

Learning Perl

SIXTH EDITION

Learning Perl

Randal L. Schwartz, brian d foy, and Tom Phoenix

O’REILLY"

Beijing - Cambridge - Farnham - KéIn - Sebastopol - Tokyo

Learning Perl, Sixth Edition
by Randal L. Schwartz, brian d foy, and Tom Phoenix

Copyright © 2011 Randal L. Schwartz, brian d foy, and Tom Phoenix. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent Indexer: John Bickelhaupt
Production Editor: Kristen Borg Cover Designer: Karen Montgomery
Copyeditor: Audrey Doyle Interior Designer: David Futato
Proofreader: Kiel Van Horn lllustrator: Robert Romano
Printing History:

November 1993: First Edition.

July 1997: Second Edition.

July 2001: Third Edition.

July 2005: Fourth Edition.

July 2008: Fifth Edition.

June 2011: Sixth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning Perl, the image of a llama, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30358-7
[LSI]
1308077187

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface ..ot xiii
1. Introductionoviiiiiii 1
Questions and Answers 1

Is This the Right Book for You? 1

Why Are There So Many Footnotes? 2

What About the Exercises and Their Answers? 3

What Do Those Numbers Mean at the Start of the Exercise? 4

What If I'm a Perl Course Instructor? 4

What Does “Perl” Stand For? 4
Why Did Larry Create Perl? 5

Why Didn’t Larry Just Use Some Other Language? 5

Is Perl Easy or Hard? 6

How Did Perl Get to Be So Popular? 7
What’s Happening with Perl Now? 7
What’s Perl Really Good For? 8

What Is Perl Not Good For? 8

How Can I Get Perl? 9
What Is CPAN? 10

How Can I Get Support for Perl? 10

Are There Any Other Kinds of Support? 10

What If I Find a Bug in Perl? 12

How Do I Make a Perl Program? 12

A Simple Program 13
What'’s Inside That Program? 15

How Do I Compile My Perl Program? 16

A Whirlwind Tour of Perl 17
Exercises 18

2. SaalarDataooiiiiiiiiii 21
Numbers 21

All Numbers Have the Same Format Internally
Floating-Point Literals
Integer Literals
Nondecimal Integer Literals
Numeric Operators
Strings
Single-Quoted String Literals
Double-Quoted String Literals
String Operators
Automatic Conversion Between Numbers and Strings
Perl’s Built-in Warnings
Scalar Variables
Choosing Good Variable Names
Scalar Assignment
Binary Assignment Operators
Output with print
Interpolation of Scalar Variables into Strings
Creating Characters by Code Point
Operator Precedence and Associativity
Comparison Operators
The if Control Structure
Boolean Values
Getting User Input
The chomp Operator
The while Control Structure
The undef Value
The defined Function
Exercises

Listsand Arraysoouveviiinieieeneeneennennsnnsnnsnnsens

Accessing Elements of an Array
Special Array Indices
List Literals
The qw Shortcut
List Assignment
The pop and push Operators
The shift and unshift Operators
The splice Operator
Interpolating Arrays into Strings
The foreach Control Structure
Perl’s Favorite Default: $_
The reverse Operator
The sort Operator

22
22
22
23
23
24
25
25
26
27
28
29
30
31
31
32
32
34
34
36
37
38
39
39
40
41
42
42

43
44
45
46
46
48
49
50
50
51
53
54
54
54

vi | Table of Contents

The each Operator 55

Scalar and List Context 55
Using List-Producing Expressions in Scalar Context 57
Using Scalar-Producing Expressions in List Context 58
Forcing Scalar Context 59

<STDIN> in List Context 59

Exercises 60

SUbroUtings ...ttt 63

Defining a Subroutine 63

Invoking a Subroutine 64

Return Values 64

Arguments 66

Private Variables in Subroutines 68

Variable-Length Parameter Lists 69
A Better &max Routine 69
Empty Parameter Lists 70

Notes on Lexical (my) Variables 71

The use strict Pragma 72

The return Operator 74
Omitting the Ampersand 74

Non-Scalar Return Values 76

Persistent, Private Variables 76

Exercises 78

Inputand Qutputovniniii i i i it it 81

Input from Standard Input 81

Input from the Diamond Operator 83

The Invocation Arguments 85

Output to Standard Output 86

Formatted Output with printf 89
Arrays and printf 90

Filehandles 91

Opening a Filehandle 93
Binmoding Filehandles 95
Bad Filehandles 96
Closing a Filehandle 96

Fatal Errors with die 97
Warning Messages with warn 99
Automatically die-ing 99

Using Filehandles 100
Changing the Default Output Filehandle 100

Reopening a Standard Filehandle 101

Table of Contents | vii

Output with say 102

Filehandles in a Scalar 103
Exercises 104
6. Hashesooiiiiiiii 107
What Is a Hash? 107
Why Use a Hash? 109
Hash Element Access 110
The Hash As a Whole 112
Hash Assignment 113
The Big Arrow 114
Hash Functions 115
The keys and values Functions 115
The each Function 116
Typical Use of a Hash 118
The exists Function 118
The delete Function 118
Hash Element Interpolation 119
The %ENV hash 119
Exercises 120
7. Inthe World of Regular Expressionscccoviiiiiiiiiiiieennennnnn. 121
What Are Regular Expressions? 121
Using Simple Patterns 122
Unicode Properties 123
About Metacharacters 123
Simple Quantifiers 124
Grouping in Patterns 125
Alternatives 127
Character Classes 128
Character Class Shortcuts 129
Negating the Shortcuts 131
Exercises 131
8. Matching with Regular Expressionsc.cooviiiiiiiiiiiiiinnennnns 133
Matches with m// 133
Match Modifiers 134
Case-Insensitive Matching with /i 134
Matching Any Character with /s 134
Adding Whitespace with /x 135
Combining Option Modifiers 135
Choosing a Character Interpretation 136
Other Options 138

viii | Table of Contents

10.

Anchors
Word Anchors
The Binding Operator =~
Interpolating into Patterns
The Match Variables
The Persistence of Captures
Noncapturing Parentheses
Named Captures
The Automatic Match Variables
General Quantifiers
Precedence
Examples of Precedence
And There’s More
A Pattern Test Program
Exercises

Processing Text with Reqular Expressions

Substitutions with s///
Global Replacements with /g
Different Delimiters
Substitution Modifiers
The Binding Operator
Nondestructive Substitutions
Case Shifting

The split Operator

The join Function

m// in List Context

More Powerful Regular Expressions
Nongreedy Quantifiers
Matching Multiple-Line Text
Updating Many Files
In-Place Editing from the Command Line

Exercises

More Control Structurescoovvrivinnennennnn.

