Ebook banner rotater for Web Programming and Administration

Teach Yourself Perl 51n 21 days

David Till

Table of Contents:

Introduction

o Who Should Read This Book?

o Specia Features of This Book

« Programming Examples

o End-of-Day Q& A and Workshop
« Conventions Used in This Book

« What You'll Learnin 21 Days

Week 1 Week at a Glance

« Where You're Going

Day 1 Getting Started

o What Is Perl?
o How Dol Find Perl?
o Where Do | Get Perl?
o Other Placesto Get Perl
« A Sample Perl Program
« Running a Perl Program
o If Something Goes Wrong
o TheFirst Line of Your Perl Program: How Comments Work
o Comments
o Line2: Statements, Tokens, and <STDI N>
o Statements and Tokens
o Tokens and White Space
o What the Tokens Do: Reading from Standard I nput
o Line3: Writing to Standard Output
o Function Invocations and Arguments

http://docs.rinet.ru:8080/P7/ (1 of 30) [2/17/2007 5:58:58 AM]

Ebook banner rotater for Web Programming and Administration
o Error Messages
« Interpretive Languages Versus Compiled L anguages
o SUmmary
« Q&A
« Workshop
0 Quiz

0 Exercises

Day 2 Basic Operators and Control Flow

« Storing in Scalar Variables Assignment
o The Definition of a Scalar Variable
o Scaar Variable Syntax
o Assigning aVaueto aScalar Variable
o Performing Arithmetic
o Example of Miles-to-Kilometers Conversion

o Thechop Library Function
« Expressions
o Assignments and Expressions
o Other Perl Operators
« Introduction to Conditional Statements
e Thei f Statement
o The Conditional Expression
o The Statement Block
o Testing for Equality Using ==
o Other Comparison Operators

« Two-Way Branching Usingi f and el se

« Multi-Way Branching Using el si f
o Writing Loops Using the whi | e Statement
« Nesting Conditional Statements
o LoopingUsingtheunt i | Statement
o« SUMMary
o Q&A
« Workshop
o Quiz

0 Exercises

http://docs.rinet.ru:8080/P7/ (2 of 30) [2/17/2007 5:58:58 AM]

Ebook banner rotater for Web Programming and Administration

Day 3 Understanding Scalar Values

e What IsaScdar Vaue?
o Integer Scalar Vaues

o Integer Scalar Value Limitations
« Floating-Point Scalar Values

o Floating-Point Arithmetic and Round-Off Error
« Using Octal and Hexadecimal Notation

o Decimal Notation

o Octal Notation

o0 Hexadecimal Notation

o Why Bother?
o Character Strings

o Using Double-Quoted Strings

o Escape Seguences
o Single-Quoted Strings

« Interchangeability of Strings and Numeric Values
o Initial Values of Scalar Variables

o« SUMMary

o Q&A

« Workshop
o Quiz

0 Exercises

Day 4 More Operators

o Using the Arithmetic Operators

0 Exponentiation

o The Remainder Operator

o Unary Negation

o Using Comparison Operators

o Integer-Comparison Operators

0 String-Comparison Operators

o String Comparison Versus Integer Comparison

o Comparison and Floating-Point Numbers
e Using Logical Operators

http://docs.rinet.ru:8080/P7/ (3 of 30) [2/17/2007 5:58:58 AM]

Ebook banner rotater for Web Programming and Administration
0 Evaluation Within L ogical Operators
0 Logical Operators as Subexpressions

Using Bit-Manipul ation Operators
o What Bits Are and How They Are Used
o The Bit-Manipulation Operators

o Using the Assignment Operators

0 Assignment Operators as Subexpressions

o Using Autoincrement and Autodecrement

o The Autoincrement Operator Pre-Increment

o The Autoincrement Operator Post-1ncrement

0 The Autodecrement Operator

o Using Autoincrement With Strings

« The String Concatenation and Repetition Operators
o The String-Concatenation Operator
o The String-Repetition Operator

o Concatenation and Assignment
o Other Perl Operators

o The Comma Operator

o The Conditional Operator
o The Order of Operations

o Precedence

o Associdivity

o Forcing Precedence Using Parentheses
o« SUMMary
o Q&A
« Workshop

o Quiz

0 Exercises

Day 5 Lists and Array Variables

Introducing Lists
o Scaar Variablesand Lists

o Listsand String Substitution
Storing Listsin Array Variables

Accessing an Element of an Array Variable

http://docs.rinet.ru:8080/P7/ (4 of 30) [2/17/2007 5:58:58 AM]

Ebook banner rotater for Web Programming and Administration

o More Details on Array Element Names

e Using Lists and Arraysin Perl Programs
o Using Brackets and Substituting for Variables
o Using List Ranges

0 Expressions and List Ranges

e Moreon Assignment and Array Variables

Copying from One Array Variable to Another

O

o Using Array Variablesin Lists

o Substituting for Array Variables in Strings

0 Assigning to Scalar Variables from Array Variables
e Retrieving the Length of aList
e Using Array Slices

o Using List Rangesin Array-Slice Subscripts

o Using Variablesin Array-Slice Subscripts

o Assigning to Array Slices

o Overlapping Array Slices

o Using the Array-Slice Notation as a Shorthand

o Reading an Array from the Standard Input File

o Array Library Functions
o Sorting alist or Array Variable
0 Reversingalist or Array Variable

o Using chop on Array Variables

o Creating aSingle String from alList
o SplittingaString into aList
o Other List-Manipulation Functions
o« SUmMmMary
o Q&A
« Workshop
o Quiz

0 Exercises

Day 6 Reading from and Writing to Files

e Opening aFile
o TheFileVariable
o The Filename

http://docs.rinet.ru:8080/P7/ (5 of 30) [2/17/2007 5:58:58 AM]

Ebook banner rotater for Web Programming and Administration

o TheFile Mode
o Checking Whether the Open Succeeded
« Reading from aFile
o File Variables and the Standard Input File
o Terminating a Program Using di e
o Reading into Array Variables
o Writingto aFile
o The Standard Output File Variable
o Merging Two Filesinto One

« Redirecting Standard Input and Standard Output
o The Standard Error File
o Closing aFile
« Determining the Status of aFile
0 File-Test Operator Syntax
o Available File-Test Operators
o Moreonthe - e Operator
o Testing for Read Permission-the - r Operator
o Checking for Other Permissions

o Checking for Empty Files

o Using File-Test Operators with File Variables
« Reading from a Sequence of Files

o Reading into an Array Variable

« Using Command-Line Arguments as Values
o ARGV and the <> Operator

o Opening Pipes

o« SUMMary

o Q&A

« Workshop
o Quiz

0 Exercises

Day 7 Pattern Matching

e Introduction
e The Match Operators
o Match-Operator Precedence

http://docs.rinet.ru:8080/P7/ (6 of 30) [2/17/2007 5:58:58 AM]

Ebook banner rotater for Web Programming and Administration

o Special Charactersin Patterns

o The + Character

o The[] Specia Characters

o The* and ? Special Characters

0 Escape Sequences for Special Characters
o Matching Any Letter or Number

o Anchoring Patterns

o Variable Substitution in Patterns

o Excluding Alternatives

0o Character-Range Escape Sequences

o Matching Any Character

o Matching a Specified Number of Occurrences

o Specifying Choices

o Reusing Portions of Patterns
0 Pattern-Seguence Scalar Variables
0 Specia-Character Precedence

o Specifying a Different Pattern Delimiter
« Pattern-Matching Options

o Matching All Possible Patterns

o lgnoring Case

o Treating the String as Multiple Lines

o Evauating a Pattern Only Once

o Treating the String asa Single Line
o Using White Space in Patterns
« The Substitution Operator
o Using Pattern-Sequence Variables in Substitutions
o Options for the Substitution Operator
o Evaluating a Pattern Only Once

o Treating the String as Single or Multiple Lines
o Using White Space in Patterns
o Specifying a Different Delimiter
» The Tranglation Operator
o Options for the Trandation Operator
» Extended Pattern-Matching
o Parenthesizing Without Saving in Memory
o Embedding Pattern Options

http://docs.rinet.ru:8080/P7/ (7 of 30) [2/17/2007 5:58:58 AM]

Ebook banner rotater for Web Programming and Administration
0 Positive and Negative L ook-Ahead
o Pattern Comments

e SUMmMary

o Q&A

» Workshop
o Quiz

0 Exercises

Week 1 Week 1 in Review
Week 2 Week 2 at a Glance

« Where You're Going

Day 8 More Control Structures

« Using Single-Line Conditional Statements

o Problemswith Single-Line Conditional Statements
« Looping Using thef or Statement

o Using the Comma Operator in af or Statement

« Looping Through alist: Thef or each Statement

o Thef oreach Loca Variable

o Changing the Value of the Local Variable

o Using Returned Listsin thef or each Statement
« Thedo Statement
« Exitingaloop Usingthel ast Statement

« Using next to Start the Next Iteration of a Loop

o« Ther edo Statement
o Using Labeled Blocks for Multilevel Jumps
o Using next andr edo with Labels

« Thecont i nue Block
« Thegot o Statement
o« SUmMmMary
o Q&A
« Workshop

o Quiz

0 Exercises

http://docs.rinet.ru:8080/P7/ (8 of 30) [2/17/2007 5:58:58 AM]

Ebook banner rotater for Web Programming and Administration

Day 9 Using Subroutines

o What Is a Subroutine?
« Defining and Invoking a Subroutine

o Forward References to Subroutines

o Returning a VValue from a Subroutine

o Return Values and Conditional Expressions

e Ther et ur n Statement
o Using Loca Variablesin Subroutines
o Initializing Local Variables

e Passing VVauesto a Subroutine

0 Passing aList to a Subroutine
o Calling Subroutines from Other Subroutines

o Recursive Subroutines

e Passing Arrays by Name Using Aliases

« Using the do Statement with Subroutines
« Specifying the Sort Order
« Predefined Subroutines
o Creating Startup Code Using BEG N
o Creating Termination Code Using END
o Handling Non-Existent Subroutines Using AUTOL OAD
o« SUMmMary
o Q&A

« Workshop
0 Quiz

0 Exercises

Day 10 Associative Arrays

o Limitations of Array Variables
o Definition
o Referring to Associative Array Elements

o Adding Elements to an Associative Array

e Creating Associative Arrays

o Copying Associative Arrays from Array Variables
o Adding and Deleting Array Elements

http://docs.rinet.ru:8080/P7/ (9 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration

e Listing Array Indexes and Vaues

L ooping Using an Associative Array

Creating Data Structures Using Associative Arrays
o Linked Lists
Structures

O

o Trees

o Databases

o Example: A Calculator Program
e« SUmMmary
o Q&A
« Workshop

o Quiz

0 Exercises

Day 11 Formatting Your Output

o Defining a Print Format
« Displaying a Print Format

« Displaying Valuesin aPrint Format
o Creating a General-Purpose Print Format
o Choosing aVaue-Field Format
o Printing Vaue-Field Characters
o Using the Multiline Field Format
« Writing to Other Output Files
o Saving the Default File Variable
« Specifying a Page Header
o Changing the Header Print Format
« Setting the Page Length
o Using pri nt with Pagination
» Formatting Long Character Strings
o Eliminating Blank Lines When Formatting

o Supplying an Indefinite Number of Lines

« Formatting Output Using pr i nt f
o« SUMMary

o Q&A

« Workshop

http://docs.rinet.ru:8080/P7/ (10 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration
0 Quiz
0 Exercises

Day 12 Working with the File System

o FileInput and Output Functions

o Basic Input and Output Functions
Skipping and Rereading Data

o System Read and Write Functions
o Reading Characters Using get ¢

O

0 Reading aBinary File Using bi nnode

« Directory-M anipulation Functions
o The nkdi r Function
o Thechdi r Function

o Theopendi r Function
o Thecl osedi r Function
o Ther eaddi r Function
o Thetelldir andseekdir Functions
o Ther ew nddi r Function
o Ther mdi r Function
File-Attribute Functions

0o File-Relocation Functions

o Link and Symbolic Link Functions

o File-Permission Functions

o Miscellaneous Attribute Functions
Using DBM Files
o Thedbnopen Function

o Thedbntl ose Function

o« SUMMary
o Q&A
« Workshop
o Quiz
0 Exercises

http://docs.rinet.ru:8080/P7/ (11 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration

Day 13 Process, String, and Mathematical

Functions

e Process- and Program-M anipulation Functions

o Starting a Process

o Terminating a Program or Process

o Execution Control Functions

o Miscellaneous Control Functions
« Mathematical Functions
o Thesi n and cos Functions

o Theat an2 Function
o Thesqrt Function

0 Theexp Function

o Thel og Function

o Theabs Function

o Ther and and sr and Functions

« String-Manipulation Functions

o Thei ndex Function

o Theri ndex Function
o Thel engt h Function
o Retrieving String Length Usingt r

o Thepos Function

o Thesubstr Function
o Thest udy Function
o Case Conversion Functions

o Thequot enet a Function
o Thej oi n Function

o Thesprintf Function
o« SUMMary
o Q&A
» Workshop

o Quiz

0 Exercises

http://docs.rinet.ru:8080/P7/ (12 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration

Day 14 Scalar-Conversion and List-Manipulation

Functions

« Thechop Function
« Thechonp Function
o Thecrypt Function
o Thehex Function

« Thei nt Function

e Theoct Function

o Theoct Function and Hexadecimal Integers

e« Theord and chr Functions

e Thescal ar Function
e« Thepack Function

o Thepack Function and C Data Types

o Theunpack Function
o Unpacking Strings

o Skipping Characters When Unpacking

o Theunpack Function and uuencode

e« Thevec Function

o« Thedefi ned Function
« Theundef Function
o Array and List Functions

o Thegr ep Function

o Thespl i ce Function
o Theshi ft Function

o Theunshi ft Function
o Thepush Function

o Thepop Function

0 Creating Stacks and Queues

o Thesplit Function
o Thesort andr ever se Functions

o Themap Function

o Thewant ar r ay Function
o Associative Array Functions

o Thekeys Function

o Theval ues Function

http://docs.rinet.ru:8080/P7/ (13 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration

o Theeach Function

o Thedel et e Function
o Theexi st s Function

e« SUMMary
o Q&A
« Workshop
o Quiz
o Exercises

Week 2 Week 2 in Review
Week 3 Week 3 at a Glance

« Where You're Going

Day 15 System Functions

e System Library Emulation Functions

o Theget gr ent Function
n Theset gr ent and endgr ent Functions

o Theget gr namFunction
o Theget gri d Function
o Theget net ent Function

o Theget net byaddr Function
o Theget net bynanme Function

o Theset net ent and endnet ent Functions

0 Theget host byaddr Function

o Theget host bynane Function

o Theget host ent, set host ent , and endhost ent Functions

o Theget | ogi n Function

o Theget pgr p and set pgr p Functions

o Theget ppi d Function

o Theget pwnamFunction

o Theget pwui d Function

o Theget pwent Function

o Theset pwent and endpwent Functions

0 Thegetpriorityandsetpriority Functions

http://docs.rinet.ru:8080/P7/ (14 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration

o Theget pr ot oent Function
o Theget pr ot obynane and get pr ot obynunber Functions

o Theset pr ot oent and endpr ot oent Functions

o Theget ser vent Function

o Theget ser vbynane and get ser vbyport Functions

0 Theset servent andendser vent Functions

o Thechr oot Function
o Thei oct| Function

o Theal ar mFunction
o Cdling the System sel ect Function

o Thedunp Function

o Socket-M anipulation Functions

o Thesocket Function
o Thebi nd Function

o Thel i st en Function

o Theaccept Function

o Theconnect Function

o Theshut down Function

o Thesocket pai r Function

0 Theget sockopt andset sockopt Functions

0 Theget socknane and get peer nane Functions
o The UNIX System V IPC Functions
o |PC Functions and ther equi r e Statement

o Thensgget Function
o Thensgsnd Function
o Thensgr cv Function
o Thensgct | Function
o Theshnget Function
o Theshmari t e Function
o Theshnr ead Function
o Theshntt!| Function
o Thesenget Function
o Thesenpp Function

o Thesentt!| Function

o Summary
e O&A

http://docs.rinet.ru:8080/P7/ (15 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration

« Workshop
o Quiz
0 Exercises

Day 16 Command-Line Options

Specifying Options
o Specifying Options on the Command Line

0 Specifying an Option in the Program

e The-v Option: Printing the Perl VVersion Number
e The-c Option: Checking Y our Syntax
e The-wOption: Printing Warnings

o Checking for Possible Typos
o Checking for Redefined Subroutines
o Checking for Incorrect Comparison Operators

e The- e Option: Executing a Single-Line Program

e The-s Option: Supplying Your Own Command-Line Options

o The-s Option and Other Command-Line Arguments

e« The- P Option: Using the C Preprocessor

o The C Preprocessor: A Quick Overview
e« The-1 Option: Searching for C Include Files
e The-n Option: Operating on Multiple Files

o The- p Option: Operating on Files and Printing
o The-i Option: Editing Files
o Backing Up Input Files Using the - i _Option
o The- a Option: Splitting Lines
« The- F Option: Specifying the Split Pattern
« The- 0 Option: Specifying Input End-of-Line

e The-| Option: Specifying Output End-of-Line

e The- x Option: Extracting a Program from a Message

« Miscellaneous Options

o The-u Option
o The-UOption
o The- S Option
o The- D Option
o The- T Option: Writing Secure Programs

http://docs.rinet.ru:8080/P7/ (16 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration

o The-d Option: Using the Perl Debugger

e SUMMary

« Q&A

« Workshop

O

O

uiz

Exercises

Day 17/ System Variables

o Global Scaar Variables

O

O

The Default Scalar Variable: $_

The Program Name: $0

The User ID: $< and $>

The Group ID: $(_and $)

The Version Number: $]

The Input Line Separator: $/

The Output Line Separator: $

The Output Field Separator: $,

The Array Element Separator: $"

The Number Output Format: $#

Theeval Error Message: $@

The System Error Code: $?

The System Error Message: $!

The Current Line Number: $.

Multiline Matching: $*

The First Array Subscript: $[

Multidimensional Associative Arrays and the $; Variable

The Word-Break Specifier: $:

The Perl Process |D: $$

The Current Filename: $ARGV

The Write Accumulator: $"A

The Internal Debuqgging Vaue: $2D

The System File Flag: $"F

Controlling File Editing Using $” |

The Format Form-Feed Character: $M L

Controlling Debugaging: $"P

http://docs.rinet.ru:8080/P7/ (17 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration
o TheProgram Start Time: $" T
0 Suppressing Warning Messages. $"W
0 The$ X Variable
« Pattern System Variables
o Retrieving Matched Subpatterns
0 Retrieving the Entire Pattern: $&
o Retrieving the Unmatched Text: the$™ and $' Variables
o The$+ Variable
 File System Variables
o The Default Print Format: $~
o Specifying Page Length: $=
o Lines Remaining on the Page: $-
o The Page Header Print Format: $~
o Buffering Output: $|
o The Current Page Number: $%
« Array System Variables
o The @ Variable
0 The GARGV Variable
o The @ Variable
o The @ NCVariable
o The% NCVariable
o The YENV Variable
o The %Sl GVariable
Built-In File Variables
o STDI N, STDOUT, and STDERR
o ARGV
o DATA
o The Underscore File Variable
Specifying System Variable Names as Words
e Summary
o Q&A
« Workshop
o Quiz

0 Exercises

http://docs.rinet.ru:8080/P7/ (18 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration

Day 18 References in Perl 5

o Introduction to References

o Using References
o Using the Backslash Operator
o References and Arrays

o Multidimensional Arrays

o Referencesto Subroutines

o Using Subroutine Templates

o Using Subroutines to Work with Multiple Arrays

0 Pass By Vaue or By Reference?

o Referencesto File Handles
o What Doesthe* var i abl e Operator Do?
o Using Symbolic References... Again

o Declaring Variables with Curly Braces

« More on Hard Versus Symbolic References

o For More Information
o« SUMMary
o Q&A
» Workshop
o Quiz

o EXercises

Day 19 Object-Oriented Programming in Per|

e An Introduction to Modules

0o The Three Important Rules

e Classesin Perl

e Creating a Class

« Bl ng a Constructor

o Instance Variables
« Methods
« Exporting Methods
 Invoking Methods
o Overrides

o Destructors

http://docs.rinet.ru:8080/P7/ (19 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration
« Inheritance
o Overriding Methods
o A Few Comments About Classes and Objectsin Perl
o« SUMMary
o Q&A
« Workshop
o Quiz

0 Exercises

Day 20 Miscellaneous Features of Perl

o Ther equi r e Function

o Ther equi r e Function and Subroutine Libraries
o Usingr equi r e to Specify a Perl Version

o TheS$#array Variables
o Controlling Array Length Using $#ar r ay

« Alternative String Delimiters

o Defining Strings Using <<
o Specia Internal Vaues
o Using Back Quotes to Invoke System Commands

« Pattern Matching Using ?? and ther eset Function

o Usingr eset with Variables

o Other Features of the <> Operator
o Scaar Variable Substitution and <>
o Creating aList of Filenames

o Global Indirect References and Aliases
» Packages

o Defining a Package

o Switching Between Packages

o Themai n Package

o Referring to One Package from Another

o Specifying No Current Package

0 Packages and Subroutines

o Defining Private Data Using Packages

0 Packages and System Variables

o Accessing Symbol Tables

http://docs.rinet.ru:8080/P7/ (20 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration
o Modules
o Creating aModule
o Importing Modules Into Y our Program
o Using Predefined Modules
Using Perl in C Programs
Perl and CGI Scripts
Tranglators and Other Supplied Code
o« SUMMary
o Q&A
« Workshop
o Quiz

0 Exercises

Day 21 The Perl Debugger

Entering and Exiting the Perl Debugger
o Entering the Debugger
o Exiting the Debugger

Listing Your Program

o Thel command

o The- Command

o The w Command

o The// and ?? Commands

o The S Command

Stepping Through Programs

o Thes Command

o Then Command

o Thef command
The Carriage-Return Command

O

o Ther Command

Displaying Variable Values

o The X Command

o TheV Command
Breakpoints

o Theb Command

o Thec Command

http://docs.rinet.ru:8080/P7/ (21 of 30) [2/17/2007 5:58:59 AM]

Ebook banner rotater for Web Programming and Administration

o The L Command and Breakpoints

o Thed and D Commands

e Tracing Program Execution

e LineActions
o Thea Command

o The A Command

o The< and > Commands

o Displaying Line Actions Using the L Command

o Other Debugging Commands
o Executing Other Perl Statements
o The HCommand: Listing Preceding Commands

o The! Command: Executing Previous Commands

o The T Command: Stack Tracing

o Thep Command: Printing an Expression

o The= Command: Defining Aliases

0 Predefining Aliases

o The h Command: Debugger Help
o« SUMMary
o Q&A

« Workshop
o Quiz

Week 3 Week 3in Review

Appendix A Answers

o« Answersfor Day 1, "Getting Started"
o Quiz

0 Exercises
e« Answersfor Day 2, "Basic Operators and Control Flow"

0 Quiz
0 Exercises
Answersfor Day 3, "Understanding Scalar Vaues'

o Quiz

0 Exercises

Answersfor Day 4, "More Operators'

http://docs.rinet.ru:8080/P7/ (22 of 30) [2/17/2007 5:59:00 AM]

Ebook banner rotater for Web Programming and Administration

o Quiz
0 Exercises

Answersfor Day 5, "Lists and Array Variables'
o Quiz

0 Exercises
Answersfor Day 6, "Reading from and Writing to Files'
o Quiz

0 Exercises
Answersfor Day 7, "Pattern Matching"

o Quiz
0 Exercises
Answersfor Day 8, "More Control Structures'

o Quiz
0 Exercises
Answersfor Day 9, "Using Subroutines'

o Quiz
0 Exercises
Answersfor Day 10, "Associative Arrays'

o Quiz
0 Exercises
Answersfor Day 11, "Formatting Y our Output"

o Quiz
0 Exercises

Answersfor Day 12, "Working with the File System"
o Quiz

0 Exercises
Answersfor Day 13, "Process, String, and M athematical Functions"

o Quiz
0 Exercises
Answersfor Day 14, "Scaar-Conversion and List-M anipul ation Functions'

o Quiz
0 Exercises
Answersfor Day 15, "System Functions'

o Quiz
0 Exercises
Answersfor Day 16, "Command-Line Options'

http://docs.rinet.ru:8080/P7/ (23 of 30) [2/17/2007 5:59:00 AM]

Ebook banner rotater for Web Programming and Administration
0 Quiz
0 Exercises
o Answersfor Day 17, "System Variables'
0 Quiz

0 Exercises

« Answersfor Day 18, "Referencesin
Per| 5"

o Quiz

0 Exercises
o Answersfor Day 19, "Object-Oriented Programming in Perl"

o Quiz
0 Exercises
o Answersfor Day 20, "Miscellaneous Features of Perl"

o Quiz
0 Exercises

o« Answersfor Day 21, "The Perl Debugger"
o Quiz

Appendix B ASCII Character Set
Credits

Copyright © 1996 by Sams Publishing
SECOND EDITION

All rights reserved. No part of this book shall be reproduced, stored in aretrieval system, or transmitted by
any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use
of the information contained herein. For information, address Sams Publishing, 201 W. 103rd St.,
Indianapolis, IN 46290.

International Standard Book Number: 0-672-30894-0 HTML conversion by :
M/s. LeafWriters (India) Pvt. Ltd.
Website : http://Ieaf .stpn.soft.net

e-mail : leafwriters@leaf .stpn.soft.net

Publisher and President Richard K. Svadley AcquisitionsManager Greg Wiegand

http://docs.rinet.ru:8080/P7/ (24 of 30) [2/17/2007 5:59:00 AM]

http://leaf.stpn.soft.net/
mailto:leafwriters@leaf.stpn.soft.net

Ebook banner rotater for Web Programming and Administration

Development Manager Dean Miller Managing Editor Cindy Morrow
Marketing M anager John Pierce Assistant Marketing Kristina Perry

M anager
Acquisitions Editor Chris Denny Development Editors Angelique Brittingham,

Keith Davenport

Software Development Seve Sraiger Production Editor Tonya R. Smpson
Specialist
Copy Editor Kimberly K. Hannel Technical Reviewer Elliotte Rusty Harold

Editorial Coordinator Bill Whitmer Technical Edit

Coordinator

Lynette Quinn

Formatter Frank Snclair Editorial Assistants Carol Ackerman, Andi
Richter Rhonda,
Tinch-Mize
Cover Designer Tim Amrhein Book Designer Gary Adair
Copy Writer Peter Fuller Production Team Brad Chinn
Super visor
Production Michael Brumitt, Charlotte Clapp, Jason Hand, Sonja Hart, Louisa Klucznik,

Ayanna Lacey, Clint Lahnen, Paula Lowell, Laura Robbins, Bobbi Satterfield,
Carol Sheehan, Chris Wilcox

Acknowledgments

| would like to thank the following people for their help:

« David Macklem at Sietec Open Systems for allowing me to take the time off to work on the first
edition of this book

« Everyone at Sams Publishing, for their efforts and encouragement
« Jim Gardner, for telling the people at Sams Publishing about me

I'd also like to thank all those friends of mine (you know who you are) who tolerated my going stir-crazy as
my deadlines approached.

About the Authors

David Till

David Till isatechnical writer working in Toronto, Ontario, Canada. He holds a master's degreein
computer science from the University of Waterloo; programming languages was his major field of study.
He also has worked in compiler development and on version-control software. He lists his hobbies as
"writing, comedy, walking, duplicate bridge, and fanatical support of the Toronto Blue Jays."

He can be reached viae-mail at an671@ r eenet . t or ont 0. on. ca or davet @l g. com or on the
World WideWeb atht t p: / / ww. i nt er| og. conf ~davet/.

Kamran Husain

Kamran Husain is a software consultant with experience in UNIX system programming. He has dabbled in
all sorts of software for real-time systems applications, telecommunications, seismic data acquisition and
navigation, X Window/Motif and Microsoft Windows applications. He refuses to divulge any more of his

http://docs.rinet.ru:8080/P7/ (25 of 30) [2/17/2007 5:59:00 AM]

http://www.interlog.com/~davet/

Ebook banner rotater for Web Programming and Administration

qualifications. Kamran offers consulting services and training classes through his company, MPSInc., in
Houston, Texas. He is an alumnus of the University of Texas at Austin.

Y ou can reach Kamran through Sams Publishing or viae-mail at khusai n@eosoft. comor
npsi @uol . com

Introduction

This book is designed to teach you the Perl programming language in just 21 days. When you finish reading
this book, you will have learned why Perl is growing rapidly in popularity: It is powerful enough to perform
many useful, sophisticated programming tasks, yet it is easy to learn and use.

Who Should Read This Book?

No previous programming experienceis required for you to learn everything you need to know about
programming with Perl from this book. In particular, no knowledge of the C programming language is
required. If you are familiar with other programming languages, learning Perl will be a snap. The only
assumption this book does make isthat you are familiar with the basics of using the UNIX operating
System.

Special Features of This Book

This book contains some special elements that help you understand Perl features and concepts as they are
introduced:

« Syntax boxes

« DO/DON'T boxes
« Notes

« Warnings

o Tips

Syntax boxes explain some of the more complicated features of Perl, such as the control structures. Each
syntax box consists of aformal definition of the feature followed by an explanation of the elements of the
feature. Here is an example of a syntax box:

The syntax of thef or statement is

for (exprl; expr2; expr3) {

st at enent bl ock

expr 1 istheloopinitializer. It is evaluated only once, before the start of the loop.
expr 2 isthe conditional expression that terminates the loop. The conditional expression in expr 2 behaves

http://docs.rinet.ru:8080/P7/ (26 of 30) [2/17/2007 5:59:00 AM]

Ebook banner rotater for Web Programming and Administration

just liketheonesinwhi | e andi f statements: If itsvalue is zero, the loop is terminated, and if itsvalueis
nonzero, the loop is executed.

st at enment _bl ock isthe collection of statements that is executed if (and when) expr 2 has anonzero
value.

expr 3 is executed once per iteration of the loop, and is executed after the last statement in
st at enment bl ock isexecuted.

Don't try to understand this definition yet!

DO/DON'T boxes present the do's and don'ts for a particular task or feature. Here is an example of such a
box:

Don’t

DON'T confusethe| operator (bitwise OR) with the| | operator (logical OR).

DO make sure you are using the proper bitwise operator. It's easy to slip and assume you
want bitwise OR when you really want bitwise AND. (Trust me.

Notes are explanations of interesting properties of a particular program feature. Here is an example of a
note:

INOTE

In left-justified output, the value being displayed appears at the
left end of the value field. In right-justified output, the value being
displayed appears at the right end of the value field.

Warnings warn you of programming pitfalls to avoid. Here is atypica warning:

3
,—"'“-"s

WARNING

Y ou cannot use thel ast statement inside the do statement. The
do statement, although it behaves like the other control structures,
is actually implemented differently.

Tips are hints on how to write your Perl programs better. Here is an example of atip:

|TIP

It isagood ideato use all uppercase letters for your file variable
names. This makesit easier to distinguish file variable names
from other variable names and from reserved words.

Programming Examples

Each feature of Perl isillustrated by examples of its use. In addition, each chapter of this book contains
many useful programming examples complete with explanations; these examples show you how you can
use Perl featuresin your own programs.

Each example contains a listing of the program, the input required by and the output generated by the
program, and an analysis of how the program works. Special icons are used to point out each part of the

http://docs.rinet.ru:8080/P7/ (27 of 30) [2/17/2007 5:59:00 AM]

Ebook banner rotater for Web Programming and Administration

example: Type, Input-Output, and Analysis.

In the Input-Output example following Listing IN.1, there are some special typographic conventions. The
input you enter isshown in bol d nonospace type, and the output generated by the system or the
programisshowninpl ai n nonospace type. The system prompt ($ in the examplesin this book) is
shown so that you know when a command is to be entered on the command line.

Listing IN.1. A simple Perl program with comments.

1: #!/usr/local/bin/perl

2: # this programreads a |ine of input, and wites the |line
3: # back out

4: $inputline = <STDI N>; # read a |line of input

5: print($inputline); # wite the |ine out

$ program N 1
This is a line of input.

This is a line of input.

$

E lLine 1 isthe header comment. Lines 2 and 3 are comments, not executable lines of code. Line 4
reads aline of input. Line 5 writes the line of input on your screen.

End-of-Day Q& A and Workshop

Each day ends with a Q& A section containing answers to common questions relating to that day's material.
There also isaWorkshop at the end of each day that consists of quiz questions and programming exercises.
The exercises often include BUG BUSTER exercises that help you spot some of the common bugs that crop
up in Perl programs. The answers to these quiz questions as well as sample solutions for the exercises are
presented in Appendix A, "Answers."

Conventions Used in This Book

This book uses different typefaces to help you differentiate between Perl code and regular English, and also
to help you identify important concepts.

« Actua Perl codeistypeset in aspecia nonospace font. You'll seethisfont used in listings and the

http://docs.rinet.ru:8080/P7/ (28 of 30) [2/17/2007 5:59:00 AM]

Ebook banner rotater for Web Programming and Administration

Input-Output examples, as well as in code snippets. In the explanations of Perl features, commands,
filenames, statements, variables, and any text you see on the screen also are typeset in this font.

« Command input and anything that you are supposed to enter appearsin abol d nonospace font.
You'll seethis mainly in the Input-Output examples.

« Placeholdersin syntax descriptions appear inani t al i ¢ nronospace font. Replace the placeholder
with the actual filename, parameter, or whatever element it represents.

« Italics highlight technical terms when they first appear in the text and are sometimes used to
emphasi ze important points.

What You'll Learn in 21 Days

In your first week of learning Perl, you'll learn enough of the basics of Perl to write many useful Perl
programs. Here's a summary of what you'll learn in Week 1.

Day 1, " Getting Started,” tells you how to get Perl, how to run Perl programs, and how to
read from your keyboard and write to your screen.

Day 2, " Basic Operatorsand Control Flow," teaches you about simple arithmetic, how to
assign avalue to ascalar variable, and how to control execution using conditional statements.

Day 3, " Understanding Scalar Values," teaches you about integers, floating-point numbers,
and character strings. It also shows you that all three are interchangeable in Perl.

Day 4, " More Operators," tellsyou all about operators and expressionsin Perl and talks
about operator associativity and precedence.

Day 5, " Listsand Array Variables," introduces you to lists, which are collections of values,
and to array variables, which store lists.

Day 6, " Reading from and Writing to Files," tellsyou how to interact with your file system
by reading from input files, writing to output files, and testing for particular file attributes.

Day 7, " Pattern Matching," describes pattern-matching in Perl and shows how you can
substitute values and translate sets of charactersin text strings.

By the end of Week 2, you'll have mastered ailmost all the features of Perl; you'll also have learned about
many of the library functions supplied with the language. Here's a summary of what you'll learn:

Day 8, "More Control Structures,” discusses the control flow statements not previously
covered.

Day 9, " Using Subroutines," shows how you can break your program into smaller, more
manageable, chunks.

Day 10, " Associative Arrays," introduces one of the most powerful and useful constructsin
Perl-arrays-and it shows how you can use these arrays to simulate other data structures.

Day 11, " Formatting Your Output,” shows how you can use Perl to produce tidy reports.
Day 12, " Working with the File System," shows how you can interact with your system's
directory structure.

Day 13, " Process, String, and Mathematical Functions,” describes the library functions that

interact with processes running on the system. It also describes the functions that perform
trigonometric and other mathematical operations, and the functions that operate on strings.

Day 14, " Scalar-Conversion and List-Manipulation Functions,”" describes the library

http://docs.rinet.ru:8080/P7/ (29 of 30) [2/17/2007 5:59:00 AM]

Ebook banner rotater for Web Programming and Administration

functions that convert values from one form to another and the functions that work with lists
and array variables.

By the end of Week 3, you'll know all the features and capabilities of Perl. It coversthe rest of the Perl
library functions and describes some of the more esoteric concepts of the language. Here's a summary of
what you'll learn:
Day 15, " System Functions," describes the functions that manipulate the Berkeley UNIX and
UNIX System V environments.
Day 16, " Command-Line Options," describes the options you can supply with Perl to control
how your program runs.
Day 17," System Variables," describes the built-in variables that are included automatically
as part of every Perl program.
Day 18, " Referencesin Perl 5," describes the pointer and reference features of Perl 5,
including multi-dimensional arrays.
Day 19, " Object-Oriented Programming in Perl," describes the object-oriented capabilities

added to Perl 5. These enable you to hide information and divide your program into individual
file modules.

Day 20, " Miscellaneous Features of Perl," covers some of the more exotic or obscure
features of the language.

Day 21, " The Perl Debugger,” shows you how to use the Perl debugger to discover errors
quickly.

http://docs.rinet.ru:8080/P7/ (30 of 30) [2/17/2007 5:59:00 AM]

Week 1 -- At a Glance

Week at a Glance

CONTENTS

« Where You're Going

In your first week of teaching yourself Perl, you'll learn enough of the basics to write many useful
Perl programs. Although some experience in using a programming language will be an advantage as
you read this book, it is not required. In particular, you don't need to know the C programming
language before you read this book.

To use this book effectively, you should be able to try out some of the features of Perl asyou learn
them. To do this, you should have Perl running on your system. If you don't have Perl, Day 1,

"Getting Started," tells how you can get it for free.

Each chapter of this book contains quiz and exercise questions that test you on the material covered
In the day's lesson. These questions are answered in Appendix A, "Answers."

Where You're Going

Thefirst week coversthe essentials of Perl. Here's a summary of what you'll learn.

Day 1, "Getting Started," tells you how to get Perl, how to run Perl programs, and how to read input
from your keyboard and write output to your screen.

Day 2, "Basic Operators and Control Flow," teaches you about simple arithmetic, how to assign a
value to ascalar variable, and how to control execution using conditional statements.

Day 3, "Understanding Scalar Values," teaches you about integers, floating-point numbers, and
character strings. It also shows you that all three are interchangeable in Perl.

Day 4, "More Operators," tells you al about operators and expressions in Perl and talks about
operator associativity and precedence.

http://docs.rinet.ru:8080/P7/gl1.htm (1 of 2) [2/17/2007 5:59:04 AM]

Week 1 -- At a Glance

Day 5, "Listsand Array Variables," introduces you to lists, which are collections of values, and to
array variables, which store lists.

Day 6, "Reading from and Writing to Files," tells you how to interact with your file system by
reading from input files, writing to output files, and testing for particular file attributes.

Finally, Day 7, "Pattern Matching," describes pattern matching in Perl and shows how you can
substitute values and translate sets of charactersin text strings.

Thisis quite abit of material to learn in one week; however, by the end of the week you'll know
most of the essentials of Perl and will be able to write many useful programs.

http://docs.rinet.ru:8080/P7/gl1.htm (2 of 2) [2/17/2007 5:59:04 AM]

http://docs.rinet.ru:8080/P7/index.htm

Day 1 -- Getting Started

Chapter 1
Getting Started

CONTENTS

o What Is Perl?
o How Dol Find Perl?
o Where Do | Get Perl?
o Other Placesto Get Perl
o A Sample Perl Program
« Running a Perl Program
o If Something Goes Wrong
o TheFirst Line of Your Perl Program: How Comments Work

o Comments
« Line2: Statements, Tokens, and <STDI N>
o Statements and Tokens
o Tokens and White Space
o What the Tokens Do: Reading from Standard | nput
o Line 3: Writing to Standard Output
o Function Invocations and Arguments
o Error Messages
« Interpretive Languages Versus Compiled Languages
o« Summary
o Q&A
« Workshop
o Quiz

o Exercises

Welcometo Teach Yourself Perl 5in 21 Days. Today you'll learn about the following:
o What Perl isand why Perl is useful
« How to get Perl if you do not already have it
« How to run Perl programs
« How to write avery smple Perl program
« The difference between interpretive and compiled programming languages
« What an algorithm is and how to develop one

http://docs.rinet.ru:8080/P7/ch1.htm (1 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

What Is Perl?

Perl is an acronym, short for Practical Extraction and Report Language. It was designed by Larry Wall as atool for
writing programs in the UNIX environment and is continually being updated and maintained by him.

For its many fans, Perl provides the best of several worlds. For instance:

« Perl has the power and flexibility of ahigh-level programming language such as C. In fact, as you will see, many
of the features of the language are borrowed from C.

« Like shell script languages, Perl does not require a special compiler and linker to turn the programs you write into
working code. Instead, all you have to do is write the program and tell Perl to run it. This means that Perl isideal
for producing quick solutions to small programming problems, or for creating prototypes to test potential solutions
to larger problems.

« Perl provides al the features of the script languages sed and awk, plus features not found in either of these two
languages. Perl also supports a sed-to-Perl translator and an awk-to-Per| trandlator.

In short, Perl is as powerful as C but as convenient as awk, sed, and shell scripts.

INOTE

This book assumes that you are familiar with the basics of using
the UNIX operating system

Asyou'll see, Perl isvery easy to learn. Indeed, if you are familiar with other programming languages, learning Perl isa
snap. Even if you have very little programming experience, Perl can have you writing useful programsin avery short
time. By the end of Day 2, "Basic Operators and Control Flow," you'll know enough about Perl to be able to solve many

problems.

How Do | Find Perl?

To find out whether Perl already is available on your system, do the following:

« If you are currently working in a UNIX programming environment, check to see whether the file
/usr/ | ocal / bi n/ perl exists.

« If you are working in any other environment, check the place where you normally keep your executable programs,
or check the directories accessible from your PATH environment variable.

If you do not find Perl in thisway, talk to your system administrator and ask whether she or he has Perl running
somewhere else. If you don't have Perl running in your environment, don't despair-read on!

Where Do | Get Perl?

One of the reasons Perl is becoming so popular isthat it is available free of charge to anyone who wantsit. If you are on
the Internet, you can obtain a copy of Perl with file-transfer protocol (FTP). The following is a sample FTP session that
transfers a copy of the Perl distribution. The items shown in boldface type are what you would enter during the session.

$ ftp prep.ai.mt.edu

Connected to prep.ai.mt. edu.

220 aeneas FTP server (Version wu-2.4(1) Thu Apr 14 20:21: 35 EDT 1994) ready.
Nanme (prep.ai.mt.edu:dave): anonynous

331 Cuest login ok, send your conplete e-nail address as password.

http://docs.rinet.ru:8080/P7/ch1.htm (2 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started
Passwor d:

230- Vel cone, archive user!

230-

230-1f you have probl ens downl oadi ng and are seeing "Access denied" or
230-"Perm ssi on deni ed", please nake sure that you started your FTP
230-client in a directory to which you have wite perm ssion.

230-

230-1f you have any problens with the GNU software or its downl oadi ng,
230- pl ease refer your questions to <gnu@REP.Al.MT.EDU>. If you have any
230- ot her unusual problens, please report themto <root @eneas. M T. EDU>
230-

230-1f you do have problens, please try using a dash (-) as the first
230-character of your password - this will turn off the continuation
230- nessages that nmay be confusing your FTP client.

230-

230 CGuest login ok, access restrictions apply.

ftp> cd pub/gnu

250-1f you have probl ens downl oadi ng and are seeing "Access deni ed" or
250- " Per m ssi on deni ed", please nake sure that you started your FTP
250-client in a directory to which you have wite perm ssion.

250-

250- Pl ease note that all files ending in are conpressed with

. gz
250-'gzip', not with the unix 'conpress' program Get the file READMVE
250- and read it for nore information.

250-

250- Pl ease read the file README

250- it was last nodified on Thu Feb 1 15:00:50 1996 - 32 days ago

250- Pl ease read the fil e READVE-about-.diff-files

http://docs.rinet.ru:8080/P7/ch1.htm (3 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

250- it was last nodified on Fri Feb 2 12:57:14 1996 - 31 days ago

250- Pl ease read the file README-about-.gz-files

250- it was last nodified on Wed Jun 14 16:59:43 1995 - 264 days ago

250 CWD commrand successful .

ftp> binary

200 Type set to |I.

ftp> get perl-5.001.tar.gz

200 PORT command successful .

150 Opening ASCII nobde data connection for perl-5.001.tar.gz (1130765 bytes).
226 Transfer conplete.

1130765 bytes received in 9454 seconds (1.20 Kbytes/s)

ftp> quit
221 CGoodbye.
$

The commands entered in this session are explained in the following steps. If some of these steps are not familiar to you,
ask your system administrator for help.

1.

7.

The command
$ ftp prep.ai.mt.edu
connects you to the main Free Software Foundation source depository at MIT.

Theuser ID anonynous tells FTP that you want to perform an anonymous FTP operation.

When FTP asks for a password, enter your user ID and network address. This letsthe MIT system administrator
know who is using the MIT archives. (For security reasons, the password is not actually displayed when you type

it.)
Thecommand cd pub/ gnu setsyour current working directory to be the directory containing the Perl source.

The bi nar y command tells FTP that the file you'll be receiving is afile that contains unreadable (non-text)
characters.

Theget command copiesthefileper| -5. 001. t ar. gz from the MIT source depository to your own site. (It's
usually best to do thisin off-peak hours to make things easier for other Internet users-it takes awhile.) Thisfileis
quite large because it contains al the source files for Perl bundled together into asingle file.

Thequi t command disconnects from the MIT source repository and returns you to your own system.

Once you've retrieved the Perl distribution, do the following:

1.

2.

Create adirectory and move thefileyou just received, per | - 5. 001. t ar . gz, to thisdirectory. (Or,
aternatively, moveit to adirectory aready reserved for this purpose.)

Theper!| -5. 001. t ar. gz fileis compressed to save space. To uncompressiit, enter the command

$ gunzip perl-5.001.tar.gz

gunzi p isthe GNU uncompress program. If it's not available on your system, see your system administrator.
(You can, in fact, retrieveit from pr ep. ai . m t . edu using anonymous FTP with the same commands you used

http://docs.rinet.ru:8080/P7/ch1.htm (4 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

to retrieve the Perl distribution.)
When you run gunzi p, thefileper| -5. 001. t ar. gz will bereplaced by per| - 5. 001. t ar, whichisthe
uncompressed version of the Perl distribution file.

3. The next step isto unpack the Perl distribution. In other words, use the information in the Perl distribution to create
the Perl sourcefiles. To do this, enter the following command:
$ tar xvf - <perl-5.001.tar
As this command executes, it creates each source file in turn and displays the name and size of each fileasit is
created. Thet ar command also creates subdirectories where appropriate; this ensures that the Perl sourcefiles are
organized in alogica way.

4. Using your favorite C compiler, compile the Perl source code using the makefile provided. (This makefile should
have been created when the source files were unpacked in the last step.)

5. Place the compiled Perl executable into the directory where you normally keep your executables. On UNIX

systems, this directory usually iscalled/ usr/ | ocal / bi n, and Perl usually is named
/usr/ | ocal / bin/perl.

Y ou might need your system administrator's help to do this because you might not have the necessary permissions.
Other Places to Get Perl

If you cannot access the MIT site from where you are, you can get Perl from the following sites using anonymous FTP:

North America

Ste |Location
ftp. netl abs. com Internet address 192. 94. 48. 152
Directory

/ pub/ out goi ng/ perl 5.0
ftp.cis.ufl.edu Internet address 128. 227. 100. 198
Directory /pub/perl/src/5.0
ftp.uu. net Internet address 192. 48. 96. 9
Directory /| anguages/ perl
ftp. khoros. unm edu |Internet address 198. 59. 155. 28
Directory /pub/ perl
ftp.chbi.tamucc. edu|Internet address165. 95. 1. 3
Directory /pub/duff/Perl
ftp.metronet.com [Internet address192. 245. 137. 1
Directory /pub/perl/sources

geneti cs. upenn. edu |Internet address 128. 91. 200. 37
Directory /perl5

Europe
Ste |Location
ftp.cs.ruu.nl Internet address131. 211. 80. 17
Directory /pub/ PERL/ perl5.0/src
ftp.funet.fi Internet address 128. 214. 248. 6
Directory
/ pub/ | anguages/ perl/ports/perl5
ftp.zrz.tu-berlin. de|Internet address130. 149. 4. 40
Di rectory /pub/ unix/ perl
src.doc.ic.ac. uk Internet address 146. 169. 17. 5
Directory /packages/perl5
Australia

http://docs.rinet.ru:8080/P7/ch1.htm (5 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

Ste Location

sungear . mane. mu. oz. au |Internet address 128. 250. 209. 2
Directory
/ pub/ perl/src/5.0

South America

Ste |Location

ftp.inf.utfsmcl |Internet address146. 83. 198. 3
Directory /pub/gnu

Y ou a'so can obtain Perl from most sites that store GNU source code, or from any site that archives the Usenet
Newsgroup Conp. sour ces. uni Xx.

A Sample Perl Program

Now that Perl is available on your system, it's time to show you a simple program that illustrates how easy it isto use
Perl. Listing 1.1 isasimple program that asks for aline of input and writes it out.

Listing 1.1. A simple Per| program that reads and writes a line of input.

1. #!/usr/local/bin/perl
2: $inputline = <STDI N>;

3: print($inputline);

$progrant_1
This is ny line of input.

This is ny line of input.

$

Line 1 isthe header comment. Line 2 reads aline of input. Line 3 writes the line of input back to your screen.

The following sections describe how to create and run this program, and they describe it in more detail.

http://docs.rinet.ru:8080/P7/ch1.htm (6 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

Running a Perl Program

To run the program shown in Listing 1.1, do the following:
1. Using your favorite editor, type the previous program and saveit in afile called pr ograni_1.

2. Tell the system that this file contains executable statements. To do thisin the UNIX environment, enter the
command
$ chnod +x progrant_1

3. Run the program by entering the command
$ progranl_1

When you run pr ogr anil_1, it waits for you to enter aline of input. After you enter the line of input, pr ograni_1
prints what you entered, as follows:

$ programl_1
This is ny Iine of input.
This is ny line of input.

$

If Something Goes Wrong

If Listing 1.1 isstored in thefile pr ogr anmil_1 and run according to the preceding steps, the program should run
successfully. If the program doesn't run, one of two things has likely happened:

« Thesystem can't find thefilepr ograml_1.
o The system can't find Perl.

If you receive the error message

programl_1 not found

or something similar, your system couldn't find thefilepr ogr aml_1. To tell the system wherepr ograml_1 is
located, you can do one of two thingsin a UNIX environment:

o Enter thecommand . / pr ogr aml_ 1, which gives the system the pathname of pr ogr anil_1 relative to the
current directory.

« Add the current directory . to your PATH environment variable. Thistells the system to search in the current
directory when looking for executable programs such as pr ogrami._1.

If you receive the message

/usr/1ocal/bin/perl not found
or something similar, this means that Perl is not installed properly on your machine. See the section "How Do | Find

Perl?' earlier today, for more details.

If you don't understand these instructions or are still having trouble running Listing 1.1, talk to your system administrator.

http://docs.rinet.ru:8080/P7/ch1.htm (7 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

The First Line of Your Perl Program: How Comments Work

Now that you've run your first Perl program, let'slook at each line of Listing 1.1 and figure out what it does.
Line 1 of thisprogram is aspecia line that tells the system that thisis a Perl program:

#!/usr/1ocal / bin/ perl

Let's break this line down, one part at atime:

« Thefirst character in the line, the # character, isthe Perl comment character. It tells the system that thisline is not
an executable instruction.

« The! character isaspecia character; it indicates what type of program thisis. (You don't need to worry about the
details of what the! character does. All you have to do isremember to includeit.)

o Thepath/ usr/ | ocal / bi n/ per| isthelocation of the Perl executable on your system. This executable
interprets your program; in other words, it figures out what you want to do and then does it. Because the Perl
executable has the job of interpreting Perl instructions, it usualy is called the Perl interpreter.

If, after reading this, you still don't understand the meaning of theline#! / usr/ | ocal / bi n/ per| don't worry. The
actual specifics of what it does are not important for our purposes in this book. Just remember to include it as the first
line of your program, and Perl will take it from there.

[NOTE

If you are running Perl on a system other than UNIX, you might
need to replace theline#! / usr/ | ocal / bi n/ per | with some
other line indi-cating the location of the Perl interpreter on your
system. Ask your system administrator for details on what you
need to include here.

After you have found out what the proper first lineisin your
environment, include that line as the first line of every Perl
program you write, and you're al set

Comments

Asyou have just seen, the first character of the line

#!/usr/1ocal / bin/ perl

is the comment character, #. When the Perl interpreter seesthe #, it ignores the rest of that line.

Comments can be appended to lines containing code, or they can be lines of their own:

$i nputline = <STDI N>; # this line contains an appended comment

this entire line is a conmment

Y ou can-and should-use comments to make your programs easier to understand. Listing 1.2 is the ssmple program you
saw earlier, but it has been modified to include comments explaining what the program does.

[NOTE

http://docs.rinet.ru:8080/P7/ch1.htm (8 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

Asyou work through the lessons in this book and create your own
programs-such as the onein Listing 1.2-you can, of course, name
them anything you want. For illustration and discussion purposes,
I've adopted the convention of using a name that corresponds to
the listing number. For example, the programin Listing 1.2 is
called programl_2.

The program name is used in the Input-Output examples such as
the one following thislisting, aswell asin the Analysis section
where the listing is discussed in detail. When you follow the
Input-Output example, just remember to substitute your program's
name for the one shown in the example

Listing 1.2. A simple Perl program with comments.

1. #!/usr/local/bin/perl

2: # this programreads a line of input, and wites the line
3: # back out

4: S$inputline = <STDI N>; # read a line of input

5. print($inputline); # wite the line out

$ programl_2
This is a line of input.

This is a line of input.

$

The behavior of the program in Listing 1.2 isidentical to that of Listing 1.1 because the actual code isthe same. The only
differenceisthat Listing 1.2 has commentsin it

Note that in an actual program, comments normally are used only to explain complicated code or to indicate that the
following lines of code perform a specific task. Because Perl instructions usually are pretty straightforward, Perl
programs don't need to have alot of comments.

Don‘t

http://docs.rinet.ru:8080/P7/ch1.htm (9 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

DO use comments whenever you think that aline of code is not easy to understand.

DON'T clutter up your code with unnecessary comments. The goal is readability. If a
comment makes a program easier to read, include it. Otherwise, don't bother.

DON'T put anything else after / usr/ | ocal / bi n/ per | inthefirst line:
#!/usr/ 1 ocal / bi n/ perl

Thislineisaspecia comment line, and it is not treated like the others.

Line 2: Statements, Tokens, and <STDI N>

Now that you've learned what the first line of Listing 1.1 does, let's take alook at line 2:

$i nputline = <STDI N>;

Thisisthefirst line of code that actually does any work. To understand what this line does, you need to know what a Perl
statement is and what its components are.

Statements and Tokens

Theline of code you have just seen is an example of a Perl statement. Basically, a statement is one task for the Perl
interpreter to perform. A Perl program can be thought of as a collection of statements performed one at atime.

When the Perl interpreter sees a statement, it breaks the statement down into smaller units of information. In this
example, the smaller units of information are $i nput | i ne, =, <STDI N>, and ; . Each of these smaller units of
information is called a token.

Tokens and White Space

Tokens can normally be separated by as many spaces and tabs as you like. For example, the following statements are
identical in Perl:

$i nputline = <STDI N>;

$i nput | i ne=<STDI N>;

$i nput | i ne = <STDI N>;

Y our statements can take up as many lines of code as you like. For example, the following statement is equivalent to the
ones above:

$i nput | i ne

<STDI N>

The collection of spaces, tabs, and new lines separating one token from another is known as white space.

http://docs.rinet.ru:8080/P7/ch1.htm (10 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

When programming in Perl, you should use white space to make your programs more readable. The examplesin this
book use white space in the following ways:

« New statements always start on anew line.

« Oneblank spaceis used to separate one token from another (except in special cases, some of which you'll see
today).

What the Tokens Do: Reading from Standard Input

Asyou've seen dready, the statement

$i nput i ne = <STDI N>;

consists of four tokens: $i nput | i ne, =, <STDI N>, and ; . The following subsections explain what each of these
tokens does.

The $i nput | i ne and = Tokens

Thefirst tokeninline 1, $i nput | i ne (at the left of the statement), is an example of ascalar variable. In Perl, ascaar
variable can store one piece of information.

The = token, called the assignment operator, tells the Perl interpreter to store the item specified by the token to the right
of the = in the place specified by the token to the left of the =. In this example, the item on the right of the assignment
operator isthe <STDI N> token, and the item to the left of the assignment operator isthe $i nput | i ne token. Thus,
<STDI N> isstored in the scalar variable $i nput | i ne.

Scalar variables and assignment operators are covered in more detail on Day 2, "Basic Operators and Control Flow."

The <STDI N> Token and the Standard Input File

The next token, <STDI N>, represents a line of input from the standard input file. The standard input file, or STDIN for
short, typically contains everything you enter when running a program.

For example, when you run pr ogr aml__1 and enter

This is a line of input.

the line you enter is stored in the standard input file.

The <STDI N> token tells the Perl interpreter to read one line from the standard input file, where alineis defined to be a
set of characters terminated by a new line. In this example, when the Perl interpreter sees<STDI N>, it readsin

This is a line of input.

If the Perl interpreter then sees another <STDI N> in adifferent statement, it reads another line of data from the standard
input file. The line of datayou read earlier is destroyed unlessit has been copied somewhere el se.
INOTE

If there are more lines of input than there are <STDI N> tokens,
the extralines of input are ignored

Because the <STDI N> token isto the right of the assignment operator =, the line

http://docs.rinet.ru:8080/P7/ch1.htm (11 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

This is a line of input.

isassigned to the scalar variable $i nput | i ne.
The ; Token

The; token at the end of the statement is a special token that tells Perl the statement is complete. You can think of it asa
punctuation mark that is like a period in English.

Line 3: Writing to Standard Output

Now that you understand what statements and tokens are, consider line 3 of Listing 1.1, which is

print ($inputline);

This statement refersto the library function that is called pr i nt . Library functions, such aspr i nt , are provided as part
of the Perl interpreter; each library function performs a useful task.

Thepri nt function'stask isto send data to the standard output file. The standard output file stores datathat isto be
written to your screen. The standard output file sometimes appears in Perl programs under the name STDOUT.

Inthisexample, pri nt sends$i nput | i ne to the standard output file. Because the second line of the Perl program
assignstheline

This is a line of input.

to $i nput | i ne, thisiswhat pr i nt sendsto the standard output file and what appears on your screen.

Function Invocations and Arguments

When areferenceto pri nt appearsin a Perl program, the Perl interpreter calls, or invokes, the pr i nt library function.
This function invocation is similar to a function invocation in C, a GOSUB statement in BASIC, or a PERFORMstatement
in COBOL. When the Perl interpreter seesthe pri nt function invocation, it executes the code contained inpri nt and
returns to the program when pr i nt isfinished.

Most library functions require information to tell them what to do. For example, the pr i nt function needsto know what
you want to print. In Perl, thisinformation is supplied as a sequence of comma-separated items located between the
parentheses of the function invocation. For example, the statement you've just seen:

print ($inputline);

supplies one piece of information that is passed to pr i nt : the variable $i nput | i ne. This piece of information
commonly is called an argument.

Thefollowing call to pri nt suppliestwo arguments:

print ($inputline, $inputline);

http://docs.rinet.ru:8080/P7/ch1.htm (12 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

You can supply pri nt with as many arguments as you like; it prints each argument starting with the first one (the one
on the left). Inthiscase, pri nt writestwo copies of $i nput | i ne to the standard output file.

You asocantell pri nt to write to any other specified file. You'll learn more about this on Day 6, "Reading From and
Writing To Files."

Error Messages

If you incorrectly type a statement when creating a Perl program, the Perl interpreter will detect the error and tell you
where the error is located.

For example, look at Listing 1.3. This program is identical to the program you've been seeing all along, except that it
contains one small error. Can you spot it?

Listing 1.3. A program containing an error.

1. #!/usr/local/bin/perl
2: $inputline = <STDI N>

3: print ($inputline);

$ programl_3
Syntax error in file progranmi_3 at |ine3, next char (

Execution of programl 3 aborted due to conpilation errors.

When you try to run this program, an error message appears. The Perl interpreter has detected that line 2 of the program
ismissing itsclosing ; character. The error message from the interpreter tells you what the problem is and identifies the
line on which the problem is located

|TIP

http://docs.rinet.ru:8080/P7/ch1.htm (13 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

Y ou should fix errors starting from the beginning of your program
and working down.

When the Perl interpreter detects an error, it triesto figure out
what you meant to say and carries on from there; this featureis
known as error recovery. Error recovery enables the interpreter to
detect as many errors as possible at one time, which speeds up the
development process.

Sometimes, however, the Perl interpreter can get confused and
think you meant to do one thing when you really meant to do
another. In this situation, the interpreter might start trying to detect
errors that don't really exist. This problem is known as error
cascading.

It'susually pretty easy to spot error cascading. If the interpreter is
telling you that errors exist on several consecutive lines, it usually
means that the interpreter is confused. Fix thefirst error, and the
others might very well go away

Interpretive Languages Versus Compiled Languages

Asyou've seen, running a Perl program is easy. All you need to do is create the program, mark it as executable, and run
it. The Perl interpreter takes care of the rest. Languages such as Perl that are processed by an interpreter are known as
inter pretive languages.

Some programming languages require more complicated processing. If alanguage is a compiled language, the program
you write must be translated into machine-readable code by a special program known as a compiler. In addition, library
code might need to be added by another special program known as a linker. After the compiler and linker have done their
jobs, the result is a program that can be executed on your machine-assuming, of course, that you have written the
program correctly. If not, you have to compile and link the program all over again.

Interpretive languages and compiled languages both have advantages and disadvantages, as follows:
« Asyou've seen with Perl, it takes very little time to run a program in an interpretive language.
« Interpretive languages, however, cannot run unless the interpreter is available. Compiled programs, on the other
hand, can be transferred to any machine that understands them.

Asyou'll see, Perl is as powerful asacompiled language. This means that you can do alot of work quickly and easily.

Summary

Today you learned that Perl is a programming language that provides many of the capabilities of a high-level
programming language such as C. Y ou also learned that Perl is easy to use; basically, you just write the program and run
it.

Y ou saw avery simple Perl program that reads a line of input from the standard input file and writes the line to the

standard output file. The standard input file stores everything you type from your keyboard, and the standard output file
stores everything your Perl program sends to your screen.

Y ou learned that Perl programs contain a header comment, which indicates to the system that your program iswrittenin
Perl. Perl programs also can contain other comments, each of which must be preceded by a#.

Perl programs consist of a series of statements, which are executed one at atime. Each statement consists of a collection
of tokens, which can be separated by white space.

Perl programs call library functions to perform certain predefined tasks. One example of alibrary functionispri nt,
which writes to the standard output file. Library functions are passed chunks of information called arguments; these
arguments tell a function what to do.

http://docs.rinet.ru:8080/P7/ch1.htm (14 of 16) [2/17/2007 5:59:11 AM]

Day 1 -- Getting Started

The Perl interpreter executes the Perl programs you write. If it detects an error in your program, it displays an error
message and uses the error-recovery process to try to continue processing your program. If Perl gets confused, error
cascading can occur, and the Perl interpreter might display inappropriate error messages.

Finally, you learned about the differences between interpretive languages and compiled languages, and that Perl is an
example of an interpretive language.

Q&A

»>0Q 20

Z>0 20

Isthereany particular editor | need to use with Perl?

No. Perl programs are ordinary text files. Y ou can use any text editor you like.

Why do | need to enter thechnod +x command before running my program?

Because Perl programs are ordinary text files, the UNIX operating system does not know that they are executable
programs. By default, text files have read and write permissions granted, which means you can look at your file
or changeit. Thechnod +x command adds execute permission to the file; when this permission is granted, the
system knows that thisis an executable program.

Can | usepri nt toprint other things besidesinput lines?

Yes. You'll learn more about how you can use pr i nt on Day 3, "Understanding Scalar Vaues."

Why is Perl available for free?

This encourages the dissemination of computer knowledge and capabilities.

It works like this: Y ou can get Perl for free, and you can use it to write interesting and useful programs. If you
want, you can then give these programs away and let other people write interesting and useful programs based on
your programs. Thisway, everybody benefits.

Y ou aso can modify the source for Perl, provided you tell everybody that your version is a modification of the
original. This means that if you think of aclever thing you want Perl to do, you can add it yourself. (However,
you can't blame anybody else if your modification breaks something or if it doesn't work.)

Of course, you don't have to give your Perl programs away for free. In fact, you even can sell your Perl programs,
provided you don't borrow anything from somebody else's program.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
give you experience in using what you've learned. Try to understand the quiz and exercise answers before continuing to
the next day.

Quiz

1
2.
3.

N o ok

What do Perl's fans appreciate about Perl?
What does the Perl interpreter do?
Define the following terms:

a statement
b token
c argument

d error recovery
e standard input file

What is acomment, and where can it appear?

Where is Perl usually located on a UNIX machine?

What is a header comment, and where does it appear in a program?
What isalibrary function?

http://docs.rinet.ru:8080/P7/ch1.htm (15 of 16) [2/17/2007 5:59:11 AM]

Day 1 -

- Getting Started

Exercises

A owDNPRE

Modify pr ogr aml_1 to print the input line twice.
Modify pr ogr aml_1 to read and print two different input lines.
Modify pr ogr aml_1 to read two input lines and print only the second one.

BUG BUSTER: What iswrong with the following program?
#! /usr/1 ocal / bi n/ perl

$i nputline = <STDI N>;

print ($inputline)

BUG BUSTER: What iswrong with the following program?
#!/usr/1ocal / bi n/ perl

$i nput i ne = <STDI N>;

print ny line! print($inputline);

What does the following program do?

#!/usr/ 1 ocal / bi n/ perl

$i nputline = <STDI N>;

$i nputline2 = <STDI N>;

print ($inputline2);

print ($inputline);

http://docs.rinet.ru:8080/P7/ch1.htm (16 of 16) [2/17/2007 5:59:12 AM]

http://docs.rinet.ru:8080/P7/index.htm

Day 2 -- Basic Operators and Control Flow

Chapter 2

Basic Operators and Control Flow

CONTENTS

« Storing in Scalar Variables Assignment
o The Definition of a Scalar Variable
o Scalar Variable Syntax
0 Assigning aValueto aScalar Variable
o Performing Arithmetic
o Example of Miles-to-Kilometers Conversion

o Thechop Library Function
» EXxpressions
0 Assignments and Expressions
o Other Perl Operators
« Introduction to Conditional Statements
e Theif Statement
o The Conditional Expression
o The Statement Block
o Testing for Equality Using ==

0o Other Comparison Operators

« Two-Way Branching Usingi f and el se

« Multi-Way Branching Using el si f
« Writing Loops Using the whi | e Statement
« Nesting Conditional Statements
o Looping Usingtheunt i | Statement
o Summary
o Q&A
« Workshop
o Quiz

0 Exercises

http://docs.rinet.ru:8080/P7/ch2.htm (1 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

Today's lesson gives you the information you need to write some simple Perl programs. You'll learn
the following:

« More about scalar variables and how to assign values to them

« The basic arithmetic operators and how they work with scalar variables

o What an expression is

« Howtousethei f statement and the == operator to test for ssmple conditions
« How to specify two-way and multi-way branchesusing el se and el si f

« How towrite simpleloops using thewhi | e andunt i | statements

Storing in Scalar Variables Assignment

In yesterday's lesson, you saw the following statement, which assigns a line of input from the
keyboard to the variable $i nput | i ne:

$i nputline = <STDI N>;

This section tells you more about variables such as $i nput | i ne and how to assign values to these
variables.

The Definition of a Scalar Variable

Thevariable $i nput | i ne isan example of ascalar variable. A scalar variable stores exactly one
item-aline of input, a piece of text, or anumber, for example. Items that can be stored in scalar
variables are called scalar values.

You'll learn more about scalar values on Day 3, "Understanding Scalar Vaues." For today, all you
need to remember is that a scalar variable stores exactly one value, which isascalar value.

Scalar Variable Syntax

The name of a scalar variable consists of the character $ followed by at least one letter, which is
followed by any number of letters, digits, or underscore characters (that is, the _ character).

The following are examples of legal scalar variable names:

$x
$var
$ny _vari abl e

$var 2

http://docs.rinet.ru:8080/P7/ch2.htm (2 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

$a_new vari abl e

These, however, are not legal scalar variable names:

vari abl e # the $ character is m ssing

$ # there nmust be at |east one letter in the nane
$47x # second character nust be a letter

$_var # again, the second character nust be a letter
$vari abl e! # you can't have a ! in a variable nane

$new. var # you can't have a . in a variable nane

Per| variables are case-sensitive. This means that the following variables are different:

$VAR
$var

$Var

Y our variable name can be as long as you want.

$this is a really |long _but |egal nane

$this is a really long_but |legal nanme_that is different

The $ character is necessary because it ensures that the Perl interpreter can distinguish scalar
variables from other kinds of Perl variables, which you'll see on later days.
TIP

V ariable names should be long enough to be self-explanatory but
short enough to be easy to read and type.

http://docs.rinet.ru:8080/P7/ch2.htm (3 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

Assigning a Value to a Scalar Variable

The following statement contains the Perl assignment operator, which is the = character:
$i nputli ne = <STDI N>;
Remember that this statement tells Perl that the line of text read from the standard input file,

represented by <STDI N>, isto become the new value of the scalar variable $i nput | i ne.

Y ou can use the assignment operator to assign other values to scalar variables as well. For example,
in the following statement, the number 42 is assigned to the scalar variable $var :

$var = 42;

A second assignment to a scalar variable supersedes any previous assignments. In these two
statements:

$var = 42;

113;

$var

the old value of $var , 42, is destroyed, and the value of $var becomes113.

Assignment statements can assign text to scalar variables as well. Consider the following statement:

$nanme = "inputdata”;

In this statement, the text i nput dat a is assigned to the scalar variable $nane.

Note that the quotation marks (the" characters) on either end of the text are not part of the text
assigned to $nane. Thisisbecausethe" characters are just there to enclose the text.

Spaces or tabs contained inside the pair of " characters are treated as part of the text:

$nanme = "John Q Hacker";

Here, the spaces on either side of the Qare considered part of the text.
In Perl, enclosed text such asJohn Q Hacker isknown as acharacter string, and the surrounding

http://docs.rinet.ru:8080/P7/ch2.htm (4 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

characters are an example of string delimiters. Y ou learn more about character strings on Day 3;
for now, all you need to know isthat everything insidethe"” charactersistreated as a single unit.

Performing Arithmetic

Asyou've seen, the assignment operator = takes the value to the right of the = sign and assignsiit to
the variable on the left of the =:

$var = 42;

Here, the value 42 is assigned to the scalar variable $var .

In Perl, the assignment operator isjust one of many operators that perform tasks, or operations.
Each operation consists of the following components:

« The operator, such as the assignment operator (=)

« One or more operands, such as$var and 42

This might sound alittle confusing, but it's really quite straightforward. To illustrate, Table 2.1 lists
some of the basic arithmetic operators that Perl supports.

Table2.1. Basic arithmetic operators.

| Operator |Operation

| + |Addition

| - |Subtraction

| * IMultiplication
| / IDivision

Y ou use these operators in the same way you use +, -, and so on when you do arithmetic on paper.
For example, the following statement adds 17 and 5 and then assigns the result, 22, to the scalar
variable $var :

$var = 17 + 5;

Y ou can perform more than one arithmetic operation in a single statement like this one, which
assigns 19 to $var :

$var = 17 + 5 - 3;

Y ou can use the value of avariable in an arithmetic operation, as follows:

http://docs.rinet.ru:8080/P7/ch2.htm (5 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

$varl = 11;

$var 2

$varl * 6;

The second statement takes the value currently stored in $var 1, 11, and multipliesit by 6. The
result, 66, isassigned to $var 2.

Now examine the following statements:

$var 11;

$var = $var * 6;

Asyou can see, $var appearstwice in the second statement. What Perl doesin this caseis
straightforward:

1. Thefirst statement assignsthe value 11 to $var .

2. Inthe second statement, the Perl interpreter retrieves the current value of $var, 11, and
multipliesit by 6, producing the result 66.

3. Thisresult, 66, isthen assigned to $var (destroying the old value, 11).

Asyou can see, there is no ambiguity. Perl usesthe old value of $var in the arithmetic operation,
and then it assigns the result of the operation to $var .

INOTE

Perl always performs multiplication and division before addition
and subtraction-even if the addition or subtraction operator
appears first. Perl does thisto conform to the rules of arithmetic.
For example, in the following statement:

$var = 5 + 6 * 4;

$var isassigned 29: 6 ismultiplied by 4, and then 5 is added to
the result

Example of Miles-to-Kilometers Conversion

To see how arithmetic operators work, look at Listing 2.1, which performs asimple
miles-to-kilometers and kilometers-to-miles conversion.

Listing 2.1. Miles-to-kilometers converter.

http://docs.rinet.ru:8080/P7/ch2.htm (6 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

[EEN

#! [usr/ 1 ocal / bi n/ perl

3: print ("Enter the distance to be converted:\n");
4: $originaldi st = <STDI N>;

5: chop ($originaldist);

6: 3$mles = $originaldist * 0.6214;

7: $kilometers = $originaldist * 1.609;

8: print ($originaldist, " kiloneters =", $nles,
9: “mles\n");

10: print ($originaldist, " mles =", $kiloneters,
11: " Kkiloneters\n");

$ progran?_1

Enter the distance to be converted:

10

10 kil oneters = 6.2139999999999995 m | es

10 mles = 16.09 kil oneters

Line 3 of this program asks for a distance to convert. To do this, it prints the following text on your
screen

http://docs.rinet.ru:8080/P7/ch2.htm (7 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

Enter the di stance to be converted:

Note that the\ n at the end of the text is not printed. The\ n isaspecial sequence of characters that
represents the newline character; when the pr i nt library function sees\ n, it starts a new line of
output on your screen. (You'll learn more about special sequences of characters such as\ n on Day

3)

At this point, you can enter any number you want in response to the program's request for a distance.
The input/output example shows an entry of 10.

