS-MODEL: an auto-
mated protein homology-modeling server, Nucleic Acids Research, 31(13),
3381–3385.

• Rost, B. and Sander, C. (1993), Improved prediction of protein secondary
structure by use of sequence profiles and neural networks, Proceedings of
the National Academy of Sciences USA, 90(16), 7558–7562.

• Rost, B. and Sander, C. (1994), Combining evolutionary information and
neural networks to predict protein secondary structure, Proteins: Structure
Function and Genetics, 19(1), 55–72.

• Rost, B. and Sander, C. (1993), Prediction of protein secondary structure
at better than 70-percent accuracy, Journal of Molecular Biology, 232(2),
584–599.

• Mulder, N. J., Apweiler, R., Attwood, T. K., Bairoch, A., Barrell, D., Bateman, A.,
Binns, D., Biswas, M., Bradley, P., Bork, P., Bucher, P., Copley, R. R., Courcelle,
E., Das, U., Durbin, R., Falquet, L., Fleischmann, W., Griffiths-Jones, S., Haft,
D., Harte, N., Hulo, N., Kahn, D., Kanapin, A., Krestyaninova, M., Lopez, R.,
Letunic, I., Lonsdale, D., Silventoinen, V., Orchard, S. E., Pagni, M., Peyruc,
D., Ponting, C. P., Selengut, J. D., Servant, F., Sigrist, C. J. A., Vaughan, R.
and Zdobnov, E. M., (2003), The InterPro Database, 2003 brings increased
coverage and new features, Nucleic Acids Research, 31, 315–318.

• Zdobnov, E. M. and Apweiler, R., (2001), InterProScan – an integration plat-
form for the signature-recognition methods in InterPro, Bioinformatics,
17(9), 847–848.

Data Visualisation
• A good book on visualisation is Information Graphics: A Comprehensive

Illustrated Reference by Robert L. Harris, Oxford University Press Inc., USA,
2000.

• An excellent web resource is Ramana Rao’s web-site: http://www.ramana-
rao.com.

Appendix E

Essential Linux
Commands

To learn more about a particular command, view the manual page associated
with it – simply type man followed by the name of the command you want to
learn about. To exit from a manual page, press the q key (where ‘‘q’’ stands for
‘‘quit’’). Most commands have options associated with them – don’t try to guess
the options... read the manual page!

Working with Files and Directories

cat Type a disk-file to the screen
cd Change directory (or return to %HOME directory)
chmod Change the mode of a disk-file (e.g., to make it executable)
chown Change the owner of a disk-file or directory
cp Copy a disk-file/directory to a new location
find Search for a disk-file on the system (see locate)
ftp Transfer disk-files from one system to another
grep Search for a text string in a group of disk-files
gzip/gunzip Compress/uncompress a disk-file or group of disk-files
head Display the first few lines of a disk-file on the screen
ispell Spell-check a disk-file using the system dictionary
less Type a disk-file to the screen one screen-full at a time
locate Locate a specific disk-file on the system (see find)
ln Create a symbolic link (alias/shortcut) to a disk-file

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

468 Appendix E

ls List the contents of a directory to the screen
mkdir Create a new directory
mv Move or rename a currently existing disk-file/directory
pwd Display the name of current working directory
rm Delete one or more disk-files
rmdir Delete a directory
sort Sort a disk-file (using various techniques)
tac Type a disk-file to the screen in reverse order (see cat)
tail Display the last few lines of a disk-file on the screen
wc Display the character, word, or line count of a disk-file
zcat Type the contents of a compressed disk-file to the screen
zmore Like zcat, only display the disk-file a screen-full at a time

Printing Commands

lpq Check the status of your entries on the print queue
lpr Add an entry to the print queue
lprm Remove an entry from the print queue

Networking Commands

netstat Show the network status for this system
ping Is there anybody out there? Check a host for existence
traceroute Show me how to get from here to there

Working with Processes

kill Stop a process (program) from running
ps Report on the active processes
top Who is doing what, and how much CPU are they using?
w Display a summary of system usage on the screen

Working with Disks

df How much free disk space is there?
du How is the disk space being used?