The unless Control Structure
The else Clause with unless
The until Control Structure
Expression Modifiers
The Naked Block Control Structure
The elsif Clause
Autoincrement and Autodecrement
The Value of Autoincrement

138
140
141
142
143
144
145
146
147
149
150
151
152
152
153

.................... 155

155
156
157
157
157
157
158
159
160
161
161
162
164
164
166
168

.................... 169

169
170
170
171
172
173
174
175

Table of Contents | ix

The for Control Structure 176

The Secret Connection Between foreach and for 178
Loop Controls 178
The last Operator 179
The next Operator 179
The redo Operator 181
Labeled Blocks 182
The Conditional Operator ?: 182
Logical Operators 184
The Value of a Short Circuit Operator 184
The defined-or Operator 185
Control Structures Using Partial-Evaluation Operators 186
Exercises 188
1. PerlModulescoooiiiiiiiii 189
Finding Modules 189
Installing Modules 190
Using Your Own Directories 191
Using Simple Modules 193
The File::Basename Module 194
Using Only Some Functions from a Module 195
The File::Spec Module 196
Path::Class 197
CGLpm 198
Databases and DBI 199
Dates and Times 200
Exercises 201
12, FileTests ouvunneeeeiiiiii i i 203
File Test Operators 203
Testing Several Attributes of the Same File 207
Stacked File Test Operators 208
The stat and Istat Functions 210
The localtime Function 211
Bitwise Operators 212
Using Bitstrings 213
Exercises 214
13. Directory Operationsovvviiiiniiieeneenseneennrnnennsnnsns 215
Moving Around the Directory Tree 215
Globbing 216
An Alternate Syntax for Globbing 217
Directory Handles 218

x | Table of Contents

14.

15.

16.

Recursive Directory Listing
Manipulating Files and Directories
Removing Files

Renaming Files

Links and Files

Making and Removing Directories
Modifying Permissions

Changing Ownership

Changing Timestamps

Exercises

StringsandSortingcoiiiiiiiiiiiiena,

Finding a Substring with index
Manipulating a Substring with substr
Formatting Data with sprintf

Using sprintf with “Money Numbers”

Interpreting Non-Decimal Numerals
Advanced Sorting

Sorting a Hash by Value

Sorting by Multiple Keys
Exercises

Smart Matching and given-when

The Smart Match Operator
Smart Match Precedence
The given Statement

Dumb Matching
Using when with Many Items
Exercises

Process Managementc.coeviiiiiiininn.,

The system Function
Avoiding the Shell
The Environment Variables
The exec Function
Using Backquotes to Capture Output
Using Backquotes in a List Context
External Processes with IPC::System::Simple
Processes as Filehandles
Getting Down and Dirty with Fork
Sending and Receiving Signals
Exercises

220
221
221
223
224
229
230
231
231
232

.................... 235

235
236
238
238
240
240
244
245
246

.................... 247

247
250
251
254
256
257

.................... 259

259
261
263
263
264
267
268
269
271
272
274

Table of Contents | xi

17. Some Advanced Perl Techniquescccoviiiiiiiiiiiiiiiiinennenns
Slices
Array Slice
Hash Slice
Trapping Errors
Using eval
More Advanced Error Handling
autodie
Picking Items from a List with grep
Transforming Items from a List with map
Fancier List Utilities
Exercises

A, EXOICISE ANSWELS .+t v tvvvteeeneeenneeenneennseenneennssonneennssonnoes
B. Beyondthellamaccouiiuiiniiniiiiiiiiiiiiiiiiiiiiiiienianes

G AUNICOAe PIIMEY o vvtt vttt ittt ittt ieieeneeneennennennenneans

277
279
281
282
282
286
288
289
290
291
293

xii | Table of Contents

Preface

Welcome to the sixth edition of Learning Perl, updated for Perl 5.14 and its latest
features. This book is still good even if you are still using Perl 5.8 (although, it’s been
a long time since it was released; have you thought about upgrading?).

If you’re looking for the best way to spend your first 30 to 45 hours with the Perl
programming language, you’ve found it. In the pages that follow, you’ll find a carefully
paced introduction to the language that is the workhorse of the Internet, as well as the
language of choice for system administrators, web hackers, and casual programmers
around the world.

We can’t give you all of Perl in just a few hours. The books that promise that are
probably fibbing a bit. Instead, we’ve carefully selected a useful subset of Perl for you
to learn, good for programs from one to 128 lines long, which end up being about 90%
of the programs in use out there. And when you’re ready to go on, you can get Inter-
mediate Perl, which picks up where this book leaves off. We’ve also included a number
of pointers for further education.

Each chapter is small enough so you can read it in an hour or two. Each chapter ends
with a series of exercises to help you practice what you’ve just learned, with the answers
in Appendix A for your reference. Thus, this book is ideally suited for a classroom
“Introduction to Perl” course. We know this directly because the material for this book
was lifted almost word-for-word from our flagship “Learning Perl” course, delivered
to thousands of students around the world. However, we’ve designed the book for self-
study as well.

Perl lives as the “toolbox for Unix,” but you don’t have to be a Unix guru, or even a
Unix user, to read this book. Unless otherwise noted, everything we’re saying applies
equally well to Windows ActivePerl from ActiveState and pretty much every other
modern implementation of Perl.

Although you don’t need to know a single thing about Perl to begin reading this book,
we recommend that you already have familiarity with basic programming concepts
such as variables, loops, subroutines, and arrays, and the all-important “editing a
source code file with your favorite text editor.” We don’t spend any time trying to
explain those concepts. Although we’re pleased that we’ve had many reports of people

Xiii

http://oreilly.com/catalog/9780596102067/
http://oreilly.com/catalog/9780596102067/

successfully picking up Learning Perl and grasping Perl as their first programming lan-
guage, of course we can’t promise the same results for everyone.

Typographical Conventions

The following font conventions are used in this book:

Constant width
is used for method names, function names, variables, and attributes. It is also used
for code examples.

Constant width bold
is used to indicate user input.

Constant width italic
is used to indicate a replaceable item in code (e.g., filename, where you are sup-
posed to substitute an actual filename).

Italic
is used for filenames, URLs, hostnames, commands in text, important words on
first mention, and emphasis.

Footnotes
are used to attach parenthetical notes that you should not read on your first (or
perhaps second or third) reading of this book. Sometimes lies are spoken to simplify
the presentation, and the footnotes restore the lie to truth. Often the material in

the footnote will be advanced material not even mentioned anywhere else in the
book.

(2]
at the start of an exercise’s text represents our (very rough) estimate of how many
minutes you can expect to spend on that particular exercise.