Line 4 retrieves the line of input you entered and then assignsiit to the variable named
$ori gi nal di st .

Line 5 callsthe library function chop, which getsrid of the closing newline character that is part of
the input line you entered. The chop library function is described in the following section, "The
chop Library Function."

Line 6 determines the number of miles that is equivalent to 10 kilometers and assigns this number to
the variable $ni | es.

Line 7 determines the number of kilometers that is equivalent to 10 miles and assigns this number to
the variable $ki | onet er s.

Lines 8-11 print the values of the variables $mi | es and $ki | onet er s.

INOTE

Different machines handle floating-point numbers (numbers
containing adecimal point) in different ways. Because of this, the
numbers displayed in your Listing 2.1 output might not be exactly
the same as the numbers shown here. These minor differences will
appear whenever a floating-point number is printed.

For more information on difficulties with floating-point numbers,
refer to the discussion of round-off errors on Day 3,

"Understanding Scalar Values.

The chop Library Function
The program shown in Listing 2.1 calls a special library function, chop. This function assumes that

aline of text is stored in the variable passed to it; chop'sjob is to delete the character at the right
end of the line of text. Consider this example:

$line = "This is nmy |ine";
chop ($line);

http://docs.rinet.ru:8080/P7/ch2.htm (8 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

After chop iscalled, the value of $I i ne becomes

This is ny lin

Hereswhy Listing 2.1 useschop. The statement

$ori gi nal di st = <STDI N>;

assigns aline of input from the standard input file to the variable $or i gi nal di st . When you type
10 and press Enter, the line of input assigned to $or i gi nal di st consists of three characters:. the
1, the 0, and a newline character. When chop is called, the newline character is removed, and

$ori gi nal di st now containsthe value 10, which can be used in arithmetic operations.

You'll learn more about using lines of input in arithmetic operations and about conversions from
lines of input to numbers on Day 3. For now, just remember to call chop after reading a number

from the standard input file.

$ori gi nal di st = <STDI N>;

chop ($originaldist);

Expressions

Now that you know a little more about operators, operands, and how they both work, it'stime to
learn some more terminology as well as the details about exactly what Perl is doing when it
evaluates operators such as the arithmetic operators and the assignment operator.

In Perl, acollection of operators and operands is known as an expression. Each expression yields a
result, which is the value you get when the Perl interpreter evaluates the expression (that is, when
the Perl interpreter performs the specified operations). For example, in the ssimple expression

4 * 5

the result is 20, or 4 times 5.

Y ou can think of an expression as a set of subordinate expressions. Consider this example:

http://docs.rinet.ru:8080/P7/ch2.htm (9 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow
4 * 5+ 3*6

When the Perl interpreter evaluates this expression, it first evaluates the subexpressions4 * 5 and
3 * 6, yidding the results 20 and 18. These results are then (effectively) substituted for the
subexpressions, |eaving the following:

20 + 18

The Perl interpreter then performs the addition operation, and the final result of the expression is 38.

Consider the following statement:

$var = 4 * 5 + 3;

Asyou can see, the Perl interpreter multiplies 4 by 5, adds 3, and assigns the result, 23, to $var .
Here's what the Perl interpreter is doing, more formally, when it evaluates this expression ($var =
4 * 5 + 3):

1. Thesubexpression4 * 5 isevauated, yielding the result 20. The expression being
evaluated is now
$var = 20 + 3
because the multiplication operation has been replaced by its result.

2. The subexpression 20 + 3 isevaluated, yielding 23. The expression is now
$var = 23

3. Findly, thevalue 23 isassigned to $var .

Here's one more example, this time using the value of avariable in an expression:

$varl = 15;

$var 2 $varl - 11;

When the Perl interpreter evaluates the second expression, it does the following:

1. It retrieves the value currently stored in $var 1, which is 15, and replaces the variable with its
value. This means the expression is now
$var2 = 15 - 11
and $var 1 isout of the picture.
2. The Perl interpreter performs the subtraction operation, yielding
$var2 = 4

http://docs.rinet.ru:8080/P7/ch2.htm (10 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

3. $var 2 isthus assigned the value 4.

INOTE

An expression and a statement are two different things. A
statement, however, can contain a Perl expression. For example,

the statement
$var2 = 4;
contains the Perl expression
$var2 = 4

and isterminated by a semicolon (;).

The distinction between statements and expressions will become
clearer when you encounter other places where Perl statements use
expressions. For example, expressions are used in conditional
statements, which you'll see later today.

Assignments and Expressions

The assignment operator, like all Perl operators, yields aresult. The result of an assignment
operation isthe value assigned. For example, in the expression

$var = 42

the result of the expressionis 42, which isthe value assigned to $var .

Because the assignment operator yields avalue, you can use more than one assignment operator in a
single expression:

$varl = $var2 = 42;

In this example, the subexpression

$var2 = 42

Is performed first. (You'll learn why on Day 4, "More Operators,” in the lesson about operator
precedence.) The result of this subexpressionis42, and the expression is now

$varl = 42

http://docs.rinet.ru:8080/P7/ch2.htm (11 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

At thispoint, 42 isassigned to $var 1.

Other Perl Operators

So far, you have encountered the following Perl operators, which are just afew of the many
operators Perl supports:

« Theassignment operator, =.
o Thearithmetic operators+,-,*,and/ .

You'll learn about additional Perl operators on Day 4.

Introduction to Conditional Statements

So far, the Perl programs you've seen have had their statements executed in sequential order. For
example, consider the kilometer-to-mile conversion program you saw in Listing 2.1:

#! [usr/ | ocal / bi n/ perl

print ("Enter the distance to be converted:\n");
$ori gi nal di st = <STDI N>;

chop ($ori gi nal dist);

$mles = $originaldist * 0.6214;

$kiloneters = $originaldist * 1.609;

print ($originaldist, " kiloneters =", $mles,
mles\n");
print ($originaldist, " mles =", $kiloneters,

kil ometers\n");

When the Perl interpreter executes this program, it starts at the top of the program and executes each
statement in turn. When the final statement is executed, the program is terminated.

All the statements in this program are unconditional statements-that is, they always are executed
sequentially, regardless of what is happening in the program. In some situations, however, you might

http://docs.rinet.ru:8080/P7/ch2.htm (12 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

want to have statements that are executed only when certain conditions are true. These statements are
known as conditional statements.

Perl supports avariety of conditional statements. In the following sections, you'll learn about these
conditional statements:

|Statement |Description

li f |Executes when a specified condition is true.

if-el se |Chooses between two alternatives.

if-elsif-else |Chooses between more than two alternatives.

Wil eandunti | Repeats a group of statements a specified number of
times.

Perl also has other conditional statements, which you'll learn about on Day 8, "More Control
Structures.”

The i1 f Statement

Thei f statement isthe simplest conditional statement used in Perl. The easiest way to explain how
thei f statement worksisto show you a simple example:

i f ($nunber) {

print ("The nunber is not zero.\n");

Thei f statement consists of (closing brace character):

This statement consists of two parts:
« The code between the if and the open brace character ({).
« The code betweenthe{ andthe}.

Thefirst part is known as a conditional expression; the second part is a set of one or more statements
called a statement block. Let's ook at each part in detail.

The Conditional Expression

Thefirst part of ani f statement-the part between the parentheses-is the conditional expression
associated with thei f statement. This conditional expression isjust like any other expression you've
seen so far; in fact, you can use any legal Perl expression as a conditional expression.

When the Perl interpreter sees a conditional expression, it evaluates the expression. The result of the
expression is then placed in one of two classes.

http://docs.rinet.ru:8080/P7/ch2.htm (13 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow
« If theresult isanonzero value, the conditional expression istrue.
« If theresult is zero, the conditional expression isfalse.

The Perl interpreter uses the value of the conditional expression to decide whether to execute the
statements between the{ and} characters. If the conditional expression istrue, the statements are
executed. If the conditional expression is false, the statements are not executed.

In the example you have just seen,

i f ($nunber) {

print ("The nunber is not zero.\n");

the conditional expression consists of the value of the variable $nunber . If $nunber contains
something other than zero, the conditional expression istrue, and the statement

print ("The value is not zero.\n");

is executed. If $nunber currently is set to zero, the conditional expressionisfalse, and the pri nt
statement is not executed.

Listing 2.2 isaprogram that containsthissimplei f statement.

Listing 2.2. A program containing a smple exampleof ani f statement.

1. #!/usr/local/bin/perl

3: print ("Enter a nunber:\n");
4: $nunber = <STDI N>;

5: chop ($nunber);

6: if ($nunber) {

7: print ("The nunber is not zero.\n");

http://docs.rinet.ru:8080/P7/ch2.htm (14 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow
8. }

9: print ("This is the last line of the program\n");

$ progran? 2

Enter a nunber:

)

The nunber is not zero.

This is the last |line of the program

Lines 3, 4, and 5 of Listing 2.2 are similar to lines you've seen before. Line 3 tells you to enter a
number; line 4 assigns the line you've entered to the variable $numnber ; and line 5 throws away the
trailing newline character

Lines 6-8 constitute thei f statement itself. Asyou have seen, this statement evaluates the
conditional expression consisting of the variable $nunber . If $nunber isnot zero, the expression
istrue, and the call to pr i nt isexecuted. If $nunber iszero, the expression isfalse, and the call to
pri nt isskipped; the Perl interpreter thus jumpsto line 9.

The Perl interpreter executes line 9 and prints the following regardless of whether the conditional
expressioninline 6 istrue or false:

This is the last |line of the program
Now that you understand how ani f statement works, you're ready to see the formal syntax

definition for thei f statement.
The syntax for thei f statement is

http://docs.rinet.ru:8080/P7/ch2.htm (15 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

I f (expr) {

st at ement bl ock

Thisformal definition doesn't tell you anything you don't already know. expr refersto the
conditional expression, which evaluatesto either true or false. st at enment _bl ock isthe group of
statements that is executed when expr evaluatesto true.

.

WARNING

If you are familiar with the C programming language, you
probably have noticed that thei f statement in Perl is
syntactically similar tothei f statement in C. Thereisone
important difference, however: In Perl, the braces ({ and }) must
be present

The following statement isillegal in Perl becausethe{ and} are missing:

i f ($nunber)

print ("The value is not zero.\n");

Perl does support a syntax for single-line conditional statements. Thisis discussed on Day 8.

The Statement Block

The second part of thei f statement, the part between the{ and the}, is called a statement block. A
statement block consists of any number of legal Perl statements (including no statements, if you
like).

In the following example, the statement block consists of one statement:

print ("The value is not zero.\n");

INOTE

http://docs.rinet.ru:8080/P7/ch2.htm (16 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

A statement block can be completely empty. In this statement, for
example:

i f ($number == 21) {
}

there is nothing between the{ and } , so the statement block is
empty. Thisis perfectly legal Perl code, although it's not
particularly useful

Testing for Equality Using ==

So far, the only conditional expression you've seen is an expression consisting of asingle variable.
Although you can use any expression you like and any operators you like, Perl provides special
operators that are designed for use in conditional expressions. One such operator is the equality
comparison operator, ==.

The == operator, like the other operators you've seen so far, requires two operands or
subexpressions. Unlike the other operators, however, it yields one of two possible results: true or
false. (The other operators you've seen yield a numeric value as aresult.) The == operator works like
this:
« If the two subexpressions evaluate to the same numeric value, the == operator yields the result
true.

« If the two subexpressions have different values, the == operator yields the result false.
Because the == operator returns either true or false, it isideal for use in conditional expressions,

because conditional expressions are expected to evaluate to either true or false. For an example, ook
at Listing 2.3, which compares two numbers read in from the standard input file.

Listing 2.3. A program that usesthe equality-comparison operator to compar e two
numbersentered at the keyboard.

1. #!/usr/local/bin/perl

3: print ("Enter a nunber:\n");
4: $nunberl = <STDI N>;
5: chop ($nunberl);

6: print ("Enter another nunber:\n");

http://docs.rinet.ru:8080/P7/ch2.htm (17 of 38) [2/17/2007 5:59:25 AM]

Day 2 -- Basic Operators and Control Flow

7: $nunber2 = <STDI N>;

8: chop ($nunber?2);

9: if ($nunberl == $nunber2) {

10: print ("The two nunbers are equal.\n");
11: }

12: print ("This is the last line of the program\n");

$ progran2_3

Enter a nunber:

17

Ent er anot her nunber:

17

The two nunbers are equal .

This is the last line of the program

Lines 3-5 are again similar to statements you've seen before. They print a message on your screen,
read a number into the variable $nunber 1, and chop the newline character from the number

Lines 6-8 repeat the preceding process for a second number, which is stored in $nunber 2.

Lines 9-11 containthei f statement that compares the two numbers. Line 9 contains the conditional
expression

http://docs.rinet.ru:8080/P7/ch2.htm (18 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

$nunber1l == $nunber 2

If the two numbers are equal, the conditional expression istrue, and the pri nt statement in line 10
Is executed. If the two numbers are not equal, the conditional expression isfalse, sothepri nt
statement in line 10 is not executed; in this case, the Perl interpreter skips to the first statement after
thei f statement, whichisline 12.

Line 12 is executed regardless of whether or not the conditional expression inline 9 istrue. It prints
the following message on the screen:

This is the last line of the program

>,

WARNING

Make sure that you don't confuse the = and == operators. Because
any expression can be used as a conditional expression, Perl is
guite happy to accept statements such as

i f ($nunmber = 5) {

print ("The nunber is five.\n");
}

Here, thei f statement is evaluated as follows:

1. The number 5 is assigned to $number, and the following expression
yields the result 5:
$nunber =5

2. Thevaue5 isnonzero, so the conditional expression istrue.
3. Because the conditional expression istrue, this statement is executed:
print ("The nunber is five.\n");

Note that the pr i nt statement is executed regardless of what the
value of $nunber wasbeforethei f statement. Thisis because
thevalue 5 isassigned to $nunber by the conditional
expression.

To repeat: Be careful when you use the == operator

Other Comparison Operators

The == operator is just one of many comparison operators that you can use in conditional
expressions. For acomplete list, refer to Day 4.

http://docs.rinet.ru:8080/P7/ch2.htm (19 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

Two-Way Branching Using i f and el se

When you examine Listing 2.3 (shown previously), you might notice a problem. What happensif the
two numbers are not equal? In this case, the statement

print ("The two nunbers are equal.\n");

is not printed. In fact, nothing is printed.

Suppose you want to modify Listing 2.3 to print one message if the two numbers are equal and
another message if the two numbers are not equal. One convenient way of doing thisiswith the
| f -el se statement.

Listing 2.4 isamodification of the programin Listing 2.3. It usesthei f -el se statement to print
one of two messages, depending on whether the numbers are equal .

Listing 2.4. A program that usesthei f -el se statement.

1: #!/usr/local/bin/perl

3: print ("Enter a nunber:\n");

4: $nunberl = <STDI N>;

5: chop ($nunberl);

6: print ("Enter another nunber:\n");
7: $nunber2 = <STDI N>;

8: chop ($nunber?2);

9: if ($nunberl == $nunber2) {

10: print ("The two nunbers are equal.\n");
11: } else {
12: print ("The two nunbers are not equal.\n");

http://docs.rinet.ru:8080/P7/ch2.htm (20 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

13: }

14: print ("This is the last Iine of the program\n");

$ progran?_4

Enter a nunber:

17

Ent er anot her nunber:

18

The two nunbers are not equal.

This is the last |line of the program

Lines 3-8 areidentical to thosein Listing 2.3. They read in two numbers, assign them to $nunber 1
and $nunber 2, and chop their newline characters

Line 9 compares the value stored in $nunber 1 to the value stored in $nunber 2. If the two values
areequal, line 10 is executed, and the following message is printed:

The two nunbers are equal .

The Perl interpreter then jumpsto the first statement after thei f -el se statement-line 14.

If the two values are not equal, line 12 is executed, and the following message is printed:

The two nunbers are not equal.

http://docs.rinet.ru:8080/P7/ch2.htm (21 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

The interpreter then continues with the first statement after thei f -el se-line 14.

In either case, the Perl interpreter executes line 14, which prints the following message:

This is the last |line of the program

The syntax for thei f -el se statement is

I f (expr) {
statenment bl ock 1
} else {

statenent bl ock 2

Asinthei f statement, expr isany expression (it isusualy aconditional expression).
st at enent bl ock_1 istheblock of statements that the Perl interpreter executesif expr istrue,
and st at enent _bl ock_2 isthe block of statements that are executed if expr isfalse.

Note that the el se part of thei f -el se statement cannot appear by itself; it must aways follow an
i f.

|TIP
In Perl, asyou've learned, you can use any amount of white space
to separate tokens. This means that you can present conditional
statementsin a variety of ways.
The examplesin this book use what is called the one true brace
style:
i f ($nunmber == 0) {
print ("The nunber is zero.\n");
} else {
print ("The nunber is not zero.\n");
}
In this brace style, the opening brace ({) appears on the same line
asthei f orel se, and the closing brace (}) startsanew line.
Other programmers insist on putting the braces on separate lines:
I f ($nunber == 0)
{
print ("The nunber is zero.\n");

http://docs.rinet.ru:8080/P7/ch2.htm (22 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

}

el se

{

print ("The nunber is not zero.\n");
}

Still others prefer to indent their braces:
i f ($nunmber == 0)
{

print ("The nunber is not zero.\n");

}

| prefer the one true brace style because it is both legible and
compact. However, it doesn't really matter what brace style you
choose, provided that you follow these rules:

The brace styleisconsistent. Every i f and el se that appearsin your
program should have its braces displayed in the same way.

The brace style is easy to follow.

The statement blocks inside the braces always should be indented in the
same way.

If you do not follow a consistent style, and you write statements

such as

i f ($nunmber == 0) { print ("The nunber is

zero"); }

you'll find that your code is difficult to understand, especially

when you start writing longer Perl programs

Multi-Way Branching Using el si f

Listing 2.4 (which you've just seen) shows how to write a program that chooses between two
aternatives. Perl also provides a conditional statement, thei f -el si f -el se statement, which

selects one of more than two alternatives. Listing 2.5 illustratesthe use of el si f .

Listing 2.5. A program that usesthei f -el si f -el se statement.

1:

3:

#! [usr/ | ocal / bi n/ perl

print ("Enter a nunber:\n");

http://docs.rinet.ru:8080/P7/ch2.htm (23 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

4: $nunberl = <STDI N>;

5: chop ($nunberl);

6: print ("Enter another nunber:\n");

7: $nunber2 = <STDI N>;

8: chop ($nunber?2);

9: if ($nunberl == $nunber2) {

10: print ("The two nunbers are equal.\n");

11: } elsif ($nunberl == $nunber2 + 1) {

12: print ("The first nunmber is greater by one.\n");

13: } elsif ($nunberl + 1 == $nunber2) {

14: print ("The second nunber is greater by one.\n");
15: } else {

16: print ("The two nunbers are not equal .\n");

17: }

18: print ("This is the last line of the program\n");

$ progran2_5

Enter a nunber:

17

Ent er anot her nunber:
18

The second nunber is greater by one.

http://docs.rinet.ru:8080/P7/ch2.htm (24 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

This is the last |line of the program

$

Y ou aready are familiar with lines 3-8. They obtain two numbers from the standard input file and
assign themto $nunber 1 and $nunber 2, chopping the terminating newline character in the
process

Line 9 checks whether the two numbers are equal. If the numbers are equal, line 10 is executed, and
the following message is printed:

The two nunbers are equal.

The Perl interpreter then jumpsto the first statement after thei f -el si f -el se statement, whichis
line 18.

If the two numbers are not equal, the Perl interpreter goesto line 11. Line 11 performs another
comparison. It adds 1 to the value of $nurnber 2 and compares it with the value of $nunber 1. If
the two values are equal, the Perl interpreter executes line 12, printing the message

The first nunber is greater by one.

The interpreter then jumpsto line 18-the statement following thei f -el si f -el se statement.

If the conditional expressionin line 11 isfalse, the interpreter jumpsto line 13. Line 13 adds 1 to the
value of $nunber 1 and comparesit with the value of $nunber 2. If these two values are equal, the
Perl interpreter executes line 14, which prints

The second nunber is greater by one.

on the screen. The interpreter then jumpsto line 18.

If the conditional expression in line 13 isfalse, the Perl interpreter jumps to line 15 and executes line
16, which prints

The two nunbers are not equal.

http://docs.rinet.ru:8080/P7/ch2.htm (25 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

on the screen. The Perl interpreter continues with the next statement, which isline 18.

If you have followed the program logic to this point, you've realized that the Perl interpreter
eventually reaches line 18 in every case. Line 18 prints this statement:

This is the last |line of the program

The syntax of thei f -el si f -el se statement isasfollows:

I (expr_1) {
statenment bl ock 1
} elsif (expr_2) {
statenent bl ock 2
} elsif (expr_3) {

st at enment bl ock 3

} else {

def aul t st at ement bl ock

Here, expr 1, expr _2,andexpr 3 areconditional expressions. st at enent bl ock 1,
statenment bl ock _2,statenent bl ock 3, anddefaul t _statenent bl ock are
blocks of statements.

The. . . indicatesthat you can have as many el si f statementsasyou like. Each el si f statement
has the same form:

} elsif (expr) {

st at ement _bl ock

http://docs.rinet.ru:8080/P7/ch2.htm (26 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

}

Syntactically, ani f -el se statementisjustani f -el si f -el se statement withno el si f parts.

If you want, you can leave out the el se part of thei f -el si f -el se statement, asfollows:

I f (expr_1) {

statenent bl ock 1
} elsif (expr_2) {

st at enent bl ock 2
} elsif (expr_3) {

statenment bl ock 3

Here, if none of the expressions-expr 1, expr 2, expr _3, and so on-are true, the Perl interpreter
just skipsto the first statement following thei f -el si f -el se statement.
|NOTE

Theel si f partsof thei f -el si f -el se statement must appear
between thei f part and the el se part

Writing Loops Using the whi | e Statement

The conditional statements you've seen so far enable the Perl interpreter to decide between
alternatives. However, each statement in the Perl programs that you have seen is either not executed
or is executed only once.

Perl aso enables you to write conditional statements that tell the Perl interpreter to repeat a block of
statements a specified number of times. A block of statements that can be repeated is known as a
loop.

The simplest way to write aloop in Perl iswith thewhi | e statement. Here is asimple example of a
whi | e statement:

whil e ($nunmber == 5) {

http://docs.rinet.ru:8080/P7/ch2.htm (27 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

print ("The nunber is still 5'\n");

Thewhi | e statement is structurally similar tothei f statement, but it works in aslightly different
way. Here's how:

« First, the conditional expression located between the parentheses is tested.

« If the conditional expression istrue, the statement block betweenthe{ and} isexecuted. If
the expression is false, the statement block is skipped, and the Perl interpreter jumpsto the
statement following the whi | e statement. (Thisis called exiting the loop.)

« If the statement block is executed, the Perl interpreter jumps back to the start of thewhi | e
statement and tests the conditional expression over again. (Thisisthe looping part of the
whi | e statement, because at this point the Perl interpreter is executing a statement it has
executed before.)

The statement block in thewhi | e statement is repeated until the conditional expression becomes
false. This means that the statement

whil e ($nunber == 5) {

print ("The nunber is still 5!'\n");

loops forever (which isreferred to as going into an infinite loop) if the value of $nunber is5,
because the value of $nunber never changes and the following conditional expression is always
true:

$nunber ==

For amore useful example of awhi | e statement-one that does not go into an infinite loop-take a
look at Listing 2.6.

Listing 2.6. A program that demonstratesthe whi | e statement.

1: #!/usr/local/bin/perl

http://docs.rinet.ru:8080/P7/ch2.htm (28 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

2:

3: $done = 0;

4: $count = 1;

5. print ("This line is printed before the | oop starts.\n");

6: while ($done == 0) {

7: print ("The value of count is ", $count, "\n");
8: if ($count == 3) {

9: $done = 1;

10: }

11: $count = $count + 1;

12: }

13: print ("End of |oop.\n");

$ progran_6

This line is printed before the |loop starts.
The value of count is 1

The val ue of count is 2

The val ue of count is 3

End of | oop.

http://docs.rinet.ru:8080/P7/ch2.htm (29 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

Lines 3-5 prepare the program for looping. Line 3 assigns the value O to the variable $done. (As
you'll see, the program uses $done to indicate whether or not to continue looping.) Line 4 assigns
the value 1 to the variable $count . Line 5 prints the following line to the screen

This line is printed before the |oop starts.

Thewhi | e statement appearsin lines 6-12. Line 6 contains a conditional expression to be tested. If
the conditional expression istrue, the statement block in lines 7-11 is executed. At this point, the
conditional expression istrue, so the Perl interpreter continues with line 7.

Line 7 prints the current value of the variable $count . At present, $count isset to 1. This means
that line 7 prints the following on the screen:

The val ue of count i1is 1

Lines 8-10 test whether $count has reached the value 3. Because $count is1 at the moment, the
conditional expressionin line 8 isfalse, and the Perl interpreter skipsto line 11.

Line 11 adds 1 to the current value of $count , setting it to 2.

Line 12 isthe bottom of the whi | e statement. The Perl interpreter now jumps back to line 6, and the
whole process is repeated. Here's how the Perl interpreter continues from here:

e Line6: $done == 0 istrue, so continue.
e Line7:Print The val ue of count i s 2 onthescreen.
« Line8: $count is2; $count == 3isfalse soskiptolinell.

e Linell: 1lisaddedto $count ; $count isnow 3.

o Line 12: Jump back to the start of the loop, whichisline 6.

e Line6: $done == 0 istrue, so continue.

e Line7:Print The val ue of count is 3 onthescreen.

e Line8: $count is3; $count == 3istrue, andthei f statement block is executed.

o Line9: $done isset to 1. Execution continues with the first statement after thei f , whichis
line 11.

o Linell: $count issetto4.

e Line 12: Jump back to line 6.

e Line6: $done == 0 isnow fase, because the value of $done is 1. The Perl interpreter
exits the loop and continues with the first statement after whi | e, whichisline 13.

Line 13 prints the following message on the screen:

http://docs.rinet.ru:8080/P7/ch2.htm (30 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

End of | oop.

At this point, program execution terminates because there are no more statements to execute.

The syntax for thewhi | e statement is

while (expr) {

st at enent bl ock

Asyou can see, thewhi | e statement is syntactically similar tothei f statement. expr isa
conditional expression to be evaluated, and st at enent _bl ock isablock of statements to be
executed while expr istrue.

Nesting Conditional Statements

Thei f statement in Listing 2.6 (shown previously) is an example of a nested conditional statement.
It is contained inside another conditional statement (the whi | e statement). In Perl, you can nest any
conditional statement inside another. For example, you can have awhi | e statement inside another
whi | e statement, as follows:

while (expr_1) {
sonme_st atenents
while (expr_2) {
| nner _st at ement bl ock

}

sone_nore_statenents

Similarly, you can haveani f statement inside another i f statement, or you can have awhi | e
statement insideani f statement.

Y ou can nest conditional statementsinsideel si f andel se partsof i f statements as well:

http://docs.rinet.ru:8080/P7/ch2.htm (31 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

i f ($nunber == 0) {

some statenments go here
} elsif ($nunber == 1) {

whil e ($nunber2 == 19) {

here is a place for a statenent bl ock

} else {
whil e ($nunmber2 == 33) {

here is a place for another statenent bl ock

The braces ({ and }) around the statement block for each conditional statement ensure that the Perl
interpreter never gets confused.

|TIP

If you plan to nest conditional statements, it's agood ideato
indent each statement block to indicate how many levels of
nesting you are using. If you write code such as the following, it's
easy to get confused:

whil e ($done == 0) {

print ("The value of count is", $count,

"\'n");

if ($count == 3) {

$done = 1;

}

$count = $count + 1;

}

Although this code is correct, it's not easy to see that the statement
$done = 1;

isactually insideani f statement that isinsideawhi | e
statement. Larger and more complicated programs rapidly become
unreadable if you do not indent properly.

http://docs.rinet.ru:8080/P7/ch2.htm (32 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

Looping Using theunti | Statement

Another way to loop in Perl iswiththeunt i | statement. It issimilar in appearance to thewhi | e

statement, but it worksin adlightly different way.
o Thewhi | e statement loops while its conditional expression istrue.

« Theunti| statement loops until its conditional expression istrue (that is, it loopsaslong as

its conditional expression isfalse).

Listing 2.7 contains an example of theunt i | statement.

Listing 2.7. A program that usestheunt i | statement.

10:

11:

12:

#! /usr/ 1 ocal / bi n/ perl
print ("What is 17 plus
$correct _answer = 43;
$i nput _answer = <STDI N>;

chop ($i nput_answer);

26?2\ n") ;

the correct answer

$correct _answer) {

Keep trying!\n");

<STDI N>;

until ($input_answer ==
print ("Wong!
$i nput _answer =
chop ($i nput_answer);
}

print ("You've got

it1\n");

http://docs.rinet.ru:8080/P7/ch2.htm (33 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

$ progran?_ 7

What is 17 plus 267
39

Wong! Keep trying!
43

You' ve got it!

Lines 3 and 4 set up the loop. Line 3 prints the following question on the screen

VWhat is 17 plus 267

Line 4 assigns the correct answer, 43, to $corr ect _answer .

Lines5 and 6 retrieve the first attempt at the answer. Line 5 reads aline of input and storesit in
$i nput _answer . Line 6 chops off the newline character.

Line 7 tests whether the answer entered is correct by comparing $i nput _answer with
$correct _answer . If thetwo are not equal, the Perl interpreter continues with lines 8-10; if they
are equal, the interpreter skipsto line 12.

Line 8 prints the following on the screen:

Wong! Keep trying!

Line 9 reads another attempt from the standard input file and storesit in $i nput _answer .

Line 10 chops off the newline character. At this point, the Perl interpreter jumps back to line 7 and
tests the new attempt.

The interpreter reaches line 12 when the answer is correct. At this point, the following message
appears on the screen, and the program terminates:

http://docs.rinet.ru:8080/P7/ch2.htm (34 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

You' ve got it!

The syntax for theunt i | statementis

until (expr) {

st at ement _bl ock

Asinthewhi | e statement, expr isaconditional expression, and st at enent _bl ock isa
statement block.

Summary

Today, you learned about scalar variables and how to assign values to them.

Scalar variables and values can be used by the arithmetic operators to perform the basic arithmetic
operations of addition, subtraction, multiplication, and division. The chop library function removes
the trailing newline character from aline, which enables you to read scalar values from the standard
input file.

A collection of operations and their values is known as an expression. The values operated on by a
particular operator are called the operands of the operator. Each operator yields a result, which then
can be used in other operations.

An expression can be divided into subexpressions, each of which isevaluated in turn.

Today you were introduced to the idea of a conditional statement. A conditional statement consists
of two components: a conditional expression, which yields aresult of either true or false; and a
statement block, which isagroup of statements that is executed only when the conditional
expression istrue.

Some conditional expressions contain the == operator, which returnstrueif its operands are
numerically equal, and returns false if its operands are not.
The following conditional statements were described today:

o Thei f statement, which isexecuted only if its conditional expression istrue

o Thei f -el se statement, which chooses between two aternatives

o Thei f -el si f -el se statement, which chooses between multiple alternatives

« Thewhi | e statement, which loops while a condition istrue

o Theunti | statement, whichloopsuntil aconditionistrue

Y ou also learned about nesting conditional statements, as well as about infinite loops and how to
avoid them.

http://docs.rinet.ru:8080/P7/ch2.htm (35 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

Q&A

Q:
A:

Q

>

> Q

> QO 20

Which should | use, thewhi | e statement or theunti | statement?

It doesn't matter, really; it just depends on which, in your judgment, is easier to read.

Once you learn about the other comparison operators on Day 4, "More Operators," you'll be
able to use thewhi | e statement wherever you canusean unt i | statement, and vice versa.
In Listing 2.7, you read input from the standard input filein two separate places. I's
thereany way | can reducethisto one?

Y es, by using the do statement, which you'll encounter on Day 8, "More Control
Structures.”

Do really need both a$done variable and a $count variablein Listing 2.6?

No. On Day 4 you'll learn about comparison operators, which enable you to test whether a
variable isless than or greater than a particular value. At that point, you won't need the
$done variable.

How many el si f partscan | haveinani f -el si f -el se statement?

Effectively, as many asyou like. (Thereis an upper limit, but it's so large that you are not
likely ever to reachit.)

How much nesting of conditional statementsdoes Perl allow? Can | put ani f insidea
whi | e that isinsidean i f thatisinsdeanunti | ?

Yes. You can nest as many levels deegp as you like. Generally, though, you don't want to go
too many levels down because your program will become difficult to read.

The logical operators, which you'll learn about on Day 4, make it possible to produce more
complicated conditional expressions. They'll eliminate the need for too much nesting.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material
covered and exercisesto give you experience in using what you've learned. Try and understand the
quiz and exercise answers before you go on to tomorrow's lesson.

Quiz

1. Definethe following terms:

expression

operand

conditional statement
statement block
infinite loop

Poo oW

2. When doesawhi | e statement stop looping?

3. Whendoesanunt i | statement stop looping?

4. What does the == operator do?

5. What isthe result when the following expression is evaluated?

http://docs.rinet.ru:8080/P7/ch2.htm (36 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

14 + 6 * 3 - 10/ 2

6. Which of the following are legal scalar variable names?

$hel l o

$ test

$now is the tine to cone to the aid of the party
$fri es&gravy

$96t ear s

$tea for 2

P o0 oo

Exercises

1. Write aPerl program that reads in a number, multipliesit by 2, and prints the result.
2. Write a Perl program that reads in two numbers and does the following:
o ItprintsError: can't divide by zero if thesecond numberisO.

o If thefirst number is O or the second number is 1, it just prints the first number (because
no division is necessary).

o Inall other cases, it divides the first number by the second number and prints the result.

3. Write a Perl program that uses the whi | e statement to print out the first 10 numbers (1-10) in
ascending order.

4. Write a Perl program that usestheunt i | statement to print out the first 10 numbersin
descending order (10-1).
5. BUG BUSTER: What iswrong with the following program? (Hint: there might be nor e
t han one bug!)
#! [usr/ 1 ocal / bi n/ perl
$val ue = <STDI N>;
i f ($value = 17) {
print ("You typed the nunber 17.\n");
el se {
print ("You did not type the nunber 17.\n");

6. BUG BUSTER: What iswrong with the following program?
#!/usr/ | ocal / bin/ perl
program which prints the next five nunbers after the
nunber typed in
$i nput = <STDI N>;
chop ($input);
$input = $input + 1; # start with the next nunber;
$input = $termnate + 5; # we want to loop five tines
until ($input == $term nate) {
print ("The next nunber is ", $termnate, "\n");

http://docs.rinet.ru:8080/P7/ch2.htm (37 of 38) [2/17/2007 5:59:26 AM]

Day 2 -- Basic Operators and Control Flow

http://docs.rinet.ru:8080/P7/ch2.htm (38 of 38) [2/17/2007 5:59:26 AM]

http://docs.rinet.ru:8080/P7/index.htm

Day 3 -- Understanding Scalar Values

Chapter 3

Understanding Scalar Values

CONTENTS

e What IsaScdar Vaue?
o Integer Scalar Vaues

o Integer Scalar Value Limitations
» Floating-Point Scalar Values

o Floating-Point Arithmetic and Round-Off Error
« Using Octal and Hexadecimal Notation

0 Decimal Notation

o Octal Notation

o Hexadecimal Notation

o Why Bother?
o Character Strings

o Using Double-Quoted Strings

0 Escape Sequences
o Single-Quoted Strings

« Interchangeability of Strings and Numeric Values
o Initial Vaues of Scalar Variables

o Summary

« Q&A

« Workshop
o Quiz

o Exercises

Today's lesson describes everything you need to know about scalar values in Perl. Today, you learn
about the following:

« Scalar values

« How integers are represented

» Foating-point values

« The octal and hexadecimal notations

http://docs.rinet.ru:8080/P7/ch3.htm (1 of 23) [2/17/2007 5:59:38 AM]

Day 3 -- Understanding Scalar Values
« Character strings, and using the double-quote and single-quote characters to enclose them

» Escape sequences
« Theinterchangeability of character strings and numeric values

What Is a Scalar Value?

Basically, ascalar value is one unit of data. This unit of data can be either a number or a chunk of
text.

There are several types of scalar values that Perl understands. Today's lesson describes each of them
in turn and shows you how you can use them.

Integer Scalar Values

The most common scalar valuesin Perl programs are integer scalar values, also known as integer
constants or integer literals.

An integer scalar value consists of one or more digits, optionally preceded by a plus or minus sign
and optionally containing underscores.

Here are afew examples:

14
10000000000
- 27

1_000_000

Y ou can use integer scalar valuesin expressions or assign them to scalar variables, asfollows:

$x = 12345;
if (1217 + 116 == 1333) {

statenent bl ock goes here

http://docs.rinet.ru:8080/P7/ch3.htm (2 of 23) [2/17/2007 5:59:38 AM]

Day 3 -- Understanding Scalar Values

Integer Scalar Value Limitations

In Perl, thereisalimit on the size of integersincluded in aprogram. To see what thislimit is and
how it works, take alook at Listing 3.1, which prints out integers of various sizes.

Listing 3.1. A program that displaysintegersand illustratestheir size limitations.

1. #!/usr/local/bin/perl

3: $value = 1234567890;

4: print ("first value is ", $value, "\n");
5: $value = 1234567890123456;

6: print ("second value is ", $value, "\n");
7: $value = 12345678901234567890;

8: print ("third value is ", $value, "\n");

$ progranB8_1
first value is 1234567890
second value is 1234567890123456

third value is 12345678901234567168

http://docs.rinet.ru:8080/P7/ch3.htm (3 of 23) [2/17/2007 5:59:38 AM]

Day 3 -- Understanding Scalar Values

This program assigns integer scalar values to the variable $val ue, and then prints $val ue

Lines 3 and 4 store and print the value 1234567890 without any difficulty. Similarly, lines5 and 6
successfully store and print the value 1234567890123456.

Line 7 attempts to assign the value 12345678901234567890 to $val ue. Unfortunately, this
number istoo big for Perl to understand. When line 8 prints out the value assigned to $val ue, it
prints out

12345678901234567168

Asyou can see, the last three digits have been replaced with different values.

Here's what has happened: Perl actually stores integersin the floating-point registers on your
machine. In other words, integers are treated as if they are floating-point numbers (numbers
containing decimal points).

On most machines, floating-point registers can store approximately 16 digits before running out of
space. As the output from line 8 shows, the first 17 digits of the number
12345678901234567890 are remembered and stored by the Perl interpreter, and the rest are
thrown away. This means that the value printed by line 8 is not the same as the value assigned in line
7.

This somewhat annoying limitation on the number of digitsin an integer can be found in aimost all
programming languages. In fact, many programming languages have an upper integer limit of
4294967295 (which isequal to 232 minus 1).

The number of digits that can be stored varies from machine to machine. For amore detailed
explanation, refer to the discussion of precision in the following section, "Floating-Point Scalar
Values."

i,

WARNING
An integer constant that starts with a0 is a special case:
$x = 012345;

The O at the beginning of the constant (also known as aleading
zero) tells the Perl interpreter to treat this as an octal integer
constant. To find out about octal integer constants, refer to the
section called "Using Octal and Hexadecimal Notation" |ater
today

http://docs.rinet.ru:8080/P7/ch3.htm (4 of 23) [2/17/2007 5:59:38 AM]

Day 3 -- Understanding Scalar Values

Floating-Point Scalar Values

Asyou have just seen, integersin Perl actually are represented as floating-point numbers. This
means that an integer scalar valueis actually a special kind of floating-point scalar value.

In Perl, afloating-point scalar value consists of al of the following:
« Anoptional minussign (-)
« A sequence of digits, optionally containing a decimal point
« Anoptional exponent

Here are some simple examples of floating-point scalar values:

11. 4
-275
-0.3
.3

3.

The optional exponent tells the Perl interpreter to multiply or divide the scalar value by a power of
ten. An exponent consists of all of the following:

« Theletter e (E isalso acceptable)
« Anoptiona + or -
« A one-, two-, or three-digit number

The number in the exponent represents the value by which to multiply or divide, represented as a
power of 10. For example, the exponent e+01 tellsthe Perl interpreter to multiply the scalar value

by 10 to the power of 1, or 10. This means that the scalar value 8e+01 is equivalent to 8 multiplied
by 10, or 80.

Similarly, the exponent e+02 is equivalent to multiplying by 100, e+03 is equivaent to multiplying
by 1,000, and so on. The following scalar values are all equal:

541e+01
54. 1e+02

5.41e+03

http://docs.rinet.ru:8080/P7/ch3.htm (5 of 23) [2/17/2007 5:59:38 AM]

Day 3 -- Understanding Scalar Values

A negative exponent tells the Perl interpreter to divide by 10. For example, the value 54e- 01 is
equivalent to 54 divided by 10, or 5.4. Similarly, e- 02 tells the Perl interpreter to divide by 100,
e- 03 to divide by 1,000, and so on.

The exponent e+00 is equivalent to multiplying by 1, which does nothing. Therefore, the following
values are equal:

5.12e+00

5.12

If you want, you can omit the + when you multiply by a power of ten.

5.47e+03

5.47e03

Listing 3.2 shows how Perl works with and prints out floating-point scalar values.

Listing 3.2. A program that displays various floating-point scalar values.

1. #!/usr/local/bin/perl

3: $value = 34.0;

4: print ("first value is ", $value, "\n");
5. $value = 114. 6e-01;

6: print ("second value is ", $value, "\n");
7: $value = 178. 263e+19;

8 print ("third value is ", $value, "\n");

9: $value = 123456789000000000000000000000;

http://docs.rinet.ru:8080/P7/ch3.htm (6 of 23) [2/17/2007 5:59:38 AM]

Day 3 -- Understanding Scalar Values

10: print ("fourth value is ", $value, "\n");
11: $value = 1.23e+999;

12: print ("fifth value is ", $value, "\n");
13: $value = 1.23e-999;

14: print ("sixth value is ", $value, "\n");

$ progranB8_2

first value is 34

second value is 11.460000000000001
third value is 1.7826300000000001e+21
fourth value is 1.2345678899999999e+29
fifth value is Infinity

sixth value is O

AsinListing 3.1, this program stores and prints various scalar values. Line 3 assigns the
floating-point value 34. 0 to $val ue. Line 4 then prints this value. Note that because there are no
significant digits after the decimal point, the Perl interpreter treats 34. 0 asif it isan integer

Line5assigns114. 6e- 01 to $val ue, and line 6 prints this value. Whenever possible, the Perl
interpreter removes any exponents, shifting the decimal point appropriately. Asaresult, line 6 prints
out

11. 460000000000001

http://docs.rinet.ru:8080/P7/ch3.htm (7 of 23) [2/17/2007 5:59:38 AM]

Day 3 -- Understanding Scalar Values

whichis114. 6e- 01 with the exponent e- 01 removed and the decimal point shifted one place to
the left (which is equivaent to dividing by 10).

Note that the number printed by line 6 is not exactly equal to the value assigned in line 5. Thisisa
result of round-off error. The floating-point register cannot contain the exact value 11. 46, soit
comes as close asit can. It comes pretty close-in fact, the first 16 digits are correct. This number of
correct digitsis known as the precision, and it is a property of the machine on which you are
working; the precision of a floating-point number varies from machine to machine. (The machine on
which | ran these test examples supports a floating-point precision of 16 or 17 digits. Thisis about
normal.)

[NOTE

The size of an integer isroughly equivaent to the supported
floating-point precision. If a machine supports a floating-point
precision of 16 digits, an integer can be approximately 16 digits
long.

Line 6 shows that a floating-point value has its exponent removed whenever possible. Lines 7 and 8
show what happens when a number is too large to be conveniently displayed without the exponent.
In this case, the number is displayed in scientific notation.

In scientific notation, one digit appears before the decimal point, and all the other significant digits
(the rest of the machine's precision) follow the decimal point. The exponent is adjusted to reflect this.
In this example, the number

178. 263e+19

Is converted into scientific notation and becomes

1. 7826300000000001e+21

Asyou can see, the decimal point has been shifted two places to the left, and the exponent has, as a
consequence, been adjusted from 19 to 21. As before, the 1 at the end is an example of round-off
error.

If an integer istoo large to be displayed conveniently, the Perl interpreter convertsit to scientific
notation. Lines 9 and 10 show this. The number

123456789000000000000000000000

IS converted to

http://docs.rinet.ru:8080/P7/ch3.htm (8 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

1. 2345678899999999e+29

Here, scientific notation becomes useful. At aglance, you can tell approximately how large the
number is. (In conventional notation, you can't do this without counting the zeros.)

Lines 11 and 12 show what happens when the Per| interpreter is given a number that istoo large to
fit into the machine's floating-point register. In this case, Perl just printstheword I nfinity.

The maximum size of afloating-point number varies from machine to machine. Generaly, the
largest possible exponent that can be stored is about e+308.

Lines 13 and 14 illustrate the case of a number having a negative exponent that istoo large (that is,
it'stoo small to store). In such cases, Perl either gets as close as it can or just prints 0.

The largest negative exponent that produces reliable valuesis about e- 309. Below that, accuracy
diminishes.
Floating-Point Arithmetic and Round-Off Error

The arithmetic operations you saw on Day 2, "Basic Operators and Control Flow," also work on

floating-point values. On that day, you saw an example of a miles-to-kilometers conversion program
that uses floating-point arithmetic.

When you perform floating-point arithmetic, you must remember the problems with precision and
round-off error. Listing 3.3 illustrates what can go wrong and shows you how to attack this problem.

Listing 3.3. A program that illustrates round-off error problemsin floating-point
arithmetic.

1. #!/usr/local/bin/perl

3: $value = 9.01e+21 + 0.01 - 9.01e+21;

4: print ("first value is ", $value, "\n");
5: $value = 9.01le+21 - 9.01le+21 + 0.01;

6: print ("second value is ", $value, "\n");

http://docs.rinet.ru:8080/P7/ch3.htm (9 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

$ progranB8_3
first value is O

second value is 0.01

Line 3 and line 5 both subtract 9. 01e+21 fromitself and add 0. 01. However, asyou can see
when you examine the output produced by line 4 and line 6, the order in which you perform the
addition and subtraction has a significant effect

Inline 3, avery small number, 0. 01, isadded to avery large number, 9. 01e+21. If you work it
out yourself, you see that theresultis9. 01000000000000000000001e+21.

Thefina 1 in the preceding number can be retained only on machines that support 24 digits of
precision in their floating-point numbers. Most machines, as you've seen, handle only 16 or 17 digits.
Asaresult, thefinal 1, along with some of the zeros, islost, and the number instead is stored as

9. 0100000000000000e+21.

Thisisthesameas9. 01e+21, which means that subtracting 9. 01e+21 yieldszero. The0. 01 is
lost along the way.

Line 5, however, doesn't have this problem. The two large numbers are operated on first, yielding O,
and then 0. 01 isadded. The result iswhat you expect: 0. 01.

The moral of the story: Floating-point arithmetic is accurate only when you bunch together
operations on large numbers. If the arithmetic operations are on values stored in variables, it might
not be as easy to spot this problem.

$result = $nunberl + $nunber2 - $nunber 3;

If Snunber 1 and $nunber 3 contain large numbers and $nunber 2 issmall, $r esul t islikely
to contain an incorrect value because of the problem demonstrated in Listing 3.3.

http://docs.rinet.ru:8080/P7/ch3.htm (10 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

Using Octal and Hexadecimal Notation

So far, al the integer scalar values you've seen have been in what normally is called base 10 or
decimal notation. Perl also enables you to use two other notations to represent integer scalar values:

» Base 8 notation, or octal
« Base 16 notation, or hexadecimal (sometimes shortened to hex)

To use octal notation, put azero in front of your integer scalar value:

$result = 047;

Thisassigns 47 octal, or 39 decimal, to $r esul t .

To use hexadecimal notation, put Ox in front of your integer scalar value, as follows:

$result = Ox1if;

This assigns 1f hexadecimal, or 31 decimal, to $r esul t .

Per| accepts either uppercase letters or lowercase letters as representations of the digits a through f:

Oxe;:

$result

$resul t OXE;

Both of the preceding statements assign 14 (decimal) to $r esul t .

If you are not familiar with octal and hexadecimal notations and would like to learn more, read the
following sections. These sections explain how to convert numbers to different bases. If you are
familiar with this concept, you can skip to the section called " Character Strings."

Decimal Notation

To understand how the octal and hexadecimal notations work, take a closer look at what the standard
decimal notation actually represents.

In decimal notation, each digit in a number has one of 10 values: the standard numbers O through 9.
Each digit in a number in decimal notation corresponds to a power of 10. Mathematically, the value
of adigit xinanumber is

http://docs.rinet.ru:8080/P7/ch3.htm (11 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

X * 10 to the exponent n,

where n isthe number of digits you have to skip before reaching x.

This might sound complicated, but it'sreally straightforward. For example, the number 243 can be
expressed as follows:

o 2* 10to the exponent 2 (which is 200), plus

e 4* 10to the exponent 1 (whichis40), plus

o 3* 10to the exponent O (whichis3* 1, whichis 3)
Adding the three numbers together yields 243.

Octal Notation

Working through these steps might seem like a waste of time when you are dealing with decimal
notation. However, once you understand this method, reading numbers in other notations becomes
simple.

For example, in octal notation, each digit x in a number is

X * 8 to the exponent n

where x isthe value of the digit, and n isthe number of digits to skip before reaching x. Thisisthe
same formula as in decimal notation, but with the 10 replaced by 8.
Using this method, here's how to determine the decimal equivalent of 243 octal:

e 2* 8totheexponent 2, whichis2* 64, or 128, plus

o 4* 8totheexponent 1, whichis4* 8, or 32, plus

o 3* 8totheexponent O, whichis3* 1,0r 3

Adding 128, 32 and 3 yields 163, which is the decimal notation equivalent of 243 octal.

Hexadecimal Notation

Hexadecimal notation works the same way, but with 16 as the base instead of 10 or 8. For example,
here's how to convert 243 hexadecimal to decimal notation:

o 2* 16tothe exponent 2, whichis2* 256, or 512, plus
e 4* 16tothe exponent 1, whichis4 * 16, or 64, plus
o 3* 16 tothe exponent O, whichis3* 1, or 3

Adding these three numbers together yields 579.

Note that the letters athrough f represent the numbers 10 through 15, respectively. For example,
here's the hexadecimal number fe in decimal notation:

http://docs.rinet.ru:8080/P7/ch3.htm (12 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values
o 15* 16to the exponent 1, whichis15* 16, or 240, plus
e 14* 16totheexponent O, whichis14* 1, or 14

Adding 240 and 14 yields 254, which is the decimal equivalent of fe.

Why Bother?

Y ou might be wondering why Perl bothers supporting octal and hexadecimal notation. Here's the
answer: Computers store numbers in memory in binary (base 2) notation, not decimal (base 10)
notation. Because 8 and 16 are multiples of 2, it is easier to represent stored computer memory in
base 8 or base 16 than in base 10. (You could use base 2, of course; however, base 2 numbers are
clumsy because they are very long.)

INOTE

Per| supports base-2 operations on integer scalar values. These
operations, called bit-manipulation operations, are discussed on
Day 4, "More Operators.

Character Strings

On previous days, you've seen that Perl enables you to assign text to scalar variables. In the
following statement, for instance

$var = "This is sone text";

thetext This i s some text isanexample of what is called a character string (frequently
shortened to just string). A character string is a sequence of one or more letters, digits, spaces, or
special characters.

The following subsections show you
« How you can substitute for scalar variables in character strings

« How to add escape sequences to your character strings
« How to tell the Perl interpreter not to substitute for scalar variables

INOTE

C programmers should be advised that character stringsin Perl do
not contain a hidden null character at the end of the string. In Perl,
null characters can appear anywhere in astring. (See the
discussion of escape sequences later today for more details.

http://docs.rinet.ru:8080/P7/ch3.htm (13 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

Using Double-Quoted Strings

Perl supports scalar variable substitution in character strings enclosed by double quotation-mark
characters. For example, consider the following assignments:

$nunber = 11;
$text = "This text contains the nunber $nunber.";

When the Perl interpreter sees $nunber inside the string in the second statement, it replaces
$nunber with its current value. This meansthat the string assigned to $t ext isactually

This text contains the nunber 11.

The most immediate practical application of thisisinthe pri nt statement. So far, many of the
pri nt statementsyou have seen contain several arguments, asin the following:

print ("The final result is ", $result, "\n");

Because Perl supports scalar variable substitution, you can combine the three argumentsto pr i nt
into a single argument, as in the following:

print ("The final result is $result\n");

INOTE

From now on, examples and listings that call pri nt use scalar
variable substitution because it is easier to read

Escape Sequences

Character strings that are enclosed in double quotes accept escape sequences for special characters.
These escape sequences consist of abackslash (\) followed by one or more characters. The most
common escape sequenceis\ n, which represents the newline character as shown in this example:

$text = "This is a string term nated by a newl i ne\n";

http://docs.rinet.ru:8080/P7/ch3.htm (14 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

Table 3.1 lists the escape sequences recognized in double-quoted strings.

Table 3.1. Escape sequencesin strings.

Escape Description
Sequence
| \a [Bell (beep)
| \'b |Backspace
] \cn IThe Ctrl+n character
| \e |Escape
| \E IEndstheeffect of \ L,\ Uor\ Q
] \ f |Form feed
] \ |Forces the next letter into lowercase
| \L |All following letters are lowercase
| \'n INewline
| \r |Carriage return
\Q Do not look for special pattern
characters

| \ t Tab
| \u |Force next letter into uppercase
] \ U |All following letters are uppercase
y \v \Vertical tab

The\ Qescape sequence is useful only when the string is used as a pattern. Patterns are described on
Day 7, "Pattern Matching."

The escape sequences\ L, \ U, and\ Qcan beturned off by \ E, asfollows:

$a = "T\LHIS IS A\ESTRING'; # sane as "This is a STRI NG'

To include a backslash or double quote in a double-quoted string, precede the backslash or quote
with another backslash:

$resul t "A quote \" in a string";

"“A backslash \\ in a string”;

$resul t

A backslash also enables you to include a$ character in a string. For example, the statements

$result = 14;

http://docs.rinet.ru:8080/P7/ch3.htm (15 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

print("The value of \$result is $result.\n");

print the following on your screen:

The val ue of $result is 14.

Y ou can specify the ASCII value for a character in base 8 or octal notation using \ nnn, where each
n isan octal digit; for example:

$result = "\377"; # this is the character 255, or ECF

Y ou can also use hexadecimal notation to specify the ASCII value for a character. To do this, use the
sequence\ xnn, where each n is ahexadecimal digit.

$result = "\ xff"; # this is also 255

Listing 3.4 is an example of a program that uses escape sequences. This program takes aline of input
and convertsit to a variety of cases.

Listing 3.4. A case-conversion program.

1. #!/usr/local/bin/perl

3: print ("Enter a line of input:\n");

4: S$inputline = <STDI N>;

5: print ("uppercase: \US$inputline\E\n");
6: print ("lowercase: \LS$inputline\E\n");

7: print ("as a sentence: \L\u$inputline\E\n");

http://docs.rinet.ru:8080/P7/ch3.htm (16 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

$ progranB8_4

Enter a |ine of input:

tHs Is My | NpUT Li NE.

uppercase: THI S I'S MY | NPUT LI NE.
| onercase: this is ny input line.

as a sentence: This is ny input |ine.

Line 3 of this program reads aline of input and storesit in the scalar variable $i nput | i ne

Line 5 replaces the string $i nput | i ne with the current value of the scalar variable $i nput | i ne.
The escape character \ Utells the Perl interpreter to convert everything in the string into uppercase
until it seesa\ E character; as aresult, line 4 writes the contents of $i nput | i ne in uppercase.

Similarly, line 6 writes the input line in all lowercase characters by specifying the escape character
\ L inthe string.

Line 7 combines the escape characters\ L and \ u. The\ L specifiesthat everything in the string isto
be in lowercase; however, the\ u special character temporarily overrides this and tells the Perl
interpreter that the next character isto be in uppercase. When this character-the first character in the
line-is printed, the\ L escape character remains in force, and the rest of the lineis printed in
lowercase. Theresult isasif theinput lineisasingle sentence in English. Thefirst character is
capitalized, and the remainder isin lowercase.

Single-Quoted Strings

Perl also enables you to enclose strings using the' (single quotation mark) character:

$text = 'This is a string in single quotes';

There are two differences between double-quoted strings and single-quoted strings. The first

http://docs.rinet.ru:8080/P7/ch3.htm (17 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

difference isthat scalar variables are replaced by their values in double-quoted strings but not in
single-quoted strings. The following is an example:

$string = "a string";
$text = "This is $string"; # beconmes "This is a string"
$text = "This is $string'; # remains 'This is $string'

The second difference is that the backslash character, \ , does not have a special meaning in
single-quoted strings. This means that the statement

$text = 'This is a string.\n";

assigns the following string to $t ext :

This is a string.\n

The\ character is specia in only two instances for single-quoted strings. The first is when you want
to include a single-quote character * in astring.

$text = "This string contains \', a quote character';

The preceding line of code assigns the following string to $t ext :

This string contains ', a quote character

The second instance is to escape the backslash itself.

$text = 'This string ends with a backslash \\';

The preceding code line assigns the following string to $t ext :

This string ends with a backsl ash \

http://docs.rinet.ru:8080/P7/ch3.htm (18 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

Asyou can see, the double backslash makes it possible for the backslash character (\) to be the last

character in a string.

i,

WARNING

Single-quoted strings can be spread over multiplelines. The
Statement

$text = 'This is two

| i nes of text

IS equivalent to the statement
$text = "This is two\nlines of text\n";

This meansthat if you forget the closing' for astring, the Perl
interpreter islikely to get quite confused because it won't detect an
error until after it starts processing the next line

Interchangeability of Strings and Numeric Values

Asyou've seen, you can use a scalar variable to store a character string, an integer, or a

floating-point value. In scalar variables, a value that was assigned as a string can be used as an

integer whenever it makes sense to do so, and vice versa. In the following example:

$string
$nunber

$result

thevalue of $st r i ng is converted to an integer and added to the value of $nunber . The result of

= "43";
= 28;

$string + $nunber;

the addition, 71, isassigned to $r esul t .

Another instance in which strings are converted to integers is when you are reading a number from

the standard input file. The following is some code similar to code you've seen before:

$nunber

= <STDI N>,

chop ($nunber);

$result

= $nunber + 1;

http://docs.rinet.ru:8080/P7/ch3.htm (19 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

Thisiswhat is happening: When $nunber isassigned aline of standard input, it really is being
assigned a string. For instance, if you enter 22, $nunber isassigned the string 22\ n (the\ n
represents the newline character). The chop function removesthe\ n, leaving the string 22, and this
string is converted to the number 22 in the arithmetic expression.

™

WARNING

If astring contains characters that are not digits, the string is
converted to O when used in an integer context. For example:

$result = "hello" * 5;
this assigns 0 to $result, since "hello"
beconmes 0

Thisistrue even if the string is a valid hexadecimal integer if the
guotes are removed, asin the following:

$result = "Oxff" + 1;

In cases like this, Perl does not tell you that anything has gone
wrong, and your results might not be what you expect.

Also, strings containing misprints might not contain what you
expect. For example:

$result = "12084";: # the letter O not the
nunber O

When converting from a string to an integer, Perl starts at the | eft
and continues until it sees aletter that is not adigit. In the
preceding instance, 12084 is converted to the integer 12, not
12034

Initial Values of Scalar Variables

In Perl, al scalar variables have an initial value of the null string, " " . This means that you do not
need to define avalue for ascaar variable.

#! [usr/ | ocal / bi n/ perl
$result = $undefined + 2; # $undefined is not defined

print ("The value of \$result is $result.\n");

This short program is perfectly legal Perl. The output is

The val ue of $result is 2.

http://docs.rinet.ru:8080/P7/ch3.htm (20 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

Because $undef i ned isnot defined, the Perl interpreter assumes that its value is the null string.
Thisnull string is then converted to 0, because it is being used in an addition operation. The result of
the addition, 2, isassigned to $r esul t .

|TIP

Although you can use uninitialized variables in your Perl
programs, you shouldn't. If your Perl program gets to be large (as
many complicated programs do), it might be difficult to determine
whether a particular variable is supposed to be appearing for the
first time or whether it is a spelling mistake that should be fixed.
To avoid ambiguity and to make life easier for yourself, initialize
every scalar variable before using it

Summary

Perl supports three kinds of scalar values: integers, floating-point numbers, and character strings.

Integers can be in three notations: standard (decimal) notation, octal notation, and hexadecimal
notation. Octal notation isindicated by aleading O, and hexadecimal notation isindicated by a
leading Ox. Integers are stored as floating-point values and can be as long as the machine's
floating-point precision (usually 16 digits or so).

Floating-point numbers can consist of a string of digits that contain a decimal point and an optional
exponent. The exponent's range can be anywhere from about e- 309 to e+308. (This value might
be different on some machines.) When possible, floating-point numbers are displayed without the

exponent; failing that, they are displayed in scientific notation (one digit before the decimal point).

When you use floating-point arithmetic, be alert for round-off errors. Performing arithmetic
operations in the proper order-operating on large numbers first-might yield better results.

Y ou can enclose character strings in either double quotes (") or single quotes (*). If ascalar variable
name appears in a character string enclosed in double quotes, the value of the variable is substituted
for its name. Escape characters are recognized in strings enclosed in double quotes; these characters
are indicated by abackslash (\).

Character strings in single quotes do not support escape characters, with the exceptionof \ \ and\ ' .
Scalar variable names are not replaced by their values.

Strings and integers are freely interchangeable in Perl whenever it islogically possible to do so.

Q&A

Q: If Perl character stringsare not terminated by null characters, how doesthe Per|
inter preter know thelength of a string?

A: The Perl interpreter keeps track of the length of a string as well asits contents. In Perl, you
do not need to use anull character to indicate "end of string."

http://docs.rinet.ru:8080/P7/ch3.htm (21 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

Why does Per| use floating-point registersfor floating-point arithmetic even though
they cause round-off errors?

Basically, it's a performance issue. It's possible to write routines that store floating-point
numbers as strings and convert parts of these strings to numbers as necessary; however, you
often don't need more than 16 or so digits of precision anyway.

Applications that need to do high-speed arithmetic calculations of great precision usually run
on special computers designed for that purpose.

What happensif | forget to call chop when reading a number from the standard input
file?

Asit happens, nothing. Perl is smart enough to ignore white space at the end of aline that
consists only of anumber. However, it's a good idea to get into the habit of using chop to
get rid of atrailing newline at all times, because the trailing newline becomes significant
when you start doing string comparisons. (Y ou'll learn about string comparisons on Day 4,

"More Operators.")

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material
covered and exercises to give you experience in using what you've learned. Try and understand the
guiz and exercise answers before you go on to tomorrow's lesson.

Quiz

1. Define the following terms:
a round-of f error
b octal notation
C preci si on
d scientific notation

2. Convert the following numbers from octal notation to decimal:
a 0377
b 06
C 01131

3. Convert the following numbers from hexadecimal notation to decimal notation:

6.

a Oxf f
b Ox11
C Oxbead

What does the following line print?
print ("1 am bored\ b\ b\b\b\bhappy!\n");

Suppose the value of $numis 21. What string is assigned to $t ext in each of the following
cases?

a $text = "This string contains $num";
b $text = "\\$numis ny favorite nunber.";
C $text = "Assign \$numto this string.';

Convert the following numbers to scientific notation:

http://docs.rinet.ru:8080/P7/ch3.htm (22 of 23) [2/17/2007 5:59:39 AM]

Day 3 -- Understanding Scalar Values

a 43.71
b 0. 000006e- 02
C 3
d -1. 04
Exercises

1.

Write a program that prints every number from O to 1 that has asingle digit after the decimal
place (that is, 0.1, 0.2, and so on).

Write a program that reads aline of input and prints out the following:
o 1 if theline consists of a non-zero integer

o O if theline consists of O or astring
(Hint: Remember that character strings are converted to O when they are converted to
integers.)
Write a program that asks for a number and keeps trying until you enter the number 47. At that
point, it prints Cor r ect ! and rings a bell.

BUG BUSTER: What iswrong with the following program?
#! [usr/ 1 ocal / bi n/ perl

$i nputline = <STDI N>;

print ('here is the value of \$inputline\",

$i nputline");

BUG BUSTER: What iswrong with the following code fragment?
$numl = 6. 02e+23;

$nun? = 11. 4;

$nunB = 5. 171e+22;

$numd = -2.5;

$result = $nunl + $nun? - $nunB + $nuni;

BUG BUSTER: What iswrong with the following statement?
$I’ esult = "26" + "Oxce" + " 1":

http://docs.rinet.ru:8080/P7/ch3.htm (23 of 23) [2/17/2007 5:59:39 AM]

http://docs.rinet.ru:8080/P7/index.htm

Day 4 -- More Operators

Chapter 4

More Operators

CONTENTS

o Using the Arithmetic Operators

0 Exponentiation
o The Remainder Operator

o Unary Negation
o Using Comparison Operators

o Integer-Comparison Operators

o String-Comparison Operators

o String Comparison Versus Integer Comparison

o Comparison and Floating-Point Numbers

o Using Logical Operators
o Evaluation Within Logical Operators
o Logical Operators as Subexpressions

« Using Bit-Manipulation Operators
o What Bits Are and How They Are Used
o The Bit-Manipulation Operators

o Using the Assignment Operators

o Assignment Operators as Subexpressions

« Using Autoincrement and A utodecrement
o The Autoincrement Operator Pre-Increment
o The Autoincrement Operator Post-Increment

o The Autodecrement Operator

o Using Autoincrement With Strings

» The String Concatenation and Repetition Operators
o The String-Concatenation Operator
o The String-Repetition Operator
o Concatenation and Assignment
 Other Perl Operators
o The Comma Operator
o The Conditional Operator
o The Order of Operations
o Precedence
o Associativity
o Forcing Precedence Using Parentheses
e Summary
. Q&A
« Workshop

http://docs.rinet.ru:8080/P7/ch4.htm (1 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators

o Quiz

0 Exercises

On Day 2, "Basic Operators and Control Flow," you learned about the following operators:
o Thearithmetic operators +, - , *, and /
« The comparison operator ==
« The assignment operator =
Today, you learn about the rest of the operators that Perl provides, as well as about operator associativity and precedence. The
operators are
o The arithmetic operators* *, % and - (unary negation)
« The other integer- and string-comparison operators
« Thelogical operators
« The bit-manipulation operators
» Theassignment operators
« Autoincrement and autodecrement
« Concatenating and repeating strings
« Thecommaand conditional operators

Using the Arithmetic Operators

The arithmetic operators that you have seen so far-the +, - , *, and / operators-work the way you expect them to: They perform
the operations of addition, subtraction, multiplication, and division.

Perl also supports three other arithmetic operations:
« Exponentiation
« The modulo or remainder operation
o Unary negation

Although these operators aren't as intuitively obvious as the ones you've already seen, they are quite easy to use.

Exponentiation

The exponentiation operator, * * , provides a convenient way to multiply a number by itself repeatedly. For example, hereisa
simple Perl statement that uses the exponentiation operator:

$x = 2 ** 4

The expression2 ** 4 means "take four copies of two and multiply them." This statement assigns 16 to the scalar variable $x.

Note that the following statements are equivalent, but the first statement is much more concise:

$x = 2 ** 7;

$x 2*2*2*2*2%*2* 2

When an exponentiation operator is employed, the base value (the value to the left of the * *) is the number to be repeatedly
multiplied. The number to the right, called the exponent, is the number of times the multiplication is to be performed. Here are
some other simple examples of the exponentiation operator:

http://docs.rinet.ru:8080/P7/ch4.htm (2 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators

$x = 9 ** 2, # 9 squared, or 81
$x = 2 ** 3; #2* 2 * 2 or 8
$x = 43 ** 1; # this is just 43

The** operator also works on the values stored in variables:

$x :$y ** Q-

Here, the value stored in $y is multiplied by itself, and the result is stored in $x. $y is not changed by this operation.

$x = 2 ** By;

In this case, the value stored in $y becomes the exponent, and $x is assigned 2 multiplied by itself $y times.

Y ou can use the exponent operator with non-integer or negative exponents:
2 ** -5 # this is the fraction 1/32
5 ** 2.5 # this is 25 * the square root of 5

Listing 4.1 shows an example of a simple program that uses the exponential operator. It prompts for a number, $exponent , and
printsout 2 ** $exponent .

Listing 4.1. A program that prints out the powers of two.

1. #!/usr/local/bin/perl

3: # this program asks for a nunber, n, and prints 2 to the

4. # exponent n

6: print ("Enter the exponent to use:\n");
7: $exponent = <STDI N>;
8: chop ($exponent);

9: print ("Two to the power $exponent is ",

10: 2 ** $exponent, "\n");

http://docs.rinet.ru:8080/P7/ch4.htm (3 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators

$ programd_1
Enter the exponent to use:
16

Two to the power 16 is 65536

The program shown in Listing 4.1 is useful if you have to use, or be aware of, numbers such as 4,294,967,295 (the largest number
that can be stored in a 32-hit unsigned integer) and 2,147,483,647 (the largest number that can be stored in a 32-bit signed
integer). Theformer isequivalentto2 ** 32 - 1, andthelatter isequivalentto2 ** 31 - 1

Don‘t |
DON'T use the exponent operator with a negative base and a non-integer exponent:
(-5) ** 2.5 # error

The result of this expression is acomplex (non-real) number (just as, for instance, the square
root of -2 is a complex number). Perl does not understand complex numbers.

DON'T produce aresult that is larger than the largest floating-point number your machine
can understand:

10 ** 999999 # error
In this example, the exponent istoo large to be stored on most machines.

The Remainder Operator

The remainder operator retrieves the remainder resulting from the division of one integer by another. Consider the following
simple example:

$x = 25 % 4;

In this case, 25 divided by 4 yields 6, with aremainder of 1. The remainder, 1, is assigned to $x.

The %operator does not work on values that are not integers. Non-integers are converted to integers, as follows:

$x = 24.77 %4.21; # sane as 25 %4

Because division by O isimpossible, you can't put a0 to the right of a %operator.

$x

25 % 0; # error: can't divide by O

$x 25 % 0. 1; # error: 0.1 is converted to O

http://docs.rinet.ru:8080/P7/ch4.htm (4 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators
Unary Negation

The unary negation operator isa- character in front of asingle value. (This distinguishesit from the subtraction operator, which
appears between two values.) It is equivalent to multiplying the value by -1, asillustrated by this example:

- b; # identical to the integer -5

- $y; # equivalent to $y * -1

Using Comparison Operators

On Day 2, "Basic Operators and Control Flow," you learned about the equality comparison operator (==), which compares two
values and tests whether they are equal.

$x = $a == $b;

Recall that the value of $x depends on the values stored in $a and $b:
o If $a equals$b, $a == $bistrue and $x isassigned anonzero value.
« If $aisnotequa to $b, $a == $b isfase, and $x isassigned 0.

The == operator is an example of a comparison operator. Comparison operators are most commonly used in control statements
such asthei f statement, as follows;

if ($a == $b) {

print("$a is equal to $b\n");

In Perl, the comparison operators are divided into two classes:
« Comparison operators that work with numbers
« Comparison operators that work with strings

Integer-Comparison Operators

Table 4.1 defines the integer-comparison operators available in Perl.

Table4.1. Integer-comparison operators.

|Operator |Description

< |Less than

> Greater than

== Equal to

<= |Less than or equal to

|>: Greater than or equal to

= Not equal to

[<=> |Comparison returning 1, 0, or -1

Here are simple examples of each of thefirst six operatorsin Table 4.1:

http://docs.rinet.ru:8080/P7/ch4.htm (5 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators

$x < 10 # true if the value of $x is less than 10
$x > 10 # true if $x is greater than 10

$x == 10 # true if $x is equal to 10

$x <= 10 # true if $x is less than or equal to 10

$x >= 10 # true if $x is greater than or equal to 10
$x '= 10 # true if $x is not equal to 10

Each of these operators yields one of two values:
« True, or nonzero
o Fase or zero

The <=> operator is aspecial case. Unlike the other integer comparison operators, <=> returns one of three values:
« 0, if thetwo values being compared are equal
o 1,if thefirst valueisgreater
« -1, if the second value is greater

For example, consider the following statement:

$y = $x <=> 10;

These are the possible results:
« If $x isgreater than 10, the first value in the comparison is greater, and $y is assigned 1.
o If $x islessthan 10, the second value in the comparison is greater, and $y isassigned -1.
o If $x isequa to 10, $y isassigned 0.

Integer Comparisons and Readability

In any given statement, it's best to use the comparison that can be most easily read. For example, consider the following:

if (3.2 < $x) {

conditionally executed stuff goes here

Although the expression 3. 2 < $x< isperfectly valid, it isn't easy to read because variables usually appear first in comparisons.
Instead, it would be better to use

if ($x >= 3.2) {

because thisis easier to understand. I'm not sure exactly why thisistrue; | think it's related to the way the English languageis
spoken. (Normally, we say, "If | had five dollars, 1'd buy some milk," instead of, "If five dollarshad I, I'd buy some milk," even
though both are correct.)

http://docs.rinet.ru:8080/P7/ch4.htm (6 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators
String-Comparison Operators

For every numeric-comparison operator, Perl defines an equivalent string-comparison operator. Table 4.2 displays each
string-comparison operator, the comparison it performs, and the equival ent numeric-comparison operator.