Miscellaneous Commands

cal Display a calendar on the screen
clear Clear the screen

Appendix E 469

date Display the current date and time on the screen
echo Display a message on the screen
man Read a manual page (type man man to learn more)
passwd Change your password
perl Run Perl (a great programming language . . .)
su Create a shell under the ID of some other user
telnet Log into a remote computer
uname Display the machine and operating system name
users List the current login sessions on the system
vi Run vi (a great text editor . . .)
whereis Locate a binary (executable), source, or manual page disk-file
which List the path to a particular binary disk-file (executable)
who Who is currently logged in
whoami ’Cause I’ve forgotten . . .

Ctrl-D Signal end-of-file to running process (key combination)

Essential Systems Administrator Commands

Note that you will need to be logged in as root to use these commands effectively.
Remember, as root you have complete power over Linux (so be careful).

cron Execute commands at scheduled times
dmesg Display the system control messages
e2fsck Check the health of a disk
fdisk Fiddle with disk partitions (be very, very careful)
fdisk You are being careful with fdisk, aren’t you?
ifconfig Configure your network interface card
kill See kill above . . . much more fun as root . . .

lilo Install the Linux Loader (read the man page)
lpc Control a print queue
mke2fs Create a disk-file system (i.e., format a disk)
mount Add a disk into the active disk-file system (read the man page)
reboot Reboot now!
rpm The RedHat Package Manager
shutdown Perform a nice safe, graceful, shutdown of the system
tar Work with tarred disk-files (read the man page)
umount Remove a disk from the active disk-file system

Appendix F

vi Quick Reference

This quick reference will get you started. To learn more, from the Linux command-
line, type man vi.

Invoking the vi Text Editor

vi – Start the vi editor with an empty edit buffer

vi file – Edit a file called file

vi +n file – Edit a file called file and go to line n

vi +/pattern file – Edit a file called file and go to the first line that matches the
string pattern

vi’s Modes

vi can be in one of three modes:

Edit mode – Keys typed are added to the edit buffer

Non-edit mode – Keys typed adjust or move around the edit buffer

ex mode – Commands are executed within vi, which affect the edit buffer

To enter edit mode, press the Esc key, then type i
To enter non-edit mode, simply press Esc
To enter ex mode, press Esc, then type :

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

472 Appendix F

Non-edit Mode Keystrokes

ˆ Go to start of current line (first non-blank character)
0 Go to start of current line
$ Go to end of current line
w Go to next word
b Go to previous word (back)

o Insert blank line below current one, enter edit mode
O Insert blank line above current one, enter edit mode

i Enter edit mode by inserting text at current location
a Enter edit mode by appending text after current location
A Enter edit mode by appending to the end of the current line
J Join the current line with that line immediately below it

Ctrl-G Show current line number
nG Go to line n within the edit buffer
G Go to bottom of edit buffer

Deleting Text (in Non-edit Mode)

dd Delete current line
dw Delete next word
dˆ Delete to start of line
d$ Delete to end of line
x Delete a single character

Changing Text (in Non-edit Mode)

cc Change the current line, and enter edit mode
cw Change the current word, and enter edit mode
r Replace a single character
R Replace characters until Esc is pressed

Cutting and Pasting (in Non-edit Mode)

yy Copy current line (the line is now yanked)
nyy Copy n current lines (multi-yank)
ye Copy to the end of next word (little-yank)

Appendix F 473

p Paste yanked text after or below cursor
P Paste yanked text before or above cursor

Some ex Mode Commands

:w Write the edit buffer (i.e., save the file)
:w file Write a copy of the edit buffer as file
:wq Write the edit buffer, then quit
:q! Quit without writing any changes (called ‘‘force quit’’)
:w! file overwrite file with current edit buffer

:sh Temporarily exit vi to access a Linux shell

:help Access the vi on-line help
:help cmd Access the on-line help for subject cmd

:set Used to set and unset vi settings
:set all Display the entire list of vi’s current settings