Code Examples

This book is here to help you get your job done. You are invited to copy the code in
the book and adapt it for your own needs. Rather than copying by hand, however, we
encourage you to download the code from http://www.learning-perl.com.

In general, you may use the code in this book in your programs and documentation.
You do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM of ex-
amples from O’Reilly books does require permission. Answering a question by citing
this book and quoting example code does not require permission. Incorporating a sig-
nificant amount of example code from this book into your product’s documentation
does require permission.

xiv | Preface

http://www.learning-perl.com

We appreciate, but do not require, attribution. An attribution usually includes the title,
authors, publisher, and ISBN. For example: “Learning Perl, 6th edition, by Randal L.
Schwartz, brian d foy, and Tom Phoenix (O’Reilly). Copyright 2011 Randal L.
Schwartz, brian d foy, and Tom Phoenix, 978-1-449-30358-7.” If you feel your use of
code examples falls outside fair use or the permission given above, feel free to contact
us at permissions@oreilly.com

Safari® Books Online

Saf Safari Books Online is an on-demand digital library that lets you easily
ararl ce.rch over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

We have tested and verified all the information in this book to the best of our abilities,
but you may find that features have changed or that we have let errors slip through the
production of the book. Please let us know of any errors that you find, as well as sug-
gestions for future editions, by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for the book, where we’ll list examples, errata, and any additional
information. It also offers a downloadable set of text files (and a couple of Perl pro-
grams) that are useful, but not required, when doing some of the exercises. You can
access this page at:

http://www.learning-perl.com

Preface | xv

http://my.safaribooksonline.com/?portal=oreilly
http://www.learning-perl.com

or go to the O’Reilly page at:
http://oreilly.com/catalog/0636920018452/

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

History of This Book

For the curious, here’s how Randal tells the story of how this book came about:

After [had finished the first Programming perl book with Larry Wall (in 1991), I was
approached by Taos Mountain Software in Silicon Valley to produce a training course.
This included having me deliver the first dozen or so courses and train their staff to
continue offering the course. I wrote the course for them” and delivered it for them as
promised.

On the third or fourth delivery of that course (in late 1991), someone came up to me
and said, “You know, I really like Programming perl, but the way the material is pre-
sented in this course is so much easier to follow—you oughta write a book like this
course.” It sounded like an opportunity to me, so I started thinking about it.

I wrote to Tim O’Reilly with a proposal based on an outline that was similar to the
course I was presenting for Taos—although I had rearranged and modified a few of the
chapters based on observations in the classroom. I think that was my fastest proposal
acceptance in history—I got a message from Tim within fifteen minutes, saying “We’ve
been waiting for you to pitch a second book—Programming perl is selling like gang-
busters.” That started the effort over the next 18 months to finish the first edition of
Learning Perl.

During that time, I was starting to see an opportunity to teach Perl classes outside
Silicon Valley,T so I created a class based on the text I was writing for Learning Perl. 1
gave a dozen classes for various clients (including my primary contractor, Intel Oregon),
and used the feedback to fine-tune the book draft even further.

* In the contract, I retained the rights to the exercises, hoping someday to reuse them in some other way, like
in the magazine columns I was writing at the time. The exercises are the only things that leapt from the Taos
course to the book.

T My Taos contract had a no-compete clause, so I had to stay out of Silicon Valley with any similar courses,
which I respected for many years.

xvi | Preface

http://oreilly.com/catalog/0636920018452/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

The first edition hit the streets on the first day of November 1993,% and became a
smashing success, frequently even outpacing Programming perl book sales.

The back-cover jacket of the first book said “written by a leading Perl trainer.” Well,
that became a self-fulfilling prophecy. Within a few months, I was starting to get email
from all over the United States asking me to teach at their site. In the following seven
years, my company became the leading worldwide on-site Perl training company, and
I had personally racked up (literally) a million frequent-flier miles. It didn’t hurt that
the Web started taking off about then, and the webmasters and webmistresses picked
Perl as the language of choice for content management, interaction through CGI, and
maintenance.

For two years, I worked closely with Tom Phoenix in his role as lead trainer and content
manager for Stonehenge, giving him charter to experiment with the “Llama” course by
moving things around and breaking things up. When we had come up with what we
thought was the best major revision of the course, I contacted O’Reilly and said, “It’s
time for a new book!” And that became the third edition.

Two years after writing the third edition of the Llama, Tom and I decided it was time
to push our follow-on “advanced” course out into the world as a book, for people
writing programs that are “100 to 10,000 lines of code.” And together we created the
first Alpaca book, released in 2003.

But fellow instructor brian d foy was just getting back from the conflict in the Gulf, and
had noticed that we could use some rewriting in both books, because our courseware
still needed to track the changing needs of the typical student. So, he pitched the idea
to O’Reilly to take on rewriting both the Llama and the Alpaca one final time before
Perl 6 (we hope). This edition of the Llama reflects those changes. brian has really been
the lead writer here, working with my occasional guidance, and has done a brilliant job
of the usual “herding cats” that a multiple-writer team generally feels like.

On December 18, 2007, the Perl 5 Porters released Perl 5.10, a significant new version
of Perl with several new features. The previous version, 5.8, had focused on the un-
derpinnings of Perl and its Unicode support. The latest version, starting from the stable
5.8 foundation, was able to add completely new features, some of which it borrowed
from the development of Perl 6 (not yet released). Some of these features, such as named
captures in regular expressions, are much better than the old ways of doing things, thus
perfect for Perl beginners. We hadn’t thought about a fifth edition of this book, but
Perl 5.10 was so much better that we couldn’t resist.

Since then, Perl has been under constant improvement and is keeping a regular release
cycle. We didn’t have a chance to update this book for Perl 5.12 because development
proceeded too quickly. We’re pleased to offer this update for Perl 5.14, and are amazed
that there’s now a sixth edition.

1 I remember that date very well, because it was also the day I was arrested at my home for computer-related-
activities around my Intel contract, a series of felony charges for which I was later convicted.

Preface | xvii

Changes from the Previous Edition

The text is updated for the latest version, Perl 5.14, and some of the code only works
with that version. We note in the text when we are talking about a Perl 5.14 feature,
and we mark those code sections with a special use statement that ensures you’re using
the right version:

use 5.014; # this script requires Perl 5.14 or greater

If youdon’tsee thatuse 5.014 in a code example (or a similar statement with a different
version), it should work all the way back to Perl 5.8. To see which version of Perl you
have, try the -v command-line switch:

$ perl -v

Here’s some of the new features from Perl 5.14 that we cover, and where appropriate,
we still show you the old ways of doing the same thing;:

* Weinclude Unicode examples and features where appropriate. If you haven’t star-
ted playing with Unicode, we include a primer in Appendix C. You have to bite
the bullet sometime, so it might as well be now. You’ll see Unicode throughout
the book, most notably in the chapters on Scalars (Chapter 2), Input/Output
(Chapter 5), and Sorting (Chapter 14).