Table 4.2. String- and numeric-comparison oper ators.

String operator |(Comparison operation Equivalent numeric
oper ator

| t |Less than <

gt Greater than >

eq Equal to ==

l e |Less than or equal to <=

ge Greater than or equal to >=

Ine Not equal to =

lcnp |Compare, returning 1, 0, or -1 [<=>

Perl compares strings by determining their placesin an alphabetical order. For example, the string aaa is less than the string bbb,
because aaa appears before bbb when they are sorted a phabetically.

Here are some examples of string-comparison operatorsin action:

$result = "aaa" It "bbb"; # result is true
$result = "aaa" gt "bbb"; # result is false
$result = "aaa" eq "bbb"; # result is false
$result = "aaa" le "aaa"; # result is true
$result = "aaa" ge "bbb"; # result is false
$result = "aaa" ne "aaa"; # result is false
$result = "aaa" cnp "bbb"; # result is -1

If you are familiar with the C programming language, you might have noticed that the behavior of the cnp operator isidentical to
that of the C function st r crp() .

String Comparison Versus Integer Comparison

Y ou might be thinking: If strings and integers are equivalent in Perl, why do we need two kinds of comparison operators?

To answer this, consider the strings 123 and 45. The result when these two strings are compared depends on whether a string or
integer comparison is being performed.

$result "123" < "45",

$result "123" |t "45";

In thefirst statement, the strings 123 and 45 are converted to integers, and 123 is compared to 45. The result isfalse and
$resul t isassigned 0, because 123 is not less than 45.

In the second statement, 123 is alphabetically compared to 45. Because 123 is alphabetically less than 45, the result in this case
istrue, and $r esul t isassigned a nonzero value.

http://docs.rinet.ru:8080/P7/ch4.htm (7 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators

Because these results are different, you must ensure that you are using the proper comparison operator every time. If you don't,
your program can contain errors that are not easy to spot. For instance, consider the following:

$varl = "string 1";
$var2 = "string 2";

$result = $varl == $var2; # this statenent is bad

Because == is a numeric-comparison operator, thevaluesst ri ng 1 andstri ng 2 areconverted to integers before the
comparison is performed. Because both strings are non-numeric, they are both converted to the integer 0, and the following
comparison becomes true:

$varl == $var?2

Thisis probably not what you want.

Comparison and Floating-Point Numbers

There is one thing to keep in mind when you use comparison operators: Floating-point numbers don't always behave properly in
comparisons.

Takealook at Listing 4.2.

Listing 4.2. A program that contains a floating-point comparison.

1: #!'/usr/local/bin/perl

2:
3: $valuel = 14. 3;
4: S$value2 = 100 + 14.3 - 100;

5. if ($valuel == $val ue2) {

6: print("value 1 equals value 2\n");

7: } else {

8: print("value 1 does not equal value 2\n");
9: }

$ programd_2
val ue 1 does not equal value 2

http://docs.rinet.ru:8080/P7/ch4.htm (8 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators

At first glance, you might think that $val uel and $val ue2 areidentical. However, when you run this program, you get the
following:

val ue 1 does not equal value 2

What iswrong? To find out, print out the values of $val uel and $val ue2 before doing the comparison.

#!/usr/ 1 ocal / bi n/ perl

$val uel 14. 3;

$val ue2 100 + 14.3 - 100;

print("value 1 is $valuel, value2 is $value2\n");
if ($val uel == $val ue2) {

print("value 1 equals value 2\n");
} else {

print("value 1 does not equal value 2\n");

When you run this program, you get the following output:
value 1 is 14.300000000000001, value 2 is 14.299999999999997
val ue 1 does not equal value 2

Well, Perl isn't lying: $val uel and $val ue2 are different. What happened?

To understand what's going on, consider what happens when you take an ordinary calculator and tell it to divide 8 by 3. The actual
answer is

2.6666666. . .

with the number of 6s being infinite. Because your calculator can't display an infinite number of 6s, what it displaysis something
like the following:

2. 6666666667

Thisis as close to the actual number as your calculator can get. The difference between the actual number and the number

http://docs.rinet.ru:8080/P7/ch4.htm (9 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators
displayed is an example of around-off error.

Round-off errors often occur when Perl (or almost any other programming language) stores a floating-point number or adds a
number to afloating-point number. The statement

$val uel = 14. 3;

actually assigns

14. 300000000000001

to $val uel, because 14. 3 cannot be exactly represented in the machine's floating-point storage. When 100 is added to this
number and subtracted again, the result is

14. 299999999999997

Note that both numbers are very close to 14.3 but aren't exactly 14.3 due to round-off errors. What's worse, each number is
affected by a different set of round-off errors, so the two numbers are not identical.

The mora of the story? Be very careful when you use floating-point numbers in comparisons, because round-off errors might
affect your results.

Using Logical Operators
The comparison operators you've seen so far are sufficient if you need to test for only one condition before executing a particular
code segment, asin this example:

if ($value == 26) {

the code to execute if the condition is true

Suppose, however, that a particular section of code is to be executed only when avariety of conditions are true. Y ou can use a
sequence of i f statements to test for the conditions, as follows:

if ($valuel == 26) {
if ($value2 > 0) {
if ($stringl eq "ready") {

print("all three conditions are true!\n");

http://docs.rinet.ru:8080/P7/ch4.htm (10 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators
Thisistiresome to write and not particularly easy to read.

Fortunately, Perl provides an easier way to deal with multiple conditions: the logical operators. The following logical operators
are defined:

$a || $b # logical or: true if either is nonzero
$a && $b # logical and: true only if both are nonzero
I $a # logical not: true if $a is zero

Perl 5 also defines these logical operators:

$a or $b # anot her form of |ogical or

$a and $b # anot her form of |ogical and

not $a # anot her form of |ogical not

$a xor $b # logical xor: true if either $a or $b is nonzero, but not both

Theor, and, and not operatorslisted areidentica to| | , &&, and ! , except that their precedence islower. (Operator precedence
determines the order in which operators are evaluated, and is discussed |ater today.)

In each case, the result of the operation performed by alogical operator is nonzero if true and O if false.

$a = 5;

$b = 0;

$a || $b; # true: $a is not zero

$b || $a; # al so true

$a && $b; # false: $b is zero

I $a; # false: $a is nonzero, so ! $a is zero
I $b; # true: $b is zero, so ! $b is nonzero

These logical operators enable you to test for multiple conditions more conveniently. Instead of writing, for example, this code:

if ($valuel == 26) {
if ($value2 > 0) {
if ($stringl eq "ready") {

print("all three conditions are true!\n");

}

http://docs.rinet.ru:8080/P7/ch4.htm (11 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators

you now can write this code instead:

if ($value == 26 && $value2 > 0 && $stringl eq "ready") {

print("all three conditions are true!\n");

In each case, the result isthe same: the pr i nt operation is performed only when $val ue is 26, $val ue?2 isgreater than 0, and
$stringlis"ready."

Evaluation Within Logical Operators

When Perl seesalogical AND operator or alogical OR operator, the expression on the left side of the operator is aways
evaluated first. For example, consider the following:

$a

0;
$b = 106;

$result = $a && 3$b;

When Perl is evaluating the expression $a && $b, it first checks whether $a is0. If $a is0, $a && $b must be false
regardless of the value of $b, so Perl doesn't bother checking the value of $b. (Thisis called short-circuit evaluation.)

Similarly, in the following example, Perl doesn't bother checking $b, because $a is nonzero and therefore$a || $b must be
true:

$a = 43;

$b = 11,

$result = $a || $b;

Y ou can take advantage of the order of evaluation of expressionsin| | or && to safeguard your code.

$x == 0 || $y / $x > 5

Here is how the preceding statement protects you from division-by-zero errors:

o If$xisnot0,$x == Oisfase soPerl evaluates$y / $x > 5. Thiscannot produce adivision-by-zero error, because
$x is guaranteed to be some value other than 0.

o If$xis0,$x == 0 istrue. This meansthat
$x == 0 || $y / $x > 5
istrue, so Perl doesn't bother evaluating the expression to the right of the | | . Asaresult, the expression
$y / $x > 5
is not evaluated when $x is 0, and the division-by-zero error is avoided.

http://docs.rinet.ru:8080/P7/ch4.htm (12 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators
Logical Operators as Subexpressions

Expressions that contain logical operators can be contained in larger expressions. The following is an example:

$nyval = $a || $b || $c;

Here, Perl evaluatesthe expression$a || $b || $c and assignsitsvalueto $nyval .

To understand the behavior of this statement, recall that the | | operator evaluates its subexpressionsin the order given, and
evaluates a subexpression only if the previous subexpression is zero. This means that $b is evaluated only if $a is zero.

When the logical OR operator is used in alarger expression, its value isthe last subexpression actually evaluated, which isthe
first subexpression of the logical OR operator that is nonzero. This means that

$nyval = $a || $b || $c;

isequivalent to

if ($a != 0) {
$nmyval ue = $a;

} elsif ($b 1= 0) {

$b;

$nyval ue
} else {

$c;

$nyval ue

Thelogical AND operator works in the same way, but isn't as useful. The statement

$nyval = $a && $b && $c;

is equivalent to

if ($a == 0) {
$nyval ue = $a;

} elsif ($b == 0) {

$b;

$myval ue
} else {

$c;

$myval ue
}

http://docs.rinet.ru:8080/P7/ch4.htm (13 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators

Thismeansthat $nyval isset to either O or the value of $c.

Using Bit-Manipulation Operators

Perl enables you to manipulate the binary digits (or bits) of an integer. To understand how Perl does this, first look at what a bit is
and how computers store integers. Once you understand how bits work, you can easily figure out how the bit-manipulation
operators work. (If you are familiar with binary notation and the computer representation of an integer, feel free to skip the
following section.)

What Bits Are and How They Are Used

On Day 3, "Understanding Scalar Values," you learned that Perl understands three different notations for integers:
« Standard notation, or base 10
« Octal notation, or base 8
« Hexadecimal notation, or base 16

However, when a computer stores an integer, it uses none of these notations; instead, it uses base 2, or binary notation.

In binary notation, every number is represented as a series of Os and 1s. For instance, the number 124 is represented as

01111100

To understand how to get from base-10 notation to binary notation, recall what the number 124 represents. When we write "124,"
what we really mean is the following:

o 4 multiplied by 1, plus
« 2multiplied by 10, plus
o 1 multiplied by 100

In grade school, your teacher probably said these digits represented the "ones place,” the "tens place," and the "hundreds place.”
Each "place" isten times larger than the place to its right. This means that you also can think of 124 asfollows:

« 4 multiplied by 1 (or 10 to the exponent 0), plus
o 2multiplied by 10 to the exponent 1, plus
» 1 multiplied by 10 to the exponent 2

In binary notation, you can use this same method, but replace the 10s with 2s. Here's how to use this method to figure out that the
binary number 01111100 is equivalent to 124 in standard notation. Starting from the right, you have:

o Omultiplied by 2 to the exponent 0, which is0
» Omultiplied by 2 to the exponent 1, whichisO
« 1 multiplied by 2 to the exponent 2, whichis 4
o 1 multiplied by 2 to the exponent 3, which is 8
« 1 multiplied by 2 to the exponent 4, which is 16
o 1 multiplied by 2 to the exponent 5, which is 32
« 1 multiplied by 2 to the exponent 6, which is 64
» Omultiplied by 2 to the exponent 7, whichisO

Adding 2, 8, 16, 32, and 64 gives you 124.

Each of the Os and 1sin the binary number 01111100 is called a bit (which is short for binary digit). Each bit can have only two
possible values: O or 1.

In computers, integers are stored as a sequence of bits. This sequence of bitsis normally 8, 16, or 32 bits long, depending on the
size and configuration of your computer. In the examplesin today's lesson, 8-bit integers are assumed; to convert an 8-bit binary
number to a 16-bit binary number, just add eight zerosto the left. For example, the following numbers are equivalent:

http://docs.rinet.ru:8080/P7/ch4.htm (14 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators

01111100 # 124 as an 8-bit integer

0000000001111100 # 124 as a 16-bit integer

The examplesin today's |esson use 8-hit integers. The Perl bitwise operators will work on integers of any size.

The Bit-Manipulation Operators

The following bit-manipulation operators are supported in Perl:
o The & (bitwise AND) operator

The| (bitwise OR) operator

o The” (bitwise XOR or "exclusive or") operator

o The~ (bitwise NOT) operator

o The << (left shift) and >> (right shift) operators

The Bitwise AND Operator

In Perl, the & operator represents the bitwise AND operation. This operation works as follows:
« Thevalueto theleft side of the & (also called the | eft operand of the & operation) is converted to an integer, if necessary.
« Thevaueto theright side of the & (the right operand) also is converted to an integer.
« Each bit of the left operand is compared to the corresponding bit of the right operand.

« If apair of corresponding bits both have the value 1, the corresponding hit of the result is set to 1. Otherwise, the
corresponding bit of the result is set to 0.

This might sound complicated, but when you take alook at an example, you'll see that it's pretty easy to figure out. For instance,
consider the following:

$result = 124.3 & 99;

First, the left operand, 124.3, is converted to an integer, becoming 124. (The right operand, 99, does not need to be converted.)
Next, take alook at the binary representations of 124 and 99:

01111100 # this is 124 in binary

01100011 # this is 99 in binary

When you examine each pair of bitsin turn, you can see that only the second and third pairs (from the | ft) are both 1. Thus, the &
operation yields the following binary result:

01100000

Thisis 96 in standard notation. As a consequence, the statement

$result = 124.3 & 99;

assigns96to $resul t .

http://docs.rinet.ru:8080/P7/ch4.htm (15 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators

Don't
DO use the & operator with strings, provided the strings can be converted to numbers, as
follows:

$result = "124.3" & "99";

Remember: Strings and integers are interchangeable in Perl.

DON'T confuse the & operator with the && operator. The && operator performs alogical
AND operation, not a bitwise AND operation. For example, the statement
$result = 124.3 && 99;

assignsanonzero valueto $r esul t (because 124.3 and 99 are both nonzero). This nonzero
valueisnot likely to be the result you want.

DON'T use the & operator with negative integers, because Perl will convert them to unsigned
integers, and you won't get the result you want.

The Bitwise OR Operator

The bitwise OR operator, | , also compares two integers one bit at atime. However, in the bitwise OR operation, aresult bit is 1 if
either of the corresponding bitsin the operandsis 1.

To see how this works, look at another example:

$result = 124.3 | 99;

Here's how this operation is performed:

« Asbefore, the two operands are converted to integers if necessary. The operands become 124 and 99; in binary
representation, these are, as before,

01111100

01100011

» Each hit of the left operand is compared with the corresponding bit in the right operand. If either of the corresponding bitsis
1, the corresponding result bit is 1.

In this example, every bit becomes 1 except the first one, because at least one of each of the other pairsisal. Therefore, the result
is

01111111

which translates to 127. This means that the following statement assigns 127 to $r esul t :

$result = 124.3 | 99;

Don‘t
DO make sure you are using the proper bitwise operator. It's easy to dip and assume you

want bitwise OR when you really want bitwise AND. (Trust me.)

DON'T confusethe| operator (bitwise OR) with the | | operator (logical OR).

The Bitwise XOR Operator

http://docs.rinet.ru:8080/P7/ch4.htm (16 of 41) [2/17/2007 6:00:01 AM]

Day 4 -- More Operators

The bitwise XOR ("exclusive or") operator, , is similar to the bitwise OR operator, but it's a little more demanding. In the bitwise
OR operation, aresult bit is 1 if either of the corresponding bits in the operandsis 1. In the bitwise XOR operation, aresult bitis1
if exactly one of the corresponding bitsin the operandsis 1.

Hereis an example of the bitwise XOR operation:

$result = 124.3 ~ 99;

Thisworks as follows:
« Asbefore, 124.3 is converted to 124, and the binary representations of the two operands are as follows:

01111100 # this is 124

01100011 # this is 99

« Each bit of the left operand is compared with the corresponding bit of the right operand. The corresponding result bit is set
to 1 if exactly one of the bitsin the operandsis 1.

In this case, theresultis

00011111

which is 31. To work through how you get this result, consider the following:
« Thefirst bit of the left operand and the first bit of the right operand are both 0. This means the first bit of the result is 0.

« Thesecond bit of the left operand and the second bit of the right operand both are 1. Therefore, the second bit of the result
is0, not 1.

» Thesame appliesfor the third bits: Both are 1, so the result bit isO.

« Thefourth bit of the left operand is 1, and the fourth bit of the right operand is 0. Here, exactly one of the bitsis 1, so the
result bit becomes 1.

« Samefor the fifth and sixth pairs: Thefirst bit is 1 and the second is O, so the resultis 1.

« The seventh bit of the left operand is 0, and the seventh bit of the right operand is 1. Again, exactly one of the bitsis 1, and
the result bit isalso 1.

« Samefor the eighth pair: Thefirst bitis 0, the second is 1, so theresultis 1.

From this, you can determine that the following statement assigns 31 to $r esul t :

$result = 124.3 ~ 99;

The Bitwise NOT Operator

Unlike the other bitwise operators you've seen so far, the bitwise NOT operator, ~, is a unary operator, meaning it works on only
one operand.

The way it worksis straightforward, as follows:
« Theoperand is converted to an integer, if necessary.
« Each bit of the operand is examined. If abit is 0, the corresponding result bit is set to 1, and vice versa.

For example, consider the following:

http://docs.rinet.ru:8080/P7/ch4.htm (17 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators
$result = ~99;

The binary representation of 99 is

01100011

Applying the bitwise NOT operation to this number produces

10011100

This number, in standard notation, is 156. Therefore, the following statement assigns 156 to $r esul t :

$result = ~99;

Note that the number of bits used to store an integer affects the results produced by the ~ operator. For example, if integers are
stored in 16 bits on your computer, the number 99 is represented as

00000000011000112

This means that applying ~ to this number yields

1111111110011100

which is 65436 in standard notation. As a consequence, the statement

$result = ~99;

assigns 65436, not 156, to $r esul t . (On a computer with 32-bit integers, the value assigned is 4294967196.)
The Shift Operators

Perl enables you to shift the bits of an integer using the << (shift left) and >> (shift right) operators. For example, in the statement

$result = $x >> 1;
every bit of the value stored in $x is shifted one place to the right, and the result is assigned to $r esul t ($x itself isnot
changed).

To see how thisworks, consider the following example:

$result = 99 >> 1;

Asyou saw earlier, the binary representation of 99 is

http://docs.rinet.ru:8080/P7/ch4.htm (18 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators

01100011

Shifting every bit right one place yields

00110001

Note that a0 is added at the far left, and the bit at the far right disappears.

Because 00110001 in binary notation is the same as 49 in standard notation, the following statement assigns 49 to $r esul t :

$result = 99 >> 1;

The <<, or shift-left, operator works in the same way:

$result = 99 << 1;

The shift-left operator works as follows:

01100011 # the binary representation of 99

11000110 # after shifting left 1 bit

Theresult of the shift is 198, which isassigned to $r esul t .

Don‘'t
DO remember that when you use the >> operator, the bits on the right are lost. For example:
$resultl = 17 >> 1;
$result2 = 16 >> 1;

Inthiscase, $r esul t 1 and $r esul t 2 are the same value, 8. Thisis because the rightmost
bit is shifted out in both cases.

DON'T shift left too far, or you might not get the result you want. For example, if you are
using 16-bit integers, the statement
$result = 35000 << 1;

does not assign 70000 to $r esul t asyou might think it would because the largest value that
can be stored in a 16-bit integer is 65536.

Shifting and Powers of 2

In the following statement, the variable $r esul t isassigned the value 49:

$result = 99 / 2;

Take alook at the binary representations of 99 and 49:

01100011 # 99 in binary form

http://docs.rinet.ru:8080/P7/ch4.htm (19 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators
00110001 # 49 in binary form

Asyou can see, dividing by 2 isidentical to shifting right one bit-in each case, every bit is moved one place to the right. Similarly,
shifting right two bits is equivalent to dividing by 4:

$result =99 / 4; # $result is assigned 24

01100011 # 99 in binary

00011000 # 24 in binary

Multiplying by 4 is similar to shifting left two bits:

$result = 17 * 4; # $result is assigned 68
00010001 # 17 in binary

01000100 # 68 in binary

The general rules are as follows:
« Shifting left n bits, where n is some number greater than 0, is equivalent to multiplying by 2* * n.
« Shifting right n bits, where n is some number greater than O, is equivalent to dividing by 2* * n.

In the early days of programming, many programmers used shift operators in place of multiplication and division wherever
possible, because the shift operations were usually more efficient. (In fact, some compilers would optimize their code by
converting multiplication and division to shifts.) Today, it's usually best to use the shift operators when you are manipul ating bits,
and to use the multiplication and division operators when you're actually doing arithmetic. Thiswill make your programs easier to
understand.

Using the Assignment Operators

Asyou saw on Day 2, the assignment operator = associates, or assigns, avalue to avariable. For example, the statement

$result = 42;

assignsthe value 42 to the variable $r esul t .

The = operator can appear more than once in a single statement. For example, in the statement

$val uel = $value2 = "a string";
the character stringa st ri ng isassigned to both $val uel and $val ue2.

Perl aso supports other assignment operators, each of which combines an assignment with another operation. For example,
suppose that you want to add a value to a scalar variable and assign the result to the following variable:

$var = $var + 1;

Another way to write thisis with the += assignment operator:

http://docs.rinet.ru:8080/P7/ch4.htm (20 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators

$var += 1;

This statement adds the value 1 to the existing value of $var .

An assignment operator exists for just about every bitwise operator and arithmetic operator that Perl supports. Table 4.3 lists the
assignment operators supported in Perl.

Table 4.3. The assignment operators.

|Operator |Oper ations per formed

= Assignment only

[+= Addition and assignment

-= |Subtraction and assignment
*= Multiplication and assignment
/= Division and assignment

%= |Remainder and assignment
*r= Exponentiation and assignment
&= Bitwise AND and assignment
= Bitwise OR and assignment
n= Bitwise XOR and assignment

Table 4.4 shows exampl es of the assignment operators, along with equivalent statements that use operators you've seen earlier.

Table 4.4. Examples of assignment operators.

Statement using |Equivalent Perl
assignment oper ator
statement

I$a = 1; none (basic assignment)

[$a -= 1; $a = $a - 1;

$a *= 2; $a = $a * 2;

I$a /= 2; $a = $a / 2;

[$a % 2; $a = $a % 2;

[$a **= 2; [$a = $a ** 2;

$a &= 2; $a = $a & 2;

$a | = 2; $a = $a | 2;

[$a "= 2; 3a = $a "~ 2;

Assignment Operators as Subexpressions

Any expression that contains an assignment operator can appear on the left side of another assignment operator. The following is
an example:

($a = $b) += 3;

In cases such as this, the assignment enclosed in parentheses is performed first. This assignment is then treated as a separate
subexpression whose value is the variable to which it is being assigned. For example, $a = $b hasthe vaue $a.

This means that the statement shown previously is equivalent to the following two statements:
$a = $b;

http://docs.rinet.ru:8080/P7/ch4.htm (21 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators
$a += 3;

|TIP

Don't use assignmentsin this way unless you absolutely have to.
At first glance, the statement

($a = $b) += 3;

appearsto add 3 to $b aswell asto $a.

Using Autoincrement and Autodecrement

So far, you've seen two waysto add 1 to ascalar variable:

$a = $a + 1;

$a += 1;

The first method uses the standard assignment operator = and the addition operator +, and the second method uses the addition
assignment operator +=.

Perl also supports a third method of adding 1 to a scalar variable: the autoincrement operator, or ++. Here are some examples of
the ++ operator in action:

$a++;
++%a;
$result = $a++;

$result2 = ++%a;

In each case, the ++ operator tells Perl to add 1 to the value stored in $a.

In some of the examples, the ++ isin front of the variable it is affecting, whereas in others the ++ follows the variable. If the ++ is
first, the operation is a pre-increment operation; if the ++ follows, the operation is a post-increment operation.

The Autoincrement Operator Pre-Increment

To understand how the pre-increment operation works, first recall that you can use asingle statement to assign avalue to more
than one variable, as follows:

$varl 43;

$var2 = $varl += 1;

Here, the original value stored in $var 1, 43, has 1 added to it. The result, 44, becomes the new value of $var 1. This new value
of 44 isthen assigned to $var 2.

The pre-increment operation works in the same way:

$varl = 43;

http://docs.rinet.ru:8080/P7/ch4.htm (22 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators

$var2 = ++$vari;

The following code fragment tells Perl to add 1 to $var 1 before doing anything else:

++$var 1

Asaresult, Svar 1 becomes 44 before the value of $var 1 isassigned to $var 2. Therefore, $var 2 isassigned 44.

The ++ operator is most frequently used in whi | e statements. Listing 4.3 provides an example of asimple program that uses the
++ operator inawhi | e statement.

Listing 4.3. A program that uses the pre-increment operation.

1. #!/usr/local/bin/perl

2: $value = 0;

3: while (++$value <= 5) {

4: print("value is now $val ue\n");
5.}

6: print("all done\n");

$ programd_3

value is now 1
value is now 2
value is now 3
value is now 4
value is now 5

all done

Note that the pre-increment operation enables you to add 1 to $val ue and test it all at the same time. This means that you no
longer have to remember to add the following:

http://docs.rinet.ru:8080/P7/ch4.htm (23 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators
$val ue = $value + 1;

at the bottom of the whi | e statement, which means that you are less likely to write awhi | e statement that goes on forever.

Now see what happens when you change

while (++$value <= 5) {

tothis;

while (++$value <= 0) {

and then run the program again. Thistime, you get the following:

all done

Because the ++ operator isin front of $val ue, 1 isadded to $val ue before testing. This meansthat $val ue is not less than or
equal to O when thewhi | e statement is executed for the first time; as aresult, the code inside the whi | e statement is never
executed.

The Autoincrement Operator Post-Increment

The post-increment operator also adds 1 to the variable with which it is associated. However, its behavior is dightly different:

$varl 43;

$var 2 $var 1++;

When the ++ operator appears after the variable, the ++ operator is performed after every- thing else isfinished. This means that
the origina value of $var 1, 43, isassigned to $var 2. After this assignment is completed, 1 is added to $var 1 and the new
value of $var 1 becomes 44.

To see how thisworksin whi | e statements, examine Listing 4.4. Although it is similar to Listing 4.3, it performs a
post-increment operation instead of a pre-increment operation.

Listing 4.4. A program that uses the post-increment operation.

1. #!/usr/local/bin/perl

2: $value = 0;

3: while ($val ue++ <= 5) {

4: print("value is now $value\n");
5.}

6: print("all done\n");

http://docs.rinet.ru:8080/P7/ch4.htm (24 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators

$ programd_4

value is now 1
val ue is now 2
value is now 3
value is now 4
value is now 5
value is now 6

all done

$

Y ou are probably wondering why the output of Listing 4.4 contained the following line:

value is now 6

To figure out what happened, examine the value stored in $val ue each time the condition in thewhi | e statement is tested.
Table 4.5 lists the contents of $val ue when the condition is tested, the result of the test, and $val ue immediately after the
condition is tested (after the ++ operator is applied).

Table 4.5. Condition evaluation.

$val ue at time of Result $val ue after test
test

0 true (0<=5) 1
1 | true (1<=5) 2

| 2 true (2 <=5) 3
3 true (3<=5) 4
4 | true (4 <=5) 5

| 5 true (5 <=5) 6

| 6 fase (6<=5) | 7 (exitwhil e)

Asyou know, when the condition at the top of awhi | e statement istrue, the code inside the statement is executed, which in this
caseis

print("value is now $val ue\n");

Thisiswhy theline

http://docs.rinet.ru:8080/P7/ch4.htm (25 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators

value is now 6

appears-$val ue is5 at the time the condition is tested, so the result is true.

To fix this problem, change the whi | e condition to the following and run the program again:

while ($value < 5) {

Thisisthe output you get from the changed program:

value is now 1
value is now 2
value is now 3
value is now 4
value is now 5

all done

Now, when $val ue is5, the statement

whil e ($val ue++ < 5)

isfalse, and the code inside the whi | e is not executed.

The Autodecrement Operator

Asyou've seen, the ++ operator adds 1 to the value of the variable it is associated with and can appear either before or after the
variable. The - - operator, or autodecrement operator, works in the same way, but it subtracts 1 from the value of the variableit is
associated with, as follows:

$a- -;
--$a;
$result = $a--;

$result2 = --%a;

When the - - operator isin front of the variable, the operation is a pre-decrement operation, which means that 1 is subtracted from
the variable before anything el se happens.

$var 1l

56;

$var 2

--$var 1;

http://docs.rinet.ru:8080/P7/ch4.htm (26 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators
This subtracts 1 from $var 1 and assigns the result, 55, back to $var 1. The value 55 isthen assigned to $var 2.

When the - - operator follows the variable, the operation is a post-decrement operation, which meansthat 1 is subtracted from the
variable after everything else happens.

$varl = 56;

$var2 = $varil--;

Thisassigns 56 to $var 2 and then subtracts 1 from $var 1, which meansthat $var 1 now has the value 55.

Don't
DO be careful when you use the autoincrement and autodecrement operators. As you've seen,
it's easy to get confused and tell your program to loop one too many times or one too few.

| tend not to use these operatorsin whi | e statements except in very simple cases, because
they can get confusing. A better solution isto usethef or statement, which you'll learn about
on Day 8, "More Control Structures."

DON'T use ++ or - - on both sides of asingle variable, asin this statement, because it isn't
allowed in Perl:

++$var 1- -;

DON'T use autoincrement or autodecrement on a variable and then use the variable again in
the same statement.

$var 1 10;

$var 2 $varl + ++$vari;

Is$var 2 now 20, 21, or 22? It'simpossible to tell. Even different versions of Perl can
produce different results!

Using Autoincrement With Strings

If astring value contains only alphabetic characters, the ++ operator can be used to "add one" to a string. In other words, the
operator replaces the last character of the string with the next letter of the alphabet. The following is an example:

$stringvar = "abc";
$stringvar ++;

Here, $st ri ngvar now containsabd.

Note that thisworks only with ++, not - - :

$stringvar = "abc";

$stringvar--;

The- - operator treats abc as a number, which meansthat it is equivalent to 0. The resulting value of $st ri ngvar is,
therefore, -1.

Auto-incrementing strings using ++ also works on capital |etters.

$stringvar = "aBC';

http://docs.rinet.ru:8080/P7/ch4.htm (27 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators

$stringvar ++;

The value stored in $st r i ngvar isnow aBD.

If the last letter of the stringisz or Z, ++ convertsthisletter to a or A, and then "adds one" to the second-to-last character of the
string:

$stringvar = "abz";

$stringvar ++; # $stringvar now contains "aca"

$stringvar = "ARZZZ";

$stringvar ++; # $stringvar now contai ns "AHAAA"

This also worksiif the string contains one or more trailing digits.

$stringvar = "ab4";

$stringvar ++; # $stringvar now contains "ab5"

Asin numeric operations, incrementing a string that endsin 9 carries over to the next character of the string. Thisworks
regardless of whether the next character isadigit or alphabetic character.

$stringvar = "bc999";

$stringvar ++; # $stringvar now contains "bd000"

i
WARNING

Incrementing string values using ++ works only if the variable has
not already been converted to a number.

$stringvar = "abc";

$stringvar += 5;

$stringvar ++;

Here, the value of $st ri ngvar is6 because abc isconverted to
0 by the += operator in the second statement.

Also note that this does not work if the string value contains any
character other than aletter or digit, or if adigit islocated in the
middle of the string.

$stringvar = "ab*c";
$stringvar ++;
$stringvar = "abbc";

$stringvar ++;

In both of these cases, the value stored in $st ri ngvar is
converted to its numeric equivalent, 0, before the ++ operation is
performed. This meansthat $st ri ngvar isassigned the value

http://docs.rinet.ru:8080/P7/ch4.htm (28 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators
a |

The String Concatenation and Repetition Operators

So far, the Perl operators you've seen operate only on integers. (To be exact, they can also operate on strings, but they convert the
strings to integers first.) Perl also supports the following special operators that manipulate strings:

« The. operator, which concatenates (joins together) two strings
« Thex operator, which repeats a string
» The. = operator, which combines concatenation and assignment

The String-Concatenation Operator

The string-concatenation operator, . , joins two strings together. For example, the following statement assigns the string
pot at ohead to $newst ri ng:

$newstring = "potato” . "head";

You can usethe. operator with variables asin this example:

$stringl = "potato”;

"head" ;

$string2

$newstring = $stringl . S$string2;

Thisaso assignspot at ohead to $newst ri ng. Note that the values of $st ri ngl and $st ri ng2 are not changed by the .
operator: $st ri ngl till hasthe value pot at o, and $st ri ng2 still hasthe value head.

The String-Repetition Operator

The string-repetition operator, x (literaly the letter x), makes multiple copies of a string and joins the copies together, as shown in
this example:

$newstring = "t" x 5;

This statement takes five copies of the string t and joins them together, producing the stringt t t t t . Thisstring is then assigned
to the variable $newst r i ng.

Y ou can use variables as operands for the x operator, if you like, asfollows:

$copystring = "t";
$repeats = 5;

$newstring = $copystring x $repeats;

The only restriction is that the variable on the right of the x must contain an integer or a value that can be converted to an integer.

Don’'t

http://docs.rinet.ru:8080/P7/ch4.htm (29 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators

DO make sure you leave a space between the x operator and the values or variables on either
side:
$newstring $oldstring x 5; # this is correct
$newstri ng $ol dstringx 5; # incorrect

$newstring $ol dstring x5; # also incorrect

Normally, you don't need to put spaces between an operator and its operands.
$x = $x + 1; # this is K

$x=$x+1; # this is also K

Y ou need spaces around the x because the letter x can appear in variable names. (For
example, $ol dst ri ngx isaperfectly valid variable name.)

Concatenation and Assignment

The . = operator combines the operations of string concatenation and assignment. For example, the following statements:
$a = "be";
$a .= "witched"; # $a is now "bew tched"
are equivalent to these statements:
$a = "be";
$a = $a . "witched";

You can use the . = operator to write avery simple program that reads multiple lines of input and joins them into asingle string.
This program is shown in Listing 4.5.

Listing 4.5. A program that readsinput lines and concatenates them.

1: #!'/usr/local/bin/perl

2: $resultstring = "";

3: print("Enter your input - type an enpty line to quit\n");
4: $input = <STDI N>;

5: chop ($input);

6: while ($input ne "") {

7: $resultstring .= $input;
8: $i nput = <STDI N>;

9: chop ($input);

10: }

http://docs.rinet.ru:8080/P7/ch4.htm (30 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators
11: print ("Here is the final string:\n");

12: print ("$resultstring\n");

$ programd_5

Enter your input - type an enpty line to quit
this

is

a

t est

Here is the final string:

t hi si sat est

Asyou can see from the output of Listing 4.5, the four input lines are joined and have become a single string.

Note that there is amuch simpler way to do thisin Perl: using the built-in function j oi n() . You'll learn about j oi n() on Day
5, "Listsand Array Variables."

Other Perl Operators

Perl also supports two other operators that do not fit into any of the preceding categories:
« The comma operator
« The conditional operator

The Comma Operator

The comma operator (,) isan operator borrowed from the C programming language. It guarantees that a particular part of an
expression (the part beforethe,) is evaluated first.

Here is an example of asimple statement that usesthe, operator:

$varl += 1, $var2 = S$varli;

Becausethe, operator indicates that the left operand isto be performed first, 1 isadded to $var 1 before $var 1 isassigned to
$var 2. In effect, the, operator breaks a statement into two separate statements, as follows:

http://docs.rinet.ru:8080/P7/ch4.htm (31 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators
$varl += 1;

$var2 = S$vari;

Infact, the only real reason to usethe, operator iswhen two operations are so closely tied together that it is easier to understand
the program if they appear as part of the same expression.

The comma operator is often used in conjunction with the = operator, as follows:

$val = 26;

$result = (++$val, $val + 5);

In this statement, the

++$val

operation is performed first, because it appears before the, operator. Thisadds 1 to $val , which meansthat $val now has the
value 27. Then this new value of $val has5 added to it, and the result, 32, isassigned to $r esul t .

Note that the following expression is enclosed in parentheses:

++$val , $val + 5

Thisindicates that this set of operationsisto be performed first. Had the parentheses not been present, the statement would have
been

$result = ++$val, $val + 5;

In this case, everything before the commawould be performed first:

$result = ++$val

Thismeansthat $r esul t would be assigned 27, not 32.

You'll learn more about parentheses and the order of operations later today, in the section titled "The Order of Operations.”

The Conditional Operator

The conditional operator also is borrowed from the C programming language. Unlike the other operators you've seen, the
conditional operator requires three operands, as follows:

« A condition to test
« A vauethat isto be used when the test condition is true (evaluates to a nonzero value)
« A vauethat isto be used when the test condition is false (evaluates to zero)

The first two operands are separated by the character ?, and the second and third operands are separated by the character : .

Here is asimple example of an expression that uses the conditional operator:

http://docs.rinet.ru:8080/P7/ch4.htm (32 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators
$result = $var == 0 ? 14 : 7;

Here, the test condition is the expression

$var ==

If this expression istrue, the value 14 isassigned to $r esul t . If it isfalse, thevalue 7 isassigned to $r esul t .

Asyou can see, the conditional operator behavesjust likethei f and el se statements. The expression

$result = $var == 0 ? 14 : 7;

isidentical to the following:

if ($var == 0) {

14;

$resul t
} else {

$resul t

I
X

The difference between the conditional operator and thei f -el se construct isthat the conditional operator can appear in the
middle of expressions. For example, the conditional operator can be used as another way to prevent division by 0, asfollows:

$result = 43 + ($divisor == 0 ? 0 : $dividend / $divisor);

Here, $r esul t isassigned the value 43 plusthe result of $di vi dend divided by $di vi sor, unless$di vi sor is0. If
$di vi sor is0, theresult of thedivision is assumed to be 0, and $r esul t isassigned 43.

Listing 4.6 isasimple program that reads from the standard input file and compares the input line with a predetermined password.

Listing 4.6. A very simple password checker.

1. #!/usr/local/bin/perl

2: print ("Enter the secret password:\n");
3: $password = "bluejays”;

4: S$inputline = <STDI N>;

5: chop ($inputline);

6: S$outputline = $inputline eq $password ?

http://docs.rinet.ru:8080/P7/ch4.htm (33 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators
7: "Yes, that is the correct password!\n"

8: "No, that is not the correct password.\n";

9: print (Soutputline);

$ programd_6
Enter the secret password:
orioles

No, that is not the correct password.

When you run pr ogr and_6 and type in arandom password, you get the results shown in the | nput-Output example.

The advantage of using the conditional operator here is that the assignment to $out put | i ne occursin only one place, and the
statement is much more concise. If you usei f and el se, you need two assignmentsto $out put | i ne and fivelines, as
follows:

if ($inputline eq $password) {

$outputline = "Yes, that is the correct password!\n";

} else {

$outputline = "No, that is not the correct password.\n");

Of course, thei f and el se statements are easier to use when things get more complex. Consider the following example:

if ($varl == 47) {
print("varl is already 47\n");
$is_fortyseven = 1;
} else {
$varl = 47;
print("varl set to 47\n");

$is_fortyseven = 0;

http://docs.rinet.ru:8080/P7/ch4.htm (34 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators

}

Y ou can write this using the conditional operator if you use the comma operator, as follows:

$varl == 47 ? (print("varl is already 47\n"), $is fortyseven = 1)

($varl = 47, print("varl set to 47\n"), S$is fortyseven = 0);

Asyou can seg, thisis difficult to understand. The basic rules are as follows:
« Usethe conditional operator for very simple conditional statements.
o Useif andel se for everything else.

Conditional Operators on the Left Side of Assignments

In Perl 5, you can use the conditional operator on the left side of an assignment. This enables you to assign a value to either of two
variables, depending on the result of a conditional expression.

$condvar == 43 ? $varl : S$var2 = 14;

This statement checks whether $condvar hasthevalue 43. If it does, $var 1 isassigned 14. If it doesn't, $var 2 isassigned
14.

Normally, you won't want to use conditional operatorsin this way because your code will become difficult to follow. Although the
following code is alittle less efficient, it performs the same task in away that is easier to understand:

$condvar == 43 ? $varl = 14 : $var2 = 14;

The Order of Operations

Perl, like all programming languages, has a clearly defined set of rules that determine which operations are to be performed first in
aparticular expression. The following three concepts help explain these rules:

« The concept of precedence
« The concept of associativity
« The ability to override precedence and associativity using parentheses

Precedence

In grade school, you learned that certain arithmetic operations always are performed before other ones. For example,
multiplication and division always are performed before addition and subtraction.

4 +5* 3

Here, the multiplication is performed first, even though the addition is encountered first when the statement is read from left to
right. Because multiplication alwaysis performed first, it has higher precedence than addition.

Table 4.6 defines the precedence of the operatorsin Perl. The items at the top of the table have the highest precedence, and the
items at the bottom have the lowest.

Table 4.6. Operator precedence.

|Operator |Operation Perfor med

http://docs.rinet.ru:8080/P7/ch4.htm (35 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators

Using this table, you can determine the order of operations in complicated expressions. For example:

|A utoincrement and autodecrement

|Operators with one operand

Exponentiation

Pattern-matching operators

Multiplication, division, remainder,
repetition

Addition, subtraction, concatenation

Shifting operators

|File-status operators

Inequality-comparison operators

==,1=,<=> eq,ne, Equality-comparison operators
cnp
& |Bitwise AND
[, ~ IBitwise OR and XOR
&& |Logical AND
|] Logical OR

. List-range operator
? and Conditional operator (together)
= +=,-= %=, Assignment operators
and so on |
, |Comma operator
Inot |Low-precedence logical NOT
and Low-precedence logical AND
or, xor L ow-precedence logical OR and

XOR

$result = 11 * 2 + 6 ** 2 << 2;

To determine the order of operations in this expression, start at the top of Table 4.6 and work down. The first operator you seeis

** which meansthat it is performed first, leaving

$result = 11 * 2 + 36 << 2;

The next operation you find in the table isthe * operator. Performing the multiplication |eaves the following:

$result = 22 + 36 << 2;

The + operator is next:

$result = 58 << 2;

Next up isthe << operator:

http://docs.rinet.ru:8080/P7/ch4.htm (36 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators
$result = 232;

The = operator islast on the list and assigns 232 to $r esul t .

Y ou might have noticed that Table 4.6 contains some operators that you've not yet seen and which you'll learn about later:
« Thelist-range operator, defined on Day 5
» Thefile-status operators, defined on Day 6, "Reading from and Writing to Files"
« The pattern-matching operators, =~ and ! ~, defined on Day 7, "Pattern Matching"

Associativity

The rules of operator precedence enable you to determine which operation to perform first when an expression contains different
operators. But what should you do when an expression contains two or more operators that have the same precedence?

In some cases, it doesn't matter what order you perform the operations in. For example:

$result =4 + 5 + 3;

Here, $r esul t gets 12 no matter which addition is performed first. However, for some operations the order of evaluation
matters.

$result = 2 ** 3 ** 2:

If you perform the leftmost exponentiation first, $r esul t isassigned8 ** 2, or 64. If you perform the rightmost
exponentiation first, $result isassigned 2 ** 9, or 512.

Because the order of operations is sometimes important, Perl defines the order in which operations of the same precedence areto
be performed. Operations that are performed right-to-left (with the rightmost operation performed first) are said to be right
associative. Operations that are performed left-to-right (with the leftmost operation performed first) are left associative.

Table 4.7 lists the associativity for each of the Perl operators. The operators are sorted according to precedence (in the same order
as Table 4.6).

Table4.7. Operator associativity.

http://docs.rinet.ru:8080/P7/ch4.htm (37 of 41) [2/17/2007 6:00:02 AM]

|Operator [Associativity
++, - - INot applicable
-~ ! IRight-to-left
** IRight-to-left
=, !~ |Left-to-right

* 1, %X |Left-to-right
+, -, |Left-to-right
<<, >> L eft-to-right
-e,-r, Not applicable and so on
<,<=,>>=1t,l e gt,ge |Left-to-right
==,1=,<=>eq, ne,cnp L eft-to-right
& L eft-to-right

[, " L eft-to-right
&& |Left-to-right
|l |Left-to-right
.. |Left-to-right
?and: Right-to-left
=, +=,-5,%5, Right-to-left

Day 4 -- More Operators

land so on |

, L eft-to-right
not L eft-to-right
land |Left-to-right
lor, xor |Left-to-right

From Table 4.7, you see that the exponentiation operator is right associative. This means that in the following:

$result = 2 ** 3 ** 2:

$resul t isassigned 512, because the rightmost * * operation is performed first.

Forcing Precedence Using Parentheses

Perl enables you to force the order of evaluation of operationsin expressions. To do this, use parentheses as follows:

$result =4 * (5 + 3);

In this statement, 5 is added to 3 and then multiplied by 4, yielding 32.

Y ou can use as many sets of parentheses asyou like:

$result =4 ** (5 % (8 - 6));

Here, the result is 4:
e 8 - 6isperformed, leaving4 ** (5 % 2)
e 5 % 2 isperformed, leaving4 ** 1
e« 4 ** 1is4

Don’'t

DO use parentheses whenever you aren't sure whether a particular operation isto be
evaluated first. For example, | don't know many programmers who remember that addition
operators are evaluated before shifts:

$result = 4 << 2 + 3;

And virtually no one remembersthat && has higher precedence than | | :

if ($value == 0 || $value == 2 && $value2 == "hello") {
print("my condition is true\n");

}

Y ou can make life alot easier for people who read your code if you use parentheses when the
order of evaluation is not obvious. For example:

$result = 4 << (2 + 3);

if ($value == 0 || ($value == 2 && $value2 == "hell0")) {
print("my condition is true\n");

}

DO use multiple lines, extra spaces, and indentation to make complicated expressions easier
to read. For example:

if ($value == 0 ||

($value == 2 && $value2 == "hello")) {

Here, it's obvious that there are two main conditions to be tested and that one of them
contains a pair of subconditions.

http://docs.rinet.ru:8080/P7/ch4.htm (38 of 41) [2/17/2007 6:00:02 AM]

Day 4 -- More Operators

DON'T leave out closing parentheses by mistake.
$result = 4 + (2 << ($value / 2); # error
This statement will be flagged as erroneous because you are missing a closing parenthesis.

A handy way of checking whether you have enough parentheses in complicated expressions
isto use this simple trick:

» Start at the left end of your expression.
« Starting from 0, add 1 for every left parenthesis you see.
« Subtract 1 for every closing parenthesis you see.

If your final result is 0, you've got enough opening and closing parentheses. (This doesn't
guarantee that you've put the parentheses in the right places, but at least you now know that
you have enough of them.)

Summary

Today you learned about the operators that Perl supports. Each operator requires one or more operands, which are the values on
which the operator operates. A collection of operands and operators is known as an expression.

The operators you learned how to use are as follows:

The arithmetic operators +, - , *,/ , % **, and unary negation

The integer-comparison operators ==, ! =, <, >, <=, >=, and <=>
The string-comparison operatorseq, ne, I t,gt,l e,ge,andcnp
Thelogical operators| | , &%, and !

The bit-manipulation operators| , & *, ~, <<, and >>

The assignment operators =, +=, - =,*=,/ =, %, **=,1 =, &=, "=, and . =
The autoincrement operator ++

The autodecrement operator - -

The string-concatenation operator .

The string-repetition operator x

The comma operator ,

The conditional operator (? and : together)

Y ou also learned about operator precedence and associativity, two concepts that tell you which operatorsin an expression usually
are performed first. Operator precedence and associativity can be controlled by putting parentheses around the operations you
want to perform first.

Q&A

>0 20

ZQ

Istherealimit on how large my expressions can be?

Effectively, no. Thereisalimit, but it's so large that no one would possibly want to create an expression that long, because
it would be impossible to read or understand.***It's easier to understand expressionsif they are shorter.

Isit better to use += or ++ when adding 1 to a variable?

It's best to use ++ when using a variable as a counter in awhi | e statement (or in other loops, which you learn about on
Day 8, "More Control Structures'). For other addition operations, you should use +=.

Why are some oper ator s left associative and othersright associative?

Most operators are | eft associative, because we normally read from left to right.

Assignment isright associative because it's easier to read. For instance:

$varl = $var2 = 5;

If assignment happened to be | eft associative, $var 1 would be assigned the old value of $var 2, not 5. Thiswould not be
obvious to a casual reader of the program.Exponentiation is right associative because that's how exponentiation is
performed in mathematics.Other operators that are right associative are easier to read from right to |eft.

http://docs.rinet.ru:8080/P7/ch4.htm (39 of 41) [2/17/2007 6:00:03 AM]

Day 4 -- More Operators

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to give you
experience in using what you've learned. Try and understand the quiz and exercise answers before you go on to tomorrow's lesson.

Quiz

1. Definethe following terms:
a operator
b. operand
C. expression
d. precedence
e. associdivity
2. What operations are performed by the following operators?
&&
&

N

ne

Poo T

3. What operators perform the following operations?
a string-equality comparison
b. remainder

string duplication

bitwise OR

€. numeric greater-than-or-equal-to

4. What isthe binary representation of the following numbers?
a 171
b. 1105
c. O

5. What is the standard (base-10) representation of the following numbers?
a. 01100100
b. 00001111
c. 01000001

6. What is the value of the following expressions?

o0

a 17 * 2 ** 3 [/ 9 %2 << 2
b. 0 & (171567 * 98275 / 1174.5 ** 4)
c. 1171 N 904
d "abc" . "de" x 2
Exercises

1. Write aprogram that uses the << operator to print out the first 16 powers of 2.
2. Rewrite the following statement using the conditional operator:

if ($varl == 5 || $var2 == 7) {

$result = $varl * $var2 + 16.5;

} else {

print("condition is false\n");
$result = 0;

}

3. Rewritethe following expression using thei f and el se statements:
$result = $varl <= 26 ? ++$var2 : O;

4. Write a program that reads two integers from standard input (one at atime), divides the first one by the second one, and
prints out the quotient (the result) and the remainder.

5. Why might the following statement not assign thevalue5. 1 to $r esul t ?
$result = 5.1 + 100005.2 - 100005. 2;

6. Determine the order of operationsin the following statement, and add parentheses to the statement to indicate this order:

http://docs.rinet.ru:8080/P7/ch4.htm (40 of 41) [2/17/2007 6:00:03 AM]

Day 4 -- More Operators
$result = $varl * 2 << 5 + 3 || $var2 ** 3, $var3;

7. What valueis assigned to $r esul t by the following code?
$varl =43
$var2 = 16;
$result = ++Pvar2 == 17 ? $varl++ * 2-5: ++$varl * 3 - 11;

8. BUG BUSTER: Find and fix the bugs in the following program:
#! [usr/ | ocal / bi n/ perl

$num = <STDI N>;

chop ($num;

$x = "";

$x += "hel |l 0";

if ($x !'= "goodbye"” | $x == "farewel ") {
$result = $numeq 0 ? 43;

} else {

$result = ++$numt+;

}

print("the result is $result\n");

http://docs.rinet.ru:8080/P7/ch4.htm (41 of 41) [2/17/2007 6:00:03 AM]

http://docs.rinet.ru:8080/P7/index.htm

Day 7 -- Pattern Matching

Chapter 7
Pattern Matching

CONTENTS

« Introduction
o The Match Operators

O

Match-Operator Precedence

o Special Charactersin Patterns

O

0

O

O

O

The + Character

The[] Specia Characters

The* and ? Specia Characters

Escape Sequences for Special Characters
Matching Any L etter or Number
Anchoring Patterns

Variable Substitution in Patterns
Excluding Alternatives

Character-Range Escape Sequences
Matching Any Character

Matching a Specified Number of Occurrences
Specifying Choices

Reusing Portions of Patterns
Pattern-Sequence Scalar Variables
Special-Character Precedence
Specifying a Different Pattern Delimiter

o Pattern-Matching Options

O

O

0

0

O

O

Matching All Possible Patterns
Ignoring Case

Treating the String as Multiple Lines
Evaluating a Pattern Only Once
Treating the String asa Single Line
Using White Space in Patterns

« The Substitution Operator

O

O

0

O

O

0

Using Pattern-Sequence Variables in Substitutions
Options for the Substitution Operator

Evaluating a Pattern Only Once

Treating the String as Single or Multiple Lines
Using White Space in Patterns

Specifying a Different Delimiter

http://docs.rinet.ru:8080/P7/ch7.htm (1 of 53) [2/17/2007 6:00:38 AM]

Day 7 -- Pattern Matching

« The Trangation Operator
o Options for the Trandation Operator
Extended Pattern-Matching
o Parenthesizing Without Saving in Memory
o Embedding Pattern Options
0 Positive and Negative L ook-Ahead
o Pattern Comments
o SUMmMary
o Q&A

« Workshop
o Quiz

0 Exercises

This lesson describes the pattern-matching features of Perl. Today, you learn about the following:
« How pattern matching works
« The pattern-matching operators
« Specia characters supported in pattern matching
« Pattern-matching options
« Pattern substitution
o Trandation
« Extended pattern-matching features

Introduction

A pattern is a sequence of characters to be searched for in a character string. In Perl, patterns are normally enclosed in
slash characters:

/ def/

This represents the pattern def .

If the pattern is found, a match occurs. For example, if you search the string r edef i ne for the pattern/ def / , the pattern
matches the third, fourth, and fifth characters.

redefi ne

Y ou already have seen asimple example of pattern matching in the library functionspl i t.

@rray = split(/ /, $line);

Herethe pattern/ / matches a single space, which splits aline into words.

http://docs.rinet.ru:8080/P7/ch7.htm (2 of 53) [2/17/2007 6:00:38 AM]

Day 7 -- Pattern Matching

The Match Operators

Perl defines special operators that test whether a particular pattern appearsin a character string.
The =~ operator tests whether a pattern is matched, as shown in the following:

$result = $var =~ /abc/;

The result of the =~ operation is one of the following:
« A nonzero value, or true, if the pattern isfound in the string
o 0, orfalse, if the pattern is not matched

In this example, the value stored in the scalar variable $var is searched for the pattern abc. If abc isfound, $resul t is
assigned a nonzero value; otherwise, $r esul t isset to zero.

The! ~ operator is similar to =~, except that it checks whether a pattern is not matched.

$result = $var !~ /abc/;

Here, $resul t issetto O if abc appearsin the string assigned to $var , and to anonzero value if abc is not found.

Because =~ and ! ~ produce either true or false as their result, these operators are ideally suited for use in conditional
expressions. Listing 7.1 isasimple program that uses the =~ operator to test whether a particular sequence of characters
exists in a character string.

Listing 7.1. A program that illustrates the use of the matching operator.

1. #!/usr/local/bin/perl

3: print ("Ask ne a question politely:\n");
4: S$question = <STDI N>;

5. if ($question =~ /pleasel/) {

6: print ("Thank you for being polite!\n");
7: } else {

8: print ("That was not very polite!\n");
9: }

http://docs.rinet.ru:8080/P7/ch7.htm (3 of 53) [2/17/2007 6:00:38 AM]

Day 7 -- Pattern Matching

$ prograni_1
Ask me a question politely:
May | have a glass of water, please?

Thank you for being polite!

Line5isan example of the use of the match operator =~ in a conditional expression. The following expression istrue if
the value stored in $quest i on containsthe word pl ease, and it isfaseif it does not:

$questi on =~ /pl ease/

Match-Operator Precedence

Like all operators, the match operators have a defined precedence. By definition, the =~ and ! ~ operators have higher
precedence than multiplication and division, and lower precedence than the exponentiation operator * * .

For acomplete list of Perl operators and their precedence, see Day 4, "More Operators.”

Special Characters in Patterns

Perl supports a variety of special charactersinside patterns, which enables you to match any of a number of character
strings. These special characters are what make patterns useful.

The + Character

The special character + means "one or more of the preceding characters.” For example, the pattern/ de+f / matches any
of the following:

def
deef

deeef

deeeeeeef

[NOTE

http://docs.rinet.ru:8080/P7/ch7.htm (4 of 53) [2/17/2007 6:00:38 AM]

Day 7 -- Pattern Matching

Patterns containing + always try to match as many characters as
possible. For example, if the pattern

| ab+/

is searching in the string
abbc

it matches abb, not ab.

The + special character makes it possible to define a better way to split lines into words. So far, the sample programs you
have seen have used

@wrds = split (/ /, $line);

to break an input line into words. Thisworks well if there is exactly one space between words. However, if an input line
contains more than one space between words, asin

Here's multiple spaces.

thecall tospl i t producesthe following list:

(“l_br el S", n ||’ nrr.ul tl pl en, ' "SpaCES. n)

Thepattern/ / tellsspl it to start anew word whenever it sees a space. Because there are two spaces between each
word, spl i t startsaword when it sees the first space, and then starts another word when it sees the second space. This
means that there are now "empty words" in the line.

The + special character gets around this problem. Suppose the call tospl i t ischanged to this:

@rray = split (/ +/, $line);

Because the pattern/ +/ triesto match as many blank characters as possible, the line

Here's nmultiple spaces.

produces the following list:

("Here's", "multiple", "spaces")

Listing 7.2 shows how you can usethe/ +/ pattern to produce a count of the number of wordsin afile.

Listing 7.2. A word-count program that handles multiple spaces between wor ds.

http://docs.rinet.ru:8080/P7/ch7.htm (5 of 53) [2/17/2007 6:00:38 AM]

Day 7 -- Pattern Matching

1: #!'/usr/local/bin/perl

3: $wordcount = O;
4: $line = <STDI N>;

5 while ($line ne "") {

6: chop ($line);

7: @words = split(/ +/, $line);
8: $wor dcount += @wr ds;

9: $li ne = <STDI N>

10: }

11: print ("Total nunber of words: $wordcount\n");

$ progranv_2

Her e isS sone input.

Here are sonme nore words.
Her e is ny last |ine.
"D

Total nunmber of words: 14

Thisis the same word-count program you saw in Listing 5.15, with only one change: The pattern/ +/ isbeing used to
break the line into words. As you can see, this handles spaces between words properly.

Y ou might have noticed the following problems with this word-count program:

« Spaces at the beginning of aline are counted as aword, because spl i t always starts anew word when it seesa
Space.

« Tab characters are counted as aword.

For an example of the first problem, take alook at the following input line:

http://docs.rinet.ru:8080/P7/ch7.htm (6 of 53) [2/17/2007 6:00:38 AM]

Day 7 -- Pattern Matching

This line contains | eadi ng spaces.

Thecal tospl it inline 7 breaks the preceding into the following list:

("", "This", "line", "contains", "leading", "spaces")

Thisyields aword count of 6, not the expected 5.

There can be at most one empty word produced from aline, no matter how many leading spaces there are, because the
pattern/ +/ matches as many spaces as possible. Note also that the program can distinguish between lines containing
words and lines that are blank or contain just spaces. If alineis blank or contains only spaces, the line

@wrds = split(/ +/, $line);

assigns the empty list to @wvor ds. Because of this, you can fix the problem of leading spacesin lines by modifying line 8
asfollows:

$wordcount += (@wrds > 0 && $words[0] eq "" ?

@wrds-1 : @wrds);
This checks for lines containing leading spaces; if aline contains leading spaces, the first "word" (which is the empty

string) is not added to the word count.

To find out how to modify the program to deal with tab characters as well as spaces, see the following section.

The [] Special Characters

The[] specia characters enable you to define patterns that match one of a group of alternatives. For example, the
following pattern matches def or dEf :

/d[eE] f/

Y ou can specify as many aternatives as you like.

/ a[0123456789] c/

This matches a, followed by any digit, followed by c.

You can combine[] with + to match a sequence of characters of any length.

/ d[eE] +f /

This matches al of the following:

http://docs.rinet.ru:8080/P7/ch7.htm (7 of 53) [2/17/2007 6:00:38 AM]

Day 7 -- Pattern Matching

def
dEf
deef
dEef

dEEEeeeEef

Any combination of E and e, in any order, ismatched by [eE] +.

Youcanuse[] and + together to modify the word-count program you've just seen to accept either tab characters or
spaces. Listing 7.3 shows how you can do this.

Listing 7.3. A word-count program that handles multiple spaces and tabs between wor ds.

1. #!/usr/local/bin/perl

3: $wordcount = O;
4: $line = <STDI N>;

5. while ($line ne "") {

6: chop ($line);

7: @wrds = split(/[\t]+/, $line);
8: $wor dcount += @wr ds;

9: $line = <STDI N>

10: }

11: print ("Total nunber of words: $wordcount\n");

$ prograni_3
Here is sone input.

Here are sone nore words.

http://docs.rinet.ru:8080/P7/ch7.htm (8 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching
Here is ny last line.

"D

Total nunber of words: 14

This program isidentical to Listing 7.2, except that the patternisnow / [\t] +/.

The\ t specia-character sequence represents the tab character, and this pattern matches any combination or quantity of
spaces and tabs.

NOTE

Any escape sequence that is supported in double-quoted stringsis
supported in patterns. See Day 3, "Understanding Scalar Values,"

for alist of the escape sequences that are available.

The * and ? Special Characters

Asyou have seen, the + character matches one or more occurrences of a character. Perl also defines two other special
characters that match avarying number of characters. * and ?.

The* gpecial character matches zero or more occurrences of the preceding character. For example, the pattern

[de*f/

matches df , def , deef , and so on.

This character can also be used withthe[] special character.

/[eE] */

This matches the empty string as well as any combination of E or e in any order.

)
."‘E >
WARNING

http://docs.rinet.ru:8080/P7/ch7.htm (9 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching

Be sure not to confuse the * special character with the + special
character. If you use the wrong special character, you might not
get the results that you want.

For example, suppose that you modify Listing 7.3to call spl i t
asfollows:

@wrds = split (/[\t]1*/, $list);

This matches zero or more occurrences of the space or tab
character. When you run this with the input

aline
here'sthelist that is assigned to @wor ds:
(n aII , 11} I n , n i 11} , n nII , n eII)

Becausethepattern/ [\t] */ matches on zero occurrences of
the space or tab character, it matches after every character. This
meansthat spl i t startsaword after every character that isnot a
space or tab. (It skips spaces and tabsbecause/ [\t] */
matches them.)

The best way to avoid problems such as this oneisto use the *
specia character only when there is another character appearing in
the pattern. Patterns such as

Ib*[c]/
never match the null string, because the matched sequence has to
contain at least the character c.

The ? character matches zero or one occurrence of the preceding character. For example, the pattern

[de?f/

matches either df or def . Note that it does not match deef , because the ? character does not match two occurrences of a
character.

Escape Sequences for Special Characters

If you want your pattern to include a character that is normally treated as a special character, precede the character with a
backslash \ . For example, to check for one or more occurrences of * in a string, use the following pattern:

I\ *+]

The backslash preceding the * tells the Perl interpreter to treat the * asan ordinary character, not as the special character
meaning "zero or more occurrences.”

To include abackslash in a pattern, specify two backslashes:

N\ +/

This pattern tests for one or more occurrences of \ in astring.

If you are running Perl 5, another way to tell Perl that a special character isto be treated as a normal character isto precede
it with the \ Qescape sequence. When the Perl interpreter sees\ Q, every character following the\ Qis treated as a normal

http://docs.rinet.ru:8080/P7/ch7.htm (10 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching
character until \ E is seen. This means that the pattern

/\ Q ab*/

matches any occurrence of the string *ab* , and the pattern

/\ Q*ab\ E*/

matches " a followed by zero or more occurrences of b.

For acomplete list of special charactersin patternsthat require\ to be given their natural meaning, see the section titled
"Special-Character Precedence,” which contains a table that lists them.

|TIP

In Perl, any character that is not aletter or adigit can be preceded
by a backslash. If the character isn't a special character in Perl, the
backslash isignored.

If you are not sure whether a particular character is a special
character, preceding it with a backslash will ensure that your
pattern behaves the way you want it to.

Matching Any Letter or Number
Asyou have seen, the pattern
/ a[0123456789] c/

matches a, followed by any digit, followed by c. Another way of writing thisis as follows:

/a[0-9]c/
Here, therange[0- 9] represents any digit between 0 and 9. This pattern matchesaOc, alc, a2c, and soonuptoa9c.

Similarly, therange [a- z] matches any lowercase letter, and the range [A- Z] matches any uppercase letter. For
example, the pattern

IIAZ][A2Z]/

matches any two uppercase |etters.

To match any uppercase letter, lowercase |etter, or digit, use the following range:

/[0-9a-zA-Z]/

Listing 7.4 provides an example of the use of rangeswith the[] special characters. This program checks whether a given
input line contains alegal Perl scalar, array, or file-variable name. (Note that this program handles only simple input lines.

http://docs.rinet.ru:8080/P7/ch7.htm (11 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching
Later examples will solve this problem in a better way.)

Listing 7.4. A simple variable-name validation program.

1. #!/usr/local/bin/perl

3: print ("Enter a variable nane:\n");

4: $varnane = <STDI N>;

5: chop ($varnane);

6: if ($varnanme =~ /\$[A Za-z][_0-9a-zA-Z]*/) {

7: print ("$varnane is a |legal scalar variable\n");
8: } elsif ($varnane =~ / @A-Za-z][_0-9a-zA-Z]*/) {

9: print ("$varnane is a legal array variable\n");

10: } elsif ($varname =~ /[A-Za-z][_0-9a-zA-Z]*/) {

11: print ("$varnane is a legal file variable\n");
12: } else {

13: print ("I don't understand what $varnanme is.\n");
14: }

$ prograni_4
Enter a vari abl e nane:
$result

$result is a legal scalar variable

Line 6 checks whether the input line contains the name of alegal scalar variable. Recall that alegal scalar variable consists

http://docs.rinet.ru:8080/P7/ch7.htm (12 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching
of the following:
o A $ character
« An uppercase or lowercase |etter
o Zero or more letters, digits, or underscore characters
Each part of the pattern tested in line 6 corresponds to one of the aforementioned conditions given. The first part of the
pattern, \ $, ensures that the pattern matches only if it begins with a$ character.

[NOTE

The $ is preceded by a backslash, because $ is a specia character
in patterns. See the following section, "Anchoring Patterns," for
more information on the $ special character.

The second part of the pattern,

[A- Za- 7]

matches exactly one uppercase or lowercase letter. The final part of the pattern,

[_0-9a-zA-Z] *

matches zero or more underscores, digits, or lettersin any order.

The patternsin line 8 and line 10 are very similar to the onein line 6. The only differencein line 8 isthat the pattern there
matches a string whose first character is @ not $. In line 10, thisfirst character is omitted completely.

The pattern in line 8 corresponds to the definition of alegal array-variable name, and the pattern in line 10 corresponds to
the definition of alegal file-variable name.

Anchoring Patterns
Although Listing 7.4 can determine whether aline of input contains alegal Perl variable name, it cannot determine
whether there is extraneous input on the line. For example, it can't tell the difference between the following three lines of
input:

$resul t

junk$resul t

$resul t#j unk

In al three cases, the pattern

/I\$[a-zA-Z] [_0-9a-zA-Z] */

finds the string $r esul t and matches successfully; however, only thefirst lineisalegal Perl variable name.
To fix this problem, you can use pattern anchors. Table 7.1 lists the pattern anchors defined in Perl.

Table7.1. Pattern anchorsin Perl.

http://docs.rinet.ru:8080/P7/ch7.htm (13 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching

|Anchor Description

|" or\ A Match at beginning of string only
$or\z Match at end of string only

\b Match on word boundary

\B Match inside word

These pattern anchors are described in the following sections.
The ~ and $ Pattern Anchors

The pattern anchors ™ and $ ensure that the pattern is matched only at the beginning or the end of a string. For example,
the pattern

[~def /

matches def only if these are the first three charactersin the string. Similarly, the pattern

/ def $/

matches def only if these are the last three charactersin the string.

Y ou can combine” and $ to force matching of the entire string, as follows:

| ~def $/

This matches only if the stringisdef .
In most cases, the escape sequences\ A and\ Z (defined in Perl 5) are equivalent to and $, respectively:

/'\ Adef\ Z/

This aso matchesonly if the string isdef .

[NOTE

\ Aand\ Z behave differently from~ and $ when the
multiple-line pattern-matching option is specified.
Pattern-matching options are described | ater today.

Listing 7.5 shows how you can use pattern anchors to ensure that aline of input is, in fact, alega Perl scalar-, array-, or
file-variable name.

Listing 7.5. A better variable-name validation program.

1. #!/usr/local/bin/perl

http://docs.rinet.ru:8080/P7/ch7.htm (14 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching
2:

3: print ("Enter a variable nane:\n");

4: $varname = <STDI N>;

5: chop ($varnane);

6: if ($varname =~ /M $[A-Za-z][_0-9a-zA-Z]*$/) {

7: print ("$varnane is a |legal scalar variable\n");
8: } elsif ($varnane =~ /"@A-Za-z][_0-9a-zA-Z]*$/) {

9: print ("$varnane is a legal array variable\n");

10: } elsif ($varnane =~ /" A-Za-z][_0-9a-zA-Z]1*$/) {

11: print ("$varnane is a legal file variable\n");
12: } else {

13: print ("I don't understand what $varnanme is.\n");
14: }

$ progranv_5
Enter a vari abl e nane:
x$resul t

| don't understand what x$result is.

The only difference between this program and the onein Listing 7.4 is that this program uses the pattern anchors* and $
in the patternsin lines 6, 8, and 10. These anchors ensure that a valid pattern consists of only those characters that make up
alegal Perl scalar, array, or file variable.

In the sample output given here, the input

x$resul t

is rejected, because the pattern in line 6 is matched only when the $ character appears at the beginning of the line.

http://docs.rinet.ru:8080/P7/ch7.htm (15 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching
Word-Boundary Pattern Anchors

The word-boundary pattern anchors, \ b and \ B, specify whether a matched pattern must be on aword boundary or inside
aword boundary. (A word boundary is the beginning or end of aword.)

The\ b pattern anchor specifies that the pattern must be on aword boundary. For example, the pattern

/'\ bdef/

matches only if def isthe beginning of aword. Thismeansthat def and def ghi match but abcdef doesnot.

You can also use\ b to indicate the end of aword. For example,

/ def\ b/

matches def and abcdef , but not def ghi . Finally, the pattern

/'\ bdef\ b/

matches only the word def , not abcdef or def ghi .

NOTE

A word is assumed to contain letters, digits, and underscore
characters, and nothing else. This means that

/'\ bdef/
matches $def ghi : because $ is not assumed to be part of a

word, def isthe beginning of the word def ghi , and/\ bdef /
matchesiit.

The\ B pattern anchor is the opposite of \ b.\ B matches only if the pattern is contained in aword. For example, the
pattern

/' \ Bdef/

matches abcdef , but not def . Similarly, the pattern

[def\ B/

matches def ghi , and

/' \ Bdef \ B/

matches cdef g or abcdef ghi , but not def , def ghi , or abcdef .

The\ b and \ B pattern anchors enable you to search for wordsin an input line without having to break up the line using

http://docs.rinet.ru:8080/P7/ch7.htm (16 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching
spl i t. For example, Listing 7.6 uses\ b to count the number of lines of an input file that contain the word t he.

Listing 7.6. A program that countsthe number of input lines containing theword t he.

1. #!/usr/local/bin/perl

3: $thecount = 0;
4. print ("Enter the input here:\n");
5: $line = <STDI N>;

6: while ($line ne "") {

7: if ($line =~ /\bthe\b/) {
8: $t hecount += 1,
9: }

10: $l i ne = <STDI N>;

11: }

12: print ("Nunber of lines containing 'the': $thecount\n");

$ prograni_6

Enter the input here:

Now is the tine

for all good nen

to come to the aid

of the party.

"D

Nunber of lines containing '"the': 3

$

http://docs.rinet.ru:8080/P7/ch7.htm (17 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching

This program checks each line in turn to seeif it contains the word t he, and then prints the total number of lines that
contain the word.

Line 7 performs the actual checking by trying to match the pattern

/'\ bt he\ b/

If this pattern matches, the line contains the word t he, because the pattern checks for word boundaries at either end.

Note that this program doesn't check whether the word t he appears on aline more than once. It is not difficult to modify
the program to do this; in fact, you can do it in several different ways.

The most obvious but most |aborious way isto break up lines that you know contain t he into words, and then check each
word, asfollows:

if ($line =~ /\bthe\b/) {

@wor ds split(/[\t 1+, $line);

1;

$count
whil e ($count <= @wrds) {
if ($words[$count-1] eq "the") {

$t hecount += 1;

}

$count ++;

A cute way to accomplish the same thing is to use the pattern itself to break the line into words:

if ($line =~ /\bthe\b/) {
@wrds = split(/\bthe\b/, $line);

$t hecount += @wrds - 1;

In fact, you don't even need thei f statement.

http://docs.rinet.ru:8080/P7/ch7.htm (18 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching
@wrds = split(/\bthe\b/, $line);

$t hecount += @wrds - 1;
Here'swhy thisworks: Every timespl i t seesthewordt he, it starts a new word. Therefore, the number of occurrences

of t he isequal to one less than the number of elementsin @wr ds. If there are no occurrences of t he, @wr ds hasthe
length 1, and $t hecount isnot changed.

i

A
= .

WARNING

Thistrick works only if you know that thereis at least one word
on theline.

Consider the following code, which tries to use the
aforementioned trick on aline that has had its newline character
removed using chop:

$line = <STDI N>;

chop ($line);

@wrds = split(/\bthe\b/, $line);
$t hecount += @words - 1;

This code actually subtracts 1 from $t hecount if thelineis
blank or consists only of theword t he, because in these cases
@wor ds isthe empty list and the length of @wor ds isO.

