
Prepared exclusively for William Anderson

What Readers Are Saying About Agile Coaching

This book provides clear, proven advice that will be helpful to any

Agile coach or ScrumMaster. From starting the transition to keeping

the code clean to running a retrospective, this book covers what you

need to know to help you get the best out of any Agile team.

Mike Cohn

Author of User Stories Applied and Agile Estimating &

Planning

I’ve seen numerous presentations about being an Agile coach, and

none of them comes even close to the kind of practical advice Rachel

and Liz have packed into this printed nugget of gold.

Lasse Koskela

Coach, Reaktor Innovations, and author of Test Driven

Writing a good book about coaching is an extremely difficult task.

Rachel and Liz have done a great job explaining why you can’t have

prescriptive, well-defined steps to coaching teams (there is no silver

bullet. . . not yet!). Every team is composed of different individuals, and

they all operate in very different contexts. The beauty of this book is it

makes you “think” rather than blindly follow. It demonstrates through

examples how, as a coach, one can be agile and pragmatic about Agile

adoption.

Naresh Jain

Agile Software Community of India

The authors share their wealth of experience with the reader. This

book is packed full of hints, tips, ideas, and inspiration for helping

you help an Agile team. Unlike many other books, this one discusses

the rough edges, corner cases, and difficult bits that most teams face.

Allan Kelly

Author of Changing Software Development: Learning to

Become Agile

Prepared exclusively for William Anderson

Download at Boykma.Com

I once started to write a collection of patterns for building a beau-

tiful company. The collection included a pattern called “The Right

Coach” with the following observation: “A coach is like a mirror. You

could dress yourself without a mirror, but you’d risk not getting it

right.” Coaching is important—both for growing companies and for

growing teams. Since Agile teams have started forming, we’ve seen

the need for coaching, but we’ve been missing the guidebook, the

“coach” for the coach! So, I’m delighted to say that the book is here.

This helpful manual is right on target with the kind of practical advice

you would expect from two seasoned coaches and authors. If you are

interested in coaching, have worked with a coach, or are just thinking

about what that experience would be like, this book should be in your

hands.

Linda Rising

Coauthor of Fearless Change: Patterns for Introducing New

Ideas

This book is an essential guide to all those seeking to become an effec-

tive software coach. Rachel and Liz wonderfully capture the essence,

spirit, and best practices of coaching Agile teams.

Xavier Quesada-Allue

Agile coach and author of the Visual Management Blog

Coaching an Agile team is difficult in the best of circumstances and,

for a newer coach, can be intimidating. Every day presents new sit-

uations where the team will look to you for expertise, and every day

presents new challenges that need to be gently addressed before they

turn into real problems. Agile Coaching guides readers through a vast

set of circumstances. Drawing on their years of experience, Rachel

and Liz give new coaches the confidence they need while teaching us

old dogs some new tricks.

Russ Rufer

Silicon Valley Patterns Group

This book gives an excellent overview of Agile coaching and very prac-

tical tips on how to help teams start applying the most common Agile

practices. It’s a must-read for all Agile coaches and ScrumMasters.

Kati Vilkki

Manager, Agile Coaching, Nokia Siemens Networks

Prepared exclusively for William Anderson

Download at Boykma.Com

Prepared exclusively for William Anderson

Download at Boykma.Com

Agile Coaching

Rachel Davies

Liz Sedley

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for William Anderson

Download at Boykma.Com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Rachel Davies and Liz Sedley.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-43-3

ISBN-13: 978-1-934356-43-2

Printed on acid-free paper.

P1.0 printing, July 2009

Version: 2009-8-17

Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.pragprog.com

Contents
Foreword 11

Introduction 13

Generic Agile . 13

The Aim of This Book . 14

How to Read This Book . 16

Acknowledgments 17

I Coaching Basics 18

1 Starting the Journey 19

1.1 What Does an Agile Coach Do? 19

1.2 Developing a Coaching Attitude 21

1.3 Getting Ready to Coach 24

1.4 How to Start Coaching 27

1.5 Maintaining the Pace . 30

1.6 Hurdles . 33

1.7 Checklist . 34

2 Working with People 35

2.1 Listening . 35

2.2 Giving Feedback . 39

2.3 Resolving Conflicts . 41

2.4 Building Agreement . 43

2.5 Hurdles . 44

2.6 Checklist . 46

3 Leading Change 47

3.1 Introducing Change . 47

3.2 Asking Questions . 52

3.3 Encouraging Learning 56

Prepared exclusively for William Anderson

Download at Boykma.Com

CONTENTS 8

3.4 Facilitating Meetings . 59

3.5 Hurdles . 60

3.6 Checklist . 61

4 Building an Agile Team 63

4.1 Helping a Team Jell . 63

4.2 Creating a Team Space 66

4.3 Balancing Roles . 67

4.4 Energizing the Team . 68

4.5 Hurdles . 72

4.6 Checklist . 74

II Planning as a Team 75

5 Daily Standup 76

5.1 Standing Up . 77

5.2 For the Team by the Team 78

5.3 Handling Issues . 82

5.4 Setting the Time . 84

5.5 When to Coach . 85

5.6 Hurdles . 86

5.7 Checklist . 90

6 Understanding What to Build 91

6.1 Life Cycle of a User Story 91

6.2 Encouraging Conversations 92

6.3 Working with Cards . 93

6.4 Confirming the Details 96

6.5 Hurdles . 100

6.6 Checklist . 101

7 Planning Ahead 102

7.1 Preparing for Planning 103

7.2 Understanding Priorities 103

7.3 Sizing the Work . 104

7.4 Review and Commit . 108

7.5 Keeping Track . 114

7.6 Hurdles . 114

7.7 Checklist . 117

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=8

CONTENTS 9

8 Keeping It Visible 119

8.1 The Team Board . 119

8.2 Big Visible Charts . 125

8.3 Maintaining the Team Board 128

8.4 Hurdles . 129

8.5 Checklist . 130

III Caring About Quality 132

9 Getting to “Done” 133

9.1 Who Does the Testing? 133

9.2 Defining What “Done” Means 134

9.3 Planning in Testing . 136

9.4 Managing Bugs . 137

9.5 Getting Feedback Early 142

9.6 Recovering from Not Getting Done 143

9.7 Hurdles . 145

9.8 Checklist . 146

10 Driving Development with Tests 147

10.1 Introducing Test-Driven Development 147

10.2 Continuous Integration 154

10.3 Sustaining Test-Driven Development 157

10.4 Hurdles . 160

10.5 Checklist . 161

11 Clean Code 163

11.1 Incremental Design . 163

11.2 Collective Code Ownership 168

11.3 Pair Programming . 173

11.4 Hurdles . 175

11.5 Checklist . 178

IV Listening to Feedback 179

12 Demonstrating Results 180

12.1 Preparing for the Demo 180

12.2 Everyone Plays a Part 184

12.3 Releasing the Software 187

12.4 Hurdles . 188

12.5 Checklist . 190

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=9

CONTENTS 10

13 Driving Change with Retrospectives 192

13.1 Facilitating a Retrospective 192

13.2 Designing a Retrospective 201

13.3 Broader Retrospectives 203

13.4 Hurdles . 204

13.5 Checklist . 206

14 Growing You 207

14.1 Ways to Grow What You Know 207

14.2 Making a Plan . 210

14.3 Building Your Network 211

14.4 Personal Reflections . 213

14.5 Getting Comfortable . 215

14.6 Checklist . 217

A Bibliography 218

Index 221

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=10

Foreword
If you’re interested in Agile software development or in software devel-

opment at all, chances are that Rachel and Liz’s book will help you. It’s

not just about coaching; it is about playing the game well.

When we are really serious about something, whether it’s golfing, play-

ing the piano, painting, or just trimming down a few inches, we often

benefit from the help of a coach. A good coach knows the subject mate-

rial and can assess where we stand and what will help us improve. The

coach can help us stay motivated when we reach the inevitable plateaus

in progress.

Most of us spend more time at our work than we do in an avocation

like golf or sit-ups. Yet all too often we get little or no help in improving.

It turns out that opportunities to help others, to be helped, and to help

ourselves are all around us. This book will help each of us find those

opportunities and capitalize on them.

Agile software development is deceptively simple. At its core, it’s just

a matter of choosing some things to build, building them over a short

period of time, thinking about what has gone on, and repeating the

process until our product is ready to go. Nothing to it, right?

It turns out that there is a lot to it. Most teams who start using Agile

methods see benefits very early on. The very best Agile teams, however,

see their productivity double—or more. These high-performance teams

may not be all that much smarter than your team, just working in bet-

ter ways. Each team needs to find better ways that work for them, and

that’s what this book is really about: finding better ways and getting

them in place.

If you’re an itinerant Agile coach, this book will help you serve your

clients better. If you’re an internal coach, a ScrumMaster, or a cus-

tomer/product owner, this book will help you serve your team. If you’re

Prepared exclusively for William Anderson

Download at Boykma.Com

FOREWORD 12

“just” a team member, this book will help you too, because there are

small coaching opportunities in front of us all.

Rachel and Liz take us through all the key aspects of the Agile cycle,

from forming a team, estimating, and planning to tracking and demon-

strating to holding the retrospectives that help us improve. They help

us figure out how to improve our definition of “done” and how to test

and build our software so as to get done more quickly. They help us

understand the importance of clean code and how to get it.

Now, software development is quite rich and complex, and teamwork is

as well. It’s impossible to put everything we need to know into one book,

or even a dozen. What Rachel and Liz do for us is identify important

aspects of our team’s process and give us some key ideas that will help

us understand and shape our practice. In every chapter, they list the

hurdles we’re likely to encounter as we try to grow and a checklist of

some key things to be aware of.

Rachel and Liz also give us examples from their own long experience

helping teams. There’s something about a real story that makes things

clear to us, and it’s freeing to know that someone else has been in

a similar situation and has survived. Once we know there are ways

of dealing with a problem, we can calm down and start making good

choices.

The stories, checklists, and hurdles are alone worth the price of the

book. But wait, there’s more. Rachel and Liz also give us some good

advice for improving ourselves, in their Growing You chapter. One bit

of advice from that chapter is to read one book per month about our

profession. My advice is to start with this one. You’ll be glad you did.

Ron Jeffries (www.XProgramming.com)

July 2009

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=12

Introduction
Agile is all about teams working together to produce great software. As

an Agile coach, you can help your team go from first steps to running

with Agile to unleashing their full Agile potential.

This book is all about how to enable teams to get the best from Agile.

It focuses on practical advice, tips, and techniques for coaching teams

to improve their effectiveness. It’s for anyone who wants to coach their

team in Agile development—whether you are a project manager, you are

a technical lead, or you are simply working in a software team.

The art of Agile coaching is understanding the situation, the values

underlying Agile software development, and how the two can combine.

As an Agile coach, you don’t need to have all the answers; it takes time

and a few experiments to hit on the right approach. We’ve worked with

teams who’ve come up with great solutions, and we learn from every

team we work with.

We will be talking you through the whole spectrum of Agile practices

from creating plans to deploying software. We’ve chosen to explore a

wider set of practices than in some agile methods, including both plan-

ning and technical, because they work together in a reinforcing system.

However, in our experience, the hard part is not the mechanics of Agile

practices but how to coach people in adopting them. That’s what this

book is about.

Generic Agile

Most teams we work with are using a mixture of Extreme Programming

(XP), Lean, and Scrum, so throughout the book, we will refer to this

as Agile.

Prepared exclusively for William Anderson

Download at Boykma.Com

THE AIM OF THIS BOOK 14

A simplified life cycle for this Agile process is shown here. It shows that

a team works in iterations to deliver software. Each iteration opens with

planning based on user stories and closes with a demo and retrospec-

tive. The team works in a shared workspace and starts their day with a

daily standup around their team board. Software is created using Test-

Driven Development and Continuous Integration. Some teams work in

short one-week iterations, while others work to a monthly cadence.

As Agile coaches, we work to establish a healthy collaboration between

a cross-functional development team and their business stakeholders.

We use the term customer for the business representative who works

with the team (equivalent to a product owner in Scrum) without going

into responsibilities of team roles, which in our experience vary from

one organization to another.

The life cycle shows how these Agile practices join up. But you don’t

have to start implementing Agile from the top. Your team could get

started with any practice in this cycle and then fold in more practices

over time.

The Aim of This Book

Coaching is all about working with people. These people work on

projects and in teams, and these teams are within an organization.

Every person, project, team, and organization is different, so we can’t

prescribe exactly what you should do in your situation.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=14

THE AIM OF THIS BOOK 15

Rachel Says. . .

Showing, Not Telling

I don’t think it’s possible to talk purely about coaching with-
out getting into how Agile practices work. It’s one of the main
things we do as Agile coaches. You’re there to help the team—
to demystify, to remove confusion, to make what was difficult
easy.

Imagine if you found someone using a hammer to bang in a
nail, but they were using the handle to hit the nail. You’d offer
to show them how, and then you’d turn it around and hit the
nail with the hammer head. Now they know how to use the
hammer, their job becomes easier, and they’re happier using
the hammer because they understand how it works.

I often meet teams that are trying to follow Agile practices, but
what they’re doing is quite odd and not a good use of their
time. I show them how they could do things differently rather
than telling them what they should do. They choose whether to
apply what I’ve shown them.

Instead, we give general guidelines to follow and ideas on different

options you can apply.

We can’t give you formulas to follow that will always work, because

no two situations are alike. Depending on team context, we might give

opposite advice to one team than another. For example, we would nor-

mally recommend that the project manager attends the daily standup,

but there have been times when we’ve recommended that he doesn’t.

Some factors to bear in mind are team size, pressures on the team, and

experience of team members.

Throughout the book, We share stories about what we did in different

circumstances, along with some more specific tips that you can use if

your situation happens to match the one we describe. You’ll need to

decide whether to apply our advice to your teams.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=15

HOW TO READ THIS BOOK 16

Time and experience are necessary to become an effective Agile coach.

Reading this book will add to your knowledge. It will help you avoid

coaching pitfalls and provide you with tips to improve your coaching.

It will give you inspiration and ideas to apply what you learn with your

team.

How to Read This Book

Each chapter is relatively self-contained. Feel free to dip in or read the

book sequentially. We start with discussing general coaching principles

and then move on to how to apply them to coaching specific Agile prac-

tices. Take the time at the end of each chapter to review the checklist

and reflect on how you could apply what you’ve read with your team.

We’ve encountered many hurdles that we had to overcome when coach-

ing Agile teams. We’ll share these at the end of each chapter together

with our advice on how to clear them. They’re not meant to be an

exhaustive list, but we hope they’ll give you some inspiration if you

get stuck.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=16

Acknowledgments
This book would not have been possible without the support of our

families. We wrote much of the book over weekends and evenings and

had many long Skype calls while they tip-toed around waiting for us.

So, thank you to both our families for everything: Don, Alex, Abby, and

Josh, and also Ian, Sapphire, and Stephanie.

We’d like to thank our official reviewers: Mike Cohn, Frank Goovaerts,

Ben Hogan, Leigh Jenkinson, Colin Jones, Allan Kelly, Turner King,

Simon Kirk, Lasse Koskela, Andy Palmer, Timo Punkka, Xavier

Quesada-Allue, Dan Rough, Russ Rufer, Karl Scotland, Bas Vodde,

Leah Welty-Rieger, Matt Wynne, and the Silicon Valley Patterns Group.

We’d also like to thank the following people who have reviewed parts of

this book to help us improve it: Esther Derby, Willem van den Ende,

Ellen Gottesdiener, Julian Higman, Ron Jeffries, Norm Kerth, Antony

Marcano, Richard Lyon, Ivan Moore, Linda Rising, Jerry Weinberg, and

Rebecca Wirfs-Brock.

Thanks also to Ron Jeffries, Michael Feathers, Lasse Koskela, Antony

Marcano, Ivan Moore, and Karl Scotland for their written contributions

to the book.

Finally, we want to thank Andy Hunt, Dave Thomas, and Jackie Carter

from Pragmatic Bookshelf, especially our editor, Jackie, who patiently

coached us over the past year and helped us pare down our writing to

extract the essence. Thank you for your support.

Prepared exclusively for William Anderson

Download at Boykma.Com

Part I

Coaching Basics

Prepared exclusively for William Anderson

Download at Boykma.Com

A journey of a thousand miles begins with a single step.

Lao-tzu, 604BC–531BC

Chapter 1

Starting the Journey
Let’s get started on your journey to becoming an Agile coach. Your mis-

sion is to help teams produce great software by applying Agile. To suc-

ceed, you’ll need passion and enthusiasm for Agile. Experience applying

Agile is also required before you can guide a team in it.

Your first question is probably, “What does an Agile coach do?” quickly

followed by “How can I do that?” Your success, as an Agile coach, boils

down to learning basic coaching skills and strategies that help you work

with people to implement change.

We’ll get into how to coach teams in specific Agile practices, such as

Test-Driven Development and user stories, later in the book. Before

that, let’s run through what Agile coaches do and how they do it.

Then we’ll cover some useful preparation to help you put your best foot

forward.

1.1 What Does an Agile Coach Do?

Your goal is to grow a productive Agile team that thinks for itself rather

than relying on you to lay down the Agile law. Showing people how to

be Agile isn’t enough; they need to change how they work and how they

think in order for Agile to stick. They often need to unlearn old habits

before they can work effectively as members of an Agile team. As an

Agile coach, your job is to guide them through the rough patches until

they can find their own way.

Each team is different, made up of a unique cast of characters with

their own project challenges. That means how you coach a team de-

pends on what they need from you. If a team is new to Agile, then you’ll

Prepared exclusively for William Anderson

Download at Boykma.Com

WHAT DOES AN AGILE COACH DO? 20

be like a sports coach, actively showing them how Agile practices work.

For more experienced teams, you’ll be more like a life coach, listen-

ing and asking questions that help them improve rather than offering

solutions.

This mindmap gives you an overview of what’s involved. Let’s explore

each branch to see some of the things you will be doing:

Notice: Keep your eyes and ears open, notice how the team works, and

then reflect on underlying causes.

Feedback: Give feedback about what you noticed to the team. Help

them incorporate feedback into the way they work so they spot

problems themselves.

Educate: Look for ways to encourage learning. You can do this by

demonstrating how to be Agile, by telling stories, and by running

training sessions.

Facilitate: Make it easy to be Agile by smoothing the path for construc-

tive communication and collaboration.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=20

DEVELOPING A COACHING ATTITUDE 21

Support: Be there when the team gets stuck, encourage them to keep

going, and help them stay energized.

That might seem like a lot, but you don’t need to do all these things

at once. Coaches work one step at a time rather than creating a whirl-

wind of change. You’ll find that the secret to success all comes down to

developing the right attitude.

1.2 Developing a Coaching Attitude

Developing a positive attitude to your coaching is essential. You have to

believe change is possible before you can make it happen. You need to

show you’re open to new possibilities and ideas while keeping your feet

firmly on the ground. What a team needs from you is guidance on what

they can do and a shot of courage to make these changes a reality.

Here are some important habits to develop as an Agile coach:

• Lead by example.

• Keep your balance.

• Set a realistic pace.

• Mind your language.

• Learn as you go.

Let’s look at each of these in turn to see what they mean in practical

terms.

Lead by Example

Give the team a real-life example by following Agile principles yourself.

For instance, an important principle of Agile is to work at a sustainable

pace (rather than getting burned out). So, make sure you leave the

office at a sensible time to demonstrate that you take this principle

seriously. Have conversations face-to-face instead of sending emails to

demonstrate how to communicate. Try making a list of the principles

that you would like to demonstrate and how you will do so.

Following your own advice is a powerful way to lead the team. When

you’re consistent with your own recommendations, people know they

can rely on you. Take a moment now to think about ways you can

show that you practice what you preach.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=21

DEVELOPING A COACHING ATTITUDE 22

Keep Your Balance

It’s natural for the team to react against changes, and as a coach, you’re

often the one who’s introducing change. Expect some backlash with

every change, and don’t let the team’s reaction throw you off balance.

They may simply be recovering from the last “great idea from manage-

ment,” which didn’t work out, and be cynical about making any change

at the moment.

Never take criticism personally; it’s most likely change rather than you

that the team is reacting to. Stay positive, and keep your coach’s hat

firmly in place. Take some positive action, such as working out the root

causes of any team gripes, and then look for ways you can resolve them.

Set a Realistic Pace

Patience is one of the most important qualities of a coach. Don’t expect

instant perfection from the team; change takes time. Take care not to

add to the stress on the team by finding fault with their early attempts

to be Agile or having unrealistic expectations. Remember, the team may

be under other pressures that are distracting them from learning about

Agile right now. Chill out, and don’t add to the pressure.

When the team is slow to apply what you’ve been teaching them, don’t

jump to blame them. Take responsibility, and look to yourself for the

cause. Are you going too fast? Have you chosen a bad time to get

started? Back off for a while, and let off some steam by talking to some-

one outside the team.

Patience is not the same as complacency—don’t give up. You do want to

see a change eventually, so keep pushing gently and persistently. Can

you find another way to help the team see how important it is to slow

down and learn these new Agile skills? Look for ways you can support

the team by getting the rocks out of the way and making it feel safe to

try something new.

Mind Your Language

This might be a surprise, but when you’re a coach, you have to watch

your language! Of course, it helps to keep it clean, but what we’re driv-

ing at is that you need to take care how you talk to the team.

Show that you are part of the team by talking from a team perspec-

tive using “our”/“we”/“us” rather than “I”/“you”/“they.” Say, “We need

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=22

DEVELOPING A COACHING ATTITUDE 23

to update our release burnup chart,” instead of “You need to update

your release burnup chart.” The difference is quite subtle but impor-

tant because it shows the team you’re on their side. You don’t need to

use inclusive language all the time; when sharing a personal opinion,

it’s clearer if you use “I,” as in, “I’ve noticed that our tests are taking

more than an hour to run.”

If you notice something unusual, say so. For example, “I haven’t seen

it done this way before,” or the more concrete, “The last team I worked

with checked with their customer before they put out a release.” Shar-

ing this as information rather than advice or criticism can lead the team

into considering alternative approaches.

Avoid making sweeping generalizations. Don’t use words like “never,”

“always,” “right,” and “wrong,” because doing so can discount the sit-

uation at hand. Try hard not to dismiss past practice by saying it was

wrong or incorrect; this creates bad feeling, and people may feel they’ve

lost face.

Beware of putting people in boxes by using labels and talking about

“the developers” or “management.” Putting people in categories creates

a barrier to communication. Try to use people’s names.

Learn as You Go

When things don’t go as you were hoping, don’t panic. Take time to

reflect on what happened and why. The most powerful lessons are

learned from mistakes. Ask yourself what you can do differently if

you’re faced with the same situation again.

Although it’s tempting, don’t try to protect the team from making mis-

takes. Instead, give the team room to make mistakes, and be there to

help them learn from the experience.

You don’t need to be busy working with the team all the time. Take time

to stock up on fresh ideas, and keep up with what’s happening in the

Agile community outside the company. Read books, read blogs, listen

to podcasts, and try to connect with others who are interested in Agile.

We’ll talk more about how to develop yourself in Chapter 14, Growing

You, on page 207.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=23

GETTING READY TO COACH 24

1.3 Getting Ready to Coach

Like a sports coach, an Agile coach needs to know how to play the

game. You need to understand how Agile works and get some experi-

ence applying Agile in practice. When you have experience as an Agile

practitioner, you’ll have a better appreciation of how it works, and you

can use real examples to illustrate your points.

Practice explaining

Agile.

Experience using Agile doesn’t automatically

make you good at explaining Agile techniques

to others. Get some practice in, and learn how

to field unexpected questions. Find someone

who is willing to listen who doesn’t already know what Agile is about.

If you can’t find anyone at work, if your family are now Agile experts,

and even if your cat is sick of hearing about Agile, try going to your

local Agile user group to hear how other people do this. You can pick

up some tips from the pros by listening to Agile podcasts; a good place

to start is the Agile Toolkit.1

Before you start working with the team, do some groundwork to get

clear about your role. Being Agile is not an end in itself. What benefits

do you want to bring to this team? What is expected of you by both the

team and their managers? Take the time to answer the questions we’ve

listed in the sidebar on the next page. These can help you work out how

best to be introduced.

Arrange to be Introduced

Starting off on the right foot is important. Before you can do any coach-

ing, you’ll need to be introduced to the team. Even if you already know

the team members, they need to understand your new role as Agile

coach.

No Formal Introduction

Henry was brought in as an Agile coach to help a team adopt Test-Driven

Development, but he didn’t get introduced as a coach. He assumed that

the development manager had already explained his role to the team. But

when he started trying to provide advice to the team, he met a lot of

resistance.

In the eyes of the developers, Henry was “the new tester” whose job was to

write automated story tests for them. They didn’t see any reason to listen

1. See http://agiletoolkit.libsyn.com/.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://agiletoolkit.libsyn.com/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=24

GETTING READY TO COACH 25

Exercise: Questions to Ask Before Coaching

Here are some questions that are useful to try to answer before
you start coaching a team.

Motivation:

• Why am I coaching this team?

• What difference do I want to make?

• What do I want to learn?

Skills:

• What do I have to offer?

• What do people need to know about me?

• How will I make this information available to the team?

Responsibilities:

• Do I need to get anyone’s agreement to start coaching?

• What are the responsibilities of my official role?

• Do any of these conflict with being an Agile coach?

• How will I review my progress?

• How will I know when I’m done?

Support:

• What support can I get from others?

• How will I be introduced to the team?

• Are there other Agile coaches I need to work with?

• Do I need to communicate progress with coaching to a
sponsor?

to him and saw his attempts to give them feedback on their process as

unnecessary and interfering. This situation was very frustrating for Henry

and quite difficult to resolve after this bad start, because the team was

now used to ignoring him.

Being introduced properly helps build credibility and trust with the

team, which is essential before they’ll listen to you. They need to under-

stand what you can offer them and what support you have from man-

agement. Remember also that if they’re new to Agile, they may also

need some overview about what Agile is and the benefits of it in order

to make sense of your role.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=25

GETTING READY TO COACH 26

Who does the introducing depends on your situation:

External coach:

If you’re being brought in as an Agile expert to help the team

improve, then talk to your sponsor to arrange an introduction.

Help them make a powerful introduction by making sure they

know what credentials will be relevant to mention to the team. For

example, he could mention you’re a contributor to an open source

testing tool, that you’re a prolific blogger, or that you worked on

a groundbreaking Agile project at another company. This comes

across much better than saying, “I’d like you to meet, Allan. He’s

an Agile guru.”

Internal coach:

If you have been asked by your manager to be a coach on a pilot

project or to support a wider rollout of Agile in your organization,

then your team needs to know about your new role. They also need

to hear more about the plans for the Agile transition. Arrange for a

senior manager with some authority to explain the drivers for Agile

in your organization. This shows the team that you have blessing

from management and makes it more likely that the team will pay

attention to your recommendations.

Extending your role:

It may be that no one has asked you to introduce Agile, you believe

Agile will give your team an edge, and you have the authority to

extend your role to become an Agile coach. You don’t have anyone

to introduce you, but don’t be tempted to skip an introduction.

Set up a session with the team to introduce your new role and to

answer their initial questions about moving to Agile.

Introductions are a two-way thing. An introduction gives you an oppor-

tunity to get to know the people on the team. They may be worried that

you have a hidden agenda. Talk to them openly about your motivation

to take on the role of an Agile coach. Show that you’re on their side by

asking them about their hopes and fears for the project. This should

give you some good ideas about what you can do next to support them

and earn their trust.

After your introduction, spend time with the team getting to know the

players and seeing how they work. Sit with the team rather than observ-

ing them from afar. Try to blend in like a chameleon; otherwise, the

team puts on its best behavior whenever you’re around.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=26

HOW TO START COACHING 27

Figure 1.1: PrOpER coaching cycle

The team needs to build confidence in your ability and experience

before they’ll be willing to follow your lead. It can help to start with

something that grabs their interest, like running an interactive session

to learn about Agile, such as the XP game2 or a coding dojo.3

1.4 How to Start Coaching

You’re probably itching to get started, but where do you get started?

There’s no right place. The simplest approach is to pick one thing and

jump in. If it’s not obvious what problem to work on first, then you can

take an Agile approach. Brainstorm a list of problem areas to work on

that could improve life on the project for the team. Then prioritize this

list based on your coaching mission—now you have a starting point.

You can apply our PrOpER cycle (illustrated in Figure 1.1) to each

coaching episode.

Problem: Pick a problem to work on. Watch how the team works. What

needs to be improved?

Options: Consider your options. What could you try that might influ-

ence the situation for the better? List at least three options.

Experiment: Pick one option to try.

Review: Review the outcome. Did you improve things? Even if things

haven’t improved, have you learned something?

2. See http://www.xp.be/xpgame.html.
3. See the sidebar on page 151.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.xp.be/xpgame.html
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=27

HOW TO START COACHING 28

Let’s work through an example together.

Problem: Jack arrived late for the daily standup meeting today. It hap-

pened last week too. You’re concerned because he’s working on

building a new test environment. He’s missing important infor-

mation about problems the team is finding with the current test

environment.

Options: Here are a few options that you might consider:

Take the bull by the horns: When Jack arrives, ask for some time to

catch him up on what he missed at the daily standup. While you’re

going through those issues, talk to him about the importance of

attending the whole daily standup.

Educate the team: Run a training session for the whole team to

learn how to improve their daily standup; this may help Jack

understand why it’s important for everyone on the team to attend

the meeting.4

Leave them holding the baby: You need someone to cover for

you; ask Jack whether he can help you out by running the daily

standup tomorrow.

Wait and see: Do nothing, and wait to see whether the team lets

Jack know his lateness is a problem by themselves.

Experiment: You choose the first option—to talk to Jack about it.

Approach the conversation by mentioning that you noticed he’s

missed the daily standup a couple of times. He seems genuinely

surprised that this matters; from his perspective, he’s not work-

ing on any of the customer’s stories, so surely he doesn’t need to

be there. Explain the reason for your concern is that he’s miss-

ing information from his teammates that needs to be considered

in building the new test environment. Also explain that the daily

standup is for the team, not the customer. Suggest that he call

a meeting with the tester to go through the issues he missed. He

nods and agrees to be on time for the daily standup tomorrow.

Review: Review the outcome. The next day, does Jack arrive on time?

Did your conversation make a difference? If there’s still a problem,

then what other options can you try?

4. Bill Wake’s “Scrum from Hell” is a role-play exercise that might work well here; see

http://xp123.com/g4p/0410b/index.htm.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://xp123.com/g4p/0410b/index.htm
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=28

HOW TO START COACHING 29

Rachel Says. . .

Rewind and Fast-Forward

It’s important to have a sense of time, as a coach, to think
about cause and effect. When you notice something, use your
imagination to rewind or fast-forward events.

Finding out more about what happened in the past can make
you more aware of what obstacles might crop up in the future.
Ask the team, “How did things get this way?”

Think things through when making changes. What are the
longer-term consequences of current actions? What might
happen if things continue the way they are?

When trying to come up with options, here are some ideas to consider:

• Surface the problem: Make the problem visible to the team.

• Socialize the problem: Talk with the team about the problem.

• Wait and see: Leave this problem; if it gets worse, the team will

probably notice.

• Go sideways: Sell the problem to someone else inside or outside

the team.

• Root cause analysis: Look for the root cause of the problem.

• Educate the team: Provide the team with more information so they

see a solution.

• Put them in charge: Hand over responsibility to the team or a team

member.

We’ve talked about how you use the PrOpER cycle on your own, but it

doesn’t have to be a secret. You can also use the PrOpER cycle openly

with the team, informally or in a retrospective.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=29

MAINTAINING THE PACE 30

1.5 Maintaining the Pace

Creating Agile teams takes time, and some days it seems like you’re

making no headway. There’s sure to be setbacks along the way that

can make us feel like giving up. So, how do you maintain momentum

and keep on going?

James Shore gave an inspiring talk, “Change Your Organization (For

Peons),” about his experiences trying to introduce Agile techniques into

his organization (see Proceedings of the 2003 Agile Development Confer-

ence [Lit03]). We like his advice about finding small pleasures. He says,

“Organizational change is largely outside of your control. Find small

things at work that you can do every day and that give you a feeling of

satisfaction.”

If things seem to be going slowly, don’t feel bad; try to make one small

step forward every day. James found that even though people did not

make a change in how they worked at first, he was slowly able to change

how people thought about things. This mental shift in the team was

invisible, so it felt like he was making no progress. But explaining the

ideas was a necessary step before they started putting Agile into prac-

tice, which his organization eventually did.

A Shoulder to Cry On

by Rachel

On my first big engagement as an Agile coach, I was one of a number of

external Agile coaches brought in to help teams make a transition to

Agile. It was a tough environment to start in. I was used to working with

developers who liked being Agile and were keen to do more of it. But these

teams were not so enthusiastic, for good reasons—the change was being

rushed, and they didn’t like it.

What helped, in the face of this resistance, is that the coaches linked up

to work together. Quite a few of us knew each other from Extreme

Tuesday Club in London.5 When I hit a roadblock with my team, I’d go

and find one of the other coaches. They might have already solved a

similar problem, and that might save us some time. But even if they

hadn’t, it helped to compare notes and talk it through with them. It also

helped to have someone to commiserate and have a cup of tea with when

the going got tough.

5. Extreme Tuesday Club is an Agile user group that has been meeting in a pub in

London every Tuesday since 1999—http://www.xpdeveloper.net/—and is where Rachel and

Liz met.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.xpdeveloper.net/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=30

MAINTAINING THE PACE 31

Try to find other coaches inside or outside the organization who you can

connect up with and form your own mini-support network.

We find it’s also useful, if you get stuck, to think about what another

coach we know might do when faced with the same situation. Look

for opportunities to work with other Agile coaches; you’ll likely notice

they have different coaching styles. Watch how they handle situations

to expand your coaching repertoire. Rather than mimic exactly what

they do, which is likely to feel uncomfortable, consider how you might

be able to absorb some of their techniques into your own approach.

Breaking In Your Coach’s Boots

We found that it took time to get comfortable being Agile coaches to

make the shift to giving advice rather than playing an active role in

getting the work done. At first, you may find it strange being less hands-

on and letting the team decide rather than setting direction yourself.

In Becoming a Manager [Hil], Linda Hill follows nineteen new managers

through their first year as managers. She illustrates how hard it is to

shift roles. If you were a tech lead or project manager and are now an

Agile coach, it will take time to shed your old identity at work and take

on a new one. So much of our life revolves around our work and how we

define ourselves that changing our job title creates ripples everywhere.

You may prefer to make the shift gradually by starting as a “player-

coach.” When you take on the role of coach as a player on the team,

you’ll have the advantage of experiencing problems with the way the

team works directly rather than by observation. The team knows that

you appreciate problems from firsthand experience, and they respect

you as their peer.

We find that if we’re heavily involved with project tasks, it’s hard to get

time to coach the team. When we play the coach role from the sidelines

rather than playing on the field, we can focus completely on improving

process and team work. You’ll find that playing the coach from this

position helps you see the big picture so you’re in a better position to

help the team optimize the whole.

So, how can you tell how you’re doing as an Agile coach?

• Looking back, is the team more Agile now than it was a month

ago?

• Have you had a positive influence on the team?

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=31

MAINTAINING THE PACE 32

Liz Says. . .

Credit the Team

Don’t expect to get recognition for your work as an Agile
coach. It’s a supporting role rather than one that delivers direct
benefits.

A good coach gives credit to the team. When you work on an
idea with Frank, it’s Frank’s idea if it succeeds, and if it doesn’t,
then commiserate together.

• Review your answers to the preparation questions in the sidebar

on page 25.

Another sign that the team has absorbed your coaching is that you’ll

hear team members give out advice based on what you’ve explained

previously. The joy of coaching has to be when you see the team achieve

their goals without consciously trying to be Agile. They’re not plodding

along; there’s an energetic buzz as the team swarms around the work.

Moving On

What happens to a cucumber if it stays in a jar of brine for too long? It

becomes a pickle—whether it wants to or not. In The Secrets of Consult-

ing [Wei85], Jerry Weinberg warns us about “getting pickled”—if we stay

with the same team (or even the same company) for more than a few

months, we can lose our fresh perspective. You stop noticing problems

that once jumped out at you. You start to absorb the same mind-set as

the rest of the company and find yourself saying, “That’s just how it’s

done around here.”

If you’re concerned that you are getting pickled, try explaining the

team’s process and the challenges that you are facing to an outsider. As

you explain it, you might start to see (again) the hiccups in the process,

the hidden assumptions, and the elephants in the room.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=32

HURDLES 33

Just when life seems good on the team, notice your job as coach is

probably done. The team has become self-coaching, and you need to

break their dependency on you for the answers. It’s time to move on!

1.6 Hurdles

Here are some hurdles you may encounter.

No Time to Coach

If you are heavily loaded with project work and people in the organi-

zation rely on you as the only person who can get specific tasks done,

you will not have the bandwidth to take on a coach role. You don’t have

to give up your desire to move into a coaching role. Instead, make a

plan to extract yourself from being the person everyone depends on.

Slow down, and show other people how to do the key tasks they rely

on you for.

Consider switching into a different team that can give you opportunities

to get some Agile experience that you can build on. However, if the

source of the stress is you and your internal drive to take too much

work on, take a break to get some perspective on the current situation.

No Experience

When you meet a situation that is outside your experience on Agile

teams, be open about that to the team rather than bluffing. For

instance, you may have plenty of experience with small projects but

haven’t worked on a large, distributed Agile project yet. Or perhaps you

don’t have any recent experience in programming, and you recognize

that the team needs help getting started with automated testing.

An Agile coach doesn’t need to have all the answers; it’s sometimes bet-

ter if you don’t. Not being an expert can help you stay detached enough

from a problem that you can still see it from an outside perspective.

Help the team work through the issue by facilitating the discussion

and by researching what other Agile teams are trying inside your orga-

nization or outside. Experience reports from Agile conferences can be a

useful source of ideas. Agile user groups are also another great place to

find out what other teams are doing. If you think that the team needs

specialist help, explore the possibilities of bringing in an expert to guide

the team through the challenge it faces.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=33

CHECKLIST 34

Blockers to Agile

There are times we meet teams that face serious roadblocks to becom-

ing Agile. We recommend you address these before you attempt to coach

a team in Agile. Otherwise, it can be a frustrating experience for all

involved, and problems caused by not establishing the right starting

conditions can cause people to blame Agile for the failures.

Sometimes the blockers are technical, and other times they’re organi-

zational. For example, if a team isn’t using source control, they are at

risk of losing changes to the software. They need to install this basic

development practice before making a start with Agile practices.

When a company is in the middle of a reorganization, then people are

more focused on keeping their jobs rather than becoming Agile. We

would advise against coaching while this is going on because the pres-

sure on the team will be too distracting, and you’ll probably be wasting

your time.

1.7 Checklist

• Practice explaining Agile to others. You can do this with anyone

willing to listen. Agile user groups are a good place to refine your

Agile pitch.

• Do some groundwork, and work out the best way to be introduced

to the team.

• Find ways to show that you apply Agile principles yourself. For

example, you can work iteratively and have face-to-face conversa-

tions rather than asking questions by email.

• Apply the PrOpER cycle to your coaching interventions. Start with

the problem, consider at least three different options that you can

take, pick one and try that as an experiment, and then review the

outcome.

• Pause to reflect and learn from your mistakes. Leave room for the

team to learn from mistakes too.

• Look for opportunities to learn from other Agile coaches, both

inside and outside your company.

• If you work with one organization for a long time, you can get

pickled. When the team is running an effective Agile process, it’s

probably time to move on.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=34

Listen carefully to what people say.

Guiding principle

Chapter 2

Working with People
To help Agile teams improve, you need to work with the individuals

in the team. They’re the number-one experts on how they work and

why. Tap into their expertise to reveal what’s holding them back. Listen

to their concerns and ideas one-on-one to give you insights on how

they can improve. Give them feedback to help them see where they can

improve.

Agile throws a team into closer collaboration than they may have expe-

rienced at work before. As you’d expect, when people work closely

together, conflicting opinions come to the surface. Coach the team to

explore these differences, and find solutions that everyone can live with.

This chapter is all about skills that will help you work with people on

the team. We’ll start with the art of listening, and then you’ll learn how

to give feedback that hits the spot. Next we’ll run through techniques

that can help you resolve conflicts and build agreement on the team.

2.1 Listening

A man goes into a doctor’s office and says, “Doctor, Doctor, it hurts

when I raise my arm over my head.” The doctor replies, “Then don’t

raise your arm over your head!” It’s not a great joke, but Doctor, Doc-

tor jokes have a common theme: the doctor isn’t really listening and

doesn’t help solve the problem. As coaches, we don’t want to fall into the

same trap.

A coach listens deeply. We listen to the troubles and woes of the team.

We also listen for the germ of an idea that needs support to take shape.

Prepared exclusively for William Anderson

Download at Boykma.Com

LISTENING 36

Yes, I’m Listening

Listening is an interactive process. If you’re wearing a stony-
faced expression, a speaker can’t tell whether you’re really lis-
tening. Give them some signals that you’re listening and want
to hear more.

Here are some tips that help you put someone at ease so they
feel comfortable to open up and tell you the whole story:

Create space: Don’t chime in and talk about yourself. If there’s
a pause in the conversation, you don’t have to fill the void.

Be open: Put on a relaxed and open expression rather than
frowning or grinning, which might make them feel you’re
judging them or not taking them seriously.

Show interest: Use your eyes, look into their face, and make
eye contact from time to time (without staring intently) to
show you’re interested in what they’re saying.

Affirm: Nod your head to show you understand. You can also
make “mmm” and “ah” sounds to show you heard them.