* There is more information in the regular expression chapters, covering the new
features from Perl 5.14 to deal with Unicode case-folding. The regular expression
operators have new /a, /u, and /1 switches. We now cover matching by Unicode
properties with the \p{} and \P{} regular expression features.

* Perl 5.14 adds a nondestructive substitution operator (Chapter 9), which turns out
to be really handy.

* Smart matching and given-when has mutated a bit since their introduction in Perl
5.10, so we update Chapter 15 to cover the new rules.

* We updated and expanded Perl Modules (Chapter 11) to include the latest news,
including the zero-conf cpanm tool. We add some more module examples as well.

* Some of the items previously in Appendix B, the advanced-but-not-demonstrated
features, move into the main text. Notably, that includes the fat arrow => moving
into Hashes (Chapter 6) and splice moving into Lists and Arrays (Chapter 3).

Acknowledgments

From Randal

[want to thank the Stonehenge trainers past and present (Joseph Hall, Tom Phoenix,
Chip Salzenberg, brian d foy, and Tad McClellan) for their willingness to go out and
teach in front of classrooms week after week and to come back with their notes about

xviii | Preface

what’s working (and what’s not), so we could fine-tune the material for this book. I
especially want to single out my co-author and business associate, Tom Phoenix, for
having spent many, many hours working to improve Stonehenge’s Llama course and
to provide the wonderful core text for most of this book. And brian d foy for being the
lead writer beginning with the fourth edition, and taking that eternal to-do item out of
my inbox so that it would finally happen.

[also want to thank everyone at O’Reilly, especially our very patient editor and overseer
for previous editions, Allison Randal (no relation, but she has a nicely spelled last
name), current editor Simon St.Laurent, and Tim O’Reilly himself for taking a chance
on me in the first place with the Camel and Llama books.

[am also absolutely indebted to the thousands of people who have purchased the past
editions of the Llama so that I could use the money to stay “off the streets and out of
jail,” and to those students in my classrooms who have trained me to be a better trainer,
and to the stunning array of Fortune 1000 clients who have purchased our classes in
the past and will continue to do so into the future.

As always, a special thanks to Lyle and Jack, for teaching me nearly everything I know
about writing. I won’t ever forget you guys.

From Tom

I’ve got to echo Randal’s thanks to everyone at O’Reilly. For the third edition of this
book, Linda Mui was our editor, and I still thank her, for her patience in pointing out
which jokes and footnotes were most excessive, while pointing out that she is in no
way to blame for the ones that remain. Both she and Randal have guided me through
the process of writing, and I am grateful. In a previous edition, Allison Randal took
charge; now Simon St.Laurent has become the editor. My thanks go to each of them
in recognition of their unique contributions.

And another echo with regard to Randal and the other Stonehenge trainers, who hardly
ever complained when I unexpectedly updated the course materials to try out a new
teaching technique. You folks have contributed many different viewpoints on teaching
methods that I would never have seen.

For many years, I worked at the Oregon Museum of Science and Industry (OMSI), and
I’d like to thank the folks there for letting me hone my teaching skills as I learned to
build a joke or two into every activity, explosion, or dissection.

To the many folks on Usenet who have given me your appreciation and encouragement
for my contributions there, thanks. As always, I hope this helps.

Also to my many students, who have shown me with their questions (and befuddled
looks) when I needed to try a new way of expressing a concept. I hope that the present
edition helps to relieve any remaining puzzlement.

Preface | xix

Of course, deep thanks are due especially to my co-author, Randal, for giving me the
freedom to try various ways of presenting the material both in the classroom and here
in the book, as well as for the push to make this material into a book in the first place.
And without fail, I must say that [am indeed inspired by your ongoing work to ensure
that no one else becomes ensnared by the legal troubles that have stolen so much of
your time and energy; you're a fine example.

To my wife, Jenna, thanks for being a cat person, and everything thereafter.

From brian

I have to thank Randal first, since I learned Perl from the first edition of this book, and
then had to learn it again when he asked me to start teaching for Stonehenge in 1998.
Teaching is often the best way to learn. Since then, Randal has mentored me not only
in Perl but several other things he thought I needed to learn—Ilike the time he decided
that we could use Smalltalk instead of Perl for a demonstration at a web conference.
I’'m always amazed at the breadth of his knowledge. He’s the one who told me to start
writing about Perl. Now I'm helping out on the book where I started. 'm honored,
Randal.

[probably only actually saw Tom Phoenix for less than two weeks in the entire time I
worked for Stonehenge, but I had been teaching his version of Stonehenge’s Learning
Perl course for years. That version turned into the third edition of this book. By teaching
Tom’s new version, I found new ways to explain almost everything, and learned even
more corners of Perl.

When I convinced Randal that I should help out on the Llama update, I was anointed
as the maker of the proposal to the publisher, the keeper of the outline, and the version
control wrangler. Our editor, Allison Randal, helped me get all of those set up and
endured my frequent emails without complaining. After Allison went on to other
things, Simon St. Laurent has been extremely helpful in the role of editor and inside
guy at O’Reilly, patiently waiting for the right phase of the moon to suggest another
update.

From All of Us

Thanks to our reviewers, David H. Adler, Alan Haggai Alavi, Andy Armstrong, Dave
Cross, Chris Devers, Paul Fenwick, Stephen B. Jenkins, Matthew Musgrove, Jacinta
Richardson, Steve Peters, Peter Scott, Wil Wheaton, and Karl Williamson, for providing
comments on the draft of this book.

Thanks also to our many students who have let us know what parts of the course
material have needed improvement over the years. It’s because of you that we’re all so
proud of it today.

xx | Preface

Thanks to the many Perl Mongers who have made us feel at home as we’ve visited your
cities. Let’s do it again sometime.

And finally, our sincerest thanks to our friend Larry Wall, for having the wisdom to
share his really cool and powerful toys with the rest of the world so that we can all get
our work done just a little bit faster, easier, and with more fun.

Preface | xxi

CHAPTER 1
Introduction

Welcome to the Llama book!

This is the sixth edition of a book that has been enjoyed by over half a million readers
since 1993. At least, we hope they’ve enjoyed it. It’s a sure thing that we enjoyed writing
it.”

Questions and Answers

You probably have some questions about Perl, and maybe even some about this book;
especially if you’ve already flipped through it to see what’s coming. So, we’ll use this
chapter to answer them, including how to find answers that we don’t provide.

Is This the Right Book for You?