Searching

/pattern Search forward in edit buffer for a match to pattern
/ Repeat last forward search
?pattern Search backward in edit buffer for a match to pattern
? Repeat last backward search
n Repeat previous search (regardless of direction)

Index

++, increment operator, 34
-c, command-line switch, 22
-w, command-line switch, 24
<=> comparison operator, 157
<>, input operator, 41
=, assignment operator, 33
==, equality operator, 36
=~, binding operator, 44
%, modulus operator, 39
42, why forty-two?, 258

Aas, Gisle, 330
AceDB database, 307
ActivePerl, 275, 454
Adams, Douglas, 258
amino acids, 4, 173

local structures, 173
Apache web server, 303

preparing for Perl, 310
appending to disk-files, 116
applet, 409
ARGV array, 106
ArrayExpress sequence database,

342
arrays

accessing elements, 51
adding elements to, 51
determining size, 51
index values, 50
introducing, 49
naming, 49
pictorial representation of, 50
processing every element, 57

range of indexes, 54
referring to entire array, 51
referring to individual element, 51
removing elements from, 54
slicing, 54
splicing, 54
using foreach with, 58

associative array, see hashes 60
automatch program, 330
automating surfing, 329

reasoning for, 329
strategy, 335
time saved, 334

Azimov, Dr. Issac, 414

backticks operator, 152
bacterial proteins, 380
Barioch, Amos, 341
base pairs, concept of, 3
bases program, 64
basic local alignment search

tool, 340
BEGIN blocks, using, 241
Berners-Lee, Tim, 304
Bernstein, F. C., 206
Bernstein, H. J., 206
bestrict program, 148
binding operator, =~, 44
Bio::SearchIO module, 451
biodb2mysql subroutine, 139
bioinformatics tools, 339
bioinformatics, defined, xv
biomolecule structures, 174

Bioinformatics, Biocomputing and Perl: An Introduction to Bioinformatics
Computing Skills and Practice.
Michael Moorhouse and Paul Barry. Copyright 2004 John Wiley & Sons, Ltd. ISBN 0-470-85331-X

476 Index

Bioperl, 339, 365, 377, 408, 441
Bundle::BioPerl module, 443
citation, 442
extracting subsequences, 447
fetching multiple sequences, 445
fetching sequences, 444
installation, 442
installation dependencies, 443
not reinventing wheel, 447
on-line documentation, 445
relationship to BLAST, 449
relationship to Ensembl, 442
remote blast searches, 449
two output formats, 444

BLAST, 299, 340, 357, 362, 378, 417
blastall program, 366
dealing with multiple hits, 379
different algorithms, 392
different types of searches, 369
faster searching, 365
formatdb program, 365
general approach, 363
identifying sequences, 382
installation, 364
interpreting alignment scores, 379
interpreting results, 382
interpreting scores, 379
parsing output, 450
PDB results summary, 389
sequence similarity search, 378
service provided, 449
summary of outputs, 382
variants on original, 363

Blast parse.pl program, 450
blastall program, 369
blastcl3 program, 449
blastclust tool, 370
blocks of code, 29

using curly braces, 29
BLOCKS sequence motifs, 401
BLOSUM matrices, 361
BLOSUM62 matrices, 361
Bourne, P. E., 206
Boutell, Tom, xix, 422
Bragg’s Law, 174
Bunce, Tim, 274

CD-HIT/CD-HI dataset, 213
Celera Genomics, 10

CGI, 311
providing headers, 313
relationship to HTML form, 316
scripts, programs, CGIs, 314
sending data to a program, 315
the cgi-bin directory, 318

CGI module, 307, 418
the end html subroutine, 308
the param subroutine, 316
the start html subroutine, 307

character classes, 127
inverted, 127
ranges of digits, 127
ranges of letters, 127

