
Extending and Embedding Perl

Extending and
Embedding Perl

TIM JENNESS

SIMON COZENS

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1930110820
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 06 05 04 03 02

To the Perl open source community

contents

preface xiii
acknowledgments xv
about this book xvi
author online xix
about the cover illustration xx

1 C for Perl programmers 1
1.1 Hello, world 1

1.2 The C compiler 2

1.3 Header files 3

1.4 The main function 4

1.5 Variables and functions 6
Function parameters 6 ✦ Automatic variables 7
Global variables 8 ✦ Static variables 9

1.6 Data types 10
C types 11 ✦ Types defined in Perl 15

1.7 Casting 16

1.8 Control constructs 17
Statements and blocks 17 ✦ The break and continue
statements 18 ✦ The switch statement 19

1.9 Macros and the C preprocessor 20

1.10 Library functions 23

1.11 Summary 23

2 Extending Perl: an introduction 24
2.1 Perl modules 24

Module distributions 26
vii

2.2 Interfacing to another language: C from XS 30
The Perl module 30 ✦ The XS file 31 ✦ Example: “Hello, world” 32
Return values 36 ✦ Arguments and return values 37

2.3 XS and C: taking things further 38
Modifying input variables 38 ✦ Output arguments 39
Compiler constants 40

2.4 What about Makefile.PL? 44
It really is a Perl program 47

2.5 Interface design: part 1 47
Status and multiple return arguments 48 ✦ Don’t supply what is
already known 48 ✦ Don’t export everything 49
Use namespaces 49 ✦ Use double precision 49

2.6 Further reading 50

2.7 Summary 50

3 Advanced C 51
3.1 Arrays 51

3.2 Pointers 53
Pointers and arrays 55 ✦ Pointers to functions 57

3.3 Strings 58
Arrays of strings 59

3.4 Structures 60

3.5 File I/O 62

3.6 Memory management 63
Allocating memory at runtime 64 ✦ Altering the size of memory 65
Manipulating memory 65 ✦ Memory manipulation and Perl 67

3.7 C Traps for the Perl programmer 68

3.8 Further reading 69

3.9 Summary 69

4 Perl’s variable types 70
4.1 General concepts 70

Reference counting 71 ✦ Looking inside:
Devel::Peek 71 ✦ The flag system 72

4.2 Scalar variables 74
The SvNULL type 74 ✦ SvRV: references 76 ✦ SvPV: string
values 76 ✦ SvPVIV: integers 78 ✦ SvPVNV: floating-point
numbers 79 ✦ SvIV and SvNV 80 ✦ SvOOK: offset strings 80

4.3 Magic variables: SvPVMG 81
viii CONTENTS

4.4 Array variables 85

4.5 Hashes 87

4.6 Globs 91

4.7 Namespaces and stashes 94

4.8 Lexical “my” variables 95

4.9 Code blocks 96
Important CV flags 97

4.10 Further reading 99

4.11 Summary 99

5 The Perl 5 API 100

5.1 Sample entry 101

5.2 SV functions 101
Special SVs 101 ✦ Creating SVs 103 ✦ Accessing data 110
Manipulating data 119 ✦ String functions 124 ✦ References 129

5.3 AV functions 132
Creation and destruction 132 ✦ Manipulating elements 136
Testing and changing array size 142

5.4 HV functions 144
Creation and destruction 144 ✦ Manipulating elements 146

5.5 Miscellaneous functions 150
Memory management 150 ✦ Unicode data handling 155
Everything else 158

5.6 Summary 162

6 Advanced XS programming 163
6.1 Pointers and things 164

6.2 Filehandles 166

6.3 Typemaps 167

6.4 The argument stack 169

6.5 C structures 170
C structures as black boxes 170 ✦ C structures as objects 176
C structures as hashes 179

6.6 Arrays 183
Passing numeric arrays from Perl to C 183 ✦ Passing numeric
arrays from C to Perl 190 ✦ The Perl Data Language 192
Benchmarks 198 ✦ Character strings 199
CONTENTS ix

6.7 Callbacks 202
Immediate callbacks 203 ✦ Deferred callbacks 206 ✦ Multiple callbacks 207

6.8 Other languages 209
Linking Perl to C++ 209 ✦ Linking Perl to Fortran 216
Linking Perl to Java 223

6.9 Interface design: part 2 223

6.10 Older Perls 224

6.11 What’s really going on? 225
What does xsubpp generate? 226

6.12 Further reading 230

6.13 Summary 230

7 Alternatives to XS 231
7.1 The h2xs program 232

7.2 SWIG 233
Data structures 236

7.3 The Inline module 238
What is going on? 239 ✦ Additional Inline examples 240
Inline and CPAN 245 ✦ Inline module summary 246

7.4 The PDL::PP module 247
The .pd file 248 ✦ The Makefile.PL file 249 ✦ Pure PDL 251

7.5 Earlier alternatives 251

7.6 Further reading 252

7.7 Summary 253

8 Embedding Perl in C 254
8.1 When to embed 254

8.2 When not to embed 255

8.3 Things to think about 255

8.4 “Hello C” from Perl 255
Compiling embedded programs 257

8.5 Passing data 257

8.6 Calling Perl routines 259
Stack manipulation 261 ✦ Context 263 ✦ Trapping errors with
eval 263 ✦ Calling Perl methods in C 264 ✦ Calling Perl statements 265

8.7 Using C in Perl in C 265

8.8 Embedding wisdom 266

8.9 Summary 267
x CONTENTS

9 Embedding case study 268
9.1 Goals 268

9.2 Preparing the ground 269

9.3 Configuration options 270

9.4 Testing options 273
Binary options 273 ✦ Quad-state options 274 ✦ String options 275

9.5 Summary 276

10 Introduction to Perl internals 277
10.1 The source tree 277

The Perl library 277 ✦ The XS library 278 ✦ The I/O subsystem 278
The Regexp engine 278 ✦ The parser and tokenizer 278 ✦ Variable
handling 279 ✦ Runtime execution 279

10.2 The parser 279
BNF and parsing 279 ✦ Parse actions and token values 281
Parsing some Perl 281

10.3 The tokenizer 282
Basic tokenizing 282 ✦ Sublexing 284 ✦ Tokenizer summary 285

10.4 Op code trees 285
The basic op 285 ✦ The different operations 286 ✦ Different
flavors of ops 286 ✦ Tying it all together 288 ✦ PP Code 290
The opcode table and opcodes.pl 293 ✦ Scratchpads and targets 293
The optimizer 294 ✦ Op code trees summary 294

10.5 Execution 295

10.6 The Perl compiler 295
What is the Perl compiler? 296 ✦ B:: modules 296 ✦ What B and
O provide 299 ✦ Using B for simple tasks 300

10.7 Further reading 303

10.8 Summary 303

11 Hacking Perl 304
11.1 The development process 304

Perl versioning 304 ✦ The development tracks 305 ✦ The perl5-porters
mailing list 305 ✦ Pumpkins and pumpkings 305 ✦ The Perl repository 306

11.2 Debugging aids 306
Debugging modules 307 ✦ The built-in debugger: perl -D 307
Debugging functions 310 ✦ External debuggers 310

11.3 Creating a patch 317
How to solve problems 317 ✦ Autogenerated files 318 ✦ The patch itself 319
Documentation 320 ✦ Testing 320 ✦ Submitting your patch 320
CONTENTS xi

11.4 Perl 6: the future of Perl 321
A history 321 ✦ Design and implementation 322
What happens next 323 ✦ The future for Perl 5 323

11.5 Further reading 323

11.6 Summary 323

A: Perl’s typemaps 324

B: Further reading 348

C: Perl API index 350

index 355
xii CONTENTS

preface

Perl is a wonderful language. We, along with at least a million other programmers, love it dearly.
It’s great for all kinds of applications: text processing, network programming, system administra-
tion, and much more. But there are times when we need to go beyond the core of the language
and do something not provided by Perl.

Sometimes we do this without noticing it: several modules that ship with Perl call out to C
routines to get their work done, as do some of the most commonly used CPAN modules. Other
times, we do it deliberately: the various modules for building graphical applications in Perl almost
all, directly or indirectly, use external C libraries. Either way, writing extensions to Perl has his-
torically been a bit of a black art. We don’t believe this situation is fair, so we’ve written this book
to attempt to demystify the process of relating Perl and C.

That’s not to say we’re fed up with writing modules in Perl. Both of us write many of our mod-
ules in Perl, and although sometimes it might be easier to interface to C, we’ve decided to stick
with Perl. In fact, writing a module in Perl has a number of advantages over using other languages:

• It is far easier to write portable cross-platform code in Perl than in C. One of the successes
of Perl has been its support of varied operating systems. It is unlikely that a module written
in C could be as portable as a Perl version without much more effort on the part of the pro-
grammer, precisely because Perl strives to hide the complexities of differences between
underlying operating systems from the programmer.

• Some problems do not need the speed gain that comes from using a compiled language or
the added complexity of interfacing to another language. For many programmers who are
proficient in Perl (and/or Java), writing a Perl module is much more efficient (in terms of
programming effort) than writing the equivalent in C.

People program in Perl for a reason, and this fact should not be forgotten when it comes to
deciding whether to use Perl for an extension module. These issues were addressed in the devel-
opment of the standard File::Temp module (part of Perl 5.6.1). This module provides a stan-
dard interface for creating temporary files from Perl. The original intention was that this module
would be written in C, but it quickly became apparent that a Perl implementation would be eas-
ier because of portability problems (it was to be a standard module, so it would have to work on
all platforms supported by Perl); in addition, speed would not be an issue unless thousands of
temporary files were required.
xiii

Having addressed why not to use a language other than Perl, we must now present two impor-
tant reasons why another language is sometimes required:

• Speed—In some cases, Perl is simply too slow for a particular program. In this case, the
choice is either to change the algorithm or to use a faster programming language. The Perl
Data Language was created specifically to address the case of processing N-dimensional
arrays, but there are times when another language is required. Similarly, Perl is definitely
too slow for some tasks (for instance, the graphics manipulation functions provided by
Imager and GD).

• Functionality—Many useful libraries have been written in other languages (especially C,
and for numerical applications, Fortran). If new functionality is required that is present in
an external library, then it is usually far better to provide a Perl interface to the library than
to recode the library in Perl. For instance, the XML::Parser module provides a reason-
ably direct mapping onto the underlying functions of the expat library. Functionality is
particularly an issue for things that simply can’t be written in Perl, such as interfaces to cer-
tain system libraries (for instance, the Macintosh Carbon library) or to particular pieces of
hardware.

As well as extending Perl by writing modules in C, sometimes it’s advantageous to go the other
way around: to add the flexibility of a Perl interpreter to an existing C program. Like extending,
this process has a fearsome reputation, and so we provide two chapters on the topic. Chapter 8
introduces embedding Perl, and chapter 9 includes a full working example that explains Perl
embedding.

We also realize that people want to know what’s really going on under the hood, so we con-
clude our study of the interaction between C and Perl by examining the C sources of the perl
interpreter itself, together with details of how to get involved in becoming a developer maintain-
ing perl. Finally, we look ahead to Perl 6 and the Parrot project.
xiv PREFACE

acknowledgments

The authors would like to thank the staff at Manning for their hard work, encouragement, and,
where necessary, coercion. Susan Capparelle first approached us and got us to commit to the book;
Marjan Bace oversaw the project. Ted Kennedy set up reviews and helped get some of the best
people around to give us feedback on the book. Mary Piergies headed up production; Syd Brown
and Dottie Marsico were the poor sods who had to deal with our awkward choice of markup and
file formats. Tiffany Taylor was our eagle-eyed copy editor and Liz Welch our proofreader.

Our reviewers were wonderfully pedantic, catching every mistake from the unintentional slip
to the outright lie. Martien Verbruggen headed up this exercise, and many thanks are also due
to Alasdair Allan, Chuck Bailey, Clinton Pierce, Abhijit Menon-Sen, John Tobey, John Linder-
man, Norman Gray, Bennett Todd, Dan Sugalski, David Zempel, Doug MacEachern, Graham
Barr, James Freeman, Spider Boardman, and Alex Gough.

The perl5-porters have been wonderfully helpful, answering obscure questions about the hid-
den corners of Perl. Particular thanks to Jarkko Hietaniemi, Gurusamy Sarathy, Nick Ing-Sim-
mons, Hugo van der Sanden, Abhijit Menon-Sen, and Arthur Bergman. We hope that our
explorations have been as beneficial to you as they have been intriguing to us.

TIM JENNESS I would also like to thank Frossie for leading me onto the path to becoming a
Perl hacker and for forcing me to write this book. Thanks to my brother, Matt, because he
wanted to be thanked, and to the rabbits, Buns and Neo, for not eating all the draft versions of
this book. Thanks to the Tuesday night movie gang for putting up with my terrible selections—
the book can no longer be used as an excuse! Finally, thanks again to Frossie for expanding my
horizons beyond measure and for being the center of my universe.

SIMON COZENS I would also like to thank the denizens of #perl and That Other IRC Chan-
nel, without whom this book would have been finished much earlier but would have been con-
siderably more boring. Thanks to Ray, pod, and Aaron at Oxford University Computing
Services, who have to put up with me on a daily basis and even seem to try not to mind; and to
Oxford Go Club for providing welcome diversion and keeping me more or less sane. And thanks
to Eiko, who has possibly been told “nearly finished now!” more times than the entirety of the
Manning staff.
xv

about this book

Guide to this book

This book is roughly divided into four sections. The first section covers the groundwork of deal-
ing with C and the basics of XS, the extension language used to communicate between Perl and C:

• Chapter 1 provides an introduction to the C language from a Perl perspective. We explain
the similarities and differences between the languages, and show how to write, compile,
and run programs written in C.

• Chapter 2 presents the basics of the extension language, XS. By the end of this chapter, you
will be able to create Perl modules that call simple C functions.

• Chapter 3 discusses more advanced features of the C language, such as strings, arrays, struc-
tures, and memory handling.

The next section explains XS in more detail:

• Chapter 4 describes how Perl values are stored internally: that is, how scalars, arrays, and
hashes work. This concept is fundamental to doing any advanced work with XS, because
you will be manipulating these types of values.

• Chapter 5 introduces the Perl API—the range of functions you have at your disposal as an
XS programmer for manipulating values and interacting with the perl interpreter. As well
as being a reference guide to the API, it contains many real-world examples of how the API
functions are used in XS situations, including modules such as Tk and DBI, the
mod_perl extension to the Apache web server, and the perl interpreter itself. In other
words, it’s intended to be a hands-on tutorial to using the API functions. (Note that appen-
dix C provides an index of all Perl API references in the book.)

• Chapter 6 describes many more advanced uses of XS, such as how to create Perl arrays,
hashes, and objects based on C structures; how to interface with Fortran; how to deal with
files; how to call back from C to Perl; and much more. We believe this chapter represents,
in a distilled format, the highest levels of XS magic, much of which has never been clearly
written down before.

• Chapter 7 describes alternatives to XS that also help with C-Perl interaction: SWIG,
Inline, and PDL::PP, among others.
xvi

The third section deals with embedding Perl in other projects:

• Chapter 8 describes embedding Perl in generic terms, including why and when you should
consider embedding Perl in a C program, the fundamentals required to embed Perl, and
how to call back from embedded Perl into C.

• Chapter 9 turns the description from chapter 8 into a working example, to help you under-
stand the thought processes and programming involved in embedding Perl in a real-world
application.

The fourth section deals with the internals of the perl interpreter:

• Chapter 10 provides an introduction to perl internals, including the path a Perl program
takes from input to compilation to execution.

• Chapter 11 is a grab-bag of useful information on developing perl: how to debug the
interpreter, how to contribute code back to the maintainers, and how the Perl development
process works. We close by looking into the future at the Perl 6 development effort.

The final section consists of three appendices:

• Appendix A describes all of Perl’s typemap entries used in the book.

• Appendix B lists further reading material.

• Appendix C provides an index of all Perl API references in the book.

Intended audience

We’ve worked hard to make this book the definitive tutorial and reference to all topics involved
in the interaction of Perl and C. This means we’ve had to make some broad assumptions. Natu-
rally, we assume you, the reader, are a competent Perl programmer.

We don’t assume proficiency in C. Although we include an introduction to C at the beginning
of this book, and it should be possible to gain a lot of benefit from this book without any prior
exposure to C, this isn’t intended to be a substitute for a good C tutorial—the idea is to whet your
appetite regarding what can be done while extending Perl with C, and give you what you need
to know to understand the majority of the examples provided. The book is also intended to inspire
those who know the ground rules of C programming but find it hard to translate that knowledge
into practical programs.

If you’re an experienced C programmer, you’ll naturally gain the most from this book, because
you are likely to have practical ideas about how to apply the information in it. To avoid attacks
of boredom, however, we recommend that the experienced C programmer skip chapters 1 and 3.

Source code downloads

The source code for all examples presented in this book is freely available from the publisher’s
web site, http://www.manning.com/jenness. Should errors be discovered after publication, all
code updates will be made availabe via the Web.
ABOUT THIS BOOK xvii

Typographical conventions

In this book we use the following typographical conventions: example code, example output,
variable names, variable types, and function names are all in code font. Examples that demon-
strate user input use bold code font.

For instance, to demonstrate the output of a simple command we would have:

% perl -le 'print "hello"'
hello

%

The % indicates the shell or command prompt (on some systems this may be written as >), the
emboldened text indicates what you would type, and the rest of the text is the output you
would see.

Code annotations accompany many segments of code. Certain annotations are marked with
chronologically ordered bullets such as . These annotations have further explanations that fol-
low the code.

B

xviii ABOUT THIS BOOK

author online

Purchase of Extending and Embedding Perl includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and subscribe to it,
point your web browser to http://www.manning.com/jenness. This page provides information
on how to get on the forum once you are registered, what kind of help is available, and the rules
of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful dialog
between individual readers and between readers and the authors can take place. It is not a com-
mitment to any specific amount of participation on the part of the authors, whose contribution
to the Author Online forum remains voluntary (and unpaid). We suggest you try asking the
authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessible from the
publisher’s web site as long as the book is in print.
xix

about the cover illustration

The figure on the cover of Extending and Embedding Perl is a “Gauro o Larsi,” a man from one of
the many tribes that inhabited the mountainous and ethnically diverse region of the Indus River
between Kashmir and Kabul. This illustration is taken from a Spanish compendium of regional
dress customs first published in Madrid in 1799. The book’s title page informs us:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo desubierto, dibu-
jados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy util y en special para los que
tienen la del viajero universal

which we loosely translate as:

General Collection of Costumes currently used in the Nations of the Known World, designed and
printed with great exactitude by R.M.V.A.R. This work is very useful especially for those who hold
themselves to be universal travelers.

Although nothing is known of the designers, engravers, and artists who colored this illustration
by hand, the “exactitude” of their execution is evident in this drawing. The Gauro o Larsi is just
one of a colorful variety of figures in this collection which reminds us vividly of how distant and
isolated from each other the world’s towns and regions were just 200 years ago. Dress codes have
changed since then and the diversity by region, so rich at the time, has faded away. It is now often
hard to tell the inhabitant of one continent from another. Perhaps we have traded a cultural and
visual diversity for a more varied personal life—certainly a more varied and interesting world of
technology.

At a time when it can be hard to tell one computer book from another, Manning celebrates
the inventiveness and initiative of the computer business with book covers based on the rich diver-
sity of regional life of two centuries ago—brought back to life by the pictures from this collection.
xx

C H A P T E R 1

C for Perl programmers

1.1 Hello, world 1
1.2 The C compiler 2
1.3 Header files 3
1.4 The main function 4
1.5 Variables and functions 6
1.6 Data types 10

1.7 Casting 16
1.8 Control constructs 17
1.9 Macros and the C preprocessor 20
1.10 Library functions 23
1.11 Summary 23
When using C and Perl together, the first thing you need to realize is that they are
very different languages, requiring different styles and different thought patterns. Perl
spoils programmers by doing much of the hard work for you; if you’ve never pro-
grammed in C, the language can feel very barren and empty. C is close to the
machine—Perl is close to the user.

That said, Perl’s syntax borrows heavily from C’s, and so most of the elements of
a C program should be familiar to a competent Perl programmer with a little thought
and a little preparation.

1.1 HELLO, WORLD

The classic book on C programming is Brian Kernighan and Dennis Ritchie’s The C
Programming Language, which begins with a program a little like this:

#include <stdio.h>

int main(int argc, char* argv[])
{

 printf("hello, world\n");
 return(0);

}

1

The classic book on Perl, on the other hand, is Programming Perl, by Larry Wall, Tom
Christiansen, and Randal Schwartz. It begins with a similar program:

print "Howdy, world!\n";

Notice that Perl is much more compact: there’s no waffle, no housekeeping. We want
to print something, and we tell Perl to print it. C, on the other hand, requires more
support from the programmer.

Let’s first look at how to compile and run the C program, before we discuss how
it’s constructed.

1.2 THE C COMPILER

There’s only one Perl, but a large variety of C compilers and implementations are avail-
able; they can have a graphical front-end, such as the Microsoft Visual Studio, or a
simple command-line interface, such as the Free Software Foundation’s Gnu C Com-
piler (GCC). We’ll talk about GCC here, because it’s the most popular free compiler.

The simplest way to call GCC is to give it the name of a C program to compile.
GCC is particularly quiet; if all is well, it will give no output on the screen:

% gcc hello.c
%

This command produces an executable called a.out1 in the current directory. If we
run it like so

% ./a.out
hello, world!

we get our tired and worn greeting.
Sometimes we don’t want our output called a.out, so we can tell GCC to give it

another name with the -o option:

% gcc -o hello hello.c

Perl encourages programmers to turn on the -w flag for warnings; we encourage C
programmers to turn on the -Wall flag for all warnings:2

% gcc -Wall -o hello hello.c

If we have a collection of C files that make up one program, we can list them all:

% gcc -Wall -o bigproject one.c two.c three.c four.c

1 It has this name for historical reasons; a.out was the name of a particular type of executable file
format.

2 Of course, if you are not using GCC, the particular option will be different. Ironically, -Wall does
not turn on all the warnings in GCC; it only turns on those the GCC programmers feel are important.
See the GCC documentation for the full list of warnings. If you want to make sure your program will
be ANSI compliant and you’re not accidentally slipping in some GCC extensions, consider using the
-ansi -pedantic option.
2 CHAPTER 1 C FOR PERL PROGRAMMERS

However, it’s more popular to use GCC to convert each one to an object file (extension
.o with GCC, equivalent to .obj files on Windows)—an intermediate stage in com-
pilation—and then link all the object files together; doing so allows you to change
individual files without needing to completely recompile everything. To tell GCC to
produce an object file, use the -c flag:

% gcc -Wall -o one.o -c one.c

% gcc -Wall -o two.o -c two.c
% gcc -Wall -o three.o -c three.c

% gcc -Wall -o four.o -c four.c

Then, simply list the object files to link them together:

% gcc -Wall -o bigproject one.o two.o three.o four.o

There are more complicated ways to build large programs, using static and dynamic
libraries, but we won’t go into those in our examples.

1.3 HEADER FILES

The first line in the C “Hello world” program presented earlier in the chapter is an
include directive: it is similar to Perl’s require in that it instructs the language to
go find a library file and read it in. However, whereas Perl’s .pm and .pl library files
contain real Perl code, C’s .h files (header files) contain only the promise of code—
they contain function prototypes, and just like Perl’s subroutine prototypes, these
prototypes allow the compiler to check your use of the functions while specifying that
the real code will come later.

NOTE Header files can contain any code, but they’re typically used for function
prototypes that several C source files will need; they are also often used to
declare constants (see section 1.9), enumerations (sets of related constants),
and structures (see section 3.4).

But what function’s prototype do we need, and where will the real code come from?
The only function we use is printf, in line 5 of our example. Perl has a printf
function, too, and the two functions are almost identical. However, all the Perl func-
tions documented in perlfunc are built in to the language; C, on the other hand,
has no built-in functions. Everything is provided by a library called the standard C
library, which is included when any C program is compiled. The printf function
comes from a section of the standard C library called the standard IO library, and to
let the C compiler ensure that we are using it properly, we have it read the header file
that contains the prototypes for the standard IO library, stdio.h.3

3 It’s almost like use strict is always on—you can’t use any function without telling C where it’s
coming from (or at least you shouldn’t, because if you fail to declare the prototype, the compiler will
make some assumptions that are unlikely to be correct).
HEADER FILES 3

1.4 THE MAIN FUNCTION

The Perl version of the “Hello world” program is much smaller because everything in
C must be inside a function; if you have Perl code outside any subroutine, it will all
be executed in order. C needs all this code in one place: the main function. When
your program begins, C arranges for this function to be called.

NOTE What you’d call a subroutine in Perl is called a function in C.

This function must have a prototype, and here it is again:4

int main(int argc, char* argv[]);

Perl’s prototypes tell you only what type of data is coming into the function: sub
main($@) tells you that the subroutine main takes a scalar and an array. The proto-
types can also coerce values into a given type; for instance, sub take_ref(\%) will
make the first element into a reference to a hash.

In C, you’re not only told what’s coming into the function, you’re also told what
variables it should be stored in, and also what type of data the function should return.
C’s prototypes do not coerce values to a type—instead, if you pass the wrong type, the
C compiler will give an error.

In this case, we’re returning an integer, and we’re being given an integer called
argc and something called argv. We’ll look at what char * means later, but you
might be able to guess that argv is similar to Perl’s @ARGV and [] might denote an
array—argv is an array of the command-line parameters. argc is the number of ele-
ments in the array—that is, the number of command-line parameters passed to the
program (the argument count). One difference between Perl and C is that in C, argv
contains the name of the command in element 0, whereas in Perl, @ARGV does not
contain the command name (that can be retrieved using $0).

NOTE main is a special C function in the sense that it can have multiple proto-
types and you can decide which one to use. If you are not interested in
using command-line arguments, you can use a much simpler prototype
that has no arguments:
int main(void);

Some compilers also support a third argument to main:
int main(int argc, char *argv[], char **envp);

Here, envp provides access to the process environment. It is not part of
POSIX or the ANSI C89 standard, so we won’t mention it again.

4 ISO standard C main is defined as being int main(int argc, char** argv), but many pro-
grammers use the (roughly) equivalent char* argv[]. The difference is horribly subtle. We use
char* argv[] here because it’s easier to understand.
4 CHAPTER 1 C FOR PERL PROGRAMMERS

The main function almost always has the two-argument prototype given earlier: it
should take two parameters that represent the command line and return an integer
value to the operating system (the exit status). Additionally, just as in Perl, the pro-
gram can end implicitly when there is no more code to execute, or explicitly when the
exit function is called. We showed another explicit method in our first example,
which returned a value to the operating system, ending the main function. We could
also, theoretically, allow execution to fall off the end of the main function:

#include <stdio.h>

int main(int argc, char *argv[])

{
 printf("hello, world\n");

 /* No return, just falls off. */
}

TIP This example includes the use of a C comment. Comments are made up of
matched pairs of /* and */.5 Note that comments cannot be nested. This
is legal:
/*
 Comment out some code:

 printf("This won't print\n");

 Now carry on with the program:

*/

But this isn’t:
/*
 Comment out some code:

 printf("This won't print\n"); /* A comment */

 Now carry on with the program:

*/

The comment will be ended at the first */—that is, after A comment—
and the C compiler will try to compile Now carry on….

Allowing execution to fall off the end of main is not recommended; doing so pro-
duces a warning to the effect that C expected your function to return a value, and it
never did. Finally, we can call exit explicitly:

#include <stdio.h>

int main(int argc, char *argv[])
{

 printf("hello, world\n");
 exit(0);

}

5 Many modern compilers (and the C99 standard) also implement C++-style // comments. These com-
ments act just like Perl # comments.
THE MAIN FUNCTION 5

The compiler makes a special exemption for exit, because it knows the function
will not return.

1.5 VARIABLES AND FUNCTIONS

C forces you to define your variables, as well as define your function prototypes, just
like the use strict mode of Perl. You can define four types of variables: function
parameters, automatic variables, global variables, and static variables.

1.5.1 Function parameters

Function parameters are declared in the definition of a function.6 Let’s look at a very
simple function:

int treble(int x)
{

 x *= 3;
 return(x);

}

Here we take an integer, x, multiply it by 3, and return its new value. Note that we
don’t strictly speaking need the parentheses around the return value, because
return is not really a function; it’s a keyword of the language. Unlike Perl subrou-
tines, all functions in C require parentheses. However, we tend to place parentheses
around the return value as a stylistic decision.

The Perl equivalent of the previous function looks like this:

sub treble {

 my $x = shift;
 $x *= 3;

 return $x;
}

And we’d call it like this:

print "Three times ten is ", treble(10), "\n";

We don’t have a direct equivalent to print in C, but we can use printf:

#include <stdio.h>

int treble(int x) {

 x *= 3;
 return(x);

}

int main(int argc, char *argv[]) {

6 In fact, because a function definition declares the input and output types as a function, most of the
time you don’t need a prototype—if you define your functions before they’re used, the C compiler will
know about their parameter signatures.
6 CHAPTER 1 C FOR PERL PROGRAMMERS

 printf("Three times ten is %d\n", treble(10));

 return(0);
}

The printf function is similar to the Perl version. The %d format is used to format
a signed integer in both Perl and C.

As we mentioned earlier, function prototypes must appear before they are called,
so the compiler can check the types: hence the definition of treble must appear
before the main function calls it. Otherwise, C assumes that the return value will be
int, and you will receive a warning from the compiler if warnings are turned on.

Function parameters act just like lexical variables in Perl (my variables); they have
the same scope as their enclosing block (which is always the function) and they are pri-
vate to that scope.

1.5.2 Automatic variables

Automatic variables have scoping properties similar to those of function parameters,
but they can appear in any block. They are directly equivalent to Perl’s lexical variables.

You declare an automatic variable by listing its type and its name; however, dec-
laration of automatic variables must happen before any statements in the block. So, we
can say this:

#include <stdio.h>

int main (int argc, char *argv[]) {
 int number;

 number = 4;

 printf("Hello world\n");

 return(0);
}

But we can’t say this:

#include <stdio.h>

int main (int argc, char *argv[]) {
 printf("Hello world\n");

 int number;
 number = 4;

 return(0);
}

You can also initialize your automatic variables when you declare them, by saying, for
instance int number = 4;. In addition, you can start a new block to declare an auto-
matic variable:

int some_function(int parameter) {
 int one = 1;

 {
VARIABLES AND FUNCTIONS 7

 int two = 2;

 printf("one = %d, two = %d\n", one, two);
 }

 /* "two" is out of scope here */
 return one;

}

Because of this property, it’s likely that most of your temporary variables—in fact,
most of the variables you use—will tend to be automatic variables. They are called
automatic variables because C knows their scope and their type at compile time, so it
can automatically allocate memory for them and free this memory at the end of the
variable’s scope.

Just as in Perl, if you have two lexical variables with the same name, only the most
recently declared one is in scope. The newer definition “hides” the older one:

int main(int argc, char *argv[]) {
 int number = 10;

 {
 int number = 20;

 printf("%d", number); /* Will print "20" */
 }

 return number; /* Will return 10 */
}

However, unlike Perl in strict mode, many C compilers may not give you a warn-
ing in this case.

1.5.3 Global variables

If a variable is declared outside a function, it’s available to all the functions in that file
defined after that variable declaration:

#include <stdio.h>

int counter = 0;

void bump_it(void) {
 counter++;

}

int main(int argc, char *argv[]) {

 printf("The value of counter is %d\n", counter);
 bump_it();

 bump_it();
 printf("The value of counter is %d\n", counter);

 bump_it();
 printf("The value of counter is %d\n", counter);

 return(0);
}

The function bump_it modifies the global variable counter, which main reads.
bump_it is declared to return type void—this just means it will not return
8 CHAPTER 1 C FOR PERL PROGRAMMERS

anything (think of "void context" in Perl). This example has the following out-
put when compiled and executed:

The value of counter is 0

The value of counter is 2
The value of counter is 3

It’s also possible to share a global variable across multiple files by declaring it once in
one file and then prefixing the declaration in other files with the extern keyword.
For instance, suppose we have a file called count1.c that contains the earlier declara-
tion and main function:

#include <stdio.h>

int counter = 0;

void bump_it(void);

int main(int argc, char *argv[]) {

 printf("The value of counter is %d\n", counter);
 bump_it();

 bump_it();
 printf("The value of counter is %d\n", counter);

 return(0);
}

(We still need to provide the prototype to bump_it, just as stdio.h provides the pro-
totype for printf.) Suppose we also have a file called count2.c containing the
bump_it function:

extern int counter;

void bump_it() {

 counter++;
}

We can now compile these files into object files and link them together, like this:

% gcc -Wall -o count1.o -c count1.c

% gcc -Wall -o count2.o -c count2.c
% gcc -Wall -o count count1.o count2.o

The function in count2.c knows that it should be able to access a global variable
called counter, which is declared externally—somewhere else in the program. C
finds the global declaration of counter in count1.c, and so the function can access
the global variable.

1.5.4 Static variables

Static variables are the final type of variable available; these variables keep their value
between calls to a function. One way to do something like this in Perl would be
VARIABLES AND FUNCTIONS 9

{

 my $x;
 sub foo {

 return ++$x;
 }

}

or even to use a closure. But C does not allow you to declare bare blocks outside any
function the same way you can in Perl. The C equivalent looks like this:

#include <stdio.h>

int foo (void) {
 static int x = 0;

 return ++x;
}

int main(int argc, char *argv[]) {
 int i;

 for (i=1; i<=10; i++)
 printf("%d\n",foo());

 return(0);
}

Notice the following few things here:

• To maintain a variable’s state between calls, declare the variable static.

• There is no range operator, nor a special variable like $, nor a one-argument
foreach loop to loop over an array; we only have the three-argument for.

• Calls to functions you declare must contain parentheses, even when they take no
parameters; otherwise, you end up taking the address of the function! (See sec-
tion 3.2.2.) (Leaving out the parentheses transforms &mysub into \&mysub.)

• If the code inside a for loop is only one statement, you do not need to enclose
it in a block. If it’s more than one statement, it must be enclosed in curly braces.
This rule also applies to the other control structures, if and while. (see sec-
tion 1.8).

C has no equivalent to Perl’s dynamic scoping (variables with local); the Perl inter-
nals contain some scary hacks to implement their own dynamic scoping in C to get
around this deficiency.

1.6 DATA TYPES

If argc is an integer and argv is an array of strings, what other data types do you
have? Perl supports only three types of variables (ignoring globs for now): scalars for
single data items, arrays for storing many scalars, and hashes for keyword/scalar pairs.
A scalar is simply a thing that can be passed around and processed, but the type of the
scalar is not important. In C, the compiler needs to know whether you are using a
10 CHAPTER 1 C FOR PERL PROGRAMMERS

number or a character and the type of number you are using (integer, floating-point
number, or double-precision floating-point number). C supports a variety of data
types, and the implementation of most of these types can vary from machine to
machine; the Perl internals define some special types that give you a machine-
independent environment.

1.6.1 C types

First, let’s look at the basic C types. We assume that you are familiar with bitwise
arithmetic, such as the Perl ^, |, ~, and & operators, and also with how computers
store numbers. (If you’re a little hazy, the Perl manual page perlnumber has a
good summary.)

The int type

The int type represents positive or negative integer values. The C standard defines
the various data types in terms of minimum acceptable versions of their maximum
and minimum values—an int is at least the range -32767 to 32767, but can be
(and almost certainly, on modern machines, will be) larger.

For example, an int on my machine is represented using 32 bits of memory.
One of these bits is used as a sign bit to determine whether the value is positive or
negative, and the other 31 bits are used to store the number; thus it has a range from
-2147483647 to 2147483647. You can tell C to not use a sign bit and have all
32 bits available for storage by declaring an unsigned int, giving you a range
from 0 to 4294967295.

I say “on my machine” because the size of these types is not guaranteed, nor is it
defined by the C language; a compiler for a 64-bit processor may choose to use 64 bits
to represent an int, or it may not. Although the C standard specifies the minimum
size, it doesn’t guarantee the actual size. (This is why the Perl internals define their own
types, to guarantee sizes.) There are a number of ways to determine the limits. The eas-
iest is to set all the bits in an unsigned variable to 1 and examine the number produced.
Just as in Perl, you can set all the bits to 1 using the bitwise NOT operator (~):

#include <stdio.h>

int main (int argc, char *argv[]) {
 unsigned int i = ~0;

 printf("i is %u\n", i);
 return(0);
}

(Note that we use %u as the printf format specifier for an unsigned integer—this is
the same as in Perl.)

Running this program will tell us that the highest unsigned integer is 4294967295,
so the highest signed integer must be 1 less than half of 1+4294967295.

Because this method will only work for unsigned types, we use another method to
determine the limits of a built-in type; this approach is slightly more complex, but
DATA TYPES 11

more flexible. The header file limits.h defines some constants (see section 1.9 for an
explanation of how this happens) that tell us the limits of the various sizes. For exam-
ple, the code

#include <stdio.h>

#include <limits.h>

int main (int argc, char *argv[]) {

 printf("The maximum signed integer is %d\n", INT_MAX);
 printf("The minimum signed integer is %d\n", INT_MIN);

 printf("The maximum unsigned integer is %u\n", UINT_MAX);
 /* UINT_MIN is not declared because it's obviously 0! */

 return(0);
}

produces the following output:

The maximum signed integer is 2147483647

The minimum signed integer is -2147483648
The maximum unsigned integer is 4294967295

You should note that the POSIX module in Perl can also define these constants (and
notice how similar Perl with use POSIX can be to C!):

use POSIX;

printf("The maximum signed integer is %d\n", INT_MAX);
printf("The minimum signed integer is %d\n", INT_MIN);

printf("The maximum unsigned integer is %u\n", UINT_MAX);

The char type

Characters are nothing more than numbers. To C, a character is merely an integer of
at least 8 bits; depending on your architecture and compiler, it may be signed or
unsigned. Because you’re used to thinking of characters running from character 0 to
character 255, you can use unsigned chars to get that range.

Because characters are just numbers, a single-quoted character in C acts like the
ord operator in Perl—it produces an integer representing the character set codepoint
of that character (but note that there is a big difference between '*' and "*" in C;
we’ll discuss this difference further in section 3.3). The following is equivalent to Perl’s
print ord("*"),"\n":

#include <stdio.h>

int main(int argc, char *argv[]) {

 printf("%d\n", '*');
 return(0);

}

Similarly, you can turn numbers into characters with the printf format specifier
%c, just as in Perl:
12 CHAPTER 1 C FOR PERL PROGRAMMERS

#include <stdio.h>

int main(int argc, char *argv[]) {
 unsigned char c;

 /* print "Character $_ is ", chr($_), "\n" for 0..255; */
 for (c=0; c < 255; c++)

 printf("Character %d is %c\n", c, c);

 return(0);

}

We say c < 255 instead of c <= 255 because of the way c is stored; it must be
between 0 and 255, so our termination clause is useless. When a C value overflows
the storage of its variable, it wraps around—the higher bits are truncated. For
instance, see figure 1.1.

So, for an unsigned char, 255+1 = 0, and because 0 is less than or equal to 255, our
program will never terminate. This analysis, of course, assumes we have an 8-bit vari-
able (use the CHAR_BIT macro defined in limits.h to find out how many bits are
used to represent a char on your system). In general, you should not rely on over-
flow behavior in your C programs because the behavior for signed types is not
defined as part of the C standard.

With the push toward Unicode, people gradually realized that having 8 bits to rep-
resent characters is not enough, and so wide characters were introduced: the wchar
type. Perl does not use wide characters.

The short type

Sometimes an int stores more bits than you need, so you may want to use a smaller
type. A short (or short int) is usually half the size of an int: the limits
SHRT_MAX and SHRT_MIN tell you the size:

printf("The maximum short is %d\n", SHRT_MAX);
printf("The minimum short is %d\n", SHRT_MIN);

You can run this code in either C or Perl.
Shorts are available in signed and unsigned flavors, but are only rarely used.

 |87654321| - 8 bits of an unsigned char

 | Binary |
c = 254 |11111110|

c++ |11111111|
c = 255 |11111111|

c++ 1|00000000| - Overflow
c = 0 |00000000| - Truncation

Figure 1.1 Variables wrap around when storage is overflowed.
DATA TYPES 13

The long type

To represent larger numbers, you can use longs (long ints). On some machines,
these are twice the width of an int; however, on many machines longs and ints
are equivalent. The new C standard, C99, also allows long long ints, which are
twice as wide again. Both types are available as unsigned variants.

The float type

The world is not made up purely of integers; there are also floating-point values, and
these require a separate data type. (Perl is happy to have you put strings, integers, and
floating-point values in the same scalar, but C forces you to split them up.)

Floating-point types are always signed in C, and a floating-point value is repre-
sented by two numbers: the exponent (e) and the mantissa (m), such that the value to
be stored is n=m2e. The choice of the number of bits for exponent and mantissa deter-
mines the accuracy and the range of the type. It is important to remember that a
floating-point number cannot represent every number with complete accuracy. Some
numbers (for example, 1/3 and 1/7) can never be represented perfectly, regardless
of the number of bits in the float; you must carefully consider this fact if accuracy of
numerical calculations is important to you.

You must also carefully consider the difference between floating-point operations
and integer operations. Look at the following program:

#include <stdio.h>

int main (int argc, char *argv[]) {

 float fraction1 = 1 / 4;
 float fraction2 = 1 / 4.0;

 printf("%f %f\n", fraction1, fraction2);

 return 0;

}

When you run this program, you may be surprised to get the following output:

0.000000 0.250000

Here, fraction2 correctly has a value of 0.25, but fraction1 has a value of
0.00. This seeming inconsistency is a product of the compiler; when the compiler
sees literal numbers, it must assign a type to them. Because there is no indication to
the contrary, numbers that look like integers are assigned to integer types, and num-
bers that look like floating-point numbers are assigned to floating-point types. Thus
the compiler translated the previous assignments to

float fraction1 = (int)1 / (int)4;

float fraction2 = (int)1 / (float)4.0;

When an arithmetic operation takes place between two variables of different types,
the compiler converts the variables to the highest type using the rules given in
14 CHAPTER 1 C FOR PERL PROGRAMMERS

section 1.7. In this case, an integer is converted to a float when combined with
another float:

float fraction1 = (int)1 / (int) 4;

float fraction2 = (float)1.0 / (float)4.0;

Now for the trick: the division operator performs integer division (that is, effectively,
int(1/4)) when both of its operands are integers, and floating-point division when
its operands are floats. Hence, the value that’s stored into fraction1 is the result of
integer division of 1 and 4; the value that’s stored into fraction2 is the result of
floating-point division, which keeps the fractional part.

The moral of the story is: if you want a floating-point result from your code, make
sure that at least one of your operands is a float.

The double type

doubles are, very simply, high-precision floats; they contain a larger exponent,
and the C standard requires them to be able to hold 1e-37 up to 1e+37. As usual,
most systems provide much larger storage—on my system, doubles can range from
2.2250738585072e-308 all the way up to 1.79769313486232e+308 (that’s
10 bits of exponent and 53 bits of mantissa).

On some systems, long doubles may be available, for even more bits.

The void type

void is a special data type that is used, as you saw in our earlier global variable exam-
ple, to indicate that a function has no return value and should be called in void con-
text. As you’ll see in chapter 3, the void type can also used as a generic type for a
pointer, to enable data of any type to be passed to and from a function.

1.6.2 Types defined in Perl

To get around the implementation-specific nature of the limits of the basic C types,
Perl defines a number of types that are guaranteed to have certain properties. Perl also
defines a number of far more complex types, which let you represent Perl scalars,
hashes, and so on. We will look at these in chapter 4. For now, we’ll examine the sim-
ple types from which almost all Perl variables are formed. For guaranteed portability,
you should use these types when your code interfaces with Perl, rather than the types
described earlier.

The I8, I16, and I32 types

These types are used for different sizes of integers and are guaranteed to hold at least
the number of bits their name implies: an I8 will definitely hold 8 bits (and might
hold more) and so can be used to store values from -128 to 127. An I8 is almost
always equivalent to a char.
DATA TYPES 15

Each of these types has a corresponding unsigned type: U8, U16, and U32. On
64-bit machines, I64 and U64 are also available.

C has a special convention for defining types: the typedef operator, which lets
you provide aliases for type names. Here is our earlier char example reimplemented
using typedef and U8:

#include <stdio.h>

typedef unsigned char U8;

int main(int argc, char *argv[]) {

 U8 i;

 for (i=0; i < 255; i++)

 printf("Character %d is %c\n", i, i);

 return 0;

}

The IV and UV types

IV and its unsigned counterpart UV are the types used to represent integers used in a
Perl program. When you say $a = 123456;, the 123456 is stored in an IV or UV.
Perl uses an IV rather than any of the guaranteed-size types in the previous section
because IV provides another guarantee: it’s big enough to be used to store a pointer,
which is the C equivalent of a reference. (We’ll look at pointers in more detail in
chapter 3 and see how they relate to Perl references in chapter 4.)

The NV type

The NV type is used to represent floating-point numbers in a Perl program; once
again, this type is guaranteed to be able to store a pointer, although it’s hardly ever
used to do so. This type is at least a double.

The STRLEN type

Finally, in our tour of types, STRLEN is an unsigned integer type that tells you how
big something is in bytes; it’s generally used to represent the size of a string.

1.7 CASTING

C uses simple rules to convert values between types. Data is converted when it moves
from a “smaller” type to a “bigger” type, such as from an int to a float; but when
converting back down, only the portion of the representation that “fits” in the smaller
type is retained. (This process may or may not trigger a warning from the compiler
about information being lost.) For instance, the code

int x = INT_MAX;
short int y;

y = x;
16 CHAPTER 1 C FOR PERL PROGRAMMERS

will leave y equal to -1, because all the bits in the smaller type will be set.7

The conversion happens implicitly when two differently typed values are the oper-
ands to the arithmetic operators, or when one assigns a value to a variable of a different
type; it also happens when the type of a value passed as a function parameter is dif-
ferent than the function’s prototype says it should be.

You can also force the explicit conversion to a particular type by using the cast oper-
ator; simply put the target type in parentheses before the expression you wish to cast.
This technique is rarely used for real values, but you’ll see that it is extremely impor-
tant when we examine pointers and structures.

1.8 CONTROL CONSTRUCTS

Because Perl borrowed its syntax heavily from C, C’s control constructs should be
familiar to you. We have if (...) {...}, while (...) {...}, do { ... },
while (...) and for(;;), and they all work the same way they do in Perl.

1.8.1 Statements and blocks

However, in C, one difference is that you can omit the braces from a block under a
control construct if that block contains only one statement. For instance, we can write

if (a > b) {

 max = a;
} else {

 max = b;
}

as

if (a > b)
 max = a;

else
 max = b;

A control construct counts as only one statement, so we can also write such things as
this program, to count the number of printable characters in the character set:

#include <stdio.h>
#include <ctype.h>

int main(int argc, char *argv[])
{

 unsigned char i;
 int printables = 0;

 for (i=0; i<255; i++)
 if (isprint(i))

 printables++;

7 Probably. This is another area that isn’t guaranteed by the standard.
CONTROL CONSTRUCTS 17

 printf("%i printable characters\n", printables);

 return(0);
}

The function isprint, whose prototype is in ctype.h, tells us whether a character in
the range 0 to 255 is printable.

When you’re using nested control structures without braces like this, it’s important
to be aware of the dangling else problem. For example, in the following code, which
if does the else belong to?

if (utf)
 if (!haslen)

 len = getlength(string);
else

 len = 1;

The indentation shows what we mean—we want len to be 1 if utf is not set—but
that’s not how the compiler sees it. What really happens looks like this:

if (utf)
 if (!haslen)

 len = getlength(string);
 else

 len = 1;

Editors such as Emacs will automatically indent code to the correct column when you
press Tab, but it’s best to use braces in such cases to reduce confusion.

1.8.2 The break and continue statements

Perl’s last control statement is spelled break in C. Here’s a function that cuts off a
string after the first space character:

int token (char s[]) {

 unsigned int len = strlen(s);
 int i;

 for (i=0; i < len; i++)
 if (isspace(s[i]))

 break;

 s[i] = '\0';

 return i;
}

When a whitespace character (space, tab, new line, and so forth) is found, the break
statement makes C immediately leave the for loop, and makes that character the end
of the string. We return the character offset as the new length of the string. (In
chapter 3, we’ll explain how you can use this return value to get at the rest of the string.)

Similarly, next is replaced by continue; this fragment of code (modified from
sv.c in the Perl core) processes only non-zero elements in an array:
18 CHAPTER 1 C FOR PERL PROGRAMMERS

for (i=0; i > oldsize; i++) {

 if (!ary[i])
 continue;

 curentp = ary + oldsize;
 ...

}

There is no equivalent to Perl’s redo. If you really need it, you can use goto and
labels just as in Perl; but, just as in Perl, 10 times out of 10, you don’t.

1.8.3 The switch statement

One control structure that Perl doesn’t have8 is the switch statement. This state-
ment allows you to test an integral expression against multiple (constant) values. It’s
much easier than using else if over and over again. Here’s an example from the
Perl core, when Perl has seen one of the -X file test functions and is trying to figure
out which one you mean. It has the next character in tmp, and is choosing from a
number of constants to set the value of ftst:

switch (tmp) {
 case 'r':

 ftst = OP_FTEREAD;
 break;

 case 'w':
 ftst = OP_FTEWRITE;

 break;

 case 'x':

 ftst = OP_FTEEXEC;
 break;

 case 'o':
 ftst = OP_FTEOWNED;

 break;
 ...

}

Notice that we break after every case, because switch is, in fact, a glorified com-
puted goto. If we don’t break, the program control will fall through to the next case:

int i = 0;

switch (i) {

 case 0:
 printf("It's 0\n");

 case 1:
 printf("It's 1\n");

 case 2:

 printf("It's 2\n");
}

8 Although Damian Conway’s Switch module provides an implementation.
CONTROL CONSTRUCTS 19

This code will execute all three print statements. Sometimes this result really is what
you want, but you should take care to mark the fall-through if you’re likely to forget
it. Here’s an example of how falling through could be useful. Note that we’re falling
through the cases that have no statements, as well; if the character is 1, then we fall
through cases 2, 3, …, 7:

switch (c) { /* "c" is some character"

 case '0': case '1': case '2': case '3':
 case '4': case '5': case '6': case '7':

 could_be_octal = 1;
 /* Fall through */

 case '8': case '9':
 could_be_dec = 1;

 /* Fall through */

 case 'A':

 case 'B':
 /* This is actually fall through, too */

 case 'C':
 case 'D':

 case 'E':
 case 'F':

 could_be_hex = 1;
}

1.9 MACROS AND THE C PREPROCESSOR

Before your C code reaches the compiler, it goes through an intermediary pro-
gram: the preprocessor. We’ve already said that header files such as stdio.h and
ctype.h contain function prototypes; the preprocessor is responsible for inserting
the content of those files into the current program. It does so with the #include
preprocessor directive:

#include "header.h"

This directive will insert the contents of the file header.h from the current directory
into the copy of your source code that is passed to the compiler.

NOTE Why did we have this
#include "header.h"

but previously this?
#include <stdio.h>

By using quotes, we tell the preprocessor that the file header.h is in our
current directory but stdio.h is somewhere in the system, and the pre-
processor should go look for it. The preprocessor has a built-in search path
that includes the locations of the headers for the standard library.
20 CHAPTER 1 C FOR PERL PROGRAMMERS

Header files may themselves use #include directives to pull in other files; if you
looked at the preprocessed output to our “Hello, world” example at the beginning of
the chapter, you would see that many different header files have been included:

1 "/usr/include/stdio.h" 1 3

1 "/usr/include/features.h" 1 3
142 "/usr/include/features.h" 3

208 "/usr/include/features.h" 3
1 "/usr/include/sys/cdefs.h" 1 3

65 "/usr/include/sys/cdefs.h" 3
283 "/usr/include/features.h" 2 3

1 "/usr/include/gnu/stubs.h" 1 3

311 "/usr/include/features.h" 2 3

27 "/usr/include/stdio.h" 2 3
...

As well as include header files, you can use the preprocessor to define macros: pieces of
text that are substituted in your source. The syntax for a macro is

#define text replacement

For instance, you can use macros to give meaningful names to particular constants:

#define MAX_RECURSE 64

#define FAILURE -1

int recursive (...) {

 static level=0;

 if (++level > MAX_RECURSE) {

 printf("! Maximum recursion level reached!\n");
 level--;

 return FAILURE;
 }

 /* Do something here */

 return level--;

}

As you saw in section 1.6, the standard C header files define many constants you can
use to simplify programs and make them more portable. ANSI C also defines con-
stants you can use to specify the exit status without using naked numbers. For
instance, we could have written the first example of this chapter as

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char* argv[])
{

 printf("hello, world\n");
 return(EXIT_SUCCESS);

}

MACROS AND THE C PREPROCESSOR 21

The EXIT_SUCCESS macro is defined in stdlib.h.9 It is generally a better idea to use
constants such as these rather than naked numbers.

Macros can also be given arguments, so they appear to be like functions; for
instance, the isspace we used in our break example is typically defined as a macro,
like this:

#define isspace(c) ((c) == ' ' || (c) == '\t' || (c) == '\n' || \

 (c) =='\r' || (c) == '\f')

The replacement text will be placed into our program wherever we use isspace,
and the c will be replaced by whatever argument we gave to it. Thus, when our exam-
ple reaches the compiler, it probably looks more like this:

int token (char s[]) {

 unsigned int len = strlen(s);
 int i;

 for (i=0; i < len; i++)
 if (((s[i]) == ' ' || (s[i]) == '\t' || (s[i]) == '\n' ||

 (s[i]) =='\r' || (s[i]) == '\f'))
 break;

 s[i] = '\0';
 return i;

}

NOTE Because the text is literally replaced, you must be very careful about calling
macros (or things you suspect to be macros) when you’re using side effects
such as post-increment. If we’d said, for instance,
while (i < len)

 if (isspace(s[i++]))
 break;

the compiler would have seen
while (i < len)
 if (((s[i++]) == ' ' ||

 (s[i++]) == '\t' ||
 (s[i++]) == '\n' ||

 (s[i++]) == '\r' ||
 (s[i++]) == '\f'))

 break;

and i would have been incremented rather a lot faster than we wanted.

As you saw earlier, in the preprocessor you can use backslash (\) characters to break
up a long code line over several lines; when the preprocessor sees a backslash at the
end of a line, the backslash is removed and the next line is concatenated. Hence, we
could also define isspace as follows:

9 If you want to exit with bad status, you can use EXIT_FAILURE.
22 CHAPTER 1 C FOR PERL PROGRAMMERS

#define isspace(c) ((c) == ' ' || \

 (c) == '\t' || \
 (c) == '\n' || \

 (c) == '\r' || \
 (c) == '\f')

Perl makes heavy use of macros internally.

1.10 LIBRARY FUNCTIONS

As we’ve already mentioned, C provides a standard library of useful functions and
macros—things like printf and isspace. However, some aspects of the behavior
of these library functions are left undefined by the C standard, and Perl needs greater
control over what’s going on. For instance, Perl reimplements the memory allocation
functions for greater efficiency; functions like printf are extended to take Perl-
specific arguments; string manipulation functions are reimplemented to have guaran-
teed behavior on both ASCII and EBCDIC systems; and so on.

The file pod/perlclib.pod in distributions after 5.6.0 and 5.7.010 contains a
table of equivalents among the kinds of functions you’d expect to see in an ordinary
C program, and the functions that should be used in XS, embedding, and the Perl
internals (which you’ll see in later chapters).

1.11 SUMMARY

This chapter has given you an introduction to the C language from a Perl program-
mer’s point of view. The most important things you should take from this chapter are:

• In C, everything is a function (even the main body of your program), and all
functions should have prototypes before they are called.

• C has four types of variables: parameter, automatic, global, and static. All vari-
ables must be declared before being used.

• C is a strongly typed language (compared to Perl); it has a number of data types,
and each variable can have one and only one type.

• C has no built-in functions, but it does provide a standard library of functions;
however, as you’ll see in later chapters, when using Perl and C, you’re likely to
use Perl’s reimplementations of the standard functions.

• C’s syntax is very similar to Perl’s, but is more austere: it has no statement mod-
ifiers, no foreach, and no redo, but it does have a switch.

• C programs are automatically run through a preprocessor, which can be used to
give meanings to tokens and create inline functions.

10 See section 11.1.1 for details of the Perl versioning scheme. 5.7.0 was indeed released prior to
version 5.6.1.
SUMMARY 23

C H A P T E R 2

Extending Perl:
an introduction

2.1 Perl modules 24
2.2 Interfacing to another language: C

from XS 30
2.3 XS and C: taking things further 38

2.4 What about Makefile.PL? 44
2.5 Interface design: part 1 47
2.6 Further reading 50
2.7 Summary 50
This chapter will introduce the fundamentals of interfacing Perl to the C program-
ming language; we assume you have a basic understanding of C, as described in chap-
ter 1. Before we can describe how to do this, we must first explain how Perl modules
work and how they are created.

2.1 PERL MODULES

This section describes the anatomy of a Perl module distribution. If you are already
familiar with how to create pure Perl modules, then you can safely skip to the next
section. In essence, a Perl module is simply a file containing Perl code (usually in its
own namespace, using the package keyword) with a file extension of .pm. When
you use a module, perl searches through a series of directories (specified by the
@INC array) looking for a file with the correct name. Once found, the file is parsed
and the routines are made available to the main program. This mechanism allows
code to be shared and re-used and is the reason behind the success of the Compre-
hensive Perl Archive Network (CPAN; http://www.cpan.org/).
24

To maximize the reusability of your modules, you should write them in such a way
that they do not interfere with other parts of Perl or other modules. If you don’t, your
modules may clash with other modules or with the main program—and this behavior
is undesirable. You can do so in three primary ways:

• You should assign a namespace to each module. This namespace is usually the
same as the module name but does not have to be. As long as another part of
your program does not choose the identical namespace, the module will interact
with the caller only through its defined interface.

• Your modules should export subroutines by request rather than by default. If all
the subroutines provided by a module are exported, then it is possible that they
will clash with other subroutines already in use. Exporting subroutines by
request is particularly important if you add new subroutines to a module after
writing the main program, because you may add a routine that will overwrite a
previous definition. Doing so is not relevant when you define object-oriented
classes, because they never export subroutines explicitly.

• You should use lexical variables (those declared with my) in modules wherever
possible to limit access from outside the namespace and to make it easier for the
module to become thread-safe.1 Globals should be used only when absolutely
necessary; in many cases you can limit them to $VERSION for version number-
ing, $DEBUG for switching debugging state, and the Exporter globals (in
other words, globals that are not modified during program execution).

Here is an example of a minimalist module that shows how you can implement
these constraints:

package Example;

use 5.006;

use strict;

use base qw/Exporter/;

our $VERSION = '1.00';

our @EXPORT_OK = qw/ myfunc /;

Code
sub myfunc { my $arg = shift; return $arg; }

1;

1 We will not attempt to cover thread safety here. All you need to know for this book is that global
variables and static memory hinder the use of threads, because you must make sure parallel threads do
not change the information in a variable while another thread is using the value. If you only use Perl
lexical variables (limited to subroutine scope rather than file scope) and C automatic variables, you
will be fine.
PERL MODULES 25

The first line is the namespace declaration. All code in this file is visible only in this
namespace unless explicitly referred to from outside or until another package state-
ment is encountered.

The next line makes sure that the Perl version used by this module is at least
version 5.6.0 (we use the old numbering style of 5.006 to ensure that older versions
of Perl will be able to understand the version). This check is necessary because the
module uses the our variable declaration, which was introduced in this version of Perl.

All Perl modules should have strict checking. Among other things, this pragma
instructs Perl to tell you about any undeclared variables it comes across; it’s an excel-
lent way to avoid many bugs in code.

Next, we inherit methods from the Exporter class in order to enable exporting
of subroutines and variables to the namespace that uses this module.

The following line defines the version number of the module. It is used by CPAN
for indexing and enables Perl to check that the correct version of a module is available.

The @EXPORT_OK array contains a list of all the subroutines that can be exported
by this routine. They will not be exported unless explicitly requested. The @EXPORT
array can be used to always export a function, but that functionality is not desirable
in most cases.

The code on the next-to-last line implements the module functionality. The actual
code for the module goes here.

Finally, all modules that are read into Perl must finish with a true value (in this
case 1) so that Perl can determine whether the module was read without error.

If we name this file Example.pm, we can load it with

use Example qw/ myfunc /;

in order to import the named function into the current namespace. Alternatively, if
we load it as

use Example;

the function myfunc will not be imported but can still be accessed as Exam-
ple::myfunc(). You can find more information about Perl modules in the
perlmod man page that comes with Perl.

2.1.1 Module distributions

With a single Perl-only module, installation could consist simply of copying the file
to a location that Perl searches in, or changing the PERL5LIB environment variable
so that it contains the relevant directory. For anything more complex, or if the mod-
ule is to be distributed to other sites (for example, via CPAN), Perl provides a frame-
work you can use to automate installation. In order to use this framework, you need
to create a number of files in addition to the module (see figure 2.1).
26 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

The README file

This file provides a short description of the module, tells how to install it, and gives
any additional information the author wants to add. The file is not required by Perl
but is useful to have; it is required for any module submitted to CPAN.

The Makefile.PL file

Along with the module itself, this is the most important file that should be supplied
to help build a module. It is a Perl program that generates a make file (called Make-
file) when run.2 This make file is used to build, test, and install the module. A Perl
module installation usually consists of the following four lines:

% perl Makefile.PL
% make

% make test
% make install

The first line generates make file. The second line uses make file to build the module.
The third line runs any included tests, and the last line installs the module into the
standard location.

The Makefile.PL program is useful because it deals with all the platform-
specific options required to build modules. This system guarantees that modules
are built using the same parameters used to build Perl itself. This platform configu-
ration information is installed, when Perl itself is configured and installed, as the
Config module.

2 A make file is a list of rules used by the make program to determine what action to take. make is a
standard program on most Unix distributions. On Microsoft Windows and other operating systems
that lack compilers as standard, you’ll need to install a version of make.

Module dir Makefile.PL

Module.pm

README

MANIFEST

t 00test.t

01test.t

Figure 2.1

Directory tree for a

simple module
PERL MODULES 27

At its simplest, Makefile.PL is a very short program that runs one subroutine:

use ExtUtils::MakeMaker;
See lib/ExtUtils/MakeMaker.pm for details of how to influence

the contents of the Makefile that is written.
WriteMakefile(

 'NAME' => 'Example',
 'VERSION_FROM' => 'Example.pm', # finds $VERSION

 'PREREQ_PM' => {}, # e.g., Module::Name => 1.1
);

All the system-dependent functionality is provided by the ExtUtils::Make-
Maker module. The WriteMakefile routine accepts a hash that controls the con-
tents of the make file. In the previous example, NAME specifies the name of the
module, VERSION_FROM indicates that the version number for the module should
be read from the VERSION variable in the module, and PREREQ_PM lists the depen-
dencies for this module (the CPAN module uses it to determine which other modules
should be installed; in this example there are no additional module dependencies, so
this isn’t really required). Additional options will be described in later sections; you
can find a full description in the documentation for ExtUtils::MakeMaker.

The MANIFEST file

This file contains a list of all files that are meant to be part of the distribution. When
the Makefile.PL program is run, it checks this file to make sure all the required files
are available. This file is not required, but is recommended in order to test the integ-
rity of the distribution and to create a distribution file when using make dist.

The test.pl file and the t directory

Although it isn’t a requirement, all module distributions should include a test suite.
Test files are important for testing the integrity of the module. They can be used to
ensure that the module works now, that it works after improvements are made, and
that it works on platforms that may not be accessible to the module author. When
ExtUtils::MakeMaker sees a test.pl file in the current directory, the resulting
Makefile includes a test target that will run this file and check the results.

A good test suite uses all the functionality of the module in strange ways. A bad
test suite simply loads the module and exits; a module with no test suite is even worse.

Perl provides two means of testing a module. The test.pl file is the simplest, but a
more extensible approach is to create a test directory (called simply t) containing
multiple tests. The convention is that tests in the t directory have a file suffix of .t and
are named after the functionality they are testing (for example, loading.t or ftp.t).
28 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

Test programs are written using the framework provided by the Test module (or
the new Test::Simple and Test::More modules). A simple example, based on
this Example module, could be as shown in listing 2.1.

use strict;
use Test;

BEGIN { plan tests => 2 }

use Example qw/ myfunc /;

ok(1);

my $result = myfunc(1);

ok($result, 1);

The second line loads the testing framework. Then, the program informs the test
framework to expect two test results.

The next line loads the module that is being tested and imports the required rou-
tines. The ok subroutine takes the supplied argument and checks to see whether it is
true or false. In this case, the argument is always true, so an ok message is
printed whenever the module has been loaded correctly.

In the last line, the ok routine accepts two arguments: the result from the current
test and the expected result. An ok message is printed if the two arguments are equal;
a not ok message is printed if they are different.

You can create templates for these files using the h2xs program that comes as part
of Perl. When used with the -X option, it creates a basic set of files:

% h2xs -X Example
Writing Example/Example.pm

Writing Example/Makefile.PL
Writing Example/README

Writing Example/test.pl
Writing Example/Changes

Writing Example/MANIFEST

In addition to the files described here, h2xs generates a file called Changes that you
can use to track changes made to the module during its lifetime. This information is
useful for checking what has happened to the module; some editors (such as Emacs)
provide an easy means of adding to these files as the code evolves.

NOTE If you want to learn more about building module distributions, we suggest
you take a look at the perlnewmod, perlmodlib, and perlmodstyle
Perl manual pages.

Listing 2.1 Simple test program
PERL MODULES 29

2.2 INTERFACING TO ANOTHER LANGUAGE:
C FROM XS

Now that we have discussed how to create a module and determined that you need to
create an interface to other languages, this section will describe the basics of how to
combine C code with Perl. We begin with C because it is the simplest (Perl itself is
written in C). Additionally, this section will only describe how to interface to C using
facilities that are available in every Perl distribution. We’ll describe interfacing to C
using other techniques (such as SWIG and the Inline module) in chapter 7. If you
are familiar with the basics, more advanced XS topics are covered in chapter 6.

Perl provides a system called XS (for eXternal Subroutines) that can be used to link
it to other languages. XS is a glue language that is used to indicate to Perl the types of
variables to be passed into functions and the variables to be returned. The XS file is
translated by the XS compiler (xsubpp) into C code that the rest of the Perl internals
can understand. In addition to the XS file, the compiler requires a file that knows how
to deal with specific variable types (for input and output). This file is called a typemap
and, for example, contains information about how to turn a Perl scalar variable into
a C integer.

This section will begin by describing the changes that must be made to a standard
Perl module in order to use XS. We’ll then present an example of how to provide sim-
ple C routines to Perl.

2.2.1 The Perl module

As a first example, we will construct a Perl module that provides access to some of
the examples from chapter 1. The first thing we need to do is to generate the stan-
dard module infrastructure described in section 2.1 using h2xs, but this time with-
out the -X option to indicate that we are writing an XS extension. The module can
be called Example:

% h2xs -A -n Example
Writing Example/Example.pm

Writing Example/Example.xs
Writing Example/Makefile.PL

Writing Example/README
Writing Example/test.pl

Writing Example/Changes
Writing Example/MANIFEST

The -A option indicates to h2xs that constant autoloading is not required (more on
that topic later; see section 2.3.3). The -n option specifies the name of the module in
the absence of a C header file. Besides the creation of the Example.xs file, the only
difference from the previously discussed pure Perl module generation is a change to
the module itself (the .pm file) so that it will load the compiled C code. The module
created by h2xs has many features that are not important for this discussion, so we
30 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

will begin from the minimalist module described in section 2.1 and modify it to sup-
port shared libraries:

package Example;

use 5.006;
use strict;

use base qw/Exporter DynaLoader/;

our $VERSION = '0.01';

our @EXPORT_OK = qw/ print_hello /;

bootstrap Example $VERSION;

1;

There are only two changes (highlighted in the code). The first is that the module
now inherits from the DynaLoader module as well as the Exporter module. The
DynaLoader module provides the code necessary to load shared libraries into Perl.
The shared libraries are created from the XS code on systems that support dynamic
loading of shared libraries.3 The second change is the line added just before the end
of the module. The bootstrap function does all the work of loading the dynamic
library with the name Example, making sure its version matches $VERSION. The
bootstrap function is technically a method that is inherited from the DynaLoader
class and is the equivalent of

Example->bootstrap($VERSION);

2.2.2 The XS file

Now that the preliminaries are taken care of, the XS file must be examined and
edited. The first part of any XS file is written as if you are writing a C program, and
the contents are copied to the output C file without modification. This section
should always begin by including the standard Perl include files so that the Perl inter-
nal functions are available:

#include "EXTERN.h"
#include "perl.h"

#include "XSUB.h"

These lines must always be here and are not automatically added by the xsub com-
piler (although h2xs includes them) when it generates the C file. Any other C func-
tions or definitions may be included in the first section of the file.

As a first example of interfacing Perl to C, we will try to extend Perl to include
functions described in chapter 1. These must be added to the .xs file directly or
included from either a specially built library or a separate file in the distribution. For

3 On other systems, it is still possible to use DynaLoader; however, the module must be statically
linked into the Perl binary by using make perl rather than just make for the second stage.
INTERFACING TO ANOTHER LANGUAGE: C FROM XS 31

simplicity, we will begin by adding the code from sections 1.1 and 1.5.1 directly to
the .xs file:

#include <stdio.h>

void print_hello (void)
{

 printf("hello, world\n");
}

int treble(int x)
{

 x *= 3;
 return x;

}

On the first line we have replaced the name of the main function from section 1.1
with a new name. XS modules do not define a main, because all functions are sup-
posed to be called from somewhere else.

The XS part of the file is indicated by using the MODULE keyword. It declares the
module namespace and defines the name of the shared library that is created. Anything
after this line must be in the XS language. The name of the Perl namespace to be used
for subroutines is also defined on this line, thus allowing multiple namespaces to be
defined within a single module:

MODULE = Example PACKAGE = Example

Once the module and package name have been declared, the XS functions can be
added.

2.2.3 Example: “Hello, world”

As a first example, we will call the print_hello function declared at the start of
the file. It has the advantage of being the simplest type of function to call from XS
because it takes no arguments and has no return values. The XS code to call it is
therefore very simple:

void
print_hello()

We begin by specifying the type of value returned to Perl from this function. In this
case nothing is returned, so the value is void. We then give the name of the function
as seen from Perl and the arguments to be passed in.

An XS function (also known as an XSUB) consists of a definition of the type of vari-
able to be returned to Perl, the name of the function with its arguments, and then a
series of optional blocks that further define the function. The print_hello func-
tion is very simple, so XS needs no extra information to work out how to interface Perl
to the function.
32 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

IMPORTANT Unlike a C prototype, XS must have the return type (in this case, void) by
itself on the first line of the declaration. The function name and arguments
appear on the next line.

Our XS file now contains the following:

#include "EXTERN.h"
#include "perl.h"

#include "XSUB.h"

#include <stdio.h>

void print_hello (void)
{

 printf("hello, world\n");
}

int treble(int x)
{

 x *= 3;
 return x;

}

MODULE = Example PACKAGE = Example

void
print_hello()

If we save this file as Example.xs, we can build the module in the normal way
(don’t forget to add this file to the MANIFEST if it is not there already). Listing 2.2
shows the output from Perl 5.6.0 (with some lines wrapped to fit on the page).

% perl Makefile.PL

Checking if your kit is complete...
Looks good

Writing Makefile for Example
% make

mkdir blib
mkdir blib/lib

mkdir blib/arch
mkdir blib/arch/auto

mkdir blib/arch/auto/Example
mkdir blib/lib/auto

mkdir blib/lib/auto/Example
cp Example.pm blib/lib/Example.pm

/usr/bin/perl -I/usr/lib/perl5/5.6.0/i386-linux
 -I/usr/lib/perl5/5.6.0

 /usr/lib/perl5/5.6.0/ExtUtils/xsubpp
 -typemap /usr/lib/perl5/5.6.0/ExtUtils/typemap Example.xs

 > Example.xsc
 && mv Example.xsc Example.c

Please specify prototyping behavior for Example.xs

Listing 2.2 Output from the build of our first XS example

B

C

d

e

INTERFACING TO ANOTHER LANGUAGE: C FROM XS 33

(see perlxs manual)

gcc -c -fno-strict-aliasing -O2 -DVERSION=\"0.01\"
 -DXS_VERSION=\"0.01\" -fPIC -I/usr/lib/perl5/5.6.0/i386-linux/CORE

 Example.c
Running Mkbootstrap for Example ()

chmod 644 Example.bs
LD_RUN_PATH="" gcc -o blib/arch/auto/Example/Example.so

 -shared -L/usr/local/lib Example.o
chmod 755 blib/arch/auto/Example/Example.so

cp Example.bs blib/arch/auto/Example/Example.bs
chmod 644 blib/arch/auto/Example/Example.bs

This line checks that all the relevant parts of the distribution are present by compar-
ing the contents of the directory with the contents listed in the MANIFEST file.

We create the directory structure that will receive the module files as the build pro-
ceeds. This directory is called blib (for “build library”).

This line copies all the Perl files to the architecture-independent directory.

We run the XS compiler, which translates the XS file to C code. The compiled file is
written to a temporary file and then moved to Example.c rather than being written
straight to the C file. This is done to prevent partially translated files from being mis-
taken for valid C code.

This warning can be ignored. It informs us that we defined some XS functions with-
out specifying a Perl prototype. You can remove this warning either by using PROTO-
TYPES: DISABLE in the XS file after the MODULE declaration or by specifying a
prototype for each XS function by including a PROTOTYPE: in each definition.

The C file generated by xsubpp is now compiled. The compiler and compiler options
are the same as those used to compile Perl itself. The values can be retrieved from the
Config module. Additional arguments can be specified in Makefile.PL.

The final step in library creation is to combine all the object files (there can be more
than one if additional code is required) and generate the shared library. Again, the pro-
cess is platform dependent, and the methods are retrieved from the Config module.

When we run Makefile.PL, it now finds an .xs file in the directory and modifies the
resulting Makefile to process that file in addition to the Perl module. The build
procedure therefore adjusts to the presence of the .xs file. The additional steps in
the procedure are illustrated in figure 2.2.

We don’t yet have an explicit test program (if you started with h2xs, you have
the outline of a test program, but it will only test whether the module will load cor-
rectly). However, we can test the newly built module from the command line to see
what happens:

f
g

h

B

c

d

e

f

g

h

34 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

% perl -Mblib -MExample -e 'Example::print_hello'

Using /examples/Example/blib
hello, world

As expected, we now see the "hello, world" message. The command-line
options are standard Perl but may require further explanation if you are not familiar
with using Perl this way. This example uses the -M option to ask Perl to load the
external modules blib and Example and then execute the string Exam-
ple::print_hello. The full package name is required for the subroutine name
because Perl will not import it into the main namespace by default. The blib mod-
ule simply configures Perl to use a build tree to search for new modules. It is required
because the Example module has not yet been installed.

Running tests like this is not efficient or scalable, so the next step in the creation
of this module is to write a test program (or modify that generated by h2xs). The test-
ing framework provided by the Test module4 makes this easy. Here the test program
from listing 2.1 has been modified to test our Example module:

use strict;
use Test;

BEGIN { plan tests => 2 }
use Example;

ok(1);
Example::print_hello();

ok(1);

If this program is saved to a file named test.pl, we can then use the make program
to run the test:5

% make test

PERL_DL_NONLAZY=1 /usr/bin/perl -Iblib/arch -Iblib/lib
 -I/usr/lib/perl5/5.6.0/i386-linux -I/usr/lib/perl5/5.6.0 test.pl

1..1

4 Prior to versions 5.6.1 of Perl, the test program created by h2xs does not use the Test module and is
therefore more complicated than necessary.

5 It may be necessary to rerun the make-file creation phase if the test program is created after the make
file has been created. This is the case because ExtUtils::MakeMaker adjusts the contents of the
make file depending on what is present in the module distribution.

.xs .c
xsubpp

.o
(gcc -c)

.so
(gcc -shared)

compile

library

xs to C
create shared

library

Figure 2.2 Flow diagram demonstrating the steps involved in transforming an

.xs file to a shared library. The bracketed commands and the suffixes for object

code and shared libraries will vary depending on the operating system used.
INTERFACING TO ANOTHER LANGUAGE: C FROM XS 35

ok 1

hello, world
ok 2

The problem with this simple test is that it is not really testing the print_hello
subroutine but simply whether (a) the module has loaded and (b) the
print_hello subroutine runs without crashing. Although these are useful tests,
they do not tell us anything about the subroutine. This is the case because the testing
system can only test variables, and the print_hello routine does not return any-
thing to the caller to indicate that everything is OK. In the next section, we will fix
this situation by adding a return value to the function.

2.2.4 Return values

Adding a simple return value to an XS routine (that is, a single scalar, not a list)
involves telling Perl the type of return value to expect. Our print_hello C func-
tion does not have a return value (it returns void), so it must be modified. We can
do so by adding the function in listing 2.3 to the top of our XS file.

int print_hello_retval (void)
{

 return printf("hello, world\n");
}

We have added a new function with a slightly different name to indicate that we are
now returning an integer value. This function makes use of the fact that printf
returns the number of characters that have been printed.

We can now add a new function to our XS code to take the return value into
account:

int

print_hello_retval()

The function is identical to the XS code for print_hello, but the void declara-
tion has been changed to an int. Once we’ve saved, we can rebuild it by typing
make as before. If we modify the test script to add

my $retval = Example::print_hello_retval();

ok($retval, 13);

and change the planned number of tests to three, we can now test that the routine
returns the correct value (in this case, the number of printed characters should
be 13):

% make test

PERL_DL_NONLAZY=1 /usr/bin/perl -Iblib/arch -Iblib/lib
-I/usr/lib/perl5/5.6.0/i386-linux -I/usr/lib/perl5/5.6.0 test.pl

Listing 2.3 "Hello, world" with a return value
36 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

1..3

ok 1
hello, world

ok 2
hello, world

ok 3

If the return value did not agree with the value we were expecting, the test script
would have told us there was a problem:

% make test

PERL_DL_NONLAZY=1 /usr/bin/perl -Iblib/arch -Iblib/lib -I/usr/lib/perl5/
5.6.0/i386-linux -I/usr/lib/perl5/5.6.0 test.pl

1..3
ok 1

hello, world
ok 2

hello, world
not ok 3

Test 3 got: '13' (test.pl at line 11)
Expected: '12'

However, it won’t tell us whether there is a problem with our XS code or a bad
assumption in our test script!

2.2.5 Arguments and return values

Our treble function from section 1.5.1 takes an integer argument and returns an
integer. This function would be represented in XS as shown in listing 2.4.

int
treble(x)

 int x

The first line returns an integer. The next is the signature of the command as it will
be visible to Perl; there is now an input argument. All the arguments listed in the sec-
ond line are then typed in the third and successive lines. For simple C types, Perl
knows the translation without having to be told.

The example from section 1.5.1 could now be written as

use Example;

print "Three times ten is ", Example::treble(10), "\n";

with the following output:

% perl -Mblib treble.pl
Three times ten is 30

Listing 2.4 XS for the treble function
INTERFACING TO ANOTHER LANGUAGE: C FROM XS 37

2.3 XS AND C: TAKING THINGS FURTHER

So far, we have shown you how to use XS to provide wrappers to simple C functions
with simple arguments where you want the signature of the Perl subroutine to match
the signature of the C function. In many cases, this approach is too simplistic, and
extra code must be supplied in the XS layer. The XS wrapper lets you provide C code
as part of the subroutine definition using the CODE keyword. XS keywords occur
after the initial XSUB declaration and are followed by a colon. Here are listings 2.3
and 2.4 coded entirely in XS without going through an extra function:

int
print_hello_retval ()

 CODE:
 RETVAL = printf("hello, world\n");

 OUTPUT:
 RETVAL

int
treble(x)

 int x
 CODE:

 RETVAL = 3*x;
 OUTPUT:

 RETVAL

The CODE keyword indicates that the following lines will contain C code. The
RETVAL variable is created automatically by the XSUB compiler and is used to store
the return value for the function; it is guaranteed to be the same type as the
declared return type of the XSUB (integer in both these examples). One complica-
tion is that RETVAL is not automatically configured as a return value; xsubpp needs
to be told explicitly that it should be returned, and this is done with the help of the
OUTPUT keyword.

2.3.1 Modifying input variables

In some cases, input arguments are modified rather than (or as well as) providing a
return value. In that case, XS needs to be told which arguments are solely for input
and which are for output. You use the OUTPUT keyword for this purpose. Here we
modify the treble function so that the argument is modified instead of providing
the result as a return value:

void
treble_inplace(x)

 int x
 CODE:

 x *=3;

 OUTPUT:
 x

This code is equivalent to the following Perl subroutine:
38 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

sub treble_inplace {

 $_[0] *= 3;
 return;

}

Or, more pedantically:

sub treble_inplace {
 my $x = int($_[0]);

 $x *= 3;
 $_[0] = int($x);

 return;
}

It suffers from the same problem: the input argument must be a variable, not a con-
stant, in order to be modified. If a constant is passed in (for example, a straight num-
ber, as in our previous example), Perl will generate a “Modification of a read-only
value attempted” runtime error. The OUTPUT keyword forces the value of the variable
at the end of the XSUB to be copied back into the Perl variable that was passed in.

2.3.2 Output arguments

In many C functions, some arguments are only returned (that is, the value of the
argument on entry is irrelevant and is set by the function itself). In these cases, the
XSUB must specify not only which arguments in the list are to be returned but which
are to be ignored on input.

NOTE To be pedantic, all arguments in C are passed in by value; however, some
arguments are thought of as return values because they are passed in a
pointer to some memory and that memory is modified by the function.
The pointer itself is not affected. Here we will use a non-pointer XS exam-
ple, because XS can be used to copy the results into the correct variable.
More detailed examples explicitly involving pointers can be found in
chapter 6.

For example, if we wanted our treble function to return the result into a second
argument

&treble(5, $out);

we would have to write XS code like this:

void
treble(in, out)

 int in
 int out = NO_INIT

 CODE:
 out = 3 * in;

 OUTPUT:
 out
XS AND C: TAKING THINGS FURTHER 39

The NO_INIT flag tells the XS compiler that we don’t care what the value of the sec-
ond argument is when the function is called—only that the result is stored in it when
we leave. This code is functionally equivalent to the following Perl code:

sub treble {

 $_[1] = 3 * $_[0];
 return;

}

Of course, this approach preserves a C-style calling signature and forces it onto Perl.
In some cases, this calling signature is desirable (maybe for familiarity with existing
library interfaces), but in other cases it isn’t. This brings us to the question of inter-
face design, which is addressed in section 2.5.

2.3.3 Compiler constants

Providing access to functions is only part of the problem when interfacing to external
libraries. Many libraries define constants (usually in the form of preprocessor
defines) that are useful to Perl programmers as well as C programmers. h2xs auto-
matically provides the code necessary to import preprocessor constants, unless it is
invoked with the -c or -A option. The approach taken by h2xs uses the Auto-
Loader module to determine the value of constants on demand at runtime rather
than import every constant when the program starts.