Respectful listening shows that you care about the person who is talk-

ing, which in turn has an effect on how much they will listen to you.

Prove you really did listen by following up afterward.

Listening well is a skill that you can learn. Start by giving your full

attention to the speaker. Stop what you are doing, and turn to face

them. If they appear hesitant, suggest moving out of the team work-

space to find somewhere quiet to sit or go out for a coffee; this can help

open up the conversation because they don’t need to worry about being

overheard and because there are fewer distractions.

Give them your full attention, and keep it with them rather than glanc-

ing at your watch or checking your cell phone. Now show you’re listen-

ing by following the tips in the sidebar on the current page.

Listen before giving

advice.

We find the hardest part of listening is resist-

ing the temptation to jump in too early with

advice or to switch the conversation to a sim-

ilar story that happened to you. Focus on the

person who’s talking, and try to understand the feelings and needs that

underlie their words without judging.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=36

LISTENING 37

When Chris says, “Nicola ignored my design,” mentally unpack this

as Chris holds the opinion that Nicola ignored his design. You may

have a different view of what happened, but now is not the time to

share it. Take the time to listen to Chris’s story properly before checking

into the facts. As the conversation unwinds, pause to check that you

understood what was said by paraphrasing what you heard: “So, what

I’m hearing from you is that you provided a design, but for some reason

Nicola has not implemented it.”

Ask clarifying questions.
If the pace of the conversation allows, ask clar-

ifying questions to draw the story out without

taking sides. Pick your questions carefully so

that it’s clear you are clarifying rather than challenging or criticizing

their actions. You could ask, “When did you notice that Nicola had not

followed the design?” or “Have you talked to Nicola about this?”

Reading Between the Lines

People usually speak much slower than you can think, which is why it

is so hard to give your full attention when someone else is talking. Don’t

spend your time mentally building your response, because this can

divert you from listening. Use the time to examine the whole situation.

Focus on the person speaking, notice how they express themselves, and

consider their possible motivation for starting the conversation:

• Are they looking to gain support, provide a favor, or repay a favor?

• Are they looking for empathy, advice, or more information?

• Are they flagging a problem because they want you to help them

solve it?

Pay attention to any nonverbal cues such as body language and the

tone of voice they use:

• Are they upset, angry, excited?

• Do they seem uncomfortable or relaxed about the conversation?

• Are they acting a little different than usual?

Don’t assume lack of eye contact is a sign that they are hiding some-

thing; people often look away when they are trying to remember some-

thing or feeling uncomfortable.

Put yourself in their shoes—imagine how they feel about the situa-

tion, and empathize by summarizing. You could say, “Chris, it sounds

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=37

LISTENING 38

like you’re feeling frustrated. You worked over the weekend to get that

design finished, and now your work has not been used.” This helps

show the person that you are listening and also gives them the oppor-

tunity to correct you and continue their story.

Maintaining Trust

In closing a conversation, summarize the key points you heard, and

check them with the speaker. Do you understand their needs?

The speaker had a reason for wanting to share information with you,

and they may not do so again if you do not follow up the conversation.

If a problem has been disclosed, you’ll want to do some further inves-

tigation before committing to a course of action, so don’t feel obliged to

make any immediate promises about resolution.

Finally, to maintain trust, it’s important not to betray confidences.

Check whether the person prefers what was discussed to remain pri-

vate or whether their concerns should be shared with the team and, if

so, how to approach this.

Background Listening

Besides listening in the context of a one-to-one conversation, you will

also be involved in many team conversations. Most of the same rules

apply. When facilitating a meeting, pay attention to each speaker, and

wait until they have finished speaking before asking clarifying ques-

tions. It can also help to paraphrase what you heard them say to check

that you understood and make it clear for everyone else in the meeting.

When you participate in a team conversation rather than running a

meeting, you still need to listen carefully to the words being used and

watch the body language of the team. If someone makes a statement

that strikes you as indicating that they have misunderstood some-

thing, such as “Now that we’re Agile, we don’t need to document the

release,” you have a choice, You could pause the meeting and check

group understanding about that point, without singling out the per-

son, or you can address the issue after the meeting. We find it helps

to capture a mini-quote—taking note of the exact words used in your

notebook—as a reminder to follow up.

Listen to the level of conversation in the team outside meetings too.

A healthy team buzzes with sporadic conversation throughout the day

because team members are truly working together to create software

together, whereas a quiet team may not be working as a team at all.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=38

GIVING FEEDBACK 39

Liz Says. . .

Don’t Abuse the Power of the Pen

If you are writing up notes on the board in a meeting, beware
of filtering what you heard. Make sure that you write all the
points mentioned rather than only those you agree with. If peo-
ple don’t feel that they’ve been heard, they are likely to stop
contributing to the conversation.

Some filtering of trivial comments is necessary. However, take
care to use words people said rather than put words in their
mouth. Don’t be afraid to ask them if you have captured their
point accurately.

Listening to the team provides you with a wealth of information about

them and the issues they are struggling with. Deep listening also shows

that you care about their concerns and are interested in helping them.

It puts you in a better position to influence the team by giving them

feedback.

2.2 Giving Feedback

When you notice behavior that is not working well for the team or

an individual, you naturally want to help them to see what needs to

change. You want to share your observations, in the hope that you will

influence them to change their behavior, but it can be hard to know the

best way to get your message across. For example, if a team member

has been acting disrespectfully, how can you bring it to their attention

in a way that they will listen to you? Let’s take a look at how to give the

team feedback.

Your first step in providing feedback is to separate the basic information

(what you saw or heard) from your assessment and feelings about the

situation. Talk about the data from your perspective, and give specific

examples of what you saw and heard rather than your interpretation.

If you can give this information sooner rather than later, it will be eas-

ier for the person to remember what they did and why. For example,

when you say, “Nicola, I noticed that you kept having to step out of our

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=39

GIVING FEEDBACK 40

meeting yesterday to take calls on your cell phone,” it summarizes your

observation. Follow this by saying something like “I am concerned that

you missed Chris’s walkthrough of the design he’s been working on,”

which sums up your feelings and assessment of the situation.

Now it’s their turn. Listen to their experience of the events. Maybe

there’s a good reason for their actions that you don’t know about yet.

Nicola may be getting calls from day care about her sick child, or

she may be getting requests for help from her previous project team.

She may be unaware she missed anything important, or she may have

already taken time to catch up with Chris after the meeting.

If you still think there’s room for improvement, make some suggestions

of how they might handle similar situations in the future. Ask for their

ideas too. Then you can talk through the pros and cons of each option.

For instance, if a customer often arrives unprepared for planning meet-

ings, this can waste the team’s time. You could suggest that they block

out a time buffer between meetings rather than rushing from one meet-

ing to the next. You could offer to work with them on their preparation

next time. Or they could arrange a session with the team lead to pre-

pare for planning.

Give specific examples

of what you saw and

heard.

If you want to give positive feedback, you

don’t have to phrase it as a judgment and

rate their achievement as in “Fantastic job!”—

a light touch works better. Let them know you

noticed what they did and the positive effects

that resulted. For example, “Mike, I noticed that the build is running

a lot faster since you reconfigured it. Yesterday, it flagged up a broken

test in a couple of minutes so Jules was able to fix the problem before

getting started on a new task.”

Timely feedback helps nudge the team into improving their process

without directing them what to do. As the team starts to benefit from

process changes, they usually become more reflective on how they are

working together and accept feedback from each other more readily.

Sometimes you will want to give feedback that hasn’t been asked for.

Take care in doing this, because the person you want to offer feedback

to may feel like you are stepping out of line and criticizing them. If

you state feedback too bluntly, you can upset them so much that your

message does not sink in or they feel alienated by what you said. Slow

down, and start by asking for permission to share your feedback with

them. Now work through the previous steps.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=40

RESOLVING CONFLICTS 41

Rachel Says. . .

Catch Them Doing It Right

Encourage the team when they’re learning new skills, such as
Test-Driven Development, and aren’t sure if they’re on the right
track. Take time to notice what the people on the team have
done well by giving them positive feedback.

Catching someone doing something right also has an effect
on you, as the person giving the feedback. You’re probably
unaware of it, but human beings process the world by catego-
rizing. We sort people based on what we see of their actions,
which is usually not the whole story. Linda Rising, in her talk “Who
Do You Trust?” at the Agile 2008 conference, suggested that
when you catch someone doing it right, you’re categorizing

that person as a winner rather than a loser in your own eyes.
This helps you see their other actions in a positive light.

What if they’ve also not done such a great job on something?
Just because you noticed, you don’t have to say anything.
When I’m tempted to criticize, I try very hard to keep my mouth
shut.

2.3 Resolving Conflicts

As a coach, you may be drawn into situations where there is a conflict

within the team that’s holding them back. Sometimes this is an open

disagreement, and other times it’s a festering situation where there’s a

disagreement, but it’s not openly discussed. If you detect that there’s a

concealed conflict within the team, spend time listening to the concerns

of individuals on the team. This helps you understand the causes before

surfacing the conflict with the team.

Before you dive into the role of peacemaker, consider whether the dis-

pute will resolve itself without your help. If you intervene every time

there’s a dispute, then you may find team members start whining to

you, as if you were a parent being called upon to resolve squabbles

between kids.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=41

RESOLVING CONFLICTS 42

Nonviolent Communication

Marshall Rosenberg teaches an approach in Nonviolent Com-
munication [Ros03] that is a useful technique to apply to dif-
fuse conflict. The basic principle is that you ask about the feel-
ings and needs of others. By listening to them, you help build
enough trust that others will listen to you. The four basic steps
are as follows:

• Observation: When you. . . (describe your observation)?

• Feeling: Are you feeling. . . (guess the emotion)?

• Need: Because you need. . . (guess the need)?

• Request: Would you like (me, him, her, them) to (specific
action)?

For example, “When you walked out of the design review, I
guess you were feeling frustrated because you needed more
time to explain your new design to Roger. Would you like me to
arrange a follow-up meeting with Roger so you have some time
to get your idea across?”

When you are acting as a mediator, be clear that in this role you can’t

take sides. Listen to the problem from each side, and demonstrate that

you understand what is being said by restating the problem in your

own words (or ask them to restate each other’s problem). Next, try to

detach the problem from the individuals and frame this in the context

of the team. Explain the situational factors that you see at play in the

situation—such as if there’s pressure on the team to deliver and people

have been working late. It may even be useful to create a diagram of

effects to explore the forces involved.

Resolving disputes within the team helps stop them from working at

cross purposes. However, remember that some differences in opinion

are healthy. Too much emphasis on peace and harmony within the

team can signal that the team members are complacent. Groupthink

[Jan82] can set in—where the team favors group happiness and con-

formity over critical thinking. Whenever making important decisions,

try to make sure the team considers different options. Ask the team for

a devil’s advocate perspective to anticipate problems with what they’re

proposing to do.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=42

BUILDING AGREEMENT 43

2.4 Building Agreement

When you introduce new practices, it helps to find out whether you

have buy-in from everyone on the team. Some team members may be

enthusiastic about the changes, but there are likely to be skeptics too.

One technique that helps reveal differences of opinion is gradients of

agreement, which we learned from Facilitator’s Guide to Participatory

Decision-Making [KLT+96].

Rather than asking team members for a simple yes or no vote on a pro-

posed action, you can create a gradient scale that runs from Endorse

to Block. Draw this up on a flip chart, and ask everyone in the team

to indicate their level of support with a check mark. This allows you to

distinguish a whole-hearted yes from a lukewarm one and a strong no

from a mild one.

Using a gradient scale enables you to show when there’s a lack of

consensus. Consensus is important because when a person does not

agree with an action, they are unlikely to implement it enthusiastically.

Sometimes you may decide that it’s worth going ahead without con-

sensus, framing a change as a timeboxed experiment that the team

reevaluates at the next retrospective. But if the scale reveals a lot of

negative opinion, try to work out a new solution that everyone on the

team can live with.

Using Gradients of Agreement

by Rachel

I used gradients of agreement in a workshop about a team’s approach to

testing. I knew from pair programming with developers on the team that

they did not all have the same passion about writing automated unit

tests. A couple of the developers were keen to install a CI server to run

tests automatically after every check-in. I was concerned that this didn’t

have the full support of the team; in fact, the team didn’t have a set of

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=43

HURDLES 44

tests that could be run by any developer yet. I drew up a gradient chart

and listed the following alternative goals. Then I asked the team to vote.

• A. Automated tests should be run every day.

• B. Automated tests should be run manually before every check-in.

• C. Automated tests should be run automatically after every check-in.

Everyone on the team indicated strong support for option A. However, the

votes on options B and C were mixed and showed there was not enough

support to try these yet. We talked through some of their concerns, which

mostly centered on the time automated tests would take to run. However,

the team did have consensus on option A, so the remainder of the meeting

was spent working out what the team needed to do to establish a daily

build and test routine.

By using gradients of agreement, I was able to focus the team on the

option with the most support, and the team avoided wasting time

installing software that the majority of them were not ready for yet. It took

another couple of months before the team was ready to get started with

using a CI server to run tests automatically.

Use this technique to establish the level of agreement amongst the

team. If you don’t have a place to draw up a gradient chart, then you

can use fist-to-five voting as an alternative to a written gradient, where

holding up a fist indicates a block and the number of fingers indicates

a level of support from one to five. Whatever method you use to uncover

a disagreement, take it seriously, and explore the concerns behind it.

2.5 Hurdles

The following are some hurdles you may encounter.

Emotional Outburst in a Meeting

If someone has an emotional outburst because of a conflict in a meet-

ing, we recommend you call a break to give them time to calm down

and recover their composure. Before you resume the meeting, take a

moment to talk to the person to understand what has upset them. If

you decide to continue the meeting, don’t pretend nothing happened.

Acknowledge that feelings are running high, and check with the whole

team whether they can continue with the meeting or whether the issue

that caused the upset should be resolved first.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=44

HURDLES 45

Liz Says. . .

Don’t Put People in Boxes

There are many models out there that can be used to catego-
rize people into levels or types. Models can be useful to help
you determine how best to present information to the team.
A great one to start with is the Dreyfus learning model, which
Andy Hunt explains in Pragmatic Thinking and Learning: Refac-
tor Your Wetware [Hun08].

These are some of the other models to learn about:

• Myers-Briggs types∗

• Thomas-Kilmann conflict modes†

Watch out that you don’t get too carried away with applying
any one model; this can get in the way of appreciating that
each person is unique and different. Learning about more than
one of these models helps you see the same behavior through
different lenses, giving you a better way to evaluate people’s
actions.

∗. See http://www.myersbriggs.org/.
†. See http://www.kilmann.com/conflict.html.

Lack of People Skills

Often you find that people have been drawn to a career in software

development because they prefer working on their own and find inter-

acting with people difficult. Be aware that people have different commu-

nication preferences. You may need to be more direct with some people

and give others more space.

Cultural Differences

In different cultures, different things are considered polite. For exam-

ple, Liz is from New Zealand, and some English people find the way

she phrases things to be too direct. You may find that people who’ve

grown up in a different culture than you say “yes” to mean “I’m listen-

ing,” rather than to mean “Yes, I know how do that.” Some cultures

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.myersbriggs.org/
http://www.kilmann.com/conflict.html
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=45

CHECKLIST 46

are more comfortable with a meritocracy, which tends to be a working

assumption for Agile teams, whereas other cultures prefer a distinct

hierarchy.

Help your team become more attuned to cultural differences such as

tolerance for ambiguity and individualism. One way to approach this is

to explore the work of Geert Hofstede on cultural dimensions with the

team.1

2.6 Checklist

• Practice deep listening to understand the problems the team faces

and build trust. Give your full attention to the person talking, and

ask clarifying questions to check that you have understood what

they are saying.

• When giving feedback, separate what you saw or heard from your

feelings about the situation. Give specific examples of what you

noticed rather than general comments. Tell them what you saw

or heard, and then ask about their explanation of events. Now

put your heads together to come up with ideas for handling the

situation next time.

• If a conflict erupts, make sure all sides get to share their view-

point. Don’t step in to resolve every conflict for the team because

otherwise they rely on you as a peacemaker rather than learning

to get along.

• Use gradients of agreement to reveal the level of support for a

change. This allows the team to find out whether there is major or

only minor disagreements.

1. http://www.geert-hofstede.com/

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.geert-hofstede.com/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=46

To improve, people must first learn new ways of doing

things.

Guiding principle

Chapter 3

Leading Change
Sometimes you’ll be introducing new Agile practices; other times you’ll

be helping a team fine-tune its process. Either way, you need to lead

the team to make changes. It’s not as simple as telling people what they

need to do. People need to understand what’s driving a change before

they’ll throw energy into it.

So, how can you open their eyes to new possibilities? Start slow; give

them some time to think about change before pressing them into action.

Look for opportunities for them to learn about Agile. Then engage them

in designing change by asking questions and building on their ideas.

3.1 Introducing Change

Start advocating Agile techniques to the team, and you’ll soon find

that people raise objections. Even when there’s a compelling reason to

change, it’s natural to be concerned about the risks. Assure them that

it’s safe to become more Agile. Tell them stories about other Agile teams

you have worked with to give them an appreciation of what’s possible.

Show your confidence in the ability of the team to change. Your belief

in their success can give them courage to take the first step. Talk about

“When we. . . ” rather than “If we. . . ,” and then make sure they know

you’re there to provide support and help them keep going.

Take care not to push a team into making changes too quickly. Allow

time for new ideas to soak in. The team needs time to talk through

a change before starting to implement it. This gives them a chance to

think through the implications and to understand how they can adjust

what they do now.

Prepared exclusively for William Anderson

Download at Boykma.Com

INTRODUCING CHANGE 48

Rachel Says. . .

Agile Is Not a Religion

Beware of becoming an Agile zealot, because this can backfire
and put people off. Don’t treat people who are not applying
Agile as fools who just need to see the light! This is disrespectful,
and people simply won’t listen to your rants.

You need to build bridges to help people see how these
strange new principles could work in their world. You can even
enlist the help of someone who is skeptical to help you find
holes in your proposals.

No One Listens to Me

Richard was a senior developer who would suggest lots of great process

improvement ideas to his team. But telling people his idea was as far as

he went with it. Months later the team often implemented something he’d

originally suggested. Then he’d grumble, “I suggested that ages ago! Why

doesn’t anyone listen to me?”

What he didn’t realize is that you have to do more than suggest a course

of action for people to follow it. You need to lead the way by explaining

why it’s important and then show them how to get started with it.

The other thing he missed is that people were listening to him because

they did implement his ideas eventually. It just took time to build up

enough support on the team to try it.

Show Them How

It’s not enough to convince the team that change needs to happen;

you also need to show them how to get started. Suppose you suggest

to a team that writing unit tests will help them reduce defects. Don’t

be surprised if everyone nods and agrees but no one actually starts

to write tests. They need support to implement this change; use the

PrOpER cycle (Section 1.4, How to Start Coaching, on page 27) to work

this problem through.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=48

INTRODUCING CHANGE 49

Rachel Says. . .

Be Open

Some coaching techniques we read about could be labeled
“manipulative.” For instance, you might deliberately make a
mistake to draw in the person who you’re working with to cor-
rect it. I prefer to avoid such ploys and be transparent about
what I’m doing. A different way of encouraging someone to
do the same thing is to say, “Now that I’ve written a few story
tests, it’s your turn.”

Here are some options to try:

Educate the team: Arrange an in-house training course so they can

learn how to write unit tests.

Demonstrate: Pair with developers to show them how to write unit

tests.

Make it visible: Work with the team to agree on a goal for how many

unit tests they will write every day; track progress toward this goal

on the team board.

Sell the Problem

As a coach, you’ll see lots of opportunities for improvement. Before

you share your ideas, be prepared to sell the problem that’s driving

the change. Paint a clear picture of the likely outcome if the team

doesn’t make changes. For instance, you could say, “Right now code

gets handed back for bug fixing, which delays the release. We’re disap-

pointing our customers when we miss delivery dates. They’re already

under pressure from management to outsource this work. If we put out

another release that crashes and loses all the transactions, we’re toast.”

There’s no need to lay it on too thick; you don’t want to make the prob-

lems sound too difficult to overcome. You simply want everyone to be

clear why not making a change is a problem.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=49

INTRODUCING CHANGE 50

Leveraging Resistance

Dale Emery has written an excellent article called “Resistance
as a Resource” [Eme01]. In it, he talks about the types of resis-
tance you are likely to encounter and how to respond.

Dale urges us to “stop thinking of people’s responses as resis-
tance.” Instead, think of each response as information that you
can learn from.

When people bring up objections and reasons not to change,
listen carefully to them. Try to understand their viewpoint. Can
you agree with them on some things? Acknowledge their
concerns—a change may indeed take more time, cost more
money, or be hard to do. Explain why, despite all that, you still
think it is a good idea, and the benefit will outweigh the cost. For
example, refactoring code before every check-in will mean it
takes longer to implement each user story, but it will also mean
that the code remains easy to maintain over the longer term.

You can sell a problem more convincingly if you can point to supporting

evidence. Your prediction will be powerful in the previous example if

you can share some data on how often code has been bounced back to

developers to fix bugs before it could be released. However, take extra

care not to criticize the team for the way they work now. As a coach,

your focus is process improvement, not individual performance.

Building Ownership for Change

Once you’ve sold the problems, it’s time to focus on solutions. Encour-

age the team members to look at the positive outcomes of improving

their Agile process. Build shared ownership by talking through the pros

and cons of making changes.

Let them know the options you see, and invite them to share their ideas.

How would they like to work? Do they see opportunities for improving

their career prospects and building better products? People are more

likely to follow through when it’s their idea.

These process improvement conversations become a regular part of life

on the team once they start holding retrospectives. One approach to

adopting Agile we’ve used with some teams is to make retrospectives

the first Agile practice to introduce. Retrospectives provide the team

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=50

INTRODUCING CHANGE 51

Liz Says. . .

Pick Your Battles

Ideally, you can see dozens of problems and opportunities for
improvement. But if you talk about all the problems you see,
you will come across as negative, and people will soon stop
listening to you.

You need to make an impact for people to follow your lead.
Kent Beck puts it like this: “Begin with small changes. Do one
thing now and everything else later” (from Extreme Leadership
[Bec00]). So, pick only one problem to work on with the team,
and focus your efforts on solving it.

with a forum to discuss problems and fold in changes every few weeks

(find out more in Chapter 13, Driving Change with Retrospectives, on

page 192).

Make Change an Experiment

When you encounter resistance, propose trying something different as

an experiment. Framing a change as an experiment helps focus the

team on the benefit because you’ll need to discuss how to evaluate

whether the experiment is a success. If they can measure an improve-

ment, this gives the team a reason to continue.

We’ll let you in on a secret: once a team takes the plunge and tries

a change as an experiment, team members get used to the new way of

working. Now, making the change back to the original way of working is

the change that they hesitate over. You’ll also notice that each change

they adopt reduces their resistance to the next change. So, start the

team off making some small changes, such as redesigning the work-

space or introducing a regular team lunch, to get them ready for bigger

changes.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=51

ASKING QUESTIONS 52

3.2 Asking Questions

Another way you can lead the team to consider change is simply to

ask questions. When you ask someone a question, you show that you

respect their opinion and you’re interested in their answer. They need

to engage their brain to come up with an answer. When they do so, they

join your quest to improve how the team works. A thought-provoking

question may even lead them to follow up on your conversation and

take action.

Here are some powerful questions you can ask:

• What could we do to stop this bug from happening again?

• How can we ship on time?

• How can we work more effectively?

Challenge assumptions.
Often people are held back by self-imposed

beliefs. You can use questions to challenge

their beliefs about how the organization works

and what they can and cannot do. For instance, what’s stopping them

from doing what they know the right thing is? If you get an answer like

“Management won’t let us,” then probe for more information. Which

manager? How do they know that manager won’t let them? Help them

see that they’ve made assumptions that haven’t been verified.

Are Rules Really Rules?

by Rachel

Sometimes a team justifies not trying a change because of company

policy. It’s worth checking whether that policy really is a rule.

One team I worked with had a process improvement group that worked in

another office. The process improvement group provided a set of

document templates on its intranet site. The team believed that they were

required to use these templates, which was the reason they gave for not

being able to try user stories.

I picked up the phone to the process improvement group and asked them

whether using the templates was mandatory. The surprising answer was

that the templates were just provided as examples based on documents

from another project. There was no requirement to use the templates!

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=52

ASKING QUESTIONS 53

Ask open-ended

questions.

How should you ask questions? Don’t ask

closed questions that generate a yes/no

answer or basic information. Instead, ask open

questions like “How?” and “What would hap-

pen?” to open up the conversation and invite the person to reflect and

share their opinion.

Take care about using “why” questions, because they can sound like

you’re criticizing when you don’t mean to do so. For example, “Why did

you do that?” sounds accusing, whereas “What were you trying to do?”

sounds friendlier. “Why” questions tend to be about the problem, rather

than about the solution. Focusing on what needs to happen to improve

is more pragmatic than dwelling on what went wrong.

Ask questions only when you’re genuinely interested in their answer. If

you nod in approval, this implies you’re looking for a particular answer,

which can come across as patronizing. So if you’re looking for a partic-

ular answer, don’t start the conversation with a question.

What to Ask

There are many different types of questions. The following are some

useful questions that you can try.

Ask for Help

One way to engage the team in change is to come right out and ask for

their help—not in a general way at a team meeting but one-to-one over

coffee. Share a problem you are facing with them, and ask for their help.

They may help by offering ideas, support, or something more practical.

Most people love to help and will be flattered that you asked them.

Thinking Questions

Remember, it has to be the team doing the thinking about the issue,

not you. You can facilitate their thinking by asking thinking questions.

David Rock claims in Quiet Leadership: Six Steps to Transforming Per-

formance at Work [Roc06] that the most powerful question you can ask

when coaching someone who comes to you with a problem has the word

think (or a similar word) in it, such as the following:

• How long have you been thinking about this problem?

• How often do you think about this?

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=53

ASKING QUESTIONS 54

• Are you satisfied with the amount of thought you have given this

problem?

• Can you spot any gaps in your thinking?

• What insights are you having?

Thinking questions encourage the person to make a mental shift and

think about the problem at a more strategic level. When you ask a

thinking question, it helps them step out of the details of the problem

and look at it from a different perspective. Keep in mind, though, that

thinking questions may not work if a person is stressed or emotional,

because they may be too distracted to distance themselves from the

problem.

Reflective Questions

Encourage the team to notice more about how they work by asking

questions about what they noticed afterward. Suppose you want to

increase awareness of how their daily standup varies so you can ask

afterward what they noticed during the meeting. You can simply ask,

“What did you notice about the daily standup today?” Or you could

dig deeper by asking some follow-on questions like these: How did the

meeting flow? Did people update tasks on the team board? How was

the meeting today compared with yesterday?

Share your own observations to help them understand what kind of

thing you’re interested in. For example, I noticed there were less inter-

ruptions today and the meeting seemed to flow better. I was wondering

if that was because Yuan was dialing in from home and we had to pass

a cell phone around to talk to her. It seemed we were using the phone

as a speaking token. Maybe we should try a speaking token for our

daily standup when she’s back?

Five Whys

Five Whys is a technique, invented by Taiichi Ohno [Ohn88], that you

can use with the team to do root cause analysis. When applying Five

Whys, make sure you explain what you’re doing—that you are applying

a technique rather than repeating the same question because you are

unhappy with the answer.

Start by asking about the surface problem. Come up with a solution

for that, and then dig down further by asking what caused the surface

problem, what caused that, and what caused that. By the time you have

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=54

ASKING QUESTIONS 55

asked “Why?” five times, you should reach the real problem that will be

a system problem—such as making unrealistic promises to customers

or not investing in training for the team.

Here’s an example:

Why 1: “Why didn’t we put the software live yesterday?”

“We had too many open defects.”

Why 2: “Why do we have so many open defects?”

“Because when the testers find them, they just enter them into

bug-tracking software and don’t tell the developers.”

Why 3: “Why don’t the testers tell the developers?”

“Because the developers are busy working on something else.”

Why 4: “Why don’t the testers and developers work together?”

“Because the testers have to be available to all teams, not just this

team.”

Bingo! This is the system problem that is stopping the team from ship-

ping. This is the problem that requires a change in approach. If

the team can get a dedicated tester to their team, rather than hav-

ing a pool of testers for the whole company, bugs would get found

quicker and get fixed quicker, giving them a better chance of ship-

ping on time.

Why 5: “Why don’t we have enough testers so that every team can have

their own tester?”

“Because we can’t afford any more testers.”

And so we find out that one of the reasons why the team didn’t ship

yesterday was because the company doesn’t value testers enough to

hire them.

The Five Whys is a powerful technique; however, it can expose problems

that are outside the control of the team and have to be escalated to the

right level in the organization.

When Not to Ask Questions

Take care not to ask questions when you actually want to give guidance.

If you ask a question, you have to accept the answer, even if you dis-

agree with it, and this makes it harder to give the advice you wanted to

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=55

ENCOURAGING LEARNING 56

give. For example, if you ask, “How could you have found this bug ear-

lier?” and they respond “By doing more manual testing,” then it makes

it harder to guide them toward automated testing because it can feel

like you’re correcting them.

If all you ever do is ask questions, it can seem like you’re holding out

and not sharing what you know. This can make people doubt that you

are genuine, and they may not be open with you. Bear in mind that a

question can sound like you’re picking fault if the other person doesn’t

believe you care about the answer. They may think you are poking your

nose into something that is not your business and clam up.

Feeling Manipulated

by Liz

Once I had a project manager who was unhappy with a decision I’d made

to not fix a bug. Rather than come out and say he was unhappy with me,

he asked, “Don’t you want people to think the project was successful?”

His loaded question made me angry, because he was trying to manipulate

me to do what he wanted, rather than trying to understand my rationale.

I would have appreciated if he’d asked me outright, “Why didn’t you fix

the bug?”

Asking questions might not help where trust between you and a person

is low. They will probably react defensively to any questions, and you

are unlikely to get an honest answer from them. If you can’t put them at

ease and convince them you genuinely care about their opinion, don’t

ask questions, because it may cause more harm than good. Instead,

be direct and open, share your advice, and keep working on building

rapport.

3.3 Encouraging Learning

Your team will need time to learn about Agile before they can adopt Agile

practices. Encourage them to allow time for learning in their plans.

For example, if the team wants to implement a new practice like Test-

Driven Development, they’ll need to allow time to learn how to do it

before implementing it.

There’s no need to drip-feed the team Agile ideas. Rather than relying

on you as their sole source of knowledge about Agile, encourage them

to take the initiative to learn about it for themselves.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=56

ENCOURAGING LEARNING 57

Study Group

A study group (see Fearless Change [MR04]) is a regular infor-
mal meeting where a small group of people discuss an idea or
chapter of a book. Five to ten people meeting weekly works
well.

Work with the team to set these up to run at lunchtime, after
work, or even during work time if the company supports such
activities. People can bring their own lunch, or you may be
able to persuade management to buy sandwiches or pizza.
Each week the facilitator of the meeting rotates. Typically she
presents a book chapter, and then the whole group discusses it.
The meeting is small, so everyone can pitch into the discussion
rather than listen to one person lecture.

This kind of meeting works well for several reasons. There is no
teacher or expert present, which enables everyone to be an
active participant and to draw their own conclusions. People
learn more from reading and discussion, as compared to read-
ing alone.

A study group is not just a way to get more information. It can
provide support for people to try out the practices discussed.
For example, after a study group session discusses pair pro-
gramming or creates an automated deployment script, mem-
bers of the study group may be inspired to try doing this them-
selves. Instead of reading about these ideas in isolation, they
know they have support from their study group.

Creating Learning Opportunities

Agile practice is still evolving, so you and the team need to keep abreast

of the current state of the art. There are many different ways to learn

about Agile. Try to make it easy for people to access a variety of learning

resources. For example, you can create a wiki page of useful links to

books, articles, and podcasts.

Model the behavior yourself that you’d like to see in others. Let the team

see that you spend time on your own learning, and talk to them about

new things you’ve learned.

A powerful way to introduce new ideas is to arrange talks from peo-

ple within the organization on their Agile experiences. This creates an

opportunity for your colleagues to demonstrate what they’ve learned. It

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=57

ENCOURAGING LEARNING 58

increases their kudos in the company and gives them an opportunity

to practice public speaking. Giving a talk at work can even be the first

stepping stone to speaking at an industry conference.

Tech Talks

by Liz

One company I worked at ran “tech talks,” which started off being largely

technically focused. Teams presented the work they had been doing at a

technical level to the wider organization. Over time the topics of the talks

broadened, and we had talks from the sales department about their

concerns, talks from the CEO about his vision, talks about good GUI

design, and so on.

You can generate interest by bringing in a expert to give a lecture. If you

know that a well-known presenter will be visiting your city, then don’t

be afraid ask them. They may be interested in expanding their network

and happy to come, especially if you offer to take them out for a beer

and a meal afterward. You could also invite someone from your local

Agile user group to come in and give a talk about how Agile works in

their organization.

You can support the team’s participation in study groups and lectures

by being organized, booking meeting rooms, sending invites, inviting

guest speakers, ordering lunch, and so on. Advertise these groups to

attendees, and then readvertise them, especially on the day of the talk.

Going Outside the Organization to Learn

Conferences are also a great way to expose the team to new ideas. They

provide an opportunity to meet people with the same problems, to share

experiences, and to get support. For people who have been with the

organization a long time, getting out to a conference can open their

eyes to new ways of doing things.

Consider it part of your role to make people aware of how to find funding

to attend conferences. When someone attends a conference, encourage

them to share what they learned at the conference with the rest of the

team. Make this request before they go so they are on the lookout for

ideas to bring back to the team.

Your team can also find support and learn new ideas at a local user

group. Rather than just letting them know about the next Agile group

meeting, you can let them know that you’ll be going and invite them to

come with you.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=58

FACILITATING MEETINGS 59

3.4 Facilitating Meetings

Once the team is open to trying a change, don’t throw everyone in the

deep end and leave them floundering. When introducing a new practice

to the team, show the team how it’s done.

The first time the team tries a new Agile meeting, such as a retrospective

or planning meeting, offer to facilitate the meeting to show them how

it’s done. During the meeting, explain the process you’re following to

the team so they can learn how to facilitate the meeting themselves.

The next time around, sit down to plan the meeting with the person

who will facilitate it, and then during the meeting, take a backseat. You

can still jump in if the meeting gets off-track but otherwise leave your

coach’s feedback until the end.

Expose your thinking process to them by giving a running commentary.

You might say, “I’m noticing that we’ve been in here for an hour, and it’s

getting quite stuffy. Let’s take a break.” Or “Darren, you’re full of ideas

today. But I notice Alison hasn’t shared her thoughts on this story yet.

Alison, do you have anything to add?”

Here are some tips to help make your meetings effective.

Choose a time: Establish a meeting time that works for the whole

team, and give them plenty of notice about any preparation they

need to do.

Set up the space: Consider what kind of space you want for the meet-

ing. Avoid meeting rooms with very large tables because this

spreads the team too far apart to see index cards on the table.

You’ll also need something to capture notes on, such as a flip

chart or whiteboard.

Focus the meeting: Start the meeting by clearly stating the purpose

of the meeting and giving a quick overview of the agenda. Remind

the team of any working agreements or ground rules for meetings.

Keep it flowing: Stay on your toes during the meeting, and ensure the

conversations in the meeting stay on topic and are productive.

When you act as a “facilitator,” your aim is to make the meeting

easier for the people in it—like oil in an engine. You keep the meet-

ing moving and focused on producing useful output. This is easier

to do if you are not taking an active position in the discussion—

step back to maintain a neutral position. If you need to offer an

opinion, then explicitly step out of the facilitator role.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=59

HURDLES 60

Encourage everyone to participate: Make sure everyone’s opinion is

heard. This means only one person talking at a time. When some-

one is making broad generalizations, it can help to ask for exam-

ples and ask clarifying questions to draw out the details.

Summarize key points: Before you write up any points on the white-

board, check to see you have really understood the point by

repeating what you heard.

Close the meeting: When you bring the meeting to a close, make

sure that outputs are recorded appropriately. Taking digital pho-

tographs is a quick way to capture whiteboard sketches and meet-

ing notes.

To improve next time, ask for feedback on your facilitation of the meet-

ing. You can do this by asking everyone for suggestions at the end of

the meeting or by asking someone to observe how you run the meeting

and then discussing improvements with them after it finishes.

3.5 Hurdles

The following are some hurdles you may encounter.

Some People Don’t Change

Some people like to be the first to try new things or to own the latest

gadget. Others prefer to be the last, taking on change only when abso-

lutely necessary. Don’t get hung up on trying to convince laggards. They

prefer to be the last to adopt a new way of working. They’ll eventually

change when Agile becomes the new status quo.

Bumping into Company Politics

When you introduce change, you are sometimes perceived as a threat

to the existing balance of power. This will cause you to bump into com-

pany politics.

People who aren’t very good at their jobs are likely to be exposed. Some

people, like project managers or architects, may even believe that their

job is under threat. Watch out for any misconceptions that need to be

debunked.

A respected technical lead or manager may be the blocker to the team

becoming more Agile. It won’t help your cause if you’re overly critical of

him. Disagreeing with him in public can undermine him and cause him

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=60

CHECKLIST 61

to lose face. Instead, spend time getting to know him so you understand

his perspective. Then you can work on winning him over to your way

of thinking by letting him know your plans so that you can gain his

support.

You also need to be careful that you don’t get too closely aligned with an

authority figure like a tech lead or manager. If you have a senior spon-

sor, take special care not to support this person too much or reinforce

their likes and dislikes. This person already has authority on their side;

make it clear that you’re not a spy from management and you’re there

to serve the team.

Conflicting Agendas

Sometimes it’s hard to maintain your focus when others are looking

to you for support. For instance, someone may come to you with com-

plaints about not being allowed to stick things on the wall. You may

agree that this is a problem but think it’s not the right time to try to

solve this.

Try to be neutral in public, and then explain in private that you are

“picking your battles” to avoid getting a reputation for being negative.

Explain the problems you are currently working to solve right now, and

ask for their help.

Then you can work together on a plan for introducing their change or

agree that it is a battle you won’t be able to work on at the moment.

3.6 Checklist

• Share your passion for Agile, without being too fanatical. Talk

about it, demonstrate it, and offer to help others with it. Encour-

age and inspire the team that Agile can and does work.

• Sell the problem to the team. Help them see why they need to

change. What are the long-term implications of staying with the

status quo? Also talk to the team members individually. How will

they personally benefit from the change?

• When you meet resistance, try to understand where it’s coming

from. Is the problem with the idea or with the way you presented

it? Are there good reasons to be concerned about the proposed

idea? Are you listening properly to their concerns?

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=61

CHECKLIST 62

• Ask questions to engage the team in improving their Agile process.

Try asking for help to enlist support, ask thinking questions to

provoke reflection, and use Five Whys for root cause analysis.

• Encourage different ways to learn about Agile: leave books around

the office, share blogs that you read, and point people to podcasts.

Organize presentations and study groups that are open to other

teams in the organization. Let people know about upcoming Agile

events, and take people with you to the local Agile user group.

• Make new meetings easy for the team by facilitating them the first

time around. Give them a running commentary so they can hear

your thought process about running the meeting. The next time,

help the team prepare for the meeting, and give them feedback

afterward.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=62

People need to feel safe to do their best.

Guiding principle

Chapter 4

Building an Agile Team
Working in a close Agile team is exciting. But cohesive teams don’t just

spring up in an instant; they take time to jell. When a team doesn’t

pull together, people get frustrated. The software they produce will

reflect this.

You can help a team jell by establishing the conditions for teamwork

to happen. Start by making time for them to get to know each other.

Improve the workspace so the team has an environment that supports

working together. Look for ways that you can help the team build a

shared sense of where the project is headed.

4.1 Helping a Team Jell

An effective team seems to run like a well-oiled machine. Watch care-

fully, and you’ll see they’re not just following routines. When they hit

problems, they adapt the way they work. When something needs doing,

someone steps up to do it.

Social Glue

Teams take time to jell; it takes time to get to know everyone and to

build trust. By working together, the team will start to understand

one another’s perspective and problems. Meetings, especially the daily

standup and retrospectives, provide an opportunity to learn about each

other.

Create opportunities for people to get to know each other better. You

could try sharing personal histories (see the sidebar on page 65) or

arrange a team outing, such as a meal or bowling. When the team

Prepared exclusively for William Anderson

Download at Boykma.Com

HELPING A TEAM JELL 64

Liz Says. . .

Eat Lunch Together

Eat lunch with the team whenever you can. Listening to the
team in an informal setting helps you understand them better.

You’ll find teams often talk about the problems they’re fac-
ing over lunch—in a way they wouldn’t at a retrospective. For
example, they might be truthful but rude about someone in a
way that wouldn’t be appropriate in a team meeting.

Dreamed-for process improvements are also discussed, again
in a nonspecific, non-action-taking way that wouldn’t be ap-
propriate in a retrospective.

I got into the habit of taking a pen and some index cards to
lunch, because they fit easily into my pocket. There’s always
something I want to remember or follow up on.

relaxes together, some of these stories come out in conversation. This

helps create social glue that binds the team together.

Build Trust

Team collaboration requires trust. George Dinwiddie writes, “Trust

builds on reasonable self-disclosure. You don’t have to tell everything

about yourself, but you can’t be secretive, either.”1 You can lead the

team in building trust by showing that it’s safe to be open. Be trans-

parent about your motives, and disclose information about your expe-

rience, your opinions, and your feelings—doing this invites openness

from others. Admit when you make a mistake. Ask for help regularly.