If you’re anything like us, you probably didn’t get to browse this book before you
bought it. As we finish up this edition, the bookstore Borders is closing many of its
stores and other booksellers aren’t doing much better. You might be reading this book
in a digital form that you downloaded, or as HTML in Safari Books Online. How can
you find out if this book is the one you want to buy if you can’t look at it first? How
can we warn you off if you need to buy the book to read this paragraph?

Thisisnota reference book. It’s a tutorial on the very basics of Perl, which is just enough
for you to create simple programs mostly for your own use. We don’t cover every detail
of every topic, and we spread out some of the topics over several chapters so you pick
up concepts as you need them.

* To be sure, the first edition was written by Randal L. Schwartz, the second by Randal and Tom Christiansen,
then one by Randal and Tom Phoenix, and now three by Randal, Tom Phoenix, and brian d foy. So, whenever
we say “we” in this edition, we mean that last group. Now, if you’re wondering how we can say that we’ve
enjoyed writing it (in the past tense) when we’re still on the first page, that’s easy: we started at the end, and
worked our way backward. It sounds like a strange way to do it, we know. But, honestly, once we finished
writing the index, the rest was hardly any trouble at all.

Our intended readers are people who know at least a little bit about programming and
just need to learn Perl. We assume that you have at least some background in using a
terminal, editing files, and running programs—just not Perl programs. You already
know about variables and subroutines and the like, but you just need to see how Perl
does it.

This doesn’t mean that the absolute beginner, having never touched a terminal program
or written a single line of code, will be completely lost. You might not catch everything
we say the first time you go through the book, but many beginners have used the book
with only minor frustrations. The trick is to not worry about everything you might be
missing and to focus on just the core concepts we present. You might take a little longer
than an experienced programmer, but you have to start somewhere.

And, this shouldn’t be the only Perl book you ever read. It’s just a tutorial. It’s not
comprehensive. It gets you started in the right direction so you can go on to our other
books, Intermediate Perl (at the time of this writing, the second edition is forthcoming)
and Mastering Perl, when you are ready. The definitive reference for Perl is Program-
ming Perl, also known as the “Camel book.”

We should also note that even though this book covers up to Perl 5.14, it’s still useful
even if you have an earlier version. You might miss out on some of the cool new features,
but you’ll still learn how to use basic Perl. The least recent version that we’ll think
about, however, is Perl 5.8, even though that was released almost 10 years ago.

Why Are There So Many Footnotes?

Thank you for noticing. There are a lot of footnotes in this book. Ignore them. They’re
needed because Perl is chock-full of exceptions to its rules. This is a good thing, as real
life is chock-full of exceptions to rules.

But it means that we can’t honestly say, “The fizzbin operator frobnicates the hoozi-
static variables” without a footnote giving the exceptions.t We’re pretty honest, so we
have to write the footnotes. But you can be honest without reading them. (It’s funny
how that works out.) The footnotes are extra information that you don’t need for the
core concepts.

Many of the exceptions have to do with portability. Perl began on Unix systems, and
it still has deep roots in Unix. But wherever possible, we’ve tried to show when some-
thing may behave unexpectedly, whether that’s because it’s running on a non-Unix
system or for another reason. We hope that readers who know nothing about Unix will
nevertheless find this book a good introduction to Perl. (And they’ll learn a little about
Unix along the way, at no extra charge.)

T Except on Tuesdays, during a power outage, when you hold your elbow at a funny angle during the equinox,
or when use integer is in effect inside a loop block being called by a prototyped subroutine prior to Perl
version 5.12.

2 | Chapter1: Introduction

http://oreilly.com/catalog/0636920012689/
http://oreilly.com/catalog/9780596527242/
http://oreilly.com/catalog/9780596000271/
http://oreilly.com/catalog/9780596000271/

And many of the other exceptions have to do with the old “80/20” rule. By that we
mean that 80% of the behavior of Perl can be described in 20% of the documentation,
and the other 20% of the behavior takes up the other 80% of the documentation. So,
to keep this book small, we’ll talk about the most common, easy-to-talk-about behavior
in the main text, and hint in the direction of the other stuff in the footnotes (which are
in a smaller font, so we can say more in the same space).¥ Once you’ve read the book
all the way through without reading the footnotes, you’ll probably want to look back
at some sections for reference. At that point, or if you become unbearably curious along
the way, go ahead and read the notes. A lot of them are just computer jokes anyway.

What About the Exercises and Their Answers?

The exercises are at the end of each chapter because, between the three of us, we’ve
presented this same course material to several thousand students.8 We have carefully
crafted these exercises to give you the chance to make mistakes as well.

It’s not that we want you to make mistakes, but you need to have the chance. That’s
because you are going to make most of these mistakes during your Perl programming
career, and it may as well be now. Any mistake that you make while reading this book
you won’t make again when you’re writing a program on a deadline. And we’re always
here to help you out if something goes wrong, in the form of Appendix A, which has
our answers for each exercise and a little text to go with it, explaining the mistakes you
made and a few you didn’t. Check out the answers when you’re done with the exercises.

Try not to peek at the answer until you’ve given the problem a good try, though. You’ll
learn better if you figure it out rather than read about it. Don’t knock your head re-
peatedly against the wall if you don’t figure out a solution: move on to the next chapter
and don’t worry too much about it.

Even if you never make any mistakes, you should look at the answers when you’re done;
the accompanying text will point out some details of the program that might not be
obvious at first.

If you want additional exercises, check out the Learning Perl Student Workbook, which
adds several exercises for each chapter.

1 We even discussed doing the entire book as a footnote to save the page count, but footnotes on footnotes
started to get a bit crazy.

§ Not all at once.

Questions and Answers | 3

What Do Those Numbers Mean at the Start of the Exercise?

Each exercise has a number in square brackets in front of the exercise text, looking
something like this:

1. [2] What does the number 2 inside square brackets mean, when it appears at the
start of an exercise’s text?

That number is our (very rough) estimate of how many minutes you can expect to spend
on that particular exercise. It’s rough, so don’t be too surprised if you’re all done (with
writing, testing, and debugging) in half that time, or not done in twice that long. On
the other hand, if you’re really stuck, we won’t tell anyone that you peeked at Appen-
dix A to see what our answer looked like.

What If I'm a Perl Course Instructor?

If you’re a Perl instructor who has decided to use this as your textbook (as many have
over the years), you should know that we’ve tried to make each set of exercises short
enough that most students could do the whole set in 45 minutes to an hour, with a
little time left over for a break. Some chapters’ exercises should be quicker, and some
may take longer. That’s because, once we had written all of those little numbers in
square brackets, we discovered that we don’t know how to add (luckily we know how
to make computers do it for us).