NOTE An extreme example is the standard POSIX module. It defines more than
350 compiler constants, and creating this many subroutines during loading
would impose a large overhead.

The autoloading is implemented in two parts. First, an AUTOLOAD subroutine is
added to the .pm file. For versions of Perl before 5.8.0, the code will look something
like this:

use strict;
use Errno;

use AutoLoader;
use Carp;

sub AUTOLOAD {
 my $sub = $AUTOLOAD;

 (my $constname = $sub) =~ s/.*:://;
 my $val = constant($constname);

 if ($! != 0) {
 if ($! =~ /Invalid/ || $!{EINVAL}) {

 $AutoLoader::AUTOLOAD = $sub;
 goto &AutoLoader::AUTOLOAD;

 } else {

 croak "Your vendor has not defined constant $constname";
 }

 }
 {

Checks for explicit values of
the errno variable

b
Loads the Carp module, which
imports the croak functionc
d

e
f

g

h

i

40 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

 no strict 'refs';

 *$sub = sub () { $val };
 }

 goto &$sub;
}

This line loads the AutoLoader module. It is required only if we want to dynami-
cally load additional functions from their corresponding files.

The subroutine must be called AUTOLOAD so that Perl will call it automatically when
it cannot find a definition for the subroutine in this package.

The $AUTOLOAD package variable contains the name of the subroutine that is being
requested. Here we copy that value to a lexical variable for convenience.

This line strips the package name (and associated colons) from the requested function
name, leaving just the name of the function in the current namespace.

Next, we run the constant function that returns the value of the required constant.
This routine is an XS function that is created by the h2xs command (more on that
later). The AUTOLOAD code generated by h2xs passes a second argument to this rou-
tine ($_[0]), but for simple constants it can usually be removed from the routine.

This line checks the error status from the constant function. In C, a common way
of setting status is for the function to set a global variable errno and for the caller of
the function to check errno when control is returned to it. In Perl, this behavior is
implemented by the $! variable. $! is tied to the C errno variable so that Perl can
check the value after system calls. Here, the constant function sets errno if the
requested constant cannot be located.

We now check to see if errno is set to a value that indicates the constant does
not exist. In that case, control passes to AutoLoader, so it can check whether
the required subroutines are to be autoloaded from .al files. These checks are
required only if autoloaded routines are expected; otherwise this is an extra over-
head for the program.

If the constant should be available but was not defined, this line stops the pro-
gram. The croak function is used rather than die so that the line number in the
caller’s code is printed in the error message rather than the line number in the
AUTOLOAD subroutine.

At this point in the routine, the value of the constant has been determined and, in
principle, could be returned to the caller. Although it is valid to do so, in practice the
constant will probably be called more than once. If the value is returned immediately,
then the AUTOLOAD subroutine will be called every time the constant is requested—
very inefficient. To overcome this inefficiency, the AUTOLOAD subroutine creates a

j

1)

b

c

d

e

f

g

h

i

j

XS AND C: TAKING THINGS FURTHER 41

new subroutine in this package that simply returns the constant value. In the exam-
ple, this is done by creating an anonymous subroutine and storing it in a glob (see
section 4.6 for more details of how this process works). The name of the glob is
stored in $sub and therefore requires that soft references be allowed; the no strict
'refs' turns off strict checking to allow them. If you are uncomfortable with glob
assignments, you can achieve the same effect by using a string eval:
eval "sub $sub () { $val }";

Finally, Perl is instructed to jump to the newly created subroutine and resume execu-
tion there. Using goto allows the program to run as if AUTOLOAD were never called.

The second part of the solution generated by h2xs lies in the constant function in
the .xs file. Here is a simple yet functional form of the code generated by h2xs for
some of the file constants that are available from the Fcntl module:

static IV
constant(char *name)

{
 errno = 0;

 switch (*name) {
 case 'S':

 if (strEQ(name, "S_ISGID"))
#ifdef S_ISGID

 return S_ISGID
#else

 goto not_there;
#endif

 break;
 case 'O':

 if (strEQ(name, "O_RDONLY"))
#ifdef O_RDONLY

 return O_RDONLY;
#else

 goto not_there;
#endif

 if (strEQ(name, "O_RDWR"))
#ifdef O_RDWR

 return O_RDWR;
#else

 goto not_there;
#endif

 break;
 }

 errno = EINVAL;
 return 0;

not_there:
 errno = ENOENT;

 return 0;

1)

B
Sets to “no error”;
value checked on exit
from function

c Executes if the constant
name begins with S

Compares the
requested name with
the string S_ISGID

d

e

f

g

42 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

}

MODULE = Fcntl_demo PACKAGE = Fcntl_demo

IV

constant(name)
 char * name

This line indicates the return type of the function. In this case, the return type is
forced to be the Perl integer type (see section 1.6.2).

This line denotes the start of a block that will switch on the first character of the
requested constant name.

This block does all the work for the S_ISGID constant. The C preprocessor is used
to determine the code that is passed to the compiler. If the symbol is defined, its value
is returned; if it is not defined, the code branches to the not_there label.

If the constant cannot be found even though it started with the letter O, the switch is
exited; it isn’t possible for any of the remaining case statements to match.

If the constant name did not match anything in the switch block, errno is set to
EINVAL (“Invalid argument”) and the function returns 0.

If the requested name was valid and present in the switch but was not available
(maybe because the constant was not defined on this operating system), the function
sets errno to ENOENT (literally, “No such file or directory”) and returns.

The XSUB definition for constant is simple; it has a single string argument and a
return type of IV (integer value).

It is important to realize that this example only deals with numeric constants (the
constants are assumed to be integers). String constants must be handled differently—
especially if a mixture of numeric and string constants is required.

ExtUtils::Constant

A new ExtUtils::Constant module has been added from Perl 5.8.0; it simpli-
fies the handling of constants. With this module, the XS and C code required to deal
with the compiler constants is generated automatically when Makefile.PL is executed.
This approach has a number of advantages over the current scheme:

• You can make improvements in the constant-handling code without having to
touch every module that uses constants.

• The XS files are much simpler. Files are no longer dominated by long, repetitive
lists of constants and C preprocessor directives.

• The new system allows compiler constants to have different types. An integer
constant is treated differently than a floating-point constant.

Defines the start of
the XS part of the file

h

B

c

d

e

f

g

h

XS AND C: TAKING THINGS FURTHER 43

2.4 WHAT ABOUT MAKEFILE.PL?

So far, we have not addressed the contents of the file that is instrumental in configur-
ing the build process. When you’re building simple Perl modules, Makefile.PL is
almost empty; it just provides the name of the module and a means for determining
the location to install the module (see section 2.1.1). The Makefile.PL program is
much more important when you’re building XS extensions, because the make file that
is generated must include information about how to translate the XS code to C, how
to run the C compiler, and how to generate shared libraries. In all the examples pre-
sented so far, this process has been handled automatically by the WriteMakefile
function because it detects the presence of an XS file and sets up the appropriate make
file targets. However, this detection works only if the module can be built without
additional configurations above and beyond those used to build Perl originally.

So far, the examples have not required anything more than standard include files
and libraries. What happens if you build a wrapper around a library that is not
included by default? Let’s add the following code to the XS example to find out. It will
print out the version of the XPM library on our system. The include directive goes
after the Perl includes and the XS declaration in the XS section. A minimum XS file
looks something like this:

#include "EXTERN.h"

#include "perl.h"
#include "XSUB.h"

#include <X11/xpm.h>

MODULE = Example PACKAGE = Example

int
XpmLibraryVersion()

If we add this XPM code to our example file and build, we get the following:

% perl Makefile.PL
Checking if your kit is complete...

Looks good
Writing Makefile for Example

% make
mkdir blib

mkdir blib/lib
mkdir blib/arch

mkdir blib/arch/auto
mkdir blib/arch/auto/Example

mkdir blib/lib/auto
mkdir blib/lib/auto/Example

cp Example.pm blib/lib/Example.pm

/usr/bin/perl -I/usr/lib/perl5/5.6.0/i386-linux
 -I/usr/lib/perl5/5.6.0

 /usr/lib/perl5/5.6.0/ExtUtils/xsubpp
 -typemap /usr/lib/perl5/5.6.0/ExtUtils/typemap Example.xs
44 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

 > Example.xsc && mv Example.xsc Example.c

Please specify prototyping behavior for Example.xs
(see perlxs manual)

gcc -c -fno-strict-aliasing -O2 -march=i386
 -mcpu=i686 -DVERSION=\"0.01\"

 -DXS_VERSION=\"0.01\" -fPIC
 -I/usr/lib/perl5/5.6.0/i386-linux/CORE Example.c

Running Mkbootstrap for Example ()
chmod 644 Example.bs

LD_RUN_PATH="" gcc -o blib/arch/auto/Example/Example.so -shared
 -L/usr/local/lib Example.o

chmod 755 blib/arch/auto/Example/Example.so
cp Example.bs blib/arch/auto/Example/Example.bs

chmod 644 blib/arch/auto/Example/Example.bs

It looks like everything worked fine. Let’s try it:

% perl -Mblib -MExample -e 'Example::print_hello'
Using/Example/blib

hello, world

% perl -Mblib -MExample -e 'print Example::XpmLibraryVersion'

Using/Example/blib
perl: error while loading shared libraries:

 /path/to/library/Example/blib/arch/auto/Example/Example.so:
 undefined symbol: XpmLibraryVersion

The output indicates that the earlier routines (such as print_hello) still work, but
the new routine doesn’t. The error message says that Perl could not find XpmLi-
braryVersion in any of the libraries it has already loaded. This is not surprising,
because Perl is not linked against graphics libraries during a standard build. To over-
come this problem, we can use Makefile.PL to provide the information necessary to
locate the correct libraries. The Makefile.PL file generated by h2xs looks something
like this:

use ExtUtils::MakeMaker;

See lib/ExtUtils/MakeMaker.pm for details of how to influence
the contents of the Makefile that is written.

WriteMakefile(
 'NAME' => 'Example',

 'VERSION_FROM' => 'Example.pm', # finds $VERSION
 'PREREQ_PM' => {}, # e.g., Module::Name => 1.1

 'LIBS' => [' '], # e.g., '-lm'
 'DEFINE' => ' ', # e.g., '-DHAVE_SOMETHING'

 'INC' => ' ', # e.g., '-I/usr/include/other'
);

The hash provided to WriteMakefile can contain many different keys, but the
ones that are usually modified for simple XS projects are LIBS and INC. You can use
the LIBS key to specify additional libraries that are needed to build the module. The
string must be in the form expected by the linker on your system. Usually this means
WHAT ABOUT MAKEFILE.PL? 45

a format of -L/dir/path -lmylib, where -L indicates additional search directo-
ries and -l indicates the name of actual libraries.6 WriteMakefile expects the
LIBS argument to be either a simple scalar or a reference to an array. In most cases, a
scalar is all that is required; but the array allows multiple sets of library combinations
to be provided, and MakeMaker will use the first that refers to a library that can be
found on disk.

In order to fix our example, we must change the LIBS entry so that the Xpm library
(and associated X11 library) will be included:

'LIBS' => '-L/usr/X11R6/lib -lX11 -lXpm',

Rebuilding the module now gives the following:

% perl Makefile.PL
Writing Makefile for Example

% make
gcc -c -fno-strict-aliasing -O2 -march=i386 -mcpu=i686

 -DVERSION=\"0.01\"
 -DXS_VERSION=\"0.01\" -fPIC

 -I/usr/lib/perl5/5.6.0/i386-linux/CORE
 Example.c

Running Mkbootstrap for Example ()
chmod 644 Example.bs

LD_RUN_PATH="/usr/X11R6/lib" gcc
 -o blib/arch/auto/Example/Example.so

 -shared -L/usr/local/lib Example.o
 -L/usr/X11R6/lib -lX11 -lXpm

chmod 755 blib/arch/auto/Example/Example.so
cp Example.bs blib/arch/auto/Example/Example.bs

chmod 644 blib/arch/auto/Example/Example.bs

The value specified for LIBS is highlighted.
The test runs as expected:

% perl -Mblib -MExample -e 'print Example::XpmLibraryVersion'

Using/Example/blib
30411

Similarly, you can add extra include paths using the INC key if you are using include
files that are not in the standard locations. This value is always a scalar and contains a
list of directories to search for include files, in the format expected by your compiler.
This list is usually of the form

INC => '-I/some/dir -I/some/other/dir'

6 On Unix systems, -lmylib refers to a file on disk called libmylib.a or libmylib.so. The
former is a static library, and the latter is a shared library that is loaded at runtime.
46 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

2.4.1 It really is a Perl program

It is important to remember that Makefile.PL is a normal Perl program. All that mat-
ters is that WriteMakefile is called with the correct arguments to generate the
make file. You can write arbitrarily complex code to generate those arguments, you
can prompt the user for information (as, for example, the Makefile.PL file for the
libnet package does), or you can even dynamically generate the Perl module itself!

As an example, suppose we wanted to build an interface to a Gnome library.7 Most
Gnome libraries come with configuration scripts that can be used to determine the
required libraries and include directories, and you must use these in Makefile.PL
rather than hard-wiring the location of the Gnome system into the program.8 To sup-
port doing this, the Makefile.PL file may look something like this:

use ExtUtils::MakeMaker;

Use gnome-config to determine libs

my $libs = qx/ gnome-config --libs gnome /;

Use gnome-config to determine include path

my $incs = qx/ gnome-config --cflags gnome /;

Remove newlines

chomp($libs);
chomp($incs);

Might want to exit with an error if the $libs or $incs
variables are empty

See lib/ExtUtils/MakeMaker.pm for details of how to influence
the contents of the Makefile that is written.

WriteMakefile(
 'NAME' => 'Gnome',

 'VERSION_FROM' => 'Gnome.pm', # finds $VERSION
 'PREREQ_PM' => {}, # e.g., Module::Name => 1.1

 'LIBS' => $libs, # all X11 programs require -lX11
 'DEFINE' => ' ', # e.g., '-DHAVE_SOMETHING'

 'INC' => $incs, # e.g., '-I/usr/include/other'
);

2.5 INTERFACE DESIGN: PART 1

Now that you have seen how to create Perl interfaces to simple C functions and
library routines, this section will provide some advice about how these C routines
should behave in a Perl world. When you’re interfacing Perl to another language, it is
important to take a step back and design the Perl interface so that a Perl programmer
would be comfortable with it rather than a C programmer.

7 Modules for many Gnome libraries are already on CPAN.
8 Gnome is usually installed into /usr on Linux but /opt/gnome on Solaris.
INTERFACE DESIGN: PART 1 47

2.5.1 Status and multiple return arguments

In C, although all arguments are passed by value, arguments can act as input argu-
ments, return arguments, or both, and there is no way to distinguish this behavior
from the prototype (knowing you are using a pointer cannot tell you whether the
data will change).9 In Perl, input arguments are supplied and return arguments are
returned. A C function such as

int compute(int factor, double *result);

that may take an input integer, store a value into a double (the asterisk indicates a
pointer in C; we will talk about those in chapter 3), and return an integer status is
almost always better written in Perl as

($status, $result) = compute($factor);

rather than

$status = compute($factor, $result);

In versions of xsubpp prior to v1.9508 (the version shipped with Perl 5.6.1), the
only way to return multiple arguments is to manipulate the argument stack by hand
(as described in chapter 6). In newer versions of xsubpp, you can indicate that some
arguments are to be returned differently using modifiers when declaring the func-
tion signature:

REQUIRE: 1.9508

int

compute(factor, OUTLIST result)
 int factor

 double result

The first line makes sure we are using a version of xsubpp that is new enough. The
OUTLIST keyword indicates that the argument is a return value that should be
placed on the output list. In fact, if the status is only telling us whether something
worked or failed, we should consider removing it

$result = compute($factor);

and returning undef if an error occurs. We’ll show how to do this in section 6.9.

2.5.2 Don’t supply what is already known

Do not ask the Perl programmer to provide information that Perl already has. For
example, a C function might need to know the size of a buffer being passed in.

9 In C, the const modifier can be used to indicate that a variable will not change. Unfortunately, many
libraries still do not use it consistently. It is therefore almost impossible for automatic tools like xsubpp
to infer that a variable is an output argument, simply because it lacks a const in the declaration.
48 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

Because the length of Perl strings is already known, it is redundant and error-prone to
ask the programmer to provide that information explicitly.

2.5.3 Don’t export everything

When interfacing to a library, do not blindly import every function into Perl. Many
of the functions may be support functions needed by the C interface but irrelevant to
Perl. Additionally, many of the constants may not be needed.

2.5.4 Use namespaces

Use Perl namespaces. Many C libraries use the library name as a prefix to every func-
tion (for example, many function names in the Gnome library begin with gnome_,
and function names in the XPM library begin with Xpm), so use the package name to
indicate that information and strip the common prefix. The PREFIX keyword can be
used to do so:

MODULE = Xpm PACKAGE = Xpm PREFIX = Xpm

int
XpmLibraryVersion()

This XS segment indicates that the function should appear to Perl as
Xpm::LibraryVersion rather than the more verbose and repetitive Xpm::Xpm-
LibraryVersion.

2.5.5 Use double precision

If a library provides a single- and double-precision interface, consider using just the
double-precision interface unless there is a major performance penalty if you do. All
Perl floating-point variables are already double precision, and there is little point in
converting precision when transferring data between Perl and the library. If you need
to preserve the function names in Perl (but, as noted in a previous comment, it may
be better to adopt a more unified interface on the Perl side), you can export both the
single- and double-precision names but only use the double-precision function from
the library. XS provides a way to do this using the ALIAS keyword. For example:

double
CalcDouble(arg)

 double arg
 ALIAS:

 CalcFloat = 1
 CODE:

 printf("# ix = %d\n", ix);
 RETVAL = CalcDouble(arg);

 OUTPUT:

 RETVAL

Here, CalcFloat is set up as an alias for CalcDouble. The ix variable is pro-
vided automatically and can be used to determine how the function was called. In
this example, if the function is called as CalcDouble, ix will have a value of 0; if
INTERFACE DESIGN: PART 1 49

the function is called as CalcFloat, ix will have a value of 1. Any integer value can
be used for the ALIAS; there is nothing special about the use of 1 as the first alias.

2.6 FURTHER READING

More information on Perl modules and XS can be found at the following locations:

• ExtUtils::MakeMaker—This man page describes Makefile.PL options
and MakeMaker.

• Managing Projects with make (2nd ed.)—This book by Andrew Oram and Steve
Talbott (O’Reilly and Associates, Inc.; ISBN 0937175900) is an introduction
to the make command.

• perlmod, perlmodlib—These are the standard Perl manual pages on mod-
ule creation.

• perlxstut, perlxs—These man pages are the standard XS tutorial and
documentation that come with Perl. They cover everything about Perl and XS
but they rapidly move on to advanced topics.

2.7 SUMMARY

In this chapter, you have learned the following:

• How to build a simple Perl module

• How to extend Perl using XS, first using C functions that take arguments and
then with functions that can return values

• How to import constants from C header files into Perl

Finally, we discussed some of the issues of interface design.
50 CHAPTER 2 EXTENDING PERL: AN INTRODUCTION

C H A P T E R 3

Advanced C

3.1 Arrays 51
3.2 Pointers 53
3.3 Strings 58
3.4 Structures 60
3.5 File I/O 62

3.6 Memory management 63
3.7 C Traps for the Perl

programmer 68
3.8 Further reading 69
3.9 Summary 69
So far, we have given a simple introduction to the C programming language and used
that knowledge to provide Perl interfaces to simple C functions. Before we can
progress to a description of the Perl internals—and the implementation of Perl vari-
ables in particular—we need to introduce some more advanced C programming con-
cepts. In this chapter, we will show how to use arrays and data structures and how to
deal with memory management.

3.1 ARRAYS

In Perl, arrays are collections of scalars. Perl knows how many elements are in the
array and allocates memory for new elements as required. In C, arrays are contiguous
blocks of memory that can only store variables of a specific type; for instance, an array
of integers can only contain integers. Listing 3.1 shows how you can create and access
arrays of a known size in C along with the Perl equivalent. The use of square brackets
is identical to the usage in Perl.
51

#include <stdio.h>
#include <stdlib.h>

int main(void) {
 int i;
 int iarr[5] = { 10,20,30,40,50 };
 double darr[10];

 for (i=0; i<10; i++) {
 darr[i] = i/100.0;
 }

 for (i=0; i<5; i++) {
 printf("%d %d %f\n", i, iarr[i], darr[i]);
 }

 return EXIT_SUCCESS;
}

#!/usr/bin/perl

@iarr = (10, 20, 30, 40, 50);

for (0..9) {
 $darr[$_] = $_/100.0;
}

for (0..4) {
 printf("%d %d %f\n", $_, $iarr[$_], $darr[$_]);
}

These are the standard include files, which provide the prototype for printf and
the definition of EXIT_SUCCESS.

This line declares an integer array with five elements and then assigns the elements
using a comma-separated list. (Note the use of the { x, y, z } initializer in C,
whereas in Perl you use (x, y, z)).

This line creates an array that can hold 10 double-precision numbers (although it is
not initialized at this point).

Arrays in C are more complex than their Perl equivalents because they don’t automat-
ically grow when the programmer needs more space than was originally allocated (see
section 3.6.2 to find out how to work with dynamic arrays). The C compiler allocates
only the memory it knows you will need, and not the memory you might need. To
make things worse, C will not stop you from “walking off the end” of the array by
assigning to an element you have not allocated memory for. For instance, some com-
pilers will let you get away with

int array[10];

array[20] = 1234;

Listing 3.1 Array handling in C

b

c
d

Assigns values to each
element in the double-
precision array

Prints the contents of
the first five elements
of iarr and darr

B

c

d

52 CHAPTER 3 ADVANCED C

However, this code is not legal. It will almost certainly cause annoying problems that
are occasionally difficult to detect, because you will be writing either into unallocated
memory (possibly causing a segmentation fault) or, worse, into another variable’s allo-
cated storage.

Similarly, be careful about creating arrays without initializing them; the darr
array in point 3 earlier may be filled with zeros when it is declared—or it may be filled
with garbage. Be sure to initialize before expecting sensible values in it.

A multidimensional array can be declared in much the same way as a one-
dimensional array:

int array[3][2];

This line declares a two-dimensional inte-
ger array containing six elements. The
elements are stored in a contiguous block
of memory, as shown in figure 3.1, with
individual elements addressed using
array[0][0], array[0][1], and so
forth. Use of a single block of memory is
possible because the compiler knows
exactly how many bytes are used to repre-
sent each element.

3.2 POINTERS

In C, all arguments are passed to functions by value. So, if you have a C function
such as

int findsum(int in1, int in2);

the subroutine will retrieve the values of in1 and in2 but will not be able to modify
those variables directly. This is analogous to the Perl subroutine

sub findsum {
 my $in1 = shift;

 my $in2 = shift;
 return ($in1 + $in2);

}

where the arguments are read from the stack and then used in the subroutine. C has
no analogue to the variable-aliasing trick available in Perl (where @_ can be modified
in place); in order to modify a variable, the memory address of the variable must be
passed to the function. Once the memory address is available, it can be used to
modify the value pointed to by this address. Given this definition, it is not surprising
that a variable containing a memory address is called a pointer.

Pointers are associated with a particular variable type (much like a reference to a
Perl hash is different from a reference to a Perl scalar), although, unlike in Perl, they

1 2 3 4 5 6Memory

1 3 5

2 4 6

0

1

0 1 2

2D
array

Figure 3.1 A two-dimensional array is im-

plemented as a single chunk of memory.
POINTERS 53

can be converted to other types by using type-casting. Thus a pointer to an integer is
not the same as a pointer to a character (although in this particular case, you can force
it to be treated as such1). In order to dereference a C pointer and modify the value of
the variable, * notation is used; it is reflected in the declaration of a pointer:

char *str;
int *x;

double *y;

This notation indicates that because, for example, *x is an integer, x itself must be a
pointer to an integer. An alternative reading is to think of x as a variable of type
int *, which is a pointer to an integer.

A function that multiplies a variable by three could be implemented as follows:

void treble (int * value) {
 *value *= 3;

}

Here the input variable is declared as a pointer, and the value in the variable is multi-
plied by three by dereferencing the pointer. This function could be called as follows:

int number = 5;
treble(&number);

We use an ampersand (&) to indicate that we want to take the memory address of
number and pass it to the function, rather than simply passing in the value. The Perl
equivalents would be

$number = 5;
&treble(\$number);

sub treble {
 my $value = shift;

 $$value *= 3;
}

To summarize, &variable is used to retrieve the memory address, and *variable
is used to find the thing pointed to by the memory address stored in the variable.

There are some important differences between Perl references and C pointers. In
Perl, the reference can only be dereferenced; once dereferenced, it behaves like the
original Perl data type. Generally, in C, the memory address can be examined and
modified. Modifying pointers can lead to errors, though, because bad things can hap-
pen if the pointer does not point to a valid location in memory. Additionally, a C
pointer usually contains a memory address, and it is not possible to determine just

1 Strictly speaking, you cannot just cast any pointer type to any other pointer type. A pointer to void
may be converted to and from any other pointer type, and any pointer type can be converted to a
pointer to char. If you use the converted pointer, it is your responsibility to make sure the data you
are now pointing to makes sense for the type you’re using.
54 CHAPTER 3 ADVANCED C

from that pointer whether it points to a single variable or, as described in the next sec-
tion, an array of variables.

A special type of pointer is a pointer to a void (a void *). It simply indicates to
the compiler that the contents are a pointer, but that you do not care what type it
points to. This type of pointer is useful when you’re designing data structures that are
designed to be extensible or that contain data of a type that is not known until the pro-
gram is run.

3.2.1 Pointers and arrays

In Perl, when you need to pass an array into a subroutine, you usually do it by taking
a reference to the array and storing it in a Perl scalar variable. Once the reference is
stored in a scalar, it must be dereferenced in order to retrieve the original variable:

&foo(\@bar, \%baz);

sub foo {
 my ($refArr, $refHash) = @_;

 $refArr->[3] = "foo";
 $refHash->{"bar"} = "foo";

}

In C, the equivalent of this reference is a pointer. When an array is used in a context
that expects a pointer, the pointer to the first element is used automatically. This pro-
cess is shown in listing 3.2: an array is declared normally, but it is passed to another
function as a pointer and is also treated as a pointer by printf.

#include <stdlib.h>

#include <stdio.h>

void foo_as_array (int array[]) {

 array[0] = 1;
}

void foo_as_pntr (int * array) {
 array[1] = 2;

}

int main (void) {

 int array[5];

 foo_as_array(array);

 foo_as_pntr(array);

 printf("First element is %d\n", array[0]);

 printf("Second element is %d\n", *(array+1));

 return EXIT_SUCCESS;

}

Listing 3.2 Equivalence of arrays and pointers

b

c

Declares an integer array
with five elements, but
does not populate it

d
Prints the value of
the first array
element using
standard array syntax

e

POINTERS 55

This function has a single argument that is declared explicitly as an integer array. The
empty square brackets indicate that the size of the array is not known. Note that,
despite the notation with the square brackets, in C it is impossible to pass a real array
to a function. Array variable names always decay to a pointer to the first element, and
both of these functions are equivalent.

This function has a single argument that is declared simply as a pointer to an integer.
Note that this declaration does not distinguish between a pointer to a single integer
and a pointer from an actual array (and the compiler doesn’t care).

Both routines are called with the same syntax, regardless of whether the function is
expecting a pointer or an array.

Now we print the value of the second element. Here we use pointer syntax to retrieve
the second value. In fact, the method we used first to retrieve element n from an
array, array[n], is by definition identical to incrementing the pointer to the start
of the array by n and dereferencing the result: *(array+n). This code works
because the compiler knows the size of each type, so it also knows how many bytes to
increment the pointer.

A key difference between a real C array and a pointer to it is that the C compiler
knows exactly how large an array is but does not know the amount of memory a
pointer refers to. This fact is demonstrated in the following code:

#include <stdlib.h>
#include <stdio.h>

int main () {
 int array[5];

 int *pntr;

 printf("Size of array: %d bytes\n",sizeof(array));

 printf("Size of array: %d elements\n",sizeof(array)/sizeof(int));

 pntr = array;

 printf("Size of pointer: %d bytes\n", sizeof(pntr));

 return EXIT_SUCCESS;

}

This example gives the following output:

Size of array: 20 bytes
Size of array: 5 elements

Size of pointer: 4 bytes

In general, though, this ability to determine the size of an array using sizeof is not
particularly useful, because you only use arrays of unknown size when they have been
created dynamically (in which case sizeof is irrelevant). (Section 3.6 contains more
details about how to allocate memory for arrays.)

B

c

d

e

56 CHAPTER 3 ADVANCED C

3.2.2 Pointers to functions

Although C doesn’t support “subroutine references” in the Perl sense, it is possible to
get a pointer to a function. Doing so is particularly useful when you’re creating call-
backs or stashing a function inside a Perl value. Taking a pointer to a function is
straightforward—you just use the function’s name without parentheses:

pntr = some_function;

Two points are slightly tricky: declaring pntr and knowing what to do with the
pointer once you’ve got it.

You declare a pointer to a function just as though you were declaring the function,
but you replace the function’s name with (*pntr). You need not specify the names
of the parameters. So, for instance, we can take pointers to the functions we’ve defined
in this section:

int (*findsum_pntr)(int, int);

void (*treble_pntr)(int *);
void (*foo_as_array_pntr)(int foo[]);

void (*foo_as_pntr_pntr)(int foo[]);

TIP If you get stuck with these or any other declarations, the cdecl utility can
help you:
cdecl> declare findsum_pntr as pointer to

 function (int, int) returning int
int (*findsum_pntr)(int , int)

cdecl> explain void (*fn)(void*);
declare fn as pointer to function (pointer to void) returning

 void

You might guess from the way we defined the pointer to a function that calling a
pointer to a function is just like calling a function, except you surround the pointer’s
name with “(*” and “)”:

sum = (*findsum_pntr)(a, b);

This approach will work; but, luckily, the C standard allows you to simply use a func-
tion pointer as if it was a function. So, all you really need to do is

sum = findsum_pntr(a, b);

Casting things into a pointer to a function is also a little tricky; essentially, you take
the declaration of the pointer to a function, surround it in brackets, and remove the
pointer’s name. Hence this

int (*findsum_pntr)(int, int)

becomes this:

(int (*)(int, int))data
POINTERS 57

We’ll look at function pointers again in the section, “Casting pointers to integers (and
back),” page 158.

3.3 STRINGS

As we mentioned previously, a string in C is treated as an array of characters. Most
commonly, a char is a single character and a char * is a pointer to an array of char-
acters.2 Because a C compiler does not know how many characters are contained in a
piece of memory that is being referenced, the convention in C is that a special charac-
ter value is used to indicate the end of a string.3 This string-termination character is
character \0 (the character with value 0 in the character set [chr(0) in Perl], not
the number zero [ord(0) in Perl]) and is known as the NUL character.

Figure 3.2 shows a simple example of string manipulation using a pointer. The Perl
equivalent is somewhat contrived, because Perl manipulates strings as a whole instead
of character by character:

 $a = "hello";
 $b = \$a;

 substr($$b, 0, 1) = 'm';
 substr($$b, 3, 1) = 'd';

 $a = substr($$b, 0,4);

This example shows that in Perl, a dereferenced reference is no different than the
original (the example would be identical if $$b was replaced with $a throughout);
it also demonstrates that a string in Perl is a single entity, whereas in C it is a group
of characters.

2 A character is not necessarily a single byte. This is true in ASCII, but not in Unicode.
3 Problems can occur when you link Perl via C to languages that do not use this particular convention.

Fortran is a popular example of a compiler that does know how long each string is and therefore does
not need a special string-termination character.

char a[5] = "hello";
char *b;

*b = 'm';
b += 3;
*b = 'd';
*(b + 1) = '\0';

b = a;

\0eh l l o
0 1 2 3 4 5

\0e l l o
0 1 2 3 4 5

m

\0e l o
0 1 2 3 4 5

m d

\0e l d
0 1 2 3 4 5

m \0

a

a points to start
of array of 5 chars

memory pointed
to by b now
contains ’m’

NUL terminated

set the next character to NUL to
terminate string

b points to same
place as a

Figure 3.2

Example of how a C

string can be manipu-

lated one character at

a time, using pointers
58 CHAPTER 3 ADVANCED C

When you’re using characters and strings in C, it is important to realize that there
is a distinction between single-quoted and double-quoted characters. As discussed in
“The char type,” page 12, '*' is treated by the compiler as the equivalent of the Perl
code snippet ord("*") and returns a variable of type char. When double quotes
are used, "*", the compiler treats it as a string literal, allocating two bytes of static
memory (including one for the NUL) and returning a pointer to that memory. Thus
the following code example is fine

char c = '*';
char *string = "*";

but this version will cause compiler errors:

char c = "*";
char *string = '*';

The errors will be similar to these:

warning: initialization makes integer from pointer without a cast
warning: initialization makes pointer from integer without a cast

3.3.1 Arrays of strings

Unlike multidimensional numeric arrays, which are contiguous blocks of memory
(because a single number is always represented by a fixed number of bytes; see
figure 3.1), arrays of strings are actually arrays of pointers to strings. The strings them-
selves can be in completely unrelated areas of memory. The pointer to the first ele-
ment of an array of char pointers is represented by the type char**. If the variable
x is a char**, then *x is a pointer to a string and **x is the single character at the
beginning of the string (see the graphical representation in figure 3.3).

a

3

2

1

0

a

kravdra

aba

kcab

a

tf

nab d no

\0

\0

\0

\0

NULL

Figure 3.3 The memory organization of an array of strings. On the left is a sim-

ple pointer. This pointer (a char**) points to the first element in an array of point-

ers (shown in the middle). These pointers are of type char* and point to the first

character in each string. We use the NULL at the end of the pointer array to tell

us where the end of the array is.
STRINGS 59

As a simple example of using a char**, we can use the Unix environment. The
environment is available to programmers as an array of strings. For example, if we
wanted to write a small program to print our current environment (similar to the
printenv shell command), we could do something like this:

#include <stdio.h>

extern char** environ;

int main (void) {
 int i;

 char **array = environ;

 while (*array) {

 printf("%s\n", *array);
 array++;

 }

 return(0);

}

environ is a special variable provided by the system and populated when the pro-
cess starts. The extern declaration tells the compiler that we are using a variable
declared in some other file.

Here we declare a new char** and copy the pointer from the environment array.
We do this so that we can manipulate the pointer without affecting the base pointer.

This while loop continues until *array evaluates to false. Because *array is
itself a pointer, this happens only when *array is NULL. Each time around the
loop, we print out the string associated with the current pointer value and then incre-
ment the pointer so that we move to the next element in the array. When we reach
the end of the array, we hit the NULL and terminate the loop.

3.4 STRUCTURES

In many cases, it is desirable to group related data into a single unit that can be passed
easily into subroutines. In Perl, you do so by using a hash or an array, which can con-
tain references to any of the standard Perl data types and can even be blessed into
classes and treated as objects. In C, arrays can only contain variables of the same
type;4 an alternative method is provided for grouping data into structures that can
contain named elements, similar to a Perl hash. These structures, declared using the
struct keyword, can be given an arbitrary type and can also include any other vari-
able type:

b

c

d

B

c

d

4 Although, in principle, you could have an array of pointers to items of different types, in practice it is
difficult to keep track of which element points to which data.
60 CHAPTER 3 ADVANCED C

struct person {

 double income; /* A double precision number */
 int age; /* An integer */

 char* name; /* Pointer to a character string */
};

struct survey {
 struct person* respondent; /* Pointer to a person structure */

 float length; /* Floating point number */
 int* answers; /* Pointer to an array of integers */

};

Once a structure has been declared, variables of that type can be defined in the nor-
mal way:

/* define mystruct as a variable of type person */

struct person mystruct;
/* define mypoint as a pointer to a struct of type survey */

struct survey* mypoint;

A common trick is to instruct the compiler to use an alias, rather than type struct
person all the time. The typedef command (see section 1.6.2) allows any variable
type to be aliased to another:

/* define myint to be identical to an int declaration */

typedef int myint;
/* define PERSON as an alias for struct person */

typedef struct person PERSON;

struct person mystruct; /* mystruct declared as a struct person */

PERSON mystruct; /* Same as previous line */

This technique is used a lot in the Perl source code, where you rarely see an explicit
struct. All struct accesses are done with aliases (and even more commonly done with
C preprocessor macros).

Accessing the members of a structure depends on whether you have a pointer to
it or have declared a variable of the structure type directly. The following example
shows C struct accessors with a corresponding Perl hash accessor:

mystruct.age = 5; /* Set member 'age' to 5 */

$mystruct{'age'} = 5; # perl

mypoint->length = 5.234; /* Set member y by dereferencing pointer */

$mypoint->{'length'} = 5.234; # Perl dereference

(*mypoint).length = 5.234; /* Same as previous */

$$mypoint{'length'} = 5.234; # Alternative form of dereferencing

The main difference between a struct and a hash is that all the members of a struct
must be declared beforehand and no extra members can be created as the program
executes. This is the case because a struct, like an array, is a contiguous block of mem-
ory of a fixed size. Even if a particular element of a struct is not initialized, it will take
up the same amount of memory as a fully initialized struct. Our struct person
STRUCTURES 61

declared earlier consists of a double, an int, and a pointer to a string. On a normal
32-bit system, this struct will probably take up 8+4+4=16 bytes of memory; the stan-
dard sizeof function can be used to determine how much memory the structure
actually uses (in some cases, a compiler will pad the structure with extra bytes to
make it align nicely on fixed-size boundaries for the underlying architecture). Struc-
tures must be well defined like this so that the compiler can decide how much mem-
ory to allocate to each one and also can statically reference elements in advance (and
hence discard the element names in favor of offsets). This is all different from a Perl
hash, where keys can be added at any time and the memory requirement is not fixed.
(Details about how hashes are implemented in C to overcome any restriction of this
kind can be found in section 4.5.5)

In a similar manner to arrays, you can initialize a structure in one statement:

struct example {

 double a;
 float b;

 int c;
};

struct example eg = { 52.8 , 65.4, 40 };

This approach provides a useful shorthand way of configuring structures without hav-
ing to address each member by name. The curly brackets effectively pack the data into
a single block of memory; the result is the same as using the Perl pack function:6

$packed = pack("dfi", 52.8,65.4,40);

3.5 FILE I/O

In C, just as in Perl,7 there are two approaches to handling input from and output to
external files:8 stream-based I/O and file descriptors.

Stream-based I/O offers a high-level interface, specifically providing buffering facil-
ities and the ability to move forward and backward within a file. Buffered I/O is
important for performance reasons (when writing to real hardware it is usually more
efficient to accumulate writes to a disk into large chunks rather than sending a byte
at a time). Perl filehandles use buffered streams, and the special variable $| controls
whether the output buffer is flushed after every print or only when the buffer is full

5 Additionally, because a structure is represented by a single contiguous block of memory (just like an
array), it is possible to simply step the required number of bytes into a structure to extract information.
However, this technique is not recommended and can lead to confusion and difficulty in porting the
code to other platforms; you should always use the standard accessor techniques.

6 With the exception of the padding we described earlier
7 Simply because Perl provides interfaces to both types of I/O in the standard C library
8 This includes sockets and devices. On Unix, all devices are treated as files.
62 CHAPTER 3 ADVANCED C

(the default is to disable autoflush, leading to much confusion the first time someone
writes a CGI script!). In C, a stream is represented by a FILE* (a pointer to a FILE).
This is an opaque structure because you never look inside it—that is left to the low-
level implementation in the C library. To open a stream, you can use fopen

FILE *fopen(const char *path, const char *mode);

and to print to a file you can use fprintf:

int fprintf(FILE *stream, const char *format, ...);

To close it, you use (predictably) fclose:

int fclose(FILE *stream);

These are similar to the corresponding Perl routines: open, printf, and close.
A lower level approach to I/O (at least on Unix-like systems) is to use file descriptors.

These are simple integers (you can get the file descriptor from a Perl filehandle using
the fileno function). File descriptors can be used for non-buffered I/O and are espe-
cially useful for socket communication. The C functions open, close, read, and
write provide what you would expect from the Perl functions sysopen, close,
sysread, and syswrite. Just as in Perl, you should not mix stream-based I/O with
file descriptor I/O on the same filehandle.

In general, all the Perl file I/O operations have analogues in C, either as stream-
based functions or functions using file descriptors (the perlfunc documentation is
careful to distinguish between the two).

3.6 MEMORY MANAGEMENT

We have explained the different variable types and made sure our programs specified
the amount of memory required to use them. In listing 3.1, we specified the number
of elements for each array. The memory for these variables is allocated by the com-
piler, which works out the total amount of memory required by the program. Unfor-
tunately, sometimes you cannot know at compile time how much memory your
program will need. For example, if you are writing image-processing software, you
may not know how big an image you will need to process. One solution—required if
you use a language such as Fortran779—is to make an inspired guess of the maxi-
mum image size you wish to process and hard-wire the dimensions into your pro-
gram. This approach will work, but it has two problems:

• If you need to process larger images, you must recompile your program (presum-
ably doing so is easy, because you have specified the dimensions in a header file).

9 However, most modern implementations of Fortran77 provide the means for dynamic memory man-
agement, outside of the scope of the language definition.
MEMORY MANAGEMENT 63

• Even if you are processing small images, the program will require the same
amount of memory it uses for large images.

Clearly, an alternative approach is required. We want to determine the image size we
are intending to process and then allocate that memory when the program is running.

3.6.1 Allocating memory at runtime

The main C function for dynamically allocating memory is malloc:

void * malloc(size_t size);

The argument specifies the number of bytes required, and the function returns a
pointer to the newly allocated memory. Recall that if you declare a pointer variable,
you must make sure it points to some allocated memory. So far, we have done this by
obtaining the pointer from some other variable. For example:

char * pointer_to_char;
char a_string[4];

int an_integer;
int * pointer_to_int;

pointer_to_char = a_string;
pointer_to_int = &an_integer;

With dynamic memory allocation, we can do the following (the prototype for mal-
loc can be found in stdlib.h):

#include <stdlib.h>

char * pointer_to_char;

pointer_to_char = malloc(4);

Here we have requested 4 bytes of memory and stored the pointer returned by mal-
loc in the variable pointer_to_char. It is important to realize that the memory
has been allocated but not necessarily initialized (the contents will be undefined). We
are responsible for storing information in that memory.

The downside of dynamic memory allocation in C is that the programmer is
responsible for giving the memory back when it is no longer required. If you keep on
requesting memory but never give it back, you will rapidly run out of resources; this
problem is known as a memory leak. C provides the free function to allow you to
return memory to the system:

void free(void * ptr);

This function takes a single pointer argument and will free the memory at that
address. This memory must have been allocated by a call to malloc (or the related
functions calloc and realloc), and you should take care not to call it twice with
the same pointer value (strange things can happen, because the system may have
already given that memory to something else!).
64 CHAPTER 3 ADVANCED C

Memory management is one of the hardest things to get right in C. If your pro-
gram is large and contains many dynamic memory allocations, it is difficult to guar-
antee that the memory will be freed correctly in all cases. One of the key advantages
of Perl, Java, and other languages is that they handle all the memory allocation and
freeing, allowing the programmer to focus on the core functionality of the program.

3.6.2 Altering the size of memory

Occasionally you may realize that the memory you requested is not enough for the
task at hand: maybe you want to extend an array so that it can hold more elements, or
perhaps you want to extend a string. The obvious approach is to allocate a new block
of memory of the correct size, copy the contents from the first block, and then free
the memory associated with it. This technique is painful, but luckily the standard C
library comes with a function that will do it for you:

void * realloc(void * ptr, size_t bytes);

This function will resize the available memory pointed to by ptr. The original con-
tents of the memory will be retained, and any new memory will be uninitialized. If
bytes is less than the previous size, then the additional memory will be freed.
realloc returns a new pointer, which will not necessarily be the same as that stored
in ptr. You should always use the return value rather than assume you will be getting
memory at the same location.

NOTE Recall that arguments in C are passed by value. Because the content of ptr
is passed in as a memory address, the function will not be able to modify
the contents of ptr in the calling routine. This issue could have been over-
come by passing in a pointer to the pointer (!), but the designers of the in-
terface wanted to make sure the original pointer was still available in case
the realloc failed:
newptr = realloc(ptr, nbytes);

As with all memory allocation routines, do not forget to check the returned pointer
to make sure it is non-NULL. All these routines return NULL pointers if the memory
cannot be allocated. Remember that if this routine fails, the memory associated with
ptr will not have been freed; so, it’s possible to try again by asking for less memory.

3.6.3 Manipulating memory

Now that you have allocated your memory, what can you do with it? If you want to
copy it to another variable (for example, to copy the contents of a structure before it
is reused), you can use memcpy (use memmove if the memory destination lies within
the chunk of data that is being copied):

#include <stdlib.h>
#include <stdio.h>

#include <string.h>

Declares the prototypes for malloc,
printf, memcpy, and strcpy
MEMORY MANAGEMENT 65

typedef struct {
 double income;
 int age;
 char* name;
} person;

int main (void) {

 char name[6] = "fred";
 person someone = { 20000.0, 5, NULL };
 person *other;

 someone.name = name;

 other = malloc(sizeof(*other));
 memcpy(other, &someone, sizeof(*other));

 other->income = 0.0;
 printf("Someone: %d, %6.0f, %s\n", someone.age, someone.income,
 someone.name);

 strcpy(someone.name, "wilma");
 printf("Other: %d, %6.0f, %s\n", other->age, other->income
 other->name);

 free(other);
 return(EXIT_SUCCESS);
}

This is the standard C main routine; we do not declare any arguments, because we
are not interested in them.

These are variable declarations. We allocate a string, initialize a person structure, and
declare a pointer to a person. The someone.name field is set to NULL initially
and is pointed to the string name later, because standard C89 and many compilers
don’t allow initialization from non-constant values.

This line allocates memory for a new structure. We determine the number of bytes
required by using sizeof. Note that we calculate the size of *other rather than
person. Either approach will work, but using the variable name rather than the type
will allow for simpler editing if we change the type in a later version of the code.

WARNING You should always, always check the return value from malloc. We’re
omitting the check for the sake of brevity in our examples.

We use memcpy to copy the contents of someone to the memory indicated by
other. We must supply the size of the structure in bytes.

When we run this program, we get the following output:

% gcc -Wall memcpy.c -o memcpy
% ./memcpy
Someone: 5, 20000, fred
Other: 5, 0, wilma

Creates an anonymous
structure and
simultaneously typedefs
it to a person

b

c

d
e

Sets income in other to 0

Prints out the
contents of the

original structure

Sets the name in the original
structure to "wilma"

Prints out the
contents of the copy

Frees dynamically allocated memory

b

c

d

e

66 CHAPTER 3 ADVANCED C

So, modifying the income of other did not affect the contents of someone, but
modifying the name of someone did affect other. What is going on? The answer
lies in the struct declaration. When the structure is copied, everything is copied
exactly to the destination. The first two entries are simply numbers and are copied as
such. If they are modified, the bytes change as we would expect without affecting
anything else. The third member is a pointer; the pointer is identical in both struc-
tures, and if that memory is modified, both structures “see” the change.

To initialize an array with a default value, you can use the memset function (or
you can allocate the array using the calloc function, which allocates the memory
and then sets all bits to zero):

#include <stdlib.h>
#include <stdio.h>

#include <string.h>

#define NELEM 10

int main (void) {

 int i;

 int * array;
 array = malloc(NELEM * sizeof(*array));

 memset(array, 0, NELEM * sizeof(*array));

 for (i=0; i<NELEM; i++) {

 printf("Index %d element %d\n",i, array[i]);
 }

 free(array);
 return(0);

}

We declare the size of the array in a single place so we don’t need to rely on a bare
number in the code. Remember that C pointers do not know the number of elements
they have been allocated.

As in the previous example, this is the standard C main routine, but we do not
declare any arguments because we are not interested in them.

Next we allocate NELEM integers. We multiply the number of elements by the num-
ber of bytes in each integer to determine the total number of bytes required.

In some architectures, setting all bytes to 0 does not initialize all values to 0 (because
a number is represented by multiple bytes). To be absolutely sure you are initializing
the memory correctly, an explicit loop is the safest solution.

3.6.4 Memory manipulation and Perl

Having said all this, we must advise you that in the Perl source code you will never
use any of the functions for memory allocation and manipulation we have described.

Declares the prototypes
for malloc, printf,
and memset

b

c
Declares array as a
pointer to an integer

d Sets each byte in the
new array to 0

Loops through each
element of the array,
printing it to the screen

Frees the
memory

b

c

d

MEMORY MANAGEMENT 67

In the interests of cross-platform portability and debugging support, Perl uses private
definitions of these functions by providing C preprocessor macros. For example, the
Perl memory allocator, New, may eventually translate to a malloc, but it doesn’t
have to. If you are attempting to check for memory leaks, you may want to redefine
New so that it keeps track of the allocations and corresponding frees—and a macro
makes this process extremely simple. The full suite of Perl functions dealing with
memory manipulation is described in section 5.5.1.

3.7 C TRAPS FOR THE PERL PROGRAMMER

A number of pitfalls await the unwary Perl programmer writing C. In this section, we
list some of the common ones:

• Functions all need parentheses (unlike in Perl). If you don’t supply parentheses,
you end up taking a pointer to a function!

• Initialization of values is very important. If you don’t initialize variables before
using them, they may be set to 0—or they may contain garbage.

• "x" and 'x' are not the same. "x" creates a constant string, whereas 'x' acts like
the Perl ord operator.

• Memory management is not automatic. If you don’t allocate memory before
using it, you’ll end up writing on memory that’s in use; if you don’t free mem-
ory after using it, you’ll end up leaking memory.

• You cannot return a pointer to an automatic variable (one you have declared at
the top of a block). In this respect, automatic variables are unlike Perl’s lexical
variables declared with my. Automatic variables’ storage is assigned as part of the
call stack, and once you’ve finished with the current function, the call stack
frame is released and automatic variables are freed. In short, don’t expect clo-
sures to work, because C doesn’t support them!

• Writing into read-only strings is not supported. Constants in C really are con-
stant. If you’re going to modify a string, chances are you can’t start by saying
char* s = "My string";

because doing so creates a constant. Use strcpy or memcpy instead, and be
sure you write only to non-constant memory.

• Make sure you’ve recompiled all the object files you need to recompile before
linking them together. There’s nothing more annoying than fixing a bug,
recompiling, and still seeing the old behavior because you haven’t compiled the
right files (or, in extreme cases, you’ve forgotten to recompile). A good Make-
file will help immensely.

• Variable declarations can only be placed at the start of blocks. This isn’t strictly
true any more, because the C99 standard allows you to put variable declarations
wherever you want them; but not all compilers are C99-compliant yet.
68 CHAPTER 3 ADVANCED C

3.8 FURTHER READING

• C—Many books on the C programming language are available, and we cannot
recommend all of them. The standard reference works are The C Programming
Language by Brian Kernighan and Dennis Ritchie and C: A Reference Manual by
Samuel Harbison and Guy Steele.

• Library functions—All the library functions described in this chapter have
corresponding manual pages on most systems. The comp.lang.c FAQ (http://
www.eskimo.com/~scs/C-faq/faq.html) is also useful.

• Perl wrappers—The Perl wrappers for standard C functions are described in the
perlclib documentation that comes with Perl.

3.9 SUMMARY

In this chapter, you have learned the following:

• Arguments to C functions are passed by value. In order to modify a variable in a
function, you must use a pointer to the variable.

• Arrays in C are contiguous blocks of memory. They cannot be resized with-
out allocating more memory; when dynamically allocated, they do not know
how long they are. C strings are just arrays of characters, terminated by a
NUL character.

• File I/O can either be buffered, using streams, or unbuffered, using file descriptors.

• C has no native hashes, only fixed-size structures.

• C will not automatically allocate more memory as you need it. You must explic-
itly ask for more memory, and you must make sure you give it back to the sys-
tem when it is no longer required.
SUMMARY 69

C H A P T E R 4

Perl’s variable types

4.1 General concepts 70
4.2 Scalar variables 74
4.3 Magic variables: SvPVMG 81
4.4 Array variables 85
4.5 Hashes 87
4.6 Globs 91

4.7 Namespaces and stashes 94
4.8 Lexical “my” variables 95
4.9 Code blocks 96
4.10 Further reading 99
4.11 Summary 99
Before we can delve deeper into the secrets of XS and Perl embedding, we need to
describe how variables exist in Perl. This chapter will explain how Perl variables (scalars,
arrays, hashes, and globs) are represented within Perl. Starting from the various scalar
types ($x in Perl), we will then continue to discuss magic (for example, ties), the more
complex data types, and the organization of namespaces and lexical (“my”) variables.

This will be our first detailed look inside Perl, and we’ll use our knowledge of the
types of variables used in C and how C data structures are implemented. This chapter
assumes no more familiarity with C than that presented in chapters 1 and 3, although
it can get a little scary. If this is your first look at the insides of Perl, feel free to skip
this chapter and come back to it later.

4.1 GENERAL CONCEPTS

We’ll begin our discussion of Perl variables by examining some general issues before
covering the specifics of each variable type. A Perl variable is much more clever than a
simple C variable. Perl knows how many characters the variable needs, how to convert
it from a number to a string, and how many other variables know about it (so that Perl
can tidy up after itself). Perl does this by using a C data structure (a struct) rather than
70

a simple variable or array. As explained in chapter 3, a C struct is a block of memory
that can contain any number of variables of any type. Each entry in the struct can be
accessed by name and is functionally equivalent to a simplified Perl hash.

The different types of Perl variables use slightly different structures but share a core
functionality. The Perl internals can determine what type of variable is being used
from its type code. The internal names of the common variable types along with their
corresponding type codes and structure names (all of which are defined in the Perl
include files) can be found in table 4.1.

4.1.1 Reference counting

Reference counting is a key concept in Perl, because Perl decides whether the memory
associated with a variable can be recycled on the basis of reference counting. When a
variable is created, it has a reference count of 1. Whenever a reference of that variable
is stored somewhere, the reference count is increased by 1; whenever a reference is no
longer required, the reference count is decreased by 1. If the reference count becomes
0, Perl can no longer use the variable, and the memory associated with it is freed. For-
getting to increment or decrement the reference count at the correct times is a com-
mon way to cause a memory leak when you’re using XS or the Perl internals. In order
to find out the reference count of a particular variable from Perl, you need to be able
to look inside it. We describe how to do this in the next section.

4.1.2 Looking inside: Devel::Peek

When you are developing Perl extensions (or are simply interested in what is happen-
ing to a variable), it is useful to be able to examine the internal structure of a Perl
variable (known as an SV or scalar value; we’ll talk more about the structure of an SV
in section 4.2) from a Perl program. The Devel::Peek module is available as part

Table 4.1 Internal Perl variable types and their corresponding C

structure names

Name Variable type C structure Perl function

SvNULL SVt_NULL None undef

SvIV SVt_IV xpviv Integer

SvNV SVt_NV xpvnv Floating-point number

SvRV SVt_RV xrv Reference or undef

SvPV SVt_PV xpv String

SvPVIV SVt_PVIV xpviv or xpvuv String and/or number

SvPVNV SVt_PVNV xpvnv Float, string, and/or integer

SvPVMG SVt_PVMG xpvmg Magic

SvPVAV SVt_PVAV xpvav Array

SvPVHV SVt_PVHV xpvhv Hash

SvPVCV SVt_PVCV xpvcv Code block

SvPVGV SVt_PVGV xpvgv Glob
GENERAL CONCEPTS 71

of the standard Perl distribution and provides this functionality. You can use it to list
the current state of a variable in detail.

In the following example, the Perl code is on the left and the corresponding output
from each line is on the right:

use Devel::Peek;
$a = undef;

Dump $a; SV = NULL(0x0) at 0x80f9bf0
 REFCNT = 1

 FLAGS = ()

$b = \$a;

Dump $a; SV = NULL(0x0) at 0x80f9bf0
 REFCNT = 2

 FLAGS = ()

print $b; SCALAR(0x80f9bf0)

Devel::Peek shows us that we have an SvNULL structure, and it tells us the mem-
ory address of that structure: 0x80f9bf0 in this instance (expect your output to
show a different location). The address in brackets (0x0) tells us where the ANY field
in the SV’s structure is pointing—in the case of an SvNULL, this address is 0; but in
more complicated SVs, it will point to another structure in memory. We’ll talk more
about the SvNULL type in section 4.2.1

When we create a new reference to the SV, its reference count increases by 1.

When the reference is printed (the contents of $b), note that the stringified reference
Perl generates includes the memory address.

4.1.3 The flag system

Much of the state information for a Perl variable is contained in the FLAGS field; so,
before describing the structures used to construct Perl variables, we will explain how
the flag system works. All computer data is stored in terms of binary digits (bits). A
particular bit can either be set (a value of 1) or unset (0), and you can check the
state of a bit by comparing it with a bitmask using binary logic (a bitwise AND can
be used to determine if a bit is set; a bitwise OR can be used to set a bit). The follow-
ing example compares a 4-bit number with a bitmask to determine whether the spe-
cific flag is set (that is, both the bit in the number to be checked and the bit in the
bitmask are set):

 Binary Decimal

Bit number 3 2 1 0

FLAG 0 1 1 0 6
BITMASK 0 0 1 0 2

AND 0 0 1 0 2

B
Initially, we have
one reference to
the SV

The SV’s flags
are empty

c

d

B

c

d

72 CHAPTER 4 PERL’S VARIABLE TYPES

The flag has a decimal value of 6 (0b0110 in binary); when a bitwise AND operation
is performed with the bit mask, the result is non-zero and indicates that the bit set in
the bit mask is also set in the flag. If the result of the operation was zero, it would
mean the flag was not set.

In this example, four independent states can be stored, because we are using a 4-bit
number. In Perl, the FLAGS field is stored in the first 24 bits of a 32-bit integer, so
it is possible to record 24 different states. The other 8 bits are used for type informa-
tion (see figure 4.1 and table 4.1). The size of the flag variable and the bit number asso-
ciated with each state are irrelevant because those values are set with C macros, hiding
the details. All that really matters is that Perl provides C routines that you can use to
query an SV for a particular state.

For example, in order to see whether an SV is read-only, you can use the SvREAD-
ONLY macro:

if (SvREADONLY(sv))
 printf("SV is readonly\n");

Similar macros exist for all the allowed states. The following example shows how a
Perl implementation of the READONLY flag we just used might look. This Perl imple-
mentation is similar to that found in the Perl C include files:

use 5.006; # binary 0b0010 notation needs perl 5.6
use constant SVf_READONLY => 0b0010; # Set the mask bit

sub SvREADONLY { $_[0] & SVf_READONLY } # Test the mask bit
sub SvREADONLY_on { $_[0] |= SVf_READONLY } # Set the READONLY bit

sub SvREADONLY_off { $_[0] &= ~SVf_READONLY } # Unset READONLY bit

Set the flag

$flag = 0;
SvREADONLY_on($flag);

Test for the flag
print "Flag is readonly\n" if SvREADONLY($flag);

The important point is that in this example, we only use the SvREADONLY subrou-
tines and never need to use the SVf_READONLY value directly (or even care what its
value is).

NOTE Perl-level access to the READONLY flag is available via Graham Barr’s
List::Util module, which has been a standard part of Perl since
version 5.8.0.

When you use the Devel::Peek module, it lists all the flags that are currently set
in the variable:

% perl -MDevel::Peek -e 'Dump(my $a)'

SV = NULL(0x0) at 0x80e58c8
 REFCNT = 1

 FLAGS = (PADBUSY,PADMY)
GENERAL CONCEPTS 73

Here the PADMY flag is set, indicating that $a is a lexical variable (the PADBUSY flag
is set for the same reason; see section 4.8). We’ll discuss the important flags in this
chapter as we examine the relevant variable types.

4.2 SCALAR VARIABLES

The simplest Perl variable type is a scalar (such as $xyz); it’s represented in Perl as a
C structure of type SV.1 In this section, we will describe how the different scalar types
are implemented in Perl.

4.2.1 The SvNULL type

The basic implementation of an SV, from which all Perl variables are derived, is the
SvNULL (type SVt_NULL in sv.h). This type is represented as a simple C structure
with three elements:

struct sv {

 void* sv_any;
 U32 sv_refcnt;

 U32 sv_flags;
}

The first line creates a new structure named sv. The next is simply a pointer of any
allowed type. On the last two lines are unsigned integers that must be at least 4 bytes
(32 bits) long.

Using Perl hash syntax and adding some initialization, this code would become

$sv = {

 sv_any => undef,
 sv_refcnt => 1,

 sv_flags => 0
 };

You can access the actual fields (sv_any, sv_refcnt, and
sv_flags) using the C macros (defined in the sv.h include
file) SvANY, SvREFCNT, and SvFLAGS, respectively (they also
match the output provided by the Devel::Peek module).
From now on, the structure fields will be named after the macro
(without the leading Sv string) rather than the actual name used
to define the structure, because all programs written using the
internals go through the provided macros rather than directly to
the structure. Figure 4.1 is a diagram representing an SvNULL
using this notation.

1 In Perl, the SV type is a typedef (or alias) for a structure of type sv (a struct sv) defined in the
sv.h include file.

REFCNT

FLAGS TYPE

ANY

Figure 4.1

SvNULL structure
74 CHAPTER 4 PERL’S VARIABLE TYPES

The ANY field points to an additional structure that contains the specific state of
the variable; it can be changed depending on whether the variable is an integer (IV),
double-precision floating-point number (NV), or character string (PV; stands for
pointer value rather than string value because SV is already taken, and because a string
in C is defined by using a pointer to the memory location of the first character). Why
does Perl have to use different structures? Recall that a C structure must be defined
as a fixed size at compilation time. If you wanted to define a structure that included
support for all of Perl’s variable types, it would be extremely large—and a simple unde-
fined variable would use the same amount of memory as the most complex Perl vari-
able! This design is not acceptable, even if you have access to huge amounts of
memory; so, an alternative was developed.

The SvNULL represents a structure that contains just the information that all Perl
variables need. If you need more information, tack a different structure onto the ANY
field. If you have an SV containing a string and you then request the numeric form,
the structure will be upgraded in a manner that is transparent to the programmer.2

(The different structures and their relative hierarchy are described in subsequent sec-
tions and listed in table 4.1.) In terms of memory, this design is a very efficient solu-
tion, even though it sometimes requires a few extra pointer dereferences.

NOTE This similarity extends much further than the top-level structure. As you
read this chapter, you will see that the structures attached to ANY share the
same organization at the beginning even if some of the fields are unused.
Although this sharing leads to a small increase in required memory, it
allows the code to make assumptions about relative positions of fields in
similar structures for increased performance.

For an SvNULL, the ANY field does not point to anything (it contains a NULL
pointer3); this structure represents a scalar with a value of undef. The REFCNT field
contains the current reference count for the variable (see section 4.1.1) and the
FLAGS field contains bit flags that you can use to determine the behavior of certain
fields and the current state of the variable (for example, whether the variable is a
package variable or a lexical variable, or whether the variable contains a valid integer).
Currently, 24 bits are allocated with these flags; the other 8 bits are used to indicate
the type of structure attached to the ANY field. You can use the SvTYPE macro to
determine the variable type. As an example, here is an excerpt of the logic from a
switch statement in Perl_sv_upgrade in sv.c of the Perl source:

switch (SvTYPE(sv)) {

case SVt_NULL:
 ...

case SVt_IV:

2 It is not possible to downgrade an SV, because doing so might throw away information.
3 NULL is the C equivalent of undef.
SCALAR VARIABLES 75

 ...

case SVt_NV:
 ...

The type of the variable to be upgraded is returned and compared against the known
types, beginning with the most basic type: SVt_NULL.

4.2.2 SvRV: references

The simplest Perl variable that contains data is the SvRV subtype. It is used to contain
references to other SVs. An SvRV is an SV whose ANY field points to a simple struc-
ture (named xrv) containing a single field that is a pointer to another SV (an SV*):

struct xrv {

 SV * xrv_rv; /* pointer to another SV */
};

A simple reference of $b=\$a would be represented diagrammatically as shown in
figure 4.2.

Or, using Devel::Peek, the reference would be organized as follows:

SV = RV(0x80fbabc) at 0x80f9c3c
 REFCNT = 1

 FLAGS = (ROK)

 RV = 0x80ef888
 SV = NULL(0x0) at 0x80ef888

 REFCNT = 2
 FLAGS = ()

The ROK (reference OK) flag bit is set to true to indicate that the reference is valid
(if ROK is false, the variable contains the undefined value).

We see that this SV has two references: the value itself, in $a; and the reference to it,
in $b.

4.2.3 SvPV: string values

Perl variables that contain just a string representation are type SvPV (they simply
contain a PV). They are represented by an SV whose ANY field points to a structure

RV

ab xrv

sv

ANY

REFCNT

FLAGS TYPE

ANY

REFCNT

FLAGS TYPE

sv

Figure 4.2 The SvRV subtype

SV of type SvRV
Reference has a ref
count of 1—that is, $bb

This is the SV being referred
to (the SV stored in $a)c

b

c

76 CHAPTER 4 PERL’S VARIABLE TYPES

containing a pointer to a string (a char * named PVX) and two length fields (the
CUR and LEN fields); see figure 4.3.4

The PVX field contains a pointer to the start of the string representation of the
SV. The CUR field is an integer containing the length of the Perl string, and the LEN
field is an integer containing the number of bytes allocated to the string. Addition-
ally, the byte at position (PVX + CUR) must be a \0 (recall from chapter 3 that C uses
a NUL byte to indicate the end of a string) so other C functions that receive this
string will handle it correctly. Thus LEN must be at least one more than the value of
CUR. Perl’s memory management is such that, for efficiency, it will not deallocate
memory for the string once it has been allocated, if the string is made smaller. It is
much more efficient to change the value of CUR than it is to free the unused memory
when a string becomes shorter:

use Devel::Peek;

$a = "hello world";
Dump $a; SV = PV(0x80e5b04) at 0x80f9d98

 REFCNT = 1
 FLAGS = (POK,pPOK)

 PV = 0x80e9660 "hello world"\0
 CUR = 11

 LEN = 12

$a = "hello"; SV = PV(0x80e5b04) at 0x80f9d98

Dump $a; REFCNT = 1
 FLAGS = (POK,pPOK)

 PV = 0x80e9660 "hello"\0
 CUR = 5

 LEN = 12

The POK flag indicates that the PV stored in the variable is valid and can be used. The
pPOK flag is related to the POK, but it is an internal flag to indicate to the magic sys-
tem (see section 4.3) that the PV is valid.

4 The actual name of the SvPV struct in the Perl include files is xpv (similarly, an SvPVIV uses a struct
named xpviv). For the rest of this chapter, we won’t explicitly state the struct names, but they are all
listed in table 4.1.

ANY

REFCNT

FLAGS TYPE POK

PVX

CUR

LEN

h e l l o \0w o r l d

sv

xpv char []

Figure 4.3 The SvPV subtype
SCALAR VARIABLES 77

4.2.4 SvPVIV: integers

In C, it is not possible to store a number or a string in a variable interchangeably. Perl
overcomes this restriction by using a data structure that contains both a string part
and an integer part, using flags to indicate which part of the structure contains valid
data. The name SvPVIV indicates that the structure contains a string (PV) and an
integer (IV) and is simply an SvPV with an extra integer field; see figure 4.4.

This structure introduces three flags: the IOK and pIOK flags indicate that the IVX
field is valid (the same way POK and pPOK indicate that the string part is valid), and
the IsUV flag indicates that the integer part is unsigned (a UV) rather than signed (an
IV)5. This last flag is useful in cases where a large positive integer is required (such as
inside loops), because a UV has twice the positive range of a signed integer and is the
default state when a new variable is created that contains a positive integer.

When you request a string value (using the SvPV function; see chapter 5), the inte-
ger is converted to a string representation and stored in the PVX field, and the POK
and pPOK flags are set to true to prevent the conversion happening every time a
string is requested. The following example shows how the variable contents change
during a simple operation:

use Devel::Peek;

$a = 5;
Dump $a; SV = IV(0x80f0b28) at 0x80f9d0c

 REFCNT = 1
 FLAGS = (IOK,pIOK,IsUV)

 UV = 5
string comparison

print "yes" if $a eq "hello";
Dump $a; SV = PVIV(0x80e5f50) at 0x80f9d0c

 REFCNT = 1
 FLAGS = (IOK,POK,pIOK,pPOK,IsUV)

 UV = 5
 PV = 0x80e9660 "5"\0

5 Whether you get IsUV in your dump output depends critically on the Perl version you are using. The
logic concerning whether an SV should be a signed or unsigned integer was overhauled by Nicholas
Clark during the development of Perl 5.8.0.

ANY

REFCNT

FLAGS TYPE

PVX

CUR

LEN

IVXsv

xpviv

Figure 4.4

The SvPVIV subtype

b

c

78 CHAPTER 4 PERL’S VARIABLE TYPES

 CUR = 1

Copy in a new string LEN = 2
$a = "hello";

Dump $a; SV = PVIV(0x80e5f50) at 0x80f9d0c
 REFCNT = 1

 FLAGS = (POK,pPOK)
 IV = 5

 PV = 0x80e9660 "hello"\0
 CUR = 5

 LEN = 6

Initially, the SV contains a UV and a flag indicating that the integer part of the SV is OK.

The string comparison forces the SV to be stringified. This action results in an
upgrade to a PVIV; the POK flag is set to true in addition to the IOK flag, and a string
representation of the number is stored in the PV slot.

The string part is modified so the integer part is now invalid. The IOK flag is unset,
but the IV retains its value.

4.2.5 SvPVNV: floating-point numbers

For the same reason a C variable cannot contain a string and an integer, it cannot
contain a floating-point value. You can overcome this limitation by adding a floating-
point field to an SvPVIV; see figure 4.5.

As with the other types, previous settings for the string and integer parts are
retained as the variable evolves, even if they are no longer valid:

use Devel::Peek;
$a = "hello world";

$a = 5;
$a += 0.5;

Dump $a;

gives

SV = PVNV(0x80e65c0) at 0x80f9c00
 REFCNT = 1

 FLAGS = (NOK,pNOK)

d

B

c

d

ANY

REFCNT

FLAGS TYPE

PVX

CUR

LEN

IVX

NVX

sv

xpvnv

Figure 4.5

The SvPVNV structure
SCALAR VARIABLES 79

 IV = 5

 NV = 5.5
 PV = 0x80e9660 "hello world"\0

 CUR = 11
 LEN = 12

where the IV and PV parts retain their old values but the NV part is the only value
that is currently valid (as shown by the flags).

4.2.6 SvIV and SvNV

You may be wondering why we haven’t discussed the SvIV and SvNV types.
Table 4.1 indicates that SvIV and SvNV are implemented using the same structures
as SvPVIV and SvPVNV; in fact, they only look like that on the surface. In reality,
unless Perl is built to check memory violations,6 these types are implemented with a
single integer or double-precision number; however, they return a pointer as if it was
a pointer to an xpviv or xpvnv structure rather than a pointer to the number (see
figure 4.6). In other words: allocate memory for the single number, retrieve the
pointer to the number, subtract the number of bytes that precede that number in the
corresponding structure, and return the new pointer. This pointer no longer points to
a valid area of memory, but that’s OK because Perl will always add the offset back on
when retrieving the value. This technique is a good optimization of memory usage
even if it’s not strictly legal, and it can clearly be considered a great hack!

4.2.7 SvOOK: offset strings

To improve the speed of character removal from the front of a string, a special flag is
provided (OOK—offset OK) that lets you use the IVX part of the SV to represent an
offset in the string rather than as an integer representation of the string; see figure 4.7.

It is not possible for the IOK flag and the OOK flag to be set at the same time,
because the IVX cannot be both an offset and a valid number.

The use of this flag is best demonstrated by example; see listing 4.1.

6 In which case Perl plays by the rules and always allocates a xpviv or xpvnv structure

ANY

REFCNT

FLAGS TYPE

PVX

CUR

LEN

IVX

ANY

REFCNT

FLAGS TYPE

PVX

CUR

LEN

IVX

NVX

Figure 4.6 The SvIV and SVNV subtypes are implemented with a single integer or floating-point number

but act as if they are part of a structure.
80 CHAPTER 4 PERL’S VARIABLE TYPES

% perl -MDevel::Peek \
 -e '$a="Hello world"; Dump($a); $a=~s/..//; Dump($a)'
SV = PV(0x80f89ac) at 0x8109b94
 REFCNT = 1
 FLAGS = (POK,pPOK)
 PV = 0x8109f88 "Hello world"\0
 CUR = 11
 LEN = 12
SV = PVIV(0x80f8df8) at 0x8109b94
 REFCNT = 1
 FLAGS = (POK,OOK,pPOK)
 IV = 2 (OFFSET)
 PV = 0x8109f8a ("He" .) "llo world"\0
 CUR = 9
 LEN = 10

These lines specify the length of the string and the size of the buffer allocated for storage.

After processing, the PV has an additional flag (OOK) indicating that offsetting is in
effect.

This line indicates the real start of the string. Devel::Peek indicates that this is
an offset.

This line shows the string split into two parts: the piece that is ignored at the start
and the current value.

4.3 MAGIC VARIABLES: SVPVMG

In Perl, a magic variable is one in which extra functions are invoked when the variable
is accessed rather than the PV, IV, or NV part of the SV. Examples are tied variables
where the FETCH and STORE routines (plus others) are supplied by the programmer,
the %SIG hash where a signal handler is set on assignment, and the $! variable where
the C level errno variable is read directly. Additionally, objects use magic when they
are blessed into a class.

ANY

REFCNT

FLAGS TYPE

PVX

CUR

LEN

h e l l o \0w o r l d

IVXsv

xpviv char []

Figure 4.7 The SvOOK structure

Listing 4.1 SvOOK example

Standard flags
for a PV

String stored
in the PVb

c
d

e
Length information is now
relative to the offset

b

c

d

e

MAGIC VARIABLES: SVPVMG 81

An SvPVMG magic variable is just like an SvPVNV variable, except that two extra
fields are present (the structure attached to the ANY field is of type xpvmg). The
MAGIC field points to an additional structure of type magic, and the STASH field
points to a namespace symbol table relating to the object (stashes are described later,
in section 4.7); see figure 4.8.

When the STASH field is set (that is, the SV is blessed into a class), the OBJECT
flag is set:

 use Devel::Peek;
 $a="bar";

 $obj = bless(\$a, "Foo::Bar");
 Dump $obj;

SV = RV(0x80fb704) at 0x80f9d44
 REFCNT = 1

 FLAGS = (ROK)
 RV = 0x80f9d98

 SV = PVMG(0x8102450) at 0x80f9d98
 REFCNT = 2

 FLAGS = (OBJECT,POK,pPOK)
 IV = 0

 NV = 0
 PV = 0x80e9660 "bar"\0

 CUR = 3
 LEN = 4

 STASH = 0x80f9ce4 "Foo::Bar"

ANY

REFCNT

FLAGS TYPE

PVX

CUR

LEN

IVX

NVX

MAGIC

STASH

MOREMAGIC

VIRTUAL

PRIVATE

FLAGS

OBJ

PTR

LEN

GET

SET

LEN

CLEAR

FREE

sv

xpvmg

magic

mgvtbl

magic

Figure 4.8 The SvPVMG structure
82 CHAPTER 4 PERL’S VARIABLE TYPES

The important entries in the magic structure (defined in mg.h) are the following:

• moremagic—A pointer to a linked list of additional MAGIC structures. Multi-
ple MAGIC structures can be associated with each variable.

• virtual—A pointer to an array of functions. Functions can be present for
retrieving the value (get), setting the value (set), determining the length of
the value (len), clearing the variable (clear), and freeing the memory associ-
ated with the variable (free). In Perl, this array of functions is equivalent to
$virtual = {
 "get" => \&get,
 "set" => \&set,
 "len" => \&len,
 "clear" => \&clear,
 "free" => \&free
 };

• obj—A pointer to anything important for the type of magic being imple-
mented. For a tie, it will be an SV of the tied object.

• type—A single character denoting the type of magic implemented. A value of
P indicates that the magic is a tied array or hash, and q indicates a tied scalar or
filehandle. A value of ~ or U indicates that the functions in the virtual table have
been supplied by the programmer. An extensive list of the different types can be
found in the perlguts documentation.

At least one of the magic flags will be set. The important flags are GMAGICAL (the SV
contains a magic get or len method), SMAGICAL (the SV contains a magic set
method), and RMAGICAL (the SV contains some other form of random magic).

Let’s investigate the properties of magic by seeing what happens when we tie a class
to a Perl variable. The following class can be used to tie a scalar such that the contents
of the blessed variable increment each time its value is retrieved:

package Tie::Foo;

sub TIESCALAR {

 my $obj="foo1";
 return bless(\$obj,"Tie::Foo");

}
sub FETCH {

 ${ $_[0] }++;

}

1;

This is a special method name reserved by the tie system. It is invoked automatically
whenever someone tries to tie a scalar variable to this class.

We create a variable to act as the object and initialize it with a value. It must be a lex-
ical to allow other, independent, variables to be tied.

Declares the name of
the current packageb

c
Blesses the reference to
the scalar variable into
the Tie::Foo classd

e

f

b

c

MAGIC VARIABLES: SVPVMG 83

This is a special method name reserved by the tie system. Perl invokes this method on
the object each time the value is required.

We return the current value of the object and store the next value in the object.
Doing so guarantees that the value first stored in the object (by the constructor) is the
first value retrieved.

If this is a standalone module (as opposed to being some code at the end of a program),
we need to return true to indicate to Perl that the module has been read successfully.

If we now use this class, we can dump the contents of the tied variable and see how it
is organized and how it changes as the tie is used. This code ties a variable to class
Tie::Foo and dumps the results:

use Devel::Peek;
use Tie::Foo;

tie $a, 'Tie::Foo';

print "Initial state:\n";

Dump $a;

print "\nFirst value: $a\n\n";

print "State after a FETCH:\n";
Dump $a;

Listing 4.2 shows the output of the program used to investigate how the state of a
magic variable changes when a tied variable is accessed. The changes in the structure
after the first run are highlighted in bold.

Initial state:

SV = PVMG(0x81171f8) at 0x8107b14
 REFCNT = 1

 FLAGS = (GMG,SMG,RMG)
 IV = 0

 NV = 0
 PV = 0

 MAGIC = 0x81000b8
 MG_VIRTUAL = &PL_vtbl_packelem

 MG_TYPE = 'q'
 MG_FLAGS = 0x02

 REFCOUNTED
 MG_OBJ = 0x80f8ae0

 SV = RV(0x810f220) at 0x80f8ae0
 REFCNT = 1

 FLAGS = (ROK)
 RV = 0x81197b4

 SV = PVMG(0x81171d8) at 0x81197b4
 REFCNT = 1

 FLAGS = (PADBUSY,PADMY,OBJECT,POK,pPOK)
 IV = 0

d

e

f

Listing 4.2 Program output showing how the magic variable changes

SV is of type SvPVMG

The magic type is q to indicate
that we have a tied scalar

Reference to the scalar that is
being used as the object

Actual scalar ($obj)

b

84 CHAPTER 4 PERL’S VARIABLE TYPES

 NV = 0

 PV = 0x8107820 "foo1"\0
 CUR = 4

 LEN = 5
 STASH = 0x811976c "Tie::Foo"

First value: foo1

State after a FETCH:

SV = PVMG(0x81171f8) at 0x8107b14
 REFCNT = 1

 FLAGS = (GMG,SMG,RMG,pPOK)
 IV = 0

 NV = 0
 PV = 0x81000f8 "foo1"\0

 CUR = 4
 LEN = 5

 MAGIC = 0x81000b8
 MG_VIRTUAL = &PL_vtbl_packelem

 MG_TYPE = 'q'
 MG_FLAGS = 0x02

 REFCOUNTED
 MG_OBJ = 0x80f8ae0

 SV = RV(0x810f220) at 0x80f8ae0
 REFCNT = 1

 FLAGS = (ROK)
 RV = 0x81197b4

 SV = PVMG(0x81171d8) at 0x81197b4
 REFCNT = 1

 FLAGS = (PADBUSY,PADMY,OBJECT,POK,pPOK)
 IV = 0

 NV = 0
 PV = 0x8107820 "foo2"\0

 CUR = 4
 LEN = 5

 STASH = 0x811976c "Tie::Foo"

The flags indicate that this is a lexical variable being used as an object; it contains a
valid string.

The first value retrieved from $a is the initial value stored by the object constructor.

In addition to the flags indicating magic, the pPOK flag is now set to indicate that
a cached value is available (even though it will be overwritten each time the FETCH
is invoked).

4.4 ARRAY VARIABLES

A Perl array is an array of scalar variables; and at the C level, an array value (AV) is
fundamentally an array of SVs. You implement an AV using a structure the same as

Symbol table associated
with this objectc

d

Current value for
the tied variable

Current value of the string
stored in the object itself

b

c

d

ARRAY VARIABLES 85

that used for an SvPVMG (defined in av.h as type xpvav), except that three addi-
tional fields are present:

• ALLOC—Points to an array of SVs (in fact, because this is C, it points to an
array of pointers to SV structures [an SV**]).

• ARYLEN—Points to a magic SV that is responsible for dealing with the
$#array Perl construct.

• Flag—An extra array flag variable that controls whether the elements’ refer-
ence counter should be decremented when the variable is removed from the
array. Reference counts are usually decremented but the @_ array is an example
where this does not happen.

In addition, the first three fields of the structure have different names: PVX becomes
ARRAY, CUR becomes FILL, and LEN becomes MAX; see figure 4.9.

Note that the ARRAY field points to the first valid element of the Perl array, but
the ALLOC field points to the first element of the C array. Usually ARRAY and ALLOC
point to the same thing; but, similar to the OOK trick described earlier (section 4.2.7),
you can use the ARRAY field to efficiently shift elements off the array without adjust-
ing memory requirements; to do so, you simply increment the pointer (and decrement
FILL and MAX). Similarly, you can pop elements off the top of the array by decre-
menting FILL. Listing 4.3 demonstrates how a simple array is organized.

ANY

REFCNT

FLAGS TYPE

ARRAY

FILL

MAX

IVX

NVX

MAGIC

STASH

ALLOC

ARYLEN

FLAGS

SV*[]

magic sv

xpvavav

Figure 4.9 The AV structure
86 CHAPTER 4 PERL’S VARIABLE TYPES

% perl -MDevel::Peek -e '@a=qw/a b/;Dump(\@a)'

SV = RV(0x80fb6f8) at 0x80e5910
 REFCNT = 1

 FLAGS = (TEMP,ROK)
 RV = 0x80f9c90

 SV = PVAV(0x80fcba0) at 0x80f9c90
 REFCNT = 2

 FLAGS = ()
 IV = 0

 NV = 0
 ARRAY = 0x80ec048

 FILL = 1
 MAX = 3

 ARYLEN = 0x0
 FLAGS = (REAL)

 Elt No. 0
 SV = PV(0x80e5b04) at 0x80e5838

 REFCNT = 1
 FLAGS = (POK,pPOK)

 PV = 0x80faaa8 "a"\0
 CUR = 1

 LEN = 2
 Elt No. 1

 SV = PV(0x80e5b28) at 0x80e58c8
 REFCNT = 1

 FLAGS = (POK,pPOK)
 PV = 0x80f4820 "b"\0

 CUR = 1
 LEN = 2

These flags indicate that the SV passed to the Dump function is a reference to another
SV and that it is temporary.