Leaving off the call to chop protects against this problem,
because there will always be at least one "word" in every line
(consisting of the newline character).

Variable Substitution in Patterns

If you like, you can use the value of a scalar variable in a pattern. For example, the following code splitstheline $I i ne
into words:

$pattern = "[\\t]+";

@wrds = split(/$pattern/, $line);
Because you can use a scalar variable in a pattern, there is nothing to stop you from reading the pattern from the standard
input file. Listing 7.7 accepts a search pattern from afile and then searches for the pattern in the input files listed on the

command line. If it finds the pattern, it prints the filename and line number of the match; at the end, it prints the total
number of matches.

This example assumes that two filesexist, fi | el andf i | e2. Each file contains the following:
This is a line of input.
This is another line of input.

If you run this program with command-line argumentsfi | el andf i | e2 and search for the pattern anot her , you get
the output shown.

http://docs.rinet.ru:8080/P7/ch7.htm (19 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching

Listing 7.7. A simple patter n-sear ch program.

1: #!'/usr/local/bin/perl

3: print ("Enter the search pattern:\n");
4: S$pattern = <STDI N>;

5: chop ($pattern);

6: $filename = $ARGV[0] ;

7: $linenum = $mat chcount = O;

8: print ("Matches found:\n");

9: while ($line = <>) {

10: $l i nenum += 1;

11: if ($line =~ /$pattern/) {

12: print ("$filenanme, line $linenumn");
13: @words = split(/$pattern/, $line);
14: $mat chcount += @wrds - 1;

15: }

16: if (eof) {

17: $l i nenum = 0;

18: $fil ename = $ARGV[0] ;

19: }

20: }

21: if ($matchcount == 0) {

22: print ("No matches found.\n");
23: } else {

24. print ("Total nunber of matches:

25 }

$mat chcount\ n");

http://docs.rinet.ru:8080/P7/ch7.htm (20 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching

$ progranv_7 filel file2
Enter the search pattern:
anot her

Mat ches found:

filel, line 2

file2, line 2

Total nunber of matches: 2

This program uses the following scalar variables to keep track of information:
« $patt er n containsthe search pattern read in from the standard input file.
« $f i | enane containsthe file currently being searched.
« 3l i nenumcontains the line number of the line currently being searched.
« $mat chcount contains the total number of matches found to this point.

Line 6 sets the current filename, which corresponds to the first element in the built-in array variable GARGV. This array
variable lists the arguments supplied on the command line. (To refresh your memory on how @ARGV works, refer back to
Day 6, "Reading from and Writing to Files.") This current filename needs to be stored in a scalar variable, because the <>
operator in line 9 shifts @GARGV and destroys this name.

Line 9 reads from each of the files on the command linein turn, oneline at atime. The current input lineis stored in the
scalar variable $1 i ne. Oncethelineisread, line 10 adds 1 to the current line number.

Lines 11-15 handle the matching process. Line 11 checks whether the pattern stored in $pat t er n is contained in the
input line stored in $1 i ne. If amatch isfound, line 12 prints out the current filename and line number. Line 13 then splits
the lineinto "words," using the trick described in the earlier section, "Word-Boundary Pattern Anchors." Because the
number of elements of the list stored in @wor ds is one larger than the number of times the pattern is matched, the
expression @wr ds - 1 isequivalent to the number of matches; its value is added to $nmat chcount .

Line 16 checks whether the <> operator has reached the end of the current input file. If it has, line 17 resets the current line
number to 0. This ensures that the next pass through the loop will set the current line number to 1 (to indicate that the
program is on the first line of the next file). Line 18 sets the filename to the next file mentioned on the command line,
which is currently stored in $ARGV[0] .

Lines 21-25 either print the total number of matches or indicate that no matches were found.

NOTE
Make sure that you remember to include the enclosing /
characters when you use a scalar-variable name in a pattern. The
Perl interpreter does not complain when it sees the following, for
example, but the result might not be what you want:

@wrds = split($pattern, $line);

http://docs.rinet.ru:8080/P7/ch7.htm (21 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching

Excluding Alternatives

Asyou have seen, when the special characters[] appear in a pattern, they specify a set of alternatives to choose from. For
example, the pattern

/d[eE] f/

matches def or dEf .

When the” character appears as the first character after the [, it indicates that the pattern is to match any character except
the ones displayed between the[and] . For example, the pattern

/d[~eE] f/

matches any pattern that satisfies the following criteria:
o Thefirst character isd.
« The second character is anything other than e or E.
o Thelast character isf .

NOTE

Toincludea” character in aset of alternatives, precedeit with a
backslash, as follows:

/d[\"eE] f/
This pattern matches d~f , def , or dEf .

Character-Range Escape Sequences

In the section titled "Matching Any Letter or Number" earlier in this chapter, you learned that you can represent
consecutive letters or numbersinsidethe[] special characters by specifying ranges. For example, in the pattern

/a[1-3]c/

the[1- 3] matchesany of 1, 2, or 3.
Some ranges occur frequently enough that Perl defines specia escape sequences for them. For example, instead of writing

/[0-9]/

to indicate that any digit isto be matched, you can write

/\d/

The\ d escape sequence means "any digit."
Table 7.2 lists the character-range escape sequences, what they match, and their equivalent character ranges.

http://docs.rinet.ru:8080/P7/ch7.htm (22 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching
Table 7.2. Character -range escape sequences.

| Escape sequence |Description Range

| \d Any digit [0-9]

| \D |Anything other than a digit [~0-9]

| \'w |Any word character [_0-9a-zA-Z]

| \W |Anything not aword character [~_0-9a- zA- 7]
| \'s |White space [\r\t\n\f]

| \'S |Anything other than white space [~ \r\t\n\f]

These escape sequences can be used anywhere ordinary characters are used. For example, the following pattern matches
any digit or lowercase letter:

/[\da-2z]/

[NOTE

The definition of word boundary as used by the\ b and \ B specia
characters corresponds to the definition of word character used by
\wand\ W

If the pattern/ \ W\ W matches a particular pair of characters, the
first character is part of aword and the second is not; this means
that the first character is the end of aword, and that aword
boundary exists between the first and second characters matched
by the pattern.

Similarly, if / \ W w matchesapair of characters, the first
character is not part of aword and the second character is. This
means that the second character is the beginning of aword. Again,
aword boundary exists between the first and second characters
matched by the pattern.

Matching Any Character

Another special character supported in patternsis the period (.) character, which matches any character except the newline
character. For example, the following pattern matches d, followed by any non-newline character, followed by f :

/d.f/

The. character is often used in conjunction with the * character. For example, the following pattern matches any string
that contains the character d preceding the character f :

/d.*f/

Normally, the . * special-character combination tries to match as much as possible. For example, if the string banana is
searched using the following pattern, the pattern matches banana, not ba or bana:

/b.*al

http://docs.rinet.ru:8080/P7/ch7.htm (23 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching

NOTE

Thereis one exception to the preceding rule: The. * character
only matches the longest possible string that enables the pattern
match as a whole to succeed.

For example, supposethe string M ssi ssi ppi issearched using
the pattern

IM*i. *pi/

Here, thefirst. * in/ M *i . *pi / matches

M ssi ssi ppi

If it tried to go further and match

M ssi ssi ppi

or even

M ssi ssi ppi

there would be nothing left for the rest of the pattern to match.
When thefirst . * matchislimited to

M ssi ssi ppi

therest of the pattern, i . * pi , matchesi ppi , and the pattern asa
whole succeeds.

Matching a Specified Number of Occurrences

Several specia charactersin patterns that you have seen enable you to match a specified number of occurrences of a
character. For example, + matches one or more occurrences of a character, and ? matches zero or one occurrences.

Perl enables you to define how many occurrences of a character constitute a match. To do this, use the special characters {
and}.

For example, the pattern

/de{1, 3}f/
matches d, followed by one, two, or three occurrences of e, followed by f . Thismeansthat def , deef , and deeef

match, but df and deeeef do not.

To specify an exact number of occurrences, include only one value between the { and the} .

/ de{3}f/

This specifies exactly three occurrences of e, which means this pattern only matches deeef .

To specify aminimum number of occurrences, leave off the upper bound.

/de{3,}f/

This matches d, followed by at least three es, followed by f .

Finally, to specify a maximum number of occurrences, use 0 as the lower bound.

http://docs.rinet.ru:8080/P7/ch7.htm (24 of 53) [2/17/2007 6:00:39 AM]

http://docs.rinet.ru:8080/P7/ch7.htm

Day 7 -- Pattern Matching

/ de{0, 3}f/

This matches d, followed by no more than three es, followed by f .

NOTE

Youcanuse{ and} with character ranges or any other specia
character, asfollows:

/la-z]{1, 3}/

This matches one, two, or three lowercase | etters.
/. {3}/

This matches any three characters.

Specifying Choices

The special character | enables you to specify two or more alternatives to choose from when matching a pattern. For
example, the pattern

/ def | ghi /

matches either def or ghi . The pattern

/[a-z]+ [0-9] +

matches one or more lowercase letters or one or more digits.

Listing 7.8 isasimple example of a program that usesthe | special character. It reads a number and checks whether itisa
legitimate Perl integer.

Listing 7.8. A simpleinteger-validation program.

1: #!/usr/local/bin/perl

3: print ("Enter a nunber:\n");

4: S$nunber = <STDI N>

5: chop ($nunber);

6: if ($nunber =~ /~-2Ad+$| - ?0[xX][\da-fa-F]+$/) {

7: print ("$nunber is a legal integer.\n");

o

} else {

http://docs.rinet.ru:8080/P7/ch7.htm (25 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching

9: print ("$nunmber is not a legal integer.\n");

$ progranv_8
Ent er a nunber:
ox3ff1

Ox3ffl1l is a legal integer.

Recall that Perl integers can bein any of three forms:
» Standard base-10 notation, asin 123
« Base-8 (octal) notation, indicated by aleading 0, asin 0123
« Base-16 (hexadecimal) notation, indicated by aleading Ox or 0X, asin OX1f f

Line 6 checks whether anumber isalegal Perl integer. The first alternative in the pattern,

Ao\ d+$

matches a string consisting of one or more digits, optionally preceded by a- . (The” and $ characters ensure that thisis
the only string that matches.) This takes care of integersin standard base-10 notation and integers in octal notation.

The second aternative in the pattern,

A-?20[xX] [\ da-fa-F] +$

matches integers in hexadecimal notation. Take alook at this pattern one piece at atime:

« The” matches the beginning of the line. This ensures that lines containing leading spaces or extraneous characters
are not treated as valid hexadecimal integers.

o The-? matchesa- if itispresent. Thisensuresthat negative numbers are matched.
« TheO matchestheleading 0.
o The[xX] matchesthe x or X that follows the leading O.

o The[\ da-fa- F] matchesany digit, any letter between a and f , or any letter between A and F. Recall that these
are precisely the characters which are allowed to appear in hexadecimal digits.

« The+ indicates that the pattern is to match one or more hexadecimal digits.
« Theclosing $ indicates that the pattern isto match only if there are no extraneous characters following the

http://docs.rinet.ru:8080/P7/ch7.htm (26 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching
hexadecimal integer.

520

WARN'IN:;
Beware that the following pattern matches either x or one or more
of y, not one or more of x ory:
I x| y+/

See the section called " Specia-Character Precedence” later today
for details on how to specify special-character precedence in
patterns.

Reusing Portions of Patterns

Suppose that you want to write a pattern that matches the following:
« Oneor more digits or lowercase |etters
« Followed by a colon or semicolon
« Followed by another group of one or more digits or lowercase letters
« Another colon or semicolon
« Yet another group of one or more digits or lowercase |etters

One way to indicate this pattern is as follows:
[[\da-z]+[:;][\da-z]+[:;][\da-z] +/

This pattern is somewhat complicated and is quite repetitive.

Perl provides an easier way to specify patterns that contain multiple repetitions of a particular sequence. When you enclose
aportion of a pattern in parentheses, asin

([\da-z] +)

Perl stores the matched sequence in memory. To retrieve a sequence from memory, use the specia character \ n, wheren
is an integer representing the nth pattern stored in memory.

For example, the aforementioned pattern can be written as
[([\da-z]+])[:;]\1[:;]\1/

Here, the pattern matched by [\ da- z] + is stored in memory. When the Perl interpreter sees the escape sequence\ 1, it
matches the matched pattern.

Y ou also can store the sequence|[: ;] in memory, and write this pattern as follows:
[([\da-z]+)([:;])\1\2\ 1/

Pattern sequences are stored in memory from left to right, so\ 1 represents the subpattern matched by [\ da- z] + and\ 2
represents the subpattern matched by [: ;] .

http://docs.rinet.ru:8080/P7/ch7.htm (27 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching

Pattern-sequence memory is often used when you want to match the same character in more than one place but don't care
which character you match. For example, if you are looking for adate in dd-mmyy format, you might want to match

INA{2} ([\W)\d{2}\ 1\ d{ 2}/

This matches two digits, a non-word character, two more digits, the same non-word character, and two more digits. This
means that the following strings all match:

12-05-92

26.11. 87

07 04 92

However, the following string does not match:

21-05.91

This is because the pattern islooking for a- between the 05 and the 91, not a period.

o2
WARNING

Beware that the pattern

/INd{2} ([\W)\d{2}\ 1\ d{ 2}/
is not the same as the pattern
F(\Nd{2}) ([\W)\1\2\1/

In the first pattern, any digit can appear anywhere. The second
pattern matches any two digits as the first two characters, but then
only matches the same two digits again. This means that

17-17-17
matches, but the following does not:
17-05-91

Pattern-Sequence Scalar Variables

Note that pattern-sequence memory is preserved only for the length of the pattern. This means that if you define the
following pattern (which, incidentally, matches any floating-point number that does not contain an exponent):

[-2(\d+)\ . 2(\d+)/

you cannot then define another pattern, such as the following:

/\1/

http://docs.rinet.ru:8080/P7/ch7.htm (28 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching
and expect the Perl interpreter to remember that \ 1 refersto thefirst\ d+ (the digits before the decimal point).

To get around this problem, Perl defines special built-in variables that remember the value of patterns matched in
parentheses. These special variables are named $n, where n isthe nth set of parentheses in the pattern.

For example, consider the following:

$string = "This string contains the nunber 25.11.";
$string =~ /-2(\d+)\.?2(\d+)/;
$i ntegerpart = $1;

$deci mal part = $2;

In this case, the pattern

[-2(\d+)\. 2(\d+)/

matches 25. 11, and the subpattern in the first set of parentheses matches 25. This meansthat 25 isstored in $1 and is
later assigned to $i nt eger par t . Similarly, the second set of parentheses matches 11, which is stored in $2 and later
assigned to $deci mal part .

=

WARNING
The values stored in $1, $2, and so on, are destroyed when
another pattern match is performed. If you need these values, be
sure to assign them to other scalar variables.

There is aso one other built-in scalar variable, $&, which contains the entire matched pattern, as follows:

$string = "This string contains the nunber 25.11.";
$string =~ /-?(\d+)\.?2(\d+)/;
$nunber = $&;

Here, the pattern matched is 25. 11, which is stored in $& and then assigned to $nunber .

Special-Character Precedence

Perl defines rules of precedence to determine the order in which special charactersin patterns are interpreted. For example,
the pattern

[x| y+/

matches either x or one or more occurrences of y, because + has higher precedence than | and istherefore interpreted
first.

http://docs.rinet.ru:8080/P7/ch7.htm (29 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching

Table 7.3 lists the special characters that can appear in patternsin order of precedence (highest to lowest). Special
characters with higher precedence are always interpreted before those of lower precedence.

Table 7.3. The precedence of pattern-matching special characters.

|Special character |Description

I0) |Pattern memory

+* 2 {} INumber of occurrences
" $\b \B |Pattern anchors

I |Alternatives

Because the pattern-memory special characters () have the highest precedence, you can use them to force other special
characters to be evaluated first. For example, the pattern

(ab| cd) +

matches one or more occurrences of either ab or cd. This matches, for example, abcdab.

12

WARNTN?;
Remember that when you use parentheses to force the order of
precedence, you also are storing into pattern memory. For
example, in the sequence
/ (ab| cd)+(.) (ef|gh)+\1/
the\ 1 refersto what ab| cd matched, not to what the . special
character matched.

Now that you know all of the special-pattern characters and their precedence, look at a program that does more complex
pattern matching. Listing 7.9 uses the various special-pattern characters, including the parentheses, to check whether a
given input string isavalid twentieth-century date.

Listing 7.9. A date-validation program.

=

8:

9:

#!/usr/ | ocal / bi n/ perl

print ("Enter a date in the format YYYY-MWDD:\n");
$date = <STDI N>;

chop ($date);

Because this pattern is conplicated, we split it
into parts, assign the parts to scal ar vari abl es,

then substitute themin | ater.

http://docs.rinet.ru:8080/P7/ch7.htm (30 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching

10:

11: # handl e 31-day nonths

12: $mdl = "(0[13578]|1[02])\\2(0[1-9]|[212]\\d|3[01])";
13: # handl e 30-day nonths

14: $md2 = "(0[469] | 11)\\2(0[1-9]|[12]\\d|30)";

15: # handl e February, w thout worrying about whether it's
16: # supposed to be a | eap year or not

17: $md3 = "02\\2(0[1-9]|[12]\\d)";

18:

19: # check for a twentieth-century date

20: $match = $date =~ /~(19) 2\ d\d(.) ($ndl| $nd2| $nd3) $/ ;
21: # check for a valid but non-20th century date

22: %ol ddate = $date =~ /~(\d{1,4})(.)($ndl| $nd2| $nd3) $/ ;
23: if ($match) {

24 print ("$date is a valid date\n");

25: } elsif ($olddate) {

26: print ("$date is not in the 20th century\n");
27: } else {

28: print ("$date is not a valid date\n");

29: }

$ prograni_9

Enter a date in the format YYYY- M\ DD
1991-04- 31

1991-04-31 is not a valid date

$

http://docs.rinet.ru:8080/P7/ch7.htm (31 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching

Don't worry: this program is alot less complicated than it looks! Basically, this program does the following:

1. It checks whether the date isin the format YYYY- MM DD. (It allows YY- MM DD, and also enables you to use a
character other than a hyphen to separate the year, month, and date.)

2. It checks whether the year isin the twentieth century or not.

3. It checks whether the month is between 01 and 12.

4. Finally, it checks whether the date field isalegal date for that month. Legal date fields are between 01 and either
29, 30, or 31, depending on the number of daysin that month.

If the date islegal, the program tells you so. If the date is not a twentieth-century date but is legal, the program informs you
of thisalso.

Because the pattern to be matched istoo long to fit on one line, this program breaks it into pieces and assigns the pieces to
scalar variables. Thisis possible because scalar-variable substitution is supported in patterns.

Line 12 isthe pattern to match for months with 31 days. Note that the escape sequences (such as\ d) are preceded by
another backslash (producing \ \ d). Thisis because the program actually wants to store a backslash in the scalar variable.
(Recall that backslashes in double-quoted strings are treated as escape sequences.) The pattern

(0[13578] | 1[02])\ 2(O[1- 9] | [12] \ d| 3[01])

which isassigned to $nd 1, consists of the following components:

o Thesequence(0[13578] | 1[02]) , which matches the month values01, 03, 05,07, 08, 10, and 12 (the
31-day months)

« \ 2, which matches the character that separates the day, month, and year
o Thesequence (O[1-9]|[12]\d]| 3[01]), which matches any two-digit number between 01 and 31

Note that \ 2 matches the separator character because the separator character will eventually be the second pattern
sequence stored in memory (when the pattern isfinally assembled).

Line 14 issimilar to line 12 and handles 30-day months. The only differences between this subpattern and the onein line
12 are asfollows:

« The month values accepted are 04, 06, 09, and 11.

« Thevalid datefieldsare 01 through 30, not 01 through 31.

Line 17 isanother similar pattern that checks whether the month is02 (February) and the date field is between 01 and 29.
Line 20 does the actual pattern match that checks whether the date is avalid twentieth-century date. This pattern is divided

into three parts.

e ~(19) ?\ d\ d, which matches any two-digit number at the beginning of aline, or any four-digit number starting
with 19

« The separator character, which is the second item in parentheses-the second item stored in memory-and thus can be
retrieved using \ 2

o ($ndl| $nd2| $nd3) $, which matches any of the valid month-day combinations defined in lines 12, 14, and 17,
provided it appears at the end of the line

The result of the pattern match, either true or false, is stored in the scalar variable $mat ch.
Line 22 checks whether the date is avalid date in any century. The only difference between this pattern and the onein line
20 isthat the year can be any one-to-four-digit number. The result of the pattern match is stored in $ol ddat e.

http://docs.rinet.ru:8080/P7/ch7.htm (32 of 53) [2/17/2007 6:00:39 AM]

Day 7 -- Pattern Matching
Lines 23-29 check whether either $mat ch or $ol ddat e istrue and print the appropriate message.

Asyou can see, the pattern-matching facility in Perl is quite powerful. This program isless than 30 lines long, including
comments; the equivalent program in ailmost any other programming language would be substantialy longer and much
more difficult to write.

Specifying a Different Pattern Delimiter

So far, all the patterns you have seen have been enclosed by / characters.

[de*f/
These/ characters are known as pattern delimiters.

Because/ isthe pattern-delimiter character, you must use\ / toincludea/ character in a pattern. This can become
awkward if you are searching for adirectory such as, for example, / u/ j qpubl i c/ per!| / progl.

/\/Tu\/jqgpublic\/perl\/progl/

To make it easier to write patterns that include/ characters, Perl enables you to use any pattern-delimiter character you
like. The following pattern also matches the directory / u/ j qpubl i ¢/ per |/ progl:

m /u/jqpublic/perl/progl!

Here, the mindicates the pattern-matching operation. If you are using a pattern delimiter other than / , you must include the
m

8

WARNING

There are two things you should watch out for when you use other
pattern delimiters.

First, if you usethe' character as a pattern delimiter, the Perl
interpreter does not substitute for scalar-variable names.

m $var'

This matches the string $var , not the current value of the scalar
variable $var .

Second, if you use a pattern delimiter that isnormally a
special-pattern character, you will not be able to use that special
character in your pattern. For example, if you want to match the
pattern ab?c (which matches a, optionally followed by b,
followed by c¢) you cannot use the ? character as a pattern
delimiter. The pattern

n?ab?c?

produces a syntax error, because the Perl interpreter assumes that
the ? after the b is a pattern delimiter. Y ou can till use

n?ab\ ?c?

but this pattern won't match what you want. Because the ? inside
the pattern is escaped, the Perl interpreter assumes that you want

http://docs.rinet.ru:8080/P7/ch7.htm (33 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

to match the actual ? character, and the pattern matches the
sequence ab?c.

Pattern-Matching Options

When you specify a pattern, you also can supply options that control how the pattern isto be matched. Table 7.4 lists these
pattern-matching options.

Table 7.4. Patter n-matching options.

Option |Description

Match all possible patterns
Ignore case

Treat string as multiple lines
Only evaluate once

|Treat string assingleline
|Ignore white space in pattern

X(DOB_'Q

All pattern options are included immediately after the pattern. For example, the following pattern usesthei option to
ignore case:

[ab*c/i

Y ou can specify as many of the options as you like, and the options can be in any order.

Matching All Possible Patterns

The g operator tells the Perl interpreter to match all the possible patternsin a string. For example, if you search the string
bal at a using the pattern

/.alg
which matches any character followed by a, the pattern matchesba, | a, andt a.

If a pattern with the g option specified appears as an assignment to an array variable, the array variable is assigned a list
consisting of al the patterns matched. For example,

@muat ches = "balata" =~ /.alg;

assigns the following list to @rat ches:

Now, consider the following statement:

$match = "balata" =~ /.alg;

http://docs.rinet.ru:8080/P7/ch7.htm (34 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

The first time this statement is executed, $mat ch is assigned the first pattern matched, which in thiscaseis ba. If this
assignment is performed again, $mat ch is assigned the second pattern matched in the string, whichis| a, and so on until
the pattern runs out of matches.

This means that you can use patterns with the g option in loops. Listing 7.10 shows how this works.

Listing 7.10. A program that loopsusing a pattern.

1: #!'/usr/local/bin/perl

2:

3: while ("balata" =~ /.alg) {
4: $match = $&

5: print ("$match\n");
6: }

$ progranv_10
ba

| a

ta

Thefirst time through the loop, $mat ch has the value of the first pattern matched, which isba. (The system variable $&
always contains the last pattern matched; this pattern is assigned to $mat ch in line 4.) When the loop is executed for a
second time, $mat ch hasthevauel a. The third time through, $mat ch hasthevaluet a. After this, the loop terminates,
because the pattern doesn't match anything else, the conditional expression is now false.

Determining the Match Location

If you need to know how much of a string has been searched by the pattern matcher when the g operator is specified, use
the pos function.

$of f set = pos(Pstring);

http://docs.rinet.ru:8080/P7/ch7.htm (35 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

This returns the position at which the next pattern match will be started.

Y ou can reposition the pattern matcher by putting pos() on the left side of an assignment.

pos($string) = $newoffset;

Thistellsthe Perl interpreter to start the next pattern match at the position specified by $newof f set .

i

A
= .

WARNING

If you change the string being searched, the match position is reset
to the beginning of the string.

NOTE
The pos function isnot available in Perl version 4.

Ignoring Case

Thei option enables you to specify that a matched letter can either be uppercase or lowercase. For example, the following
pattern matches de, dE, De, or DE:

[deli

Patterns that match either uppercase or lowercase letters are said to be case-insensitive.

Treating the String as Multiple Lines

The moption tells the Perl interpreter that the string to be matched contains multiple lines of text. When the moptionis
specified, the™ specia character matches either the start of the string or the start of any new line. For example, the pattern

[*"The/ m

matches theword The in

This pattern matches\nThe first word on the second |ine

The moption also specifies that the $ special character isto match the end of any line. This means that the pattern

/line.$/ m

is matched in the following string:

This is the end of the first line.\nHere's another |ine.

http://docs.rinet.ru:8080/P7/ch7.htm (36 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

NOTE
The moption is defined only in Perl 5. To treat a string as multiple
lines when you run Perl 4, set the $* system variable, described
on Day 17, "System Variables."

Evaluating a Pattern Only Once

The o option enables you to tell the Perl interpreter that a pattern isto be evaluated only once. For example, consider the
following:

$var = 1;

$li ne = <STDI N\>;

while ($var < 10) {
$result = $line =~ /$var/o;
$li ne = <STDI N\>;

$var ++;

The first time the Perl interpreter sees the pattern/ $var / , it replaces the name $var with the current value of $var ,
whichis 1; this means that the pattern to be matched is/ 1/ .

Because the 0 option is specified, the pattern to be matched remains/ 1/ even when the value of $var changes. If theo
option had not been specified, the pattern would have been/ 2/ the next time through the loop.

TIP

There's no real reason to use the o option for patterns unless you
are keen on efficiency. Here's an easier way to do the same thing:
$var = <STDI N>;

$mat chval = $var;

$li ne = <STDI N>;

while ($var < 10) {

$result = $line =~ /$matchval /;

$line = <STDI N>;

$var ++;

}

The value of $mat chval never changes, so the o option is not
necessary.

Treating the String as a Single Line

The s option specifies that the string to be matched isto be treated as a single line of text. In this case, the. specia
character matches every character in a string, including the newline character. For example, the pattern/ a. *bc/ s is
matched successfully in the following string:

aAxXXXXX \ nxxxxbc

http://docs.rinet.ru:8080/P7/ch7.htm (37 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

If the s option is not specified, this pattern does not match, because the . character does not match the newline.

INOTE
| The s option is defined only in Perl 5.

Using White Space in Patterns

One problem with patterns in Perl is that they can become difficult to follow. For example, consider this pattern, which
you saw earlier:

INd{2} ([\W)\d{2}\ 1\ d{ 2}/
Patterns such as this are difficult to follow, because there are alot of backslashes, braces, and brackets to sort out.
Perl 5 makeslife alittle easier by supplying the x option. Thistells the Perl interpreter to ignore white space in a pattern

unlessit is preceded by a backslash. This means that the preceding pattern can be rewritten as the following, which is
much easier to follow:

INA{2} ([\W) \d{2} \1 \d{2}/x

Hereis an example of a pattern containing an actual blank space:

[[A-Z] [a-z]+ \ [A-Z] [a-z]+ /X

This matches a name in the standard first-name/last-name format (such asJohn Smi t h). Normally, you won't want to
use the x option if you're actually trying to match white space, because you wind up with the backslash problem all over

again.

NOTE
The x option isdefined only in Perl 5.

The Substitution Operator

Perl enables you to replace part of a string using the substitution operator, which has the following syntax:

s/ pattern/repl acenent/

The Perl interpreter searches for the pattern specified by the placeholder pat t er n. If it findspat t er n, it replaces it
with the string represented by the placeholder r epl acenent . For example:

$string = "abcl23def";
$string =~ s/ 123/ 456/ ;

Here, 123 isreplaced by 456, which means that the value stored in $st r i ng isnow abc456def .

http://docs.rinet.ru:8080/P7/ch7.htm (38 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

Y ou can use any of the pattern special characters in the substitution operator. For example,

s/ [abc] +/ 0/

searches for a sequence consisting of one or more occurrences of the lettersa, b, and ¢ (in any order) and replaces the
sequence with 0.

If you just want to delete a sequence of characters rather than replace it, leave out the replacement string asin the
following example, which deletes the first occurrence of the pattern abc:

s/ abc//

Using Pattern-Sequence Variables in Substitutions

Y ou can use pattern-sequence variables to include a matched pattern in the replacement string. The following isan
example:

s/ (\d+)/[$1]/

This matches a sequence of one or more digits. Because this sequence is enclosed in parentheses, it is stored in the scalar
variable $1. In the replacement string, [$1] , the scalar variable name $1 is replaced by its value, which is the matched
pattern.

[NOTE

Because the replacement string in the substitution operator is a
string, not a pattern, the pattern special characters, suchas|], *,
and +, do not have a special meaning. For example, in the
substitution

s/ abc/[def]/
the replacement string is[def] (including the square brackets).

Options for the Substitution Operator

The substitution operator supports several options, which are listed in Table 7.5.

Table 7.5. Optionsfor the substitution oper ator.

| Option |Description

| g |Changeall occurrences of the pattern
|

|

|Ignore case in pattern

|Eva| uate replacement string as expression

[
e

m |Treat string to be matched as multiple lines
o] Evaluate only once
S

X

|TreaI string to be matched as single line
|I gnore white space in pattern

As with pattern matching, options are appended to the end of the operator. For example, to change all occurrences of abc
todef , use the following:

http://docs.rinet.ru:8080/P7/ch7.htm (39 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

s/ abc/ def/ g

Global Substitution

The g option changes all occurrences of a pattern in a particular string. For example, the following substitution puts
parentheses around any number in the string:

s/ (\d+)/($1)/g

Listing 7.11 is an example of a program that uses global substitution. It examines each line of its input, removes all
extraneous leading spaces and tabs, and replaces multiple spaces and tabs between words with a single space.

Listing 7.11. A simple white space cleanup program.

1: #!'/usr/local/bin/perl

2:
3: @nput = <STDI N>;
4: $count = 0;

5: while ($input[$count] ne "") {

6: $i nput [$count] =~ s/[\t]+//;

7 $i nput [$count] =~ s/[\t]+\n$/\n/;
8: $i nput [$count] =~ s/[\t]+ /g;

9: $count ++;

10: }

11: print ("Formatted text:\n");

12: print (@nput);

$ prograni_11
This is a l|ine of i nput .

Her e i's anot her |ine.

http://docs.rinet.ru:8080/P7/ch7.htm (40 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

Thi s is my last line of I nput .
"D

Formatted text:

This is a line of input.

Here i s another line.

This is nmy last line of input.

This program performs three substitutions on each line of itsinput. The first substitution, in line 6, checks whether there
are any spaces or tabs at the beginning of the line. If any exist, they are removed.

Similarly, line 7 checks whether there are any spaces or tabs at the end of the line (before the trailing newline character). If
any exist, they areremoved. To do this, line 7 replaces the following pattern (one or more spaces and tabs, followed by a
newline character, followed by the end of the line) with a newline character:

[T \t]+\n$/

Line 8 uses aglobal substitution to remove extra spaces and tabs between words. The following pattern matches one or
more spaces or tabs, in any order; these spaces and tabs are replaced by a single space:

I \t]+/
Ignoring Case

Thei option ignores case when substituting. For example, the following substitution replaces all occurrences of the words
no, No, NO, and nOwith NO. (Recall that the \ b escape character specifies aword boundary.)

s/ \ bno\ b/ NO gi
Replacement Using an Expression

The e option treats the replacement string as an expression, which it evaluates before replacing. For example, consider the
following:

$string = "Oabcl";

$string =~ s/[a-zA-Z]+/ $& x 2/ e

http://docs.rinet.ru:8080/P7/ch7.htm (41 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

The substitution shown here is a quick way to duplicate part of a string. Here's how it works:
1. Thepattern/ [a- zA- Z] +/ matchesabc, which is stored in the built-in variable $&.

2. Thee option indicates that the replacement string, $& X 2, isto be treated as an expression. This expression is
evaluated, producing the result abcabc.

3. abcabc issubstituted for abc in the string stored in $st r i ng. This meansthat the new value of $st ri ng is
Oabcabc1l.

Listing 7.12 is another example that uses the e option in a substitution. This program takes every integer in alist of input
files and multiplies them by 2, leaving the rest of the contents unchanged. (For the sake of simplicity, the program assumes
that there are no floating-point numbersin thefile.)

Listing 7.12. A program that multiplies every integer in afile by 2.

1. #!'/usr/local/bin/perl

3: $count = O;

4: while ($ARGV[$count] ne "") {

5: open (FILE, "$ARGV[$count]");

6: @ile = <FI LE>;

7: $l i nenum = 0;

8: while ($file[$linenum ne "") {
9: $file[$linenun] =~ s/\d+/ $& * 2/eq;
10: $l i nenumt+;

11: }

12: cl ose (FILE);

13: open (FILE, ">$ARGV[$count]");
14: print FILE (@il e);

15: cl ose (FILE);

16: $count ++;

17: }

http://docs.rinet.ru:8080/P7/ch7.htm (42 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

If a file naned foo contains the text
Thi s contains the nunber 1.

Thi s contains the nunber 26.

and the name f 00 is passed as a command-line argument to this program, the file f oo becomes

Thi s contains the nunber 2.

Thi s contains the nunber 52.

This program uses the built-in variable @GARGV to retrieve filenames from the command line. Note that the program cannot
use <>, because the following statement reads the entire contents of al the filesinto asingle array:

@ile = <>

Lines 8-11 read and substitute one line of afile at atime. Line 9 performs the actual substitution as follows:
1. The pattern\ d+ matches a sequence of one or more digits, which is automatically assigned to $&.
2. Thevaue of $& is substituted into the replacement string.

3. Thee option indicates that this replacement string is to be treated as an expression. This expression multiplies the
matched integer by 2.

4. Theresult of the multiplication is then substituted into the file in place of the original integer.
5. The g option indicates that every integer on the lineis to be substituted for.

After al the linesin the file have been read, the fileis closed and reopened for writing. The call to pri nt inline 14 takes
thelist storedin @ i | e-the contents of the current file-and writes them back out to the file, overwriting the original
contents.

Evaluating a Pattern Only Once
As with the match operator, the 0 option to the substitution operator tells the Perl interpreter to replace a scalar variable

name with its value only once. For example, the following statement substitutes the current value of $var for its name,
producing a replacement string:

$string =~ /abc/ $var/ o;

This replacement string then never changes, even if the value of $var changes. For example:

$var = 17;
while ($var > 0) {

$string = <STDI N>;

http://docs.rinet.ru:8080/P7/ch7.htm (43 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

$string =~ /abc/ $var/ o;
print ($string);

$var--; # the replacenment string is still "17"

Again, as with the match operator, there is no real reason to use the o option.

Treating the String as Single or Multiple Lines

Asin the pattern-matching operator, the s and moptions specify that the string to be matched is to be treated as asingle
line or as multiple lines, respectively.

The s option ensures that the newline character \ n is matched by the . special character.

$string = "This is a\ntwo-line string.";
$string =~ s/a.*ol onels;

$string now contains "This is a one-line string."

If the moption is specified, * and $ match the beginning and end of any line.

$string = "The The first |line\nThe The second |ine";
$string =~ s/~The//gm

$string now contains "The first |line\nThe second |ine"
$string =~ s/e$/ k/ gm

$string now contains "The first |ink\nThe second | i nk"

i

WARNING
The\ Aand\ Z escape sequences (defined in Perl 5) always match
only the beginning and end of the string, respectively. (Thisisthe
only case where\ A and\ Z behave differently from” and $.)

INOTE

The mand s options are defined only in Perl 5. To treat astring as
multiple lines when you run Perl 4, set the $* system variable,
described on Day 17.

http://docs.rinet.ru:8080/P7/ch7.htm (44 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

Using White Space in Patterns

The x option tells the Perl interpreter to ignore all white space unless preceded by a backslash. Aswith the
pattern-matching operator, ignoring white space makes complicated string patterns easier to read.

$string =~ s/\d{2} ([\W) \d{2} \1 \d{2}/$1-$2-$3/ x

This converts a day-month-year string to the dd- nrm yy format.

NOTE
Even if the x option is specified, spaces in the replacement string
are not ignored. For example, the following replaces 14/ 04/ 95
with14 - 04 - 95, not 14- 04- 95:
$string =~ s/\d{2} ([\W) \d{2} \1 \d{2}/%$1
- $2 - 3$3/x
Also note that the x option is defined only in Perl 5.

Specifying a Different Delimiter

Y ou can specify adifferent delimiter to separate the pattern and replacement string in the substitution operator. For
example, the following substitution operator replaces/ u/ bi n with/ usr /1 ocal / bi n:

s#/ u/ bi n#/ usr/ 1 ocal / bi n#

The search and replacement strings can be enclosed in parentheses or angle brackets.

s(/u/bin)(/usr/local/bin)

s</u/ bin>/\/usr\/local\/bin/

NOTE

As with the match operator, you cannot use a specia character
both as a delimiter and in a pattern.

s. a.c. def.

This substitution will be flagged as containing an error because
the. character isbeing used as the delimiter. The substitution

s.a\.c. def.

does work, but it substitutesdef for a. c, where. isan actual
period and not the pattern special character.

The Translation Operator

Perl also provides another way to substitute one group of characters for another: thet r tranglation operator. This operator
uses the following syntax:

http://docs.rinet.ru:8080/P7/ch7.htm (45 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching
tr/stringl/string2/

Here, st ri ngl containsalist of charactersto be replaced, and st r i ng2 contains the characters that replace them. The
first characterinst ri ngl isreplaced by thefirst character in st r i ng2, the second character in st ri ngl isreplaced
by the second character in st ri ng2, and so on.

Hereisasimple example:

$string = "abcdef ghi chba";

$string =~ tr/abc/def/;

Here, the characters a, b, and ¢ are to be replaced as follows:
« All occurrences of the character a are to be replaced by the character d.
« All occurrences of the character b are to be replaced by the character e.
« All occurrences of the character ¢ are to be replaced by the character f .

After the trandlation, the scalar variable $st r i ng containsthe value def def ghi f ed.

NOTE

If the string listing the characters to be replaced is longer than the
string containing the replacement characters, the last character of
the replacement string is repeated. For example:

$string = "abcdef gh";
$string =~ tr/efgh/abc/;
Here, there is no character corresponding to d in the replacement

list, so ¢, the last character in the replacement list, replaces h.
Thistranglation sets the value of $st ri ng to abcdabcc.

Also note that if the same character appears more than once in the
list of charactersto be replaced, the first replacement is used:

$string =~ tr/ AAA/ XYZ/; replaces Awith X

The most common use of the tranglation operator is to convert al phabetic characters from uppercase to lowercase or vice
versa. Listing 7.13 provides an example of a program that converts afile to all lowercase characters.

Listing 7.13. An upper case-to-lower case conver sion program.

1: #!'/usr/local/bin/perl

3: while ($line = <STDIN>) {
4: $line =~ tr/A-Z/ a-z/;
5: print ($line);

http://docs.rinet.ru:8080/P7/ch7.htm (46 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

$ progranv_13

THI S LINE I S I N UPPER CASE.
this line is in upper case.
ThiS LiNE I's i N ml XED cASe.

this line is in m xed case.

"D

This program reads aline at atime from the standard input file, terminating when it sees aline containing the Ctrl+D
(end-of-file) character.

Line 4 performs the trandation operation. Asin the other pattern-matching operations, the range character (-) indicates a
range of charactersto beincluded. Here, the range a- z refersto all the lowercase characters, and the range A- Z refersto
all the uppercase characters.

INOTE
There are two things you should note about the translation
operator:
The pattern special characters are not supported by the translation
operator.
Youcanusey inplaceof t r if you want.
$string =~ yla-z/ A-Z/;

Options for the Translation Operator

The tranglation operator supports three options, which are listed in Table 7.6.

The c option (c isfor "complement™) trandlates all characters that are not specified. For example, the statement

$string =~ tr/\d/ /c;

replaces everything that is not adigit with a space.
Table 7.6. Optionsfor the trandation operator.

| Option |Description

http://docs.rinet.ru:8080/P7/ch7.htm (47 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

| c |Tranglate all characters not specified
| d Delete all specified characters
| S Replace multiple identical output characters with a single character

The d option deletes every specified character.

$string =~ tr/\t //d;

This deletes all the tabs and spaces from $st ri ng.

The s option (for "squeeze") checks the output from the translation. If two or more consecutive characters trandate to the
same output character, only one output character is actually used. For example, the following replaces everything that is
not adigit and outputs only one space between digits:

$string =~ tr/0-9/ /cs;

Listing 7.14 isasimple example of a program that uses some of these translation options. It reads a number from the
standard input file, and it gets rid of every input character that is not actually a digit.

Listing 7.14. A program that ensuresthat a string consists of nothing but digits.

1. #!/usr/local/bin/perl

w

$string = <STDI N>;

4: $string =~ tr/0-9//cd;

a

print ("$string\n");

$ prograni_14

The nunber 45 appears in this string.

45

Line 4 of this program performs the translation. The d option indicates that the translated characters are to be deleted, and

http://docs.rinet.ru:8080/P7/ch7.htm (48 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

the ¢ option indicates that every character not in the list is to be deleted. Therefore, this translation deletes every character
in the string that is not a digit. Note that the trailing newline character is not adigit, so it is one of the characters deleted.

Extended Pattern-Matching

Perl 5 provides some additional pattern-matching capabilities not found in Perl 4 or in standard UNIX pattern-matching
operations.

Extended pattern-matching capabilities employ the following syntax:

(?<c>pattern)

<c> isasingle character representing the extended pattern-matching capability being used, and pat t er n isthe pattern or
subpattern to be affected.
The following extended pattern-matching capabilities are supported by Perl 5:

« Parenthesizing subpatterns without saving them in memory

« Embedding optionsin patterns

« Positive and negative |ook-ahead conditions

o Comments

Parenthesizing Without Saving in Memory

In Perl, when a subpattern is enclosed in parentheses, the subpattern is also stored in memory. If you want to enclose a
subpattern in parentheses without storing it in memory, use the ?: extended pattern-matching feature. For example,
consider this pattern:

/(?:a|blc)(d|e)f\1/

This matches the following:
e« Oneofa,b,orc
e« Oneofdore
o f
o Whichever of d or e was matched earlier

Here, \ 1 matches either d or e, because the subpattern a| b| ¢ was not stored in memory. Compare this with the
following:

/(alb|c)(d|e)f\1/

Here, the subpattern a| b| c isstored in memory, and one of a, b, or ¢ ismatched by \ 1.

Embedding Pattern Options

Perl 5 provides away of specifying a pattern-matching option within the pattern itself. For example, the following patterns
are equivalent:

http://docs.rinet.ru:8080/P7/ch7.htm (49 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching
[[a-z]+/i

[(?i)[a-z]+
In both cases, the pattern matches one or more a phabetic characters; thei option indicates that caseis to be ignored when

matching.
The syntax for embedded pattern optionsis

(?option)

where opt i on isone of the options shown in Table 7.7.
Table 7.7. Optionsfor embedded patterns.

Option |Description
[Ignore case in pattern
m Treat pattern as multiple lines
s Treat pattern assingleline
X |Ignore white space in pattern

The g and o options are not supported as embedded pattern options.

Embedded pattern options give you more flexibility when you are matching patterns. For example:

$patternl = "[a-z0-9]+";
$pattern2 = "(?i)[a-z]+";

if ($string =~ /$patternl| $pattern2/) {

Here, thei option is specified for some, but not all, of a pattern. (This pattern matches either any collection of lowercase
letters mixed with digits, or any collection of letters.)

Positive and Negative Look-Ahead

Perl 5 enables you to use the ?= feature to define a boundary condition that must be matched in order for the pattern to
match. For example, the following pattern matches abc only if it isfollowed by def :

[abc(?=def)/

Thisis known as a positive |ook-ahead condition.
INOTE

http://docs.rinet.ru:8080/P7/ch7.htm (50 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

The positive look-ahead condition is not part of the pattern
matched. For example, consider these statements:

$string = "25abc8";

$string =~ /abc(?=[0-9])/;

$mat ched = $&;

Here, as aways, $& contains the matched pattern, which in this
caseisabc, not abc8.

Similarly, the ?! feature defines a negative look-ahead condition, which is a boundary condition that must not be present
if the pattern isto match. For example, the pattern/ abc(?! def) / matches any occurrence of abc unlessit isfollowed
by def .

Pattern Comments

Perl 5 enables you to add comments to a pattern using the ?# feature. For example:

if ($string =~ /(?i)[a-2z]{2,3}(?# match two or three al phabetic characters)/ {

Adding comments makes it easier to follow complicated patterns.

Summary

Perl enables you to search for sequences of characters using patterns. If a pattern isfound in a string, the pattern is said to
be matched.

Patterns often are used in conjunction with the pattern-match operators, =~ and ! ~. The =~ operator returnstrue if the
pattern matches, and the ! ~ operator returns true if the pattern does not match.

Special-pattern characters enable you to search for a string that meets one of a variety of conditions.
« The+ character matches one or more occurrences of a character.
o The* character matches zero or more occurrences of a character.
o The[] charactersenclose a set of characters, any one of which matches.
« The? character matches zero or one occurrences of a character.

« The” and $ characters match the beginning and end of aline, respectively. The\ b and\ B characters match aword
boundary or somewhere other than a word boundary, respectively.

o The{} characters specify the number of occurrences of a character.
« The| character specifies alternatives, either of which match.

To give aspecial character its natural meaning in a pattern, precede it with abackslash \.

Enclosing a part of a pattern in parentheses stores the matched subpattern in memory; this stored subpattern can be recalled
using the character sequence\ n, and stored in a scalar variable using the built-in scalar variable $n. The built-in scalar
variable $& stores the entire matched pattern.

Y ou can substitute for scalar-variable names in patterns, specify different pattern delimiters, or supply options that match
every possible pattern, ignore case, or perform scalar-variable substitution only once.

The substitution operator, s, enables you to replace a matched pattern with a specified string. Options to the substitution
operator enable you to replace every matched pattern, ignore case, treat the replacing string as an expression, or perform

http://docs.rinet.ru:8080/P7/ch7.htm (51 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching
scalar-variable substitution only once.

The tranglation operator, t r , enables you to translate one set of characters into another set. Options exist that enable you to
perform tranglation on everything not in the list, to delete charactersin the list, or to ignore multiple identical output
characters.

Perl 5 provides extended pattern-matching capabilities not provided in Perl 4. To use one of these extended pattern features
on a subpattern, put (? at the beginning of the subpattern and) at the end of the subpattern.

Q&A

Q: How many subpatterns can be stored in memory using\1, \2, and so on?
A: Basicaly, asmany asyou like. After you store more than nine patterns, you can retrieve the later patterns using
two-digit numbers preceded by a backslash, such as\ 10.
Q: Why does pattern-memory variable numbering start with 1, wher eas subscript numbering startswith 0?
A: Subscript numbering starts with 0 to remain compatible with the C programming language. There is no such thing
as pattern memory in C, so there is no need to be compatible with it.
Q: What happenswhen the replacement string in thetranslate command isleft out, asintr/abc// ?
A: If the replacement string is omitted, a copy of the first string is used. This means that
ct:r/abc//
does not do anything, because it is the same as
tr/abc/ abc/
If the replacement string is omitted in the substitute command, asin
s/ abc//
the pattern matched-in this case, abc-is deleted.
Q: Why does Per| use characterssuch as +, *, and ? as pattern special characters?
A: These specia characters usually correspond to special characters used in other UNIX applications, such asvi and
csh. Some of the special characters, such as +, are used in formal syntax description languages.
Q: Why does Perl use both \ 1 and $1 to store pattern memory?
A: To enable you to distinguish between a subpattern matched in the current pattern (which isstoredin\ 1) and a

subpattern matched in the previous statement (which is stored in $1).

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and exercises to
give you experience in using what you've learned. Try and understand the quiz and exercise answers before you go on to
tomorrow's lesson.

Quiz

1. What do the following patterns match?
a /al|bc*/
b. /[\d]{1, 3}/
c. /\'bc[aou]t\b/
d /(xy+z)\.\1/
e /"%l

2. Write patterns that match the following:

Five or more lowercase |etters (a 2).

Either the number 1 or the string one.

string of digits optionally containing a decimal point.

Any letter, followed by any vowel, followed by the same letter again.
One or more + characters.

3. Supposethe variable $var hasthe value abc123. Indicate whether the following conditional expressions return
true or false.

PCoooTw

http://docs.rinet.ru:8080/P7/ch7.htm (52 of 53) [2/17/2007 6:00:40 AM]

Day 7 -- Pattern Matching

a $var =~ /./

b. $var =~ /[AZ]*/

c. S$var =~ /\wW4-6}/
d. $var =~ /(\d)2(\1)/
e. $var =~ /abc$/

f. S$var =~ /12347?/

4. Supposethevariable $var hasthevalueabcl123abc. What isthe value of $var after the following substitutions?

a. $var =~ s/abc/def/;

b. $var =~ s/[a-z]+/ X g;
C. $var =~ s/B/Wi;

d. $var =~ s/ (.)\d.*\1/d/;
e. $var =~ s/ (\d+)/$1*2/ e;

5. Supposethevariable $var hasthevalueabcl123abc. What isthe value of $var after the following translations?
a $var =~ trl/a-z/ A2/,

b. $var =~ tr/ 123/ 456/ ;

c. $var =~ tr/231/564/;

d $var =~ tr/ 123/ /s;

e $var =~ tr/123//cd;
Exercises

1. Write aprogram that reads all the input from the standard input file, converts al the vowels (except y) to uppercase,
and prints the result on the standard output file.

2. Write aprogram that counts the number of times each digit appears in the standard input file. Print the total for each
digit and the sum of all the totals.

3. Write aprogram that reverses the order of the first three words of each input line (from the standard input file) using
the substitution operator. L eave the spacing unchanged, and print each resulting line.

4. Write aprogram that adds 1 to every number in the standard input file. Print the results.

5. BUG BUSTER: What iswrong with the following program?
#!/usr/ | ocal / bi n/ perl

while ($line = <STDIN>) {

put quotes around each |ine of input
$line =~ [N *$/"\1"/;

print ($line);

}

6. BUG BUSTER: What iswrong with the following program?
#!/usr/ | ocal / bi n/ perl

while ($line = <STDIN>) {
if ($line =~ /[\d]*/) {
print ("This line contains the digits '$& \n");

http://docs.rinet.ru:8080/P7/ch7.htm (53 of 53) [2/17/2007 6:00:40 AM]

http://docs.rinet.ru:8080/P7/index.htm

Day 8 -- More Control Structures

Chapter 8
More Control Structures

CONTENTS

e Using Single-Line Conditional Statements

o Problems with Single-Line Conditional Statements

o Looping Using thef or Statement

o Using the Comma Operator in af or Statement
e Looping Through alist: Thef or each Statement

o Thef oreach Loca Variable

o Changing the Value of the Local Variable

o Using Returned Listsin thef or each Statement
o Thedo Statement
« Exitingaloop Usingthel ast Statement

« Using next to Start the Next Iteration of alLoop

e« Ther edo Statement
o Using Labeled Blocks for Multilevel Jumps
o Using next andr edo with Labels

e Theconti nue Block
« Thegot o Statement

o« SUMMary
o Q&A
« Workshop
o Quiz
o Exercises

On Day 2, "Basic Operators and Control Flow," you learned about some of the simpler conditional
statements in Perl, including the following:
o Thei f statement, which defines statements that are executed only when a certain condition istrue
o Thei f -el se statement, which chooses between two alternatives
o Thei f-el si f -el se statement, which chooses between multiple aternatives

« Theunl ess statement, which defines statements that are executed unless a specified condition is
true

« Thewhi | e statement, which executes a group of statements while a specified condition is true

http://docs.rinet.ru:8080/P7/ch8.htm (1 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

« Theunti | statement, which executes agroup of statements until a specified condition istrue

Today's lesson talks about the other control structures in Perl; these control structures give you a great deal
of flexibility when you are determining the order of execution of your program statement.

Today you learn the following control structures:
« Single-line conditional statements
e Thef or statement
o Thef or each statement
« Thedo statement
o Thel ast statement
o Thenext statement
« Ther edo statement
« Theconti nue statement
« Labeled blocks
« Thegot o statement

Using Single-Line Conditional Statements

On Day 2 you saw thei f statement, which works as follows:

if ($var == 0) {

print ("This is zero.\n");

If the statement block inside thei f statement consists of only one statement, Perl enables you to write this
in amore convenient way using a single-line conditional statement. Thisis a conditional statement whose
statement block contains only one line of code.

The following single-line conditional statement isidentical tothei f statement defined previously:
print ("This is zero.\n") if ($var == 0);

Single-line conditional statements also work withunl ess,whi | e,andunti | :

print ("This is zero.\n") unless ($var != 0);
print ("Not zero yet.\n") while ($var-- > 0);
print ("Not zero yet.\n") until ($var-- == 0);

http://docs.rinet.ru:8080/P7/ch8.htm (2 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

In al four cases, the syntax of the single-line conditional statement is the same.

The syntax for the single-line conditional statement is

statenment keyword condexpr

Here, st at enent isany Perl statement. keywor d iseitheri f,unl ess,whi l e,oruntil.
condexpr isthe conditional expression that is evaluated.

st at ement isexecuted in the following cases:

. Ifkeywordisi f, statement is executed if condexpr istrue.

« If keywor disunl ess, statement is executed unlesscondexpr istrue.

o If keywor diswhi | e, statement is executed while condexpr istrue.

o If keywordisuntil, statement isexecuted until condexpr istrue.
To see how single-line conditional expressions can be useful, look at the following examples, starting with
Listing 8.1. Thisisasimple program that copies one file to another. Single-line conditional statements are

used to check whether the files opened successfully, and another single-line conditional statement actually
copiesthefile.

Listing 8.1. A program that uses single-line conditional statementsto copy onefileto
another.

1: #!/usr/local/bin/perl

3: die ("Can't open input\n") unless (open(INFILE, "infile"));

4. die ("Can't open output\n") unless (open(QUTFILE, ">outfile"));
5. print OQUTFILE ($line) while ($line = <INFILE>);

6: close (INFILE);

7: close (QUTFILE);

Thereis no output; this program writesto afile.

http://docs.rinet.ru:8080/P7/ch8.htm (3 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

Asyou can see, thisprogram is clear and concise. Instead of using three linesto open afile and check it, as
in

unl ess (open (INFILE, "infile")) {

die ("Can't open input\n");

you can now USGjUSt one:

die ("Can't open input\n") unless (open(INFILE, "infile"));

Line 3 opensthe input file. If the open is not successful, the program terminates by calling di e.

Line4issimilar to line 3. It opens the output file and checks whether the file actually is open; if thefileis
not open, the program terminates.

Line 5 actually copiesthe file. The conditional expression

$line = <I NFI LE>

reads aline from the file represented by the file variable | NFI LE and assignsit to $I i ne. If thelineis
empty, the conditional expression isfalse, and thewhi | e statement stops executing. If the line is not
empty, it iswritten to OUTFI LE.

[NOTE

The conditional expression in asingle-line conditional statement
is always executed first, even though it appears at the end of the
statement. For example:

print OUTFILE ($line) while ($line =
<I NFI LE>) ;

Here, the conditional expression that reads a line of input and
assignsit to $l i ne isalways executed first. This means that
pri nt isnot called until $I i ne contains something to print.
This also meansthat the call to pri nt isnever executed if

| NFI LE isan empty file (which is what you want).

Because single-line conditional expressions are "backward," be
careful when you use them with anything more complicated than
what you see here.

Y ou can use the single-line conditional statement in conjunction with the autoincrement operator ++ to

http://docs.rinet.ru:8080/P7/ch8.htm (4 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

write aloop in asingle line. For example, examine Listing 8.2, which prints the numbersfrom 1 to 5 using a
single-line conditional statement.

Listing 8.2. A program that loops using a single-line conditional statement.

1. #!'/usr/local/bin/perl

3: S$count = O;

4: print ("$count\n") while ($count++ < 5);

$ progran8_2

1

2

When the Perl interpreter executes line 3, it first evaluates the conditional expression

$count++ < 5

Because the ++ appears after $count , 1 isadded to the value of $count after the conditional expression
is evaluated. Thismeans that $count hasthe value O, not 1, the first time the expression is evaluated.
Similarly, $count hasthe value 1 the second time, 2 the third time, 3 the fourth time, and 4 the fifth time.
In each of these five cases, the conditional expression evaluates to true, which means that the loop iterates

http://docs.rinet.ru:8080/P7/ch8.htm (5 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

five times.

After the conditional expression has been evaluated, the ++ operator adds 1 to the value of $count . This
new value of $count isthen printed. This means that when the loop is first executed, the call to pri nt
prints 1, even though the value of $count was 0 when the conditional expression was eval uated.

Problems with Single-Line Conditional Statements
Although single-line conditional statements that contain loops are useful, there are problems. Consider
Listing 8.2, which you've just seen. It is easy to forget that $count hasto be initialized to one less than the

first value you want to use in the loop, and that the conditional expression hasto use the < operator, not the
<= operator.

For example, take alook at the following:

$count = 1;

print ("$count\n") while ($count++ < 5);

Here, you haveto look closely to see that the first value printed is 2, not 1.

Here is another loop containing a mistake:

$count = O;

print ("$count\n") while ($count++ <= 5);

Thisloop iterates six times, not five; the sixth time through the loop, $count hasthe vaue 5 when the
conditional expression is evaluated. The expression evaluates to true, $count isincremented to 6, and
pri nt therefore printsthe value 6.

Hereisarelated but slightly more subtle problem:

$count = O;
print ("$count\n") while ($count++ < 5);

print ("The total nunber of iterations is $count.\n");

Thisloop iterates five times, which is what you want. However, after the conditional expression is evaluated
for the final time, the value of $count becomes 6, as follows:

« Before the conditional expression is evaluated, $count hasthe value5.

« Because the value of $count isnot lessthan 5, the conditional expression evaluates to false, which
terminates the loop.

http://docs.rinet.ru:8080/P7/ch8.htm (6 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

« After the conditional expression is evaluated, the ++ operator adds one to $count , giving it the
value 6.

This means that the final pri nt statement prints the following, which is probably not what you want:

The total nunber of iterations is 6.

Don’t

DO usethef or statement as a convenient way to write a concise, compact loop. It is
discussed in the next section.

DON'T use the ++ operator to produce aloop in asingle-line conditional statement unlessit's
absolutely necessary. It's just too easy to go wrong with it.

Looping Using the f or Statement

Many of the programs that you've seen so far use the whi | e statement to create a program loop. Hereisa
simple example:

$count = 1;
while ($count <= 5) {
statenments inside the | oop go here

$count ++:

Thisloop contains three items that control it:

1. A statement that setsthe initial value of the loop. In thisloop, the scalar variable $count isused to
control the number of iterations of the loop, and the statement
$count = 1;
setstheinitial value of $count to 1. Statements such asthis are called loop initializers.

2. A conditional expression that checks to see whether to continue iterating the loop. In this case, the
conditional expression
$count <=5
isevaluated; if it isfalse, the loop is terminated.

3. A statement that changes the value of the variable which istested in the conditional expression. In
thisloop, the statement
count ++;
adds 1 to the value of $count , which isthe scalar variable being tested in the conditional
expression. Statements such asthis are called loop iterators.

http://docs.rinet.ru:8080/P7/ch8.htm (7 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

Perl enables you to put the three components that control aloop together on asingleline using af or
statement. For example, the following statement is equivalent to the loop you've been looking at:

for ($count=1; $count <= 5; S$count++) {

statenents inside the | oop go here

Here, the three controlling components-the loop initializer, the conditional expression, and the loop
iterator-appear together, and are separated by semicolons.

The syntax of thef or statement is

for (exprl; expr2; expr3) {

st at ement bl ock

expr 1 istheloop initializer. It is evaluated only once, before the start of the loop.

expr 2 isthe conditional expression that terminates the loop. The conditional expression in expr 2 behaves
just liketheonesinwhi | e andi f statements. If itsvalueis O (false), theloop isterminated, and if its
value is nonzero, the loop is executed.

st at ement _bl ock isthe collection of statements that is executed if (and when) expr 2 has anonzero
value.

expr 3 is executed once per iteration of the loop and is executed after the last statement in
st at enment bl ock isexecuted.

[NOTE

If you know the C programming language, the f or statement will
be familiar to you. Thef or statement in Perl is syntactically
identical tothef or statement in C.

Listing 8.3 isaprogram based on the examplef or statement you've just seen.

Listing 8.3. A program that printsthe numbersfrom 1to5usingthef or statement.

1. #!/usr/local/bin/perl
2:

http://docs.rinet.ru:8080/P7/ch8.htm (8 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

3: for ($count=1; $count <= 5; S$count ++) {

4: print ("$count\n");

$ progran8_3

1

2

Line 3 of the program isthe start of thef or statement. The first expression defined in thef or statement,
$count = 1,istheloopinitiaizer; it is executed before the loop is iterated.

The second expression defined inthe f or statement, $count <= 5, tests whether to continue iterating
the loop.

The third expression defined inthef or statement, $count ++, isevaluated after the last statement in the
loop, line 4, is executed.

Asyou can see from the output, the loop is iterated five times.
|TI P

http://docs.rinet.ru:8080/P7/ch8.htm (9 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

Usethef or statement instead of whi | e or unt i | whenever
possible; when you usethef or statement, it iseasier to avoid
infinite loops.

For example, when you use awhi | e statement, it's easy to forget
to iterate the loop. The following is an example:

$count = 1;

whil e ($count <= 5) {

print ("$count\n");

}

The equivalent statement using f or is

for ($count = 1; $count <= 5;) {

print ("$count\n");

}

When you usethef or statement, it is easier to notice that the
loop iterator is missing.

Using the Comma Operator in af or Statement

Some |oops need to perform more than one action before iterating. For example, consider the following

loop, which reads four lines of input from the standard input file and prints three of them:

$line = <STDI N>;

$count = 1;

whil e ($count <= 3) {
print ($line);
$l i ne = <STDI N>;

$count ++;

Thisloop needs two loop initializers and two loop iterators: one of each for the variable $count , and one

of each to read another line of input from STDI N.

At first glance, you might think that you can't write thisloop using thef or statement. However, you can

use the comma operator to combine the two loop initializers and the two loop iteratorsinto single
expressions. Listing 8.4 does this.

Listing 8.4. A program that usesthef or statement toread four input linesand write

http://docs.rinet.ru:8080/P7/ch8.htm (10 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

three of them.

1: #!'/usr/local/bin/perl

3: for ($line

<STDI N>, $count = 1; $count <= 3;

4: $line = <STDI N>, $count ++) {
5: print ($line);
6: }

$ progranB_4

This is ny first |ine.
This is ny first |ine.
This is ny second |ine.
This is ny second |ine.
This is ny last |ine.
This is ny last |ine.

This input line is not witten out.

Theloop initializer inthisf or statement isthe expression

$line = <STDI N>, $count =1

The comma operator in this expression tells the Perl interpreter to evaluate the first half of the

http://docs.rinet.ru:8080/P7/ch8.htm (11 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

expression-the part to the left of the comma-and then evaluate the second half. The first half of this
expression reads a line from the standard input file and assignsit to $1 i ne; the second half of the
expression assigns 1 to $count .

The loop iterator also consists of two parts:

$li ne = <STDI N>, $count ++

This expression reads a line from the standard input file and adds 1 to the variable keeping track of when to
terminate the loop, whichis$count .

>,

WARNING

Don't usethef or statement if you have alarge number of loop
initializers or loop iterators, because statements that contain a
large number of comma operators are difficult to read.

Looping Through a List: The f or each Statement

One common use of loopsisto perform an operation on every element of alist stored in an array variable.
For example, the following loop checks whether any element of the list stored in the array variable @wor ds
iIsthewordt he:
$count = 1;
whil e ($count <= @wrds) {
if ($words[$count-1] eq "the") {

print ("found the word 'the'\n");

}

$count ++;

Asyou've seen, you can use thef or statement to ssimplify thisloop, as follows:

for ($count = 1; $count <= @wrds; S$count ++) {

i f ($words[$count-1] eq "the") {

http://docs.rinet.ru:8080/P7/ch8.htm (12 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

print ("found the word 'the'\n");

Perl provides an even simpler way to do the same thing, using the f or each statement. The following loop,
which usesf or each, isidentical to the preceding one:

foreach $word (@wrds) {
if ($word eq "the") {

print ("found the word 'the'\n");

The syntax for thef or each statement is

foreach | ocal var (listexpr) {

st at ement _bl ock;

Here | i st expr isany list or array variable, and st at enent _bl ock isacollection of statementsthat is
executed every time the loop iterates.

| ocal var isascalar variable that is defined only for the duration of the f or each statement. The first
time the loop is executed, | ocal var isassigned the value of thefirst element of thelistinl i st expr.
Each subsequent time the loop is executed, | ocal var isassigned the value of the next element of

| i stexpr.

Listing 8.5 shows how this works.

Listing 8.5. A demonstration of thef or each statement.

1. #!/usr/local/bin/perl
2:

http://docs.rinet.ru:8080/P7/ch8.htm (13 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures
3. @wrds = ("Here", "is", "a", "list.");
4: foreach $word (@wrds) {

5: print ("$word\n");

$ progran8 5

Her e

Thef or each statement in line 4 assigns aword from @ i st to the local variable $wor d. Thefirst time
the loop is executed, the value stored in $wor d isthe string Her e. The second time the loop is executed,
the value stored in $wor d isi s. Subsequent iterationsassigna and | i st . to $wor d.

The loop defined by the f or each statement terminates after all of the wordsin the list have been assigned
to $wor d.

INOTE

In Perl, thef or statement and thef or each statement are
actually synonymous: you can usef or wherever f or each is
expected, and vice versa.

The f or each Local Variable

Note that the scalar variable defined in the f or each statement is defined only for the duration of the loop.
If avalueisassigned to the scalar variable prior to the execution of thef or each statement, thisvalueis
restored after thef or each is executed. Listing 8.6 shows how this works.

http://docs.rinet.ru:8080/P7/ch8.htm (14 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

Listing 8.6. A program that usesthe same nameinside and outsideaf or each statement.

1. #!'/usr/local/bin/perl

3: S$temp = 1;

4: @ist = ("This", "is", "a", "list", "of", "words");
5. print ("Here are the words in the list: \n");

6: foreach $tenmp (@ist) {

7: print ("$temp ");

8: }

9: print("\n");

10: print("The value of tenp is now $tenmp\n");

$ progranB_6
Here are the words in the |ist:
This is a list of words

The value of tenp is now 1

Line 3 assigns 1 to the scalar variable $t enp.

Thef or each statement that prints the wordsin the list is defined in lines 6-8. This statement assigns the
elementsof @ i st to $t enp, one per iteration of the loop.

After the loop is terminated, the original value of $t enp isrestored, whichis 1. Thisvalueis printed by
line 10.

http://docs.rinet.ru:8080/P7/ch8.htm (15 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

Variables (such as $t enp in lines 6-8) that are only defined for part of a program are known as local
variables; variables that are defined throughout a program are known as global variables. Y ou'll see more
examples of local variables on Day 9, "Using Subroutines.”

|TIP

Itisnot agood ideato use $t enp theway itisused in Listing
8.6, namely, as both alocal and aglobal variable. Y ou might
forget that the value of the global variable-in the case of $t enp,
the value 1-is overwritten by the value assigned in thef or each
statement.

Conversely, you might forget that the value assigned to $t enp in
thef or each statement islost whenthef or each isfinished.

It is better to define a new scalar variable name for the loca
variable, to avoid confusion.

Changing the Value of the Local Variable

Note that changing the value of the local variable inside af or each statement also changes the value of the
corresponding element of the list. For example:

@ist = (1, 2, 3, 4, 5);
foreach $tenmp (@ist) {
if ($temp == 2) {

$tenp = 20;

In thisloop, when $t enp isequal to 2, $t enp isreset to 20. Therefore, the list stored in the array variable
@i st becomes(1, 20, 3, 4, 5).

Use this feature with caution, because it is not obvious that the value of @ i st has changed.

Using Returned Lists in the f or each Statement

So far, al of the examples of thef or each statement that you've seen have iterated using the contents of an
array variable. For example, consider the following:

@ist = ("This", "is", "a", "list"):

foreach $temp (@ist) {

http://docs.rinet.ru:8080/P7/ch8.htm (16 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

print ("$temp ");

Thisloop assigns Thi s to $t enp thefirst time through the loop, and then assignsi s, a, and | i st to
$t enp on subsequent iterations.

Y ou also can use list constants or the return values from functionsin f or each statements. For example,
the preceding statements can be written as follows:

foreach $tenp ("This", "is", "a", "list") {

print("$temp ");

Asbefore, $t enp isassigned Thi s, i s,a,and| i st in successive iterations of thef or each loop.

Listing 8.7 shows how you can use the return value from a function as aloop iterator.

Listing 8.7. A program that printsout thewordsin alinein reverse-sorted order.

1: #!/usr/local/bin/perl

3: $line = <STDI N>;

4: $line =~ s/™M\s+//;

5. $line =~ s/\s+$//;

6: foreach $word (reverse sort split(/[\t J+/, $line)) {
7: print ("$word ");

8. }

9: print ("\'n");

http://docs.rinet.ru:8080/P7/ch8.htm (17 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures
$ progranB8_7
here is ny test line

test my line is here

$

Before splitting the input line into words using spl i t , this program first removes the leading and trailing
white space. (If leading and trailing space is not removed, spl i t creates an empty word.) Line 4 removes
leading spaces and tabs from the input line. Line 5 removes any trailing spaces and tabs as well as the
closing newline character.

Lines 6-8 contain thef or each loop. Thelist used in thisloop is created as follows:

1. First,split breakstheinput lineinto words. Thelist returned by split is("here", "is",
"my", "test", "line").

2. Thelist returned by spl i t ispassed to the built-in function sor t , which sortsthelist. The list
returned by sort is("here", "is", "line", "ny", "test").

3. Thelist returned by sor t ispassed to another built-in function, r ever se. Thisreverses the sorted
list, producing thelist ("test™, "ny", "“line", "is", "here").

4. Each element of thelist returned by r ever se isassigned, in turn, to the local scalar variable
$wor d, starting with "t est " and proceeding from there.

Line 7 prints the current value stored in $wor d. Each timethef or each loop iterates, adifferent valuein
thelist is printed.

INOTE

The code fragment

foreach $word (reverse sort split(/[\t]+/,
$line))

shows why omitting parentheses when calling built-in functions
can sometimes be useful. If al the parentheses are included, this
becomes

foreach $word (reverse(sort(split(/[\t]+/,
$line))))
which is not as readable.

The do Statement

So far, al of the loops you've seen test the conditional expression before executing the loop. Perl enables
you to write loops that always execute at |east once using the do statement.

The syntax for the do statement is

http://docs.rinet.ru:8080/P7/ch8.htm (18 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

do {
st at enent bl ock

} while or _until (condexpr);

Asin other conditional statements, such asthei f statement and the whi | e statement,
st at ement _bl ock isablock of statementsto be executed, and condexpr isaconditional expression.

whi | e_or _until iseither thewhi | e keyword or theunt i | keyword. If you usewhi | e,
st at enent bl ock loopswhile condexpr istrue. For example:
do {
$line = <STDI N>;
} while ($line ne "");

Thisloops while $1 i ne is non-empty (in other words, while the program has not reached the end of file).

If youuseunt il ,stat ement bl ock loopsuntil condexpr istrue. For example:

do {
$line = <STDI N>;
} until ($line eq "");

This reads from the standard input file until $1 i ne isempty (again, until end of fileis reached).

Listing 8.8 isa simple example of a program that usesado statement.

Listing 8.8. A simple example of a do statement.

1. #!/usr/local/bin/perl
2:
3: S$count = 1;

4. do {

http://docs.rinet.ru:8080/P7/ch8.htm (19 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

5: print ("$count\n");
6: $count ++;

7: '} until ($count > 5);

$ progran8_8

1

2

Lines 4-7 contain the do statement, which loops five times. Line 7 tests whether the counting variable
$count isgreater than 5.

INOTE

The do statement can also be used to call subroutines. See Day 9,
"Using Subroutines,” for more information.

Exiting a Loop Using the | ast Statement

Normally, you exit aloop by testing the conditional expression that is part of the loop. For example, if a
loop is defined by thewhi | e statement, as in the following, the program exits the loop when the
conditional expression at the top of theloop, $count <= 10, isfalse:

while ($count <= 10) {

statenents go here

http://docs.rinet.ru:8080/P7/ch8.htm (20 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

}

In the preceding case, the program can exit the loop only after executing all of the statementsin it. Perl
enables you to define an exit point anywhere in the loop using aspecial | ast statement.