But trust cannot take root when people don’t feel safe. If there is a

blame culture or people are criticized for mistakes, they won’t feel safe.

Team members need to be comfortable to admit when they need help.

When the team feels safe, they will be happy to share advice and help

each other.

1. http://blog.gdinwiddie.com/2008/12/03/aye-2008-the-magic-chemistry-of-teams/

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://blog.gdinwiddie.com/2008/12/03/aye-2008-the-magic-chemistry-of-teams/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=64

HELPING A TEAM JELL 65

Sharing Personal Histories

In Overcoming the Five Dysfunctions of a Team [Len05] Patrick
Lencioni recommends you help a team get comfortable with
openness by taking the time to share personal histories.

He suggests running an exercise where each member of the
team tells a story about a challenge they faced in the past.
This could be a story from their childhood, school, or first job,
starting with some basic information such as where they’re from
and how many brothers and sisters they had.

As each team member tells their story, they have an opportu-
nity to practice being open with their teammates. As the peo-
ple on the team hear the stories, they get a better insight into
each storyteller, and knowing something personal about them
helps create empathy.

Lencioni stresses the purpose of the exercise should be made
clear to the team from the outset. You also need to take care
that everyone understands they are not being asked to reveal
anything they feel uncomfortable sharing.

If people feel really unsafe—for example, if they are scared that they

will lose their jobs—you won’t be able to do any Agile coaching. In this

case, you will need to support the team in any way you can until the

situation resolves itself.

Trust Requires Safety

by Rachel

I worked with one company where Brian, the IT manager, was concerned

about the lack of openness in his teams. The teams went through the

motions of daily standup meetings, but there seemed to be a lack of trust.

People kept quiet when they were stuck and didn’t ask for help.

Brian held a scrum of scrums meeting in his office every day at noon,

which was attended by all the team leads and project managers. I

attended this meeting as an observer.

Brian ran the meeting. I noticed that he took great glee in shaking a pot to

collect fines from anyone who was late. As he went around the circle,

asking each person for their report, he fired off remarks that put them off

their guard. He seemed to know how to take the wind out of their sails

every time, chiding them for past mistakes and reminding them of the

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=65

CREATING A TEAM SPACE 66

consequences of delivering late. Everyone knew he did not suffer fools

gladly and that staff had been laid off recently.

It seemed that Brian’s communication style had a lot to do with the lack

of trust in his department. He needed to learn when it was appropriate to

give feedback and when to keep quiet and listen.

Bridge the Gap

Building trust between different roles, such as developers, testers, ana-

lysts, and technical authors, also takes time. You can help the team

bridge the gap between different disciplines by suggesting they take on

another role for a short period. For example, a developer could take on

a testing role for a week. If they do not have the required skills to do

the other role, they can pair with someone and contribute as much as

they can. Walking “a mile in their moccasins” will help them get a better

understanding of the work.

People may not understand what their teammates do and assume their

own role is harder. But without mutual respect, the team will not flour-

ish. You can demonstrate respect for everyone on the team by asking

for opinions and help and by taking their concerns and problems seri-

ously. Others will notice this and imitate you.

If a person on the team seems unhappy with another team member,

invite them for coffee, and discuss it. What assumptions has she made

that has caused her to think that way about her team member? What

alternative explanations are there?

4.2 Creating a Team Space

A team needs a shared workspace to keep communication flowing. The

ideal is for the whole team—and no one else—to sit together in the

same room. A “break-out area” near the team, where they can get a

cup of coffee and chat, allows the team to relax and build friendships.

A meeting room nearby is useful for privacy or for having discussions

without interrupting the team.

However, some people may be reluctant to move desks or sit together

because an open plan workspace can feel exposed and impersonal.

Encourage the team to design their own workspace and customize it

to suit them. It’s amazing how a few plants, books, and pictures can

make a space feel safer to work in.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=66

BALANCING ROLES 67

Type Assessments

To help the team get a better sense of their individual strengths
and weaknesses, the team might like to try type profiling. Sug-
gest to the team that they take a Myers-Briggs Type Indicator
(MBTI)∗ or Belbin Self-Perception Inventory† assessment.

If they agree, then each person on the team takes the assess-
ment individually and shares the results with the team. These
tests are not an assessment of performance or ability, but they
rather explore interaction preferences and behavioral tenden-
cies of team members. Sharing the results can help the team
better understand each other’s behavior.

∗. http://www.myersbriggs.org/

†. http://www.belbin.com/

Sometimes when companies adopt Agile, it takes them a long time to

realize that this is not just about how developers work; it requires

change across the whole organization. Consequently, you may find a

lot of resistance to the idea that a tester should sit next to a developer,

who is in turn sitting next to a product manager. Campaign tirelessly

for this, because it is hard to build an Agile team when people are

segregated.

Once everyone is sitting together, they can get started on building an

informative workspace, where useful information is displayed to help

people structure their time and make good decisions. We’ll guide you

through setting this up in Chapter 8, Keeping It Visible, on page 119.

It’s not just the physical workspace that you need to pay attention to.

The virtual environment needs to support collaboration too. Arrange a

session with the team to work out where they want to keep electronic

information. Encourage them to set up a wiki or shared repository for

documents rather than relying on shared network drives. They also

need to be clear about the consistent setup of development and testing

environments.

4.3 Balancing Roles

The relationship between customers and developers is crucial because

they need to work together to create the best product. Everyone needs

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.myersbriggs.org/
http://www.belbin.com/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=67

ENERGIZING THE TEAM 68

to feel like they are part of the same team, working toward the same

goal. Make role responsibilities clear to the whole team.

The customer2 is the person who owns the business case and prioritizes

what the software should do. The development team takes responsibil-

ity for deciding how to build it and communicating to the customer how

long that takes. The customer can set the dates that they require soft-

ware to be delivered, but they don’t nail down scope—that’s worked out

with the team.

Often the customer is a product manager who works with multiple

users and stakeholders to decide what the software should do. On large

developments, the customer role can be too big for one person, so a

customer team is formed. This team needs to contain all the necessary

expertise to work out the user stories and prioritize them. Your cus-

tomer team might include business analysts, user representatives, and

interaction designers—the exact mix depends on the project and the

organization.

Sometimes the best solution is a “near-customer,” who helps work out

the details of the requirements with the team, and a “far-customer,”

who makes the decisions about business priorities. The near-customer

could be played by a business analyst who sits with the team, while

the far-customer is a product manager who sits closer to the business

operations and marketing teams.

If the roles get out of balance, one side or the other will be overworked.

If the customer is overworked, then developers don’t get enough of their

time and are left to guess at what they want. If there are not enough

developers or they are working slower than expected, the business will

be disappointed with their output. You can help as a coach by mak-

ing the side effects of the imbalance more visible so management can

consider addressing this problem.

4.4 Energizing the Team

Great teams are self-motivated. Sometimes, though, we find a team gets

stuck—they’re not sure how to get started. There may be big opportu-

nities, but they can’t see the wood for the trees and are overwhelmed.

The following are some ideas about how to energize the team and help

them find their own motivation.

2. This generic term is roughly equivalent to the product owner role in Scrum.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=68

ENERGIZING THE TEAM 69

Not Too Easy, Not Too Hard

The secret to great teams is they need reachable but challenging goals.

Everyone needs to be sufficiently challenged, neither bored nor anx-

ious. This is the optimum work zone where people enjoy it the most.

If work is too easy, developers will get bored and demotivated. They

won’t be proud of achieving something easy. If there is a lot of easy

work to be done, encourage them to find ways to automate it.

Sometimes the work seems to be impossible and far beyond their com-

fort zone. This can paralyze the team. They need to break down the

work into manageable chunks. Can they find something that they can

get started on? If more investigation is needed before they can figure

out what to do next, encourage them to experiment and try their ideas.

Foster a culture where it’s OK to experiment to learn more about a

problem that the team is trying to solve. As Thomas Edison famously

said, “I have not failed. I’ve just found 10,000 ways that won’t work.”

If the team doesn’t have enough information to choose between two

or three ways of doing things, they could try them all out. After each

experiment, the team will know more. Although developing more than

one solution may feel like a waste of time, it can be a quick way to learn

and a cheap way to mitigate the risk of making the wrong decision.

Find a Compelling Goal

Knowing they are producing a useful product should help the team

engage. Although as a coach you can’t set the product direction, you

can help the team understand the big picture and the team mission.

If you can, arrange for the team to meet end users. User needs will be

more vivid to the team and give them ideas of how they can help make

a better product.

You can also help paint the picture of the opportunities within the

project and how it might connect with their personal goals. Agile teams

plan and design their own work. Be clear how much latitude and auton-

omy they have over how the software is designed, built, and tested.

Once they understand that they don’t need to wait for permission, it

can free them to make a start.

Time for Innovation

We’ve met developers on Agile projects who were burned out by working

on a continuous stream of user stories.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=69

ENERGIZING THE TEAM 70

If they don’t get time to explore new technology or experiment with

innovative product ideas, teams become demotivated. Make time in

iteration plans for them to explore new ideas. This can do wonders

for motivation—and for the product.

When team members get time to experiment with new ideas, clean up

things that bug them, or learn something new, then they become hap-

pier at work. This improves the energy of the team and rubs off on

project tasks too. Help the team find their own mini-projects within

each project by listening to them and encouraging them to follow up on

their ideas.

Gold Cards

by Rachel

I worked with a team who implemented gold cards (see “Innovation and

Sustainability with Gold Cards” presented at XP Universe 2001

Conference [HMMP]) to address this problem. Developers got the

opportunity to play a gold card and work on a topic of their choice for the

day rather than a task on the team board. Each developer on the team got

two gold cards per month, and they would announce their decision to

play their gold card at the daily standup.

We spent our gold card time on all sorts of things: trying new tools,

working on new product ideas, and learning something new. At the end of

every iteration, we showed the rest of the team what we’d done.

In this team, the gold card work led to changes in both the product we

were working on and our supporting infrastructure—it was definitely time

well spent.

Gold cards provide a way for the team to present new product ideas to

their customer to make it a product they’re proud of. It is also a way for

them to get to do challenging work. We’ve found it can be effective for all

the developers to take their gold cards on the same day every week. This

enables developers to work on their ideas together and makes them feel

it is OK to not work on the project for a day. Take a look at the full paper

for how to sell gold cards to management; one angle is that gold cards

create a basis for individual performance reviews without detracting

from team collaboration.

Celebrate Success

Find ways to celebrate the success of every release. Having a team

lunch or drinks celebrates success and increases team bonding. Help

the team find ways to demonstrate their success to other teams and

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=70

ENERGIZING THE TEAM 71

the wider organization. They could invite people to their iteration demo,

show the product at a company meeting, or send out an announcement.

The team will get a boost when other people notice they are successful

and appreciate them. A word of thanks from management or customers

is important; consider prompting them to do this. Getting feedback

from users, especially if their lives have now been improved, is moti-

vating. One company Liz worked with displayed emails, from happy

customers and unhappy customers, prominently on the wall by the

coffee machine.

How Are We Doing?

by Rachel

I once worked with a team that was on what they perceived as a dull

legacy project. It really boosted their morale after the initial release to hear

how much money it generated for the company in the week after it went

live. Their project had really been noticed and was making a difference.

Don’t Demotivate

People start off motivated. If nothing demotivates them, there’s a good

chance they’ll stay motivated! What makes people happy and motivated

at work is what they do. What makes people unhappy and demoti-

vated at work is the situation in which they do it. Situational problems

include stress and the company culture.

In The Motivation to Work [Her93] Frederick Herzberg explains hygiene

factors. These are factors that demotivate people if they are not present,

even though these factors aren’t motivators when they are present. For

instance, fast computers, decent coffee, and fair pay won’t be noticed if

they are there, but their absence can demotivate employees. Although

some of these hygiene factors may be things outside your influence as

a coach, it’s worth talking to the team about what annoys them. You

may find some things that can easily be fixed, such as improving their

work environment.

Beware of Incentives

Be careful about using “incentives” to motivate people. As Alfie Kohn

explains in Punished by Rewards [Koh93], incentive schemes aimed at

encouraging individual productivity can damage collaboration within

the team because helping out a teammate doesn’t make sense if devel-

opers are competing for a bonus.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=71

HURDLES 72

If the team is being offered a bonus for doing their job, they will often

do only what is needed to achieve the reward, no more and no less. If

management must have a bonus scheme, then ask them to base it on

achieving a team or company goal—not an individual one. The team will

work better when they’re motivated by the satisfaction of doing a good

job and producing a great product.

4.5 Hurdles

The following are some hurdles you may encounter.

Teams Aren’t Cross-Functional

Some companies organize teams by discipline, such as analysts,

designers, testers, software engineers, and so on, with separate report-

ing lines. This is a serious blocker to becoming Agile because a fun-

damental Agile principle is cross-functional teams with different disci-

plines working together to build the best software. For Agile to work

effectively, everyone should be empowered to work on the project at the

same time to avoid hand-offs between disciplines that cause delays.

If you’re coaching a software development team in this situation, cam-

paign to get additional team members from other disciplines, such as

testers and analysts. Work on building good relationships between the

development team and people with other disciplines allocated part-time

to the project. Invite these virtual team members to all the Agile meet-

ings, and include them on emails. Organize a social meal or drink to

help everyone feel like a team.

No On-Site Customer

Sometimes the development team is in one location and the customer

is working from another office. They may even be in a different time

zone, particularly if they need to be close to the end users who are in a

different country. If not handled well, working with a remote customer

can cause communication problems and resentment.

Building a good relationship with the remote customer is vital in this

situation. Encourage this customer to visit and meet with everyone

in the team face-to-face so that they know each other. The first plan-

ning meeting is often a good opportunity to do this. Afterward, you can

encourage regular conversations by phone and more informal channels

such as instant messaging or a shared chat room.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=72

HURDLES 73

Remember the proverb “out of sight, out of mind.” Humans are wired

to respond to seeing faces. Try to get webcams that the team can use

to see people in other offices, at their desktop computers and for use in

teleconferences. Surprisingly, even having static photos of the people

not in the room can make a difference.

Team Is Too Big

If you are working with a team with more than ten members, this is

likely to have an effect on communication and responsibility within

the team. Any meeting with a large number of people takes longer and

makes it harder for everyone to stay engaged. Each person will feel

less committed to the team goal because their individual responsibility

to the team is less. Work with the team to find a way to break the

project into subteams—ideally feature teams. Scaling Lean and Agile

Development [LV09] has some advice on how feature teams work.

Team Is a Resource Pool

Agile doesn’t work well when a pool of people working on several

projects try to apply Agile as if they were a single team. Agile assumes

one project at a time. When the team is working on multiple projects,

there’s no big compelling goal. You’ll notice that priorities on the

different projects change, and this causes interruptions that must be

juggled within the team. We recommend that you don’t apply Agile in

this situation.

Team Members Ostracize Someone on Their Team

You may notice that the team avoids working with one person on the

team. Is this problem because of lack of trust? Or is it a practical prob-

lem? Maybe that person doesn’t shower in the morning?

Try talking to the team (when the person being avoided is not around)

to see whether they have an explanation. Also talk to the ostracized per-

son. Are they aware of the situation? Involve HR if you’re worried that

they’re distracted from work because of illness, stress, or depression.

Team Becomes Complacent

Teams often become insular when there is a lack of exposure to other

teams and business goals. If you become concerned about the team

being too complacent, it may be worth trying to increase the visibility

of the team’s work to senior stakeholders and increase the feedback to

the team about business value generated by their work.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=73

CHECKLIST 74

4.6 Checklist

• Create opportunities for the team to get to know each other, which

helps the team jell. Regularly spend informal time together, such

as lunch or drinks.

• Create a shared workspace to help the team work together well.

Try to get the whole team sitting together.

• Make role responsibilities clear. Get the customer the support they

need to work within the team.

• Ensure the team has a reachable but challenging goal. Make sure

the work is neither too easy nor too hard.

• Arrange food or drink to celebrate a release. Ask customers and

management to thank the team.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=74

Part II

Planning as a Team

Prepared exclusively for William Anderson

Download at Boykma.Com

Encourage the team to sync up every day.

Guiding principle

Chapter 5

Daily Standup
You’ve already taken part in many daily standup meetings, so you may

be surprised to find a whole chapter about them. They seem easy to

implement. All you need to do is bring the team together to stand in a

circle at the same time every day and have them answer three simple

questions:

• What did I do yesterday?

• What will I do today?

• What’s in my way?

These three questions are a good start, but they’re more like training

wheels for the team. As a coach, you can take the team beyond this

format and help them customize the meeting to suit their needs. You

want the team to adopt the daily standup as their own meeting; it’s

where they decide who’s working on what, and it encourages them to

self-organize. Once the team learns how to drive the daily standup, a

coach takes a backseat.

You’ll find the daily standup reveals how well the team members are

working together. Watch out for daily standups that are a shallow sta-

tus update to a manager, where the people on the team don’t really

listen to each other. Notice if the meeting drags on, if it wastes the

team’s valuable time by going into too much detail, or if it lasts half an

hour or more. When it’s quick, high-energy, and self-managed, then the

team is on the right track. Another good sign is when the team runs a

daily standup even when you’re not around.

There’s an art to getting the right balance of information sharing in the

daily standup. Let’s look at what you can do to get these meetings off

to a good start with the team.

Prepared exclusively for William Anderson

Download at Boykma.Com

STANDING UP 77

Rachel Says. . .

Follow Your Own Advice

Be a role model by following your own advice. At the daily
standup, make sure that you’re ready for the meeting on time.
When it’s running, stand firmly on two feet rather than slumping
against a desk or wall. If you don’t take the meeting seriously,
why should anyone else?

Modeling the behavior that you expect from the team is an
important coaching technique. Adopt the behavior you’d like
to see from the team, and it rubs off on them.

5.1 Standing Up

At first, the team may be uncomfortable about having a meeting where

they stand rather than sit in a meeting room, especially if they’re work-

ing in a more traditional organization. People can be self-conscious

about standing up where others can see them—it can seem odd, even

eccentric! Make sure the team knows that there is a good reason for

standing; the meeting takes less time when everyone is on their feet.

This is likely to win them over—most people want to spend less of their

work time in meetings.

We find reservations disappear after the team has experienced what a

daily standup is like. If they’re reluctant, ask the them to try standing

up for the meeting for a couple of weeks. Frame this as an experiment

with the opportunity to review how they feel about it in their next retro-

spective. If they also want to try the daily standup as a sitdown meeting,

track the time the meeting takes so you have some evidence on whether

standing up really does keep it short.

The daily standup works best when it’s held in the team workspace

around the team board. The team needs enough room to stand in a

semicircle so that they can see each other and the board. Encourage

them to move the furniture to make a good space for the daily standup.

If there’s just not enough room in their workspace, look for space

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=77

FOR THE TEAM BY THE TEAM 78

nearby. Where meeting rooms are scarce, be creative—we’ve worked

with teams who used a spacious stair landing for their daily standups.

If the team has to run the daily standup away from their team work-

space, it’s more disruptive because of the shuffle time to get there and

get back. It can also be a problem because they need to talk about tasks

on their team board. Some teams solve this by taking over a meeting

room and maintaining their team board and charts on the walls of this

“scrum room.”

We’re not fans of this approach because they can’t see the tasks dur-

ing the rest of the day—their team board ceases to be an information

radiator. They’ll be better off creating a portable team board that can

be taken along to the daily standup and then brought back to the team

space. We’ll talk more about how you can help them do this in Chap-

ter 8, Keeping It Visible, on page 119.

5.2 For the Team by the Team

It’s essential to get the message across to the team that their daily

standup is for them to synchronize their work. It is not held for a project

manager or team lead to gather progress from the team or give feedback

on their work. Encourage the team to direct their answers toward other

team members.

Keep conversation focused on the work in the plan; if someone is just

back from vacation, this is not the time to discuss their trip. The team

doesn’t need to mention work done on other projects unless it is seri-

ously hampering their ability to complete their work. Be polite, but if

this happens, remind the team of the purpose of the daily standup and

get it moving again.

Nudge conversation

along.

When the daily standup is new to the team,

you can nudge the conversation along. If a per-

son hesitates, prompt them with one of the

three questions. When people have been work-

ing in a pair, it’s fine for only one of the pair to summarize what they

did. Once the team gets used to the daily standup, you’ll find they natu-

rally move away from the three-question format and include additional

questions. The team can add reminders about these new questions to

their team board.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=78

FOR THE TEAM BY THE TEAM 79

Standup Chekov

by Rachel

I worked in an XP team where we posted a checklist on our team board to

remind us what to cover at our daily standup. We called this list the

“Standup Chekov,” and we posted a sign on our team board with a

picture of Pavel Chekhov, a character from the original Star Trek TV

series to remind us to check off our Chekov questions.

You’ll notice we moved on from the three-question format. We had some

other items we wanted to cover, mostly related to customer support. For

instance, every day we took turns to make sure that some developers

were designated “Exposed,” which meant interruptible for sales and

customer support issues. At the time, we were experimenting with

tracking time spent per story so we could improve our estimates. But the

most crucial question that we used this meeting for was who would be

pair programming together.

Our team later added some other Chekovs to remind them about other

things, such as getting a story done.

Establishing a Team Focus

Watch out—if you’re always asking the questions in the daily standup,

you may find that team members direct their replies to you, as if the

meeting is for your benefit, not theirs. Try to deflect this by not meeting

their gaze and looking around the circle at the team.

If you notice that team members continue to treat the meeting as a

report to you, come right out and say, “Please, can you direct your

replies to the whole team? The daily standup is for you all to work out

what you need to do today, not me.” You can also try not attending the

daily standup at all, leaving the team to run it without you.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=79

FOR THE TEAM BY THE TEAM 80

Avoid giving praise, saying “Great!” or even “Thank you” after someone

lets the team know what they completed. This reinforces the impression

that the daily standup is about pleasing you rather than synchronizing

the team’s activities. When you give a single word of praise, it can leave

the recipient puzzled. Did you mean that they did a good job? What

aspect of their work was great? You’ll also leave the team wondering

why some people get praise while others don’t.

Team Controls the Flow

Encourage the team to take control of their daily standup. To make this

explicit, introduce a speaking token that is passed from one person to

the next. The token can be any object (such as a ball or marker pen),

which each speaker holds when they have something to say. Each team

member takes the token when they are speaking and decides who to

pass it onto next. There’s no single point of control. This helps keep the

meeting flowing, and the person who holds the token becomes more

aware of the rest of the team waiting.

If someone can’t attend the daily standup and is phoning into the

meeting, a mobile phone handset works well as the speaking token.

It enables the person at the other end to hear, while keeping everyone

focused on talking to the team rather than talking to the phone. The

team might decide to stop using a speaking token later when they’re

used to how the daily standup flows.

Here’s a sample of a typical round of conversation that you might hear

at a daily standup.

Tuesday Morning

Damian starts the daily standup. “OK, I’ll get the ball rolling. Yesterday, I

worked on processing the new data feed. I checked it in, but I noticed it

seems to stall partway through—it’s not bringing in all of the book blurbs.

So today, I’ll be trying to work out what’s happening with that before I

pick up another task. No other blockers for me. Catch!” he says tossing

Larry the tennis ball that the team uses as a speaking token.

Larry, who’s looking rather sleepy today, jumps with surprise and just

manages to catch the ball. “Well, I’ve been working on setting up test

data. I’ve created some XML files by sampling the data feed, and I checked

them into SVN last night. Today, I want to start testing the book carousel,

if it’s ready?” he says holding the ball out to Rebecca.

Rebecca takes the token. “Well,” hesitates Rebecca, “it’s not quite finished,

but it would be good if you could take a quick look at what I’ve got so far.”

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=80

FOR THE TEAM BY THE TEAM 81

“OK,” Larry adds, “let’s do that this morning. While you’re getting ready,

I’ll make a start on the test scripts for the recommendations engine.”

Rebecca continues with her update. “So yesterday. . . I worked on the

carousel. It’s going pretty well, but I haven’t done any browser testing yet,

so I expect Larry is going to find some problems. I’ll probably be working

on that for most of the day. Nothing is in my way. Joe?” asks Rebecca

holding out the token.

Joe takes the token. “I got in early today and finished off ISBN search this

morning, so that’s ready for testing too. I won’t be starting any new tasks

just yet because Amanda has asked me to go to a teleconference with the

Singapore team this morning.”

“So, no issues you need me to follow up on with ops today?” asks Raj.

“Sorry to disappoint you, Raj!” grins Joe, and the team breaks up to get

started with their tasks.

Notice the team in the story talks about the progress on the tasks

rather than giving exhaustive accounts of what they did yesterday.

Also, they’re not trying to solve every problem that comes up. If Joe

has some ideas about solving the problem that Damian has run into,

they can chat about that after the meeting.

Only the people who actually worked on the tasks on the team board

answered the questions. Raj is the project manager; he’s there to fol-

low up on any issues that come up rather than work on the tasks in

the plan. Amanda is the product manager and acts as the customer

for the team; she wasn’t able to attend the daily standup, so she’ll

have to catch up with progress later in the day by asking someone who

was there.

Who Takes Part

The whole team comes to daily standup: developers, testers, designers,

customers, Agile coach, and so on. We have seen Agile teams tell cus-

tomers (and other stakeholders) that they must stay silent because they

are “chickens.” Discourage this; it’s disrespectful and can cause unnec-

essary upset. The team needs to build bridges with their stakeholders,

not burn them.

The focus of the daily standup is the work in the current plan; the cus-

tomer plays a part in this so she can let the team know what she’s work-

ing on in the same way as anyone else on the team. The daily standup

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=81

HANDLING ISSUES 82

may also be the ideal time to pass information on to the team about

upcoming work; such updates can be covered at the end of the meeting.

Watch out for conversations at daily standups that can’t be followed by

the whole team. If you close down a discussion during the daily standup

because it’s not relevant to everyone, remind them to get it going again

straight after the daily standup with a smaller group.

Two-Part Daily Standup

by Rachel

I worked with one team that decided they would have a two-part daily

standup. The first part was a catch-up for the development team about

who worked on what and any issues. This was pretty dull for the

customer team to listen to, because the conversation was full of

references to technical jargon. We didn’t exclude the customer team; they

could see when the meeting started because we were standing up, and

they were welcome to join us. In the second part, the development team

would call the customer team over to let them know who would be

working on the user stories and arrange any follow-up meetings to

discuss details of the story tests.

This solution worked pretty well for the team. Now the team could have all

the conversations they needed to start the day without wasting their

customer’s time.

5.3 Handling Issues

When someone on the team mentions an issue that’s getting in their

way, it’s often best to leave the discussion of how to solve it until the

end of the daily standup. The team won’t have the full picture until

everyone has spoken, and each issue may not require the whole team

to solve it. Try to separate conversations out in the daily standup—

invite the team to share progress before discussing how to resolve any

issues. Quick clarifying questions are OK, but encourage the team to

move on once they understand the problem.

There’s no point asking about what got in the way if issues aren’t fol-

lowed up. Avoid saying “Let’s take that offline” every time the conver-

sation meanders or someone raises an issue, because this is ambigu-

ous. Rather than scribbling notes about issues in your notebook, write

each item that requires follow-up on a whiteboard that everyone can

see to create a parking lot for issues. At the end of the meeting, revisit

the parking lot to prioritize the items and work out who needs to be

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=82

HANDLING ISSUES 83

Liz Says. . .

Forget the Formula

The Scrum method presents strict rules about who speaks and
what should be said at the daily standup. It places great
emphasis on starting on time.

Rules for running daily standup meetings are to help teams
get started with them. There’s no magic in this formula. These
rules should not be a straightjacket imposed on the team
forevermore. Sticking strictly to this formula makes the daily
standup feel like it’s “being done by numbers,” which stifles self-
organization within the team.

My advice is don’t let these meetings lose sight of their pur-
pose. I am happier to hear animated discussions and see every-
one engaged than see the Scrum formula being executed like
clockwork.

involved in any follow-up. Any issues addressed in the daily standup

can be wiped off, if they’ve been resolved. There’s no need to log them,

although if they are getting a lot of interruptions from outside, the team

may decide to track time wasted on handling them.

The daily standup should not be a substitute for other meetings. If

it throws up the need for a longer discussion with the whole team,

suggest the team arranges a meeting to cover it rather than tacking on

a conversation to the end of their daily standup.

As well as the issues mentioned by the team, you can check whether

they have any dependencies on items being delivered by people outside

the team. Some typical examples are software interfaces, editorial copy,

design assets, database changes, and so on. The team will probably

evolve the layout of their team board over time so that it incorporates

reminders to follow such things up.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=83

SETTING THE TIME 84

5.4 Setting the Time

Most teams prefer to have the daily standup at the start of the working

day to discuss who’s working on what before getting immersed in their

work. However, in many companies, people don’t arrive at work at the

same time, so they need to find a time for the meeting that works for

everyone.

Make it a team

decision.

As a coach, you shouldn’t pick the meeting

time. Instead, ask the team when they want

the daily standup. This won’t make the deci-

sion any easier, but it builds team commit-

ment to the time and promotes a culture of the team solving their own

problems.

Sometimes getting the whole team to the standup every day is a chal-

lenge. For example, some people may work from home, be in other

meetings, or not work full-time on the project. Daily standups are

even more of a challenge when the team is distributed between differ-

ent offices and time zones. Remember what you’re trying to achieve—

good communication and everyone knowing what they need to work on.

Encourage the team to experiment with different approaches until they

find a good compromise.

Teleconference calls or alternating the time of the daily standup may

work. Some people may need to be excused from the meeting and

kept up-to-date in a different way. Perhaps colocated team members

can have a face-to-face daily standup followed by a conference call

with remote team members. For different time zones, that conversation

might even be at the other end of the day.

Night People vs. Morning People

by Rachel

One company that I worked with offered very flexible working hours as a

perk for all employees. Some team members didn’t arrive in the office

until after lunch and then worked late into the evening, while others came

in early and finished work in the afternoon. This team chose an afternoon

time for their daily standup, which helped them synchronize their work.

The downside was that the morning people had to start work without

knowing where the rest of the team had got up to until the daily standup

meeting after lunch. Teams split over time zones have the same issue and

often run both morning and afternoon standup meetings. I suggested to

the team that they try this. Now the morning people could sync up with

each other before the night people came in.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=84

WHEN TO COACH 85

5.5 When to Coach

If you’re not directing the conversation and keeping the daily standup

running to time, then where do you add value as a coach? Our view

is that a coach acts as the conscience of the team—a bit like Jiminy

Cricket in the children’s film Pinocchio. For instance, you can gently

remind the team about what they planned to do if they’re straying from

it. There’s a real art to this; you don’t want to come across as nagging,

so try not to do this preemptively—you don’t want to be the person

always saying “Don’t forget this” or “Don’t forget that.” Wait until they’re

actually drifting; then make an observation that what you see them

doing is different than what they planned. Ask them whether it’s really

a problem and, if so, how they’re planning to handle it.

The members of the team spend their days focused on implementing

user stories, and they often don’t notice how quickly time is passing.

You can help by reminding the team about how many days before the

next demo or release and asking them to check that the team board

reflects what they’re working on now.

It’s not just the passing of time that you may need to remind the team

about. They’re following an iterative cycle. They need to take time, dur-

ing each iteration, to work with their customer to get user stories ready

for the next planning session. They also need to follow up on actions

from their retrospective and get these done by the end of the iteration.

Sometimes the team doesn’t raise problems because they have gotten

used to them or think they are unsolvable. As a coach, keep an inquir-

ing mind, and be on the lookout for opportunities for improvement. The

daily standup often reveals areas where team members need coaching

support. Read the team by listening to what is and isn’t being said and

noticing any odd body language:

• Is everyone engaged, motivated, and excited?

• Are they making progress and working on high-priority tasks?

• Are they working together and helping each other?

• Are they able to concentrate and do their job without interrup-

tions?

Unless you are seriously concerned that the team has lost focus on the

current plan, follow up on these observations after the meeting, or defer

discussion until the next retrospective.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=85

HURDLES 86

5.6 Hurdles

The following are some hurdles you may encounter.

People Arriving Late for the Meeting

Don’t repeat information as latecomers arrive. This is disrespectful to

everyone else and sends the message that it is OK to be late.

We’ve worked with teams who ask latecomers to pay a fine if they miss

the start of the daily standup. This might work for the team, but be

aware that some people may be happy to pay (and even feel good about

being late if the pot of money is to be given to charity or a contribution

to a team night out).

If a team member is consistently late, then talk to him about it. Try to

understand what the problem is. Maybe his alarm clock is broken, or

perhaps he’s lost his interest in the work (see suggestions for unblock-

ing motivation in Section 4.4, Energizing the Team, on page 68). What-

ever the cause, something needs to change for him to participate in

team meetings.

Help him become aware of his behavior, because this can be enough

to trigger a change. Does he realize that arriving late is bothering his

teammates? Explain the impact of his late arrival on others.

Big Visible Chart

by Rachel

I worked with a team where a senior developer, Vicky, was often late for

the daily standup meeting. Vicky didn’t realize how often she was coming

in late—in her mind she was late only once or twice a month. Her

behavior was starting to have a knock-on effect on the junior developers;

if it was OK for Vicky to be late, then they could be too.

The team discussed this at their retrospective and proposed keeping a

sign-up chart on their team board; every time a person was late for the

daily standup, they would add their name to this list. Vicky didn’t feel

uncomfortable about this because she still didn’t believe she was late that

often. The chart provided a feedback mechanism for the team that helped

them become aware of how often they were actually arriving late. After

Vicky had put her name up a couple of times, she started to make extra

efforts to arrive on time. The other team members followed suit, and by

the second week, everyone was in the office in plenty of time for daily

standup.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=86

HURDLES 87

So, the chart designed to measure the problem actually helped reduce the

problem. This is an example of how a team decision to track information

visibly influences behavior.

Meeting Takes Too Long

If the daily standup regularly takes more than fifteen minutes, look for

ways to speed it up. In this case, we do recommend sticking to the

formula questions, with each team member giving their replies in turn

and leaving discussions until the end.

Remind the team there’s no need for them to list every single thing

they did yesterday; cover only what’s relevant for their teammates to

get the big picture. Focus on what’s relevant to the tasks being worked

on today and what needs to happen to deliver the stories by the due

date.

If you are working with a large team (more than ten members), you

can speed up the daily standup by asking for an update on each user

story rather than from each person. Although this may make the daily

standup more bearable, it does not solve the underlying problem that

it’s difficult to create a sense of shared ownership with a large team.

In a daily standup meeting of this size, you’ll probably notice that some

team members aren’t listening to other team members. The amount of

work in progress has become too much for them to keep up with all the

details. Some stories don’t seem relevant to them. When people start

caring only about their own tasks, teamwork starts to breaks down.

A better solution for large teams is to break into subteams that plan

their work separately and have smaller daily standups. Then the sub-

teams coordinate their work via a new meeting called a scrum of scrums.

Daily Standup Is Hijacked

The daily standup can also be taken over by someone who has noticed

that this is a good time to nab the team for other discussions. This

person is not necessarily disrupting the daily standup on purpose; this

usually happens because they don’t understand how the Agile life cycle

works. Handle this by talking to the hijacker afterward rather than

challenging them in the meeting.

Sometimes this person is from outside the team and comes to the daily

standup because he wants the team to help him out with a piece of

work, such as a support request or creating a demo for a sales meeting.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=87

HURDLES 88

Explain that they’re welcome to come along to the daily standup, but

its focus has to be on the stories in the current plan. Recommend they

talk with the customer about their requests, so these can be considered

in the next planning meeting.

Another hijacker can be a manager or team lead.

Daily Standup Takeover

by Rachel

Ray was introducing Agile to his team. He set up a team room where the

team held the daily standup meeting and kept their iteration plan on the

wall. Every morning he led the way to the team room and pulled up a

bean bag waiting for the rest of the team to join him. As they trooped in,

they also pulled up bean bags and slumped down ready for Ray to start

proceedings.

Ray ran the daily standup in two halves. The first half gave him a chance

to gather team progress; the second half was dedicated to working

through the issues and allocating work for the day. The daily standup

usually took half an hour, but this was really a series of conversations

between Ray and individual team members.

It wasn’t a good use of their time, and it definitely wasn’t encouraging the

team to take ownership and self-organize. From their perspective, Ray

could have achieved the same effect by going around to the individual

team members while they were sitting at their desks. At least that way,

they could get on with some work while he was talking to someone else.

I talked with Ray about the purpose of the daily standup, but he didn’t

seem to think that the way he ran it was a problem. So, I tried another

angle; I asked him to come along to observe another team run their daily

standup. This opened his eyes to the possibility that he could encourage

his own team to report to each other and decide their own tasks.

You might be surprised, but it can be even worse than in the previous

story. Another sitdown daily standup was run by a program manager

passing around a spreadsheet to her team. The team filled the spread-

sheet in without talking at all.

Don’t criticize a person who doesn’t know how to run the daily standup.

You’ll find that the remedy lies in education about how Agile works.

Can you arrange for the person running the daily standup to get some

Agile training? Try taking them along to see how another team in your

organization runs their daily standup. You could also suggest that you

run the next daily standup to give them an example of how to do it.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=88

HURDLES 89

When they try applying what they learned, be an observer, and then

follow up by giving them feedback after the daily standup.

The Team Isn’t Working on the Planned Tasks

Often the tasks for a user story change when the team starts working

on them, because they’ve learned more about what actually needs to

be done. Encourage the team to add cards to represent new tasks on

the team board so it’s clear what the current plan is. Also remind them

to remove any tasks that they’re not planning to do anymore. Now it’s

easier to match up what is said in the daily standup with the tasks on

the team board.

Notice if members of the team are working on another project instead

of the stories in this project; this may lead to them not delivering the

stories in the current plan. If there’s a risk of this, then encourage the

team to flag it up to their customer.

Unplanned work often also comes up when the team is supporting a

live product, as well as developing new features for that product. This

situation is very common for Agile teams who deploy software early on

in the project. We recommend working with the customer to establish a

budget for support (in developer days) and tracking how much time is

being spent on support against that. Try using different-colored cards,

on the team board, for support tasks so that it’s very visible if they’re

being prioritized over new product development.

Daily Standup Isn’t Wanted

Daily standups can seem scary because everyone is exposed. When the

team is not getting tasks done, it becomes visible at the standup. If a

person on the team objects to taking part in daily standups, check how

much progress they’re making on their tasks, just in case they’re stuck

and trying to hide out.

However, if the whole team objects to the daily standups, you have a

more serious problem on your hands. It is possible that they’re strug-

gling to work as a team or that the meetings are being badly run. We

suggest you discuss their concerns in the retrospective.

Not Everyone Can Stand

You may have a member of the team who has health reasons for not

standing during a daily standup, such as when someone has a bad

back or is pregnant. Look for a way to accommodate their needs in

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=89

CHECKLIST 90

a way that helps them feel integrated in the team. If the rest of the

team is standing, then make sure that this person is part of the team

circle without people standing in front or behind them. You don’t want

this person to end up in the center of the circle or outside it. Consider

running the daily standup as a sitdown meeting so everyone is on the

same level, but be aware that if you sit down, it’s likely to take longer.

5.7 Checklist

• Find a space that the team can run their daily standup around

their team board. If they don’t have room in their workspace, then

use a portable team board.

• Make the time that the daily standup runs a team decision. You

can run it more than once a day, if not everyone works the same

hours.

• Encourage the team to keep their replies short and sweet. The

three-question formula can help the team get started, but don’t

let this become a straightjacket for daily standup conversation.

• Keep the daily standup flowing; a speaking token puts this in con-

trol of the team.

• Ask the customer along to the daily standup to give her progress

and updates.

• Gather issues that come up on a whiteboard where everyone can

see them. Prioritize it with the team, and follow up afterward.

• Review the effectiveness of the daily standup in the retrospective,

and experiment with the format.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=90

Talking face-to-face is the best way to communicate.

Guiding principle

Chapter 6

Understanding What to Build
If the team members want to deliver valuable software, they need to go

the extra mile to understand both user and business benefits, and user

stories help them do that. User stories underpin all the work an Agile

team does—they’re the basis of plans, development, and testing.

We find teams often struggle making the shift to user stories because

they treat user stories as requirements documents, passively accepting

them without asking questions. They’re missing a trick; the whole point

of user stories is to ask questions to better understand what users need

and to find ways of breaking requirements down.

In this chapter, we’ll explore how to introduce user stories to the team

and avoid common pitfalls.

6.1 Life Cycle of a User Story

Let’s walk through the life cycle of a user story by comparing it to the

life cycle of a butterfly.

A user story starts out as an idea, like an egg. The idea hatches a

conversation, through which the idea grows and changes shape, like

a caterpillar. The conversation converges into specific test cases, like

the formation of a chrysalis. These test cases contain what the soft-

ware needs to do, and the software takes shape, enclosed by the story

tests. Finally, working software emerges, like a beautiful butterfly. The

cycle comes full circle after the software generates user feedback and

new ideas. Most of the time, an Agile team has stories at each of these

different stages in this life cycle.

Prepared exclusively for William Anderson

Download at Boykma.Com

ENCOURAGING CONVERSATIONS 92

Help the team understand that a user story evolves from one artifact

into another over time through conversation with the customer. They’ll

lose the benefit of user stories if they try to freeze them too soon.

Encourage the team to keep asking questions to refine their under-

standing of what to implement.

Ron Jeffries summarizes three critical aspects of user stories as the

3Cs [Jef]:

Card: Writing stories on index cards to facilitate group conversations

Conversation: Asking questions and suggesting ways to split the

story

Confirmation: Agreeing on what will be the tests used to assess

whether the story is complete

Introduce the mantra “Card, Conversation, Confirmation” to the team

to help them remember all three elements.