The reference count is 2 because there is one reference from @a and one from the ref-
erence passed to Dump.

4.5 HASHES

Hashes (HVs) are the most complex data structure in Perl and are used by many parts
of the internals. There is no equivalent to an associative array in C, so a Perl hash is
implemented as a hash table—an array of linked lists. In principle a simple associative
array could be arranged as an array where alternating elements are the key and the
value, and this is one way of populating a hash in Perl:

%hash = ('key1', 'value1', 'key2', 'value2');

Listing 4.3 Devel::Peek of @a

B

c

Index of the highest entry
Highest index that can be stored
without allocating more memory

Pointer is null until $#
is used for this array

First element: an SvPV
containing the letter a

Second element: an SvPV
containing the letter b

B

c

HASHES 87

The problem with this approach is that value retrieval is inefficient for large associa-
tive arrays, because the entire array must be searched in order to find the correct key:

for ($i=0; $i<= $#arr; $i+=2) {

 return $arr[$i+1] if $arr[$i] eq $key;
}

A more efficient approach is to translate the key into an array index, which results in
a hash lookup that is almost as fast as an array lookup. The number generated from
the key is called a hash, and it gives the data structure its name. In Perl 5.6, a hash
number is generated for each key using the following algorithm (the specific algo-
rithm is modified slightly as Perl versions change):

use integer;

$hash = 0;
foreach my $i (0..(length($key)-1)) {

 $hash = $hash * 33 + ord(substr($key,$i,1));
}

$hash += ($hash >> 5);

Of course, the Perl internals version is written in C.
In general, this hash number is very large. It’s translated into an index by calculat-

ing the bitwise AND of the hash number and the index of the largest entry of the array
(the size of the array minus one, because the index begins counting at zero):

$index = $hash & $#array;

The array sizes used for hashes are always a number 2N (a binary number containing
all 1s, the maximum index is therefore 2N–1), which guarantees the index will be
between 0 and the maximum allowed value. Unfortunately, this technique does not
guarantee that the index will be unique for a given hash number, because only some
of the bits from the hash number are used in the comparison. You can overcome this
problem by chaining together hash entries with the same index such that each one
has a data field containing a reference to the next field in the list. When searching for
a specific key, you modify the algorithm slightly so that it first determines the index
from the hash and then goes through the chain (known as a linked list) until it finds
the correct key; this process is much faster than searching every entry because the
search is reduced to those entries with a shared index. This technique is called colli-
sional hashing, for the “collision” that occurs when two different keys result in the
same array index.

Each hash entry (HE) is represented by the following structure (denoted in Perl
hash syntax here and visually in figure 4.10):

$HE = {

 NEXT => $HE_next,
 HEK => {

 HASH => $hash,
 LEN => length($key),

 KEY => $key,

Pointer to the next
hash entry in the listb
88 CHAPTER 4 PERL’S VARIABLE TYPES

 }

 VAL => $SV,
 };

The hash entry key (HEK) structure is purely a function of the hash key and therefore
does not change across hashes.

The RITER and EITER fields are used to keep track of position when you’re looping
through the hash (for example, with the each or keys function). EITER contains a
pointer to the current hash entry, and RITER contains the array index of that entry.
The next hash entry is determined by first looking in the HE for the next entry in the
linked list and then, if that is not defined, incrementing RITER and looking into the
array until another hash entry is found.

Because a particular hash key always translates to the same hash number, if the
SHAREKEYS flag is set, Perl uses an internal table (called PL_strtab) to store every
hash key (HEK structure) currently in use. The key is removed from the table only
when the last reference to it is removed. This feature is especially useful when you’re
using object-oriented programming, because each instance of a hash object will use a
single set of keys.

In a perfect hash, the number of hash entries matches the size of the array, and none
of them point to other hash entries. If the number of elements in the list exceeds the
size of the array, the assumption is that too many elements are in linked lists, where
key searches will take too long, rather than evenly spread throughout the array. When
this occurs, the size of the array is doubled and the index of every hash entry is

Contains the actual
value of the hash entry

b

ANY

REFCNT

FLAGS TYPE

ARRAY

FILL

MAX

KEYS

NVX

MAGIC

STASH

RITER

EITER

PMROOT

NAME

0 1 3 542 6 7

NEXT
HEK
VAL

HASH

LEN
KEY

NEXT
HEK
VAL

HASH
LEN
KEY

NEXT
HEK
VAL

HASH
LEN
KEY

NEXT
HEK
VAL

HASH
LEN
KEY

Figure 4.10 The HV structure
HASHES 89

recalculated. This process does not involve recalculating the hash number for each ele-
ment (because that simply involves the key)—only recalculating the index, which is
the bitwise AND of the hash number and the new array size. If you will be inserting
large numbers of keys into a hash, it is usually more efficient to preallocate the array;
doing so prevents many reorganizations as the array increases in size. From Perl, you
can do this using the keys function:

keys %h = 1000;

In the following dump, the keys have different hash numbers but translate to the
same index (when the maximum size of the array is 8):

% perl -MDevel::Peek -e 'Dump({AF=>"hello",a=>52})'
SV = RV(0x80fbab8) at 0x80e5748

 REFCNT = 1
 FLAGS = (TEMP,ROK)

 RV = 0x80e5838
 SV = PVHV(0x80fd540) at 0x80e5838

 REFCNT = 2
 FLAGS = (SHAREKEYS)

 IV = 2
 NV = 0

 ARRAY = 0x80eba08 (0:7, 2:1)
 hash quality = 75.0%

 KEYS = 2
 FILL = 1

 MAX = 7
 RITER = -1

 EITER = 0x0
 Elt "a" HASH = 0x64

 SV = IV(0x80f0b98) at 0x80e594c
 REFCNT = 1

 FLAGS = (IOK,pIOK,IsUV)
 UV = 52

 Elt "AF" HASH = 0x8ec
 SV = PV(0x80e5b04) at 0x80e5904

 REFCNT = 1
 FLAGS = (POK,pPOK)

 PV = 0x80faa98 "hello"\0
 CUR = 5

 LEN = 6

This flag indicates that the keys (the HEK structures) should be stored in the shared
string table, PL_strtab, which makes them available to all hashes.

The bracketed numbers indicate how the hash is populated. In this example, there are
seven slots in the array with zero hash entries and one slot with two entries.

This number is a measure of the hash efficiency. It attempts to reflect how well filled
the hash is. If many hash entries share the same slot, this number is less than 100%.

B

c
d

Total number of keys stored in the hash

Number of slots filled in the arraye

f

g

B

c

d

90 CHAPTER 4 PERL’S VARIABLE TYPES

MAX is the index of the last element of the array, which, as usual, is one less than the
size of the array.

This is a description of the SV stored using the key a. The hash value is 0x64 in
hexadecimal; it translates to slot 4 when MAX is 7.

This is a description of the SV stored using key AF. The hash value is 0x8ec in hex,
which translates to slot 4 when MAX is 7.

4.6 GLOBS

In Perl, a glob provides a way of accessing package variables that share the same name.
Whereas globs were important in earlier versions, the design of Perl 5 has strongly
reduced the need for them—at least for normal tasks. In fact, as of Perl version 5.6.0,
you no longer even need to know that filehandles are globs.7 However, knowledge of
globs is required in order to understand the internal representation of variables. This
section describes what they are and how they are implemented.

A glob variable (shown in figure 4.11) is based on the structure of a magic variable
(see section 4.3), with the addition of fields for storing the name of the glob (NAME
and NAMELEN), the namespace of the glob (GvSTASH), and the shared glob informa-
tion (GP):

e

f

g

7 From Perl v5.6.0, you can say open my $fh, $file and treat $fh as a normal scalar variable.

ANY

REFCNT

FLAGS TYPE

CUR

LEN

IVX

NVX

MAGIC

STASH

GP

NAME

NAMELEN

GvSTASH

gv

xpvgv

FLAGS

PVX

LINE

FLAGS

CVGEN

CV

EGV

HV

AV

FORM

IO

REFCNT

SV

FILE

gp

ANY

REFCNT

FLAGS TYPE

hv

a \0

char

Figure 4.11

The structure of a glob variable
GLOBS 91

% perl -MDevel::Peek -e 'Dump(*a)'

SV = PVGV(0x8111678) at 0x810cd34
 REFCNT = 2

 FLAGS = (GMG,SMG)
 IV = 0

 NV = 0
 MAGIC = 0x81116e8

 MG_VIRTUAL = &PL_vtbl_glob
 MG_TYPE = '*'

 MG_OBJ = 0x810cd34
 NAME = "a"

 NAMELEN = 1
 GvSTASH = 0x81004f4 "main"

 GP = 0x81116b0
 SV = 0x810cce0

 REFCNT = 1
 IO = 0x0

 FORM = 0x0
 AV = 0x0

 HV = 0x0
 CV = 0x0

 CVGEN = 0x0
 GPFLAGS = 0x0

 LINE = 1
 FILE = "-e"

 FLAGS = 0x0
 EGV = 0x810cd34 "a"

This is the name of the glob. All package variables of this name will be contained in
this glob.

This is the namespace to which this glob belongs. Each namespace has its own set of
globs. Package variables are implemented using globs and stashes. Stashes are dis-
cussed in section 4.7.

This structure contains the variable information specific to a particular glob. They
are separate so that multiple GVs can share a single GP in order to implement vari-
able aliasing.

REFCNT is the reference count of the GP structure. It increases each time a variable
is aliased.

IO contains a reference to the filehandle stored in a. It is currently set to 0x0, indi-
cating that there is no filehandle of this name.

FORM contains a reference to the format stored in a. It is currently set to 0x0, indi-
cating that there is no format of this name.

AV contains a reference to the array stored in @a. It is currently set to 0x0, indicating
that there is no array of this name.

A glob structure is
called a PVGV

Flags indicate that set and
get magic are available

Name of the table containing
the glob get/set functions

Type of magic is *, indicating
that this is a glob

b

c
d

Contains a reference to
the SV stored in $ae

f
g
h
i
j

LINE is the line number of the
file where the glob first occurred

FILE is the name of the
file that declared the glob

1)

b

c

d

e

f

g

h

92 CHAPTER 4 PERL’S VARIABLE TYPES

HV contains a reference to the hash stored in %a. It is currently set to 0x0, indicating
that there is no hash of this name.

CV contains a reference to the subroutine stored in &a. It is currently set to 0x0,
indicating that there is no subroutine of this name.

EGV is the name and reference of the glob that created this GP structure. It is used to
keep track of the original variable name after aliasing.

Listings 4.4 and 4.5 further illustrate how globs work by showing how aliasing affects
the glob structure. Listing 4.4 is a Perl program, and Listing 4.5 shows the corre-
sponding output of that program.

use Devel::Peek;
open(A,"/dev/null");

$A = 5;
@A = (2,3,4);

sub A { 1; }
*b = *A;

Dump(*b);

SV = PVGV(0x81082b0) at 0x811a0d8

 REFCNT = 3
 FLAGS = (GMG,SMG,MULTI)

 IV = 0
 NV = 0

 MAGIC = 0x8108718
 MG_VIRTUAL = &PL_vtbl_glob

 MG_TYPE = '*'
 MG_OBJ = 0x811a0d8

 MG_LEN = 1
 MG_PTR = 0x8108738 "b"

 NAME = "b"
 NAMELEN = 1

 GvSTASH = 0x80f8608 "main"
 GP = 0x810a350

 SV = 0x81099d0
 REFCNT = 2

 IO = 0x8104664
 FORM = 0x0

 AV = 0x8109a30
 HV = 0x0

 CV = 0x811a0f0

 CVGEN = 0x0
 GPFLAGS = 0x0

 LINE = 2

i

j

1)

Listing 4.4 Glob aliasing demonstration program

Uses the variable A to
store different Perl types

Makes b an alias of A

Listing 4.5 Output of glob aliasing demonstration program

B
c

MG_OBJ points back
to the parent GV

Name of the glob associated
with the magic structure

Name of the GV that
is being listed

d
e

GLOBS 93

 FILE = "glob.pl"

 FLAGS = 0x2
 EGV = 0x8104598 "A"

This is the reference count of the GV *b and is distinct from the GV *A. There are
three references to it: one in the main program, one from the argument passed to
Dump, and one from itself via MG_OBJ.

In addition to the flags described previously, an additional flag, MULTI, indicates that
more than one variable is stored in the glob.

REFCNT is the reference count of this GP structure. In this case, it is being used by *A
and *b, so the reference count is 2.

These are pointers to the variables created using this package name. A scalar, a file-
handle, an array, and a subroutine all share a name.

4.7 NAMESPACES AND STASHES

Perl uses namespaces to separate global variables into groups. Each global variable
used by Perl belongs to a namespace. The default namespace is main::8 (compare
this naming convention with the main in C), and all globals belong to this
namespace unless the package keyword has been used or unless a namespace is
explicitly specified:

$bar = "hello";
$Foo::bar = 3;

package Foo;
$bar = 2;

Internally, namespaces are stored in symbol table hashes (always abbreviated to stashes).
They are implemented exactly as the name suggests. Each namespace (or symbol
table) is made up of a hash; the keys of the hash are the variable names present in the
namespace, and the values are GVs containing all the variables that share that name.
Stashes can also contain references to stashes in related namespaces by using the hash
entry in the GV to point to another stash; Perl assumes that any stash key ending in
:: indicates a reference to another stash. The root symbol table is called defstash
and contains main::. In order to look up variable $a in package Foo::Bar, the
following occurs:

1 Starting from defstash, look up Foo:: in the main:: stash. This entry
points to the Foo:: glob.

2 Look up the HV entry in the glob. This entry points to the Foo:: stash.

Name of the first GV to use
this GP—in this case, A

B

c

d

e

8 In all cases, the main:: namespace can be abbreviated simply to ::.

Sets $main::bar

Sets $Foo::bar
94 CHAPTER 4 PERL’S VARIABLE TYPES

3 Look up Bar:: in this stash to retrieve the GV containing the hash for this stash.

4 Look up a in the Bar:: hash to get the glob.

5 Dereference the required SV.

As you can see, finding package variables in nested namespaces has a large overhead!
One final thing to note about hashes is that Perl does not hide the implementation
details. The symbol table hashes can be listed just like any other Perl hash:

% perl -e '$Foo::bar = 2; print $Foo::{bar},"\n"'

*Foo::bar

Here the bar entry in the hash %Foo:: is a glob named Foo::bar that contains
the scalar variable that has a value of 2. This fact can be proven by aliasing this hash
to another glob:

% perl -e '$Foo::bar = 2; *x = $Foo::{bar}; print "$x\n"'

2

4.8 LEXICAL “MY” VARIABLES

Lexical variables are associated with code blocks rather than namespaces, so they are
implemented in a very different way than globals. Each code block (a CV; see
section 4.9) contains a reference to an array (an AV) of scratch pads. This array is
called a padlist. The first entry in this padlist is a scratch pad (also an AV) that lists all
the lexical variables used by the block (not just those that were declared in the block).
The names contain the full variable type ($, %, @) so that $a and @a have different
entries. The second scratch pad is an array that contains the values for each of these
variables. The main complication occurs with recursion. Each time a block of code
calls itself recursively, you need to make sure the variables available to the block can-
not affect variables in the block that called this one. In order that each recursive call
does not trash the previous contents of the variables in the scratch pads for that block,
a new entry in the padlist is created for each level of recursion.

This layout means that at least three AVs are required to implement lexical vari-
ables in each code block: one to hold the variable names (the first scratch pad), one
to hold the first set of values (the second scratch pad), and one to hold both these
arrays and subsequent ones (the padlist). Figure 4.12 shows an example of four lexical
variables and one level of recursion. Lexical variables are faster than local variables
because the scratch pads are created at compile time (because Perl knows which vari-
ables are to be associated with each block at that point) and can be accessed directly.
LEXICAL “MY” VARIABLES 95

4.9 CODE BLOCKS

You can think of subroutines or code blocks in Perl the same way as other Perl vari-
ables. A code value (CV) contains information about Perl subroutines. The layout
(shown in figure 4.13) is similar to the structure of other variables, with additional
fields dealing with issues such as namespaces (section 4.7), padlists (section 4.8), and
opcodes (section 10.4):

% perl -MDevel::Peek -e 'sub foo {}; Dump(\&foo)'

SV = RV(0x8111408) at 0x80f86e0
 REFCNT = 1

 FLAGS = (TEMP,ROK)
 RV = 0x8109b7c

 SV = PVCV(0x811b524) at 0x8109b7c
 REFCNT = 2

 FLAGS = ()
 IV = 0

 NV = 0
 COMP_STASH = 0x80f8608 "main"

 START = 0x8108aa0 ===> 655
 ROOT = 0x810b020

 XSUB = 0x0
 XSUBANY = 0

 GVGV::GV = 0x8109ae0 "main" :: "foo"
 FILE = "-e"

 DEPTH = 0
 FLAGS = 0x0

 PADLIST = 0x8109b28
 OUTSIDE = 0x80f8818 (MAIN)

This line indicates the location and name of the symbol table hash that is in effect
when this subroutine executes. In this example, no packages are declared and the
main:: stash is in scope.

CV

$a %a @z $q Variable names

SV1 HV1 AV1 SV1

SV2 HV2 AV2 SV2

scratch pad 1

scratch pad 2

AV

AV

AV

AV

PADLIST

Figure 4.12 Lexical variables in scratch pads

Structure is of type PVCV

b
c

d

e
f
g
h

i

b

96 CHAPTER 4 PERL’S VARIABLE TYPES

These items refer to the opcodes that are used to
implement the subroutine; they are explained in sec-
tion 3.2.2.

When this subroutine represents an external C func-
tion, these fields contain a pointer to that function
and other related information. See chapters 2 and 6
for more information on XSUBs.

GVGV is a pointer to the GV that contains this sub-
routine. Recall that a glob can contain references to
all the Perl variable types; in this case, the GV is
named *main::foo.

FILE is the name of the file that defined the sub-
routine. This subroutine was created on the com-
mand line.

DEPTH contains the recursion depth of the subrou-
tine. This number increments for each level of
recursion, allowing the correct entries in the padlist
to be retrieved.

FLAGS is the actual value of the flags field that is
expanded in words at the top of the dump.

This is a reference to the padlist containing all the
lexical variables required by this subroutine.

4.9.1 Important CV flags

The following flags are of particular interest when you’re examining CVs.
The ANON flag indicates that the subroutine is anonymous (for example, $x = sub

{ 1; };). When this flag is set, the GV associated with the CV is meaningless, because
the subroutine is not present in any stash.

The LVALUE flag indicates that the subroutine can be used as an lvalue. For
example,

use Devel::Peek;

$x = 1;
sub foo :lvalue {

 $x;
}

print foo,"\n";

foo = 5;
print foo,"\n";

Dump(\&foo);

ANY

REFCNT

FLAGS TYPE POK

PVX

CUR

LEN

cv

xpvcv

FILEGV

FLAGS

OUTSIDE

PADLIST

DEPTH

GV

XSUBANY

XSUB

ROOT

START

CvSTASH

STASH

MAGIC

NVX

IVX

Figure 4.13

The structure of a CV

c

d

e

f

g

h

i

CODE BLOCKS 97

would show

1
5

SV = RV(0x8109998) at 0x8100dec
 REFCNT = 1

 FLAGS = (TEMP,ROK)
 RV = 0x810d4f8

 SV = PVCV(0x8109044) at 0x810d4f8
 REFCNT = 2

 FLAGS = (LVALUE)
 IV = 0

 NV = 0
 COMP_STASH = 0x8100d14 "main"

 START = 0x8113490 ===> 1178
 ROOT = 0x8130d48

 XSUB = 0x0
 XSUBANY = 0

 GVGV::GV = 0x810d4d4 "main" :: "foo"
 FILE = "lvexample.pl"

 DEPTH = 0
 FLAGS = 0x100

 PADLIST = 0x810d528
 OUTSIDE = 0x8109e34 (MAIN)

The CONST flag indicates that the subroutine returns a constant value and is eligible
for in-lining at compile time:

% perl -MDevel::Peek -e 'sub foo () { 123; }; Dump(\&foo)'

SV = RV(0x8125e50) at 0x810fc94
 REFCNT = 1

 FLAGS = (TEMP,ROK)
 RV = 0x810fd54

 SV = PVCV(0x812ffc8) at 0x810fd54
 REFCNT = 2

 FLAGS = (POK,pPOK,CONST)
 IV = 0

 NV = 0
 PROTOTYPE = ""

 COMP_STASH = 0x0
 ROOT = 0x0

 XSUB = 0x80881dc
 XSUBANY = 135377308

 GVGV::GV = 0x811b190"main" :: "foo"
 FILE = "op.c"

 DEPTH = 0
 FLAGS = 0x200

 PADLIST = 0x0

 OUTSIDE = 0x0 (null)

This optimization occurs only if a subroutine has been declared with an empty
prototype.

Shows the initial state of $x
$x now has a value of 5

LVALUE flag is now set,
confirming that the subroutine
can be used as an lvalue

The example was stored in a
file, so now the FILE field
contains a proper filename
98 CHAPTER 4 PERL’S VARIABLE TYPES

The METHOD flag indicates that the CV has been marked as a method. This flag is
currently used in conjunction with the LOCKED attribute to determine whether the
subroutine itself should be locked or only the object when Perl is running with mul-
tiple threads:9

sub foo : method locked {
 ...

}

If the LOCKED flag is set, the subroutine will lock itself on entry when Perl is running
with multiple threads. If the METHOD attribute is also set, the object will be locked
rather than the subroutine:

sub foo : locked {

 ...
}

4.10 FURTHER READING

More detailed information on the structure of Perl’s internal data structures can be
found at the following locations:

• perlguts, perlapi—The main source of Perl internals documentation is
the perlguts and perlapi man pages that come with the Perl distribution.

• illguts—Perl Guts Illustrated by Gisle Aas (http://gisle.aas.no/perl/illguts/)
provides an alternative illustrated explanation of the internal implementation of
Perl variable types.

• sv.h, av.h, hv.h, mg.h, cv.h—These C include files define all the structures and
flags. If you really want to know the details of what is happening, read these
files; they come with the Perl source.

4.11 SUMMARY

In this chapter we’ve shown how variables are implemented inside Perl. We’ve covered
the implementation of simple scalars and how the different scalar types relate to each
other. We’ve also shown you how Perl hashes and arrays are realized and talked a little
about the organization of namespaces and lexical variables.

9 The LOCKED and METHOD flags are only really used with the original Perl threads implementation.
The new interpreter threads (ithreads) implementation in Perl 5.8.0 will not need these flags.
SUMMARY 99

C H A P T E R 5

The Perl 5 API

5.1 Sample entry 101
5.2 SV functions 101
5.3 AV functions 132
5.4 HV functions 144
5.5 Miscellaneous functions 150
5.6 Summary 162
The Perl 5 API is the interface by which your C code is allowed to talk to Perl; it pro-
vides functions for manipulating variables, for executing Perl code and regular expres-
sions, for file handling, for memory management, and so on.

The API is used inside the Perl core as a set of utility functions to manipulate the
environment that the Perl interpreter provides. It also provides the building blocks out
of which you will create extensions and by which you will drive an embedded Perl
interpreter from C—hence, the functions and macros you learn about here will form
the basis of the rest of the book.

This chapter is a reference to the Perl 5 API, so the example code for many func-
tions will contain uses of other functions not yet explained. You are encouraged to
jump around the chapter, following references to later functions and jumping back to
see how they’re used in real code.

As much as possible, we’ve made the example code real, rather than contrived;
we’ve taken the code from XS modules and, where possible, from the Perl sources or
extension modules inside the Perl core. However, development doesn’t stop, so don’t
be surprised if you look at the sources and find that some things are slightly different.

NOTE The index in appendix C lists all Perl API references in this book.
100

5.1 SAMPLE ENTRY

Here is the format we will use when introducing functions:

something (the name of the function)

char * something(int parameter);

A brief explanation of what the function does.

if (testing)

 result = something(whatsit);

5.2 SV FUNCTIONS

As you know from chapter 4, scalar values (SVs) are the internal representation of
Perl’s scalars. Although XS lets you get away without necessarily doing anything with
SVs, any sophisticated XS module will need to create, destroy, and manipulate scalars.
These functions allow you to do this.

5.2.1 Special SVs

Before we look at the functions for manipulating SVs, let’s examine certain special
values that Perl defines.

PL_sv_undef

This is the undefined value; you should use it when, for instance, you want to return
undef rather than an empty list or a false value. Note that PL_sv_undef is the SV
structure itself—because you’ll usually want a pointer to an SV, you should use this as
&PL_sv_undef whenever anything needs an SV*.

Example This example is taken from the Apache module mod_perl, which
embeds a Perl interpreter inside the Apache web server. We’ll look at an entire func-
tion that takes a request for a file, opens the file, reads it all into an SV, and returns
a reference to it. In Perl, we’d write it like this:

sub mod_perl_slurp_filename {

 my ($request) = @_;
 my $sv;

 local $/ = undef;
 open FP, $request->{name};

 $sv = <FP>;
 close FP;

 return \$sv;
}

Now, listing 5.2 shows how we’d write it in C.

Listing 5.1 Using something

An explanation of how the
function is used in the example
SV FUNCTIONS 101

TIP Because this is our first example, we haven’t yet introduced any of the other
functions in the Perl API. Don’t worry; we’ll provide a commentary about
what’s going on, and you’re encouraged to jump around to the entries for
other functions so you know what they do. We’ll also skim over some
things that will be covered in future chapters; these topics are peripheral to
the points we’re making.

SV *mod_perl_slurp_filename(request_rec *r)

{
 dTHR;

 PerlIO *fp;
 SV *insv;

 ENTER;
 save_item(PL_rs);

 sv_setsv(PL_rs, &PL_sv_undef);

 fp = PerlIO_open(r->filename, "r");

 insv = newSV(r->finfo.st_size);
 sv_gets(insv, fp, 0); /*slurp*/

 PerlIO_close(fp);
 LEAVE;

 return newRV_noinc(insv);
}

PL_rs is the record separator, and save_item is the equivalent to local; it will
save a copy of the variable away and restore it at the end of the current XS block—the
code delimited by ENTER and LEAVE.

PerlIO_open opens a file. The first parameter is the filename, which we extract
from the request structure r, and the second parameter is the mode: we’re opening
the file for reading. This function will give us back a filehandle, just like the open
function in Perl.

We use newSV (see “newSV and NEWSV,” page 104) to create a new SV to receive
the file contents. We pass the size of the file as a parameter to newSV so that Perl can
grow the string to the appropriate length in advance.

sv_gets is equivalent to the readline (<>) operator in Perl—it reads a line from the
specified filehandle into the SV. Because we’ve set the record separator to undef,
calling this function has the effect of slurping the entire file into the SV.

Finally, we use newRV_noinc (see “newRV and newRV_noinc,” page 129) to cre-
ate a reference to the SV without increasing its reference count, and we return the
new reference.

See also: “PL_sv_yes and PL_sv_no,” page 103.

Listing 5.2 $/ = undef in C

B
Sets this SV equal to undef using
the function sv_setsv (see
“sv_setsv,” page 124)

c
d
e
Closes the
filehandle with
PerlIO_closef

B

c

d

e

f

102 CHAPTER 5 THE PERL 5 API

PL_sv_yes and PL_sv_no

These SVs represent true and false values; you can use them as boolean return values
from your functions. Just like PL_sv_undef earlier, these are the actual SV struc-
tures, rather than pointers to them; so, you should use &PL_sv_yes and
&PL_sv_no in your code.

Example The looks_like_number function in sv.c in the Perl core takes
an SV and decides whether it’s a valid numeric value. In the DBI module, a wrapper
around the function allows it to take a list of items and return a list of true or false
values. Listing 5.3 shows the meat of that function.

for(i=0; i < items ; ++i) {
 SV *sv = ST (i);

 if (!SvOK(sv) || (SvPOK(sv) && SvCUR(sv)==0))
 PUSHs(&PL_sv_undef);

 else if (looks_like_number(sv))
 PUSHs(&PL_sv_yes);

 else
 PUSHs(&PL_sv_no);

}

We loop over the arguments to the function. ST is a special macro that gets the num-
bered SV from the list of arguments Perl keeps on the argument stack. Having taken
all the arguments off the stack, we’ll fill it back up with the return values.

We call the function in sv.c, and if that returns true, we put the true value
(&PL_sv_yes) on the stack. If the function returns false, we put &PL_sv_no on
the stack instead.

See also: “SvTRUE,” page 110.

5.2.2 Creating SVs

Other than the SVs that Perl passes to you or sets in special variables, you can get SVs
in two major ways: you can fetch the SV representing a Perl variable, or you can cre-
ate your own.

get_sv

SV* get_sv(char* name, bool create);

This function returns the SV that represents the Perl-side variable name; if this SV
doesn’t currently exist in the Perl symbol table, it will be created if create has a
true value; otherwise you get back a null pointer. This function is the usual way to
communicate with options provided by the user as Perl package variables. It should
be called as merely get_sv, but you may also see it as perl_get_sv in older code.

Listing 5.3 Is it a number?

B
If the SV isn’t
available, or if it’s a
string and has no
length, we put undef
onto the stack

c

B

c

SV FUNCTIONS 103

The most common use of get_sv is to read parameters set by the user in Perl
space. For instance, $YourModule::DEBUG could be set to true to turn on debug-
ging information. This is exactly what the Storable module does. Listing 5.4 shows
how it sets up its debugging mode.

#ifdef DEBUGME

#define TRACEME(x) do { \
 if (SvTRUE(perl_get_sv("Storable::DEBUGME", TRUE))) \

 { PerlIO_stdoutf x; PerlIO_stdoutf ("\n"); } \
} while (0)

#else
#define TRACEME(x)

#endif

...

TRACEME(("small integer stored as %d", siv));

The module must be compiled with -DDEBUGME before any debugging can take place:
if it is not, TRACEME() simply expands to nothing—that is, it is optimized away.

We get a handle on the Perl-side variable $Storable::DEBUGME, creating it if it
doesn’t already exist. We then call SvTRUE (see “SvTRUE,” page 110) to test whether
the variable is set to a true value.

If it is, the debugging message is formatted and printed to standard output using
PerlIO_stdoutf, followed by a new line.

The do { ... } while (0) is a preprocessor trick to make sure the code consists of
one statement, so that it can be used like this:
if (broken)

 TRACEME(("Something is wrong!"));

Without the do-while trick this code would require braces, because it would be
more than one statement.

See also: “get_av,” page 132, and “get_hv,” page 145.

newSV and NEWSV

SV* newSV(STRLEN length);

SV* NEWSV(IV id, STRLEN length);

There are many ways to create a new SV in Perl; the most basic are newSV and
NEWSV. Both take a parameter length—if it is more than 0, the SV will be an
SVPV and the pointer value (PV) will be pre-extended to the given length. If it is 0,
you’ll get an SVNULL back. The NEWSV macro also takes an id parameter; it was

Listing 5.4 Debugging XS modules

B

c
d

e

B

c

d

e

104 CHAPTER 5 THE PERL 5 API

intended to be used to track where SVs were allocated from in case of memory leaks,
but it’s never really used—you can use a unique identifier for this parameter value if
you think it will be used again, or 0 if you aren’t bothered.To be honest, it’s not likely
that the leak detection code will be used again and so it doesn’t really matter which
one you use.

Example When you execute eval $string, Perl has to store the code you’re
evaluating. In fact, Perl splits it into separate lines, so that it can return error messages
like this:

syntax error at (eval 1) line 3, at EOF

As you can see, Perl has split the string and returns an error message based on the line
number. It does so by putting the code into an array, using the internal
S_save_lines function in pp_ctl.c of the Perl sources (see listing 5.5).

S_save_lines(pTHX_ AV *array, SV *sv)
{

 register char *s = SvPVX(sv);
 register char *send = SvPVX(sv) + SvCUR(sv);

 register char *t;
 register I32 line = 1;

 while (s && s < send) {
 SV *tmpstr = NEWSV(85,0);

 sv_upgrade(tmpstr, SVt_PVMG);
 t = strchr(s, '\n');

 if (t)
 t++;

 else
 t = send;

 sv_setpvn(tmpstr, s, t - s);
 av_store(array, line++, tmpstr);

 s = t;
 }

}

The string s contains the text in the SV—that is, the text of the Perl code we’re split-
ting; send represents the end of the string.

For each line, before we reach the end of the string, we create a new SV using NEWSV;
we give it the leak ID 85 and do not give a length, because we don’t know how long
or how short our line will be.

We upgrade the new SV to a PVMG (string plus magic) so the Perl debugger can use
the magic structure.

Listing 5.5 Saving eval’d code

B

c

d
e

f
g

B

c

d

SV FUNCTIONS 105

The next few lines find the next newline character and set t to the start of the next
line. If there are no more newline characters, we set t to the end of the string.

We now have a string running from s to t-1, which is our line; we use sv_setpvn
(see “sv_setpv and sv_setpvn,” page 121) to store that string into our temporary SV.

Finally, we store the SV as the next element in the array we’re building up and set our
string point to t, the start of the next line. Notice that we start at array element 1,
rather than zero—we do so because although arrays are zero-based, files start from
line 1. Hence, we skip the 0th element of the array.

See also: “newAV,” page 133, “newHV,” page 145, and “get_sv,” page 103.

Creating SVs with values

SV* newSViv (IV i);
SV* newSVuv (UV u);

SV* newSVnv (NV n);
SV* newSVpv (char* string , STRLEN len);

SV* newSVpvn (char* string , STRLEN len);

These functions all create a new SV with some particular value. You will probably use
these functions the most when you’re creating SVs to return from your XS routines.
The names are pretty much self-explanatory: newSViv creates a new SV from a
given integer value, newSVuv creates a new SV from an unsigned integer, newSVnv
creates a new SV from a floating-point value, and newSVpv creates a new SV from a
given string. (newSVpvn is equivalent, but newSVpv will compute the length for
you if you pass in a length of 0.)

This example is taken from Unicode::Normalize in recent Perl distributions.
The function getCanon gets either the canonical or compatibility decomposition of
a Unicode character. For instance, if fed à, it returns a`, where ` is character 0x300,
“COMBINING GRAVE ACCENT”. The heavy lifting is done by a C function, but list-
ing 5.6 shows the XS glue that returns the string.

rstr = ix ? dec_compat(uv) : dec_canonical(uv);
if(!rstr) XSRETURN_UNDEF;

RETVAL = newSVpvn((char *)rstr, strlen((char *)rstr));

This line performs the decomposition of the character uv, storing the result in the
string rstr.

If rstr is empty, we return undef.

Otherwise, we return a new scalar from the string rstr.

e

f

g

Listing 5.6 Returning a string

B
c

d

B

c

d

106 CHAPTER 5 THE PERL 5 API

See also: “newSV and NEWSV,” page 104, “newSVsv,” on this page, and “newRV
and newRV_noinc,” page 129.

newSVsv

SV* newSVsv (SV* old);

As its name implies, this function creates a new SV from an existing SV. It’s conceptu-
ally equivalent to performing a NEWSV and an sv_setsv. You’d do this mainly to
dissociate a new SV from its ancestor—the new SV will not have any references to the
ancestor and can be modified without perturbing anything else in the program.

Example A statement handle object in the Perl DBI module (usually called $sth)
knows a number of things about the SQL statement it’s executing; one of these things
is the name of the fields. However, the DBI module doesn’t guarantee the case of the
field names, and because some databases are case-sensitive, this can cause problems.
So, instead of using

$sth->{NAME}

you’re encouraged to use

$sth->{NAME_lc} or $sth->{NAME_uc}

to get a lower- or uppercase version of the array of field names. This array is generated
on demand by the code in listing 5.7.

 int up = (key[5] == 'u');

 AV *av = newAV();
 i = DBIc_NUM_FIELDS(imp_sth);

 assert(i == AvFILL(name)+1);
 while(--i >= 0) {

 sv = newSVsv(AvARRAY(name)[i]);
 for (p = SvPV(sv,lna); p && *p; ++p) {

#ifdef toUPPER_LC
 *p = (up) ? toUPPER_LC(*p) : toLOWER_LC(*p);

#else
 *p = (up) ? toUPPER(*p) : toLOWER(*p);

#endif
 }

 av_store(av, i, sv);
 }

We determine whether we’re uppercasing or lowercasing depending on whether we’ve
seen NAME_uc or NAME_lc.

Listing 5.7 Case-folding an array

B
We need a new array
to hold the resultsc

d
e

f

Stores the appropriately modified
SV into the result array

B

SV FUNCTIONS 107

We use some DBI magic to get the number of fields, and we make sure it’s the same
as the number of names in the names array. If so, we can walk the array from the
highest-numbered element down to zero.

We extract each element from the array and make a copy of it with newSVsv. Notice
we don’t use av_fetch (see “av_fetch,” page 136), because we know the array will
contain the correct number of elements and can be accessed directly.

We use the pointer p to walk over each string. lna is just DBI-speak for PL_na, the
“don’t bother giving me a length” variable.

We either upper- or lowercase, depending on the value of up; if locale-aware macros
are available, we use them. This step replaces each character in the string with the
appropriately cased version. Because we made a copy of the SV, we’re not affecting the
original names array.

See also: “sv_setsv,” page 124.

sv_newmortal and sv_mortalcopy

SV* sv_newmortal (void);

SV* sv_mortalcopy (SV* oldsv);

Like newSV, sv_newmortal creates a new SV. However, the returned SV is
marked as mortal, meaning that it will go away at the next close of scope. It is diffi-
cult to know precisely when you need to make an SV mortal; see “Returning a hash
reference,” page 179, for more discussion.

sv_mortalcopy is the “mortalized” equivalent of newSVsv.
See also: “sv_2mortal,” page 123, “newSV and NEWSV,” page 104, and “Creating

SVs with values,” page 106.

newSVpvf

SV* newSVpvf (const char* pat , ...);

The final method of creating SVs uses format strings, in a similar vein to sprintf.
Perl’s pvf functions support all the usual sprintf patterns, plus the additional,
undocumented pattern %_, which formats another SV. This pattern is particularly
useful for constructing error messages, as our example shows.

Example Sometimes in your XS programming, you’ll want to return the value of
various constants defined in C headers. The ExtUtils::Constant module helps
create an AUTOLOAD subroutine that calls an XS function to retrieve constants. This
XS routine is backed by a C function to do the actual work, while the XS routine takes
care of manipulating the Perl stack and dealing with constants that are either unde-
fined on the current machine or not known to the C headers. Listing 5.8 shows an
extract of the front-end routine from the core POSIX module.

c

d

e

f

108 CHAPTER 5 THE PERL 5 API

type = int_macro_int(s, len, &iv);

/* Return 1 or 2 items. First is error message, or undef if no
 error. Second, if present, is found value */

switch (type) {
case PERL_constant_NOTFOUND:

 sv = sv_2mortal(newSVpvf("%s is not a valid POSIX macro", s));
 EXTEND(SP, 1);

 PUSHs(&PL_sv_undef);
 PUSHs(sv);

 break;
case PERL_constant_NOTDEF:

 sv = sv_2mortal(newSVpvf(
 "Your vendor has not defined POSIX macro %s, used", s));

 EXTEND(SP, 1);
 PUSHs(&PL_sv_undef);

 PUSHs(sv);
 break;

case PERL_constant_ISIV:
 PUSHi(iv);

 break;
default:

 sv = sv_2mortal(newSVpvf(
 "Unexpected return type %d processing POSIX macro %s, used",

 type, s));
 EXTEND(SP, 1);

 PUSHs(&PL_sv_undef);
 PUSHs(sv);

}

We call the back-end int_macro_int C function to get the value of the macro. It
returns a status code expressing the type of value returned, and it modifies the iv
parameter to reflect the value of the macro.

We use newSVpvf to format a new SV with the error message reflecting the original
parameter.

Now we return the error message and undef to Perl. (See “Returning a list,” page 181,
for more about the PUSHs macro.)

Similarly, for cases where we know about the macro in question but it isn’t defined on
the current system, we return an error message and undef.

If the return type is an integer value (IV)—the only type we’re expecting from the
macros in the POSIX module—then we push the IV onto the stack to return it to Perl.

See also: “sv_setpvf,” page 122, and “sv_catpv, sv_catpvn, and sv_catpvf,” page 127.

Listing 5.8 Undefined and unknown constants

B

If the status code is “not found”,
returns an error

c
d

e

f

If it isn’t an IV, we weren’t
expecting that result, and we need
to format another error message

B

c

d

e

f

SV FUNCTIONS 109

5.2.3 Accessing data

Now that you have seen how to create an SV, in this section we will look at the func-
tions that help you get the value of the SV and test its properties.

SvOK

bool SvOK (SV* sv);

This macro tests whether sv contains a valid SV.
Example The encode_base64 function from the MIME::Base64 module

takes a string to encode and an optional end-of-line character to add to each line. If
this character is not present, MIME::Base64 will default to using "\n" as the new-
line character. Listing 5.9 shows how it sets up the optional parameter in XS.

if (items > 1 && SvOK(ST(1))) {
 eol = SvPV(ST(1), eollen);

} else {
 eol = "\n";

 eollen = 1;
}

If we have more than one parameter to this XS function (items is automatically set
up to be the number of parameters) and the second parameter looks like a decent SV,
then we can use it.

If we have only one parameter we use the default "\n", which is one character long.

SvTRUE

bool SvTRUE (SV* sv);

SvTRUE, as its name implies, determines whether the SV contains a true value.
Truth is determined by Perl’s normal rules (does not evaluate to the null string "", 0,
or "0").

Example Tk is an event-driven environment, so it deals a lot with callbacks. After
executing each callback, it runs the lines shown in listing 5.10 (Tk/Event/Event.xs).

err = ERRSV;

if (SvTRUE(err))
 {

 croak("%s",SvPV(err,na));
 }

Listing 5.9 An optional parameter

B
Extracts its string value
using SvPV and stores
that value in eol and
its length in eollen

c

B

c

Listing 5.10 Checking $@
110 CHAPTER 5 THE PERL 5 API

ERRSV is the XS equivalent of $@; if it contains a true value, then we die with that
value. na is the old-fashioned way of writing PL_na, an identifier specifying that we
don’t care about the length.

SvIOK and friends

bool SvIOK (SV* sv);
bool SvNOK (SV* sv);

bool SvPOK (SV* sv);

These macros provide access to the OK flags described in chapter 4; you can use them
to determine whether a given SV has a valid integer, number, or string value. perl
also provides _on and _off forms of these macros to allow you to manually validate
or invalidate the relevant values. For instance,

SvIVX(sv) = 123;
SvIOK_on(sv);

sets the raw IV slot of this SV to 123 (see section “SvIV and friends,” page 112) and
then tells perl that the IV slot is usable.

This isn’t necessarily a wise thing to do, particularly if other values are already
marked as OK and don’t contain something like 123. If you want to say that one value
is valid and turn off all other OK flags, use the _only form:

SvIVX(sv) = 123;

SvIOK_only(sv);

Now all other values stored in the SV will be invalidated.
Example Experienced Perl programmers know that the magic built-in variable

$! can be used as a string to get an error message, or in numeric context to get an error
number. Scalar::Util provides a means of creating your own dual-valued scalars;
listing 5.11 shows a cut-down version of its dualvar function.

void

dualvar(num,str)
 SV * num

 SV * str
PROTOTYPE: $$

CODE:
{

 STRLEN len;
 char *ptr = SvPV(str,len);

 ST(0) = sv_newmortal();
 (void)SvUPGRADE(ST(0),SVt_PVNV);

 sv_setpvn(ST(0),ptr,len);
 if(SvNOK(num) || SvPOK(num) || SvMAGICAL(num)) {

 SvNVX(ST(0)) = SvNV(num);
 SvNOK_on(ST(0));

Listing 5.11 Dual-valued scalars

Extracts the string
buffer and length
from the “string”
value passed

b
c

Calls sv_setpvn
(“sv_setpv and
sv_setpvn,” page 121)
to set its string value

d
e

f

SV FUNCTIONS 111

 }

 else {
 SvIVX(ST(0)) = SvIV(num);

 SvIOK_on(ST(0));
 }

 if(PL_tainting && (SvTAINTED(num) || SvTAINTED(str)))
 SvTAINTED_on(ST(0));

 XSRETURN(1);
}

Now we create a new scalar on top of the Perl stack to hold the dual value.

We call SvUPGRADE to ensure that this new scalar is a type of SV that can hold both
strings and numbers: SVt_PVNV.

If the parameter which is to be the numeric part of our dual-valued scalar has a
floating-point or string value, or it’s a magical value, we treat it as floating point.

We extract the floating-point value with SvNV (see “SvIV and friends,” page 112)
and set the raw NV slot of the destination SV to be this value. Because we’ve
upgraded, we know it’s safe to use SvNVX, which doesn’t affect the POK flag that was
set by sv_setpvn.

We also set the NOK flag, meaning that we have a dual-valued scalar with both string
and floating-point slots OK.

Similarly for non-floating-point values, we take the IV value and assign it to our des-
tination SV.

If we’re in taint mode, and one of the two sources of our dual-valued scalar was
tainted (see “Tainting functions,” page 119), then we also mark the newly created SV
as tainted.

Finally, we tell Perl that our XS function is returning one value: the scalar at the top
of the stack.

SvIV and friends

IV SvIV (SV* sv);

NV SvNV (SV* sv);
PV SvPV (SV* sv , STRLEN len);

These functions extract values from an SV, coercing the SV into the relevant type if
required. For instance, if the SV is currently marked with the POK (string OK) flag
only, then SvIV will internally call sv_2iv to coerce the string into an integer, set
the IOK flag, and return the IV slot of the SV.

Similarly, if the SV currently contains a valid double-precision floating-point num-
ber (NV) and we call SvPV, then sv_2pv will be called to stringify the value, and the

g

h

i

b

c

d

e

f

g

h

i

112 CHAPTER 5 THE PERL 5 API

PV will be returned; as a side effect, len is set to the string’s length. If you don’t want
the length, use either the dummy variable PL_na or the variant function
SvPV_nolen.

TIP If you know for sure that the value you want is OK, you can use the macros
SvIVX, SvPVX, and so forth for direct access to the appropriate slot. These
X macros can be used as lvalues, so you can assign to SvPVX(sv). This is
a common technique.

Because these are such fundamental macros, we’ll present a number of examples. List-
ing 5.12 shows a simple yet breathtaking use of SvPV from Apache::PerlRunXS.

#define ApachePerlRun_chdir_scwd() \
 chdir(SvPV(perl_get_sv("Apache::Server::CWD", TRUE),na))

In one stroke, this macro gets the SV referring to $Apache::Server::CWD,
extracts the PV while discarding the length, and then changes to that directory.

Example Listing 5.13 shows a modified version of List::Util's min func-
tion1 that returns the minimum of a list of values. The implementation is
straightforward.

void
min(...)

PROTOTYPE: @
CODE:

{
 int index;

 NV retval;
 SV *retsv;

 if(!items) {
 XSRETURN_UNDEF;

 }
 retsv = ST(0);

 retval = SvNV(retsv);
 for(index = 1 ; index < items ; index++) {

 SV *stacksv = ST(index);
 NV val = SvNV(stacksv);

 if (val < retval) {
 retsv = stacksv;

 retval = val;
 }

Listing 5.12 Change to server directory

1 The original function implements min and max in the same code, using the magic variable ix to
know which name it was invoked as. Our example is less hairy.

Listing 5.13 Finding the minimum of a list of values

If there are no
items in the list,
we return undef

b
Iterates over the list;
we’ve already
processed element 0,
so we begin at 1

Keeps track of the
current entry in the
list and its valuec
SV FUNCTIONS 113

 }

 ST(0) = retsv;
 XSRETURN(1);

}

retsv will be the SV that we return—the minimum entry in the list. We start with
the first item in the list and swap smaller items into retsv as we find them. In order
to do comparisons, however, we need to track the NV of this SV, so retval begins
life as the value of the first item.

If this entry’s value is lower than our current candidate minimum, we make this one
our minimum and keep track of the SV.

Now that we’ve been through them all and have found the real minimum, we set the
top element in the stack to be the SV we found and declare that we’re returning one value.

Example The B module’s ppaddr function returns strings of the form
PL_ppaddr [OP_something], where something is the name of a Perl inter-
nal operation. Getting the name is easy, but we want to return it in uppercase.
Listing 5.14 shows how.

sv_setpvn(sv, "PL_ppaddr[OP_", 13);
sv_catpv(sv, PL_op_name[o->op_type]);

for (i=13; i<SvCUR(sv); ++i)
 SvPVX(sv)[i] = toUPPER(SvPVX(sv)[i]);

sv_catpv(sv, "]");

We write the constant 13 characters PL_ppaddr[OP_ to the SV.

We look up the name of this operation in our table of names, PL_op_name, and
then use sv_catpv (see “sv_catpv, sv_catpvn, and sv_catpvf,” page 127) to append
the name to the end of the SV.

Now we uppercase what we’ve just appended. We do so by walking over the string,
starting at the thirteenth character, to the end of the string. (sv_catpv updates
SvCUR with the new current length of the string.)

We know we have a string, so it’s safe to use SvPVX. Because it returns a string, we
can use the array element syntax to get each character in turn. Hence,
(SvPVX(sv))[i] gets the ith character of the string. We pass this character to
toUPPER (see “toLOWER and toUPPER,” page 161) to uppercase it before assign-
ing it back to where we found it.

Finally, we add the closing bracket to the end of the SV.

d

b

c

d

Listing 5.14 Uppercasing a string in place

B
c

d
e

f

B

c

d

e

f

114 CHAPTER 5 THE PERL 5 API

SvCUR and SvLEN

STRLEN SvCUR (SV* sv);
STRLEN SvLEN (SV* sv);

These macros provide “raw” access to the CUR and LEN slots of an SV. (See
section 4.2.3.) Because they’re macros that simply access parts of the SV structure,
you can assign to them (if you’re sure the PV buffer has the appropriate number of
bytes of memory available…). You can also use SvCUR_set(sv, len) to set the
current length, but similarly you need to ensure the PV buffer is large enough.

The example in listing 5.15 shows a wealth of techniques for dealing with SV
strings. Taken from Data::Dumper, it is the meat of the sv_x function; this func-
tion repeats a given C string a number of times, adding it to the end of an SV.

SvGROW(sv, len*n + SvCUR(sv) + 1);
if (len == 1) {

 char *start = SvPVX(sv) + SvCUR(sv);
 SvCUR(sv) += n;

 start[n] = '\0';
 while (n > 0)

 start[--n] = str[0];
}

else
 while (n > 0) {

 sv_catpvn(sv, str, len);
 --n;

 }

We need to ensure that the string is long enough to take what we’re about to append.
We use SvGROW to grow the SV to its current length (SvCUR(sv)) plus the size of
the repeated string (length times number of repetitions) plus a final byte for the null
character at the end.

The “start” of where we’re appending is actually the end of the current buffer. We take
the address of the PV (the start of the buffer) and add the current length to it to get
the end of the buffer.

We put a null byte at the end. (Confirm for yourself that this is the end of the now-
expanded PV.)

Now, we can fill the remaining part backward to the start of our additions with the
character we’re repeating.

If we’re repeating more than one character, we call upon sv_catpv (see “sv_catpv,
sv_catpvn, and sv_catpvf,” page 127) to do the heavy work.

Listing 5.15 Concatenating repeatedly

B

c
Tells Perl that the string
will be n characters
longer than it currently is

d
e

f

B

c

d

e

f

SV FUNCTIONS 115

SvTYPE

SvTYPE (SV* sv);

SvTYPE looks at an SV’s type field to determine if it’s an ordinary SV (and if so, what
sort of SV) or an array value (AV), hash (HV), or one of the more complex types. The
values it can return for a given SV range in complexity as follows:

SVt_NULL, /* 0 – Null SV */

SVt_IV, /* 1 – IV only */
SVt_NV, /* 2 – NV only */

SVt_RV, /* 3 – RV only */
SVt_PV, /* 4 – PV only*/

SVt_PVIV, /* 5 – PV and IV*/
SVt_PVNV, /* 6 – PV, IV and NV */

SVt_PVMG, /* 7 – PV and magical structure */
SVt_PVBM, /* 8 – PV and optimized Boyer-Moore search data */

SVt_PVLV, /* 9 – PV and lvalue structure */
SVt_PVAV, /* 10 – Array */

SVt_PVHV, /* 11 – Hash */
SVt_PVCV, /* 12 – Code value (subroutine) */

SVt_PVGV, /* 13 – Glob */
SVt_PVFM, /* 14 – Format */

SVt_PVIO /* 15 – IO stream*/

Example Data::Dumper is usually used to dump the value of a variable; however,
if you also pass it an array reference of variable names, it can be used to dump out
assignment statements to re-create variables. For instance:

% perl -MData::Dumper -e '$hashref = {a =>

123, b => 456}; print Data::Dumper->Dump([$hashref], [q($myref)])'

$myref = {

 'a' => 123,
 'b' => 456

 };

However, just as in Perl, if you decide to assign a hash reference to a glob (*myref in
this example), Data::Dumper interprets this action as assigning to the hash with
that name:

% perl -le '*myref = {a => 123}; print $myref{a}'

123
% % perl -MData::Dumper -e '$hashref = {a => 123, b => 456};

 print Data::Dumper->Dump([$hashref], [q(*myref)])'
%myref = (

 'a' => 123,
 'b' => 456

);

Hence, Data::Dumper must look at the type of the reference it’s being asked to
dump and determine the appropriate sigil ($, %, @, etc.) to assign to (see listing 5.16).
116 CHAPTER 5 THE PERL 5 API

if (SvOK(name)) {

 if ((SvPVX(name))[0] == '*') {
 if (SvROK(val)) {

 switch (SvTYPE(SvRV(val))) {
 case SVt_PVAV:

 (SvPVX(name))[0] = '@';
 break;

 case SVt_PVHV:
 (SvPVX(name))[0] = '%';

 break;
 case SVt_PVCV:

 (SvPVX(name))[0] = '*';
 break;

 default:
 (SvPVX(name))[0] = '$';

 break;
 }

 }
 else

 (SvPVX(name))[0] = '$';
}

First, we check to see whether we have a second parameter: a name.

If this name begins with *, then we need to do something tricky and qualify the
name by looking at the type of the value.

If we’re dealing with a reference, we need to see what type of reference it is.

This line is not much different than the Perl ref operator.

If it’s a subroutine reference, we use *. (&mysub = sub { ... } doesn’t work in
Perl 5.2)

sv_isa and sv_derived_from

int sv_isa (SV* obj , const char* class);

int sv_derived_from (SV* obj , const char* class);

Both these functions check whether an object belongs to a given class. Unlike the
UNIVERSAL::isa method, sv_isa only checks whether the object is blessed into
the named class. The method that implements UNIVERSAL::isa is
sv_derived_from, which also checks the inheritance tree to determine whether
the object is blessed into a superclass of the given class.

Listing 5.16 Qualifying a Perl variable

2 sub AUTOLOAD :lvalue { *{$AUTOLOAD} } is considered harmful.

B
c

d
e

If it’s an array reference,
we replace the * with a @

If it’s a hash reference,
we use %

f

Otherwise, we’ll use $ to
represent this reference

If it’s not a reference, it’s
an ordinary scalar; so,
we’ll also use $

B

c

d

e

f

SV FUNCTIONS 117

Some functions make sure they’re called with objects of the appropriate class;
IPC::Semaphore::stat::unpack, from the IPC::SysV package, is one of
them (see listing 5.17).

void
unpack(obj,ds)

 SV * obj
 SV * ds

PPCODE:
{

#ifdef HAS_SEM
 STRLEN len;

 AV *list = (AV*)SvRV(obj);
 struct semid_ds *data = (struct semid_ds *)SvPV(ds,len);

 if(!sv_isa(obj, "IPC::Semaphore::stat"))
 croak("method %s not called a %s object",

 "unpack","IPC::Semaphore::stat");
 ...

If the object the function has been called with isn’t an IPC::Semaphore::Stat
object (subclassed objects will not do!) …

… then the function needs to die, complaining that it’s been called with the wrong
sort of object.

sv_len

STRLEN sv_len (SV* sv);

sv_len is a “safe” way to get the length of a Perl scalar; it’s equivalent to the
length keyword in Perl. Normally, in XS programming, you request a Perl string
with SvPV, which also returns the length.

To get the length of a string alone, the SvCUR macro is used to extract the CUR
slot in the SvPV structure. (See section 4.2.3). However, this data is not always avail-
able—for magical variables, for instance, or values that are not currently POK.
sv_len handles these cases correctly, and hence should be used unless you know
what the SV you’re dealing with will be.

Example The example in listing 5.18 is taken from jpl/JNI/JNI.xs in the Perl dis-
tribution. JPL is the Java Perl Lingo, an interface between Java and Perl. At this point
in the program, we’ve been asked to create a Java byte array containing the contents
of a Perl scalar.

Listing 5.17 Should you be here?

B
c

B

c

118 CHAPTER 5 THE PERL 5 API

jsize len = sv_len(sv) / sizeof(jbyte);

jbyteArray ja = (*env)->NewByteArray(env, len);
(*env)->SetByteArrayRegion(env, ja, 0, len,

 (jbyte*)SvPV(sv,n_a));

We work out how big the array needs to be. The size is the length of the scalar in
bytes, divided by the size of a jbyte (which we hope is 1—but the world is funny
sometimes).

We call upon our Java environment to create a byte array of that length.

We use the JNI SetByteArrayRegion interface to store the contents of the scalar
into the byte array.

See also: “SvCUR and SvLEN,” page 115, and “sv_len_utf8,” page 157.

5.2.4 Manipulating data

You’ve seen the functions that let you create scalars and access their contents; the
functions in this section allow you to change the values or properties of SVs.

Tainting functions

void SvTAINT (SV* sv);

void SvTAINTED_on (SV* sv);
bool SvTAINTED (SV* sv);

TAINT(void);

These functions control tainting. When your XS routines read in data from external
sources, you should be sure to call SvTAINT on the SV containing the foreign data to
protect the user against any unsafe operations they may perform on it.

SvTAINTED tells you whether a given SV is tainted. SvTAINTED_on is like
SvTAINT, but you should probably use the latter because SvTAINT actually checks
whether Perl is running in -T mode.

Finally, TAINT tells Perl that you’ve seen tainted data somewhere—it speeds up
the runtime by allowing Perl to skip SvTAINTED checks unless TAINT is set. The
opposite of TAINT is TAINT_NOT; it tells Perl that things are OK so far.

Example Listing 5.19 shows our next example. When File::Glob performs a
glob, the data that comes back is found by looking at the filesystem, which is full of
data external to Perl and hence can’t be trusted in tainted mode. So, after we pick up
data from the glob system call and put it into SVs, we must make sure we taint the
SVs before returning them to Perl.

Listing 5.18 Storing a Perl scalar in a Java byte array

B

c

d

B

c

d

SV FUNCTIONS 119

retval = bsd_glob(pattern, flags, errfunc, &pglob);

GLOB_ERROR = retval;

/* return any matches found */

EXTEND(sp, pglob.gl_pathc);
for (i = 0; i < pglob.gl_pathc; i++) {

 tmp = sv_2mortal(newSVpvn(pglob.gl_pathv[i],
 strlen(pglob.gl_pathv[i])));

 TAINT;
 SvTAINT(tmp);

 PUSHs(tmp);
}

We perform the glob (bsd_glob is an alias for the system’s glob function, because
the function we’re interfacing is also called glob) and store the results in pglob.
This is a glob_t structure, and the interesting elements are gl_pathc (a count of
the number of files found by the glob) and gl_pathv (an array of filenames).

We call TAINT to tell Perl we’ve come across some tainted data.

Now we call SvTAINT on the SV we’ve just created, to taint the data.

Properly protected, we can put the SV onto the stack.

NOTE Given SvTAINTED_on and the general way that Perl handles flags, you
might wonder whether there’s an SvTAINTED_off. There is, but the
function is extremely dangerous, not to mention naughty. You should
undo tainting with regular expression backreferences, instead of blindly at-
tacking it at the XS level.

sv_setiv, sv_setnv, and sv_setuv

void sv_setiv (SV* sv , IV num);
void sv_setnv (SV* sv , NV num);

void sv_setuv (SV* sv , UV num);

These functions set an SV to the given numeric value, invalidating any other kinds of
data stored in the SV.

Example The IO::Poll module interfaces to the Unix poll call, which takes an
array of filehandles and returns information about “events” that have occurred on
those filehandles. Listing 5.20 gives the essence of _poll, the back-end XS interface
to this module, found in IO.xs.

Listing 5.19 Globbing paths

B
Ensures that the stack has
enough space on it to
store gl_pathc elements

Stores each element
in the array in a
temporary SVc

d
e

B

c

d

e

120 CHAPTER 5 THE PERL 5 API

for(i=1, j=0 ; j < nfd ; j++) {

 fds[j].fd = SvIV(ST(i));
 i++;

 fds[j].events = SvIV(ST(i));
 i++;

 fds[j].revents = 0;
}

if((ret = poll(fds,nfd,timeout)) >= 0) {
 for(i=1, j=0 ; j < nfd ; j++) {

 sv_setiv(ST(i), fds[j].fd); i++;
 sv_setiv(ST(i), fds[j].revents); i++;

 }
}

We need to set up the array of pollfd structures3 by taking pairs of file descriptors
and bitmasks (to specify the events we’re interested in) from the Perl stack.

We perform the call to poll, which will repopulate these arrays with descriptions of
the events that have occurred.

Accordingly, we want to repopulate the Perl list by using sv_setiv to write the file
descriptor and the event mask back to each SV in turn.

See also: “sv_setpv and av_setpvn,” below.

sv_setpv and sv_setpvn

void sv_setpv (SV* sv , const char* ptr);

void sv_setpvn (SV* sv , const char* ptr , STRLEN len);

These functions set the string value of an SV. If len is 0, or sv_setpv is used rather
than sv_setpvn, Perl will use strlen to compute the length. Don’t forget to use
SvUTF8_on (see “SvUTF8,” page 155) if your string is UTF8-encoded.

Listing 5.21 shows the guts of the inet_aton function provided in the Socket
core module.

struct in_addr ip_address;

struct hostent * phe;

int ok =

 (host != NULL) &&
 (*host != '\0') &&

 inet_aton(host, &ip_address);

Listing 5.20 Polling several filehandles

3 See the manual page for the Unix system call poll(2).

b

c

d

B

c

d

Listing 5.21 inet_aton: writing an IP address to an SV

B

SV FUNCTIONS 121

if (!ok && (phe = gethostbyname(host))) {

 Copy(phe->h_addr, &ip_address, phe->h_length, char);
 ok = 1;

}

ST(0) = sv_newmortal();

if (ok)
 sv_setpvn(ST(0), (char *)&ip_address, sizeof ip_address);

We attempt to use inet_aton to convert the name into an IP address; ok will be
true if that step succeeds.

If it doesn’t succeed, we try again, this time using gethostbyname to do a full
lookup of the host. If that works, we copy the IP address portion of the hostent struc-
ture into our buffer.

Now we create a new SV (see “sv_newmortal and sv_mortalcopy,” page 108) to hold
the result. If we still haven’t got a valid IP address, the SV will remain undefined.

If we have obtained an IP address, we set our new SV’s string buffer to contain the
machine-readable IP address we cast to a string. Notice that sv_setpvn takes care
of upgrading the new SV to be able to contain strings.

sv_setpvf

void sv_setpvf (SV* sv , const char* pat , ...);

Similar to newSVpvf and sv_catpvf,4 this function sets an SV’s string value
according to the pattern of a format string.

Example Listing 5.22 is part of the size_string function in
Apache::Util, which converts the size of a file in bytes into a human-readable
string.

SV *sv = newSVpv(" -", 5);

if (size == (size_t)-1) {
/**/

}
else if (!size) {

 sv_setpv(sv, " 0k");
}

else if (size < 1024) {
 sv_setpv(sv, " 1k");

}

4 If you dig deep enough into sv.c, you’ll find that sv_setpvf is implemented in terms of
sv_setpvn and sv_catpvf.

c

d

e

B

c

d

e

Listing 5.22 Reporting a file’s size

Makes a new SV with
newSVpv (“Creating SVs
with values,” page 106)

For the easy cases, we use
sv_setpv to write a
constant string into the SV
122 CHAPTER 5 THE PERL 5 API

else if (size < 1048576) {

 sv_setpvf(sv, "%4dk", (size + 512) / 1024);
}

else if (size < 103809024) {
 sv_setpvf(sv, "%4.1fM", size / 1048576.0);

}
else {

 sv_setpvf(sv, "%4dM", (size + 524288) / 1048576);
}

See also: “newSVpvf,” page 108, and “sv_catpv, sv_catpvn, and sv_catpvf,” page 127.

sv_2mortal

SV* sv_2mortal (SV* sv);

This function mortalizes an SV. See “Returning a hash reference,” page 179, for a dis-
cussion of when you need to use it.

See also: “sv_newmortal and sv_mortalcopy,” page 108.

sv_inc and sv_dec

void sv_inc (SV* sv);

void sv_dec (SV* sv);

These functions provide magic increments and decrements on a scalar; that’s to say,
they perform just like $var++ and $var-- in Perl. String values will be
autoincremented as described in perlop.pod.

However, if the variable has been used only in string contexts since it was set, and
it has a value that is not the empty string and matches the pattern /^[a-zA-Z]*[0-
9]*\z/, the increment is done as a string, preserving each character within its range,
with carry:

print ++($foo = '99'); # prints '100'
print ++($foo = 'a0'); # prints 'a1'

print ++($foo = 'Az'); # prints 'Ba'
print ++($foo = 'zz'); # prints 'aaa'

SvSetSV

void SvSetSV (SV* dsv , SV* ssv);

SvSetSV is a conditional version of sv_setsv. It compares the source and destina-
tion to see if they’re pointing at the same SV; if they’re not, then it calls sv_setsv to
perform the assignment.

See also: “sv_setsv,” page 124.

When we need
formatted information,
we use sv_setpvf
just like sprintf
SV FUNCTIONS 123

sv_setsv

void sv_setsv (SV* dsv , SV* ssv);

sv_setsv is the ordinary way to assign one SV to another. Obviously, you can’t just
say dsv = ssv; because doing so will copy the pointers and not the underlying data.
sv_setsv copies the data and all the flags, duplicating an SV completely.

Example The code fragment in listing 5.23, from the DBI module, shows the use
of sv_setsv in conjunction with AvARRAY to duplicate each SV in an array in turn.

for(i=0; i < num_fields; ++i) { /* copy over the row */
 sv_setsv(AvARRAY(dst_av)[i], AvARRAY(src_av)[i]);

}
ST(0) = sv_2mortal(newRV((SV*)dst_av));

We’ll loop over the arrays in the two AVs (having checked, of course, that they’re the
same size). We happen to have the number of elements in num_fields.

AvARRAY turns an AV into a C array of SVs; we can hence get each element of each
AV and use sv_setsv to copy the value from the source array to the destination.

We return a reference to this destination array by calling newRV and putting the
result at the top of the stack. We mortalize the result to make sure the reference
doesn’t hang around longer than it should.

5.2.5 String functions

Much of the work you’ll perform on SVs will probably involve some form of string
manipulation. Accordingly, perl provides several useful functions for dealing
with strings.

sv_chop

void sv_chop (SV* sv , char* ptr);

sv_chop uses the offset hack (section 4.2.7) to efficiently remove a number of
characters from the beginning of a string. ptr must be a pointer to somewhere inside
SvPVX(sv), or you can expect unpleasant results.

Example The very brief example in listing 5.24, from op.c in the Perl sources,
shows you how to remove a substring from the beginning of an SV.

if (SvCUR(n)>6 && strnEQ(SvPVX(n),"main::",6))
 sv_chop(n, SvPVX(n)+6);

Listing 5.23 Copying an array

B
c

d

B

c

d

Listing 5.24 s/main:://

B
c

124 CHAPTER 5 THE PERL 5 API

If the SV n is more than six characters long, and the first six characters are equal to
main:: …

… then we chop the string so that it starts after the sixth character, deleting the
main::.

See also: section 4.2.7.

form

char * form(const char * format, ...);

Quite often in C, you’ll want to use sprintf to make a temporary value to pass to
another function. It’s a lot of work—not to mention inefficient—to allocate a tempo-
rary buffer, fill it using sprintf, call your function, and then free it again. Perl pro-
vides a neater way to do this: form acts like sprintf but hands you a shared string
pointer that will be valid until the next call to form. It’s perfect for one-off string
concatenation and formatting. And, because it’s based on the Perl sv_catpvf func-
tions, you get the use of the %_ hack for SVs.

Example When the embedded Perl handler for Apache (mod_perl) starts up, it
wants to add its own version number. That is, instead of just seeing:

Server: Apache/1.3.22 (Darwin)

you see

Server: Apache/1.3.22 (Darwin) mod_perl/1.26

And, optionally, if the $Apache::Server::AddPerlVersion variable is set,
you see the version of Perl as well:

Server: Apache/1.3.22 (Darwin) mod_perl/1.26 Perl/v5.6.0

Listing 5.25 shows where mod_perl does this.

void perl_module_init(server_rec *s, pool *p)
{
 ap_add_version_component(MOD_PERL_STRING_VERSION);
 if(PERL_RUNNING()) {
#ifdef PERL_IS_5_6
 char *version = form("Perl/v%vd", PL_patchlevel);
#else
 char *version = form("Perl/%_", perl_get_sv("]", TRUE));
#endif
 if(perl_get_sv("Apache::Server::AddPerlVersion", FALSE)) {
 ap_add_version_component(version);
 }
 }
 perl_startup(s, p);
}

B

c

Listing 5.25 Starting mod_perl

B

c

d

e

SV FUNCTIONS 125

We call ap_add_version_component, which is an Apache API function that
adds strings to the Version header. We pass it the constant mod_perl version, as
#define’d on the command line while building the mod_perl library.

If Perl is version 5.6 or above, we do the equivalent of

$version = sprintf("Perl/v%vd", $^V);

and get the Perl version number as a new-fangled v-string.

If the Perl version is before 5.6, we look at the $] SV, using form to catenate its
string value to the end of Perl/.

Now, if we can retrieve $Apache::Server::AddPerlVersion from the sym-
bol table without specially creating it, we add the string we formed to the Apache
version number. Note the subtlety here—we’re only checking whether
$Apache::Server::AddPerlVersion exists in the symbol table, not whether
it’s true. If we wanted to do that, we’d have to say something like
if(SvTRUE(perl_get_sv("Apache::Server::AddPerlVersion", TRUE))) {

In other words, it’s a hack, but it works in non-pathological cases.

Also note that we don’t have to do anything particular with version once we’re
done. In fact, freeing it would be harmful, because it’s a shared string that may be
used by Perl later.

See also: “sv_catpv, sv_catpvn, and sv_catpvf,” page 127.

savepv and savepvn

char* savepv (const char* string);

char* savepvn (const char* string , I32 len);

These functions are a quick way to create a new copy of a string. They’re the Perl
equivalents of strcpy and strncpy; but despite the reference to PVs, they act
purely on C strings, not on SVs. Use savepvn if you’re worried about strings with
embedded nulls.

The savepv function is a great way to return a string from a function, leaving the
caller responsible for freeing the string afterward.5 For instance, find_script in the
Perl core returns a string value like this:

return (scriptname ? savepv(scriptname) : Nullch);

This allows you to safely return strings that are declared as automatic variables.
(Nullch is a NULL char*.)

5 If you wanted to be really clever, you could try using SAVEFREEPV(string) to have Perl free the
string at the end of the current scope, but doing so isn’t recommended. Either way, your XS interface
should document who is responsible for cleaning up memory.

B

c

d

e

126 CHAPTER 5 THE PERL 5 API

SvGROW

char * SvGROW (SV* sv , STRLEN len);

This macro ensures that the SV’s string buffer (PV) is at least len characters long and
returns a pointer to the PV’s character buffer. If more memory is required, the
SvGROW macro calls the function sv_grow to resize the buffer, using Renew
(see “Renew,” page 153).

sv_grow does not “pre-emptively” extend the string to longer than the requested
size, so if you think you may be growing the string again in the future, you should ask
for more memory than you need right now.

For example, see “SvCUR and SvLEN,” page 115.

sv_catpv, sv_catpvn, and sv_catpvf

void sv_catpv (SV* sv , const char* pv);

void sv_catpvn (SV* sv , const char* pv , STRLEN len);
void sv_catpvf (SV* sv , const char* pat , ...);

These functions provide mechanisms for catenating a string onto the end of an exist-
ing SV. They take care of ensuring that the SV in question is forced into having a
string value, and then add the char* data to the end of the current SV’s string buffer.

The basic function is sv_catpv, which determines the length of the incoming
string automatically; if you want to force perl to only add a given number of char-
acters, use sv_catpvn. The most complex function is sv_catpvf, which uses a
format string just like sv_newSVpvf (see “newSVpvf,” page 108).

Example A lot of Perl’s usefulness as a tool for “one-liners” comes from the -l,
-a, -n, -p, and other command-line switches. The fragment of code in listing 5.26,
taken from toke.c in the Perl core, shows how some of these flags are implemented.

if (PL_minus_n || PL_minus_p) {

 sv_catpv(PL_linestr, "LINE: while (<>) {");
 if (PL_minus_l)

 sv_catpv(PL_linestr,"chomp;");
 if (PL_minus_a) {

 if (PL_minus_F) {
 if (strchr("/'\"", *PL_splitstr)

 && strchr(PL_splitstr + 1, *PL_splitstr))
 Perl_sv_catpvf(aTHX_ PL_linestr,

 "our @F=split(%s);", PL_splitstr);
...

If -p or -n has been specified on the command line, the PL_minusn and
PL_minusp variables will be set accordingly.

Listing 5.26 What really happens when you say perl -lane

B
c

If -l has been given, we add a
chomp to deal with the input

d

e

B

SV FUNCTIONS 127

PL_linestr is an SV containing the current piece of Perl code being compiled.
This snippet occurs just after Perl has examined the “shebang” (#!) line and before
any other Perl code has been parsed. Hence, when -p or -n is present, we add the
while loop into the current program using sv_catpv.

If both -a and -F (alternate delimiter for autosplit) are present, this line determines
whether the delimiter has already been sufficiently quoted. It looks to see if the first
character of PL_splitstr is one of /, ', or " and if that character occurs again in
the string.

If it does, we add to the @F array the code that does the autosplit. It uses the already-
quoted string, simply passing it to split.

See also: “sv_setpvf,” page 122, and “newSVpvf,” page 108.

sv_catsv

void sv_catsv (SV* dest_sv , SV* source_sv);

sv_catsv simply catenates the string value of source_sv onto the end of
dest_sv.

Example As of Perl 5.6.1, Data::Dumper has elementary object freezing and
thawing capability. Let’s look at what happens when Data::Dumper is writing the
output code that, when evaled, will restore an object. In listing 5.27 we’ve currently
emitted bless and a description of the reference to be blessed, and we’re just about
to emit the classname and the method call to the toaster method responsible for re-
creating the object.

sv_catpvn(retval, ", '", 3);
sv_catpvn(retval, realpack, strlen(realpack));
sv_catpvn(retval, "')", 3);
if (toaster && SvPOK(toaster) && SvCUR(toaster)) {
 sv_catpvn(retval, "->", 2);
 sv_catsv(retval, toaster);
 sv_catpvn(retval, "()", 2);
}

Given that we’ve already output bless ({ ... }, the next stage is to add to the
return value , 'classname'), which is precisely what these three statements do.

If the toaster variable is set and looks like a decent string …

… we add the three components ->, the name of the toaster function, and (), to
form a method call. We’ll eventually end up with something like this in retval:
bless ({ some => "data" }, 'Whatever::Class')->restore()

See also: “sv_catpv, sv_catpvn, and sv_catpvf,” page 127.

c

d

e

Listing 5.27 Reviving frozen objects with Data::Dumper

b

c
d

B

c

d

128 CHAPTER 5 THE PERL 5 API

5.2.6 References

Finally, you can also take a reference to a Perl value with the newRV functions, and
dereference the references again.

newRV and newRV_noinc

SV* newRV(SV* referent);

SV* newRV_noinc(SV* referent);

newRV is the C side of the Perl \ (reference) operator. It returns an SvRV structure as
described in section 4.2.2 and increases the reference count of the referent. Although
we say the referent is an SV*, this function applies to any type of SV, including AVs
and HVs.

The variant function newRV_noinc takes a reference and returns an SvRV, but
it does not increase the reference count of its referent. Because this can cause problems
if the referent goes out of scope while you still have a reference to it, you should use
this function with caution.

Example An anonymous hash reference ({} in Perl) is a reference to a hash that has
nothing else referring to it—that is, its reference count is 1. To create an anonymous
hash, you create a hash and take a reference to it. Unfortunately, when a hash is cre-
ated, its reference count is already 1. If you take a reference to it with newRV, its ref-
erence count will increase. The correct solution is seen in Apache mod_perl, in
modules/perl/perl_config.c, as shown in listing 5.28.

if(!SvTRUE(*sv)) {

 sv = newRV_noinc((SV)newHV());
 return sv_bless(*sv, pclass);

}

We’re about to return a value from a constructor; if we don’t have a sensible (that is,
true) return value already, we need to make one.

The comment in the C source at this point is /* return bless {}, $class */,
which tells you what we’re trying to do. We create a hash with newHV (see “newHV,”
page 145) and then take a reference to it without increasing its reference count.
Notice that because newRV_noinc expects an SV*, we need to use a cast. Doing so
isn’t a problem, because the sv_type field of the SV structure tells newRV what sort
of reference it’s taking.

Now that we have our anonymous hash reference, we use sv_bless to bless it into
the class specified in the string pclass.

Listing 5.28 return bless {}, $class in C

B
c

d

B

c

d

SV FUNCTIONS 129

SvRV

SV* SvRV(SV* rv);

Given a reference rv, SvRV dereferences the SV. Note that, as with newRV, this SV
can be an SV, AV, HV, or even another RV. You can use the SvTYPE function to work
out what sort of value to expect back after dereferencing.

Example Listing 5.29 shows some debugging code in the middle of the DBI mod-
ule; DBI functions, like all XS functions, return values through the stack. This debug-
ging code prints out a copy of the stack in a readable format, dealing with array and
hash references as well as ordinary SVs. This code can be found in DBI.xs.

for(i=0; i < outitems; ++i) {
 SV *s = ST(i);

 if (SvROK(s) && SvTYPE(SvRV(s))==SVt_PVAV) {
 AV *av = (AV*)SvRV(s);

 int avi;
 PerlIO_printf(logfp, " [");

 for(avi=0; avi <= AvFILL(av); ++avi)
 PerlIO_printf(logfp, " %s",

 neatsvpv(AvARRAY(av)[avi],0));
 PerlIO_printf(logfp, "]");

 }
 else {

 PerlIO_printf(logfp, " %s", neatsvpv(s,0));
 if (SvROK(s) && SvTYPE(SvRV(s))==SVt_PVHV &&

 !SvOBJECT(SvRV(s)))
 PerlIO_printf(logfp, "%ldkeys", HvKEYS(SvRV(s)));

 }
}

If it’s a reference, and the type of the referred value is an array, then we’ll display all
the elements in the array.

Now we call neatsvpv (a DBI utility function) on each value of the array, giving us
a cleaned-up version of that SV’s string value. We print this out with printf.

If, on the other hand, this is a reference to a hash, and also if it’s not an object …

… then we dereference the hash and print out its number of keys.

SvROK

bool SvROK (SV* sv);

void SvROK_on (SV* sv);
void SvROK_off (SV* sv);

Listing 5.29 Dumping the return values

Loops over the stack storing
each value returned in s

b
Dereferences the array using
SvRV, and casts it into an AV

c

d
e

b

c

d

e

130 CHAPTER 5 THE PERL 5 API

SvROK is the ordinary way to find out whether an SV is a reference. It’s similar to the
Perl-side ref function, except it doesn’t give you any information about whether the
scalar is blessed (see “sv_isobject,” below) or what type of reference it is (see
“SvTYPE,” page 116).

You hardly need to use the low-level SvRV_on and SvRV_off functions; they turn
on and off the underlying flag that Perl uses to detect whether something’s a reference.
If you inadvertently turn this flag on when it shouldn’t be, bad things can happen.

sv_isobject

bool sv_isobject (SV* sv);

This function tests whether the given SV is an object (a blessed reference).
Example The addcolors method in the Imager module adds palette colors

to a paletted image. It takes a variable number of arguments, but after the first argu-
ment (conceptually, $self) all the others need to be color objects in the
Imager::Color class. Listing 5.30 shows how Imager enforces this requirement.

for (i=0; i < items-1; ++i) {
 if (sv_isobject(ST(i+1))

 && sv_derived_from(ST(i+1), "Imager::Color")) {
 IV tmp = SvIV((SV *)SvRV(ST(i+1)));

 colors[i] = *INT2PTR(i_color *, tmp);
 }

 else {
 myfree(colors);

 croak("i_plin: pixels must be Imager::Color objects");
 }

}

We loop over the parameters passed to the subroutine.

If this is an object (notice that we say i+1 because the first parameter will always be
$self) …

… and the object is-a Imager::Color …

… then we treat the object as a reference to a scalar, and find the integer component
of the referent.

The integer is actually a memory address. We convert it back into a pointer with
INT2PTR and then cast it to the appropriate type, i_color *. This is the usual way
of caching C pointers in Perl objects (see “Casting pointers to integers (and back),”
page 158).

Listing 5.30 Adding colors

B
c

d
e
f

B

c

d

e

f

SV FUNCTIONS 131

sv_bless

SV* sv_bless (SV* rv , HV* stash);

This function is the C-level equivalent of Perl’s bless keyword. It takes a reference
and a stash and blesses the reference. It modifies the original reference and returns it
as a convenience.

The stash is most commonly retrieved with gv_stashpv, which turns a string
into a pointer to an HV.

Example Listing 5.31 shows a simple object constructor, taken from
XML::Parser.

HV * hash = newHV();
SV * obj = newRV_noinc((SV *) hash);

sv_bless(obj, gv_stashpv("XML::Parser::ContentModel", 1));

We create a new anonymous hash.

We take a reference to the hash, but we don’t increase its reference count, because we
want it to be anonymous—that is, we want the object to be the only thing that refers
to it.

Now we fetch the stash for XML::Parser::ContentModel—the second argu-
ment 1 means to create the stash if it’s not currently found—and then bless our anon-
ymous hash into that stash.

5.3 AV FUNCTIONS

As you know, AVs are Perl arrays; this section describes the functions you can perform
on those arrays.