The syntax for thel ast statement issimple:

| ast;

Toseehow thel ast statement works, take alook at Listing 8.9, which adds alist of numbers supplied by
means of the standard input file.

Listing 8.9. A program that exitsusing thel ast statement.

1: #!'/usr/local/bin/perl

3: $total = 0O;

4: while (1) {

5: $line = <STDI N>;

6: if ($line eq"") {

7: | ast ;

8: }

9: chop ($line);

10: @wunbers = split (/[\t]+, $line);
11: foreach $nunber (@unbers) {

12: i f ($nunber =~ /["0-9]/) {
13: print STDERR (" $nunmber is not a nunber\n");
14 }

15: $total += $nunber;

http://docs.rinet.ru:8080/P7/ch8.htm (21 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

16: }
17: }

18: print ("The total is $total.\n");

$ progranB8_9
45 7

2 11 6

"D

The total is 35.

The loop that reads and adds numbers starts on line 4. The conditional expression at the top of thisloopis
the number 1. Because this is a nonzero number, this conditional expression always evaluates to true.
Normally, this means that the whi | e statement loops forever; however, because this program contains a
| ast statement, the loop eventually terminates.

Line 6 checks whether the program has reached the end of the standard input file. To do this, it checks
whether the line read from the standard input file, now stored in $I i ne, isempty. (Recall that the Ctrl+D
character, written here as * D, marks the standard input file as empty.)

If thelineisempty, line 7, thel ast statement, is executed. This statement tells the Perl interpreter to
terminate executing the loop and to continue with the first statement after the loop, which isline 18.

Lines 10-16 add the numbers on the input line to the total stored in the scalar variable $t ot al . Line 10
breaks the line into individual numbers, and lines 11-16 add each number, in turn, to $t ot al .

Line 12 checks whether each number actually consists of the digits 0-9. The pattern [#0- 9] matches
anything that is not adigit; if the program finds such a character, it flags the number as erroneous. (The
program can produce empty words if leading or trailing spaces or tabs exist in the line; thisis not a problem,
because [*0- 9] doesn't match an empty word.)

[NOTE

http://docs.rinet.ru:8080/P7/ch8.htm (22 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

statement. For example,
last if ($count == 5);
terminates the loop if the value of $count isb5.

You can usethel ast statement with a single-line conditional

>,

WARNING

structures, it is actually implemented differently.

You cannot usethel ast statement inside the do statement.
Although the do statement behaves like the other control

Using next to Start the Next Iteration of a Loop

In Perl, thel ast statement terminates the execution of aloop. To terminate a particular iteration of aloop,

usethe next statement.

Likel ast , the syntax for the next statement issimple:

next ;

Listing 8.10 is an example that usesthe next statement. It sums up the numbers from 1 to a user-specified
upper limit and also produces a separate sum of the numbers divisible by 2.

Listing 8.10. A program that sumsthe numbersfrom 1 to a specified number and also

sumsthe even numbers.

=

#!/usr/ 1 ocal / bin/perl

3: print ("Enter the last nunber in the sum\n");

4: $limt = <STDI N>;
5: chop ($limt);

6: S$count = 1;

7: S$total $event ot al 0;

8: for ($count = 1; $count <= $limt; Scount++) {

http://docs.rinet.ru:8080/P7/ch8.htm (23 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

9: $total += $count;

10: if ($count %2 == 1) {

11: # start the next iteration if the nunmber is odd
12: next ;

13: }

14: $eventotal += S$count;

15: }

16: print("The sumof the nunbers 1 to $limt is $total\n");

17: print("The sum of the even nunbers is $eventotal\n");

$ progran8_10

Enter the | ast nunber in the sum

5

The sum of the nunbers 1 to 7 is 28

The sum of the even nunbers is 12

Theloop in lines 8-15 adds the numbers together. The start of thef or statement in line 8 loops five times;
the counter variable, $count , isassigned thevalues 1, 2, 3, 4, and 5 in successive iterations.

Line 9 adds to the total of all the numbers. This statement is always executed.

Line 10 tests whether the current number-the current value of $count -iseven or odd. If $count iseven,
the conditional expression

$count % 2 ==

http://docs.rinet.ru:8080/P7/ch8.htm (24 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

isfalse, and program execution continues with line 14. If the current value of $count isodd, the Perl
interpreter executes line 12, the next statement. This statement tells the Perl in-terpreter to start the next
iteration of the loop.

Note that the loop iterator in the f or statement, $count ++, is still executed, even though the next
statement skips over part of the loop. This ensures that the program does not go into an infinite loop.

Because the next statement is executed when the value of $count isodd, line 14 is skipped in this case.
This means that the value of $count isadded only when it is even.

=

WARNING

Be careful when you usenext inawhi |l e orunti |l loop. The
following example goes into an infinite loop:

$count = O;

whil e ($count <= 10) {
if ($count == 5) {
next ;

}

$count ++:
}

When $count is5, the program tells Perl to start the next
iteration of the loop. However, the value of $count isnot
changed, which means that the expression $count == 5 istill
true.

To get rid of this problem, you need to increment $count before
using next , asin the following:

$count = O;

while ($count <= 10) {
if ($count == 5) {
$count ++;

next ;

}

$count ++;

}

This, by the way, iswhy many programming purists dislike
statements such asnext and| ast -it'stoo easy to lose track of
where you are and what needs to be updated.

The next statement enables you to check for and ignore unusual conditions when reading input. For
example, Listing 8.11 counts the number of words in the input read from the standard input file. It uses the
next statement to skip blank lines.

Listing 8.11. A word-counting program that usesthe next statement.

http://docs.rinet.ru:8080/P7/ch8.htm (25 of 39) [2/17/2007 6:01:52 AM]

Day 8 -- More Control Structures

1: #!/usr/local/bin/perl

3: $total = O;

4: while ($line = <STDIN>) {

5: $line =~ s/A[\t 1*//;

6: $line =~ s/[\t]1*\n$//;

7: next if ($line eq "");

8: @wrds = split(/[\t]1+/, $line);
9: $total += @wrds;

10: }

11: print ("The total nunber of words is $total\n");

$ progranB8_11

Here is ny test input.

It contains some words.
D

The total nunber of words is 9

$

After line 4 hasread aline of input and checked that it is not empty (which means that the end of file has
not been reached), the program then getsrid of leading spaces and tabs (line 5) and trailing spaces, tabs, and
the trailing newline (line 6). If alineisblank, lines5 and 6 turn it into the empty string, for which line 7

http://docs.rinet.ru:8080/P7/ch8.htm (26 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

tests.

Line 7 containsthe next statement as part of a single-line conditional statement. If the line is now empty,
the next statement tells the program to go to the beginning of the loop and read in the next line of input.

.

WARNING

Y ou cannot use the next statement inside the do statement.
Although the do statement behaves like the other control
structures, it is actually implemented differently.

The r edo Statement

Perl enables you to tell the Perl interpreter to restart an iteration of aloop using ther edo statement.

Likel ast and next , the syntax for ther edo statement is simple:

redo;

For an example, look at Listing 8.12, which counts the number of words in three non-blank input lines.

Listing 8.12. A word-counting program that usesther edo statement.

1. #!/usr/local/bin/perl

3: S$total = 0O;

4: for ($count = 1; $count <= 3; $count ++) {

5: $li ne = <STDI N>;

6: last if ($line eq "");

7: $line =~ s/”[\t [*//;

8: $line =~ s/[\t]*\n$//;

9: redo if ($line eq "");

10: @wrds = split(/[\t]1+/, $line);

http://docs.rinet.ru:8080/P7/ch8.htm (27 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

11: $total += @wrds;
12: }

13: print ("The total nunber of words is $total\n");

$ progranB_12

Here is ny test input.

It contains sonme words.
D

The total nunber of words is 9

Line 5 reads aline of input from the standard input file. If thisline is empty, the conditional expression in
line 6 istrue, and thel ast statement exits the loop. (This ensures that the program behaves properly when
there are less than three lines of input.)

Line 7 removes the leading blanks and tabs from this line of input, and line 8 removes the trailing white
space. If the resulting line is now empty, the line must originally have been blank. Because this program
does not want to include a blank line as one of the three lines in which to count words, line 9 invokes the
r edo statement, which tells the program to start this loop over. The program returnsto line 4, thef or
statement, but does not increment the value of $count .

-
WAR»HN:;
Y ou cannot use ther edo statement inside the do statement.

Although the do statement behaves like the other control
structures, it is actually implemented differently.

Note that ther edo statement is not recommended, because it is too easy to lose track of how many times a
program goes through aloop. For example, in Listing 8.12, aquick glance at thef or statement in line 4
seems to indicate that the program only loops three times; however, ther edo statement might change that.

http://docs.rinet.ru:8080/P7/ch8.htm (28 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

Listing 8.13 shows an alternative way to solve this problem.

Listing 8.13. A program that countsthewordsin three non-blank lines of input without
using ther edo statement.

=

#! [/ usr/ | ocal / bin/perl

3: $nonbl ankli nes = 0O;

4: while (1) {

5: $line = <STDI N>;

6: last if ($line eq "");

7: $line =~ s/A[\t]1*//;

8: $line =~ s/[\t]*\n$//;

9: if ($line ne "") {

10: $nonbl ankl i nes += 1;
11: @wrds = split(/[\t]+/, $line);
12: $total += @wrds;

13: }

14: | ast if ($nonbl anklines == 3);
15: };

16: print ("The total nunber of words is $total\n");

$ progranB8_13

Here is ny test input.

http://docs.rinet.ru:8080/P7/ch8.htm (29 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

It contains some words.
D

The total nunber of words is 9.

$

This program is identical to the previous one, but it is much easier to understand. It uses a more meaningful
variable name-$nonbl ankl i nes-which implies that blank lines are a special case.

Asin Listing 8.12, if thelineisablank line, lines 7 and 8 turn it into an empty line by removing all white
space. When this happens, the condition in line 10 fails, and $nonbl ankl i nes isnot incremented.

Using Labeled Blocks for Multilevel Jumps

Asyou've seen, thel ast , next , andr edo statements enable you to exit aloop from anywhere inside its
statement block, as follows:
while (1) {
$line = <STDI N>;

last if ($line eq "");

If the loop isinside another loop, thel ast , next , and r edo statements quit the inner loop only; for
example:

while ($linel = <FILE1>) {
while ($line2 = <FILE2>) {

last if ($line2 eq "") {

}

http://docs.rinet.ru:8080/P7/ch8.htm (30 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

Here, thel ast statement only quitstheinner whi | e loop. The outer whi | e loop, which reads from the
file represented by FI LEL, continues executing.

To quit from more than one loop at once, do the following:
1. Assign alabel to the outer loop (the one from which you want to quit).
2. Whenyou use | ast , next, or r edo, specify the label you just assigned.

Listing 8.14 shows an example of al ast statement that specifies alabel.

Listing 8.14. A program that uses a label.

=

#! [/ usr/ 1 ocal / bin/perl

3: $total = 0O;
4: $firstcounter = 0O;

5. DONE: while ($firstcounter < 10) {

6: $secondcounter = 1;

7: whi l e ($secondcounter <= 10) {

8: $t ot al ++;

9: if ($firstcounter == 4 & & $secondcounter == 7) {
10: | ast DONE;

11: }

12: $secondcount er ++;

13: }

14: $f i rst count er ++;

15: }

16: print ("$total\n");

http://docs.rinet.ru:8080/P7/ch8.htm (31 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

$ progran8_14

47

$

The outer whi | e loop starting in line 5 has the label DONE assigned to it. This label consists of an
alphabetic character followed by one or more alphanumeric characters or underscores. The colon (:)
character following the label indicates that the label is assigned to the following statement (in this case, the
whi | e statement).

When the conditional expressioninline 9 istrue, line 10 is executed. This statement tells the Perl interpreter
to jJump out of the loop labeled DONE and continue execution with the first statement after this loop. (By the
way, this code fragment is just arather complicated way of assigning 47 to $t ot al .)

‘ .
i,ﬁ‘
>

WARNING

Make sure that you do not use a label which has another meaning
in Perl. For example, the statement

if: while ($x == 0) { # this is an error in
Per |

}

isflagged as erroneous, because the Perl interpreter doesn't realize
that thei f isnot the start of ani f statement.

Y ou can avoid this problem by using uppercase letters for |abel
names (such as DONE).

Note that |abels can be identical to file variable names:
FILEL: while ($line = <FILE1>) {

The Perl interpreter has no problem distinguishing the label
FI LE1 from thefilevariable FI LE1, becauseit is always
possible to determine which is which from the context.

Using next and r edo with Labels

You can use next andr edo with labels aswell, as shown in the following example:

http://docs.rinet.ru:8080/P7/ch8.htm (32 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

next LABEL;

redo LABEL;

Thisnext statement indicates that the next iteration of the loop labeled LABEL isto be executed. This
r edo statement indicates that the current iteration of the loop labeled LABEL isto be restarted.

The cont i nue Block

Inaf or statement, the expression following the second semicolon is executed each time the end of the
loop is reached or whenever anext statement is executed. For example:
for ($i =1; $i <= 10; $i++) {

print ("$i\n");

In this example, the expression $i ++, which adds 1 to $i , is executed after the pr i nt function iscalled.

Similarly, you can define statements that are to be executed whenever the end of awhi | e loop or an
unt i | loopisreached. To carry out thistask, specify acont i nue statement after the loop.

while ($i <= 10) {
print ("$i\n");

}

cont i nue {

$i ++;

A cont i nue statement must be followed by a statement block, which is a collection of zero or more
statements enclosed in brace characters. This statement block contains the state-ments to be executed at the
bottom of each loop. In this example, the statement

$i ++;

http://docs.rinet.ru:8080/P7/ch8.htm (33 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

Is executed after each call topri nt . Thiswhi | e loop therefore behaveslikethef or loop you've just
Seen.

Thecont i nue statement is executed even if a pass through the loop is prematurely ended by anext
statement. It is not executed, however, if the loop isterminated by al ast statement.

|TIP

Usualy, it isbetter touse af or statement than to usecont i nue
withawhi | e oranunt i | statement, because thef or statement
iseasier to follow.

The got o Statement

For the sake of completeness, Perl providesagot o statement.

The syntax of the got o statement is

goto | abel;

| abel isalabel associated with a statement, as defined in the earlier section, "Using Labeled Blocks for
Multilevel Jumps." The statement to which | abel isassigned cannot be in the middle of ado statement or
inside a subroutine. (You'll learn about subroutines on Day 9.)

Listing 8.15 is an example of asimple program that uses got o.

Listing 8.15. A program that usesthe got o statement.

=

#!/usr/ 1 ocal / bi n/ perl

3: NEXTLINE: $line = <STDI N>,

4: if ($line ne "") {

5: print ($line);
6: got o NEXTLI NE;
7.}

http://docs.rinet.ru:8080/P7/ch8.htm (34 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

$ progranB8_15
Here is a line of input.

Here is a line of input.

"D

This program just reads and writes lines of input until the standard input file is exhausted. If the line read
into $I i ne isnot empty, line 6 tells the Perl interpreter to jump back to the line to which the NEXTLI NE
label is assigned, which isline 3.

Note that lines 3-7 are equivalent to the following statement:

print ($line) while ($line = <STDI N>);

|TIP

Thereisamost never any need to use the got o statement. In fact,
using got o often makesit more difficult to follow the logic of the
program. For thisreason, using got o is not recommended.

Summary

Today you learned about the more complex control structures supported in Perl.

Single-line conditional statements enable you to put a conditional expression on the same line as the
statement to be executed if the condition is satisfied. This enables you to write more concise programs.

Thef or statement enables you to put the loop initializer, the loop iterator, and the conditional expression
together on the same line. This makes it more difficult to write code that goes into an infinite loop.

Thef or each statement enables a program to loop based on the contents of alist. When the loop isfirst
executed, the first element in the list is assigned to alocal scalar variable that is only defined for the
duration of the loop. Subsequent iterations of the loop assign subsequent elements of the list to thislocal
scalar variable.

The do statement enables you to write aloop that executes at least once. Its terminating conditional
expression appears at the bottom of the loop, not the top.

Thel ast statement tells the Perl interpreter to exit the loop and continue execution with the first statement

http://docs.rinet.ru:8080/P7/ch8.htm (35 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

after theloop. The next statement tells the Perl interpreter to skip the rest of thisiteration of aloop and
start with the next one. Ther edo statement tells the Perl interpreter to restart this iteration of aloop. | ast
next , and r edo cannot be used with the do statement.

Y ou can assign alabel to a statement, which enablesyouto usel ast , next , andr edo to exit or restart an
outer loop from inside an inner loop.

Thecont i nue statement enables you to define code to be executed each time aloop iterates.

The got o statement enables you to jump to any labeled statement in your program.
Q&A

Q: Which control structureisthebest oneto useasaloop?
A: It depends on what you want to do.

« Thef or each structureisthe best way to perform operations on every element of alist.
o Thef or statement isthe best way to perform an operation a set number of times.

o Thewhi | e statement isthe best way to perform aloop until a particular condition
ocCurs.

« Thedo statement is useful if you want to perform aloop at least once. (However, it is
not as useful as the others, because you cannot usel ast , next, or r edo withit.)
Q: Why does Perl bother with the next , | ast , and r edo statements, when the
I f-el sif-el se structure can do the job just as well?

A: Thel ast and next statements areideal for loops that check for exceptional conditions. For
example:

for ($count = 1; $count <= 3; $count ++) {
$line = <STDI N>;
last if ($line eq "");
$line =~ s/"[\t 1+//;
$line =~ s/[\t |+\'n$//;
@words = split(/[\t 1+, $line);
$total += @wrds;

}

If thel ast statement did not exist, the only way to implement this would be with another level
of nesting and another condition inthef or statement, asfollows:

for ($count = 1; $count <= 3 && $line ne ""; S$count ++) {

http://docs.rinet.ru:8080/P7/ch8.htm (36 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

>0 20

$li ne = <STDI N>;
if ($line ne "") {
$line =~ s/M[\t |+//;
$line =~ s/[\t]+\n$//;
@wrds = split(/[\t]+/, $line);

$total += @wrds;

}

If your program has to check for several exceptional conditions, you might need several levels
of i f statementsto handle them unlessyou use next orl ast .

On the other hand, ther edo statement should be avoided whenever possible, becauseit is
difficult to follow program logic when it is used.

Isthe got o statement ever the best way to solve a problem?

Almost never. Avoid using the got o statement if at al possible.

Why isthe conditional expression last in single-line conditional statements?

Thisisto avoid a problem found in the C programming language. In C, you don't need to put
braces around the statement block in a conditional statement if the block consists of only one
line. For example, the following islegal:

if (x == 0)

printf ("x is zero\n");

With this syntax, it is easy to accidentally forget to add the braces when you add another
statement to the statement block, as follows:

if (x == 0)
printf ("x is zero\n");

printf ("this statenent is always printed\n");

If you glance at this code quickly, you might think that the second call to pri nt f isexecuted
only if x is0. However, thiscodeisreally

if (x == 0)

http://docs.rinet.ru:8080/P7/ch8.htm (37 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

printf ("x is zero\n");

printf ("this statenent is always printed\n");

In Perl, this problem does not exist because the only way to write the first statement is

print ("x is zero\n") if (x == 0);

Q: Isacont i nue block executed if ar edo statement restartsthe loop?

A: No. Thecont i nue block is executed only when an iteration of aloop is successfully
completed (by reaching the bottom of aloop or anext statement).

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and
exercisesto give you experience in using what you've learned. Try and understand the quiz and exercise
answers before you go on to tomorrow's lesson.

Quiz

1. How many times does the following loop iterate?
for ($count = 0; $count < 7; $count++) {
print ("$count\n");
}

2. How many times does the following loop iterate?
$count = 1;
do {
print ("$count\n");
} until ($count++ > 10);
3. How many times does the following loop iterate?
for ($count = 1; $count <= 10; $count ++) {
last if ($count == 5);
}
4. How many times does the following loop iterate?
$restart = O;
for ($count = 1; $count <= 5; S$count ++) {
redo if ($restart++ == 1);

}

5. Write asingle-line conditional statement that quitsaloop if $x equalsdone.

6. Write asingle-line conditional statement that restartsaloop if the first element of thelist @i st is
26.

7. Writeasingle-line conditional statement that goes to the next iteration of the loop labeled LABEL if
$scal ar equals#.

8. Writeasingle-line conditional statement that prints the digits from 1 to 10. (Use a scalar variable, and
assume that it has not been previously defined.)

9. What doesthecont i nue statement do?

http://docs.rinet.ru:8080/P7/ch8.htm (38 of 39) [2/17/2007 6:01:53 AM]

Day 8 -- More Control Structures

Exercises

1
2.
3.

Write a program that uses the do statement to print the numbers from 1 to 10.
Write a program that usesthe f or statement to print the numbers from 1 to 10.

Write a program that uses aloop to read and write five lines of input. Usethel| ast statement to exit
the loop if there are less than five lines to read.

Write a program that oops through the numbers 1 to 20, printing the even-numbered values. Use the
next statement to skip over the odd-numbered values.

Write aprogram that usesthef or each statement to check each word in the standard input file. Print
the line numbers of all occurrences of the word t he (in uppercase, lowercase, or mixed case).

Write a program that usesawhi | e loop and acont i nue statement to print the integers from 10
downto 1.

BUG BUSTER: What iswrong with the following code?
$count = 1;

do {

print ("$count\n");

last if ($count == 10);

$count ++;

} while (1);

http://docs.rinet.ru:8080/P7/ch8.htm (39 of 39) [2/17/2007 6:01:53 AM]

http://docs.rinet.ru:8080/P7/index.htm

Day 5 -- Lists and Array Variables

Chapter 5

Lists and Array Variables

CONTENTS

 Introducing Lists
o Scalar Variablesand Lists
o Listsand String Substitution
o Storing Listsin Array Variables
« Accessing an Element of an Array Variable

o More Details on Array Element Names
o Using Listsand Arraysin Perl Programs

o Using Brackets and Substituting for Variables
« Using List Ranges

0 Expressions and List Ranges
o Moreon Assignment and Array Variables

O

Copying from One Array Variable to Another

Using Array Variablesin Lists

0O

Substituting for Array Variablesin Strings

O

Assigning to Scalar Variables from Array Variables
e Retrieving the Length of alList
e Using Array Slices

O

o Usng List Rangesin Array-Slice Subscripts

o Using Variables in Array-Slice Subscripts

o Assigning to Array Slices

o Overlapping Array Slices

Using the Array-Slice Notation as a Shorthand

0O

e Reading an Array from the Standard Input File

e Array Library Functions
o Sorting aList or Array Variable
0 Reversingalist or Array Variable

o Using chop on Array Variables

http://docs.rinet.ru:8080/P7/ch5.htm (1 of 60) [2/17/2007 6:03:06 AM]

http://docs.rinet.ru:8080/P7/ch5.htm

Day 5 -- Lists and Array Variables
o Creating aSingle String from aList
o Splitting aString into a List
o Other List-Manipulation Functions
o« SUMMary
o Q&A
« Workshop
o Quiz

o Exercises

The Perl programs you have seen so far deal with scalar values, which are single units of data, and
scalar variables, which can store one piece of information.

Perl also enables you to define an ordered collection of values, known as a list; this collection of
values can be stored in variables known as array variables.

Today's lesson describes lists and array variables, and it shows you what you can do with them.
Today, you learn about the following:

o What listsare

« Therelationship between scalar variables and lists
o Storinglistsin array variables

« Accessing an element of an array variable or list

« How to uselist ranges

« Assigning to array variables

» Assigning to scalar variables from array variables
 Retrieving the length of alist

» Using array dlices

« Using an array to store input

« Sorting alist or array variable

» Reversing alist or array variable

o Creating astring from alist

« Creating alist from astring

Introducing Lists

A list is a sequence of scalar values enclosed in parentheses. The following is asimple example of a
list:

(1, 5.3, "hello", 2)

http://docs.rinet.ru:8080/P7/ch5.htm (2 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables

Thislist contains four elements, each of which isascalar value: the numbers 1 and 5. 3, the string
hel | 0, and the number 2.

Lists can be aslong as needed, and they can contain any scalar value. A list can have no elements at
all, asfollows:

()

Thislist alsoiscalled an empty list.

INOTE

A list with one element and a scalar value are different entities.
For example, thelist
(43. 2)

and the scalar value
43. 2

are not the same thing. Thisis not a severe limitation because one
can be converted to or assigned to the other. See the section titled
"Assigning to Scalar Variables from Array Variables' later today.

Scalar Variables and Lists

A scalar variable name can aways be included as part of alist. In this case, the current value of the
scalar variable becomes the list element value. For example:

(17, S$var, "a string")
If $var has been assigned the value 26, the second element of the list becomes 26. (It remains 26

even if adifferent valueis assigned to $var .)

Similarly, you can use the value of an expression as an element of alist. For example:

(17, 26 << 2)

Thislist contains two elements: 17 and 104 (which is 26 |eft-shifted two places). Expressionsin lists,
like other expressions, can contain scalar variables.

(17, $varl + $var?2)

http://docs.rinet.ru:8080/P7/ch5.htm (3 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables

Here, the expression $var 1 + $var 2 isevaluated and its value becomes the second element of
thelist.

Lists and String Substitution

Because character strings are scalar values, they can be used in lists, asfollows:

("nmy string", 24.3, "another string")

Y ou can substitute for scalar variable namesin character stringsin lists, as follows:

($val ue, "The answer is $val ue")

This list contains two elements: the value of the scalar variable $val ue, and a string containing the
name of $val ue. If the current value of $val ue is 26, the two elements of thelist are 26 and The
answer i s 26.

Storing Lists in Array Variables

Perl enables you to store lists in special variables designed for that purpose. These variables are
called array variables (or arrays for short).

Thefollowing is an example of alist being assigned to an array variable:

@rray = (1, 2, 3);

Here thelist (1, 2, 3) isassigned tothearray variable @rr ay.

Note that the name of the array variable starts with the character @ This enables Perl to distinguish
array variables from other kinds of variables-for example, scalar variables, which start with the
character $. Aswith scalar variables, the second character of the variable name must be aletter,
while subsequent characters of the name can be letters, numbers, or underscores. Array variable
names can be as long as you want.

Thefollowing are legal array-variable names:

@ry_array

http://docs.rinet.ru:8080/P7/ch5.htm (4 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables

@ist2

@ _very long array nane_with | ots_of underscores

The following are not legal array-variable names:

@larray # can't start with a nunber
@ array # can't start with an underscore
@. new. arr ay # . is not a legal variable-nane character

When an array variableisfirst created (that is, seen for thefirst time), it is assumed to contain the
empty list () unlessit isassigned to.

INOTE

Because Perl uses @and $ to distinguish array variables from
scalar variables, the same name can be used in an array variable
and in ascalar variable. For example:

$var = 1;

@ar = (11, 27.1, "a string");

Here, the namevar isused in both the scalar variable $var and

the array variable @ ar . These are two completely separate
variables.

Normally, you won't want to use the same name in both an array
and a scalar variable, because thisis confusing.

Accessing an Element of an Array Variable

After you have assigned alist to an array variable, you can refer to any element of the array variable
asif itisascalar variable.

For example, to assign the first element of the array variable @r r ay to the scalar variable
$scal ar, use the following statement:

$scal ar = $array[0];

The character sequence[0] isan example of a subscript. A subscript indicates a particular element
of an array. In this case, O refersto the first element of the array. Similarly, the subscript 1 refersto
the second element of the array, asfollows:

http://docs.rinet.ru:8080/P7/ch5.htm (5 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables

$scal ar = $array[1];

Here, the second element of the array @r r ay isassigned to $scal ar . The generd ruleisthis:
An array subscript n, where n is any non-negative integer, always refersto array element n+1.

This notation is employed to ensure compatibility with the C programming language, which also
starts its array subscripting with O.

Y ou can assign a scalar value to an individual array element in the same way:

@rray = (1, 2, 3, 4);

$array[3] = 5;

After the second assignment, the value of @ar r ay becomes

(1, 2, 3, 5)

Thisis because the fourth element of the array has been replaced.

INOTE

If you try to access an array element that does not exist, the Perl
interpreter uses the null string (which is equivalent to zero).
@rray = (1, 2, 3, 4);

$scal ar = $array[4];

Here, $ar r ay[4] refersto the fifth element of @r r ay, which
does not exist. Inthiscase, $scal ar isassigned the null string.
INOTE

The same thing happens when the subscript is a negative number,
asfollows:

$scal ar = $array[-1];

Once again, the null string isassigned to $scal ar .

Note also that arrays automatically grow when a previously
unreferenced element is assigned to for the first time:

@rray = (1, 2, 3, 4);

$array[6] = 17;

Because the seventh element of @ar r ay isassigned 17, the value
of @rr ay isnow

(1, 2, 3, 4, """, "", 17)

http://docs.rinet.ru:8080/P7/ch5.htm (6 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables

| The missing fifth and sixth elements now contain the null string.

Y ou can use the value of a scalar variable as a subscript, as follows:
$i ndex = 1;
$scal ar = $array[$i ndex] ;

Here, the value of $i ndex, 1, becomes the subscript. This means that the second element of
@rray isassigned to $scal ar .

‘.("E »
WARNING
When you use a scalar variable as a subscript, make sure that the

value stored in the scalar variable corresponds to an array element
that exists. For example:

@rray = (1, 2, 3, 4);

$i ndex = 4;

$scal ar = $array[$i ndex] ;

Here, the third statement tries to access the fifth element of

@ar r ay, which does not exist. In this case, $scal ar isassigned

the null string, and the Perl interpreter doesn't tell you that
anything went wrong.

More Details on Array Element Names

Note that the first character of an array-element variable nameisthe $ character, not the @character.
For example, to refer to the first element of the array @ot at o, use

$pot at o[0]

and not

@ot at o[0]

The basic ruleis asfollows:

Things that reference one value-such as scalar variables and array elements-must start with a $.
INOTE

http://docs.rinet.ru:8080/P7/ch5.htm (7 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables

Even though references to elements of array variables start with a
$, the Perl interpreter still has no trouble distinguishing scalar
variables from array-variable elements. For example, if you have
defined a scalar variable $pot at o and an array variable

@ot at o, the Perl interpreter uses the subscript to distinguish
between the scalar variable and the array-variable element.

$result = $potato; # the scalar variable

$pot at o
$result = $potato[0]; # the first elenment of

@pot at o

Using Lists and Arrays in Perl Programs

Now that you have seen how lists and array variables work, it's time to take alook at a simple
program that uses them. Listing 5.1 is a simple program that prints the elements of alist.

Listing 5.1. A program that printsthe elements of alist.

1. #!/usr/local/bin/perl

3: @rray = (1, "chicken", 1.23, "\"Having fun?\"", 9.33e+23);
4: S$count = 1;

5. while ($count <= 5) {

6: print ("elenent $count is S$array[$count-1]\n");
7: $count ++;
8. }

$ progranb 1

http://docs.rinet.ru:8080/P7/ch5.htm (8 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables
element 1 is 1

element 2 i s chicken
elenent 3 is 1.23
element 4 is "Having fun?"

element 5 is 9.3300000000000005+e23

Line 3 assigns alist containing five elements to the array variable @r r ay.

Line 5 tests whether $count islessthan or equal to 5. This conditional expression ensures that the
whi | e statement loops five times.

Line 6 prints the current value of $count and the corresponding element of @r r ay. Note that the
expression used in the subscript is$count - 1, not $count , because subscripting starts from 0. For
example, when count is 3, the subscript is 2, which means that the third element of @r r ay is
printed.

When you examine line 6, you see that Perl lets you substitute for array elementsin character strings.
When the Perl interpreter sees $ar r ay[$count - 1] inthe character string, it replaces this array
element name with its corresponding value.

Listing 5.2 is another example of a program that uses arrays. Thisoneisalittle more interesting; it
uses the built-in functionsr and and i nt to generate random integers between 1 and 10.

Listing 5.2. A program that generatesrandom integers between 1 and 10.

1: #!/usr/local/bin/perl

3: # collect the random nunbers
4: S$count = 1;

5. while ($count <= 100) {

http://docs.rinet.ru:8080/P7/ch5.htm (9 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

$randnum = i nt (

rand(10)) + 1;

$randt ot al [$randnun] += 1;

$count ++:

print the total

$count = 1;
print ("Total
while ($count <= 10) {

print ("\tnunber $count:

$count ++;

of each nunber

for each nunber:\n");

$randtotal [$count]\n");

$ progranb_2

Total for each

http://docs.rinet.ru:8080/P7/ch5.htm (10 of 60) [2/17/2007 6:03:06 AM]

nunber

nunber

nunber

nunber

nunber

nunber

nunber

nunber :
1. 11
2: 8

3: 13
4: 6

5: 10
6: 9

7. 12

Day 5 -- Lists and Array Variables

nunber 8: 11

nunber 9: 11

nunber 10: 9

This program is divided into two parts: the first part collects the random numbers, and the second
part prints them.

Line 5 ensures that the loop iterates (is performed) 100 times. Y ou can just as easily have the
program generate any other quantity of random numbers just by changing the valuein this
conditional expression.

Line 6 generates a random number between 1 and 10 and assigns it to the scalar variable
$randnum To see how it doesthis, first note that the code fragment

int (rand (10))

actually istwo function calls, one inside another. When the Perl interpreter seesthis, it first calls the
inner one, whichisr and. The value returned by r and becomes the argument to the library function
I nt.

Here's how line 6 generates arandom number:

1. Firgt, it callsthe Perl library function r and. This function generates a floating-point random
number between 0 and 1 and then multipliesit by the argument it is passed. In this program,

r and is passed 10, which means that the random number is multiplied by 10 and is now a
floating-point number that is greater than 0 and less than 10.

2. Thevaluereturned by r and isthen passed to the library function i nt , which takes a
floating-point number and gets rid of the non-integer part. This operation is known as
truncation. The integer produced by this truncation operation becomes the return value of the
function. For example, the following returns 5:
int (5.7)

In this program, i nt truncates the random number returned by r and and returns the resulting
integer, which is now a random number between 0 and 9.

3. Thevalue 1 isadded to the number returned by i nt , resulting in arandom number between 1
and 10.

4. Thisnumber is assigned to the scalar variable $r andnum

Line 7 now adds 1 to the element of the array @ andt ot al corresponding to the number

http://docs.rinet.ru:8080/P7/ch5.htm (11 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables

generated. For example, if the random number is 7, the array element $r andt ot al [7] has 1
added to it.

INOTE

Asyou can see, line 7 works even though @ andt ot al isnot
initialized. When the program refersto an array element for the
first time, the Perl interpreter assumes that the element has an
initial value of the null string ™ " . Thisnull string is converted to
0, which means that adding 1 for the first time produces the result
1, which iswhat you want.

The second part of the program, which prints the total of each random number, starts with lines 12
and 13. These lines get things started by resetting the counter variable $count to 1 and printing an
introductory message.

The conditional expression in line 14 ensures that the loop iterates 10 times-once for each possible
random number.

Line 15 printsthe total for a particular random number.

Using Brackets and Substituting for Variables

Asyou have just seen, Perl lets you substitute for array-element variable namesin strings, as
follows:

print ("elenment $count is $array[$count-1]\n");

Thismight lead to problems if you want to include the characters[and] in character strings. For
example, suppose that you have defined the scalar variable $var and the array variable @ ar . The
character string

"$var[0]"

substitutes the value of the first element of @ ar in the string. To substitute the value of $var and
keep the[O] asitis, you must use one of the following:

"${var}[0]"
"$var\[0]"

"$var" . "[0]"

http://docs.rinet.ru:8080/P7/ch5.htm (12 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables
The character string

"${var}[0]"

uses the brace characters{ and} tokeepvar and[separate; thistellsthe Perl interpreter to
substitute for the variable $var , not $var [0] . After the substitution, the brace characters are not
included in the string.

|NOTE
To include abrace character after a$, use abackdash, as follows:
"$\{var}"
This character string containsthe text ${ var } .

The character string

"$var\[0]"

uses\ toindicatethat the[character isto be given adifferent meaning than normal; in this case,
thismeansthat [isto betreated as a printable character and not as part of the variable name to be
substituted.

The expression

"$var" . "[0]"

consists of two character strings joined together by the . operator. Here, the Perl interpreter replaces
the first character string with the current value of $var .

Using List Ranges

Suppose that you want to define alist consisting of the numbers 1 through 10, inclusive. Y ou can do
this by typing each of the numbersin turn.

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

However, thereisasimpler way to do it: Use the list-range operator, which is. . (two consecutive
period characters). The following is an example of alist created using the list-range operator:

http://docs.rinet.ru:8080/P7/ch5.htm (13 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables

(1..10)

Thistells Perl to define alist that has afirst value of 1, a second value of 2, and so on up to 10.
The list-range operator can be used to define part of alist.

(2, 5.7, 11)

Thislist consists of five elements: the numbers2,5,6, 7, and 11.

List-range operators can be used with floating-point values. For example:

(2.1..5.3)

Thislist consists of four elements. 2. 1,3. 1,4. 1,and 5. 1. Each element of thelist is one greater

than the previous element, and the last element of the list is the largest possible number less than or

egual to the number to theright of the. . operator. Here, 5. 1 islessthan 5. 3, soitisincluded in

thelist; however, 6. 1 isgreater than 5. 3, soitisnot included.
|NOTE

If the valueto the left of the. . operator is greater than the value
to theright, an empty list is created.

(4.5..1.6)

Because 4. 5 isgreater than 1. 6, thislist isempty.

If the two values are equal, aone-element list is created.
(3..3)

Thisisequivaent tothelist (3) .

List-range operators can specify ranges of strings. For example, thelist (" aaa", "aab",
"aac", "aad") canbeexpressedas("aaa".."aad").Smilarly,thelist (" BCY",

"BCZ", "BDA", "BDB") isequivaentto (" BCY".."BDB"), andthe statement @l phabet
= ("a".."z"),; createsalist consisting of the 26 lowercase |etters of the alphabet and assigns
thislist to the array variable @l phabet .

List ranges also enable you to use strings to specify numbers that contain leading zeros.

@ay of month = ("01".."31");

This statement creates alist consisting of the strings01, 02, 03 and so on, up to 31, and then

http://docs.rinet.ru:8080/P7/ch5.htm (14 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables

assignsthislistto @ay _of nont h. Because each string contains two characters, thisarray is
suitable for use when you are printing adate in aformat such as08- June- 1960.

Expressions and List Ranges

The values that define the range of alist-range operator can be expressions, and these expressions
can contain scalar variables. For example:

($var 1. . $var 2+5)

Thislist consists of all values between the current value of $var 1 and the current value of the
expression $var 2+5.

Listing 5.3 is an example of a program that uses list ranges. This program asks for a start number and
an end number, and it prints all the numbers between them.

Listing 5.3. A program that useslist rangesto print alist of numbers.

1. #!/usr/local/bin/perl

3: print ("Enter the start nunber:\n");

4: $start = <STDI N>;

5: chop ($start);

6: print ("Enter the end nunber:\n");

7: $end = <STDI N>;

8: chop (%$end);

9: @ist = ($start.. $end);

10: $count = 0;

11: print ("Here is the list:\n");

12: while ($list[$count] !'=0 || $list][$count-1] == -1 |]

http://docs.rinet.ru:8080/P7/ch5.htm (15 of 60) [2/17/2007 6:03:06 AM]

Day 5 -- Lists and Array Variables

13: $list[$count+1] == 1) {
14: print ("$list[$count]\n");
15: $count ++;

16: }

$ progranb_3

Enter the start nunber:
-2

Enter the end nunber:

2

Here is the |ist:

-2

-1

Lines 3 through 5 retrieve the start of the range to be printed. Line 3 retrieves the number from the
standard input file. Line 4 assigns the resulting number to the scalar variable $st ar t . Line 5 chops
the trailing newline character.

Lines 6 through 8 repeat the same process for the end of the range, assigning the end of the range to

http://docs.rinet.ru:8080/P7/ch5.htm (16 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables
the scalar variable $end.

Line 9 creates alist that consists of the numbers between $st art and $end, and storesthelist in
the array variable @ i st .

Line 10 initializes the counter variable $count to 0.
Linellisapri nt statement that indicates that the list is about to be printed.

Lines 12 and 13 are the start of the loop that prints the range. The conditional expression to be
evaluated consists of three subexpressions that are operands for the logical or operator | | . If any of
these subexpressions are true, the loop continues.

The first subexpression tests for the end of the range. To do this, it takes advantage of the fact that an
unidentified list element is equal to the null string and that the null string is equivalent to 0. When
thelist element $I i st [$count] isundefined, the following subexpression is false:

$list[$count] !'=0

The second and third subexpressions cover the casesin which O is actually a part of thelist. If the list
to be printed contains O, one or both of the following conditions must be true:

o Thenumber 1 must be the next element in the list.
o The number -1 must be the previous element in the list.

The second and third subexpressions test for these conditions. If either or both of these conditionsis
true, at least one of the following subexpressions also must be true:

$list[$count-1] == -

$list[$count +1] ==

This ensures that the loop continues. Of course, this doesn't cover the case in which the list consists
of just O; however, that's not a meaningful case. (If you want to be finicky, you can add a special
chunk of code that prints O if $st art and $end are both 0, but that's not really worth bothering
with.)

After this, the rest of the program is straightforward. Line 14 prints a number in the range, line 15
adds one to the counter variable $count , and line 16 ends the whi | e statement.

|TIP

http://docs.rinet.ru:8080/P7/ch5.htm (17 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

One of the problems with Perl isthat it is sometimes difficult to
distinguish the following scalar variable or array-element values:

o Thenull string™ ", whichis converted to O in numeric
expressions

« Anundefined variable or element, which defaults to the null
string, which in turn is converted to O in numeric
expressions

« Thestring 0, which is converted to the number O in numeric
expressions

« A non-numeric string such asst r i ng, which is converted
to 0 in numeric expressions

There are several ways of dealing with this confusion:

1. Retrievethe length of the list stored in an array variable
before processing it. This ensures that you don't go past the
end of the list. See the section titled "Retrieving the Length
of aList" later in today's lesson for more details on how to
do this.

2. Compare the value with the string O rather than the number
0, asfollows:
if ($value eq "0") ...
This handles the strings that convert to 0 in numeric
expressions that are not O itself. (It doesn't handle strings
such as 0000 or 0. 0, which you might want your program
to consider equivalent to O; to deal with these, see the
discussion of thespl i t function later in today's lesson.)

3. Initialize the scalar variable or array element to avalue
other than O that you know is not going to appear naturally
in your program, such as -99999.

Which particular method is best depends on the
program you want to write, the input it expects, and
how "bulletproof” the program needs to be.

More on Assignment and Array Variables

So far, you've seen that you can assign lists to array variables.

@rray = (1, 2, 3, 4, 5);

Y ou've also seen that you can assign an element of an array to a scalar variable.

http://docs.rinet.ru:8080/P7/ch5.htm (18 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables
$scal ar = $array| 3];

The following sections describe the other ways you can use assignment with lists and array variables.

Copying from One Array Variable to Another

Y ou also can assign one array variable to another.

@esult = @riginal;

Here, thelist currently stored in the array variable @r i gi nal iscopied to the array variable
@ esul t . Each element of the new array @ esul t isthe same as the corresponding element of the
array @r i gi nal . Listing 5.4 showsthat thisistrue.

Listing 5.4. A program that copies an array and compar es the elements of the two
arrays.

1: #!/usr/local/bin/perl

3: @rrayl = (14, "cheeseburger", 1.23, -7, "toad");

4: @rray2 = @rrayl;

5: $count = 1;

6: while ($count <= 5) {

7: print("element $count: $arrayl[$count-1] ");
8: print("$array2[$count-1]\n");

9: $count ++;

10: }

http://docs.rinet.ru:8080/P7/ch5.htm (19 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

$ progranb_4

element 1: 14 14

el enment 2. cheeseburger cheeseburger
el enent 3: 1.23 1.23

el ement 4. -7 -7

el ement 5: toad toad

Line 3 assignsthe list

(14, "cheeseburger", 1.23, -7, "toad")

to the array variable @r r ay 1. Line 4 then copiesthis array into a second array variable,
@rray?2.
The rest of the program prints the elements of each array, asfollows:

« Line5 initializesthe counter variable $count to 1.

« The conditional expression in line 6 ensures that the loop is performed five times.

« Lines7 and 8 print the matching element of each array. (Note that the subscript is$count - 1,
not $count , because the subscript 0 isthe first element of the array.)

« Line 9 adds one to the counter variable $count .

|NOTE
Y ou can assign to multiple arrays in one statement. For example:
@rrayl = @rray2 = (1, 2, 3);

Thisassignsacopy of thelist (1, 2, 3) toboth @rrayl and
@rray?2.

Using Array Variables in Lists

Asyou've already seen, lists can contain scalar variables. For example:

http://docs.rinet.ru:8080/P7/ch5.htm (20 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

@ist = (1, $scalar, 3);
Here, the value of the scalar variable $scal ar becomes the second element of the list assigned to

@i st.

Y ou also can specify that the value of an array variable isto appear in alist, asfollows:

@istl

(2, 3, 4);

@ist2 = (1, @istl, 5);

Here, the value of the array variable @ i st 1-thelist (2, 3, 4) -issubstituted for the name
@i stl,andtheresultinglist (1, 2, 3, 4, 5) isassignedto@i st 2.

Listing 5.5 shows an example of alist being contained in another list.

Listing 5.5. A program that assignsalist aspart of another list.

1: #!/usr/local/bin/perl

3: @nnerlist = never ";:

4: @ut erli st

("l", @nnerlist, "fail!\n");

5. print @uterlist;

$ progranb 5
| never fail!

$

http://docs.rinet.ru:8080/P7/ch5.htm (21 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

Although this program is quite simple, it contains a couple of new tricks. Thefirst of theseisinline
3. Here, ascalar value," never " (note the surrounding spaces), is assigned to the array variable
@ nner | i st. Thisworks because the Perl interpreter automatically converts the scalar value into a
one-element list before assigning it to the array variable.

Line4 assignsalist to the array variable @ut er | i st . Thislist is assembled by taking the
following list:

("1", @nnerlist, "fail!\n")

and substituting in the current value of the array variable @ nner | i st . Asaresult, thelist
assignedto @ut erl i st is

("1*, " never ", "faill!\n")

Line5 printsthelist. To do this, it callsthe library function pr i nt and passesit the array variable
@uterlist.Whenprint isgivenan array variable or alist to print, it prints each element in
turn. This means that the following is written to the standard output file:

| never faill

Notethat pri nt doesn't leave any spaces between the elements of the list when it prints them. The
only reason the output is readable is because the character string contains spaces around never .
Thismeansthat pri nt isn't usually used to print alist of numbersin thisway:

@ist = (1, 2, 3);

print @i st;

This prints the following, which isn't quite what you want:

123

|TIP

http://docs.rinet.ru:8080/P7/ch5.htm (22 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

In Listing 5.5, the argument passed to the pr i nt function is not
enclosed in parentheses. Thisis perfectly acceptable. In Perl, the
parentheses enclosing arguments to functions are optional. For
example, when you call the library function chop, instead of
writing

chop ($nunber);

you can write

chop $nunber;

Although this saves a few extra keystrokes, it makes things alittle
less readable (in this author's opinion)

Besides, eliminating the parentheses can lead to problems.
Consider the following example

$fred = "Fred";
print (("Hello, " . $fred . "!'\n") x 2);
This code prints

Hel | o, Fred!
Hel | o, Fred!

In this case, the parentheses enclosing the argumentsto pri nt
are absolutely necessary. Without them, you have

print ("Hello, " . $fred . "!\n") x 2;

When the Perl interpreter sees this statement, it assumes that
pri nt isbeng called with the following argument, which is not
what you want:

"Hello, " . $fred . "I\n"

As aways in programming, the basic rule to follow isthis: Do
whatever makes your program easier to work with, and use your
best judgment.

Substituting for Array Variables in Strings

Asyou have seen, Perl does not leave spacesif you pass an array variabletopri nt :

@rray = (1, 2, 3);

print (@rray, "\n");

This prints the following on your screen:

123

http://docs.rinet.ru:8080/P7/ch5.htm (23 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

To get around this problem, put the array you want to print into a string:

print ("@rray\n");

When the Perl interpreter sees the array variable inside the string, it substitutes the values of the list
assigned to the array variables, and leaves a space between each pair of elements. For example:

@rray = (1, 2, 3);
print ("@rray\n");

This prints the following on your screen:

123

Assigning to Scalar Variables from Array Variables

Consider the following assignment, which you've already seen:

@rray = ($varl, $var?2);

Here, the values of the scalar variables $var 1 and $var 2 are used to form atwo-element list that is
assigned to the array variable @ar r ay.

Perl also enables you to take the current value of an array variable and assign its components to a
group of scalar variables. For example:

@rray = (5, 7);
($varl, S$var2) = @rray;
Here, the first element of the list currently stored in @r r ay, 5, isassigned to $var 1. The second

element, 7, isassigned to $var 2.

Additional elementsin an array, if they exist, are ignored. For example:

http://docs.rinet.ru:8080/P7/ch5.htm (24 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

@rray = (5, 7, 11);

($varl, $var2) = @rray;

Here, 5 isassigned to $var 1, 7 isassigned to $var 2, and 11 is not assigned to anything.

If there are more scalar variables than elements in an array variable, the excess scalar variables are
assigned the null string, as follows:

@rray = (5, 7);

($varl, $var2, $var3) = @rray;

Thisassigns5 to $var 1 and 7 to $var 2. Because there are not enough elementsin @ar r ay to
assign anything to $var 3, $var 3 isassigned the null string™ " .

INOTE
Y ou also can assign to several scalar variables using alist. For
example:
($varl, S$var2, $var3) = ("one", "two",
"three");
Thisassignsone to$var 1,t wo to$var 2, andt hr ee to
$var 3.

Aswith array variables, extravaluesin thelist are ignored and
extra scalar variables are assigned the null string, as follows:
($varl, $var2) = (1, 2, 3); # 3 is ignored
($varl, $var2, $var3) = (1, 2); # $var3 is
now ""

Retrieving the Length of a List

Asyou've seen, lists and array variables can be any length you want. As a consequence, Perl
provides away of determining the length of the list assigned to an array variable.

Here's how it works: If an array variable (or list) appears anywhere that a scalar value is expected,
the Perl interpreter obtains a scalar value by calculating the length of the list assigned to the array
variable.

Consider the following example:

@rray = (1, 2, 3);

http://docs.rinet.ru:8080/P7/ch5.htm (25 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

$scal ar = @rray;

In the assignment to $scal ar , the Perl interpreter replaces @ar r ay with the length of thelist
currently assigned to @r r ay, whichis 3. $scal ar , therefore, is assigned the value 3.

INOTE
Note that the following two statements are not equivalent:

$scal ar = @rray;

($scalar) = @rray;

In the first statement, the length of thelist in @r r ay is assigned
to $scal ar . In the second statement, the first element of
@rr ay isassigned to $scal ar .

It is always important to remember that $scal ar and
($scal ar) arenot the samething. $scal ar isascaar
variable, and ($scal ar) isaone-element list containing
$scal ar.

Being able to access the length of an array is useful if you want to write aloop that performs an
operation on every element of an array. Listing 5.6 is an example of a program that does just that.

Listing 5.6. A program that printsevery element of an array.

1. #!/usr/local/bin/perl

3: @rray (14, "cheeseburger", 1.23, -7, "toad");
4: S$count = 1;

5. while ($count <= @rray) {

6: print("element $count: S$array[$count-1]\n");
7: $count ++;
8. }

http://docs.rinet.ru:8080/P7/ch5.htm (26 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

$ progranb_6

el enent 1: 14

el ement 2: cheeseburger
el emrent 3. 1.23

el enent 4. -7

el enent 5: toad

$

The only new feature of this program isline 5, which compares the counter variable $count to the
length of the array @r r ay. Because the list assigned to @r r ay contains five e ements, the
conditional expression

$count <= @rray

ensures that the loop iterates five times.

Once again, note that the subscript inline 6 is$count - 1, not $count . This caution bears
repeating: It isvery easy to forget to subtract 1 when you use a value as a subscript.

If you like, you can write your loop in a different way and use $count as a subscript. For example:

$count = O;
while ($count < @rray) {

print ("elenment $count+1l: $array[$count]\n");

Asyou can seeg, thisisn't any easier to follow because you now have to remember these two things:

1. The conditional expression now must use the < operator, not the <= operator. If you use <=
here, the loop iterates six times, not five.

http://docs.rinet.ru:8080/P7/ch5.htm (27 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

2. Thevalue of $count isnow not the same as the element you are referring to. For example, if
you are printing the third element of the array, $count hasthe value 2. This means that
referencesto $count , such as
el ement $count +1:
must add one to the value of $count to get the result you want.

Asyou can see, there is no intuitive or obvious way of writing programs that loop through arrays.
Generally, it's best to pick the way that is easiest for you to remember.

WARBHN':
Y ou cannot retrieve the length of alist without first assigning the
list to an array variable. For example:
@rray = (10, 20, 30);
$scal ar = @rray;
Thisassigns 3 to $scal ar . Compare this with the following
Statement:
$scalar = (10, 20, 30);
This statement actually assigns 30 to $scal ar, not 3. Inthis
statement, the subexpression
(10, 20, 30)
Istreated as three scalar values separated by comma operators.

For more details on the comma operator, refer to "The Comma
Operator” in Day 4.

Using Array Slices

Asyou've seen, array subscripting enables you to change or access one element of an array. For
example:

$var = S$array| 2];
$array[2] = $var;

Perl enables you to access more than one element of an array at atime in much the same way.
Following is a simple example:

@ubarray = @rray[O0, 1];

Here, the code fragment

http://docs.rinet.ru:8080/P7/ch5.htm (28 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

@rray[0, 1]

refersto the first two elements of the list stored in the array variable. This portion of the array is
known as an array dlice. An array dliceistreated just like any other list. In the statement

@ubarray = @rray[O0, 1];

the list consisting of the first two elements of @r r ay is assigned to the array variable
@ubarray.

Here is another example:

@lice = @rray[1, 2, 3];

This statement assigns the array slice consisting of the second, third, and fourth elements of @ar r ay
to the array variable @l i ce.

P
WARhHN:}

Although single elements of an array are referenced using the $
character, array dlices are referenced using @

$var = S$array[0];
@ubarray = @rray[O0, 1];
The basic rules are as follows:

» Referencesto single items, such as scalar variables or single array
elements, start with a $.

« Referencesto array variables or array dlices, which refer to lists, start
witha @

Listing 5.7 shows a simple example of an array dlice.

Listing 5.7. A program that demonstratesthe use of an array dlice.

1: #!'/usr/local/bin/perl

http://docs.rinet.ru:8080/P7/ch5.htm (29 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

2:

3:

4:

@rray = (1, 2, 3, 4);
@ubarray = @rray[1, 2];
print ("The first elenent of subarray is $subarray[0]\n");

print ("The second el ement of subarray is $subarray[1]\n");

$ progranb 7

The first elenment of subarray is 2

The second el enent of subarray is 3

Line 3 of this program assigns the following list to the array variable @r r ay:

(1, 2, 3, 4)

Line 4 assignsadlice of the array variable @ar r ay to the array variable @ ubar r ay. The array

dice

@rray[1, 2]

specifies that the second and third elements of the array are to be treated as alist and assigned to
@ubarray.

INOTE

http://docs.rinet.ru:8080/P7/ch5.htm (30 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

In array dlices, asin references to single elements of an array,
subscripts start from zero. For example, the array dlice

@rray[1, 2]
refers to the second and third elements of an array.

The final two lines of the program print the two elements of the array variable @ ubar r ay. Asyou
can see, these elements are identical to the second and third elements of @ar r ay.

Using List Ranges in Array-Slice Subscripts

Perl provides a convenient way to refer to large array slices. Instead of writing

@rray[O,1, 2, 3, 4]

to refer to the first five elements of array @r r ay, you can use the list range operator, as follows:

@rray[0. . 4]

This enables you to assign large array dlices easily:

@ubarray = @rray[0..19];

Thisassignsthefirst 20 elements of @r r ay to @ ubarr ay.

Using Variables in Array-Slice Subscripts

Y ou can use the value of ascalar variablein alist rangein an array slice subscript. The following is
an example:

$endr ange 19;

@ubarr ay @rray[0. . $endrange] ;

Here, the scalar variable $endr ange contains the upper limit of the array slice, which in this case
Is 19. Thismeansthat the array sliceto assignis

@rray[0..19]

http://docs.rinet.ru:8080/P7/ch5.htm (31 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

which assigns the first 20 elements of @r r ay to @G ubarr ay.

Y ou can also usethelist stored in an array variable to define an array dlice. Listing 5.8 shows how
thisworks.

Listing 5.8. A program that usesan array variable as an array-dlice subscript.

1. #!/usr/local/bin/perl

3: @rray = ("one", "two", "three", "four", "five");
4. @ange = (1, 2, 3);
5. @ubarray = @rray[@ ange];

6: print ("The array slice is: @ubarray\n");

$ progranb_ 8

The array slice is: two three four

Line 3 of this program assigns the following list to the array variable @r r ay:

("one", "two", "three", "four", "five")

Line4 assignsthelist (1, 2, 3) tothearray variable @ ange, whichisto serve asthelist range.

Line 5 usesthe value of @ ange asthe array subscript for an array slice. Because @ ange contains

http://docs.rinet.ru:8080/P7/ch5.htm (32 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

(1, 2, 3),thediceof @rray that isselected consists of the second, third, and fourth elements.
These elements are then assigned to the array variable @ ubar r ay.

Line 6 prints the selected array dice. When the Perl interpreter sees the variable name @ ubar r ay
in the character string to be printed, it substitutes the value of @ ubar r ay for its name. Because
@ubar r ay isinside a character string, the Perl interpreter leaves a space between each pair of
elements when printing.

Compare line 6 with the following:

print (@ubarray, "\n");

Here, pri nt leaves no spaces between the elements of @ ubar r ay, which meansthat it prints

t wot hr eef our

Which outcome you want depends, of course, on what you want your program to do.

Assigning to Array Slices

Y ou can assign to array slices using the notation you have just seen. The following is an example:

@rray[0,1] = ("string", 46);
Here, the first two elements of the array @ar r ay becomest ri ng and 46, respectively.

Y ou can use list-range operators and variables when you assign to array slices as well. The following
Is an example:

@rray[0..3] = (1, 2, 3, 4);

@rray[0..%endrange] = (1, 2, 3, 4);

If there are more items in the array dice than in the list, the extraitemsin the array slice are assigned
the null string, as follows:

@rray[0..2] = ("stringl", "string2");

http://docs.rinet.ru:8080/P7/ch5.htm (33 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

The third element of @r r ay now holds the null string.

If there are fewer itemsin the array dlice than in thelist, the extraitemsin thelist areignored, asin
the following:

@rray[0..2] = (1, 2, 3, 4);

In this assignment, the fourth element in thelist, 4, is not assigned to anything.

When an array dliceis assigned to, the remainder of the array is not changed. Listing 5.9 shows how
thisworks.

Listing 5.9. A program that assignsto an array slice.

1: #!/usr/local/bin/perl

3: @rray = ("oldl", "old2", "old3", "old4");
4. @rray[1,2] = ("new2", "newd");

5. print ("@rray\n");

$ progranb_ 9

ol d1 new2 new3 ol d4

In the preceding program, the only statement that did not appear in previous programsis line 4,
which assignsthelist (" new2", "new3") tothearray sliceof @r r ay consisting of the second
and third elements. This assignment changes the value of @r r ay from

http://docs.rinet.ru:8080/P7/ch5.htm (34 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

("ol d1", "ol d2", "ol d3", "ol d4")

to

("ol d1", "new2", "new3", "ol d4")

Line 5 then prints the changed array.

Overlapping Array Slices

Asyou've seen, Perl enables you to use array slices on either side of an assignment statement. The
following is an example:

@ewarray = @urray| 2, 3, 4];

@rray[2, 3,4] = @rewarray,

This means that you can assign from one array slice to another, even if the two slices overlap, asin
the following:

@rray[1,2,3] = @rray| 2, 3,4];

The Perl interpreter has no problem with this statement because it copies the list stored
in@rray|[2, 3, 4] into atemporary location (invisible to you) before assigning it to
@rray[1, 2, 3].

Listing 5.10 provides an example of overlapping array slicesin use.

Listing 5.10. A program containing overlapping array slices.

1: #!'/usr/local/bin/perl
2.

3: @rray = ("one", "two", "three", "four", "five");

http://docs.rinet.ru:8080/P7/ch5.htm (35 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

4. @rray[l,2,3] = @rray][?2, 3,4];

5: print ("@rray\n");

$ progranb 10

one three four five five

Line 4 is an example of an assignment with overlapping array slices. At the time of assignment, the
array dlice@r r ay[2, 3, 4] containsthe list

("three", "four", "five")

Thislist consists of the last three elements of @r r ay. Assigning thislistto @urray|[1, 2, 3]
means that the list stored in @r r ay changes from

("one", "two", "three", "four", "five")
to
("one", "three", "four", "five", "five")
|NOTE

http://docs.rinet.ru:8080/P7/ch5.htm (36 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

Overlapping array slices of varying lengths are dealt with in the
same way as other array slice assignments of hon-matching
lengths. For example:

@rray = (1, 2, 3, 4, 5);

@rray[0..2] = @rray[3,4];

This assignment assignsthe array slice @r r ay[3, 4] , whichis
thelist (4, 5),tothearray dlice@rray|[0. . 2] . After this
assignment, the value of @r r ay isthelist

(4, 5, "", 4, 5)

The third element of @r r ay is now the null string because there
are only two elements in the array slice being assigned.

Using the Array-Slice Notation as a Shorthand
So far, I've been using the following array-slice notation to refer to consecutive elements of an array:
@rray[0, 1]

In Perl, however, thereis no real difference between an array slice and alist containing consecutive
elements of the same array. For example, the following statements are equivalent:

@rray[O, 1];

($array[0], $array[l]);

@ubarray

@ubarr ay

Because of this, you can use the array-dlice notation to refer to any elements of an array, regardless
of whether they are in order. For example, the following two statements are equivalent:

@ubarray ($array[4], $array[l], Sarray[3]);

@ubarray @rray[4,1, 3];

In both cases, the array variable @ ubar r ay isassigned alist consisting of three elements: the fifth,
second, and fourth elements of @ar r ay.

Y ou can use this array-dlice notation in a variety of ways. For example, you can assign one element
of an array multiple times:

http://docs.rinet.ru:8080/P7/ch5.htm (37 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

@Gubarray = @rray[0,0, 0];

This creates alist consisting of three copies of the first element of @ar r ay, and then assigns this list
to @ubarray.

The array-dlice notation provides an easy way to swap elementsin alist. The following isan
example:

@rray[1,2] = @rray[2,1];

This statement swaps the second and third elements of @r r ay. Aswith the overlapping array slices
you saw earlier, the Perl interpreter copies @r r ay[2, 1] into atemporary location before
assigning it, which ensures that the assignment takes place properly.

For an example of a program that swaps array elements, look at Listing 5.11, which sorts the
elementsin an array using a simple sort algorithm.

Listing 5.11. A program that sortsan array.

1: #!/usr/local/bin/perl

3: # read the array fromstandard input one itemat a tine
4: print ("Enter the array to sort, one itemat a tine.\n"),;
5. print ("Enter an enpty line to quit.\n");

6: S$count = 1;

7: S$inputline = <STDI N>;

8: chop ($inputline);

9: while ($inputline ne "") {

10: @rray[$count-1] = S$inputli ne;

11: $count ++;

http://docs.rinet.ru:8080/P7/ch5.htm (38 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

12: $i nputline = <STDI N>;
13: chop ($inputline);
14: }

15:

16: # now sort the array

17: $count = 1;

18: while ($count < @rray) {

19: $x = 1;

20: while ($x < @rray) {

21: if ($array[$x - 1] gt Sarray[$x]) {
22: @rray[$x-1, $x] = @rray[$x, $x-1];
23: }

24: $x++;

25: }

26: $count ++;

27: '}

28:

29: # finally, print the sorted array

30: print ("@rray\n");

$ progranb 11
Enter the array to sort, one itemat a tine.

http://docs.rinet.ru:8080/P7/ch5.htm (39 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

Enter an enpty line to quit.
foo
baz
dip

bar

bar baz dip foo

$

This program is divided into three parts:
« Reading the array
« Sorting the array
 Printing the array

Lines 3-14 read the array into the variable @r r ay. The conditional expressioninline 9,

$i nputline ne "",istrueaslong asthelineis not empty. (Recal that an empty line consists of
just the newline character, which the library function chop removes.) In this example, thelist f oo
baz di p bar isreadintothe array variable @ar r ay.

Lines 17-27 perform the sort. The sort consists of two loops, one inside the other. The inner loop
works like this:

o Line 21 comparesthefirst item inthelist with the item next to it. If thefirst item is greater,
line 22 swaps the two items. Otherwise, the two items are |eft where they are. In this example,
f 00 isgreater than baz, so f 00 becomes the second element in the list. At this point, the list
IS
baz foo dip bar

« The program then loops back to line 21, which now compares the second pair in the list (the
second and third elements). The new second element, f 00, iscompared todi p.f oo is
greater, so f 00 becomes the new third element, and di p becomes the second element:
baz dip foo bar

« Line 20 terminates the loop when the last pair is compared. (Note that the conditional
expression compares the inner counting variable $x with the length of the array variable
@r r ay. When $x becomes equal to @r r ay, every pair of elementsin the list has been
compared.)

http://docs.rinet.ru:8080/P7/ch5.htm (40 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables
At thispoint, the largest element in thelist is at the far end of the list:

baz dip bar foo

The largest valueinthelist, f 00, has been moved to the far right end of the list, where it belongs.
The other elements have been displaced to make room.

Lines 17-19 and 26-27 contain the outer loop. This outer loop just makes sure that the inner loop is
repeated n- 1 times, where n isthe number of elementsin the list. When the inner loop is repeated a
second time, the second-largest element moves up to the second position from the right:

baz bar dip foo

The final pass through the inner loop sorts the final two elements:

bar baz dip foo

Line 30 then prints the sorted list.

INOTE

You'll never need to write a program that sorts valuesin alist
because Perl has alibrary function, sor t , that does it for you. See
the section "Array Library Functions' later today for more details.

Reading an Array from the Standard Input File

In the programs you have seen so far, single lines of input are read from the standard input file and
stored in scalar variables. For example:

$var = <STDI N>;

In this case, every appearance of <STDI N> means that another line of input is obtained from the
standard input file.

Perl also provides a quicker approach: If you assign <STDI N> to an array variable instead of a
scalar variable, the Perl interpreter readsin all of the data from the standard input file at once and
assignsiit. For example, the statement

http://docs.rinet.ru:8080/P7/ch5.htm (41 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

@rray = <STDI N>;

reads everything typed in and assigns it al to the array variable @r r ay. The variable @r r ay now
contains alist; each element of thelist isaline of input.

Listing 5.12 is an example of a simple program that reads its input datainto an array.

Listing 5.12. A program that reads datainto an array and writesthe array.

1. #!/usr/local/bin/perl

3: @rray = <STDI N>;

4. print (@rray);

$ progranb 12

Here is nmy first line of data.
Here is another |ine.

Here is the last |ine.

"D

Here is ny first |ine of data.
Here is another |ine.

Here is the |ast I|ine.

http://docs.rinet.ru:8080/P7/ch5.htm (42 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

Asyou can see, this program is very short. Line 3 reads the input from the standard input file. In this
example, theinput that is entered consists of the three lines

Here is nmy first line of data.
Here is another |ine.

Here is the last |ine.

followed by the Ctrl+D key combination. Ctrl+D produces a special character that indicates end of
file; when the Perl interpreter seesthis, it knows that there is no more inpui.

INOTE

A blank lineis perfectly acceptable input and does not terminate
the reading of input from the standard input file. Only the Ctrl+D
character can do that.

Also note that the Ctrl+D character is a non-printing character.
When you type it, nothing appears on the screen. In the examples
In this book, control characters that are part of the input, such as
Ctrl+D, are represented by the” character followed by the letter
typed. For example, Ctrl+D is represented as

"D
This representation is the standard one used in the computing
world.

After line 3 is executed, the array variable @r r ay contains alist comprising three elements: the
three lines of input you just entered. The last character of each input line is the newline character
(because you didn't call chop to get rid of it).

Line 4 prints the lines of input you just read. Note that you do not need to separate the lines with
spaces or newline characters because each linein @r r ay isterminated by a newline character.

2,

WARNING
When you use the following statement:
@rray = <STDI N>;

every line of input you enter isstored in @ar r ay al at once. If
you enter alot of input, @ar r ay can get very large.

Use this statement only when you really need to work with the
entireinput file at once.

http://docs.rinet.ru:8080/P7/ch5.htm (43 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

Array Library Functions

Perl provides a number of library functions that work on lists and array variables. Y ou can use them
to do the following:

« Sort array elementsin alphabetical order

» Reversethe elementsof an array

« Remove thelast character from all elements of an array
« Mergethe elements of an array into asingle string

« Split astring into array elements

The following sections describe these array library functions.

Sorting a List or Array Variable

Thelibrary function sor t sorts the elements of an array in aphabetical order and returns the sorted
list.

The syntax for thesor t library functionis

retlist = sort (array);

Inthissyntax, ar r ay isthelisttosort,andr et | i st isthe sorted list.

Here are some examples:
@rray = ("this", "is", "a", "test");
@rray2 = sort (@rray);

After sort iscalled, thevalueof @rray?2 isthelist

("a", "is", "test", "this")

Notethat sor t does not modify the original list. The statement

@rray2 = sort (@rray);

does not change the value of @r r ay. To replace the contents of an array variable with the sorted

http://docs.rinet.ru:8080/P7/ch5.htm (44 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables
list, put the array variable on both sides of the assignment, as follows:

@rray = sort (@rray);

Here, the sorted list is put back in @r r ay.

28

WARNING
The sorted list must be assigned to an array variable in order to be
used. The statement
sort (@rray);

doesn't do anything useful because the sorted list is not assigned to
anything.

Notethat sort treatsitsitems as strings, not integers; items are sorted in alphabetical, not numeric,
order. For example:

@rray
@rray

(70, 100, 8):

sort (@rray);

Inthiscase, sort produces

(100, 70, 8)

not

(8, 70, 100)

Because sor t istreating the elements of the list as strings, the strings to be sorted are 70, 100, and
8. When sorting characters that are not alphabetic, sor t looks at the internal representation of the
charactersto be sorted. If you are not familiar with ASCII (which will be described shortly), this
might sound complicated, but it's not too difficult to understand.

Here's how it works: When Perl (or any other programming language) stores a character such asr or
1, what it actually doesis store a unique eight-bit number that corresponds to this character. For
example, the letter r isrepresented by the number 114, and 1 is represented by the number 49.
Every possible character has its own unique number.

http://docs.rinet.ru:8080/P7/ch5.htm (45 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

Thesort function uses these unique numbers to determine how to sort character strings. When
sorting 70, 100, and 8, sor t looks at the unique numbers correspondingto 7, 1, and 8, which are
the first characters in each of the strings. Asit happens, the unique number for 1 islessthan that for
7, which islessthan that for 8 (which makes sense when you think of it). This meansthat 100 is
"lessthan" 70, and 70 is"less than" 8.

Of coursg, if two strings have identical first characters, sor t then compares the second characters.
For example, when sor t sorts 72 and 73, thefirst characters areidentical; sor t then compares
the unique number representing 2 with the number representing $. As it happens, the number for $ is
smaller, so 7$ is"lessthan" 72.

INOTE

The set of unique numbers that correspond to the characters
understood by the computer is known as the ASCII character set.

Most computers today use the ASCII character set, with a couple
of exceptions as follows:

« Some IBM computers use an IBM-developed character set
called EBCDIC. EBCDIC works the same way as ASCII. In
both cases, a character such asr or 1 istranslated into a
number that represents it. The only difference between
EBCDIC and ASCII isthat the translated numbers are
different.

« Computersthat print avariety of spoken languages, or
which deal with languages such as Japanese or Chinese, use
amore complicated 16-bit code to represent the wide
variety of characters they understand.

Y ou don't really need to worry about what character set your
machine uses, except to take note of the sorting order. A complete
listing of the ASCII characters can be found in Appendix B,
"ASCII Character Set."

Using Other Sort Keys

Normally, sor t sortsin alphabetical order. You can tell the Perl interpreter to sort using any
criterion you like. To learn more about sort keys, refer to Day 9, "Using Subroutines."

Reversing a List or Array Variable

Thelibrary function r ever se reversesthe order of the elements of alist or array variable, and
returns the reversed list.

The syntax for ther ever se library functionis

retlist = reverse (array),;

http://docs.rinet.ru:8080/P7/ch5.htm (46 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

array isthelisttoreverse, andret | i st isthereversed list.

Hereis an example:

@rray = ("backwards", "is", "array", "this");
@rray2 = reverse(@rray),;

Thevalue assigned to @ar r ay 2 isthelist
("this", "array", "is", "backwards")

Aswithsort,rever se doesnot change the original array.

If you like, you can sort and reverse the same list by passing thelist returned by sort tor ever se.
Listing 5.13 shows an example of this. It reads lines of data from the standard input file and sorts
them in reverse order.

Listing 5.13. A program that sortsinput linesin reverse order.

1: #!'/usr/local/bin/perl

3: @ nput <STDI N>;

4: @nput = reverse (sort (@nput));

5. print (@nput);

$ progranb 13

f oo

http://docs.rinet.ru:8080/P7/ch5.htm (47 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables
bar

dip
baz
D
f oo
dip

baz

bar

Line 3 reads all the input lines from the standard input file into the array variable @ nput . Each
element of input consists of asingle line of input terminated with a newline character.