6.2 Encouraging Conversations

It’s the conversations about user stories that enable the team to under-

stand what needs to be built. These conversations need to be driven

by developers and testers, checking with the customer that they have

understood the story details as they implement it. Notice whether the

team is struggling to work out what needs to be built, and remind them

to ask the customer rather than guessing.

Other conversations will be about user stories for future iterations.

These conversations are more often driven by the customer, who needs

to get an early view on what can be developed when. She can’t do this

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=92

WORKING WITH CARDS 93

Liz Says. . .

Get the Conversation Started

Be the catalyst for conversations between the team and the
customer to check they’re building the right thing. For example,
if you find developers struggling to work out what the software
should do, say something like this:

“Have you talked to Kate? She’s our customer; maybe she can
help work this out. Kate, have you got a minute?”

After the conversation gets going, you can slip away into the
background. As the team gets used to having these conversa-
tions, they’ll start happening without you playing the party host.

without help because she doesn’t know the technical details and capa-

bilities of the team. Encourage her to talk to the team to explore future

stories.

Watch out that these early conversations about user stories aren’t

saved up until planning meetings; it wastes the whole team’s time

discussing stories that have not been thought through. Instead,

suggest that new user stories are worked out in smaller groups with a

customer and a couple of developers or a tester. Review these with the

whole team later.

6.3 Working with Cards

We often find Agile teams using a computer with a projector in their

planning meetings for capturing user stories. This kills conversations,

because the team gazes up at the projector screen waiting for one per-

son to update each story. Introduce index cards (or sticky notes) as an

alternative way to record conversations about user stories. It’s much

easier to group stories on cards into iterations by moving them around

on the table than it is to move rows up and down in a spreadsheet.

Start the team off by demonstrating how to use cards for stories your-

self. Write each story you hear on a fresh card, and lay them out on

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=93

WORKING WITH CARDS 94

Rachel Says. . .

Rip It Up

Remember that the index cards reflect your current under-
standing of the user stories. If after some discussion the story
changes, don’t be afraid to rip up cards you’ve been working
on and create new ones.

I expect to see a few ripped cards every planning meeting.
When I don’t, then I’m concerned that the team is not engag-
ing with their customer and not questioning whether the user
stories presented could be sliced differently.

the table where they can be read by everyone in the conversation. Now

anyone in the conversation can contribute by writing a new one.

Check that what you’ve written on the card captures what was said. If

it doesn’t, suggest that the customer correct or rewrite the card. As the

story being discussed changes, add notes to the card, or tear it up and

write a fresh card.

Demonstrate writing

cards, and then stop.

As the meeting continues, stop writing all the

cards yourself. When someone suggests a new

idea, invite them to write their own card. You

can say something like, “We don’t want to for-

get that; can you write a card for that?” Or simply wait until someone

else picks up a pen and does this without prompting. This happens

quite naturally, because when several people are talking, one note taker

can’t keep up, and you’ll soon find the team pitching in.

Put a stack of cards and pens in the middle of the table so anyone can

write a card. We find that working with index cards on a table works

only with small groups around a small table. For groups of more than

five people, suggest shifting from a horizontal to vertical arrangement

of cards. You can use sticky notes on a wall (or a portable team board),

or you can post index cards on flip-chart paper pretreated with repo-

sitionable spray adhesive. Now the team can see all the cards without

having to crane their necks or read upside down.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=94

WORKING WITH CARDS 95

Make it easy for the team to use cards any time, not just in plan-

ning meetings. Have plenty of supplies available in the team work-

space (rather then locked in a stationery cupboard), and get some card-

organizing tools—CD boxes, plastic sleeves, binder clips.

Use a consistent layout

for story cards.

Remind the team that these cards will end up

on the team board and that the team will be

referring to them in their daily standup, so it

helps to use a consistent layout for the user

stories. Start with a short title at the top. Referring to them by reference

numbers, as we’ve seen some teams do, makes conversations about the

stories difficult to follow. Write the title legibly using a marker, large

enough that it can be read by the team without having to walk right up

to the board to decipher it. It also helps if the team gets into the habit

of putting estimates (see Section 7.3, Sizing the Work, on page 104) in

the same place on the card, such as writing them in the bottom-right

corner.

Story Templates

When a team is new to user stories, you can recommend they use a

story template such as this:

“As a. . . user, I want. . . capability so that. . . benefit.”

Here’s a filled-out example:

“As a book buyer, I want to see customer book reviews for a book so

that I can decide whether to buy it.”

This template helps the team remember to clarify who the user is and

what the benefit of developing the story is.

The team needs a good understanding of the different types of users

so they can fill out the As a part. You can suggest that the team cre-

ate a stakeholder map or develop profiles with photos for typical user

personas. It’s even better arrange for the team to go out and meet real

users in the setting that the software will be used in.

We have come across teams that religiously use a story template with-

out really getting to the actual end user of the story. They try to force

everything they work on into the story template, writing stories like “As

a developer. . . ” or “As an XML feed engine. . . ” Explain that if there’s

no user interaction, then using this template may not help the team

understand the requirement better, so there’s no need to use it.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=95

CONFIRMING THE DETAILS 96

Remind the team that the purpose of a story template is to help the

team learn to ask questions that improve their understanding rather

than a form to be filled in. Once the team is used to working with user

stories, the team can drop the story template. A short title is enough,

and any other notes on the cards are simply reminders of the conver-

sation, nothing more. Whether the team uses a template or not, always

write the user story in language that can be understood by the whole

team including the customer.

After the stories have been implemented as working software, the team

relies on the tests, not the cards, for details about the story. They could

throw cards out, but sometimes looking at the original card can jog

memories about the conversation when it was created; this can be use-

ful if the team needs to add more related stories in later iterations. Most

teams we work with keep bundles of cards from past iterations for this

purpose, but they don’t often refer to them.

6.4 Confirming the Details

Once the team understands the basic story, who the user is, and what

problem they’re trying to solve, the team needs to discuss the details

and agree on what behavior to implement. Work with the team to pin

down the scope of each story as a set of tests that need to pass for the

story to be considered “done.” These story tests1 help the team clarify

what needs to be built and how much work needs to be done.

Story tests start life as bullet points scribbled on the back of a story

card. Advise the team this is enough detail until the point that the

story is planned into their next iteration. Later, these notes are used

during the iteration as the basis for writing runnable test scripts.

We find that teams sometimes expect the customer to come up with

these tests all on their own. Help the team understand that this is

unlikely to work; a businessperson will often think only about what

to do when everything is running smoothly rather than what can go

wrong. For example, when thinking about how a search for a book

works, they’re likely to be more focused on what the user can do rather

than what happens if there are no results to show.

Watch out when the word test comes up; your customer may look for

an excuse to make a sharp exit, because this word gives the impres-

1. Another common term for story tests is acceptance criteria.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=96

CONFIRMING THE DETAILS 97

sion that a technical conversation is about to start. Rather than scar-

ing them off with technical language, suggest the team draws out story

tests by walking through some real examples. Examples help the team

check that they understand what the software has to do and what

behavior will meet customer needs. Examples also lead the team to

explore situations that might need error handling.

Start by walking through a simple user interaction where a user

achieves their goal. Now encourage the team to ask their customer

questions like these:

• What data does the user enter?

• What does the user expect to see?

• Are there business rules that we need to be aware of?

Sketches of the user interface may help; rough pencil drawings are fine.

It’s the content and interaction that the team needs to understand, not

the appearance.

Now prompt the team to ask about what could go wrong. What input

data needs to be handled? Consider bad data and realistic quantities.

During this exploration, remind the team that they’re not writing test

scripts, so you don’t need to work out every single boundary condition

just yet.

Here are some story tests for the user story: As a shopper, I want to find

a book by title so that I can buy it. This uses a simple story test template

Given-When-Then [Nor06].

• Given the user is viewing the search page and enters “Agile Coach-

ing” (which has only one match), When the user clicks the Search

button, Then full book details (title, author, picture of the book

jacket, synopsis, price, reviews) and the Add to Shopping Cart but-

ton are shown.

• Given the user is viewing the search page and enters “Test-Driven

Development” (which has multiple matches), When the user clicks

the Search button, Then a list of book summaries (title, author,

and price) are displayed, in price order with a Show More button

next to each summary.

• Given the user is viewing the search page and enters “Water-

fall Coaching” (which has no matches), When the user clicks the

Search button, Then the message “Sorry, we can’t find that book.”

is displayed.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=97

CONFIRMING THE DETAILS 98

If there are only a few tests, then jot the tests on the back of the story

card. Or add them to a separate card and clip it to the story card. Watch

out if a story has a big wad of tests clipped to it; this is a sign that the

story is getting too big or the team is getting into too much detail.

Let’s see how a team works out what the story tests are.

Working Out Story Tests

Amanda is a product manager who’s taken on the role of the customer for

a online bookseller. At the daily standup, she asked for input from the

team on how difficult it would be to add ISBN search to the existing

website. Damian and Larry, a developer and a tester, respectively, have

volunteered to take a look at story details with her so they can give an

initial estimate on the story.

“Why would users need ISBN search?” asks Damian. “They can already

search by author or keyword.”

“It came up in our last round of usability testing,” Amanda explains. “It

seems some users are in a hurry and don’t want to wade through our

search menus."

Damian frowns. “Shouldn’t we be redesigning how search works then? I

suppose this is a quick fix while we work out how to do that.” Amanda

nods and writes this story card.

Next, they move on to discussing the implementation of an example.

Entering an ISBN like 1934356433 should display a book result page.

The template for this already exists on the site, so there’s no need to get

into what details to display. Damian writes this story test.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=98

CONFIRMING THE DETAILS 99

Damian asks, “What should happen if the user hits Search without

entering the full ISBN? Do you need a partial ISBN match?”

Amanda thinks for a moment. “Not really, that misses the point of the

story. Can we direct them to our standard no results page with the top

three Hot Picks?” Damian writes a second story test card to cover this.

Larry, the tester, reads it. “We need to handle thirteen-digit ISBNs too?”

Amanda nods, and he adds a note to the bottom of the first story card.

“Do we return results only if they just enter the digits? What about

whitespace and hyphens?”

“Sure.” Damian adds, “It’s not going to be much work to strip out blanks

and hyphens, so we might as well throw that in too.”

Amanda agrees, “Good idea.”

The team members are now all happy that they understand this user

story enough to give an estimate.

This story shows how some tests that come up get added to the user

story while other story tests may be deferred.

User stories are a simple technique that a team can use for understand-

ing their customer through talking about what users need. As a coach,

your focus is to wean them off bad habits developed in pre-Agile days

of accepting requirements to be implemented to the letter rather than

asking why and offering alternatives. Show them how to use cards, and

encourage them to get involved in conversations about user stories to

offer their ideas and to draw out more details as story tests.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=99

HURDLES 100

6.5 Hurdles

The following are some hurdles you may encounter.

No User-Facing Functionality

User stories are most effective when they are used to describe require-

ments of real human users. If you are working on a project to rework

infrastructure or architecture, then there’s often no obvious user-facing

functionality to describe.

The template As a. . . I want. . . so that. . . is unlikely to be useful. But

the questions “Who wants this? And why?” continue to be relevant for

understanding how to prioritize the work. The team can still have a con-

versation about the problem being solved, the benefit to be delivered,

and the story tests that will confirm they have delivered the story.

User stories can also be used to wrap a bunch of technical tasks into

a more meaningful description, which makes it clearer to customers

and management what’s being worked on in each iteration. If work is

described in the technical language of developers with references to

libraries and code elements, they can sound completely cryptic to a

customer.

Here’s an example. The following description of some infrastructure

work does not convey much about why this is needed. “Install WIBLv2

on Fred,” where WIBL is a code library and Fred is a web server. Sup-

pose the reason that the software is being updated with WIBLv2 is to

handle different character sets for the Asian market. If we rewrite it

as a user story, “As product manager, I want to see book information

displayed in Asian character sets so we can sell our books into Asian

markets,” it makes the reason for doing the work clearer. The original

description, “Install WIBLv2 on Fred,” is a task to implement this new

user story. This new user story should also lead the team into working

out what tests need to be run to prove the story.

Requirements Must Be Documented

Some organizations mandate that software requirements are formally

documented, usually because they are in a regulated industry and

must show that they follow a process that can be audited. Or sometimes

this information is needed to support a handover to another team, such

as an operations team.

You can still work from user stories, but now you need to document

them. A quick way to create an electronic record of stories is to take a

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=100

CHECKLIST 101

digital photo (or a photocopy). You may also want to record any sketches

drawn on whiteboards during the user story discussion. If you need

more complete documentation, it can be written after the user story

conversation.

Another approach to creating documentation that can’t get out of step

with the code is to write story tests as executable requirements using a

test framework like FIT.2

Team Can’t Meet Up

Obviously cards and sticky notes don’t work for conversations between

team members in separate office locations. You can still use user stories

as the basis of conversations about user needs and discuss what story

tests will be used to confirm the story has been implemented. Instead

of using index cards, do the simplest thing that will work. For example,

you can use desktop sharing software (such as NetMeeting or WebEx)

so that teams in each location can see the same screen. Then use some

basic software that allows you to write virtual sticky notes instead of

index cards.

6.6 Checklist

• Teach the team the “Card, Conversation, Confirmation” mantra

to help them remember that a user story has three essential ele-

ments: a conversation, a card, and a confirmation. Encourage the

team to refine each user story through conversation with the cus-

tomer.

• Show the team how to write story cards by doing it yourself and

then stopping to make room for the team to write them instead.

• Make sure cards or notes are available in the team space and in

meetings to discuss stories.

• “As a. . . user I want. . . capability so that. . . benefit” can be a use-

ful template for user stories. Watch this does not become a form-

filling exercise; such templates should prompt the team to ask

questions. Once they’re asking the right questions, the team can

drop the template.

• Support the customer in working out details of stories before plan-

ning sessions. It helps shape the user stories if you get a few team

members involved; they can ask questions and suggest story tests.

2. http://fit.c2.com/

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://fit.c2.com/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=101

Plans need to be achievable.

Guiding principle

Chapter 7

Planning Ahead
No one likes long meetings, but some in-depth conversation is required

to make a realistic plan. So, how can you help the team strike the right

balance in planning meetings?

Encourage the team to create plans of different granularities. They are

likely to need both a rough plan that looks a few months into the future

and a more detailed plan for their next iteration.

Planning is like cooking your favorite stir-fry vegetable dish:

Prepare: Work with the team—especially the customer—to get the user

stories ready before the meeting. Slice the stories down as fine as

you can without losing sight of the benefit.

Fry one at a time: Have one conversation at a time. If the team is talk-

ing about how to develop a story and then gets sidetracked by how

important that story is compared to another, they can go round in

circles.

Keep stirring: Keep the meeting flowing, and refocus conversations to

prevent them from getting stuck.

Control the heat: The team may be under pressure to commit to

more work than can be finished in the iteration. Help them work

through the design details so they can give realistic estimates that

take their past delivery rate (velocity) into account.

The secret of this recipe lies in the preparation.

Prepared exclusively for William Anderson

Download at Boykma.Com

PREPARING FOR PLANNING 103

7.1 Preparing for Planning

Encourage the team to work with the customer to get the user sto-

ries ready well before the planning day. We’re not suggesting the whole

team has a preplanning meeting; this can be done by a couple of team

members.

Now guide the team through the following basic steps to create a plan:

Understand priorities:

Start with a team conversation about the user stories the cus-

tomer would like to get in the next iteration to release.

Size the work:

When the stories are understood, help the team work out what

needs to be done to deliver the stories.

Agree on the plan:

Wrap the meeting up by getting agreement on what can realisti-

cally be delivered.

A team that has a good understanding of what needs to be done can

crank through all of these steps in less than an hour, whereas a new

team working on a complex problem is likely to need more time. When

you see that the team has a lot to work through, suggest each step is

broken out into a separate meeting.

Work with the team to create an agenda for their planning meetings

ahead of time. If everyone on the team knows what’s happening and

when, they can prepare properly. An agenda also comes in handy dur-

ing the meeting. When team conversation drifts, you can refocus it by

reminding the team about the agenda.

7.2 Understanding Priorities

Recommend that the customer opens the meeting by explaining her

goal for the next iteration or software release. She presents the user

stories and how each of them supports this goal. Ask her to rank the

stories by laying out the cards on the table from the most important to

the least important. Let the customer know you appreciate that all the

user stories are important, but also set the expectation that it may not

be possible get them all done in this next iteration.

Encourage the rest of the team to ask questions and look for oppor-

tunities to split the user stories down further. When stories are small

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=103

SIZING THE WORK 104

Rachel Says. . .

No Projector

Don’t use a projector when working with user stories if you can
avoid it. There’s nothing more depressing than sitting in a meet-
ing with everyone staring at the screen waiting for one person
to type. It may seem like you’re saving time because there
won’t be anything to type up after the meeting, but this is a
false economy because it comes at the cost of valuable team
time.

Instead, work with the customer to ensure they are prepared
and they bring user stories on index cards to the meeting.

You can update any electronic records with the outcome of
the meeting after it’s finished.

I’m not saying never use a projector. They do come in handy if
you need to look up existing user interfaces and designs in the
meeting.

with clear story tests, they’re easier to estimate and more likely to be

delivered. However, if they’re broken down too small, stories cease to be

meaningful chunks of functionality from a business perspective.

Now prompt the team to review the tests for each story that’s likely to

be in the next iteration. A simple way to do this is to ask each team

member to pick a story and read the tests aloud. You want the whole

team to be aware of these tests so they take them into consideration

when sizing the work.

7.3 Sizing the Work

Before they can estimate the work, the team needs to discuss software

design implications. Make sure the team takes some time to dig into

the technical details of each story.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=104

SIZING THE WORK 105

Suggest the customer

steps out.

This part of the meeting is probably not a great

use of the customer’s time. Let her know that

it’s fine to leave the meeting and you’ll call her

back later when the team has estimates on all

the user stories. This will help the team too, because having someone

visibly waiting for a conversation to finish can put pressure on them to

wrap up their discussion prematurely.

Not Just Numbers

by Rachel

I worked with a project manager, Amir, who said in frustration to the team

during a planning meeting, “Come on! I just want to get the numbers on

the stories.”

Amir gave the team the false impression that planning is about creating

artifacts for project management. He was missing the important point

that planning is about working out what to do, and that must come

before working out how long it will take. The team cannot just “put the

numbers on the stories” without having a conversation about what they

need to do, and very often this discussion involves talking about the

design of the software.

I shared my observation with Amir after the meeting, and he was glad I

pointed it out. The next time, he made sure there was time in the agenda

for some technical discussion. However, it took a while before the team

built up the confidence to really talk about their design ideas as part of

planning.

Encourage the team to use a whiteboard to help everyone visualize

design options. There’s no need for every last detail of the design to

be pinned down in planning. Design decisions that don’t affect the esti-

mates (or impact work on other stories) can be left to the developers

who end up working on that story.

Team Hates Planning

by Rachel

I worked with one team that hated planning meetings. The meetings

dragged on for the whole afternoon with no breaks. Planning was

dominated by the team leader, Amy, who attempted to nail down the

design for all the stories before the iteration started. Creating the tasks

for every story felt like micro-management of the work to the more

experienced developers because this left them with very little choice about

design by the time they got to building the software. Even worse, she

usually cajoled the team into agreeing to estimates that were way below

their original suggestions.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=105

SIZING THE WORK 106

Rachel Says. . .

Keep Design Discussion Alive

I’ve met teams that formed an impression that the only meet-
ings they should have if they’re Agile are the “Agile meetings”
(planning, daily standup, demo, and retrospective). This is just
not true. Encourage the team to have meetings to talk about
software design as needed rather than trying to cram these dis-
cussions into planning sessions.

The team brought up their concerns about these long planning meetings

in a retrospective. The next day someone brought in a kitchen timer,

which could be used by anyone in the meeting to timebox further

discussion to ten minutes. After a while, if someone even reached for the

timer and set it running, this was taken as a signal to wrap up discussion

and move on.

Decomposing into Tasks

For large stories, which will take more than a couple of days to build,

suggest to the team that they decompose the work into tasks: small

pieces of work that contribute to the delivery of a user story (a few hours

work not, more than a day). Doing this can sometimes reveal more story

tests and ways to split the stories down even further. However, if the

team already has a clear idea of the work, decomposing into tasks may

be overkill.

There’s another benefit for the team in breaking the work down into

tasks. Small tasks make it easier for the team to share the work and

coordinate their efforts so several people can work on the story. The

team can post these tasks on their team board so they can see how

much progress they’re making every day. There’s no special template

for writing tasks, but they should be legible from a distance, ready for

the team board.

When we don’t know the codebase the team is working on, it can be

tricky to lead conversations about what work needs to be done. Read

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=106

SIZING THE WORK 107

Liz Says. . .

Don’t Play the Secretary

Don’t take on all the writing in the meeting. It can be tempt-
ing to start doing this, because this is one thing you can do to
support the team. But it stops everyone else from engaging in
the meeting and can make it feel like the meeting is for your
benefit rather than the whole team’s. Encourage everyone on
the team to get involved.

the story to the team, and then ask what needs to happen. Wait for the

team to come up with ideas themselves.

If they get stuck, nudge them along by asking questions like these:

• Will we need any database changes?

• How are we going to test this?

• Do we need anything from other teams like editorial copy or GUI

design assets?

• Is there anything else we need to do to meet our definition of

“done”?

Estimating, Not Guessing

Once the team has worked out what needs to be done, they need to

estimate how long the stories will take to complete. They do this collab-

oratively, without deciding who will work on which tasks at this stage.

Ask the team to consider the work to be done without padding the esti-

mates to allow for things to go wrong. Even if some days there seems

to be one interruption after another, it’s just not possible to estimate

interruptions.

Be clear in the meeting that estimating is not making a wild guess! If

the team really has no idea about what needs to be done (because they

don’t know the codebase or some new technology is being used), advise

them not to jump into estimating and instead take time to explore what

needs to be done. Some teams run their planning so that user stories

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=107

REVIEW AND COMMIT 108

are presented in the morning and estimating is done in the afternoon.

This allows developers some time to look into the code before getting

together to discuss what needs to be done.

Spike to get a better

estimate.

If a longer investigation is needed, suggest to

the team that they plan a spike. A spike is a

timeboxed investigation with the goal of pro-

ducing an estimate for a user story rather than

producing code. Once the team has a better understanding of the work

involved, they can reconsider the story for the next iteration.

Arriving at an Estimate

The simplest approach is to discuss each story and then agree on an

estimate. This usually works for small teams of up to five people. When

planning with larger teams, you’ll notice that some team members stay

quiet and don’t join in the discussion. This might be because they

lack confidence, or they may be happy to go along with whatever is

proposed—either way, the rest of the team doesn’t get to hear their

opinion. You can bring everyone into the conversation by introducing

Planning Poker (see the sidebar on page 110).

As each user story is estimated, the estimate is marked on the story

card, and it’s laid out on the table. Create a story card matrix by

grouping story cards with similar estimates into columns, and order

the columns from low to high so the team can see them all. This is

shown in Figure 7.1, on the following page.1 This helps the team keep

their estimates consistent. Mike Cohn calls this triangulation: “When

estimating this way, you do not compare all stories against a single

baseline or universal reference. Instead, you want to estimate each new

story against an assortment of those that have already been estimated.”

His book Agile Estimating and Planning [Coh06] is a great reference for

information about estimating and making Agile plans.

7.4 Review and Commit

The next part of planning is grouping the stories into an iteration sched-

ule that the team can realistically deliver. This is often the hardest part

because usually some trade-offs have to be made.

1. Courtesy of Kerry Jones, who explains more at

http://blog.livingroomarchitect.com/2008/08/story-card-matrix.html.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://blog.livingroomarchitect.com/2008/08/story-card-matrix.html
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=108

REVIEW AND COMMIT 109

Figure 7.1: A Story Card Matrix

Checking Team Capacity

Once all the estimating is done, the team needs to understand their

capacity so they can plan an achievable number of user stories to

deliver. After running a couple of iterations, the team will have some

average velocity data that shows how much they are likely to deliver

per iteration.

If the team is just starting out and doesn’t have any velocity data

yet, a back-of-the-envelope calculation is usually precise enough. For

example, suppose the team has three developers, one tester, and a

project manager (who pitches in on documentation tasks). They’re

planning to work in iterations of two weeks. They figure that they lose

about two days per iteration to meetings and another couple of days on

support, so they estimate roughly they can take on about thirty days

of work per iteration. Then they remember that one of the developers

has a couple of days of vacation booked, so they adjust the figure to

twenty-eight days.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=109

REVIEW AND COMMIT 110

Planning Poker

Planning Poker [Gre] was originally described by James Gren-
ning. To play planning poker, each person on the team needs a
hand of cards to give estimates with. Each hand of cards con-
tains a card for each number in the point scale the team uses
for estimating, such as 0, 1, 2, 3, 5, 8, 13, and 21 plus a card to
flag up a story as too big; mark this with ! or some large number
like 99.

When a story is read aloud:

• Each team member makes an estimation by choosing a
card from their hand and placing it on the table face
down. This is done so estimates won’t be influenced by
other players.

• When everyone has played their card, the cards are
turned over and compared.

• If the numbers are all the same, then this estimate is
marked on the user story.

• But if players have voted for different numbers of points,
the team now discusses why they think the work is difficult
or easy, and then they vote again.

• If someone has no idea, then they can play a card with a
?.

Playing Planning Poker keeps everyone in the meeting
engaged and helps the team not to anchor on the first esti-
mate shouted out. Although Planning Poker can help speed up
the meeting, that’s not the main point. Expect quite a bit of dis-
cussion when the estimates diverge before the team agrees on
a figure. This discussion is normally very useful because it brings
out assumptions and ideas about what the story is and how to
build it.

Remember that Planning Poker is just one approach to estimat-
ing stories. We often come across teams using it inappropriately
for estimating small, well-understood stories as part of planning
their next iteration. You’ll find this technique is most relevant
when creating forward plans for releases over the next few
months and a customer needs to get early feedback on initial
story sizes before the user stories have been fully bottomed out.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=110

REVIEW AND COMMIT 111

Remind the team to take care that they don’t overload any specialists on

the team. There’s no point in filling the plan with Ajax work if only one

person can do this. If knowledge bottlenecks are a consistent problem

for the team, encourage them to plan in some learning tasks to broaden

the skills of the team.

Laying Out Iterations

Lay out the story cards in the order that the development team plans

to work on them. Put the highest-priority ones first unless there are

risks, dependencies, or deadlines associated with particular cards—

these will need to be explained to the customer. You can see in following

photograph how cards can be organized into a high-level view of what

stories the team aims to release in the next few months.2

If the customer left during the estimating session, now is the time to

invite her back in. Walk her through any changes made to the stories,

such as splitting them down into smaller stories or new story tests. Now

that the customer can see the estimates for the stories written on the

story cards, she may need to reprioritize. Expect a little more shuffling

of stories before making the final cut of what is and is not in the plan.

2. The photo is from a team applying Scrum, so they’ve labeled their iterations sprints.

They ran an off-site meeting with all the senior stakeholders to create this plan.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=111

REVIEW AND COMMIT 112

Liz Says. . .

Be Realistic

However much the team or customer wants to get all the sto-
ries delivered, making an overoptimistic plan is likely to end in
disappointment. It is important that the team plans for a sus-
tainable pace so realistic expectations are set with the wider
organization. Encourage the team to plan on completing the
same amount of work as they completed last time—unless they
know that circumstances will be different.

If the team feels particularly optimistic, then create a “backup
board”—a queue of stories to work on if they finish early.

Looking Further Ahead

In an ideal world, the team would put a live release out to users at the

end of every iteration, but there may be good reasons for releasing less

often or for not always releasing to all users.

When filling up iterations in a plan that spans several weeks or months,

remind the team that new stories are likely to come up. Encourage them

to leave some wiggle room rather than packing the plan too tightly. The

easiest way to do this is to leave one iteration unfilled. It’s a space for

new user stories and also a buffer that can help if development on any

of the planned stories overruns.

It doesn’t usually make sense to make a plan based on user stories that

goes further out than three months. Beyond this point, use a road map

based on story themes.

If the team is making only small changes to support live applications,

rather than actively developing a product, there may be no benefit in

getting the team together to create a longer-term plan. Instead, you

might be better applying kanban (see the sidebar on the next page),

which focuses the team on improving the flow of work.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=112

REVIEW AND COMMIT 113

Kanban by Karl Scotland, EMC Consulting

A kanban system for software development focuses on visual-
izing work as it flows through various stages of transformation in
a value stream, with limits on work in progress at each point.
This enables a team to see bottlenecks and constraints in the
system, such that they can continually strive to improve the sys-
tem and increase productivity and performance.

This focus on flow renders task estimates unnecessary, making
breaking down tasks an analysis and design activity. Prioritiza-
tion, planning, and releasing still occur regularly, forming a nat-
ural cadence around each activity. The team no longer esti-
mates what it will deliver within a timebox, instead forecast-
ing how much will be delivered from known cycle-time and
throughput information.

A team setting a limit of three features being in progress at
a time will concentrate on maximizing the flow of those fea-
tures to completion, while deferring time spent on new features
until they have spare capacity. The prioritization, analysis and
planning of new work is therefore triggered “just in time,” as
opposed to being scheduled with an iteration planning meet-
ing. Prioritization is based on the team’s previous capability
to deliver features, weighed against future business goals and
objectives.

Kanban is the Japanese word for “visual card” and is used as
a tool in the Toyota Production System. A kanban system for
software development will often use an index card as the token
limiting work in progress, and a token might represent a unit of
value such as a user story. A kanban system is, therefore, able
to manage the flow of single pieces of customer value through
the development system from idea to release.∗

∗. Read more about Kanban at http://www.LimitedWIPSociety.org and
http://availagility.wordpress.com/.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.LimitedWIPSociety.org
http://availagility.wordpress.com/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=113

KEEPING TRACK 114

7.5 Keeping Track

After the meeting, the team will probably be itching to get started on the

new stories. Before they scatter, someone needs to take responsibility

for putting the stories and tasks up on the team board. Suggest the

team nominates someone to be tracker—some teams rotate this role

within the team.

Tracking should focus on

team deliverables.

We’ve noticed that putting tasks in a tracking

tool can lead to micromanagement. There’s no

need to record all the tasks created in plan-

ning electronically; these will be tracked on the

team board. Remind the team that stakeholders will be interested in

whole user stories being finished rather than tasks because tasks aren’t

deliverables.

It’s also important to keep a version of release plans in software because

it needs to be shared more widely with stakeholders. The team can

simply list the user stories in a spreadsheet or on wiki page along with

the estimates and when the stories will be delivered. The team will need

to make sure that these different views of the plan are kept in sync.

Encourage the team to snapshot the planned stories along with the

estimates. At the end of the iteration, they can compare this historic

data with the velocity they actually achieved to work out their hit rate.3

This is a calculation used by some teams we work with to help them

see how accurate their planning is. For example, if the total story points

planned is 50 and at the end of the iteration the estimates on completed

stories add up to 40 points, then this team’s hit rate is 80 percent.

7.6 Hurdles

The following are some hurdles you may encounter.

Customer Doesn’t Know What They Want

If the customer has not prepared for the meeting, then the first part

of the meeting may take quite a while to work out the user stories. It

may help to hold a preplanning meeting with a smaller group of people

to get a rough cut of stories before the meeting. This works best if you

include at least one person from the team who can give some input

from a technical perspective to verify whether the stories are feasible

and not too big to deliver in a single iteration.

3. Introduced to us by Mike Lowery.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=114

HURDLES 115

The Team Is Asked to Overcommit

Sometimes, the team may be asked to commit to more work than it

can realistically deliver. This often happens when the customer has a

hard launch date and there’s a lot of pressure on the team. If you see

that the team is about to commit to far more than their velocity shows

they’re likely to achieve, warn them that there’s a high risk that all the

stories may not be delivered.

If the team insists that they can do this, make sure that they slice

the stories down quite finely so that for each area of functionality they

have something that they can deliver, even if it isn’t the all-singing all-

dancing version envisaged.

Yesterday’s Weather

by Lasse Koskela, Reaktor Innovations

I once worked with a smallish startup that had gotten a lot of good

publicity; there was a lot of talk about it being the next MySpace, and so

forth. The customer was the founder of the company who had built the

first version of their online service himself in the wee hours over a couple

of months. He was very much committed and enthusiastic to see the

company go big.

After a few months of scrambling together a team and starting to rebuild

the service for the needs of the world market, they decided to adopt

Scrum—their incumbent ad hoc method was already showing its

weaknesses. More discipline and visibility was needed.

Starting their second iteration, having delivered 25 points worth of

features in the first iteration, the team was talking about trusting

“yesterday’s weather.” The customer, however, was optimistic about the

team’s potential and managed to pitch the team to take on 35 points.

They committed to 35; they delivered 24.

Again, the customer pulled a pep talk at the iteration planning meeting,

pointing out how we were “just starting” and how the team was learning

and improving all the time. The team committed to 35 and delivered 25.

Fourth iteration, same thing. They committed to 35 points because the

customer “knew they could do it” and delivered much less.

At this point, the customer finally accepted what I and another coach had

been trying to explain—the team’s productivity will not improve by

wishful thinking and “trying harder.” At worst, it plummets under

excessive pressure.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=115

HURDLES 116

Plan Changes During the Iteration

Be on the lookout if the tasks on the team board change radically in the

first few days of every iteration—this is a clue that planning meetings

are probably being rushed. We’ve seen teams going through the motions

of planning, listing tasks, and estimating them without really thinking

through what needs to happen. Then when work actually starts on the

story, it becomes apparent that the tasks on the board don’t actually

reflect the work that needs to be done.

Expect the team to create some additional tasks for a story as their

understanding of the problem grows, but watch out if the tasks change

a lot—that is a sign that the team didn’t come to grips with what needed

to be done in planning. Encourage the team to allow more time in their

next planning session to work through the tasks, and also encourage

the team to plan in some spikes.

Meeting Has a Lot of Conflict or Tension

Running planning meetings can be challenging. Developers often have

opposing views on how the design should be done. Customers may not

see the point in changing or splitting the stories.

Tension in the first part of the meeting, where stories are being dis-

cussed, may be about how to slice the stories or which are the most

important stories. Encourage the team to explain their ideas and con-

cerns to the customer. Be clear to the customer that they need to listen.

Ultimately what stories end up in the plan has to be a joint decision.

The second part of the meeting can also become tense, because the

team has to agree on how they will build the software to deliver the sto-

ries. A certain amount of conflict here probably helps test and improve

ideas, but too much conflict is just unpleasant and inefficient.

If several alternative solutions are proposed, all of which seem equally

good (or equally bad), then remind the team to judge each solution

on how simple they will be to develop. The team might try developing

both solutions. This will help them learn more about the problem. Soon

it should be obvious if one solution is better than the other or if a

combination of both ideas is best. Although it appears wasteful to code

two solutions, it may well be the quickest way to learn, and it may

provide a better solution.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=116

CHECKLIST 117

Team Velocity Drops

It’s pretty normal for the velocity of a new team to take a few iterations

to settle down into a reliable figure, but once it settles, the team should

still keep tracking it. Team velocity often slows down a little as the

project grows and the software supports more user stories. At the same

time, the team may have become more optimistic as their confidence

with Agile grows. Help the team notice any slowdown and try to work

out the root cause, although this may take more iterations to pinpoint.

In the meantime, plans should be based on the new measured velocity

rather than continuing to plan with the old velocity, hoping the magic

will come back.

Planning Doesn’t Make Sense

You’ll find that there are times when going through the ceremony of

planning doesn’t make sense, such as when several team members are

out of the office, on vacation, or in training, or when the team has a lot

of bugs to fix. Bug fixes can’t easily be estimated because most of the

work is detective work tracking down what’s causing the problem.

Rather than waste time on planning iterations during such times, cre-

ate a prioritized queue of work on the team board. Now the team can

work their way through it and prioritize work for the day in their daily

standup. Continue working on small stuff until the team is back or the

bugs are cleared.

If this happens a lot, then consider moving to a kanban style of devel-

opment, which doesn’t depend on iteration timeboxes to limit work in

progress.4

7.7 Checklist

• Create an agenda with the team for planning meetings, possibly

breaking planning into more than one session. Show the team

how to use the agenda in the meeting to refocus conversations

when they drift.

• Remind the team to work with the customer before planning meet-

ings to prepare the user stories.

4. Jeff Patton has a nice summary of the kanban approach on his blog at

http://agileproductdesign.com/blog/2009/kanban_over_simplified.html.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://agileproductdesign.com/blog/2009/kanban_over_simplified.html
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=117

CHECKLIST 118

• Make sure everyone has an opportunity during planning meetings

to ask questions about the user stories.

• Encourage design discussions before estimating the work. These

often flow better if the customer steps out of the meeting.

• Suggest the team do a task breakdown for any large stories. Tasks

can be posted up on the team board along with the stories during

the iteration to help the team coordinate their work. However, rec-

ommend to the team that it’s more important to track completed

stories than tasks.

• Help the team estimate consistently by creating a story card

matrix that groups stories with the same estimate together.

• Take care that the team works at a sustainable pace and doesn’t

make promises that their velocity shows they’re unlikely to keep.

Suggest the team check their capacity before making the final cut

of what stories should be in the plan.

• Before the meeting breaks up, make sure that someone takes the

cards and puts them up on the team board. The team also needs

to take note of what stories are planned along with the initial esti-

mates so they have a baseline they can use when calculating their

velocity.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=118

Make things visible to encourage the team to take

responsibility.

Guiding principle

Chapter 8

Keeping It Visible
What tricks do you use when you have to remember to do something?

Whether it’s collecting your shirt from the cleaners or posting a birthday

card, we bet you make a visible reminder, like a note on the refrigerator

door. The team has lots to keep in mind: iteration plans, retrospective

actions, and the state of the software. Coach them to keep the stuff

they need to pay attention to visible.

Useful information should be visible to all and not hidden away in com-

puters. Plans kept electronically are information fridges; they give up

their information only when they are opened. Help the team set up a

team board that radiates their plans for all to see.

A team board is more than a place to put the current plan; it’s a reflec-

tion of the team and what’s important to the team. They can show where

they’re headed by posting up their product road map, release plans,

and designs. Lots of teams we work with also personalize their team

board with cartoon strips, postcards, and team memorabilia, which

helps establish a team culture.

8.1 The Team Board

Most teams divide their board into columns to indicate progress (as in

this photograph). The team puts the cards on the team board immedi-

ately after planning and moves the cards across the board until they

reach the Done column.

Prepared exclusively for William Anderson

Download at Boykma.Com

THE TEAM BOARD 120

Here’s how it works:

Stories

All the stories are placed here, in priority order from top to bottom.

Tasks

Tasks are put here, in swim lanes next to the story to which they

relate.

In progress

When work on a task begins, it is moved into this column.

Awaiting QA

When all the tasks are complete, the story card is placed into this

column, and the completed tasks can be discarded. Seeing a card

here prompts a customer or a tester to check the work and confirm

it meets the story tests.

If a problem needs fixing, move the story card back to the Stories

column and create new task cards for the fix.

Done

The goal is to get all stories that are done over here. This column

should steadily fill up over the iteration.

The team delivers value only when a whole story is complete. Encourage

them to focus on getting a few stories all the way across the board at

a time, rather than a scatter-gun approach where lots of stories are in

progress.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=120

THE TEAM BOARD 121

Make the team board

easy to read.

Take care that the board is laid out so that it

is clear and legible.1 It loses its power if peo-

ple can’t read what’s up there. Encourage the

team to use a consistent format for cards and

write story titles neatly using a marker so that they can be read by the

team in the daily standup. If they don’t have great handwriting, then

they can use a computer to print out signs for the board.

If the team doesn’t have space to move cards along, suggest they use

stickers to show progress on the cards. Completed cards gather a series

of overlapping sticky dots like a caterpillar (as shown).

Not Started

All cards start with a red sticker on them.

In Progress

When work starts on a card, eclipse the red sticker with a yellow

sticker.

In Review

When the task is being reviewed, cover the yellow sticker with a

blue one.

Done

When the task is done, cover the blue sticker with a green one. If

any bugs are found, show that the card is now work in progress

again with a yellow sticker.

Use large, bright stickers so it’s easy to see the status from a distance.

Create a key explaining what the different color stickers mean—now it’s

easy for anyone to interpret the board.

1. See http://www.xqa.com.ar/visualmanagement/2009/02/visual-management-for-agile-teams/

for some tips on visual management.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.xqa.com.ar/visualmanagement/2009/02/visual-management-for-agile-teams/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=121

THE TEAM BOARD 122

Who’s Working on What?

The beauty of a team board is that it enables the team to choose their

own work. Nobody waits to be told what to do. They simply choose

the next task from the board. You’ll notice this encourages each team

member to take responsibility for making the iteration a success rather

than just focusing on “their” part. They can choose work that interests

them without losing sight of everything that needs to get done.

To avoid treading on each other’s toes, the team needs to know who’s

working on what. Although this gets discussed at the daily standup, it

can change throughout the day. Make this visible by asking the team

to tag the task they are working on with their name or picture. Now, if

anyone needs to discuss that story, they can see who to talk to rather

than interrupting the whole team. You can introduce a bit of fun by

suggesting that the team create cartoon character avatars of themselves

for this.

Tagging cards with who’s working on them also helps make it more

visible when someone gets stuck. Ideally, there should be exactly one

task in progress for each developer (or pair). Look out for times when a

developer has their name on multiple cards and explore why—it could

mean there’s a blocking issue or they need help. When a task is blocked,

encourage the team to make this visible too. Do this with a brightly

colored sticky note or by moving the card out of the In Progress area to

a Blocked area.