5.3.1 Creation and destruction

As with SVs, there are two ways to get a pointer to a Perl array; however, unlike SVs,
the interface to AVs is much simpler. In this section, we describe how to create or get
hold of AVs, and also how to clear and undefined them once you’re finished with them.

get_av

AV* get_av(char* name, bool create);

This function returns the AV variable from the Perl-side array name: for instance,
get_av("main::lines", FALSE) will return a pointer to the AV that repre-
sents @main::lines in Perl space. If the boolean create is true, a new AV will be
created if the Perl-side array hasn’t been created yet; if it is false, the function will
return a null pointer if the Perl-side array hasn’t been created.

Listing 5.31 A simple constructor

B
c

d

B

c

d

132 CHAPTER 5 THE PERL 5 API

In the core DynaLoader module, the XS function dl_unload_all_files
calls a Perl subroutine DynaLoader::dl_unload_file on all the elements of the
@DynaLoader::dl_librefs array. Listing 5.32 (from $CORE/ext/Dyna-
Loader/dlutils.c:39) shows how it does this.

if ((sub = get_cv("DynaLoader::dl_unload_file", FALSE))

 != NULL) {
 dl_librefs = get_av("DynaLoader::dl_librefs", FALSE);

 while ((dl_libref = av_pop(dl_librefs)) != &PL_sv_undef) {
 dSP;

 ENTER;
 SAVETMPS;

 PUSHMARK(SP);
 XPUSHs(sv_2mortal(dl_libref));

 PUTBACK;
 call_sv((SV*)sub, G_DISCARD | G_NODEBUG);

 FREETMPS;
 LEAVE;

 }
}

We call get_cv (see “get_cv,” page 159) to attempt to fetch the subroutine.

If that subroutine exists, we call get_av to retrieve the AV for the Perl-side array
@DynaLoader::dl_librefs.

This block is equivalent to this piece of Perl:
while (defined($dl_libref = pop @dl_librefs)) {
 DynaLoader::dl_unload_file($dl_libref)

}

We call av_pop (see “av_pop and av_shift,” page 139) in a while loop to pop SVs
off the array and store them in dl_libref. The following lines then set up a call-
back to call the subroutine (see section 6.7.1).

See also: “get_hv,” page 145, “get_sv,” page 103, and “get_cv,” page 159.

newAV

AV* newAV(void);

This function creates a brand-new array in C space, completely unconnected to the
Perl symbol table and thus inaccessible from Perl. You’ll generally use this function if
you don’t need any Perl code to see your array. (See “get_av,” page 132, if you want
Perl to see it.)

Example Perl has several special named blocks of code: BEGIN, END, DESTROY,
and so on. The perlmod documentation tells you that an END subroutine is executed

Listing 5.32 Popping a Perl array from C

B
c
d

B

c

d

AV FUNCTIONS 133

as late as possible—that is, after perl has finished running the program and just
before the interpreter is being exited, even if it is exiting as a result of a die function.
You may have multiple END blocks within a file; they will execute in reverse order of
definition (last in, first out [LIFO]).

If you can have multiple blocks, what better to store them in than an array? In fact,
this is exactly what Perl does with op.c, line 4769. In listing 5.33 we’re in the middle
of a function called newATTRSUB, which is called to set up one of the special blocks.

else if (strEQ(s, "END") && !PL_error_count) {

 if (!PL_endav)
 PL_endav = newAV();

 DEBUG_x(dump_sub(gv));
 av_unshift(PL_endav, 1);

 av_store(PL_endav, 0, (SV*)cv);
 GvCV(gv) = 0; /* cv has been hijacked */

}

s contains the name of the block. If this name is END and we haven’t had any errors
compiling it, we have a valid END block, which we’ll store in the array PL_endav.

First, though, we check to see if that array exists yet. If the PL_endav pointer is
NULL, it hasn’t been initialized; so, we create a new array using the newAV function.

Because END blocks are processed in LIFO order, we put each successive END block at
the beginning of the array. We call av_unshift (see “av_push and av_unshift,”
page 140) to move all the elements up, and then av_store (see “av_store,” page
138) to store the code for this block (the CV) at the first element of the array.

See also: “newSV and NEWSV,” page 104, and “newHV,” page 145.

av_make

AV* av_make(I32 length, SV** svp);

av_make is a little-used function that turns a C array of SVs into a new AV. The
parameters are the number of elements in the array and a pointer to the C array.

Example As listing 5.34 shows, mod_perl makes an ingenious use of this func-
tion to copy an array.

#define av_copy_array(av) av_make(av_len(av)+1, AvARRAY(av))

AvARRAY(av) points to the first element of the C array held in av; av_len (see
“av_len,” page 143) returns the highest element in the array, so the total number of

Listing 5.33 Storing END blocks

B

c

d

B

c

d

Listing 5.34 Copying an array
134 CHAPTER 5 THE PERL 5 API

elements is one more than that. Passing these two values to av_make produces a new
array with the same elements.

av_clear

av_clear(AV* av);

av_clear simply removes all the elements from an array, decreasing the reference
count of all the SVs in it.

Example One of the things the Tk module has to do is marshal data between Tcl
and Perl. For instance, if you want to assign from Tcl to a Perl value, you must first
get the Perl value into an appropriate state. If you’re doing a scalar assignment, you
need to make sure your SV is a scalar. Listing 5.35 shows how Tk does it.

static SV *

ForceScalarLvalue(SV *sv)
{

 if (SvTYPE(sv) == SVt_PVAV)
 {

 AV *av = (AV *) sv;
 SV *nsv = newSVpv("",0);

 av_clear(av);
 av_store(av,0,nsv);

 return nsv;
 }

 else
 {

 return sv;
 }

 ...

The SV that we’re handed may be a real scalar, or it may be an array. We use SvTYPE
(see “SvTYPE,” page 116) to determine its type. If it’s just a scalar, we can simply
return it. If it’s an array, though, we have to deal with it.

We get rid of everything in the array: we’re effectively doing @PerlArray =
$TclValue, which obviously will have to get rid of what was in the array before.

See also: “hv_clear,” page 146.

av_undef

av_undef(AV* av);

As its name suggests, av_undef(array) is not dissimilar to undef @array. It is
used to completely destroy an array prior to freeing the memory the array uses. It is

Listing 5.35 Emptying an array

B

Creates a new empty SV
to receive the assignment

c
Stores the recipient SV
into the first element of
the newly emptied array

B

c

AV FUNCTIONS 135

obviously not used often in XS; the usual idiom is to let the reference count fall to
zero and have Perl automatically garbage-collect unwanted values.

Example Here is one example of destroying an array: the Storable module
must clean up any memory it uses before it dies in the event of an error. Let’s say we’re
using Storable to retrieve an array from a file, and something goes wrong. As part
of dying, Storable calls clean_context, which detects that we’re in the middle
of a retrieve and then calls clean_retrieve_context. That’s where the code in
listing 5.36 appears.

if (cxt->aseen) {

 AV *aseen = cxt->aseen;
 cxt->aseen = 0;

 av_undef(aseen);
 sv_free((SV *) aseen);

}

Storable uses a structure stcxt_t in which to store its state. If it’s dealing with
an array, it will attach the array it’s constructing to the aseen entry in the structure.
So, if this pointer's valid, there’s a Perl AV on the end of it—and that’s what we want
to destroy.

We take a copy of that AV pointer and set the value of the pointer to 0, disconnecting
the Perl AV from the Storable context structure.

Once this is done, we can free the structure, gracefully destroying the array we were in
the process of building.

5.3.2 Manipulating elements

API functions are available to do everything you can do to an array Perl-side; here are
the functions for manipulating elements of an array.

av_fetch

SV** av_fetch(AV* array, I32 index, bool lvalue);

This function retrieves an SV from an array. It is the C-side equivalent of

$array[$index]

The lvalue parameter should be set if you’re about to store something in the speci-
fied index: if the array is not big enough, or nothing has been stored in the array
index yet, Perl will extend the array, make a new SV for you, store it in the specified
index, and return it for you to manipulate.

Listing 5.36 Removing and freeing an old array

B
c

Calls av_undef to
shut down the Perl
array structure

d

B

c

d

136 CHAPTER 5 THE PERL 5 API

The Storable module implements persistency by storing and retrieving Perl
data structures in disk files. Listing 5.37 shows an abridged form of the function for
storing arrays.

static int store_array(stcxt_t *cxt, AV *av)
{
 SV **sav;
 I32 len = av_len(av) + 1;
 I32 i;
 int ret;

 PUTMARK(SX_ARRAY);
 WLEN(len);

 for (i = 0; i < len; i++) {
 sav = av_fetch(av, i, 0);
 if (!sav) {
 STORE_UNDEF();
 continue;
 }
 if (ret = store(cxt, *sav))
 return ret;
 }

 return 0;
}

Because we’re going to iterate over all the elements in the array, we need to know how
many elements Perl thinks there are: we can’t use the usual C trick of continuing until
av_fetch returns null, because there could be a hole in the middle of the array where
elements haven’t been used. (See the example for “av_extend and av_fill,” page 142.)
So, we call av_len (see “av_len,” page 143) to find the highest-numbered element,
and add 1 to get the number of elements.

These two lines are internal Storable macros that write a header to the file saying
the next thing stored is an array.

We iterate over the elements of the array, calling av_fetch on each element. Note
that av_fetch returns SV**—a pointer to an SV*—because there’s a difference
between storing the null SV in an array and not storing an SV at all. If the return
value of av_fetch is NULL, then no SV is stored in that element, and Storable
stores undef.

If we do find a scalar in a particular element, we call store to write it out to the file;
note that we need to dereference the SV** when passing it to store, because
store expects an SV.

See also: “av_store,” page 138, and “hv_store and hv_store_ent,” page 148.

Listing 5.37 Storing an array in a file

B

c

d

e

B

c

d

e

AV FUNCTIONS 137

av_store

SV** av_store(AV* array, I32 index, SV* value);

This function stores an SV in an array. It is equivalent to the Perl code

$array[$index] = $value;

Example The core Threads module manages Perl threads; it uses an array for each
thread to hold the thread’s return status. In the (slightly abridged) extract from
threadstart in listing 5.38, we look at what happens when a thread terminates
and sets up its return values ($CORE/ext/Thread/Thread.xs line130).

av = newAV();
if (SvCUR(thr->errsv)) {

 MUTEX_LOCK(&thr->mutex);
 thr->flags |= THRf_DID_DIE;

 MUTEX_UNLOCK(&thr->mutex);
 av_store(av, 0, &PL_sv_no);

 av_store(av, 1, newSVsv(thr->errsv));
}

else {
 av_store(av, 0, &PL_sv_yes);

 for (i = 1; i <= retval; i++, SP++)
 sv_setsv(*av_fetch(av, i, TRUE), SvREFCNT_inc(*SP));

}

We create a new array to hold the return values; because this array does not need to be
accessible in the Perl symbol table, we use newAV.

If the thread exited with an error message, we need to update the thread’s status flags
to report that it died an unnatural death. (The MUTEX business on either side of the
flag manipulation just makes sure that no other threads try to interfere while we’re
doing this.)

We use av_store to store the return status in our array: the first element, element
0, will contain a false value (see “PL_sv_yes and PL_sv_no,” page 103) to denote
failure. We call newSVsv to copy the error message into a new SV, and then use
av_store once more to store our copy in element 1 of our return array.

If everything succeeded, on the other hand, we store a true value (see “PL_sv_yes
and PL_sv_no,” page 103) as the first element of the array.

Here you see another way to store an SV in an array: we use the av_fetch function
with the lvalue parameter set to true to create the array element and return a
pointer to the new SV; we then dereference that pointer and call sv_setsv
(“sv_setsv,” page 124) to set it to what we want. Because we’re storing the same SV in

Listing 5.38 Storing return values in an array

B
c

d

e

f

B

c

d

e

f

138 CHAPTER 5 THE PERL 5 API

multiple places without taking a copy of it, we must increase the reference count of
what we’re storing.

WARNING Sometimes the core isn’t the best example … In the example, we don’t check
the return values from av_fetch and av_store—we assume the oper-
ations will succeed. This is usually a safe assumption, but it’s not the best
thing to do: if, for instance, av_fetch failed for some reason, we’d
attempt to dereference 0, which would cause the program to crash. Fur-
thermore, you should check that av_store completed successfully if you
are storing the same SV in multiple places—you are responsible for increas-
ing the reference count of the SV before calling av_store, and if
av_store returns 0, you are responsible for decreasing the reference
count again.

See also: “av_fetch,” page 136, and “hv_store and hv_store_ent,” page 148.

av_pop and av_shift

SV* av_pop(AV* array);

SV* av_shift(AV* array);

av_pop is just like the Perl function pop; it removes the highest element from an
array and returns it. You’ve already seen an example in “get_av,” page 132. If the array
is empty, then &PL_sv_undef is returned.

Similarly, av_shift does the same thing as the Perl function shift. In fact, the
Perl shift function is implemented in terms of av_shift.

Example In this example we’ll dive into Perl’s push pop (PP) code; this part of
Perl implements the fundamental operations. Listing 5.39 is the pp_shift function
in pp.c. PP code is extremely macro-laden, but don’t worry—we’ll examine every line
in detail.

PP(pp_shift)

{
 dSP;

 AV *av = (AV*)POPs;
 SV *sv = av_shift(av);

 EXTEND(SP, 1);
 if (!sv)

 RETPUSHUNDEF;
 if (AvREAL(av))

 (void)sv_2mortal(sv);

 PUSHs(sv);
 RETURN;

}

Listing 5.39 Implementing shift

B

c

Pops an array off the
top of the stack and
stores it in av

Uses av_shift to
remove the first
element from that array

d
e

f Pushes the SV that we
shifted off the array
back onto Perl’s stack

Returns to the next operation
AV FUNCTIONS 139

The macro PP is used to define a push-pop routine, which implements a Perl funda-
mental operation.

This declares the variable SP to be a local copy of the stack pointer, so we can access
arguments on Perl’s stack.

EXTEND extends the stack by one place, so we can be sure that the return value from
unshift will fit on the stack.6

If the SV was null—that is, if there was no element to shift off the array—then we
return undef.

If the array was “real” and its contents are reference counted, we need to make the SV
return mortal so the reference count is not disturbed.

av_push and av_unshift

av_push(AV* array, SV* value);

av_unshift(AV* array, SV* value);

av_push and av_unshift, just like av_pop and av_shift (“av_pop and
av_shift,” page 139), are similar to their Perl equivalents for manipulating an array.
They implement the Perl push and unshift built-in functions in XS.

Example Here’s an interesting question: How do you specify that an all-XS class
inherits from another class? In Perl, you’d say something like this:

package Apache::SubRequest;
use base qw/Apache/;

or even

package Apache::SubRequest;

@Apache::SubRequest::ISA = qw(Apache);

But what if no Perl is involved? No problem—just do the equivalent in XS (see
listing 5.40).

MODULE = Apache PACKAGE = Apache::SubRequest

BOOT:
 av_push(perl_get_av("Apache::SubRequest::ISA",TRUE),

 newSVpv("Apache",6));

6 This step is redundant, because we popped an array off the stack; hence at least one element must be
free there.

B

c

d

e

f

Listing 5.40 Inheritance in XS
140 CHAPTER 5 THE PERL 5 API

We use the BOOT section of the XS just like a Perl BEGIN block. We get a handle on
the @Apache::SubRequest::ISA variable, creating it if necessary, and push
onto the end of it the string "Apache".

av_delete

SV* av_delete(AV* array, I32 element, I32 flags);

This function is the XS equivalent of $x = delete $array[$element]. It
deletes the element from the array and returns the deleted element.

See also: “av_exists,” page 141.

av_exists

bool av_exists(AV* array, I32 element);

This function is similar to the Perl-side exists $array[$element].
See also: “av_delete”, above.

sortsv

void sortsv (SV ** array , size_t num_elts , SVCOMPARE_t cmp);

Although not strictly an array manipulation function, because it doesn’t deal with
Perl AVs, sortsv is used to sort a C array of SVs. It takes the array, the number of
elements, and a comparison function. Generally, you’ll use either Perl_sv_cmp
(the ordinary lexicographical sort routine) or Perl_sv_cmp_locale (the locale-
aware variant). sortsv sorts the SVs in place in the array, rather than returning a
sorted array.

Example Data::Dumper supports the sortkeys option to sort the keys of a
hash. If this option is set to a subroutine reference, the subroutine is supposed to get
the keys in the right order; if it’s set to true, the keys are sorted lexicographically, as
in listing 5.41.

 if (sortkeys == &PL_sv_yes) {

 keys = newAV();
 (void)hv_iterinit((HV*)ival);

 while (entry = hv_iternext((HV*)ival)) {
 sv = hv_iterkeysv(entry);

 SvREFCNT_inc(sv);
 av_push(keys, sv);

 }
#ifdef USE_LOCALE_NUMERIC

 sortsv(AvARRAY(keys),
 av_len(keys)+1,

 IN_LOCALE ? Perl_sv_cmp_locale : Perl_sv_cmp);
#else

Listing 5.41 sort keys %hash

B
c

d

AV FUNCTIONS 141

 sortsv(AvARRAY(keys),

 av_len(keys)+1,
 Perl_sv_cmp);

#endif
 }

We create a new array to store the keys in. Remember that in an AV, AvARRAY is a C
array of SVs.

We iterate over the keys of the hash we’re dealing with (curiously named ival),
pushing the keys onto the new array. This is a slightly different way of iterating a hash
than the one described in “Iterating a hash,” page 149, because it returns just the
keys, rather than the keys and values.

If we’re in a locale-aware situation, we need to sort the array using
Perl_sv_cmp_locale inside the scope of use locale. Doing so will sort the
keys array in place.

5.3.3 Testing and changing array size

Finally, let’s look at functions for manipulating the size of an array. Notice that arrays
can only be grown, never shrunk.

av_extend and av_fill

av_extend(AV* array, IV index);
av_fill(AV* array, IV index);

av_extend and av_fill do similar jobs; they ensure that an array has a given
number of elements. However, their operation is slightly different. av_extend
makes sure the array has at least index elements, whereas av_fill makes sure it
has exactly index elements. You can think of av_fill as the XS equivalent of
$#array = $index.

Example When you assign to an array slice in Perl, it’s possible you’ll be assigning
to elements that don’t exist yet. For instance, in this code

@array = (1,2,3,4);

@array[10, 30] = qw(hi there);

we have only four elements in our array, and we’re about to store to elements 10 and
30. If we used av_store, Perl would have to extend the array twice: once to accom-
modate element 10, and once to accommodate element 30. Instead, Perl looks over
the slice, finds the maximum element it’s going to assign to (in this case, 30), and
calls av_extend to pre-extend the array (pp.c, line 3339); see listing 5.42.

If we aren’t in a locale-
aware situation, we
use Perl_sv_cmp

B

c

d

142 CHAPTER 5 THE PERL 5 API

I32 max = -1;

for (svp = MARK + 1; svp <= SP; svp++) {
 elem = SvIVx(*svp);

 if (elem > max)
 max = elem;

}
if (max > AvMAX(av))

 av_extend(av, max);

Perl ensures that the elements of our slice (10 and 30) are placed on a stack, starting
from MARK + 1 and ending at SP. We look at each element in turn.

These elements are pointers to SV*s, and to find the numerical value, we dereference
the pointer and call SvIVx on the SV to examine its IV. We compare each one
against our stored maximum and, if necessary, update the maximum value.

Now that we know the highest element we’ll be assigning to, we check to see whether
it is higher than the current size of the array. If so, we need to call av_extend to
increase the array’s size.

av_len

I32 av_len(AV* av);

av_len is the ordinary way of returning the highest index of an array. It’s directly
equivalent to the Perl-side $#array. The idiom av_len(av) + 1 is commonly
used in XS for counting the number of elements in an array.

Example Here’s another example taken from the Tk module. The Tk::Sub-
stitute function takes three references: a set of callbacks, a source subroutine,
and a destination subroutine. The set of callbacks is stored in a Perl array. We’ll
look through the array; if it contains the source subroutine, we’ll take that out and
replace it with the destination subroutine. Listing 5.43 shows the implementation,
from Tk.xs.

AV *av = newAV();
int n = av_len((AV *) cb);

int i;
int match = 0;

for (i=0; i <= n; i++)

 {
 SV **svp = av_fetch((AV *) cb,i,0);

 if (svp)
 {

Listing 5.42 Assigning to an array slice

B
c

d

B

c

d

Listing 5.43 Substituting elements in an array

Creates a new array to store
the results of our substitution

Finds out the highest element
in the array of callbacks, cb

b

AV FUNCTIONS 143

 if (SvROK(*svp) && SvRV(*svp) == src)

 {
 av_store(av, i, SvREFCNT_inc(dst));

 match++;
 }

 else
 {

 av_store(av, i, SvREFCNT_inc(*svp));
 }

 }
 }

if (match)
 {

 ST(0) = sv_2mortal(sv_bless(
 MakeReference((SV *)av),SvSTASH(cb)

));
 }

else
 {

 SvREFCNT_dec(av);
 }

As we iterate over the area, we use av_fetch (“av_fetch,” page 136) to get a pointer
to each element, and then check that the pointer is valid.

If this element is a reference, and it’s equal to the source subroutine reference we were
given, then we store a new reference to our destination subroutine in that location of
our output array, av. We also flag the fact that we’ve done a substitution, so we’ll have
to return this new array instead of being able to simply return the input array.

If the reference in this element doesn’t match the one we were given, we instead store
a new reference to the original element.

If we have done any substitutions, we need to use the new output array; we bless it
into the stash of the original callback array, and put it at the top of the stack.

If we haven’t done any substitutions, we get rid of the new array by decreasing its ref-
erence count to 0. As this destroys it, Perl will take care of decreasing the references to
the subroutines referred to by the array elements.

5.4 HV FUNCTIONS

Hashes are, as you might expect, similar to arrays, and the interface to HVs has a lot in
common with the interface to AVs.

5.4.1 Creation and destruction

As usual, we’ll begin our investigation by looking at the ways of getting a handle on
HVs and how to sweep them away once you’re finished with them.

c

d

e

f

b

c

d

e

f

144 CHAPTER 5 THE PERL 5 API

get_hv

HV* get_hv (const char* name , I32 create);

Similar to get_av and get_sv, this function lets you get a handle on a Perl-space
variable—this time, predictably, a hash.

Example As an event-driven environment, Tk deals with a lot of callbacks. How-
ever, Tk needs to have control over what happens during these callbacks. If a callback
is called inside an eval and the user has installed a __DIE__ handler, anything could
happen. Tk must install its own __DIE__ handler to achieve finer-grained control
over what happens to an exception. Hence, when setting up a call to a callback, we
see the code from listing 5.44 in Event/pTkCallback.c.

if (flags & G_EVAL)
 {
 CV *cv = perl_get_cv("Tk::__DIE__", FALSE);
 if (cv)
 {
 HV *sig = perl_get_hv("SIG",TRUE);
 SV **old = hv_fetch(sig, "__DIE__", 7, TRUE);
 save_svref(old);
 hv_store(sig,"__DIE__",7,newRV((SV *) cv),0);
 }
 }

We only care about the cases where the code is being called inside an eval, because
in other cases a die will exit the program, as it should.

We grab our own die handler, using the get_cv function to get a Perl-side CV—
that is, a subroutine reference. We’re doing the equivalent of $cv = \&Tk::DIE.

Finally, we install our own handler by storing the CV we retrieved earlier into
$SIG{__DIE__}.

See also: “get_sv,” page 103, and “get_av,” page 132.

newHV

HV* newHV(void);

As you might expect, this function creates a new HV. As you’re about to see, it’s partic-
ularly useful for returning a hash from an XS routine.

Example The POSIX module provides a Perl interface to a variety of system func-
tions; one of them is the locale subsystem. The C function localeconv returns a
host of information about the current locale—the decimal point, how to group num-
bers, the currency symbol, and so on. It stores this information in a C struct lconv.
We make that structure useful for the Perl programmer as shown in listing 5.45.

Listing 5.44 Installing our own die handler

B

c

Grabs the %SIG hash and
fetches the __DIE__
entry from it

Saves the user’s
old die handler
for later

d

B

c

d

HV FUNCTIONS 145

HV *
localeconv()
 CODE:
 struct lconv *lcbuf;
 RETVAL = newHV();
 if ((lcbuf = localeconv())) {
 if (lcbuf->decimal_point && *lcbuf->decimal_point)
 hv_store(RETVAL, "decimal_point", 13,
 newSVpv(lcbuf->decimal_point, 0), 0);
 if (lcbuf->thousands_sep && *lcbuf->thousands_sep)
 hv_store(RETVAL, "thousands_sep", 13,
 newSVpv(lcbuf->thousands_sep, 0), 0);

We initialize the return hash first; we’ll fill it with entries in a few moments.

We fill the lcbuf structure with the results of our locale information.

Now we can store the entries of this structure into the hash using hv_store. Notice
how we use newSVpv to create SVs to store the strings in the locale structure.

See also: “newAV,” page 133, and “newSV and NEWSV,” page 104.

hv_clear

void hv_clear (HV* hash);

hv_clear is an uninteresting function that empties a hash.
See also: “av_clear,” page 135.

hv_undef

void hv_undef(HV* hash);

This function is the XS equivalent of undef %hash.
See also: “av_undef,” page 135.

5.4.2 Manipulating elements

There’s not much you can do with hashes—fetch and store values, delete keys, and see
if a key exists. You can also iterate over a hash in the style of the Perl keys function.

hv_delete and hv_delete_ent

SV* hv_delete (HV* hash , const char* key , I32 klen , I32 flags);
SV* hv_delete_ent (HV* hash , SV* key , I32 flags ,
 U32 hash_value);

These functions are the XS equivalent of delete $hash{$key}. As usual, you
can specify the key either as a C string using hv_delete or as an SV using

Listing 5.45 Converting a structure to a hash

B
c

d

B

c

d

146 CHAPTER 5 THE PERL 5 API

hv_delete_ent. The flags parameter can be set to G_DISCARD to execute the
delete in a void context—that is, to return NULL instead of the deleted SV.
hash_value in hv_delete_ent should be set to the hash value of the key if
known, or to 0 to have Perl compute the hash value.

See also: “av_delete,” page 141.

hv_exists_ent

bool hv_exists_ent (HV* hash , SV* key , U32 hash_value);

hv_exists_ent is similar to exists $hash{$key}—it tells you whether a
given key exists in an HV. You can use the additional parameter hash_value if you
know the hash value for the key, or it can be 0 if you want Perl to compute the hash
value for you.

Example When you use a Perl module, it gets put in a hash called %INC, link-
ing its relative filename (for instance, IO/File.pm) to its absolute pathname (/Sys-
tem/Library/Perl/darwin/IO/File.pm). So, if we want to know whether
IO::File has been loaded, we simply turn it into a filename and look it up in
%INC. As listing 5.46 shows, mod_perl does this in the perl_module
_is_loaded function of perl_util.c.

I32 perl_module_is_loaded(char *name)

{
 I32 retval = FALSE;

 SV *key = perl_module2file (name);
 if((key && hv_exists_ent(GvHV(incgv), key, FALSE)))

 retval = TRUE;
 if(key)

 SvREFCNT_dec(key);
 return retval;

}

We call perl_module2file, another function in perl_util.c, to turn the
string containing the module name into an SV containing the associated filename.

If we get something other than a null SV, we can look up the key in the %INC hash.
incgv is the glob *INC, and GvHV extracts the hash part of that glob.

See also: “av_exists,” page 141.

hv_fetch and hv_fetch_ent

SV** hv_fetch (HV* hash , const char* key , I32 klen , I32 lval);

HE* hv_fetch_ent (HV* hash , SV* key , I32 lval , U32 hash_value);

Listing 5.46 Is a module loaded?

B
c

Gets rid of the SV we
created by decreasing
its reference count

B

c

HV FUNCTIONS 147

These two functions both fetch values from a hash. hv_fetch requires you to spec-
ify the key as a C string, whereas hv_fetch_ent is more useful if you have an SV;
on the other hand, hv_fetch returns a pointer to an SV or null if the entry was
not found, whereas hv_fetch_ent returns a hash entry (HE) structure (see
section 4.5) requiring you to extract the value with HeVAL(he).

In both cases, lval can be set to true to tell Perl to create the key if it doesn’t
exist, returning an SV that can be set. hash_value is the key’s hash value or 0, if
you want Perl to compute the value; you can also set the key length (klen) to 0 in
hv_fetch, and Perl will call strlen on the key string.

Example A hash is a common way of passing options to a subroutine in Perl,
like this:

process(data => $data,

 force => 1,
 separator => ":",

 transform => \&invert ...);

sub process {

 my %options = @_;
 my $force = $options{force};

 ...
}

Data::Dumper takes options in a similar way; listing 5.47 shows how this is done
in XS.

 if ((svp = hv_fetch(hv, "indent", 6, FALSE)))
 indent = SvIV(*svp);

 if ((svp = hv_fetch(hv, "purity", 6, FALSE)))
 purity = SvIV(*svp);

 if ((svp = hv_fetch(hv, "terse", 5, FALSE)))
 terse = SvTRUE(*svp);

We call hv_fetch, storing the result in svp. If this pointer is true, then the entry
exists in the hash.

We can dereference the pointer to get a real SV, and then call SvIV on it to find the
integer value for the indent parameter.

See also: “hv_store and hv_store_ent,” page 148.

hv_store and hv_store_ent

SV** hv_store (HV* hash , const char* key , I32 klen ,
 SV* val , U32 hashval);

SV** hv_store_ent (HV* hash , SV* key , SV* val , U32 hashval);

Listing 5.47 Getting options

B
c

B

c

148 CHAPTER 5 THE PERL 5 API

hv_store is the ordinary way of storing a value in a hash with a constant key. If you
already have the key as an SV, consider using hv_store_ent instead. If you specify
0 for the hashval parameter, perl will compute the hash for you.

See “newHV,” page 145 for an example; see also: “hv_fetch and hv_fetch_ent,”
page 147.

Iterating a hash

I32 hv_iterinit (HV* hash);

SV* hv_iternextsv (HV* hash , char** key , I32* keylen);

There are several ways to iterate over a hash’s keys and values in the Perl API; we’ll
show you the simplest and most immediately useful. After performing an
hv_iterinit, each call to hv_iternextsv will return the next value and store
the key and its length in the memory pointed to by key and keylen, respectively.

Example Listing 5.48 shows a slightly simplified example from mod_perl.
When mod_perl starts up, it wants to remove anything that might be dangerous
from the environment it has inherited, saving only selected environment entries. It
does so by iterating over %ENV.

void perl_clear_env(void)

{
 char *key;

 I32 klen;
 SV *val;

 HV *hv = (HV*)GvHV(envgv);

 (void)hv_iterinit(hv);

 while ((val = hv_iternextsv(hv, (char **) &key, &klen))) {
 if((*key == 'G') && strEQ(key, "GATEWAY_INTERFACE"))

 continue;
 else if((*key == 'M') && strnEQ(key, "MOD_PERL", 8))

 continue;
 else if((*key == 'T') && strnEQ(key, "TZ", 2))

 continue;
 else if((*key == 'P') && strEQ(key, "PATH"))

 continue;
 }

 delete_env(key, klen);
 }

}

envgv is the glob representing *ENV; we extract the hash value from this glob, giv-
ing us %ENV in hv.

Listing 5.48 Cleaning the environment

B Initializes the hash
for iteration

c

d

B

HV FUNCTIONS 149

We iterate over the hash, storing the value in val, the key in key, and the key’s length
in keylen. Notice that we finish iterating when hv_iterkeysv returns NULL.

After allowing some elements that we don’t mind having in the environment, we
delete the entry by calling the macro delete_env; this macro is specific to
mod_perl and deletes the entry from the environment.

5.5 MISCELLANEOUS FUNCTIONS

Some of the functions in the Perl API aren’t about manipulating Perl values
directly; they’re either low-level functions for memory and string handling, or just
basically miscellaneous.

5.5.1 Memory management

Perl provides its own memory-management library and a set of handy macros to
make it easier to handle memory in C.

New

void New(int id, void* ptr, int nitems, type);

void Newz(int id, void* ptr, int nitems, type);
void Newc(int id, void* ptr, int nitems, type , cast);

New is the XS writer’s interface to malloc, for allocating new memory. Because Perl
can opt to use its own memory-management system, you should always use New
rather than malloc.

Newz is similar to New, but it also ensures that the returned memory is filled with
zero bytes. Newc is the same as New, but it also allows for a cast to a different type.

Example DBM databases are files storing key-value relationships, the same way
hashes do. In fact, it’s common practice in Perl to use a DBM database to store a hash
so that its data can be saved and restored between calls to a Perl program. There are
several flavors of DBM, and one of them (“old DBM”) stores its data in two files: a
database called birthdays would be stored on disk as birthdays.dir and birth-
days.pag. That’s to say, the code responsible for opening the directory must catenate
.dir and .pag onto the filename. Listing 5.49 shows how this is done; it’s from ext/
ODBM_File/ODBM_File.xs in the Perl sources.

New(0, tmpbuf, strlen(filename) + 5, char);

SAVEFREEPV(tmpbuf);
sprintf(tmpbuf,"%s.dir",filename);

if (stat(tmpbuf, &PL_statbuf) < 0) {

c

d

Listing 5.49 Opening a DBM database

B
c

d Tests to see if
the file exists
150 CHAPTER 5 THE PERL 5 API

We must allocate memory for a temporary buffer to hold the filename plus the exten-
sion. It’s five characters longer than the filename itself, and each element of the array
is of type char. (Why five characters? ".dir" is four, and we add the trailing zero
to end a string.)

SAVEFREEPV is a wonderful way to not have to worry about freeing memory once
we’ve used it. Perl has a save stack that holds values to be freed at the end of the cur-
rent scope—for instance, Perl local SVs or subroutine return values. The save stack
can therefore be used to process any actions that must be done at the end of scope.
Here it’s being used to hold a string pointer (a PV) that will be freed at the end of
scope. If you use SAVEFREEPV on your strings, Perl will clean them up for you.

We copy the filename followed by ".dir" into this new buffer to get the filename as
it would be on disk.

See also: “Renew,” page 153, and “Safefree,” page 153.

Copy

void Copy(void* src, void* dest, int items, type);

Copy is the XS version of the standard C memcpy. It copies an area of memory from
a source to a destination. Use Move if the areas may overlap.

Example When you write to the elements of %ENV, Perl modifies the process’s
environment. It does so by setting up a string of the form key=value and then hand-
ing this string to the operating system’s way of modifying the environment. Normally,
you’d use sprintf(buffer, "%s=%s", key, value) to achieve this result, but
Perl defines a macro to help it do things a little faster (see listing 5.50, from util.c).

#define my_setenv_format(s, nam, nlen, val, vlen) \

 Copy(nam, s, nlen, char); \
 *(s+nlen) = '='; \

 Copy(val, s+(nlen+1), vlen, char); \
 *(s+(nlen+1+vlen)) = '\0'

We copy nlen characters from the key string into the beginning of our buffer s.

We set the next character to be =.

We copy vlen characters of the value to the end of the buffer.

Finally, we add our null terminator.

See also: “Move,” page 152.

B

c

d

Listing 5.50 Beating sprintf

B
c

d
e

B

c

d

e

MISCELLANEOUS FUNCTIONS 151

Move

void Move (void* src , void* dest , int nitems , type);

Move is the XS writer’s interface to memmove; that is, it moves a chunk of memory
from a source src to a destination dest. When using Move, you specify how many
(nitems) of what type (type) of thing you want to move.

Example You heard about the offset hack in section 4.2.7; what happens when
you need to do something that doesn’t know about that hack? At some point, you
must really move the memory around instead of faking it. The sv_backoff func-
tion does this, and it can be found in sv.c in the Perl sources; see listing 5.51.

int
Perl_sv_backoff(pTHX_ register SV *sv)

{
 assert(SvOOK(sv));

 if (SvIVX(sv)) {
 char *s = SvPVX(sv);

 SvLEN(sv) += SvIVX(sv);
 SvPVX(sv) -= SvIVX(sv);

 SvIV_set(sv, 0);
 Move(s, SvPVX(sv), SvCUR(sv)+1, char);

 }
 SvFLAGS(sv) &= ~SVf_OOK;

 return 0;
}

The code checks that it’s being called with an offset string; if not, there’s a logic bug
somewhere else in Perl.

We take a copy of the start of the string as stored in the PVX slot of the SV. This isn’t
the real start of the string, because some characters are obscured by the offset hack.

We undo the effects of the offsetting by declaring the available length of the string to
be slightly larger (due to the offset) and moving the string stored in PVX to be the
actual start of the string.

Now we can set the offset to 0. Remember that s still holds the string starting from the
visible portion, whereas SvPVX now includes some characters that have been deleted.

Hence, we need to move things around so that the visible portion coincides with the
real start of the string. That is, we must move the SvCUR(sv) characters of the
string (plus one for the null terminator) starting at s back to what Perl thinks is the
start of the string, SvPVX(sv). The Move call does this.

See also: “Copy,” page 151.

Listing 5.51 Backing off offset strings

B

c
d

e
f

Turns off the
offset flag

B

c

d

e

f

152 CHAPTER 5 THE PERL 5 API

Renew

void Renew (void* ptr , int nitems , type);
void Renewc (void* ptr , int nitems , type , cast);

Renew is the XS version of realloc—it tries to extend the size of an allocated area
of memory, obtained with New.

Renewc is supposed to be “renew with cast,” but we could find only one occur-
rence of it in real code. A lot of code uses saferealloc, which is another interface
to realloc.

Example Devel::DProf is a Perl profiler; it keeps track of which subroutines
call other subroutines, the most often called routines, and so on. It keeps its own call
stack, and to avoid extending the call stack for every subroutine call, it ensures it always
has room for at least five extra calls; see listing 5.52.

if (g_SAVE_STACK) {

 if (g_profstack_ix + 5 > g_profstack_max) {
 g_profstack_max = g_profstack_max * 3 / 2;

 Renew(g_profstack, g_profstack_max, PROFANY);
 }

}

If we’re keeping our own call stack, and five more subroutines would take us over the
maximum our stack has allocated, we need to make more room for subroutine call
information.

We increase the depth of our stack by half as much again, to give us plenty of leeway.

We call Renew to allocate that many PROFANY structures.

See also: “New,” page 150.

Safefree

void Safefree (void* ptr);

The XS writer should use Safefree instead of free, because Perl can be compiled
with its own memory allocation functions, and Safefree knows which one to use.

Example POSIX-compliant operating systems can use the getppid function to
find a process’s parent. What about non-POSIX-compliant OSs, such as OS/2? In
these cases, Perl includes functions that implement the same job. The function
ppidOf from OS2::Process calls the OS/2 system call get_sysinfo to get
information about the process (see listing 5.53). This function allocates and returns a
buffer, which we need to clean up.

Listing 5.52 Keeping the stack big enough

b

c
d

B

c

d

MISCELLANEOUS FUNCTIONS 153

int

ppidOf(int pid)
{

 PQTOPLEVEL psi;
 int ppid;

 if (!pid)
 return -1;

 psi = get_sysinfo(pid, QSS_PROCESS);
 if (!psi)

 return -1;
 ppid = psi->procdata->ppid;

 Safefree(psi);
 return ppid;

}

See also: “New,” page 150.

Zero

void Zero (void* dest , int nitems , type);

Zero is the Perlish way of saying bzero—that is, filling a chunk of memory with
zeros. It’s useful for clearing out assigned memory after a New (although you can use
Newz to do the same thing) in case the system doesn’t set it to zero for you, or in case
you want to reuse some memory and erase its old contents.

Example The Opcode module lets you turn on and off some of Perl’s internal
operations. It keeps the collection of disallowed ops in a bitmask it calls an opset. When
you begin using the module, you want the opset to be empty, so Opcode initializes
a new opset as shown in listing 5.54.

opset = NEWSV(1156, opset_len);

Zero(SvPVX(opset), opset_len + 1, char);
SvCUR_set(opset, opset_len);

(void)SvPOK_only(opset);

We make a new SV with a string buffer of at least opset_len. This is a static vari-
able initialized when the module boots up. (That’s a slight simplification, because the
details are pretty hairy, but it’s close enough.)

We ensure that all the characters in the buffer are set to 0: one for each operation in
our opset, plus one at the end to be the “real” null terminator.

Listing 5.53 Parent Process ID on OS/2

get_sysinfo returns
a structure representing
the process information

Extracts the ppid slot of the
process information table

Frees the buffer

Listing 5.54 Emptying a bitmask

B
c

d
e

B

c

154 CHAPTER 5 THE PERL 5 API

We tell Perl that the string part of this SV is exactly one opset long.

We also tell Perl that the string buffer is the only part worth looking at.

See also: “New,” page 150.

5.5.2 Unicode data handling

Perl 5.6 added support for Unicode strings; the interface to these strings is still not
developed and is changing fairly rapidly, so we’ll only document the more stable func-
tions. For more information on Perl’s Unicode support and how to use the Unicode
functions in your XS routines, see NetThink’s “Perl and Unicode” training course
(http://www.netthink.co.uk/downloads/unicode.pdf).

SvUTF8

bool SvUTF8 (SV* sv);

void SvUTF8_on (SV* sv);
void SvUTF8_off (SV* sv);

The UTF8 flag on an SV determines whether Perl expects to treat the string data in
the SV as UTF-8 encoded. Looking at it the other way, the flag tells your XS function
whether you need to treat the string data as UTF-8 encoded.

If you’re writing string data into an SV, you should use SvUTF8_on and
SvUTF8_off to tell the rest of Perl how your data is encoded.

Because UTF8-ness is indicated by a flag in the SV, not in the PV, when you’re
copying strings, you need to remember to copy around the UTF8-ness information
too. Listing 5.55 shows the correct way to copy a string portion, taken from
S_sublex_start in toke.c in the Perl core.

STRLEN len;
char *p;

SV *nsv;

p = SvPV(sv, len);

nsv = newSVpvn(p, len);
if (SvUTF8(sv))

 SvUTF8_on(nsv);
SvREFCNT_dec(sv);

We create a new SV with that string value and length. See “Creating SVs with val-
ues,” page 106.

Because we’re using the new SV in place of sv, we decrement sv’s reference count to
indicate that we’re not using it any more.

d

e

Listing 5.55 Copying an SV’s string portion

Gets the string value
into p and the
length into len

b If the old SV was
UTF-8 encoded …

… then this SV should
be UTF-8 encoded, too.c

b

c

MISCELLANEOUS FUNCTIONS 155

is_utf8_char and is_utf8_string

STRLEN is_utf8_char (U8* s);
bool is_utf8_string (U8* s , STRLEN len);

These functions test whether a given C string contains valid UTF-8 encoded charac-
ters. is_utf8_char is a once-off test, checking whether the first character of the
string is a valid UTF8-encoded character. If so, it returns the length of the character
in bytes. is_utf8_string, on the other hand, checks the validity of len bytes of
the string.

Now that regular expressions can understand UTF-8 encoded matches as well as
non-UTF-8 encoded matches, we need to be more careful when dealing with the mag-
ical variables related to regular expressions. For instance, a captured variable such as
$1 may be represented by 5 bytes of the match, but this may be only two UTF-8 char-
acters. Given that these variables do not have their own SVs but are derived magically,
as if they were tied, the function that implements length on them (mg_length in
mg.c) has to be a little clever; see listing 5.56.

 i = t1 - s1;

getlen:
 if (i > 0 && PL_reg_match_utf8) {

 char *s = rx->subbeg + s1;
 char *send = rx->subbeg + t1;

 if (is_utf8_string((U8*)s, i))
 i = Perl_utf8_length(aTHX_ (U8*)s, (U8*)send);

 }

If we’re currently matching things in a UTF-8-aware manner (reg_match_utf8),
then we recalculate the start and end of the substring so we can check its length.

uvchr_to_utf8

U8* uvchr_to_utf8 (U8* dest , UV uv);

In many of the examples we’ve looked at, the standard way to write a character to a
given location has been

*string = 'a';

Hence, to fill a 12-byte string with as, you’d say

int i = 12;

while (i-- != 0)
 *(string++) = 'a';

This is fine for non-UTF8 strings. Unfortunately, in the Unicode world, characters
can be more than one byte long, and so this idiom breaks down for wider characters.

Listing 5.56 length($1)

B
If the captured
substring really is
UTF-8 encoded …

… we must use
utf8_length to
get its real length
in characters
instead of in bytes

B

156 CHAPTER 5 THE PERL 5 API

To counter this situation, perl provides uvchr_to_utf8:

int i;
UV mywchar = 0x0388; /* GREEK CAPITAL LETTER EPSILON WITH TONOS */

for (i=0; i++; i<12)
 string = uvchr_to_utf8(string, mywchar);

uvchr_to_utf8 returns the new position in the string after inserting the given
character.

sv_len_utf8

STRLEN sv_len_utf8 (SV* sv);

This function is similar to sv_len, except that it returns the length in characters, not
in bytes—wide characters in a UTF-8 encoded string are counted as a single character.

See also: “sv_len,” page 118, and “utf8_length,” below.

bytes_to_utf8 and utf8_to_bytes

U8* bytes_to_utf8 (U8* original , STRLEN* len);
U8* utf8_to_bytes (U8* original , STRLEN* len);

These functions convert a string between UTF-8 encoding and byte encoding.

WARNING The memory behavior of these two functions is subtly different, so you must
be careful to avoid memory leaks. Specifically, utf8_to_bytes (given
that it is guaranteed to return a string either the same size as or smaller than
the original string) will overwrite the original string in memory.

Because bytes_to_utf8 will always return a string that is the same
size or larger than the original string, it creates a new string and returns a
pointer to the newly created string.

Both functions update len with the new length of the string.

utf8_length

STRLEN utf8_length (U8* s , U8* e);

This function counts the number of UTF-8 encoded characters between s and e;
UTF-8 characters are of variable width, so this function must be used to determine
the length of a UTF-8 string.

See “is_utf8_char and is_utf8_string,” page 156 for an example; see also
“sv_len_utf8,” above, which is implemented in terms of utf8_length.

Unicode Case Modification

UV to_utf8_upper (U8* src , U8* dest , STRLEN* length);
UV to_utf8_lower (U8* src , U8* dest , STRLEN* length);

UV to_utf8_title (U8* src , U8* dest , STRLEN* length);
UV to_utf8_fold (U8* src , U8* dest , STRLEN* length);
MISCELLANEOUS FUNCTIONS 157

These functions perform case folding of a UTF-8 encoded character as per the rules
specified by the Unicode tables. They take a character from src and place the folded
version in dest, which must have enough room for the result; “safe” values are pro-
vided in UTF8_MAXLEN_UCLC for upper- and lowercase transformation and in
UTF8_MAXLEN_FOLD for titlecase and foldcasing.7

5.5.3 Everything else

Finally, let’s examine a grab-bag of API functions that don’t fit nicely anywhere else.

Casting pointers to integers (and back)

IV PTR2IV(pointer);

INT2PTR (type , IV integer);
NV PTR2NV(pointer);

UV PTR2UV(pointer);

The ability to cast functions into pointers becomes exceptionally useful in XS pro-
gramming, because it provides a way to store a pointer in an SV. Expanding slightly
on this reason, it gives you a way to store any C structure as a Perl value that other
parts of your XS library can retrieve and manipulate later. Indeed, it’s the standard
way of wrapping up a C structure as a Perl object.

However, simply converting a pointer to an integer is an operation that is not por-
table across compilers and architectures. To assist you, perl provides the PTR2IV
macro to turn a pointer into an integer safely, and the INT2PTR macro to turn it back.

Our example shows an example of this technique, but with a subtle twist—instead
of storing a C structure in an SV, we’re storing a C function. In this book we primarily
discuss providing an interface from C to Perl via XS; however, some modules go a little
further. One such module is Time::HiRes, which also provides an interface for
other XS modules to use. This interface is provided via the PL_modglobal hash, a
dumping ground that XS modules can use to share information. Time::HiRes
stores a pointer to its myNVtime function for other XS modules to retrieve later.

Here’s the code that stores the pointer:

hv_store(PL_modglobal, "Time::NVtime", 12,
 newSViv(PTR2IV(myNVtime)), 0);

As you can see, the code takes a pointer to myNVTIME and then converts it to an inte-
ger. This integer is passed to newSViv (see “Creating SVs with values,” page 106) to
produce an SV, which can be stored in the PL_modglobal hash.

Listing 5.57 shows some code (provided in the Time::HiRes documentation as
an example) that accesses that function pointer.

7 Foldcasing and the rules used to convert cases are explained in Unicode Technical Report 21 (http://
www.unicode.org/unicode/reports/tr21/).
158 CHAPTER 5 THE PERL 5 API

double (*myNVtime)();

SV **svp = hv_fetch(PL_modglobal, "Time::NVtime", 12, 0);
if (!svp) croak("Time::HiRes is required");

if (!SvIOK(*svp))
 croak("Time::NVtime isn't a function pointer");

myNVtime = INT2PTR(double(*)(), SvIV(*svp));
printf("The current time is: %f\n", (*myNVtime)());

We declare the variable that will receive the function pointer; this is a pointer to a
function of type double with no arguments.

We attempt to fetch the previously cached Time::NVtime key from the
PL_modglobal hash.

If we don’t get anything back, then Time::HiRes hasn’t had a chance to store the
key yet.

If what we get back isn’t an integer (that is, a function pointer masquerading as an
integer), then something has gone horribly wrong.

We can use INT2PTR to cast this integer back into being a function pointer.

Finally, we have a function we can call to give us the time of day. Remember that
because it’s a function pointer, we need to say *myNVtime to get the actual function.

get_cv

CV* get_cv (const char* name , I32 create);

Like the related get_sv, get_av, and get_hv, this function is responsible for
looking up a name in the symbol table. This time, you look for a subroutine called
name, creating it if create is set.

Example The Perl core contains a number of hooks for the debugger; one is trig-
gered when control flow jumps around with a goto, triggering the debugger subrou-
tine DB::goto. This process is implemented in pp_ctl.c as shown in listing 5.58.

if (PERLDB_GOTO

 && (gotocv = get_cv("DB::goto", FALSE))) {
 PUSHMARK(PL_stack_sp);

 call_sv((SV*)gotocv, G_SCALAR | G_NODEBUG);

 PL_stack_sp--;
}

Listing 5.57 Providing an interface for other XS writers

B
c

d

e
f

g

B

c

d

e

f

g

Listing 5.58 Debugging goto

B
c

d
e

f

MISCELLANEOUS FUNCTIONS 159

If we’re currently debugging calls to goto …

… and we can find a subroutine called DB::goto, we store it into gotocv.

We add a mark onto the stack so we remember where we are …

… call the DB::goto subroutine, making sure to turn off debugging for the time
being …

… and pop the mark off the stack when we return.

See also: “get_sv,” page 103, “get_av,” page 132, and “get_hv,” page 145.

GIMME

U32 GIMME (void);

U32 GIMME_V (void);

These macros are the equivalent of the Perl wantarray. GIMME_V is preferred over
GIMME, because the latter doesn’t understand void contexts. GIMME_V will return
one of the constants G_SCALAR, G_ARRAY, or G_VOID; GIMME will return one of
the first two, returning G_SCALAR in void context.

Example Apache’s tables are a little like Perl’s hashes, except they can be multi-
valued—several entries can be filed under a single key. The Apache::Table mod-
ule provides an interface to Apache tables, and

$table->get("some key")

will return either a single value in scalar context or all values for a key in list context;
see listing 5.59.

if(GIMME == G_SCALAR) {
 const char *val = table_get(self->utable, key);

 if (val) XPUSHs(sv_2mortal(newSVpv((char*)val,0)));
 else XSRETURN_UNDEF;

}
else {

 int i;
 array_header *arr = table_elts(self->utable);

 table_entry *elts = (table_entry *)arr->elts;
 for (i = 1; i < arr->nelts; ++i) {

 if (!elts[i].key ||
 strcasecmp(elts[i].key, key)) continue;

XPUSHs(sv_2mortal(newSVpv(elts[i].val,0)));
 }

}

B

c

d

e

f

Listing 5.59 Context-sensitive hash fetches

B
c
d

Extracts the number of
elements from the table
and begins to loop over
each element

e
Adds the
element’s value
onto the Perl
stack as a new SV
160 CHAPTER 5 THE PERL 5 API

If we’re in scalar context …

… we call upon the Apache function table_get to do the work for us.

If this function returns a string, we ship it to the user as a new SV; if not, we put
undef onto the stack.

If this element’s key is empty or isn’t the same as the key we’re looking for,8 then we
skip to the next element.

toLOWER and toUPPER

char toLOWER (char ch);
char toUPPER (char ch);

These are simply Perl replacements for the tolower and toupper functions. They
are deliberately not locale aware, as opposed to the system’s tolower and toupper
functions, which may be.

String comparison functions

bool strEQ (char* s1 , char* s2);

bool strNE (char* s1 , char* s2);
bool strnEQ (char* s1 , char* s2 , STRLEN length);

bool strnNE (char* s1 , char* s2 , STRLEN length);

The standard C way of comparing strings, strcmp, can be confusing sometimes.
The problem is that it returns 0 when the strings are identical, acting like the Perl
cmp operator. Hence, to do something if two strings are the same, you need to say

if (!strcmp(a,b))

which is weird at best. Perl tries to get around this situation by defining more Perl-
like string comparison macros. It allows you to replace the previous code with

if (strEQ(a,b))

The n forms of these functions test for equality or inequality for the first length
characters.

As well as strEQ and strNE, Perl also provides strLT, strLE, strGT, and
strGE, which operate like their Perl-side equivalents. These functions do not have
n forms.

isALNUM and friends

bool isALNUM (char ch);
bool isALPHA (char ch);

8 Remember that string comparison functions in C return 0 for equality, so if strcasecmp returns a
true value, the strings differ.

B

c

d

e

MISCELLANEOUS FUNCTIONS 161

bool isDIGIT (char ch);

bool isLOWER (char ch);
bool isSPACE (char ch);

bool isUPPER (char ch);

Like toLOWER, these functions are locale-insensitive replacements for the ordinary
ctype character-type functions. Only hard-core XS hackers use them.

See also: “toLOWER and toUPPER,” page 161.

5.6 SUMMARY

In this chapter we’ve covered a lot of the API used within Perl. You’ve seen how to
extract information from variables, learned how to manipulate hashes and arrays, and
examined some general helper functions. In the following chapters, we’ll use these
functions to delve into the details of extending and embedding Perl. If you ever come
across a function you are not sure about, recall that we have put a full API index in
appendix C to make it easier to track down related examples.
162 CHAPTER 5 THE PERL 5 API

C H A P T E R 6

Advanced XS
programming

6.1 Pointers and things 164
6.2 Filehandles 166
6.3 Typemaps 167
6.4 The argument stack 169
6.5 C structures 170
6.6 Arrays 183
6.7 Callbacks 202

6.8 Other languages 209
6.9 Interface design: part 2 223
6.10 Older Perls 224
6.11 What’s really going on? 225
6.12 Further reading 230
6.13 Summary 230
Gluing simple C functions to Perl is fairly straightforward and requires no special
knowledge of the Perl internals. Chapter 2 covers the basics of XS and how to pass in
and return values associated with simple C scalar types. Unfortunately, many func-
tions and libraries have more complicated signatures and require additional work to
implement a Perl interface.

This chapter discusses a more advanced use of XS and deals with topics such as
structures, arrays, and callbacks. This chapter builds on chapter 2 and also refers to
functions used in the Perl internals and described in chapter 5.

IMPORTANT Many of the examples in this chapter (in particular, those related to Perl ref-
erences and arrays) work only with Perl version 5.8.0 or newer. The
typemap file distributed with older versions of Perl has problems that make
it unusable in some cases. In principle, all you need is the new typemap file.
You can copy the typemap file from a Perl 5.8.0 distribution and use it in
conjunction with Perl 5.6 if you want.
163

6.1 POINTERS AND THINGS

Now that you know about pointers and dynamic memory allocation and how the
Perl API deals with them, you can begin doing more interesting things with XS. To
demonstrate some of these issues, let’s use the following function, which concatenates
two strings to a third and returns the total length of the final string:1

#include <string.h>

STRLEN strconcat (char* str1, char* str2, char* outstr) {

 strcpy(outstr, (const char*)str1);
 strcat(outstr, (const char*)str2);

 return strlen(outstr);
}

We will now write an XS interface to mirror the C calling interface. The C signature

STRLEN strconcat(char *str1, char *str2, char *outstr);

will then translate to the Perl signature

$len = strconcat($str1, $str2, $outstr);

In this case, we could write the XS interface as follows:

STRLEN
strconcat(str1, str2, outstr)

 char* str1
 char* str2

 char* outstr = NO_INIT
 OUTPUT:

 outstr
 RETVAL

The NO_INIT keyword tells the compiler not to care about the input value of out-
str. Remember that we have to tell xsubpp that we want to use the return value,
even though we have specified a return type.

Unfortunately, this code will not work, because our simple strconcat function
assumes the output string has enough space to hold the concatenated string. In our
XS segment, outstr is typed as a pointer to a string but is not actually pointing to
anything! We must fix this by using a CODE block that allocates the memory for a
string of the required size:2

1 However, why you would want to use this function rather than the standard strcat function or
sv_catpv from the Perl API is a mystery!

2 The alternative is to preallocate the memory within Perl by passing in a string as the third argument
(and removing the NO_INIT declaration). The contents of the string will then be overwritten by
strconcat. This approach will work but can generate core dumps if the string is not large enough
to receive the result string. Not recommended!
164 CHAPTER 6 ADVANCED XS PROGRAMMING

STRLEN

strconcat(str1, str2, outstr)
 char* str1

 char* str2
 char* outstr = NO_INIT

 PREINIT:
 STRLEN length;

 CODE:
 length = strlen(str1) + strlen(str2) + 1;

 New(0, outstr, length, char);
 RETVAL = strconcat(str1, str2, outstr);

 OUTPUT:
 outstr

 RETVAL

We use New rather than malloc to allocate the memory, because this is the standard
Perl interface to memory allocation and the Perl macros are available from within the
XS environment. See “New,” page 150, for more details about this function.

Now this routine is becoming complicated! The PREINIT block initializes addi-
tional variables that are required for the CODE section. PREINIT guarantees that the
variable declaration will occur as soon as possible after entering the function, because
some compilers do not like declarations after code sections have started; it provides a
nice way to separate variable declarations from code. Even worse, although our XS
interface will now work, there is still a problem: each time the routine is entered,
memory is allocated to outstr—but it is never freed. XS provides a means to tidy
up after ourselves by using the CLEANUP keyword. The cleanup code is guaranteed to
run just before the C code returns control to Perl. Our XS function should now work
without memory leaks:

STRLEN
strconcat(str1, str2, outstr)

 char* str1
 char* str2

 char* outstr = NO_INIT
 PREINIT:

 STRLEN length;
 CODE:

 length = strlen(str1) + strlen(str2) + 1;
 New(0, outstr, length, char);

 RETVAL = strconcat(str1, str2, outstr);
 OUTPUT:

 outstr
 RETVAL

 CLEANUP:
 Safefree(outstr);

PREINIT is
used to declare
additional variables Calculates the size of the

required string. Don’t
forget the extra space for
the null character!

b

b

POINTERS AND THINGS 165

This example shows how to deal with pointer types (in this case a simple string) and
how to allocate and free memory using XS. It also demonstrates the wrong way to
approach interface design—in a real application, the string would be a return value
(without the length) and would not be returned via the argument list. The code
might look something like this:

char *

strconcat(str1, str2)
 char* str1

 char* str2
 PREINIT:

 STRLEN length;
 CODE:

 length = strlen(str1) + strlen(str2) + 1;
 New(0, RETVAL, length, char);

 length = strconcat(str1, str2, RETVAL);
 OUTPUT:

 RETVAL
 CLEANUP:

 Safefree(outstr);

6.2 FILEHANDLES

Sometimes an external library needs to print to a user-supplied filehandle or open a
file and return a filehandle to the user. If the library uses C input/output streams, then
it is easy to pass the C stream to and from Perl with XS—by default, XS knows how to
deal with a FILE*, converting it to and from a Perl filehandle. The following exam-
ple could be used to provide an XS interface to one of the Gnu readline functions:3

int

rl_getc(file)
 FILE * file

This example shows that a FILE* can be treated like any other simple type. In this
case, the filehandle is an input argument

$retval = rl_getc(FH);

but it is just as easy to import a stream into Perl.
If your external library requires a file descriptor (see section 3.5), then you will have

to use the fileno function to extract the file descriptor from the filehandle or stream
(by using the fileno function in either Perl or C). Similarly, if you are importing a
file descriptor into Perl, you need to convert it to a filehandle either by using the
fdopen C function (if you are comfortable with XS and C) or by importing the
descriptor into Perl as an integer and then using Perl’s open command4 to translate it:

3 The Term::ReadLine::Gnu module has a full implementation.
4 Or even IO::Handle->new_from_fd()
166 CHAPTER 6 ADVANCED XS PROGRAMMING

$fd = some_xs_function();

open(FH, "<&=$fd");

As of version 5.7.1 of Perl, the I/O subsystem is completely self contained and no
longer relies on the underlying operating system for implementation. Perl uses a
PerlIO* rather than a FILE* for all I/O operations (in some cases a PerlIO* can
be the same as a FILE*, but you can’t rely on it). If you are using I/O in your XS
code but you are not using an external library, then you should be using PerlIO*
in preference to a FILE*. Of course, XS automatically recognizes both PerlIO*
and FILE*.

6.3 TYPEMAPS

When a variable is passed from Perl to C (or from C to Perl), it must be translated
from a Perl scalar variable (chapter 4) to the correct type expected by the C function.
So far, we’ve implicitly assumed that this translation is something that “just happens”;
but before we can move further into XS, we must explain how it happens.

The XS compiler (xsubpp) uses a lookup table called a typemap to work out what
to do with each variable type it encounters. Perl comes with a file called typemap that
contains the common variable types; this file is installed as part of Perl. On many Unix
systems, it can be found in /usr/lib/perl5/5.6.0/ExtUtils/typemap.5 Here is a subset of
that file:

basic C types

int T_IV
unsigned int T_UV

long T_IV
unsigned long T_UV

char T_CHAR
unsigned char T_U_CHAR

char * T_PV
unsigned char * T_PV

size_t T_UV
STRLEN T_UV

time_t T_NV
double T_DOUBLE

##
INPUT

T_UV
 $var = ($type)SvUV($arg)

T_IV

5 The location of the file on your system can be determined using Perl’s Config module:
% perl -MConfig -MFile::Spec::Functions \
 -le 'print catfile($Config{installprivlib},"ExtUtils","typemap")'
/usr/lib/perl5/5.6.0/ExtUtils/typemap
TYPEMAPS 167

 $var = ($type)SvIV($arg)

T_CHAR
 $var = (char)*SvPV($arg,PL_na)

T_U_CHAR
 $var = (unsigned char)SvUV($arg)

T_NV
 $var = ($type)SvNV($arg)

T_DOUBLE
 $var = (double)SvNV($arg)

T_PV
 $var = ($type)SvPV($arg,PL_na)

##
OUTPUT

T_IV
 sv_setiv($arg, (IV)$var);

T_UV
 sv_setuv($arg, (UV)$var);

T_CHAR
 sv_setpvn($arg, (char *)&$var, 1);

T_U_CHAR
 sv_setuv($arg, (UV)$var);

T_NV
 sv_setnv($arg, (double)$var);

T_DOUBLE
 sv_setnv($arg, (double)$var);

T_PV
 sv_setpv((SV*)$arg, $var);

The first section contains a list of all the C types of interest (the actual file contains
many more) along with a string describing the type of variable. As you can see, this
list provides a many-to-one translation, because many different C variable types can
have the same fundamental representation via the use of typedefs (see section 1.6.2).
For example, both size_t and STRLEN are fundamentally integer types and can be
represented by a T_UV in the typemap.

The second section is called INPUT; it provides the code required to translate a Perl
variable to the corresponding C type. The third section is called OUTPUT, and it does
the reverse: it provides code to translate C variables to Perl variables. Each label
matches one of those defined in the first section, and the functions are simply those
described in “SvIV and friends,” page 112. For example, the typemap entry to trans-
late an SV to an integer (T_IV) uses SvIV to retrieve the integer from the SV and
sv_setiv to set the integer part of an SV.

The typemap file may look strange, because it includes Perl-style variables in C-type
code. The variables $arg, $var, and $type (and for more complex entries, $ntype,
$Package, $func_name, and $argoff) have a special meaning in typemaps:

• $arg—The name of the Perl SV in the Perl argument list.

• $var—The name of the C variable that is either receiving the value from the
SV or setting the value in the SV.
168 CHAPTER 6 ADVANCED XS PROGRAMMING

• $type—The type of the C variable. It will be one of the types listed at the top
of the typemap file.

• $ntype—The type of the C variable, with all asterisks replaced with the string
Ptr. A char * would therefore set $ntype to charPtr. This variable is some-
times used for setting classnames or referencing helper functions.

• $Package—The Perl package associated with this variable. It is the same as
the value assigned to the PACKAGE directive in the XS file.

• $func_name—The name of the XS function.

• $argoff—The position of the argument in the argument list. It begins count-
ing at zero.

In many cases, you will need to add extra typemap entries when creating XS inter-
faces. Rather than add to the standard typemap, all you need to do is create a file
called typemap in your module directory and add entries in the same format used in
the default typemap shown earlier. The make file generated from Makefile.PL will
automatically include this typemap file in the XS processing.

A description of each of the standard Perl typemaps can be found in appendix A.

6.4 THE ARGUMENT STACK

In Perl, arguments are passed into and out of subroutines as lists. The list is called an
argument stack: arguments are pushed onto the stack by the caller and shifted off the
stack by the subroutine. The following Perl program demonstrates this behavior:

my ($sum, $diff) = sumdiff(5, 3);

sub sumdiff {
 my $arg1 = shift; # implicitly shifts off @_

 my $arg2 = shift;

 return ($arg1 + $arg2, $arg1 - $arg2);

}

Perl keeps track of the number of arguments on the stack that are meant for the cur-
rent subroutine (the size of @_). XS routines use the same technique when passing
arguments from Perl to the XS layer. In our discussion so far, this step has happened
automatically, and the arguments from the stack have been processed using the pro-
vided typemap. Perl provides the ST macro to retrieve the SV on the stack. ST(0) is
equivalent to $_[0], ST(1) is equivalent to $_[1], and so forth. In the typemap
definitions described in the previous section, $arg is replaced by ST() macros cor-
responding to the required stack position. More details on this replacement can be
found in section 6.11 (if you want to know the details of how the Perl stacks work,
skip forward to “The argument stack,” page 291).

So far, we have only looked at XS functions that either modify input arguments
(ultimately using the ST macros) and/or return a single value. You can also write XS
THE ARGUMENT STACK 169

functions that take full control of the argument stack; this chapter contains examples
of how to do so using PPCODE (see“Returning a list,” page 181).

6.5 C STRUCTURES

C structures (section 3.4) are used in many libraries to pass around related blocks of
data. This section shows how you can handle C structures in XS. The choice you
make depends entirely on the way the structure will be used.

6.5.1 C structures as black boxes

If you don’t want to look inside the structure (or you aren’t allowed to), then one
approach to structures is simply to return the pointer to the structure and store it in a
Perl scalar. Usually, the pointer is then used as an argument for other library routines.
As a simple example, we will provide an XS interface to some of the POSIX functions
that deal with time. They are as follows:

struct tm * gmtime(const time_t *clock);

This function returns a tm structure (using Universal Time) for a given time (for
example, the output from the Perl time function supplied in a variable of type
time_t). This routine is used for the Perl gmtime built-in.

time_t timegm(struct tm * tm);

This function converts a tm structure to a time_t time.

size_t strftime(char * s, size_t maxsize,

 char * format, struct tm * tm);

This function converts a tm structure to a formatted string.
In other words, to use these functions, you don’t need to know the contents of the

tm structure. For the purposes of this example, we will place the XS routines into a
Perl module called Time. The first step is to create the module infrastructure:

% h2xs -A -n Time

Writing Time/Time.pm
Writing Time/Time.xs

Writing Time/Makefile.PL
Writing Time/test.pl

Writing Time/Changes
Writing Time/MANIFEST

We first implement the gmtime function, because it returns the base structure.
Here is a first attempt at the XS code (after a #include <time.h> near the top
of Time.xs):

struct tm *

gmtime(clock)
 time_t &clock
170 CHAPTER 6 ADVANCED XS PROGRAMMING

The ampersand indicates that we wish to pass a pointer to the gmtime function.
Perl copies the argument into the variable clock and then passes the pointer to the
function. Without the ampersand, the default behavior would be to pass the value to
the function.

If we attempt to build this module (after running perl Makefile.PL), we get
the following error:

Error: 'struct tm *' not in typemap in Time.xs, line 11
Please specify prototyping behavior for Time.xs (see perlxs manual)
make: *** [Time.c] Error 1

The problem is that Perl does not now how to deal with a pointer to a tm structure,
because a struct tm * is not present in the default typemap file. To fix this error,
we must create a typemap file (called typemap) and place it in the build directory.
Because we are interested only in the pointer (not the contents), the typemap just
needs to contain

struct tm * T_PTR

where the variable type and the typemap name are separated by a tab. T_PTR tells
Perl to store the pointer address directly into a scalar variable. After we save this file,
the module builds successfully. We can test it with the following:

% perl -Mblib -MTime -le 'print Time::gmtime(time)'
1075295360

Your result will vary, because this is a memory address.
Now that we have a pointer, we can pass it to a function. timegm looks like this

time_t
timegm(tm)
 struct tm * tm

and can be used as follows:

use Time;
$tm = Time::gmtime(time());
$time = Time::timegm($tm);

The default implementation of strftime looks like this:

size_t
strftime(s, maxsize, format, tm)
 char * s
 size_t maxsize
 char * format
 struct tm * tm
 OUTPUT:
 s

Unfortunately, although this function works, there are serious problems with the
interface to strftime as implemented. To use it, we must presize the output string
and provide the length of the output buffer (including the C-specific terminating
C STRUCTURES 171

null character)—two things people are used to in C but that are unacceptable in a
Perl interface:

use Time;

$tm = Time::gmtime(time());
$s = " "; # presize output buffer

$maxsize = length($s)+1; # length must account for the null
$format = "%D";

$len = Time::strftime($s, $maxsize, $format, $tm);
print "length=$len output=$s\n";

A much better Perl interface would be something like

$s = strftime($tm, $format);

where we have removed the input buffer requirement and rearranged the argument
order to place the tm structure at the start of the list. One way of implementing this
interface is to write a pure Perl wrapper (placed in the .pm file) that deals with the
presized buffer and then calls the XS code. Although this approach is sometimes eas-
ier to implement (especially if you are using Perl functionality), often it is more effi-
cient to rewrite the XS layer using CODE: blocks:

char *
strftime(tm, format)

 struct tm * tm
 char * format

 PREINIT:
 char tmpbuf[128];

 size_t len;
 CODE:

 len = strftime(tmpbuf, sizeof(tmpbuf), format, tm);
 if (len > 0 && len < sizeof(tmpbuf)) {

 RETVAL = tmpbuf;
 } else {

 XSRETURN_UNDEF;
 }

 OUTPUT:
 RETVAL

This code is much better but still not perfect. The problem now is that we don’t
know the required size of the output buffer before calling strftime. In this exam-
ple, we simply allocate 128 characters and hope that is enough. It will be enough in
most cases, but if a large format is supplied, this function will currently return
undef. We can overcome this problem by checking the return value of strf-
time and increasing the buffer size until it is large enough—this is the way
POSIX::strftime is implemented in standard Perl.6

6 See ext/POSIX/POSIX.xs in the Perl source tree for details of the implementation of
POSIX::strftime.
172 CHAPTER 6 ADVANCED XS PROGRAMMING

The example so far has demonstrated how to pass a structure pointer from and to
a C library, but the interface we’ve implemented has some remaining issues. In the fol-
lowing sections, we address some of these problems.

T_PTR versus T_PTRREF

Using a scalar to store a memory address is dangerous because it is possible that the
Perl program may inadvertently change the value of an existing pointer (maybe by
treating it as a normal number) or pass an undefined value (0) to the timegm or
strftime function. If any of these things occurs, the program will crash with a
memory error because the value will no longer point to a valid memory location. The
best way to deal with this problem is to use an object interface (see section 6.5.2);
but, failing that, another option is to return a reference to a scalar containing the
pointer value rather than the scalar itself. The T_PTRREF typemap designation does
just that:

T_PTR
 sv_setiv($arg, (IV)$var);

T_PTRREF
 sv_setref_pv($arg, Nullch, (void*)$var);

This approach offers an advantage: the function will not run unless a scalar reference
is passed in (which is difficult to do by mistake).

Default arguments

Rather than always force the time to be supplied, a cleaner approach assumes the cur-
rent time if no arguments are present. This technique matches the behavior of the
built-in gmtime:7

struct tm *
gmtime(...)

 PREINIT:
 time_t clock;

 CODE:
 if (items > 1)

 Perl_croak(aTHX_ "Usage: Time::gmtime([time])");
 else if (items == 1)

 clock = (time_t)SvNV(ST(0));
 else

 clock = time(NULL);

 RETVAL = gmtime(&clock);

 OUTPUT:
 RETVAL

7 gmtime is implemented in Perl in the file pp_sys.c.

b
No required arguments, so
explicitly declares the clock variable

c
d

e

f

Runs gmtime using the value
stored in clock and stores
the pointer in RETVAL
C STRUCTURES 173

The ellipsis (...) indicates to the XS compiler that the number of input arguments is
not known. This example has no required arguments; a signature of gmtime(clock,
...) could be used to indicate that there will be at least one argument.

The items variable is supplied by the XS system and contains the number of input
arguments waiting on the stack. Here we check to see if more than one argument has
been supplied.

If more than one argument has been supplied, we stop the program with
Perl_croak. It provides similar functionality to the croak provided by the
Carp module.

NOTE Perl context—aTHX_ is an example of a Perl context-passing function. It
stands for “argument threads,” and the trailing underscore implies a
comma; it is matched by pTHX_ in a function’s prototype. If threads sup-
port is enabled, this macro will expand to register PerlInter-
preter *my_perl,; it will be empty if threads support is disabled. In
addition, aTHX and pTHX are provided for functions that take no argu-
ments other than the context.

The ellipsis implies that we must do our own argument processing. If there is a single
argument, the numeric value is retrieved from the first argument on the stack
(ST(0)). This code is identical to that found in the standard typemap file (see sec-
tion 6.3).

If there are no arguments, the current time is obtained using the system time func-
tion. The NULL macro is used to indicate that we are only interested in a return value.

Static memory

A more worrisome problem is associated with the gmtime function itself. This func-
tion always uses the same structure (and therefore returns the same memory address),
so each time it is called, it overwrites the answer from a previous call. This behavior is
evident in the following example:

use Time;
$tm1 = Time::gmtime(time());

print "First time: ",Time::timegm($tm1), "\n";
$tm2 = Time::gmtime(time() + 100);

print "First time (again): ",Time::timegm($tm1), "\n";
print "Second time: ",Time::timegm($tm2), "\n";

This code prints

First time: 983692014

First time (again): 983692114
Second time: 983692114

B

c

d

e

f

174 CHAPTER 6 ADVANCED XS PROGRAMMING

This result may cause confusion unless it’s carefully documented (not everyone is an
expert C programmer used to these oddities). On systems where it is available, one
solution is to use gmtime_r (the reentrant [thread-safe] version of this function),
because it takes the address of the structure as an argument:

struct tm *
gmtime(clock);

 time_t clock;
 PREINIT:

 struct tm * tmbuf;
 CODE:

 New(0, tmbuf, 1, struct tm);
 RETVAL = gmtime_r(&clock, tmbuf);

 OUTPUT:
 RETVAL

A more general (but not thread-safe) solution is to copy the result from gmtime into
a new structure each time:

struct tm *

gmtime_cp(clock);
 time_t clock;

 PREINIT:
 struct tm * tmbuf;

 struct tm * result;
 CODE:

 result = gmtime(&clock);
 New(0, tmbuf, 1, struct tm);

 StructCopy(result, tmbuf, struct tm);
 RETVAL = tmbuf;

 OUTPUT:
 RETVAL

Both these techniques overcome the problem with gmtime, but they both introduce
a memory leak because the memory allocated for the new structure (using the New
function) is never given back to the system. The Perl scalar containing the memory
address attaches no special meaning to it; if the variable goes out of scope, the SV is
freed without freeing the memory. The C way to deal with this problem is to provide
a function that can be called when the structure is no longer needed (an XS function
that simply calls Safefree).

The more Perl-like way to handle the problem is to turn the structure into an
object such that Perl automatically frees the memory when the variable goes out of
scope. This approach is discussed in section 6.5.2. Alternatively, if the structure is
fairly simple (and does not contain pointers to other variables), you can either copy the
memory contents directly into a Perl variable by using the T_OPAQUEPTR typemap
entry (see section A.2.27 for an example) or copy the contents into a Perl hash (par-
tially discussed in section 6.5.3). These approaches both have the advantage of letting
Perl—rather than the programmer—keep track of memory management. Both
C STRUCTURES 175

approaches let the caller modify the contents of the hash between calls; it is no longer
a black box, and the hash approach requires more work from the XS programmer.

6.5.2 C structures as objects

You can think of an object as some data associated with a set of subroutines (methods).
In many libraries, C structures take on the same role as objects, and Perl can treat them
as such. An object-oriented (OO) interface to the time functions described earlier may
look something like this (the use of new as a constructor is purely convention):

use Time;

$tm = new Time(time());
$time = $tm->timegm;

$s = $tm->strftime($format);

The changes required to the existing Time module to get this behavior are not exten-
sive. In this section, we will modify the Time module so that it matches this interface.

The most important change is to modify the typemap entry to use T_PTROBJ
instead of T_PTR or T_PTRREF. T_PTROBJ is similar to T_PTTREF, except that the
reference is blessed into a class. Here is the OUTPUT entry in the standard Perl
typemap file:

T_PTROBJ

 sv_setref_pv($arg, \"${ntype}\", (void*)$var);

By default, the reference will be blessed into class $ntype, which translates to
struct tmPtr! A class containing a space is not helpful, because the XS compiler
does not know how to handle it. We can get around this problem two ways. First, we
can create a new OUTPUT entry (and corresponding INPUT entry) that uses a hard-
wired package name:

struct tm * T_TMPTROBJ

INPUT:

T_TMPTROBJ
 if (sv_derived_from($arg, \"TimePtr\")) {

 IV tmp = SvIV((SV*)SvRV($arg));
 $var = INT2PTR($type,tmp);

 }
 else

 Perl_croak(aTHX_ \"$var is not of type TimePtr\")

OUTPUT:

T_TMPTROBJ
 sv_setref_pv($arg, \"TimePtr\", (void*)$var);

Second, we can create a new variable type and associate it with T_PTROBJ. We will
adopt the latter technique because it is more robust against changes to the behavior of
typemap entries. We need to add the following line before the MODULE line in the XS
file to generate a new type Time as an alias for struct tm:
176 CHAPTER 6 ADVANCED XS PROGRAMMING

typedef struct tm Time;

We must also modify the typemap file to include

Time * T_PTROBJ

Now, wherever we used struct tm, we can use Time. Here is the new constructor
(including all the changes suggested earlier):

Time *

new(class, ...);
 char * class

 PREINIT:
 time_t clock;

 Time * tmbuf;
 Time * result;

 CODE:
 if (items > 2)

 Perl_croak(aTHX_ "Usage: new Time([time])");
 else if (items == 2)

 clock = (time_t)SvNV(ST(1));
 else

 clock = time(NULL);

 result = gmtime(&clock);

 New(0, tmbuf, 1, Time);
 StructCopy(result, tmbuf, Time);

 RETVAL = tmbuf;
 OUTPUT:

 RETVAL

The function name has changed to new, and now there is one required argument (the
class name) as well as the optional second argument. This argument ordering is no
different than any other Perl method.

The changes are minor compared to the previous non-OO version and are caused
entirely by the extra argument.8 When we build this module, we can check the result
of the constructor:

% perl -Mblib -MTime -le 'print new Time()'

TimePtr=SCALAR(0x80f87b8)

As expected, it returns an object blessed into class TimePtr. The complication now
is that the timegm and strftime methods must be put into the TimePtr

8 If you are happy to have a non-OO style constructor, simply changing the typemap entry will be
enough. The calling style would then remain

$object = Time::gmtime();

but it would return an object.

The return value is now a
pointer to Time rather than
a pointer to struct tm

b

The time is now the second
argument (ST(1)) rather
than the first

b

C STRUCTURES 177

package and not the default Time namespace. We do so by adding an additional
MODULE directive after the constructor and then adding the methods:

MODULE = Time PACKAGE = TimePtr

time_t
timegm(tm)

 Time * tm

char *

strftime(tm, format)
 Time * tm

 char * format
 PREINIT:

 char tmpbuf[128];
 size_t len;

 CODE:
 len = strftime(tmpbuf, sizeof(tmpbuf), format, tm);

 if (len > 0 && len < sizeof(tmpbuf)) {
 RETVAL = tmpbuf;

 } else {
 XSRETURN_UNDEF;

 }
 OUTPUT:

 RETVAL

Other than the extra package declaration, these definitions are exactly the same as
those used previously. Perl automatically finds these functions and passes the struc-
ture pointer (the object) as the first argument.

There are at least two reasons to prefer the OO interface over storing the plain
pointer:9

• Type safety—The INPUT typemap entry for T_PTROBJ includes a check for the
class of the input variable. This check guarantees that the object is of the correct
type. Unless a programmer tries hard, it will prevent strange values (with even
stranger memory addresses) from being passed to the C layer and causing seg-
mentation faults.

• Destructors—As with any Perl class, when the object goes out of scope and is
freed, Perl will call a DESTROY method. XS implementations of Perl classes
behave the same way. Recall that in the previous implementation, the gmtime
function generated a memory leak because it was not possible to automatically
free the memory allocated to the structure. As written, the current object imple-
mentation also has this problem; but it can be fixed simply by adding a
DESTROY function to the TimePtr class:
void
DESTROY(tm)

9 Ignoring any preference in the syntax of Time::timegm($tm) versus $tm->timegm
178 CHAPTER 6 ADVANCED XS PROGRAMMING

 Time * tm

 CODE:
 printf("Calling TimePtr destructor\n");

 Safefree(tm);

Now, whenever a TimePtr object is freed, the destructor will be called and the
memory will be freed.

6.5.3 C structures as hashes

If the main reason for the structure is to group return values that are of interest, then
you should consider unpacking the structure into either a Perl hash or a list that can
be converted into a hash. We will demonstrate both these techniques by extending
our Time module so that it uses a Perl hash rather than a structure pointer. For clar-
ity, the examples will not include support for defaulting of the time.