Chart::Graph::Xmgrace module,
434
plotting with, 437

check args program, 108
check drivers program, 275
chevrons, with disk-files, 117
chkconfig utility, 310
chmod command, 25
chomp subroutine, 118
chop subroutine, 118
CIFTr program, 206
clobbering, 116
close subroutine, 109
ClustalTree.class, 409
ClustalV, see ClustalW 358
ClustalW, 340, 357, 385, 398, 408

command-line parameters, 361
installation, 360

ClustalX, see ClustalW 358
cmp comparison operator, 156
codons, start/stop, 7
coffee

when to drink a cup, 455
COFFEE program, 360
command-line arguments, 107
comments, in Perl, 28
Common Gateway Interface,

see CGI 311
concatenation, 124
condition, explanation of, 30
constants, in Perl, 28
contact maps, see PDB 192
Contact map.pl program, 193

example output, 195
convert pdb program, 208

Index 477

CPAN, 96
installing modules

automatically, 99
manually, 98
testing, 100

module building and testing, 98
searching, 97

cron utility, 171
Ctrl-C, interrupting programs, 27
Ctrl-D, signalling end-of-file, 42

database
case study, 227
definition of, 219
EMBL, see EMBL 228
linking tables, 222
MER, list of tables, 231
metadata, 220
programming

avoiding enhancements, 274
fetching rows of data, 282
guarding against changes, 285
potent combination, 292
preparing Perl for, 274
using placeholders, 287
why do it?, 273

RDBMS, 224
relating tables, 220
relating two tables, 254
schema, 220
single table problems, 222
structure, 219
SWISS-PROT, see SWISS-PROT 227
type information, 220

database system
Access, 225
DB2, 225
dBase, 225
definition of, 224
enterprise, 225
FileMaker, 225
Informix, 225
Ingres, 225
InterBase, 225
MySQL, 226
open source, 225
Oracle, 225
Paradox, 225
personal, 225

PostgreSQL, 226
SQL Server, 225
types of, 224

database table
definition of, 219

Dayoff, Margrate, 341
db match embl program, 289, 320
db match emblCGI program, 321, 329
DBD::mysql module, 274
DBI module, 274

checking installed drivers, 276
data source, 277
database handles, 277
statement handles, 278
using placeholders, 287
variable naming conventions, 278

DbUtilsMER module, 279, 323
using with CGI, 325

DeepView, 200, 388, 391, 392
further investigations, 398
structural alignment, 396

default array, 76
delete subroutine (with hashes), 62
Descartes, Alligator, 274
determine args program, 106
die subroutine, 107
diff utility, 445
diffraction patterns, 175
displaying literal text, 117
DNA

introduction, 1
protein sequence example, 12
relationship to RNA, 1
transcription, 7
translation, 7

double helix, 2
direction, 3
strands, 3

downloading datasets, 165
local download advantages, 165
local download disadvantages, 166

downloading raw DNA sequences, 377
downloading subsets, 169
drawing boxes

problems with, 83
properly, 84

drawline program
final version, 89
first version, 75

478 Index

DSSP program, 197, 199
Dubios, Paul, 273
dynamic programming, 355

e-mail, of authors, xviii
each subroutine, 67
EBI’s SRS, see SRS 297
elsif statement, 37
EMBL, 228, 299, 329, 340

example entry (abridged), 229
flat-file format, 377
on-line manual, 228
processing complications, 231
understanding entries, 343

EMBL/GenBank, 341
Embl plot.pl program, 427
EMBOSS, 8, 166, 299, 339, 377

Transeq form, 8
Ensembl, 339, 442
eof subroutine, 112
European Bioinformatics Institute,

227
eval subroutine, 154
example heat map, 425
exception handling, 153

using die with eval, 154
using eval, 154

executing programs, how to, 24
exit subroutine, 106
ExPASy web-site, 388

false negative, 348, 386
false positive, 348, 387
false positive rate, 387

problems with, 401
fast step algorithms, 355
FASTA data format, 355, 363, 368, 378
fastacmd program, 370
Felsentein, Joe, 358
Feng, Zukang, 206
file test operators, 108
filehandles, 109

naming convention, 109
find utility, 275
fivetimes program, 35
foreach statement, 58
forever program, 26
formatdb program, 365

command-line parameters, 365

Free R factors, 176
Free Software Foundation, 167
free res program, 184
FreeType fonts, 422
Frishman, Dmitrij, 196