Choosing Materials

You might assume that the team board should be mounted on the wall.

We don’t agree. Instead, create a portable team board that the team can

bring with them to meetings. You can do this by using a whiteboard

on wheels or a board made of light material, such as corkboard or

foamcore.

The team board needs to be easy to use and interact with. You don’t

want cards to fall off if there’s a slight draft. A magnetic board works

well—the team can using magnets to hold cards onto the board rather

than battling with pins or Blu-Tack. Keep spare supplies by the board—

cards, stickers and magnets—so that it’s easy for anyone to add a new

task card. It’s not your job to play board monitor for the team.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=122

THE TEAM BOARD 123

Board from a Box

by Rachel

A few years ago I worked with a team that had just relocated to new

open-plan offices. Each team was allocated an island of desks so they

could all sit together in project teams. There was plenty of funky furniture

but very few walls in the new space. Some temporary walls had been

provided for teams to use as meeting space and keep any project artifacts

in. These “walls” were made of rather flimsy polycarbonate sheets—it was

not easy to stick index cards to them with Blu-Tack, because the walls

had a tendency to fall over when you touched them.

Our team needed to create a team board, ideally one that we could see

from our desks and not hidden away behind a wall. Without a budget to

buy a board, our only option was to make one ourselves. Our ingenious

project manager, Oli, appeared the next day with a very large sheet of

corrugated cardboard, which we mounted with parcel tape on the outside

of the temporary wall facing our desks. To our surprise, we found that

corrugated cardboard is perfect for pinning index cards to. You can see

the result in the photo.

That’s not the end of the story. After we had been using the board for a

few days, we were officially asked to take it down by someone from the

locations department because it was making the office look untidy. We

were noisily defending our right to keep the board when Darren (the VP of

engineering) intervened. He’d noticed our board and liked the fact that he

could see our progress on it. We were allowed to keep our tatty board. The

board was used for a several months more—the team members even took

it with them when they moved over to the next building (while the new

board that had since been ordered for them remained unwrapped).

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=123

THE TEAM BOARD 124

Liz Says. . .

Agile Planning Software Won’t Help

If there are problems in your project or Agile process, it is unlikely
that introducing software to track the work will solve it. Using
such software tends to bury problems and encourages poor
communication practices such as creating stories for bugs with-
out discussing them or making them visible.

It’s far more energizing for the team to radiate their progress to
the next release date on their team board. The team board is
owned by the team and can be customized by them, whereas
planning software is often owned, customized, and even main-
tained by one person.

Involve the team in

choosing materials.

It’s worth getting good-quality supplies.

Brightly colored, super-sticky notes work bet-

ter than cheap ones that are drab and drop off

the board after a day or so. Involve the team in

choosing the materials for their workspace by taking them on a trip to

the local office-supply store at lunchtime.

Electronic Boards

You may be tempted to use software to create an electronic board,

rather than use a physical board. Some teams we’ve worked with even

beam their electronic board onto a wall in their workspace with a pro-

jector. We find electronic boards aren’t as effective as a physical team

board. People like tangible things, and cards are easier to interact with

in a group than electronic data. Without the physical constraints of a

team board, electronic boards tend to get overcomplicated.

If the team doesn’t all sit together, then there is a practical reason for

using an electronic board. Also, when the team is contributing to a

program of work being implemented by multiple teams, the big picture

covering all the teams may need to be maintained electronically. In

either case, team members who sit together will still benefit from having

a team board in their workspace.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=124

BIG VISIBLE CHARTS 125

Figure 8.1: A pairing ladder

Track completed stories,

not tasks.

If you have both electronic and physical

boards, then both views need to be kept in

sync. There’s no need to duplicate the whole

team board in software. Task-level information

is not usually relevant after the iteration. All you need to do for elec-

tronic tracking purposes is write up the story titles with the story esti-

mates agreed in iteration planning. Then, at the end of the iteration,

note which stories have been completed, and record the team velocity.

8.2 Big Visible Charts

Work with the team to design a “big visible chart” to increase the visibil-

ity of issues they want to track and then post it on the team board. This

makes it easy for the team to see whether they’re improving. For exam-

ple, if the team agrees in their retrospective that they want to encourage

pair rotation, they could use a pairing ladder to show who’s paired with

who and how often (see Figure 8.1). This information will encourage

developers to pair with someone new every day.

Retire charts when the

problem has gone.

Notice whether information on the charts is

still giving useful feedback to the team. For

example, suppose a team had a problem with

long build times. They start working on tasks

to bring the time down and create a visible chart of build times. The

build time decreases. Do they still need to keep the visible chart? Maybe

now they can automate the tracking. They can set up an early warning

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=125

BIG VISIBLE CHARTS 126

Figure 8.2: Hand-drawn burndown chart

system to log build times, run a script to parse the log, and then send

out an email alert if it exceeds ten minutes.

Note that as a coach, you need to take care introducing visible charts—

get the permission of the team first.

Burndown and Burnup Charts

You’ve probably come across burndown charts. A burndown chart

shows how much work is left to do in the iteration. For an example,

see Figure 8.2. This gives a crude indication of whether the team is

confident that they’re on track.

What makes burndown charts a pain is updating them. If the burn-

down chart is stored electronically, the team needs to update time left

in software (usually a spreadsheet) to generate the new burndown. You

can guess how likely it is that every team member will conscientiously

go do this every morning before daily standup.

We find most teams prefer to “burn down” estimates on the task cards

by crossing out the old estimate and putting in the new one at the daily

standup. Then one person can update a hand-drawn burndown chart

on the team board based on today’s total of work remaining. Following

this routine helps the team to be more aware of whether they’re likely

to get all the stories done. Anything that has affected the development

effort, such as missing team members, can be noted on the chart as

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=126

BIG VISIBLE CHARTS 127

Figure 8.3: Release burnup

well. This burndown chart can be reviewed at the end of the iteration

(in either the demo or retrospective meeting) and then discarded.

What is often more useful is a release burnup chart that plots the num-

ber of complete story points across the iterations to the next release (as

shown in Figure 8.3). The team updates this as each story is completed,

which keeps the team’s progress toward the release visible to everyone.

In Figure 8.3, the team plots story points complete against total story

points left to do. The top line shows when stories were added or removed

from the release. The bottom line shows how close to “done” they are.

Where there’s a significant shortfall, the team needs to consider

decreasing the user stories included in the next release. If it doesn’t

look like the team can deliver what they originally planned, make sure

the team communicates this to the customer and any key stakeholders.

Measure the Right Thing

by Liz

One team I worked with tracked stories on their release burnup chart but

marked them as “done” when the developer said it was finished, before it

had been tested by a tester and checked by the customer. The whole team

worked very hard to make sure that all the stories were built by the

release date. However, the work to finish off the stories to completion

wasn’t visible on their release burnup chart.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=127

MAINTAINING THE TEAM BOARD 128

Rachel Says. . .

Use It or Lose It

Don’t make data visible just because you can. The team won’t
be bothered about maintaining information if it isn’t used. The
team members are the most obvious consumers, although
there are often people outside the team who will check the
team board. Involve the team in deciding what to track, and
review whether it’s useful to continue. If it’s no longer useful,
then take it down.

As the release date grew nearer, the list of outstanding problems grew and

grew. The team was forced to prioritize which defects they were going to

fix and which they were unable to do on time.

Eventually they did release—late and with less quality than desired, all

because they tracked stories that the developer said was finished, rather

than stories that were finished.

8.3 Maintaining the Team Board

Most of this chapter has been about the mechanics of setting up ways to

make information more visible. There’s one important aspect we haven’t

touched on, and that’s keeping the data on the team board fresh. Stale

data isn’t useful.

You don’t want to be working from “yesterday’s news,” so how does the

information get maintained? Talk with the team about this. How can

they solve this? The team can get together a few moments at the daily

standup to update their board. Or they can take turns to sign up as

tracker for the week.

Cleaning Up

by Rachel

I bumped into Matt one day. He was looking fed up. When I asked him

how things were going with his new team, he sighed. His new team didn’t

seem to have any energy, and although there was a lot to get done, the

team didn’t seem to be engaged. I noticed that the team space had a air of

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=128

HURDLES 129

neglect; it wasn’t very obvious the team was working on a new project. I

had a hunch that if we cleaned up, it might help. It would show the team

that Matt cared about the new project and needed their focus.

The team board was quite small and scruffy. I suggested that the team

could use a larger board. There was another board there that had been

covered with the same writing for months. Matt tried wiping the old

whiteboard with his finger, and the writing had been there so long that it

didn’t come off. But he didn’t give up. He found some board cleaner and

got started.

When I dropped by the following week, the team space was transformed,

and Matt was looking a lot more cheerful. He found that after he got

started cleaning up, the other team members helped him out. Having

cleared the decks, the team now had a well-organized team board so

everyone could see much better what needed to be done.

Notice whether the team board becomes cluttered or messy. It needs to

be kept clear of cruft for the team to see everything clearly. We recom-

mend the board is cleared at the end of every iteration. Then you can

start your next iteration from a blank canvas.

8.4 Hurdles

The following are some hurdles you may encounter.

No Space for a Team Board

Often teams find it hard to find space for a team board. Be creative.

We’ve worked with teams who used windows and cupboard doors for

their team boards. You can also lean the board against a desk end if

you don’t have a free wall.

Team Doesn’t Update Their Board

We often meet managers who bemoan that their team doesn’t update

the status of their team board and burnup chart. When we ask ques-

tions, it turns out that the board and burnup chart are not referenced

in the daily standup or iteration demo. That’s why the team sees the

board as irrelevant to them and doesn’t take the time to update it.

If the team doesn’t keep the board up-to-date, ask them about it. They

may be worried about letting the organization or customer know the

true status of the project. Or maybe no one wants to be the “goody

two shoes” who updates their own status. Take the time to look at the

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=129

CHECKLIST 130

charts on the board, and talk with the team how they interpret what

they see.

If they don’t update the board, then their progress looks worse than

it really is. Often you’ll find that the team is actually working on the

project but on tasks that aren’t on the board. Ask them to add these

new tasks to the board so everyone can see the real picture of who’s

working on what.

Concern That Cards Will Be Lost

Teams new to Agile often ask, “What if the cards get lost?” or the more

extreme, “What if there’s a fire?” You’ll find that in practice this isn’t a

real problem. If a card does get lost, it can be re-created. You can keep

a backup of the cards in any of the following ways: taking a photo of

the cards, photocopying them, scanning them, or typing them up on

the team wiki.

To avoid the mild inconvenience of losing a task, use the best materials

you can to construct the board. For example, if you use sticky notes,

then get the super-sticky ones.

8.5 Checklist

• Involve the team in designing and constructing a team board so

they can make their iteration plan visible. This makes it easy for

everyone to see what needs to be done and coordinate their work.

• It’s the team’s board, so they can use it to post personal stuff and

charts that help them focus on improving the way they work.

• Find a board configuration that works for the team. Select mate-

rials that make it easy to read from a distance. If you use a color

scheme, then provide a key to explain what the colors mean.

• Encourage the team to tag the cards they’re working on with

names or avatars. This helps make it more visible when someone

is blocked.

• Don’t bury information in electronic information fridges. However,

if you have remote team members or the team is working as part

of a large program, the team will need to create an electronic sum-

mary of their iteration plan.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=130

CHECKLIST 131

• Use iteration burndown charts only as a crude measure of team

confidence that they’re on track. Encourage the team to update

this themselves at the daily standup or by nominating a tracker.

A release burnup chart will be a better indication of progress and

helps the customer spot whether they need to descope or budget

for more iterations.

• Clear the board at the end of the iteration. Review visible charts

during the iteration, and retire them when the team no longer

finds them useful.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=131

Part III

Caring About Quality

Prepared exclusively for William Anderson

Download at Boykma.Com

Agree what being done means.

Guiding principle

Chapter 9

Getting to “Done”
Ever watched little kids playing soccer? They all chase after the ball

rather than getting into a space where the ball can be passed to them

or paying attention to defense. They don’t know how to work as a team

to score goals yet.

Agile teams need to learn how to work together to meet their goals.

They are not kicking a ball; instead, they pass software between team

members. Each person on the team plays a part in getting the work

done.

To succeed, they must first understand what functionality to build and

what testing needs to happen for each story. Then they need to work

together to make sure that all of this gets done.

You’ll find where they often come unstuck is underestimating how

much time it takes to test the software and fix any problems with it.

Help them get clear on exactly what being done means and how they

can collaborate to make it happen.

9.1 Who Does the Testing?

Testing is not one person’s job; it’s the responsibility of the whole team.

Every person on the team has different skills to contribute toward get-

ting to “done.” As their coach, you can help them work out how to

coordinate their efforts.

Developers need to make sure their code passes the story tests before

they release it for further testing. This avoids wasting the time

of customers and testers who pick up the code for testing next.

Prepared exclusively for William Anderson

Download at Boykma.Com

DEFINING WHAT “DONE” MEANS 134

Encourage developers to use their programming strengths to auto-

mate as much testing as possible, although they’re unlikely to spot

problems with software they just wrote.

Customers know most about the environment the software will be

used in. Their focus is usually on whether the user can achieve

the goal of the user story. Be aware that customers can miss edge

cases, where the system needs to handle errors or odd data. Urge

the team to make the latest working version of the product easily

available for customers to try out any time.

Testers excel at destructive testing, thinking about edge cases where

the system may be abused. They help the team flesh out story tests

and verify that story tests are passing. Testers often need support

from developers to automate tests. Watch out for opportunities for

them to pair up on this.

External teams may carry out specialized testing before the software

can be released, like security testing, usability testing, or platform

testing. Recommend that the team include time for responding to

problems found by this specialized testing in their release plans.

For these different roles to collaborate, they need a shared definition of

what “done” means.

9.2 Defining What “Done” Means

Bring the whole team together to agree what their definition of “done”

should be. Kick off the discussion with this basic definition.

“Done” means the customer is happy with what has been developed,

and all the story tests pass.

Now ask the team what additional checks ought to be carried out per

story before it can be considered to be “done.” Encourage them to draw

on their experience; their definition of “done” has to contain the checks

that they think are important. Here’s a list that you can use to prompt

them:

• The code has been reviewed by another developer on the team.

• The code has unit tests.

• Automated tests have been created for the story tests.

• Exploratory testing has been done by a tester on the team.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=134

DEFINING WHAT “DONE” MEANS 135

Figure 9.1: Example of done checklist (Connextra, 2002)

• The user documentation has been updated to describe the new

functionality.

• Performance testing has been carried out on a specified set of

operating system configurations.

Write up their customized definition of “done” on a whiteboard where

everyone can see it. Now review this with the team. Is there anything

else that must be done before code is released? Listen carefully for any

checks they assume happen later after the iteration ends. Ask them

who will do that work. If it’s the team, it probably should be included

in their definition of “done.” Once the team is happy with their “done”

checklist, encourage them to display it prominently in their workspace.

Make the definition of

“done” visible.

We’ve included an example of a “done” check-

list in Figure 9.1, which a team created to dis-

play on their board. Let’s take a closer look at

the checks on it. You’ll see it includes obvi-

ous items such tests and refactoring; it also lists source control. We

wouldn’t normally include source control in a definition of “done,” but

this team had assets (images, templates, and data files of keywords)

that they wanted to remember to check in. Developers celebrated each

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=135

PLANNING IN TESTING 136

check-in of code with a toy cow that mooed—this was a signal for the

other developers to pull in the latest changes. For this product, being

“done” with a story was actually putting it into production. Encourage

the team to look for slices of functionality that they can take all the way

through to “done” during the iteration rather than at the end.

When’s the best time to have the conversation with the team to define

what “done” means? You can discuss this with the team at the start of

the project, as part of a session to define working agreements for the

team. Or you can leave working out the details until the team hits an

iteration where some stories don’t get finished. The team will probably

revisit their definition of “done” in retrospectives, so expect it to evolve

during the project.

As you’d expect, there are times when the definition of “done” does not

apply. There’s no need to apply “done” checks to spikes—throw away

code being developed to learn about what’s required or to see how a new

technology might be applied. Remind the team about this at iteration

planning time because this affects the estimates.

Once the team has a definition of “done,” notice whether the team still

struggles to get stories complete by the end of the iteration. If so, help

the team see where the bottleneck is and look for ways to improve the

flow of their work. You can do this by applying a kanban approach

to set limits on work queues and reflect these on the team board (as

described in the sidebar on page 113).

9.3 Planning in Testing

When the team is clear what has to happen, they’re less likely to leave

all the testing until the last day of the iteration. Take time in planning

to talk with the whole team about what the testing tasks are. Don’t

let them get away with adding a single task labeled “Testing” for each

story—this is a cop-out! A few examples of testing tasks are writing

automated tests, preparing test data, and setting up environments.

Invite testers to share

their concerns.

Testers are usually outnumbered by develop-

ers on the team, so they can get sidelined

in meetings. Make sure testers are invited to

planning sessions, and encourage them to play

an active role. Watch that the team listens to their concerns. If they’re

frowning or disengaged, invite them to share their viewpoint.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=136

MANAGING BUGS 137

Rachel Says. . .

Demonstrate Respect

I have sometimes been shocked at the way testers are treated
on software teams. They’re often left out of conversations
about user stories and don’t get invited to team meetings or
social events. Look for ways that you can help all members of
the team feel included.

If you hear people on the team make complaints using roles as
labels, such as “the testers are never around,” then take care
not to join in. Instead, shift the conversation back to the situa-
tion the team currently faces and remind them about the pres-
sures that people in those roles may be under.

By taking the time to listen to everyone on the team and show-
ing an interest in their work, you demonstrate that you value
them and their contribution to the project. When you show
respect, you’re likely to get respect in return.

The team will be in a better position to plan testing if they understand

more about what testers actually do. Bring developers and testers to

sit together in the team workspace; this improves communication, and

seeing each other at work helps build mutual respect. You can also

suggest that developers and testers pair up to work out details of story

tests and to find the root cause of failing tests.

9.4 Managing Bugs

For the team to get all their stories to “done” by the end of the iteration,

they need to be clear on how to handle bugs that come up during the

iteration. It’s pretty clear-cut that if a story test is failing, it needs to

get fixed before the story can be considered as “done.” But what should

happen if the bug is a new story test that wasn’t discussed in planning?

Does the team fix the bug in the current iteration or defer it to a later

iteration?

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=137

MANAGING BUGS 138

Help the team decide what to do by working through the options with

them. If the software already delivers the main benefit of the user story,

there may be a case for deferring the bug fix until later. However, if

leaving the problem in the software prevents an imminent release, it

may need to be fixed now. Because it’s unplanned work, fixing it might

put the team in jeopardy of not completing other stories. Remind the

team to talk to their customer about the situation if they’re worried this

might happen.

Here’s an example of a typical conversation that occurs when a devel-

oper checks whether they’re “done.”

Not Quite Done Yet

“Finally!” grins Rebecca. “I’ve finished the carousel story. It all works

now.” She looks round the office, keen to show it off. “Larry, are you

busy? I need you to test this.”

“Sure. I just need to finish this test, and then I’ll be with you.” Rebecca

picks up an apple to eat while she waits for Larry.

“Right, what’ve you got for me?” he asks, spinning his chair around so he

can see Rebecca’s screen.

“I’ve finished the book carousel,” she says proudly.

“Cool. Let’s see it then.”

Rebecca fires up the website and goes to the new book listing page. A 3D

carousel of book titles spins around.

“I like it! How do you get it to stop on the book you want?” Larry asks.

Rebecca clicks a book, and the carousel stops spinning.

“Can you do that from the keyboard?” Rebecca tries a few keystrokes with

no luck.

“Nope, I’ll need to look into how to do that.” She scribbles on a yellow

index card in front of her.

The next day Rebecca has fixed the problem, and Larry tests it properly

as part of a clean build deployed to the integration server.

“Rebecca, it’s pretty good now. There’s just a couple of things I want to

run by Amanda.” Larry calls over to Amanda, “Amanda, have you got a

moment?”

“Sure, if you make it quick. I have a meeting at 3.” She smiles and walks

over to Larry’s desk. Rebecca joins them.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=138

MANAGING BUGS 139

“I’ve just finished testing the carousel that Rebecca has been working on.

But I’d like you to make a call on a couple of things I found.” Larry turns

to Rebecca and says, “Rebecca, do you want to show Amanda how it

works?”

Rebecca opens up the new book listing page and shows Amanda the

carousel. “That looks really nice. I like it!” Amanda says.

“Yeah, it looks great. Just a couple of small problems,” says Larry as he

reaches over for the mouse. “This is what it displays if we don’t have an

image for a book.” And Larry spins the carousel to the back.

“Oh, that’s not so good,” frowns Amanda.

“What should we do about books that don’t have an image? We didn’t

think about that when we estimated this story,” says Rebecca.

“Don’t display it in the carousel for now. Then we’ll get a placeholder

image created for those books,” Amanda decides. Rebecca notes this as a

task on a yellow index card.

“It also doesn’t display long book titles very well in version 6 of this

browser,” Larry demonstrates.

Rebecca looks slightly disappointed that Larry has spotted another

problem. “That’s going to be tricky to fix; it works fine in Firefox and

Safari.”

“How long does a title have to be before it goes over the limit?” Amanda

asks.

“Well, I saw only a couple as I was looking through. Let’s see,” and Larry

copies one of the long book titles into an editor and gets a word count.

“This is 98 characters, and it looks like it’s been cut off at 95.”

“Rebecca, can you find out how many books have titles longer than 95

characters?” asks Amanda glancing at her watch.

“Let’s see,” Rebecca says, furiously writing a database query. “Four.”

“Four? Out of how many?”

“Just over 5,000 books.”

“I can live with that. Don’t bother fixing it this iteration. I’d rather you

worked on the recommendations engine story.”

“OK. I’ll fix the problem with the missing images, and then tomorrow I’ll

be able to make a start on recommendations.” Rebecca smiles, looking

relieved.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=139

MANAGING BUGS 140

“Great! Well, I need to head off to my meeting now.” Amanda grabs a

report from the printer and then adds, “Maybe I’ll catch up with you two

for lunch if you fancy trying the new juice bar.”

In our story, the team uses yellow cards for bugs so they stand out on

the board as things that need to be fixed. You’ll notice that the tester

discusses only the borderline cases with the customer. The customer

makes a decision to defer fixing the display of long book titles when she

finds out that this affects only a few books. Our story does not say what

gets documented about that bug, which leads us into the murky area

of bug tracking.

Flagging Failing Tests

Discourage testers from burying bug reports in a bug tracker. Instead,

encourage them to use the team board to flag failing tests, making them

visible to the whole team. Now it’s clear the team has more work to do

before the story is complete.

Bugs by Email

by Rachel

I recently worked with a team where one of the testers always

communicated problems she found by emails that were also copied to the

head of QA. The developers desperately wanted her to talk to them before

firing off emails outside the team, especially because the developers didn’t

check their emails much while they were coding. Her reasoning was that

she didn’t want to interrupt them, and she was trying to keep the QA

manager in the loop so they could justify getting another tester on the

team.

Unfortunately, the developers started bypassing her and deploying

changes to live environments without her input. This was like pouring

gasoline onto a fire! The head of QA called a workshop with the whole

team so that the situation could be resolved.

The team agreed that, going forward, the testers would flag problems

found with stories visibly by posting colored cards on the team board.

Developers would then annotate these cards with the build number that

fixed the bug. This way, the tester would not interrupt the developers or

bury problems in email.

Antony Marcano warns us that a bug tracker can turn into a hidden

backlog (see the sidebar on the following page). We like his advice to

treat bugs that are deferred as new stories, and add them to the back-

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=140

MANAGING BUGS 141

The Hidden Backlog by Antony Marcano, testingReflections

I joined a well-established team that had been delivering work-
ing software every few weeks. During the iteration, we’d do
exploratory testing whenever we thought the story was close
to done. When we found bugs, we duly filed them in the bug-
tracking system. Sometimes we’d go ahead and fix the bug,
while other times we referred the decision to our customer.

We were using TDD, so before fixing each bug, we’d write an
automated story test reproducing it. Doing this made me realize
that these bugs were simply story tests that we hadn’t previously
thought of.

We were all getting frustrated that we had to write a bug report
into the bug-tracking system and then essentially repeat the
same information in an automated test—this felt wasteful. The
only problem that the bug tracking was solving for us was track-
ing status and who was working on it.

I realized that if a bug report is analogous to a story test, surely
I could summarize one or more bugs as a new user story. We
already had a means of managing user stories! That’s when it
came to me that we were essentially working from two back-
logs! One backlog of yet-to-be-implemented behaviors sum-
marized by the user stories and another backlog of misbehav-
iors in the bug-tracking system! The bug-tracking system was in
essence a hidden backlog.

The side effect of maintaining these separate backlogs is that
we treated the bugs and the stories differently. We didn’t priori-
tize them in the same way or at the same time. I’ve seen teams
budget a fixed amount of effort to fixing bugs from previous iter-
ations without prioritizing them against the stories in the current
iteration or budget for fixing all bugs even if they were less valu-
able than stories on the backlog. Following this approach, we
reserved time for fixing bugs regardless of their impact, which
sometimes led to a bug being fixed that was less valuable than
a new story, and vice versa.

Now, on new projects, I suggest creating a project in the bug-
tracking system only when we need it. I’ve not found a need for
one for quite some time.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=141

GETTING FEEDBACK EARLY 142

log1 of user stories for future iterations. No separate bug-tracking tool

is required, although one may be useful to store details of a bug elec-

tronically, such as screenshots.

Remember, there’s always more than one way to solve a problem. We

also meet teams that avoid creating a hidden backlog by putting all

their bugs and stories into a bug tracker, such as Trac,2 and using the

tracker as their planning tool. This solution requires a technically savvy

customer who’ll invest the time to learn how to use a new tool rather

than sticking with more familiar office tools like spreadsheets.

Finding Root Causes

Every time a bug is found, there’s an opportunity for process improve-

ment. Encourage the team to work out what caused it and think about

how this might be avoided next iteration. This can be done as each

bug comes up or can be discussed in the next retrospective. We’ll talk

more about what developers can do to improve their code quality and

reduce the number of bugs found in their code in Chapter 10, Driving

Development with Tests, on page 147.

9.5 Getting Feedback Early

Early feedback can help nip problems in the bud. Developers often don’t

seek feedback early enough, which can lead to stories that don’t get

finished by the end of the iteration, and it also places an uneven load

on testers. There’s no need for a developer to implement a whole user

story before checking they’re on the right track. If they have a slice of

the story ready, then they can make it available to their customer or a

tester to get feedback on it.

Encourage developers

to seek feedback early.

You’ll notice developers often put off conversa-

tions with the customer or testers until they’re

finished working on the story. In the story, we

saw that Rebecca felt proud of her work and

was disappointed when problems were found. No one likes making mis-

takes. It’s only natural for developers to delay making software avail-

able for testing until they feel it’s really polished. They may also be

concerned that getting feedback too early will slow them down.

1. Backlog is a term used to describe a list of work to be done in the Scrum framework.
2. http://trac.edgewall.org/

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://trac.edgewall.org/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=142

RECOVERING FROM NOT GETTING DONE 143

Liz Says. . .

Stay Calm

Whatever the project pressure, try to keep calm yourself and
not add to the pressure on the team unnecessarily. Your mood
can rub off on the team and affect them even if you don’t want
it to affect them.

We find developers delay seeking feedback when they’re worried that

the tester will criticize what they’ve done. Notice how testers and cus-

tomers present feedback to developers. Although a tester may relish

finding bugs, it’s important that any negative feedback is given in a

way that developers will listen to. Share with them what you learned

in Section 2.2, Giving Feedback, on page 39. Encourage them to share

their observations rather than opinions.

Feedback is possible only if the person has time to give it. Notice if the

customer is very busy and not often around. No one likes to interrupt

someone who’s obviously busy. Developers may feel like they’re wasting

the customer’s time if they show anything less than the finished article.

If the customer is not sitting with the team, ask them to find an hour

every day to be available to help the team.

9.6 Recovering from Not Getting Done

We’ve been talking about how to improve the chances that the team will

get to “done” for all of the stories by the end of the iteration. But what

do you do if the team doesn’t achieve this?

Take this seriously. Talk about what happened in the iteration demo

and retrospective. Help the team understand why this happened, and

ask for their ideas to prevent this from happening again. Also recognize

that this is a problem that affects how much work the team can reliably

commit to next time. Before the team plans the next iteration, they need

to decide how not getting to “done” affects their velocity.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=143

RECOVERING FROM NOT GETTING DONE 144

Rachel Says. . .

Be Patient

Helping a team make realistic plans takes time—be patient. The
team has to recognize there is a problem before they’ll be will-
ing to change. It may take a couple of iterations before the
team can really believe that they are overcommitting. They’re
always optimistic that things will be better the next time around.

If they’re rushing and working long hours, they may be too
immersed in building more software to think about this. You may
need to think of a way to cause a breathing space, like an off-
site meeting or social event, before you can really get through
to them.

Don’t just leave unfinished stories and tasks festering on the team

board. Clearing the team board completely at the end of the iteration

takes some of the weight off the team. These incomplete stories need to

be reconsidered as part of the next iteration planning meeting, so take

them along with the new stories.

We have encountered organizations where pressure for teams to say

“yes” to everything that’s presented to them is overwhelming. Even

though they know in their hearts that they’re overcommitting, they

don’t know how to avoid the train wreck they see coming. Your job as a

coach is to convince them that saying “no” is an option. This becomes

easier if the team says “no” rather than individuals saying “no.” As a

coach, talk informally to people on the team about their concerns. If

they can put them into words talking to you, then this may help them

to start talking about it as a team.

Help the team gather data to make the case for slowing down and com-

mitting to less. Remind them of their measured velocity when planning

the next iteration; averaging velocity data over several iterations can

make velocity figures more convincing. If they still decide to commit to

more work than their velocity shows is likely to get done, make sure

the customer knows there’s a risk that not everything will be delivered.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=144

HURDLES 145

If you cannot persuade your customer to drop any stories, you may be

able to convince them to slice the user stories more thinly to increase

the chances that the team delivers some of them.

9.7 Hurdles

The following are some hurdles you may encounter.

It’s Not My Problem

We sometimes encounter individuals who have a rigid view of the tasks

that are appropriate for them to do. You might have a developer or

a customer on the team who insists that “testing is for testers.” Or

you may have a tester who says automated tests must be written by

developers. The cause is likely to be fear of trying something new. Try

to cajole them into trying to do some testing tasks, and make sure they

have someone to buddy up with to support their learning.

Look for ways to build a sense of accountability for the whole team. You

may get some shift in attitude if results of the iteration are very visible.

We’ll talk more about this in Chapter 12, Demonstrating Results, on

page 180.

Working with Remote Testers

Sometimes testers are located in another office or even another time

zone. You’ll find this increases the delay in getting feedback from

testers, which may reduce the amount of software that the team can

get to “done.” The team may be tempted to test the software in the

subsequent iteration; this gives an illusion of progress and means that

any bugs from the previous iteration interrupt development in the next

iteration.

It may help to arrange a separate phone call meeting with the testers

to get estimates of testing tasks in advance of iteration planning, so

these can be considered alongside the development tasks. This will help

prevent the team from committing to more work than they can get done.

Working with remote testers means that, besides email, the team will

need to track bugs electronically. Make sure that everyone on the team

has some easy means of interactive communication with remote testers,

such as phone or IM.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=145

CHECKLIST 146

Organization Mandates Use of a Bug Tracker

We have worked with organizations where the use of bug-tracking soft-

ware is mandated for all teams. Bug rates are even derived from these

tools to show that testers are adding value. As Mary Poppendieck says

in Implementing Lean Software Development [PP06], the job of testers

is to “prevent defects” rather than collect them. If a story is still on the

team board, then any problems that must be fixed should be posted

there too, where the whole team can see them. Recommend the team

uses bug-tracking software only for bugs that are found after the itera-

tion ends.

9.8 Checklist

• Define what “done” means with the team. Display this as a check-

list in the team workspace. Include testing done by customers,

developers, and testers, but exclude testing done outside the team.

• Make sure that testing is considered in iteration planning so test-

ing tasks are understood by the whole team.

• Encourage developers to work closely with testers and their cus-

tomers to get early feedback on stories. Ask the customer to

reserve time every day to answer questions from the team.

• Recommend that software is made available to customers during

the iteration. Encourage the team to look for slices of user stories

that can be delivered early rather than waiting until the iteration

ends.

• Use the team board to display bugs that need to be fixed before

the end of the iteration. Instead of creating a hidden backlog in the

bug tracker, ask testers to work with the customer to turn bugs

that are deferred into new user stories that can be planned into

future iterations.

• If the team doesn’t get all the stories done, talk about why this

happened with the whole team in the demo or retrospective. Clear

the board at the end of the iteration, and take any incomplete

stories into iteration planning. Help the team gather velocity data

so they don’t overcommit in the next iteration.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=146

Ensure code has automated tests and they’re passing.

Guiding principle

Chapter 10

Driving Development with Tests
We meet lots of teams that say they’re Agile but that still rely heavily

on manual testing. Developers toss software over the wall for testers

to find any problems; then testers bounce it back again with copious

bug reports. Days go by as developers and testers run around in circles

trying to patch the software until it’s good enough to deliver.

Encourage the team to reduce this stress by making the move to

Test-Driven Development. The team can use automated tests to find

out whether the code works—in minutes rather than hours or days.

Now developers can be confident they’re building on a solid foundation,

and testers can focus on edge cases instead of wasting time on trivial

problems.

Reaching this automated testing nirvana is one of the biggest chal-

lenges you’ll face as an Agile coach. It’s a complex change because

introducing TDD requires solving technical, personal development, and

teamwork challenges. Let’s look at how to get started and how to over-

come barriers to implementing TDD. Then we’ll see how you can help

the team make the shift to Continuous Integration.

10.1 Introducing Test-Driven Development

Allow plenty of time for the team to make a transition to TDD. It’s likely

to take a couple of months before they’re really driving their code with

tests. Your first challenge with implementing TDD is working out where

to start. We recommend you pick off one problem at a time rather than

attempting to introduce TDD in one big bang.

Prepared exclusively for William Anderson

Download at Boykma.Com

INTRODUCING TEST -DRIVEN DEVELOPMENT 148

Test-Driven Development

Test-Driven Development turns automated testing up a notch;
no code is added without first writing an automated test.

To drive code with tests, a developer starts by writing a test for
the code she wants to write. She runs the test to check that it
really does fail. Now she writes the minimum code to make the
test pass. After each new test passes, she looks for opportunities
to consolidate the code and eliminate duplication. She builds
up the code by repeating these steps.

Developing code this way encourages a developer to think
about solving one small problem at a time. It also helps the
developer work from the outside in rather than the inside out—
because for each test they consider the interface of the code
before its internal logic. Because applying TDD drives the devel-
oper to make small design decisions as they go, it’s also some-
times referred to as test-driven design.

If the team is starting out on a greenfield project, it can jump straight

into full-blown TDD (as described in the sidebar on this page). Most

teams, though, will be building on existing code that doesn’t already

have automated tests, so the first challenge is to figure out how to wrap

automated tests around this legacy code. Ease the team into TDD; get

the team members started writing a few automated tests a day before

trying to drive their code with tests. This gives them time to build

up their skills and testing infrastructure before they attempt to work

test-first.

Spend time working with the team to understand the real state of the

code, the level of experience of the team members, and how interested

each of them is in making changes to the way they work. Now apply

the PrOpER cycle (Section 1.4, How to Start Coaching, on page 27) to

dismantle any barriers to adopting TDD.

The following story illustrates some typical challenges that you might

encounter.

Introducing TDD Too Quickly

by Rachel

A couple of years ago, I worked with a team that appeared to be in a good

position to try TDD. They were developing a content management system

in Java. Their development manager had already arranged for developers

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=148

INTRODUCING TEST -DRIVEN DEVELOPMENT 149

on the team to take a training course so they could hone their skills in

writing JUnit tests. He called me in to follow up with coaching the team in

TDD. This request seemed pretty straightforward, but I didn’t recognize

what I was getting into.

On the surface, there was only one obvious technical challenge: the team

had embedded calls to some third-party document management system

in their code. They’d need to find a way to write tests without calling this

library. This didn’t seem insurmountable to me. I was confident that they

could use test doubles1 to stub out the library calls. But when you

introduce TDD to a team, it’s not just technical challenges that you need

to solve. There are human challenges too.

I made a start by arranging a pair programming session with each

developer on the team. My plan was to make a start by trying to write

JUnit tests for the user stories on which the team was currently working.

However, after my first day, I’d encountered a number of challenges that

told me the team wasn’t ready for TDD just yet.

The day started out well. I sat down to pair with Dom, the tech lead. He

seemed pretty busy but was willing to try writing some automated tests.

He’d just implemented a bug fix, so we decided to write a test to prove the

fix he’d just made. When he ran our new test from the command line, he

was surprised to see it fail—apparently he hadn’t completely fixed the

bug! The test data we chose in our unit test triggered a problem that he

hadn’t considered when he manually tested the code earlier. This

experience seemed to convince him that writing automated tests for every

bug fix might be a good idea!

I moved on to pair with Dave, who was working on some fairly

straightforward code that parsed XML input files. He’d already gotten

some unit tests running within Eclipse, and we added a couple more

simple test cases. I was able to point him in the direction of a library of

XML assertions that might be useful to him, but otherwise he didn’t seem

to need any help.

The next session was quite difficult. John was very new to Java, and he

hadn’t grasped some basic principles of object-oriented programming. He

didn’t know how to use his IDE to write or run unit tests. He was using

one single main test method that he edited every time he wanted to check

his code was working. He was also clearly struggling to understand how

the existing system worked, but when I suggested we ask one of his team-

mates, he balked. We spent an hour or so unpicking his long test method

trying to extract some JUnit tests, but it really seemed a fruitless task.

1. See http://xunitpatterns.com/.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://xunitpatterns.com/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=149

INTRODUCING TEST -DRIVEN DEVELOPMENT 150

The last session of the day was with Chris, the only contractor on the

team, and he was using yet another IDE, NetBeans. He seemed quite

experienced but was concerned about the challenges of writing unit tests

for code that directly called a third-party library. I mentioned the

possibility of using mock objects, and he told me a developer who had

recently left the team had been using mock objects in her tests. We

opened up the tests she’d written, and they looked in good shape.

However, it was a different story when we tried to run them. The code had

moved on since she wrote the tests—they didn’t even compile anymore!

No one on the team had run the tests since she left. She might as well

have never written them.

That’s when it sank in. The “team” was not working as a team. They were

working on different areas of the code with quite different ideas about

how to write the tests. No one was running tests written by anyone else;

they were even using different IDEs. There was no buy-in to adopting

TDD or what that meant for the team.

Before they could get started with TDD, we needed to do some more basic

things. The team needed to work together to establish a test strategy and

to agree on how they would organize their tests into a shared suite that

anyone in the team could run.

I discovered later that the reason the development manager wanted the

team to adopt TDD was because the testers on the project were

overloaded. They were finding trivial problems with the code, which could

have been prevented by developers doing some basic testing of their own

code. But the manager failed to communicate that to the team. They

needed to hear it from him to understand why they were getting training

and coaching in TDD and give them some reason to make the change.

Buy-in from the Team

As the story illustrates, teaching the team how to write tests isn’t

enough. The team has to make a shared commitment to write tests

and to run them. They need some compelling reasons before they will

commit to taking on the extra work of writing automated tests. Make

sure that they understand the benefits of TDD and that they appreciate

the drivers behind the change.

Get the team together to build agreement on what they can commit to.

List the blockers that they see preventing them from making a start

with TDD. Now ask them for their ideas for resolving these blockers.

Use gradients of agreement (see Section 2.4, Building Agreement, on

page 43) to determine which of the actions the team has energy to work

on first.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=150

INTRODUCING TEST -DRIVEN DEVELOPMENT 151

Coding Dojo

A coding dojo brings developers together to work on a pre-
pared programming challenge.∗ A coding dojo is a great way
to improve developer design skills and encourage learning on
the team. The approach was inspired by Dave Thomas’s code
kata.

Running a dojo is quite simple. Choose a coding challenge or
kata.† Selecting the challenge ahead of time allows partici-
pants to prepare for the dojo.

The dojo starts with two developers working on the challenge
at a computer at the front of the room. The computer is hooked
up to the projector so everyone can see the code as it’s being
written.

As the developers work on the challenge, they talk aloud
explaining what they’re doing and giving a running commen-
tary on how they are solving the problem. If the group can’t
follow what’s being done, then the pair must pause to explain.

To keep everyone involved, one half of the pair is swapped out
every five minutes and is replaced by one of the developers in
the room. This goes on for an hour or so. This allows everyone to
take a turn at showing how they solve the coding problem in
baby steps.

∗. You can read more about coding dojos at http://codingdojo.org/.
†. You can find some examples at http://codekata.com/.

Time to Learn How to Write Tests

Once they’re convinced about making the move to TDD, the team mem-

bers need to learn how to do it. It will give them a boost if someone

can work with them who has experience in automated testing and TDD

(maybe that’s you).

Point them in the direction of commercial training courses to give them

a head start. However, if there’s no budget for training (or no training

courses available in the programming language they’re using), the team

needs to teach themselves how to write automated tests. Help them set

up a regular coding dojo to improve their test-writing skills (see the

sidebar on the current page).

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://codingdojo.org/
http://codekata.com/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=151

INTRODUCING TEST -DRIVEN DEVELOPMENT 152

Figure 10.1: Whiteboard picture from test strategy discussion

Expect the team members to slow down as they come to grips with

writing automated tests. When they’re making plans, remind the team

to allow time for learning to write automated tests. The team should

also let their customer know up front that the team velocity is likely to

dip while they’re in this learning period.