Returning a hash reference

One way of returning a hash is to return the reference to a hash:

$hash = Time::gmtime_as_href(time);

print "Day is ", $hash->{"mday"}, "\n";

The XS code required is as follows:

HV *

gmtime_as_href(clock)
 time_t clock

 PREINIT:
 HV * hash;

 struct tm * tmbuf;
 CODE:

 /* Run gmtime */
 tmbuf = gmtime(&clock);

 hash = newHV();

 /* Copy struct contents into hash */

 hv_store(hash, "sec", 3, newSViv(tmbuf->tm_sec), 0);
 hv_store(hash, "min", 3, newSViv(tmbuf->tm_min), 0);

 hv_store(hash, "hour", 4, newSViv(tmbuf->tm_hour), 0);
 hv_store(hash, "mday", 4, newSViv(tmbuf->tm_mday), 0);

 hv_store(hash, "mon", 3, newSViv(tmbuf->tm_mon), 0);
 hv_store(hash, "year", 4, newSViv(tmbuf->tm_year), 0);

 hv_store(hash, "wday", 4, newSViv(tmbuf->tm_wday), 0);
 hv_store(hash, "yday", 4, newSViv(tmbuf->tm_yday), 0);

 RETVAL = hash;
 OUTPUT:

 RETVAL

B Calls function gmtime_as_href to distinguish
it from the normal gmtime function

Passes in the time in seconds
rather than providing a means for
defaulting to the current time

c

Calls gmtime with the
pointer to the current time

Creates a new hash and
stores the pointer in hash

d

The hash has been populated, so we can
copy the pointer to the RETVAL variable
C STRUCTURES 179

Here we set the return value of our function to be a pointer to a hash. Remember that
the argument stack can only contain scalar types, so the typemap will automatically
convert this value to a hash reference when it is placed on the stack.

This block declares the additional variables that will be required. hash is a pointer to
an HV, and tmbuf is declared as a pointer to the struct that will contain the result
from the gmtime call. Because the hash will also be returned, we could have used
RETVAL throughout rather than creating an extra variable; however, the explicit use
of a variable name is sometimes clearer.

These lines store the contents of the structure into the hash. The first argument is a
pointer to the HV, the second argument is the key, and the third is the length of the
key. The fourth argument must be an SV; therefore, an SV is created using the integer
from each struct entry. The final argument is the hash number; because we don’t
know the value, we pass in 0 and ask Perl to calculate the value for us. Note that
hv_store does not affect the reference count of the SV that is being stored; thus
each SV stored in the hash will automatically have a refcount of 1.

This XS code does work and returns a reference to a hash containing the gmtime
results, but it contains a subtle bug that is illustrated in the following output:

% perl -Mblib -MTime -MDevel::Peek \

 -le '$h=Time::gmtime_as_href(time);Dump($h)'
SV = RV(0x81109b4) at 0x815bd54

 REFCNT = 1
 FLAGS = (ROK)

 RV = 0x80f86e0
 SV = PVHV(0x81429a8) at 0x80f86e0

 REFCNT = 2
 ...

The reference count to the HV is 2. The variable $h has one of the references, but no
other variables know about the reference. This situation constitutes a memory leak. If
$h is later undefined or goes out of scope, the reference count on the HV will drop to
1, but it can’t go any lower. Because it never goes to 0, the HV will not be freed until
the program exits. This is the case because when the HV is created using newHV, its
reference count is set to 1 as expected. The output typemap entry for an HV is

T_HVREF
 $arg = newRV_inc((SV*)$var);

which increments the reference count when the reference is taken. At this point there
is an SV containing a reference to the hash on the stack, the hash variable contains
the HV, and the reference count is, correctly, 2. Unfortunately when the XS function
exits, the hash variable simply disappears without decrementing the reference count.

Perl overcomes such problems by introducing the concept of mortality. If an SV is
marked as mortal, the reference count will automatically be decremented at some
point later in time. For XS functions, mortal variables’ reference counts are

B

c

d

180 CHAPTER 6 ADVANCED XS PROGRAMMING

decremented on exit from the function. The previous code can be fixed to avoid the
memory leak by marking hash as mortal. To do so, we replace

hash = newHV();

with

hash = (HV*)sv_2mortal((SV*)newHV());

The new sequence now becomes:

1 Create a new HV and increment the reference count. Reference count = 1.

2 Mark the HV as mortal. Reference count = 1.

3 Take a reference to the HV and store it on the argument stack. Reference count = 2.

4 Exit the XS function and automatically decrement the reference count. Refer-
ence count = 1.

NOTE You don’t need to know exactly when a mortal variable’s reference count is
decremented. Suffice to say that all variables marked as mortal in your XS
code will have their reference counts decremented some time after exiting
your XS function and before returning control to the calling Perl code.

If we make this change, the test program now reports the correct reference count
for $h:

% perl -Mblib -MTime -MDevel::Peek \

 -le '$h=Time::gmtime_as_href(time);Dump($h)'
SV = RV(0x81109b4) at 0x815bd54

 REFCNT = 1
 FLAGS = (ROK)

 RV = 0x80f86e0
 SV = PVHV(0x81429a8) at 0x80f86e0

 REFCNT = 1
 ...

Returning a list

An alternative way of returning a hash is to return a list with alternating keys and values:

%hash = Time::gmtime_as_list(time);

print "Day is ", $hash{"mday"}, "\n";

The XS code must push the keys and the values onto the argument stack just as if it
were a normal Perl routine:

void

gmtime_as_list(clock)
 time_t clock

 PREINIT:
 struct tm * tmbuf;

 PPCODE:
 tmbuf = gmtime(&clock);

B

c

C STRUCTURES 181

 EXTEND(SP, 16);

 PUSHs(sv_2mortal(newSVpv("sec", 3)));
 PUSHs(sv_2mortal(newSViv(tmbuf->tm_sec)));

 PUSHs(sv_2mortal(newSVpv("min", 3)));
 PUSHs(sv_2mortal(newSViv(tmbuf->tm_min)));

 PUSHs(sv_2mortal(newSVpv("hour", 4)));
 PUSHs(sv_2mortal(newSViv(tmbuf->tm_hour)));

 PUSHs(sv_2mortal(newSVpv("mday", 4)));
 PUSHs(sv_2mortal(newSViv(tmbuf->tm_mday)));

 PUSHs(sv_2mortal(newSVpv("mon", 3)));
 PUSHs(sv_2mortal(newSViv(tmbuf->tm_mon)));

 PUSHs(sv_2mortal(newSVpv("year", 4)));
 PUSHs(sv_2mortal(newSViv(tmbuf->tm_year)));

 PUSHs(sv_2mortal(newSVpv("wday", 4)));
 PUSHs(sv_2mortal(newSViv(tmbuf->tm_wday)));

 PUSHs(sv_2mortal(newSVpv("yday", 4)));
 PUSHs(sv_2mortal(newSViv(tmbuf->tm_yday)));

We use void as a return value for the function because the return values will be han-
dled directly by the routine rather than by the XS compiler.

We use PPCODE rather than CODE to indicate to the XS compiler that we are han-
dling the return values ourselves. Doing so does not affect the processing of input
arguments but does imply that OUTPUT cannot be used.

The EXTEND macro makes sure the argument stack is large enough to contain the
requested number of arguments. Because we know we will need to hold 16 items
(8 keys and 8 values), we presize the stack for efficiency. Doing so is similar to using
$#array = 15 in Perl. SP is the stack pointer (pointing to the current position in
the stack) and is initialized for us automatically on entry to the routine.

We need to start pushing arguments onto the stack. For XS programmers, the only
approved ways of pushing arguments onto the stack are the PUSHs and XPUSHs
macros. They push an SV onto the argument stack. The difference is that XPUSHs
extends the size of the stack by one so that it is guaranteed to have room for the
incoming SV. In this example, we could have used XPUSHs instead of PUSHs and
removed the EXTEND call. Because we can only push SVs onto the stack, each argu-
ment (string key or integer value) is first converted to an SV and then marked as mor-
tal. All SVs pushed onto the stack must be marked as mortal so they can be freed after
assignment, because a copy of the SV is assigned to a Perl variable and not the original
SV. If this were not the case, $a = $b would alias $a to $b!

d

e

B

c

d

e

182 CHAPTER 6 ADVANCED XS PROGRAMMING

NOTE If you scan the internals documentation, it may be tempting to use the
PUSHi, PUSHp, and PUSHn functions (and the related XPUSH variants) to
push plain integers, strings, and floats onto the stack in XS routines. Unfor-
tunately, they are not part of the XS API. These routines are intended for
use by the internals and can only be used to return a single value onto the
stack. They use a single SV (that must be declared using the dTARG macro),
and if five values are pushed onto the stack with these functions, they will
all receive the value of the last thing pushed on—because it is the pointer
to the same SV that is stored on the stack.

Passing the hash back into C

Both techniques we just described (returning a list or returning a hash reference)
overcome the memory leak problem described earlier, because the information is cop-
ied to a Perl data structure and not kept inside a C structure. Perl knows nothing
about the C structure, so it can only free its memory via an object destructor. When
you use hashes to store the information, Perl can free the memory directly. Unfortu-
nately, this behavior comes at a price when it is time to pass the information back to
C. If the information is only required for use in Perl (such as the data returned from a
call to stat), then this is not a problem; but if the data will be passed back into C
(for example, to the timegm function), then more work is required—the data must
be converted from the hash to a C structure. Even worse, you can no longer rely on
the integrity of the data structure, because the contents of the hash can be changed
arbitrarily before they are passed back to C. If structure integrity is a problem, then
you should probably use objects.

6.6 ARRAYS

In some cases, a C routine wants to receive an array of numbers or strings. To handle
this situation, you must convert the Perl array or list into a C array before calling the
C function. Doing so usually involves the following steps:

1 Allocate some memory to hold the array.

2 Copy each element from the list/array to the C array.

3 After the C function has run, free the memory.

6.6.1 Passing numeric arrays from Perl to C

The ability to pass arrays of numbers to and from C is a common requirement, espe-
cially in the scientific community. This section will describe how to deal with one-
dimensional arrays; the next section will discuss multidimensional arrays. We will also
provide some benchmarking examples to provide a guide for the most efficient han-
dling of arrays and lists.

Note that this section deals with converting lists and arrays to C arrays, not simply
manipulating a Perl array as-is. The easiest way to handle a Perl array in C is simply
to pass in the array reference and manipulate the AV* in C code.
ARRAYS 183

We will illustrate how to pass Perl numeric arrays to C by providing an XS interface
to a function that will sum the elements of the array and return the answer to Perl.
The signature of the C function is

int sum(int count, intArray * array);

intArray is typedef ’d to an int for two reasons: so that XS can distinguish a
pointer to an integer from a pointer to an array of integers (they can both be written
as int * in C) when it is looking up the correct typemap entry, and so that XS can
determine whether the array contains integers.

NOTE For some typemap entries, xsubpp determines the type of element stored in
the array by looking at the type used to specify the array. It does so by
removing Array and Ptr from the type name. In this case, the type is
intArray*, and the internal name of this type is intArrayPtr; there-
fore, the subtype (the xsubpp name for the elements in the array) is deter-
mined to be int. We use this ability in the next section when we use
T_ARRAY to return a list from XS.

For this example, the module will be called Arrays. Here is the top of the XS file,
including the sum function:

#include "EXTERN.h"
#include "perl.h"

#include "XSUB.h"

typedef int intArray;

/* Add up everything in an int array */
/* Args: the number of things to add, pointer to array */

int sum (int num, intArray * array) {
 int thesum = 0;

 int count;
 for (count = 0; count < num; count++) {

 thesum += array[count];
 }

 return thesum;
}

MODULE = Arrays PACKAGE = Arrays

Passing a numeric array from Perl to C as a list

One of the simplest ways to pass an array into XS (and into other Perl subroutines) is
to pass in a list:

$sum = Arrays::sum_as_list(@values);

Each element of the array @values is pushed onto the argument stack; so, in XS,
each argument must be retrieved from the stack and copied into a C array. Perl pro-
vides the T_ARRAY typemap entry to handle this situation:
184 CHAPTER 6 ADVANCED XS PROGRAMMING

int

sum_as_list(array, ...)
 intArray * array

 CODE:
 /* ix_array is the total number of elements */

 RETVAL = sum(ix_array, array);
 OUTPUT:

 RETVAL
 CLEANUP:

 Safefree(array);

This code looks straightforward, but many things are going on behind the scenes:

• T_ARRAY is unique in the standard typemap file because it is designed to work
on multiple input arguments. The ellipsis (...) indicates that an unknown
number of arguments are expected, but they are all processed as part of the
typemap entry.

• T_ARRAY is greedy. Only a single XS argument can be associated with
T_ARRAY, and it must be the last argument in the list. This requirement should
not be surprising, because the typemap is doing the C equivalent of @args =
@_;. There can be arguments before the final list.

• T_ARRAY creates a variable called ix_${var} (in our example, ix_array)
that contains the number of elements processed by T_ARRAY.

• Memory must be allocated in which to store the new integer array. T_ARRAY
assumes that there is a memory allocation function called $ntype (in this case,
intArrayPtr) that will return a pointer to some memory. It is passed a single
argument containing the number of elements in the array. Of course, this mem-
ory must be freed at the end of the XS function.

• The XS compiler works out how to copy elements from the Perl list into the C
array by guessing the C type of the variables from the type of the array. It does
so by removing any mention of Array and Ptr from the $ntype variable and
then looking in the standard typemap entry for the resulting string. In this
example, $ntype is intArrayPtr, so each element is copied using the int
typemap entry.

As it stands, this code will not compile, because xsubpp does not know that variables
of type intArray * need to be processed using the T_ARRAY typemap entry. To
tell xsubpp how to handle such variables, we need to create a file called typemap in
the build directory and put in one line:

intArray * T_ARRAY

For completeness, here is the typemap entry for T_ARRAY from Perl’s default
typemap file:

U32 ix_$var = $argoff;

$var = $ntype(items -= $argoff);
B

c

ARRAYS 185

while (items--) {
 DO_ARRAY_ELEM;
 ix_$var++;
}
/* this is the number of elements in the array */
ix_$var -= $argoff

We declare a new variable and set it initially to the position of the first element in the
list. This declaration causes problems if previous arguments have used complicated
typemaps, because C does not like variable declarations partway through a block.
This issue is discussed further in section 6.11.

This line allocates memory using the function $ntype. The requested number of
elements is calculated by using (and modifying) items. XS automatically sets this
variable to the total number of XS arguments.

We loop over each element until no more remain. items is decremented until it hits
0, and ix_$var is incremented to provide an index into the argument list.

DO_ARRAY_ELEM is the magic string used by the XS compiler to indicate that an ele-
ment must be copied from the stack to $var. It uses ix_$var to index into the
stack and derives the type of the element from the type of the array.

Finally, we reset the value of ix_$var so that it reflects the number of elements in
the C array.

So far, we have not said much about the memory allocation function in the current
example. The default allocator (implied by the use of the Safefree function in the
example) could look something like this:

intArray * intArrayPtr (int num) {

 intArray * array;

 New(0,array, num, intArray);

 return array;
}

We simply use the New macro to allocate num integers and return the pointer.
Although this code will work, we still must make sure the memory is freed when
we’re finished with it. In most cases, this step just involves the use of a CLEANUP
block in the XS definition, because we usually don’t want to keep the memory.
Because laziness is sometimes a virtue, another approach to memory allocation obvi-
ates the need for the CLEANUP block. During the discussion of structure handling
(see section 6.5.3), we introduced the concept of mortality. Perl uses mortal variables
to make sure variables are automatically freed when a Perl scope is exited. We can use
this fact by allocating memory in a Perl scalar, marking it as mortal, and then letting
Perl free the memory when the XS function is completed. The memory allocation
function then becomes

d
e

f

B

c

d

e

f

186 CHAPTER 6 ADVANCED XS PROGRAMMING

void * intArrayPtr (int num) {

 SV * mortal;
 mortal = sv_2mortal(NEWSV(0, num * sizeof(intArray)));

 return SvPVX(mortal);
}

This function creates a new SV and makes sure the PV part of the SV is large enough
to hold the required number of integers (the sizeof function determines how many
bytes are required for each integer). This SV is marked as mortal, and the pointer to
the PV part is returned using the SvPVX macro (it differs from SvPV in that it
returns the pointer without looking at flags to see whether the SV contains a valid
string). If we use this function, then we can remove the CLEANUP section of
array_as_list.

When we place this memory allocation function before the XS code, remove
the CLEANUP section, and build this example, the code will sum up all elements
in an array:

% perl -Mblib -MArrays -le 'print Arrays::sum_as_list(5,6,7)'

18

NOTE If this seems like too much magic, feel free to use CLEANUP blocks. Mortal
memory allocators are extremely useful in typemaps, because a single
typemap can be used by many XS functions—the allocators save you from
having to remember to use a CLEANUP section in every function. Addition-
ally, if you are using someone else’s typemap, you may not be aware that
you should free memory on exit. Using a mortal allocator can save you from
worrying about causing a memory leak.

Passing a numeric array from Perl

to C as an array reference

Just as when programming in Perl, an alternative to passing in a list is to pass in a ref-
erence to an array:

$sum = Arrays::sum_as_ref(\@values);

The main advantage of this technique is that multiple arrays can be passed to a func-
tion. The XS code is as follows:

int
sum_as_ref(avref)

 AV * avref;
 PREINIT:

 int len;
 int i;

 SV ** elem;
 intArray * array;

 CODE:
 len = av_len(avref) + 1;

 array = intArrayPtr(len);

B

Declares elem as a pointer to a
pointer to an SV. This type of
variable is returned by av_fetch

This line finds out how many
elements are in the array

c

ARRAYS 187

 /* copy numbers from Perl array */

 for (i=0; i<len; i++) {
 elem = av_fetch(avref, i, 0);

 if (elem == NULL) {
 array[i] = 0;

 } else {
 array[i] = SvIV(*elem);

 }
 }

 RETVAL = sum(len, array);
 OUTPUT:

 RETVAL

The argument is a pointer to an AV. The default typemap entry will make sure we
have an array reference and will exit the program if we don’t get one.

We allocate some memory for the C array using the same function we used for
sum_as_list.

A complication here is that av_fetch can return NULL for the requested element.
Thus we have to check that the pointer is valid before dereferencing it.

We copy the integer part of the SV to the C array. Because SvIV expects a pointer to
an SV, we must dereference elem.

Once built, this code produces the same answer as the previous example; but this
time, an array reference is used:

% perl -Mblib -MArrays -le 'print Arrays::sum_as_ref([5,6,7])'
18

Passing a numeric array from Perl

to C as a packed string

NOTE In XS, the sense of pack/unpack and input/output is very different than
expected by a Perl programmer. INPUT is used in XS to indicate data pass-
ing into C (and out of Perl), and OUTPUT indicates data passing out of C
and into Perl. More confusing is that occasionally the term pack is used to
indicate conversion of a C array to a Perl array, and unpack is used to indi-
cate conversion of a Perl array to a C array. This terminology is completely
different than the Perl use of the pack and unpack functions (we use the
Perl sense in this chapter). Thus a C array is a packed form of a Perl array.
This makes sense, because a C array uses less memory than a Perl array.
These confusions arise because XS exists so that Perl data can be handled
by the Perl internals, and therefore the internals are seen as the primary
consumer of the data.

Loops over each element in the
AV, copying it to the C array

This line retrieves the ith
element from the arrayd

e

Finally, we run the
sum function

B

c

d

e

188 CHAPTER 6 ADVANCED XS PROGRAMMING

The third way to pass an array into C is to pack the Perl array into a byte string and
then pass that string into C, where it will be treated as a C array. From Perl, this tech-
nique would look like the following:

$packed = pack("i*", @values);

$sum = Arrays::sum_as_packed($packed);

In XS, we could implement it as follows:

int
sum_as_packed(packed)

 SV * packed
 PREINIT:

 int len;
 intArray * array;

 CODE:
 array = (intArray *)SvPV_nolen(packed);

 len = SvCUR(packed) / sizeof(intArray);
 RETVAL = sum(len, array);

 OUTPUT:
 RETVAL

We calculate the number of elements in the array by asking the SV for the total num-
ber of bytes and then dividing by the number of bytes used to represent an integer.

The main point is that we are using the SV directly rather than asking XS to translate
it for us. This approach is useful because the SV knows how many bytes it is holding.
If this information is not required, or if you can pass in the number of elements of the
array as an argument,10 this XS code can be simplified:

int
sum_as_packed2(len, packed)

 int len
 char * packed

 CODE:
 RETVAL = sum(len, (intArray *)packed);

 OUTPUT:
 RETVAL

We use char * to indicate that we are interested in the PV part of the SV. Alterna-
tively, we could have associated intArray * with T_PV in the typemap file.

Because we have a pointer to a char, we have to cast the pointer to type intArray
before passing it to the sum function.

10 Only if you’re using an intermediary wrapper function. Do not ask people to provide information that
Perl already knows!

Interrogates the SV directly
rather than extracting a specific
piece of information

Retrieves a pointer to the
byte array from the SV

b

b

The length of the array is
included as an argument

b

c

b

c

ARRAYS 189

6.6.2 Passing numeric arrays from C to Perl

An array can be returned to Perl either as a list pushed onto the stack or by creating a
Perl array and returning the reference. You saw in section 6.5.3 how to return a hash
reference and a list; the only difference for arrays is the use of av_ functions rather
than hv_ functions.

This section will highlight some additional methods for returning (numeric) arrays
that may be useful. We included these techniques for completeness, because they are
used in existing code, but they are probably not the best approach for new code
(explicit use of PPCODE or a Perl array is usually better).

Passing a numeric array from C

to Perl as a list without PPCODE

We used the T_ARRAY typemap entry in “Passing a numeric array from Perl to C as a
list,” page 184, to pass a list into C. It can, in principle, also be used to return a list
from C without worrying about looping and using the PUSHs macro (see
section 6.5.3 for details about pushing elements onto the return stack).

The main problem is that this approach only works with XS CODE blocks (because
OUTPUT typemap entries are used only when the OUTPUT keyword is used in XS), but
the XS compiler always forces a single return value. In general, it is safer to ignore
T_ARRAY for output and use PPCODE instead.

If you do want to use T_ARRAY to return an array, then the easiest trick is to co-
opt the CLEANUP section and make explicit use of the XSRETURN function. Here is
an example of how to use T_ARRAY to return an array of integers:

intArray *
test_t_array()
 PREINIT:
 intArray test[2];
 U32 size_RETVAL;
 CODE:
 test[0] = 1; test[1] = 2;
 size_RETVAL = 2;
 RETVAL = test;
 OUTPUT:
 RETVAL
 CLEANUP:
 XSRETURN(size_RETVAL);

The return type is a pointer to an array. This example uses the same typemap we have
used for the previous array examples.

T_ARRAY requires the declaration of this variable (technically declared as
size_$var in the typemap file, but this variable will almost always be associated

B

Creates a test array in C that
contains two elements

c
For this example, we simply copy
two numbers into the array

This line stores the size of the array
RETVAL now points to the first
element of our test array

Marks RETVAL for output

d

B

c

190 CHAPTER 6 ADVANCED XS PROGRAMMING

with RETVAL). The typemap uses it to determine how many elements in the array
are to be copied to the stack.

This macro will exit the XS routine just before the normal exit provided by xsubpp.
The argument indicates how many items have been placed on the return stack.

Passing a numeric array from C

to Perl as a packed string

Just as you can pass to XS a byte array generated by the Perl pack function (see “Passing
a numeric array from Perl to C as a packed string,” page 188), you can also return a byte
array that can be unpacked with the Perl unpack function. If you know how many
elements are to be stored in the array at compile time, XS provides a way of returning
the packed string to Perl. This example returns three integers as a packed string:

array(int, 3)

return_packed()
 PREINIT:

 intArray test[3];
 CODE:

 test[0] = 1; test[1] = 2; test[2] = 3;
 RETVAL = test;

 OUTPUT:
 RETVAL

When compiled, this code copies 3 x sizeof(int) bytes from RETVAL. They can
be unpacked in Perl with unpack("i*",$retval).

If the size of the return array is not known at compile-time, we must copy the bytes
to the Perl variable using a modified form of the T_OPAQUEPTR typemap entry:

intArray *
return_npacked()

 PREINIT:
 U32 size_RETVAL;

 intArray test[3];
 CODE:

 test[0] = 1; test[1] = 2; test[2] = 3;
 size_RETVAL = 3;

 RETVAL = test;
 OUTPUT:

 RETVAL

The corresponding typemap entry is

intArray * T_OPAQUEARRAY

OUTPUT

T_OPAQUEARRAY
 sv_setpvn($arg, (char *)$var, size_$var * sizeof(*$var));

d

ARRAYS 191

We associate intArray * with T_OPAQUEARRAY. The only difference between this
and T_OPAQUEPTR is that we have used the size_$var variable to indicate how
many elements to copy.

In general, if packed strings are returned and the bytes are not required directly,
it is better to provide a Perl wrapper to the XS function so the bytes are hidden from
the caller.

NOTE When looking through the typemap file, you will see entries called
T_PACKED and T_PACKEDARRAY. They are not designed for dealing with
packed strings! They are generic entries for converting to and from C data,
but they require you to supply explicit pack/unpack routines. These entries
are discussed in appendix A.

6.6.3 The Perl Data Language

If you are dealing with large or multidimensional arrays, the techniques described so
far will probably prove inadequate. You should seriously consider changing your
approach and using the Perl Data Language (PDL; http://pdl.perl.org/). PDL was
developed as a means to handle multidimensional arrays in Perl compactly and effi-
ciently. These issues are extremely important in scientific computing and image pro-
cessing for the following reasons:

• Multidimensionality—Perl has no real concept of multidimensional arrays. In C,
a multidimensional array is simply a contiguous block of memory containing
objects of identical type (see section 3.1 for an example). A Perl array can have
references to other arrays in order to simulate additional dimensions, but noth-
ing in the language forces the same number of elements in each row or column
(this is much closer to the C implementation of string arrays). When the
dimensionality is greater than two, the Perl approach becomes unwieldy; it is
very time consuming to check the dimensionality of the data. The following
code shows how Perl emulates 1-, 2-, and 3-d arrays:
@oned = (1, 2);

@twod = ([1,2], [3,4]);
@threed = ([[1,2], [3,4]], [[5,6],[7,8]]);

• Compactness—When the number of elements in an array is large, the represen-
tation of that array can have an enormous effect on the memory requirements
of the program. In section 4.4, you saw that both Perl arrays and Perl scalars
have a significant memory overhead compared to that required for single num-
bers. This overhead is accepted because of the enormous gain in functionality.
In situations where you are dealing with blocks of numbers, this flexibility is not
required. As an example, the previous 3-d array requires seven Perl arrays, eight
integer scalars, and six references. On a 32-bit Linux system, this requirement
totals about 128 bytes for just 8 numbers (assuming 12 bytes for an sv_any,
16 bytes for an xpviv, and 44 bytes for an xpvav). A C representation
192 CHAPTER 6 ADVANCED XS PROGRAMMING

requires just 32 bytes (8 elements of 4 bytes each). Clearly, for arrays of a mil-
lion pixels, the closer the representation is to pure C the more significant the
memory savings will be.

• Speed—So far in this section, we have shown that passing arrays into and out of
Perl requires loops to pack and unpack the array each time. When a large data
array is being passed continually to and from C, the time overhead will be enor-
mous. Additionally, for N-dimensional data arrays, the large number of derefer-
ences required to return the data values will be significant.

It is therefore not surprising that PDL was developed by scientists11 as an attempt to
solve these problems without having to use expensive proprietary packages or a lan-
guage other than Perl.

PDL deals with the problems of dimensionality, speed, and compactness by using
a PDL object (known as a piddle12) to store the data and information such as the
dimensionality and data type. In reality, a piddle is a C struct for efficiency, and the
data is stored as a normal C array.13 We will not attempt to provide a complete guide
to PDL; we’ll stay within the scope of this book and show you how to interact with
PDL from within XS.

A PDL primer

PDL provides a shell for interactive use (called perldl) that can be useful for general
Perl experimentation as well as for PDL. Here are some examples that will provide a
taste; you can type them in at the perldl shell or in a program in conjunction with
use PDL;:

$a = pdl([0,1,2],[3,4,5]);

This command creates a 3x2 piddle.

$a = sequence(3,2);

This command creates the same piddle using the sequence command. It is effec-
tively an N-dimensional version of the .. Perl operator.

print $a;

This command prints a stringified form of the piddle. It works for reasonably sized
piddles. The output is

11 The primary developers of PDL are Karl Glazebrook (an astronomer), Tuomas Lukka (a computer sci-
entist/physical chemist), and Christian Soeller (a bio-physicist).

12 It is possible that only English readers will see the double meaning of this name!
13 Version 1 of PDL stored the data as a packed string in an SV exactly as shown “Passing a numeric array

from Perl to C as a packed string,” page 188. Version 2 made the object more opaque.
ARRAYS 193

[

 [0 1 2]
 [3 4 5]

]

The following command multiplies each element in the piddle by 2:

$a *= 2;

$a is now

[
 [0 2 4]

 [6 8 10]
]

In PDL, the standard operators (+, -, *, /, and so forth) are overloaded so that pid-
dles act like normal Perl variables. By default, PDL does not do matrix operations on
piddles (but it can be made to).

$b = $a->slice("1,");

This command extracts a slice from $a. Here we use object notation to invoke the
slice method. In this case, we are extracting column 1 (column indexes are zero-
based, as in Perl and C):

[

 [2]
 [8]

]

The following command creates a two-element piddle ([10 20]) and adds it to $b:

$c = pdl(10,20); $b += $c;

$b becomes

[

 [32]
 [38]

]

More important, $a now becomes

[
 [0 32 4]

 [6 38 10]
]

because $b is a slice from $a, and any changes to the elements of a slice are reflected
in the related elements of the original piddle. This is one of the most powerful fea-
tures of PDL.

PDL is a powerful tool for manipulating array data; you should consider it seriously
for any project dealing with arrays and Perl.
194 CHAPTER 6 ADVANCED XS PROGRAMMING

PDL and XS

Now that we have shown the utility of PDL when using arrays, we will demonstrate
how to use PDL from XS. When viewed from Perl, a piddle is seen as an object; but
from within C, a piddle is represented as a structure (denoted by a pdl *). In general,
you should use PDL with XS only if you want direct access to the structure. PDL pro-
vides easier methods of passing data to C routines with the PDL::PP (section 7.4)
and PDL::CallExt modules.

The PDL infrastructure provides typemap entries to handle the conversion from
and to the PDL structure:

pdl * T_PDL

INPUT

T_PDL

 $var = PDL->SvPDLV($arg)

OUTPUT

T_PDL
 PDL->SetSV_PDL($arg,$var);

These typemap entries use the programming interface (API) provided by the PDL
core to translate Perl objects to the PDL structures.

This raises the issue of how to use C functions that are provided by a separate Perl
module in your XS code. For external C libraries, you simply make sure you link
against the library when the XS module is built. The PDL shared library14 is installed
somewhere in the Perl site library tree in PDL/Core/Core.so (on many Unix systems).
A number of difficulties are associated with attempting to use this library directly from
other XS modules. In order to link your PDL XS code against it, you would first need
to locate the library file (using the Config module) and then convince MakeMaker
that the file should be included, even though it does not look like a standard library.
You can do this by fooling MakeMaker into thinking Core.so is an object file, but
is not recommended.

Rather than link against the PDL library as part of the module build (no PDL mod-
ules do this), PDL provides a method to simplify access to the PDL API: storing point-
ers to the public functions in a C structure. A pointer to this structure is then stored
in a Perl variable in the PDL namespace. To use a PDL function, all you need to do
is retrieve this pointer from the Perl variable. This approach is also taken by the Perl/
Tk module. XS provides a means of doing this at load time using the BOOT: section,
and PDL developers recommend the following code:

NOTE BOOT: is the XS equivalent of a BEGIN block.

14 Assuming your Perl can support dynamic loading of libraries
ARRAYS 195

#include "pdl.h"

#include "pdlcore.h"
static Core * PDL;

SV* CoreSV;

MODULE = Arrays PACKAGE = Arrays

BOOT:
 /* Get pointer to structure of core shared C routines */

 CoreSV = perl_get_sv("PDL::SHARE",FALSE); /* SV* value */
 if (CoreSV==NULL)

 Perl_croak(aTHX_
 "This module requires use of PDL::Core first");

 PDL = INT2PTR(Core*, SvIV(CoreSV)); /* Core* value */

These are standard include files for PDL. They declare the PDL constants and the
function structure.

We must load the PDL::Core module before attempting to load this module, or
$PDL::SHARE will not be defined. We can do so most easily by making sure our
Perl module loads PDL::Core before calling the bootstrap method.

We retrieve the integer part of the SV, cast it to type Core* using INT2PTR (see sec-
tion 5.5.3), and store it in a C variable called PDL. The standard PDL typemap
entries described earlier assume that we have done this, because they use the variable
PDL as a pointer to a structure in order to run the conversion methods. Now we can
use any public PDL function simply by using this variable.

With this groundwork in place, we can write a PDL version of our routine to sum the
elements in an array using the sum function presented earlier.15 Here is the XS snippet:

int

sum_as_pdl(in)
 pdl * in

 CODE:
 PDL->converttype(&in, PDL_L, 1);

 RETVAL = sum(in->nvals, (intArray *)in->data);
 OUTPUT:

 RETVAL

We assume we have a PDL argument. If an array is passed in, it will be rejected by the
SvPDLV function included from the typemap file.

A PDL is typed (by default, all PDLs are double precision), and this line is responsible
for converting it to an integer type so that it can be summed by our function. This

15 Of course, we can just use the PDL sum method directly!

b We declare a pointer to a Core.
A Core is typedef’d to struct
Core in pdlcore.h

This pointer to an SV is used to store the
SV retrieved from the PDL namespace

c

This line gets the variable
$PDL::SHARE

d

B

c

d

b

c
d

B

c

196 CHAPTER 6 ADVANCED XS PROGRAMMING

example is slightly naughty, because it converts the input PDL to integer format. In a
real application, you should either make a copy so the input piddle is not modified,
or write a sum function for each data type.

Here we find the number of elements in the PDL using the nvals part of the struc-
ture and retrieve the values using the data part.

To compile this XS code, we need to generate a Perl module wrapper that will load
PDL and a Makefile.PL that will correctly locate the PDL include files and typemap
file from the installed tree. Here is a suitable pm file:

package Arrays;

use PDL::Core;
use base qw/ DynaLoader /;

our $VERSION;

$VERSION = '1.00';

bootstrap Arrays;

The corresponding Makefile.PL is as follows:

use ExtUtils::MakeMaker;

use File::Spec;
use Config;

my $pdlroot = File::Spec->catdir($Config{'installsitearch'},
 "PDL", "Core");

my $pdltypemap = File::Spec->catfile($pdlroot, “typemap.pdl”);

Write the makefile

WriteMakefile(
 'NAME'=> 'Arrays',

 'VERSION_FROM' => 'Arrays.pm', # finds $VERSION
 'PREREQ_PM' => { 'PDL' => '2.0'},

 'INC' => “-I$pdlroot”,
 ‘TYPEMAPS’ => [$pdltypemap],

);

The PDL-specific include files (pdl.h and pdlcore.h) are installed as part of PDL into
the Perl installsitearch directory. This line uses the Config module to determine that
location and File::Spec to append the PDL directory to that location.

The PDL internals were completely rewritten for version 2.0. This line instructs
MakeMaker to check the version of the installed PDL and to complain if the version
number is less than 2.0.

The TYPEMAPS option allows us to specify additional typemap files. It is required
because MakeMaker does not look in the PDL install directory by default.

d

b

The PDL typemap file is
in the same directory

as the include files

c

d

B

c

d

ARRAYS 197

6.6.4 Benchmarks

So far, we have shown four ways of passing numeric data into C for processing and
the associated ways of returning arrays back to Perl. These methods can be summa-
rized as follows:

• Using a list

• Using a reference to an array

• Using a packed string

• Using a PDL object

To finish this section about arrays, we will write a simple benchmark to compare the
efficiency of these techniques using the summing code described earlier. The only
exception is that we will use the native PDL sum function. Here’s the code:

use Benchmark;

use Arrays;
use PDL;

use strict;

my @array = (0..100);

my $pdl = sequence(long,101);

timethese(-3, {

 'PDL' => sub { sum($pdl); },
 'List'=> sub { Arrays::sum_as_list(@array) },

 'Ref' => sub { Arrays::sum_as_ref(\@array) },
 'Pack'=> sub { Arrays::sum_as_packed(pack("i*", @array)); },

 })

This benchmark runs for at least three seconds and gives the following output:

Benchmark: running List, PDL, Pack, Ref, each for at least 3 CPU

seconds...
 List: 3 wallclock secs (3.28 usr + 0.00 sys = 3.28 CPU)

 @ 110633.84/s (n=362879)
 Ref: 2 wallclock secs (3.01 usr + 0.00 sys = 3.01 CPU)

 @ 77112.62/s (n=232109)
 Pack: 4 wallclock secs (3.34 usr + 0.00 sys = 3.34 CPU)

 @ 52336.53/s (n=174804)
 PDL: 4 wallclock secs (3.08 usr + 0.00 sys = 3.08 CPU)

 @ 10284.09/s (n=31675)

Because we are asking Benchmark to run for a specific amount of time, the impor-
tant information is the number of times the subroutine was executed per second. You
can see that for a small array (in this case, 101 elements), a list is 10 times faster than
a PDL, twice as fast as using pack, and one-and-a-half times faster than using a refer-
ence. The PDL solution is surprisingly slow in this case; this result is in part due to
the additional overhead present in the PDL system that is not being used by our
example. The packed string is expected to be slow because it calls an additional Perl
function each time. The reference is slower than a list due to the overhead of taking
198 CHAPTER 6 ADVANCED XS PROGRAMMING

the reference. If we now increase the size of the array by two orders of magnitude to
10,000 elements, we get a different result:

Benchmark: running List, PDL, Pack, Ref, each for at least 3 CPU
seconds...
 List: 3 wallclock secs (3.20 usr + 0.02 sys = 3.22 CPU)
 @ 1495.65/s (n=4816)
 PDL: 4 wallclock secs (3.20 usr + 0.00 sys = 3.20 CPU)
 @ 4372.81/s (n=13993)
 Pack: 3 wallclock secs (3.14 usr + 0.00 sys = 3.14 CPU)
 @ 448.09/s (n=1407)
 Ref: 3 wallclock secs (3.08 usr + 0.00 sys = 3.08 CPU)
 @ 917.21/s (n=2825)

Now PDL is much faster than the rest; the overhead due to the PDL infrastructure
becomes insignificant when compared to the cost of converting large arrays into C
data structures.

Of course, specific benchmarks cannot tell the whole story, and your final choice
will depend on many factors. For example, if you require multiple array arguments,
then you cannot use a simple list; if you want maximal distribution, you may not want
to insist on the user’s installing PDL.

6.6.5 Character strings

You saw in section 3.3.1 that an array of strings is represented in C as an array of
pointers that point to the memory location of the start of each string; a string is a
NUL-terminated array of characters, and a string array is an array of pointers. In gen-
eral for XS, you can create and populate the char** like any other array; however,
you must take care if the new array is to persist after the call to the XS function—in
the simple case, you copy the pointers from the SVs and use them, but once you
return to Perl, there is no guarantee that the SV will still be around. In that case, you
will have to take copies of the entire string rather than just storing the pointer.

Converting a char** to a Perl array is simply a case of stepping through the C
array and copying the contents to the Perl array.

The following XS code demonstrates both techniques by copying an input array to
a char** and then copying that char** back onto the output stack. Variants
involving output references or input lists will be very similar. Note that this example
does not have complete error checking:

void
copy_char_arr(avref)

 AV * avref;
 PREINIT:

 char ** array;

 int len;
 SV ** elem;

 int i;
 PPCODE:

 len = av_len(avref) + 1;

b

ARRAYS 199

 /* First allocate some memory for the pointers */
 array = get_mortalspace(len * sizeof(*array));

 /* Loop over each element copying pointers to the new array */
 for (i=0; i<len; i++) {
 elem = av_fetch(avref, i, 0);
 array[i] = SvPV(*elem, PL_na);
 }

 /* Now copy it back onto the stack */
 for (i=0; i<len; i++) {
 XPUSHs(sv_2mortal(newSVpv(array[i], 0)));
 }

In this example, the input is expected to be a reference to an array, and the output is
a list:
@copy = copy_char_arr(\@src);

We get some temporary storage to hold the array of pointers. The
get_mortalspace function is identical to the intArrayPtr function shown
earlier, except that it takes the number of bytes as an argument rather than the num-
ber of integers.

This line retrieves the pointer from the SV (converting it to a PV if required) and then
stores it in the array. If we needed to copy the string first, we would also need to allo-
cate some memory for it here.

We copy each string from the string array back into a new SV and push it onto the
argument stack.

If you’ve been reading the typemap file, you may have noticed that char** already
has an explicit entry. Our example ignores this entry because in this case, it is simpler
to use the array reference directly. The char** typemap entry uses
T_PACKEDARRAY.16 This typemap requires the user to supply packing and unpack-
ing routines with an INPUT entry of

$var = XS_unpack_$ntype($arg)

and an OTPUT entry of

XS_pack_$ntype($arg, $var, count_$ntype);

So, for char**, the routines will be called XS_unpack_charPtrPtr and
XS_pack_charPtrPtr. The behavior of these particular functions is well defined
for a string array (either converting an SV* to a char** or vice versa), but you still
have to provide your own. The previous example becomes the following code if we
use the standard typemaps (with minimal error checking in this example):

16 As of Perl 5.8.0. In earlier versions of Perl it used T_PACKED.

c

d

e

B

c

d

e

200 CHAPTER 6 ADVANCED XS PROGRAMMING

char ** XS_unpack_charPtrPtr(SV * arg) {

 AV * avref;
 char ** array;

 int len;
 SV ** elem;
 int i;

 avref = (AV*)SvRV(arg);
 len = av_len(avref) + 1;
 /* First allocate some memory for the pointers
 plus one for the end */
 array = get_mortalspace((len+1) * sizeof(*array));

 /* Loop over each element copying pointers to the array */
 for (i=0; i<len; i++) {
 elem = av_fetch(avref, i, 0);
 array[i] = SvPV_nolen(*elem);
 }
 /* add a null */
 array[len] = NULL;

 return array;
}

void XS_pack_charPtrPtr(SV * arg, char ** array, int count) {
 int i;
 AV * avref;

 avref = (AV*)sv_2mortal((SV*)newAV());
 for (i=0; i<count; i++) {
 av_push(avref, newSVpv(array[i], strlen(array[i])));
 }
 SvSetSV(arg, newRV((SV*)avref));
}

MODULE = Example PACKAGE = Example

char **
copy_char_arr(array)
 char ** array
 PREINIT:
 int count_charPtrPtr;
 int i;
 CODE:
 RETVAL = array;
 /* decide how many elements to return */
 i = 0;
 while (array[i] != NULL) {
 i++;
 }
 /* loop exits with count */
 count_charPtrPtr = i;
 OUTPUT:
 RETVAL
ARRAYS 201

This code is significantly longer than the first version, even though much of it is
identical. Of course, if you are processing many string arrays the same way you can
move the packing/unpacking code into a library and leave just the XS code, which is
much cleaner.

6.7 CALLBACKS

A callback is a user-supplied function that is called by another function. The classic
example of the use of callbacks in Perl is the Tk module. Whenever a Tk event occurs
(for example, a button is clicked on the GUI), Tk determines whether a Perl subrou-
tine should be called to process the event. The code in listing 6.1 shows how you can
set up a Tk callback.

use Tk;

use strict;

my $MW = new MainWindow;

my $button = $MW->Button(-text => "Exit",
 -command => sub { exit; });

$button->pack();
MainLoop;

When we run this program, it displays a window containing a single button. When
we click the button, the callback associated with the button (configured using the
-command option) is executed and the program exits. The callback is not called
directly by user code; it is called from the event loop from C code.

The main difficulty with handling callbacks in XS is that Perl stores subroutines in
a CV (section 4.9), whereas C callbacks are implemented as pointers to a C function
(section 3.2.2). In order for C to call a Perl subroutine, you must insert an interme-
diate function that knows about Perl. This indirection leads to all the complications
associated with using callbacks from Perl.

There are usually three types of callbacks that must be handled:

• A callback used for a single command, with control passing back to Perl once
the callback has been used. This type is common in the qsort function and
the standard search functions (such as bsearch).

• A single callback registered at one point in the program and then executed some
time later (for example, an error handler).

• Multiple subroutines registered as callbacks that can be called at any time (for
example, event-driven programs).

We will discuss each of these types in turn.

Listing 6.1 A simple Tk callback
202 CHAPTER 6 ADVANCED XS PROGRAMMING

6.7.1 Immediate callbacks

The simplest type of callback is one in which the C function executes given the sup-
plied callback and then completes before returning from XS. The C qsort function
provides an excellent example. You can use this function to sort arrays; Perl used to
use it to implement the Perl sort routine. The calling signature is

void qsort(void *base, size_t nel, size_t width,
 int (*compar)(const void *, const void *));

where base is a pointer to the start of the array, nel is the number of elements in
the array, width is the number of bytes used to represent each element, and compar
is a pointer to a function that is used to compare individual elements of the array. The
compar function holds the C callback.

Obviously, the Perl interface to this function should behave like the standard
sort function:

@sorted = qsorti &compar, @unsorted;

We are calling the function qsorti to indicate that this sort function can only be
used to sort arrays of integers. (This limitation simplifies the example code and allows
us to focus on the implementation of the callback rather than the complication of
handling all data types.) For this example, we will use a module called CallBack.
The XS code in listing 6.2 implements the qsorti function.

#include "EXTERN.h"

#include "perl.h"
#include "XSUB.h"

#include <stdlib.h>

typedef int intArray;

/* Static memory for qsort callback */
static SV * qsortsv;

/* Routine to allocate memory for integer array */
/* Allocate the memory as a mortal SV so that it is

 freed automatically */
intArray * intArrayPtr (int num) {

 SV * mortal;
 mortal = sv_2mortal(NEWSV(0, num * sizeof(intArray)));

 return (intArray *)SvPVX(mortal);
}

/* The callback for qsort */
int qsorti_cb(const void *a, const void *b) {

 dSP;
 int count;

 int answer;

Listing 6.2 Implementing the qsort function with a callback

Creates a new type based on
int so that we can associate
it with the T_ARRAY typemap

b

c

This C function is
called by qsort

d

CALLBACKS 203

 ENTER;

 SAVETMPS;
 PUSHMARK(SP);

 /* Push some SVs onto the stack with the values of a and b */
 XPUSHs(sv_2mortal(newSViv(*(int *)a)));

 XPUSHs(sv_2mortal(newSViv(*(int *)b)));

 PUTBACK;

 count = call_sv(qsortsv, G_SCALAR);

 SPAGAIN;

 if (count != 1)
 croak("callback returned more than 1 value\n");

 answer = POPi;

 FREETMPS;

 LEAVE;

 return answer;

}

MODULE = CallBack PACKAGE = CallBack

void
qsorti(cb, array, ...)

 SV * cb
 intArray * array

 PREINIT:
 U32 i;

 PROTOTYPE: &@
 PPCODE:

 qsortsv = cb;
 qsort(array, ix_array, sizeof(int), qsorti_cb);

 /* now need to push the elements back onto the stack */
 for (i =0; i < ix_array; i++) {

 XPUSHs(sv_2mortal(newSViv(array[i])));
 }

This is some static memory that is used to store the code reference. It is required
because our C callback must have access to the Perl code reference.

This is called automatically as part of the T_ARRAY typemap entry. It is used to
dynamically allocate memory for the C integer array. It uses a mortal SV to allocate
the memory rather than the New macro. Doing so saves us from worrying about free-
ing the memory, because Perl will do it automatically when the XS function returns.

Now we declare variables that we need. dSP is just a macro that gives us access to
Perl’s argument stack.

e

Pushes the arguments supplied
by qsort onto the stack so that
our Perl callback can access them

f

g

h

i

Reads the answer (as an
integer) off the stackj

Returns the answer to qsort

The XS code begins

1)
1!

Specifies a prototype for
the XS function. This
prototype matches that
of the Perl sort function Stores the code reference

in a static variable for later
retrieval by our C callback

1@

Finally, unpacks the integer
array and pushes it onto the
return argument stack

b

c

d

204 CHAPTER 6 ADVANCED XS PROGRAMMING

ENTER, SAVETMPS, and PUSHMARK are always used on entry to a callback to allow
Perl to store the current status of the stack. They are paired with PUTBACK, FREET-
MPS, and LEAVE.

This line indicates that we have finished configuring the stack for our Perl function.
It forms the end bracket for the PUSHMARK.

This line calls the Perl code block contained in qsortsv and returns the number of
arguments that were placed onto the stack by the subroutine. The G_SCALAR flag
indicates that we are calling the code block in a scalar context.

Because the stack no longer reflects the state it was in on entry (because the Perl sub-
routine we just called has messed with it), we use SPAGAIN to retrieve the current
stack information.

In the unlikely event that more than one argument was returned from the Perl sub-
routine, we shut down the program. This should not happen because we forced sca-
lar context.

This line frees any temporary SVs that were created (for example, the two we pushed
onto the stack) and leaves the current context.

Our XS function is called qsorti, and it takes a code reference and variable-length
list as arguments. The list will be processed using the T_ARRAY typemap entry.

We use a simple SV as an argument, because the call_sv function can automati-
cally deal with an SV containing a reference to a CV.

We run the normal C qsort function using our array and the C callback that we
defined at the top of the file. The ix_array variable is defined and set by the
T_ARRAY typemap.

We also need a private typemap to indicate that an intArray * should be pro-
cessed using the T_ARRAY typemap entry:

intArray * T_ARRAY

Once we compile this module, we can do the following:

use strict;
use CallBack;

my @unsorted = (20,4,6,5,10,1);

my @sorted = CallBack::qsorti { $_[0] <=> $_[1] } @unsorted;

print join("-",@sorted);

This module differs from the normal sort function in only two ways: it only sorts
integer arrays, and there is no special use of $a and $b. Thus @_ must be used to
obtain the sort arguments.

e

f

g

h

i

j

1)

1!

1@
CALLBACKS 205

To summarize, we had to do the following to use the callback:

1 Write a C function that can be used as the callback and then use this function to
configure the stack and call the Perl subroutine

2 Store the code reference (as an SV*) in some static memory for later retrieval

3 Call the C function (in this case, qsort) using our intermediary C function as
the callback

6.7.2 Deferred callbacks

A deferred callback is registered with one command but called from another later in
the program. A common example is an error handler. The error handler is registered
early in the program but is called only when an error occurs.

To demonstrate this usage, we will use our existing qsort example but change the
Perl calling interface to

register_qsort_cb(\&callback);

@sorted = qsorti_cb(@unsorted);

The obvious implementation is to simply split the existing XSUB entry into two parts:

void
register_qsort_cb(cb)

 SV * cb
 CODE:

 qsortsv = (SV *) cb;

void

qsorti_cb(array, ...)
 intArray * array

 PREINIT:
 U32 i;

 PPCODE:
 qsort(array, ix_array, sizeof(int), qsorti_cb);

 /* now need to push the elements back onto the stack */
 for (i =0; i < ix_array; i++) {

 XPUSHs(sv_2mortal(newSViv(array[i])));
 }

The corresponding modified test program is as follows:

use strict;

use CallBack;

CallBack::register_qsort_cb(sub {$_[0] <=> $_[1] });

my @unsorted = (20,4,6,5,10,1);
my @sorted = CallBack::qsorti_cb(@unsorted);

print join("-",@sorted);

If we run this program, we get the following

Undefined subroutine &main::20 called at ./cbtest line 6
206 CHAPTER 6 ADVANCED XS PROGRAMMING

(or something similar, depending on your system). The problem is that the SV stored
in qsortsv has been reallocated by Perl between the time it’s registered and used.
Specifically, in this case, the SV now seems to be holding the first element of the new
array. Because we are only storing a pointer to an SV that is meant to contain a refer-
ence to a subroutine (or a name of a sub), we are sensitive to the SV’s changing. To
overcome this problem, we can either copy the contents of the SV to a new SV when
storing the callback or extract the CV that is referenced by the SV and store a pointer
to that instead. Changing register_qsort_cb to

void

register_qsort_cb(cb)
 CV * cb

 CODE:
 qsortsv = (SV *) cb;

fixes the problem, because the CV * typemap entry retrieves the reference from the
SV. One issue is that this approach will work only with code references (rather than
sub names), but usually that is not a problem. A bigger problem is that technically,
the reference count on the CV should be incremented when it is stored to indicate to
Perl that another part of the system is interested in the CV. The reference count
should also be decremented on the old CV whenever a new callback is registered. For
simple systems, this step is usually not worth bothering with (in most cases, some
other part of the system is sure to keep the CV alive). The better solution is to simply
copy the SV on entry, because the SvSetSV function (newSVsv also calls it) auto-
matically takes care of reference counting (both incrementing the reference count of
the new value and decrementing the reference count of the variable being replaced):

void

register_qsort_cb(cb)
 SV * cb

 CODE:
 if (qsortsv == (SV*)NULL) {

 /* This is first time in so create an SV */
 qsortsv = newSVsv(cb) ;

 } else {
 /* overwrite since we have already stored something */

 SvSetSV(qsortsv, cb) ;
 }

This technique relies on knowing whether the function has been called before. To
make this fact explicit, we can modify the declaration of qsortsv slightly:

static SV * qsortsv = (SV*)NULL;

6.7.3 Multiple callbacks

So far, we have only registered a single callback at any one time, and that callback has
been stored in a static variable. In more complex situations, such as event-driven pro-
grams, you’ll need to store many callbacks; so, you must use a different scheme.
CALLBACKS 207

Currently, each time a callback is registered, the previous callback is lost. You can use
a number of approaches in this situation, and the choice depends mainly on how the
underlying library is implemented.

If the calling interface provides a means for storing extra information along with
the C callback (for example, a C struct is used that can contain a pointer to user-
supplied data), then you can store a copy of the SV there and retrieve it when the call-
back occurs. The Tk module takes this approach.

If there is no provision for user-supplied data but the callback is associated with a
specific data structure (such as a filehandle), then you can store the Perl callback in a
static hash associated with the data structure and retrieve the relevant SV from the hash
as required. For the particular example of a filehandle, you could use an array indexed
by the file descriptor.

If the callback is passed arguments that do not identify the source (such as a text
string from a file), then your only option is to write a number of callback functions
in C and associate each with a specific Perl callback. The disadvantage of this approach
is that the number of callbacks is limited to a fixed number.

The Tk module is an interesting example, because it allows you to provide many
more ways of specifying a callback than simply providing a code reference or subrou-
tine name. Some examples are as follows:

sub { }, \&somesub

This is a standard subroutine reference; it’s used in listing 6.1.

[\&somesub, $arg1, $arg2]

This code invokes a subroutine with arguments. The arguments are grouped in an
anonymous array.

["method", $object]

Here we invoke a method on an object. The arguments are grouped in an anony-
mous array.

The module achieves this flexibility by, in effect, storing the callback information
in an object (in class Tk::Callback) and then invoking the Call method to run
the callback.17 If necessary, you can use this approach to simplify the C part of the call-
back code, because you can create the callback object in Perl (to contain whatever you
want it to) and then pass it to C; the C callback code can invoke the Perl Call method
on the object.

17 The Call method in Tk::Callback is the Perl interface, but the methods are coded in C for effi-
ciency. See the file Event/pTkCallback.c in the Tk source distribution for details.
208 CHAPTER 6 ADVANCED XS PROGRAMMING

6.8 OTHER LANGUAGES

We have been focusing on how to pass information between Perl and C, because Perl
is written in C and large numbers of libraries are also written in C. Because Perl is
written in C, it can communicate with other languages that can be accessed from C.
This section describes how to link Perl to two other languages (C++ and Fortran) and
touches on a third language (Java). If you have no interest in these languages, feel free
to skip this section and rejoin us at section 6.9.

6.8.1 Linking Perl to C++

C++ is an evolution of C (the name indicates that this language is a developed C lan-
guage) with the addition of a true object-oriented framework. In general, C++ com-
pilers can compile C code as well as C++ code (although they don’t have to); when the
OO framework is stripped away, the core language is clearly based on C. However,
contrary to popular belief and despite many similarities, C++ is not simply a superset
of C—there are legal constructs in both languages that are illegal in the other.

To provide interfaces to C++ libraries, you can use XS as before—but this time in
a C++ style. Because C compilers do not understand C++ and will not include the cor-
rect C++ infrastructure libraries, you can no longer use the C compiler that was used
to build Perl. The first step in building a C++ interface is therefore to fix the Make-
file.PL file so that it uses your C++ compiler. You can do so simply by using the CC
key to WriteMakefile:

use ExtUtils::MakeMaker;

WriteMakefile(
 NAME => 'Coordinate',

 VERSION_FROM => 'Coordinate.pm',
 LD => 'g++',

 CC => 'g++',
);

This program can be used to configure a module called Coordinate (presented in a
moment), and we replace the linker and the compiler command with g++. For com-
patibility with other operating systems, you can either guess the compiler name at
this stage (for example, CC on Solaris; we take this approach later with Fortran) or
simply ask for it from the command line.

The second change you have to deal with is found at the top of the XS file. In the
XS files we have used so far, the beginning looks something like

#include "EXTERN.h" /* std perl include */
#include "perl.h" /* std perl include */

#include "XSUB.h" /* XSUB include */

These are C include files rather than C++ include files, so we must alert the C++
compiler. We do so by adding some conditional code to the file that is included only
when the routine is compiled as C++:
OTHER LANGUAGES 209

#ifdef __cplusplus

extern "C" {
#endif

#include "EXTERN.h" /* std perl include */
#include "perl.h" /* std perl include */

#include "XSUB.h" /* XSUB include */
#ifdef __cplusplus

}
#endif

If this code is processed by a C++ compiler, the include files will be enclosed in an
extern "C" block to indicate that the enclosed code is C rather than C++. If you
want to be safe, you can use this approach for all your XS modules, because it will
trigger only if a C++ compiler is building the module.

We will demonstrate some of the issues with C++ and Perl by writing a Perl inter-
face to the simple C++ class in listing 6.3 (as hinted from the Makefile.PL example,
we’ll call the Perl module Coordinate).

 class Coordinate {
 int _x, _y;

 public:
 Coordinate() {

 _x = _y = 0;
 }

 Coordinate(const int xval, const int yval) {
 _x = xval;

 _y = yval;
 }

 Coordinate(const Coordinate &from) {
 _x = from._x;

 _y = from._y;
 }

 void setX(const int val);
 void setY(const int val);

 int getX() { return _x; }
 int getY() { return _y; }

 int distance(const Coordinate &from);
 int distance(const int x, const int y);

 };

 void Coordinate::setX(const int val) {

 _x = val;
 }

 void Coordinate::setY(const int val) {
 _y = val;

 }

Listing 6.3 C++ Coordinate class
210 CHAPTER 6 ADVANCED XS PROGRAMMING

 int Coordinate::distance(const int x, const int y) {

 int xdiff, ydiff, sumsq;

 xdiff = x - _x;

 ydiff = y - _y;
 sumsq = (xdiff * xdiff) + (ydiff * ydiff);

 return int(sqrt(sumsq));
 }

 int Coordinate::distance(const Coordinate &from) {
 return this->distance(from._x, from._y);

 }

This simple class stores X and Y coordinates. It has accessor methods for getting and
setting the values and includes a method for finding the distance between these
coordinates and some other position. If you are more comfortable in Perl than C++,
listing 6.4 is an equivalent implementation in Perl (lacking a lot of error checking
and comments).

package Coordinate;

sub new {
 my $proto = shift;

 my $class = ref($proto) || $proto;

 my ($x, $y) = (0,0);

 if (scalar(@_) == 1) {
 $x = $_[0]->getX;

 $y = $_[0]->getY;
 } elsif (scalar(@_) == 2) {

 $x = shift;
 $y = shift;

 }
 return bless { _x => $x, _y => $y }, $class;

}

sub setX { $_[0]->{_x} = $_[1] };

sub setY { $_[0]->{_y} = $_[1] };
sub getX { $_[0]->{_x} };

sub getY { $_[0]->{_y} };

sub distance {

 my ($self, $x, $y) = @_;
 if (UNIVERSAL::isa($x, "Coordinate")) {

 $y = $x->getX;

 $x = $x->getY;
 }

 my $xdiff = $x - $self->getX;
 my $ydiff = $y - $self->getY;

 my $sumsq = ($xdiff * $xdiff) + ($ydiff*$ydiff);

Listing 6.4 Perl Coordinate class
OTHER LANGUAGES 211

 return int(sqrt($sumsq));

}

1;

We expect the Perl interface to be used in the following manner

$c1 = new Coordinate();

$c2 = new Coordinate(3, 4);

$distance = $c1->distance($c2);

and we would like as much of that as possible to happen in XS. Here is the XS code
for the simple part of the interface that includes a constructor that takes zero argu-
ments, the accessor methods, and a version of the distance method that takes X
and Y coordinates as arguments:18

MODULE = Coordinate PACKAGE = Coordinate

Coordinate *
Coordinate::new()

MODULE = Coordinate PACKAGE = CoordinatePtr

int

Coordinate::getX()

int

Coordinate::getY()

void

Coordinate::setY(y)
 int y

void
Coordinate::setX(x)

 int x

int

Coordinate::distance(x, y)
 int x

 int y

As you can see, this XS code is just as simple as any code written for a C interface.
The main difference is that we specify the C++ class name as well as the method, and
we write a new method even though the C++ class does not explicitly have one.
These hints are used by xsubpp to decide whether you are interfacing to a C++ library
or a C library. All Perl methods require that the object be passed in as the first argu-
ment. This still happens; but rather than explicitly add the instance variable to the

18 Because this example code is not from an external library, you can place it at the top of the XS file as
you would for normal C code (make sure you put it before the MODULE line).
212 CHAPTER 6 ADVANCED XS PROGRAMMING

argument list (as would be required for a C library you were treating as an object-
oriented library), xsubpp adds the required code automatically. Additionally, when
xsubpp sees a function that looks like a C++ constructor, it automatically adds the
C++ code required to instantiate an object, returning a pointer to it. Finally, the
object itself is returned as a pointer to the C++ object; because we are using the
T_PTROBJ typemap, the objects created by the constructor are blessed into the Perl
class CoordinatePtr rather than simply Coordinate. If this bothers you, you
can supply a new typemap OUTPUT entry that will ignore the pointer.

With the following minimalist Perl module

package Coordinate;

use base qw/ DynaLoader /;
use vars qw/ $VERSION /;

$VERSION = '0.01';

bootstrap Coordinate $VERSION;

1;

and a local typemap file declaring a Coordinate* as a Perl object

Coordinate * T_PTROBJ

we can build this module. On a Gnu-based system, you might get something similar
to the following:

% make
/usr/bin/perl -I/usr/lib/perl5/5.6.0/i386-linux

 -I/usr/lib/perl5/5.6.0
 /usr/lib/perl5/5.6.0/ExtUtils/xsubpp

 -typemap /usr/lib/perl5/5.6.0/ExtUtils/typemap
 Coordinate.xs > Coordinate.xsc &&

 mv Coordinate.xsc Coordinate.c
Please specify prototyping behavior for Coordinate.xs

g++ -c -fno-strict-aliasing -O2 -DVERSION=\"0.01\"
 -DXS_VERSION=\"0.01\" -fPIC

 -I/usr/lib/perl5/5.6.0/i386-linux/CORE
 Coordinate.c

LD_RUN_PATH="" g++ -o blib/arch/auto/Coordinate/Coordinate.so
 -shared -L/usr/local/lib Coordinate.o

chmod 755 blib/arch/auto/Coordinate/Coordinate.so

We can test it with the following test program (either called test.pl or placed in the
t directory):

Test Coordinate class

use Test;
BEGIN { plan tests => 3 }

use Coordinate;

$c = new Coordinate();
OTHER LANGUAGES 213

ok($c->getX(), 0);

ok($c->getY(), 0);

$d = $c->distance(3, 4);

ok($d, 5);

If everything is working, we get three oks when we run make test.
So far, we have shown that providing an interface to a simple C++ class is essentially

as simple as providing an interface for a C library. Unfortunately, C++ allows multiple
functions to be defined with the same name; the compiler decides which one to use
on the basis of the arguments. Because Perl is not strongly typed, this kind of interface
is difficult to implement. In general, there are two ways to deal with the issue of
method overloading from Perl:

• Provide an XS method for each overloaded C++ method and give each one a dif-
ferent name. You can then either use those methods directly in your public Perl
interface or, more likely, write some Perl code that will decide which C++
method to use on the basis of the Perl arguments.

• Provide a single XS method, using the items variable to determine how many
arguments were provided and, if the argument count is ambiguous, determin-
ing the types (IV, NV, or PV) of the supplied Perl variables.

Because this is a book about XS, we will adopt the second approach to finish the
example; but if you are more proficient programming in Perl, never be afraid to use
the first option (the Perl code will be simpler, if nothing else). Listing 6.5 gives the XS
code required to make full use of the C++ method overloading.

MODULE = Coordinate PACKAGE = Coordinate

Coordinate *
Coordinate::new(...)

 PREINIT:
 int x;

 int y;
 Coordinate * from;

 CODE:
 if (items == 1) {

 RETVAL = new Coordinate();
 } else if (items == 2) {

 if (sv_derived_from(ST(1), "CoordinatePtr")) {
 IV tmp = SvIV((SV*)SvRV(ST(1)));

 from = INT2PTR(Coordinate *,tmp);

 }
 else

 croak("from is not of type CoordinatePtr");
 RETVAL = new Coordinate(*from);

 } else if (items == 3) {
 x = (int)SvIV(ST(1));

Listing 6.5 XS code using C++ method overloading
214 CHAPTER 6 ADVANCED XS PROGRAMMING

 y = (int)SvIV(ST(2));

 RETVAL = new Coordinate(x, y);
 } else {

 croak("Too many arguments to distance");
 }

 OUTPUT:
 RETVAL

MODULE = Coordinate PACKAGE = CoordinatePtr

int
Coordinate::getX()

int
Coordinate::getY()

void
Coordinate::setY(y)

 int y

void

Coordinate::setX(x)
 int x

int
Coordinate::distance(...)

 PREINIT:
 int x;

 int y;
 Coordinate * from;

 CODE:
 if (items == 2) {

 if (sv_derived_from(ST(1), "CoordinatePtr")) {
 IV tmp = SvIV((SV*)SvRV(ST(1)));

 from = INT2PTR(Coordinate *,tmp);
 }

 else
 croak("from is not of type CoordinatePtr");

 RETVAL = THIS->distance(*from);
 } else if (items == 3) {

 x = (int)SvIV(ST(1));
 y = (int)SvIV(ST(2));

 RETVAL = THIS->distance(x, y);
 } else {

 croak("Too many arguments to distance");
 }

 OUTPUT:
 RETVAL

Because none of the overloaded methods have the same argument counts, the method
switching is done entirely on the value of the items variable. The major complicat-
ing factor is that because we have a variable number of arguments (indicated by the

This is a special variable created
automatically by xsubpp. It is the
C++ version of the Perl object
OTHER LANGUAGES 215

...), xsubpp can no longer extract the variable we want from the arguments stack
using the typemap entries. All the work to process the argument stack must be done
in the XS code! We have simply copied the typemap entries by hand. For the long
typemaps (such as those for CoordinatePtr objects) it is best to extract the
typemap code into a helper function, because it will be reused many times for a nor-
mal module.

We hope this whirlwind tour of using C++ with Perl and XS has shown you the
possibilities and the difficulties involved with a C++ interface. In the next section, we
will step back in time to cover Fortran.

6.8.2 Linking Perl to Fortran

Although Fortran has been around since the 1960s and its popularity is fading, enor-
mous numbers of scientific libraries are available in this language; you might want to
use them from Perl. Most Fortran implementations allow the object code and librar-
ies to be included in C programs, but you must deal with the following issues when
doing so:

• Passing by reference—All arguments are passed to Fortran subroutines as point-
ers, and it is not possible to pass by value.19

• Types—The variable types in Fortran are similar (there are integers, floating-
point numbers, and strings), but you must be aware of the differences in repre-
sentation. For example, it is possible that the number of bytes used to represent
an INTEGER in Fortran is different than the default int in C. Usually this dif-
ference is not an issue.

• Strings—Fortran requires you to specify the lengths of all strings. Rather than
using a null as a string terminator, the compiler automatically passes a length
argument to subroutines in addition to the pointer to the string itself. When
you’re passing strings between C and Fortran, additional arguments are required
because the C compiler will not add them automatically. The position of these
arguments depends on the compiler. The most popular approach in Unix sys-
tems is to add all the lengths in order to the end of the calling list (the approach
taken with g77, Sun Fortran, and Digital Unix Fortran), but you can also add
the lengths into the argument list immediately following the string in question
(as with Microsoft Visual C++ and Fortran). When you’re sending a C string to
a Fortran subroutine, the string should be padded with blanks (if it is bigger
than the current contents); when returning a string from Fortran, you should
add the null.

• Packing order—Perhaps the largest difference between C and Fortran is the
order in which multidimensional arrays are stored in memory. Fortran arranges

19 Modern Fortran implementations provide the %VAL function to let you pass pointers by value from
integers.
216 CHAPTER 6 ADVANCED XS PROGRAMMING

arrays in column-major order (the column index is incremented before the row
index in memory), whereas C arranges arrays in row-major order (the row index
is incremented before the column index). Figure 6.1 shows this difference when
using a 3-by-2 array containing the numbers 1 through 6. The top diagram
shows the order of the elements in memory, the middle diagram shows how C
would arrange these elements, and the lower diagram shows how Fortran would
arrange them. Thus element [1][1] in C is not the same as element (2,2) in
Fortran (additionally, C begins counting at zero, whereas Fortran begins count-
ing from one). If you wish to pass a multidimensional array between C and For-
tran, it will have to be translated into the correct order.

• String arrays—Because strings in Fortran are of a specified length, arrays of
strings in Fortran are simply contiguous blocks of memory rather than arrays of
pointers. For strings of length 20, this memory layout is equivalent to the Perl
code $packed = pack("a20",@array);. Thus it’s easy to pass string arrays
from Perl to Fortran.

• Linker names—Some compilers (especially on Unix) append an underscore (_)
to the end of the subroutine name when the object code is generated. For exam-
ple, a Fortran subroutine called MYSUB would be stored in the object file as
mysub_. You need to know whether this happens on your platform. If you
don’t know, the easiest approach is to compile a Fortran program and examine
the symbols.20

• Linking—When you link a Fortran library with a C program, you will also need
to link with the Fortran runtime library. This library is included automatically

20 Use the nm command on Unix systems.

1 2 3 4 5 6Memory

1 3 5

2 4 6

0

1

0 1 2

C

1 2 3

4 5 6

1 2 3

1

2
Fortran

Figure 6.1

Comparison of row-major and column-major

organization of arrays
OTHER LANGUAGES 217

when you use a Fortran compiler for the link, but you must specify it explicitly
when linking from a C compiler.

Now that we have described the issues involved in calling Fortran subroutine libraries
from C, we will provide a quick example (no arrays) of how to do this from XS. Our
example provides some glue to talk to the PGPLOT Fortran library.21 We will use the
following simple subroutines from this library:

PGEND();

PGSCR(INTEGER CI, REAL CR, REAL CG, REAL CB);
INTEGER PGBEG(INTEGER UNIT, CHARACTER*(*) FILE,

 INTEGER NXSUB, INTEGER NYSUB);
PGQINF(CHARACTER*(*) ITEM, CHARACTER*(*) VALUE, INTEGER LENGTH);

On Linux with g77, this would translate to the following C code:

void pgend_();

void pgscr_(int *ci, float *cr, float *cg, float *cb);
int pgbeg_(int *unit, char *file, int *nxsub,

 int *nysub, int len_file);
void pgqinf_(char *item, char *value, int *length,

 int len_item, int len_value);

Once we know this translation, the XS code becomes straightforward (see listing 6.6).

#include "EXTERN.h"
#include "perl.h"

#include "XSUB.h"

#define F77BUFFER 256

#define pgend pgend_
#define pgscr pgscr_

MODULE = PGPLOT PACKAGE = PGPLOT

void

pgend()

void

pgscr(ci, cr, cg, cb)
 int &ci

 int &cr
 int &cg

 int &cb

int

21 Tim Pearson’s PGPLOT library is available from Caltech (http://www.astro.caltech.edu/~tjp/pgplot/)
and can be used to generate scientific plots. The PGPLOT Perl module by Karl Glazebrook, using the
C binding to this library, is available from the Comprehensive Perl Archive Network (CPAN; http://
www.cpan.org/).

Listing 6.6 Calling Fortran subroutine libraries from XS

b

c

d

e

218 CHAPTER 6 ADVANCED XS PROGRAMMING

pgbeg(unit, file, nxsub, nysub)

 int &unit
 char * file

 int &nxsub
 int &nysub

 CODE:
 RETVAL = pgbeg_(&unit, file, &nxsub, &nysub, strlen(file));

 OUTPUT:
 RETVAL

void
pgqinf(item, value, length)

 char * item
 char * value = NO_INIT

 int length = NO_INIT
 PREINIT:

 char buff[F77BUFFER + 1];
 CODE:

 value = buff;
 pgqinf_(item, value, &length, strlen(item), F77BUFFER);

 value[length+1] = '\0';
 OUTPUT:

 value
 length

We use this definition to specify the maximum size of static buffers required to
receive strings from Fortran subroutines.

We can set up preprocessor symbols that will let us use the expected names in our XS
code but will tell the C compiler to look for the Fortran names. In principle, we could
define all the functions this way. For this example, it is only convenient to do this for
simple functions (those not using character strings, arrays, or multiple return values)
that the XS compiler can deal with automatically without CODE blocks. Note that the
function will look OK from Perl because the C code generated from the XS code reg-
isters the function using the XS name rather than subjecting it to the C preprocessor.

pgend is simple because the XS compiler assumes it can call a C function pgend
even though the C preprocessor will translate that text to pgend_. Without the defi-
nition at the top of the file, the XS name will be different than the function name, so
a CODE block will be required.

The pgscr function takes four integer arguments but must pass them to the Fortran
subroutine using pointers. The XS compiler does this automatically because the vari-
ables are declared with an ampersand as a prefix.

The integer arguments are passed in as pointers; the length of the string is added as an
extra argument to the C routine. We do not have to convert this string to Fortran

This function is not as simple.
It takes four input arguments,
but one is a string

f

g

h

i
j

B

c

d

e

f

OTHER LANGUAGES 219

format because we know the length in C and can inform the Fortran compiler of that
length directly.

This function has one input string and two output values. The NO_INIT tag indi-
cates that the input values for those variables are irrelevant.

We declare a string buffer that can receive the output string. We declare it to be one
character larger than we pass to the Fortran layer so there is space for the NUL character.

Because there are two string arguments, two lengths are appended to the argument
list: the length of the input string and the length of the output string. In principle, we
should pad the output string with blanks before sending it to Fortran (we’ve omitted
that step for clarity).

The string that comes back from Fortran will not be NUL-terminated. Before we
send it back to Perl, the string must be made compatible with C. In this example, we
know the length of the string returned to us, so we can simply append the terminator.
In general, we would need to step back through the string one character at a time
until we found a non-blank character.

Once the XS code is written, the final issue is linking. All Fortran libraries require the
Fortran runtime library to be included in the build. To simplify the task of keeping
track of the runtime libraries required on different systems, you can use the
ExtUtils::F77 module (note that it is not part of the standard Perl distribution
and must be installed from CPAN). This module attempts to determine the libraries
required to link Fortran programs on your system with the relevant Fortran compiler.
A Makefile.PL file for the previous XS code that utilizes this module would look like
the following:

use ExtUtils::MakeMaker;

use ExtUtils::F77;

See lib/ExtUtils/MakeMaker.pm for details of how to influence

the contents of the Makefile that is written.
WriteMakefile(

 'NAME' => 'PGPLOT',
 'VERSION_FROM' => 'PGPLOT.pm', # finds $VERSION

 'PREREQ_PM' => {}, # e.g., Module::Name => 1.1
 'LIBS' => ["-L/usr/local/lib -lpgplot " .

 "-L/usr/X11R6/lib -lX11 "
 ExtUtils::F77->runtime],

);

Now, when we run this program, we get the following output (with g77):

Loaded ExtUtils::F77 version 1.14
Found compiler g77

ExtUtils::F77: Using system=Linux compiler=G77
Runtime: -L/usr/lib/gcc-lib/i386-redhat-linux/2.96 -L/usr/lib -lg2c

 -lm -L/usr/lib/gcc-lib/i386-redhat-linux/2.96 -lgcc

g

h

i

j

Loads the ExtUtils::F77 module

The PGPLOT
library requires

X libraries for
some devices

Runtime libraries can be returned using the runtime class method
220 CHAPTER 6 ADVANCED XS PROGRAMMING

ExtUtils::F77: Validating -L/usr/lib/gcc-lib/i386-redhat-linux/2.96

 -L/usr/lib -lg2c -lm
 -L/usr/lib/gcc-lib/i386-redhat-linux/2.96 -lgcc [ok]

ExtUtils::F77: Compiler: g77
ExtUtils::F77: Cflags: -O

Writing Makefile for PGPLOT

ExtUtils::F77 has determined that we will be using the g77 compiler and that
we need the g2c runtime library.

Fortran interface libraries and portability

The issue of portability depends on the particular circumstances of your module. For
example, if you just want to use it on Solaris and Linux, where the Fortran imple-
mentations are compatible, you can write XS as described earlier. On the other hand,
if you intend your module to be adopted widely, you will need to consider other
operating systems and Fortran compilers. The ExtUtils::F77 library helps in this
regard, because it can work out the libraries for many different compiler and OS com-
binations. Additionally, you can use it to determine whether a trailing underscore is
required on function names (this ability can be used to set a C preprocessor macro).

A number of packages are available to simplify the writing of portable interface
code. One of the most extensive is the CNF package22 written by Starlink.23 CNF pro-
vides a large set of C preprocessor macros for dealing with variable types and calling
conventions. There is also a support library you can use to convert types (for example,
strings and arrays) between the languages. Finally, CNF comes with detailed docu-
mentation about the issues associated with mixed programming as well as the use of
CNF itself.

To demonstrate this alternative approach, here is the XS code for pgqinf rewrit-
ten to use CNF:

void

fpgqinf(item, value, length)
 char * item

 char * value = NO_INIT
 int length = NO_INIT

 PREINIT:
 DECLARE_CHARACTER(fitem, F77BUFFER);

 DECLARE_CHARACTER(fvalue, F77BUFFER);
 DECLARE_INTEGER(flength);

 char buff[F77BUFFER];
 CODE:

22 The CNF package currently uses the Starlink Software Licence. This license allows for redistribution
of source code but currently restricts the library to non-commercial use. Moves are currently underway
to open up the license.

23 Starlink (http://www.starlink.rl.ac.uk/) is a research organization in the United Kingdom. It provides
data processing and analysis software for research astronomers in the UK.
OTHER LANGUAGES 221

 cnfExprt(item, fitem, fitem_length);

 F77_CALL(pgqinf) (CHARACTER_ARG(fitem),
 CHARACTER_ARG(fvalue),

 INTEGER_ARG(&flength)
 TRAIL_ARG(fitem)

 TRAIL_ARG(fvalue));
 length = (int)flength;

 value = (char *)buff;
 cnfImprt(fvalue, length, value);

 OUTPUT:
 value

 length

The extra verbosity inherent in this approach is immediately obvious; and, in order to
guarantee that the correct types are used for the Fortran layer, a certain amount of
copying is involved to go from the C to Fortran. This example also uses the transla-
tion functions cnfExprt and cnfImprt to export and import strings. Just to
prove that CNF is doing the right thing, here is the same code block with the macros
expanded (using g77):

char fitem[256]; const int fitem_length = 256;

char fvalue[256]; const int fvalue_length = 256;
int flength;

char buff[256];
cnfExprt(item, fitem, fitem_length);

pgqinf_ (fitem,
 fvalue,

 &flength
 ,fitem_length

 ,fvalue_length);
length = (int)flength;

value = (char *)buff;
cnfImprt(fvalue, length, value);

It is clear that in this case, portability is counterbalanced by a decrease in speed in the
resulting code, because there is so much more of it! For maximum performance, you
should make some assumptions about your target platform.

Fortran interface considerations

The interface provided in this Fortran example is not very Perl-y. As described in sec-
tion 2.5, you should address the needs of a particular library on a case-by-case basis.
The PGPLOT library has a well-defined API that has been in use for many years, and
there are some benefits to following that interface. When you’re migrating from C or
Fortran applications, it might be easier—both for the author of the module (less doc-
umentation to write, no complications with PPCODE blocks) and for the user (no
need to learn a new interface)—if the Perl port of the library looks as much as possi-
ble like that implemented in other languages. This approach is taken with the
PGPLOT module on CPAN.
222 CHAPTER 6 ADVANCED XS PROGRAMMING

For the routines described earlier, the most likely candidate for change is pgqinf.
This routine has one input argument and two return arguments. One of these
arguments is the length of the string and is not required by Perl. A much better
approach from Perl’s viewpoint is

$value = pgqinf($item);

The Perl Data Language goes a step further. The PGPLOT interface in PDL is com-
pletely divorced from the underlying library API by using an object-oriented layer to
implement plotting. This abstraction simplifies the work of PDL users because they
can use different plotting engines with only minimal changes to their code.

6.8.3 Linking Perl to Java

In 1998, Java was coming into its own as a programming language. This popularity
led O’Reilly & Associates, Inc. to fund Larry Wall’s work to provide a means for a
Perl interpreter to be embedded inside a Java Virtual Machine, and for a Java Virtual
Machine to be embedded in a Perl interpreter. This work led to the release of the Java
Perl Lingo (JPL). Although it did work after a fashion, it was never really adopted by
the Perl community, and the JPL code has not been updated to support newer ver-
sions of Java.24

From the point of view of this section, the key part of JPL is the JNI module. This
code lets you call Java methods from Perl using XS. It may or may not work for you
in its current form. If you want to call Java methods from Perl, the best idea is to use
the Inline::Java module (available on CPAN). It works with current versions of
Java and is actively supported. A short description of Inline (albeit the C version
rather than the Java version) can be found in section 7.3.

6.9 INTERFACE DESIGN: PART 2

In section 2.5, we covered the basic interface issues you should think about before
writing even the simplest XS module. Now that you have a more thorough grounding
in XS, we will summarize the design issues we’ve brought up in this chapter:

• Look at the functions in the external library. Is the C library using objects in
disguise? If it is repeatedly using an internal opaque structure, then you should
use that structure as an object in Perl.

• Multiple return arguments should be returned as proper return arguments
rather than as input arguments that are modified. Use PPCODE to adjust the
return stack to suit.