gawk utility, 203
GD module, 422

installation, 423
other uses, 429
testing, 423
using image canvases, 423

GD::Graph module, 431, 432
GD::Graph3d module

plotting with, 432
GD::Text::Align module, 432
gdlib graphics library, 422
gene ontology, 342
GeneMark, 380

accessing through EBI, 381
summary of predictions, 388

generalised models, 5
good enough, 5
lie-to-children, 5

genes program, 66
genome sequencing, 10

how it works, 10
GenScan program, 380
get citations program, 265
get dna crossrefs program, 257
get dnas program, 249

invoking, 252
get protein crossrefs program,

256
get proteins program, 239

invoking, 245
getlines program, 41
global alignment algorithms, 363
global scope program, 85
GNU software, 167
gnuplot program, 431
GO Consortium, 407
Grace, 431

batch plotting, 435
colour value chart, 437
GUI version, 434
interactive plotting, 434
plotting with, 434
scatter plots, 434

Index 479

Grace program, see Grace 431
grep utility, 151
grouping program, 135
grouping of dihedral angles, 203
grouping2 program, 136
gzip utility, 167

handle, meaning of, 109
hard coding, best avoided, 106
hardware, 15

relationship to software, 15
hashes

accessing entries, 61
accessing every entry, 65
adding entries to, 60, 62
alternative assignment notation, 62
complete example, 64
determining number of entries, 61
introducing, 60
major restriction, 60
naming, 60
pictorial representation, 60
processing every entry, 66
removing entries from, 62
slicing, 63
using foreach with, 67
using the keys subroutine, 61

HERE documents, 159
assigning to scalars, 159
using with print, 160

high scoring segment pairs, see HSSP
363

homology modelling, 389, 401
alternatives to, 390

HSSP, 342, 363
HTML, 304

common graphic formats, 304
creating manually, 305
creating visually, 305
creating with a program, 305
forms and input, 316

action attribute, 317
avoiding the Back button, 319

hypertext references, 314
learning HTML, 305
on-line tutorial, 306
static vs. dynamic pages, 308
table generation, 325
textareas, 317

HTTP, 304
httpd.conf disk-file (Apache), 310

editing, 310
enabling CGI, 311

hybrid scope program, 88

ImageMagick tools, 429
in silico testing, 348
in vitro testing, 348
in vivo testing, 348
increment operator, ++, 34
indentation, proper use of, 38
input operator, <>, 41, 104
input/output, 103

modules, 119
Institute of Genome Research, 10
InterPro metadatabase, 406
introns, 387
iterateF program, 58
iterateW program, 57
iteration, 26

Java applet, 409
Java programming language, 300
Jigsaw web server, 303
Joy, Bill, xix

Kabsch, Wolfgang, 198
KDE Konqueror, 303
KEGG pathway databases, 407
keys subroutine, 61
kilobyte, explained, 182
Krieger, Elmar, 198

Lac Operon, 375
LAMP platform, 304
Lamport, Leslie, xix
last command, 36
layers of technology, 16
Lester, Andy, xix, 330
libpng library, 422
libwww-perl library, see LWP

330
Lincoln D. Stein, 311
Linux, xviii, 232, 469, 471

command-line, 98
essential commands, 467

Lion Bioscience, 297, 299
list context, 52

480 Index

lists
assigning to an array, 50
convenient notation for, 59
introducing, 50

local command, 89
local alignment algorithms, 363
localhost, 312
locate utility, 275, 310
loop, explanation of, 27
ls utility, 153, 168
LWP library, 171, 330
Lynx web browser, 303

Mac OS X, 453
MacPerl, 453
maintaining programs, 71
making programs executable, 25
markov models, 402
Martin, David, 167
match emblCGIbetter program, 319
match emblCGI program, 315
match embl program, 144, 289,