We also have a companion book, the Learning Perl Student Workbook, which has ad-
ditional exercises for each chapter. If you get the version of the workbook for the fourth
edition, you will have to adjust the chapter order because in this edition, we have added
a chapter and moved another.

What Does “Perl” Stand For?

Perl is sometimes called the “Practical Extraction and Report Language,” although it
has also been called a “Pathologically Eclectic Rubbish Lister,” among other expan-
sions. It’s actually a backronym, not an acronym, since Larry Wall, Perl’s creator, came
up with the name first and the expansion later. That’s why “Perl” isn’t in all caps.
There’s no point in arguing which expansion is correct: Larry endorses both.

You may also see “per]” with a lowercase p in some writing. In general, “Per]l” with a
capital P refers to the language and “perl” with a lowercase p refers to the actual inter-
preter that compiles and runs your programs. In the house style, we write the names
of programs like perl.

4 | Chapter1: Introduction

Why Did Larry Create Perl?

Larry created Perl in the mid-1980s when he was trying to produce some reports from
a Usenet-news-like hierarchy of files for a bug-reporting system, and awk ran out of
steam. Larry, being the lazy programmer that he is,I decided to overkill the problem
with a general-purpose tool that he could use in at least one other place. The result was
Perl version zero.

Why Didn’t Larry Just Use Some Other Language?

There’s no shortage of computer languages, is there? But, at the time, Larry didn’t see
anything that really met his needs. If one of the other languages of today had been
available back then, perhaps Larry would have used one of those. He needed something
with the quickness of coding available in shell or awk programming, and with some of
the power of more advanced tools like grep, cut, sort, and sed,* without having to resort
to a language like C.

Perl tries to fill the gap between low-level programming (such as in C or C++ or as-
sembly) and high-level programming (such as “shell” programming). Low-level pro-
gramming is usually hard to write and ugly, but fast and unlimited; it’s hard to beat the
speed of a well-written low-level program on a given machine. And there’s not much
you can’t do there. High-level programming, at the other extreme, tends to be slow,
hard, ugly, and limited; there are many things you can’t do at all with the shell or batch
programming if there’s no command on your system that provides the needed func-
tionality. Perl is easy, nearly unlimited, mostly fast, and kind of ugly.

Let’s take another look at those four claims we just made about Perl.

First, Perl is easy. As you’ll see, though, this means it’s easy to use. It’s not especially
easy to learn. If you drive a car, you spent many weeks or months learning how, and
now it’s easy to drive. When you’ve been programming Perl for about as many hours
as it took you to learn to drive, Perl will be easy for you.

Perlis nearly unlimited. There are very few things you can’t do with Perl. You wouldn’t
want to write an interrupt-microkernel-level device driver in Perl (even though that’s
been done), but most things that ordinary folks need most of the time are good tasks
for Perl, from quick little one-off programs to major industrial-strength applications.

[I' We’re not insulting Larry by saying he’s lazy; laziness is a virtue. The wheelbarrow was invented by someone
who was too lazy to carry things; writing was invented by someone who was too lazy to memorize; Perl was
invented by someone who was too lazy to get the job done without inventing a whole new computer language.

#Don’t worry if you don’t know what these are. All that matters is that they were the programs Larry had in
his Unix toolbox, but they weren’t up to the tasks at hand.

* But we hope you’ll crash less often with the car.

What Does “Perl” Stand For? | 5

Perl is mostly fast. That’s because nobody is developing Perl who doesn’t also use it—
so we all want it to be fast. If someone wants to add a feature that would be really cool
but would slow down other programs, Larry is almost certain to refuse the new feature
until we find a way to make it quick enough.

Perl is kind of ugly. This is true. The symbol of Perl has become the camel, from the
cover of the venerable Camel book (also known as Programming Perl), a cousin of this
book’s Llama (and her sister, the Alpaca). Camels are kind of ugly, too. But they work
hard, even in tough conditions. Camels are there to get the job done despite all diffi-
culties, even when they look bad and smell worse and sometimes spit at you. Perl is a
lictle like that.

Is Perl Easy or Hard?

Perl is easy to use, but sometimes hard to learn. This is a generalization, of course. In
designing Perl, Larry made many trade-offs. When he’s had the chance to make some-
thing easier for the programmer at the expense of being more difficult for the student,
he’s decided in the programmer’s favor nearly every time. That’s because you’ll learn
Perl only once, but you’ll use it again and again.T Perl has any number of conveniences
that let the programmer save time. For example, most functions will have a default;
frequently, the default is the way that you’ll want to use the function. So you’ll see lines
of Perl code like these:*
while (<>) {

chomp;
print join("\t", (split /:/)[o0, 2, 1, 5]), "\n";

Written out in full, without using Perl’s defaults and shortcuts, that snippet would be
roughly ten or twelve times longer, so it would take much longer to read and write. It
would be harder to maintain and debug, too, with more variables. If you already know
some Perl, and you don’t see the variables in that code, that’s part of the point. They’re
all being used by default. But to have this ease at the programmer’s tasks means paying
the price when you’re learning; you have to learn those defaults and shortcuts.

A good analogy is the proper and frequent use of contractions in English. Sure, “will
not” means the same as “won’t.” But most people say “won’t” rather than “will not”
because it saves time, and because everybody knows it and it makes sense. Similarly,
Perl’s “contractions” abbreviate common “phrases” so that they can be “spoken”
quicker and understood by the maintainer as a single idiom, rather than a series of
unrelated steps.

t If you’re going to use a programming language for only a few minutes each week or month, you’d prefer one
that is easier to learn, since you’ll have forgotten nearly all of it from one use to the next. Perl is for people
who are programmers for at least twenty minutes per day, and probably most of that in Perl.

1 We won’t explain it all here, but this example pulls some data from an input file or files in one format and
writes some of it out in another format. All of its features are covered in this book.

6 | Chapter1: Introduction

Once you become familiar with Perl, you may find yourself spending less time trying
to get shell quoting (or C declarations) right, and more time surfing the Web because
Perl is a great tool for leverage. Perl’s concise constructs allow you to create (with
minimal fuss) some very cool one-up solutions or general tools. Also, you can drag
those tools along to your next job because Perl is highly portable and readily available,
so you’ll have even more time to surf.

Perl is a very high-level language. That means that the code is quite dense; a Perl pro-
gram may be around a quarter to three-quarters as long as the corresponding program
in C. This makes Perl faster to write, faster to read, faster to debug, and faster to main-
tain. It doesn’t take much programming before you realize that, when the entire sub-
routine is small enough to fit onscreen all at once, you don’t have to keep scrolling back
and forth to see what’s going on. Also, since the number of bugs in a program is roughly
proportional to the length of the source code$ (rather than being proportional to the
program’s functionality), the shorter source in Perl will mean fewer bugs on average.