• If a status variable can have only two states, consider translating the C value to a
Perl true or false rather than matching the interface provided by the

24 An article on JPL by Brian Jepson appeared in the Winter 1997 issue of the Perl Journal (http://
www.samag.com/tpj/issues/vol2_4/).
INTERFACE DESIGN: PART 2 223

external calling convention. Alternatively, if the function returns useful infor-
mation only when the status is good, do not return the status value. Return the
value if everything is OK and an empty list or undef otherwise. The
XSRETURN_* functions are provided for this purpose. Using our example from
section 2.5, we can change a signature of

int compute(int factor, double *result);

to

$result = compute(factor);

using the following XS code:

double
compute(factor)

 int factor
 PREINIT:

 int status;
 CODE:

 status = compute(factor, &RETVAL);
 OUTPUT:

 RETVAL
 CLEANUP:

 if (status == -1)
 XSRETURN_UNDEF;

• C++ context-based method overloading provides a particular headache for
interface design. If you can determine the correct method from the argument
stack (for example, by counting the number of arguments), then you can have a
single Perl method that calls the required C++ method. If the distinction is sim-
ply by type, then you may need to have either distinct Perl methods (one for
each type) or a single Perl method that uses a relevant Perl type (because Perl
does not care about the difference between integers, doubles, and strings). This
issue is discussed in section 6.8.1.

• Don’t be scared of using Perl. Many of these examples can be simplified by using
a Perl intermediary layer (for example, using pack/unpack to handle arrays).
If you feel stronger in Perl than in C, this is a valid approach. If you feel that
you need the extra speed, you can recode in C without changing the external
interface to the module. The important thing is to have a clean public interface.

6.10 OLDER PERLS

As Perl 5 has developed, the API has evolved from one release to the next. Although
an attempt is made to minimize API changes, occasional backward-incompatible API
changes are unavoidable.

The most obvious example was the change at version 5.005. Prior to this version,
many Perl functions and constants were not clearly Perl functions and constants. For
224 CHAPTER 6 ADVANCED XS PROGRAMMING

example, na was a constant that people used in SvPV when they had no need to tell
Perl how long the string should be; it doesn’t look particularly Perl-ish! To minimize
this namespace pollution (thus simplifying embedding enormously), the public con-
stants were modified to include a PL_ prefix, and a Perl_ prefix was added to
ambiguous functions. Thus, for example, na was now PL_na, sv_undef was now
PL_sv_undef, and croak was now Perl_croak. Of course, this change caused
havoc for many modules on CPAN. (Because the Perl developers were aware of the
problem, both the old and the new APIs were available in Perl 5.005 to allow CPAN
authors to modify their modules. Unsurprisingly, many modules were left unmodified
until the old API was removed in Perl 5.6.0, thereby deferring the havoc until a year
or two after the fact.)

The main problem with backward-incompatible changes is that they make it dif-
ficult for modules written with the new API to work in older version of Perl. For a
while, everyone added C preprocessor directives to their modules, trying to work out
which version was available and thus which corresponding API was available (Perl
defines PERL_REVISION, PERL_VERSION, and PERL_SUBVERSION for this pur-
pose). In general, this situation led to a lot of repetition.

Eventually, Kenneth Albanowski came to the rescue with his Devel::PPPort25

module (this module is a standard part of Perl as of version 5.8.0). This module gen-
erates an include file that you can use in your XS code. Simply copy the ppport.h
file generated by that module (it was installed with the other Perl include files when
you built the module) to your module directory, add

#include "ppport.h"

to the top of your .xs file, and then use the modern API. You no longer need to
worry about someone building your module using an older version of Perl. If more
backward-incompatible changes are made to the API, you will need to obtain a newer
version of ppport.h and modify your module to use the newer API; but at least you
don’t need to keep all the versions around.

6.11 WHAT’S REALLY GOING ON?

Up to this point, we have created XS files, typed make, and watched while lots of inter-
esting things scrolled off the screen. In this section, we will take a closer look at what
is really happening to these XS files and how XSUB interfaces to the Perl internals.

The XS interface exists to simplify the way user-supplied C code can be called from
within Perl by being one layer above the Perl internals. In principle, you can write the
C code directly without going through the XS layer. However, this approach is not rec-
ommended because it is more complex than is required for simple interfacing, it is
repetitive and error prone when providing an interface to many external functions,
and it may suffer compatibility problems if the internals are changed.

25 In case you are wondering, PPPort stands for Perl/Pollution/Portability.
WHAT’S REALLY GOING ON? 225

6.11.1 What does xsubpp generate?

By now, you know that the first step in creating an XS module is for the xsubpp
command to process the XS file in conjunction with a typemap file, and from these
files generate a C file that can be compiled. In this section we will revisit some of the
XS examples from section 2.3, but this time we will look at the .c output files. To
refresh your memory, listing 6.7 shows the XS file we will be experimenting with.

#include "EXTERN.h"

#include "perl.h"
#include "XSUB.h"

#include <stdio.h>
#include <string.h>

size_t strconcat (char* str1, char* str2, char* outstr) {

 strcpy(outstr, (const char*)str1);
 strcat(outstr, (const char*)str2);

 return strlen(outstr);
}

MODULE = Example PACKAGE = Example

int

treble (x)
 int x

 CODE:
 RETVAL = 3*x;

 OUTPUT:
 RETVAL

size_t
strconcat(str1, str2, outstr)

 char* str1
 char* str2

 char* outstr = NO_INIT
 PREINIT:

 size_t length;
 CODE:

 length = strlen(str1) + strlen(str2) + 1;
 New(0, outstr, length, char);

 RETVAL = strconcat(str1, str2, outstr);
 OUTPUT:

 outstr
 RETVAL

 CLEANUP:

 Safefree(outstr);

Listing 6.7 An interface to the example treble and strconcat functions
226 CHAPTER 6 ADVANCED XS PROGRAMMING

When we build this module, we find a C file called Example.c in the working direc-
tory. This file contains something like listing 6.8.

/*

 * This file was generated automatically by xsubpp version 1.9507
 * from the contents of Example.xs.

 * Do not edit this file, edit Example.xs instead.
 *

 *ANY CHANGES MADE HERE WILL BE LOST!
 *

 */

#line 1 "Example.xs"

#include "EXTERN.h"
#include "perl.h"

#include "XSUB.h"

#include <stdio.h>

#include <string.h>

size_t strconcat (char* str1, char* str2, char* outstr) {
 strcpy(outstr, (const char*)str1);

 strcat(outstr, (const char*)str2);
 return strlen(outstr);

}

#line 25 "Example.c"

XS(XS_Example_treble)
{

 dXSARGS;
 if (items != 1)

 Perl_croak(aTHX_ "Usage: Example::treble(x)");
 {

 int x = (int)SvIV(ST(0));
 int RETVAL;

 dXSTARG;
#line 21 "Example.xs"

 RETVAL = 3*x;
#line 37 "Example.c"

XSprePUSH; PUSHi((IV)RETVAL);
 }

 XSRETURN(1);
}

XS(XS_Example_strconcat)
{

 dXSARGS;

 if (items != 3)
 Perl_croak(aTHX_

 "Usage: Example::strconcat(str1, str2, outstr)");
 {

Listing 6.8 Example C code generated by xsubpp
WHAT’S REALLY GOING ON? 227

 char* str1 = (char *)SvPV(ST(0),PL_na);

 char* str2 = (char *)SvPV(ST(1),PL_na);
 char* outstr;

#line 31 "Example.xs"
 size_t length;

#line 54 "Example.c"
 size_t RETVAL;

 dXSTARG;
#line 33 "Example.xs"

 length = strlen(str1) + strlen(str2) + 1;
 New(0, outstr, length, char);

 RETVAL = strconcat(str1, str2, outstr);
#line 61 "Example.c"

 sv_setpv((SV*)ST(2), outstr);
 SvSETMAGIC(ST(2));

 XSprePUSH; PUSHi((IV)RETVAL);
#line 40 "Example.xs"

 Safefree(outstr);
#line 67 "Example.c"

 }
 XSRETURN(1);

}

#ifdef __cplusplus

extern "C"
#endif

XS(boot_Example)
{

 dXSARGS;
 char* file = __FILE__;

 XS_VERSION_BOOTCHECK ;

 newXS("Example::treble", XS_Example_treble, file);

 newXS("Example::strconcat", XS_Example_strconcat, file);
 XSRETURN_YES;

}

The global concepts to get from this file are the following:

• The C code that appears in the XS file before the MODULE keyword is passed
through unchanged.

• Each XS function appears as a real C function, but with a modified name. The
name is derived by concatenating the fixed prefix XS_, a C-ified form of the
current PACKAGE (as defined by the PACKAGE keyword in the XS file), and the
function name. If a PREFIX is defined, then it is removed from the function
name before concatenation. For example, if the function name is slaMap,
with the prefix sla and the package name Astro::SLA, the internal function
name will be XS_Astro__SLA_Map. Here the colons have been replaced
with underscores.
228 CHAPTER 6 ADVANCED XS PROGRAMMING

• If there is a fixed number of arguments, code has been inserted to check whether
the correct number is on the stack and to issue an error message if necessary.

• Whenever there is a shift from original code to autogenerated code, the line
numbering is changed to indicate the source of the code. This is achieved using
the #line special directive.26 Thus if an error occurs in an XS line, any com-
piler error messages will point to the correct line and filename rather than to the
line in the translated C code. This simplifies debugging enormously.

• The final section is completely autogenerated. The boot function is responsible
for registering the XS functions with Perl and is called automatically by Dyna-
Loader when the module is loaded.

Now that you have a global overview of the file contents, let’s examine the relation-
ship between the XS definition of a function and the final C code. The XS sections
are propagated to the C translation without changing the inherent order. Arguments
are declared first; then come additional variable definitions (PREINIT), CODE
blocks, the handling of output variables, and CLEANUP code to tidy things up. Of
course, there are many other types of XS declarations, and they are included by
xsubpp the same way. Most of these steps simply entail the addition of some standard
stack-handling code or the insertion verbatim of the code supplied by the module
author. The main complications involve variable input and output, which relate to
the stack handling and variable declarations.

Let’s take a closer look at the strconcat function shown earlier. The XS decla-
ration and corresponding C code are

char* str1
char* str2
char* outstr = NO_INIT

and

char* str1 = (char *)SvPV(ST(0),PL_na);
char* str2 = (char *)SvPV(ST(1),PL_na);
char* outstr;

xsubpp does the following to generate this code:

1 It looks up char* in the typemap file(s).

2 It looks up T_PV in the INPUT section.

3 It sees whether the INPUT entry matches /\t\$var =/.

4 If it matches, then the typemap entry is assumed to be a single statement, and
the variable can be declared and assigned at the same time. This is the case with
T_PV, which has a typemap entry of
<tab>$var = ($type)SvPV($arg,PL_na)

26 It’s identical to the #line special comment supported by Perl and described in the perlsyn man
page.
WHAT’S REALLY GOING ON? 229

5 If it does not match (for example, because the variable is to be type-checked
before copying, as is the case with T_AVREF), the variable is simply declared,
and the typemap code is deferred until after the other variable declarations
(after the remaining arguments are declared and after PREINIT blocks). This
step is necessary because C does not allow variables to be declared midway
through a code block.

6 It replaces all the Perl variables in the typemap entry with the corresponding
values and prints them to the C file. Recall that ST(n) refers to an SV on the
argument stack (see section 6.4). In this example, positions 0 and 1 are relevant,
and nothing is copied from position 2.

7 Return variables are dealt with in a similar way unless a PPCODE block is used.
In our strconcat function, the output code for outstr is simply the
typemap entry with variable substitutions. The RETVAL return variable is dealt
with in the same manner, but xsubpp recognizes the standard variable types and
translates them into the corresponding PUSH commands rather than use the
OUTPUT typemap entry.

6.12 FURTHER READING

• perlxstut—This man page’s XS tutorial comes with Perl and provides sev-
eral XS examples.

• perlxs—This man page contains detailed information on XS.

• perlcall—This man page from the standard distribution contains a lot of
detailed information about setting up callbacks.

• XS::Typemap—Starting with Perl 5.7.1, the source distribution includes the
XS::Typemap module, which is used to test that the typemap entries behave
as expected. This module is not installed, but the source code contains examples
for most of the typemap entries. See also appendix A.

• Astro::SLA, PGPLOT—The Astro::SLA and PGPLOT modules on CPAN
both contain helper code that you can use to pack and unpack arrays with the
minimum of effort. The code in the arrays.c file from these distributions is use-
ful for providing a prepackaged solution that deals with arrays without going to
the expense of using PDL.

6.13 SUMMARY

In this chapter, you have extended your knowledge of XS to cover files, hashes, arrays,
and callbacks, and you have seen how the XS code and typemap files translate into
code suitable for use by the Perl internals. You have also learned how write XS code
suitable for interfacing Perl to libraries written in Fortran and C++.

In chapter 7, we will step further away from the internals and see what systems are
available to simplify the linking of Perl to external libraries.
230 CHAPTER 6 ADVANCED XS PROGRAMMING

C H A P T E R 7

Alternatives to XS

7.1 The h2xs program 232
7.2 SWIG 233
7.3 The Inline module 238
7.4 The PDL::PP module 247

7.5 Earlier alternatives 251
7.6 Further reading 252
7.7 Summary 253
So far, we have created all of our Perl interfaces to C using XS and have demonstrated
just how powerful and complex XS can be. In this chapter, we will take a step above
XS and show how you can create an interface to C without using XS or reading page
after page of documentation.

We will begin by looking at one of the earliest XS code generators and then pro-
ceed to the current front-runner for XS simplification. On the way, we will address the
special demands of the Perl Data Language (PDL); we’ll finish by briefly covering
some of the less useful alternatives to XS that have been developed. We will use the
examples from previous chapters to demonstrate the differences between and similar-
ities of these approaches.

Nearly all the schemes described in this chapter are implemented as an abstraction
layer above XS, either by generating .xs files to be passed to xsubpp or generating the
code equivalent to the output of xsubpp that interfaces directly to Perl’s internal XS
system. This approach has the key advantage that a change to the XS system will only
require a fix to the software that processes these definition files; all code that uses these
systems will not require modification.
231

7.1 THE H2XS PROGRAM

By far the oldest attempt to provide simplified access to XS is the h2xs program that
comes with Perl. We have already used this command in chapter 2 to generate a basic
framework for Perl and XS-based modules, but it can be used to automatically gener-
ate XS wrapper code for simple libraries. As the name of the program suggests, it can
take a C header file as input and generate an .xs file as output. We will not spend
much time describing this program in detail; but, as an example, let’s see what hap-
pens when we run it on a header file containing prototypes for the print_hello
and treble examples used in section 2.2. We’ll call this file example.h:

void print_hello ();

int treble (int x);

You can run h2xs with the -x option to force it to scan the header file looking for
function prototypes (for this to work, you will need to download the C::Scan mod-
ule from CPAN and use at least Perl version 5.8.0). Without this option, h2xs will
attempt to read the include file, but it will only be able to extract #defines rather
than full XS entries. We get the following output:

% h2xs -x -c -A example.h
Scanning typemaps...

 Scanning /usr/lib/perl5/5.7.2/ExtUtils/typemap
Scanning example.h for functions...

Scanning example.h for typedefs...
Writing Example/Example.pm

Writing Example/Example.xs
Writing Example/Makefile.PL

Writing Example/README
Writing Example/t/1.t

Writing Example/Changes
Writing Example/MANIFEST

The additional options turn off the code for handling constants (-c), because this
module won’t use any, and remove mention of the AutoLoader (-A). The output
file Example.xs contains the following:

#include "EXTERN.h"
#include "perl.h"

#include "XSUB.h"

#include <example.h>

MODULE = Example PACKAGE = Example

void

print_hello ()

int

treble(x)
 int x
232 CHAPTER 7 ALTERNATIVES TO XS

The output looks identical to that from section 2.2, except that the actual code for
the functions is missing (you would have to put it after the include directives or
else create a library to link against).

In general, h2xs is fine for handling simple interfaces using scalar arguments, but
it rapidly runs out of steam. Even with a seemingly simple function such as strcon-
cat from section 6.1, h2xs gets the wrong answer:

STRLEN

strconcat(str1, str2, outstr)
 char * str1

 char * str2
 char * outstr

It assumes that all arguments are for input; additionally, the C interface requires that
memory is allocated for the output string before use—something h2xs cannot possi-
bly guess.

If you intend to use h2xs for anything but the simplest interface, be prepared to
do a lot of work on the file that is automatically generated for you.

7.2 SWIG

SWIG (Simplified Wrapper and Interface Generator) was developed in 1995 by
David Beazley at Los Alamos to simplify the writing of interface code between script-
ing languages and C/C++ libraries. The first supported language was proprietary but
in 1996, SWIG was extended to cover Tcl, Perl, and Guile. Since then, it has been
developed to cover many more languages, including Java. One of the major advan-
tages of SWIG over XS is that it allows you to write a single interface specification and
use it for all the languages supported by SWIG.

Let’s begin our investigation of SWIG by seeing how to provide a Perl interface to
the sinh math function (this interface already exists in the POSIX module) and a
related constant. All SWIG interfaces begin with the generic interface definition. For
sinh, the definition looks something like this:

%module Simple

double sinh (double ang);

#define PI 3.141592654

All SWIG files begin by declaring the module name (if it is not defined here, it must
be specified on the command line). SWIG commands always begin with a percent
sign (%).

The second line is simply the C prototype for the function we are trying to call.
SWIG can be used to parse a C include file and generate a language interface directly.
In general, this approach is not recommended, because C include files tend to include
many functions and data structures that are not required for the interface.

The C preprocessor define will be treated as a constant variable. Constants can also
be defined using the %constant command.
SWIG 233

If we save this description to a file simple.swg (simple.i is a common alter-
native), we can run SWIG on the file and generate the code required to interface the
target language to the library function:

% swig -perl5 simple.swg

Here we use the perl5 option to generate code for Perl rather than another lan-
guage. Once executed, this command writes a simple_wrap.c file containing all
the code necessary to call our function from Perl, and a small Perl wrapper module
called Simple.pm. With version 1.3.11 of SWIG,1 this C output file is approxi-
mately 14KB—impressively large for a two-line interface description file.

The important thing to realize is that the output code is C that can be compiled
and linked as a module directly, because xsubpp is not required here. To convince
yourself this is the case, look in simple_wrap.c. You will find the following XS
code (or something similar) for sinh:

XS(_wrap_sinh) {
 double arg1 ;

 int argvi = 0;
 double result ;

 dXSARGS;

 if ((items < 1) || (items > 1))

 croak("Usage: sinh(ang);");
 arg1 = (double)SvNV(ST(0));

 result = (double)sinh(arg1);
 ST(argvi) = sv_newmortal();

 sv_setnv(ST(argvi++), (double) result);
 XSRETURN(argvi);

}

Unsurprisingly, this is very similar to the code generated by xsubpp (for example, see
section 6.11). Once we have this C code, the next step is to compile it and link it as a
shared library such that it can be used as a module. Rather than doing this manually,
we can use MakeMaker as we would for any other module. Here is the Make-
file.PL file:

use ExtUtils::MakeMaker;

WriteMakefile(
 'NAME' => 'Simple',

 'VERSION' => '0.01',
 'OBJECT' => 'simple_wrap.o',);

The key difference between an XS module and a SWIG module is that we don’t need
to run xsubpp, and MakeMaker just needs to compile a C file. We do so by using the

1 SWIG underwent a major rewrite between 1999 and 2001. Version 1.3.6 was the first stable version
released since February 1998 (when version 1.1p5 was released). Our examples all use version 1.3.11.
If you use a different version you may get slightly different output.
234 CHAPTER 7 ALTERNATIVES TO XS

OBJECT hash key to tell MakeMaker the names of the object files we wish to use to
form the module. The make file will automatically add the code for compiling the
corresponding C files to object files. We can now build the module as we would any
other XS module:

% perl Makefile.PL
Writing Makefile for Simple

% make
cp Simple.pm blib/lib/Simple.pm

cc -c -fno-strict-aliasing -I/usr/local/include
 -D_LARGEFILE_SOURCE

 -D_FILE_OFFSET_BITS=64 -O2 -DVERSION=\"0.01\" -DXS_VERSION=\"0.01\"
 -fpic -I/usr/lib/perl5/5.6.1/i686-linux/CORE simple_wrap.c

Running Mkbootstrap for Simple ()
chmod 644 Simple.bs

rm -f blib/arch/auto/Simple/Simple.so
LD_RUN_PATH="" cc -shared -L/usr/local/lib simple_wrap.o

 -o blib/arch/auto/Simple/Simple.so
chmod 755 blib/arch/auto/Simple/Simple.so

cp Simple.bs blib/arch/auto/Simple/Simple.bs
chmod 644 blib/arch/auto/Simple/Simple.bs

You could include a make-file dependency for the SWIG input file (running SWIG
on it when it is modified). However, you probably shouldn’t add a SWIG depen-
dency to a distribution that will be put on CPAN, because doing so might limit its
appeal (many sites don’t have SWIG installed, and you will not be able to guarantee a
particular version of SWIG). We can now run our simple module to see if it does
what we expect:

% perl -Mblib -MSimple -le 'print Simple::sinh(3)'
10.0178749274099

% perl -Mblib -MSimple -le 'print $Simple::PI'
3.141592654

As an ever-so-slightly more complicated example, let’s look at how to write an inter-
face file for the treble function from section 2.2:

%module Treble

%{

int treble(int x)

{
 x *= 3;

 return x;
}

%}

int treble (int x);

The difference here is that C code has been inserted into the definition. The code
between %{ and %} is copied directly from the definition file to the output C code.
SWIG 235

This is where you can load include files as well as C code. This module can be built in
the same way as the Simple module.

7.2.1 Data structures

As we already mentioned, one thing that distinguishes SWIG from other approaches
such as XS or Inline is its language-agnostic approach. In many cases this approach
is beneficial; but when you’re dealing with complicated data structures, it usually
leads to modules that do not fit in well with the language philosophy. In SWIG, all
complex data types (that is, pointer types) are treated as opaque objects. So, arrays
and structures are always treated as pointers. In most cases this treatment is fine,
because many libraries already use structures as opaque entities and simply pass the
pointer from function to function. Additionally, if the components of the structure
are defined, SWIG will generate accessor methods to enable access to the individual
structure components.

In this section, we’ll examine the use of structures from SWIG by looking at
gmtime and related functions we used for the examples in section 6.5. Here is a sim-
ple SWIG interface to gmtime, asctime, and mktime:

%module Time

%{
#include <time.h>
%}

typedef int time_t;

%typemap(perl5, in) time_t * (time_t temp) {
 temp = SvIV($input);
 $1 = &temp;
}

struct tm *gmtime(time_t * timep);
char * asctime(const struct tm *timeptr);
time_t mktime(struct tm *timeptr);

This C code makes sure the C declarations are available when the module is built (the
include directive is passed straight to the output C code).

We tell SWIG that a time_t is an integer. This is true on Unix but may not be true
in general. An alternative solution is to use
%include "time.h"

but doing so would have the side effect of providing SWIG declarations for all defini-
tions in the include file.

We declare a new input typemap for variables of type time_t * specifically for use
with Perl5 (to use this SWIG file for other languages, you will need to define different
typemaps in the same file). This typemap also declares an additional variable similar
to PREINIT in XS.

B

c

d
e

f

B

c

d

236 CHAPTER 7 ALTERNATIVES TO XS

We retrieve the integer associated with the input scalar and store it in a temporary
variable.

Finally, we store the pointer of the temporary variable in the target variable (in some
earlier versions of SWIG this variable is named $target rather than $1).

This code looks straightforward, except for the complication of the typemap defini-
tion (the typedef is there simply to tell SWIG that a time_t can be treated as an
integer). The problem is that gmtime expects a pointer to a time_t variable rather
than a simple variable of type time_t. We could write a wrapper C routine that allo-
cates memory and populates the value, returning a pointer to Perl that can be passed
to this function; but it is much simpler from the Perl perspective to write a typemap
that will convert a simple integer (usually the output of the Perl time function) to a
pointer. If we build this module and run, we see the following:

% perl -Mblib -MTime -le 'print Time::gmtime(time)'

_p_tm=SCALAR(0x8107cc8)
% perl -Mblib -MTime \

 -le '$t=Time::gmtime(time); print Time::asctime($t)’
Sat May 25 20:53:02 2002

SWIG has provided us with an interface even though it doesn’t know what the con-
tents of a tm structure are. All we get is a blessed scalar of an unhelpful class (in this
case _p_tm, because this is a pointer to a tm), which SWIG can use for internal type-
consistency checking. If we want to be able to look inside the structure, we tell SWIG
what it contains:

%module Time

%{

#include <time.h>
%}

typedef int time_t;

%typemap(perl5, in) time_t * (time_t temp) {

 temp = SvIV($input);
 $1 = &temp;

}

struct tm

{
 int tm_sec; /* Seconds. [0-60] (1 leap second) */

 int tm_min; /* Minutes. [0-59] */
 int tm_hour; /* Hours. [0-23] */

 int tm_mday; /* Day. [1-31] */
 int tm_mon; /* Month. [0-11] */

 int tm_year; /* Year - 1900. */
 int tm_wday; /* Day of week. [0-6] */

 int tm_yday; /* Days in year.[0-365] */
 int tm_isdst; /* DST. [-1/0/1]*/

};

e

f

SWIG 237

struct tm *gmtime(time_t * timep);

char * asctime(const struct tm *timeptr);
time_t mktime(struct tm *timeptr);

Now, if we use this module, we can find out the time from the structure:

% perl -Mblib -MTime \

 -le '$t=Time::gmtime(time); print Time::tm_tm_year_get($t)'
102

SWIG automatically creates accessor functions (there is a corresponding set method).
In this case, the function is an accessor for the tm_year field in the struct tm, so the
name is a bit repetitive. Because this approach clearly won’t win any fans with users of
your class, SWIG provides an option for handling structures as true Perl objects. If we
use SWIG’s -shadow option, the interface looks much more agreeable:

% swig -perl5 -shadow time.swg

% make
...

% perl -Mblib -MTime -le '$t=Time::gmtime(time); print $t'
Time::tm=HASH(0x8144648)

% perl -Mblib -MTime -le '$t=Time::gmtime(time); print $t->mktime;'
1022396126

% perl -Mblib -MTime \
 -le '$t=Time::gmtime(time); print $t->{tm_year}'

102

This example shows that the structure is converted to an object in class Module-
name::structname and can be used to invoke methods (in this case, mktime)
and to access object instance data via a tied hash interface.

7.3 THE INLINE MODULE

The Inline modules were first developed in 2000 by Brian Ingerson in order to
simplify the XS learning curve. The family of Inline modules allows you to write
non-Perl code within the body of your Perl program with the expectation that Perl
will know what to do with it. We’ll demonstrate this ability by showing the Inline
version of our first XS examples from section 2.2:

NOTE Inline is not distributed as part of Perl. You will need to download it and
its dependencies (such as the Parse::RecDescent module) from CPAN
before you can run these examples.

use Inline "C";

print treble(5),"\n";

&print_hello;

__END__

__C__
void print_hello ()

{

238 CHAPTER 7 ALTERNATIVES TO XS

 printf("hello, world\n");

}

int treble(int x)

{
 x *= 3;

 return x;
}

When we run this program, it does exactly what we expect. No need to create a mod-
ule and work out the XS syntax—it just works. We get the following output:

15
hello,world

The first time you run the program, it will probably take a few seconds to execute.
The second time it will run as fast as you would expect the XS version to run.

Inline is not limited to C. Modules exist for writing and calling C++, Python,
and Java code from Perl. As an introduction to the techniques of using Inline, we
will limit our description to the C implementation; however, if you are interested in
other languages, CPAN has them all covered!

7.3.1 What is going on?

Before we rush headlong into more examples, we’ll explain what is happening here.2

When you write a Perl program using Inline, unsurprisingly, a lot of work is going
on behind the scenes. In outline, the following is occurring:

1 The module reads the code from the appropriate place (usually below the
DATA handle).

2 An MD5 checksum is calculated for the code in question.

3 This checksum and associated information (such as the operating system and
Perl version number) are compared with those of any modules that were auto-
matically generated on previous occasions (this all happens in the _Inline or
$HOME/.inline directory unless specified otherwise). If the code does not
match any existing checksum or configuration, it is analyzed to determine the
function names and calling arguments (perhaps using a parser module such as
Parse::RecDescent).

4 An XS module is generated based on the functions and arguments in the inlined
code. Its name is derived from the checksum. (If no name is specified, the
module’s name will be the name of the file containing the original code with
punctuation removed, plus the first few letters of the checksum.)

2 At least, we’ll explain what is happening with version 0.43 of Inline. Development of this module
is fairly rapid, so things may have changed to some extent by the time you read this.
THE INLINE MODULE 239

5 The module is built and installed into a local directory.

6 Alternatively, if the checksum matches with a checksum calculated during a pre-
vious run of the program, the module is loaded directly without being compiled.

In essence, this process is straightforward. A module is built automatically if required;
otherwise it is loaded like any other module. This explains why an inlined program
takes a while to run the first time through but is then almost as fast as a normal mod-
ule on subsequent runs. The main complication is the parsing of the C code to gener-
ate the XS specification. The relationship between Inline and the approaches of
SWIG and XS is shown in figure 7.1.

This diagram shows the conceptual relationship between the three most popular ways
to integrate C with Perl. You can see that Inline goes through an XS layer, whereas
SWIG cuts out the middle man and goes straight to the low-level API.

By default, Inline removes the build tree if the build completed successfully (if
the build fails, Inline leaves the build tree for you to debug). All we need to do to
retain the build tree is add

use Inline Config => CLEAN_AFTER_BUILD => 0;

to the top of our program. You can now play with the XS code; doing so is an excel-
lent way to find out what is really going on when you write Inline modules.

7.3.2 Additional Inline examples

Now that you have seen the magic and have an idea what is happening, let’s look at
some more serious examples. Anything that simply passes in some scalar arguments
and gets a return value should look like a normal C function. In this section, we’ll dis-
cuss memory allocation issues, lists, and multiple return arguments, because these are
the most likely sources of confusion.

Strings and things

If your function returns a string (essentially a memory buffer) that has been created in
your function, then you will probably have to worry about memory allocation. We
can examine this issue by using the string concatenation example from section 6.1.

Perl internals

XS

Perl code

SWIG

Inline

Internals API
Figure 7.1

Conceptual relationship between

Inline, SWIG, and XS
240 CHAPTER 7 ALTERNATIVES TO XS

This function took two strings and returned the concatenated string. In that example
we used New and Safefree for the memory allocation. This approach was OK, but
it relied on the CLEANUP section of the XS code running after the memory buffer
had been copied back onto the argument stack. With Inline we cannot get away
with this, because the function is called by the XS routine; if it returns a char*, we
have no way to free it after it has been returned. To overcome this problem, we have
two choices: we can return an SV rather than a char*, or create a new SV with the
result and push it onto the stack.

Returning an SV containing the result rather than returning a char* lets us free
the memory before returning from our function, because the string is copied into an
SV and so becomes Perl’s responsibility:

SV * strconcat(char * str1, char * str2) {
 char * outstr;
 SV* outsv;
 int len = strlen(str1) + strlen(str2) +1;
 New(0, outstr, len, char);

 strcpy(outstr, (const char*)str1);
 strcat(outstr, (const char*)str2);

 outsv = newSVpv(outstr, len);
 Safefree(outstr);
 return outsv;
}

These two lines are the core of the strconcat function described in earlier chap-
ters. They represent a real-world call to an external library.

We return the SV*. It is automatically marked as mortal by XS before being put onto
the return stack.

This process is a little inefficient, because we end up allocating two string buffers:
once for the string buffer we are using and once when we create the SV. In fact,
because we are going to the trouble of using an SV, we may as well use the SV’s
buffer directly:

SV * strconcat(char * str1, char * str2) {

 SV* outsv;
 int len = strlen(str1) + strlen(str2) +1;

 outsv = NEWSV(0, len);

 strcpy(SvPVX(outstr), (const char*)str1);

 strcat(SvPVX(outstr), (const char*)str2);

 SvPOK_on(outsv);

 SvCUR_set(outsv, len-1);
 return outsv;

}

Marks this function as
returning an SV*

Allocates a string buffer
of the right size

b
Creates a new SV and copies the
contents of the string buffer into it

Frees the buffer because we
don’t need it any longerc

b

c

Creates a new SV with a string
buffer of the correct size

Uses the SvPVX macro to
obtain the char* pointing
to the start of the buffer

b

THE INLINE MODULE 241

Now that we have populated the string, we need to tell Perl that the string compo-
nent is valid and what its useful length is.

This approach has an added inconvenience: we must mark the SV as a valid string
(SvPOK) and specify its length (SvCUR), but we allocate only one buffer. Of
course, for this example we can use the Perl API directly, without referring to any
external functions:

SV * strconcat (char * str1, char * str2) {

 SV * outsv;
 outsv = newSVpv(str1, 0);

 sv_catpv(outsv, str2);
 return outsv;

}

Our second solution to the problem of returning a char* is to do what XS does and
simply create a new SV with the result and push it onto the stack ourselves. Doing so
is identical to returning an SV* to Inline but cuts out the middle man. We’ll
describe how to manipulate the argument stack from Inline in the next section.

If we need to allocate a buffer and return it as a non-SV, then we must use a mem-
ory allocator that uses mortal SVs:

static void * get_mortalspace (size_t nbytes) {

 SV * mortal;
 mortal = sv_2mortal(NEWSV(0, nbytes));

 return (void *)SvPVX(mortal
}

char * strconcat (char * str1, char * str2) {
 char* outstr;

 int len = strlen(str1) + strlen(str2) + 1;
 outstr = get_mortalspace(len););

 strcpy(outstr, (const char*)str1);
 strcat(outstr, (const char*)str2);

 return outstr;
}

This is the memory allocator described in sections 6.6.1 and 6.6.5. We put it here
explicitly rather than in an external file purely for convenience. To prevent Inline
from creating a Perl interface to this function, we declare it as static. Inline knows
that static functions are not externally accessible, and therefore it ignores them.
The XS code will receive the char pointer, put it into an SV, and push it onto the
argument stack. Once the SV is read from the stack, the memory associated with it
will be freed automatically.

b

B

Allocates some
memory for the
buffer

B

242 CHAPTER 7 ALTERNATIVES TO XS

Summing an array

In section 6.6.1, we covered in detail how to handle Perl an array with XS in the form
of a list, a reference, and a packed string. Here we will show you how to use Inline
to deal with lists and an array reference.

Let’s begin with a reference.3 Because a reference is a scalar and a corresponding
typemap entry exists, it is fairly easy to handle with Inline:

use Inline "C";

print sum_as_ref([1..10]);

__END__
__C__

int sum_as_ref(AV* avref)
{
 int len;
 int i;
 int sum = 0;
 SV ** elem;

 len = av_len(avref) + 1;

 for (i=0; i<len; i++) {
 elem = av_fetch(avref, i, 0);
 if (elem != NULL)
 sum += SvIV(*elem);
 }
 return sum;
}

This code is almost identical to the example using XS (for clarity, we are doing the
sum in place rather than calling the external C routine); there is nothing new in it.

When you’re processing lists, things get more interesting. Inline generates the
XS code for your function and then calls the function. Thus you can no longer rely
on XS to provide all the stack-handling facilities you are familiar with. Inline over-
comes this problem by providing some simple macros of its own for initializing the
stack variables and manipulating the stack. The following code demonstrates (with the
Perl code removed, because it is nearly identical to the previous example):

int sum_as_list(SV* arg1, ...)
{
 int i;
 int len;
 int sum = 0;
 SV* elem;
 Inline_Stack_Vars;

 len = Inline_Stack_Items;

3 As in chapter 6, this example requires Perl 5.8 because the typemap in earlier Perl versions does not
deal correctly with array references.

B

c
Counts the number
of arguments on
the stack
THE INLINE MODULE 243

 for (i=0; i<len; i++) {

 elem = Inline_Stack_Item(i);
 sum += SvIV(elem);

 }
 return sum;

}

An ellipsis (...) indicates to Inline that multiple arguments will be used. At least
one argument must be declared even though we may be retrieving all the stack vari-
ables using the macros. In this case, we declare arg1, but it is not used in the func-
tion directly (it is used via Inline_Stack_Item(0)).

We initialize the stack-related variables used by the other stack macros. This code
must always be placed in the variable declaration section of the function.

Now that we have the SV* from the stack, we retrieve the associated integer and add
it to the sum.

Rather than use the T_ARRAY typemap entry (which would require us to provide a
memory allocator as well as lose information about the size of the array), we have writ-
ten this code using Inline’s stack macros. Because the set of macros is limited, the
macros are designed to be simple and easy to understand—you don’t have to face the
daunting contents of the Perl internals documentation. Using them has the additional
advantage that you are not tied to the Perl XS macros—if XS is changed or replaced,
then your Inline module probably will continue working without any problems.

Multiple return arguments

Just as you can read multiple arguments off the stack, you can also push return argu-
ments onto the stack using Inline macros. Here is how we would implement the
function to return the current time in a hash, which was described in “Returning a
list,” page 181:

#include <time.h>

void gmtime_as_list(time_t clock)
{

 struct tm * tmbuf;
 Inline_Stack_Vars;

 Inline_Stack_Reset;

 tmbuf = gmtime(&clock);

 Inline_Stack_Push(sv_2mortal(newSVpv("sec", 3)));
 Inline_Stack_Push(sv_2mortal(newSViv(tmbuf->tm_sec)));
 Inline_Stack_Push(sv_2mortal(newSVpv("min", 3)));
 Inline_Stack_Push(sv_2mortal(newSViv(tmbuf->tm_min)));
 Inline_Stack_Push(sv_2mortal(newSVpv("hour", 4)));
 Inline_Stack_Push(sv_2mortal(newSViv(tmbuf->tm_hour)));
 Inline_Stack_Push(sv_2mortal(newSVpv("mday", 4)));

Retrieves the ith SV
from the stackd

B

c

d

As for XS, we use a void return type when we
push arguments onto the stack ourselves

Initializes the stack
variables used by the
other macros

b Pushes an SV onto
the stack. This code
is equivalent to
XPUSHs
244 CHAPTER 7 ALTERNATIVES TO XS

 Inline_Stack_Push(sv_2mortal(newSViv(tmbuf->tm_mday)));
 Inline_Stack_Push(sv_2mortal(newSVpv("mon", 3)));
 Inline_Stack_Push(sv_2mortal(newSViv(tmbuf->tm_mon)));
 Inline_Stack_Push(sv_2mortal(newSVpv("year", 4)));
 Inline_Stack_Push(sv_2mortal(newSViv(tmbuf->tm_year)));
 Inline_Stack_Push(sv_2mortal(newSVpv("wday", 4)));
 Inline_Stack_Push(sv_2mortal(newSViv(tmbuf->tm_wday)));
 Inline_Stack_Push(sv_2mortal(newSVpv("yday", 4)));
 Inline_Stack_Push(sv_2mortal(newSViv(tmbuf->tm_yday)));

 Inline_Stack_Done;
}

This statement must be used before any variables are pushed onto the stack. It
resets the stack pointer to the beginning of the stack (rather than the end of the
input arguments).

We use this macro to indicate when all the necessary variables have been pushed onto
the stack.

All we have done here is replace XPUSHs with Inline_Stack_Push. It’s as simple
as that!

7.3.3 Inline and CPAN

Once you have a working interface, what happens if you want to put it onto CPAN
for other people to use? In general, you can package your module as is and put it onto
CPAN. Doing so will require a dependency on Inline (don’t forget to use the
PREREQ_PM option to MakeMaker to formalize this dependency), which might not
be convenient for everybody. Additionally, some sites do not want the added risk of a
module building itself dynamically, or the support overhead of explaining to users
that the program will run faster the second time they use it!

One solution is to configure Inline so that it doesn’t remove the build tree:

use Inline Config => CLEAN_AFTER_BUILD => 0;

You can then edit the build files and construct a distribution. This process is a little
tedious, but it is the only solution if you do not want the people installing your mod-
ule to have a dependency on Inline. If you know that Inline is available and the
only issue is to make sure it is not compiled dynamically, then Inline provides you
with a solution. A replacement for ExtUtils::MakeMaker is distributed with
Inline; it will make sure a precompiled version of the module is installed. Here is
an example of a simple module that shows how to use this technique:

package Trig;

use strict;
use vars qw/ $VERSION /;

$VERSION = '0.10';

c

b

c

THE INLINE MODULE 245

use Inline C => 'DATA', VERSION => '0.10', NAME => 'Trig';

__DATA__
__C__

double sine (double ang) {
 return sin(ang);
}

The only thing to note here is that the name and version number of the module must
be supplied to Inline. The real magic occurs in the Makefile.PL file:

use Inline::MakeMaker;

WriteInlineMakefile(NAME => 'Trig',
 VERSION_FROM => 'Trig.pm');

Rather than using ExtUtils::MakeMaker and the WriteMakefile function,
we use Inline::MakeMaker and WriteInlineMakefile. If we now build
the module, it behaves slightly differently than normal:

% perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for Trig
% make
mkdir blib
mkdir blib/lib
mkdir blib/arch
mkdir blib/arch/auto
mkdir blib/arch/auto/Trig
mkdir blib/lib/auto
mkdir blib/lib/auto/Trig
cp Trig.pm blib/lib/Trig.pm
/usr/bin/perl -Mblib -MInline=_INSTALL_ -MTrig -e1 0.10 blib/arch

When we look in the build directory, the module has been built and is ready to be
installed.

7.3.4 Inline module summary

Inline is a powerful addition to your armory. With only a small loss in overall
flexibility (much of which you won’t miss), you can mix Perl and C code without
having to worry about make files and XS syntax. All you need is a knowledge of the
variable manipulation API and possibly typemaps. The main things to be aware of
are as follows:

• You cannot have input arguments that are also return arguments. If you need this
functionality, use the SV* as an argument and modify it directly. For example,
void modify_inplace(SV* sv) {
 sv_setiv(sv, 5);

}

246 CHAPTER 7 ALTERNATIVES TO XS

If we call this function via Inline, then the scalar argument will be set to 5 on
completion. Also, as mentioned in section 2.5, in many cases the design of the
interface is better if an alternative approach is adopted.

• Be careful with memory allocation. You will not be able to explicitly free mem-
ory when you return from your Inline function (especially if you have allo-
cated memory for a string buffer that is to be returned), so either use an SV
directly (either by pushing it onto the stack or by returning it) or allocate mem-
ory using mortal SVs (sv_2mortal(NEWSV(..)) and return the buffer
pointer with SvPVX) rather than with New.

We cannot cover all of Inline here, but this section has given you a taste of what
is possible.

7.4 THE PDL::PP MODULE

You saw in “PDL and XS,” page 195 that creating interfaces from the Perl Data Lan-
guage to external libraries using XS is quite complex. In addition to the native com-
plexity of PDL, four issues further complicate PDL/XS interfaces:

• Data typing—Many libraries have different routines for different data types.
Writing XS interfaces that are identical except for the data type of the piddle is
time consuming and error prone.

• Slicing—When a subsection of a piddle is used, PDL does not make a copy
(data can be modified “in place”). If a slice is passed to XS, the pointer will not
be referring to the start of the slice but to the start of the parent piddle!

• PDL threading—One nice feature of PDL is its ability to automatically thread
over additional dimensions.4 This functionality must be implemented in C for
speed, but it is essentially impossible to get right if you code it by hand.

• Changes in API—If the internal API for either PDL or Perl is modified, it is
highly likely that the XS code will have to be fixed. Writing XS code that works
for multiple versions of internals API is difficult and quickly leads to an ifdef
forest of C preprocessor directives.

To solve these issues, a PDL preprocessor language was written to abstract out the
numeric interface from the XS implementation. These interface definitions (using the
file suffix.pd) are automatically processed by the PDL::PP module to generate
the required XS code. PDL::PP automatically generates code for multiple data types,
keeps track of slicing, and implements threading. If the API is changed, all that needs
to be modified is PDL::PP—PDL itself can be rebuilt with minimal changes.

4 This is the PDL term for automatic iteration over redundant dimensions. On a multithreaded system,
it will happen by starting multiple processor threads. On a single-threaded system, the dimensions will
be processed one at a time.
THE PDL::PP MODULE 247

The primary goal of PDL::PP is to let you write numerical code in a C-like lan-
guage (for speed) without having to worry about XS. Support for external libraries is
a side effect of this goal. PDL::PP is an extremely complicated module, and we’ll
make no attempt to describe all its features. However, we will show you how to write
a PDL::PP interface to the sum function described in chapter 6.

7.4.1 The .pd file

Instead of using an .xs file, PDL::PP code is written to a .pd file. In this example,
we’ll create a file called sum.pd to hold the definitions. This file is a Perl program
that is run as part of the make process (the next section shows how). This program
creates the normal XS infrastructure: the XS file and the associated Perl module. For
this example, the first thing we need to do is to supply the code for sum. We do this
using pp_addhdr. This function places additional C code at the top of the output
XS file (before the MODULE line). That C code is supplied as an argument:

pp_addhdr('

int sum (int num, int * array) {
 int thesum = 0;

 int count;
 for (count = 0; count < num; count++) {

 thesum += array[count];
 }

 return thesum;
}

');

Now that the C function is present, we can supply the PP code for the PDL interface.
We do this using the pp_def function:

pp_def('ppsum',
 Pars => 'a(n); [o]b()',

 GenericTypes => [L],
 Code => '$b() = sum($SIZE(n), $P(a));',

);

pp_done();

The first argument to pp_def is the name of the routine being generated. We use
ppsum because a PDL sum function already exists.5

This is the calling signature of the PDL routine. Here we are saying that the first argu-
ment is a one-dimensional vector of dimension n with an output argument (that can

5 PDL always imports PP functions into the main namespace. This is done so that the interactive perldl
shell will always work as expected even though it sometimes results in namespace clashes.

B
c

d
e

f

B

c

248 CHAPTER 7 ALTERNATIVES TO XS

also be a second input argument treated as a buffer) that is a simple scalar piddle (no
dimensions are specified).

GenericTypes indicates to PP that only specific data types are supported by the
routine. In this case, only type long int is supported by our C function.

This is the actual implementation of the PP routine. $SIZE(n) retrieves the size of
dimensions labeled n. $P(a) retrieves the pointer to the piddle $a. These two argu-
ments are passed to the C sum function, and the result is stored in the scalar variable $b.

We have to inform PDL::PP that we are done, and there are no more definitions to
read, so that it can write out the XS and PM files.

This code looks fairly strange at first, but there is logic to it—and it has successfully
formed a layer between you and XS (the XS file generated from this example PP file is
30KB!). This definition on its own is useless, so the next step is to convert the file to
XS code.6

7.4.2 The Makefile.PL file

We now have a file called sum.pd rather than the file Sum.xs expected by
ExtUtils::MakeMaker. So, in order to generate a normal XS file, we must add
some PDL helper routines to Makefile.PL, to make sure the PP definition file is
processed. We do so by adding a new make-file target and retrieving PDL-specific
build options from the module PDL::Core::Dev:

Use this as a template for the Makefile.PL for

any external PDL module.

use ExtUtils::MakeMaker;

use PDL::Core::Dev qw/ pdlpp_stdargs pdlpp_postamble/;

$pack = [qw/ sum.pd Sum PDL::Sum /];

%hash = pdlpp_stdargs($pack);

WriteMakefile(%hash);

sub MY::postamble {
 pdlpp_postamble($::pack);

} # Add genpp rule

The PDL::Core::Dev module contains some helper routines designed specifically
for generating make files for PDL::PP extensions.

$pack contains a reference to an array specifying the name of the source file, the
name of the resulting module (.pm and .xs) files, and the namespace of the module.

6 An Inline::PDLPP module is under development at this time. It will allow PP definitions to be placed
in Perl programs directly, as described in section 7.3 for the C language.

d

e

f

B

c
d

e
f

B

c

THE PDL::PP MODULE 249

pdlpp_stdargs returns a hash containing the MakeMaker arguments required to
build a PDL::PP-based module.

The postamble method overrides the default version in the MY class (as set up by
MakeMaker) and is invoked automatically by MakeMaker to place additional
dependencies in the output Makefile.

The pdlpp_postamble function generates the PDL-specific make file dependen-
cies from the single argument. The argument is specified as $::pack to indicate
that the variable is from the main namespace and not from the MY namespace.

Now, when we build this module, we get the following output (on Linux):

% perl Makefile.PL
Writing Makefile for PDL::Sum

% make
/usr/local/bin/perl

 -I/usr/local/perl5/lib/site_perl/5.6.0/i686-linux/blib/lib
 -I/usr/local/perl5/lib/site_perl/5.6.0/i686-linux/blib/arch

 "-MPDL::PP qw/PDL::Sum PDL::Sum Sum/" sum.pd
cp Sum.pm blib/lib/PDL/Sum.pm

/usr/local/bin/perl -I/usr/local/perl-5.6/lib/5.6.0/i686-linux
 -I/usr/local/perl5/lib/5.6.0

 /usr/local/perl5/lib/5.6.0/ExtUtils/xsubpp
 -typemap /usr/local/perl5/lib/5.6.0/ExtUtils/typemap

 -typemap/usr/local/perl5/lib/site_perl/5.6.0/i686-linux/PDL/
Core/typemap.pdl

 Sum.xs > Sum.xsc && mv Sum.xsc Sum.c
gcc -c -I/usr/local/perl5/lib/site_perl/5.6.0/i686-linux/PDL/Core

 -fno-strict-aliasing -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64
 -O2 -DVERSION=\"0.10\" -DXS_VERSION=\"0.10\" -fpic

 -I/usr/local/perl5/lib/5.6.0/i686-linux/CORE Sum.c
Running Mkbootstrap for PDL::Sum ()

chmod 644 Sum.bs
LD_RUN_PATH="" gcc -o blib/arch/auto/PDL/Sum/Sum.so

 -shared -L/usr/local/lib Sum.o
chmod 755 blib/arch/auto/PDL/Sum/Sum.so

cp Sum.bs blib/arch/auto/PDL/Sum/Sum.bs
chmod 644 blib/arch/auto/PDL/Sum/Sum.bs

Manifying blib/man3/PDL::Sum.3

The first step in the build is now to run the .pd file through Perl before proceeding
with a normal build (xsubpp followed by the C compiler). Once built we can see if it
works (here using the interactive shell):

% perldl

perlDL shell v1.30
 PDL comes with ABSOLUTELY NO WARRANTY. For details, see the file

 'COPYING' in the PDL distribution. This is free software and you
 are welcome to redistribute it under certain conditions, see

 the same file for details.

d

e

f

250 CHAPTER 7 ALTERNATIVES TO XS

ReadLines enabled

Reading PDL/default.perldlrc...
Type 'help' for online help

Type 'demo' for online demos
Loaded PDL v2.3.2

perldl> use blib; use PDL::Sum

perldl> $pdl = pdl(10,20,30)

perldl> print $pdl
[10 20 30]

perldl> print ppsum($pdl)
60

7.4.3 Pure PDL

Now that we have shown you how to call an external function using PDL::PP, it will
be instructive to show the equivalent routine written using the PP language without
referring to any external C code (this is the actual code used to implement the PDL
sumover function):

pp_def(
 'sumover',

 Pars => 'a(n); [o]b();',
 Code => 'double tmp=0;

 loop(n) %{
 tmp += $a();

 %}
 $b() = tmp;

 '
);

 pp_done();

This line adds the current value to the temporary placeholder. Note that no index is
required. PDL::PP automatically works out what index we are referring to.

This code is still translated to C and built as an XS module, but now it works on all
data types natively. This is the recommended approach for writing fast loops in PDL,
and it is one of the reasons PDL can approach the speed of pure C.

7.5 EARLIER ALTERNATIVES

The modules and packages we’ve described are by no means an exhaustive list, but
we’ve covered the techniques you would most likely want to pursue. There are other,
less portable methods for calling functions in C shared libraries from Perl, but with
the appearance of the Inline module most of these techniques can (and probably
should) be safely ignored. For example, you can use the C::DynaLib module to call
C functions directly from shared libraries, and it did have a use for prototyping simple

Initializes a new
double-precision
variable Loops over dimension

n using the built-in
loop() macro

b

Assigns the total
to the output
variable

b

EARLIER ALTERNATIVES 251

systems without requiring XS. The following example (from the C::DynaLib docu-
mentation) shows how to use it to call a function from the standard math library:7

use C::DynaLib;

$libm = new C::DynaLib("-lm");
$sinh = $libm->DeclareSub("sinh", "d", "d");

print "The hyperbolic sine of 3 is ", &$sinh(3), "\n";

This code prints the expected answer: 10.018 (on supported architectures). With
Inline, this code would be written as follows:

use Inline "C";

print "The hyperbolic sine of 3 is ", mysinh(3), "\n";

__END__
__C__

double mysinh (double ang) {
 return sinh(ang);

}

This version has two key advantages: it’s simpler to write8 and more portable. The
PDL equivalent of C::DynaLib is PDL::CallExt, and it has also been super-
ceded—this time by PDL::PP.

7.6 FURTHER READING

• Inline—The Inline Project (http://inline.perl.org/).

• PDL::PP—The documentation for PDL::PP is available as part of the PDL
distribution. It is fairly complete but also fairly opaque.

• SWIG—Simplified Wrapper and Interface Generator (http://www.swig.org/).

7 Current versions of this module do not seem to work on Linux, although this example works on So-
laris. The module has not been updated since February 2000 and is not being actively supported.

8 This code can be written in two lines, for those of you who prefer compactness:
use Inline C => "double mysinh (double ang) { return sinh(ang); }";
print "The hyperbolic sine of 3 is ", mysinh(3), "\n";
252 CHAPTER 7 ALTERNATIVES TO XS

7.7 SUMMARY

In this chapter, you’ve learned how to use systems that do not require knowledge of
XS in order to link Perl programs to C libraries. You’ve seen that SWIG takes a
language-agnostic approach, whereas Inline generates XS code directly from C
embedded in your Perl program. The decision about which system to use depends on
your circumstances. If you are only interested in Perl, Inline is probably the best
choice (you can even use it to learn about XS by looking at the intermediate files it
generates). If you’re interested in using the same C interface in a number of libraries,
then you should choose SWIG. Finally, although SWIG and Inline are the main
choices, other systems are available; if you are using large data arrays, you should con-
sider using PDL::PP.
SUMMARY 253

C H A P T E R 8

Embedding Perl in C

8.1 When to embed 254
8.2 When not to embed 255
8.3 Things to think about 255
8.4 “Hello C” from Perl 255
8.5 Passing data 257

8.6 Calling Perl routines 259
8.7 Using C in Perl in C 265
8.8 Embedding wisdom 266
8.9 Summary 267
In the first half of this book, we’ve looked at what it means to extend Perl with addi-
tional routines from C. Sometimes, however, you’ll want to call a piece of Perl from
inside a C program—this is called embedding Perl in C, because you link an entire
Perl interpreter inside another C program.

8.1 WHEN TO EMBED

The best and most well-known example of embedding Perl in C is Apache’s
mod_perl module. It allows the user to interact with Perl at every level of the
Apache web server—you can write configuration files in Perl, write Perl programs to
handle HTTP requests with Perl objects, and so on. In short, it lets you use Perl to
script and control the rest of the program.

More specific examples include the embedding of Perl into the Xchat IRC client
to enable the user to script complex actions in Perl; the GIMP graphics editor,
which allows graphical manipulations to be encoded in Perl; the vim text editor,
which can be both configured and manipulated using Perl; and gnumeric, the
GNOME spreadsheet, which exposes the data in the spreadsheet cells to Perl for
additional manipulation.
254

All of these examples have common objectives:

• To make the application extensible through user-provided plug-in scripts

• To make configuration more flexible by involving a high-level language and the
control structures it provides

• To help the user script common or complex sequences of actions

If an application you are working with could benefit from these features, you should
contemplate embedding a Perl interpreter.

8.2 WHEN NOT TO EMBED

Embedding Perl into a program is not a panacea, and embedding Perl into an existing
program is not a step to be taken lightly. We don’t recommend embedded Perl as a
cheap way of avoiding writing a configuration parser or extensible scripting system.

You should also be conscious that embedding Perl into an application will increase
its size and memory usage, possibly introduce memory leaks or instabilities if you
aren’t careful, and occasionally slow the application. Nevertheless, the examples we
have given show that, in a lot of cases, you can make a big gain by including Perl in
your program.

8.3 THINGS TO THINK ABOUT

In chapter 9, we’ll look in more detail at the decisions you need to make when
embedding Perl into an application. Fundamentally, however, you must consider the
degree to which Perl should have access to the guts of your program.

This consideration in turn influences details such as which data structures you will
expose to Perl and how they will appear to the Perl programmer; which C functions
in your API will be available, and, again, how they would be used from Perl; where your
Perl programs will come from and at what point in the program they will be used; and
so on.

Again, you’ll see practical answers to these questions in chapter 9. Let’s now look
at an example of calling a Perl program from inside a C program.

8.4 “HELLO C” FROM PERL

The fundamentals of embedding are simple: you perform almost exactly the same
function as the main body of the perl binary. That is, you construct and initialize
an interpreter, use it to parse a string of code, and then execute that code. Here’s a
simple program that does so:

#include <EXTERN.h>
#include <perl.h>

static PerlInterpreter *my_perl;

int main(int argc, char **argv)

B
c

d

“HELLO C” FROM PERL 255

{

 char* command_line[] = {"", "-e",
 "print \"Hello from C!\\n\";"};

 my_perl = perl_alloc();
 perl_construct(my_perl);

 perl_parse(my_perl, NULL, 3, command_line, (char **)NULL);
 perl_run(my_perl);

 perl_destruct(my_perl);
 perl_free(my_perl);

 return 0;
}

This first header file sets up some macros to tell the main Perl header file that we’re
not really Perl, but an external application using the Perl API.

We load the main Perl header, which provides the macros and prototypes for all the
functions in the Perl API.

It is possible to have multiple Perl interpreters in a program, because all the interpreter-
global data is stored in a structure called, naturally, a PerlInterpreter. In this
program we have one interpreter, which is stored in the pointer my_perl.

Even when we’re embedding Perl, we’re dealing with the honest-to-goodness Perl
interpreter, which expects to get arguments from the command line. Hence, we must
provide a set of command-line arguments, just as we’d expect to find in argv. (And
just like in argv, the first element of the array is the name of the command, rather
than the first command-line argument; we’re not bothered about the name of the
command, so we leave it blank.)

We need to allocate memory, just as we would for any other structure pointer;
perl_alloc returns some memory for a Perl interpreter.

Next, we set up the interpreter and all its associated data structures with
perl_construct.

Now we’re in a position where we can parse the incoming Perl “script,” which is spec-
ified in the -e argument to the faked command line.

Perl is bytecode-compiled—first the code is parsed into an internal representation,
and then it’s run. perl_run starts the main loop running the code.

We cleanly shut down the interpreter and release the memory that had been allocated
for it.

It’s interesting to compare this code with the source of the Perl interpreter; if you
don’t believe we’re performing the same functions as the Perl interpreter, take a look
at the guts of miniperlmain.c from Perl 5.6.1:

e

f
g

h
i

j

B

c

d

e

f

g

h

i

j

256 CHAPTER 8 EMBEDDING PERL IN C

if (!PL_do_undump) {

 my_perl = perl_alloc();
 if (!my_perl)

 exit(1);
 perl_construct(my_perl);

 PL_perl_destruct_level = 0;
}

exitstatus = perl_parse(my_perl, xs_init, argc, argv,
 (char **)NULL);

if (!exitstatus) {
 exitstatus = perl_run(my_perl);

}

perl_destruct(my_perl);

perl_free(my_perl);

PERL_SYS_TERM();

exit(exitstatus);
return exitstatus;

As you can see, this is much the same as our example, with a little more error checking.

8.4.1 Compiling embedded programs

Compiling programs that embed Perl is a little special; you must ensure that you’re
compiling the code with exactly the same options that were used to compile the Perl
interpreter. Although you could get them from Config.pm, a module makes it easy
for you: ExtUtils::Embed.

As you know from chapter 1, a program’s compilation takes place in two stages:
compilation proper and linking. ExtUtils::Embed provides two functions,
ccopts and ldopts, to tell you the options for each stage. If you run these functions
from the perl command line, they’ll handily spit out the options to standard output,
making the module ideal to use as part of your build process.

Let’s compile and then link the previous example code, simple.c:

 % cc -o simple.o -c simple.c `perl -MExtUtils::Embed -e ccopts`

 % cc -o simple simple.o `perl -MExtUtils::Embed -e ldopts`
 % ./simple

Hello from C!

Now you have a way to execute simple Perl programs from C, albeit if you specify
them on the Perl command line. Let’s make this approach a bit more powerful.

8.5 PASSING DATA

In a real embedded application, you need a way to share data between Perl and C. For
instance, the Apache embedded Perl module, mod_perl, allows you to store config-
uration data in Perl variables.
PASSING DATA 257

As you saw on “get_sv,” page 103, Perl provides a function called get_sv that lets
you grab an SV from the Perl symbol table. Suppose we’re writing a mail client (we’ll
call it Hermes) and we want our users to be able to set some of the configuration in
Perl. First, we’ll look at general settings that apply to the whole application; in the next
section, we’ll write some logic for settings that apply on a per-message basis.

Our sample configuration file looks like this:

package Hermes;

$save_outgoing = 1;

Prefer vim, but use emacs if vim not available.

$editor = `which vim` || `which emacs`;

$quote_char = "> ";

$check_every = 10; # seconds

Inside our mail client, we’ll have Perl parse and run this configuration; we also want
to get at the results. We know how to do the first part—we allocate, make, and
instantiate a Perl interpreter:

#include <EXTERN.h>

#include <perl.h>

static PerlInterpreter *my_perl;

int parse_config(char * config_file)
{

 char* command_line[2] = {"", NULL};
 command_line[1] = config_file;

 my_perl = perl_alloc();
 perl_construct(my_perl);

 if (perl_parse(my_perl, NULL, 2, command_line, (char **)NULL)) {
 return 0; /* Failed to parse */

 }

 perl_run(my_perl);

 if (SvTRUE(ERRSV)) {
 return 0; /* Failed to execute */

 }

 return 1;

}

This code is substantially the same as the previous code, except that the “command
line” passed to Perl is determined at runtime when the name of the configuration file
is passed in to parse_config. The other difference is that once we have run the
Perl program, we check whether ERRSV is true; this is the C-side equivalent of
checking $@. We also don’t destroy the interpreter, because we’ll be using it to get at
Perl values and execute Perl code in the rest of our mailer.
258 CHAPTER 8 EMBEDDING PERL IN C

Now we have executed the Perl program, and we should be able to determine the
values of the configuration variables using the get_sv function. For instance, sup-
pose it is time to edit an email message before sending it; we look up the location of
the editor we’re going to use:

int edit_message(char* filename) {
 char *editor;

 editor = SvPV_nolen(get_sv("Hermes::editor"));

 /* And now we execute the editor */

 ...
}

Similarly, we can set these SVs to values from our C code using sv_setpv or
sv_setiv if we want to communicate information back to Perl. However, you’ll
usually pass values to Perl subroutines; let’s see how to do this.

8.6 CALLING PERL ROUTINES

The techniques you saw in section 6.7.1 for calling Perl subroutines from XS are
equally applicable to calling Perl subroutines from an embedded program. You still
need to put parameters onto the stack, make a call out to Perl, and collect return val-
ues. Let’s take a closer look at those techniques.

Perl has a number of different functions for calling routines, but the two we’ll con-
centrate on are call_sv and call_pv. It’s easy to decide which one to call: if you
have an SV that refers to a subroutine—one that contains either a code reference or
a subroutine’s name (a symbolic reference)—then you use call_sv. Otherwise, if
you only have the name as a string, you use call_pv. The typical embedded program
will generally call subroutines by name using call_pv, although there are instances
where call_sv is correct.

For example, suppose we want to allow users of our mailer to define a subroutine
that is passed a mail message for preprocessing as the user replies to it. We could state
in our program’s embedding API that the configuration file must define a subroutine
called Hermes::reply_to_hook, and we could use call_pv with the string
"Hermes::reply_to_hook"; or, we could allow something like this:

package Hermes;

$reply_to_hook = sub {
 my @mail = @_;

 ...
}

In this case, we’d use get_sv("Hermes::reply_to_hook", TRUE) to return
a code reference, which we’d then call with call_sv.

You’ll see another example where call_sv is necessary when we look at callbacks
later in this section. For now, we’ll concentrate on call_pv.
CALLING PERL ROUTINES 259

Here’s the simplest possible instance of calling a Perl routine from C; it has no
parameters and no return value. One good example of this type of routine would be
an exit handler—something that our mail program calls when it’s about to quit, so
that any state established by the Perl program can be cleared up.1 This would be the
Perl side of it:

package Hermes;

 sub atexit {
 # Close any open file handles

 ...
 #

 print "Thank you for using Hermes/Perl. Going away now.\n";
}

And here is the C side:

/* Clean up Perl embedding */
void perl_stop(void) {

 dSP;

 PUSHMARK(SP);

 call_pv("Hermes::atexit", G_DISCARD | G_NOARGS);

 perl_destruct(my_perl);

 perl_free(my_perl);
}

This function is used before the mailer exits to shut down all elements of the Perl
embedding—we’ll call our exit handler routine Hermes::atexit, and then close
down the Perl interpreter. It’s a good idea when you’re embedding to keep the num-
ber of functions that interact with the Perl interpreter to a minimum, and if possible,
in their own separate file. Hence, we have a wrapper function that can be called any-
where in our mailer to shut down the Perl embedding.

PUSHMARK pushes a bookmark onto the argument stack. In our example in chapter 6,
we used a complicated prologue to call the callback, using ENTER/SAVETMPS/
PUSHMARK and PUTBACK/FREETMPS/LEAVE; but we are not concerned about
parameters and return values here, so we can do without most of these macros. We
must still push a bookmark, because the argument stack is not always empty; if we’re
already inside a Perl expression, the stack will not be empty. However, when a call-
back receives parameters or returns values, it needs to know how many items from the
top of the stack belong to it. For instance, there may already be four items on the
stack before we call Hermes::atexit. Suppose we want to push another two items
on as parameters. Perl needs some way to know that the four items previously on the

1 Of course, this is what END blocks are for. If we used an END block in our Perl configuration file, then
all these steps would be done automatically—but that would not make a good example.

B
As in section 6.7.1, dSP
provides local access to
Perl’s argument stack

c
d

e

B

c

260 CHAPTER 8 EMBEDDING PERL IN C

stack are no concern of atexit, and so it pushes a bookmark to denote the bottom
of the local stack.

Now we call the routine. call_pv and call_sv take two parameters: the name or
SV for the subroutine to be called, and a set of flags. In this instance, our flags are
G_DISCARD, signifying that we’re going to discard the return value of the call (and
therefore that Hermes::atexit should be called in void context); and
G_NOARGS, to state that we’re not pushing in any arguments, so the subroutine
doesn’t need to look at the stack.

We’ve called the routine, so we can shut down the interpreter and free the memory it
used, in preparation for exiting the program.

8.6.1 Stack manipulation

So much for the easy case. Unfortunately, in most other examples, you must deal with
both parameters and return values.

Parameters

You already know the basics of handling parameters from “Returning a list,” page 181;
you use PUSHs to put things on the stack. To be sure the values you put onto the stack
are properly garbage collected, you need to make them temporary; doing so tells Perl
that they should go away at the end of the scope. Thus you must declare a scope—and
this is where the ENTER/SAVETMPS/PUSHMARK business comes in.

Let’s take another example from our mythical mailer and pass a mail message to a
Perl function for preprocessing. The message will come in as an array of strings, so we
need to make them all into temporary SVs before pushing them onto the stack:

void preprocess_callout(char** message) {

 dSP;
 int i;

 ENTER;
 SAVETMPS;

 PUSHMARK(SP);

 for (i=0; message[i]; i++)

 XPUSHs(sv_2mortal(newSVpv(message[i], 0)));

 PUTBACK;

 call_pv("Hermes::preprocess", G_DISCARD);

 FREETMPS;

 LEAVE;

}

d

e

B

c Again, pushes a bookmark
to declare the local bottom
of the stack

d

e

f

Finally, we clean up the temporaries
we created and close the scope
CALLING PERL ROUTINES 261

As before, we need a copy of the stack pointer so we know where in memory we’re
putting our parameters.

We begin by opening a new scope with ENTER and setting out a new scope for tem-
porary values with SAVETMPS.

We iterate over the array, creating a new SV for each line of the message (see “Creat-
ing SVs with values,” page 106), making them temporary with sv_2mortal, and
then pushing them onto the stack. If we knew in advance how many lines we had, we
could use EXTEND(n) to pre-extend the stack and then use PUSHs instead of
XPUSHs; but the approach we use here keeps things simple.

PUTBACK sets Perl’s copy of the stack pointer equal to the value of the local variable
SP. Because we’ve put things onto the stack, our SP will have grown; but our changes
to the local variable need to be reflected in the global stack pointer.

Now we can call the function. This time we have some arguments, so we don’t use
G_NOARGS; but we’re still discarding the return value.

Return values

It’s not much good preprocessing a message if you don’t get the message back after
preprocessing it, so you have to deal with return values. Once again, you’ll use many
of the same principles you saw with respect to XS callbacks. We can modify our
example slightly:

char** preprocess_callout(char** message) {
 dSP;

 int i;
 int count;

 char **newmessage;

 ENTER;

 SAVETMPS;
 PUSHMARK(SP);

 for (i=0; message[i]; i++)
 XPUSHs(sv_2mortal(newSVpv(message[i], 0)));

 PUTBACK;

 count = call_pv("Hermes::preprocess", G_ARRAY);

 SPAGAIN;

 newmessage = malloc((count + 1) * sizeof(char*));

 newmessage[count] = NULL; i = count;

 while (i > 0)

 newmessage[--i] = savepv(SvPV_nolen(POPs));

B

c

d

e

f

B

c

d

262 CHAPTER 8 EMBEDDING PERL IN C

 FREETMPS;

 LEAVE;

 return newmessage;

}

This time we use G_ARRAY to specify that we’re calling the function in array context.
call_pv returns the number of values returned by the subroutine.

Because the subroutine will have put more values on the stack, we need to refresh our
local copy of the stack pointer—this is what SPAGAIN does. Again, this code is the
same as in section 6.7.1.

The way we fetch the values is slightly tricky. First, the values come off the stack in
reverse order, so we put the first value to be popped at the end of the array. Second,
the values on the stack are temporaries and will be swept away at the FREETMPS.
Because we don’t want to end up with an array of invalid pointers, we make a copy of
each string with savepv.

We also need to remember that arrays are zero-based, so if count = 2, we should
store the first value in newmessage[1]. This is why we say newmessage[--i].

8.6.2 Context

You’ve seen that you can use the G_… flags to affect the context of a call. For
instance, you can force scalar context on a list function by passing the G_SCALAR
flag. The perlcall documentation has a comprehensive list of what all the flag val-
ues do and how they affect the context of your call.

8.6.3 Trapping errors with eval

You may have noticed that if a fatal error is generated by the Perl subroutine, then the
entire process gets shut down. You should guard against this occurrence in embedded
situations, so you need to be aware of another G_… flag.

G_EVAL is the equivalent of wrapping the code to be executed in an eval { ... }
block. Let’s modify our example again to make sure it doesn’t die:

char** preprocess_callout(char** message) {
 dSP;

 int i;
 int count;

 char **newmessage;

 ENTER;

 SAVETMPS;
 PUSHMARK(SP);

B

c

d

CALLING PERL ROUTINES 263

 for (i=0; message[i]; i++)

 XPUSHs(sv_2mortal(newSVpv(message[i], 0)));

 PUTBACK;

 count = call_pv("Hermes::preprocess", G_ARRAY | G_EVAL);

 SPAGAIN;

 if (SvTRUE(ERRSV)) {
 display_message(

 "An error occurred in the Perl preprocessor: %s",
 SvPV_nolen(ERRSV));

 return message; /* Go with the original */
 }

 newmessage = malloc((count + 1) * sizeof(char*));
 newmessage[count] = NULL;

 i = count;

 while (i > 0) {

 SV* line_sv = POPs;
 newmessage[--i] = savepv(SvPV_nolen(line_sv));

 }

 FREETMPS;

 LEAVE;

 return newmessage;

}

Adding the G_EVAL flag is all we need to do to protect ourselves from a die in the
Perl code.

Once we’ve called the subroutine and restored the stack to normality, we check to see
whether the error SV ($@) has a true value.

Assuming we have a function for displaying formatted messages, we spit out the text
of the error message and return the original array unmodified.

8.6.4 Calling Perl methods in C

As you know, there are two types of methods: object methods and class methods.
They are both called using the call_method function from C code; the trick is
that the object (in the case of an object method) or an SV representing the class name
(in the case of a class method) must be placed on the stack before any parameters.
Here’s an example of calling an object method from C:

 PUSHMARK(sp);
 XPUSHs(object);

 XPUSHs(param);
 PUTBACK;

 call_method("display", G_DISCARD);

B

c

d

B

c

d

264 CHAPTER 8 EMBEDDING PERL IN C

8.6.5 Calling Perl statements

But isn’t this approach a lot of work, just to run some Perl code? There should be a
much easier way to run Perl code from C. Thankfully, Perl provides functions called
eval_pv and eval_sv, which are essentially the equivalent of eval "...". As
with eval, you can do anything you can normally do in a Perl program, including
load other modules.

For instance, we can use Perl to nicely format a C string, using the Text::Auto-
format module:

char* tidy_string (char* input) {
 SV* result;

 setSVpv(DEFSV, input, 0);
 result = eval_pv("use Text::Autoformat; autoformat($_)", FALSE);

 if (SvTRUE(ERRSV))
 return NULL;

 else
 return SvPV_nolen(result);

}

Notice that we store the input string in $_ (DEFSV) and that the second argument to
eval_pv and eval_sv is a boolean denoting the behavior on error—if it is TRUE,
then the process will exit if the Perl code dies.

In many cases, eval_sv and eval_pv are all you need to get a lot out of embed-
ding Perl in your application. The perlembed man page contains a very good exam-
ple of using Perl’s regular expression functions from C with these functions.

8.7 USING C IN PERL IN C

In many cases when embedding Perl in C, you’re providing the user with an alterna-
tive way of scripting the program’s behavior. As a result, you often want to provide a
way for the user’s Perl to perform actions back in the original C program. For
instance, the mod_perl Apache module allows Perl programs to control incoming
HTTP requests; this control involves such things as finding out information about
the request and sending an HTTP response back to the remote client via the Apache
server. These things can’t be done from Perl, and they must be implemented as calls to
C functions inside Apache. Thus, in addition to an embedding framework, you need
some XS modules to expose the C API of your programs back to the Perl scripts.

Let’s assume we’ve written an XS module to do this. If we try the obvious solution

eval_pv("use Hermes;", TRUE);

then this happens:

Can't load module Hermes, dynamic loading not available in this perl.
(You may need to build a new perl executable which either supports

dynamic loading or has the Hermes module statically linked into it.)
USING C IN PERL IN C 265

The very basic Perl interpreter we created does not have support for dynamic loading
of XS modules.2

Adding this support is easy, especially because ExtUtils::Embed can help
us out again. The easiest way to get started is to use ExtUtils::Embed’s
xsinit function:

% perl -MExtUtils::Embed -e xsinit -- Hermes

This command creates a file called perlxsi.c, which we can link into our pro-
gram; it provides a function called xs_init that we can pass to perl_parse:

int main(int argc, char **argv)

{
 char* command_line[] = {"", "-e",

 "print \"Hello from C!\\n\";"};

 my_perl = perl_alloc();

 perl_construct(my_perl);
 perl_parse(my_perl, xs_init, 3, command_line, (char **)NULL);

 perl_run(my_perl);
 perl_destruct(my_perl);

 perl_free(my_perl);
}

If you do this, you will also have to link the Hermes.so file generated by your XS
module to your embedded executable.

A more flexible way to use XS modules is to allow dynamic linking by having
xs_init load DynaLoader for you. You can do so by not passing any parameters
to xsinit:

% perl -MExtUtils::Embed -e xsinit

Now your embedded code will be able to load any Perl module.

8.8 EMBEDDING WISDOM

Here are a few random pieces of advice for applications that embed Perl. These ideas
have generally been discovered through bitter experience but left undocumented, so
we’ve gathered them together to save you a little time in your own projects:

• Never call perl_parse more than once; you’ll only leak memory.

• Setting the global variable PL_destruct_level to 1 may help if you’re hav-
ing problems with values not being freed properly.

• Avoid using Perl API macros as arguments to other Perl API macros (this advice
is also relevant for XS programming).

2 This is the difference between miniperlmain.c, from which we took our first example, and per-
lmain.c, which is the main file used in building an ordinary perl.
266 CHAPTER 8 EMBEDDING PERL IN C

8.9 SUMMARY

Embedding a Perl interpreter into an application is a great way to increase its flexi-
bility, extensibility, and scriptability. Nevertheless, it comes at a price, in terms of
possible memory leaks, a potential drop in speed, and the added complexity of cod-
ing the embedding.

We’ve shown you how to add a Perl interpreter to a program and how to generate
build information for the resulting program; we’ve built a simple interpreter using the
alloc/construct/parse/run/destruct/free cycle. Once you have an
interpreter, you can get at Perl values using get_sv and also use any of the functions
from the Perl API to communicate with Perl; these abilities include running Perl sub-
routines via the callback mechanism and examining the Perl stack.

We’ve also discussed using eval_pv as an easy way to execute Perl code and
shown you the tricks necessary to allow an embedded interpreter to load XS modules.
Finally, we’ve presented some collected wisdom on the implementation of an embed-
ded application.
SUMMARY 267

C H A P T E R 9

Embedding case study

9.1 Goals 268
9.2 Preparing the ground 269
9.3 Configuration options 270
9.4 Testing options 273
9.5 Summary 276
As we mentioned in chapter 8, we’ll now apply what we’ve discussed about embed-
ding Perl to a real application. For our case study, we’ll use the mutt mail client, a
relatively commonly used Unix mail reader.

The case study will be a no-holds-barred look at the process of embedding Perl into
an existing application, including some of the problems we faced and how we worked
around them.

9.1 GOALS

Let’s begin by looking at what we’re trying to achieve. Primarily, we want to give Perl
control over the configuration of mutt—we want to rip out the muttrc configura-
tion file parsing and options-checking code and replace it with Perl equivalents.
Doing so will allow mutt users to use a Perl configuration file.

For our example, we won’t completely rewrite mutt’s option parsing. We’ll deal
with the easiest set of options and leave alone the hooks, address books, custom
headers, aliases, and so on. In true textbook style, we leave these items as exercises for
the reader.
268

9.2 PREPARING THE GROUND

We begin, fairly obviously, by getting a copy of the mutt sources to work from. At
the time of writing, the current development version was 1.3.24, which we down-
loaded from the mutt FTP site (ftp://ftp.mutt.org/pub/mutt/mutt-1.3.24i.tar.gz).
After unpacking a pristine copy of the sources, we made another copy called
mutt-1.3.24i-perl for our working environment.

Let’s look at how to get Perl compiled into the eventual binary. We must modify
the configuration and Makefile. mutt uses the de facto standard autoconf system
(http://www.gnu.org/software/autoconf/). We’ll make Perl support a configure-time
option, which defines the USE_PERL macro.

We do this with autoconf by declaring the macro in acconfig.h like so:

 #undef USE_SASL

+/* Do you want to use Perl for config file parsing?

+ (--with-perl) */
+#undef USE_PERL

+
 /* Do you want support for IMAP GSSAPI authentication?

 (--with-gss) */
 #undef USE_GSS

We also add an option in configure.in. We copy some of the code for linking in the
SASL authentication library, because it also needs to define a macro and add libraries
to the build path. As in chapter 8, we use ExtUtils::Embed as a handy, portable
way of determining the compile and link options:

+dnl Perl config file support

+AC_ARG_WITH(perl,
+ [--with-perl Perl support for .muttrc parsing],

+ [
+ if test "$with_perl" != "no"

+ then
+ CFLAGS="$CFLAGS `perl -MExtUtils::Embed -e ccopts`"

+ MUTTLIBS = "$MUTTLIBS `perl –MextUtils::Embed –e ldopts`"
+ AC_DEFINE(USE_PERL)

+ fi
+])

+

(AC_DEFINE means “#define this macro.”) Notice that because configure (the
file generated from configure.in) is a shell script, the backticks are performed when
configure is run; so, the options are determined when the Makefile is built.

Next, we rerun autoconf to regenerate the configure command. Testing it
both with and without the new --use-perl option, we can make sure that mutt
still compiles.
PREPARING THE GROUND 269

For completeness, we notice that, like perl, mutt will show all of its configura-
tion options when given the appropriate command-line argument. So, we make the
following change to main.c’s show_version function:

 #ifdef DL_STANDALONE

 "+DL_STANDALONE "
 #else

 "-DL_STANDALONE "
 #endif

+#ifdef USE_PERL
+ "+USE_PERL "

+#else
+ "-USE_PERL "

+#endif

9.3 CONFIGURATION OPTIONS

Let’s move on to thinking about how we’ll replace the configuration file parsing. mutt
has several kinds of options: binary options, string options, and quad-state options.
After examining the sources, we find that these options are parsed in init.c; the main
function is source_rc. Because we’re going to provide our own facility for parsing
mutt RC files, we can conditionalize these functions on #ifndef USE_PERL.

Our initial idea was to keep everything inside init.c and simply provide two ver-
sions of source_rc—one for the Perl-based parsing and one for the ordinary pars-
ing. However, this approach turned out to be problematic; some of the macros and
structures defined in the mutt header files conflicted with Perl’s header files, and it
would be messy to extricate mutt’s definitions from Perl’s.

So, we decided to follow our own advice from chapter 8 and put all the embedding
functionality in a single file: perl.c. Doing so requires another change to the Make-
file, which must be specified in configure.in. This time, we need to add to the sub-
stituted variable MUTT_LIB_OBJECTS by editing configure.in again:

 MUTTLIBS="$MUTTLIBSS `perl -MExtUtils::Embed -e ldopts`"

+ MUTT_LIB_OBJECTS="$MUTT_LIB_OBJECTS perl.o"
 AC_DEFINE(USE_PERL)

Now we’re set up to use perl.c. As an added advantage, we can make our Perl inter-
preter static to this file. We can write our replacement for source_rc, parsing the
config file using Perl. Listing 9.1 shows our initial cut of perl.c.

#include "config.h"

#define REGEXP mutt_REGEXP
#include "mutt.h"

#undef REGEXP /* Don't want mutt's version of this */

#include <EXTERN.h>

Listing 9.1 Initial attempt at embedding a Perl interpreter inside mutt
270 CHAPTER 9 EMBEDDING CASE STUDY

#include <perl.h>

static PerlInterpreter *my_perl;

int source_rc (const char *rcfile, BUFFER *err)
{
 FILE *f;
 pid_t pid;
 struct stat file_stat;
 size_t rc_size;
 char* rc;

 if (stat(rcfile, &file_stat) ||
 ((f = mutt_open_read (rcfile, &pid)) == NULL))
 {
 snprintf (err->data, err->dsize, "%s: %s", rcfile, strerror
(errno));
 return (-1);
 }

 if (!my_perl)
 {
 char *embedding[] = { "", "-e", "0" };
 my_perl = perl_alloc();
 perl_construct(my_perl);
 perl_parse(my_perl, NULL, 3, embedding, NULL);
 perl_run(my_perl);
 /* OK, we now have a Perl up and running */
 }

 rc_size = file_stat.st_size;
 rc = malloc(rc_size);
 fread(rc, 1, rc_size, f);

 if (!rc)
 {
 snprintf (err->data, err->dsize, "%s: %s", rcfile, strerror
(errno));
 return (-1);
 }

 eval_pv(rc, FALSE);
 if (SvTRUE(ERRSV))
 {
 snprintf (err->data, err->dsize, "%s: %s", rcfile,
 SvPV_nolen(ERRSV));
 return (-1);
 }
return (0);
}

The bulk of this code is taken from the original source_rc. Notice that we’ve even
kept the original code’s brace and indentation style—a surprisingly important point
when contributing to third-party projects.
CONFIGURATION OPTIONS 271

The beginning few lines are necessary for the definition of BUFFER. We protect
REGEXP by substituting it for mutt_REGEXP while the original header files do their
thing and then removing the substitution once they’re finished. Then come the famil-
iar set-up lines for an embedded application—the Perl header files and our interpreter.