Line 4 sorts and reverses the input line. First, sor t iscalled to sort the input lines in a phabetical
order. (Recall that when one library function appears inside another, the innermost oneis called
first.) Thelist returned by sor t isthen passedtor ever se, which reverses the order of the
elements of thelist. Theresult isalist sorted in reverse order, which isthen assigned to @ nput .

Line 5 prints the sorted lines. Because each line is terminated by a newline character, no extra spaces
or newline characters need to be added to make the output readable.

|NOTE
If you like, you can omit the parenthesesto the call tor ever se.
This gives you the following statement:
@nput = reverse sort (@nput);

Hereis a case where eliminating a set of parentheses actually
makes the code more readable; it is obvious that the statement
sorts @ nput inreverse order.

Using chop on Array Variables

Asyou've seen, the chop library function removes the last character from a character string. The
following is an example:

http://docs.rinet.ru:8080/P7/ch5.htm (48 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables
$var = "bat he";

chop ($var); # $var now contains "bath"

The chop function also can work on listsin array variables. If you pass an array variableto chop, it
removes the last character from every element in the list stored in the array variable. For example:

@ist = ("rabbit", "12345", "quartz");

chop (@i st);

After chop iscaled, thelist storedin @i st is

("rabbi", "1234", "quart")

The chop function often is used on arrays read from the standard input file, as shown in the
following:
@rray = <STDI N>;

chop (@rray);

This call to chop removes the newline character from each input line. In the following section, you
will see programsin which thisis helpful.

Creating a Single String from a List

Thelibrary function j oi n creates asingle string from alist of strings, which then can be assigned to
ascaar variable.

The syntax for thej oi n library functionis

string = join (array);

arr ay isthelist to join together, and st r i ng isthe resulting character string.

Thefollowing isan exampleusing j oi n:

http://docs.rinet.ru:8080/P7/ch5.htm (49 of 60) [2/17/2007 6:03:07 AM]

Day 5 -- Lists and Array Variables

$string = join(" ", "this", "is", "a"

is", "a", "string");

Thefirst element of thelist supplied toj oi n contains the characters that are to be used to join the
parts of the created string together. In this example, $st ri ng becomest his is a string.

j oi n can specify other join stringsbesides™ " . For example, the following statement uses a pair of
colonsto join the strings:

$string = join("::", "words",

and", "col ons");

In this statement, $st r i ng becomeswor ds: : and: : col ons.

You can use any list or array variable as part or all of the argument to] oi n. For example:

@ist = ("here", "is", "a");
$string = join(" ", @ist, "string");

Thisassignshere is a stringto$string.

Listing 5.14 isasimple program that usesj oi n. It joins together all the input lines from the
standard input file.

Listing 5.14. A program that takesitsinput and joinsit into a single string.

1. #!/usr/local/bin/perl

3: @nput = <STDI N>;
4. chop (@ nput);

5. $string = join(" ", @nput);

6: print ("$string\n");

http://docs.rinet.ru:8080/P7/ch5.htm (50 of 60) [2/17/2007 6:03:08 AM]

Day 5 -- Lists and Array Variables

$ progranb 14
Thi s

S

my

I nput

"D

This is ny input

Line 3reads all of the input lines into the array variable @ nput . Each element of @ nput isa
single line of input terminated by a newline character.

Line 4 passes the array variable @ nput to the library function chop, which removes the last
character from each element of the list stored in @ nput . Thisremoves al of the trailing newline
characters.

Line5 callsj oi n, which joinsall the input linesinto asingle string. The first argument passed to
joinis" ",whichtellsj oi n to put one space between each pair of lines. Thisturnsthe list

("This", "is", "my", "input")

into the string

This is ny input

Line 6 prints the string produced by j oi n. Note that the call to pri nt hasto specify anewline
character because all the newline characters in the input lines have been removed by the call to
chop.

http://docs.rinet.ru:8080/P7/ch5.htm (51 of 60) [2/17/2007 6:03:08 AM]

Day 5 -- Lists and Array Variables
Splitting a String into a List
Asyou've seen, thelibrary function j oi n creates a character string from alist. To undo the effects

of j oi n-to split acharacter string into separate items-call the functionspl i t .

The syntax for the library functionspl i t is

array = split (string);

st ri ng isthe character string to split, and ar r ay istheresulting array.

The following is asimple example of theuse of spl i t:

$string = "words: : separated::by::col ons"”;

@rray = split(/::/, $string);

Thefirst argument passed to spl i t tellsit whereto break the string into separate parts. In this
example, the first argument is: : (two colons); because there are three pairs of colonsin the string,
spl i t breaksthe string into four separate parts. The result isthe list

("words", "separated", "by", "colons")

which is assigned to the array variable @r r ay.

INOTE

The/ characters surroundingthe: : inthecal tospl it indicate
that the: : isapattern to be matched. Perl supports awide variety
of special pattern-matching sequences, which you will learn about
on Day 7, "Pattern Matching."

Thespl it functionisusedinavariety of applications. Listing 5.15 usesspl i t to count the
number of words in the standard input file.

Listing 5.15. A simple wor d-count program.

1: #!/usr/local/bin/perl

http://docs.rinet.ru:8080/P7/ch5.htm (52 of 60) [2/17/2007 6:03:08 AM]

Day 5 -- Lists and Array Variables

2:
3: $wordcount = O;
4: $line = <STDI N>;

5 while ($line ne "") {

6: chop ($line);

7: @rray = split(/ /, $line);
8: $wor dcount += @array;

9: $line = <STDI N>;

10: }

11: print ("Total nunber of words: $wordcount\n");

$ progranb 15

Here is sone input.

Here are some nore words.
Here is ny last |ine.

"D

Total nunber of words: 14

When you enter a Ctrl+D (End-of-File) character and read it using <STDI N>, theresulting lineis
the null string. Line 5 of this program tests for this null string.

Note that line 5 has no problem distinguishing the end of file from a blank input line because a blank

http://docs.rinet.ru:8080/P7/ch5.htm (53 of 60) [2/17/2007 6:03:08 AM]

Day 5 -- Lists and Array Variables

input line contains the newline character, and chop has not yet been called. Once the Perl interpreter
knows that the program is not at the end of file, line 6 can be called; it chops the newline character
off the end of the input line.

Line 7 splits the input line into words. The first argument to split,/ / , indicatesthat thelineisto be
broken whenever the Perl interpreter sees a space. Theresulting list isstored in @ar r ay.

Because each element of thelistin @r r ay isoneword in the input line, the total number of words
in the line is equivalent to the number of elementsin the array. Line 8 takes advantage of thisto
count the number of words in the input line. Here's how line 8 works:

« When an array variable appearsin a place where the Perl interpreter normally expects a scalar
value, the number of elementsin the list stored in the array variable is substituted for the
variable name. In this program, when the Perl interpreter sees @ur r ay, it replacesit with the
number of elementsin @rr ay.

« Because the number of elementsin the array is the same as the number of words in the input
line, the statement
$wor dcount += @rray;
actually adds the number of wordsin the line to $wor dcount .
|NOTE

Listing 5.15 does not work properly if an input line contains more
than one space between words. The following is an example:

This is a line

Because there are two spaces between Thi s andi s, thespl it
function breaks

This is

into threewords: Thi s, anempty word" ", and i s. Because of
this, theline

This is a line

appears to contain five words when it really contains only four.

To get around this problem, what you need is a pattern that
matches one or more spaces. To learn about special patterns such
asthis, see Day 7.

Listing 5.16 is an example of a program that usesspl i t,j oi n,andr ever se to reverse the word
order of the input read from the standard input file.

Listing 5.16. A program that reversesthe word order of the input file.

1. #!/usr/local/bin/perl

http://docs.rinet.ru:8080/P7/ch5.htm (54 of 60) [2/17/2007 6:03:08 AM]

Day 5 -- Lists and Array Variables

2:

3:

4:

10:

11:

12:

13:

14:

15:

16:

17:

@ nput = <STDI N>;

chop (@ nput);

first, reverse the order of the words in each |ine
$currline = 1;

while ($currline <= @nput) {

@wrds = split(/ /, $input[$currline-1]);
@wrds = reverse(@wrds);
$input[$currline-1] = join(" ", @wrds, "\n");

$currline++;

now, reverse the order of the input lines and print them
@ nput = reverse(@ nput);

print (@ nput);

$ progranb 16

Thi s sent ence

IS in

reverse order.

"D

http://docs.rinet.ru:8080/P7/ch5.htm (55 of 60) [2/17/2007 6:03:08 AM]

Day 5 -- Lists and Array Variables

order. reverse

inis

sentence Thi s

$

Line 3reads all of the standard input file into the array @ nput . Line 4 then removes the trailing
newline characters from the input lines.

Lines 7-13 reverse each individual line. Line 7 compares the current line number, stored in
$currli ne, with the number of lines of input. (Recall that the number of elementsinthelistis
used whenever an array variable appears where a scalar value is expected.)

Line 9 splitsaline of input into words. Thefirst argumenttosplit,/ /,indicatesthat asplitisto
occur every time a space is seen. Thelist of wordsis stored in the array variable @wor ds.

Line 10 reverses the order of thelist of words stored in @wor ds. After the list has been reversed,
line 11 joins the input line back together again. Note that line 11 appends a newline character to the
input line.

Now that the wordsin each individual line have been reversed, all that the program needsto dois
reverse the order of the lines themselves. Line 16 accomplishes this.

Line 17 prints the reversed input file. Note that the period character (.) appears at the end of the first
word; thisis because the reversing program isn't smart enough to detect and get rid of it. (Y ou can
usespl it togetridof this, too, if you want.)

Other List-Manipulation Functions

Perl provides several other list-manipulation functions also. To learn about these, refer to Day 14,
"Scalar-Conversion and List-Manipulation Functions."

Summary

In today's lesson, you learned about lists and array variables. A list is an ordered collection of scalar
values. A list can consist of any number of scalar values.

Lists can be stored in array variables, which are variables whose names begin with the character @

Individual elements of array variables can be accessed using subscripts. The subscript O refersto the
first element of the list stored in the array variable, the subscript 1 refers to the second element, and
so on. If an array element is not defined, it is assumed to hold the null string " " . If a previously

http://docs.rinet.ru:8080/P7/ch5.htm (56 of 60) [2/17/2007 6:03:08 AM]

Day 5 -- Lists and Array Variables

undefined array element is assigned to, the array grows appropriately.
The list-range operator provides a convenient way to create alist containing consecutive numbers.

Y ou can copy lists from one array variable to another. In addition, you can include an array variable
in alist, which means that the list stored in the array variable is copied into the list containing the
array-variable name.

Array-variable names can appear in character strings; in this case, the elements of thelist are
included in place of the variable name, with a space separating each pair of elements.

Y ou can assign values to scalar variables from array variables, and vice versa.

If an array variable appearsin a place where a scalar variable is expected, the length of the list stored
in the array variableis used.

Y ou can access any part of alist stored in an array variable by using the array-slice notation. Y ou
can assign values to array slices, and they can be used anywhere alist is expected.

The entire contents of the standard input file can be stored in asingle array variable.

Thelibrary functionssort andr ever se sort and reverse lists, respectively. The function chop
removes the last character from each element of alist. The function spl i t breaksasingle string
into a collection of list elements. The functionj oi n takes a collection of list elements and joins
them into a single string.

Q&A

Q: How can | tell whether areferenceto an array variable such as @r r ay referstothe
stored list or to thelength of thelist?
A: It's usually pretty easy to tell. In alot of places, using alist makes no sense:

$result = $nunber + @rray;
For example, it makes no sense hereto add alist to $nunber , so the length of the list stored
in @ar r ay isused.

Q: Why do array elementsuse $ for thefirst character of the element name, and not @
Wouldn't it make more sensetorefer to an array element as
@rrayl 2]
because we all know that the @indicatesan array variable?

A: Thisrelates to the first question. The Perl interpreter needs to know as soon as possible
whether avariable reference isascaar value or alist. The $ indicates right away that the
upcoming item isascaar value.

Eventually, you'll get used to this notation.

Q: Isthere a difference between an undefined array variable and an array variable
containing the empty list?

A: No. By default, al array variables contain the empty list. Note, however, that the empty list
Is not the same as alist containing the null string:

@rray = ("");

This list contains one element, which happens to be anull string.

http://docs.rinet.ru:8080/P7/ch5.htm (57 of 60) [2/17/2007 6:03:08 AM]

Day 5 -- Lists and Array Variables

Q:

A
Q:
N

> Q

How large an input file can | read in using the following statement?

@rray = <STDI N>;

Perl imposes no limit on the size of arrays. Y our computer, however, has afinite amount of
memory, which limits how large your arrays can be.

Why does Per| add spaces when you substitute for an array variablein a string?

The most common use of string substitutionisin the pri nt statement. Normally, when you
print alist you don't want to have the elements of the list running together, because you want
to see where one element stops and the next one starts.

To print the elements of a string without spaces between them, passthelist to pri nt
without enclosing it in a string, as follows:

print ("Here is ny list", @ist, "\n");

Why does $ appear before 1 in the ASCII character set?

The short answer is: Just because. (This reasoning occurs more often in computing than you
might think.)

Here's amore detailed explanation: On early machines that used the ASCII character set,
performance was more efficient if there was a relationship between, for instance, the location
of the uppercase a phabetic characters and the lowercase a phabetic characters. (In fact, if
you add 0x 20, or 20 hexadecimal, to the ASCII representation of an uppercase letter, you
get the corresponding lowercase letter.)

Establishing relationships such as these meant that gaps existed between, for example, the
representation of Z (which is90) and the representation of a (which is 97). These gaps are
filled by printable non-alphanumeric characters; for example, the representation of [is91.
Asfor why $ appears before 1, as opposed to ?, which appears after 1, the explanation is:
Just because.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material
covered and exercises to give you experience in using what you've learned. Try and understand the
quiz and exercise answers before you go on to tomorrow's lesson.

Quiz

1. Define the following terms:

a list

b. empty list

C. array variable
d. subscript

e. array dlice

. Assume the following assignments have been performed:

@ist = (1, 2, 3);

$scalarl = "hell o";

$scalar2 = "there";

What is assigned to the array variable @ewl i st in each of the following cases?
a @ewist = @i st;

http://docs.rinet.ru:8080/P7/ch5.htm (58 of 60) [2/17/2007 6:03:08 AM]

Day 5 -- Lists and Array Variables

3.

© o N O A

b. @ewlist = reverse(@ist[1,2]);

c. @ewist = ($scalarl, @ist[1,1]);

d. ($dumy, @ewist) = @ist;

e @ewWist[2,1,3] = @ist[1,2,1],

f. @ewl ist = <STDI N>;

Assume that the following assignments have been performed:
@istl = (1, 2, 3, 4);

@ist2 = ("one", "two", "three");

What isthe value of $r esul t in each of the following cases?
($dummy, $result) = @i st 1;

$result = @i st 1;

($result) = @i st2;

($result) = @istl[l..2];

$result = $list2[Slistl[$listl[0]]];

$result = $list2]3];

What is the difference between alist and an array variable?

How does the Perl interpreter distinguish between an array element and a scalar variable?
How can you ensure that the @ $, and [characters are not substituted for in strings?
How can you obtain the length of alist stored in an array variable?

What happens when you refer to an array element that has not yet been defined?

What happens when you assign to an array element that is larger than the current length of the
array?

Exercises

1.
2.

Write a program that counts all occurrences of the word t he in the standard input file.

Write a program that reads lines of input containing numbers, each of which is separated by
exactly one space, and prints out the following:

a. Thetotal for each line

b. The grand total

Write a program that reads all input from the standard input file and sorts all the wordsin
reverse order, printing out one word per line with duplicates omitted.

BUG BUSTER: What iswrong with the following statement?
$result = @rray[4];

BUG BUSTER: What iswrong with the following program? (See if you can figure out what's
wrong without checking the listings in today's lesson.)
#! [/ usr/ 1 ocal / bi n/ perl

@ nput = <STDI N>;

$currline = 1;

while ($currline < @nput) {

@wrds = split(/ /, $input[Scurrline]);
@wrds = sort(@wrds);
$input[Scurrline] =join(" ", @wrds);

http://docs.rinet.ru:8080/P7/ch5.htm (59 of 60) [2/17/2007 6:03:08 AM]

Day 5 -- Lists and Array Variables
$currline++;

}
print (@ nput);

http://docs.rinet.ru:8080/P7/ch5.htm (60 of 60) [2/17/2007 6:03:08 AM]

http://docs.rinet.ru:8080/P7/index.htm

Day 6 -- Reading from and Writing to Files

Chapter 6
Reading from and Writing to Files

CONTENTS

e Opening aFile
o TheFileVariable
o The Filename
o TheFile Mode
o Checking Whether the Open Succeeded
« Reading fromaFile
o File Variables and the Standard Input File
o Terminating a Program Using di e
o Reading into Array Variables
o Writingto aFile
o The Standard Output File Variable
o Merging Two Filesinto One

o Redirecting Standard Input and Standard Output
o The Standard Error File
o« Closing aFile

« Determining the Status of aFile
0 File-Test Operator Syntax
o Available File-Test Operators
o Moreon the - e Operator
o Testing for Read Permission-the - r Operator
o Checking for Other Permissions

o Checking for Empty Files
o Using File-Test Operators with File Variables
o Reading from a Sequence of Files

0 Reading into an Array Variable

« Using Command-Line Arguments as Vaues
o ARGV and the <> Operator

« Opening Pipes

e SUmMmMary

o Q&A

http://docs.rinet.ru:8080/P7/ch6.htm (1 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

« Workshop
o Quiz

0 Exercises

So far, you've learned to read input from the standard input file, which stores data that is entered from the
keyboard. Y ou've aso learned how to write to the standard output file, which sends data to your screen. In
today's lesson, you'll learn the following:

« How to open afile

« How to read from and write to an opened file

« How to redirect standard input and standard output and how to use the standard error file
« Howtocloseafile

« About file-test operators, which determine the status of afile

« How toread from multiple files

« How to use command-line arguments

« How to open pipes

Opening a File

Before you can read from or write to afile, you must first open the file. This operation tells the operating
system that you are currently accessing the file and that no one else can change it while you are working with
it. To open afile, cal thelibrary function open.

The syntax for the open library functionis

open (filevar, filenane);

When you call open, you must supply two arguments:
« filevar representsthe name you want to usein your Perl program to refer to the file.
« fil enane representsthelocation of the file on your machine.

The File Variable

The first argument passed to open isthe name that the Perl interpreter uses to refer to the file. Thisnameis
also known as the file variable (or the file handle).

A file-variable name can be any sequence of letters, digits, and underscores, as long as the first character isa
|etter.

The following are legal file-variable names:

filenane

MY_NANVE

http://docs.rinet.ru:8080/P7/ch6.htm (2 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

NAME2

A REALLY LONG FI LE VARI ABLE_NAME

The following are not legal file-variable names:

1INAME
A. FI LE. NAME
_ ANOTHERNANVE
i f
i f isnot avalid file-variable name because it has another meaning: as you've seen, it indicates the start of an

| f statement. Wordssuch asi f that have special meaningsin Perl are known as reserved words and cannot
be used as names.

Tip

It'sagood ideato use all uppercase letters for your file-variable
names. Thismakes it easier to distinguish file-variable names
from other variable names and from reserved words.

The Filename

The second item passed to open is the name of the file you want to open. For example, if you are running Perl
on aUNIX file system, and your current working directory contains afilenamed fi | el that you would like
to open, you can open it asfollows:

open(FI LEL, "filel");

This statement tells Perl that you want to open thefilef i | el and associate it with the file variable FI LEL.

If you want to open afilein adifferent directory, you can specify the complete pathname, as follows:

open(FILEL, "/u/jqpublic/filel™);

Thisopensthefile/ u/ j gpubl i c/fil el and associatesit with thefile variable FI LEL.

[NOTE

If you are running Perl on afile system other than UNIX, use the
filename and directory syntax that is appropriate for your system.
The Perl interpreter running on that system will be able to figure
out where your fileis located.

http://docs.rinet.ru:8080/P7/ch6.htm (3 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

The File Mode

When you open afile, you must decide how you want to access the file. There are three different file-access
modes (or, simply, file modes) available in Perl:

read mode Enables the program to read the existing contents of the file but
does not enable it to write into thefile

writemode |Destroys the current contents of the file and overwrites them
with the output supplied by the program

append mode [Appends output supplied by the program to the existing
contents of thefile

By default, open assumes that afileisto be opened in read mode. To specify write mode, put a> character in
front of the filename that you passto open, asfollows:

open (OUTFILE, ">/ul/jqpublic/outfile");

Thisopensthefile/ u/ j qpubl i ¢/ out fi | e for writing and associates it with the file variable OUTFI LE.

To specify append mode, put two > charactersin front of the filename, as follows:

open (APPENDFI LE, ">>/u/jgpublic/appendfile");

Thisopensthefile/ u/ j qpubl i c/ appendfi | e in append mode and associates it with the file variable
APPENDFI LE.

INOTE
Here are afew things to remember when opening files:

« When you open afile for writing, any existing contents are
destroyed.

e You cannot read from and write to the same file at the same
time.

« When you open afilein append mode, the existing contents
are not destroyed, but you cannot read the file while writing
toit.

Checking Whether the Open Succeeded

Before you can use afile opened by the open function, you should first check whether the open function
actually is giving you access to the file. The open function enables you to do this by returning avaue
indicating whether the file-opening operation succeeded:

« If open returns anonzero value, the file has been opened successfully.
« If open returns 0, an error has occurred.

Asyou can see, the values returned by open correspond to the values for true and false in conditional
expressions. This meansthat you can useopen ini f and unl ess statements. The following is an example:

http://docs.rinet.ru:8080/P7/ch6.htm (4 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

if (open(MYFILE, "/uljqgpublic/nyfile")) {

here's what to do if the file opened

Thecodeinsidethei f statement is executed only if the file has been successfully opened. This ensures that
your programs read or write only to files that you can access.

[NOTE

If open returns false, you can find out what went wrong by using
the file-test operators, which you'll learn about later today.

Reading from a File

Once you have opened afile and determined that the file is available for use, you can read information fromit.

To read from afile, enclose the file variable associated with the file in angle brackets (< and >), asfollows:

$li ne = <MYFI LE>;

This statement reads a line of input from the file specified by the file variable MYFI LE and stores the line of
input in the scalar variable $1 i ne.

Listing 6.1 isasimple program that reads input from afile and writesit to the standard output file.

Listing 6.1. A program that readslinesfrom afileand printsthem.

1. #!/usr/local/bin/perl

3: if (open(MYFILE, "filel")) {

4. $li ne = <MWYFI LE>;

5: while ($line ne "") {

6: print ($line);

7: $l i ne = <MYFI LE>;
8: }

http://docs.rinet.ru:8080/P7/ch6.htm (5 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

$ progrant_1
Here is a line of input.
Here is another |ine of input.

Here is the last |line of input.

Line 3 opensthefilefi | el inread mode, which means that the file is to be made available for reading.

fil el isassumed to bein the current working directory. The file variable MYFI LE is associated with the file
filel.

If the call to open returns a nonzero value, the conditional expression

open(MYFI LE, "filel")

is assumed to be true, and the code insidethei f statement is executed.

Lines 4-8 print the contentsof f i | e1. The sample output shown here assumesthat f i | el containsthe
following three lines:

Here is a |ine of input.
Here is another |ine of input.

Here is the last |line of input.

Line 4 readsthefirst line of input from the file specified by the file variable MYFI LE, whichisfi | el. This
line of input is stored in the scalar variable $I i ne.

Line 5 tests whether the end of the file specified by MYFI LE has been reached. If there are no more lines | eft
in MYFI LE, $I i ne isassigned the empty string.

Line 6 printsthe text stored in $I i ne, which isthe line of input read from MYFI LE.

http://docs.rinet.ru:8080/P7/ch6.htm (6 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files
Line 7 reads the next line of MYFI LE, preparing for the loop to start again.

File Variables and the Standard Input File

Now that you have seen how Perl programs read input from files in read mode, take another look at a
statement that reads a line of input from the standard input file.

$li ne = <STDI N>;

Here'swhat is actually happening: The Perl program is referencing the file variable STDI N, which represents
the standard input file. The < and > on either side of STDI Ntell the Perl interpreter to read aline of input from
the standard input file, just as the < and > on either side of MYFI LE in

$li ne = <MYFI LE>;

tell the Perl interpreter to read aline of input from MYFI LE.

STDI Nisafile variable that behaves like any other file variable representing afile in read mode. The only
differenceisthat STDI N does not need to be opened by the open function because the Perl interpreter does
that for you.

Terminating a Program Using di e

In Listing 6.1, you saw that the return value from open can be tested to see whether the program actually has
access to the file. The code that operates on the opened fileiscontained inani f statement.

If you are writing alarge program, you might not want to put all of the code that affectsafileinsideani f
statement, because the distance between the beginning of thei f statement and the closing brace (}) could get
very large. For example:

if (open(MYFILE, "filel")) {

this could be nmany pages of statenents!

Besides, after awhile, you'll probably get tired of typing the spaces or tabs you use to indent the code inside
thei f statement. Perl provides away around this using the library function di e.

The syntax for the di e library functionis

di e (nmessage);

When the Perl interpreter executes the di e function, the program terminates immediately and prints the

http://docs.rinet.ru:8080/P7/ch6.htm (7 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

message passed to di e.

For example, the statement

die ("Stop this now\n");

prints the following on your screen and terminates the program:

Stop this now

Listing 6.2 shows how you can use di e to smoothly test whether a file has been opened correctly.

Listing 6.2. A program that usesdi e when testing for a successful file open operation.

1. #!/usr/local/bin/perl

3: unless (open(MYFILE, "filel")) {

4: die ("cannot open input file filelln"),;

7: # if the programgets this far, the file was
8: # opened successfully
9: $line = <MYFI LE>;

10: while ($line ne "") {

11: print ($line);
12: $line = <MYFI LE>;
13: }

http://docs.rinet.ru:8080/P7/ch6.htm (8 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

$ progrant 2
Here is a |ine of input.
Here is another |ine of input.

Here is the last |line of input.

$

This program behaves the same way asthe onein Listing 6.1, except that it prints out an error message when it
can't open thefile.

Line 3 opens the file and tests whether the file opened successfully. Because thisisan unl ess statement, the
codeinside the braces ({ and }) is executed unless the file opened successfully.

Line4 isthecall todi e that is executed if the file does not open successfully. This statement prints the
following message on the screen and exits:

cannot open input file filel

Because line 4 terminates program execution when the file is not open, the program can make it past line 5
only if the file has been opened successfully.

Theloopinlines9-13isidentical to the loop you saw in Listing 6.1. The only differenceisthat thisloop is no
longer insideani f statement.

INOTE

Here is another way to write lines 3-5:

open (MYFILE, "filel") || die ("Could not
open file");

Recall that the logical OR operator only evaluates the expression
onitsright if the expression on itsleft isfalse. This means that
di e iscaledonly if open returnsfalse (if the open operation
fals).

Printing Error Information Using di e

If you like, you can have di e print the name of the Perl program and the line number of the statement
containing the call to di e. To do this, leave off the trailing newline character in the character string, as
follows:

die ("Mssing input file");

http://docs.rinet.ru:8080/P7/ch6.htm (9 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

If the Perl program containing this statement is called my pr og, and this statement is line 14 of nypr og, this
call todi e printsthe following and exits:

M ssing input file at nyprog |line 14.

Compare thiswith

die ("Mssing input file\n");

which simply prints the following before exiting:

M ssing input file

Specifying the program name and line number is useful in two cases:

« If the program contains many similar error messages, you can use di e to specify the line number of the
message that actually appeared.

« If the program iscalled from within another program, you can use di e to indicate that this program
generated the error.

Reading into Array Variables

Perl enables you to read an entire file into asingle array variable. To do this, assign the file variable to the
array variable, asfollows:

@urray = <MYFl LE>;

This reads the entire file represented by MYFI LE into the array variable @r r ay. Each line of thefile
becomes an element of thelist that isstored in @ar r ay.

Listing 6.3 isasimple program that reads an entire file into an array.

Listing 6.3. A program that reads an entireinput fileinto an array.

1. #!/usr/local/bin/perl

3: unless (open(MYFILE, "filel")) {

http://docs.rinet.ru:8080/P7/ch6.htm (10 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files
4: die ("cannot open input file filel\ln");

5. }
6: @nput = <MYFI LE>;

7: print (@nput);

$ progrand_3
Here is a |line of input.
Here is another |ine of input.

Here is the last line of input.

$

Lines 3-5 open the file, test whether the file has been opened successfully, and terminate the program if thefile
cannot be opened.

Line 6 reads the entire contents of the file represented by MYFI LE into the array variable @ nput . @ nput
now contains alist consisting of the following three elements:
("Here is a line of input.\n",
“"Here is another line of input.\n",
"Here is the last line of input.\n")

Note that a newline character isincluded as the last character of each line.

Line 7 usesthe pri nt function to print the entirefile.

Writing to a File

After you have opened afile in write or append mode, you can write to the file you have opened by specifying
thefile variable with the pr i nt function. For example, if you have opened afile for writing using the
statement

http://docs.rinet.ru:8080/P7/ch6.htm (11 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

open(QUTFI LE, ">outfile");

the following statement:

print OUTFILE ("Here is an output line.\n");

writes the following line to the file specified by OUTFI LE, which isthefilecalled out fi | e:

Here is an output I|ine.

Listing 6.4 isasimple program that reads from one file and writes to another.

Listing 6.4. A program that openstwo files and copies one into another.

1: #!/usr/local/bin/perl

3: unless (open(INFILE, "filel")) {

4: die ("cannot open input file filelln");

5. }

6: unless (open(QUTFILE, ">outfile")) {

7: die ("cannot open output file outfile\n");
8: }

9: $line = <INFILE>;

10: while ($line ne "") {

11: print OUTFILE ($line);
12: $li ne = <I NFI LE>;
13: }

http://docs.rinet.ru:8080/P7/ch6.htm (12 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

Lines3-5openfi | el for reading. If the file cannot be opened, line 4 is executed, which prints the following
message on the screen and terminates the program:

cannot open input file filel

Lines6-8 openout fi | e for writing; the > in>out fi | e indicates that the file is to be opened in write
mode. If out f i | e cannot be opened, line 7 prints the message

cannot open output file outfile

on the screen and terminates the program.

The only other line in the program that you have not seen in other listingsin thislesson isline 11, which writes
the contents of the scalar variable $I i ne on the file specified by OUTFI LE.

Once this program has completed, the contentsof fi | el are copied intoout fi |l e.

Here is a |ine of input.
Here is another |ine of input.

Here is the last |line of input.

=
WARNING
Make sure that files you open in write mode contain nothing
valuable. When the open function opens afile in write mode, any

existing contents are destroyed.

The Standard Output File Variable

If you want, your program can reference the standard output file by referring to the file variable associated
with the output file. Thisfile variable is named STDOUT.

By default, the pr i nt statement sends output to the standard output file, which means that it sends the output
to the file associated with STDOUT. As a consequence, the following statements are equivalent:

http://docs.rinet.ru:8080/P7/ch6.htm (13 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

print ("Here is a line of output.\n");

print STDOUT ("Here is a |line of output.\n");

[NOTE

Y ou do not need to open STDOUT because Perl automatically
opensit for you.

Merging Two Files into One

In Perl, you can open as many files asyou like, provided you define a different file variable for each one.
(Actually, thereis an upper limit on the number of files you can open, but it'sfairly large and also
system-dependent.) For an example of a program that has multiple files open at one time, take alook at Listing
6.5. This program merges two files by creating an output file consisting of one line from the first file, one line
from the second file, another line from the first file, and so on. For example, if an input file named ner gel
contains the lines

al
a2

a3

and another file, mer ge2, contains the lines

bl
b2

b3

then the resulting output file consists of

al
bl
a2
b2

a3

http://docs.rinet.ru:8080/P7/ch6.htm (14 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

b3

Listing 6.5. A program that mergestwo files.

1: #!'/usr/local/bin/perl

3: open (I NFILEL, "nergel") ||
4: die ("Cannot open input file nergel\n");

5: open (INFILE2, "nmerge2") ||

6: die ("Cannot open input file nmerge2\n");
7: $linel = <INFILEl>;

8: $line2 = <I NFILE2>;

9: while ($linel ne "" || $line2 ne "") {
10: if ($linel ne "") {

11: print ($linel);

12: $linel = <I NFILELl>;

13: }

14: if ($line2 ne "") {

15: print ($line2);

16: $line2 = <I| NFI LE2>;
17: }

18: }

$ progranb 5

http://docs.rinet.ru:8080/P7/ch6.htm (15 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

al

bl

a2

b2

a3

b3

Lines 3 and 4 show another way to write a statement that either opens afileor callsdi e if the open fails.
Recall that the | | operator first evaluatesits left operand; if the left operand evaluates to true (a nonzero
value), the right operand is not evaluated because the result of the expression istrue.

Because of this, the right operand, the call to di e, is evaluated only when the left operand is false-which
happens only when the call to open fails and the file mer ge 1 cannot be opened.

Lines 5 and 6 repeat the preceding process for the file mer ge2. Again, either the file is opened successfully or
the program aborts by calling di e.

The program then loops repeatedly, reading aline of input from each file each time. The loop terminates only
when both files have been exhausted. If onefileis empty but the other is not, the program just copies the line
from the non-empty file to the standard output file.

Note that the output from this program is printed on the screen. If you decide that you want to send this output
to afile, you can do one of two things:

« You can modify the program to write its output to a different file. To do this, open the file in write mode
and associate it with afile variable. Then, changethe pri nt statementsto refer to thisfile variable.

« You can redirect the standard output file on the command line.

For adiscussion of the second method, see the following section.

Redirecting Standard Input and Standard Output

When you run programs on UNI X, you can redirect input and output using < and >, respectively, as follows:

nyprog <i nput >out put

Here, when you run the program called my pr og, the input for the program is taken from the file specified by
I nput instead of from the keyboard, and the output for the program is sent to the file specified by out put
instead of to the screen.

http://docs.rinet.ru:8080/P7/ch6.htm (16 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

When you run a Perl program and redirect input using <, the standard input file variable STDI N now
represents the file specified with <. For example, consider the following simple program:

#! [usr/ | ocal / bi n/ perl
$li ne = <STDI N>;

print ($line);

Suppose this program is named nyper | pr og and is called with the command

nmyperl prog <filel

In this case, the statement

$line = <STDI N>;

reads aline of input fromf i | el because thefilevariable STDI Nrepresentsfi | el.

Similarly, specifying > on the command file redirects the standard output file from the screen to the specified
file. For example, consider this command:

nyperl prog <filel >outfile

It redirects output from the standard output file to the file called out f i | e. Now, the following statement
writesaline of datatoout fi | e:

print ($line);

The Standard Error File

Besides the standard input file and the standard output file, Perl also defines athird built-in file variable,
STDERR, which represents the standard error file. By default, text sent to thisfile is written to the screen. This
enables the program to send messages to the screen even when the standard output file has been redirected to
writeto afile. Aswith STDI N and STDOUT, you do not need to open STDERR because it automatically is
opened for you.

Listing 6.6 provides a simple example of the use of STDERR. The output shown in the input-output example
assumes that the standard input file and standard output file have been redirected to filesusing < and >, asin

http://docs.rinet.ru:8080/P7/ch6.htm (17 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

nyprog <infile >outfile

Therefore, the only output you see iswhat iswritten to STDERR.

Listing 6.6. A program that writesto the standard error file.

1. #!/usr/local/bin/perl

3: open(MYFILE, "filel") ||

4. die ("Unable to open input file filel\ln");
5. print STDERR ("File filel opened successfully.\n");
6: $line = <MYFI LE>;

7: while ($line ne "") {

8: chop ($line);

9: print ("\U$line\E\n");
10: $li ne = <MYFI LE>;

11: }

$ progrant_6

File filel opened successfully.

This program converts the contents of afile into uppercase and sends the converted contents to the standard
output file.

http://docs.rinet.ru:8080/P7/ch6.htm (18 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

Line3triestoopenfi | el. If thefile cannot be opened, line 4 is executed. Thiscallsdi e, which prints the
following message and terminates:

Unable to open input file filel

[NOTE

The function di e sends its messages to the standard error file, not
the standard output file. This means that when a program
terminates, the message printed by di e always appears on your
screen, even when you have redirected output to afile.

If the file is opened successfully, line 5 writes a message to the standard error file, which indicates that the file
has been opened. Asyou can see, the standard error fileis not reserved solely for errors. Y ou can write
anything you want to STDERR at any time.

Lines6-11read onelineof fi | el at atime and write it out in uppercase (using the escape characters\ U and
\ E, which you learned about on Day 3, "Understanding Scalar Values').

Closing a File

When you are finished reading from or writing to afile, you can tell the Perl interpreter that you are finished
by calling the library function cl ose.

The syntax for thecl ose library functionis

cl ose (filevar);

cl ose requires one argument: the file variable representing the file you want to close. Once you have closed
the file, you cannot read from it or write to it without invoking open again.

Note that you do not haveto call cl ose when you are finished with afile: Perl automatically closes the file
when the program terminates or when you open another file using a previously defined file variable. For
example, consider the following statements:

open (MYFILE, ">filel");
print MYFILE ("Here is a |line of output.\n");

open (MYFILE, ">file2");

print MYFILE ("Here is another line of output.\n");

Here, whenf i | e2 isopened for writing, f i | el automatically is closed. The file variable MYFI LE is now
associated with f i | e2. This meansthat the second pr i nt statement sends the followingtofi | e2:

http://docs.rinet.ru:8080/P7/ch6.htm (19 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

Here is another |ine of output.

Don't
DO use the <> operator, which is an easy way to read input from several filesin succession.

See the section titled "Reading from a Sequence of Files," later in this lesson, for more
information on the <> operator.

DON'T use the samefile variable to represent multiple files unless it is absolutely necessary.
It istoo easy to lose track of which file variable belongs to which file, especialy if your
program islarge or has many nested conditiona statements.

Determining the Status of a File

Many of the example programs in today's lesson call open and test the returned result to see whether the file
has been opened successfully. If open fails, it might be useful to find out exactly why the file could not be
opened. To do this, use one of the file-test operators.

Listing 6.7 provides an example of the use of afile-test operator. This program is a slight modification of
Listing 6.6, which is an uppercase conversion program.

Listing 6.7. A program that checks whether an unopened file actually exists.

1. #!/usr/local/bin/perl

3: unless (open(MYFILE, "filel")) {

4: if (-e "filel") {

5: die ("File filel exists, but cannot be opened.\n");
6: } else {

7: die ("File filel does not exist.\n");

8: }

9: }

10: $line = <MYFI LE>;

11: while ($line ne "") {

http://docs.rinet.ru:8080/P7/ch6.htm (20 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

12: chop ($line);

13: print ("\U$line\E\n");
14: $l i ne = <MYFI LE>;

15: }

$ progrant_7

File filel does not exi st.

$

Line 3 attemptsto openthefilef i | el for reading. If f i | e1 cannot be opened, the program executesthei f
statement starting in line 4.

Line 4 isan example of afile-test operator. Thisfile-test operator, - e, tests whether its operand, afile, actualy
exists. If thefilef i | el exists, theexpression-e "fil el" returnstrue themessageFile fil el

exi sts, but cannot be opened. isdisplayed, and the program exits. If fi | el doesnot exist, - e
"filel" isfalse, andthelibrary function di e prints the following message before exiting:

File filel does not exi st.

File-Test Operator Syntax

All file-test operators have the same syntax asthe - e operator used in Listing 6.7.
The syntax for the file-test operatorsis

- X expr

Here, x is an alphabetic character and expr isany expression. The value of expr isassumed to be a string
that contains the name of the file to be tested.

Because the operand for afile-test operator can be any expression, you can use scalar variables and string
operatorsin the expression if you like. For example:

http://docs.rinet.ru:8080/P7/ch6.htm (21 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

$var

if (-

}

if (-

In the first use of - e, the contents of $var , fi | el, are assumed to be the name of afile, and thisfileis tested
for existence. In the second case, a is appended to the contentsof f i | el, producing the stringfi | ela. The

= "filel";
e $var) {

print STDERR ("File filel exists.\n");

e $var . "a") {

print STDERR ("File filela exists.\n");

- e operator then tests whether afilenamed f i | ela exists.

[NOTE

The Perl interpreter does not get confused by the expression
-e $var "a

because the . operator has higher precedence than the - e
operator. This means that the string concatenation is performed
first.

The file-test operators have higher precedence than the
comparison operators but lower precedence than the shift
operators. To see acomplete list of the Perl operators and their
precedences, refer to Day 4, "More Operators.”

The string can be a complete path name, if you like. The following is an example:

if (-e "/u/jgpublic/filel) {

print ("The file exists.\n");

Thisi f statement tests for the existence of thefile/ u/ j qpublic/fil el.

Available File-Test Operators

Table 6.1 provides a complete list of the file-test operators available in Perl. In thistable, nanme isa

placeholder for the name of the operand being tested.

Table6.1. Thefile-test operators.

| Operator |Description

http://docs.rinet.ru:8080/P7/ch6.htm (22 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

| -b |Isnarme ablock device?

| -c [Isnane acharacter device?

| -d [Isnane adirectory?

| -e |Does nane exist?

| - f |Isnare an ordinary file?

| -g IDoesnane haveitsset gi d bit set?

| -k |Doesnane haveits"sticky hit" set?

| - | |Isname asymbolic link?

| -0 |ls nare owned by the user?

| -p |ls name anamed pipe?

|- lsnane areadable file?

| -S lsnane anon-empty file?

| -t |Does nane represent a terminal ?

| -u |Does nane haveitsset ui d bit set?

| - W Isname awritable file?

| -X |lsnane an executable file?

| -2 lsnane an empty file?

| -A |How long since nane accessed?

| -B |Isnarne abinary file?

| -C |How long since nane's inode accessed?

| -M |How long since name modified?

| -0 |ls name owned by the "real user” only?*

| -R |Is nane readable by the "real user" only?*

| -S |lsnarme asocket?

| -T [Isnane atext file?

| -W |Isnane writable by the "real user" only?*

| - X |Is nare executable by the "real user" only?*
* Inthis case, the "real user" istheuser i d specified at login, as opposed to
the effective user ID, which istheuser i d under which you currently are
working. (On some systems, acommand such as/ user/ | ocal / et ¢/ sui d
enables you to change your effective user ID.)

The following sections describe some of the more common file-test operators and show you how they can be
useful. (You'll also learn about more of these operators on Day 12, "Working with the File System.")

More on the - e Operator

When aPerl program opens afile for writing, it destroys anything that already existsin the file. This might not
be what you want. Therefore, you might want to make sure that your program opens afile only if the file does
not already exist.

Y ou can use the - e file-test operator to test whether or not to open afile for writing. Listing 6.8 is an example
of aprogram that does this.

http://docs.rinet.ru:8080/P7/ch6.htm (23 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

Listing 6.8. A program that testswhether afile exists before opening it for writing.

1: #!/usr/local/bin/perl

3: unless (open(INFILE, "infile")) {

4. die ("Input file infile cannot be opened.\n");
5. }

6: if (-e "outfile") {

7: die ("Qutput file outfile already exists.\n");
8: }

9: unless (open(QUTFILE, ">outfile")) {

10: die ("Qutput file outfile cannot be opened.\n");
11: }

12: $line = <INFI LE>;

13: while ($line ne "") {

14: chop ($line);

15: print OUTFILE ("\U$line\E\n");
16: $line = <I NFILE>;

17: }

$ progrant_8
Qutput file outfile already exists.

$

http://docs.rinet.ru:8080/P7/ch6.htm (24 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

This program is the uppercase conversion program again; most of it should be familiar to you.

The only differenceislines 6-8, which use the - e file-test operator to check whether the output fileout fi | e
exists. If out f i | e exists, the program aborts, which ensures that the existing contents of out f i | e are not
lost.

If out fi | e doesnot exist, the following expression fails:

-e "outfile"

and the program knowsthat it is safe to open out f i | e because it does not already exist.
Using File-Test Operators in Expressions

If you don't need to know exactly why your program is failing, you can combine all of the testsin Listing 6.8
into asingle statement, as follows:

open(I NFILE, "infile") & !(-e "outfile") &&

open(QUTFI LE, ">outfile") || die("Cannot open files\n");

Can you see how thisworks? Here's what is happening: The && operator, logical AND, istrue only if both of
its operands are true. In this case, the two && operators indicate that the subexpression up to, but not including,
the| | istrueonly if al three of the following are true:

open(I NFILE, "infile")
'(-e "outfile")

open(QUTFI LE, ">outfile")

All three are true only when the following conditions are met:
o Theinputfilei nfi | e can be opened.
« Theoutput fileout fi | e doesnot already exist.
« Theoutput fileout fi | e can be opened.

If any of these subexpressionsisfalse, the entire expression up tothe| | isfalse. This meansthat the
subexpression after the| | (thecal todi e) isexecuted, and the program aborts.

Note that each of the three subexpressions associated with the && operatorsis evaluated in turn. This means
that the subexpression

http://docs.rinet.ru:8080/P7/ch6.htm (25 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files
I'(-e "outfile")

is evaluated only if

open(I NFILE, "infile")

istrue, and that the subexpression

open(QUTFI LE, ">outfile")

isevaluated only if

I'(-e "outfile")

istrue. Thisis exactly the same logic that Listing 6.8 uses.

If any of the subexpressions isfalse, the Perl interpreter doesn't evaluate the rest of them because it knows that
the final result of

open(I NFILE, "infile") & !(-e "outfile") &&
open(QUTFI LE, ">outfile")
is going to be false. Instead, it goes on to evaluate the subexpression to theright of the| | , whichisthe call to
di e.

This program logic is somewhat complicated, and you shouldn't use it unless you feel really comfortable with
it. Thei f statementsin Listing 6.8 do the same thing and are easier to understand; however, it's useful to
know how complicated statements such as the following one work because many Perl programmers like to
write code that works in this way:

open(I NFILE, "infile") & !(-e "outfile") &&

open(QUTFI LE, ">outfile") || die("Cannot open files\n");

In the next few days, you'll see several more examples of code that exploits how expressions work in Perl.
"Perl hackers'-experienced Perl programmers-often enjoy compressing multiple statements into shorter ones,
and they delight in complexity. Be warned.

http://docs.rinet.ru:8080/P7/ch6.htm (26 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

Testing for Read Permission-the -r Operator

Before you can open afile for reading, you must have permission to read thefile. The- r file-test operator
tests whether you have permission to read afile.

Listing 6.9 checks whether the person running the program has permission to access a particular file.

Listing 6.9. A program that testsfor read permission on afile.

1. #!/usr/local/bin/perl

3: unless (open(MYFILE, "filel")) {

4: if ('(-e "filel")) {

5 die ("File filel does not exist.\n");

6: }oelsif (I(-r "filel")) {

7: die ("You are not allowed to read filel.\n");
8: } else {

9: die ("Filel cannot be opened\n");

10: }

11: }

$ progranbt 9

You are not allowed to read filel.

$

Line 3 of thisprogram triesto openf i | el. If the call to open fails, the program tries to find out why.

http://docs.rinet.ru:8080/P7/ch6.htm (27 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

First, line 4 tests whether the file actually exists. If the file exists, the Perl interpreter executes line 6, which
tests whether the file has the proper read permission. If it does not, di e is called; it then prints the following
message and exits:

You are not allowed to read filel.

INOTE

Y ou do not need to use the - e file-test operator before using the
- r file-test operator. If the file does not exist, - r returnsfalse
because you can't read afile that isn't there.

The only reason to use both - e and - r isto enable your program
to determine exactly what iswrong.

Checking for Other Permissions

Y ou can use file-test operatorsto test for other permissions as well. To check whether you have write
permission on afile, use the - wfile-test operator.

if (-w"filel") {
print STDERR ("I can wite to filel.\n");
} else {

print STDERR ("I can't wite to filel.\n");

The - x file-test operator checks whether you have execute permission on the file (in other words, whether the
system thinks this is an executable program, and whether you have permissionto runit if it is), asillustrated
here:

if (-x "filel") {
print STDERR ("I can run filel.\n");
} else {

print STDERR ("I can't run filel.\n");

http://docs.rinet.ru:8080/P7/ch6.htm (28 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

INOTE

If you are the system administrator (for example, you are running
asuser ID r oot) and have permission to access any file, the-r
and - wfile-test operators always return true if the file exists. Also,
the - x test operator always returns true if the file is an executable
program.

Checking for Empty Files

The - z file-test operator tests whether afile is empty. This provides a more refined test for whether or not to
open afilefor writing: if the file exists but is empty, no information islost if you overwrite the existing file.

Listing 6.10 shows how to use - z.

Listing 6.10. A program that testswhether thefileis empty before opening it for writing.

1. #!/usr/local/bin/perl

3 if (-e "outfile") {

4: if ('(-w"outfile")) {

5: die ("Mssing wite permssion for outfile.\n");
6: }

7 if (!(-z "outfile")) {

8- die ("File outfile is non-enpty.\n");

9: }

10: }

11: # at this point, the file is either enpty or doesn't exist,

12: # and we have permi ssion to wite to it if it exists

$ progrant_10

http://docs.rinet.ru:8080/P7/ch6.htm (29 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

File outfile is non-enpty.

$

Line 3 checks whether thefileout f i | e existsusing - e. If it exists, it can only be opened if the program has

permission to write to the file; line 4 checks for thisusing - w.

Line 7 uses - z to test whether the fileisempty. If itisnot, line 7 callsdi e to terminate program execution.

The opposite of - z isthe - s file-test operator, which returns a nonzero value if the file is not empty.

$size = -s "outfile";
if ($size == 0) {

print ("The file is enpty.\n");
} else {

print ("The file is $size bytes long.\n");

The - s file-test operator actually returns the size of the file in bytes. It can still be used in conditional
expressions, though, because any nonzero value (indicating that the file is not empty) is treated as true.

Listing 6.11 uses - s to return the size of afile that has a name which is supplied viathe standard input file.

Listing 6.11. A program that printsthe size of afilein bytes.

1. #!/usr/local/bin/perl

3: print ("Enter the nane of the file:\n");
4: $fil enanme = <STD N>;
5. chop ($fil enane);

6: if (!(-e $filenane)) {

http://docs.rinet.ru:8080/P7/ch6.htm (30 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

7: print ("File $fil ename does not exist.\n");

8: } else {

9: $size = -s $fil enane;

10: print ("File $filenane contains $size bytes.\n");
11: }

$ progrant_11
Enter the nane of the file:
filel

File filel contains 128 bytes.

$

Lines 3-5 obtain the name of the file and remove the trailing newline character.
Line 6 tests whether the file exists. If the file doesn't exist, the program indicates this.

Line 9 stores the size of the filein the scalar variable $si ze. The size is measured in bytes (one byteis
equivalent to one character in a character string).

Line 10 prints out the number of bytesin thefile.

Using File-Test Operators with File Variables

Y ou can use file-test operators on file variables as well as character strings. In the following example the
file-test operator - z tests the file represented by the file variable MYFI LE:

if (-z MYFILE) {

print ("This file is enpty!\n");

http://docs.rinet.ru:8080/P7/ch6.htm (31 of 45) [2/17/2007 6:03:28 AM]

Day 6 -- Reading from and Writing to Files

As before, thisfile-test operator returnstrueif the fileis empty and falseif it is not.

»

G
=

WARNING

Remember that file variables can be used only after you open the
file. If you need to test a particular condition before opening the
file (such as whether the file is nonzero), test it using the name of
thefile.

Reading from a Sequence of Files

Many UNIX utility programs are invoked using the following command syntax:

programane filel file2 file3 ...

A program that uses this command syntax operates on al of the files specified on the command linein order,
startingwithfil el. Whenf i | el has been processed, the program then proceedsontofi | €2, and soon
until all of the files have been exhausted.

In Perl, it's easy to write programs that process an arbitrary number of files because there is a special operator,
the <> operator, that does all of the file-handling work for you.

To understand how the <> operator works, recall what happens when you put < and > around afile variable:

$list = <MYFI LE>;

This statement reads a line of input from the file represented by the file variable MYFI LE and storesit in the
scalar variable $1 i st . Similarly, the statement

$list = <>;

reads aline of input and storesit in the scalar variable $1 i st ; however, the file from which it readsis
contained on the command line. Suppose, for example, a program containing a statement using the <>
operator, such as the statement

$list = <>

iscaled mypr og and is called using the command

$ nyprog filel file2 file3

http://docs.rinet.ru:8080/P7/ch6.htm (32 of 45) [2/17/2007 6:03:29 AM]

Day 6 -- Reading from and Writing to Files

In this case, the first occurrence of the <> operator reads the first line of input fromf i | e1. Successive
occurrences of <> read morelinesfromfi | el. Whenfi | el isexhausted, <> reads the first line from
file2,andsoon Whenthelastfile fil e3,isexhausted, <> returns an empty string, which indicates that
al the input has been read.

INOTE

If aprogram containing a <> operator is called with no
command-line arguments, the <> operator reads input from the
standard input file. In this case, the <> operator is equivalent to
<STDI N>.

If afile named in a command-line argument does not exist, the
Perl interpreter writes the following message to the standard error
file:

Can't opennane:No such file or directory

Here, nane isaplaceholder for the name of the file that the Perl
interpreter cannot find. In this case, the Perl interpreter ignores
name and continues on with the next file in the command line.

To see how the <> operator works, look at Listing 6.12, which displays the contents of the files specified on
the command line. (If you are familiar with UNIX, you will recognize this as the behavior of the UNIX utility
cat .) The output from Listing 6.12 assumesthat filesfi | el andf i | e2 are specified on the command line
and that each file contains one line.

Listing 6.12. A program that displaysthe contents of one or morefiles.

1. #!/usr/local/bin/perl

3: while ($inputline = <>) {

4: print ($inputline);

$ progrant_12 filel file2
This is aline fromfilel.

This is aline fromfile2.

http://docs.rinet.ru:8080/P7/ch6.htm (33 of 45) [2/17/2007 6:03:29 AM]

Day 6 -- Reading from and Writing to Files

Once again, you can see how powerful and useful Perl is. This entire program consists of only five lines,
including the header comment and a blank line.

Line 3 both reads aline from afile and tests to see whether the line is the empty string. Because the
assignment operator = returns the value assigned, the expression

$inputline = <>

hasthevaue" " (thenull string) if and only if <> returns the null string, which happens only when there are
no more lines to read from any of the input files. Thisis exactly the point at which the program wants to stop
looping. (Recall that a"blank line" in afileisnot the same as the null string because the blank line contains the
newline character.) Because the null string is equivaent to false in a conditiona expression, thereis no need to
use a conditional operator such asne.

When line 3 is executed for the first time, the first linein thefirst input file, f i | el, isread and stored in the
scalar variable $i nput | i ne. Becausef i | el contains only one line, the second pass through the loop, and
the second execution of line 3, reads the first line of the second input file, fi | e2.

After this, therearenomorelinesinetherfil el orfi | e2, soline 3 assignsthe null string to
$i nput | i ne, which terminates the loop.

»

il
= &

WARNING

When it reaches the end of the last file on the command line, the
<> operator returns the empty string. However, if you use the <>
operator after it has returned the empty string, the Perl interpreter
assumes that you want to start reading input from the standard
input file. (Recall that <> reads from the standard input file if
there are no files on the command line.)

This means that you have to be alittle more careful when you use
<> than when you are reading using <MYFI LE> (where MYFI LE
isafilevariable). If MYFI LE has been exhausted, repeated
attempts to read using <MYFI LE> continue to return the null
string because there isn't anything left to read.

Reading into an Array Variable

Asyou have seen, if you read from afile using <STDI N> or <MYFI LE> in an assignment to an array variable,
the Perl interpreter reads the entire contents of the file into the array, as follows:

@rray = <MYFl LE>;

http://docs.rinet.ru:8080/P7/ch6.htm (34 of 45) [2/17/2007 6:03:29 AM]

Day 6 -- Reading from and Writing to Files

Thisworks also with <>. For example, the statement

@rray = <>

reads all the contents all of the files on the command line into the array variable @r r ay.

As aways, be careful when you use this because you might end up with avery large array.

Using Command-Line Arguments as Values

Asyou've seen, the <> operator assumes that its command-line arguments are files. For example, if you start
up the program shown in Listing 6.12 with the command

$ progranb 12 nyfilel nyfile2
the Perl interpreter assumes that the command-line argumentsnyfi | el and nyfi | e2 arefilesand displays

their contents.

Perl enables you to use the command-line arguments any way you want by defining a special array variable
called @ARGV. When a Perl program starts up, this variable contains a list consisting of the command-line
arguments. For example, the command

$ progrant_12 nyfilel nyfile2

sets GARGV to the list

("myfilel™, "nyfile2")

INOTE

The shell you are running (sh, csh, or whatever you are using) is
responsible for turning a command line such as
progrant_12 nyfilel nyfile2

into arguments. Normally, any spaces or tab characters are
assumed to be separators that indicate where one command-line
argument stops and the next begins. For example, the following
areidentical:

progrant_12 nyfilel nyfile2

progrant_12 nyfilel nyfile2

In each case, the command-line argumentsarenyfi | el and
nyfile2.

http://docs.rinet.ru:8080/P7/ch6.htm (35 of 45) [2/17/2007 6:03:29 AM]

Day 6 -- Reading from and Writing to Files

See your shell documentation for details on how to put blank
spaces or tab charactersinto your command-line arguments.

Aswith all other array variables, you can accessindividual elements of @GARGV. For example, the statement

$var = $ARGV][0] ;

assigns the first element of @GARGV to the scalar variable $var .

Y ou even can assign to some or all of @GARGV if you like. For example:

$ARGV[0] = 43;

If you assign to any or all of @GARGV, you overwrite what was aready there, which means that any
command-line arguments overwritten are lost.

To determine the number of command-line arguments, assign the array variable to a scalar variable, asfollows:

$numar gs = @ARGV;

Aswith all array variables, using an array variable in a place where the Perl interpreter expects a scalar
variable means that the length of the array is used. In this case, $nunar gs is assigned the number of
command-line arguments.

>
S

WARNING
C programmers should take note that the first element of GARGV,
unlikear gv[0] in C, does not contain the name of the program.
In Perl, the first e ement of GARGV isthe first command-line
argument.
To get the name of the program, use the system variable $0,
which is discussed on Day 17, "System Variables."

To see how you can use @ARGV in aprogram, examine Listing 6.13. This program assumes that its first
argument isaword to look for. The remaining arguments are assumed to be files in which to look for the word.
The program prints out the searched-for word, the number of occurrences in each file, and the total number of
occurrences.

This example assumesthat thefilesfi | el andf i | e2 are defined and that each file contains the single line

This file contains a single line of input.

This example is then run with the command

http://docs.rinet.ru:8080/P7/ch6.htm (36 of 45) [2/17/2007 6:03:29 AM]

Day 6 -- Reading from and Writing to Files

$ programane single filel file2

where pr ogr ammarne is a placeholder for the name of the program. (If you are running the program yourself,
you can name the program anything you like.)

Listing 6.13. A wor d-sear ch and counting program.

1. #!/usr/local/bin/perl

3: print ("Word to search for: $ARGVO]\n");
4: $filecount = 1;
5: $total wordcount = O;

6: while ($filecount <= @GRGV-1) {

7: unl ess (open (I NFILE, $ARGV[$filecount])) {

8: die ("Can't open input file $ARGV[$fil ecount]\n");
9: }

10: $wor dcount = O;

11: while ($line = <INFILE>) {

12: chop ($line);

13: @wrds = split(/ /, $line);

14: Sw = 1;

15: while ($w <= @wrds) {

16: if ($words[$w 1] eq $ARGV[0]) {
17: $wor dcount += 1;

18: }

19: S+

http://docs.rinet.ru:8080/P7/ch6.htm (37 of 45) [2/17/2007 6:03:29 AM]

Day 6 -- Reading from and Writing to Files

20: }

21: }

22: print ("occurrences in file $ARGV[$filecount]: ");
23: print ("$wordcount\n");

24: $fi | ecount ++;

25: $t ot al wor dcount += $wor dcount ;

26: }

27 print ("total nunber of occurrences: $total wordcount\n");

$ progranb_13 single filel file2
Wrd to search for: single
occurrences in file filel: 1
occurrences in file file2: 1

total nunber of occurrences: 2

Line 3 prints the word to search for. The program assumes that this word is the first argument in the command
line and, therefore, isthe first element of the array GARGV.

Lines 7-9 open afile named on the command line. Thefirst time line 7 is executed, the variable $f i | ecount
has the value 1, and the file whose name isin $ARGV[1] isopened. The next time through, $f i | ecount is
2 and the file named in $ARGV[2] isopened, and so on. If afile cannot be opened, the program terminates.

Line 11 reads aline from afile. As before, the conditional expression

$line = <INFI LE>

http://docs.rinet.ru:8080/P7/ch6.htm (38 of 45) [2/17/2007 6:03:29 AM]

Day 6 -- Reading from and Writing to Files
reads aline from the file represented by the file| NFI LE and assignsit to $I i ne. If thefileisempty, $I i ne
is assigned the null string, the conditional expression isfalse, and the loop in lines 11-21 is terminated.

Line 13 splits the line into words, and lines 15-20 compare each word with the search word. If the word
matches, the word count for thisfile isincremented. Thisword count is reset when anew fileis opened.

ARGV and the <> Operator

In Perl, the <> operator actually contains a hidden reference to the array @GARGV. Here's how it works:
1. When the Perl interpreter seesthe <> for the first time, it opens the file whose name is stored in
$ARGV] 0] .
2. After opening the file, the Perl interpreter executes the following library function:

shi ft (@GARGV) ;
Thislibrary function getsrid of the first element of GARGV and moves every other element over one.
This means that element x of @GARGV becomes element x- 1.

3. The <> operator then reads all of the lines of the file opened in step 1.
4. When the <> operator exhausts an input file, the Perl interpreter goes back to step 1 and repeats the
cycle again.

If you like, you can modify your program to retrieve a value from the command line and then fix @GARGV so
that the <> operator can work properly. If you modify Listing 6.13 to do this, the result is Listing 6.14.

Listing 6.14. A word-sear ch and counting program that uses <>.

1. #!/usr/local/bin/perl

3: $searchword = $ARGV[0] ;

4. print ("Wrd to search for: $searchword\n");
5. shift (@RGY);

6: $total wordcount = $wordcount = O;

7: $filename = $ARGV[0] ;

8: while ($line = <>) {

9: chop ($line);

10: @wrds = split(/ /, $line);
11: Sw = 1;

12: while ($w <= @wrds) {

http://docs.rinet.ru:8080/P7/ch6.htm (39 of 45) [2/17/2007 6:03:29 AM]

Day 6 -- Reading from and Writing to Files

13: if ($words[$w 1] eq $searchword) {
14: $wor dcount += 1;

15: }

16: P+

17: }

18: i f (eof) {

19: print ("occurrences in file $filenane: ");
20: print ("$wordcount\n");

21: $t ot al wor dcount += $wor dcount ;

22: $wor dcount = O;

23: $fil ename = $ARGV[0] ;

24 }

25: }

26: print ("total nunber of occurrences: $total wordcount\n");

$ progrant_14 single filel file2
Wrd to search for: single
occurrences in file filel: 1
occurrences in file file2: 1

total nunber of occurrences: 2

http://docs.rinet.ru:8080/P7/ch6.htm (40 of 45) [2/17/2007 6:03:29 AM]

Day 6 -- Reading from and Writing to Files

Line 3 assigns the first command-line argument, the search word, to the scalar variable $sear chwor d. This
is necessary because the call to shi f t inline5 destroystheinitia value of $ARGV[0] .

Line 5 adjusts the array @ARGV so that the <> operator can useit. To do this, it calls the library function

shi f t. Thisfunction "shifts' the elements of the list stored in @GARGV. The element in $ARGV[1] is moved
to $ARGV[0] , the element in $ARGV[2] ismoved to $ARGV[1] , and so on. After shi f t iscalled, GARGV
contains the files to be searched, which is exactly what the <> operator islooking for.

Line 7 assigns the current value of $ARGV[0] to the scalar variable $f i | enane. Because the <> operator in
line8 calsshi ft,thevalue of $ARGV[0] islost unless the program does this.

Line 8 uses the <> operator to open the file named in $ARGV[0] and to read aline from the file. The array
variable @GARGV is shifted at this point.

Lines 9-16 behave asin Listing 6.13. The only differenceis that the search word isnow in $sear chwor d,
not in $ARGV[0] .

Line 18 introduces the library function eof . This function indicates whether the program has reached the end
of thefile being read by <>. If eof returnstrue, the next use of <> opens a new file and shifts GARGV again.

Lines 19-23 prepare for the opening of a new file. The number of occurrences of the search word is printed, the
current word count is added to the total word count, and the word count is reset to 0. Because the new filename
to be opened isin $ARGV[0] , line 23 preserves this filename by assigning it to $f i | enane.

INOTE

Y ou can use the <> operator to open and read any file you like by
setting the value of @GARGV yourself. For example:

@ARGV = ("nyfilel", "nyfile2");

while ($line = <>) {

Here, when the statement containing the <> is executed for the
first time, thefilenyfi | el isopened and itsfirst lineis read.
Subsequent executions of <> each read another line of input from
nmyfilel. Whennyfil el isexhausted, myfil e2 isopened
and read oneline at atime.

Opening Pipes

On machines running the UNIX operating system, two commands can be linked using a pipe. In this case, the
standard output from the first command is linked, or piped, to the standard input to the second command.

Perl enables you to establish a pipe that links a Perl output file to the standard input file of another command.
To do this, associate the file with the command by calling open, asfollows:

open (MYPIPE, "| cat >hello");

The| character tellsthe Perl interpreter to establish a pipe. When MYPI PE is opened, output sent to MYPI PE
becomes input to the command

http://docs.rinet.ru:8080/P7/ch6.htm (41 of 45) [2/17/2007 6:03:29 AM]

Day 6 -- Reading from and Writing to Files

cat >hello

Because the cat command displays the contents of the standard input file when called with no arguments, and
>hel | o redirects the standard output file to the file hel | o, the open statement given hereisidentical to the
statement

open (MYPIPE, ">hell0");

Y ou can use a pipe to send mail from within a Perl program. For example:

open (MESSAGE, "| mail dave");
print MESSAGE ("Hi, Dave! Your Perl programsent this!\n");

cl ose (MESSAGE);

The call to open establishes a pipe to the command nai | dave. Thefile variable MESSAGE is now
associated with this pipe. Thecall to pri nt addstheline

Hi, Dave! Your Perl program sent this!

to the message to be sent to user ID dave.

Thecall to cl ose closesthe pipe referenced by MESSAGE, which tells the system that the message is
complete and can be sent. Asyou can see, the call to ¢l ose isuseful here because you can control exactly
when the message isto be sent. (If you do not call cl ose, MESSACE is closed-and the message is sent-when
the program terminates.)

Summary

Perl accesses files by means of file variables. File variables are associated with files by the open statement.

Files can be opened in any of three modes: read mode, write mode, and append mode. A file opened in read
mode cannot be written to; afile opened in either of the other modes cannot be read. Opening afilein write
mode destroys the existing contents of thefile.

To read from an opened file, reference it using <namne>, where nane is a placeholder for the name of thefile
variable associated with the file. To write to afile, specify itsfile variable when calling pri nt .
Perl defines three built-in file variables:

« STDI N, which represents the standard input file

« STDQOUT, which represents the standard output file

« STDERR, which represents the standard error file

http://docs.rinet.ru:8080/P7/ch6.htm (42 of 45) [2/17/2007 6:03:29 AM]

Day 6 -- Reading from and Writing to Files
You can redirect STDI Nand STDOUT by specifying < and >, respectively, on the command line. Messages
sent to STDERR appear on the screen even if STDOUT isredirected to afile.

The cl ose function closes the file associated with a particular file variable. cl ose never needs to be called
unless you want to control exactly when afileisto be made inaccessible.

The file-test operators provide away of retrieving information on a particular file. The most common file-test
operators are

o - e, which testswhether afile exists

e -I,-w, and- x, which test whether afile has read, write, and execute permission, respectively

o -z, which tests whether afileis empty

e -S,whichreturnsthe size of afile

You can use - wand - z to ensure that you do not overwrite a non-empty file.

The <> operator enables you to read data from files specified on the command line. This operator uses the
built-in array variable @GARGV, whose elements consist of the items specified on the command line.

Perl enables you to open pipes. A pipe links the output from your Perl program to the input to another
program.

Q&A

Q: How many files can | have open at onetime?

A: Basically, as many asyou like. The actual limit depends on the limitations of your operating system.

Q: Why does adding a closing newline character to thetext string affect how di e behaves?

A: Perl enables you to choose whether you want the filename and line number of the error message to
appear. If you add a closing newline character to the string, the Perl interpreter assumes that you want
to control how your error message is to appear.

Q: Which is better: to use <>, or to use @GARGV and shi ft when appropriate?

A: Asis often the case, the answer is"It depends.” If your program treats amost all of the command-line
arguments asfiles, it is better to use <> because the mechanics of opening and closing files are taken
care of for you. If you are doing alot of unusual things with GARGV, it is better not to manipulate it to
use <>, because things can get complicated and confusing.

Q: Can | open morethan one pipeat atime?

A: Yes. Your operating system keeps all of the various commands and processes organized and keeps
track of which output goes with which input.

Q: Can | redirect STDERR?

A: Y es, but thereis (normally) no reason why you should. STDERR's job is to report extraordinary
conditions, and you usually want to see these, not have them buried in a file somewhere.

Q: How many command-line arguments can | specify?

A: Basically, as many as your command-line shell can handle.

Q: Can | writetoafileand then read from it later?

A: Y es, but you can't do both at the same time. To read from afile you have written to, close the file by

calling cl ose and then open the file in read mode.

http://docs.rinet.ru:8080/P7/ch6.htm (43 of 45) [2/17/2007 6:03:29 AM]

Day 6 --

Reading from and Writing to Files

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered and
exercises to give you experience in using what you've learned. Try and understand the quiz and exercise
answers before you go on to tomorrow's lesson.

Quiz

1.

6.

Define the following terms:
a filevariable
b. reserved word

c. filemode
d. append mode
e. pipe

From where does the <> operator read its data?
What do the following file-test operators do?

a -r
b. -x
C. -S

What are the contents of the array @ARGV when the following Perl program is executed?
$ nyprog filel file2 file3

How do you indicate that afile isto be opened:
a. Inwrite mode?

b. In append mode?

c. Inread mode?

d. Asapipe?

What is the relationship between @ARGV and the <> operator?

Exercises

1.
2.

Write a program that takes the values on the command line, adds them together, and prints the resullt.

Write a program that takes alist of files from the command line and examines their size. If afileis
bigger than 10,000 bytes, print

Filenaneis a big file!

where nane isaplaceholder for the name of the big file.

Write aprogram that copiesafilenamedfi |l el tofi | e2, and then appends another copy of fi | el
tofil e2.

Write a program that counts the total number of words in the files specified on the command line. When
it has counted the words, it sends a message to user ID dave indicating the total number of words.

Write a program that takes a list of files and indicates, for each file, whether the user has read, write, or
execute permission.

BUG BUSTER: What iswrong with the following program?
#! [usr/ | ocal / bi n/ perl

open (QUTFILE, "outfile");
print OQUTFILE ("This is nmy nessage\n");

http://docs.rinet.ru:8080/P7/ch6.htm (44 of 45) [2/17/2007 6:03:29 AM]

Day 6 -- Reading from and Writing to Files

http://docs.rinet.ru:8080/P7/ch6.htm (45 of 45) [2/17/2007 6:03:29 AM]

http://docs.rinet.ru:8080/P7/index.htm

Day 17 -- System Variables

Chapter 17

System Variables

CONTENTS

o Globa Scadar Variables

O

The Default Scalar Variable: $_

The Program Name: $0

The User ID: $< and $>

The Group ID: $(_and $)

The Version Number: $]

The Input Line Separator: $/

The Output Line Separator: $

The Output Field Separator: $,

The Array Element Separator: $"

The Number Output Format: $#

Theeval Error Message: $@

The System Error Code: $?

The System Error Message: $!

The Current Line Number: $.

Multiline Matching: $*

The First Array Subscript: $[

Multidimensional Associative Arrays andthe $; Variable

The Word-Break Specifier: $:

The Perl Process |ID: $$

The Current Filename: $ARGV

The Write Accumulator: $” A

The Internal Debuqgging Vaue: $” D

The System File Flag: $"F

Controlling File Editing Using $/ |

The Format Form-Feed Character: $M L

Controlling Debugging: $” P

The Program Start Time: $2 T

Suppressing Warning Messages: $” W

http://docs.rinet.ru:8080/P7/ch17.htm (1 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

o The$rX Variable
 Pattern System Variables
0 Retrieving Matched Subpatterns
0 Retrieving the Entire Pattern: $&
o Retrieving the Unmatched Text: the$™ and $' Variables
o The$+ Variable
» File System Variables
o The Default Print Format: $~
o Specifying Page Length: $=
o Lines Remaining on the Page: $-
o The Page Header Print Format: $”
o Buffering Output: $|
o The Current Page Number: $%
o Array System Variables
o The@ Variable
o The GARGV Variable
o The @ Variable
o The @ NCVariable
o The% NCVariable
o The YENV Variable
o The%sl GVariable
Built-In File Variables
o STDI N, STDOUT, and STDERR
o ARGV
o DATA
o The Underscore File Variable
Specifying System Variable Names as Words
o« SUMMary
o Q&A

« Workshop
0 Quiz

0 Exercises

Today's lesson describes the built-in system variables that can be referenced from every Perl program.
These system variables are divided into five groups:

« Global scalar variables
« Pattern system variables

http://docs.rinet.ru:8080/P7/ch17.htm (2 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

« Filesystem variables
o Array system variables
« Built-infilevariables

The following sections describe these groups of system variables, and also describe how to provide
English-language equivalents of their variable names.