Determining Where to Start Writing Tests

The team won’t be able to retrofit tests to existing code in one fell swoop.

They’ll need to do this iteratively. Help them work out where to start.

Agree on a test strategy

with the team.

Gather the team together to agree on a test

strategy for how different areas of the code will

be tested. Make a sketch of the software archi-

tecture on a whiteboard (like the one shown in

Figure 10.1). Work through the architecture with the team to deter-

mine which parts will benefit most from automated tests. Take a digital

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=152

INTRODUCING TEST -DRIVEN DEVELOPMENT 153

Unit Test Rules by Michael Feathers, Object Mentor

I’ve used these rules with a large number of teams. They
encourage good design and rapid feedback, and they seem
to help teams avoid a lot of trouble.

A test is not a unit test if

• it talks to the database,

• it communicates across the network,

• it touches the file system,

• it can’t run correctly at the same time as any of your other
unit tests, or

• you have to do special things to your environment (such
as editing config files) to run it.

Tests that do these things aren’t bad. Often they are worth writ-
ing, and they can be written in a unit test harness. However, it
is important to be able to separate them from true unit tests so
that we can keep a set of tests that we can run fast whenever
we make our changes.

photo of the whiteboard to document the discussion; revisit this at a

later date when the team is ready to look at where to add tests next.

A good place to start is with unit tests, as defined in the sidebar on

the current page. Code in the middle is usually easy to isolate, so the

team should be able to create fast-running unit tests. However, the

team is likely to find that any code without automated tests has tangled

dependencies. A developer must find a way to isolate the code they are

working on, before they can wrap unit tests around it. They’ll find some

useful techniques for doing this in Working Effectively with Legacy Code

[Fea04].

Most teams we work with start with a basic rule: they’ll write tests

for new code and any changes to existing code. Discuss this approach

with the team, and check that they’re happy to commit to doing this.

If following this rule is too overwhelming, work with them to agree on

a target of writing a few tests every day so that some minimal progress

is made. Make it clear to the team these tests will be most useful if

they cover paths through the code that might fail rather than trivial

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=153

CONTINUOUS INTEGRATION 154

methods. They’ll be missing the point if they hit the target by writing

tests for getters and setters.

After the team decides where in the codebase they will start adding

automated tests, remind them to agree on how they will organize

their tests. They’ll need to consider whether tests will be stored in the

same subdirectories as the code or separately. Adopting a consistent

approach to naming tests also helps. And last but not least, everyone

on the team needs to be able to run the whole suite of automated tests!

10.2 Continuous Integration

You may find the developers are used to working separately, check-

ing code in every few days. They defer integrating their code because

it’s time-consuming, but while they put off integrating, the rest of the

codebase can change; the longer between integrations, the harder it is.

Continuous Integration (CI) is integrating code changes early and often.

Each integration is small, so each should be trivial to integrate. Working

this way, the latest code is available to the whole team in small slices,

as soon as it’s ready, rather than in one big lump. CI connects with

doing TDD because tests should pass for the whole integrated code-

base, not just on a developer’s computer. So, CI is not just integrating

code frequently; all tests should pass all of the time too.

As James Shore puts it:2

Contrary to popular belief, continuous integration is an attitude, not a

tool. It’s a shared agreement by the team that:

1. When we get the latest code from the repository, it will always build

successfully and pass all tests.

2. We will check in our code every two to four hours.

We like this quote because the vital part of adopting CI is that the team

wholeheartedly embraces this philosophy, making sure all tests pass

all the time. When teams try to use CI tools without developing this

attitude, developers often don’t take responsibility for fixing the build

when it breaks.

2. http://jamesshore.com/Blog/Continuous-Integration-is-an-Attitude.html

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://jamesshore.com/Blog/Continuous-Integration-is-an-Attitude.html
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=154

CONTINUOUS INTEGRATION 155

Figure 10.2: Build token

Start by building CI

discipline.

When introducing CI to the team, suggest that

they start by following a synchronous CI pro-

cess. Every time a developer checks in code,

they run the build and wait to see whether all

tests pass before moving on to develop more code. If the tests don’t

pass, then the developer needs to fix the problem.

For this to work, developers need to avoid treading on one another’s

toes by attempting to integrate changes at the same time. Lots of teams

use a build token, which can be any object that makes it obvious to the

rest of the team that there’s an integration in progress. Teams have a bit

of fun with this, which helps establish the CI process as a team ritual.

We’ve seen teams use a rubber chicken, a moo cow, funny hats, and

even a “Sword of Integration”3 made from index cards, in Figure 10.2.

3. Demonstrated at XPDay 2008 by Gwyn Morfey, New Bamboo.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=155

CONTINUOUS INTEGRATION 156

Rachel Says. . .

Don’t Force Toys on the Team

Team rituals spring up naturally from the team and evolve over
time. Don’t be tempted to shortcut this and inflict fun on the
team by going out to buy a cute build token yourself. Hav-
ing toys around the workplace makes it easier for the team to
destress and incorporate them into team work, but take care
to be sensitive to the company culture. If the team is seen by
management to be too frivolous, it can backfire on the team.

Some teams also add a sound to celebrate a successful integration,

such as a gong or sound of applause. This acts as a signal for the rest

of the team to pull in the changes just checked in.

Although this synchronous CI process sounds more time-consuming

than having software detect check-ins and run tests automatically,

doing this the long way helps developers learn to take responsibility

for fixing broken builds. Once everyone on the team is integrating their

code at least a couple of times a day and the build doesn’t stay broken,

it’s time to move to a more asynchronous, software-assisted solution.

Keep your eyes open to see whether the team still takes responsibility

for fixing broken builds. The key is improving feedback on build status

so the team knows as soon as possible that the build is broken.

Improving Feedback on Build Status

If the team makes the move to using a CI server to run the build and

let them know the test results, they won’t need a build token any-

more. Developers just check their code in and move on. Now it becomes

important that everyone on the team is alerted when the build is broken

because their last check-in could have caused the tests to fail. Email

notifications aren’t usually the best way to let developers know that the

tests are failing because they are likely to have their mail client closed

when programming. Instead, try to make the failing tests more visible to

the whole team by making the build page more interesting, as Ivan tells

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=156

SUSTAINING TEST -DRIVEN DEVELOPMENT 157

Enhancing the Build Page by Ivan Moore, Team Optimization

We used South Park Studio∗ to create character pictures of
everyone on the team to use on our team board. We put these
next to stories to show who was working on which story. They
were a big hit with the team.

We had been having a problem of builds remaining broken
without anyone taking responsibility to fix the build. I adapted
our CI tool, Build-o-matic,† to scrape the commit messages to
find developers’ names or initials, match them to these images,
and put them in the build results page displayed on our build
status monitor.

The effect of having the images in the build page took me by
surprise. When people first saw the page, they laughed, and it
certainly got everyone’s attention. People started taking more
notice of the build. Also, when the build was broken, it was fixed
more quickly, because it was more directly visible which commit
broke the build.

The pictures show who checked in as soon as a modification is
detected and the build is started. This meant that people who
had just checked in code could easily tell whether the build
with their changes was running.

∗. http://www.sp-studio.de/

†. http://build-o-matic.sourceforge.net/

us in the sidebar on the current page. We’ve also included a snapshot

of a build page; see Figure 10.3, on the following page.

Feedback needs to be fast as well as visible. If it takes a long while to

run all the tests, more developers may have checked in by the time it

finishes. Typically no one jumps to fix it because everyone is sure that

it was someone else who broke the build.

10.3 Sustaining Test-Driven Development

So far, we’ve been talking about how to introduce TDD and CI. How-

ever, once the team has installed these practices, you still need to sup-

port the team in sustaining these approaches. If the team is already

confident in applying TDD, is there anything you can do to help them

improve?

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.sp-studio.de/
http://build-o-matic.sourceforge.net/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=157

SUSTAINING TEST -DRIVEN DEVELOPMENT 158

Figure 10.3: Build page showing avatars

Watch out for slow-running tests. The following story shows how a team

that was very proud of their tests was held back by slow-running tests.

Encourage the team to factor in time to improve their build scripts and

infrastructure to avoid this.

Impact of Slow-Running Tests

by Liz

I worked with a team that had a very comprehensive suite of automated

acceptance tests; however, the full suite of tests took two hours to run.

This meant that a developer couldn’t run all of the tests before they

checked their work in, so frequently the developers checked in code that

broke the tests. By the time they noticed it two hours later, several other

developers had also checked in code, and each of them assumed it was

the other who had broken the test suite. Consequently, the tests were

always failing.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=158

SUSTAINING TEST -DRIVEN DEVELOPMENT 159

Liz Says. . .

Ten-Minute Build

The team needs an automated test suite that is quick to run.
Otherwise, when tests take a long time to run, developers don’t
wait for the tests to pass. Pay attention to the time it takes
to build the application and run the tests. Whenever this time
exceeds the ten-minute threshold, the team needs to invest
time into making the tests run faster.

The team did not consider that making sure the acceptance tests passed

was part of a user story being completed or part of their definition of

“done.” Gradually over time, the quality of the codebase got worse and

worse, as more and more tests started to fail. The acceptance tests were

not adding any value because they weren’t passing.

As a coach, I encouraged the developers to speed up the test suite and to

stop adding more code when the acceptance tests were failing. However,

the project pressure was so great that the developers felt that they needed

to concentrate on getting more stories implemented.

One day it was so bad that something had to be done. Some developers

worked on fixing the broken tests, while the rest of the team helped the

QA team with testing the product. No one would add any more new

features until the existing tests passed.

The tests were fixed that day. However, the test suite still ran slowly, so

the next day the tests failed again. And they stayed broken for the

remainder of the project. More and more corners were cut in an attempt

to make the date. As the deadline drew near, no one knew how far off

”done” the team was. Eventually they did release, after going through the

dreaded testing phase that the automated tests had been written to avoid.

If slow tests are in the minority, the team may be able to isolate

long-running tests into a separate test suite that is run in the back-

ground. However, if there are a lot of slow-running tests, this can be

down to poorly designed tests with too many dependencies on external

resources. Maybe the team needs to write more tests that make use of

test doubles, such as mock objects or stubs, to fake out these external

resources. Another solution is to break the test run over a build farm.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=159

HURDLES 160

The team may need a lot of support and encouragement to really drive

development with tests. Watch out for developers claiming “It’s just a

one-line change” as a justification for not writing tests. Too many of

these one-line changes without tests can turn into an excuse not to

write any tests for legacy code.

Work with them to make test coverage more visible. This should be

increasing at roughly the same rate as the code grows. Code coverage

analysis tools can be used to measure this. Don’t forget these tools

check only that the tests exercise all the code; they don’t test how good

those tests are. Be vigilant that coverage is not being fudged with poor

tests.

Making Passing Tests Visible

by Liz

I worked with a team that was new to TDD. I posted the number of

passing tests and failing tests visibly on the team board. We reviewed the

numbers at our daily standup to see how well the team was doing. This

helped them keep the tests in mind.

I did this only for a month or so until the team got better at TDD and

remembering to make sure all tests were passing.

So, what’s left to do if the team has good test coverage and fast-running

tests? It’s probably time to revisit the test strategy. Encourage them to

broaden their horizons to look for new areas of their architecture that

they don’t have tests for.

10.4 Hurdles

The following are some hurdles you may encounter.

No Test Tools Available

Open source unit-testing frameworks are available for common pro-

gramming languages. However, some teams have to write code in pro-

prietary programming languages because they’re working with third-

party software that has its own language or because their company has

developed a specialized language of its own and already has a lot of

code written in it. If the team finds that there’s no commercial or open

source tools for writing automated tests in a programming language

that they use, this doesn’t need to stop them from making the move to

automate tests. It is usually possible to write a simple automated test

framework—encourage them to consider rolling their own test tools.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=160

CHECKLIST 161

Maintain Test-First Discipline

It can be hard to make the shift to a test-first approach when adopting

TDD. Expect to find some developers still working in a test-after way.

This is natural. For instance, as a developer I may sketch out the code

to visualize where to test it; at that point, it’s all too easy to slip into

writing the solution before the tests. Working in pairs to discuss design

can help developers get started with TDD.

If a developer on the team strongly objects to writing tests first but is

willing to write automated tests, suggest the team allows this for a trial

period. As long as her automated tests achieve a similar level of test

coverage as the rest of the team, working test-after may be OK. Watch

out for whether this way of working causes problems for other team

members, and bring this up at the retrospective.

Everyone Works in Their Own Branch

There are many different branching strategies, but one that is incom-

patible with Continuous Integration is everyone working in their own

branch. Some teams work this way so that developers don’t disturb

each other while they are working.

This causes a problem because each integration may be quite time-

consuming, often revealing misunderstandings within the team caused

by developers working in isolation. Each integration also brings with

it the risk of breaking other code and introducing defects. The whole

point of CI is that small, frequent integrations are quick and painless

and that sticking to CI keeps developers aligned.

If you find that the team is deferring integration, we recommend you

discuss the problems it can cause with the team. Encourage them to

try CI for a couple of weeks and review at the team retrospective.

10.5 Checklist

• Allow plenty of time for making the transition to Test-Driven Devel-

opment. This is a large change for a team to take on board in one

go. Take an iterative approach to introducing TDD. Spend time

with the team understanding what the blockers are, and then

apply the PrOpER cycle.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=161

CHECKLIST 162

• A completely greenfield project can start with writing tests first.

When the team has to retrofit tests to existing code, they’ll need

time to figure out where to start. They can start writing a few

automated tests per day or work test-after rather than test-first

until they have a handle on how to test any legacy code.

• The whole team has to agree to the approach; all developers will

need to write and run tests for TDD to work. Make sure the team

understands the problems that TDD will solve.

• Factor time into plans for the team to learn how to write auto-

mated tests. Support the team’s learning by organizing training

and coding dojos.

• Get the team together to agree on a test strategy; unit tests in the

middle layer are usually a safe place to start. Don’t forget to get

agreement on automated testing basics, such as where tests will

be stored and how they will be run. Review the test strategy with

the team to work out where to go next.

• Continuous Integration is an attitude, not a set of tools. Suggest

that the team start with a synchronous CI process before relying

on a build server.

• If the team uses a CI server, make it easy for the team to take

responsibility for fixing broken tests. Work on making build status

visible to the whole team rather than buried in email.

• Watch out for slow-running tests. Encourage the team to factor

time into their plans for improving their build scripts and infras-

tructure. Test coverage can help the team get a better understand-

ing of how well they’re doing.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=162

Improve the software design every day.

Guiding principle

Chapter 11

Clean Code
Keeping your house tidy and clean is obviously important; otherwise,

over time it becomes impossible to live in. In the same way, if the team

doesn’t take time to keep their code clean, it becomes messy and fragile,

which slows them down. As their coach, you’re there to support them

in learning how to keep code clean, tested, and integrated all the time.

Let’s take a look at how you can make clean code a focus for the team

and get them started with Agile practices such as incremental design,

collective code ownership, and pair programming. We’ll also share some

tips on how to surface and resolve problems that block the team from

collaborating to create clean code.

11.1 Incremental Design

Incremental design is simply taking time to improve the design of the

software in small steps as you go. Design improvement becomes part of

every developer’s day. It’s done on every user story and is not something

left until later. Working this way, developers think about the design of

the software as they write tests, as they implement the code to pass

those tests, and before they check in their code.

However, making the shift from design up front to incremental design

can be a challenge. Help the team strike the right balance between

spending time on software design vs. time implementing code to satisfy

more user stories.

Breaking Out of Analysis Paralysis

Teams often get stuck in analysis paralysis near the start of a project.

Help them break out of spending too much time thinking about design

without producing working software.

Prepared exclusively for William Anderson

Download at Boykma.Com

INCREMENTAL DESIGN 164

Try to pinpoint what’s stopping them from moving forward. Are they try-

ing to work out the correct design for all future requirements? Are they

afraid that decisions made now can’t be reversed later? Remind them

that they don’t have a crystal ball to predict all the new requirements

that will come up during the project. Further discussion is unlikely to

reveal the correct answer, whereas they can prove their ideas by imple-

menting them.

Encourage the team to design for now and to keep their design as sim-

ple as they can for current needs. We’re not saying they have to be

deliberately shortsighted—the team can bear in mind the upcoming

user stories when making design decisions. Remind developers that

rework often improves design. Each time the design is reworked, it is

refined and becomes more malleable.

Agreeing On a Way Forward

Disagreements on the team about architectural aspects of the design

can also prevent the team from moving forward. These conflicts often

bubble up when there’s a power struggle between developers with

different expertise in the team. A common debate is how much logic

to put in front end, middleware, or stored procedures. The team gets

stuck because they don’t know how to resolve the disagreement by

themselves.

If the team reaches an impasse, run a team workshop to evaluate the

pros and cons of different design options. Where possible, bring an

expert, from outside the team, to the workshop to provide an indepen-

dent perspective. Make sure each alternative gets equal airtime and

consideration. Suggest the team write up each design on a whiteboard.

This helps move the debate away from the personalities and onto the

issues. Encourage the team to pick one design to follow for the next

iteration and agree to review concerns in their next retrospective. Sug-

gest this choice be made by an anonymous ballot if you’re concerned

about the pressure within the team.

Making Time for Design

Far more often than analysis paralysis, we find teams suffer from the

opposite problem: not spending enough time on design. Developers can

be tempted to skimp on design because software design is invisible from

the outside, so the customer can’t see it. When they’re under pressure

to deliver, developers often slide into just writing code that works with-

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=164

INCREMENTAL DESIGN 165

out cleaning up the design; skimping on the design enables them to

deliver user stories faster in the short-term. But without attention to

design, the code becomes hard to understand and difficult to change,

which eventually slows the whole team down and in serious cases can

lead to a whole codebase being thrown away.

Help the team keep design in mind as they implement the user stories.

Remind them when they’re planning to allow time in their estimates for

design discussions and refactoring. This cannot be done by adding a

design task to every story—design is not a separate task that can be

checked off as complete. Design needs to become an integrated part

of how the team develops all code. Where some stories require further

design discussion, add a card on the team board as a reminder to have

this conversation.

You can also help the team keep clean code in mind by working with

them to incorporate a design review into their definition of “done.” They

can make a team agreement that another developer must eyeball code

before it’s checked in to ensure that the code (and unit tests) can be eas-

ily understood by at least one other team member. Or they can choose

to implement this by pair programming so all production code is written

by two developers working as a pair.

Get a whiteboard that the team can gather around for informal design

discussions. Make sure this is close to where the developers sit, rather

than in a meeting room, because design conversations are often sponta-

neous. When a developer wants to explain something, he can just grab

a marker and draw a sketch to help illustrate his point. Help the team

get started using their new whiteboard by using it in design discussions

yourself.

When the team members follow an incremental design approach, they

pay attention to the design of the code throughout the development of

each story. They talk about design before they implement the code, and

they clean up the design as they go. However, it helps to make design

changes in small steps rather than changing too many things at once.

Encourage the team to use refactoring to make one small change at a

time rather than make sweeping changes all in one go.

Refactoring

Refactoring is the activity of improving software design without chang-

ing its behavior. It’s done in baby steps by applying one small improve-

ment at a time, such as Rename Field or Extract Method. After each

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=165

INCREMENTAL DESIGN 166

Explaining Refactoring to Your Customer

A team may never need to explain what refactoring is to
their customer, if they manage to keep applying small refac-
torings as part of each story. However, developers often men-
tion opportunities for refactoring at the daily standup, and task
cards for refactorings may appear on the team board. This
is bound to make your customer curious, and if refactoring is
explained as design improvement, it sounds like an optional
“nice to have" activity.

We find that it helps to explain it by analogy. Refactoring is like
tidying up at home. If every time I come back from shopping
or from a business trip, I sling down my things and don’t put
them away, pretty soon my house is a mess. I can’t find any-
thing. I may end up buying new items because I can’t find the
ones I know I already have. It becomes more difficult to move
around the house—there are piles of stuff everywhere! I may
even break something because it’s obscured by other stuff on
top of it.

Refactoring is the necessary act of putting code in the right
place, where other developers can find it quickly and easily.
It’s keeping code organized and decluttered. Developers need
to do refactoring, or they can end up with the same code in
several places, which takes more effort to maintain. Refactoring
is not the aesthetic organization of the code, such as applying
feng shui to your home—it’s basic housekeeping.

refactoring, the tests should be run to see that they still pass and if so,

it should be possible to check in the code. Our favorite guide to refac-

toring is Bill Wake’s Refactoring Workbook [Wak04] because it includes

exercises that you can run through with the team.

Refactoring the code makes it easier to maintain in two ways:

Improving readability by restructuring and renaming code

Reducing redundant code by consolidating and deleting unused code

Readable Code

The team needs to write code that is easy to understand by anyone

else on the team and is also self-explanatory to those maintaining the

code in years to come. As Kent Beck says in Implementation Patterns

[Bec07], “There’s no magic to writing code other people can read. It’s

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=166

INCREMENTAL DESIGN 167

like all writing—know your audience, have a clear overall structure in

mind, express the details so they contribute to the story.”

Beck goes on to explain the essential step to communicating through

code is making a conscious choice to care about the needs of other

people. Help developers on the team see how important it is to write

for someone else reading the code. Practicing collective code ownership

helps with this by exposing every team member to code they didn’t

write. As they complain about the way someone else wrote the code,

they become more aware of the need to write their code more clearly.

Pair programming goes a step further by exposing them directly to each

other’s programming styles so they get an appreciation of the thinking

behind the code and a chance to intervene and teach their teammates

better ways to express themselves.

We recommend you take some time to look through the code to get a

sense of how the team is doing with software design. This may reveal

areas where the team needs further coaching, such as poor design or

misconceptions about requirements. You may even find comments in

the code that give you a clue that there are disagreements about the

design and that help you surface issues that have not been resolved

within the team.

Telltale Comments

by Rachel

I have noticed that developer gripes are sometimes revealed in comments,

and these can provide some useful insights. Here’s an example from a

project I worked on:

/* Ideally this would be done as part of a lazy load implementation on the reference

get method in each of the business objects. It would then use the DAO to find the

objects it owns, effectively implementing a manual version of container managed

relations (CMR) in the Entity EJB world. However, this is impossible thanks to our

unconventional method of holding the database connection and passing from the

top session layer down to the DAOs. Consequently, the only method of producing a

complete tract object with all its children is to manually build the object here. Very

nasty, completely against the idea of the DAO design pattern and the service layer

separation, and very bad for maintenance.*/

This comment told me that there was at least one developer on the team

who cared about the integrity of the design but felt like they were fighting

a losing battle. I started to work with this developer to justify the

much-needed refactoring of the tangled dependencies to his manager on

the basis that this was a barrier to unit testing.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=167

COLLECTIVE CODE OWNERSHIP 168

Liz Says. . .

No Comments

Encourage the team to avoid writing comments; they clutter
the code and can’t be relied on to be accurate. Good code
is clear and obvious without comments. If you see a lot of com-
ments in the code or overhear developers explaining the code,
this suggests that some refactoring is needed.

Refactoring Tools

Tools can also help the team stick with incremental design by making

design improvement easier to do. Having automated support for com-

mon refactorings (provided by such tools as ReSharper for C# or Eclipse

for Java) makes it quicker and less error prone to make changes to

design. Coach the team to take time to get their development environ-

ment working well.

Simply having refactoring tools installed is not enough; developers also

need to know how and when to use them. If some team members

already know how to use the tools, pair programming can be a great

way to transfer the knowledge. If everyone is new to refactoring, set

some time aside in the plan for team learning. You could encourage the

team to run a coding dojo (see the sidebar on page 151) to get them

talking about the design of their code and tests.

11.2 Collective Code Ownership

Talk to the team about trying collective code ownership, where any team

member can edit any piece of code. Now any developer can start work-

ing on the next story without waiting for the person who wrote the code

to be available.

Team collaboration plays a big part in collective code ownership. With-

out some degree of collaboration, developers can be working at cross-

purposes without realizing it. Notice the level of conversation amongst

developers on the team. If they don’t talk to each other, this is a clue

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=168

COLLECTIVE CODE OWNERSHIP 169

that their work may be disconnected. Battles could be playing out in

the code without being discussed; each developer rewrites the code to

suit their own taste, and the result is like a patchwork quilt that’s full

of holes. Your challenge is to get the “team” to join forces and work as

a real team rather than suffering in silence.

Coding Style

Collective code ownership is easier when the team follows a consistent

approach to design and coding style. We’re not saying that they need

to create a formal coding standards document. They simply need to

establish a “house style” that everyone agrees to follow.

Bring the whole team

together to agree on a

coding style.

Bring the whole team together to work out

what coding style they want to adopt. This

can be a tough debate to manage. There’s

no correct answer about what style is best,

and developers often have strong preferences

about code layout based on how they learned to program. Still, it’s

worth pushing for because once the team has a consistent style, their

code is more readable, and less time is wasted on reformatting code to

personal taste. You can use gradients of agreement (Section 2.4, Build-

ing Agreement, on page 43) to determine when you have enough con-

sensus to be able to follow each proposed guideline. Or even simpler,

take a thumb vote like the team in our story.

Team Agrees to Some Coding Guidelines

The team is gathered in the workspace around their new whiteboard. Joe

stands up and clears his throat. “OK, I’ve called this meeting so we can

make a start on cleaning up our code.”

He walks over to the whiteboard and picks up a marker pen. “Let’s get

started with some style guidelines that we can all agree to follow.”

Damian rolls his eyes. ”Don’t we have better things to do than talk about

where we put curly brackets?”

Joe reminds the team, “We talked about cleaning the code up in our last

retrospective. We’ve got to act together on this, or the new code will get as

bad as PLib.”

Joe looks around at the team expectantly. “Does anyone have a guideline

that you think makes sense for us all to follow?”

Larry gazes out of the window; there are dark shadows under his eyes.

Joe calls over to him, “Larry, are you still with us?”

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=169

COLLECTIVE CODE OWNERSHIP 170

Larry slowly refocuses. “Sure, I’d like us to make up our minds on naming

tests. Some start with Test, and others end with Test—that seems pretty

random to me. Personally, I don’t have a preference, but it would make

tests easier to find if we could stick to one or the other.”

Damian looks surprised. “Right! That makes sense to me.”

“Any objections?” asks Joe as he writes up on the board Henceforth, we

shall name our test classes Testxxx, not xxxTest. “OK, let’s have a thumb

vote.”

Damian says, “That’s a no-brainer!” holding up his thumb.

Larry and Joe hold up their thumbs too. Damian looks over at Rebecca,

“Are you OK with that too?” She nods, holding up her thumb.

Then she blurts out, “What about a guideline for keeping all of our

functions really short? That would help us make sure each function does

only one thing. You know, like Bob Martin says in his Clean Code [Mar08]

book.”

Damian leans back in his chair sucking his pen. “That’s sounds good, but

I’d vote with sideways thumb until I know what you mean by short.”

Rebecca ponders for a moment and then says, “In college, we were told a

function should not take more space than I can see on the screen. But we

have big monitors. I think we need to go smaller than that so each

function does only one thing.”

Joe picks up the marker again. “Maybe we can narrow it down to a

number of lines of code?”

Rebecca scratches her chin and then suggests, “What about saying all our

functions should be no more than ten lines long?”

Damian frowns. “I’m not so sure. Remember, we’ve got some old PLib code

with some pretty long functions.”

Larry nods. “Some of them are more than 200 lines long, and it’s really

hard to tell what they do without printing them out because they don’t fit

on the screen.”

”I’ve got a proposal for you,“ says Joe as writes the following on the board:

Any NEW functions should be less than ten lines long. “Does that sound

OK?” Everyone raises their thumbs.

Damian leans forward. “We could even measure that using our static

analysis toolkit. Then we could see whether these coding standards are

making a difference. If we’re following them, then the number of long

functions should start falling week by week, and we could graph that.”

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=170

COLLECTIVE CODE OWNERSHIP 171

“Would you be on for setting that up?” ask Joe.

Damian grabs an index card and writes out a task to go on the team

board. “Sure! I’ve been meaning to do some digging around to see what we

can use it for. Maybe we can even get it hooked into our CI build.”

“I volunteer to print out the stats to put on our team board until you get

the CI build working,” adds Rebecca.

Once the team has their new coding guidelines, encourage them to dis-

cuss whether it’s important to measure how well they’re doing against

any benchmarks that they’ve chosen.

In our example, the team is planning to run a static analysis tool to

measure how many functions have more than ten lines of code. Watch

out, though—generating too much data can just create noise. Help the

team get clear on what they will do with this new information. They

can plot the results on a chart and either pin this to the team board or

update it dynamically on a build monitor screen.

Keeping the results visible will remind everyone of the agreement and

also show whether they’re keeping it. After a few weeks or months, the

team should find they’ve improved and no longer need to chart how

many long functions there are. However, if the trend isn’t running as

expected, the team needs to understand why. Their retrospective is a

good time to discuss this.

Working with Specialists

Although getting team agreement on coding style may feel like the hard-

est part of adopting collective code ownership, it’s actually much harder

to get developers on the team to stop specializing by picking bits of the

codebase that they consider as their own. It is quicker for someone who

has worked on a module before to fix any bugs in it and be the per-

son to add more related features, but doing this can create scheduling

bottlenecks.

Specializing also makes it less necessary for the team to talk to each

other about design and ask for help when they’re stuck. You’ll notice

the developers don’t talk to each other much if they’re specializing in

this way. Pair programming can help prevent this. Some teams we work

with follow a simple rule that one person from each pair must swap out

every day. This encourages everyone on the team to move between the

user stories rather than sticking with the same story.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=171

COLLECTIVE CODE OWNERSHIP 172

Rachel Says. . .

Permission to Care About Code

Most software developers love to write code, but many are fed
up with the crufty state of the existing codebase they’re work-
ing on. Try to rekindle their personal passion for code so they
can rebuild a sense of pride in their work. They can enjoy cod-
ing again, so what’s stopping them?

Self-censorship may be part of the problem. A developer may
assume they will not be allowed time to improve things so they
don’t even explain what they think needs to be done in order
to do the job properly. They keep putting the short-term needs
of the business ahead of their own professional judgment.

They may be worried that their opinion won’t be respected and
that it will be difficult to quantify the benefits. Getting the team
together, in planning, to discuss the tasks and estimates makes
this a team decision, not a personal one. If they join forces to
work together rather than battle on by themselves, they may
be able to make a difference.

Fixing Broken Windows

You’ll also need to watch out that collective code ownership does not

degrade into developers abstaining responsibility for the code. In The

Pragmatic Programmer [HT00], Andy Hunt and Dave Thomas talk about

the “broken windows” theory. Small signs of not caring about the code

can lead to bigger transgressions.

Try applying the PrOpER coaching cycle we talked about (see Sec-

tion 1.4, How to Start Coaching, on page 27). Talk to the developers

about what’s bothering them the most about the code. You may need to

talk to them individually to get to the bottom of their concerns. There

may be a particular area of the code that is really bad or a conflict

within the team about a design issue. Or, where the team is working

on an old messy codebase, they may simply be overwhelmed by the

task of cleaning it up. Help them form a plan of action to renovate the

code. Simply recognizing the problem and breaking it down into bite-

size pieces can make a big difference and help reengage developers who

had given up.
Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=172

PAIR PROGRAMMING 173

11.3 Pair Programming

Pair programming is two people working together—at the same com-

puter, solving the same problem. Each person plays an active role in

creating the software; the person actively typing is known as the driver,

and her partner is the navigator who looks ahead to consider next steps

and potential pitfalls. Pairs swap fluidly between these roles.

If you’re trying to persuade the team to try pair programming, here are

some benefits that pair programming generates over time:

• Code is higher in quality, because it is constantly being reviewed.

• Good practice is shared more widely amongst the team.

• Developers are interrupted less, because people tend not to inter-

rupt people working together.

• More than one developer knows each part of the code.

• A uniform coding style is implemented, which makes it easy for

everyone to work together.

• Team bonding improves, because the team learns from each other

and enjoys working together.

If you know how to program, it’s often tempting to make suggestions

about how developers should write the code. Be careful, because you

may be wasting your time—developers are likely to ignore your coding

experience if you’re not programming on the project. They may also

think that you’re overstepping your role and interfering in how they

do their job, so give such advice sparingly. However, pair programming

can be a great way to coach individual developers. Here are some tips

to improve your own style if you haven’t tried it for coaching before.

Explain what you’re

doing and why.

When you’re driving, don’t just type code in

silence. Demonstrate that an important aspect

of pair programming is explaining what you’re

doing and why. When your pair has the key-

board, make sure you don’t become a backseat driver. There’s nothing

more unnerving than pairing with someone who jumps on every typo

and shouts out keyboard shortcuts all the time.

Stay open to suggestions from your pair, even if they are a novice pro-

grammer. There’s a phenomenon called the beginner’s mind: someone

with fresh eyes may see more options than you. So even if you see a

very obvious solution, be willing to try out the solution that your pair

suggests. If it fails, then they will have learned something, and if it suc-

ceeds, then you learn something! Read more about how Arlo Belshee’s

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=173

PAIR PROGRAMMING 174

Liz Says. . .

Two Monitors

Two people sharing one computer can feel uncomfortable. To
ease this, plug two monitors, two keyboards, and two mice into
the same PC (as in this photograph). Make both monitors dis-
play the same code. This allows people to pair without invad-
ing each other’s personal space. It also makes it easy to swap
between driver and navigator roles.

team experimented with pair-swap times to leverage this in his paper

“Promiscuous Pairing and Beginner’s Mind” published in Proceedings

of the Agile 2005 Conference [Bel05].

We sometimes see pair programming done badly, where one person is

doing all the work and the other is just watching them type. You should

see interaction between pairs. Effective pairing is a dynamic dance, with

the keyboard frequently and spontaneously shifting between the two.

There’s a video clip on YouTube, Real Programmers Use Sign Language,

that shows two developers gesturing a lot while pairing.1

1. http://pairing.www.youtube.com/watch?v=nqYqQUfPCp8

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://pairing.www.youtube.com/watch?v=nqYqQUfPCp8
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=174

HURDLES 175

You can also get a sense of pair programming interactions by watching

online broadcasts of pairing sessions.2

Normally, one person shouldn’t have the keyboard for more than ten

minutes at a time. Introduce ping-pong programming (see the sidebar

on the following page) to help the team get used to swapping control

within a pair.

At first, pair programming can be frustrating for developers; often it

means slowing down to help their teammates rather than getting on

with producing code. You’ll notice, over time, that the team gets to know

each other’s foibles, and as they do so, they can focus more on the task

at hand without distractions over style, producing code that is far more

readable.

Remember that pair programming is very intense; it requires a huge

amount of concentration. Remind the team that it’s a good idea to take

a break every hour or so. Some teams use a kitchen timer for this, or

they use the pomodoro technique to encourage pairs to take breaks, as

described in the sidebar on page 177.

Also encourage developers to swap between pairs. The daily standup is

an ideal time for the team to talk about whether they’re going to pair

up on any tasks—and if so, who with. Suggest that the team create a

pairing ladder (see Section 8.2, Big Visible Charts, on page 125) so they

can see whether team members are pairing with each other evenly.

11.4 Hurdles

The following are some hurdles you may encounter.

A Developer Doesn’t Like Pair Programming

Often, we find that some developers on a team enjoy pair programming,

while others do not. Look out for signs of resistance to pair program-

ming, and try to understand what’s causing it.

A common reason is that some developers don’t know how to pair prop-

erly. If one person is merely watching while the other person does all

the work, it is not surprising that they don’t enjoy it. Explain how pair

programming interaction should work, and encourage them to try ping-

pong programming.

2. http://pairwith.us/

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://pairwith.us/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=175

HURDLES 176

Ping-Pong Programming

Ping-pong programming is an approach to pair programming
that ensures both members of the pair take a turn at the key-
board.∗

• The first developer writes a failing test and then passes the
keyboard to his pair.

• The second developer writes just enough code to make
the test pass.

• They then work together to refactor the code that has just
been written.

• Then the cycle can start again with the second person
writing a new failing test and handing the keyboard back
to the first person.

∗. http://c2.com/cgi/wiki?PairProgrammingPingPongPattern

Discuss with the team how much pair programming they feel is nec-

essary. When do they feel it is appropriate—when is it expected, and

when is it optional? Do they want a working agreement about this?

Some teams choose to pair on all production code, and other teams

pair only on difficult problems. If developers won’t pair, then their code

should at least get some code review.

A Developer Doesn’t Follow Team Coding Practices

You cannot force a developer to care about code quality. However, it’s

important as a coach to care when a team member doesn’t follow team

agreements. For example, a developer might regularly check in code

that doesn’t compile before she goes home, leaving her teammates to

fix the problems.

If disrespect for team agreements bothers the team, then start by talk-

ing with the developer to understand why. It may be that she’s forgot-

ten the team agreement or not understood how it applies to her work.

If she’s aware and going against the agreement deliberately, this could

signal that she might be better suited to working on another team.

Although the whole team could talk with her about it in their retrospec-

tive, we recommend you avoid that situation because it can easily turn

into scapegoating.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://c2.com/cgi/wiki?PairProgrammingPingPongPattern
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=176

HURDLES 177

Pomodoro Technique

The pomodoro technique∗ is a time-management tech-
nique to help improve focus and concentration created by
Francesco Cirillo at XPLabs.

Work in timeboxes of twenty-five minutes, followed by a five-
minute break. After four timeboxes, take a longer break. Each
of these timeboxes is called a pomodoro, Italian for “tomato,”
because of the tomato-shaped kitchen timer that was origi-
nally used.

At the start of the pomodoro, turn off your email, your instant
messaging client, and your phone. Set the timer to twenty-five
minutes, and then work. Do nothing else. If someone interrupts
you, tell them you’ll get back to them after this pomodoro. If
your mind wanders, note down the thought, and get back to
what you’re meant to be doing.

When the timer rings, take a break. Mark a tick on the story
card, or personal journal, and rest for a few minutes.

At the beginning of the day, make a plan with the team for how
to use your pomodoro timeboxes. At the end of the day, record
all the pomodoro spent on each activity to help improve future
estimates.

∗. http://www.pomodorotechnique.com/

Gaps in Programming Languages Create a Barrier to Pair

Programming

Your team may be working on a layered system where the front, mid-

dle, and back-end technologies are very different. The developers on

the team may find the learning curve too steep to switch from program-

ming in one layer to another. In this situation, pair programming makes

sense only between the developers who are familiar with that language.

For example, it does not usually make sense to pair a C++ developer

with a JavaScript developer.

Pair programming is not a substitute for training. If a developer on the

team needs to learn C++ or some other language, they may be better

off taking a training course or reading a book than pair programming.

Also watch out for developers who are concerned about diluting their

specialist knowledge.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.pomodorotechnique.com/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=177

CHECKLIST 178

11.5 Checklist

• Help the team strike a balance between spending time on software

design vs. time implementing code. The team needs to focus on

designing for the user stories they know about rather than second-

guessing the customer.

• Remind the team during the planning process to allow time for

incremental design. Get into the habit of using a whiteboard in

the team workspace for design discussions.

• Encourage the team to improve software design gradually by refac-

toring before every check-in rather than building up technical

debt. Refactoring tools lower the barrier to making design improve-

ments. Make sure the team knows how to use them.

• Bring the whole team together to agree on a common coding style.

If the team doesn’t adopt pair programming, recommend they

incorporate peer code reviews into their definition of “done.”

• Help the team formulate a plan to renovate any areas of the code

where design has decayed. Fixing broken windows helps the team

keep the standard of design up.

• Use pair programming to get two heads on difficult problems and

spread knowledge within the team. Set the team workspace up so

that pair programming is comfortable, for example, two monitors

displaying the same desktop.

• Introduce ping-pong programming to encourage pairs to swap

between the roles of driver and navigator. Watch that pairs

take enough breaks and swap partners rather than forming pair

cliques.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=178

Part IV

Listening to Feedback

Prepared exclusively for William Anderson

Download at Boykma.Com

Seek customer feedback to improve the software.

Guiding principle

Chapter 12

Demonstrating Results
If you ever had a school project that involved a show-and-tell to the

class, you’ll know that being asked to demonstrate your work is a strong

motivator. It’s the same for Agile teams. Having a demo motivates them

to get everything done in time.

Surprisingly, many Agile teams treat the demo meeting as an optional

extra. Here are some reasons we’ve encountered:

Nothing to show The team hasn’t planned for their iteration to result

in software that can be demonstrated.

Going live The team makes a live release at the end of the iteration,

and a demo seems pointless.

Customer in the team The team shows the software to the customer

during the iteration, so they don’t see that a demo adds any value.

These factors are good reasons for changing the format of the iteration

demo, but in our opinion the answer is not to scrap the iteration demo.

The iteration demo builds trust and accountability between the team

and the business, so don’t be tempted to skip it.

Let’s walk through how you can help the team run effective demos that

feel useful and productive.

12.1 Preparing for the Demo

Remember, the secret to a successful meeting lies in the preparation.

You’ll find this is especially true for the iteration demo.

Prepared exclusively for William Anderson

Download at Boykma.Com

PREPARING FOR THE DEMO 181

Plan to build

demonstrable stories.

The team sows the seeds for a successful demo

in iteration planning. Encourage the team to

figure out how user stories can be demon-

strated to stakeholders. If this is difficult, sug-

gest a compromise that at least one or two user stories can be shown.

Who Attends the Demo

Let everyone on the team know that they’re all expected to attend the

demo. We often encounter managers who worry this will be a waste of

the team’s time. Protect the team’s right to demonstrate their own work;

otherwise, the demo loses its power to motivate them.