After testing that we can open the RC file, next comes the good stuff: we read the
contents of the file into memory and evaluate it as a Perl string. Thus a Perl .muttrc
of the form

package Mutt;
our $folder = "/home/simon/mail/";

our $copy = 1;
...

will set the appropriate variables. Of course, if there’s an error, we need to tell the user
about it.

Notice that we don’t simply pass the RC file name to Perl on our faked command
line, because it’s possible that we could be sourcing more than one RC file. That’s also
why we test whether a Perl interpreter is already instantiated before we create one.

Because we’ve provided our own source_rc function, we must add a proto-
type into one of the header files to keep the compiler satisfied. We add the following
to mutt.h:

#ifdef USE_PERL

int source_rc (const char *rcfile, BUFFER *err);
#endif

We’ll also need to protect the original version with an #ifndef PERL.
Now our program won’t do much, but it should compile and run the user’s .mut-

trcs as Perl programs. However, we don’t tidy up the Perl interpreter on exit; let’s do
that by adding a hook to mutt’s mutt_exit in main.c:

 void mutt_exit (int code)

 {
 mutt_endwin (NULL);

+#ifdef USE_PERL
+ perl_stop();

+#endif
 exit (code);

 }

Once again, this code requires a prototype in mutt.h. Our perl_stop destructor
is simply

 void perl_stop(void)
 {

 perl_destruct(my_perl);

 perl_free(my_perl);
 }
272 CHAPTER 9 EMBEDDING CASE STUDY

We also need to also add a prototype for perl_stop. We’ll do so in mutt.h, in the
same spot where we declared source_rc():

#ifdef USE_PERL

int source_rc (const char *rcfile, BUFFER *err);
void perl_stop(void);

#endif

9.4 TESTING OPTIONS

We need to replace the functions that set and test the options. We’ll begin with the
binary options, because they are the easiest to deal with.

9.4.1 Binary options

mutt uses four macros to get and set binary options:

#define set_option(x) mutt_bit_set(Options,x)

#define unset_option(x) mutt_bit_unset(Options,x)
#define toggle_option(x) mutt_bit_toggle(Options,x)

#define option(x) mutt_bit_isset(Options,x)

We’ll use a trick similar to the one we used in the previous section and conditionally
replace these macros with functions in perl.c. We fold all the conditional definitions
together and end up with something like this:

#ifdef USE_PERL

void perl_set_option(int x);
void perl_unset_option(int x);

void perl_toggle_option(int x);
int perl_option(int x);

int source_rc (const char *rcfile, BUFFER *err);
void perl_stop(void);

#define set_option(x) perl_set_option(x)
#define unset_option(x) perl_unset_option(x)

#define toggle_option(x) perl_toggle_option(x)
#define option(x) perl_option(x)

#else
#define set_option(x) mutt_bit_set(Options,x)

#define unset_option(x) mutt_bit_unset(Options,x)
#define toggle_option(x) mutt_bit_toggle(Options,x)

#define option(x) mutt_bit_isset(Options,x)
#endif

Now we need to define these functions in perl.c. This is where things get tricky,
because the option macros aren’t passed the name of the option but rather an inte-
ger enumerator for the option. This enumerator is keyed to the actual option by the
MuttVars structure in init.h. The mutt_option_index allows us to go from an
option name to an enumerator, but we need the opposite. Let’s use mutt_option_
index as a template and write a function to get the name of a boolean value:
TESTING OPTIONS 273

const char* mutt_option_name_bool(int o) {

 int i;

 for (i = 0; MuttVars[i].option; i++)

 if (MuttVars[i].type == DT_BOOL && MuttVars[i].data == o)
 return MuttVars[i].option;

 return NULL;
}

Because MuttVars is declared in the header file for init.c, our
mutt_option_name_bool function needs to go there as well.

Now we can think about our functions to get options:

int perl_option(int o) {
 const char* optname = mutt_option_name_bool(o);

 char* varname;
 int rv;

 if (!optname) /* unknown option */
 return 0;

 varname = malloc(strlen(optname) + 7);
 sprintf(varname, "Mutt::%s", optname);

 rv = SvTRUE(get_sv(varname, TRUE));
 free(varname);

 return rv;
}

We form our Perl variable name by adding Mutt:: to the front of the option name
we derived from the previous step; then we use get_sv to get the Perl-side variable
and SvTRUE to test its boolean value. The set functions can be implemented in a
similar manner.

9.4.2 Quad-state options

With that under our belt, we can turn to mutt’s quad-state options. Quad-state
options can be “yes,” “no,” “ask but yes,” or “ask but no.” They are handled using a
method similar to that of enumerated constants, this time with the OPT_ prefix. We
need to redefine the quadoption, set_quadoption, and toggle_quad-
option functions from init.c. We begin once again by going from the enumeration
to the Perl variable name:

const char* mutt_option_name_quad(int o) {
 int i;

 for (i = 0; MuttVars[i].option; i++)
 if (MuttVars[i].type == DT_QUAD && MuttVars[i].data == o)

 return MuttVars[i].option;

 return NULL;
}

274 CHAPTER 9 EMBEDDING CASE STUDY

Now we create a perl_quadoption function in perl.c:

int perl_quadoption(int o) {
 const char* optname = mutt_option_name_quad(o);

 char* varname;
 SV* option;

 if (!optname) /* unknown option */
 return 0;

 varname = malloc(strlen(optname) + 7);
 sprintf(varname, "Mutt::%s", optname);

 option = get_sv(varname, TRUE);
 free(varname);

 if (strEQ(SvPV_nolen(option), "no"))
 return 0;

 else if (strEQ(SvPV_nolen(option), "yes"))
 return 1;

 else if (strEQ(SvPV_nolen(option), "ask-no"))
 return 2;

 else if (strEQ(SvPV_nolen(option), "ask-yes"))
 return 3;

 else /* invalid value */
 return 0;

}

9.4.3 String options

Finally, we turn to string options, which are the most difficult. They are a pain
because they’re keyed slightly differently from the other options. For instance, when
the RC file parser comes across attach_format, it looks it up in the MuttVars
structure and finds that it is attached to the global variable AttachFormat. Other
parts of the code use this variable directly.

This is one of the points in embedding where we have to get our hands dirty and
rip up the existing code. We replace every occurrence of string option variables with
a function—hence AttachFormat now appears as:

mutt_string_option("attach_format")

The function has two definitions: one in init.c like this

char* mutt_string_option(char* o) {

 int i;

 for (i = 0; MuttVars[i].option; i++)

 if (mutt_strcmp (o, MuttVars[i].option) == 0)
 return *(MuttVars[i].data);

 return NULL;

}

and one in perl.c like this

char* string_option(char* o) {
TESTING OPTIONS 275

 char * rv;

 char * varname = malloc(strlen(o) + 7);

 sprintf(varname, "Mutt::%s", o);

 rv = SvPV_nolen(get_sv(varname, TRUE));
 free(varname);

 return rv;
}

After all that, mutt should be able to read configuration files in Perl!

9.5 SUMMARY

We’ve shown you a simple, but real, example of what it means to embed Perl into an
application, as well as some of the problems we’ve come across and how we’ve faced
them. In most cases, it’s surprisingly easy to add Perl support; unfortunately, there
will always be some cases in which you have no option but to restructure the code of
the host application.

If you are lucky, the application will be designed with embedding in mind.
Apache’s module support made it easy to embed Perl without disturbing much of the
code around it. In our example, we had to start from scratch, planning how to get Perl
into the application and the interface we would provide for it. Notice, however, that
we kept the embedding completely optional; it’s switchable by a single configuration
option. You should aim to do this if possible, because it further minimizes the effect
of your changes on the rest of the code base.

We could have done a lot more with mutt; for instance, we could have turned
mutt’s built-in hook mechanism into a callback mechanism to call Perl subroutines.
We also could have dealt with the list-based options, using Perl arrays to hold multiple
values. And, finally, we could have tidied up our interface, using Perl hashes to store
the MuttVars options structure, and eliminating some of the lookups. However, our
example has given you a taste of how to approach the topic of embedding Perl in an
existing application.
276 CHAPTER 9 EMBEDDING CASE STUDY

C H A P T E R 1 0

Introduction to
Perl internals

10.1 The source tree 277
10.2 The parser 279
10.3 The tokenizer 282
10.4 Op code trees 285

10.5 Execution 295
10.6 The Perl compiler 295
10.7 Further reading 303
10.8 Summary 303
You’ve seen how to extend Perl with C libraries and how to embed Perl in C applica-
tions; where next? To the internals of the perl interpreter, of course! This chapter pro-
vides an introduction to the workings of perl. By the end of the chapter, you should
have a good idea of what happens to a Perl program as it is digested and executed.

10.1 THE SOURCE TREE

This section introduces the major parts of the Perl source tree with which you should
be familiar.

10.1.1 The Perl library

The most approachable part of the source code, for Perl programmers, is the Perl
library. It resides in lib/ and comprises all the standard, pure Perl modules and prag-
mata that ship with perl.

Both Perl5 modules and unmaintained Perl4 libraries are shipped for backward
compatibility. In Perl 5.6.0, the Unicode tables are placed in lib/unicode, and in Perl
5.8.0 they have been moved to lib/unicore.
277

10.1.2 The XS library

You’ll find the XS modules that ship with Perl in ext/. For instance, the Perl compiler
B can be found here, as can the DBM interfaces. The most important XS module here
is DynaLoader, the dynamic-loading interface that allows the runtime loading of
every other XS module.

As a special exception, you’ll find the XS code to the methods in the UNIVERSAL
class in universal.c.1

10.1.3 The I/O subsystem

Recent versions of Perl (5.8.0 and later) come with a completely new standard I/O
implementation: PerlIO. It allows several layers to be defined through which all I/O
is filtered, similar to the line disciplines mechanism in sfio. These layers interact
with modules such as PerlIO::Scalar, which is also in the ext/ directory.

The I/O subsystem is implemented in perlio.c and perlio.h. Declarations for defin-
ing the layers are in perliol.h, and documentation on how to create layers is in pod/
perliol.pod.

You can compile Perl without PerlIO support, in which case a number of abstrac-
tion layers present a unified I/O interface to the Perl core. perlsdio.h aliases ordinary
standard I/O functions to their PerlIO names, and perlsfio.h does the same thing for
the alternate I/O library sfio.

The other abstraction layer is the Perl host scheme in iperlsys.h. This is confusing.
The idea is to reduce process overhead on Win32 systems by having multiple Perl
interpreters access all system calls through a shared Perl host abstraction object. You
can find an explanation in perl.h, but it is best avoided.

10.1.4 The Regexp engine

Another area of the Perl source that’s best avoided is the regular expression engine.
It resides in reg*.*. The regular expression matching engine is, roughly speaking, a
state machine generator. Your match pattern is turned into a state machine made up
of various match nodes—you can see these nodes in regcomp.sym. The compila-
tion phase is handled by regcomp.c, and the state machine’s execution is performed
in regexec.c.

10.1.5 The parser and tokenizer

The first stage in Perl’s operation is to understand your program. It does so through a
joint effort of the tokenizer and the parser. The tokenizer is found in toke.c and the
parser in perly.c (although you’re far better off looking at the Yacc2 source in perly.y).

1 That’s right—ordinary C files can contain XS code. As you know, code written in the XS language is
stored in files with the extension .xs and preprocessed by xsubpp into C code. The universal.c file
contains preprocessed code such as would be generated by xsubpp; but all the same, it provides an
interface between Perl functions and C code.
278 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

The job of the tokenizer is to split the input into meaningful chunks, or tokens, and
also to determine what type of thing they represent—a Perl keyword, a variable, a sub-
routine name, and so on. The job of the parser is to take these tokens and turn them
into sentences, understanding their relative meaning in context.

10.1.6 Variable handling

As you already know, Perl provides C-level implementations of scalars, arrays, and
hashes. The code for handling arrays is in av.*, for hashes in hv.*, and for scalars in sv.*.

10.1.7 Runtime execution

The code for Perl’s built-ins—print, foreach, and the like—resides in pp.*. Some
of the functionality is shelled out to doop.c and doio.c for I/O functions.

The main loop of the interpreter is in run.c.

10.2 THE PARSER

Perl is a bytecode-compiled language, which means execution of a Perl program hap-
pens in two stages. First, the program is read, parsed, and compiled into an internal
representation of the operations to be performed; after that, the interpreter takes
over and traverses this internal representation, executing the operations in order.
We’ll first look at how Perl is parsed, before moving on to the internal representation
of a program.

As we discussed earlier, the parser resides in perly.y. This code is in a language
called Yacc, which is converted to C using the byacc command. In order to under-
stand this language, you must understand how grammars and parsing work.

10.2.1 BNF and parsing

Computer programmers define a language by its grammar, which is a set of rules.
They usually describe this grammar in a form called Backhaus-Naur Form3 (BNF).
BNF tells you how phrases fit together to make sentences. For instance, here’s a simple
BNF for English—obviously, it doesn’t describe the whole of the English grammar,
but it’s a start:

sentence : nounphrase verbphrase nounphrase;

verbphrase : VERB;

nounphrase : NOUN

2 Yet Another Compiler Compiler
3 Sometimes Backhaus Normal Form
THE PARSER 279

 | ADJECTIVE nounphrase

 | PRONOMINAL nounphrase
 | ARTICLE nounphrase;

The prime rule of BNF is as follows: you can make the thing on the left of the colon if
you see all the things on the right in sequence. So, this grammar tells you that a sen-
tence is made up of a noun phrase, a verb phrase, and then a noun phrase. The verti-
cal bar does what it does in regular expressions: you can make a noun phrase if you
have a noun, or an adjective plus another noun phrase, or a pronominal plus a noun
phrase, or an article plus a noun phrase. Turning the things on the right into the
thing on the left is called a reduction. The idea of parsing is to reduce all the input to
the first thing in the grammar—a sentence.

Things that can’t be broken down any further are in capitals—no rule tells you how
to make a noun, for instance. Such things are fed to you by the lexer; they are called
terminal symbols, and the things that aren’t in capitals are called non-terminal symbols.
To understand why, let’s see what happens if we try to parse the sentence from
figure 10.1 in this grammar:

1 The text at the bottom—my cat eats fish—is what we get from the user. The
tokenizer turns it into a series of tokens—PRONOMINAL NOUN VERB NOUN.

2 From the tokens, we can begin performing some reductions: we have a pronom-
inal, so we’re looking for a noun phrase to satisfy the nounphrase : PRO-
NOMINAL nounphrase rule. We can make a noun phrase by reducing the
NOUN (cat) into a nounphrase.

3 We can use PRONOMINAL nounphrase to make another nounphrase.

4 We have a nounphrase and a VERB. We can’t do anything further with the
nounphrase, so we’ll switch to the VERB; the only thing we can do with it is
turn it into a verbphrase.

sentence

np vp np

np

PRONOMINAL VERB NOUNNOUN

my cat eats fish Figure 10.1

Parsing an English sentence
280 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

5 We can reduce the noun to a nounphrase, leaving us with nounphrase
verbphrase nounphrase.

6 We can turn this result into a sentence, so we’ve parsed the text.

10.2.2 Parse actions and token values

It’s important to note that the tree we constructed in the previous section—the parse
tree—is only a device to help us understand the parsing process. It doesn’t exist as a
data structure anywhere in the parser. This is a little inconvenient, because the whole
point of parsing a piece of Perl text is to come up with a data structure pretty much
like this device.

Fortunately, Yacc lets you extend BNF by adding actions to rules. Every time the
parser performs a reduction using a rule, it can trigger a piece of C code to be executed.
Here’s an extract from Perl’s grammar in perly.y:

term : term ASSIGNOP term
 { $$ = newASSIGNOP(OPf_STACKED, $1, $2, $3); }

 | term ADDOP term
 { $$ = newBINOP($2, 0, scalar($1), scalar($3)); }

The pieces of code in the curly braces ({}) are actions to be performed. Here’s the
final piece of the puzzle: each symbol carries some additional information. For
instance, in our cat example, the first NOUN had the value cat. You can get the value
of a symbol from a Yacc variable that begins with a dollar sign: in the previous exam-
ple, $1 is the value of the first symbol on the right of the colon (term), $2 is the
value of the second symbol (either ASSIGNOP or ADDOP, depending on which line
you’re reading), and so on. $$ is the value of the symbol on the left. Hence informa-
tion is propagated up the parse tree by manipulating the information on the right and
assigning it to the symbol on the left.

10.2.3 Parsing some Perl

Let’s see what happens if we parse the Perl code $a = $b + $c. We have to assume
that $a, $b, and $c have already been parsed a little; they’ll turn into term symbols.
Each of these symbols will have a value, which will be an op. An op is a data structure
representing an operation, and the operation to be represented will be that of retriev-
ing the storage pointed to by the appropriate variable.

Let’s start from the right4 and deal with $b + $c. The lexer turns the + into the
terminal symbol ADDOP. Now, just as lots of different nouns can all be tokenized to
NOUN, there can be several different ADDOPs—concatenation is classified as an
ADDOP, so $b . $c would look just the same to the parser. The difference, of course,
is the value of the symbol—this ADDOP will have the value '+'.

4 This is slightly disingenuous, because parsing is always done from left to right; but this simplification
is easier than getting into the details of how Yacc grammars recognize the precedence of operators.
THE PARSER 281

Hence, we have term ADDOP term. As a result, we can perform a reduction using
the second rule in our snippet. When we do, we must perform the code in curly braces
under the rule:

{ $$ = newBINOP($2, 0, scalar($1), scalar($3)); }

newBINOP is a function that creates a new binary op. The first argument is the type
of binary operator, and we feed it the value of the second symbol. This symbol is
ADDOP, and as we have just noted, it has the value '+'. So, although '.' and '+'
look the same to the parser, they’ll eventually be distinguished by the value of their
symbol. The next argument of newBINOP contains the flags we wish to pass to the
op. We don’t want anything special, so we pass 0.

Next come our arguments to the binary operator. Obviously, these are the value
of the symbol on the left and the value of the symbol on the right of the operator. As
we mentioned earlier, these are both ops, to retrieve the values of $b and $c, respec-
tively. We assign the new op created by newBINOP to be the value of the symbol we’re
propagating upward. Hence, we’ve taken two ops—the ones for $b and $c—plus an
addition symbol, and turned them into a new op representing the combined action
of fetching the values of $b and $c and then adding them together.

Now we do the same thing with $a = ($b+$c). We’ve
put the right side in braces to show that we already have some-
thing that represents fetching $b and $c and adding them.
= is turned into an ASSIGNOP by the tokenizer the same way
we turned + into an ADDOP. And, in the same way, there are
various types of assignment operators: ||= and &&= are also
passed as ASSIGNOPs. From here, it’s easy: we take the term
representing $a, plus the ASSIGNOP, plus the term we’ve
just constructed, reduce them all to another term, and per-
form the action under the rule. We end up with a data struc-
ture a little like that shown in figure 10.2.

NOTE You can find a hypertext version of the Perl grammar at http://simon-coz-
ens.org/hacks/grammar.pdf.

10.3 THE TOKENIZER

The tokenizer in toke.c is one of the most difficult parts of the Perl core to under-
stand, primarily because there is no roadmap to explain its operation. In this section,
we’ll show how the tokenizer is put together.

10.3.1 Basic tokenizing

The core of the tokenizer is the intimidatingly long yylex function. This function is
called by the parser, yyparse, when it requests a new token of input.

Let’s begin with some basics. When a token has been identified, it is placed in
PL_tokenbuf. Input is read from the filehandle PL_rsfp. The current position in

ASSIGNOP

ADDOP$a

$b $c

Figure 10.2

Parsing $a = $b + $c
282 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

the input is stored in the variable PL_bufptr, which is a pointer into the PV of the
SV PL_linestr. When scanning for a token, the variable s advances from the start
of PL_bufptr toward the end of the buffer (PL_bufend) until it finds a token.

The parser tests whether the next thing in the input stream has already been iden-
tified as an identifier; when the tokenizer sees '%', '$', and the like as part of the
input, it tests to see whether it introduces a variable. If so, it puts the variable name
into the token buffer. It then returns the type sigil (%, $, and so forth) as a token and
sets a flag (PL_pending_ident) so that the next time yylex is called, it can pull
the variable name straight out of the token buffer. Hence, right at the top of yylex,
you’ll see code that tests PL_pending_ident and deals with the variable name.

Tokenizer state

Next, if there’s no identifier in the token buffer, the tokenizer checks its state. It uses
the variable PL_lex_state to store state information.

One important state is LEX_KNOWNEXT, which occurs when Perl has had to look
ahead one token to identify something. If this happens, it has tokenized not just the
next token, but the one after as well. Hence, it sets LEX_KNOWNEXT to say “we’ve
already tokenized this token; simply return it.”

The functions that set LEX_KNOWNEXT are force_word, which declares that the
next token must be a word (for instance, after having seen an arrow in $foo->bar);
force_ident, which makes the next token an identifier (for instance, if it sees a *
when not expecting an operator, meaning this must be a glob); force_version (on
seeing a number after use); and the general force_next.

Many of the other states have to do with interpolation of double-quoted strings;
we’ll look at those in more detail in the next section.

Looking ahead

After checking its state, it’s time for the lexer to peek at the buffer and see what’s wait-
ing; this is the beginning of the giant switch statement in the middle of yylex,
just after the label retry.

One of the first things we check for is character zero—it signifies either the start
or the end of the file or the end of the line. If it’s the end of the file, the tokenizer
returns 0 and the game is won; at the beginning of the file, Perl has to process the code
for command-line switches such as -n and -p. Otherwise, Perl calls filter_gets
to get a new line from the file through the source filter system, and calls incline to
increase the line number.

The next test is for comments and new lines, which Perl skips. After that are tests
for individual special characters. For instance, the first test is for minus, which could
be any of the following:

• Unary minus if followed by a number or identifier

• The binary minus operator if Perl is expecting an operator
THE TOKENIZER 283

• The arrow operator if followed by a >

• The start of a filetest operator if followed by an appropriate letter

• A quoting option such as (-foo => "bar")

Perl tests for each case and returns the token type using one of the uppercase token
macros defined at the beginning of toke.c: OPERATOR, TERM, and so on.

If the next character isn’t a symbol Perl knows about, it’s an alphabetic character
that might start a keyword: the tokenizer jumps to the label keylookup, where it
checks for labels and things like CORE::function. It then calls keyword to test
whether it is a valid built-in; if so, keyword turns it into a special constant (such as
KEY_open), which can be fed into the switch statement. If it’s not a keyword, Perl
has to determine whether it’s a bareword, a function call, an indirect object, or a
method call.

Keywords

The final section of the switch statement deals with the KEY_ constants handed
back from keyword; this section performs any actions necessary for using the built-
ins. (For instance, given __DATA__, the tokenizer sets up the DATA filehandle.)

10.3.2 Sublexing

Sublexing refers to the fact that a different type of tokenization is required inside
double-quoted strings and other interpolation contexts (regular expressions, for
instance). This process is typically started after a call to scan_str, which is an
exceptionally clever piece of code that extracts a string with balanced delimiters, plac-
ing it into the SV PL_lex_stuff. Then sublex_start is called; it sets up the
data structures used for sublexing and changes the lexer’s state to
LEX_INTERPPUSH, which is essentially a scoping operator for sublexing.

To understand why sublexing needs scoping, consider something like
"Foo\u\LB\uarBaz". This is tokenized as the equivalent of

"Foo" . ucfirst(lc("B" . ucfirst("arBaz")))

The push state (which makes a call to sublex_push) quite literally pushes an open-
ing bracket onto the input stream, and then changes the state to
LEX_INTERPCONCAT; the concatenation state uses scan_const to pull out con-
stant strings and supplies the concatenation operator between them. If a variable to
be interpolated is found, the state is changed to LEX_INTERPSTART: this means
"foo$bar" is changed into "foo".$bar and "foo@bar" is turned into
"foo".join($",@bar).

Sometimes the tokenizer is not sure when sublexing of an interpolated variable
should end. In these cases, a function called intuit_more is called to make an edu-
cated guess about the likelihood of more interpolation.

Finally, once sublexing is finished, the state is set to LEX_INTERPEND, which puts
any outstanding closing brackets into place.
284 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

10.3.3 Tokenizer summary

We’ve briefly examined how Perl turns Perl source input into a tree data structure
suitable for executing. Next, we’ll look more specifically at the nature of the nodes in
that tree.

This operation has two stages:

1 The tokenizer, toke.c, chops up the incoming program and recognizes different
token types.

2 The parser, perly.y, assembles these tokens into phrases and sentences.

In reality, the whole task is driven by the parser—Perl calls yyparse to parse a pro-
gram, and when the parser needs to know about the next token, it calls yylex.

Although the parser is relatively straightforward, the tokenizer is trickier. The key
to understanding it is to divide its operation into checking the tokenizer state, dealing
with non-alphanumeric symbols in ordinary program code, dealing with alphanumer-
ics, and dealing with double-quoted strings and other interpolation contexts.

Few people understand entirely how the tokenizer and parser work. However,
this part of the chapter has given you a useful insight into how Perl understands pro-
gram code and how you can locate the source of particular behavior inside the pars-
ing system.

10.4 OP CODE TREES

You’ve seen that the job of the parsing stage is to reduce a program to a tree structure,
and each node of the tree represents an operation. In this section, we’ll look more
closely at those operations: what they are, how they’re coded, and how they fit together.

10.4.1 The basic op

Just as AVs and HVs are extensions of the basic SV structure, there are a number of dif-
ferent flavors of ops, built on a basic OP structure. You can find this structure defined
as BASEOP in op.h:

OP* op_next;
OP* op_sibling;
OP* (CPERLscope(*op_ppaddr))(pTHX);
PADOFFSET op_targ;
OPCODE op_type;
U16 op_seq;
U8 op_flags;
U8 op_private;

Some of these fields are easy to explain, so we’ll deal with them now.
The op_next field is a pointer to the next op that needs to be executed. You’ll see

in section 10.4.4 how the thread of execution is derived from the tree.
op_ppaddr is the address of the C function that carries out this particular oper-

ation. It’s stored here so that your main execution code can simply dereference the
function pointer and jump to it, instead of having to perform a lookup.
OP CODE TREES 285

Each unique operation has a different number; you can find it in the enum in
opnames.h:

typedef enum opcode {

 OP_NULL, /* 0 */
 OP_STUB, /* 1 */

 OP_SCALAR, /* 2 */
 OP_PUSHMARK, /* 3 */

 OP_WANTARRAY, /* 4 */
 OP_CONST, /* 5 */

 ...
 OP_SETSTATE, /* 349 */

 OP_METHOD_NAMED, /* 350 */
 OP_CUSTOM, /* 351 */

 OP_max
};

The number of the operation to perform is stored in the op_type field. We’ll exam-
ine some of the more interesting operations in section 10.4.4.

op_flags is a set of flags generic to all ops; op_private stores flags specific to
the type of op. For instance, the repeat op, which implements the x operator, has
the flag OPpREPEAT_DOLIST set when it’s repeating a list rather than a string. This
flag makes sense only for that particular operation, so it’s stored in op_private. Pri-
vate flags have the OPp prefix, and public flags begin with OPf.

op_seq is a sequence number allocated by the optimizer. Among other things, it
allows for correct scoping of lexical variables by storing the sequence numbers of the
beginning and end of scope operations inside the pad.

We’ll examine op_sibling in section 10.4.3 and op_targ in section 10.4.7.

10.4.2 The different operations

Perl currently has 351 different operations implementing all the built-in functions
and operators, as well as the more structural operations required internally—entering
and leaving a scope, compiling regular expressions, and so on. The array
PL_op_desc in opcode.h describes each operation: it may be easier to follow the
data from which this table is generated, at the end of opcode.pl. We’ll take a closer
look at that file later in section 10.4.3.

Many of the operators are familiar from Perl-space, such as concat and splice,
but some are used purely internally: for instance, one of the most common, gvsv,
fetches a scalar variable; enter and leave are block control operators; and so on.

10.4.3 Different flavors of ops

There are a number of different flavors of op structures related to the arguments of an
operator and how it fits together with other ops in the op tree. For instance, scalar
is a unary operator (UNOP). It extends the basic op structure shown earlier with a link
to the argument:
286 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

struct unop {

 BASEOP
 OP * op_first;

};

Binary operators, such as i_add (integer addition), have both a first and a last:

struct binop {
 BASEOP

 OP * op_first;
 OP * op_last;

};

List operators are more interesting; they have a first and a last, but they also
have some ops in the middle. This is where op_sibling comes in; it connects sib-
ling ops on the same level in a list. For instance, look at the following code and the
graph of its op tree in figure 10.3:

open FILE, "foo";
print FILE "hi\n";

close FILE;

The dashed lines represent op_sibling connections. The root operator of every
program is the list operator leave, and its children are the statements in the pro-
gram, separated by nextstate (next statement) operators. open is also a list opera-
tor, as is print. The first child of print is pushmark, which puts a mark on the
stack (see “The argument stack,” page 291) so that Perl knows how many arguments
on the stack belong to print. rv2gv turns a reference to the filehandle FILE into a
GV, so that print can print to it; and the final child is the constant hi\n.

Some operators hold information about the program; these are code operators
(COPs) . Their definition is in cop.h:

struct cop {

 BASEOP
 char * cop_label; /* label for this construct */

#ifdef USE_ITHREADS

leave

enter nextstate open nextstate print nextstate close

gvnull const pushmark rv2gv const gv

gv

Figure 10.3 Sibling ops in an op tree
OP CODE TREES 287

 char * cop_stashpv; /* package line was compiled in */

 char * cop_file; /* file name the following line # is from */
#else

 HV * cop_stash; /* package line was compiled in */
 GV * cop_filegv; /* file the following line # is from */

#endif
 U32 cop_seq; /* parse sequence number */

 I32 cop_arybase; /* array base this line was
 compiled with */

 line_t cop_line; /* line # of this command */
 SV * cop_warnings; /* lexical warnings bitmask */

 SV * cop_io; /* lexical IO defaults */
};

COPs are inserted between every statement; they contain the label (for goto, next,
and so on) of the statement; the file name, package, and line number of the state-
ment; and lexical hints such as the current value of $[, warnings, and I/O settings.
Note that a COP doesn’t contain the current CV or the padlist—these are kept on a
special stack called the context stack.

The final type of op is the null op. Any op with type zero means a previous op has
been optimized away (we’ll look at how this is done in section 10.4.8); for now, you
should skip the null op when you see it in an op tree.

10.4.4 Tying it all together

You’ve seen a little about how the op tree is connected together with op_first,
op_last, op_sibling, and so on. Now we’ll look at how the tree is manufactured
and how it is executed.

Tree order

After our investigation of the parser in
section 10.2, it should now be straightforward
to see how the op tree is created. The parser calls
routines in op.c that create the op structures,
passing ops further down the parse tree as argu-
ments. This process threads together a tree as
shown in figure 10.3. For comparison,
figure 10.4 shows what the example in that sec-
tion ($a = $b + $c) looks like as an op tree.

Again, you can see the places where an op
was optimized away and became a null op. This
is not so different from the simplified version
we gave earlier.

leave

enter nextstate sassign

gvsv

add null

null null gvsv

gvsv

Figure 10.4

The op tree for $a = $b + $c
288 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

Execution order

The second thread through the op tree, indicated by the dotted line in our diagrams,
is the execution order. This is the order in which Perl must perform the operations to
run the program. The main loop of Perl is very simple, and you can see it in run.c:

 while ((PL_op = CALL_FPTR(PL_op->op_ppaddr)(aTHX))) {
 PERL_ASYNC_CHECK();
 }

That’s all the Perl interpreter is. PL_op represents the op that’s currently being exe-
cuted. Perl calls the function pointer for that op and expects another op to be
returned; this return value is then set to PL_op, which is executed in turn. Because
everything apart from conditional operators (for obvious reasons) just return
PL_op->op_next, you can find the execution order through a program by chasing
the trail of op_next pointers from the start node to the root.

You can trace the execution order in several ways. If Perl is built with debugging
(section 11.2.2), then we can say

perl -Dt -e 'open ...'

Alternatively, and perhaps more simply, the compiler module B::Terse has an
-exec option to print the execution order. For instance, in our open-print-close
example earlier, the execution order is

% perl -MO=Terse,-exec -e 'open FILE, "foo"; ...'
OP (0x8111510) enter
COP (0x81121c8) nextstate
OP (0x8186f30) pushmark)
SVOP (0x8186fe0) gv GV (0x8111bd8) *FILE
SVOP (0x8186f10) const PV (0x810dd98) "foo"
LISTOP (0x810a170) open [1]
COP (0x81114d0) nextstate
OP (0x81114b0) pushmark
SVOP (0x8118318) gv GV (0x8111bd8) *FILE
UNOP (0x8111468) rv2gv
SVOP (0x8111448) const PV (0x8111bfc) "hi\n"
LISTOP (0x8111488) print
COP (0x8111fe0) nextstate
SVOP (0x8111fc0) gv GV (0x8111bd8) *FILE
UNOP (0x8111fa0) close
LISTOP (0x8111420) leave [1]

This program, like every other program, begins with the enter and nextstate
ops to enter a scope and begin a new statement, respectively.

Then a mark is placed on the argument stack: marks represent the start of a set of
arguments, and a list operator can retrieve all the arguments by pushing values off the
stack until it finds a mark. Hence, we’re notifying Perl of the beginning of the argu-
ments to the open operator.

b

c
d

e

f

g

B

c

OP CODE TREES 289

The arguments in this case are the filehandle to be opened and the filename; after
operators put these two arguments on the stack, open can be called. This is the end
of the first statement.

Next, the arguments to print begin. This is trickier, because whereas open can only
take a true filehandle, print can take any sort of reference. Hence, gv returns the GV,
which is turned into the appropriate filehandle type by the rv2gv operator. After the
filehandle come the arguments to be printed—in this case, a constant ("hi\n").

Now that all the arguments have been placed on the stack, print can be called. This
is the end of the second statement.

Finally, a filehandle is put on the stack and closed.

Note that at this point, the connections between the operators—unary, binary, and so
forth—are not important; all manipulation of values comes not by looking at the
children of the operators but by looking at the stack. The types of op are important
for the construction of the tree in tree order, but the stack and the op_next pointers
are the only important things for the execution of the tree in execution order.

NOTE You may wonder how the execution order is determined. The function
linklist in op.c takes care of threading the op_next pointers in prefix
order. It does so by recursively applying the following rule: if there is a child
for the current operator, visit the child first, then its siblings, and then the
current op.

Hence, the starting operator is always the first child of the root operator
(always enter), the second op to be executed is its sibling (nextstate),
and then the children of the next op are visited. Similarly, the root
(leave) is always the last operator to be executed. Null operators are
skipped during optimization.

10.4.5 PP Code

You know the order of execution of the operations and what some of them do. Now
it’s time to examine how they’re implemented—the source code inside the interpreter
that carries out print, +, and other operations.

The functions that implement operations are known as push pop code (PP code)
because most of their work involves popping elements off a stack, performing some
operation on them, and then pushing the result back. PP code can be found in sev-
eral files:

• pp_hot.c contains frequently used code, put into a single object to encourage
CPU caching.

• pp_ctl.c contains operations related to flow control.

• pp_sys.c contains system-specific operations such as file and network handling.

• pp_pack.c is a recent addition, containing the code for pack and unpack.

• pp.c contains everything else.

d

e

f

g

290 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

The argument stack

We’ve already talked a little about the argument stack. The Perl interpreter uses sev-
eral stacks, but the argument stack is the main one.

The best way to see how the argument stack is used is to watch it in operation.
With a debugging build of Perl, the -Ds command-line switch prints out the contents
of the stack in symbolic format between operations. Here is a portion of the output
of running $a=5; $b=10; print $a+$b; with the -Dst debug flags:

(-e:1) nextstate
 =>

(-e:1) pushmark
 => *

(-e:1) gvsv(main::a)
 => * IV(5)

(-e:1) gvsv(main::b)
 => * IV(5) IV(10)

(-e:1) add
 => * IV(15)

(-e:1) print
 => SV_YES

Perl pushes a mark onto the stack to know when to stop pushing off arguments for
print.

The addition operator is a binary operator; hence, logically, it takes two values off the
stack, adds them together, and puts the result back onto the stack.

Finally, print takes all the values off the stack up to the previous bookmark and
prints them out. Let’s not forget that print itself has a return value—the true value
SV_YES—which it pushes back onto the stack.

Stack manipulation

Let’s now look at one of the PP functions: the integer addition function pp_i_add.
The code may look formidable, but it’s a good example of how the PP functions
manipulate values on the stack:

PP(pp_i_add)

{
 dSP; dATARGET; tryAMAGICbin(add,opASSIGN);

 {
 dPOPTOPiirl_ul;

 SETi(left + right);

 RETURN;
 }

}

At the beginning of a statement,
the stack is typically empty

b

The values of $a and $b
are retrieved and
pushed onto the stack

c

d

b

c

d

B

c

d
e

f

OP CODE TREES 291

In case you haven’t guessed, everything in this function is a macro. This first line
declares the function pp_i_add to be the appropriate type for a PP function.

Because the following macros will need to manipulate the stack, we need a local copy
of the stack pointer, SP. And because this is C, we need to declare it in advance: dSP
declares a stack pointer. Then we need an SV to hold the return value, a target. It is
declared with dATARGET (see section 10.4.7 for more about how targets work).
Finally, there is a chance that the addition operator has been overloaded using the
overload pragma. The tryAMAGICbin macro tests to see if it is appropriate to
perform A (overload) magic on either of the scalars in a binary operation; if so, the
macro does the addition using a magic method call.

We will deal with two values, left and right. The dPOPTOPiirl_ul macro
pops two SVs off the top of the stack, converts them to two integers (hence ii), and
stores them into automatic variables right and left (hence rl).

NOTE Wondering about the _ul? It makes sure the value on the stack that we’re
going to use for the “left” variable is a real SV, and defaults to zero if it isn’t.

We add the two values and set the integer value of the target to the result, pushing the
target to the top of the stack.

As mentioned earlier, operators are expected to return the next op to be executed, and
in most cases this is simply the value of op_next. Hence RETURN performs a nor-
mal return, copying the local stack pointer SP we obtained back into the global stack
pointer variable, and then returning the op_next.

As you might have guessed, there are a number of macros for controlling what hap-
pens to the stack; you’ll find them in pp.h. The more common are as follows:

• POPs—Pops an SV off the stack and returns it.

• POPpx—Pops a string off the stack and returns it (requires a variable STRLEN
n_a to be in scope).

• POPn—Pops an NV off the stack.

• POPi—Pops an IV off the stack.

• TOPs—Returns the top SV on the stack, but does not pop it (the macros
TOPpx, TOPn, and so forth are analogous).

• TOPm1s—Returns the penultimate SV on the stack (there is no TOPm1px, and
so on).

• PUSHs—Pushes the scalar onto the stack; you must ensure that the stack has
enough space to accommodate it.

• PUSHn—Sets the NV of the target to the given value and pushes it onto the
stack. PUSHi and so forth are analogous. In addition, XPUSHn and so on
extend the stack if necessary.

B

c

d

e

f

292 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

• SETs—Sets the top element of the stack to the given SV. SETn and so forth
are analogous.

• dTOPss, dPOPss—Declare a variable called sv and either return the top
entry from the stack or pop an entry and set sv to it.

• dTOPnv, dPOPnv—Similar, but declare a variable called value of the appro-
priate type. dTOPiv and so on are analogous.

In some cases, the PP code is purely concerned with rearranging the stack, and the PP
function will call out to another function in doop.c to perform the relevant operation.

10.4.6 The opcode table and opcodes.pl

The header files for the opcode tables are generated from a Perl program called
opcode.pl. Here is a sample entry for an op:

index index ck_index isT@ S S S?

The entry is in five columns:

• The first column is the internal name of the operator. When opcode.pl is
run, it will create an enum including the symbol OP_INDEX.

• The second column is the English description of the operator, which will be
printed during error messages.

• The third column is the name of the check function that will be used to opti-
mize this tree; see section 10.4.8.

• Then come additional flags plus a character that specifies the flavor of the op: in
this case, index is a list op, because it can take more than two parameters, so it
has the symbol @.

• Finally, the prototype for the function is given. S S S? translates to the Perl pro-
totype $$;$, which is the prototype for CORE::index.

Although most people will never need to edit the op table, it is useful to understand
how Perl knows what the ops look like. A full description of the format of the table,
including details of the meanings of the flags, appears in opcodes.pl.

10.4.7 Scratchpads and targets

PP code is the guts of Perl execution and hence is highly optimized for speed. In time-
critical areas, you don’t want to create and destroy SVs, because allocating and freeing
memory is a slow process. So, Perl allocates for each op a target SV that is created at
compile time. You’ve seen earlier that PP code gets the target and uses the PUSH mac-
ros to push the target onto the stack.

Targets reside on the scratchpad, just like lexical variables. op_targ for an op is
an offset in the current pad; it is the element number in the pad’s array, which stores
the SV that should be used as the target. Perl lets ops reuse the same target if they are
not going to collide on the stack; similarly, it directly uses lexical variables on the pad
OP CODE TREES 293

as targets if appropriate instead of going through a padsv operation to extract them.
(This is a standard compiler technique called binding.)

You can tell if an SV is a target by its flags: targets (also known as temporaries)
have the TEMP flag set, and SVs bound to lexical variables on the pad have the PADMY
flag set.

10.4.8 The optimizer

Between compiling the op tree and executing it, Perl goes through three stages of
optimization. The first stage happens as the tree is being constructed. Once Perl cre-
ates an op, it passes it off to a check routine. You saw earlier how the check routines
are assigned to operators in the op table; an index op is passed to ck_index. This
routine can manipulate the op any way it pleases, including freeing it, replacing it
with a different op, or adding new ops above or below it. The check routines are
sometimes called in a chain: for instance, the check routine for index simply tests to
see if the string being sought is a constant, and if so, performs a Fast Boyer-Moore
string compilation to speed up the search at runtime; then it calls the general
function-checking routine ck_fun.

Second, the constant folding routine fold_constants is called if appropriate.
It tests to see whether all the descendents of the op are constants; if they are, it runs
the operator as if it was a little program, collects the result, and replaces the op with
a constant op reflecting that result. You can tell if constants have been folded by using
the deparse compiler backend (see “The B::Deparse module,” page 299):

 % perl -MO=Deparse -e 'print (3+5+8+$foo)'
print 16 + $foo;

Here, the 3+5 has been constant-folded into 8, and then 8+8 is constant-folded to 16.
Third, the peephole optimizer peep is called. It examines each op in the tree in

execution order and attempts to determine local optimizations by thinking ahead one
or two ops and seeing whether multiple operations can be combined into one. It also
checks for lexical issues such as the effect of use strict on bareword constants.

10.4.9 Op code trees summary

Perl’s fundamental operations are represented by a series of structures, analogous to
the structures that form Perl’s internal values. These ops are threaded together in two
ways: into an op tree during the parsing process, where each op dominates its argu-
ments; and by a thread of execution that establishes the order in which Perl has to run
the ops.

To run the ops, Perl uses the code in pp*.c, which is particularly macro-heavy.
Most of the macros are concerned with manipulating the argument stack, which is the
means by which Perl passes data between operations.

Once the op tree is constructed, it is optimized a number of ways—check routines;
constant folding, which takes place after each op is created; and a peephole optimizer,
which performs a dry run over the execution order.
294 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

10.5 EXECUTION

Once you have constructed an op code tree from a program, executing the code is a
simple matter of following the chain of op_next pointers and executing the opera-
tions specified by each op. The code that does this is in run.c:

 while ((PL_op = CALL_FPTR(PL_op->op_ppaddr)(aTHX))) {

 PERL_ASYNC_CHECK();
 }

We begin with the first op, PL_op, and we call the function in its op_ppaddr slot.
This will return another op, which we assign to PL_op, or a null pointer meaning the
end of the program. In between executing ops, we perform the asynchronous check
that dispatches signal handlers and other events that may occur between operations.

As you know from looking at XS programming, Perl keeps values between opera-
tions on the argument stack. The job of ops is to manipulate the arguments on the
stack. For instance, the and operator is implemented like this (in pp_hot.c):

PP(pp_and)

{
 dSP;

 if (!SvTRUE(TOPs))
 RETURN;

 else {
 --SP;

 RETURNOP(cLOGOP->op_other);
 }

}

If the SV on the top of the argument stack does not have a true value, then the and
cannot be true, so we simply return the next op in the sequence. We don’t even need
to look at the right side of the and. If it is true, however, we can discard it by pop-
ping the stack, and we need to execute the right side (stored in op_other) to deter-
mine whether it is true as well. Hence, we return the chain of operations starting at
op_other; the op_next pointers of these operations will be arranged to meet up
with the operation after and.

10.6 THE PERL COMPILER

We’ll finish our tour of the Perl internals by discussing the oft-misunderstood Perl
compiler.

10.6.1 What is the Perl compiler?

In 1996, Chip Salzenburg announced a challenge: the first person to write a compiler
suite for Perl would win a laptop. Malcolm Beattie stepped up to the challenge and
won the laptop with his B suite of modules. Many of these modules have now been
brought into the Perl core as standard modules.
THE PERL COMPILER 295

The Perl compiler is not just for compiling Perl code to a standalone executable;
in fact, some would argue that it’s not at all for compiling Perl code into a standalone
executable. You’ve already seen the use of the B::Terse and B::Tree modules to
help you visualize the Perl op tree, and this should give you a hint about what the Perl
compiler is all about.

The compiler comes in three parts:

• A front-end module, O, which does little more than turn on Perl’s -c (compile
only, do not run) flag and load a backend module

• The backend module, such as B::Terse, which performs a specific com-
piler task

• The B module, which acts as a low-level driver

The B module at the heart of the compiler is a stunningly simple XS module that
makes Perl’s internal object-like structures—SVs, ops, and so on—into real Perl-space
objects. It provides a degree of introspection: you can, for instance, write a backend
module that traverses the op tree of a compiled program and dumps out its state to a
file. (The B::Bytecode module does this.)

It’s important to know what the Perl compiler is not. It’s not something that will
magically make your code go faster, or take up less space, or be more reliable. The
backends that generate standalone code generally do exactly the opposite. Essentially,
the compiler is a way of getting access to the op tree and doing something potentially
interesting with it. The following sections describe some of these interesting things
you can do with the op tree.

10.6.2 B:: modules

The compiler in the Perl core includes 12 backend modules, and many more are
available on CPAN. Here we’ll briefly examine those that are particularly interesting
or helpful to internals hackers.

The B::Concise module

B::Concise was written recently by Stephen McCamant to provide a generic way
of getting concise information about the op tree. It is highly customizable and can be
used to emulate B::Terse and B::Debug.

Here’s the basic output from B::Concise:

% perl -MO=Concise -e 'print $a+$b'
8 <@> leave[t1] vKP/REFC ->(end)

1 <0> enter ->2
2 <;> nextstate(main 1 -e:1) v ->3

7 <@> print vK ->8
3 <0> pushmark s ->4

6 <2> add[t1] sK/2 ->7
- <1> ex-rv2sv sK/1 ->5

4 <$> gvsv(*a) s ->5
296 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

- <1> ex-rv2sv sK/1 ->6

5 <$> gvsv(*b) s ->6

Each line consists of five main parts:

• A number for each operator, stating its position in execution order.

• A type signifier (@ is a list operator—think arrays).

• The name of the op and its target, if any, plus any other information about it.

• The flags for this operator. Here, v signifies void context and K shows that this
operator has children. The private flags are shown after the slash and are writ-
ten out as an abbreviation longer than one character: REFC shows that this op
is refcounted.

• The label for the next operator in the tree, if there is one.

Note also that, for instance, ops that have been optimized away to a null operation
are left as ex-.... The exact meanings of the flags and the op classes are given in the
B::Concise documentation:

=head2 OP flags abbreviations

 v OPf_WANT_VOID Want nothing (void context)
 s OPf_WANT_SCALAR Want single value (scalar context)

 l OPf_WANT_LIST Want list of any length (list context)
 K OPf_KIDS There is a firstborn child.

 P OPf_PARENS This operator was parenthesized.
 (Or block needs explicit scope entry.)

 R OPf_REF Certified reference.
 (Return container, not containee).

 M OPf_MOD Will modify (lvalue).
 S OPf_STACKED Some arg is arriving on the stack.

 * OPf_SPECIAL Do something weird for this op (see op.h)

=head2 OP class abbreviations

 0 OP (aka BASEOP) An OP with no children
 1 UNOP An OP with one child

 2 BINOP An OP with two children
 | LOGOP A control branch OP

 @ LISTOP An OP that could have lots of children
 / PMOP An OP with a regular expression

 $ SVOP An OP with an SV
 " PVOP An OP with a string

 { LOOP An OP that holds pointers for a loop
 ; COP An OP that marks the start of a statement

As with many of the debugging B:: modules, you can use the -exec flag to walk the
op tree in execution order, following the chain of op_next’s from the start of the tree:

% perl -MO=Concise,-exec -e 'print $a+$b'

1k <0> enter
1l <;> nextstate(main 7 -e:1) v
THE PERL COMPILER 297

1m <0> pushmark s

1n <$> gvsv(*a) s
1o <$> gvsv(*b) s

1p <2> add[t1] sK/2
1q <@> print vK

1r <@> leave[t1] vKP/REFC
-e syntax OK

Among other options (again, see the documentation), B::Concise supports a
-tree option for tree-like ASCII art graphs, and the curious but fun -linenoise
option. (Try it…)

The B::Debug module

B::Debug dumps out all the information in the op tree; for anything bigger than a
trivial program, it gives way too much information. Hence, to sensibly make use of it,
it’s a good idea to go through with B::Terse or B::Concise first and determine
which ops you’re interested in, and then grep for them.

Some output from B::Debug looks like this:

LISTOP (0x81121a8)
 op_next 0x0

 op_sibling 0x0
 op_ppaddr PL_ppaddr[OP_LEAVE]

 op_targ 1
 op_type 178

 op_seq 6433
 op_flags 13

 op_private 64
 op_first 0x81121d0

 op_last 0x8190498
 op_children 3

OP (0x81121d0)
 op_next 0x81904c0

 op_sibling 0x81904c0
 op_ppaddr PL_ppaddr[OP_ENTER]

 op_targ 0
 op_type 177

 op_seq 6426
 op_flags 0

 op_private 0

As you know from section 10.4, this is all the information contained in the op struc-
ture: the type of op and its address, the ops related to it, the C function pointer
implementing the PP function, the target on the scratchpad this op uses, its type, its
sequence number, and public and private flags. The module also does similar dumps
for SVs. You may find the B::Flags module useful for turning the flags—which are
usually specified as integers—into human-readable strings.
298 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

The B::Deparse module

B::Deparse takes a Perl program and turns it into a Perl program. This doesn’t
sound very impressive, but it does so by decompiling the op tree back into Perl.
Although this module has interesting uses for things like serializing subroutines, it’s
particularly interesting for internals hackers because it shows how Perl understands
certain constructs. For instance, we can see that logical operators and binary if
are equivalent:

% perl -MO=Deparse -e '$a and do {$b}'
if ($a) {

 do {
 $b;

 };
}

-e syntax OK

We can also see, for instance, how the magic added by command-line switches goes
into the op tree:

% perl -MO=Deparse -ane 'print'
LINE: while (defined($_ = <ARGV>)) {

 @F = split(" ", $_, 0);
 print $_;

}
-e syntax OK

10.6.3 What B and O provide

To see how you can build compilers and introspective modules with B, you need to
understand what B and the compiler front-end O give you. We’ll begin with O,
because it’s simpler.

The O module

The guts of the O module are very small—only 48 lines of code—because all it does is
set up the environment for a backend module. The backends are expected to provide
a subroutine called compile that processes the options passed to it and then returns
a subroutine reference which does the actual compilation. O then calls this subroutine
reference in a CHECK block.

CHECK blocks were specifically designed for the compiler—they’re called after Perl
has finished constructing the op tree and before it begins running the code. O calls the
B subroutine minus_c, which, as its name implies, is equivalent to the command-
line -c flag to Perl: it means to compile but not execute the code. O ensures that any
BEGIN blocks are accessible to the backend modules, and then calls compile from
the backend processor with any options from the command line.
THE PERL COMPILER 299

The B module

As we have mentioned, the B module allows Perl-level access to ops and internal vari-
ables. There are two key ways to get this access: from the op tree or from a user-
specified variable or code reference.

To get at the op tree, B provides the main_root and main_start functions.
They return B::OP-derived objects representing the root of the op tree and the start
of the tree in execution order, respectively:

% perl -MB -le 'print B::main_root; print B::main_start'
B::LISTOP=SCALAR(0x8104180)

B::OP=SCALAR(0x8104180)

For everything else, you can use the svref_2object function, which turns some
kind of reference into the appropriate B::SV-derived object:

% perl -MB -l
a = 5; print B::svref_2object(\$a);

@a=(1,2,3); print B::svref_2object(\@a);
__END__

B::IV=SCALAR(0x811f9b8)
B::AV=SCALAR(0x811f9b8)

(Yes, it’s normal for the objects to have the same addresses.)
In the next section, we’ll concentrate on the op-derived classes, because they’re the

most useful feature of B for compiler construction. The SV classes are much simpler
and analogous.

10.6.4 Using B for simple tasks

Now that you have the objects, what can you do with them? B provides accessor
methods similar to the fields of the structures in op.h and sv.h. For instance, we
can find out the type of the root op like this:

$op=B::main_root; print $op->type;
178

Oops: op_type is an enum, so we can’t get much from looking at it directly; how-
ever, B also gives us the name method, which is a little friendlier:

$op=B::main_root; print $op->name;
leave

You can also use flags, private, targ, and so on—in fact, everything you saw
prefixed by op_ in the B::Debug example earlier.

To traverse the op tree, first, sibling, next, and friends return the B::OP
object for the related op. Thus we can follow the op tree in execution order by doing
something like this:

#!/usr/bin/perl -cl

use B;
CHECK {
300 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

 $op=B::main_start;

 print $op->name while $op=$op->next;
}

print $a+$b;
...

However, when we get to the last op in the sequence, the “enter” operation at the root
of the tree, op_next will be a null pointer. B represents a null pointer with the
B::NULL object, which has no methods. This has the handy property that if $op is
a B::NULL, then $$op will be zero. So, we can print the name of each op in execu-
tion order by saying

$op=B::main_start;
print $op->name while $op=$op->next and $$op;

Walking the tree in normal order is trickier, because we have to make the right moves
appropriate for each type of op: we need to look at both first and last links from
binary ops, for instance, but only the first from a unary op. Thankfully, B pro-
vides a function that does this for us: walkoptree_slow. It arranges to call a user-
specified method on each op in turn. Of course, to make it useful, we have to define
the method:

#!/usr/bin/perl -cl
use B;

CHECK {
 B::walkoptree_slow(B::main_root, "print_it", 0);

 sub B::OP::print_it { my $self = shift; print $self->name }
}

print $a+$b;
...

Because all ops inherit from B::OP, this duly produces

leave
enter

nextstate
print

pushmark
add

null
gvsv

null
gvsv

We can also use the knowledge that walkoptree_slow passes the recursion level
as a parameter to the callback method, and make the tree a little prettier, like this:
THE PERL COMPILER 301

 sub B::OP::print_it {

 my ($self,$level)=@_;
 print " "x$level, $self->name

 }

leave

 enter
 nextstate

 print
 pushmark

 add
 null

 gvsv
 null

 gvsv

See how we’re beginning to approximate B::Terse? Actually, B::Terse uses the
B::peekop function, a little like this:

 sub B::OP::print_it {

 my ($self,$level)=@_;
 print " "x$level, B::peekop($self), "\n";

 }

LISTOP (0x81142c8) leave
 OP (0x81142f0) enter

 COP (0x8114288) nextstate
 LISTOP (0x8114240) print

 OP (0x8114268) pushmark
 BINOP (0x811d920) add

 UNOP (0x8115840) null
 SVOP (0x8143158) gvsv

 UNOP (0x811d900) null
 SVOP (0x8115860) gvsv

B::Terse provides slightly more information based on each different type of op,
and we can easily do this by putting methods in the individual op classes: B::LIS-
TOP, B::UNOP, and so on.

Let’s finish our little compiler—we’ll call it B::Simple—by turning it into a
module that can be used from the O front-end. This is easy enough to do in our case,
once we remember that compile must return a callback subroutine reference:

package B::Simple;
use B qw(main_root peekop walkoptree_slow);

sub B::OP::print_it {
 my ($self,$level)=@_;

 print " "x$level, peekop($self), "\n";
}

302 CHAPTER 10 INTRODUCTION TO PERL INTERNALS

sub compile {

 return sub { walkoptree_slow(main_root, "print_it", 0); }
}

1;

We can save this code as B/Simple.pm and run it on our own programs with

perl -MO=Simple ...

We now have a backend compiler module!

10.7 FURTHER READING

• perlguts—If you want to dive into the deep end, perlguts in the Perl doc-
umentation tells you far more than you needed to know about Perl’s internals.

• perlhack—For a gentler introduction to the Perl internals, look at the
perlhack documentation that comes with Perl or the extended Perl Internals
tutorial (http://www.netthink.co.uk/downloads/internals/book.html).

10.8 SUMMARY

In our whirlwind tour of the Perl internals, we’ve looked at where to find things in
the Perl source tree, the outline of the process Perl goes through to execute a program,
how the parser and tokenizer work, and the way Perl’s fundamental operations are
coded. We’ve also examined the Perl compiler: how to use it to debug Perl programs,
and how to write compiler modules. We’ve given you enough information about the
Perl internals that if you want to investigate Perl’s behavior, you’ll have some idea
where to begin digging into the source.
SUMMARY 303

C H A P T E R 1 1

Hacking Perl

11.1 The development process 304
11.2 Debugging aids 306
11.3 Creating a patch 317
11.4 Perl 6: the future of Perl 321
11.5 Further reading 323
11.6 Summary 323
Just like any other piece of software, Perl is not a finished product; it’s still being devel-
oped and has a lively development community. Both the authors are regular contrib-
utors to Perl, and we’d like to encourage you to think about getting involved with
Perl’s continued maintenance and development. This chapter will tell you what you
need to know to begin.

11.1 THE DEVELOPMENT PROCESS

Perl is developed in several “strands”—not least, the new development of Perl 6 (see
section 11.4), which is occurring separately from the ongoing maintenance of Perl 5.
Here we concentrate on the current development of Perl 5.

11.1.1 Perl versioning

Perl has two types of version number: versions before 5.6.0 used a number of the
form x.yyy_zz; x was the major version number (Perl 4, Perl 5), y was the minor
release number, and z was the patchlevel. Major releases represented, for instance,
either a complete rewrite or a major upheaval of the internals; minor releases some-
times added non-essential functionality, and releases changing the patchlevel were
304

primarily to fix bugs. Releases where z was 50 or more were unstable developers’
releases working toward the next minor release.

Since 5.6.0, Perl uses the more standard open source version numbering system—
version numbers are of the form x.y.z; releases where y is even are stable releases,
and releases where it is odd are part of the development track.

11.1.2 The development tracks

Perl development has four major aims: extending portability, fixing bugs, adding
optimizations, and creating new language features. Patches to Perl are usually made
against the latest copy of the development release; the very latest copy, stored in the
Perl repository (see section 11.1.5), is usually called the bleadperl.

The bleadperl eventually becomes the new minor release, but patches are also
picked up by the maintainer of the stable release for inclusion. There are no hard and
fast rules, and everything is left to the discretion of the maintainer, but in general,
patches that are bug fixes or that address portability concerns (which include taking
advantage of new features in some platforms, such as large file support or 64-bit inte-
gers) are merged into the stable release as well, whereas new language features tend to
be left until the next minor release. Optimizations may or may not be included,
depending on their impact on the source.

11.1.3 The perl5-porters mailing list

All Perl development happens on the perl5-porters (P5P) mailing list; if you
plan to get involved, a subscription to this list is essential.

You can subscribe by sending an email to perl5-porters-subscribe@perl.org; you’ll
be asked to send an email to confirm, and then you should begin receiving mail from
the list. To send mail to the list, address the mail to perl5-porters@perl.org; you don’t
have to be subscribed to post, and the list is not moderated. If, for whatever reason,
you decide to unsubscribe, simply mail perl5-porters-unsubscribe@perl.org.

The list usually receives between 200 and 400 emails per week. If this is too much
mail for you, you can subscribe instead to a daily digest service by emailing perl5-
porters-digest-subscribe@perl.org.

There is also a perl5-porters FAQ (http://simon-cozens.org/writings/
p5p.faq) that explains a lot of this information, plus more about how to behave on P5P
and how to submit patches to Perl.

11.1.4 Pumpkins and pumpkings

Development is very loosely organized around the release managers of the stable and
development tracks; these are the two pumpkings.

Perl development can also be divided into several smaller subsystems: the regular
expression engine, the configuration process, the documentation, and so on. Respon-
sibility for each of these areas is known as a pumpkin, and hence those who semioffi-
cially take responsibility for them are called pumpkings.
THE DEVELOPMENT PROCESS 305

You’re probably wondering about the silly names. They stem from the days before
Perl was kept under version control; to avoid conflicts, people had to manually check
out a chunk of the Perl source by announcing their intentions to the mailing list.
While the list was discussing what this process should be called, one of Chip Salzen-
burg’s co-workers told him about a system they used for preventing two people from
using a tape drive at once: there was a stuffed pumpkin in the office, and nobody could
use the drive unless they had the pumpkin.

11.1.5 The Perl repository

Now Perl is kept in a version control system called Perforce (http://www.per-
force.com/), which is hosted by ActiveState, Inc. There is no public access to the sys-
tem, but various methods have been devised to allow developers near-realtime access:

• Archive of Perl Changes—This FTP site (ftp://ftp.linux.activestate.com/pub/
staff/gsar/APC/) contains both the current state of all the maintained Perl ver-
sions and a directory of changes made to the repository.

• rsync—Because it’s a little inconvenient to keep up to date using FTP, the
directories are also available via the software synchronization protocol rsync
(http://rsync.samba.org/). If you have rsync installed, you can synchronize
your working directory with bleadperl by issuing the command
% rsync -avz rsync://ftp.linux.activestate.com/perl-current/

If you use this route, you should periodically add the --delete option to
rsync to clean out any files that have been deleted from the repository. Once,
a proposed feature and its test were both removed from Perl, and those follow-
ing bleadperl by rsync reported test failures for a test that no longer existed.

• Periodic snapshots—The development pumpking releases periodic snapshots of
bleadperl, particularly when an important change happens. These are usually
available from a variety of URLs, and always from ftp://ftp.funet.fi/pub/lan-
guages/perl/snap/.

11.2 DEBUGGING AIDS

A number of tools are available to developers to help you find and examine bugs in
Perl; these tools are, of course, also useful if you’re creating XS extensions and applica-
tions with embedded Perl. There are four major categories:

• Perl modules such as Devel::Peek, which allow you to get information
about Perl’s operation

• perl’s own debugging mode

• Convenience functions built into perl that you can call to get debugging
information

• External applications
306 CHAPTER 11 HACKING PERL

11.2.1 Debugging modules

You saw in chapter 4 how the Devel::Peek module can dump information about
SVs; you’ve also learned about the B::Terse module for dumping the op tree. The
op tree diagrams in chapter 10 were produced using the CPAN module B::Tree.
You can use other modules to get similar information.

Compiler modules

Due to the way the compiler works, you can use it to get a lot of information about
the op tree. The most extensive information can be found using the B::Debug
module, which dumps all the fields of all OPs and SVs in the op tree.

Another useful module is B::Graph, which produces the same information as
B::Debug but does so in the form of a graph.

Other modules

The core module re has a debugging mode, use re 'debug';, which traces the
execution of regular expressions. You can use it, for instance, to examine the regular
expression engine’s backtracking behavior:

% perl -e 'use re "debug"; "aaa" =~/\w+\d/;'

Compiling REx `\w+\d'
size 4 first at 2

 1: PLUS(3)
 2: ALNUM(0)

 3: DIGIT(4)
 4: END(0)

stclass `ALNUM' plus minlen 2
Matching REx `\w+\d' against `aaa'

 Setting an EVAL scope, savestack=3
 0 <> <aaa> | 1: PLUS

 ALNUM can match 3 times out of 32767...
 Setting an EVAL scope, savestack=3

 3 <aaa> <> | 3: DIGIT
 failed...

 2 <aa> <a> | 3: DIGIT
 failed...

 1 <a> <aa> | 3: DIGIT
 failed...

 failed...
Freeing REx: `\w+\d'

Turning to CPAN, you can use the Devel::Leak module to detect and trace mem-
ory leaks in perl, and Devel::Symdump is useful for dumping and examining the
symbol table.

11.2.2 The built-in debugger: perl -D

If you configure Perl passing the flag -Doptimize='-g' to Configure, it will do
two things: it will tell the C compiler to add special debugging information to the
DEBUGGING AIDS 307

object files it produces (you’ll see how that’s used in a moment), and it will define the
preprocessor macro DEBUGGING, which turns on some special debugging options.

NOTE If you’re running Configure interactively, you can turn on debugging
as follows.

By default, Perl 5 compiles with the -O flag to use the optimizer. Alter-
nately, you might want to use the symbolic debugger, which uses the -g
flag (on traditional Unix systems). Either flag can be specified here. To use
neither flag, specify the word none.

 You should use the optimizer/debugger flag [-O2] -g.

Compiling perl like this allows you to use the -D flag on the perl command line
to select the level of debugging you require. The most useful debugging options are as
follows (see the perlrun documentation for a full list).

The -Ds option

This option turns on stack snapshots, printing a summary of what’s on the argu-
ment stack each time an operation is performed. It is not too useful on its own, but
is highly recommended when combined with the -Dt switch. Here you can see
how Perl builds up lists by putting successive values onto the stack, and performs
array assignments:

% perl -Ds -e '@a = (1,2,3)'

EXECUTING...

 =>
 =>

 =>
 => *

 => * IV(1)
 => * IV(1) IV(2)

 => * IV(1) IV(2) IV(3)
 => * IV(1) IV(2) IV(3) *

 => * IV(1) IV(2) IV(3) * GV()
 => * IV(1) IV(2) IV(3) * AV()

 =>

Perl pushes each of the values of the list onto the argument stack. The asterisk before
the list represents an entry in the mark stack.

Once the list has been built up, Perl places another mark between the right side of an
assignment and the left side, so it knows how many elements are due for assignment.

Once the assignment has been made, everything from the first mark is popped off
the stack.

B

c

The array is first
placed on the stack
as a glob—an entry
into the symbol table

The rv2av operator
resolves the glob into an AVd

B

c

d

308 CHAPTER 11 HACKING PERL

The -Dt option

This option traces each individual op as it is executed. Let’s see the previous code
again, but this time with a listing of the ops:

% perl -Dst -e '@a = (1,2,3)'

EXECUTING...

 =>

(-e:0) enter
 =>

(-e:0) nextstate
 =>

(-e:1) pushmark
 => *

(-e:1) const(IV(1))
 => * IV(1)

(-e:1) const(IV(2))
 => * IV(1) IV(2)

(-e:1) const(IV(3))
 => * IV(1) IV(2) IV(3)

(-e:1) pushmark
 => * IV(1) IV(2) IV(3) *

(-e:1) gv(main::a)
 => * IV(1) IV(2) IV(3) * GV()

(-e:1) rv2av
 => * IV(1) IV(2) IV(3) * AV()

(-e:1) aassign
 =>

(-e:1) leave

The -Dr option

The -Dr flag is identical to the use re 'debug'; module discussed earlier.

The -Dl option

This option reports when perl reaches an ENTER or LEAVE statement, and reports
on which line and in which file the statement occurred.

The -Dx option

This option is roughly equivalent to B::Terse. It produces a dump of the op tree
using the op_dump function described later. It’s a handy compromise between
B::Terse and B::Debug.

The -Do option

This option turns on reporting of method resolution—that is, what happens when
Perl calls a method on an object or class. For instance, it tells you when DESTROY
methods are called, as well as what happens during inheritance lookups.
DEBUGGING AIDS 309

11.2.3 Debugging functions

The Perl core defines a number of functions to aid in debugging its internal goings-
on. You can call them either from debugging sections of your own C or XS code or
from a source-level debugger.

The sv_dump function

void sv_dump(SV* sv);

This function is roughly equivalent to the Devel::Peek module—it allows you to
inspect any of Perl’s data types. The principle differences between this function and
Devel::Peek is that it is not recursive—for instance, a reference will be dumped
like this

SV = RV(0x814fd10) at 0x814ec80
 REFCNT = 1

 FLAGS = (ROK)
 RV = 0x814ec5c

and its referent is not automatically dumped. However, it does let you get at values
that are not attached to a variable, such as arrays and scalars used to hold data internal
to perl.

The op_dump function

void op_dump(OP* op);

The -Dx debugging option is implemented, essentially, by calling
op_dump(PL_mainroot). It takes an op; lists the op’s type, flags, and important
additional fields; and recursively calls itself on the op’s children.

The dump_sub function

void dump_sub(GV* gv);

This function extracts the CV from a glob and runs op_dump on the root of its op tree.

11.2.4 External debuggers

There’s another way to debug your code, which is often more useful when you’re fid-
dling around in C. A source level debugger allows you to step through your C code line
by line or function by function and execute C code on the fly, just as you’d do with
the built-in Perl debugger.

Source-level debuggers come in many shapes and sizes: if you’re working in a
graphical environment such as Microsoft Visual Studio, a debugging mode may be
built into it. Just as with compilers, there are also command-line versions. In this sec-
tion we’ll look at another free tool, the GNU Debugger (gdb); much of what we say
is applicable to other similar debuggers, such as Solaris’s dbx.
310 CHAPTER 11 HACKING PERL

Compiling for debugging

Unfortunately, before you can use the debugger on a C program, you must compile it
with special options. As you’ve seen, the debugging option (usually -g on command-
line compilers) embeds information into the binary detailing the file name and line
number for each operation, so that the debugger can, for instance, stop at a specific
line in a C source file.

So, before using the debugger, you must recompile Perl with the -Dopti-
mize='-g' option to Configure, as shown in section 11.2.2.

Invoking the debugger

We’ll assume you’re using gdb and you’ve compiled Perl with the -g flag. If we type
gdb perl in the directory in which you built Perl, we see the following:

% gdb perl

GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and
you are welcome to change it and/or distribute copies of it under

certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
details.

This GDB was configured as "i686-pc-linux-gnu"...
(gdb)

If, however, you see the words “(no debugging symbols found)”, you’re either
in the wrong place or you didn’t compile Perl with debugging support.

You can type help at any time to get a summary of the commands, or type quit
(or just press Ctrl-D) to leave the debugger.

You can run perl without any intervention from the debugger by simply typing
run; doing so is equivalent to executing perl with no command-line options and
means it will take a program from standard input.

To pass command-line options to perl, put them after the run command, like
this:

(gdb) run -Ilib -MDevel::Peek -e '$a="X"; $a++; Dump($a)'
Starting program: /home/simon/patchbay/perl/perl -Ilib -MDevel::Peek

-e '$a="X"; $a++; Dump($a)'
SV = PV(0x8146fdc) at 0x8150a18

 REFCNT = 1
 FLAGS = (POK,pPOK)

 PV = 0x8154620 "Y"\0
 CUR = 1

 LEN = 2

Program exited normally
DEBUGGING AIDS 311

Setting breakpoints

Running through a program normally isn’t very exciting. The most important thing
to do is choose a place to freeze execution of the program, so you can examine further
what’s going on at that point.

The break command sets a breakpoint—a point in the program at which the
debugger will halt execution and bring you back to the (gdb) prompt. You can give
break either the name of a function or a location in the source code of the form
filename.c:lineno. For instance, in the version of Perl installed here,1 the main
op dispatch code is at run.c:53:

(gdb) break run.c:53

Breakpoint 1 at 0x80ba331: file run.c, line 53.

This code sets breakpoint number 1, which will be triggered when execution gets to
line 53 of run.c.

NOTE Setting breakpoints—Blank lines, or lines containing comments or prepro-
cessor directives, will never be executed; but if you set a breakpoint on
them, the debugger should stop at the next line containing code. This also
applies to sections of code that are #ifdef'd out.

If you give break a function name, be sure to give the name in the
Perl_ namespace: that is, Perl_runops_debug instead of
runops_debug.

When you use run, execution will halt when it gets to the specified place. gdb will dis-
play the number of the breakpoint that was triggered and the line of code in question:

(gdb) run -e1
Starting program: /home/simon/patchbay/perl/perl -e1

Breakpoint 1, Perl_runops_debug () at run.c:53
53 } while ((PL_op = CALL_FPTR(PL_op->op_ppaddr)(aTHX)));

You can now use the backtrace command, bt, to examine the call stack and find out
how you got there (where is also available as a synonym for bt):

(gdb) bt

#0 Perl_runops_debug () at run.c:53
#1 0x805dc9f in S_run_body (oldscope=1) at perl.c:1458

#2 0x805d871 in perl_run (my_perl=0x8146b98) at perl.c:1380
#3 0x805a4d5 in main (argc=2, argv=0xbffff8cc, env=0xbffff8d8)

 at perlmain.c:52
#4 0x40076dcc in __libc_start_main () from /lib/libc.so.6

This result tells us that we’re currently in Perl_runops_debug, after being called
by S_run_body on line 1380 of perl.c. gdb also displays the value of the

1 5.6.0. Don’t worry if you get slightly different line numbers in your version.
312 CHAPTER 11 HACKING PERL

arguments to each function, although many of them (those given as hexadecimal
numbers) are pointers.

You can restart execution by typing continue; if the code containing a break-
point is executed again, the debugger will halt once more. If not, the program will run
until termination.

You can set multiple breakpoints simply by issuing more break commands. If
multiple breakpoints are set, the debugger will stop each time execution reaches any
of the breakpoints in force.

Unwanted breakpoints can be deleted using the delete command; on its own,
delete will delete all breakpoints. To delete a given breakpoint, use delete n,
where n is the number of the breakpoint.

To temporarily turn off a breakpoint, use the disable and enable commands.
Good breakpoints to choose when debugging perl include the main op dispatch

code shown earlier, main, S_parse_body, perl_construct, perl_
destruct, and Perl_yyparse (not for the faint of heart, because it places you
right in the middle of the Yacc parser).

Stepping through a program

Although it’s possible to work out the flow of execution just by using breakpoints, it’s
a lot easier to watch the statements as they are executed. The key commands to do
this are step, next, and finish.

The step command traces the flow of execution step by step. Let’s see what hap-
pens when we break at the main op dispatch loop and step through execution:

(gdb) run -e1
Starting program: /home/simon/patchbay/perl/perl -e1

Breakpoint 1, Perl_runops_debug () at run.c:53
53 } while ((PL_op = CALL_FPTR(PL_op->op_ppaddr)(aTHX)));

(gdb) step

Perl_pp_enter () at pp_hot.c:1587

1587 djSP;
(gdb) step

1589 I32 gimme = OP_GIMME(PL_op, -1);
(gdb)

1591 if (gimme == -1) {
(gdb)

1592 if (cxstack_ix >= 0)
(gdb)

1595 gimme = G_SCALAR;

TIP Pressing Return repeats the last command.

As we stepped into the first op, enter, gdb loaded up pp_hot.c and entered the
Perl_pp_enter function. The function in question begins like this:
DEBUGGING AIDS 313

1585 PP(pp_enter)

1586 {
1587 djSP;

1588 register PERL_CONTEXT *cx;
1589 I32 gimme = OP_GIMME(PL_op, -1);

1590
1591 if (gimme == -1) {

1592 if (cxstack_ix >= 0)
1593 gimme = cxstack[cxstack_ix].blk_gimme;

1594 else
1595 gimme = G_SCALAR;

1596 }
1597 ...

gdb first stopped at line 1587, which is the first line in the function. The first three
lines of the function are, as you might expect, variable definitions. gdb does not nor-
mally stop on variable definitions unless they are also assignments. djSP happens to
be a macro that expands to

register SV **sp = PL_stack_sp

declaring a local copy of the stack pointer. The next line, however, is not an assign-
ment, which is why step causes gdb to move on to line 1589. gdb also skips blank
space, so the next line it stops on is 1591.

Because the program enters the if statement, we know the gimme (the context
in which this piece of Perl is being executed) is -1, signifying “not yet known.” Next
we go from the inner if statement to the else branch, meaning that
cx_stack_ix, the index into the context stack, is less than zero. Hence gimme is
set to G_SCALAR.

In Perl terms, this means the context stack holds the context for each block; when
you call a sub in list context, an entry is popped onto the context stack signifying this
event. This entry allows the code that implements return to determine which con-
text is expected. Because we are in the outermost block of the program, there are no
entries on the context stack at the moment. The code we have just executed sets the
context of the outer block to scalar context. (Unfortunately, wantarray is useful
only inside a subroutine, so the usual way of demonstrating the context won’t work.
You’ll have to take our word for it.)

Sometimes step is too slow, and you don’t want to descend into a certain func-
tion and execute every line in it. For instance, you’ll notice after a while that ENTER
and SAVETMPS often appear next to each other and cause Perl_push_scope and
Perl_save_int to be executed. If you’re not interested in debugging those func-
tions, you can skip them using the next command. They will still be executed, but
the debugger will not trace their execution:
314 CHAPTER 11 HACKING PERL

Breakpoint 2, Perl_pp_enter () at pp_hot.c:1598

1598 ENTER;
(gdb) next

1600 SAVETMPS;
(gdb)

1601 PUSHBLOCK(cx, CXt_BLOCK, SP);
(gdb)

1603 RETURN;
(gdb)

Alternatively, you can run the current function to its conclusion without tracing it by
using the finish command:

(gdb) step
Perl_runops_debug () at run.c:42

42 PERL_ASYNC_CHECK();
(gdb)

43 if (PL_debug) {
(gdb)

53 } while ((PL_op = CALL_FPTR(PL_op->op_ppaddr)(aTHX)));
(gdb)

Perl_pp_nextstate () at pp_hot.c:37
37 PL_curcop = (COP*)PL_op;

(gdb) finish
Run till exit from #0 Perl_pp_nextstate () at pp_hot.c:37

0x80ba64b in Perl_runops_debug () at run.c:53
53 } while ((PL_op = CALL_FPTR(PL_op->op_ppaddr)(aTHX)));

Value returned is $1 = (OP *) 0x814cb68

Here we step over the main op dispatch loop until Perl_pp_nextstate is
called. Because we’re not particularly interested in that function, we call finish to
let it run. The debugger then confirms that it’s running Perl_pp_nextstate
until the function exits and displays where it has returned to and the value returned
from the function.

TIP Emacs makes it easy—If you’re a user of the Emacs editor, you might find
gdb major mode to be extremely helpful; it automatically opens any source
files gdb refers to and can trace the flow of control in the source buffers.
Thus it’s easy for you to see what’s going on around the source that’s cur-
rently being executed.

Alternatives to gdb—If you’re not a fan of command-line debugging, you
may wish to investigate alternatives to gdb. For Windows users, Microsoft
Visual C can’t be beaten; for Unix users, Tim recommends ddd (Data Dis-
play Debugger), which is a graphical front-end to gdb. ddd extends the
usual source-navigation functions of a debugger with an interactive graph-
ical display of data, including arrays and structures.
DEBUGGING AIDS 315

Evaluating expressions

You can now perform most of the debugging you need with ease, but one more fea-
ture of gdb makes it even easier. The print command allows you to execute C
expressions on the fly and display their results.

Unfortunately, there is one drawback: gdb doesn’t know about preprocessor mac-
ros, so you must expand the macros yourself. For instance, to find the reference count
of an SV, we can’t say

(gdb) print SvREFCNT(sv)
No symbol "SvREFCNT" in current context.

Instead, we have to say

(gdb) print sv->sv_refcnt

$1=1

Or, to look at the contents of the SV,

(gdb) print *sv

$2 = {sv_any = 0x8147a10, sv_refcnt = 1, sv_flags = 536870923}

You can also use print to call C functions, such as the debugging functions men-
tioned earlier:

(gdb) print Perl_sv_dump(sv)

SV = PV(0x8146d14) at 0x8150824
 REFCNT = 1

 FLAGS = (POK,READONLY,pPOK)
 PV = 0x8151968 "hello"\0

 CUR = 5
 LEN = 6

$9 = void

Using these functions in conjunction with the execution-tracing commands of gdb
should allow you to examine almost every area of Perl’s internals.

Debugging XS code

There are a couple of little wrinkles when it comes to debugging XS modules. With
XS, modules are usually dynamically loaded into memory; thus when perl starts,
the functions aren’t loaded—and when gdb starts, it can’t find them.

The solution is to choose a breakpoint after the XS module has been dynamically
loaded. A good place is S_run_body—here the BEGIN blocks have been processed
and hence all use’d modules have been loaded. This is just before the main part of
the script is executed. If this is too late for your debugging, another good place to stop
is inside the dynamic loading module, DynaLoader. XS_DynaLoader_
dl_load_file is called for each module that needs to be dynamically loaded.
316 CHAPTER 11 HACKING PERL

NOTE Don’t forget that to effectively debug an XS module, you must recompile
it with the debugging flag, -g. The official way to do this is to run Make-
file.PL as follows:
% perl Makefile.PL OPTIMIZE=-g

However, it’s also possible to hack the OPTIMIZE= line in the Makefile
itself (but don’t tell anyone we said that).

The next small problem is that the names of XS functions are mangled from the names
you give them in the .xs file. You should look at the .c file produced by xsubpp to
determine the real function names. For instance, the XS function sdbm_TIEHASH in
the XS code for the SDBM_File becomes XS_SDBM_File_TIEHASH.

The rules for this mangling are regular (section 6.11):

1 The PREFIX given in the XS file is removed from the function name. Hence,
sdbm_ is stripped off to leave TIEHASH.

2 The PACKAGE name (SDBM_File) undergoes “C-ification” (any package sep-
arators, ::, are converted to underscores) and is added to the beginning of the
name: SDBM_File_TIEHASH.

3 XS_ is prefixed to the name to give XS_SDBM_File_TIEHASH.

11.3 CREATING A PATCH

Suppose you’ve noticed a problem and debugged it. Now what? If possible, you
should fix it; then, if you want fame and immortality, you should submit that patch
back to perl5-porters. Let’s explore this process.