Like any language, Perl can be “write-only”—it’s possible to write programs that are
impossible to read. But with proper care, you can avoid this common accusation. Yes,
sometimes Perl looks like CPAN line-noise to the uninitiated, but to the seasoned Perl
programmer, it looks like the notes of a grand symphony. If you follow the guidelines
of this book, your programs should be easy to read and easy to maintain, and they
probably won’t win The Obfuscated Perl Contest.

How Did Perl Get to Be So Popular?

After playing with Perl a bit, adding stuff here and there, Larry released it to the com-
munity of Usenet readers, commonly known as “the Net.” The users on this ragtag
fugitive fleet of systems around the world (tens of thousands of them) gave him feed-
back, asking for ways to do this, that, or the other thing, many of which Larry had never
envisioned his little Perl handling.

But as a result, Perl grew, and grew, and grew. It grew in features. It grew in portability.
What was once a little language available on only a couple of Unix systems now has
thousands of pages of free online documentation, dozens of books, several mainstream
Usenet newsgroups (and a dozen newsgroups and mailing lists outside the mainstream)
with an uncountable number of readers, and implementations on nearly every system
in use today—and don’t forget this Llama book as well.

What's Happening with Perl Now?

Larry Wall doesn’t write the code these days, but he still guides the development
and makes the big decisions. Perl is mostly maintained by a hardy group of people

§ With a sharp jump when any one section of the program exceeds the size of your screen.

What Does “Perl” Stand For? | 7

called the Perl 5 Porters. You can follow their work and discussions on the
perl5-porters@perl.org mailing list.

As we write this (March 2011), there is a lot happening with Perl. For the past couple
of years, many people have been working on the next major version of Perl: Perl 6.

In short, Perl 6 is a completely different language now, even to the point that it’s main
implementation goes by the name Rakudo. In 2000, Perl 6 started as something that
might replace Perl 5, which had been in the doldrums with long lag times in the releases
of Perl 5.6, 5.8, and 5.10. Through various accidents and tangents, it turned out that
as Perl 5 hotted up again, Perl 6 bogged down. Ironic, perhaps?

However, Perl 5 development was also revitalized and now has monthly releases of
experimental versions and roughly yearly releases of new maintenance versions. The
last edition of this book covered 5.10, and there wasn’t time to update it before Perl
5.12 came out. Now this book is available right around the time Perl 5.14 should be
released, with the Perl 5 Porters already thinking about Perl 5.16.

What's Perl Really Good For?

Perl is good for quick-and-dirty programs that you whip up in three minutes. Perl is
also good for long-and-extensive programs that will take a dozen programmers three
years to finish. Of course, you’ll probably find yourself writing many programs that
take you less than an hour to complete, from the initial plan to the fully tested code.

Perl is optimized for problems which are about 90% working with text and about 10%
everything else. That description seems to fit most programming tasks that pop up
these days. In a perfect world, every programmer would know every language; you’d
always be able to choose the best language for each project. Most of the time, you’d
choose Perl.l' Although the Web wasn’t even a twinkle in Tim Berners-Lee’s eye when
Larry created Perl, it was a marriage made on the Net. Some claim that the deployment
of Perl in the early 1990s permitted people to move lots of content into HTML format
very rapidly, and the Web couldn’t exist without content. Of course, Perl is the darling
language for small CGI scripting (programs run by a web server) as well—so much so
that many of the uninformed still make statements like “Isn’t CGI just Perl?” or “Why
would you use Perl for something other than CGI?” We find those statements amusing.

What Is Perl Not Good For?

So, ifit’s good for so many things, what is Perl not good for? Well, you shouldn’t choose
Perl if you’re trying to make an opaque binary. That’s a program that you could give

[l Don’t just take our word for it, though. If you want to know whether Perl is better than language X, learn
them both and try them both, then see which one you use most often. That’s the one that’s best for you. In
the end, you’ll understand Perl better because of your study of language X, and vice versa, so it will be time
well spent.

8 | Chapter1: Introduction

mailto:perl5-porters@perl.org

away or sell to someone who then can’t see your secret algorithms in the source, and
thus can’t help you maintain or debug your code either. When you give someone your
Perl program, you’ll normally be giving them the source, not an opaque binary.

If you’re wishing for an opaque binary, though, we have to tell you that they don’t exist.
If someone can install and run your program, they can turn it back into source code.
Granted, this won’t necessarily be the same source that you started with, but it will be
some kind of source code. The real way to keep your secret algorithm a secret is, alas,
to apply the proper number of attorneys; they can write a license that says “you can do
this with the code, but you can’t do that. And if you break our rules, we’ve got the
proper number of attorneys to ensure that you’ll regret it.”

How Can | Get Perl?

You probably already have it. At least, we find Perl wherever we go. It ships with many
systems, and system administrators often install it on every machine at their site. But
if you can’t find it already on your system, you can still get it for free. It comes pre-
installed with most Linux or *BSD systems, Mac OS X, and some others. Companies
such as ActiveState (http://www.activestate.com) provide pre-built and enhanced dis-
tributions for several platforms, including Windows. You can also get Strawberry Perl
for Windows (http://www.strawberryperl.com), which comes with all the same stuff as
regular Perl plus extra tools to compile and install third-party modules.

Perl is distributed under two different licenses. For most people, since you’ll merely be
using it, either license is as good as the other. If you’ll be modifying Perl, however, you’ll
want to read the licenses more closely, because they put some small restrictions on
distributing the modified code. For people who won’t modify Perl, the licenses essen-
tially say, “It’s free—have fun with it.”

In fact, it’s not only free, but it runs rather nicely on nearly everything that calls itself
Unix and has a C compiler. You download it, type a command or two, and it starts
configuring and building itself. Or, better yet, you get your system administrator to
type those two commands and install it for you.# Besides Unix and Unix-like systems,
people addicted to Perl have ported it to other systems, such as Mac OS X, VMS,
0S/2, even MS/DQOS, and every modern species of Windows—and probably even more
by the time you read this.” Many of these ports of Per] come with an installation program
that’s even easier to use than the process for installing Perl on Unix. Check for links in
the “ports” section on CPAN.

#1f system administrators can’t install software, what good are they? If you have trouble convincing your admin
to install Perl, offer to buy a pizza. We’ve never met a sysadmin who could say no to a free pizza, or at least
counteroffer with something just as easy to get.

* And no, as we write this, it won’t fit in your Blackberry—it’s just too darn big, even stripped down. We’ve
heard rumors that it runs on WinCE though.

How Can|Get Perl? | 9

http://www.activestate.com
http://www.strawberryperl.com

What Is CPAN?