Most teams also use the iteration demo as an opportunity to demon-

strate what they’ve built to the wider organization. Suggest that the

customer decide which stakeholders to invite to the demo. She could

invite representatives from sales and marketing functions or people

from other technical teams such as architects, security specialists, and

operations. Remind someone on the team to send an invitation out to

everyone, a week or so before the demo, so they can block off time for

it in their calendars.

It’s great if senior executives can come, because this gives the team a

chance to show off their work. However, if this person cannot come at

the regular demo time, warn the team not to extend their iteration to

accommodate this senior stakeholder. Instead, the team can arrange a

separate demo session so he can see the latest release.

Brief stakeholders on the

iterative process.

Brief any stakeholders who have not been to

a demo before—they need to understand the

team is following an iterative process and that

what they’ll see isn’t the finished product.

Finalize the Running Order

On the last day of the iteration, the team needs to develop a drill for

getting ready to run the demo meeting. Remind the team about this at

the daily standup. Here are some things they can do to prepare:

• Clarify which stories are complete and ready to demo.

• Decide on a running order for presenting the stories.

• Agree who will be presenting which stories.

• Organize a run-through to rehearse the demo.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=181

PREPARING FOR THE DEMO 182

Figure 12.1: Timetable for last day of iteration

Some teams also put a visible timetable up in their workspace to remind

them what needs to be done to prepare; see Figure 12.1 (this organiza-

tion calls the demo a showcase).

The following story illustrates the typical conversations that happen on

the day of the demo.

Getting Ready to Demo

We join the team as they are partway through their daily standup. Raj,

the new project manager, has an announcement for the team: “I couldn’t

book your usual room for the iteration demo. So, we’ll be up on the 11th

floor. I’m going up to check out the network connection after this. We just

need access to Jupiter over the network, right?”

“If we’re in the fancy board room, then network access should be fine. I

was in there for a meeting with ops last week, and we had no problem

accessing the bug tracker from there.” said Damian, who’s wearing his

favorite Simpsons T-shirt. “Who’s bringing the donuts this week?”

“It’s my turn, but do you mind if we have fruit this week?” Joe grins

pointing out a bag of apples and oranges under his desk.

“Great!” chirps Rebecca. “No sugary snacks suits me! I’m in training for a

10K run next month.”

“Thanks, Joe,” says Raj glancing at his watch. “Now can I just check what

we’re planning to demo? We’ve got Mark, the head of sales, coming along

this week, so it needs to be slick. So, all the stories on the board in the

Done column are ready, except ISBN search, which is still under test. Is

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=182

PREPARING FOR THE DEMO 183

that right?” turning to Larry the tester who’s looking sleepy and sipping

coffee from a Star Trek mug.

“Oh yeah, that’s ready too. Amanda and I checked the bug fix yesterday,

but I forgot to move the story over to Done.”

“Great! Sounds like we’re all set!” says Raj keen to get on with his day.

“What about working out who’s showing what?” adds Joe “I worked on

ISBN search, so it makes sense if I do that. Rebecca, are you OK to show

the other stories?”

“Yup, I guess so. . . ,” says Rebecca hesitantly.

“Don’t look so worried. It’ll be a piece of cake! And Mark will be blown

away when he sees the book carousel!” adds Joe.

“OK, but can I hand over to you if we hit problems accessing the

database?” Rebecca says still looking a little worried.

“No worries. Those problems we had last week were down to the server

move. It should all be fine this time around. Eh, Damian?” and Damian

nods in agreement.

At that moment, Amanda appears with a bunch of index cards in her

hand “Hey there! I’ve just come off a teleconference with our Singapore

office talking through their ideas for the next set of stories. Did I miss the

standup? ”

“Yes, I think we’re all set for the demo,” smiles Raj. “The only story that

didn’t make it is recommendations engine spike, and that was really a

‘stretch story’ in case we finished early.”

“Anything special that we should be aware of from the sales side? Mark

hasn’t promised any new features to customers without checking that we

can implement them, has he?” joked Damian half-seriously.

Amanda paused a moment, and then said, “I think we’re fine this week. I’ll

be really interested to hear what he thinks about the carousel, though.”

Rebecca still looks nervous and asks, “Amanda, I’m demonstrating the

carousel. Can I walk through how to do that with you before the meeting?”

Amanda smiles. “Sure! But first let me get a coffee.”

The daily standup ends with Raj heading off upstairs and Amanda and

Rebecca going off to the kitchen.

Look back through this story. You’ll see that there’s more than one

team member who reminds the team what needs to be done to prepare

for the demo. This is what you’re working toward as an Agile coach.

When the team is taking responsibility and getting themselves ready,

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=183

EVERYONE PLAYS A PART 184

you can take a backseat rather than being center stage orchestrating

the meeting.

Technical Setup

The last thing the team wants is a technical hitch to spoil the demo.

Remind them that software that works in a development environment

may not work when accessed from a meeting room over the network.

Recommend they demonstrate software only from a clean integration

environment that has been tested—still check that this can be reached

over the network from the meeting room where the demo will be held.

Another time-saver is to compile a crib sheet on a wiki page that lists

locations of key resources, such as links and filenames, which will be

used in the demo.

Dying on Stage

by Rachel

I have seen some disastrous demos. One was in the team workspace, and

people at the demo were expected to walk from one developer’s desk to the

next and to look over the developer’s shoulder at software running on

their desktop monitor. No one could really see what was being

demonstrated properly, there was no running order, and people were

expected to stand around doing this for two hours.

Another team held their demo between two remote teams using shared

desktops without any representation from the customer team! The

software demonstrated was a rag-bag of half-complete features that were

carried over from past iterations. However, the worst thing was the

computer setup for working with the remote team—no one could properly

hear what they were saying because of an echo on the line, and yet the

team continued with this for more than an hour.

Before the meeting starts, do the following:

• Set up any equipment required for the demo, such as a projector,

a conference phone, and marker pens.

• Check network connections.

• Remind the team that the meeting is about to start.

12.2 Everyone Plays a Part

Start the meeting with an introduction from the customer. She gives

an overview of the goal of the iteration and the user stories that were

chosen for development.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=184

EVERYONE PLAYS A PART 185

Liz Says. . .

Do Food

Bringing food to a meeting is a good way to relax people and
make the meeting friendlier. It is a nice way to break up a long
meeting or to encourage people to arrive on time. Some teams
take turns bringing biscuits or donuts to meetings.

Now, the spotlight turns on the team. What will they be showcasing

today? Before showing the software, it’s important for the team lead

to let everyone know the running order and also whether there are

any important stories that are not ready yet. Encourage them to be

clear about any shortfall from the start, because this helps maintain

the focus on what is being demonstrated. The team can discuss why a

shortfall occurred after demonstrating the software or defer this until

their iteration retrospective.

Next, it’s the turn of the team to present their work. Some team mem-

bers may not be keen to take a turn because presenting in front of

senior stakeholders can be quite nerve-racking. Encourage each team

member to take their share of the limelight in iteration demos, but take

care not to force this; instead, make it a team decision who presents in

the meeting.

It’s great for the team to hear praise for their work, but there are usually

some holes spotted too. During the demonstration, ensure that feed-

back, both positive and negative, is captured. Take notes unobtrusively

on index cards rather than writing them up on a whiteboard because

this can distract from the demo.

Before the meeting ends, review the main points of feedback with the

group to check that none has been missed. Suggestions for enhance-

ments or new features will probably go into the pot to feed future plan-

ning sessions. Warn the team not to make any promises about getting

these done in the next iteration—that decision won’t be made until the

next planning session.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=185

EVERYONE PLAYS A PART 186

Before closing the meeting, take a last opportunity to agree on what

team velocity should be recorded. If serious bugs were spotted during

the demo, the team may decide not to count the points for that story.

If the team significantly underdelivered, they may also need to discuss

changes to their release plan before dispersing.

Now, let’s see how our fictional team run their demo.

Demonstrating Book Search

It’s 10:55, Raj stands up and reminds the team that they need to get

going. “Sometimes the elevator can be pretty slow, so let’s make our way

up to 11th floor.”

“I’m taking the stairs! Bet I’ll get there first!” chimes Rebecca.

“I’d join you, but I’ve got this fruit to carry,” adds Joe, walking off in the

direction of the elevators.

Damian looks as if he’s still buried in coding. “Come on, Damian!” calls

Rebecca. “The demo is starting in a few minutes!”

Damian locks his screen and follows the others.

The team arrives at the meeting room to find Raj has set up the projector

already displaying their team wiki page. They file into the plush board

room, and Joe places his bag of shiny green apples on the table. Larry

grabs one and flops down in one of the fancy leather chairs. Rebecca

perches next to him, looking nervous. Mark and his sales team arrive a

few moments later with Amanda.

Amanda kicks off the meeting, “Welcome, everyone. I’m sure we’re all

looking forward to seeing the latest software. The goal of iteration 4 was to

improve book search. Raj, can you pull up the list of stories?”

Raj opens the iteration 4 wiki page, which lists the user stories. All of the

stories are marked as “done” except for the last, recommendations engine

spike, which is marked as “blocked.”

“Shall I give a quick summary of what we did?” ask Joe. Amanda nods.

“Our main focus has been to make it easy for our customers to find the

book they’re looking for. We’ve implemented searching for books by ISBN

and also a carousel so users can browse books by genre. We also planned

to investigate how to implement a recommendation engine, but we’re still

waiting on the RX team for their new interface. I’ll be showing you the

ISBN search that I worked on with Damian. Then I’ll hand over to

Rebecca to walk you through the book carousel.”

Joe fires up a web browser, pastes in the URL to the server, and the home

page opens. He keys in an ISBN number, and the book page loads.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=186

RELEASING THE SOFTWARE 187

Mark frowns, “I see the dollar price, but where’s the Add to Cart button?”

Amanda steps in, “That was out of scope this iteration. I’ll be feeding that

into the next iteration.”

“Any other questions?” asks Joe. “Over to you, Rebecca,” he says, sliding

the keyboard across the table to her.

Rebecca selects Travel in the book genre menu. The book carousel opens.

She flicks through.

Mark asks, “Does this work in the new Chrome browser?”

Rebecca turns to Larry, “Did you test it against that?”

“Yup. It works just fine.”

Mark looks pleased. Then he gets out his new flashy cell phone. “Can you

check it also works on this?”

Damian looks up. “We’ll discuss stories for mobile devices in our next

planning session.”

“So. . . ,” says Amanda looking around the table. “I think we can declare

both of the stories that were demonstrated as “done.” We’re not counting

the recommendations engine spike, so that makes the team velocity 11

points.”

Raj grabs the keyboard and enters the new velocity on the iteration 4 wiki

page.

After the meeting, make sure that the team creates new user stories for

improvements suggested in the demo. There’s no need to estimate them

yet because these will be taken along to iteration planning.

After a successful demo, encourage the team to celebrate what they’ve

achieved. If the team isn’t used to doing this themselves, then get the

ball rolling. Buy donuts, or take them out for drinks after work.

Finally, if things didn’t go so well in the demo, discuss what went wrong

in the retrospective.

12.3 Releasing the Software

You’ll find a lot of Agile literature about planning iterative releases but

very little on how Agile teams actually release software. Just because

the iteration has ended doesn’t mean the release must go out. A deci-

sion needs to be made about whether the software is ready for release.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=187

HURDLES 188

The team needs to get together with their customer and check the fol-

lowing items:

• Has the software been tested adequately?

• Are there any showstopper bugs?

• Is this a good time for end users to get a new release?

• Has the relevant documentation been done (such as release

notes)?

• Does the team need to nominate a team member to support the

release?

• Can the release be rolled back if problems are encountered?

Human intervention may be required to release software, but this

can be a source of mistakes. Encourage the team to automate their

deployment process as much as they can. If they’re pushing their soft-

ware onto servers managed by other teams, consider creating a suite

of deployment tests to check whether the deployment environment is

“fit for deployment.”1 Deployment tests check that any preconditions

that must in place for the software to run, such as specific libraries,

directory paths, and database access, are in place before the soft-

ware is deployed. These tests can also help the team pinpoint whether

problems encountered after the release goes live are being caused by

changes in the environment rather than the software.

12.4 Hurdles

The following are some hurdles you may encounter.

The Software Doesn’t Work in the Demo

It’s embarrassing when the demo does not go as planned. This is usu-

ally a result of poor preparation. Check that the software works in the

meeting room before the demo and that the meeting room computer

has all the necessary hardware and software.

If this was caused by a developer staging last-minute fixes just before

the demo, recommend to the team that they demonstrate a labeled

release candidate build rather than the latest build.

1. http://www.buildmonkey.com/papers/AgileDeployment.pdf

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.buildmonkey.com/papers/AgileDeployment.pdf
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=188

HURDLES 189

No Stories Have Been Completed

If the team has arranged a demo and then hits problems that prevent

them from having any completed stories to demonstrate, they need to

consider canceling the demo. Don’t take this decision lightly because

doing this sends a signal to the team and to the stakeholders that it’s

not important to deliver working software at the end of every iteration.

Encourage the team to be open about the situation, and make an offer

to show the product as it is. However, they may want to warn any

important stakeholders, in case they feel their time has been wasted.

The exposure to disappointed stakeholders may galvanize the team to

do better next time. Remind the team that they can still get some useful

feedback on the software even if it’s not quite finished.

Reasons for the shortfall should be discussed in the iteration retrospec-

tive. For the next iteration, help the team to slice the stories smaller

and then to focus on getting a few stories to “done” rather than many

in progress.

Having nothing finished leaves the team with a problem: their velocity

is zero. Be aware that if the team demonstrates software that doesn’t

meet their definition of “done,” it gives the impression it’s finished and

the team is ready to get on with new stories. Make sure the customer

understands that there is still work to do before the team can take on

more stories. When the team is running significantly behind, suggest

that they revise their release plan to make the impact on release dates

more visible. If the team delays proper testing until the next iteration,

there is a danger that the team will slip into a mini-waterfall and the

testers won’t catch up.

The decision of what to demo is probably most difficult if the software

is nearly working but there are still some open bug reports. Review

the bug reports. Are these truly showing serious problems, or are

these more in the category of reminders that some inconsistencies have

been found? Check with the whole team, including your testers, to see

whether they are happy to go ahead and demo a story that has out-

standing bugs. If the team wants to go ahead and demo software with

bugs, then there is a risk that this may be taken as a signal that it’s OK

not to fix bugs before the demo. During the iteration, watch to see that

developers don’t start ignoring feedback from testers. If they do, then

this may need to be discussed in the retrospective.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=189

CHECKLIST 190

Demo Relies on Software from Other Teams

If the team is building a part of a larger product and is working with

other teams, then it may be worth holding a joint demonstration so

everyone gets to see the product as a whole. If this is not possible,

create software stubs so that the team can demonstrate their software

running against these.

Our Software Has No User Interface

It’s really hard to get customers interested in a software demo if they

can’t follow a demo because there’s no user interface. Encourage the

team to create visualization of data processing to make some sort of

demonstration possible. Ultimately, this is an indication that the teams

might need to scope the work differently; they may consider moving

to developing features from the front end to the back end rather than

component-based development.

12.5 Checklist

• Work with the team in planning to ensure user stories that can be

demonstrated.

• Make sure the whole team, including the customer, attends the

demo. Encourage the customer to invite stakeholders from the

wider organization along to the demo. Brief any stakeholders who

are new to Agile that what they’ll be seeing isn’t the final product.

• Remind the team on the last day of the iteration to review what is

and is not ready for demo. Suggest that the team put up a visible

timetable that covers what the team needs to do to prepare for the

demo. The team decides who will demonstrate each story—often

this is agreed at the daily standup.

• Help the team avoid having technical glitches spoil the demo. Rec-

ommend the team sets up the room in advance and checks net-

work connections. The team can even hold a rehearsal to make

the demo really slick.

• Take notes on stakeholder reactions and feedback during the

meeting. Review these feedback points with everyone before the

meeting ends. Make sure the team captures this feedback as new

user stories and takes them along to their next iteration planning

session.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=190

CHECKLIST 191

• As well as demonstrating working software in the iteration demo,

the team agrees with the customer which stories meet their defi-

nition of “done” to calculate their final velocity.

• Encourage the team to automate both deployment and testing

the deployment so releasing software can be done swiftly without

errors.

• Celebrate the team’s success after the demo. If things didn’t go so

well in the demo, discuss this in the retrospective, and work out

actions with the team to avoid this the next time around.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=191

Use regular reflection to improve.

Guiding principle

Chapter 13

Driving Change
with Retrospectives

Henrik Kniberg, author of Scrum and XP from the Trenches [Kni07],

observes, “Without retrospectives you will find that the team keeps

making the same mistakes over and over again.” Like Bill Murray’s

character in the film Groundhog Day, the team can’t break out of a

painful cycle until they take the time to understand what happened

and change their ways.

The retrospective provides a way for you to engage the team members

in improving their process in direct response to problems that they

face. As a coach, you want to enable the team to learn how to use their

retrospective to identify where they feel pain in their current process

and to learn how to reduce it themselves.

We often meet Agile teams that have already tried retrospectives and

have given them up. They felt their retrospectives didn’t result in any

change so continuing with them was a waste of time. This situation

is usually caused by not knowing how to run retrospectives. In this

chapter, we’ll explain some of the mechanics of retrospective design

and share some techniques for running successful retrospectives.

13.1 Facilitating a Retrospective

It takes practice to get good at facilitating retrospectives; it helps to get

clear on the underlying structure so you can help focus conversations

on learning and improvements.

Prepared exclusively for William Anderson

Download at Boykma.Com

FACILITATING A RETROSPECTIVE 193

Figure 13.1: Retrospectives form a bridge between iterations

An iteration retrospective should help the team explore the following:

• What insights do they have from the last iteration?

• What areas do they want to focus on improving?

• What ideas can they act on in the next iteration?

Consider the retrospective as a bridge between the past iteration and

future iterations, as illustrated in Figure 13.1. Spend half the retro-

spective looking back over the past iteration to uncover insights about

what happened and why. Then shift into forward gear to come up with

ideas to change things for the better and to develop action plans to

implement the ideas.

You’ll find that because retrospectives don’t appear to connect directly

with producing more software, there may be pressure to rush them—

so the team can get back to their “real” work. However, skipping these

steps—especially the last one—can prevent a retrospective from being

effective.

It Takes Time

by Rachel

I joined a team that worked together for more than a year before trying a

retrospective. We had plenty of problems building up but no meeting to

air them within our XP process. When we finally held our first

retrospective, we literally covered our board room table with issues

written on index cards that needed to be fixed! It felt great to these out in

the open, but it left us with a pile of work to do.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=193

FACILITATING A RETROSPECTIVE 194

There were too many problems to fix in a single iteration; we fell back on

our Agile planning techniques: we clustered the issues and prioritized

them to find the worst problems. Our deployment and customer support

processes were high on the list, so we started with those. Then we kept

working on these issues and reviewing progress in retrospectives until

gradually we solved them (or the problems went away).

This experience taught me that process improvement using retrospectives

is iterative and can take a long time. Don’t expect retrospectives to

magically resolve all your problems straightaway.

In his book Project Retrospectives [Ker01], Norm Kerth encourages us

to get the story out and then mine for gold—the gold is what we have

learned by reflecting on what happened.

Looking Back

Buy-in from the team is needed for changes to stick. Build support for

improvements by starting the retrospective with a review of what was

learned in the last iteration—to get the story out.

Each person on the team has a different experience of past events.

To understand what actually happened, the team needs to share their

individual stories and integrate them. People will not feel like partici-

pating if they are not listened to, so ensure this part of the retrospective

is not rushed. Take the time to hear what everyone has to say.

Our favorite way to do this is to create a timeline using sticky notes, as

in Figure 13.2, on page 196. This helps the team piece together a com-

plete picture of events. They’ll also start to see how their actions were

influenced by other things that were going on at the time. As events are

added to the timeline, the team will start to remember other events and

fill in the gaps. The timeline is a temporary artifact; you don’t need to

preserve it after the meeting.

When looking back, you may want to include a way for the team to

indicate how they felt about the events. Here are some ways to do this:

Color timeline Use a scheme of different-colored sticky notes on the

timeline to indicate feelings. Use green notes for events that were

enjoyable, pink for stressful, and yellow for neutral. Post a key

next to the timeline so it’s clear what the colors mean. Don’t forget

to check whether everyone in the group can distinguish between

the colors you’re using before trying this.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=194

FACILITATING A RETROSPECTIVE 195

Retrospective Smells

Here are some “smells” that indicate the retrospective isn’t
working:

Ideas fest The team members are asked to call out ideas with-
out discussing what happened in the last iteration. This
doesn’t work because problems are glossed over. Actions
may not be connected to resolving problems and tend to
be about trying out cool stuff rather than fixing what’s not
working.

History lesson This retrospective is rather like an archaeo-
logical dig that results only in lists of “What Went Well”
and “What Needs Improvement” but no actions. This can
improve communication as the team gradually under-
stands what’s happening. But because there’s no discus-
sion about how to improve, change is left to individuals
rather than planned into the next iteration.

Change the world The team commits to an ambitious list of
actions without considering whether it has time to get
them done in the next iteration. This leads to disappoint-
ment because the actions don’t get done and the team
adds more actions to this list every retrospective.

Wishful thinking Actions discussed are rather vague with no
owners, such as “Improve communication” or “Do more
refactoring.” These are not actions; they are problems to
work on. Without more discussion, the team doesn’t really
know what to do to implement these pseudoactions.

No time to improve The team takes five to ten minutes after
their iteration demo to have a quick chat about how
things have been going and calls that a retrospective. This
is a sign that the team sees no benefit in retrospectives. If
individuals do have ideas for improvement, then they face
a struggle to implement them without a forum to get sup-
port from the team.

Hot air The team spends the retrospective grumbling about
how bad things are without taking responsibility for improv-
ing the situation. This may be cathartic and release tension
in the team but can easily turn into a blame game. Retro-
spectives are about making changes for the better, and
that can’t happen without some discussion of what the
team can do.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=195

FACILITATING A RETROSPECTIVE 196

Figure 13.2: Example of a timeline created with sticky notes

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=196

FACILITATING A RETROSPECTIVE 197

Figure 13.3: An emotions seismograph drawn on a whiteboard

Emotions seismograph Invite the team to draw lines reflecting their

mood over the iteration—an example is shown in Figure 13.3.

This allows you to see how everyone was feeling at a certain time.

And you can spot patterns when the whole team felt energized—or

despondent.

Art gallery Ask the team to draw a picture of what the project felt like

to them, and post these pictures on the wall in the meeting. Then

give each person an opportunity to explain their drawing.1

Drawing pictures sounds odd, but doing this exercise can be used

to surface serious topics. People are usually very good at finding

metaphors for things that can be difficult to express in words. For

example, one team member drew a picture of a stickman in a box.

1. Patrick Kua has a nice variant on this called “Mr. Squiggle.” See

http://www.thekua.com/atwork/2008/04/retrospective-exercise-mr-squiggle/.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.thekua.com/atwork/2008/04/retrospective-exercise-mr-squiggle/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=197

FACILITATING A RETROSPECTIVE 198

When we asked him about it, he explained to his teammates that he

had been working on his own too long and did not feel like he was part

of the team anymore.

Mining for Gold

Now we need to draw out insights from the experience gained last itera-

tion. Start by surveying the timeline to try to spot where to dig. To iden-

tify rich seams, walk the timeline, and read aloud each sticky note. If a

note seems puzzling to you, invite the team to clarify, but do this care-

fully without demanding that the person who wrote the note explain

it. Try digging down to underlying causes—if a task in the iteration

went really well, what were the factors that enabled this? If you find

general statements like “Testing environment broken” or “Customer too

busy,” ask for examples to illustrate the problem so the team can better

understand the point being made.

If you use colored notes to indicate feelings of the team, you will also see

patterns where notes of the same color tend to bunch together around

key events. The peaks and troughs of mood lines on an emotions seis-

mograph do the same. These can show differences in how the iteration

was experienced by different roles. For example, you might see all the

developers draw positive lines toward the end of the iteration because

they finished all their tasks, but maybe a tester draws a more negative

line because he had all the testing dumped on him on the final day of

the iteration. Draw the team’s attention to the diverging lines to prompt

them to discuss what’s happening here.

After you’ve walked the timeline, the team needs to choose the most

important topics to focus on. Whittle this list down to the team’s top

two or three topics using dot voting. Each team member gets three votes

that they cast by drawing dots next to the topics they want to discuss

most. They can spread their dots between topics, or they can put more

than one dot if a topic is more important to them than all the rest. Tally

the dots after everyone has voted to identify what topics to take forward

into action planning.

Once you have extracted the topics the team wants to focus on, shift

into looking forward for process improvements the team can make in

the next iteration.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=198

FACILITATING A RETROSPECTIVE 199

Rachel Says. . .

Introduce the Elephant in the Room

Professor Randy Pausch started his Last Lecture∗ by saying, “My
father always said, ’When there’s an elephant in the room, intro-
duce them!’ ” He went on to explain that he had only a few
months left to live, and although we cannot change the cards
we are dealt, we get to decide how respond and how we play
the hand.

If you have the feeling that the team is skirting around an issue
in a retrospective, don’t be afraid to raise it. Create an oppor-
tunity to talk about it, but move on if the team members aren’t
ready to discuss it.

∗. http://www.cmu.edu/randyslecture/

Looking Forward

The second half of the retrospective looks forward to the next iteration.

This is when the team works out what they’d like to change about their

process. But you’ll need more than agreement that changes are neces-

sary; the team must work out actions to implement the changes. And

the actions need to get done!

Before starting to create new actions in the retrospective, take the time

to review what happened on the actions from the last retrospective. If

those actions have not been completed, then the team needs to under-

stand why before piling on more actions. Often, the reason actions have

not been completed is that they were poorly defined or had no clear

owner. But it’s also quite common for teams not to get the actions done

because they didn’t have time.

Allow plenty of time in the retrospective to work out a realistic plan of

action that’s clear to everyone on the team. For actions to get done, the

team also needs time to complete them. Before deciding any actions,

work out with the team how much of their time in the next iteration

they can dedicate to process improvements while continuing to develop

software.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.cmu.edu/randyslecture/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=199

FACILITATING A RETROSPECTIVE 200

Action Shoes

There’s a rather quirky book by Edward De Bono called Six
Action Shoes [Bon93] that we like because it makes clear that
there are different sorts of actions by likening them to different
types of shoes. These are as follows:

• Orange gumboots for quick fixes to resolve an immediate
emergency

• Brown brogues for practical action

• Gray sneakers for gathering more data about a problem

• Navy formal shoes for actions that need to follow a stan-
dard process

• Purple boots for actions that require authority

• Pink fluffy slippers for situations that require care for peo-
ple’s feelings

Taking Baby Steps

So, how do you get to new actions that are achievable? Well, if you

can identify a problem or an aspirational goal, then you can ask the

team what the baby steps are toward it. The smaller these action steps

are, the more likely it is that the team can get them done. With each

suggested action step, check whether anything else needs to happen

before they can get started. If there is another activity, then that also

needs to be an action.

Actions are not always about fixing a problem (see the sidebar on the

current page for ideas about different types of actions). You need to

understand a problem before you can fix it, so the team may need to

start with actions to explore the problem and gather data. For example,

if the team is worried about time being lost due to interruptions, they

can make a start by tracking how often the interruptions are happen-

ing and where they come from. Or if the build is very slow, they can

create an action to change the code to output some timestamps to help

pinpoint the problem. When you have more data, you can work out

actions that directly address the problem. You may also need actions to

see whether the changes have resolved the problem. Also, after you’ve

found a solution that works well, you may want to let other teams know

about it and create actions around sharing lessons learned.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=200

DESIGNING A RETROSPECTIVE 201

To create actions that will stick, it’s not enough to identify what needs

to happen; the team also needs to agree on how the changes will

be implemented. Rachel has facilitated some retrospectives with Bas

Vodde who uses a special technique for action planning.2 This can be

especially effective in groups that take a passive stance to retrospec-

tives because they are used to managers deciding actions for them.

Here’s the basic process:

1. Ask each team member to work on their own to write a list of

actions that they would like the team to take.

2. Next the team works in pairs to combine their lists into a consoli-

dated shortlist.

3. Then the pairs join up with other pairs to further reduce their

lists.

4. Eventually the team has a shortlist of actions that have been

refined by the whole group.

Once you have a set of actions that the whole team is happy with,

you can wrap up the meeting. Don’t forget that, after the retrospective,

these actions need to be considered when planning the next iteration.

Post the actions on the team board so they aren’t forgotten during the

next iteration.

Out of Sight, Out of Mind

by Rachel

When facilitating a retrospective with a team recently, Rachel asked the

team for the list of past actions. The team leader had to leave the meeting

room to retrieve them from his desk drawer. Needless to say, none of the

actions had been started. We find teams that post their actions on their

team board are more likely to complete them!

13.2 Designing a Retrospective

Guidelines for running effective meetings (see Section 3.4, Facilitating

Meetings, on page 59) apply to retrospectives too. You’ll need to do some

basic preparation, such as booking a room and making sure you bring

a supply of marker pens and sticky notes. But the hardest bit is usually

working out the agenda.

2. Read “Plan of Action” by Bas Vodde online at

http://www.scrumalliance.org/articles/61-plan-of-action.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.scrumalliance.org/articles/61-plan-of-action
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=201

DESIGNING A RETROSPECTIVE 202

You can suggest different activities to the team to help them:

• Reveal insights

• Agree on a focus for process improvement

• Enable creative problem solving

Decide how long you will need for the retrospective based on iteration

length, how many people are in the team, and whether any remote team

members will be included. New teams usually need a little bit more

time. So, for instance, if iterations are two weeks long, we recommend

you allow ninety minutes for up to ten team members (who can all

attend the meeting in person). Of course, you don’t have to use up all

the time; it’s fine to finish early!

Here’s an example of how to break down the time:

• Review the goal of meeting, and remind the team of the ground

rules (5 minutes).

• Create a timeline (15 minutes).

• Mine the timeline for insights (15 minutes).

• Select the topics to focus on (10 minutes).

• Review the progress on previous actions (5 minutes).

• Generate ideas for improvements (15 minutes).

• Action planning (15 minutes).

This is a good format to start with, but using the same meeting format

every time becomes boring for the team. So, vary the format; Esther

Derby and Diana Larsen describe an excellent selection of alterna-

tive activities that you can use in retrospectives in Agile Retrospectives

[DL06].

Prime Directive

As with any meeting, you need some basic ground rules, such as no

laptops, switching phones to silent, and taking turns to speak. How-

ever, there’s one special ground rule that underpins all retrospectives

called the prime directive (from Project Retrospectives [Ker01]). This

states that “Regardless of what we discover, we understand and truly

believe that everyone did the best job they could, given what they knew

at the time, their skills and abilities, the resources available, and the

situation at hand.”

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=202

BROADER RETROSPECTIVES 203

Make it safe to explore

what went wrong.

People learn more from exploring real situa-

tions where mistakes were made than study-

ing best practice. Setting the prime directive as

a ground rule helps to make it safe to explore

what went wrong because it points us at the situational causes of action

and absolves the people in the situation from blame.

This may sound a bit naive! Surely, there are times when people slipped

up and made mistakes? Although the prime directive seems to deny

that some problems can be caused by individuals, it’s better under-

stood as making clear that retrospectives are not the best place to dis-

cuss individual performance issues. Following this directive, you steer

the conversation away from the blame and destructive criticism that

can damage teamwork. Retrospectives should focus instead on how to

improve team process; if individual performance comes up, shift the

focus back onto team actions.

The prime directive also helps counter fundamental attribution error,

which is the human tendency to explain the actions of other people as

deliberate choice and downplay the situational factors. For instance, a

developer might complain that a tester copied the QA manager on an

email because “she wanted to get the team into trouble” rather than

understanding that there were other factors in play. In fact, she had

been asked by her line manager to copy him on all her emails and was

doing this routinely, not vindictively.

People also like to be consistent with their past actions. By framing

previous action and decisions as reasonable at the time (given the sit-

uation), the prime directive frees up discussion about doing things dif-

ferently the next time. In other words, it won’t be inconsistent to behave

differently because the situation will be different.

We recommend that the first time you run a retrospective, you post the

prime directive on the wall and explain it to the team. If the conversa-

tion starts getting too negative, then you can remind the team to think

about the situational forces at work rather than blaming individuals.

13.3 Broader Retrospectives

While iteration retrospectives focus on more immediate problems affect-

ing the team, there will be issues outside the team that can’t be resolved

in their team retrospectives. This is a sign that you need to run a ret-

rospective with a broader focus to look at the bigger picture. These

broader retrospectives look back over several iterations with a larger

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=203

HURDLES 204

group. This meeting will include people who work with the team, such

as sales, marketing, customer support, operational support, and sys-

tem administrators. A good time to hold these retrospectives is after a

major software release, so they’re often called release retrospectives.

Larger retrospectives often include management and people who don’t

work together on a daily basis, so conversations might be less free flow-

ing, which makes them harder to facilitate. Focus your efforts on get-

ting good at running iteration retrospectives, before trying retrospec-

tives with a larger group, to help you practice facilitation with a more

manageable group size. If you don’t feel confident to lead such a large

or diverse group, consider bringing in an independent facilitator.

Most of the techniques used in retrospectives with the team, such as

the timeline, can also be used in larger retrospectives. The big differ-

ence is that you will be working with a larger group that may not be

as comfortable discussing issues as the team might be. You may need

to include a safety check; this is an anonymous ballot to see how com-

fortable the group is with talking about issues arising from the past

period of work. It can also be more productive to break into subgroups

to discuss topics and then present back to the whole group.

Another difference is that you will be looking back over a longer period

of time. For a retrospective that looks back over many months, some

prework is needed—you need to do some digging so you can provide the

team with reminders of what happened. Bring along to the retrospec-

tive reminders of what stories were worked on, and print some reference

copies of key project artifacts such as release burn charts or wiki pages.

For larger groups, it may also be useful to send an email survey to col-

lect the issues that they want to raise (see the sidebar on the next page).

13.4 Hurdles

The following are some hurdles you may encounter.

Same Actions Come Up

Often the same action comes up again and again. This is usually caused

by not splitting the actions down into tasks that can be achieved in a

single iteration. It helps to set a long-term goal and then create a list of

short-term steps toward the goal. For example, if Continuous Integra-

tion is the goal, then installing tools, configuring tools, and preparing

test suites could be separate actions.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=204

HURDLES 205

Retrospective Prework

Here’s an example of a survey we have sent out to participants
before the retrospective to collect the issues they want to
discuss:

To help me work out the best format for the retrospective, I
would appreciate if you would send me an email answering
the following questions:

• For you, what are the top three topics that need to be
discussed?

• Looking back, are there any high points that stand out for
you?

• Were there any particular events that are still a puzzle for
you?

• What reservations or concerns do you have about this ret-
rospective?

• What impact do you hope this retrospective will have?

Your answers will be kept in strict confidence. I will review every-
one’s comments and identify common themes, but no individ-
ual response will be shared with the group.

If even small actions do not get done, the team needs to discuss why.

There needs to be capacity every iteration for getting these done; other-

wise, there’s not much point in having retrospectives!

Silent Team Members

You may find some team members who are quiet because they don’t

feel comfortable talking in a group. Often programmers are introverts;

plan the retrospective to include writing activities to encourage their

input. You might also experiment with round-robin discussion, inviting

an opinion from each team member in turn. However, make it clear that

it’s OK to say, “Pass.”

Team Is Always Moaning

Sometimes a retrospective turns into a moaning session. The team

becomes overly focused on complaining rather than constructive dis-

cussion. It’s usually about issues that the team perceives as being out-

side their sphere of influence. If the complaints are focused on a specific

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=205

CHECKLIST 206

incident that impacted them, such as servers not being available, talk-

ing about the incident may help clear the air. But try to get the team

back into learning mode by asking, “If this situation happens again,

how should we react to it?” Maybe there are additional checks that the

team can make before starting a piece of work. Or perhaps they can

track how much time they are losing and flag this up to management.

Staying Neutral

When you have been working on the team, you probably want to share

your own impressions about past events and get involved in brain-

storming actions. This is hard to do if you are supposed to be run-

ning the meeting. You also need to be careful not to be seen as “taking

sides,” “playing favorites,” or abusing your position as meeting facilita-

tor to get more airtime for your own favorite topics. If you work along-

side other agile teams, suggest taking turns facilitating retrospectives

for one another’s teams; this way you can be a participant of your own

team’s retrospective. Otherwise, you could rotate the facilitation role

within the team.

13.5 Checklist

• Start the retrospective by looking back to understand what hap-

pened and why. Allow enough time for the team to tell the full

story.

• Spend the second half of the retrospective looking forward and

deciding on a plan of action.

• Watch out for retrospective “smells” that are stopping your team’s

retrospectives from being effective. If the retrospectives aren’t driv-

ing process improvement, think about how you could run them

better.

• Find out what problems the team wants to fix most. Use dot voting

to focus on what the team has energy to work on.

• Don’t commit to more actions than can be completed before the

next retrospective. Even two or three actions completed every iter-

ation can have significant impact over several months.

• If the actions from last retrospective weren’t done, find out why

before adding any more.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=206

Invest in yourself.

Guiding principle

Chapter 14

Growing You
We’ve spent most of the book talking about how you can help your team,

so now we’re going to talk about you. It’s vital to invest in yourself and

in your own learning so you can grow as a person and keep your ideas

fresh. You also need to take care of yourself in order to cope with the

day-to-day demands of being an Agile coach.

As a coach, you’re constantly leading change, so it’s important to be

open to change yourself. Take the time to reflect on your own perfor-

mance and experiences and learn from them rather than repeating the

same mistakes. Expose yourself to new ideas. Seek out ways to develop

and grow.

14.1 Ways to Grow What You Know

You can learn by reading books, articles, magazines, or websites. You

can listen to podcasts, talk to people, or learn by doing. There are

many online discussions, newsgroups, and webinars that you can

participate in.

Work out how you learn best, and set aside time to do it. Here are some

ideas to get you started:

• Commit to read one technical book per month.

• Start your own blog.

• Contribute to an open source project.

• Post once a day to a community mailing list.

• Listen to a podcast on your way to work.

• Spare one evening a month to attend an interest group.

Prepared exclusively for William Anderson

Download at Boykma.Com

WAYS TO GROW WHAT YOU KNOW 208

You may want to research a single topic deeply and read multiple books

on that topic. Or go for breadth of knowledge, and cover several topics

in a week by timeboxing your learning. You’ll be surprised how much

you can learn in an hour.

The greater the variety of material you expose yourself to, the more you

will learn. Improving a team’s performance is not unique to software

development. Add to your repertoire by learning how other industries

approach similar problems. Read widely from multiple fields including

coaching, management, and psychology.

Share What You Learned

Share what you learn with others to consolidate your learning. Look

for an opportunity to give a presentation about your topic either at

work or to a special interest group. You’ll find that preparing your talk

reinforces your learning. Delivering the talk gives you confidence that

you really have learned it.

It is fine to open your presentation by saying that you are not an expert

on this topic and inviting suggestions from the audience if they have

something to contribute. After the talk, extend your learning by follow-

ing up on questions people ask you.

Get Some Training

There are some excellent training courses on coaching, facilitation,

leadership, and interpersonal skills. Training courses provide a chance

to role play and try new skills in a safe environment, where it is OK to

make a mistake and where you won’t cause offense.

There are also certifications you can get in coaching and in facilitation,

such as the International Association of Facilitators (IAF) Certified Pro-

fessional Facilitator qualification. Certification requires in-depth knowl-

edge of a topic and can provide you with confidence that you are doing

things properly.

Speak with Ease

by Liz

A few years ago, I was going through a bad spell. I’d left a job that had

ended badly, and it had taken a while—and many job interviews—to find

my next job. My confidence at work was very low. I no longer felt

comfortable talking freely to people more senior than me.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=208

WAYS TO GROW WHAT YOU KNOW 209

Rachel Says. . .

Remembering What You Read

I read a lot of technical books, and I want to remember the key
points. There are some techniques that can help.

One technique, recommended to me by Linda Rising, is to
keep a card in the back of the book, and as you read, note
down interesting quotes and ideas with page numbers. After
you finish reading the book, consolidate by writing a summary
of what you learned from the book. Later you can pick up the
book, flip to the summary you wrote, and find the bits you want
to reference quickly.

Another technique is described by Tony Buzan in Use Your
Head [Buz03]. Instead of starting at the front of the book and
working through to the back, approach the book as you would
work on a jigsaw puzzle. Examine the pieces, sort them into
similar piles, find the corners, and build the edges. Fill in easy
bits first and difficult bits last with careful reference to the big
picture on the box.

Before you start reading the book, create a mindmap of what
you already know about the subject. Get clear about your
goals and questions to be answered by reading the book. Now
follow these reading steps:

• Overview: Browse the book to get an idea of structure by
looking at all material not in main body of print, such as
the figures, glossary, and so on.

• Preview: Read just the introductions and summaries for
each chapter to build an understanding of the book’s
main points.

• Inview: Read the content to fill in your understanding, skip-
ping any difficult sections.

• Review: Check through the remainder of the book.

Add to your mindmap as you go. When you go back to the
book months or years later, your mindmap will help you recall
what you learned.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=209

MAKING A PLAN 210

On a whim I decided to join Toastmasters.1 Every week I went to a pub

where we gave prepared speeches and critiqued each other.

I was very nervous giving my first speech. I was advised to speak about

myself, so I told a personal story. The speech came across well, and I got

loads of positive feedback. My confidence started to grow.

For the next two years, I went regularly to Toastmasters. I learned that if

your tale comes from your heart, it will come across well. I learned you

need to speak with passion to win people over. I also learned how to give

constructive criticism to others, how to find some good points and some

bad points about everybody’s speech, and how to present that

information to them.