11.3.1 How to solve problems

You should keep in mind a few standard design goals when you’re considering how to
approach a Perl patch; quite a lot of unwritten folklore explains why certain patches
feel better than others. Here is an incomplete list of some of the more important
principles we’ve picked up over the years:

• The most important rule is that you may not break old code. Perl 5 can happily
run some ancient code, even dating back to Perl 1 days; we pride ourselves on
backward compatibility. Hence, nothing you do should break that compatibil-
ity. This rule has a few direct implications: adding new syntax is tricky. Adding
new operators is basically impossible; if you wanted to introduce a chip opera-
tor that took a character off the beginning of a string, it would break any code
that defined a chip subroutine itself.

• Solve problems as generally as possible. Platform-specific ifdefs are frowned
upon unless absolutely and obviously necessary. Try to avoid repetition of code.
If you have a good, general routine that can be used in other places of the Perl
CREATING A PATCH 317

core, move it out to a separate function and change the rest of the core to use it.
For instance, we needed a way for Perl to perform arbitrary transformations on
incoming data—for example, to mark it as UTF-8 encoded, or convert it
between different character encodings. The initial idea was to extend the source
filter mechanism to apply not just to the source file input, but also to any file-
handle. However, the more general solution was an extension of the Perl I/O
abstraction to a layered model where transformation functions could be applied
to various layers; then source filters could be re-implemented in terms of this
new I/O system.

• Change as little as possible to get the job done, especially when you’re not well
known as a solid porter. Sweeping changes scare people, whether or not they’re
correct. It’s a lot easier to check a 10-line patch for potential bugs than a
100-line patch.

• Don’t do it in the core unless it needs to be done in the core. If you can do it in
a Perl module or an XS module, it’s unlikely that you need to do it in the core.
As an example, DBM capability was moved out of the core into a bunch of XS
modules; this approach also had the advantage that you could switch between
different DBM libraries at runtime, and you had the extensibility of the tie
system that could be used for things other than DBMs.

• Try to avoid introducing restrictions, even on things you haven’t thought of yet.
Always leave the door open for more interesting work along the same lines. A
good example is lvalue subroutines, which were introduced in Perl 5.6.0. Once
you have lvalue subroutines, why not lvalue method calls or even lvalue over-
loaded operators?

Some of the goals are just ideas you have to pick up in time. They may depend on the
outlook of the pumpking and any major work going on at the time. For instance,
during the reorganization of the I/O system mentioned earlier, any file-handling
patches were carefully scrutinized to make sure they wouldn’t have to be rewritten
once the new system was in place. Hence, it’s not really possible to give hard-and-fast
design goals; but if you stick to the list we’ve just provided, you won’t go far wrong.

11.3.2 Autogenerated files

A number of files should not be patched directly, because they are generated from
other (usually Perl) programs. Most of these files are clearly marked, but the most
important of these deserves a special note: if you add a new function to the core, you
must add an entry to the table at the end of embed.pl. Doing so ensures that a correct
function prototype is generated and placed in protos.h, that any documentation for
that function is automatically extracted, and that the namespace for the function is
automatically handled. (See the following note.) The syntax for entries in the table is
explained in the documentation file perlguts.pod.
318 CHAPTER 11 HACKING PERL

NOTE Perl’s internal functions are carefully named so that when Perl is embedded
in another C program, they do not override any functions the C program
defines. Hence, all internal functions should be named
Perl_something (apart from static functions, which are by convention
named S_something). embed.h uses a complicated system of automat-
ically generated #defines to allow you to call your function as some-
thing() inside the core and in XSUBs, but Perl_something must be
used by embedders.

You must remember to rerun embed.pl after adding this entry. The Make target
regen_headers will call all the Perl programs that generate other files.

A special exception is perly.c, which is generated by running byacc on perly.y and
then being fixed with a patch. In the extraordinarily unlikely event that you need to
fiddle with the Perl grammar in perly.y, you can run the Make target run_byacc to
call byacc and then fix the resulting C file; if you are changing perly.y, it’s polite to
drop the VMS porters mailing list (vmsperl@perl.org) a copy of the patch, because they
use a different process to generate perly.c.

For changes that involve autogenerated files, such as adding a function to the core
or changing a function’s prototype, you only need to provide a patch for the gener-
ating program and leave a note to the effect that regen_headers should be run.
You should not include, for instance, a patch to protos.h.

11.3.3 The patch itself

Patching styles vary, but the recommended style for Perl is a unified diff. If you’re
changing a small number of files, copy, say, sv.c to sv.c~, make your changes, and
then run

% diff -u sv.c~ sv.c > /tmp/patch

% diff -u sv.h~ sv.h >> /tmp/patch

and so on for each file you change.
If you are doing this, remember to run diff from the root of the Perl source direc-

tory. Hence, if we’re patching XS files in ext/, we say

% diff -u ext/Devel/Peek/Peek.xs~ ext/Devel/Peek/Peek.xs

 >> /tmp/patch

For larger patches, you may find it easier to do something like this:

/home/me/work % rsync -avz

rsync://ftp.linux.activestate.com/perl-current/ bleadperl

/home/me/work % cp -R bleadperl myperl

/home/me/work % cd myperl

/home/me/work/myperl % Make your changes...
/home/me/work/myperl % cd ..

/home/me/work % diff -ruN bleadperl myperl > /tmp/patch
CREATING A PATCH 319

This code will create a patch that turns the current bleadperl into your personal Perl
source tree. If you do this, please remember to prune your patch for autogenerated
files and also items that do not belong in the source distribution (any test data you
have used, or messages about binary files).

NOTE Makepatch—An alternative tool that can make patching easier is Johan
Vromans’ makepatch, available from $CPAN/authors/id/JV/. It
automates many of the steps we’ve described. Some swear by it, but some
of us are stuck in our ways and do things the old way…

11.3.4 Documentation

If you change a feature of Perl that is visible to the user, you must, must, must update
the documentation. Patches are not complete if they do not contain documentation.

Remember that if you introduce a new warning or error, you need to document
it in pod/perldiag.pod.

Perl 5.6.0 introduced a system for providing documentation for internal functions,
similar to Java’s javadoc. This apidoc is extracted by embed.pl and ends up in two files:
pod/perlapi.pod contains documentation for functions that are deemed suitable for XS
authors,2 and pod/perlintern.pod contains the documentation for all other functions
(internal functions).

apidoc is simply POD embedded in C comments; you should be able to pick up
how it is used by looking around the various C files. If you add apidoc to a function,
you should turn on the d flag in that function’s embed.pl entry.

11.3.5 Testing

The t/ directory in the Perl source tree contains many (294, at last count) regression
test scripts that ensure Perl is behaving as it should. When you change something,
you should make sure your changes have not caused any of the scripts to break—they
have been specially designed to try as many unexpected interactions as possible.

You should also add tests to the suite if you change a feature, so that your changes
aren’t disturbed by future patching activity. Tests are in the ordinary style used for
modules, so remember to update the 1..n line at the top of the test.

11.3.6 Submitting your patch

Once you’ve put together a patch that includes documentation and new tests, it’s
time to submit it to P5P. Your subject line should include the tag [PATCH], with
optionally a version number or name, or the name of the file you’re patching: for
example, [PATCH bleadperl] or [PATCH sv.c]. This line lets the pumpking
easily distinguish possible patches to be integrated from the usual list discussion. You

2 Chapter 5 of this book was developed by starting from pod/perlapi.pod, and, in fact, we contrib-
uted back some pieces of chapter 5 as apidoc.
320 CHAPTER 11 HACKING PERL

should also put a brief description of what you’re solving on the subject line: for
instance, [PATCH blead] Fix B::Terse indentation.

The body of your email should be a brief discussion of the problem (some Perl code
that demonstrates the problem is adequate) and how you’ve solved it. Then insert your
patch directly into the body of the email—try to avoid sending it as an attachment.
Also, be careful with cutting-and-pasting your patch in, because doing so may corrupt
line wrapping or convert tabs to spaces.

Once you’re ready, take a deep breath and hit Send!

11.4 PERL 6: THE FUTURE OF PERL

While we were busily preparing this book, something significant happened—Perl 6
was announced. Let’s look at what led up to this announcement, and where the Perl 6
effort has gotten since then.

11.4.1 A history

At the Perl Conference in July 2000, Chip Salzenburg called a brainstorming session
meeting of some eminent members of the Perl community to discuss the state of Perl.
Chip wanted some form of “Perl Constitution” to resolve perceived problems in Perl
5 development; however, Jon Orwant suggested (in a particularly vivid and colorful
way) that there were deeper problems in the state of Perl and the Perl community that
should be fixed by a completely new version of Perl.

The majority consensus was that this was a good idea, and Larry Wall picked up
on it. It was presented to the main perl5-porters meeting the same afternoon,
and various people offered to take roles in the development team. Larry announced
the start of Perl 6 development in his keynote “State of the Onion” address the fol-
lowing day.

We then experienced a period of feeling around for the best way to organize the
development structure of Perl 6. The single-mailing-list model of Perl 5 was prone to
infighting; in addition, the pumpking system was problematic because Perl was begin-
ning to get too big for a single person to maintain, and cases of pumpking burnout
were too common.

The consensus was that design should be split between a number of working
groups, each of which would have a chair. The first two working groups were perl6-
language and perl6-internals, for language design proposals and implementation
design, respectively. The busier working groups spawned subgroups for discussion of
more focused topics, and developers were encouraged to express their desires for lan-
guage change in formal Requests for Changes (RFCs).

The comments stage ended on October 1, 2000, after 361 RFCs were submitted.
These went to Larry, who sat down to the grueling task of reading each one to assess
its merits. Larry then responded by unfolding the language design in a series of articles
called Apocalypses. Damian Conway, who through generous sponsorship has been
PERL 6: THE FUTURE OF PERL 321

working full-time for the Perl community, has been assisting Larry, and has also pro-
duced explanatory articles called Exegeses. This process will continue well into 2002.

On the other side, the Perl 6 internals working group started an almost indepen-
dent subproject: to write a generic interpreter that could be used for Perl 6, Perl 5, and
perhaps other dynamic languages as well. Dan Sugalski volunteered to be the internals
designer for this interpreter (codenamed Parrot, after a particularly pervasive April
Fool’s joke by one of the authors of this book…) and explained his decisions in a series
of Parrot Design Documents.

When enough of the design was ready, Simon stepped up to be the release manager
in another futile attempt to put off finishing this book. The first public release of Par-
rot happened on Monday, September 10, 2001.

At the time of this writing, Parrot has support for pluggable data types, both simple
and aggregate; it can compile and execute four mini-languages, (mini-Scheme, mini-
Perl, and two languages specially written for Parrot: Jako and Cola); it has working and
efficient garbage collections; and it has the beginnings of an x86 just-in-time compiler.

You can get the latest release of Parrot from CPAN in Simon’s home directory
(http://www.cpan.org/authors/id/S/SI/SIMON/) or by CVS from the perl.org CVS
server (http://cvs.perl.org/).

11.4.2 Design and implementation

Dan has been keeping one thing in mind while designing Parrot: speed. The Parrot
interpreter will run Perl 6 very fast, and most of the other elements of the design fil-
ter down from there. However, we’re not forgetting the lessons learned from the
Perl 5 internals, and the guts of Parrot are designed to be clearly understandable and
easily maintainable.

Parrot deviates from the normal techniques used in building a virtual machine by
choosing a register rather than a stack architecture. Although a register-based machine
is slightly more difficult to compile for, it has several advantages: first, it lets you use
standard compiler optimization techniques tailored for ordinary register-based CPUs;
second, it eliminates many of the stack-manipulation operations that take up much
of the time of a VM such as Perl 5’s; finally, by more closely resembling the underlying
hardware, it should be more straightforward to compile down to native code.

Parrot’s data abstraction is done via a system of Parrot Magic Cookies (PMCs).
These are the equivalent of SVs, but are much more sophisticated. Instead of calling
a function on an SV, the PMC carries around with it a vtable (a structure of function
pointers) full of the functions it can perform. In a sense, it is an object on which you
can call methods. In fact, the PMC abstraction acts as an abstract virtual class, with
each language providing vtables that implement the interface; for instance, Perl classes
have an addition function that will do the right thing on a Perl value, and Python
classes may provide a function that does something different. In this way, the core of
Parrot can be language-agnostic, with individual users of Parrot providing data types
to fit the needs of their language.
322 CHAPTER 11 HACKING PERL

Finally, Parrot has the ability to add in, on a lexically scoped basis, custom ops in
addition to its core set. Thus even if a language does certain things wildly differently
than Parrot expects, the language will still be able to use the interpreter.

11.4.3 What happens next

Parrot and the design of Perl 6 are developing in parallel; Larry will continue to pro-
duce Apocalypses explaining the design, whereas the Parrot hackers are nearing the
point where it’s worth thinking about compiling real languages onto the VM.

The immediate goals for Parrot at time of writing are to add subroutine and symbol
table support, which should be everything needed for a sensible interpreter. By the
time the language design firms up, we’ll be able to switch emphasis towards writing
a compiler from Perl 6 down to Parrot assembler.

11.4.4 The future for Perl 5

If Perl 6 is coming and it’s going to be so cool, why have we just written a book about
Perl 5? For starters, Perl 6 won’t be completed for quite a while—writing a Perl inter-
preter from scratch is an ambitious exercise! It will also take a long time to become
generally accepted.

Perl 5 will continue to be developed up until the release of version 5.8.0, and even
then maintenance will continue throughout the lifespan of Perl 6. Perl 5 won’t
become unsupported.

In short, Perl 5 isn’t going away anytime soon. Remember how long it took to get
rid of all the Perl 4 interpreters and code? That was when we wanted to get rid of it;
because Perl 6 is likely to be non-compatible with Perl 5, you can expect uptake to be
even slower. There’s an awful lot of working Perl 5 code, so people won’t want to
break it all by upgrading to Perl 6.

11.5 FURTHER READING

More thoughts on patching Perl can be found in the perl5-porters FAQ at
http://simon-cozens.org/writings/p5p.faq, Simon’s “So You Want to Be a Perl Por-
ter?” (http://simon-cozens.org/writings/perlhacktut.html), and in pod/perlhack.pod,
Porting/patching.pod, and Porting/pumpking.pod in the Perl distribution.

11.6 SUMMARY

This chapter looked at how to develop perl itself, the development process, and the
perl5-porters mailing list. In addition to discussing some of the tools available
to help you develop, such as perl’s debugging mode and the GNU debugger, we also
looked at the less technical parts of being a Perl porter—how to approach Perl main-
tenance, and how to submit patches and get them integrated to the Perl core.

We also discussed Perl 6 and gave you a glimpse of how Perl may look in the future.
SUMMARY 323

A P P E N D I X A

Perl’s typemaps

We have made significant use of the different typemaps throughout this book, but we
have not covered all of them. This appendix is a reference that describes all the
typemap entries you are likely to encounter, along with simple examples.

A.1 QUICK REFRESHER

As you’ll recall from section 6.3, the typemap file consists of three sections:

• A section that defines all the C variable types supported by the typemap along
with the corresponding typemap name

• The INPUT section, which describes how a Perl variable is converted to the
required C type

• The OUTPUT section, which describes how a C variable is converted to the
required Perl variable

The INPUT and OUTPUT entries are a mixture of C code and Perl-style variables. The
Perl-style variables have the following meaning:

• $arg—The name of the Perl SV in the Perl argument list.

• $var—The name of the C variable that is either receiving the value from the
SV or setting the value in the SV.

• $type—The type of the C variable. This will be one of the types listed at the
top of the typemap file.
324

• $ntype—The type of the C variable, with all asterisks replaced with the string
Ptr. A char * would therefore set $ntype to charPtr. This variable is
sometimes used for setting classnames or for referencing helper functions.

• $Package—The Perl package associated with this variable. This is the same as
the value assigned to the PACKAGE directive in the XS file.

• $func_name—The name of the XS function.

• $argoff—The position of the argument in the argument list. The value begins counting
at 0.

A.2 THE TYPEMAPS

In this section we will describe each typemap entry,1 first showing the INPUT and
OUTPUT entries and then showing a (usually contrived) usage. The examples are from
the XS::Typemap module that comes as standard with Perl as of version 5.8.0. This
module exists purely to make sure the typemap entries have not been broken during
the development of Perl, but it provides a simple introduction to all the usual XS
types. The typemap entries discussed here come from the typemap file distributed
with Perl 5.8.0. In the interests of writing code that will work on older versions of
Perl, typemap entries that are broken in Perl 5.6 are noted when applicable.

A.2.1 T_SV

This typemap simply passes the C representation of the Perl variable (an SV*) in
and out of the XS layer. You can use it if the C code wants to deal directly with the
Perl variable.

T_SV INPUT

T_SV

 $var = $arg

This is the simplest typemap entry. It makes a simple copy of the pointer (in this case,
a pointer to an SV).

T_SV OUTPUT

T_SV

 $arg = $var;

Similarly, this typemap simply copies the pointer from the XS variable to the argu-
ment stack.

1 We’ll ignore a handful that no one can remember anything about but that sneaked into the standard
typemap file a few years ago!
THE TYPEMAPS 325

T_SV example

SV *
T_SV(sv)

 SV * sv
 CODE:

 RETVAL = sv_mortalcopy(sv);
 SvREFCNT_inc(RETVAL);

 OUTPUT:
 RETVAL

In this example, we need to copy the input variable to the output. In order to do this,
we use sv_mortalcopy to make a copy of the variable. Unsurprisingly, it is a mor-
tal copy. The final thing we do is increment the reference count (which would leave
sv with a reference count of 2, even though we have only one variable). This code
may look a bit strange, due to an assumption made by xsubpp. Because in many cases
a new SV is created by the OUTPUT typemap entry, xsubpp tries to be helpful and
automatically adds a sv_2mortal(ST(0)) before returning (you know from
chapter 6 that mortal SVs should be pushed onto the argument stack). In our exam-
ple, we have the choice of making sv a mortal SV (knowing that its reference count
will be reduced twice because it has been marked as a mortal twice), using a non-
mortal SV, or using PP code and pushing the mortal SV onto the stack ourselves. We
chose the first option because the sv_mortalcopy function is convenient and
using PP code would result in the OUTPUT typemap entry not being used.

A.2.2 T_SVREF

Fixed in Perl 5.8.0. This typemap is used to pass in and return a reference to an SV.

T_SVREF INPUT

T_SVREF

 if (SvROK($arg))
 $var = (SV*)SvRV($arg);

 else
 Perl_croak(aTHX_ \"$var is not a reference\")

This entry is more complicated than that for a simple scalar because some sanity
checking is applied. If the argument is a reference, then the SV* being referenced is
retrieved; otherwise Perl complains.

T_SVREF OUTPUT

T_SVREF

 $arg = newRV((SV*)$var);

This typemap uses newRV to create a new reference to the output scalar. Doing so
will increment the reference count on the argument.
326 APPENDIX A PERL’S TYPEMAPS

T_SVREF example

SVREF
T_SVREF(svref)

 SVREF svref
 CODE:

 RETVAL = svref;
 OUTPUT:

 RETVAL

In this example, we have used a type of SVREF to indicate that we are providing a ref-
erence to a scalar. Even though xsubpp knows how to deal with a type of SVREF, C
doesn’t; so, we must add a typedef to the top of our XS file as follows:

typedef SV * SVREF; /* T_SVREF */

A.2.3 T_AVREF

Fixed in Perl 5.8.0. This typemap is used to pass an array reference into and out of C.

T_AVREF INPUT

T_AVREF

 if (SvROK($arg) && SvTYPE(SvRV($arg))==SVt_PVAV)
 $var = (AV*)SvRV($arg);

 else
 Perl_croak(aTHX_ \"$var is not an array reference\")

This entry is similar to that for T_SVREF except here we are even more explicit and
do an additional check to make sure we have an array reference rather than any
other type.

T_AVREF OUTPUT

T_AVREF
 $arg = newRV((SV*)$var);

T_AVREF example

AV *

T_AVREF(av)
 AV * av

 CODE:
 RETVAL = av;

 OUTPUT:
 RETVAL

A.2.4 T_HVREF

Fixed in Perl 5.8.0. This typemap is used to pass a hash reference into and out of C.
THE TYPEMAPS 327

T_HVREF INPUT

T_HVREF
 if (SvROK($arg) && SvTYPE(SvRV($arg))==SVt_PVHV)
 $var = (HV*)SvRV($arg);
 else
 Perl_croak(aTHX_ \"$var is not a hash reference\")

This entry is similar to that for T_AVREF, except here we check to make sure we have
a hash reference rather than any other type.

T_HVREF OUTPUT

T_HVREF
 $arg = newRV((SV*)$var);

T_HVREF example

HV *
T_HVREF(hv)
 HV * hv
 CODE:
 RETVAL = hv;
 OUTPUT:
 RETVAL

A.2.5 T_CVREF

Fixed in Perl 5.8.0. This typemap is used to pass a reference to a Perl subroutine into
and out of C.

T_CVREF INPUT

T_CVREF
 if (SvROK($arg) && SvTYPE(SvRV($arg))==SVt_PVCV)
 $var = (CV*)SvRV($arg);
 else
 Perl_croak(aTHX_ \"$var is not a code reference\")

This entry is similar to that for T_AVREF, except here we check to make sure we have
a code reference rather than any other type.

T_CVREF OUTPUT

T_CVREF

 $arg = newRV((SV*)$var);

T_CVREF example

CV *
T_CVREF(cv)

 CV * cv
 CODE:
328 APPENDIX A PERL’S TYPEMAPS

 RETVAL = cv;

 OUTPUT:
 RETVAL

A.2.6 T_SYSRET

The T_SYSRET typemap is used to process return values from system calls. It is
meaningful only when you’re passing values from C to Perl (there is no concept of
passing a system return value from Perl to C).

System calls return -1 on error (setting errno with the reason) and (usually) 0
on success. If the return value is -1, this typemap returns undef. If the return value
is not -1, this typemap translates a 0 (Perl false) to “0 but true” (which is
treated as a true value in Perl) or returns the value itself, to indicate that the com-
mand succeeded.

The POSIX module makes extensive use of this type.

T_SYSRET INPUT

An INPUT entry is not relevant for this typemap.

T_SYSRET OUTPUT

T_SYSRET
 if ($var != -1) {

 if ($var == 0)
 sv_setpvn($arg, "0 but true", 10);

 else
 sv_setiv($arg, (IV)$var);

 }

T_SYSRET example

A successful return

SysRet
T_SYSRET_pass()

 CODE:
 RETVAL = 0;

 OUTPUT:
 RETVAL

A failure

SysRet

T_SYSRET_fail()
 CODE:

 RETVAL = -1;

 OUTPUT:
 RETVAL

This example requires that the SysRet type is declared using a typedef as

typedef int SysRet; /* T_SYSRET */
THE TYPEMAPS 329

A.2.7 T_UV

This typemap is for an unsigned integer. It is cast to the required unsigned integer
type when passed to C and converted to a UV when passed back to Perl.

T_UV INPUT

T_UV

 $var = ($type)SvUV($arg)

T_UV OUTPUT

T_UV
 sv_setuv($arg, (UV)$var);

T_UV example

unsigned int

T_UV(uv)
 unsigned int uv

 CODE:
 RETVAL = uv;

 OUTPUT:
 RETVAL

A.2.8 T_IV

This typemap is for a signed integer. It is cast to the required integer type when
passed to C and converted to an IV when passed back to Perl.

T_IV INPUT

T_IV

 $var = ($type)SvIV($arg)

T_IV OUTPUT

T_IV
 sv_setiv($arg, (IV)$var);

T_IV example

long
T_IV(iv)

 long iv
 CODE:

 RETVAL = iv;

 OUTPUT:
 RETVAL
330 APPENDIX A PERL’S TYPEMAPS

A.2.9 T_INT

This typemap is for a signed integer. It converts the Perl value to a native integer type
(the int type on the current platform). When the value is returned to Perl, it is pro-
cessed the same way as for T_IV.

This typemap’s behavior is identical to using an int type in XS with T_IV.

T_INT INPUT

T_INT

 $var = (int)SvIV($arg)

T_INT OUTPUT

T_INT

 sv_setiv($arg, (IV)$var);

T_INT example

See T_IV.

A.2.10 T_ENUM

This typemap is for an enum value. It’s used to transfer an enum component from C.
There is usually no reason to pass an enum value to C because it will always be stored
as an IV inside the SV, but the facility is provided.

T_ENUM INPUT

T_ENUM

 $var = ($type)SvIV($arg)

T_ENUM OUTPUT

T_ENUM

 sv_setiv($arg, (IV)$var);

T_ENUM example

svtype
T_ENUM()

 CODE:
 RETVAL = SVt_PVHV;

 OUTPUT:
 RETVAL

The svtype enum is defined in the include file sv.h that comes with the standard
Perl distribution (SVt_PVHV is part of that enum). Because the default typemap
does not know that svtype should be processed using T_ENUM, this example would
require a local typemap file containing the line

svtype T_ENUM
THE TYPEMAPS 331

A.2.11 T_BOOL

This typemap is for a boolean type. It can be used to pass true and false values to and
from C.

T_BOOL INPUT

T_BOOL
 $var = (bool)SvTRUE($arg)

T_BOOL OUTPUT

T_BOOL
 $arg = boolSV($var);

T_BOOL example

bool
T_BOOL(in)
 bool in
 CODE:
 RETVAL = in;
 OUTPUT:
 RETVAL

A.2.12 T_U_INT

This typemap is for unsigned integers. It is equivalent to using T_UV but explicitly
casts the variable to type unsigned int. Ironically, the default type for unsigned
int itself is T_UV.

T_U_INT INPUT

T_U_INT
 $var = (unsigned int)SvUV($arg)

T_U_INT OUTPUT

T_U_INT
 sv_setuv($arg, (UV)$var);

T_U_INT example

See T_UV.

A.2.13 T_SHORT

This typemap is for short integers. It is equivalent to T_IV but explicitly casts the
return to type short. The default typemap for short is T_IV.

T_SHORT INPUT

T_SHORT
 $var = (short)SvIV($arg)
332 APPENDIX A PERL’S TYPEMAPS

T_SHORT OUTPUT

T_SHORT
 sv_setiv($arg, (IV)$var);

T_SHORT example

See T_IV.

A.2.14 T_U_SHORT

This typemap is for unsigned short integers. It is equivalent to T_UV but explicitly
casts the return to type unsigned short. The default typemap for unsigned
short is T_UV, but T_U_SHORT is used for type U16 in the standard typemap.

T_U_SHORT INPUT

T_U_SHORT

 $var = (unsigned short)SvUV($arg)

T_U_SHORT OUTPUT

T_U_SHORT
 sv_setuv($arg, (UV)$var);

T_U_SHORT example

U16

T_U_SHORT(in)
 U16 in

 CODE:
 RETVAL = in;

 OUTPUT:
 RETVAL

A.2.15 T_LONG

This typemap is for long integers. It is equivalent to T_IV but explicitly casts the
return to type long. The default typemap for long is T_IV.

T_LONG INPUT

T_LONG

 $var = (long)SvIV($arg)

T_LONG OUTPUT

T_LONG
 sv_setiv($arg, (IV)$var);

T_LONG example

See T_IV.
THE TYPEMAPS 333

A.2.16 T_U_LONG

This typemap is for unsigned long integers. It is equivalent to T_UV but explicitly
casts the return to type unsigned long. The default typemap for unsigned
long is T_UV, but T_U_LONG is used for type U32 in the standard typemap.

T_U_LONG INPUT

T_U_LONG
 $var = (unsigned long)SvUV($arg)

T_U_LONG OUTPUT

T_U_LONG

 sv_setuv($arg, (UV)$var);

T_U_LONG example

U32

T_U_LONG(in)
 U32 in

 CODE:
 RETVAL = in;

 OUTPUT:
 RETVAL

A.2.17 T_CHAR

This typemap is used for single 8-bit characters (it differs from T_U_CHAR because it
returns characters rather than bytes).

T_CHAR INPUT

T_CHAR
 $var = (char)*SvPV_nolen($arg)

T_CHAR OUTPUT

T_CHAR
 sv_setpvn($arg, (char *)&$var, 1);

T_CHAR example

char

T_CHAR(in);
 char in

 CODE:
 RETVAL = in;

 OUTPUT:
 RETVAL
334 APPENDIX A PERL’S TYPEMAPS

A.2.18 T_U_CHAR

This typemap is used for an unsigned byte.

T_U_CHAR INPUT

T_U_CHAR

 $var = (unsigned char)SvUV($arg)

T_U_CHAR OUTPUT

T_U_CHAR

 sv_setuv($arg, (UV)$var);

T_U_CHAR example

unsigned char
T_U_CHAR(in);

 unsigned char in
 CODE:

 RETVAL = in;
 OUTPUT:

 RETVAL

A.2.19 T_FLOAT

This typemap is used for a floating-point number. It guarantees to return a variable
cast to a float.

T_FLOAT INPUT

T_FLOAT
 $var = (float)SvNV($arg)

T_FLOAT OUTPUT

T_FLOAT

 sv_setnv($arg, (double)$var);

T_FLOAT example

float
T_FLOAT(in)

 float in
 CODE:

 RETVAL = in;
 OUTPUT:

 RETVAL
THE TYPEMAPS 335

A.2.20 T_NV

This typemap is used for a Perl floating-point number. It’s similar to T_IV and
T_UV in that the return type is cast to the requested numeric type rather than to a
specific type.

T_NV INPUT

T_NV
 $var = ($type)SvNV($arg)

T_NV OUTPUT

T_NV

 sv_setnv($arg, (NV)$var);

T_NV example

NV

T_NV(in)
 NV in

 CODE:
 RETVAL = in;

 OUTPUT:
 RETVAL

A.2.21 T_DOUBLE

This typemap is used for a double-precision floating-point number. It guarantees to
return a variable cast to a double.

T_DOUBLE INPUT

T_DOUBLE
 $var = (double)SvNV($arg)

T_DOUBLE OUTPUT

T_DOUBLE
 sv_setnv($arg, (double)$var);

T_DOUBLE example

double

T_DOUBLE(in)
 double in

 CODE:
 RETVAL = in;

 OUTPUT:
 RETVAL
336 APPENDIX A PERL’S TYPEMAPS

A.2.22 T_PV

This typemap is used for a string.

T_PV INPUT

T_PV

 $var = ($type)SvPV_nolen($arg)

T_PV OUTPUT

T_PV

 sv_setpv((SV*)$arg, $var);

T_PV example

char *
T_PV(in)

 char * in
 CODE:

 RETVAL = in;
 OUTPUT:

 RETVAL

A.2.23 T_PTR

This typemap is used for a pointer. It’s typically associated with a void * type.

T_PTR INPUT

T_PTR
 $var = INT2PTR($type,SvIV($arg))

T_PTR OUTPUT

T_PTR
 sv_setiv($arg, PTR2IV($var));

T_PTR example

Change the value using the input value and return the pointer

void *
T_PTR_OUT(in)

 int in;
 CODE:

 xst_anint = in;
 RETVAL = &xst_anint;

 OUTPUT:
 RETVAL

Pass in the pointer and return the value

int
THE TYPEMAPS 337

T_PTR_IN(ptr)

 void * ptr
 CODE:

 RETVAL = *(int *)ptr;
 OUTPUT:

 RETVAL

This example provides one function that returns a pointer to a static integer and
another that reads that pointer and returns the value of the integer it points to. This
example requires that the variable xst_anint has been declared as an integer at the
top of the XS file.

A.2.24 T_PTRREF

This typemap is similar to T_PTR, except that the pointer is stored in a scalar and the
reference to that scalar is returned to the caller. It can be used to hide the actual
pointer value from the programmer, because it is usually not required directly from
within Perl.

T_PTRREF INPUT

T_PTRREF

 if (SvROK($arg)) {
 IV tmp = SvIV((SV*)SvRV($arg));

 $var = INT2PTR($type,tmp);
 }

 else
 Perl_croak(aTHX_ \"$var is not a reference\")

The typemap checks that a scalar reference is passed from Perl to XS.

T_PTRREF OUTPUT

T_PTRREF

 sv_setref_pv($arg, Nullch, (void*)$var);

T_PTRREF example

Set the static variable using the supplied number and return
a pointer.

intRef *
T_PTRREF_OUT(in)

 intRef in;
 CODE:

 xst_anint = in;
 RETVAL = &xst_anint;

 OUTPUT:
 RETVAL

pass in the pointer and return the value

intRef
338 APPENDIX A PERL’S TYPEMAPS

T_PTRREF_IN(ptr)

 intRef * ptr
 CODE:

 RETVAL = *ptr;
 OUTPUT:

 RETVAL

This example is similar to that provided for T_PTR, except that here we use a type of
intRef* rather than a void*, making sure the local typemap file declares that an
intRef* is to be processed using T_PTRREF. intRef is typedef ’d to an integer.

A.2.25 T_PTROBJ

This typemap is similar to T_PTRREF except that the reference is blessed into a class,
allowing the pointer to be used as an object. It’s commonly used to deal with C
structs. The typemap checks that the Perl object passed into the XS routine is of the
correct class (or part of a subclass).

The pointer is blessed into a class that is derived from the name of the pointer’s
type, but with all asterisks in the name replaced with Ptr.

T_PTROBJ INPUT

T_PTROBJ

 if (sv_derived_from($arg, \"${ntype}\")) {
 IV tmp = SvIV((SV*)SvRV($arg));

 $var = INT2PTR($type,tmp);
 }

 else
 Perl_croak(aTHX_ \"$var is not of type ${ntype}\")

T_PTROBJ OUTPUT

T_PTROBJ

 sv_setref_pv($arg, \"${ntype}\", (void*)$var);

T_PTROBJ example

Pass in a value and return the pointer as an object

MODULE = XS::Typemap PACKAGE = XS::Typemap

intObj *
T_PTROBJ_OUT(in)

 intObj in;
 CODE:

 xst_anint = in;
 RETVAL = &xst_anint;

 OUTPUT:
 RETVAL

pass in the pointer and return the value

MODULE = XS::Typemap PACKAGE = intObjPtr
THE TYPEMAPS 339

intObj

T_PTROBJ_IN(ptr)
 intObj * ptr

 CODE:
 RETVAL = *ptr;

 OUTPUT:
 RETVAL

This example is essentially the same as that for T_PTRREF, except that here
intObj* is assumed to be associated with type T_PTROBJ in the local typemap file
(intObj is a typedef to an integer). In addition, the function T_PTROBJ_IN is
placed into package intObjPtr, because that is the class in which the T_PTROBJ
typemap will bless the return value. These functions could be used as follows:

$object = T_PTROBJ_OUT($in);
$out = $object->T_PTROBJ_IN;

This is how they are used in the tests for XS::Typemap.

A.2.26 T_REF_IV_PTR

This typemap is similar to T_PTROBJ in that the pointer is blessed into a scalar
object. The difference is that when the object is passed back into XS, it must be of the
correct type (inheritance is not supported).

The pointer is blessed into a class that is derived from the name of the pointer’s
type, but with all asterisks in the name replaced with Ptr.

T_REF_IV_PTR INPUT

T_REF_IV_PTR
 if (sv_isa($arg, \"${ntype}\")) {

 IV tmp = SvIV((SV*)SvRV($arg));
 $var = INT2PTR($type, tmp);

 }
 else

 Perl_croak(aTHX_ \"$var is not of type ${ntype}\")

T_REF_IV_PTR OUTPUT

T_REF_IV_PTR

 sv_setref_pv($arg, \"${ntype}\", (void*)$var);

T_REF_IV_PTR example

See the example for T_PTROBJ, except that inheritance will be disabled.

A.2.27 T_OPAQUEPTR

You can use this typemap to store bytes in the string component of the SV. Here the
representation of the data is irrelevant to Perl, and the bytes themselves are stored in
the SV. It is assumed that the C variable is a pointer (the bytes are copied from that
340 APPENDIX A PERL’S TYPEMAPS

memory location). If the pointer is pointing to something that is represented by 8
bytes, then those 8 bytes are stored in the SV (and length() will report a value of 8).

In principle, you can use the unpack command to convert the bytes back to a
number (if the underlying type is known to be a number).

This typemap can also be used to store a C structure2 (the number of bytes to be
copied is calculated using the C sizeof function) and can be used as an alternative
to T_PTRREF without having to worry about a memory leak (because the byte rep-
resentation of the struct will be in a Perl variable stored in the SV rather than simply
storing a pointer in the SV).

T_OPAQUEPTR INPUT

T_OPAQUEPTR
 $var = ($type)SvPV_nolen($arg)

T_OPAQUEPTR OUTPUT

T_OPAQUEPTR

 sv_setpvn($arg, (char *)$var, sizeof(*$var));

T_OPAQUEPTR example

astruct *

T_OPAQUEPTR_IN_struct(a,b,c)
 int a

 int b
 double c

 PREINIT:
 astruct test;

 CODE:
 test.a = a;

 test.b = b;
 test.c = c;

 RETVAL = &test;
 OUTPUT:

 RETVAL

void

T_OPAQUEPTR_OUT_struct(test)
 astruct * test

 PPCODE:
 XPUSHs(sv_2mortal(newSViv(test->a)));

 XPUSHs(sv_2mortal(newSViv(test->b)));
 XPUSHs(sv_2mortal(newSVnv(test->c)));

In this example, the first function takes three arguments, puts them into a structure
declared in the PREINIT block, and on output copies the contents to the Perl string

2 Assuming the structure itself does not contain pointers
THE TYPEMAPS 341

buffer. When that buffer is passed to the second function, the bytes are unpacked and
a pointer to that buffer is stored in the test variable. The values are then extracted
from the structure and pushed onto the argument stack. In this example, a struct has
been declared at the top of the XS file as

struct t_opaqueptr {
 int a;

 int b;
 double c;

};

typedef struct t_opaqueptr astruct;

A.2.28 T_OPAQUE

This typemap is almost identical to T_OPAQUEPTR, but it works on non-pointer
types. Whereas T_OPAQUEPTR would read the bytes from, say, an int*, this
typemap would extract the bytes from an int. For example, if an integer is imported
into Perl using T_OPAQUE rather than T_IV, the underlying bytes representing the
integer will be stored in the SV but the actual integer value will not be available. The
data is opaque to Perl and can be retrieved only using the unpack function.

T_OPAQUE INPUT

T_OPAQUE
 $var = *($type *)SvPV_nolen($arg)

T_OPAQUE OUTPUT

T_OPAQUE

 sv_setpvn($arg, (char *)&$var, sizeof($var));

T_OPAQUE example

shortOPQ

T_OPAQUE_IN(val)
 int val

 CODE:
 RETVAL = (shortOPQ)val;

 OUTPUT:
 RETVAL

IV
T_OPAQUE_OUT(val)

 shortOPQ val
 CODE:

 RETVAL = (IV)val;

 OUTPUT:
 RETVAL
342 APPENDIX A PERL’S TYPEMAPS

In this example, an integer is given to the first function, the integer is cast to a
short, and the bytes are stored in the return value. Those bytes are then read into
the second function, converted back to a short, and cast as an int for return.

A.2.29 T_PACKED

This typemap is used to exchange data between Perl and C in a generic manner out-
side the typemap file. You must write helper functions to convert between the Perl
and C datatypes, and these are called from the typemap system. The names of these
functions depend on the C type.

T_PACKED INPUT

T_PACKED
 $var = XS_unpack_$ntype($arg)

T_PACKED OUTPUT

T_PACKED

 XS_pack_$ntype($arg, $var);

T_OPAQUE example

See T_PACKEDARRAY.

A.2.30 T_PACKEDARRAY

This typemap is used to exchange array data between Perl and C in a generic manner
outside the typemap file. You must write helper functions to convert between the Perl
and C datatypes, and these are called from the typemap system. The names of these
functions depend on the C type. The input typemap is identical to that for
T_PACKED. The difference between T_PACKED and T_PACKEDARRAY is that the
output typemap has an extra argument indicating the number of array elements to
return. The XS writer must define and set the variable count_$ntype.

T_PACKEDARRAY INPUT

T_PACKEDARRAY

 $var = XS_unpack_$ntype($arg)

T_PACKEDARRAY OUTPUT

T_PACKEDARRAY

 XS_pack_$ntype($arg, $var, count_$ntype);

T_PACKEDARRAY example

The usual example for this typemap entry is string arrays. Functions named
XS_unpack_charPtrPtr and XS_pack_charPtrPtr must be supplied to
import/export string arrays. An example can be found in section 6.6.5.
THE TYPEMAPS 343

A.2.31 T_ARRAY

Fixed in Perl 5.8.0. This typemap is used to convert the Perl argument list to a C array
and to push the contents of a C array onto the Perl argument stack (if you don’t want
to go to the trouble of using a PPCODE block).

The usual calling signature is

@out = array_func(@in);

Any number of arguments can occur in the list before the array, but the input and
output arrays must be the last elements in the list.

When this typemap is used to pass a Perl list to C, the XS writer must provide a
function or a macro (named after the array type but with Ptr substituted for each
asterisk) to allocate the memory required to hold the list. A pointer should be returned.
It is up to the XS writer to free the memory on exit from the function or to use a mem-
ory allocator that uses mortal space (for example, get_mortalspace, described in
“Strings and things,” page 2403). The variable ix_$var is set to the number of ele-
ments in the new array (of course, the value of $var will depend on the array name).

When returning a C array to Perl, the XS writer must provide an integer variable
called size_$var containing the number of elements in the array. It is used to deter-
mine how many elements should be pushed onto the return argument stack. This
value is not required on input because Perl knows how many arguments are on the
stack when the routine is called. Ordinarily this variable is called size_RETVAL.

Additionally, the type of each element is determined from the type of the array. If
the array uses type intArray *, xsubpp will automatically determine that it contains
variables of type int and use that typemap entry to perform the copy of each element
(this information is encoded in the DO_ARRAY_ELEM part of the typemap entry). All
pointer (*) and Array tags are removed from the name to determine the subtype.

T_ARRAY INPUT

T_ARRAY
 U32 ix_$var = $argoff;

 $var = $ntype(items -= $argoff);
 while (items--) {

 DO_ARRAY_ELEM;
 ix_$var++;

 }
 /* this is the number of elements in the array */

 ix_$var -= $argoff

3 You can use a generic memory allocator such as get_mortalspace in conjunction with the
T_ARRAY typemap by using macros. For example the allocator for an intArray* could be defined
as a macro with

#define intArrayPtr(n) get_mortalspace((n) * sizeof(intArray))
344 APPENDIX A PERL’S TYPEMAPS

T_ARRAY OUTPUT

T_ARRAY
 {

 U32 ix_$var;
 EXTEND(SP,size_$var);

 for (ix_$var = 0; ix_$var < size_$var; ix_$var++) {
 ST(ix_$var) = sv_newmortal();

 DO_ARRAY_ELEM
 }

 }

T_ARRAY example

intArray *
T_ARRAY(array, ...)

 intArray * array
 PREINIT:

 U32 size_RETVAL;
 CODE:

 size_RETVAL = ix_array;
 RETVAL = array;

 OUTPUT:
 RETVAL

 CLEANUP:
 Safefree(array);

 XSRETURN(size_RETVAL);

Somewhere we need to typedef intArray to an integer and tell xsubpp (via a local
typemap file) that an intArray* should be processed using T_ARRAY.

We are expecting many input arguments, so we use the ellipsis to indicate that we
don’t know how many arguments are coming.

This variable contains the number of elements we wish to return to Perl. The name of
the variable is chosen for us, because the typemap entry must obtain this information
using this variable.

The number of input arguments supplied is stored in ix_array by the INPUT
typemap, so we simply copy this value to size_RETVAL for use in the OUTPUT
typemap.

Because we are just copying the input array to the output, we copy the pointer to
RETVAL.

If we don’t mention this, xsubpp will not return anything!

If the memory used for the array was not mortal, it must be freed here (the CLEANUP
functions are called after the values are copied to the argument stack).

B
c

d

e
f

g

h
i

B

c

d

e

f

g

h

THE TYPEMAPS 345

Because xsubpp was only expecting us to return a single value (after all, we are not
using a PPCODE section), the C code generated from this XS code finishes with
XSRETURN(1). If this function is used, Perl will think that only one value has been
returned. If we use an explicit XSRETURN in the CLEANUP block, we can subvert this
behavior and return from XS earlier than expected (the CLEANUP block is good
because we know it’s called after the values are copied onto the argument stack).

A.2.32 T_STDIO

New in Perl 5.8.0. This typemap is used for passing Perl filehandles to and from C using
standard I/O FILE* structures. T_INOUT should be used if a PerlIO* is required.

T_STDIO INPUT

T_STDIO

 $var = PerlIO_findFILE(IoIFP(sv_2io($arg)))

T_STDIO OUTPUT

T_STDIO

 {
 GV *gv = newGVgen("$Package");

 PerlIO *fp = PerlIO_importFILE($var,0);
 if (fp && do_open(gv, "+<&", 3, FALSE, 0, 0, fp))

 sv_setsv($arg, sv_bless(newRV((SV*)gv),
 gv_stashpv("$Package",1)

 else
 $arg = &PL_sv_undef;

 }

T_STDIO example

FILE *
T_STDIO_open(file)

 const char * file
 CODE:

 RETVAL = fopen(file, "w");
 OUTPUT:

 RETVAL

int

T_STDIO_print(stream, string)
 FILE * stream

 const char * string
 CODE:

 RETVAL = fprintf(stream, string);
 OUTPUT:

 RETVAL

i

346 APPENDIX A PERL’S TYPEMAPS

A.2.33 T_INOUT

This typemap is used for passing Perl filehandles to and from C using the Perl I/O
subsystem (via PerlIO* structures). If you are using FILE* streams, you should
use T_STDIO.

T_INOUT INPUT

T_INOUT
 $var = IoIFP(sv_2io($arg))

T_INOUT OUTPUT

T_INOUT

 {
 GV *gv = newGVgen("$Package");

 if (do_open(gv, "+<&", 3, FALSE, 0, 0, $var))
 sv_setsv($arg, sv_bless(newRV((SV*)gv),

 gv_stashpv("$Package",1)));
 else

 $arg = &PL_sv_undef;
 }}

T_INOUT example

PerlIO *
T_INOUT_open(file)

 const char * file
 CODE:

 RETVAL = PerlIO_open(file, "w");
 OUTPUT:

 RETVAL

int

T_INOUT_print(f, string)
 PerlIO * f

 const char * string
 CODE:

 RETVAL = PerlIO_printf(f, string);
 OUTPUT:

 RETVAL
THE TYPEMAPS 347

A P P E N D I X B

Further reading

As we mentioned back in the preface, we’ve tried to make this book as definitive as
possible. However, we can’t possibly explain everything, and you may find many
other references useful in the course of your work integrating Perl and C.

PERL

Conway, Damian. Object Oriented Perl. Manning Publications, 1999, 18844777791.

NetThink Perl 5 Internals tutorial: http://www.netthink.co.uk/downloads/internals/.

NetThink Perl and Unicode tutorial: http://www.netthink.co.uk/downloads/uni-
code.pdf.

Parrot: http://www.parrotcode.org/.

Perl 6 development site: http://dev.perl.org/.

Perl documentation: perlxs, perlxstut, perlapi, perlguts, perlcall,
perlembed, XS::Typemap.

“PerlGuts Illustrated”: http://gisle.aas.no/perl/illguts.

Srinivasan, Sriram. Advanced Perl Programming. O’Reilly and Associates, 1997,
1565922204.

Wall, Larry, Tom Christiansen, and Jon Orwant. Programming Perl. 3d ed. O’Reilly and
Associates, 2000, 0596000278.
348

C

comp.lang.c FAQ: http://www.eskimo.com/~scs/C-faq/top.html.

Darwin, Ian, and Geoff Collyer, “Can’t Happen or /* NOTREACHED */ or Ral Pro-
grams Dump Core,” USENIX Association Winter Conference, Dallas 1985 Proceed-
ings (http://www.cs.umd.edu/users/cml/cstyle/cant.pdf).

Harbison, Samuel, and Guy Steele. C: A Reference Manual. 5th ed. Prentice Hall, 2002,
013089592X.

Kernighan, Brian, and Dennis Ritchie. The C Programming Language. 2d ed. Prentice
Hall, 1988, 0131103628.

Kelley, Al, and Ira Pohl, A Book on C, 4th. ed., Addison-Wesley, 1998, 0201183994.

“Programming in C”: http://www.lysator.liu.se/c/.
C 349

A P P E N D I X C

Perl API index

Chapter 5 detailed and provided examples for many of the functions in the Perl API. However,
the API is the means through which C programmers interact with Perl, and as such it pervades
this book. This index draws together all the references to the Perl API functions we’ve used
throughout the book.
__FILE__ 228
aTHX 174, 289
aTHX_ 127, 156, 174, 176,

227, 326–328, 338–340
av_clear 135
av_delete 141
av_exists 141
av_extend 142–143
av_fetch 108, 136–139, 143–

144, 187, 199, 243
av_fill 142
av_len 134, 137, 141–143,

187, 199, 243
av_make 134–135
av_pop 133, 139–140
av_push 140–141, 201
av_shift 139–140
av_store 105, 107, 134–135,

138–139, 142, 144
av_undef 135–136
av_unshift 134, 140

AvARRAY 107, 124, 130, 134,
141–142

AvFILL 107, 130
AvMAX 143
AvREAL 139
boolSV 332
bytes_to_utf8 157
call_method 264
call_pv 259, 262, 264
call_sv 133, 159, 259, 261
Copy 122, 151
croak 110, 203, 234
dATARGET 291
DEFSV 265
do_open 346–347
dPOPnv 293
dPOPss 293
dPOPTOPiirl_ul 291
dSP 133, 139, 203, 260, 263,

291, 295
dTARG 183

dTOPiv 293
dTOPnv 293
dTOPss 293
dump_sub 310
dXSARGS 227, 234
dXSTARG 227
ENTER 102, 133, 203,

260–263
ERRSV 110–111, 258, 264–

265, 271
eval_pv 265, 271
eval_sv 265
EXTEND 109, 120, 139, 182,

262, 345
form 125
FREETMPS 133, 204,

260–261, 263–264
G_ARRAY 160, 262, 264
G_DISCARD 133, 147, 261,

264
G_EVAL 145, 263–264
350

G_NOARGS 261
G_NODEBUG 133, 159
G_SCALAR 159–160, 203, 263
G_VOID 160
get_av 132–133, 140, 145, 159
get_cv 133, 145, 159
get_hv 145, 159
get_sv 103–104, 113, 125–126,

145, 159, 258–259, 274–276
GIMME 160
GIMME_V 160
gv_stashpv 132, 346–347
GvCV 134
GvHV 147, 149
HeVAL 148
hv_clear 146
hv_delete 146–147
hv_delete_ent 146–147
hv_exists_ent 147
hv_fetch 145, 147–148, 159
hv_fetch_ent 147
hv_iterinit 141, 149
hv_iterkeysv 141, 150
hv_iternext 141
hv_iternextsv 149
hv_store 145–146, 148–149,

158, 179
hv_store_ent 148
hv_undef 146
HvKEYS 130
INT2PTR 131, 158–159, 176,

196, 337–340
IoIFP 346–347
is_utf8_char 156
is_utf8_string 156
isALNUM 161
isALPHA 161
isDIGIT 161
isLOWER 161
isSPACE 161
isUPPER 161
LEAVE 102, 133, 204, 260–

261, 263–264
Move 151–152
n_a 292

New 68, 150, 153–154, 165,
175, 186, 227, 241, 247

newAV 107, 133–134, 138,
141, 143, 201

Newc 150
newGVgen 346–347
newHV 129, 132, 145–146,

179
newRV 102, 124, 129–130,

145, 326–328, 346–347
newRV_noinc 102, 129, 132
NEWSV 104–105, 107, 154,

187, 203, 241–242, 247
newSV 102, 104, 108
newSViv 106, 158, 179, 182,

203, 244, 341
newSVnv 106, 341
newSVpv 106, 122, 135, 140,

146, 160, 182, 241–242, 244,
261–262, 264

newSVpvf 108–109, 122, 127
newSVpvn 106, 120, 155
newSvpvn 106
newSVsv 107–108, 138, 207
newSVuv 106
newXS 228
Newz 150, 154
Nullch 126, 338
op_dump 310
perl_alloc 256–258, 266, 271
PERL_ASYNC_CHECK 289
perl_construct 256–258, 266,

271
Perl_croak 110, 118, 131, 159,

174, 176, 225, 227, 326–328,
338–340

perl_destruct 256–257, 260,
266, 272

perl_free 256–257, 260, 266,
272

perl_get_av 132
perl_get_cv 145
perl_get_hv 145
perl_get_sv 104
perl_module2file 147

perl_parse 256–258, 266, 271
PERL_REVISION 225
perl_run 256–258, 266, 271
PERL_SUBVERSION 225
Perl_sv_cmp 141–142
Perl_sv_cmp_locale 141–142
Perl_sv_upgrade 75
PERL_SYS_TERM 257
Perl_utf8_length 156
PERL_VERSION 225
PerlIO_close 102
PerlIO_findFILE 346
PerlIO_importFILE 346
PerlIO_open 102, 347
PerlIO_printf 130, 347
PerlIO_stdoutf 104
PL_destruct_level 266
PL_do_undump 257
PL_na 108, 111, 113, 167, 199,

225, 227
PL_op 286, 289, 295
PL_patchlevel 125
PL_perl_destruct_level 257
PL_res 102
PL_strtab 89
PL_sv_no 103, 138
PL_sv_undef 101–103, 109,

133, 139, 225, 346–347
PL_sv_yes 103, 138, 141
PL_tainting 112
POPi 292
POPn 292
POPpx 292
POPs 139, 262, 264, 292
pTHX 174
pTHX_ 105, 152, 174
PTR2IV 158, 337
PTR2NV 158
PTR2UV 158
PUSHi 109, 183, 227, 292
PUSHMARK 159, 203, 260,

263–264
PUSHn 183
PUSHp 183
PUSHs 103, 109, 120, 139,

182, 190, 261, 292
PERL API INDEX 351

PUTBACK 133, 203, 260–262,
264

Renew 127, 153
Renewc 153
Safefree 153–154, 175, 185,

227, 241
save_item 102
save_svref 145
SAVEFREEPV 126, 150–151
savepv 126, 262, 264
savepvn 126
SAVETMPS 203, 261–263
SETi 291
SETn 293
SETs 293
setSVpv 265
sortsv 141–142
SP 109, 133, 138–139, 143,

182, 260–263, 295
SPAGAIN 203, 262, 264
ST 103, 110–114, 121–122,

124, 130–131, 144, 169, 174,
227, 234, 326, 345

strEQ 134, 149, 161, 275
strNE 161
strnEQ 124, 149, 161
strnNE 161
StructCopy 175
sv_2io 346–347
sv_2iv 112
sv_2mortal 109, 120, 123–124,

133, 139, 144, 160, 181–182,
187, 203, 242, 244, 247, 262,
264, 341

sv_2pv 112
sv_bless 129, 132, 144, 346–

347
sv_catpv 114–115, 127–128,

164, 242
sv_catpvf 122, 125, 127
sv_catpvn 115, 127–128
sv_catsv 128
sv_chop 124
sv_dec 123
sv_derived_from 117, 131, 176,

339

sv_dump 310
sv_free 136
sv_gets 102
sv_grow 127
sv_inc 123
sv_isa 117–118, 340
sv_isobject 131
sv_len 118–119
sv_len_utf8 157
sv_mortalcopy 108, 326
sv_newmortal 108, 111, 122,

234, 345
sv_setiv 120–121, 167, 246,

259, 329–331, 333, 337
sv_setnv 120, 167, 234,

335–336
sv_setpv 121–122, 167, 228,

259, 337
sv_setpvf 122–123
sv_setpvn 105–106, 111–112,

114, 121–122, 167, 329, 334,
341–342

sv_setref_pv 176, 338–340
sv_setsv 102, 107, 123–124,

138, 346–347
sv_setuv 120, 167, 330,

332–335
sv_upgrade 105
SV_YES 291
SvANY 74
SvCUR 103, 105, 114–115,

118, 124, 128, 138, 152, 189
SvCUR_set 115, 154, 241
SvFLAGS 74, 152
SvGROW 115, 127
SvIOK 111, 159
SvIOK_on 111–112
SvIOK_only 111
SvIV 112, 121, 131, 148, 159,

167, 176, 187, 227, 236, 243,
330–333, 337–340

SvIV_set 152
SvIVX 111–113, 152
SvIVx 143
SvLEN 115, 152

SvMAGICAL 111
SvNOK 111
SvNOK_on 111
SvNV 111–113, 167, 174, 234,

335–336
SvNVX 111–112
SvOBJECT 130
SvOK 103, 110, 117
SvOOK 152
SvPOK 103, 111, 128
SvPOK_on 241
SvPOK_only 154
SvPV 78, 107, 110–113, 118–

119, 155, 167, 187, 199, 225,
227

SvPV_nolen 113, 189, 201,
259, 262, 264–265, 271,
275–276, 334, 337, 341–342

SvPVX 105, 113–115, 117,
124, 152, 154, 187, 203,
241–242, 247

SvREADONLY 73
SvREFCNT 74
SvREFCNT_dec 144, 147, 155
SvREFCNT_inc 326
SvROK 117, 130–131, 144,

326–328, 338
SvROK_off 130
SvROK_on 130
SvRV 117–118, 130–131, 144,

176, 201, 326–328, 338–340
SvRV_off 131
SvRV_on 131
SvSETMAGIC 228
SvSetSV 123, 201, 207
SvSTASH 144
SVt_IV 71, 75, 116
SVt_NULL 71, 74–76, 116
SVt_NV 71, 76, 116
SVt_PV 71, 116
SVt_PVAV 71, 116–117, 130,

135, 327
SVt_PVBM 116
SVt_PVCV 71, 116–117, 328
SVt_PVFM 116
352 PERL API INDEX

SVt_PVGV 71, 116
SVt_PVHV 71, 116–117, 130,

328
SVt_PVIO 116
SVt_PVIV 71, 116
SVt_PVLV 116
SVt_PVMG 71, 105, 116
SVt_PVNV 71, 111–112, 116
SVt_RV 71, 116
SvTAINT 119–120
SvTAINTED 112, 119–120
SvTAINTED_ON 119
SvTAINTED_on 112
SvTRUE 104, 110, 126, 129,

148, 258, 264–265, 271, 274,
295, 332

SvTYPE 75, 116–117, 130,
135, 327

svtype enum 331

SvUPGRADE 111–112
SvUTF8 155
SvUTF8_off 155
SvUTF8_on 121, 155
SvUV 167, 330, 332–335
TAINT 119
TAINT_NOT 119
to_utf8_fold 157
to_utf8_lower 157
to_utf8_title 157
to_utf8_upper 157
toLOWER 107, 161–162
TOPm1s 292
TOPn 292
TOPpx 292
TOPs 292, 295
toUPPER 107, 114, 161
tryAMAGICbin 291
utf8_length 156–157

utf8_to_bytes 157
uvchr_to_utf8 156–157
vREFCNT_inc 138, 141, 144
XPUSHs 160, 182, 203, 244,

261–262, 264, 292, 341
XS 227, 234
XS_RETURN_UNDEF 106,

113, 160
XS_VERSION_BOOTCHECK

228
XSprePUSH 227
XSRETURN 112, 114, 190,

227, 234, 346
XSRETURN_UNDEF 172,

224
XSRETURN_YES 228
Zero 154
PERL API INDEX 353

index
Symbols

#! 128
#define 21
#endif 210
#ifdef 210
#ifndef 270
#include 20, 31, 44, 210
#line 227
$! 41, 81, 111
$# 86
$#array 142
$@ 111, 258
$_ 265
$0 4
$DEBUG 25
$PERL5LIB 26
$VERSION 25, 28
%ENV 151
%INC 147
%SIG 81, 145
%VAL 216
... (elipsis) 174
... (ellipsis) 185, 243, 344
<> 102
@_ 86, 169
@ARGV 4
@EXPORT 26
@EXPORT_OK 26
@INC 24
__DIE__ handler 145

A

ActiveState 306
Albanowski, Kenneth 225
Apache 257, 265
API

perl 100
apidoc 320
Apocalypse 321
argument stack 169, 261, 289,

291, 308
arrays 132–144

implementation 85
packed 189
reference 187

autoconf 269
autoflush 63
autoloader 40

B

Backhaus-Naur Form 279
backtrace 312
BASEOP 285
Beattie, Malcolm 296
BEGIN block 141, 300
benchmarks 198
bitmask 72
bleadperl 305–306, 319–320
blib directory 34–35
bookmark 260
bootstrap 31

breakpoints 312–313
byacc 319

C

C
comments 5
function parameters 6
typedef 237

C arrays 51
as pointers 55
multidimensional 53, 192,

216
over running 52
strings 199

C library
asctime 236
assert 152
bsearch 202
calloc 64, 67
close 63
exit 5
fclose 63
fileno 166
fopen 63, 346
fprintf 63, 346
fread 271
free 64, 274
gmtime 170, 236, 244
gmtime_r 175
isprint 18
isspace 22
355

C library (continued)
malloc 64–65, 67, 150, 165,

262, 264, 271, 274–276
memcpy 65, 151
memmove 65, 152
memset 67
mktime 236
open 63
printf 2, 32–33, 36, 38, 52,

55, 65
qsort 202
read 63
realloc 64–65, 153
sinh 233, 252
sizeof 56, 62, 66–67, 187,

189, 199, 206, 262, 264
snprintf 271
sprintf 108, 123, 274
strcat 164, 226
strcpy 65, 164, 226
strftime 170
strlen 148, 164, 201, 226
time 174
timegm 170
write 63

C preprocessor 20, 219, 233
C structures 60

vs Perl hashes 61
C variable types 11
C++ 209, 239

constructor 213
header files 210
Makefile.PL 209
method overloading 214

callbacks 143, 202–208
deferred 206–207
embedding 259
immediate 203–207
multiple 207–208

CC 209
cdecl 57
ChangeLog 29
CHAR_BIT 13
CHECK block 299

check function 293
check routines 294–295
checksum 239
Christiansen, Tom 2
closure 10
CNF library 221–222
code block

implementation 96
codepoint 12
Cola 322
collisional hashing 88
compatibility 224
compiler 307, 322
configure 269
constant folding 294–295
constants 12

in XS 40
context 174, 314
context stack 288
context, void 9
continuation character 22
Conway, Damian 19, 321
CPAN 24, 26–27, 47, 230, 235,

238, 296
CPP macro 269
ctype.h 18

D

dangling else 18
DBM 150, 278
ddd 315
debugger 307–308, 310–315,

323
decompilation 299
defstash 94
design

C++ 224
Fortran 222
objects 223
perl interface 47
return values 166, 223
status return 224

diff 319
Digital Unix 216

DO_ARRAY_ELEM.
See XS keyword

dualvar 111

E

Emacs 18, 29, 258, 315
embed.pl 319
embedding 254

callbacks 259
catching errors 263
context 263
perl methods 264
when not to 255

END blocks 134
enum 331
execution order 289–290
Exegesis 321
exit handler 260
exit status 5
EXIT_FAILURE 22
EXIT_SUCCESS 22
exponent 14
extern 210

F

file descriptors 63
FILE* 63, 166
filehandles 63, 166
flag

ANON 97
CONST 98
IOK 78
IsUV 78
LOCKED 99
LVALUE 97
METHOD 99
OOK 80
PADBUSY 74
PADMY 74, 294
pIOK 78
POK 77
pPOK 77–78
SHAREKEYS 89
TEMP 294
356 INDEX

formats 108
Fortran 58, 63, 223

arrays 216
Makefile.PL 220
portability 221

Free Software Foundation 2
fundamental operations 285

G

g++ 209
g77 216, 220
GCC 2
gcc 34
gdb 310–316
get_mortalspace 200, 242, 344
gethostbyname 122
getppid 153
GIMP 254
Glazebrook, Karl 193, 218
globs 91
Gnome 47, 254
gnumeric 254
grammar 282

H

h2xs 29–31, 40, 42, 45, 170,
232

Harbison, Samuel 69
hashes

API 144–150
efficiency 90
implementation 87
number 88
reference 179
value 147

header files 3
HTTP 254, 265

I

I/O
buffered 62
descriptor 63

include files 3

inet_aton 122
Ingerson, Brian 238
Inline 238

arrays 243
CPAN 245
internals 239
return arguments 244
stack manipulation 243
strings 240

Inline API
Inline_Stack_Push 244
Inline_Stack_Reset 244
Inline_Stack_Vars 244

INT_MAX 12, 17
INT_MIN 12
interpolation 284

J

jako 322
Java 65, 118, 223, 239
javadoc 320
Jepson, Brian 223
JPL 223

K

Kernighan, Brian 1, 69
Keywords 284

L

lexical variables
implementation 95

limits.h 12
linked list 88
Linux 221
Lukka, Tuomas 193
lvalue 97, 136

M

macros 21–22
magic 81
make 27, 33, 35, 50, 68
Makefile.PL 27, 44, 47, 234,

246, 249

MakeMaker 28
CC 209
DEFINE 45, 47
INC 45, 47
LD 209
LIBS 45, 47
MODULE 44
NAME 45, 47, 209, 234
OBJECT 235
PACKAGE 44
PREREQ_PM 28, 45, 47,

245
TYPEMAPS 197
VERSION 234
VERSION_FROM 28, 45,

47, 209
WriteMakefile 28, 44–45, 47

makepatch 320
MANIFEST 28, 33
mantissa 14
McCamant, Stephen 296
memory

allocation 64
leak 64, 105, 175, 180
management 150, 165, 199
mortal 203, 242

methods 309
Microsoft Visual C++ 216
Microsoft Visual Studio 2
module

Apache 113
Apache::SubRequest 140
Apache::Table 160
Apache::Util 122
Astro::SLA 228, 230
AutoLoader 40, 232
B 114, 289
B::Bytecode 296
B::Concise 298
B::Debug 298, 307
B::Flags 299
B::Graph 307
B::Terse 296, 298, 307
C::DynaLib 251
C::Scan 232
INDEX 357

module (continued)
Carp 174
Config 27, 34, 167, 195, 257
CPAN 28
Data::Dumper 115–116,

128, 141, 148
DBI 103, 107, 124, 130
Devel::DProf 153
Devel::Leak 307
Devel::Peek 71, 73, 306
Devel::PPPort 225
Devel::Symdump 307
DynaLoader 133, 213, 266,

278
Exporter 25
ExtUtils::Constant 43, 108
ExtUtils::Embed 257, 266,

269
ExtUtils::F77 220
ExtUtils::MakeMaker 28,

197, 234
Fcntl 42
File 167
File::Glob 119
File::Spec 197
Imager 131
Inline 30, 238, 240, 245
Inline::Java 223
IO::File 147
IO::Handle 166
IO::Poll 120
IPC 118
IPC::SysV 118
JNI 118, 223
libnet 47
List::Util 73, 113
MIME::Base64 110
mod_perl 101–102, 125–

126, 129, 134, 147, 149–
150, 254, 257, 265

O 299
ODBM_File 150
Opcode 154
OS2::Process 153
Parse::RecDescent 238

PDL 195, 231, 247
PDL::CallExt 195, 252
PDL::Core::Dev 249
PDL::PP 247
PerlIO::Scalar 278
PGPLOT 218, 222, 230
POSIX 12, 40, 108, 145,

233, 329
Scalar::Util 111
SDBM_File 317
Socket 121
Storable 104, 136–137
Switch 19
Term::ReadLine::Gnu 166
Test 29
Test::More 29
Test::Simple 29
Text::Autoformat 265
Threads 138
Time::HiRes 158
Tk 110, 135, 145, 195, 202,

208
Tk::Substitute 143
Unicode::Normalize 106
UNIVERSAL 278
UNIVERSAL::isa 117
XML::Parser 132
XS::Typemap 230, 325

modules
pure perl 24
XS 30

mortal variable 108, 123, 180,
186, 326

multidimensional arrays. See C
arrays, multidimensional

MUTEX 138
mutt 268

N

namespace 25, 49, 94, 178, 195
neatsvpv 130
newATTRSUB 134
nm 217
NUL 58

null op 288
NULL. See pointer

O

object destruction 178
object file 3
op dispatch 312–313, 315
opcode 96
opcode.pl 293
ops 285
optimizer 286, 294–295
Oram, Andrew 50
Orwant, Jon 321
OS/2 153
overflow 13

P

packed arrays. See arrays, packed
padlist 95
Parrot 322
parse tree 281
parser 278
patching 317
PDL. See Perl Data Language
Pearson, Tim 218
peephole optimizer 294
Perl 6 304, 321
perl API. See appendix C
Perl compiler 278, 295–296,

303, 307, 322–323
Perl Data Language 192, 223

graphics 223
introduction 193
Makefile.PL 197
perldl shell 193, 250
piddle 193
sumover 251
threading 247
typemap 195
XS code 195
See also modules, PDL

Perl function
bless 132
close 63
358 INDEX

Perl function (continued)
croak 41, 174
delete 141
eval 42, 105, 263, 265
exists 141
fileno 63, 166
glob 119
goto 19
keys 90
last 18
local 102
open 63, 102, 166
ord 12
pack 62, 188, 191
package 24
print 6
printf 63
redo 19
ref 117
require 3
shift 139
sysopen 63
sysread 63
syswrite 63
time 170, 237
undef 102, 224
unpack 188, 191, 341–342
wantarray 160

Perl Journal,The 223
perl5-porters 305, 317, 321,

323
perldl shell. See Perl Data Lan-

guage
PerlIO 167, 278, 347
PGPLOT library 218
piddle. See Perl Data Language,

piddle
PL_op 289, 295
PMC 322
pointer 53–56

function 203
NULL 59

POSIX 4, 170
strftime 172

PP code. See push pop code

ppport.h 225
pragma

base 26, 213
blib 35
overload 292
re 307
strict 3, 8, 26, 294
vars 213

printenv 60
pumpkin 305–306
pumpking 306, 318, 320–321,

323
push pop code 290
Python 239

Q

quad-state options 274

R

readline library 166
README 27
recursion 95
reduction 280
reentrant 175
reference

code 259
symbolic 259

reference counting 71, 180,
326

references 129
Regexp engine 278
return values 6, 36
RFCs 321
Ritchie, Dennis 1, 69
rsync 306, 319

S

Salzenburg, Chip 306, 321
scheme 322
Schwartz, Randal 2
scratchpads 293
sfio 278
shared library 265

shebang. See #!
SHRT_MAX 13
SHRT_MIN 13
sizeof 56, 66–67
Soeller, Christian 193
Solaris 209, 221
SP 260
stack

manipulation 291, 293
pointer 204, 292, 314

Starlink 221
stash 94
statement handle 107
stdio.h 3, 226
stdlib.h 6, 22, 64
Steele, Guy 69
strict. See pragma
string arrays. See C arrays, strings
string.h 164, 226
Sublexing 284
subroutines

exporting 25, 49
Sugalski, Dan 322
Sun Fortran 216
sv.h 331
SWIG 30, 233

-shadow 238
structures 236

symbol table 94
symbol table hash 94

T

tainting 112, 119
Talbott, Steve 50
targets 292
Tcl 135
terminal symbols 280
testing 28, 35–36, 142, 213,

273, 340
tests 320
thread safety 25, 175
tie 81
time.h 170
tokenizer 278, 282
INDEX 359

tracing execution 309
typecast 15–16
typedef 16, 61, 168, 327
typemap 30, 167, 347

Inline 243
SWIG 236
T_ARRAY 184, 191, 203,

244, 344
T_AVREF 327
T_BOOL 332
T_CHAR 167, 334
T_CVREF 328
T_DOUBLE 167, 336
T_ENUM 331
T_FLOAT 335
T_HVREF 180, 327
T_INOUT 347
T_INT 331
T_IV 167, 330
T_LONG 333
T_NV 336
T_OPAQUE 342
T_OPAQUEPTR 175, 191,

340
T_PACKED 192, 343
T_PACKEDARRAY 192,

200, 343
T_PDL 195
T_PTR 171, 173, 337
T_PTROBJ 176, 213, 339
T_PTRREF 173, 338
T_PV 167, 189, 337
T_REF_IV_PTR 340
T_SHORT 332
T_STDIO 346
T_SV 325
T_SVREF 326
T_SYSRET 329
T_U_CHAR 167, 335
T_U_INT 332
T_U_LONG 334
T_U_SHORT 333
T_UV 167, 330

U

UINT_MAX 12
Unicode 155, 277
UTF8 155

V

variable aliasing 93
variable types 116

SvIV 80
SvNULL 74
SvNV 80
SvOOK 80
SvPV 76
SvPVGV 91
SvPVIV 78
SvPVMG 81
SvPVNV 79
SvRV 76

variables
argc 4
argv 4, 256
automatic 7
char 12
double 15
environ 60
envp 4
errno 41, 81, 329
float 14
glob 42
global 8, 25
I16 15
I32 15
I8 15
implementation 70
int 11
IV 16
lexical 7, 25
long 14
NV 16
scope 8
short 13
static 9
STRLEN 164

UV 16
void 15

vim 254, 258
VMS 319
Vromans, Johan 320

W

Wall, Larry 223, 321
WriteMakefile. See MakeMaker

X

xchat 254
XPM library 44, 49
XS

file format 31
internals 230
introduction 30

XS keyword
ALIAS 49
array 191
BOOT 140, 195
CLEANUP 165, 185, 190,

226, 241
CODE 38, 111, 113, 146,

164, 172, 187, 190–191,
226

DO_ARRAY_ELEM 186,
344–345

MODULE 32–33, 49, 140,
176, 204, 212, 226, 233

NO_INIT 40, 164
OUTLIST 48
OUTPUT 38–39, 164, 171–

172, 185, 187, 190–191,
226

PACKAGE 32–33, 49, 140,
204, 212, 226, 233

PPCODE 118, 182, 199
PREFIX 49
PREINIT 165, 172, 187,

190–191, 199, 226, 341
PROTOTYPE 34, 111,

113
360 INDEX

XS keyword (continued)
PROTOTYPES 34
REQUIRE 48

XS variable
items 110, 174, 186, 215
ix 50

RETVAL 38, 146, 164,
172–173, 185, 187,
191, 227

THIS 215
xsubpp 30, 34, 38, 48, 164, 167,

191, 212, 226, 231, 250

Y

Yacc 278
INDEX 361

	contents
	preface
	acknowledgments
	about this book
	author online
	about the cover illustration
	C for Perl programmers
	1.1 Hello, world
	1.2 The C compiler
	1.3 Header files
	1.4 The main function
	1.5 Variables and functions
	1.5.1 Function parameters
	1.5.2 Automatic variables
	1.5.3 Global variables
	1.5.4 Static variables

	1.6 Data types
	1.6.1 C types
	1.6.2 Types defined in Perl

	1.7 Casting
	1.8 Control constructs
	1.8.1 Statements and blocks
	1.8.2 The break and continue statements
	1.8.3 The switch statement

	1.9 Macros and the C preprocessor
	1.10 Library functions
	1.11 Summary

	Extending Perl: an introduction
	2.1 Perl modules
	2.1.1 Module distributions

	2.2 Interfacing to another language: C from XS
	2.2.1 The Perl module
	2.2.2 The XS file
	2.2.3 Example: “Hello, world”
	2.2.4 Return values
	2.2.5 Arguments and return values

	2.3 XS and C: taking things further
	2.3.1 Modifying input variables
	2.3.2 Output arguments
	2.3.3 Compiler constants

	2.4 What about Makefile.PL?
	2.4.1 It really is a Perl program

	2.5 Interface design: part 1
	2.5.1 Status and multiple return arguments
	2.5.2 Don’t supply what is already known
	2.5.3 Don’t export everything
	2.5.4 Use namespaces
	2.5.5 Use double precision

	2.6 Further reading
	2.7 Summary

	Advanced C
	3.1 Arrays
	3.2 Pointers
	3.2.1 Pointers and arrays
	3.2.2 Pointers to functions

	3.3 Strings
	3.3.1 Arrays of strings

	3.4 Structures
	3.5 File I/O
	3.6 Memory management
	3.6.1 Allocating memory at runtime
	3.6.2 Altering the size of memory
	3.6.3 Manipulating memory
	3.6.4 Memory manipulation and Perl

	3.7 C Traps for the Perl programmer
	3.8 Further reading
	3.9 Summary

	Perl’s variable types
	4.1 General concepts
	4.1.1 Reference counting
	4.1.2 Looking inside: Devel::Peek
	4.1.3 The flag system

	4.2 Scalar variables
	4.2.1 The SvNULL type
	4.2.2 SvRV: references
	4.2.3 SvPV: string values
	4.2.4 SvPVIV: integers
	4.2.5 SvPVNV: floating-point numbers
	4.2.6 SvIV and SvNV
	4.2.7 SvOOK: offset strings

	4.3 Magic variables: SvPVMG
	4.4 Array variables
	4.5 Hashes
	4.6 Globs
	4.7 Namespaces and stashes
	4.8 Lexical “my” variables
	4.9 Code blocks
	4.9.1 Important CV flags

	4.10 Further reading
	4.11 Summary

	The Perl 5 API
	5.1 Sample entry
	5.2 SV functions
	5.2.1 Special SVs
	5.2.2 Creating SVs
	5.2.3 Accessing data
	5.2.4 Manipulating data
	5.2.5 String functions
	5.2.6 References

	5.3 AV functions
	5.3.1 Creation and destruction
	5.3.2 Manipulating elements
	5.3.3 Testing and changing array size

	5.4 HV functions
	5.4.1 Creation and destruction
	5.4.2 Manipulating elements

	5.5 Miscellaneous functions
	5.5.1 Memory management
	5.5.2 Unicode data handling
	5.5.3 Everything else

	5.6 Summary

	Advanced XS programming
	6.1 Pointers and things
	6.2 Filehandles
	6.3 Typemaps
	6.4 The argument stack
	6.5 C structures
	6.5.1 C structures as black boxes
	6.5.2 C structures as objects
	6.5.3 C structures as hashes

	6.6 Arrays
	6.6.1 Passing numeric arrays from Perl to C
	6.6.2 Passing numeric arrays from C to Perl
	6.6.3 The Perl Data Language
	6.6.4 Benchmarks
	6.6.5 Character strings

	6.7 Callbacks
	6.7.1 Immediate callbacks
	6.7.2 Deferred callbacks
	6.7.3 Multiple callbacks

	6.8 Other languages
	6.8.1 Linking Perl to C++
	6.8.2 Linking Perl to Fortran
	6.8.3 Linking Perl to Java

	6.9 Interface design: part 2
	6.10 Older Perls
	6.11 What’s really going on?
	6.11.1 What does xsubpp generate?

	6.12 Further reading
	6.13 Summary

	Alternatives to XS
	7.1 The h2xs program
	7.2 SWIG
	7.2.1 Data structures

	7.3 The Inline module
	7.3.1 What is going on?
	7.3.2 Additional Inline examples
	7.3.3 Inline and CPAN
	7.3.4 Inline module summary

	7.4 The PDL::PP module
	7.4.1 The .pd file
	7.4.2 The Makefile.PL file
	7.4.3 Pure PDL

	7.5 Earlier alternatives
	7.6 Further reading
	7.7 Summary

	Embedding Perl in C
	8.1 When to embed
	8.2 When not to embed
	8.3 Things to think about
	8.4 “Hello C” from Perl
	8.4.1 Compiling embedded programs

	8.5 Passing data
	8.6 Calling Perl routines
	8.6.1 Stack manipulation
	8.6.2 Context
	8.6.3 Trapping errors with eval
	8.6.4 Calling Perl methods in C
	8.6.5 Calling Perl statements

	8.7 Using C in Perl in C
	8.8 Embedding wisdom
	8.9 Summary

	Embedding case study
	9.1 Goals
	9.2 Preparing the ground
	9.3 Configuration options
	9.4 Testing options
	9.4.1 Binary options
	9.4.2 Quad-state options
	9.4.3 String options

	9.5 Summary

	Introduction to Perl internals
	10.1 The source tree
	10.1.1 The Perl library
	10.1.2 The XS library
	10.1.3 The I/O subsystem
	10.1.4 The Regexp engine
	10.1.5 The parser and tokenizer
	10.1.6 Variable handling
	10.1.7 Runtime execution

	10.2 The parser
	10.2.1 BNF and parsing
	10.2.2 Parse actions and token values
	10.2.3 Parsing some Perl

	10.3 The tokenizer
	10.3.1 Basic tokenizing
	10.3.2 Sublexing
	10.3.3 Tokenizer summary

	10.4 Op code trees
	10.4.1 The basic op
	10.4.2 The different operations
	10.4.3 Different flavors of ops
	10.4.4 Tying it all together
	10.4.5 PP Code
	10.4.6 The opcode table and opcodes.pl
	10.4.7 Scratchpads and targets
	10.4.8 The optimizer
	10.4.9 Op code trees summary

	10.5 Execution
	10.6 The Perl compiler
	10.6.1 What is the Perl compiler?
	10.6.2 B:: modules
	10.6.3 What B and O provide
	10.6.4 Using B for simple tasks

	10.7 Further reading
	10.8 Summary

	Hacking Perl
	11.1 The development process
	11.1.1 Perl versioning
	11.1.2 The development tracks
	11.1.3 The perl5-porters mailing list
	11.1.4 Pumpkins and pumpkings
	11.1.5 The Perl repository

	11.2 Debugging aids
	11.2.1 Debugging modules
	11.2.2 The built-in debugger: perl -D
	11.2.3 Debugging functions
	11.2.4 External debuggers

	11.3 Creating a patch
	11.3.1 How to solve problems
	11.3.2 Autogenerated files
	11.3.3 The patch itself
	11.3.4 Documentation
	11.3.5 Testing
	11.3.6 Submitting your patch

	11.4 Perl 6: the future of Perl
	11.4.1 A history
	11.4.2 Design and implementation
	11.4.3 What happens next
	11.4.4 The future for Perl 5

	11.5 Further reading
	11.6 Summary

	Appendix A: Perl’s typemaps
	A.1 Quick refresher
	A.2 The typemaps
	A.2.1 T_SV
	A.2.2 T_SVREF
	A.2.3 T_AVREF
	A.2.4 T_HVREF
	A.2.5 T_CVREF
	A.2.6 T_SYSRET
	A.2.7 T_UV
	A.2.8 T_IV
	A.2.9 T_INT
	A.2.10 T_ENUM
	A.2.11 T_BOOL
	A.2.12 T_U_INT
	A.2.13 T_SHORT
	A.2.14 T_U_SHORT
	A.2.15 T_LONG
	A.2.16 T_U_LONG
	A.2.17 T_CHAR
	A.2.18 T_U_CHAR
	A.2.19 T_FLOAT
	A.2.20 T_NV
	A.2.21 T_DOUBLE
	A.2.22 T_PV
	A.2.23 T_PTR
	A.2.24 T_PTRREF
	A.2.25 T_PTROBJ
	A.2.26 T_REF_IV_PTR
	A.2.27 T_OPAQUEPTR
	A.2.28 T_OPAQUE
	A.2.29 T_PACKED
	A.2.30 T_PACKEDARRAY
	A.2.31 T_ARRAY
	A.2.32 T_STDIO
	A.2.33 T_INOUT

	Appendix B: Further reading
	Perl
	C

	Appendix C: Perl API index
	index