315, 320
matrices, 362
megabyte, explained, 182
Mer Operon, 231, 365

HMA domain examples, 407
protein/function summary, 376
scientific background, 374

function, 374
genetic structure/regulation, 374
mobility, 375

web-site, 13
Mer Table.pl program, 418

example output, 422
merge2files program, 106, 110

problems with, 112
merge2files v2 program, 112

problems with, 113
merge2files v3 program, 113
merging files, 105

strategy, 105
messenger RNA, 353
metadatabases, 340

InterPro, 347
SRS, 347

micro array database, 342
Microsoft Internet Explorer, 303
Microsoft’s IIS web server, 303

mirroring a dataset with wget, 168
missing proteins, 386
mmCIF, 340

automating conversion, 208
converting to PDB, 206
data format, 179
data-file format, 205
general usage advice, 208
how differs to PDB, 179
introduction, 205
performing the conversion, 206
problems with conversions, 208
relationship to PDB, 205

modelling with SWISS-PROT, 390
modules, 93

blank template, 93
creating, 94
export variables, 94

modulus operator, 39
mogrify program, 429

examples, 429
molecular biology

central dogma, 6
Mozilla web browser, 303
multi-way selections, 37
Multi Seq Get.pl program, 446
multiple sequence analysis

algorithms and methods, 359
my command, 86
MySQL, 232

adding/creating tables, 235
configuring, 233
creating a database, 233
creating users, granting rights, 234
describing tables, 237
importing data, 238

specific example, 245
installing on Linux, 232
interpreting messages, 233
LOAD DATA command, 246
manual, 232
monitor program, 233
problems with sub-select, 253

workarounds, 254
showing databases, 233
showing tables, 237
web-site location, 232
working at the prompt, 233

Index 481

NCBI-BLAST, 364, 378
Net::MySQL module, 274
Netscape Navigator, 303
newline, explanation of, 22
NMR, 174

constraints, 176
introduction, 176
major difference to X-ray, 189
meaning of remarks, 184
when to choose over X-ray, 177

non-DNA coding, 387
non-redundant algorithms, 213
non-redundant datasets, 211
non-redundant protein structures, 213
not equal to operator, 40
nuclear magnetic resonance,

see NMR 174

objects, example usage, 331
ODBC, 274
oddeven program, 36
oddeven2 program, 38
oddeven3 program, 40
one-liners, 149

simple calculator, 150
with loops, 150
with loops, printing, 151

ontologies, 407
open subroutine, 109
Open Rasmol program, 392--394
open reading frames, 7

getting it wrong, 8
opening named disk-files, 108
Opera web browser, 303
operators

list of, 457
or, && operator, 109
our command, 88
output redirection, 245
over predicted genes, 387
Oyama, Hiroyuli, 274

package statement, 94
PAM250 matrices, 362
Pascal programming language, 29
pattern-matching, introduction to, 44
patterns program, 44
patterns, see regular expressions 121
PAUP, 358

PDB, 174
accessing annotation data, 183
accessing data items, 182
contact maps, 192
data format explained, 183
data-file formats, 179
database cross-referencing, 186

different types, 187
downloading data-files, 181

using EBI, 181
example structures, 180

1LQT, 180
1M7T, 180

extracting 3D coordinates, 191
flat text data-files, 177
growth of, 178
how structures are determined,

178
introduction, 173
introduction and history, 177
legacy structures, 180
non-redundant dataset, 182
plotting results, 186
processing DBREF lines, 188
shortcomings, 179
understanding ATOM lines, 190
understanding remarks, 184
working with coordinates, 188

PDB-Select dataset, 212, 213
pdb2cif program, 206
pdbselect program, 169
PDL, Perl Data Libraries, 438
perl versus Perl, 17
Perl programming language

case sensitivity, 29
documentation, 459

perldebtut, 460
perldsc, 460
perlfunc, 459
perlreftut, 459
perlretut, 460

installation instructions, 453
from source code, 454
on Linux, 454
on Macintosh, 453
on Windows, 454

on-line documentation, 90
using perldoc utility, 90

statements, 22

482 Index

perlretut documentation, 146
pfscan program, 403
PHYLIP program, 358
phylogenetics, 407
pinvoke program, 152
PIR database, see SWISS-PROT 341
polypeptides, see amino acids 4
pop subroutine, 56
predictions, 348