CPAN is the Comprehensive Perl Archive Network, your one-stop shopping for Perl.
It has the source code for Perl itself, ready-to-install ports of Perl to all sorts of non-
Unix systems, examples, documentation, extensions to Perl, and archives of messages
about Perl. In short, CPAN is comprehensive.

CPAN is replicated on hundreds of mirror machines around the world; start at http://
search.cpan.org/ to browse or search the archive. If you don’t have access to the Net,
you might find a CD-ROM or DVD-ROM with all of the useful parts of CPAN on it;
check with your local technical bookstore. Look for a recently minted archive, though.
Since CPAN changes daily, an archive from two years ago is an antique. Better yet, get
a kind friend with Net access to burn you one with today’s CPAN.

How Can | Get Support for Perl?
Well, you get the complete source—so you get to fix the bugs yourself!

That doesn’t sound so good, does it? But it really is a good thing. Since there’s no
“source code escrow” on Perl, anyone can fix a bug—in fact, by the time you’ve found
and verified a bug, someone else has probably already got a fix for it. There are thou-
sands of people around the world who help maintain Perl.

Now, we’re not saying that Perl has a lot of bugs. But it’s a program, and every program
has at least one bug. To see why it’s so useful to have the source to Perl, imagine that
instead of using Perl, you licensed a programming language called Forehead from a
giant, powerful corporation owned by a zillionaire with a bad haircut. (This is all hy-
pothetical. Everyone knows there’s no such programming language as Forehead.) Now
think of what you can do when you find a bug in Forehead. First, you can report it.
Second, you can hope—hope that they fix the bug, hope that they fix it soon, hope that
they won’t charge too much for the new version. You can hope that the new version
doesn’t add new features with new bugs, and hope that the giant company doesn’t get
broken up in an antitrust lawsuit.

But with Perl, you’ve got the source. In the rare and unlikely event that you can’t get a
bug fixed any other way, you can hire a programmer or ten and get to work. For that
matter, if you buy a new machine that Perl doesn’t yet run on, you can port it yourself.
Or if you need a feature that doesn’t yet exist, well, you know what to do.

Are There Any Other Kinds of Support?

Sure. One of our favorites is the Perl Mongers. This is a worldwide association of Perl
users’ groups; see http://www.pm.org/ for more information. There’s probably a group

T It’s nearly always better to compile Perl from the source on Unix systems. Other systems may not have a C
compiler and other tools needed for compilation, so CPAN has binaries for these.

10 | Chapter1: Introduction

http://search.cpan.org/
http://search.cpan.org/
http://www.pm.org/

near you with an expert or someone who knows an expert. If there’s no group, you can
easily start one.

Of course, for the first line of support, you shouldn’t neglect the documentation. Be-
sides the included documentation, you can also read the documentation on CPAN,
http://'www.cpan.org, as well as other sites—http://perldoc.perl.org has HTML and PDF
versions of the Perl documentation, and http://faq.perl.org/ has the latest version of the
perlfaq.

Another authoritative source is the book Programming Perl, commonly called “the
Camel book” because of its cover animal (just as this book is known as “the Llama
book”). The Camel book contains the complete reference information, some tutorial
stuff, and a bunch of miscellaneous information about Perl. There’s also a separate
pocket-sized Perl 5 Pocket Reference by Johan Vromans (O’Reilly) that’s handy to keep
at hand (or in your pocket).

If you need to ask a question of someone, there are newsgroups on Usenet and any
number of mailing lists.¥ At any hour of the day or night, there’s a Perl expert awake
in some time zone answering questions on Usenet’s Perl newsgroups—the sun never
sets on the Perl empire. This means that if you ask a question, you’ll often get an answer
within minutes. And if you didn’t check the documentation and FAQ first, you’ll get
flamed within minutes.

The official Perl newsgroups on Usenet are located in the comp.lang.perl.* part of the
hierarchy. As of this writing, there are five of them, but they change from time to time.
You (or whoever is in charge of Perl at your site) should generally subscribe to
comp.lang.perl.announce, which is a low-volume newsgroup just for important an-
nouncements about Perl, including any security-related announcements. Ask yourlocal
expert if you need help with Usenet.

Also, afew web communities have sprung up around Perl discussions. One very popular
one, known as The Perl Monastery (http://www.perlmonks.org), has seen quite a bit of
participation from many Perl book and column authors, including at least two of the
authors of this book. There is also good Perl support on Stack Overflow (http://www
.stackoverflow.com).

You can also check out http://learn.perl.org/ and its associated mailing list,
beginners@perl.org. Many well-known Perl programmers also have blogs that regularly
feature Perl-related posts, most of which you can read through Perlsphere, http://perl
sphere.net/.

If you find yourself needing a support contract for Perl, there are a number of firms
who are willing to charge as much as you’d like. In most cases, these other support
avenues will take care of you for free.

1 Many mailing lists are listed at hetp://lists.perl.org.

How Can | Get Perl? | 11

http://www.cpan.org
http://perldoc.perl.org
http://faq.perl.org/
http://oreilly.com/catalog/9780596000271/
http://oreilly.com/catalog/0636920018476/
http://www.perlmonks.org
http://www.stackoverflow.com
http://www.stackoverflow.com
http://learn.perl.org/
mailto:beginners@perl.org
http://perlsphere.net/
http://perlsphere.net/
http://lists.perl.org

What If I Find a Bug in Perl?

The first thing to do when you find a bug is to check the documentation$ again.!l Perl
has so many special features and exceptions to rules that you may have discovered a
feature, not a bug. Also, check that you don’t have an older version of Perl; maybe you
found something that’s been fixed in a more recent version.

Once you’re 99% certain that you’ve found a real bug, ask around. Ask someone at
work, at your local Perl Mongers meeting, or at a Perl conference. Chances are, it’s
still a feature, not a bug.

Once you're 100% certain that you’ve found a real bug, cook up a test case. (What,
you haven’t done so already?) The ideal test case is a tiny self-contained program that
any Perl user could run to see the same (mis-)behavior as you’ve found. Once you’ve
got a test case that clearly shows the bug, use the perlbug utility (which comes with
Perl) to report the bug. That will normally send email from you to the Perl developers,
so don’t use perlbug until you’ve got your test case ready.

Once you’ve sent off your bug report, if you’ve done everything right, it’s not unusual
to get a response within minutes. Typically, you can apply a simple patch and get right
back to work. Of course, you may (at worst) get no response at all; the Perl developers
are under no obligation to read your bug reports. But all of us love Perl, so nobody likes
to let a bug escape our notice.

How Do | Make a Perl Program?

It’s about time you asked (even if you didn’t). Perl programs are text files; you can create
and e