Global Scalar Variables

The global scalar variables are built-in system variables that behave just like the scalar variables you create
in the main body of your program. This means that these variables have the following properties:

« Each built-in global scalar variable stores only one scalar value.
« Only one copy of aglobal scalar variableis defined in a program.

Other kinds of built-in scalar variables, which you will see later in thislesson, do not behave in thisway.

The following sections describe the global scalar variables your Perl programs can use.

The Default Scalar Variable: $_

The most commonly used global scalar variableisthe $_ variable. Many Perl functions and operators
modify the contents of $_ if you do not explicitly specify the scalar variable on which they are to operate.

The following functions and operators work with the $_ variable by default:
« The pattern-matching operator
« The substitution operator
« Thetranslation operator
« The<> operator, if it appearsinawhi | e or f or conditional expression
o Thechop function
o Theprint function
o Thest udy function

The Pattern-Matching Operator and $_

Normally, the pattern-matching operator examines the value stored in the variable specified by a
corresponding =~ or ! ~ operator. For example, the following statement prints hi if the string abc is
contained in the value stored in $val :

print ("hi") if ($val =~ /abc/);

By default, the pattern-matching operator examines the value stored in $_. This means that you can leave
out the =~ operator if you are searching $_:

print ("hi") if ($_ =~ /abc/);

http://docs.rinet.ru:8080/P7/ch17.htm (3 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

print ("hi") if (/abc/); # these two are the sane

[NOTE

If you want to use the ! ~ (true-if-pattern-not-matched) operator,
you will always need to specify it explicitly, evenif you are
examining $_:

print ("hi") if ($_ !~ /abc/);

If the Perl interpreter seesjust a pattern enclosed in/ characters, it
assumes the existence of a=~ operator

$_ enables you to use pattern-sequence memory to extract subpatterns from a string and assign them to an
array variable:

$_ = "This string contains the nunber 25.11.";

@rray = /-2(\d+)\.2(\d+)/:

In the second statement shown, each subpattern enclosed in parentheses becomes an element of the list
assigned to @r r ay. Asaconsequence, @r r ay isassigned (25, 11) .

In Perl 5, a statement such as

@rray = /-?2(\d+)\.?2(\d+)/;

also assigns the extracted subpatterns to the pattern-sequence scalar variables $1, $2, and so on. This
means that the statement assigns 25 to $1 and 11 to $2. Perl 4 supports assignment of subpatterns to
arrays, but does not assign the subpatterns to the pattern-sequence variables.

The Substitution Operator and $_
The substitution operator, like the pattern-matching operator, normally modifies the contents of the variable

specified by the =~ or ! ~ operator. For example, the following statement searches for abc in the value
stored in $val and replacesit with def :

$val =~ s/abc/def/;

The substitution operator usesthe $__ variable if you do not specify avariable using =~. For example, the
following statement replaces the first occurrence of abc in$_ with def :

http://docs.rinet.ru:8080/P7/ch17.htm (4 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

s/ abc/ def / ;

Similarly, the following statement replaces all white space (spaces, tabs, and newline characters) in $_ with
asingle space:

I\s+/ [|g;

When you substituteinside $_, the substitution operator returns the number of substitutions performed:

$subcount = s/ abc/def/qg;

Here, $subcount contains the number of occurrences of abc that have been replaced by def . If abc is
not contained in the value stored in$_, $subcount isassigned 0.

The Translation Operator and $_

The behavior of the translation operator is similar to that of the pattern-matching and substitution operators:
it normally operates on the variable specified by =~, and it operateson $__ if no =~ operator isincluded. For
example, the following statement trandates all lowercase lettersin the value stored in $_ to their uppercase
equivalents:

tr/a-z/ A-Z/;

Like the substitution operator, if the tranglation operator isworking with $_, it returns the number of
operations performed. For example:

$conversions = tr/a-z/ A-Z/;

Here, $conver si ons contains the number of lowercase |etters converted to uppercase.

Y ou can use this feature of t r to count the number of occurrences of particular charactersin afile. Listing
17.1 isan example of a program that performs this operation.

Listing 17.1. A program that countsusingtr .

1. #!/usr/local/bin/perl

http://docs.rinet.ru:8080/P7/ch17.htm (5 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

2:

3: print ("Specify the nonblank characters you want to count:\n");
4: S$countstring = <STDI N>;

5: chop ($countstring);

6: @hars = split (/\s*/, $countstring);

70 while ($input = <>) {

8: $_ = S$input;

9: foreach $char (@hars) {

10: eval ("\$count = tr/S$char/$char/;");
11: $count {$char} += $count;

12: }

13: }

14: foreach $char (sort (@hars)) {
15: print ("$char appears $count{$char} tinmes\n");

16: }

$ programl7_1 filel

Speci fy the nonbl ank characters you want to count:
abc

a appears 8 tines

c appears 3 tines

b appears 2 tines

$

http://docs.rinet.ru:8080/P7/ch17.htm (6 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

This program first asks the user for aline of input containing the characters to be counted. These characters
can be separated by spaces or jammed into a single word.

Line 5 takes the line of input containing the characters to be counted and removes the trailing newline
character. Line 6 then splits the line of input into separate characters, each of which is stored in an element
of thearray @har s. The pattern/ \ s*/ splits on zero or more occurrences of awhitespace character; this
splits on every nonblank character and skips over the blank characters.

Line 7 reads aline of input from afile whose name is specified on the command line. Line 8 takes this line
and storesit in the system variable $_. (In most cases, system variables can be assigned to, just like other
variables.)

Lines 9-12 count the number of occurrences of each character in the input string read in line 4. Each
character, inturn, isstored in $char , and the value of $char issubstituted into the string in line 10. This
string is then passed to eval , which executes the translate operation contained in the string.

The trand ate operation doesn't actually do anything because it is "trandlating” a character to itself. However,
it returns the number of translations performed, which means that it returns the number of occurrences of
the character. This count is assigned to $count .

For example, suppose that the variable $char contains the character e andthat $_ containsHi t here! .
In this case, the string in line 10 becomes the following because e is substituted for $char in the string:

$count = tr/elel;

Thecall toeval executesthis statement, which countsthe number of e'sinH t her e! . Because there
aretwoe'sinH there!,$count isassigned 2.

An associative array, e ount , keepstrack of the number of occurrences of each of the characters being
counted. Line 11 adds the count returned by line 10 to the associative array element whose subscript isthe
character currently being counted. For example, if the program is currently counting the number of e's, this
number is added to the element $count {"e"} .

After al input lines have been read and their characters counted, lines 14-16 print the total number of
occurrences of each character by examining the elements of %count .

The <> Operator and $_

In Listing 17.1, which you've just seen, the program reads a line of input into a scalar variable named
$i nput andthen assignsitto $_. Thereisaquicker way to carry out thistask, however. Y ou can replace

while ($input = <>) {
$ = $input;

nore stuff here

http://docs.rinet.ru:8080/P7/ch17.htm (7 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

}

with the following code:

while (<>) {

nore stuff here

If the <> operator appears in a conditional expression that is part of aloop (an expression that is part of a
conditional statement such aswhi | e or f or) and it is not to the right of an assignment operator, the Perl
interpreter automatically assigns the resulting input line to the scalar variable $_.

For example, Listing 17.2 shows a simple way to print the first character of every input line read from the
standard input file.

Listing 17.2. A simple program that assignsto $_ using <STDI N>.

1: #!'/usr/local/bin/perl

3: while (<STDIN>) {

4 ($first) = split (//, $);
5 print ("$first\n");
6: }

$ programl?7_2

This is a test.

T

Here is another |ine.

http://docs.rinet.ru:8080/P7/ch17.htm (8 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

H

"D

Because <STDI N> isinside a conditional expression and is not assigned to a scalar variable, the Perl
interpreter assignstheinput lineto $_. The program then retrieves the first character by passing $_ to
split.

INOTE

The <> operator assignsto $_ only if itiscontained in a
conditional expression in aloop. The statement

<STDI N>;

reads aline of input from the standard input file and throws it
away without changing the contentsof $_. Similarly, the
following statement does not change the valueof $_:

if (<>) {

print ("The input files are not all
enpty.\n");

}

The chop Function and $_

By default, the chop function operates on the value stored inthe $ _ variable. For example:

while (<>) {
chop;

you can do things with $ here

Here, the call to chop removes the last character from the value stored in $_. Because the conditional
expression inthewhi | e statement hasjust assigned aline of inputto $ _, chop getsrid of the newline
character that terminates each input line.

The print Functionand $_

Thepri nt function also operateson $_ by default. The following statement writes the contents of $_ to
the standard output file:

http://docs.rinet.ru:8080/P7/ch17.htm (9 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

print;

Listing 17.3 is an example of a program that simply writes out itsinput, which it assumesisstoredin $.
This program is an implementation of the UNIX cat command, which reads input files and displays their
contents.

Listing 17.3. A simpleversion of thecat command using$.

1. #!/usr/local/bin/perl

3: print while (<>);

$ programl7_3 filel

This is the only Iine in file "filel".

This program uses the <> operator to read aline of input at atime and storeitin$_. If the line is nonempty,
the pri nt function is called; because no variable is specified with pr i nt , it writes out the contentsof $_.

INOTE

Y ou can use this default version of pri nt only if you are writing
to the default output file (which isusually STDOUT but can be
changed using the sel ect function). If you are specifying afile
variable when you call pri nt , you also must specify the value
you are printing.

For example, to send the contents of $_ to the output file

MYFI LE, use the following command:

print MYFILE ($))

http://docs.rinet.ru:8080/P7/ch17.htm (10 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables
The st udy Function and $_

If you do not specify avariable when you call st udy, thisfunction uses$_ by default:

st udy;

The st udy function increases the efficiency of programs that repeatedly search the same variable. It is
described on Day 13, "Process, String, and Mathematical Functions.”

Benefits of the $ Variable

The default behavior of the functions listed previously is useful to remember when you are writing one-line
Perl programs for use with the - e option. For example, the following command is a quick way to display
the contents of thefilesfil el,fil e2,andfi | e3:

$ perl -e "print while <>;" filel file2 file3

Similarly, the following command changes al occurrencesof abc infil el,fil e2,andfil e3todef:

$ perl -ipe "s/abc/def/g" filel file2 file3

|TIP

Although $_ isuseful in cases such as the preceding one, don't
overuse it. Many Perl programmers write programs that have
referencesto $_ running like an invisible thread through their
programs.

Programsthat overuse $_ are hard to read and are easier to break
than programs that explicitly reference scalar variables you have
named yourself

The Program Name: $0

The $0 variable contains the name of the program you are running. For example, if your program is named
per | 1, the statement

print ("Now executing $0...\n");

displays the following on your screen:

http://docs.rinet.ru:8080/P7/ch17.htm (11 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables
Now executing perl 1...

The $0 variableis useful if you are writing programs that call other programs. If an error occurs, you can
determine which program detected the error:

die ("$0: can't open input file\n");

Here, including $0 in the string passed to di e enables you to specify the filenamein your error message.
(Of course, you can always leave off the trailing newline, which tells Perl to print the filename and the line
number when printing the error message. However, $0 enables you to print the filename without the line
number, if that's what you want.)

[NOTE

Y ou can change your program name whileit is running by
modifying the value stored in $0

The User ID: $< and $>

The $< and $> variables contain, respectively, the real user ID and effective user 1D for the program. The
real user ID isthe ID under which the user of the program logged in. The effective user ID isthe ID
associated with this particular program (which is not always the same as the real user ID).

INOTE

| If you are not running your Perl program on the UNIX operating

system, the $< and $> variables might have no meaning. Consult
your local documentation for more details

Listing 17.4 usesthe real user ID to determine the user name of the person running the program.

Listing 17.4. A program that usesthe $< variable.

1. #!/usr/local/bin/perl

w

($user nane) = get pwui d($<);

4: print ("Hello, $usernane!\n");

http://docs.rinet.ru:8080/P7/ch17.htm (12 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

$ progranml7_4

Hel | o, dave!

$

The $< variable contains the real user ID, which isthelogin ID of the person running this program. Line 3
passes thisuser 1D to get pwui d, which retrieves the password file entry corresponding to this user ID.
The user name is the first element in this password file, and it is stored in the scalar variable $user nane.
Line 4 then prints this user name.

INOTE

On certain UNIX machines, you can assign $< to $> (set the
effective user ID to be thereal user ID) or vice versa. If you have
superuser privileges, you can set $< or $> to any defined user ID

The Group ID: $(and $)

The $(and $) variables define the real group 1D and the effective group ID for this program. The real
group ID isthe group to which the real user ID (stored in the variable $<) belongs; the effective group ID is
the group to which the effective user 1D (stored in the variable $>) belongs.

If your system enables users to be in more than one group at atime, $(and $) contain alist of group I1Ds,
with each pair of group IDs being separated by spaces. Y ou can convert thisinto an array by calling
split.

Normally, you can only assign $(to $) , and vice versa. If you are the superuser, you can set $(or $) to
any defined group ID.
INOTE

$(and $) might not have any useful meaning if you are running
Perl on a machine running an operating system other than UNIX

The Version Number: $]
The $] system variable contains the current version number. Y ou can use this variable to ensure that the

Perl on which you are running this program is the right version of Perl (or isaversion that can run your
program).

Normally, $] contains a character string similar to this:

$RCSfile: perl.c,v $$Revision: 4.0.1.8 $$Date: 1993/02/05 19:39:30 $

Patch | evel : 36

http://docs.rinet.ru:8080/P7/ch17.htm (13 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

The useful parts of this string are the revision number and the patch level. The first part of the revision
number indicates that thisis version 4 of Perl. The version number and the patch level are often combined,;
in this notation, thisis version 4.036 of Perl.

Y ou can use the pattern-matching operator to extract the useful information from $] . Listing 17.5 shows
one way to doit.

Listing 17.5. A program that extractsinformation from the $] variable.

1: #!'/usr/local/bin/perl

3: $] =~ /Revision: ([0-9.]1+)/;
4: $revision = $1;

5. $] =~ /Patch level: ([0-9]+)/;
6: S$patchlevel = $1;

7: print ("revision $revision, patch |evel $patchlevel\n");

$ programl?7_5

revision 4.0.1.8, patch |evel 36

$

This program just extracts the revision and patch level from $] using the pattern-matching operator. The
built-in system variable $1, described later today, is defined when a pattern is matched. It contains the
substring that appears in the first subpattern enclosed in parentheses. In line 3, the first subpattern enclosed
in parenthesesis[0- 9.] +. This subpattern matches one or more digits mixed with decimal points, and so
it matches4. 0. 1. 8. Thismeansthat 4. 0. 1. 8 isassigned to $1 by line 3 and is assigned to

$revi si on by line4.

Similarly, line 5 assigns 36 to $1 (because the subpattern [0- 9] +, which matches one or more digits, is
the first subpattern enclosed in parentheses). Line 6 then assigns 36 to $pat chl evel .

http://docs.rinet.ru:8080/P7/ch17.htm (14 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

>,

WARNING

On some machines, the value contained in $] might be
completely different from the value used in this example. If you
are not sure whether $] has a useful value, write alittle program
that just prints $] . If this program prints something useful, you'll
know that you can run programs that compare $] with an
expected value

The Input Line Separator: $/

When the Perl interpreter istold to read aline of input from afile, it usually reads characters until it reads a
newline character. The newline character can be thought of as an input line separator; it indicates the end of
aparticular line.

The system variable $/ contains the current input line separator. To change the input line separator, change
thevalue of $/ . The $/ variable can be more than one character long to handle the case in which lines are
separated by more than one character. If you set $/ to the null character, the Perl interpreter assumes that
the input line separator is two newline characters.

Listing 17.6 shows how changing $/ can affect your program.

Listing 17.6. A program that changesthe value of $/ .

1. #!'/usr/local/bin/perl

3 % ="ty
4: $line = <STDI N>;

5. print ("$line\n");

$ programl7_6
Here is sone test input: here is the end.

Here is sone test input:

http://docs.rinet.ru:8080/P7/ch17.htm (15 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

Line 3 setsthe value of $/ to a colon. This means that when line 4 reads from the standard input file, it
reads until it sees a colon. As a consequence, $l i ne contains the following character string:

Here is sone test input:

Note that the colon isincluded as part of the input line (just as, in the normal case, the trailing newline
character isincluded as part of the line).

"

m, ,
= b

WARNING

The - 0 (zero, not the letter O) switch setsthe value of $/ . If you
change the value of $/ in your program, the value specified by - O
will be thrown away.

To temporarily change the value of $/ and then restore it to the
value specified by - 0, save the current value of $/ in another
variable before changing it.

For more information on - O, refer to Day 16, "Command-Line
Options.

The Output Line Separator: $

The system variable $\ contains the current output line separator. Thisis a character or sequence of
characters that is automatically printed after every call to pri nt .

By default, $\ isthe null character, which indicates that no output line separator is to be printed. Listing
17.7 shows how you can set an output line separator.

8

WARNING

Listing 17.7. A program that usesthe $\ variable.

1. #!/usr/local/bin/perl

3 % ="\n";

4. print ("Here is one line.");

http://docs.rinet.ru:8080/P7/ch17.htm (16 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables
5. print ("Here is another line.");

$ programl?7_7
Here is one |ine.

Here i s another |ine.

Line 3 setsthe output line separator to the newline character. This meansthat a list passed to a subsequent
pri nt statement always appears on its own output line. Lines 4 and 5 now no longer need to include a
newline character as the last character in the line.

‘)m
Ll
= N

WARNING

The- | option setsthe value of $\ . If you change $\ inyour
program without saving it first, the value supplied with - | will be
lost. See Day 16 for more information on the- | option

The Output Field Separator: $,

The $, variable contains the character or sequence of characters to be printed between elements when
pri nt iscaled. For example, in the following statement the Perl interpreter first writes the contents of $a:

print ($a, $b);

It then writes the contents of $, and then finally, the contents of $b.

Normally, the$, variableisinitialized to the null character, which means that the elements of apr i nt
statement are printed next to one another. Listing 17.8 isa program that sets$, before callingpri nt .

Listing 17.8. A program that usesthe $, variable.

1. #!/usr/local/bin/perl

http://docs.rinet.ru:8080/P7/ch17.htm (17 of 52) [2/17/2007 6:03:42 AM]

Day 17 -- System Variables

4: $b = "there";
5 % =" ";
6 $\ = "\n";

7: print ($a, $b);

$ programl7_8

hell o there

$

Line 5 setsthe value of $, to a space. Consequently, line 7 prints a space after printing $a and before
printing $b.

Note that $\ , the default output separator, is set to the newline character. This setting ensures that the
terminating newline character immediately follows $b. By contrast, the following statement prints a space
before printing the trailing newline character:

print ($a, $b, "\n");

INOTE

Here's another way to print the newline immediately after the final
element that doesn't involve setting $\ :

print ($a, $b . "\n");

Here, the trailing newline character is part of the second element
being printed. Because $b and \ n are part of the same element,
no space is printed between them

http://docs.rinet.ru:8080/P7/ch17.htm (18 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

The Array Element Separator: $"

Normally, if an array is printed inside a string, the elements of the array are separated by a single space. For
example:

@rray = ("This", "is", "a", "list");
print ("@rray\n");

Here, the pri nt statement prints

This is a list

A spaceis printed between each pair of array elements.

The built-in system variable that controls this situation isthe $" variable. By default, $" contains a space.
Listing 17.9 shows how you can control your array output by changing the value of $" .

Listing 17.9. A program that usesthe $" variable.

1. #!/usr/local/bin/perl

2.
3 % ="y
4: @rray = ("This", "is", "a", "list");

5. print ("@rray\n");

$ programl7_9
This::is::a::|ist

$

http://docs.rinet.ru:8080/P7/ch17.htm (19 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

Line 3 setsthe array element separator to : : (two colons). Array element separators, like other separators
you can define, can be more than one character long.

Line 5 prints the contents of @ar r ay. Each pair of elementsis separated by the value stored in $" , which is
two colons.

[NOTE

The $" variable affects only entire arrays printed inside strings. If
you print two variables together in astring, asin

print ("ab\n");

the contents of the two variables are printed with nothing
separating them regardless of the value of $" .

To change how arrays are printed outside strings, use $\ ,
described earlier today

The Number Output Format: $#
By default, when the pr i nt function prints a number, it printsit as a 20-digit floating point number in

compact format. This means that the following statements are identical if the value stored in $x isa
number:

print ($x);

printf ("% 20g", $x);

To change the default format that pr i nt uses to print numbers, change the value of the $# variable. For
example, to specify only 15 digits of precision, use this statement:

$# = "% 159",

This value must be afloating-point field specifier, asusedinprintf andsprintf.

[NOTE

The $# variable does not affect values that are not numbers and
has no effect ontheprintf,wite,andspri ntf functions

For more information on the field specifiers you can use as the default value in $#, see "Formatting Output
Using pri nt f" on Day 11, "Formatting Y our Output.”

INOTE
| The $# variableis deprecated in Perl 5. This means that although

$# is supported, it is not recommended for use and might be
removed from future versions of Perl

http://docs.rinet.ru:8080/P7/ch17.htm (20 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

The eval Error Message: $@

If astatement executed by the eval function containsan error, or an error occurs during the execution of
the statement, the error message is stored in the system variable $@ The program that called eval can
decide either to print the error message or to perform some other action.

For example, the statement

eval ("This is not a perl statenent");

assigns the following string to $@

syntax error in file (eval) at line 1, next 2 tokens "This is"

The $@variable aso returns the error generated by acall todi e inside an eval . The following statement
assignsthisstring to $@

eval ("die (\"nothing happened\")");

not hi ng happened at (eval) line 1.

[NOTE

The $@variable also returns error messages generated by the
requi r e function. See Day 19, "Object-Oriented Programming
in Perl,” for more informationonr equi r e

The System Error Code: $?

The $? variable returns the error status generated by callsto the syst emfunction or by callsto functions
enclosed in back quotes, asin the following:

$usernane = ' host nane';

The error status stored in $? consists of two parts:
« Theexit value (return code) of the process called by syst emor specified in back quotes
« A statusfield that indicates how the process was terminated, if it terminated abnormally

The value stored in $? isa 16-bit integer. The upper eight bits are the exit value, and the lower eight bits are
the status field. To retrieve the exit value, use the >> operator to shift the eight bits to the right:

http://docs.rinet.ru:8080/P7/ch17.htm (21 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

$retcode = $? >> §;

For more information on the status field, refer to the online manual page for thewai t function or to thefile
[usr/include/ sys/wait. h.For moreinformation on commands in back quotes, refer to Day 20,

"Miscellaneous Features of Perl."

The System Error Message: $!

Some Perl library functions call system library functions. If a system library function generates an error, the
error code generated by the function is assigned to the $! variable. The Perl library functions that call
system library functions vary from machine to machine.

INOTE

The $! variablein Perl isequivalent to theer r no variablein the
C programming language

The Current Line Number: $.

The $. variable contains the line number of the last line read from an input file. If more than one input file
isbeing read, $. contains the line number of the last input file read. Listing 17.10 shows how $. works.

Listing 17.10. A program that usesthe $. variable.

1. #!/usr/local/bin/perl

3: open (FILEL, "filel") ||
4: die ("Can't open filelln");
5. open (FILE2, "file2") ||

6 die ("Can't open file2\n");

7. $i nput <Fl LE1>;
8: $input = <FILE1>;
9: print ("line nunber is $.\n");
10: $input = <FI LE2>;
11: print ("line nunber is $.\n");

http://docs.rinet.ru:8080/P7/ch17.htm (22 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

12: $input = <FI LE1>;

13: print ("line nunber is $.\n");

$ programl7_10
| i ne nunber is 2
|ine nunber is 1

|l ine nunber is 3

When line 9 is executed, the input file FI LE1 has had two linesread from it. This meansthat $. contains
thevalue 2. Line 10 then reads from FI LE2. Because it reads the first line from thisfile, $. now hasthe
value 1. When line 12 reads a third linefrom FI LEL, $. isset to the value 3. The Perl interpreter
remembers that two lines have already been read from FI LEL.

[NOTE

If the program is reading using <>, which reads from the files
listed on the command line, $. treatsthe input filesasif they are
one continuous file. The line number is not reset when a new input
fileis opened

You can use eof to test whether a particular file has ended, and
thenreset $. yourself (by assigning zero to it) before reading
from the next file.

Multiline Matching: $*

Normally, the operators that match patterns (the pattern-matching operator and the substitution operator)
assume that the character string being searched isasingle line of text. If the character string being searched
consists of more than one line of text (in other words, it contains newline characters), set the system
variable $* to 1.

INOTE

By default, $* isset to 0, which indicates that multiline pattern
matches are not required

http://docs.rinet.ru:8080/P7/ch17.htm (23 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

‘ »
, _aspitd
-

WARNING

The $* variable is deprecated in Perl 5. If you are running Perl 5,
use the mpattern-matching option when matching in a
multiple-line string. See Day 7, "Pattern Matching," for more

details on this option

The First Array Subscript: $[

Normally, when a program references the first element of an array, it does so by specifying the subscript O.
For example:

@warray = ("Here", "is", "a", "list");

$here = $nyarray[O0];

The array element $nryar r ay[0] containsthe string Her e, which isassigned to $her e.

If you are not comfortable with using 0 as the subscript for the first element of an array, you can change this
setting by changing the value of the $[variable. This variable indicates which value is to be used as the
subscript for the first array element.

Here is the preceding example, modified to use 1 asthefirst array element subscript:

[= 1,
@wvyarray = ("Here", "is", "a", "list");

$here = $nyarray[1];

In this case, the subscript 1 now references the first array element. This meansthat $her e isassigned
Her e, as before.

|TIP

Don't change the value of $[. It istoo easy for a casual reader of
your program to forget that the subscript O no longer references
the first element of the array. Besides, using 0 as the subscript for
the first element is standard practice in many programming
languages, including C and C++

INOTE
| $[isdeprecated in Perl 5

http://docs.rinet.ru:8080/P7/ch17.htm (24 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

Multidimensional Associative Arrays and the $; Variable

So far, al the arrays you've seen have been one-dimensional arrays, which are arrays in which each array
element is referenced by only one subscript. For example, the following statement uses the subscript f 0o to
access an element of the associative array named %ar r ay:

$nmyvar = $array{"foo"};

Perl does not support multidimensional arrays directly. The following statement is not alegal Perl
statement:

$nmyvar = Sarray{"foo"}{"bar"};
However, Perl enables you to simulate a multidimensional associative array using the built-in system

variable $; .

Hereis an example of a statement that accesses a (simulated) multidimensional array:

$nmyvar = $array{"foo", "bar"};

When the Perl interpreter sees this statement, it convertsit to this:

$nyvar = $array{"foo" . $; . "bar"};

The system variable $; serves as a subscript separator. It automatically replaces any commathat is
separating two array subscripts.

Here is another example of two equivalent statements:

$nyvar $array{"sl1", 4, "hi there"};

$array{"s1".$;.4.%;."hi there"};

$nmyvar

The second statement shows how the value of the $; variable isinserted into the array subscript.

By default, the value of $; is\ 034 (the Ctrl+\ character). Y ou can define $; to be any value you want.
Listing 17.11 is an example of aprogram that sets $; .

Listing 17.11. A program that usesthe $; variable.

http://docs.rinet.ru:8080/P7/ch17.htm (25 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

1. #!/usr/local/bin/perl
2:
3. % ="t

4: Sarray{"hello","there"} = 46;

5. $testl

$array{"hello","there"};

6: $test?

$array{"hello::there"};

7: print ("$testl $test2\n");

$ programl7_11

46 46

Line3sets$; tothestring : : . Asaconsequence, the subscript " hel | 0", "t here" inlines4and5is
really hel | o: : t her e because the Perl interpreter replaces the comma with the value of $; .

Line7 showsthat both" hel | 0", "t here" andhel | o: : t her e refer to the same element of the
associative array.

2

WARBHN:;
If you set $; , be careful not to set it to a character that you are
actually using in a subscript. For example, if youset $; to: : , the
following statements reference the same element of the array:
$array{"a::b", "c"} 1;
$array{"a", "b::c"} 2;
In each case, the Perl interpreter replaces the commawith : : ,
producing the subscript a: : b: : ¢

http://docs.rinet.ru:8080/P7/ch17.htm (26 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

The Word-Break Specifier: $:

On Day 11 you learned how to format your output using print formats and thewr i t e statement. Each print
format contains one or more value fields that specify how output is to appear on the page.

If avaluefield in a print format begins with the” character, the Perl interpreter puts aword in the value
field only if there is room enough for the entire word. For example, in the following program (a duplicate of
Listing 11.9),

1. #!/usr/local/bin/perl

2:

3: $string = "Here\nis an unbal anced |ine of\ntext.\n";
4: $~ = "QUTLI NE";

5 wite;

6:

7: format QUTLI NE =

8: N LKL L LKL LKL L L LKL LKL
9: $string

10:

thecall towr i t e usesthe OQUTLI NE print format to write the following to the screen:

Here i s an unbal anced | i ne

Note that the word of isnot printed because it cannot fit into the OUTLI NE value field.

To determine whether aword can fit in avalue field, the Perl interpreter counts the number of characters
between the next character to be formatted and the next word-break character. A word-break character is
one that denotes either the end of aword or a place where aword can be split into two parts.

By default, the legal word-break charactersin Perl are the space character, the newline character, and the -
(hyphen) character. The acceptable word break characters are stored in the system variable $: .

To change the list of acceptable word-break characters, change the value of $: . For example, to ensure that
al hyphenated words are in the same line of formatted output, define $: as shown here:

$: =" \n";

http://docs.rinet.ru:8080/P7/ch17.htm (27 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

Now only the space and newline characters are legal word-break characters.

[NOTE

Normally, the tab character is not aword-break character. To
allow lines to be broken on tabs, add the tab character to the list
specified by the $: variable:

$: =" \t\n-"

The Perl Process ID: $$

The $$ system variable contains the process ID for the Perl interpreter itself. Thisis also the process ID for
your program.

The Current Filename: $ARGV

When you use the <> operator, the Perl interpreter reads input from each file named on the command line.
For example, suppose that you are executing the program nmy pr og as shown here:

$ nyprog testl test2 test3

In nmypr og, the first occurrence of the <> operator readsfromt est 1. Subsequent occurrences of <>
continue reading fromt est 1 until it is exhausted; at this point, <> readsfromt est 2. This process
continues until al the input files have been read.

On Day 6, "Reading from and Writing to Files," you learned that the @GARGV array lists the elements of the

command line and that the first element of @GARGV is removed when the <> operator reads aline. (GARGV
also isdiscussed later today.)

When the <> operator reads from afile for the first time, it assigns the name of the file to the $ARGV
system variable. This enables you to keep track of what fileis currently being read. Listing 17.12 shows
how you can use $ARGV.

Listing 17.12. A simple file-sear ching program using $ARGV.

1. #!'/usr/local/bin/perl

3: print ("Enter the search pattern:\n");
4: $string = <STDI N>;

5: chop ($string);

http://docs.rinet.ru:8080/P7/ch17.htm (28 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

6: while ($line = <>) {

7: if ($line =~ /$string/) {

8: print ("$ARGV: $line");
9: }

10: }

$ programl7_12 filel file2 file3
Enter the string to search:
t he

filel: This line contains the word "the".

This program reads each line of the input files supplied on the command line. If aline contains the pattern
specified by $st ri ng, line 8 prints the name of the file and then the line itself. Note that the pattern in
$st ri ng can contain special pattern characters.

[NOTE

If <> isreading from the standard input file (which occurs when
you have not specified any input files on the command line),
$ARGV containsthe string - (asingle hyphen)

The Write Accumulator: $"A

The $M"Avariableisused by wr i t e to store formatted lines to be printed. The contents of $” A are erased
after the lineis printed.

Thisvariable is defined only in Perl 5.

http://docs.rinet.ru:8080/P7/ch17.htm (29 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

The Internal Debugging Value: $"D

The $” D variable displays the current internal debugging value. Thisvariable is defined only when the - D
switch has been specified and when your Perl interpreter has been compiled with debugging included.

See your online Perl documentation for more details on debugging Perl. (Unless you are using an
experimental version of Perl, you are not likely to need to debug it.)

The System File Flag: $"F

The $”F variable controls whether files are to be treated as system files. Its valueis the largest UNIX file
descriptor that is treated as a system file.

Normally, only STDI N, STDOUT, and STDERR are treated as system files, and the value assigned to $"F is
2. Unless you are on a UNIX machine, are familiar with file descriptors, and want to do something exotic
with them, you are not likely to need to use the $" F system variable.

Controlling File Editing Using $"1

The $”1 variableis set to anonzero value by the Perl interpreter when you specify the - i option (which
editsfiles asthey are read by the <> operator).

The following statement turns off the editing of files being read by <>:

undef ($"1);

When $” | is undefined, the next input file is opened for reading, and the standard output file is no longer
changed.

Don’t

DO open thefiles for input and output yourself if your program wants to edit some of its
input files and not others; this processis easier to follow.

DON'T use $”1 if you are reading files using the - n or - p option unless you really know
what you are doing, because you are not likely to get the behavior you expect. If - i has
modified the default output file, undefining $ 1 does not automatically set the default output
fileto STDOUT

The Format Form-Feed Character: $ML

The $M L variable contains the character or characters written out whenever a print format wantsto start a
new page. The default valueis\ f , the form-feed character.

Controlling Debugging: $"P

The $ P variable is used by the Perl debugger. When this variable is set to zero, debugging is turned off.

Y ou normally won't need to use $ P yourself, unless you want to specify that a certain chunk of code does
not need to be debugged.

http://docs.rinet.ru:8080/P7/ch17.htm (30 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

The Program Start Time: $"T

The $ T variable contains the time at which your program began running. Thistimeisin the same format
asisreturned by thet i me function: the number of seconds since January 1, 1970.

The following statement sets the file-access and -modification times of thefilet est 1 to thetime stored in
$NT:

utinme ($°T, $°T, "testl");

For more information onthet i me and ut i e functions, refer to Day 12, "Working with the File System."

[NOTE

The time format used by $7 T is aso the same as that used by the
filetest operators- A, - C,and - M

Suppressing Warning Messages: $"W

The $" Wsystem variable controls whether warning messages are to be displayed. Normally, $" Wis set to a
nonzero value only when the - woption is specified.

Y ou can set $"Wto zero to turn off warnings inside your program. This capability isuseful if your program
contains statements that generate warnings you want to ignore (because you know that your statements are
correct). For example:

$ "W = 0; # turn off warni ng nessages
code that generates warni ngs goes here

$ W= 1; # turn warni ng nessages back on

2
WAR»HN:;
Some warnings are printed before program execution starts (for

example, warnings of possible typos). Y ou cannot turn off these
warnings by setting $” Wto zero

The $”* X Variable

The $” X variable displays the first word of the command line you used to start this program. If you started
this program by entering its name, the name of the program appearsin $" X. If you used the per |
command to start this program, $" X contains per | .

The following statement checks to see whether you started this program with the command per | :

http://docs.rinet.ru:8080/P7/ch17.htm (31 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

if ($"X ne "perl") {
print ("You did not use the 'perl' command ");

print ("to start this program\n");

Pattern System Variables

The system variables you have seen so far are all defined throughout your program. The following system
variables are defined only in the current block of statements you are running. (A block of statementsis any
group of statements enclosed in the brace characters{ and } .) These pattern system variables are set by the
pattern-matching operator and the other operators that use patterns (such as, for example, the substitution
operator). Many of these pattern system variables were first introduced on Day 7.

|TIP

Even though the pattern system variables are defined only inside a
particular block of statements, your programs should not take
advantage of that fact. The safest way to use the pattern-matching
variablesisto assign any variable that you might need to a scalar
variable of your own

Retrieving Matched Subpatterns

When you specify a pattern for the pattern-matching or substitution operator, you can enclose parts of the
pattern in parentheses. For example, the following pattern encloses the subpattern\ d+ in parentheses. (The
parentheses themselves are not part of the pattern.)

J(\d+)\ ./

This subpattern matches one or more digits.

After a pattern has been matched, the system variables $1, $2, and so on match the subpatterns enclosed in
parentheses. For example, suppose that the following pattern is successfully matched:

I(\d+) ([a-z]+)/

In this case, the match found must consist of one or more digits followed by one or more lowercase | etters.
After the match has been found, $1 contains the sequence of one or more digits, and $2 contains the
sequence of one or more lowercase |etters.

Listing 17.13 is an example of a program that uses $1, $2, and $3 to match subpatterns.

http://docs.rinet.ru:8080/P7/ch17.htm (32 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

Listing 17.13. A program that uses variables containing matched subpatterns.

1. #!'/usr/local/bin/perl

3 while (<) {

4 while (/(-?2\d+)\. (\d+)([eE][+-]?\d+)?/g) {

5: print ("integer part $1, decinmal part $2");
6 if ($3 ne "") {

7 print (", exponent $3");

8: }

9: print ("\n");

10: }

11: }

$ programl7_13 filel
i nteger part 26, decimal part 147, exponent e-02

integer part -8, decimal part 997

$

This program reads each input line and searches for floating-point numbers. Line 4 matchesif a
floating-point number isfound. (Line 4 isawhi | e statement, not ani f , to enable the program to detect
lines containing more than one floating-point number. The loop starting in line 4 iterates until no more

http://docs.rinet.ru:8080/P7/ch17.htm (33 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

matches are found on the line.)
When amatch isfound, the first set of parentheses matches the digits before the decimal point; these digits
are copied into $1. The second set of parentheses matches the digits after the decimal point; these matched

digitsare stored in $2. The third set of parentheses matches an optional exponent; if the exponent exists, it
isstored in $3.

Line 5 printsthe values of $1 and $2 for each match. If $3 isdefined, itsvalueis printed by line 7.

Don’t

DO use $1, not $0, to retrieve the first matched subpattern. $0 contains the name of the
program you are running.

DON'T confuse $1 with\ 1.\ 1,\ 2, and so on are defined only inside a pattern. See Day 7
for more information on\ 1

In patterns, parentheses are counted starting from the left. Thisrule tells the Perl interpreter how to handle
nested parentheses:

J(\d+(\.) 2\ d+)/

This pattern matches one or more digits optionally containing a decimal point. When this patternis
matched, the outer set of parenthesesis considered to be the first set of parentheses; these parentheses
contain the entire matched number, which is stored in $1.

Theinner set of parentheses is treated as the second set of parentheses because it includes the second left
parenthesis seen by the pattern matcher. The variable $2, which contains the subpattern matched by the
second set of parentheses, contains. (aperiod) if adecimal point is matched and the empty string if itis
not.

Retrieving the Entire Pattern: $&

When a pattern is matched successfully, the matched text string is stored in the system variable $&. Thisis
the only way to retrieve the matched pattern because the pattern matcher returns atrue or false value
indicating whether the pattern match is successful. (Thisis not strictly true, because you could enclose the
entire pattern in parentheses and then check the value of $1; however, $& is easier to use in this case.)
Listing 17.14 isaprogram that uses $& to count al the digitsin a set of input files.

Listing 17.14. A program that uses $&.

1: #!'/usr/local/bin/perl
2:

3: while ($line = <>) {

http://docs.rinet.ru:8080/P7/ch17.htm (34 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

4: while ($line =~ /\d/g) {
5 $di gi t count [$&] ++;
6: }

7.}

8: print ("Totals for each digit:\n");
9: for ($i =0; $i <=9; $i++) {

10: print ("$i: $digitcount[$i]\n");

$ programl7_14 filel

Totals for each digit:

0: 11
1: 6
2: 3
3: 1
4: 2
S:

6: 1
7

8:

9: 1
$

http://docs.rinet.ru:8080/P7/ch17.htm (35 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

This program reads one line at atime from the files specified on the command line. Line 4 matches each
digit in the input line in turn; the matched digit is stored in $&.

Line 5 takes the value of $& and usesiit as the subscript for the array @li gi t count . Thisarray keepsa
count of the number of occurrences of each digit.

When the input files have al been read, lines 9-11 print the totals for each digit.

[NOTE

If you need the value of $&, be sure to get it before exiting the
whi | e loop or other statement block in which the pattern is
matched. (A statement block is exited when the Perl interpreter
seesa} character.)

For example, the pattern matched in line 4 cannot be accessed
outside of lines 4-6 because this copy of $& isdefined only in
these lines. (Thisrule also holds true for all the other pattern
system variables defined in today's lesson.)

The best rule to follow isto either use or assign a pattern system
variable immediately following the statement that matches the
pattern

Retrieving the Unmatched Text: the $ and $' Variables

When a pattern is matched, the text of the match is stored in the system variable $&. Therest of the string is
stored in two other system variables:

« Theunmatched text preceding the matchisstored inthe $™ variable.
« The unmatched text following the match is stored inthe $' variable.

For example, if the Perl interpreter searchesfor the/ \ d+/ patterninthe string qwer t y1234ui op, it
matches 1234, which is stored in $&. The substring qwer t y, which precedes the match, isstoredin $" .
Therest of the string, ui op, isstoredin $' .

If the beginning of atext string ismatched, $° is set to the empty string. Similarly, if the last character in
the string is part of the match, $' is set to the empty string.

The $+ Variable

The $+ variable matches the last subpattern enclosed in parentheses. For example, when the following
pattern is matched, $+ matches the digits after the decimal point:

[(\d)\ . (\d+)]

Thisvariable is useful when the last part of a pattern isthe only part you really need to look at.

http://docs.rinet.ru:8080/P7/ch17.htm (36 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

File System Variables

Several system variables are associated with file variables. One copy of each file system variable is defined
for each file that is referenced in your Perl program. Many of these system variables were first introduced
on Day 11. The variables mentioned there are redefined here for your convenience.

The Default Print Format: $~

When thewr i t e statement sends formatted output to afile, it uses the value of the $~ system variable for
that file to determine the print format to use.

When a program starts running, the default value of $~ for each file is the same as the name of thefile
variable that represents the file. For example, when you write to the file represented by the file variable
MYFI LE, the default value of $~ is MYFI LE. This meansthat wr i t e normally uses the MYFI LE print
format. (For the standard output file, this default print format is named STDOUT.)

If you want to specify adifferent print format, change the value of $~ before calling thewr i t e function.
For example, to use the print format MYFORMAT when writing to the standard output file, use the following
code:

sel ect (STDOUT); # making sure you are witing to STDOUT
$~ = "MYFORVAT";

wite;

Thiscal towr i t e uses MYFORIVAT to format its output.

‘Fm
A
T &
WARNING

Remember that one copy of $~ isdefined for each file variable.
Therefore, the following code is incorrect:

$~ = "MYFORVAT";
sel ect (MYFI LE);
wite;

In this example, the assignment to $~ changes the default print
format for whatever the current output file happensto be. This
assignment does not affect the default print format for MYFI LE
because MYFI LE is selected after $~ is assigned. To change the
default print format for MYFI LE, select it first:

sel ect (MYFI LE);

$~ = "MYFORVAT";

wite;

Thiscall towr i t e now uses MYFORMAT to writeto MYFI LE

http://docs.rinet.ru:8080/P7/ch17.htm (37 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

Specifying Page Length: $=

The $= variable defines the page length (number of lines per page) for a particular output file. $=is
normally initialized to 60, which is the value that the Perl interpreter assumes is the page length for every
output file. This page length includes the lines | eft for page headers, and it is the length that works for most
printers.

If you are directing a particular output file to a printer with a nonstandard page length, change the value of
$=for thisfile before writing to it:

sel ect ("WEl RDLENGTH');

$= = 72;

This code sets the page length for the WEI RDLENGTH fileto 72.

o
E
WARNING
$=isset to 60 by default only if a page header format is defined
for the page. If no page header is defined, $= is set to 9999999
because Perl assumes that you want your output to be a

continuous stream.

If you want paged output without a page header, define an empty
page header for the output file

Lines Remaining on the Page: $-

The $- variable associated with a particular file variable lists the number of lines |eft on the current page of
that file. Each call towr i t e subtracts the number of lines printed from $- . If wri t e iscaled when $- is
zero, anew pageis started. (If $- isgreater than zero, but wr i t e is printing more lines than the value of
$-,writ e startsanew page in the middle of its printing operation.)

When anew page is started, the initial value of $- isthe value stored in $=, which is the number of lines on
the page.

The program in Listing 17.15 displays the value of $- .

Listing 17.15. A program that displays $- .

1. #!/usr/local/bin/perl
2:

3: open (QUTFILE, ">outfile");

http://docs.rinet.ru:8080/P7/ch17.htm (38 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

4: select ("QUTFILE");

5 wite;

6: print STDOJUT ("lines to go before wite: $-\n");
70 wite,

8: print STDOUT ("lines to go after wite: $-\n");
9: format OUTFILE =

10: This is a test.

11:

12: format OUTFILE TOP =

13: This is a test.

14:

$ programl?7_15
lines to go before wite: 58

lines to go after wite: 57

Line 3 opensthe output fileout f i | e and associates the file variable OUTFI LE with thisfile. Line 4 then
calssel ect , which sets the default output file to OUTFI LE.

Line5calswr i t e, which starts a new page. Line 6 then sends the value of $- to the standard output file,
STDOUT, by specifying STDOUT in the call to pri nt . Note that the copy of $- printed is the copy
associated with OUTFI LE, not STDOUT, because OUTFI LE is currently the default output file.

Line7 calswri t e, which sends aline of output to OQUTFI LE and decreases the value of $- by one. Line 8
prints this new value of $- .

INOTE

http://docs.rinet.ru:8080/P7/ch17.htm (39 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

If you want to force your next output to appear at the beginning of
anew page, you can set $- to zero yourself before calling
wite.

When afileis opened, the copy of $- for thisfileisgiven the
initial value of zero. This technique ensures that the first call to
wr i t e dways starts a page (and generates the header for the

page)

The Page Header Print Format: $"

Whenwr i t e starts anew page, you can specify the page header that isto appear on the page. To do this,
define a page header print format for the output file to which the page isto be sent.

The system variable $” contains the name of the print format to be used for printing page headers. If this
format is defined, page headers are printed; if it does not exist, no page headers are printed.

By default, the copy of $” for aparticular fileis set equal to the name of the file variable plus the string
__TOP. For example, for the file represented by the file variable MYFI LE, $” isgiven aninitia value of
MYFI LE_TOP.

To change the page header print format for a particular file, set the default output file by calling sel ect
and then set $” to the print format you want to use. For example:

sel ect (MYFI LE);

$" = "MYHEADER';

This code changes the default output file to MYFI LE and then changes the page header print format for
MYFI LE to MYHEADER. As always, you must remember to sel ect thefile before changing $” because
each file hasits own copy of $".

Buffering Output: 3|

When you send output to afileusing pri nt orwr i t e, the operating system might not write it right away.
Some systems first send the output to a special array known as a buffer; when the buffer becomesfull, itis
written all at once. This process of output buffering is usually a more efficient way to write data.

In some circumstances, you might want to send output straight to your output file without using an
intervening buffer. (For example, two processes might be sending output to the standard output file at the
sametime.)

The $| system variable indicates whether a particular file is buffered. By default, the Perl interpreter
defines a buffer for each output file, and $| isset to 0. To eliminate buffering for a particular file, select the
fileand then set the $| variable to a nonzero value. For example, the following code eliminates buffering
for the MYFI LE output file:

sel ect ("MYFILE");

http://docs.rinet.ru:8080/P7/ch17.htm (40 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables
3 = 1;

These statements set MYFI LE as the default output file and then turn off buffering for it.

=

WARNING

If you want to eliminate buffering for a particular file, you must
set $| before writing to the file for the first time because the
operating system creates the buffer when it performs the first write
operation

The Current Page Number: $%

Each output file opened by a Perl program has a copy of the $%variable associated with it. This variable
stores the current page number. When wr i t e starts a new page, it adds one to the value of $% Each copy
of $%isinitialized to 0, which ensures that $%is set to 1 when the first pageis printed. $%often is
displayed by page header print formats.

Array System Variables

The system variables you've seen so far have all been scalar variables. The following sections describe the
array variables that are automatically defined for usein Perl programs. All of these variables, except for the
@ variable, are global variables: their value is the same throughout a program.

The @ Variable

The @ variable, which is defined inside each subroutine, isalist of all the arguments passed to the
subroutine.

For example, suppose that the subroutine ny _sub is caled as shown here:

&my _sub("hello", 46, $var);

Thevalueshel | o and 46, plusthe value stored in $var , are combined into athree-element list. Inside
nmy_sub, thislistisstoredin @ .

In asubroutine, the @ array can be referenced or modified, just as with any other array variable. Most
subroutines, however, assign @ to locally defined scalar variablesusing thel ocal function:

sub ny_sub {
| ocal ($argl, $arg2, $argl3) = @;
nore stuff goes here

http://docs.rinet.ru:8080/P7/ch17.htm (41 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

}

Here, thel ocal statement definesthreelocal variables, $ar g1, $ar g2, and $ar g3. $ar g1 isassigned
the first element of thelist stored in @ , $ar g2 is assigned the second, and $ar g3 is assigned the third.

For more information on subroutines, refer to Day 9, "Using Subroutines.”

|NOTE
If theshi ft functionis called inside a subroutine with no
argument specified, the @ variable is assumed, and its first
element is removed

The @ARGV Variable

When you run a Perl program, you can specify values that are to be passed to the program by including
them on the command line. For example, the following command calls the Perl program nypr og and
passesit thevalueshel | o and 46:

$ nyprog "hello" 46

Inside the Perl program, these values are stored in a special built-in array named @ARGYV. In this example,
@ARGV containsthelist (" hel | 0", 46).

Hereis asimple statement that prints the values passed on the command line:

print ("@RGAN");

The GARGV array also is associated with the <> operator. This operator treats the elementsin GARGV as
filenames; each file named in @ARGV is opened and read in turn. Refer to Day 6 for a description of the <>

operator.

INOTE

If theshi ft functionis called in the main body of a program
(outside a subroutine) and no arguments are passed with it, the
Perl interpreter assumes that the GARGV array isto haveitsfirst
element removed.

The following loop assigns each element of @GARGV, in turn, to the
variable $var :

while ($var = shift) {

stuff

}

http://docs.rinet.ru:8080/P7/ch17.htm (42 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

The @ Variable

In Perl, if you specify the - n or - p option, you can aso supply the - a option. This option tells the Perl
interpreter to break each input line into individual words (throwing away all tabs and spaces). These words
are stored in the built-in array variable @-. After an input line has been (automatically) read, the @ array
variable behaves like any other array variable.

For more information onthe - a, - n, or - p options, refer to Day 16, "Command-Line Options."

INOTE
When the - a option is specified and an input line is broken into
words, the original input line can still be accessed becauseit is
stored in the $_ system variable

The @ NC Variable

The @ NC array variable contains a list of directories to be searched for files requested by ther equi r e
function. Thislist consists of the following items, in order from first to last:

« Thedirectories specified by the- | option
o The Perl library directory, whichisnormally / usr/ | ocal / bi n/ per|
« The current working directory (represented by the . character)

Like any array variable, @ NC can be added to or modified.

For more information on the r equi r e function, refer to Day 19.

The % NC Variable

The built-in associative array 9% NC lists the files requested by ther equi r e function that have already
been found.

Whenr equi r e finds afile, the associative array element $1 NC{ f i | e} isdefined, inwhichfi | e isthe
name of the file. The value of this associative array element is the location of the actua file.

Whenr equi r e requests afile, the Perl interpreter first looks to see whether an associative array element
has already been created for thisfile. This action ensures that the interpreter does not try to include the same
code twice.

The %ENV Variable

The UENV associative array lists the environment variables defined for this program and their values. The
environment variables are the array subscripts, and the values of the variables are the values of the array
elements.

For example, the following statement assigns the value of the environment variable TERMto the scalar
variable $t er m

$term = SENV{"TERM'};

http://docs.rinet.ru:8080/P7/ch17.htm (43 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

The %8l GVariable

In the UNIX environment, processes can send signals to other processes. These signals can, for example,
interrupt arunning program, trigger an alarm in the program, or kill off the program.

Y ou can control how your program responds to signalsiit receives. To do this, modify the %5l Gassociative
array. Thisarray contains one element for each available signal, with the signal name serving as the
subscript for the element. For example, the | NT (interrupt) signal is represented by the $SI G{ " | NT" }
element.

The value of aparticular element of %5l Gisthe action that is to be performed when the signal is received.
By default, the value of an array element is DEFAULT, which tells the program to do what it normally does
when it receives this signal.

Y ou can override the default action for some of the signalsin two ways: you can tell the program to ignore
the signal, or you can define your own signal handler. (Some signals, such as Kl LL, cannot be overridden.)

To tell the program to ignore a particular type of signal, set the value of the associative array element for
thissignal to | GNORE. For example, the following statement indicates that the program is to ignore any
| NT signalsit receives:

$SIG"INT"} = "1G\NORE";

If you assign any value other than DEFAULT or | GNORE to asignal array element, this value is assumed to
be the name of afunction that is to be executed when this signal is received. For example, the following
statement tells the program to jump to the subroutine named i nt er r upt when it receivesan | NT signal:

$SIG"INT"} = "interrupt";

Subroutines that can be jumped to when asignal isreceived are called interrupt handlers, because signals
interrupt normal program execution. Listing 17.16 is an example of a program that defines an interrupt
handler.

Listing 17.16. A program containing an interrupt handler.

1: #!'/usr/local/bin/perl

2:
3: $SIF"INT"} = "wakeup";
4. sleep();

http://docs.rinet.ru:8080/P7/ch17.htm (44 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables
S:

6: sub wakeup {

7: print ("l have woken up!\n");
8: exit();
9: }

$ programl7_16

| have woken up!

Line 3 tells the Perl interpreter that the program is to jump to the wakeup subroutine when it receives the
| NT signal. Line 4 tells the program to go to sleep. Because no argument is passed to sl eep, the program
will sleep until asignal wakesit up.

To wake up the process, get the process ID using the ps command, and then send an | NT signal to the
process using the ki | I command. (See the manual page for ki | | , and the related documentation for
signa handling, to see how to perform thistask in your environment.)

When the program receivesthe | NT signal, it executes the wakeup subroutine. This subroutine prints the
following message and then exits:

| have woken up!

If desired, you can use the same subroutine to handle more than one signal. The signal actually sent is
passed as an argument to the called subroutine, which ensures that your subroutine can determine which
signal triggered it:

sub interrupt {

| ocal ($signal) = @;

http://docs.rinet.ru:8080/P7/ch17.htm (45 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

print ("Interrupted by the $signal signal.\n");

If a subroutine exits normally, the program returns to where it was executing when it was interrupted. If a
subroutine callsexi t or di e, the program execution is terminated.

INOTE
When a program continues executing after being interrupted, the
element of %G| G corresponding to the received signal isreset to
DEFAULT. To ensure that repeated signals are trapped by your
interrupt handler, redefine the appropriate element of %8I G

Built-In File Variables

Perl provides several built-in file variables, most of which you have previously seen. The only file variables
that have not yet been discussed are DATA and _ (underscore). The others are briefly described here for the
sake of completeness.

STDI N, STDQUT, and STDERR

Thefilevariable STDI Nis, by default, associated with the standard input file. Using STDI N with the <>
operator, asin <STDI N>, normally reads data from your keyboard. If your shell has used < or some
equivalent redirection operator to specify input from afile, <STDI N> reads from that file.

Thefile variable STDOUT normally writes to the standard output file, which is usually directed to your
screen. If your shell has used > or the equivalent to redirect standard output to afile, writing to STDOUT
sends output to that file.

STDERR represents the standard error file, which is amost always directed to your screen. Writing to
STDERR ensures that you see error messages even when you have redirected the standard output file.

Y ou can associate STDI N, STDOUT, or STDERR with some other file using open:

open (STDIN, "nyinputfile");
open (STDOUT, "nyoutputfile");

open (STDERR, "nyerrorfile"),;

Opening afile and associating it with STDI N overrides the default value of STDI N, which means that you
can no longer read from the standard input file. Similarly, opening afile and associating it with STDOUT or
STDERR means that writing to that particular file variable no longer sends output to the screen.

To associate afile variable with the standard input file after you have redirected STDI N, specify afilename
of -:

http://docs.rinet.ru:8080/P7/ch17.htm (46 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables

open (MYSTDIN, "-");

To associate afile variable with the standard output file, specify afilename of >- :

open (MYSTDQUT, ">-");

You can, of course, specify STDI Nwith - or STDOUT with >- to restore the original values of thesefile
variables.

ARGV

ARGV isaspecial file variable that is associated with the current input file being read by the <> operator.
For example, consider the following statement:

$line = <>;

This statement reads from the current input file. Because ARGV represents the current input file, the
preceding statement is equivalent to this:

$line = <ARGV>;

Y ou normally will not need to access ARGV yourself except viathe <> operator.

DATA

The DATA filevariableisused withthe END _ special value, which can be used to indicate the end of a
program. Reading from DATA readsthe lineafter _ END__, which enables you to include a program and
its data in the samefile.

Listing 17.17 is an example of a program that reads from DATA.

Listing 17.17. An example of the DATA file variable.

1. #!/usr/local/bin/perl
2:

3: $line = <DATA>;

http://docs.rinet.ru:8080/P7/ch17.htm (47 of 52) [2/17/2007 6:03:43 AM]

Day 17 -- System Variables
4: print ("$line");
5: END

6: This is nmy line of data.

$ programl7_17

This is ny |ine of data.

The END _ vaueinline5 indicates the end of the program. When line 3 reads from the DATA file
variable, thefirst lineafter _ END__ isread in and isassigned to $1 i ne. (Subsequent requests for input
from DATA read successive lines, if any exist.) Line 6 then prints thisinput line.

[NOTE

For more informationon __ END__ and methods of indicating the
end of the program, refer to Day 20, "Miscellaneous Features of
Perl.

The Underscore File Variable

The _ (underscore) file variable represents the file specified by the last call to either the st at function or a
file test operator. For example:

$readable = -r "/u/jqpublic/nyfile";

Switeable = -w _;

Here, the _file variable used in the second statement refersto/ u/ j qpubl i ¢/ myfi | e becausethisisthe
filename that was passed to - r .

You can use _ anywhere that afile variable can be used, provided that the file has been opened
appropriately:

if (-T $nyoutfile) {

http://docs.rinet.ru:8080/P7/ch17.htm (48 of 52) [2/17/2007 6:03:44 AM]

Day 17 -- System Variables

print _ ("here is nmy output\n");

Here, the file whose name is stored in $nyout f i | e isassociated with _ because this name was passed to
- T (which tests whether thefileisatext file). Thecall to pri nt writes output to thisfile.

The main benefit of _ isthat it saves time when you are using several file-test operators at once:

if (-r "nyfile" || -w_ || -x _) {

print ("I can read, wite, or execute nyfile.\n");

Using _ rather than nyf i | e savestime because file test operators normally call the UNIX system function
st at . If you specify _, the Perl interpreter istold to use the results of the preceding call to the UNIX st at
function and to not bother calling it again.

Specifying System Variable Names as Words

Asyou have seen, the system variables defined by Perl normally consist of a$, @or %followed by asingle
non-al phanumeric character. This ensures that you cannot define a variable whose name isidentical to that
of a Perl system variable.

If you find Perl system variable names difficult to remember or type, Perl 5 provides an alternative for most
of them. If you add the statement

use Engli sh;

at the top of your program, Perl defines alternative variable names that more closely resemble English
words. Thismakesit easier to understand what your program is doing. Table 17.1 lists these alternative
variable names.

Table17.1. Alternative namesfor Perl| system variables.

|Variable|Alter native name(s)

$_ [$ARG

30 [$PROGRAM_NANME

$< [$REAL_USER | Dor $UI D

$> [$EFFECTI VE_USER _| Dor $EUI D
15([$REAL_GROUP_I Dor $G D

%) [$EFFECTI VE_GROUP_I Dor $EG D
3] [$PERL_VERSI ON

http://docs.rinet.ru:8080/P7/ch17.htm (49 of 52) [2/17/2007 6:03:44 AM]

Day 17 -- System Variables

IS/ [$1 NPUT_RECORD_SEPARATCR or $RS

$\ $OUTPUT_RECORD_SEPARATOR or
$ORS

$, $OUTPUT_FI ELD_SEPARATOR or
$CFS

3" [$LI ST_SEPARATOR

$# [$OFMT

$@ [$EVAL_ERROR

$? [$CHI LD_ERROR

3! [$0S_ERROR or $ERRNO

3. [$1 NPUT_LI NE_NUMBER or $NR

$* [SMULTI LI NE_MATCHI NG

ISl [none (deprecated in Perl 5)

|$; $SUBSCRI PT_SEPARATOR or
$SUBSEP

|$: [$FORVAT_LI NE_BREAK_CHARACTERS

$$ [$PROCESS_| Dor $PI D

[$"A [$ACCUMULATOR

$"D [$DEBUGG NG

[$"F [$SYSTEM FD_MAX
[$71 [$INPLACE_EDI T
[$"L [$FORVAT_FORVFEED
$"P |$PERLDB

$AT [$BASETI ME

$"W [$WARNI NG

[$7X [SEXECUTABLE_NANE
$& [$MATCH

3’ [$PREMATCH

3 [$POSTMATCH

S+ [$LAST_PAREN_MATCH

|$~ [$FORVAT_NAME

|$= [SFORMAT_LI NES_PER_PAGE
|$- [$FORVAT_LI NES_LEFT

$° [$FORVAT_TOP_NAME

3 [$OUTPUT_AUTOFLUSH

$% ISFORMAT_PAGE_NUMBER

Summary

Today you learned about the built-in system variables available within every Perl program. These system
variables are divided into five groups:

« Global scalar variables, which are defined everywhere in the program and contain a single scalar

http://docs.rinet.ru:8080/P7/ch17.htm (50 of 52) [2/17/2007 6:03:44 AM]

Day 17 -- System Variables

\Y

alue

« Pattern system variables, which are defined immediately after a pattern-matching or substitution

0

peration has been performed

« File system variables, which are defined for each input or output file accessible from the program
« Array system variables, each of which contains alist

« Built-infile variables, which are associated with files that are automatically open or automatically
available

Y ou also learned how to specify English-language equivalents for Perl system variables.

Q&A

>0 20 2O

Z>0 20

Why do some system variables use special charactersrather than lettersin their names?

To distinguish them from variables that you define and to ensure that the r eset function
(described in the next chapter) cannot affect them.

Why do some functionsuse $_ asthe default, wher eas othersdo not?

Thefunctionsthat use $_ asthe default are those that are likely to appear in Perl programs specified
on the command line using the - e option.

What isthe current line number when $. isused with the <> operator?

Effectively, the <> operator treatsitsinput files asif they areasinglefile. This meansthat $.
contains the total number of lines seen, not the line number of the current input file. (If you want $.
to contain the line number of the current file, set $. to zero each time eof returnstrue.)

Are pattern system variableslocal or global?

Each pattern system variable is defined only in the current subroutine or block of statements.

Why does Perl define both the $" and the $, system variables?

Some programs like to treat the following statements differently:

print ("@rray");

print (@rray);

(In fact, by default, the first statement puts a space between each pair of elementsin the array, and
the second does not.) The $" and $, variables handle these two separate cases.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material covered, and
exercises to provide you with experience in using what you've learned.

Quiz

1. List the functions and operators that use $_ by default.
2. What do the following variables contain?

a. $=
b. $/
c.$?
d. $!
d. @

3. Explain the differences between ARGV, $ARGV, and GARGV.

http://docs.rinet.ru:8080/P7/ch17.htm (51 of 52) [2/17/2007 6:03:44 AM]

Day 17 -- System Variables

4.
5.

Explain the difference between @ NC and % NC.
Explain the difference between $0 and $1.

Exercises

1

w

Write a program that reads lines of input, replaces multiple blanks and tabs with a single space,
converts all uppercase letters to lowercase, and prints the resulting lines. Use no explicit variable
names in this program.

Write aprogram that uses $' and $_ to remove all extra spaces from input lines.

Write a program that prints the directoriesin your PATH environment variable, one per line.

Write a program that prints numbers, starting with 1 and continuing until interrupted by an | NT
signal.

Write a program whose data consists of one or more numbers per input line. Put the input linesin the
program file itself. Add the numbers and print their total.

BUG BUSTER: What iswrong with the following statement?
if ($line =~ /abc/) {
$ =~ s/ + /;

http://docs.rinet.ru:8080/P7/ch17.htm (52 of 52) [2/17/2007 6:03:44 AM]

http://docs.rinet.ru:8080/P7/index.htm

Week 1 -- In Review

Week 1 1n Review

By now, you know enough about programming in Perl to write programs that perform many useful tasks. The
program in Listing R1.1, which takes a number and prints out its English equivalent, illustrates some of the
concepts you've learned during your first week.

Listing R1.1. Printing the English equivalent of numeric input.

1. #!'/usr/local/bin/perl

3: # define the strings used in printing

4. @igitwrd = ("", "one", "tw", "three", "four", "five",

5: "six", "seven", "eight", "nine");

6: @igitlOword = ("", "ten", "twenty", "thirty", "forty",

7: “fifty", "sixty", "seventy", "eighty", "ninety");

8: @eenword = ("ten", "eleven", "twelve", "thirteen", "fourteen",
9: "fifteen", "sixteen", "seventeen", "eighteen", "nineteen");
10 @roupword = ("", "thousand", "mllion", "billion", "trillion",
11: “quadrillion", "quintillion", "sextillion", "septillion",
12: "octillion", "novillion", "decillion");

13:

14: # read a line of input and renove all bl anks, commas and tabs;

http://docs.rinet.ru:8080/P7/rev1.htm (1 of 6) [2/17/2007 6:03:45 AM]

Week 1 -- In Review

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

conpl ain about anything el se
$inputline = <STDI N>;

chop ($inputline);

$inputline =~ s/[, \t]+//g;

if ($inputline =~ /[™\d]/) {

die ("I nput nust be a nunber.\n");

renove | eadi ng zeroes
$inputline =~ s/"0+//;

$inputline =~ s/"$/0/; # put one back if they're all zero

split into digits: $grouping contains the nunber of groups
of digits, and $oddl ot contains the nunber of digits in the
first group, which may be only 1 or 2 (e.g., the 1 in 1,000)
@igits = split(//, $inputline);
if (@igits > 36) {

die ("Nunmber too |arge for programto handle.\n");
}
$oddlot = @ligits % 3;

$grouping = (@igits-1) / 3;

this loop iterates once for each grouping
$count = O;
whil e ($grouping >= 0) {

i f ($oddl ot == 2) {

$digitl = 0;

http://docs.rinet.ru:8080/P7/rev1.htm (2 of 6) [2/17/2007 6:03:45 AM]

Week 1 -- In Review

42: $digit2 = $digits[O];

43: $digit3 = $digits[1];

44: $count += 2;

45: } elsif ($oddlot == 1) {

46: $digitl = 0;

47: $digit2 = 0;

48: $digits = $digits[O0];

49: $count += 1;

50: } else { # regular group of three digits
51: $digitl = $digits[Scount];

52: $digit2 = $digits[$count+1];

53: $digit3 = $digits[$count +2];

54: $count += 3;

55: }

56: $oddl ot = O;

57: if ($digitl '=0) {

58: print ("$digitword[$digitl] hundred ");
59: }

60: if (($digitl '=0 || ($grouping == 0 && $count > 3)) &&
61: ($digit2 '=0] $digit3 !'=10)) {

62: print ("and ");

63: }

64: if ($digit2 == 1) {

65: print ("$teenword[$digit3] ");

66: } oelsif ($digit2 '=0 && $digit3 = 0) {

67: print ("$digitlOword[$digit?2]-%$digitword[$digit3]

http://docs.rinet.ru:8080/P7/rev1.htm (3 of 6) [2/17/2007 6:03:45 AM]

Week 1 -- In Review

68: } elsif ($digit2 !'=0 || $digit3 I=0) {

69: print ("$digitlOword[$digit2]$digitword[$digit3] ");
70: }

71: if ($digitl '=0 || $digit2!=0 || $digit3 '=0) {

72: print ("$groupword[$grouping]\n");

73: } elsif ($count <= 3 && $grouping == 0) {

74. print ("zero\n");

75: }

76: $gr oupi ng-;

77}

$ progranRl_1
11, 683
el even t housand

si x hundred and ei ghty-three

This program reads in a number up to 36 digits long and prints out its English equivalent, using one line for each
group of three digits.

Lines 4-12 define array variables whose lists are the possible words that can be in anumber. The variable

@li gi t wor d liststhedigits; @i gi t 10wor d lists the words that indicate multiples of ten; @ eenwor d lists
the words that represent the values from 11 to 19; and @r oupwor d lists the names for each group of digits. Note
that some of these lists have an empty first element; this ensures that the array subscripts refer to the correct value.
(For example, without the empty word at the beginning of @i gi t wor d, $di gi t wor d[5] would refer to
four,notfive.)

Lines 14-21 read the input and check whether it isvalid. Valid numbers consist of digits optionally separated by
spaces, tabs, or commas. The substitution operator in line 18 removes these valid separators; the conditional
expression in line 19 checks whether any invalid separators exist.

If the program reaches line 24, the input number isvalid. Line 24 getsrid of any leading zeros (to ensure that, for

http://docs.rinet.ru:8080/P7/rev1.htm (4 of 6) [2/17/2007 6:03:45 AM]

Week 1 -- In Review

example, 000071 isconverted to 71). If anumber consists entirely of zeros, line 24 converts $i nput | i ne to
the empty string; line 25 tests for this empty string and adds a zero if necessary.

Lines 30-35 split the number into individual digits and create alist consisting of these digits. Thislist is assigned to
the array variable @li gi t s. Line 34 determines whether the first group of digits contains fewer than three digits;
an example of thisisthe number 45, 771, whose first group of digits consists of only two digits. The scalar
variable $oddl ot isassigned the number of digitsin thefirst group if the group isan odd lot of one or two; it is
assigned O if the first group of digits contains all three digits.

Line 35 calculates the number of groups of digits (including the initial odd lot). This determines the number of
times that the upcoming printing loop isto be iterated.

Lines 38-79 actually print the English value for this number. Each group of three digitsis printed on its own line.
The scalar variable $count contains the number of digits printed so far and is used as a subscript for the array
variable @li gi t s.

To actudly print the English value corresponding to a group of three digits, this loop first executes lines 40-57,
which assign the values of the digitsin the group to three scalar variables: $di gi t 1, $di gi t 2, and $di gi t 3. If
the group being handled is the first group, lines 40 and 46 check whether the group is an odd lot. For example, if
the first group contains only two digits, the condition in line 40 becomes true, and the variable $di gi t 1, which
represents the first digit of the group, isassigned 0. Using $di gi t 1, $di gi t 2, and $di gi t 3 reducesthe
complexity of the program because no code following line 57 has to check for the value of $oddl ot .

The number of digits actually handled is added to the scalar variable $count at this point.
Line 58 assigns 0 to $oddl ot . Subsequent groups of digits always contain three digits.

Lines 59-77 print the English value associated with this particular group of digits as follows:
1. Lines59-61 print the value of the hundreds place in this group (the first of the three digits).

2. Lines 62-64 check whether the word and needs to appear here. The word and isrequired in the following
Cases:

0 $di gi t 1 isnonzero and one of the other digitsisnonzero (asint hr ee hundred and four)

0 $di gi t 1 iszero, one of the other digitsis nonzero, and thisisthe last group to be handled (asin the
and four part of the number 11, 004)

3. If thesecond digitisal (asin 317), one of the "teen words' (such asel even,twel ve,andt hi rt een)
must be used. Line 66 checks for this condition, and line 67 prints the appropriate word.

4. If both of the last two digits are defined, they both must be printed, and a dash must separate them (asin
forty-two).Line69 prints this pair of words and the dash.

5. If only one of the last two digitsis defined, it is printed using line 71. (Note that line 71 actually specifies
that both digits are printed; however, because only oneis actually nonzero, it is the only one that appears.
The digit that is zero appears in the output as the empty string because zero is equivalent to the empty string
in Perl.)

6. Lines 73-74 print the word associated with this group of digits. For example, if this group is the second-last
group of digits, theword t housand is printed.

7. Line 75 handles the special case of the number 0. In this case, theword zer o is printed.
Once the English value for a particular group of digitsis printed, the scalar variable $gr oupi ng hasitsvalue

decreased by one, and the program continues with the next group of digits. If there are no more digits to print, the
program terminates.

http://docs.rinet.ru:8080/P7/rev1.htm (5 of 6) [2/17/2007 6:03:45 AM]

Week 1 -- In Review

http://docs.rinet.ru:8080/P7/rev1.htm (6 of 6) [2/17/2007 6:03:45 AM]

http://docs.rinet.ru:8080/P7/index.htm

Week 2 -- At a Glance

Week 2 at a Glance

CONTENTS

« Where You're Going

By now, you know enough about Perl to write many useful programs. Y ou've discovered that Perl is
powerful enough to enable you to perform complicated tasks, and simple enough to accomplish them
quickly.

Where You're Going

The second week covers most of the features of the language not covered in the first week and
describes some of the many library functions supplied with Perl. Here's a summary of what you'll
learn.

Day 8, "More Control Structures," discusses the control flow statements not previously covered.

Day 9, "Using Subroutines," shows how you can break down your program into more manageable
chunks.

Day 10, "Associative Arrays," introduces one of the most powerful and useful constructsin Perl,
associative arrays, and it shows how you can use these arrays to simulate other data structures.

Day 11, "Formatting Y our Output,” shows how you can use Perl to produce tidy reports.

Day 12, "Working with the File System," shows how you can interact with your system's directory
structure.

Day 13, "Process, String, and Mathematical Functions," describes the library functions that interact
with processes running on the system, operate on text strings, and perform mathematical operations.