balancing errors, 351
improving performance, 352
problems of, 348
using multiple algorithms, 352

prepare embl program, 143
preparing data files, 365
print subroutine, 21
printf subroutine, 150
PRINTS sequence motifs, 401
prior art, implications of, 343
private scope program, 87
processing data files, 41
produce simple program, 306
produce simpleCGI program, 307
PROSITE, 342

concluding comments, 407
downloading instructions, 403
example invocations, 403
patterns and matrices, 402
sequence motifs, 401

protein crystals
requirement for, 175

protein databank, see PDB 173
protein structure methods, 177
protein synthesis, 353
proteins, 4

determining function, 173
ligands, 4
residues, 4
structure of, 4
tags, 4

PSI BLAST, 364
PubMed, 342
push subroutine, 56
pushpop program, 56

qq operator (generalised quote),
287

qw, quote words operator, 59
qx operator, 152

R Factors, 175
ramachandran plots, 203
range operator, .., 55
ray tracing, 389
reading from disk-files, 105
redirecting standard error, 117
redirecting standard output, 117
redundancy

non-representative data, 212
reducing, 212
why is it there?, 211

reflections, 175
regular expressions, 43, 457

after-match variables, 135
alternation, 126
anchors, 132

to end-of-line, 133
to start-of-line, 133
word boundaries, 132

applying globally, 333
character classes, 127
concatenation, 124
dealing with greed, 137
EMBL data example, 142
escaping metacharacters, 125
grouping parentheses, 135
match any character, 131
modifiers, 141
nested grouping parentheses, 137
optional patterns, 130
pattern metacharacters, 124
remembering matches, 135
repetition, 124
repetition counts, 130
search and replace, 140
shorthand, 127
substituting whitespace, 141
substitution, 140
the slash-something shorthands,

129
using alternative delimiters, 138
what are they?, 122
why use them?, 122
with HTML tables, 333

remote blast searches, see Bioperl
448

return command, 84
reverse subroutine, 156
RGB notation, 424

Index 483

RNA
introduction, 1
messengers, 353
relationship to DNA, 1

sample56.pl program, reformatted, 434
Sander, Christian, 198
scalar subroutine, 52
scalar context, 52
scalars, 31

correctly formed, 31
scope, 85

global, 86
more on globals, 88
private, 86

scoring matrices, 361
searching for installed modules, 275
sed utility, 368
select filter program, 215

used with grep, 217
selection

explanation of, 34
multi-way, 37
statement, 34

semantics, explanation of, 23
Seq Crop.pl program, 447
sequence alignment

with ClustalW, 358
sequence assembly, 11
sequence databases

how they relate, 341
primary, secondary, tertiary, 340
summary, 347
three main examples, 341
three types defined, 341

sequence motif databases, 401
sequence motifs

relationship to protein, 401
sequence re-assembly, 12
sequence retrieval system, see SRS 297
sequence scoring profiles, 402
sequence, in programs, 22
shell script, 393
shift subroutine, 56, 78
show tables program, 276
show tables2 program, 280
signalling end-of-file, 42
simple coord extract program, 191
simple get sequence.pl program, 444

simplepat program, 134
sleep command, 30
slice or splice, which?, 55
slices program, 55
slicing arrays, 54
slow step algorithms, 355
slurper program, 115
slurping disk-files, 114

warning, 116
software, 15

category: applications, 16
category: operating systems, 15
category: tools, 16

sort subroutine, 67, 156
sort utility, 158
sortexamples program, 155
sortfile program, 157
sorting, 155

alphabetically, 156
numerically, 157

specific crossref program,
285

splice subroutine, 54
SQL

defining data, 226
manipulating data, 227
SELECT query, 246

ORDER BY clause, 247
WHERE clause, 247

sub-select, 253
SRS, 297, 343, 367

accessing and using, 298
data formats, 299
download formats, 377
downloading Mer Operon, 377
what is cannot do, 299
why is it important?, 298

Stallman, Richard, xix
standard error, 42
standard input, explanation of, 41
standard modules, 96
standard output, 42
start codons, 7
statement qualifier, 40
STDERR, 42, 104
STDIN, 42, 104
STDOUT, 42, 104
Stein, Dr. Lincoln D., xix, 307, 422
stop codons, 7