This was a great place to practice in a safe environment, and my

confidence blossomed. Soon I was so comfortable with public speaking

that I started to apply to speak at conferences.

I would recommend Toastmasters to anyone, because improving the way

you speak, learning how to give and to receive feedback, and learning how

to convince people of your view are invaluable lessons. Plus you’ll make

good friends and have a great time.

14.2 Making a Plan

We recommend you create your own personal development plan. Think

hard about what you like about your job and where your interests lie.

Set some personal goals and objectives to take you along on the devel-

opment path you choose. You’ll also need to consider how much time

and money you are prepared to spend implementing your plan.

We are often surprised by the attitude of many employees to profes-

sional development. When we suggest reading a book or attending a

seminar, the usual response is “I will if I can get my employer to pay for

it,” and if the employer won’t cough up, then it seems this is completely

out of the question. We recommend you challenge this attitude. In the

software industry, it is rare to have a job for life. How can you expect

your employer to invest in your development if you are not prepared

to do the same? Do you really want to be pushed down a career path

rather than taking responsibility for building the experience to support

where you want to go?

1. http://www.toastmasters.org/

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.toastmasters.org/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=210

BUILDING YOUR NETWORK 211

Don’t go overboard. Bear in mind other commitments; your plan needs

to be achievable. If you’re self-employed, it’s fairly straightforward to

allocate a budget for buying books, attending conferences, and getting

training. If you’re an employee, share your plans for personal develop-

ment with your line manager. Demonstrating that you are prepared to

invest some of your own time and money will show how serious you are,

which can help convince your manager to back you with more funds.

Whether you get financial backing or not, we’re sure that you won’t

regret it—learning is its own reward.

14.3 Building Your Network

Meeting up with other people who care about Agile and care about soft-

ware helps you reset your compass. Explaining your frustrations to

others is a relief but also helps to put things into perspective. Other

people will have different ideas, experiences, and points of view that

can challenge your thinking.

Often you are so deeply involved in your own company that it is hard to

see the forest for the trees, but when you listen to others, things jump

out at you. You’ll also find that listening to other people’s frustrations

and suggesting ideas for them to try is great practice for coaching.

Don’t just focus on the Agile software community. Seek out coaches

or facilitators who work in other industries, who can help you develop

those skills, and who gain perspective on your current job role.

Conferences

There are a lot of conferences devoted to Agile software development,

large and small.

Attending at least one a year is a great way to gain new ideas and

insights. It is also a way to connect with the wider Agile community.

As well as learning from the sessions, most people find they have useful

insights when mingling with the other attendees in between sessions or

at the pub afterward. There are also Agile unconferences2 that encour-

age participants to create their own conference agenda; you’re welcome

to propose a session on a topic that interests you.

2. http://www.agileopen.net/

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.agileopen.net/
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=211

BUILDING YOUR NETWORK 212

You’ll get even more out of the experience if you contribute to a confer-

ence by presenting a workshop or experience report. When you prepare

for your session, you’ll learn more about your chosen topic. Then when

you present it, you’ll likely meet people who share your interests. Being

a presenter also makes the conference more affordable, because regis-

tration for presenters is often subsidized or free.

Conference Junkie

by Rachel

I love going to conferences and meeting up with experts and practitioners

face-to-face to hear all the latest new ideas. I’ve also discovered I love

organizing conferences. This started with XPDay back in 2001, and last

year I chaired Agile 2008 conference in Toronto with 400 sessions and

1,600 attendees. Through doing this I’ve learned a lot about leading

distributed teams.

You don’t need to go as far as running Agile events; simply being a

reviewer is an eye-opening experience. You get to see how decisions are

made about what is selected for the program or not. This helps you

improve your own session proposals the next time around.

User Groups

Another great way to share ideas and get support is to go to a local

Agile interest group. These groups normally meet weekly or monthly in

pubs or company offices. Some groups have presentations by speakers,

while others are more informal.

User groups exist in most major cities around the world.3 Because they

are local to you, this is a place where you can meet people who will

become friends or mentors and people who can help you regularly over

a long time.

Mailing lists and online forums are another way to get involved. Yahoo,

Google, and LinkedIn all have active Agile groups. You will get much

more out of these online communities if you participate rather than just

lurk. Reading conversations helps you learn, and replying to questions

posed makes you think through the problem more deeply. Phrasing

your answer constructively allows you to practice coaching people in

different situations.

3. See http://www.agilealliance.org/usergroups.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.agilealliance.org/usergroups
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=212

PERSONAL REFLECTIONS 213

14.4 Personal Reflections

Reflect on experiences you have had, and think about how recent expe-

riences are linked to earlier ones to see connections and learn from

them. If you did something that worked, what was it you did? Why did

it work? Would it work again? When your actions don’t have the effect

you intended, what went wrong? How might you approach a similar

situation next time?

Keep a Journal

Consider writing a journal either daily or weekly. This is a very good

way of reflecting on your performance and improving it.

My Journal

by Liz

I like to spend the first half hour of my working day in a closed office

writing my journal and reading yesterday’s entries. I find it impossible to

think deeply and write my journal at my desk in the middle of an open

plan office, because it is not private and because writing my journal

involves a lot of staring into space and chewing my pen.

Write down your

thoughts to help

articulate your feelings.

Writing down your thoughts helps you think

about recent situations and how you feel about

how you handled them. As you examine your

behavior, you reflect on alternatives ways you

could have acted. Force yourself to write at

least three pages, because you need to write more than just the obvious,

surface layer reactions for a journal to be powerful. Writing a journal is

not always easy. Sometimes it is very painful to articulate what you are

feeling, and it’s painful to be honest and realize where problems stem

from.

Read your journal periodically, and you will be surprised how far you

have come. Patterns you didn’t notice at the time might now be obvi-

ous. With hindsight, you may be surprised by your initial reactions and

thoughts. You may be kinder to your past self and realize that it wasn’t

all your fault—that there were other contributing factors.

Success Journal

A useful variation on a journal is a success journal where you write only

about the things you’ve done well. Reflect on all the good things you’ve

done, rather than constantly criticizing yourself. Over time this can be

a hugely effective tool, because you gain confidence and realize you are

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=213

PERSONAL REFLECTIONS 214

doing an awful lot of things right. Keep in mind that you get what you

focus on.

Success breeds success, problems breed problems.

This is part of an approach called appreciative inquiry, which can be

applied in many situations. The basic idea is to build organizations

around what works, rather than trying to fix what doesn’t. For instance,

you could run a retrospective where the team discusses only what is

going well.

Of course, the following advice also applies: “If you do what you’ve

always done, you’ll get what you’ve always gotten.”4 Find a balance

between focusing on your strengths (and how you can use them more)

and looking at what else needs to improve. Keep in mind that very suc-

cessful people tend to spend most of their time doing things that they

are good at.

Get a Coach

Talking to someone else often enables you to solve your own problems.

They may see how your actions led you into a situation more easily

than you can. And if they are experienced and tactful in how they lead

you to consider past mistakes, you are more likely to learn from them.

It’s also good to turn the tables and experience being a coachee. Not

only will you learn tips and techniques on how to coach, but you will

also learn what it feels like to be coached. If done properly, you’ll find it

invigorating and empowering; but done poorly, you may find it aggra-

vating and that it reinforces resistance.

If there is no one suitable at work who could be your coach, you might

find someone at your local user group or at a conference. It is possible

to find a coach who can work with you over the phone and by email,

but it is better if you can meet up once a month for lunch or similar.

Discuss what happened over the last month, what the highlights were,

and what mistakes you’re concerned about, as well as what you learned

and what you still want to learn.

Set stretch goals for the next month, preferably SMART5 goals that can

be achieved within a month. A personal trainer can push you further

4. Quote from Anthony Robbins.
5. Specific, Measurable, Achievable, Realistic and Timely

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=214

GETTING COMFORTABLE 215

than you can push yourself, and a respected coach can do the same by

challenging you.

Take a Break

Take time in your day to reflect. Going for a walk is an excellent time

to think about how things are going and planning for the future. Swim-

ming, walking, running, yoga, or even a hot bath are all excellent ways

to reflect and unwind. The important thing is that you are not inter-

rupted so you can relax and let your mind drift. Dreaming about the

future is an important step to making it happen. Thoughts need time

to make it from your subconscious to your conscious. You need time to

talk to yourself.

If you don’t take time to unwind, you will be unable to put events into

perspective and context. If you are stressed, everything seems bigger,

worse, and more important than it really is.

Try to get a sense of perspective. What are you stressed about? When

you look back a year from now, will it still seem important? If not, then

is it important enough to worry about now?

We like this quote from Edith Seashore: “Someday, We’ll look back on

this and laugh. Why not now?”6

14.5 Getting Comfortable

To be an Agile coach, you need to develop a thick skin; you can’t get

upset when people don’t follow your advice. Not everybody appreciates

being challenged and stretched, and they may try to take it out on you.

Be Kind

As well as being kind to yourself, don’t judge others harshly. Always

assume everyone is doing their best and that they do everything for a

reason. Now, their best may not be great for a variety of reasons, and

you may not understand their motivation for behaving the way they do.

So, try to find out. Don’t guess and then judge and gossip. Go talk to

them, find out about them—you may be surprised.

Like the old saying goes, “Don’t judge someone until you have walked a

mile in their shoes.” There are all sorts of reasons why people’s behavior

6. Personal communication from Gerald M. Weinberg

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=215

GETTING COMFORTABLE 216

Liz Says. . .

Be Kind to Yourself

I was at a conference once, complaining to someone I
respected about all the mistakes I was making at work and how
hard it was to coach a team. She just looked at me and said:

“And you don’t think anyone else makes mistakes?”

“Well, no. I guess everyone makes mistakes.”

“So why are you being so hard on yourself?”

“Because. . . ” a hundred reasons ran through my mind like: I’m
meant to be good, it’s embarrassing to make obvious mistakes,
I want to do better.

“Be kind to yourself,” she said.

That really struck me. Like most people, I am very harsh on
myself. Expecting myself not to make mistakes, to do better, to
always be competent. Why not be kind to myself? When my
son makes a mistake, I give him a hug, tell him to not worry, and
tell him next time he’ll do better. Why don’t I do that to myself?

deteriorates at work. Their personal life may be going through a rocky

patch, or they may be worried about losing their job. They may feel

like they have to compromise their values or are being pushed beyond

their comfort zone. If you have never performed badly at work, consider

yourself very lucky. You have probably not been placed in an overly

stressful situation.

The Road Ahead

Don’t let your job grow stale. If you feel you have outgrown your current

role, there may be other opportunities within your company.

• Can you move to a new team, project, or department?

• Can you coach more people than before?

• Can you coach different job roles than you have been doing?

• Can you mentor someone else?

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=216

CHECKLIST 217

We hope you’ve found this book a useful guide to being an Agile coach

and that it takes you to interesting places. Our parting words to you are

these: keep a eye on the road ahead to ensure your career is running

the way you want it to run. Make sure your work is always challenging,

preferably just a little too hard for you so you stay engaged.

14.6 Checklist

• Make time to learn. Create a plan of what you want to learn this

month and for how you will do so.

• Make time to reflect. The most powerful lessons don’t come from

books but from learning from our own mistakes—small or large.

• Take time out to destress. Work can seem very important, and it is

easy to let it swallow you up. Keep things in perspective by making

time for yourself every day.

• Meet other people who care about the same things as you. Local

interest groups and conferences are great places to meet people

who will help you keep your passion for Agile alive.

• Be kind to yourself. Forgive your mistakes. Learn from them, make

amends, and move on.

• Be kind to others. Don’t attribute bad intentions to people.

Instead, find out why they are acting that way. Differences in opin-

ion and style in a team are good.

• Don’t let your job grow stale. Keep pushing yourself at work; oth-

erwise, it will no longer be fun.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=217

Appendix A

Bibliography

[Bec00] Kent Beck. Extreme leadership: Celebrate accomplishment.

File on Extreme Programming discussion list, 2000.

[Bec07] Kent Beck. Implementation Patterns. Addison-Wesley, Read-

ing, MA, 2007.

[Bel05] Arlo Belshee. Promiscuous pairing and beginner’s mind:

Embrace inexperience. Proceedings of the Agile 2005 con-

ference, pages 125–131, July 2005.

[Bon93] Edward De Bono. Six Action Shoes. HarperCollins Publish-

ers Ltd, London, 1993.

[Buz03] Tony Buzan. Use Your Head. BBC Active, London, UK, 2003.

[Coh06] Mike Cohn. Agile Estimating and Planning. Prentice Hall,

Englewood Cliffs, NJ, 2006.

[DL06] Esther Derby and Diana Larsen. Agile Retrospectives: Mak-

ing Good Teams Great. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2006.

[Eme01] Dale H. Emery. Resistance as a resource. File on website,

2001.

[Fea04] Michael Feathers. Working Effectively with Legacy Code.

Prentice Hall, Englewood Cliffs, NJ, 2004.

[Gre] James Grenning. Planning poker or how to

avoid analysis paralysis while release planning.

http://www.renaissancesoftware.net/files/articles/PlanningPoker-v1.1.pdf.

Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.renaissancesoftware.net/files/articles/PlanningPoker-v1.1.pdf

APPENDIX A. BIBLIOGRAPHY 219

[Her93] Frederick Herzberg. The Motivation to Work. Transaction

Publishers, Piscataway, New Jersey, 1993.

[Hil] Linda A Hill. Becoming a Manager. Harvard Business School

Press, Boston.

[HMMP] Julian Higman, Tim Mackinnon, Ivan Moore, and Dun-

can Pierce. Innovation and sustainability with gold cards.

http://www.agilealliance.com/system/article/file/999/file.pdf.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

[Hun08] Andy Hunt. Pragmatic Thinking & Learning: Refactor Your

Wetware. The Pragmatic Programmers, LLC, Raleigh, NC,

and Dallas, TX, 2008.

[Jan82] Irving L. Janis. Group Think. Houghton Mifflin, Boston,

Massachusetts, 1982.

[Jef] Ron Jeffries. Essential XP:

Card, conversation, confirmation.

http://www.xprogramming.com/xpmag/expCardConversationConfirmation.htm.

[Ker01] Norman L. Kerth. Project Retrospectives: A Handbook for

Team Reviews. Dorset House, New York, 2001.

[KLT+96] Sam Kaner, Lenny Lind, Catherine Toldi, Sarah Fisk, and

Duane Berger. The Facilitator’s Guide to Participatory

Decision-Making. New Society Publishers, Gabriola Island,

BC, 1996.

[Kni07] Henrik Kniberg. Scrum and XP from the Trenches. InfoQ,

Toronto, 2007.

[Koh93] Alfie Kohn. Punished by Rewards: The Trouble with

Gold Stars, Incentive Plans, A’s, Praise, and Other Bribes.

Houghton Mifflin Company, Boston, 1993.

[Len05] Patrick Lencioni. Overcoming the Five Dysfunctions of a

Team: A Field Guide. Jossey-Bass, A Wiley Company, San

Francisco, 2005.

[Lit03] Jim Little. Change your organization (for peons). Proceed-

ings of the 2003 Agile Development Conference, pages 54–59,

June 2003.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://www.agilealliance.com/system/article/file/999/file.pdf
http://www.xprogramming.com/xpmag/expCardConversationConfirmation.htm
http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=219

APPENDIX A. BIBLIOGRAPHY 220

[LV09] Craig Larman and Bas Vodde. Scaling Lean and Agile Devel-

opment. Addison-Wesley, Reading, MA, 2009.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software

Craftsmanship. Prentice Hall, Englewood Cliffs, NJ, 2008.

[MR04] Mary Lynn Manns and Linda Rising. Fearless Change: Pat-

terns for Introducing New Ideas. Addison-Wesley, Reading,

MA, 2004.

[Nor06] Dan North. Behavior modification. Better Software, March,

2006.

[Ohn88] Taiichi Ohno. Toyota Production System: Beyond Large Scale

Production. Productivity Press, New York, 1988.

[PP06] Mary Poppendieck and Tom Poppendieck. Implementing

Lean Software Development: From Concept to Cash. Addi-

son-Wesley, Reading, MA, 2006.

[Roc06] David Rock. Quiet Leadership. Harpercollins, New York,

2006.

[Ros03] Marshall Rosenberg. Nonviolent Communication: a Language

of Life. Puddle Dancer Press, Encinitas, CA, 2003.

[Wak04] William C. Wake. Refactoring Workbook. Addison-Wesley,

Reading, MA, 2004.

[Wei85] Gerald M. Weinberg. The Secrets of Consulting. Dorset

House, New York, 1985.

Report erratum

this copy is (P1.0 printing, July 2009)
Prepared exclusively for William Anderson

Download at Boykma.Com

http://books.pragprog.com/titles/sdcoach/errata/add?pdf_page=220

Index
A
Actions, 193, 195, 199, 200, 202

Advice, 36, 77

Agile coaching

agreement building, 43–44, 164

attitude, 21–23

change, 47–62

checklist, 61

hurdles, 60–61

introducing, 47–51

learning and, 56–58

meeting facilitation, 59–60

questions and, 52–56

checklist, 34

comfort with, 215

comfort with role, 31

daily standup role, 85

evaluation of, 31

getting started, 27f, 27–29

habits, 21

hurdles, 33–34, 176

internal vs. external, 26

judging others, 215

mindmap for, 20

mistakes, making, 216

motivation, 68–72

networking, 211

pace and, 30–33

personal development plan, 210

preparation for, 24–27

reflecting and, 213

responsibilities, 19–21, 25

secretary, avoiding role of, 107

using a coach for, 214

see also Communication; Meetings;

Planning; Retrospectives

Agile Estimating and Planning (Cohn),

108

Agile Retrospectives: Making Good

Teams Great (Derby & Larsen),

202

Agile Toolkit, 24n

Agile, as religion, 48

Agreement building, 43–44, 164

Analysis paralysis, 163

Appreciative inquiry, 214

Attitude, Agile coaching, 21–23

Avatars, 122, 157, 158f

B
Background listening, 38

Backlog, 142

Backup board, 112

Balance, 22

Beck, Kent, 51, 166

Becoming a Manager (Hill), 31

Beginner’s Mind, 173

“Behavior modification” (North), 97

Belbin Self-Perception Inventory, 67

Belshee, Arlo, 173

Body language, 36, 85

Books, retention of, 209

Branching, 161

Breaks, 215

Broken windows theory, 172

Bug-tracking software, 146

Bugs, 137–142

see also Code; Testing

Build token, 155f

Build-o-matic, 157

Burndown charts, 126f, 126

Burnup charts, 127f, 127

Buzan, Tony, 209

C
Card, Conversation, Confirmation, 92

Cards, 93–96, 104, 130

see also Sticky notes

Change, leading, 47–62

Prepared exclusively for William Anderson

Download at Boykma.Com

CHARTS 222 EXTERNAL COACHES

checklist, 61

hurdles, 60–61

introducing, 47–51

learning, 56–58

questions and, 52–56

Charts, 125f, 126f, 127f, 125–128

Cirillo, Francesco, 177

Coachee, 214

Coaching, see Agile coaching

Code

checklist, 178

collective ownership, 168–172

comments in, 167, 168

hurdles, 175–177

incremental design, 163–168

pair programming, 173–175, 177

style of, 169

coding dojos, 151

Cohn, Mike, 108

Collective code ownership, 168–172

Comments, in code, 168

Communication

agreement building, 43–44

body language, 36, 85

coding style, 169

comments, in code, 168

conflict resolution, 42

design and, 165

explaining Agile techniques, 24

feedback, 39–40

introductions, 24

language use, 22

listening skills, 35–39

networking and, 211

pair programming, 173

of problems, 49

PrOpER cycle and, 27f, 27–29

user stories and, 92–93

see also Daily standup; Facilitation;

Feedback; Visibility

Company politics, change and, 60

Conferences, learning and, 33, 58, 211

Conflict resolution, 42

Consensus, see Agreement building

Continuous Integration (CI), 155f,

154–157, 158f

Cross-functional teams, 72

Culture, 45

Customers

feedback and, 143

iteration planning, 103, 114

responsibilities toward, 68

results, demonstrating, 190

testing and, 134

user stories, 97

see also Planning; User stories

D
Daily standup, 76–90

checklist, 90

coach, role in, 85

flow, 80

hurdles, 86–90

issues, 82–83

meeting length, 87

purpose of, 78–83

scheduling, 84

standing vs. sitting, 77–78

De Bono, Edward, 200

Deadlines, missing, 143–145

Deliverables, see Planning; Tracking

progress

Demonstration, 180–191

checklist, 190

excuses for avoiding, 180

hurdles, 188–190

preparation for, 182f, 180–184

roles and responsibilities, 184–187

sample, 186

Deployment tests, 188

Derby, Esther, 202

Design, 164

Developers, testing and, 133, 142

Dinwiddie, George, 64

Documentation, 100

“Done”, 135f, 134–136, 143–145, 165

Dot voting, 198

E
Edison, Thomas, 69

Education, see Learning

Electronic team boards, 124

Elephant in the room, 199

Emery, Dale H., 50

Emotions seismograph, 197f, 197

“Essential XP: Card, Conversation,

Confirmation” (Jeffries), 92

Example, leading by, 21, 57, 77

Experience, 33

Experimenting, in PrOpER cycle, 27,

28, 51, 69, 90

External coaches, 26

Prepared exclusively for William Anderson

Download at Boykma.Com

EXTERNAL TEAMS 223 LEARNING

External teams, 134

“Extreme Leadership: Celebrate

Accomplishment” (Beck), 51

Extreme Tuesday Club, 30

F
Facilitation, Agile coaching, 20

Facilitator’s Guide to Participatory

Decision-Making (Kaner, et al.), 43

Fearless Change: Patterns for

Introducing New Ideas (Manns &

Rising), 57

Feathers, Michael, 153

Feedback

Agile coaching, 20

checklist, 46

communication and, 39–40

Continuous Integration, 156

demo meetings, 185

meetings and, 59, 86

positive, 41

story completion and, 142–143

testing and, 143

FIT, 101

Five Whys, 54

Food, at meetings, 185

fundamental attribution error, 203

G
Goals, 69, 144, 200

Gold cards, 70

Gradients of agreement, 43, 150

Grenning, James, 110

Groupthink: Psychological Studies of

Policy Decisions and Fiascoes

(Janis), 42

H
Help, asking for, 53

Herzberg, Frederick, 71

Higman, Julian, 70

Hill, Linda A., 31

Hit rate, 114

Hofstede, Geert, 46

Hunt, Andy, 45, 172

Hygiene factors, 71

I
Implementing Lean Software

Development: From Concept to

Cash (Poppendieck &

Poppendieck), 146

Incentives, 71

Incremental design, 163–168

Index cards, 93–96, 104, 130

see also Sticky notes

Information radiator, 78

Informative workspace, 67

Innovation, 69

“Innovation and Sustainability with

Gold Cards” (Higman et al.), 70

Internal coaches, 26

Introductions, 24

Iterations, planning, 111

J
Janis, Irving L., 42

Jeffries, Ron, 92

Jones, Kerry, 108n

Journal, 213

success journal, 213

Judgment, of others, 215

K
Kanban, 113, 117n

Kaner, Sam, 43

Kata, 151

Kerth, Norman L., 194, 202

Kniberg, Henrik, 192

Kohn, Alfie, 71

Kua, Patrick, 197n

L
Language, 22

see also Communication

Larman, Craig, 73

Larsen, Diana, 202

Lateness, 86

Leading, by example, 21, 57, 77

Learning

Agile coaching, 20

coaches for, 214

encouraging, 56–58

growing, as coach, 207–210

learn as you go, 23

mistakes and, 203

reflecting on, 213

showing how, 49

Test-Driven Development and, 151

user groups and, 212

Prepared exclusively for William Anderson

Download at Boykma.Com

LENCIONI 224 PRIORITIES

see also Training

Lencioni, Patrick, 65

Listening, 35–39

background, 38

body language and, 36

nonviolent communication and, 42

support for, 48

Lowery, Mike, 114n

M
Manns, Mary Lynn, 57

Marcano, Antony, 140

Meetings, 76–90

checklist, 90

coach, role in, 85

daily standup, purpose of, 78–83

demo, 180, 181

dispersed teams, 101

facilitating, 59–60

food and, 185

hurdles, 86–90, 116

index cards and, 93–96

length of, 87

scheduling, 84

standing vs. sitting, 77

see also Planning; Retrospectives

Mindmap, reading and, 209

Mistakes, 216

Monitors, 174

Moore, Ivan, 157

Motivation, 68–72

The Motivation to Work (Herzberg), 71

Myers-Briggs Type Indicator (MBTI), 67

N
Networking, 211

Nonviolent Communication (Marshall),

42

Nonviolent communication, 42

North, Dan, 97

Note taking, 39, 59, 94

Noticing, in Agile coaching, 20

O
Ohno, Taiichi, 54

Options, PrOpER cycle and, 27, 34

Overcoming the Five Dysfunctions of a

Team: A Field Guide (Lencioni), 65

Overcommitment, 115, 144

Ownership, 50

P
Pace, 22, 30–33

Pair programming, 171, 173–175, 177

Ping-pong programming, 176

roles, 173

Pairing ladder, 125f, 125

Parking Lot, 82

Patience, 22, 144

Patton, Jeff, 117n

Pausch, Randy, 199

Personal development plan, 210

Ping-pong programming, 176

“Plan of Action” (Vodde), 201

Planning, 102–118

checklist, 117

demo meeting, 182f, 180–184

estimating, 109f, 104–110

hurdles, 114–117

preparation for, 103

priorities for, 103–104

recipe for, 102

retrospectives, 201–203, 205

reviewing and committing, 108–113

testing and, 133, 137

tracking progress, 114

visibility, 119–131

charts, 125f, 126f, 127f, 125–128

checklist, 130

hurdles, 129–130

maintenance, 128–129

team boards, 119–125

see also Code

Planning Poker, 110

“Planning poker or how to avoid

analysis paralysis while release

planning” (Grenning), 110

“Player-coach”, 31

Politics, change and, 60

Pomodoro technique, 177

Poppendieck, Mary, 146

Positive feedback, 41

The Pragmatic Programmer: From

Journeyman to Master (Hunt &

Thomas), 172

Pragmatic Thinking and Learning:

Refactor Your Wetware (Hunt), 45

Preparation

Agile coaching, 24–27

see also Planning

Prime directive, 202

Priorities, for planning, 103–104

Prepared exclusively for William Anderson

Download at Boykma.Com

PROBLEM SOLVING 225 TEAM BOARDS

Problem solving

Agile coaching, 33–34

change and, 49

PrOpER cycle and, 27f, 27–29

team building, 72–73

Proceedings of the 2003 Agile

Development Conference, 30

Project Retrospectives: A Handbook for

Team Reviews (Kerth), 194, 202

Projectors, 93, 104, 124

“Promiscuous Pairing and Beginner’s

Mind” (Belshee), 174

PrOpER cycle, 27f, 27–29, 48

Public speaking, 210

Punished by Rewards: The Trouble with

Gold Stars, Incentive Plans, A’s,

Praise, and Other Bribes (Kohn),

71

Q
Questions, 37

change and, 52–56

Five Whys, 54

refraining from, 55

software release, 188

thinking questions, 53

Quiet Leadership: Six Steps to

Transforming Performance at Work

(Rock), 53

R
Reading, recall and, 209

Recipe, for planning, 102

Refactoring, 165

tools, 168

Refactoring Workbook (Wake), 166

Reflections, 213

Reflective questions, 54

Relationships, see Communication;

Teams

Release burnup charts, 127f, 127

Release plans, see Planning; Tracking

progress

Release retrospectives, 204

Remembering, reading and, 209

Remote testers, 145

“Resistance as a Resource” (Emery), 50

Respect, 66

Retrospectives, 50, 77, 192

checklist, 206

designing and planning, 201–203

facilitating, 196f, 197f, 192–201

focus of, 203–204

hurdles, 204–206

planning and designing, 205

Rewind and fast-forward, 29

Rising, Linda, 41, 57, 209

Rock, David, 53

Role responsibilities, 67–68

Rosenberg, Marshall, 42

S
Safety check, 204

Scaling Lean and Agile Development

(Larman & Vodde), 73

Scheduling

daily standup, 84

demo meeting, 182f

see also Planning

Scotland, Karl, 113

Scrum method, 83

Scrum of scrums meeting, 65, 87

Scrum and XP from the Trenches

(Kniberg), 192

Seashore, Edith, 215

The Secrets of Consulting (Weinberg), 32

Shore, James, 30, 154

Six Action Shoes (De Bono), 200

SMART goals, 214

Software release, 187–188

Source control, 34, 135

South Park Studio, 157

Speaking, 210

Specialization, 171

Spikes, 108, 136

Sticky notes, 93, 94, 101, 124, 130

Stories, see User stories

Story card matrix, 109f

Story templates, 95

Story tests, 96, 98

Given-When-Then, 97

Study groups, 57

Success, celebrating, 70

Support

Agile coaching, 21, 25, 32

building, 48

Test-Driven Development, 157–160

T
Team boards, 77, 78, 119–131

bug reporting, 140

Prepared exclusively for William Anderson

Download at Boykma.Com

TEAMS 226 USER STORIES

charts and, 125f, 126f, 127f,

125–128

checklist, 130

hurdles, 129–130

maintenance, 128–129

overview of, 119–125

retrospectives, 201

Teams

actions, 193, 195, 199, 200, 202

agreement building, 43–44, 164

capacity of, 109

checklist, 74

coaching attitude for, 21–23

cohesiveness of, 63–67

conflicts, resolving, 42

demo meeting roles, 181, 184–187

dispersed, 101, 124, 145

feedback, providing, 39–40

goals and, 69

hurdles, 72–73

introductions and, 24

learning, encouragement of, 56–58

meeting facilitation, 59–60

meeting notes, 39, 59

motivating, 68–72

overcommitment, 115

ownership in, 50, 80, 88

role responsibilities, 67–68

size of, 73

specialization, 171

testing and, 133–134

type profiling, 67

working together, 133

workspace, 66–67, 174

see also Code; Daily standup;

Planning; Visibility

Tech talks, 58

Technical preparations, demo, 184

Test coverage, 160, 162

Test doubles, 149

Test-Driven Development (TDD),

147–154

challenges in implementing, 148

checklist, 161

described, 148

hurdles, 160–161

learning, 151

sustaining efforts, 157–160

test strategy, 152f

time to run tests, 159

transitioning to, 147

Testing, 147–162

bugs and, 137–142

checklist, 161

completion of, 135f, 134–136

Continuous Integration, 155f,

154–157, 158f

deployment, 188

feedback and, 142–143

hurdles, 160–161

planning for, 137

remotely, 145

responsibility of, 133–134

stories, 96, 98

sustaining efforts, 157–160

Test-Driven Development, 152f,

147–154

unit tests, 153

see also Code

Thinking questions, 53

Thomas, Dave, 172

Time

coaching and, 33

demo meeting, 182f

for design, 164

estimating, 144

meeting length, 87

meeting schedules, 84

planning and, 109f, 104–110, 117

sense of, 29

testing and, 159

Timeline, retrospectives, 194, 196f

Toastmasters, public speaking and,

210

Toyota Production System: Beyond

Large Scale Production (Ohno), 54

Trac, 142

Tracking progress, 114, 125

Training, 28, 88, 151, 177, 208

see also Learning

Trust

building, 65

listening and, 38

questions and, 56

Two-part daily standup, 82

Type profiling, 67

U
Unit tests, 153

Unwinding, 215

User groups, 24, 58, 212

User stories, 91–101

Prepared exclusively for William Anderson

Download at Boykma.Com

Use Your Head (BUZAN) 227 WRITING

bugs as, 141

cards and, 93–96

checklist, 101

completing, 189

conversation and, 92–93

documentation, 100

hurdles, 100–101

life cycle of, 91–92

preparation for, 103

story tests, 96–99

see also Code

Use Your Head (Buzan), 209

V
Velocity, 109, 114, 117, 118, 125, 143,

186

Visibility, 119–131

charts, 125f, 126f, 127f, 125–128

checklist, 130

hurdles, 129–130

maintenance and, 128–129

of test coverage, 160

retrospectives, 201

TDD and, 160

team boards, 119–125

Visual management, 121n

Vodde, Bas, 73, 201

W
Wake, William C., 166

Weinberg, Gerald M., 32

Whiteboards, 105, 122, 152f, 164, 165,

185, 197f

“Who Do You Trust” talk (Rising), 41

Working Effectively with Legacy Code

(Feathers), 153

Workspace, 66–67, 77, 128, 174

Writing, 213

Prepared exclusively for William Anderson

Download at Boykma.Com

The Pragmatic Bookshelf
Available in paperback and DRM-free PDF, our titles are here to help you stay on top of

your game. The following are in print as of July 2009; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2008 9781934356173 200

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Continued on next page

Prepared exclusively for William Anderson

Download at Boykma.Com

pragprog.com

Title Year ISBN Pages

Learn to Program, 2nd Edition 2009 9781934356364 230

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Continued on next page

Prepared exclusively for William Anderson

Download at Boykma.Com

Title Year ISBN Pages

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Prepared exclusively for William Anderson

Download at Boykma.Com

Agile Practices

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to • apply the principles of

agility throughout the software development

process • establish and maintain an agile working

environment • deliver what users really want

• use personal agile techniques for better coding

and debugging • use effective collaborative

techniques for better teamwork • move to an agile

approach

Practices of an Agile Developer:

Working in the Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragprog.com/titles/pad

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • you’re frustrated at lack of progress on

your project. • you want to make yourself and your

team more valuable. • you’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • you’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • you need to get software out the

door without excuses.

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragprog.com/titles/prj

Prepared exclusively for William Anderson

Download at Boykma.Com

http://pragprog.com/titles/pad
http://pragprog.com/titles/prj

Agile Practices

Agile Retrospectives
Mine the experience of your software development

team continually throughout the life of the project.

Rather than waiting until the end of the project—as

with a traditional retrospective, when it’s too late to

help—agile retrospectives help you adjust to

change today.

The tools and recipes in this book will help you

uncover and solve hidden (and not-so-hidden)

problems with your technology, your methodology,

and those difficult “people issues” on your team.

Agile Retrospectives: Making Good Teams Great

Esther Derby and Diana Larsen

(170 pages) ISBN: 0-9776166-4-9. $29.95

http://pragprog.com/titles/dlret

Pragmatic Thinking and Learning
Software development happens in your head. Not in

an editor, IDE, or design tool. In this book by

Pragmatic Programmer Andy Hunt, you’ll learn how

our brains are wired, and how to take advantage of

your brain’s architecture. You’ll master new tricks

and tips to learn more, faster, and retain more of

what you learn.

• Use the Dreyfus Model of Skill Acquisition to

become more expert • Leverage the architecture of

the brain to strengthen different thinking modes

• Avoid common “known bugs” in your mind

• Learn more deliberately and more effectively

• Manage knowledge more efficiently

Pragmatic Thinking and Learning:

Refactor your Wetware

Andy Hunt

(288 pages) ISBN: 978-1-9343560-5-0. $34.95

http://pragprog.com/titles/ahptl

Prepared exclusively for William Anderson

http://pragprog.com/titles/dlret
http://pragprog.com/titles/ahptl

Project Management

Manage It!
Manage It! is an award-winning, risk-based guide

to making good decisions about how to plan and

guide your projects. Author Johanna Rothman

shows you how to beg, borrow, and steal from the

best methodologies to fit your particular project.

You’ll find what works best for you.

• Learn all about different project lifecycles • See

how to organize a project • Compare sample

project dashboards • See how to staff a project

• Know when you’re done—and what that means.

Manage It! Your Guide to Modern, Pragmatic

Project Management

Johanna Rothman

(360 pages) ISBN: 0-9787392-4-8. $34.95

http://pragprog.com/titles/jrpm

Manage Your Project Portfolio
Too many projects? Want to organize them and

evaluate them without getting buried under a

mountain of statistics? You’ll see how to determine

the really important projects (which might not be

what you think) as well as the projects you should

never do. You’ll learn how to tie your work to your

organization’s mission and show your board, your

managers, and your staff what you can accomplish

and when. You’ll get a better view of the work you

have, and learn how to make those difficult

decisions, ensuring that all your strength is

focused where it needs to be.

Manage Your Project Portfolio: Increase Your

Capacity and Finish More Projects

Johanna Rothman

(200 pages) ISBN: 978-19343562-9-6. $32.95

http://pragprog.com/titles/jrport

Prepared exclusively for William Anderson

http://pragprog.com/titles/jrpm
http://pragprog.com/titles/jrport

Web Development

Design Accessible Web Sites
The 2000 U.S. Census revealed that 12% of the

population is severely disabled. Sometime in the

next two decades, one in five Americans will be

older than 65. Section 508 of the Americans with

Disabilities Act requires your website to provide

equivalent access to all potential users. But beyond

the law, it is both good manners and good business

to make your site accessible to everyone. This book

shows you how to design sites that excel for all

audiences.

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

Jeremy Sydik

(304 pages) ISBN: 978-1-9343560-2-9. $34.95

http://pragprog.com/titles/jsaccess

Release It!
Whether it’s in Java, .NET, or Ruby on Rails,

getting your application ready to ship is only half

the battle. Did you design your system to survive a

sudden rush of visitors from Digg or Slashdot? Or

an influx of real-world customers from 100

different countries? Are you ready for a world filled

with flaky networks, tangled databases, and

impatient users?

If you’re a developer and don’t want to be on call at

3 a.m. for the rest of your life, this book will help.

Release It! Design and Deploy Production-Ready

Software

Michael T. Nygard

(368 pages) ISBN: 0-9787392-1-3. $34.95

http://pragprog.com/titles/mnee

Prepared exclusively for William Anderson

http://pragprog.com/titles/jsaccess
http://pragprog.com/titles/mnee

Career Development

Land the Tech Job You Love
You’ve got the technical chops—the skills to get a

great job doing what you love. Now it’s time to get

down to the business of planning your job search,

focusing your time and attention on the job leads

that matter, and interviewing to wow your

boss-to-be.

You’ll learn how to find the job you want that fits

you and your employer. You’ll uncover the hidden

jobs that never make it into the classifieds or

Monster. You’ll start making and maintaining the

connections that will drive your future career

moves.

You’ll land the tech job you love.

Land the Tech Job You Love

Andy Lester

(225 pages) ISBN: 978-1934356-26-5. $23.95

http://pragprog.com/titles/algh

The Passionate Programmer
This book is about creating a remarkable career in

software development. Remarkable careers don’t

come by chance. They require thought, intention,

action, and a willingness to change course when

you’ve made mistakes. Most of us have been

stumbling around letting our careers take us where

they may. It’s time to take control.

This revised and updated second edition lays out a

strategy for planning and creating a radically

successful life in software development (the first

edition was released as My Job Went to India: 52

Ways To Save Your Job).

The Passionate Programmer: Creating a

Remarkable Career in Software Development

Chad Fowler

(200 pages) ISBN: 978-1934356-34-0. $23.95

http://pragprog.com/titles/cfcar2

Prepared exclusively for William Anderson

http://pragprog.com/titles/algh
http://pragprog.com/titles/cfcar2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Agile Coaching’s Home Page

http://pragprog.com/titles/sdcoach

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/sdcoach.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Prepared exclusively for William Anderson

http://pragprog.com/titles/sdcoach
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/sdcoach
www.pragprog.com/catalog

	Contents
	Foreword
	Introduction
	Generic Agile
	The Aim of This Book
	How to Read This Book

	Acknowledgments
	Coaching Basics
	Starting the Journey
	What Does an Agile Coach Do?
	Developing a Coaching Attitude
	Getting Ready to Coach
	How to Start Coaching
	Maintaining the Pace
	Hurdles
	Checklist

	Working with People
	Listening
	Giving Feedback
	Resolving Conflicts
	Building Agreement
	Hurdles
	Checklist

	Leading Change
	Introducing Change
	Asking Questions
	Encouraging Learning
	Facilitating Meetings
	Hurdles
	Checklist

	Building an Agile Team
	Helping a Team Jell
	Creating a Team Space
	Balancing Roles
	Energizing the Team
	Hurdles
	Checklist

	Planning as a Team
	Daily Standup
	Standing Up
	For the Team by the Team
	Handling Issues
	Setting the Time
	When to Coach
	Hurdles
	Checklist

	Understanding What to Build
	Life Cycle of a User Story
	Encouraging Conversations
	Working with Cards
	Confirming the Details
	Hurdles
	Checklist

	Planning Ahead
	Preparing for Planning
	Understanding Priorities
	Sizing the Work
	Review and Commit
	Keeping Track
	Hurdles
	Checklist

	Keeping It Visible
	The Team Board
	Big Visible Charts
	Maintaining the Team Board
	Hurdles
	Checklist

	Caring About Quality
	Getting to ``Done''
	Who Does the Testing?
	Defining What ``Done'' Means
	Planning in Testing
	Managing Bugs
	Getting Feedback Early
	Recovering from Not Getting Done
	Hurdles
	Checklist

	Driving Development with Tests
	Introducing Test-Driven Development
	Continuous Integration
	Sustaining Test-Driven Development
	Hurdles
	Checklist

	Clean Code
	Incremental Design
	Collective Code Ownership
	Pair Programming
	Hurdles
	Checklist

	Listening to Feedback
	Demonstrating Results
	Preparing for the Demo
	Everyone Plays a Part
	Releasing the Software
	Hurdles
	Checklist

	Driving Change with Retrospectives
	Facilitating a Retrospective
	Designing a Retrospective
	Broader Retrospectives
	Hurdles
	Checklist

	Growing You
	Ways to Grow What You Know
	Making a Plan
	Building Your Network
	Personal Reflections
	Getting Comfortable
	Checklist

	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