Day 14, "Scalar-Conversion and List-Manipulation Functions," describes the library functions that
convert values from one form to another and work with lists and array variables.

http://docs.rinet.ru:8080/P7/gl2.htm (1 of 2) [2/17/2007 6:03:46 AM]

Week 2 -- At a Glance

By the end of the second week, you'll have mastered amost al of the features of Perl and you'll have
learned about many of the library functions supplied with the language.

http://docs.rinet.ru:8080/P7/gl2.htm (2 of 2) [2/17/2007 6:03:46 AM]

http://docs.rinet.ru:8080/P7/index.htm

Day 9 -- Using Subroutines

Chapter 9

Using Subroutines

CONTENTS

o What |Is a Subroutine?
« Defining and Invoking a Subroutine

0 Forward References to Subroutines

e Returning a VVaue from a Subroutine

o Return Values and Conditional Expressions

e Ther et urn Statement
e Using Loca Variablesin Subroutines
o Initializing Local Variables

e Passing Values to a Subroutine

0 Passing aList to a Subroutine

o Calling Subroutines from Other Subroutines

o Recursive Subroutines

e Passing Arrays by Name Using Aliases

« Using the do Statement with Subroutines
« Specifying the Sort Order
» Predefined Subroutines
o Creating Startup Code Using BEG N
o Creating Termination Code Using END
0 Handling Non-Existent Subroutines Using AUTOLQAD
o SUMMary
o Q&A
o Workshop
o Quiz

o Exercises

Today's lesson shows you how to use subroutines to divide your program into smaller, more
manageable modules. Today, you learn about the following:

o« What asubroutineis

http://docs.rinet.ru:8080/P7/ch9.htm (1 of 50) [2/17/2007 6:03:55 AM]

Day 9 -- Using Subroutines

« How to define subroutines

« How to invoke subroutines

« How to return avalue from a subroutine

o How tousether et ur n statement

« How to uselocal variables in subroutines

« How to pass arguments to subroutines

« How to call subroutines from other subroutines

« Themeaning of recursive subroutines

« How to pass arrays by name in subroutines using aliasing

o How to usethe do statement with subroutines

« How to use subroutines to change the sort order used by sor t
« How to provide startup and termination code using BEG N and END
o How to use AUTOLOAD

What Is a Subroutine?

In Perl, asubroutine is a separate body of code designed to perform a particular task. A Perl program
executes this body of code by calling or invoking the subroutine; the act of invoking a subroutineis
called a subroutine invocation.

Subroutines serve two useful purposes:
« They break down your program into smaller parts, making it easier to read and understand.

« They enable you to use one piece of code to perform the same task multiple times, eliminating
needless duplication.

Defining and Invoking a Subroutine

Listing 9.1 shows how a subroutine works. This program calls a subroutine that reads a line from the
standard input file and breaks it into numbers. The program then adds the numbers together.

Listing 9.1. A program that uses a subroutine.

1: #!'/usr/local/bin/perl

3: $total = O;

http://docs.rinet.ru:8080/P7/ch9.htm (2 of 50) [2/17/2007 6:03:55 AM]

Day 9 -- Using Subroutines

4. &get nunbers;

5: foreach $nunber (@wunbers) {
6: $total += $nunber;
7}

8: print ("the total is $total\n");

10: sub get nunbers {

11: $line = <STDI N>;

12: $line =~ s/ M s+|\s*\n$//qg;

13: @unbers = split(/\s+/, $line);
14: }

$ progrand 1
11 8 16 4

the total is 39

Lines 10-14 are an example of a subroutine. The keyword sub tells the Perl interpreter that thisisa
subroutine definition. The get nunber s immediately following sub isthe name of the subroutine;
the Perl program uses this name when invoking the subroutine.

The program starts execution in the normal way, beginning with line 3. Line 4 invokes the subroutine
get nunber s; the & character tells the Perl interpreter that the following name is the name of a
subroutine. (This ensures that the Perl interpreter does not confuse subroutine names with the names
of scalar or array variables.)

http://docs.rinet.ru:8080/P7/ch9.htm (3 of 50) [2/17/2007 6:03:55 AM]

Day 9 -- Using Subroutines

The Perl interpreter executes line 4 by jumping to the first executable statement inside the subroutine,
whichisline 11. The interpreter then executes lines 11-13.

Lines 11-13 create the array @wunber s asfollows:
o Line1l readsaline of input from the standard input file.
« Line 12 removesthe leading and trailing white space (including the trailing newline) from the
input line.

« Line 13 then breaks the input line into numbers and assigns the resulting list of numbersto
@unber s.

After line 13 isfinished, the Perl interpreter jumps back to the main program and executes the line
immediately following the subroutine call, which isline 5.

Lines 5-7 add the numbers together by using the f or each statement to loop through the list stored in
@unber s. (Note that this program does not check whether a particular element of @iunber s
actually consists of digits. Because character strings that are not digits are convertedto O in
expressions, thisisn't asignificant problem.)

The syntax for a subroutine definition is

sub subnane {

st at enent _bl ock

subnane isaplaceholder for the name of the subroutine. Like all Perl names, subnanme consists of
an alphabetic character followed by one or more letters, digits, or underscores.

st at enent _bl ock isthe body of the subroutine and consists of one or more Perl statements. Any
statement that can appear in the main part of a Perl program can appear in a subroutine.

INOTE

The Perl interpreter never confuses a subroutine name with a
scalar variable name or any other name, because it can always tell
from the context which name you are referring to. This means that
you can have a subroutine and a scalar variable with the same
name. For example:

$word = O;
&wor d;
Here, when the Perl interpreter sees the & character in the second

statement, it realizes that the second statement is calling the
subroutine named wor d.

2,

WARNING

http://docs.rinet.ru:8080/P7/ch9.htm (4 of 50) [2/17/2007 6:03:55 AM]

Day 9 -- Using Subroutines

When you are defining names for your subroutines, it's best not to
use a name belonging to a built-in Perl function that you plan to
use.

For example, you could, if you want, define a subroutine named
spl i t. The Perl interpreter can always distinguish an invocation
of the subroutinespl i t from an invocation of the library
function spl i t , because the name of the subroutine is preceded
by an & when it isinvoked, as follows:

@wrds = &split(1, 2); # subroutine
@wrds = split(/\s+/, $line); # library
function

However, it's easy to leave off the & by mistake (especially if you
are used to programming in C, where subroutine calls do not start
with an &). To avoid such problems, use subroutine names that
don't correspond to the names of library functions.

Perl subroutines can appear anywhere in a program, even in the middle of aconditiona statement. For
example, Listing 9.2 is a perfectly legal Perl program.

Listing 9.2. A program containing a subroutine in the middle of the main program.

1. #!'/usr/local/bin/perl

3: while (1) {

4: & eadal i ne;

5: last if ($line eq "");
6: sub readal i ne {

7: $l i ne = <STDI N>;
8: }

9: print (3$line);

10: }

11: print ("done\n");

http://docs.rinet.ru:8080/P7/ch9.htm (5 of 50) [2/17/2007 6:03:55 AM]

Day 9 -- Using Subroutines

$ progrand 2

Here is a |ine of input.
Here is a |ine of input.
"D

done

This program just reads lines of input from the standard input file and writes them straight back out to
the standard output file.

Line 4 callsthe subroutiner eadal i ne. When you examine this subroutine, which is contained in
lines 6-8, you can see that it reads aline of input and assignsit to the scalar variable $I i ne.

When r eadal i ne isfinished, program execution continues with line 5. When line 5 is executed, the
program skips over the subroutine definition and continues with line 9. The code inside the subroutine
is never directly executed, even if it appears in the middle of a program; lines 6-8 can be executed
only by a subroutine invocation, such as that found in line 4.

|TIP

Although subroutines can appear anywhere in a program, it
usually is best to put al your subroutines at either the beginning of
the program or the end. Following this practice makes your
programs easier to read.

Forward References to Subroutines
Asyou have seen, the Perl interpreter uses the & character to indicate that a subroutine is being

specified in astatement. In Perl 5, you do not need to supply an & character when calling a subroutine
If you have already defined the subroutine.

sub readal i ne {

http://docs.rinet.ru:8080/P7/ch9.htm (6 of 50) [2/17/2007 6:03:55 AM]

Day 9 -- Using Subroutines

$li ne = <STDI N>;

readal i ne;

Because the Perl interpreter already knowsthat r eadal i ne isasubroutine, you don't need to
specify the & when calling it.

If you prefer to list all your subroutines at the end of your program, you can still omit the & character
provided you supply aforward reference for your subroutine, as shown in the following:

sub readal i ne; # forward reference
readal i ne;

sub readal i ne {

$li ne = <STDI N>;

The forward reference tells the Perl interpreter that r eadal i ne isthe name of a subroutine. This
means that you no longer need to supply the & when you call r eadal i ne.

i,

WARNING

Occasionally, calling a subroutine without specifying the &
character might not behave the way you expect. If your program is
behaving strangely, or you are not sure whether or not to use the &
character, supply the & character with your call.

Returning a Value from a Subroutine

Take another look at the get nunber s subroutine from Listing 9.1.

http://docs.rinet.ru:8080/P7/ch9.htm (7 of 50) [2/17/2007 6:03:55 AM]

Day 9 -- Using Subroutines

sub get nunbers {
$line = <STDI N>;
$line =~ s/ s+|\s*\n$//qg;

@wunbers = split(/\s+/, $tenp);

Although this subroutine is useful, it suffers from one serious limitation: it overwrites any existing list
stored in the array variable @unber s (aswell asany value storedin $l i ne or $t enp). This
overwriting can lead to problems. For example, consider the following:

@unbers = ("the", "a", "an");
&get nunbers;

print ("The value of \@wunbers is: @unbers\n");

When the subroutine get nunber s isinvoked, the value of @unber s is overwritten. If you just
examine this portion of the program, it is not obvious that thisis what is happening.

To get around this problem, you can employ a useful property of subroutinesin Perl: The value of the
last expression evaluated by the subroutine is automatically considered to be the subroutine's return
value.

For example, in the subroutine get nunber s from Listing 9.1, the last expression evaluated is

@wunbers = split(/\s+/, $tenp);

The value of this expression isthe list of numbers obtained by splitting the line of input. This means
that this list of numbersisthe return value for the subroutine.

To see how to use a subroutine return value, look at Listing 9.3, which modifies the word-counting
program to use the return value from the subroutine get nunber s.

Listing 9.3. A program that uses a subroutinereturn value.

http://docs.rinet.ru:8080/P7/ch9.htm (8 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

1. #!'/usr/Ilocal/bin/perl
2:
3: $total = 0;

4. @wunbers = &get nunbers;

5. foreach $nunber (@wunbers)

6: $total += $nunber;

7.}

8: print ("the total is $total\n");

10: sub get nunbers {

this is the return val ue

11: $l i ne = <STDI N>;

12: $line =~ s/ M\ s+ \s*\n$//qg;
13: split(/\s+/, $line);

14: }

$ progrand_3
11 8 16 4

the total 1s 39

Line 4, once again, calls the subroutine get nunber s. Asbefore, the array variable @wunber s is

http://docs.rinet.ru:8080/P7/ch9.htm (9 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

assigned the list of numbers read from the standard input file; however, in this program, the
assignment is in the main body of the program, not in the subroutine. This makes the program easier
to read.

The only other difference between this program and Listing 9.1 isthat thecall tospl i t inline 13 no
longer assigns anything to @unber s. Infact, it doesn't assign the list returned by spl i t to any
variable at all, because it does not need to. Line 13 isthe last expression evaluated in get nunber s,
so it automatically becomes the return value from get nunber s. Therefore, when line 4 calls

get nunber s, thelist returned by spl i t isassigned to the array variable @iunber s.

INOTE

If the idea of evaluating an expression without assigning it
confuses you, there's nothing wrong with creating a variable inside
the subroutine just for the purpose of containing the return value.
For example:

sub get nunbers {

$line = <STDI N>;

$line =~ s/Ms+|\s*\n$//qg;

@etval = split(/\s+/, $tenp); # the return
val ue

}

Here, it is obvious that the return value is the contents of
@ et val .

The only drawback to doing thisisthat assigning the list returned
by split to@ etval isdightly lessefficient. In larger
programs, such efficiency costs are worth it, because subroutines
become much more comprehensible.

Using a special return variable also eliminates an entire class of
errors, which you will seein "Return Vaues and Conditional
Expressions,” later today.

Y ou can use areturn value of a subroutine any place an expression is expected. For example:

foreach $nunber (&getnunbers) {

print ("S$nunber\n");

Thisf or each statement iterates on the list of numbers returned by get nunber s. Each element of
thelist isassigned to $nunber in turn, which means that this loop prints al the numbersin the list,
each on itsown line.

Listing 9.4 shows another example that uses the return value of a subroutine in an expression. This
time, the return value is used as an array subscript.

http://docs.rinet.ru:8080/P7/ch9.htm (10 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

Listing 9.4. A program that usesareturn valueasan array subscript.

1. #!'/usr/local/bin/perl

3: srand();

4: print ("Random nunber tester.\n");

5. for ($count = 1; $count <= 100; $count++) {

6: $randnuni & ntrand] += 1;

7.}

8: print ("Totals for the digits O through 9:\n");
9: print ("@andnumn");

10:

11: sub intrand {

12: $num = int (rand(10));

13: }

$ progand_4

Random nunber tester.

Totals for the digits O through 9:
10 9 11 10 8 8 12 11 9 12

$

http://docs.rinet.ru:8080/P7/ch9.htm (11 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

This program uses the following three built-in functions:

isrand |Initializes the built-in random-number generator
rand |Generates arandom (non-integral) number greater than zero and less

than the value passed to it
li nt |Getsrid of the non-integer portion of a number

The subroutinei nt r and first callsr and to get arandom number greater than 0 and less than 10.
Thereturn valuefromr and ispassed toi nt to remove the fractiona portion of the number; this
means, for example, that 4.77135 becomes 4. This number becomes the return value returned by

I ntrand.

Line6 callsi nt r and. Thereturn value fromi nt r and, an integer between 0 and 9, serves as the
subscript into the array variable r andnum If the return value fromi nt r and is7, $r andnuni 7]
has its value increased by one.

As aconseguence, at any given time, the nth value of @ andnumcontains the number of occurrences
of n asarandom number.

Line 9 prints out the number of occurrences of each of the 10 numbers. Each number should occur
approximately the same number of times (although not necessarily exactly the same number of times).

Return Values and Conditional Expressions

Because the return value of a subroutine is always the last expression evaluated, the return value
might not always be what you expect.

Consider the ssimple program in Listing 9.5. This program, like the onein Listing 9.3, reads an input
line, breaks it into numbers, and adds the numbers. This program, however, attempts to do all the
work inside the subroutineget _t ot al .

Listing 9.5. A program illustrating a potential problem with return valuesfrom
subroutines.

1. #!'/usr/local/bin/perl

3: $total = &get total;

4: print("The total is $total\n");

http://docs.rinet.ru:8080/P7/ch9.htm (12 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

6: sub get total {

7: $val ue = 0;

8: $inputline = <STDI N>;

9: $inputline =~ s/ M s+ \s*\n$//g;

10: @ubwords = split(/\s+/, $inputline);
11: $i ndex = 0;

12: whi |l e ($subwords[$i ndex] ne "") {

13: $val ue += $subwor ds[$i ndex++] ;
14 }

15: }

$ progrand 5
11 8 16 4

the total is

Clearly, this program is supposed to assign the contents of the scalar variable $val ue to the scalar
variable $t ot al . However, when line 4 tries to print the total, you see that the value of $t ot al is
actually the empty string. What has happened?

The problem isin the subroutineget total .Inget t ot al , asinall other subroutines, the return
value isthe value of the last expression evaluated. However, inget _t ot al , the last expression
evaluated is not the last expression in the program.

http://docs.rinet.ru:8080/P7/ch9.htm (13 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

The last expression to be evaluated in get _t ot al isthe conditional expressioninline 12, whichis

$subwor ds[$i ndex] ne ""

Theloop in lines 12-14 iterates until the value of this expression is 0. When the value of this
expression is 0, the loop terminates and the subroutine terminates. This means that the value of the
last expression evaluated in the subroutine is O and that the return value of the subroutineisO.
Because O istreated as the null string by pri nt (0 and the null string are equivalent in Perl), line 4
prints the following, which isn't what the program is supposed

to do:

the total is

Listing 9.6 shows how you can get around this problem.

Listing 9.6. A program that correctsthe problem that occursin Listing 9.5.

1: #!'/usr/local/bin/perl

3: S$total = &get total;
4: print("The total is $total.\n");

5: sub get _total {

6: $val ue = 0;

7: $i nputli ne = <STDI N>;

8: $inputline =~ s/M\s+|\s*\n$//qg;

9: @ubwords = split(/\s+/, $inputline);
10: $i ndex = 0;

11: whi | e ($subwor ds[$i ndex] ne "") {

http://docs.rinet.ru:8080/P7/ch9.htm (14 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

12: $val ue += $subwor ds[$i ndex++] ;
13: }

14: $retval = $val ue;

15: }

$ progrand 6
11 8 16 4

the total 1s 39.

This program isidentical to Listing 9.5 except for one difference: line 15 has been added. Thisline
assigns the total stored in $val ue to the scalar variable $r et val .

Line 15 ensures that the value of the last expression evaluated in the subroutineget _t ot al is,in
fact, the total which is supposed to become the return value. This means that line 3 now assigns the
correct total to $t ot al , which in turn means that line 4 now prints the correct result.

Note that you don't really need to assign to $r et val . The subroutineget _t ot al canjust aseasily
be the following:

sub get total {
$val ue = 0;
$i nputline = <STDI N>;
$inputline =~ s/ s+|\s*\n$//g;
@ubwords = split(/\s+/, $inputline);

$i ndex = 0;

http://docs.rinet.ru:8080/P7/ch9.htm (15 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

whi | e ($subwords[$i ndex] ne "") {

$val ue += $subwor ds[$i ndex++] ;

$val ue;

Here, the final expression evaluated by the subroutineis ssimply $val ue. The value of this
expression isthe current value stored in $val ue, which isthe sum of the numbersin theline.

|TIP

Subroutines, such asget _t ot al inListing 9.6, which assign
their return value at the very end are known as single-exit
modules.

Single-exit modules avoid problems like those you saw in Listing
9.5, and they usually are much easier to read. For these reasons, it
Isagood ideato assign to the return value at the very end of the
subroutine, unless there are overwhelming reasons not to do so.

The r et ur n Statement

Another way to ensure that the return value from a subroutine is the value you want is to use the
r et ur n statement.

The syntax for ther et ur n statement is

return (retval);

r et val isthe value you want your subroutine to return. It can be either a scalar value (including the
result of an expression) or alist.

Listing 9.7 provides an example of the use of ther et ur n statement.

Listing 9.7. A program that usesther et ur n statement.

1. #!'/usr/local/bin/perl

http://docs.rinet.ru:8080/P7/ch9.htm (16 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

2:

3: $total

= &get total;

4: if ($total eq "error") {

5: print ("No input supplied.\n");
6: } else {

7: print("The total is $total.\n");
8. }

9:

10: sub get total {

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

$val ue = 0;

<STDI N>;

$i nputl i ne
$inputline =~ s/ "\ s+\s*\n$//g;
if ($inputline eq "") {
return ("error");
}
@ubwords = split(/\s+/, $inputline);
$i ndex = O0;
whi | e ($subwords[$i ndex] ne "") {
$val ue += $subwor ds[$i ndex++] ;

}

$retval = $val ue;

http://docs.rinet.ru:8080/P7/ch9.htm (17 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

$ progranmd 7
"D

No i nput supplied.

This program is similar to the onein Listing 9.6. The only difference is that this program checks
whether an input line exists.

If the input line does not exist, the conditional expression in line 14 becomestrue, and line 15is
executed. Line 15 exits the subroutine with the return value er r or ; thismeansthat er r or is
assigned to $t ot al inline3.

This program shows why allowing scalar variables to store either numbers or character stringsis
useful. When the subroutine get _t ot al detectsthe error, it can assign avalue that is not an integer
to $t ot al , which makesit easier to determine that something has gone wrong. Other programming
languages, which only enable you to assign either a number or a character string to a particular
variable, do not offer thisflexibility.

Using Local Variables in Subroutines

The subroutineget _t ot al inListing 9.7 defines several variables that are used only inside the
subroutine: the array variable @ ubwor ds, and the four scalar variables $i nput | i ne, $val ue,
$i ndex, and $r et val .

If you know for certain that these variables are going to be used only inside the subroutine, you can
tell Perl to define these variables as local variables.
In Perl 5, there are two statements used to define local variables:

« Theny statement, which defines variables that exist only inside a subroutine.

o Thel ocal statement, which defines variables that do not exist inside the main program, but
inside the subroutine and any subroutines called by the subroutine. (Calling subroutines from
other subroutinesis discussed later today.)

In Perl 4, the my statement is not defined, so you must use| ocal to define avariablethat is not
known to the main program.

Listing 9.8 shows how you can use ny to define a variable that exists only inside a subroutine.
INOTE

http://docs.rinet.ru:8080/P7/ch9.htm (18 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

If you are using Perl 4, replace ny with| ocal inal the
remaining examplesin this chapter. For example, in Listing 9.8,
replace my with| ocal inlines 13 and 14, which produces

| ocal ($total, $inputline, @ubwords);
| ocal (%$index, $retval);

In Perl, ny and | ocal behaveidentically and use the same
syntax. The only difference between them is that variables created
using ny are not known outside the subroutine.

Listing 9.8. A program that useslocal variables.

10:

11:

12:

13:

14:

15:

16:

#!/usr/ | ocal / bi n/ perl

$total = O;

while (1) {

}

$linetotal = &get _total;

last if ($linetotal eq "done");

print ("Total for this line: $linetotal\n");

$total += $linetotal;

print ("Total for all lines: $total\n");

sub get total {

my ($total, $inputline, @ubwords);
ny ($index, $retval);

$total = O;

$i nputline <STDI N>;

http://docs.rinet.ru:8080/P7/ch9.htm (19 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

17: if (Sinputline eq "") {

18: return ("done");

19: }

20: $inputline =~ s/ s+ \s*\n$//g;

21: @ubwords = split(/\s+/, $inputline);
22: $i ndex = 0;

23: whi | e ($subwords[$i ndex] ne "") {

24: $total += $subwor ds[$i ndex++] ;
25: }

26: $retval = S$total;

27: '}

$ progrand 8

11 8 16 4

Total for this line: 39

72061

Total for this line: 34

"D

Total for

$

all lines: 73

http://docs.rinet.ru:8080/P7/ch9.htm (20 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

This program uses two copies of the scalar variable $t ot al . One copy of $t ot al isdefined in the
main program and keeps arunning total of all of the numbersin all of the lines.

The scalar variable $t ot al isalso defined in the subroutine get _t ot al ; in this subroutine,

$t ot al refersto thetotal for aparticular line, and line 13 definesit as alocal variable. Because this
copy of $t ot al isonly defined inside the subroutine, the copy of $t ot al defined in the main
program is not affected by line 15 (which assigns O to $t ot al).

P,
WARBHN:;

Because alocal variable is not known outside the subroutine, the
local variable is destroyed when the subroutine is completed. If
the subroutine is called again, anew copy of thelocal variableis
defined.

This means that the following code does not work:

sub subroutine_count {
ny($nunber of calls);
$nunber _of calls += 1;

}

This subroutine does not return the number of times

subr out i ne_count hasbeen called. Because a new copy of
$nunber of cal | s isdefined every time the subroutineis
caled, $nunber _of _cal | s isaways assigned thevalue 1.

L ocal variables can appear anywhere in a program, provided they are defined before they are used. It
IS good programming practice to put al your local definitions at the beginning of your subroutine.

Initializing Local Variables

If you want, you can assign avalue to alocal variable when you declare it. For example:

sub ny_sub {

ny($scal ar) = 43;

mny(@rray) = ("here's", "a", "list");

code goes here

Here, the local scalar variable $scal ar isgiven aninitia value of 43, and the local array variable

http://docs.rinet.ru:8080/P7/ch9.htm (21 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

@r r ay isinitialized to contain thelist (" here' s", "a", "list").

Passing Values to a Subroutine

Y ou can make your subroutines more flexible by allowing them to accept values passed from the

main program; these values passed from the main program are known as arguments.

Listing 9.9 provides a very simple example of a subroutine that accepts three arguments.

Listing 9.9. A program that uses a subroutineto print three numbersand their

total.

1: #!'/usr/local/bin/perl

3: print ("Enter three nunbers, one at a tine:\n");
4: $nunberl = <STDI N>;

5: chop ($nunberl);

6: $nunber2 = <STDI N>;

7: chop (S$nunber?2);

8: $nunber3 = <STDI N>;

9: chop ($nunber3);

10: &printnum ($nunberl, $nunber?2, $nunber 3);

11:

12: sub printnum {

13: my($nunber 1, S$nunber2, $nunber3) = @;
14: ny($total);

15: print ("The nunbers you entered: ");
16: print ("$nunmberl $nunber2 $nunmber3\n");

http://docs.rinet.ru:8080/P7/ch9.htm (22 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

17: $total = $nunberl + $nunber2 + $nunber 3;
18: print ("The total: $total\n");
19: }

$ progrand 9

Enter three nunbers, one at a tine:
S

11

4

The nunbers you entered: 5 11 4

The total: 20

Line 10 callsthe subroutine pr i nt num Three arguments are passed to pr i nt num the value stored
in$nunber 1, the value stored in $nunber 2, and the value stored in $nunber 3. Note that
arguments are passed to subroutines in the same way they are passed to built-in library functions.

Line 13 defines local copies of the scalar variables$nunber 1, $nunber 2, and $nunber 3. It then
assigns the contents of the system variable @ to these scalar variables. @ is created whenever a
subroutine is called with arguments; it contains alist consisting of the argumentsin the order in which
they are passed. In thiscase, pr i nt numis called with arguments 5, 11, and 4, which means that @
containsthelist (5, 11, 4).

The assignment in line 13 assigns the list to the local scalar variables that have just been defined. This
assignment works just like any other assignment of alist to a set of scalar variables. The first element
of thelist, 5, isassigned to thefirst variable, $nunber 1; the second element of thelist, 11, is
assigned to $nunber 2; and the final element, 4, isassigned to $nunber 3.

INOTE

http://docs.rinet.ru:8080/P7/ch9.htm (23 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

After the array variable @ has been created, it can be used
anywhere any other array variable can be used. This means that
you do not need to assign its contents to local variables.

The following subroutine is equivalent to the subroutine in lines
12-19 of Listing 9.9:

sub printnum {

nmy($total);

print ("The nunbers you entered: ");
print ("$_[0] $_[1] $_[2]\n");
$total = $ [0] + $ [1] + $_[2];
print ("The total: S$total\n");

}

Here, $ [O] refersto thefirst element of the array variable @ ,
$_[1] referstothe second element, and $_[2] referstothe
third element.

This subroutineis alittle more efficient, but it is harder to read.

|TIP

It usually is better to define local variables and assign @ to them
because then your subroutines will be easier to understand.

Listing 9.10 is another example of a program that passes arguments to a subroutine. This program
uses the same subroutine to count the number of words and the number of charactersin afile.

Listing 9.10. Another example of a subroutine with arguments passed to it.

1. #!'/usr/local/bin/perl

3: $wordcount = $charcount = O;

4: $charpattern = "";

5: S$wordpattern = "\\s+";

6: while ($line = <STDIN>) {

7: $char count += &count ($l i ne, $charpattern);
8: $line =~ s/ M\ s+|\s+$//g;

9: $wor dcount += &count ($li ne, $wordpattern);

http://docs.rinet.ru:8080/P7/ch9.htm (24 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

10: }

11: print ("Totals:

$wor dcount words, $charcount characters\n");

12:

13: sub count {

14: my ($line, $pattern) = @;

15: ny ($count);

16: if ($pattern eq "") {

17: @tens = split (//, $line);
18: } else {

19: @tens = split (/$pattern/, $line);
20: }

21: $count = @t ens;

22: }

$ progrand 10

This is a line of input.

Here i s another I|ine.

"D

Total s: 10 words, 47 characters

$

http://docs.rinet.ru:8080/P7/ch9.htm (25 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

This program reads lines from the standard input file until the file is exhausted. Each line hasiits
characters counted and its words counted.

Line 7 determines the number of charactersin aline by calling the subroutine count . This
subroutine is passed the line of input and the string stored in $char pat t er n, which is the empty
string. Inside the subroutine count , thelocal variable $pat t er n receives the pattern passed to it by
the call inline 7. This means that the value stored in $pat t er n isaso the empty string.

Lines 16-20 split the input line. The pattern specified inthecall tospl i t hasthe value stored in
$pat t er n substituted into it. Because $pat t er n currently contains the empty string, the pattern
used to split thelineis/ / , which splits the input line into individual characters. As aresult, each
element of the resulting list stored in @ t ens is acharacter in the input line.

The total number of elementsin the list-in other words, the total number of charactersin the input
line-is assigned to $count by line 17. Because thisis the last expression evaluated in the subroutine,
the resulting total number of charactersis returned by the subroutine. Line 8 adds thistotal to the
scalar variable $char count .

Line 8 then removes the leading and trailing white space; this white space isincluded in the total
number of characters-because spaces, tabs, and the trailing newline character count as characters-but
Is not included when the line is broken into words.

Line 9 calls the subroutine count again, thistime with the pattern stored in $wor dpat t er n, which
is\ s+. (Recall that you need to use two backslashes in a string to represent a single backslash,
because the\ character isthe escape character in strings.) This value, representing one or more
whitespace characters, is assigned to $pat t er n inside the subroutine, and the pattern passed to

spl it therefore becomes/\ s+/ .

Whenspl it iscaled with this pattern, @ t ens isassigned alist of words. The total number of
wordsinthelist isassigned to $count and isreturned; line 11 adds this returned value to the total
number of words.

Passing a List to a Subroutine

If you want, you can pass a list to a subroutine. For example, the following subroutine adds the
elements of alist together and prints the result:

sub addlist {
ny (@Qist) = @;
$total = 0O;

foreach $item (@ist) {

http://docs.rinet.ru:8080/P7/ch9.htm (26 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines
$total += $item

}

print ("The total is $total\n");

To invoke this subroutine, passit an array variable, alist, or any combination of lists and
scalar values.

gaddlist (@wylist);
gaddlist ("14", "6", "11"):

&addl i st ($val uel, @ublist, $val ue2);

In each case, the values and lists supplied in the call to addl i st are merged into asingle list and
then passed to the subroutine.

Because values are merged into asingle list when alist is passed to a subroutine, you can only define
one list as an argument for a subroutine. The subroutine

sub twolists {

ny (@istl, @ist2) = @;

isn't useful because it always assigns the empty listto @i st 2, and because @ i st 1 absorbs all of
the contents of @ .

Thismeans that if you want to have both scalar variables and alist as arguments to a subroutine, the
list must appear last, asfollows:

sub twoargs {

ny ($scalar, @ist) = @;

http://docs.rinet.ru:8080/P7/ch9.htm (27 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines
If you call this subroutine using

& woar gs(47, @wvylist);

thevalue47 isassigned to $scal ar,and @ryl i st isassignedto @i st .

If you want, you can call t woar gs with asinglelist, asfollows:

& woar gs(@yl i st);

Here, thefirst element of @ryl i st isassignedto $scal ar, and therest of @yl i st isassigned to
@i st.

INOTE

If you find this confusing, it might help to realize that passing
arguments to a subroutine follows the same rules as assignment
does. For example, you can have

($scalar, @istl) = @i st2;

because $scal ar isassigned thefirst lement of @ i st 2.
However, you can't have this:

(@istl, $scalar) = @i st2;

because all of @i st 1 would beassignedto @i st 2 and
$scal ar would be assigned the null string.

Calling Subroutines from Other Subroutines

In Perl, you can call subroutines from other subroutines. To call a subroutine from another subroutine,
use the same subroutine-invocation syntax you've been using all along. Subroutines that are called by
other subroutines are known as nested subroutines (because one call is "nested" inside the other).

Listing 9.11 is an example of a program that contains a nested subroutine. It isafairly smple
modification of Listing 9.10 and counts the number of words and characters in three lines of standard
input. It also demonstrates how to return multiple values from a subroutine.

Listing 9.11. An example of a nested subroutine.

1: #!'/usr/local/bin/perl

2:

http://docs.rinet.ru:8080/P7/ch9.htm (28 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

($wor dcount, $charcount) = &getcounts(3);

print ("Totals for three lines: ");

print ("$wordcount words, $charcount characters\n");

sub getcounts {

ny ($numines) = @;

ny ($charpattern, $wordpattern);

ny ($charcount, $wordcount);

my ($line, $linecount);

ny (@etval);

$charpattern = ;

$wordpattern = "\\s+";

$l i necount = $charcount = $wordcount = O;

while (1) {

¥

@ et val

$li ne = <STDI N>;

last if ($line eq "");

$l i necount ++;

$charcount += &count ($line, $charpattern);
$line =~ s/ M s+|\s+$//g;

$wor dcount += &count ($line, $wordpattern);

last if ($linecount == $nunlines);

= ($wordcount, $charcount);

http://docs.rinet.ru:8080/P7/ch9.htm (29 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

26: }
27:

28: sub count {

29: my ($line, $pattern) = @;

30: ny ($count);

31: if ($pattern eq "") {

32: @tens = split (//, $line);

33: } else {

34: @tens = split (/$pattern/, $line);
35: }

36: $count = @tens;

37: }

$ progrand 11

This is a line of input.
Here is another |ine.
Here is the last |ine.

Totals for three lines: 15 words, 70 characters

The main body of this program now consists of only five lines of code, including the special header

http://docs.rinet.ru:8080/P7/ch9.htm (30 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

comment and ablank line. Thisis because most of the actual work is being done inside the
subroutines. (Thisis common in large programs. Most of these programs call afew main subroutines,
which in turn call other subroutines. This approach makes programs easier to read, because each
subroutine is compact and concise.)

Line 3 calls the subroutine get count s, which retrieves the line and character count for the three
lines from the standard input file. Because alist containing two elementsis returned by get count s,
astandard "list to scalar variable" assignment can be used to assign the returned list directly to

$wor dcount and $char count .

The subroutine get count s issimilar to the main body of the program in Listing 9.10. The only
difference isthat the whi | e loop has been modified to loop only the number of times specified by
the argument passed to get count s, which is stored in the local variable $numl i nes.

The subroutine get count s actually does the word and character counting by calling a nested
subroutine, count . This subroutine isidentical to the subroutine of the same namein List-ing 9.10.

INOTE

The @ variableisalocal variable that is defined inside the
subroutine. When a subroutine calls a nested subroutine, a new
copy of @ iscreated for the nested subroutine.

For example, in Listing 9.11, when get count s callscount , a
new copy of @ _iscreated for count , and the @ variablein
get count s isnot changed.

Recursive Subroutines

In Perl, not only can subroutines call other subroutines, but subroutines actually can call themselves.
A subroutine that callsitself is known as arecursive subroutine.
Y ou can use a subroutine as a recursive subroutine if the following two conditions are true:

« All variables the subroutine uses are local (except those which are not changed by the
subroutine).

« The subroutine contains code that, one way or another, determines when it should stop calling
itself.

When all the variables that a subroutine uses are local, the subroutine creates a new copy of the
variables each timeit callsitself. This ensures that there is no confusion or overlap.

Listing 9.12 is an example of a program that contains a recursive subroutine. This program accepts a
list of numbers and operands that is to be evaluated from right to left, asif thelist is a stack whose top
isthe left end of the list. For example, if theinput is

- 955 * 26 + 11 8

this program adds 11 and 8, multiplies the result by 26, and subtracts that result from 955. Thisis

http://docs.rinet.ru:8080/P7/ch9.htm (31 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

equivalent to the following Perl expression:

955 - 26 * (11 + 8)

Listing 9.12. A program that uses arecursive subroutine to perform arithmetic.

1. #!'/usr/local/bin/perl

3: S$inputline = <STDI N>;

4: S$inputline =~ s/ s+|\s+$//q;

5. @ist =split (/\s+/, S$inputline);
6: S$result = &rightcalc (0);

7: print ("The result is $result.\n");

9: sub rightcalc {

10: my ($index) = @;

11: ny ($result, S$operandl, $operand2);

12:

13: if ($index+3 == @ist) {

14: $operand2 = $list[$i ndex+2];

15: } else {

16: $operand2 = &rightcal c ($i ndex+2);
17: }

18: $operandl = $list[$i ndex+1];

http://docs.rinet.ru:8080/P7/ch9.htm (32 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

19: if ($list[$index] eq "+") {

20: $result = $operandl + $operand?2;
21: } elsif ($list[$index] eq "*") {

22: $result = $operandl * $operand?2;
23: } elsif ($list[$index] eq "-") {

24: $result = $operandl - S$operand?2;
25: } else {

26: $result = $operandl / $operand?2;
27: }

28: }

$ progrand 12
- 98 * 4 + 12 11

The result is 6.

This program starts off by reading aline of input from the standard input file and breaking it into its
components, which are stored asalist inthe array variable @i st .

When given the input

- 98 * 4 + 12 11

http://docs.rinet.ru:8080/P7/ch9.htm (33 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines
lines 3-5 produce the following list, which isassignedto @ i st :

("-", "o8", tEm,ot4r,ota4to"12", "11)

Line 6 callsthe subroutiner i ght cal ¢ for thefirst time. ri ght cal ¢ requires one argument, an
index value that tells the subroutine what part of the list to work on. Because the first argument hereis
zer o, ri ght cal c startswith thefirst element in thelist.

Line 10 assigns the argument passed tor i ght cal c to the local variable $i ndex. When
ri ght cal c iscalled for thefirst time, $i ndex isO.

Lines 13-17 are the heart of this subroutine, because they control whether to call ri ght cal ¢
recursively. The basic logic isthat alist such as

("-", "o8", "xET,om4n ot o"i12", "11")

can be broken into three parts: the first operator, - ; the first operand, 98; and a sublist (the rest of the
list). Note that the sublist

("Em,om4r, Mt 12", "11")

isitself acomplete set of operators and operands; because this program is required to perform its
arithmetic starting from the right, this sublist must be calculated first.

Line 13 checks whether there is a sublist that needs to be evaluated first. To do this, it checks whether
there are more than three elementsin the list. If there are only three elementsin thelist, the list
consists of only one operator and two operands, and the arithmetic can be performed right away. If
there are more than three elementsin the list, a sublist exists.

To evaluate the sublist when it exists, line 16 callsr i ght cal ¢ recursively. The index value passed
to this second copy of r i ght cal c is2; thisensures that the first element of the list examined by the
second copy of ri ght cal c isthe element with subscript 2, whichis* .

At this point, the following is the chain of subroutine invocations, their arguments, and the part of the
list on which they are working:

Level 1 Main program

Level 2 rightcalc(0)-list ("-", "98", "*", 6 "4" "+",
"12", "11")

Level 3 rightcalc(2)-list ("*", "4", "+", "12", "11")

When this copy of r i ght cal ¢ reachesline 13, it checks whether the sublist being worked on has
just three elements. Because this sublist has five elements, line 16 calls yet another copy of
ri ght cal c, thistime setting the value of $i ndex to 4. The following is the chain of subroutine

http://docs.rinet.ru:8080/P7/ch9.htm (34 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines
invocations after thisthird call:

Leve 1 Main program

Level 2 rightcalc(0)-list ("-", "O8", "*" "4" "+",
"12", "11")

Level 3 rightcalc(2)-list ("*", "4", "+", "12", "11")

Level 4 rightcalc(4)-list ("+", "12", "11")

When the third copy of this subroutine reaches line 13, it checks whether this portion of the list
contains only three elements. Because it does, the conditional expressionin line 13 istrue. At this
point, line 14 is executed for the first time (by any copy of ri ght cal c¢); it takes the value stored in
$i ndex-inthiscase, 4, adds 2 to it, and uses the result as the subscript into @ i st . Thisassigns 11,
the seventh element of @ i st , to $oper and2.

Lines 18-27 perform an arithmetic operation. Line 18 adds one to the value in $i ndex to retrieve the
location of the first operand; this operand is assigned to $oper andl. Inthiscopy of ri ght cal c,
the subscript is5 (4+1), and the sixth element of @ i st , 12, isassigned to $oper and1.

Line 19 uses $i ndex asthe subscript into the list to access the arithmetic operator for this operation.
In this case, the fifth element of $i ndex (subscript 4) is +, and the expressionin line 19 istrue. Line
20 then adds $oper andl to $oper and2, yielding $r esul t , whichis23. Thisvalueis returned
by this copy of r i ght cal c.

When the third copy of r i ght cal ¢ returns, execution continues with the second copy of

ri ght cal ¢ because the second copy called the third copy. Line 16 of the second copy assigns the
return value of the third copy, 23, to $oper and2. The following is the state of the program after
line 16 has finished executing:

Level 1 Main program

Level 2 rightcalc(0)-list ("-", "98", "*", 6 "4" "+",
"12", "11")

Level 3 rightcalc(2)-list ("*", "4", "+", "12", "11"),

$operand2 is 23

The Perl interpreter now executes lines 18-27. Because $i ndex is2 inthiscopy of ri ght cal c,
line 18 assigns the fourth element of @ i st , 4, to $oper andl. Line 21 istruein this case because
the operator is* ; thismeansthat line 22 multiplies$oper and1 (4) by $oper and2 (23), yielding
92, whichisassigned to $r esul t .

At this point, the second copy of ri ght cal ¢ isfinished, and program execution returnsto line 16.
This assigns the return value from the second copy, 92, to $oper and2.

The following is the state of the program after the second copy of r i ght cal c isfinished:
Level 1 Main program
Level 2 rightcalc(0)-list ("-", "98", "*",6 "4" "+",
"12", "11"), $operand2 is 92

Now you're almost finished; the program is executing only one copy of ri ght cal c. Because
$i ndex isO inthiscopy of ri ght cal c, line 18 assigns 98 to $oper andl. Line 23 istruein this
case because the operator hereis - ; line 24 then takes 98 and subtracts 92 from it, yielding afinal

http://docs.rinet.ru:8080/P7/ch9.htm (35 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

result of 6.

Thisfinal result of 6 is passed to the main program and is assigned to $r esul t . (Note that thereis
no conflict between $r esul t inthe main program and the various copies of $r esul t in

ri ght cal c because $r esul t isdefined asalocal variableinri ght cal c.) Line7, finaly, prints
this result.

[NOTE

Recursive subroutines are useful when handling complicated data
structures such astrees. Y ou will see examples of such
complicated data structures on Day 10, "Associative Arrays."

Passing Arrays by Name Using Aliases

Asyou have seen, Perl enables you to pass an array as an argument to a subroutine.

&y _sub(@rray);

When the subroutine ny _sub iscalled, thelist stored in the array variable @r r ay is copied to the
variable @ defined in the subroutine.

sub ny_sub {

ny (@ubarray) = @;

$arrayl ength = @ubarray;

If the array being passed is large, it might take some time (and considerable space) to create a copy of
the array. If your application is operating under time or space limitations, or you just want to make it
more efficient, you can specify that the array is to be passed by name.

The following is an example of asimilar subroutine that refers to an array by name:

sub ny_sub {

ny (*subarray) = @;

$arrayl ength = @ubarray;
}

http://docs.rinet.ru:8080/P7/ch9.htm (36 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

The* subar r ay definition tells the Perl interpreter to operate on the actual list passed to
ny_sub instead of making a copy.

To call this subroutine, specify * instead of @with the array variable name, asin the following:

@warray = (1, 2, 3, 4, 5);

&y _sub(*nyarray);

Specifying * myar r ay instead of @ryar r ay indicates that the actual contents of @ryar r ay areto
be used (and modified if desired) inmy_sub. In fact, while the subroutine is being executed, the
name @ ubar r ay becomesidentical to the name @ryar r ay. This process of creating another name
to refer to the same variable is known as aliasing. @ ubar r ay isnow an alias of @ryarr ay.

When nmy _sub terminates, @ ubar r ay stopsbeing an alias of @ryar ray. Whenny_sub is
called again with a different argument, asin

&my_sub(*anot herarray);

the variable @ ubar r ay innmy_sub becomes an dliasfor @not her ar r ay, which means that you
can use the array variable @ ubar r ay to accessthe storagein @not her arr ay.

Aliasing arraysin this manner has one distinct advantage and one distinct drawback. The advantage is
that your program becomes more efficient. Y ou don't need to copy the entire list from your main
program to the subroutine. The disadvantage is that your program becomes more difficult to follow.

Y ou have to remember, for example, that changing the contents of @ ubar r ay in the subroutine

nmy _sub also changes the contents of @ryar r ay and @not her arr ay. It iseasy to lose track of
which name refers to which variable.

Thereis also another problem with aliasing: aliasing affects all variables with the same name, not just
array variables.

For example, consider Listing 9.13, which defines a scalar variable named $f 0o and an array named
@ 00, and then aliases @ 00. Asyou'll see, the program aliases $f oo aswell.

Listing 9.13. A program that demonstrates aliasing.

1. #!'/usr/local/bin/perl

2:

http://docs.rinet.ru:8080/P7/ch9.htm (37 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines
3: $foo = 26;
4: @oo0 = ("here's", "a", "list");
5. & estsub (*foo);

6: print ("The value of \$foo is now $f oo\ n");

8: sub testsub {

9: | ocal (*printarray) = @;

10: foreach $el enent (@rintarray) {
11: print ("$el enent\n");
12: }

13: $printarray = 61;

14: }

$ progrand 13
here's

a

list

The val ue of $foo is now 61

$

http://docs.rinet.ru:8080/P7/ch9.htm (38 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

Line 5 calls the subroutinet est sub. The argument, * f 00, indicates that the array @ 00 isto be
passedtot est sub and aliased.

The local variable definition in line 9 indicates that the array variable @r i nt ar r ay isto become
an alias of the array variable @ 00. Thismeans that the name pr i nt ar r ay isdefined to be
equivalent to the namef oo.

As aconsequence, the scalar variable $pr i nt ar r ay becomes an alias of the scalar variable $f 0o0.
Because of this, line 13, which seemsto assign 61 to $pri nt arr ay, actualy assigns 61 to $f oo.
This modified valueis printed by line 6 of the main program.

|NOTE

Aliasing enables you to pass more than one list to a subroutine.
@rrayl = (1, 2, 3);

@rray2 = (4, 5, 6);

& wo_array _sub (*arrayl, *array2);

sub two_array_sub {

ny (*subarrayl, *subarray2) = @;

}

Inthis case, thenamesarrayl and ar r ay2 are passed to
two_array_sub.subarrayl becomesanaliasforarrayl,
and subar r ay2 becomesan aliasfor arr ay?2.

Using the do Statement with Subroutines

Perl enables you to use the do statement to invoke a subroutine. For example, the following
statements are identical:

&my sub(l, 2, 3);
do nmy _sub(1l, 2, 3);

Thereis no real reason to use the do statement in this context.

Specifying the Sort Order

By default, the built-in function sor t sortsin alphabetical order. The following is an example:

@ist = ("words", "to", "sort");

@ist2 = sort (@ist);

http://docs.rinet.ru:8080/P7/ch9.htm (39 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines
Here, @i st 2 isassigned ("sort", "to", "words").

If you want, you can write a subroutine that defines how sorting is to be accomplished. To understand
how to do this, first you need to know alittle about how sorting works.

Whensort isgivenalist to sort, it determines the sort order of the elements of the list by repeatedly
comparing pairs of elements. To compare apair of elements, sor t callsaspecia internal subroutine
and passes it a pair of arguments. Although the subroutine is not accessible from a Perl program, it
basically behaves as follows:

sub sort _criteria {
if ($a gt $b) {
retval = -1;

} elsif ($a eq $b) {

retval = 0;
} else

retval = 1;
}
$retval ;

This subroutine compares two values, which are stored in $a and $b. It returns - 1 if thefirst valueis
greater, O if the values are equal, and 1 if the second value is greater. (This, by the way, is how the
cnp operator works; in fact, the preceding subroutine could compare the two values using asingle
cnp operator.)

To define your own sorting rules, you must write a subroutine whose behavior isidentical to the
preceding subroutine. This subroutine must use two global variables named $a and $b to represent
the two itemsin the list currently being compared, and the subroutine must return one of the
following values:

-1 If $a isto appear before $b in the resulting sorted list

0 If $a isto betreated as equal to $b

1 If $a isto appear after $b in the resulting sorted list
INOTE

http://docs.rinet.ru:8080/P7/ch9.htm (40 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

Even though $a and $b are global variables that are used by the
sorting subroutine, you still can define global variables of your
own named $a and $b without risking their being overwritten.

The built-in function sor t saves any existing values of $a and
$b before sorting, and then it restores them when sorting is
compl eted.

After you have written the subroutine, you must specify the subroutine name when calling the
function sor t . For example, if you define afunction named f 0o that provides a set of sorting rules,
the following statement sorts alist using the rules defined in f 0o:

@ist2 = sort foo (@istl);

Listing 9.14 shows how you can define your own sort criteria. This program sorts alist in the normal
order, except that it puts strings starting with adigit last. (By default, strings starting with a number
appear before strings starting with aletter, and before some-but not all-special characters.) Strings
that begin with a digit are assumed to be numbers and are sorted in numerical order.

Listing 9.14. A program that defines sort criteria.

1. #!'/usr/local/bin/perl
2.
3: @istl = ("test", "14", "26", "test2");

4: @ist2 = sort numlast (@istl);

5. print ("@ist2\n");

7: sub num| ast {

8: ny ($num.a, $num b);
9:
10: $numa = $a =~ /"[0-9]/;

11: $numb = $b =~ /"[0-9]/;

http://docs.rinet.ru:8080/P7/ch9.htm (41 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

12: if ($numa & & $numb) {

13: $retval = $a <=> $b;
14: } elsif ($numa) {

15: $retval = 1;

16: } elsif ($numb) {

17: $retval = -1;

18: } else {

19: $retval = $a cnp $b;
20: }

21: $retval ;

22: }

$ progrand 14

test test2 14 26

Line 4 sorts the program according to the sort criteria defined in the subroutine num | ast . This
subroutine is defined in lines 7-22.

This subroutine first determines whether the items are strings that begin with adigit. Line 10 setsthe
local variable $num_a to anonzero value if the value stored in $a starts with adigit; similarly, line
11 sets$num b to anonzero value if the value of $b startswith adigit.

Lines 12 and 13 handle the case in which both $num_a and $num b aretrue. In this case, the two
strings are assumed to be digits, and the numeric comparison operator <=> compares their values.

http://docs.rinet.ru:8080/P7/ch9.htm (42 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

The result of the <=> operationis- 1 if thefirst number islarger, O if they are equal, and 1 if the
second number islarger.

If Snum_a istrue but $num b isfalse, line 15 sets the return value for this subroutineto 1,
indicating that the string that does not start with adigit, $b, isto be treated as greater. Similarly, line
17 setsthereturn value to - 1 if $b startswith adigit and $a does not.

If neither string starts with a digit, line 19 uses the normal sort criterion-al phabetical order-to
determine which valueislarger. Here, the cnp operator is useful. It returns - 1 if thefirst string is
alphabetically greater, O if the strings are equal, and 1 if the second string is alphabetically greater.

Predefined Subroutines

Perl 5 defines three special subroutines that are executed at specific times.
« The BEG N subroutine, which is called when your program starts running
« The END subroutine, which is called when your program terminates
« The AUTOLQOAD subroutine, which is called when your program can't find a subroutineit is
supposed to execute
|NOTE
| These subroutines are not supported in Perl 4.

Creating Startup Code Using BEG N

Perl 5 enables you to create code that is executed when your program is started. To do this, create a
special subroutine named BEGA N. For example:

BEG N {

print("H'! Welconme to Perl!\n");

When your program begins execution, the following line appears on your screen:

H! Welcone to Perl!

The BEG N subroutine behaves just like any other Perl subroutine. For example, you can define local
variablesfor it or call other subroutines from it.

INOTE

http://docs.rinet.ru:8080/P7/ch9.htm (43 of 50) [2/17/2007 6:03:56 AM]

Day 9 -- Using Subroutines

If you like, you can define multiple BEG N subroutines. These
subroutines are called in the order in which they appear in the
program.

Creating Termination Code Using END

Perl 5 enables you to create code to be executed when your program terminates execution. To do this,
define an END subroutine, as in the following example:

END {

print("Thank you for using Perl!\n");

The code contained in the END subroutine is always executed by your program, even if the program is
terminated using di e. For example, the code

die("Prepare to diel\n");
END {

print("Ha! You can't kill nmel\n");

displays the following on your screen:

Prepare to die!

Ha! You can't kill ne!

INOTE

Y ou can define multiple END subroutinesin your program. In this
case, the subroutines are executed in reverse order of appearance,
with the last one executed first.

http://docs.rinet.ru:8080/P7/ch9.htm (44 of 50) [2/17/2007 6:03:57 AM]

Day 9 -- Using Subroutines

Handling Non-Existent Subroutines Using AUTOLQAD

Perl 5 enables you to define a specia subroutine named AUTOLOAD that is called whenever the Perl
interpreter istold to call a subroutine that does not exist. Listing 9.15 illustrates the use of
AUTOLQAD.

Listing 9.15. A program that uses AUTCL QAD.

1: #!/usr/local/bin/perl

3: ¬here("hi", 46);

5: AUTOLOAD {

6: print("subroutine $AUTOLOAD not found\n");
7: print("argunents passed: @\n");
8: }

$ progrand 15
subrouti ne mai n:: nothere not found

argunents passed: hi 46

This program tries to call the non-existent subroutine not her e. When the Perl interpreter discovers
that not her e does not exigt, it calls the AUTOL OAD subroutine.

http://docs.rinet.ru:8080/P7/ch9.htm (45 of 50) [2/17/2007 6:03:57 AM]

Day 9 -- Using Subroutines

Line 6 uses a specia scalar variable, $AUTCOL QAD, which contains the name of the subroutine you
tried to call. (Thenai n: : text that appears before the subroutine name, not her e, isthe name of
the package in which the subroutine is found. By default, all your code is placed in one package,
called mai n, so you normally won't need to worry about packages. For more information on creating
other packages, see Day 19, "Object-Oriented Programming in Perl.")

When AUTOLOAD is called, the arguments that were to be passed to the non-existent subroutine are
passed to AUTOLOAD instead. This means that the @array variable containsthelist (" hi ", 46),
because these are the arguments that were to be passed to not her e.

|TIP

AUTOLQAD is useful if you plan to organize your Perl program
into modules, because you can use it to ensure that crucial
subroutines from other files actually exist when you need them.
For more information on organizing Perl programs into modules,

see Day 19.

Summary

Today, you learned about subroutines, which are separated chunks of code intended to perform
specific tasks. A subroutine can appear anywhere in your program.

To invoke a subroutine, specify its name preceded by the & character. In Perl 5, the & character is not
required if the subroutine exists, or if aforward reference is defined.

A subroutine can return avalue (either ascalar value or alist). This return value is the value of the
last expression evaluated inside the subroutine. If this last expression is at the end of the subroutine,
the subroutine is a single-exit module.

Y ou can define local variables for use inside subroutines. These local variables exist only while the
subroutine is being executed. When a subroutine finishes, itslocal variables are destroyed; if itis
invoked again, new copies of the local variables are defined.

Y ou can pass values to subroutines; these values are called arguments. Y ou can pass as many
arguments as you like, but only one of these arguments can be alist. If alist is passed to a subroutine,
it must be the last argument passed.

The arguments passed to a subroutine are converted into alist and assigned to a special system
variable, @ . One copy of @ existsfor each list of arguments passed to a subroutine (that is, @ isa
local variable).

Subroutines can call other subroutines (nested subroutines) and even can call themselves (recursive
subroutines).

Y ou can pass an array variable to a subroutine by name by defining an alias for the variable name.
This alias affects all variables of that name.

Y ou can use the do statement to invoke a subroutine, although there is no real reason to do so.

http://docs.rinet.ru:8080/P7/ch9.htm (46 of 50) [2/17/2007 6:03:57 AM]

Day 9 -- Using Subroutines

Y ou can define a subroutine that specifies the order in which the elements of alist areto be sorted. To
use the sort criteria defined by a subroutine, include its name with the call tosort .

The BEG N subroutine is always executed before your program begins execution. The END
subroutine is always executed when your program terminates, even if it waskilled off using di e. The
AUTOLQAD subroutine is executed if your program tries to call a subroutine that does not exist.

Q&A

How many levels of nested subroutines can a program have?
This depends on the amount of memory in your machine. Normally, it is large enough to only
be an issue when you are using recursive subroutines.
Which isbetter: passing entirelists or passing array variables by name?
As with so many issues in programming, this depends on the situation. If your program needs
to be space-efficient or to run as quickly as possible, passing array variables by name might
be the best choice.
Another option is to use the global array variable both inside and outside the subroutine. This
works well if the array variable is the central repository for program data.
When are global variables a good idea? When isit better to passthe contentsof a
variable to a subroutine?
A: If your subroutine is a general-purpose subroutine that performs atask such as breaking a
scalar value into words, it's agood idea to pass the value as an argument. For example:
sub breakline {
local ($line) = @;
@wrds = split(/\s+/, $line);
}
If you do not pass the line as an argument, br eakl i ne will be able to work only with the
line stored in a particular scalar variable, which makes it less useful.
On the other hand, if your program stores information in a central array, there's no reason to
pass the array or the array name to a subroutine that processes the array. For example, if you
are using the array @ccur s to count al the occurrences of the digits O through 9 in afile,
there's no reason to pass @ccur s to asubroutine. For example:
sub printcount ({
for ($count = 0; $count <= 9; S$count ++) {
print ("$occurs[$count]\n");
}
}
Because pri nt count isnot likely to be used with any array except @ccur s, there'sno
need to passit as an argument.
Q: When Per| definesan aliasfor an array-variable namein a subroutine, such as
@ ocal nane for @ane in asubroutine, why doesit also definethe alias $l ocal nane
for $name?

>0 2O

http://docs.rinet.ru:8080/P7/ch9.htm (47 of 50) [2/17/2007 6:03:57 AM]

Day 9 -- Using Subroutines

A:

Strictly speaking, the* character in an alias represents any character that precedes avariable
name (such as @or $).

For example, consider the following subroutine and the corresponding statement that callsit:
sub arraybynane {

| ocal (*localnane) = @;

}

arraybynanme (*nane);

When the Perl interpreter seesthe referenceto * | ocal nane in the subroutine, it replaces
the alias following the * with the name for which the alias is defined. In this case, the Perl
interpreter replaces* | ocal nanme with * nane.

The Perl interpreter then determines, from context, whether * nane isan array variable, a
scalar variable, or something else. In this case, * nane isintended to be an array variable,
which means that * name becomes @ane.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the material
covered and exercises to give you experience in using what you've learned. Try and understand the
guiz and exercise answers before you go on to tomorrow's lesson.

Quiz

1. Definethe following terms:
a. subroutine
b. invocation
c. argument
d. single-exit module
e. diasing

2. Consider the following program:

#! /usr/ 1 ocal / bin/ perl

$total = O;
@ist = (1, 2, 3);
@ist2 = &y _sub;

sub ny_sub {

| ocal ($total);
$total = 1;

@ist = (4, 5, 6);
}

What are the values stored in the following variables at the end of this program?
a $total

b. @i st

c. @ist2

. What does the following subroutine return?

sub subl {

http://docs.rinet.ru:8080/P7/ch9.htm (48 of 50) [2/17/2007 6:03:57 AM]

Day 9 -- Using Subroutines

$count = $sum = O;
whil e ($count <= 10) {
$sum += S$count ;
$count ++;

}

}

4. What isthevalueof @i st at the end of the following program?
#! /usr/| ocal / bi n/ perl

@ist = (1, 2, 3);

& estsub(*list);

sub testsub {

| ocal (*sublist) = @;
$sublist[1] = 5;

}

Exercises

1. Write a subroutine that takes two arguments, adds them together, and returns the result.

2. Write a subroutine that counts the number of occurrences of the letter t inastring (whichis
passed to the subroutine). The subroutine must return the number of occurrences.

3. Write a subroutine that takes two filenames as its arguments and returns a nonzero value if the
two files have identical contents. Return O if the files differ.

4. Write a subroutine that simulates the roll of adie (that is, it generates a random number
between 1 and 6) and returns the number.

5. Write a subroutine that uses recursion to print alist in reverse order. The subroutine must
recursively call itself to print the entire list; each invocation must print one word of the list.
(Assume that the first call to your subroutine passes the value O and the list to be printed.)

6. BUG BUSTER: What iswrong with the following program?
#! /usr/ 1 ocal /bin/perl

for ($count = 1; $count <= 10; $count++) {
&rint_ten ($count);
}

sub print_ten {
| ocal ($nultiplier) = @;
for ($count = 1; $count <= 10; $count++) {

$printval = $nultiplier * 10 + $count;
print ("$printval\n");

}

}

7. BUG BUSTER: What iswrong with the following program?
#! /usr/ 1 ocal / bin/perl

http://docs.rinet.ru:8080/P7/ch9.htm (49 of 50) [2/17/2007 6:03:57 AM]

Day 9 -- Using Subroutines

$line = <STDI N>;

@wrds = split(/\s+/, $line);
$searchword = <STDI N>;

&search _for_word (@wrds, $searchword);

sub search_for_word {

| ocal (@earchlist, $searchword) = @;
foreach $word (@earchlist) {

return (1) if ($word eq $searchword);
}

$retval = 0;

}

8. BUG BUSTER: What iswrong with the following program?
#! /usr/ 1 ocal / bin/perl

$li ne = <STDI N>;
@wrds = &split_line($line);
print ("@words\n");

sub split _line {

|l ocal ($line) = @;

| ocal (@wrds);

@wrds = split(/\s+/, $line);
if (@words == 0) {

@wrds = ("enpty list");

http://docs.rinet.ru:8080/P7/ch9.htm (50 of 50) [2/17/2007 6:03:57 AM]

http://docs.rinet.ru:8080/P7/index.htm

Day 10 -- Associative Arrays

Chapter 10

Associative Arrays

CONTENTS

o Limitations of Array Variables
o Definition
o Referring to Associative Array Elements

o Adding Elements to an Associative Array

e Creating Associative Arrays
o Copying Associative Arrays from Array Variables

o Adding and Deleting Array Elements

o Listing Array Indexes and Vaues

« Looping Using an Associative Array

« Creating Data Structures Using Associative Arrays
o Linked Lists
o Structures

o Trees

o Databases

o Example: A Calculator Program
o« SUMMary
o Q&A
« Workshop

o Quiz

0 Exercises

Today's lesson shows you how to use associative arrays. You'll learn the following:
« What an associative array is
« How to access and create an associative array
« How to copy to and from an associative array
» How to add and delete associative array elements
« How to list array indexes and values
» How to loop using an associative array
« How to build data structures using associative arrays

To start, take alook at some of the problems that using array variables creates. Once you have seen some of

http://docs.rinet.ru:8080/P7/ch10.htm (1 of 38) [2/17/2007 6:04:08 AM]

Day 10 -- Associative Arrays

the difficulties created by array variables in certain contexts, you'll see how associative arrays can eliminate
these difficulties.

Limitations of Array Variables

In the array variables you've seen so far, you can access an element of a stored list by specifying a subscript.
For example, the following statement accesses the third element of the list stored in the array variable
@rray:

$scal ar = $array[2];

The subscript 2 indicates that the third element of the array is to be referenced.

Although array variables are useful, they have one significant drawback: it's often difficult to remember
which element of an array stores what. For example, suppose you want to write a program that counts the
number of occurrences of each capitalized word in an input file. Y ou can do this using array variables, but
it's very difficult. Listing 10.1 shows you what you have to go through to do this.

Listing 10.1. A program that usesarray variablesto keep track of capitalized wordsin an
input file.

1. #!'/usr/local/bin/perl

2:

3: while ($inputline = <STDI N>) {

4: while ($inputline =~ /\Db[A-Z]\St/g) {

5: $word = $&;

6: $word =~ s/[;.,:-]1%//; # renove punctuation
7: for ($count = 1; $count <= @wrdli st;

8: $count ++) {

9: $f ound = O;

10: if ($wordlist[$count-1] eq $word) {
11: $found = 1;

12: $wor dcount [$count - 1] += 1;

http://docs.rinet.ru:8080/P7/ch10.htm (2 of 38) [2/17/2007 6:04:08 AM]

Day 10 -- Associative Arrays

13: | ast ;

14: }

15: }

16: if ($found == 0) {

17: $ol dl ength = @wrdli st;

18: $wordl i st $ol dl engt h] = $word;
19: $wor dcount [$ol dl engt h] = 1;
20: }

21: }

22. }

23. print ("Capitalized words and nunber of occurrences:\n");
24: for ($count = 1; S$count <= @wrdlist; $count++) {

25: print ("$wordlist[$count-1]: $wordcount[$count-1]\n");

$ programlO_1

Here is a line of Input.

This I nput contains sone Capitalized words.
"D

Capitalized words and nunber of occurrences:

Here: 1
| nput: 2
This: 1

http://docs.rinet.ru:8080/P7/ch10.htm (3 of 38) [2/17/2007 6:04:08 AM]

Day 10 -- Associative Arrays

Capitalized: 1

$

This program reads one line of input at atime from the standard input file. The loop starting on line 4
matches each capitalized word in the line; the loop iterates once for each match, and it assigns the match
being examined in this particular iteration to the scalar variable $wor d.

Once any closing punctuation has been removed by line 6, the program must then check whether this word
has been seen before. Lines 7-15 do this by examining each element of thelist @wor dl i st inturn. If an
element of @wor dl i st isidentical to the word stored in $wor d, the corresponding element of

@wor dcount isincremented.

If no element of @wor dl i st matches $wor d, lines 16-20 add a new element to @wr dl i st and
@wr dcount .

Definition

Asyou can see, using array variables creates several problems. First, it's not obvious which element of
@wr dl i st inListing 10.1 corresponds to which capitalized word. In the example shown,

$wor dl i st 0] contains Her e because thisisthefirst capitalized word in the input file, but thisis not
obvious to the reader.

Worse still, the program has no way of knowing which element of @wor dl i st contains which word. This
means that every time the program reads a new word, it has to check the entire list to see if the word has
aready been found. This becomes time-consuming as the list grows larger.

All of these problems with array variables exist because elements of array variables are accessed by
numeric subscripts. To get around these problems, Perl defines another kind of array, which enables you to
access array variables using any scalar value you like. These arrays are called associative arrays.

To distinguish an associative array variable from an ordinary array variable, Perl uses the %character as the
first character of an associative array-variable name, instead of the @character. Aswith other variable
names, the first character following the %omust be aletter, and subsequent characters can be letters, digits, or
underscores.

The following are examples of associative array-variable names:

Yassocarray
%al

%y really |long but | egal _array_variabl e_nane

http://docs.rinet.ru:8080/P7/ch10.htm (4 of 38) [2/17/2007 6:04:08 AM]

Day 10 -- Associative Arrays

INOTE

Use the same name for an associative array variable and an
ordinary array variable. For example, you can define an array
variable named @r r aynamne and an associative array variable
named %ar r aynane.

The @and %characters ensure that the Perl interpreter can tell one
variable name from another.

Referring to Associative Array Elements

The main difference between associative arrays and ordinary arraysis that associative array subscripts can
be any scalar value. For example, the following statement refers to an element of the associative array

% ruit:

$frui t{"bananas"} = 1;

The subscript for thisarray element isbananas. Any scalar value can be a subscript. For example:

$fruit{"black_currant"}
$nunber { 3. 14159}

$i nteger{-7}

A scalar variable can be used as a subscript, as follows:

$fruit{Snmy_fruit}

Here, the contents of $rmy_f r ui t become the subscript into the associative array % r ui t .

When an array element is referenced, asin the previous example, the name of the array element is preceded
by a$ character, not the %character. Aswith array variables, thistells the Perl interpreter that thisisa
single scalar item and isto be treated as such.

|NOTE
Subscripts for associative array elements are always enclosed in
brace brackets ({ }), not square brackets ([]). This ensures that
the Perl interpreter is always able to distinguish associative array
elements from other array elements.

http://docs.rinet.ru:8080/P7/ch10.htm (5 of 38) [2/17/2007 6:04:08 AM]

Day 10 -- Associative Arrays

Adding Elements to an Associative Array

The easiest way to create an associative array item isjust to assign to it. For example, the statement

$frui t{"bananas"} = 1;

assigns 1 to the element bananas of the associative array % r ui t . If this element does not exist, it is
created. If thearray 96 r ui t has not been referred to before, it also is created.

This feature makes it easy to use associative arrays to count occurrences of items. For example, Listing 10.2
shows how you can use associative arrays to count the number of capitalized words in an input file. Note
how much simpler this program is than the one in Listing 10.1, which accomplishes the same task.

Listing 10.2. A program that uses an associative array to count the number of capitalized
wordsin afile.

1. #!/usr/local/bin/perl

2:

3: while ($inputline = <STDIN>) {

4: while ($inputline =~ /\b[A-Z]\S+/g) {

5: $word = $&;

6: $word =~ s/[;.,:-]1%//; # renove punctuation
7: $wordl i st{$word} += 1;

8: }

9: }

10: print ("Capitalized words and nunber of occurrences:\n");
11: foreach $capword (keys(%wrdlist)) {
12: print ("$capword: $wordlist{$capword}\n");

13: }

http://docs.rinet.ru:8080/P7/ch10.htm (6 of 38) [2/17/2007 6:04:08 AM]

Day 10 -- Associative Arrays

$ programlQ_2

Here is a line of Input.

This I nput contains sonme Capitalized words.
D

Capitalized words and nunber of occurrences:

This: 1
| nput: 2
Here: 1

Capitalized: 1

$

Asyou can see, this program is much simpler than the onein Listing 10.1. The previous program required
20 lines of code to read input and store the counts for each word; this program requires only seven.

As before, this program reads one line of input at atime from the standard input file. The loop starting in
line 4 iterates once for each capitalized word found in the input line; each match is assigned, in turn, to the
scalar variable $wor d.

Line 7 uses the associative array %wwor dl i st to keep track of the capitalized words. Because associative
arrays can use any value as a subscript for an element, this line uses the word itself as a subscript. Then, the
element of the array corresponding to the word has 1 added to its value.

For example, when the word Her e isread in, the associative array element $wor dl i st {"Here"} hasl
added toits value.

Lines 11-13 print the elements of the associative array. Line 11 contains a call to a special built-in function,
keys. Thisfunction returns alist consisting of the subscripts of the associative array; thef or each
statement then loops through this list, iterating once for each element of the associative array. Each
subscript of the associative array is assigned, in turn, to the local variable $capwor d; in this example, this
means that $capwor d isassigned Her e, | nput , Capi t al i zed, and Thi s-one per each iteration of the
for each loop.

‘ L
i'ﬁ‘
>

WARNING

http://docs.rinet.ru:8080/P7/ch10.htm (7 of 38) [2/17/2007 6:04:08 AM]

Day 10 -- Associative Arrays

An important fact to remember is that associative arrays always
are stored in "random" order. (Actualy, it's the order that ensures
fastest access, but, effectively, it israndom.) This meansthat if
you use keysto access all of the elements of an associative array,
there is no guarantee that the elements will appear in any given
order. In particular, the elements do not always appear in the order
in which they are created.

To control the order in which the associative array elements appear, use sor t to sort the elements returned
by keys.

foreach $capword (sort keys(%wrdlist)) {

print ("$capword: $wordlist{$capword}\n");

When line 10 of Listing 10.2 ismodified to include acall to sor t , the associative array elements appear in
sorted order.

Creating Associative Arrays

Y ou can create an associative array with a single assignment. To do this, alternate the array subscripts and
their values. For example:

%ruit = ("apples", 17, "bananas", 9, "oranges", "none");

This assignment creates an associative array of three elements:
« An element with subscript appl es, whose valueis 17
« An element with subscript bananas, whose valueis 9
« An element with subscript or anges, whose valueisnone

e,
WARBHN:;
Again, it isimportant to remember that the elements of associative

arrays are not guaranteed to be in any particular order, even if you
create the entire array at once.

INOTE

http://docs.rinet.ru:8080/P7/ch10.htm (8 of 38) [2/17/2007 6:04:08 AM]

Day 10 -- Associative Arrays

Perl version 5 enables you to use either => or , to separate array
subscripts and values when you assign alist to an associative
array. For example:

%ruit = ("apples" => 17, "bananas" => 9,
"oranges" => "none");

This statement isidentical to the previous one, but is easier to

understand; the use of => makesit easier to see which subscript is
associated with which value.

Aswith any associative array, you always can add more elements to the array later on. For example:

$fruit{"cherries"} = 5;

This adds afourth element, cher ri es, to the associative array % r ui t , and givesit the value 5.

Copying Associative Arrays from Array Variables

The list of subscripts and values assigned to %6 r ui t in the previous exampleis an ordinary list like any
other. This means that you can create an associative array from the contents of an array variable. For
example:

@ruit = ("apples", 6, "cherries", 8, "oranges", 11);

% ruit @ruit;

The second statement creates an associative array of three elements-appl es, cherri es, and
or anges-and assignsitto% rui t .

™

WARNING

If you are assigning alist or the contents of an array variable to an
associative array, make sure that the list contains an even number
of elements, because each pair of e ements corresponds to the
subscript and the value of an associative array element.

Similarly, you can copy one associative array into another. For example:

%ruitl = ("apples", 6, "cherries", 8, "oranges", 11);

Wruit2

%ruitl;

Y ou can assign an associative array to an ordinary array variable in the same way. For example:

http://docs.rinet.ru:8080/P7/ch10.htm (9 of 38) [2/17/2007 6:04:08 AM]

Day 10 -- Associative Arrays

%ruit = ("grapes", 11, "lenons