484 Index

streams, 103
standard error, 104
standard input, 103
standard output, 104
why two output streams?, 104

strictness, 147
STRIDE, 196

extracting amino acids, 204
how it works, 198
identifying hydrogen bonds, 198
installing, 197
parsing output, 200
using, 197

strings, explanation of, 42
structural alignment, 396
structural genes, 374
structural refinement, 184
Structured Query Language, see SQL

226
subroutines, 73

calling/invoking, 73
creating, 74
default parameters, 78
indentation styles, 74
list of in-built, 90
named parameters, 80
other names for, 73
processing parameters, 76
returning results, 84

substitution, 140
substitution matrices, 361

amino acid, 361
Sun Microsystems, 300
Swiss Institute of Bioinformatics, 227
SWISS-MODEL, 388

structural prediction, 388
what is cannot do, 400

SWISS-PROT, 227, 340--342
alignmaster output, 390
example entry, 228
modelling techniques, 390
on-line manual, 227
output from ProMod, 391
processing complications, 229
understanding entries, 346

syntax, 23
checking with -c, 22
explanation of, 23

system subroutine, 152

tab-delimited disk-files, 238
table row

definition of, 219
taint mode, importance of, 309
TCOFFEE, see COFFEE 360
tea, see coffee 455
tentimes program, 32
terrible program, 37
testing

in silico, 348
in vitro, 348
in vivo, 348

testing for self-consistency, 348
the three C’s, 46
threshold scores, 351
timing, implication of, 399
TMTOWTDI, Perl’s motto, 25
Torvalds, Linus, xix
transposons, 375
TreeView program, 358
TrEMBL, 340, 341
tRNA gene prediction, 349
tRNA package, 340
tRNAScan-SE, 340, 351

case study, 353
use with predictions, 347

true negative, 349
true positive, 349
true positive rate, 402
trueness, checking for, 41
TrueType fonts, 422
ttf.pl program, 423

undef subroutine, 63
undefined, 63
UniProt Consortium, 341
unique crossrefs program, 258
unless statement, 109
unshift subroutine, 56
use lib directive, 96
use strict directive, 148

with subroutines, 149
with variables, 148

use subs directive, 149
UsefulUtils module

first version, 95
using, 95
using with slurping, 115

Index 485

validating a model, 348
validation, 348
variable containers, 31
variable interpolation, 117
variable, explanation of, 31
variables

scalar, 31
vi text editor, 471
visibility, 85
visualisation

comparing senses, 413
creating high-quality images, 422
displaying genes, 426
importance of, 414
introduction, 413
plotting graphs, 431
reducing complexity, 425
resizing vs. resampling, 430
SWISS-PROT identifiers, 417
using HTML, 415
why use HTML?, 415

Wall, Larry, xix
warn subroutine, 104
warnings, turning on, 24
wc utility, example usage, 144
web databases, 320
web development infrastructure, 303

backend database, 304
client-side programming, 304
content, 304
server-side programming, 304
transport protocol, 304
web client, 303
web server, 303

web server errors, 313

web-enabling a program, recipe for, 315
web-site, for book, xviii
welcome, the first program, 21
welcome2 program, 22
welcome3 program, 25
Westbrook, John, 206
wget utility, 167

deep copying, 168
documentation, 167
downloading PDBs, 167
mirroring a dataset, 168
useful parameters, 169

whattimeisit program, 308
testing with Apache, 312

whereis command, 17
which command, 17
which crossrefs program, 282
which crossrefs2 program, 284
which crossrefs3 program, 284
while loop, 26
whoops program, 23
Wiedmann, Jochen, 274
world wide web, 303
writing to disk-files, 116

appending, 116
WU BLAST, 363
WWW

downloading datasets, 165
WWW::Mechanize module, 329

example of use, 332

x, the repetition operator, 67
X-ray Crystallography, 174

introduction, 174
problems with, 175

xmgrace program, see Grace 431

