

What readers are saying about Groovy Recipes

This is the go-to guide for turning Groovy into every Java developer’s

perfect utility knife. Whether you need to quickly parse an Atom feed,

serve up an Excel spreadsheet from your Grails app, or create a tar-

ball on the fly, this book will show you how. In true Groovy style,

Scott does away with all unnecessary ceremony and gets right down to

business. In almost every section, the very first thing you see is code—

the recipe for solving the problem at hand—and if you want to stick

around for the clear and informative explanation, well, that’s strictly

optional.

Jason Rudolph

Author, Getting Started with Grails

Groovy Recipes is the book that I want to have in reach whenever I

work in my Groovy bakery. Nothing gets you faster up to speed than

having well-thought-out recipes for your everyday tasks.

Dierk König

Canoo Engineering AG

The format of this book is ideal for rapidly obtaining crucial informa-

tion just when you need it. An agile text for agile development!

Joe McTee

Software Engineer, JEKLsoft

Groovy is on my radar as one of the next big things in Java, and this

book gets you up to speed quickly with lots of great code examples.

David Geary

Author, Clarity Training, Inc.

Scott does a fantastic job of presenting many little nuggets of “groovi-

ness” here in a way that is easy to read and follow. There is plenty

here for Groovy newcomers and veterans alike. Thanks, Scott!

Jeff Brown

Member of the Groovy and Grails Core Development Teams

Adding Groovy to Java is like adding rocket fuel to your SUV. Sud-

denly everything gets easier, faster, and much more responsive. Scott

Davis does his normal excellent job of showing how to do so, and he

does it in a clear, simple, and even entertaining way.

Ken Kousen

President, Kousen IT, Inc.

This book provides quick examples for your everyday tasks. Don’t

believe Scott when he says you can read any section in random—the

writing is so darn good I could not put the book down until I read it

from cover to cover.

Venkat Subramaniam

Author, Programming Groovy; President, Agile Developer, Inc.

Groovy Recipes
Greasing the Wheels of Java

Scott Davis

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Scott Davis.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9787392-9-9

ISBN-13: 978-0-9787392-9-4

Printed on acid-free paper with 50% recycled, 15% post-consumer content.

First printing, January 2008

http://www.pragprog.com

Contents
Preface 12

1 Introduction 14

1.1 Groovy, the Way Java Should Be 16

1.2 Stripping Away the Verbosity 18

1.3 Groovy: The Blue Pill or the Red Pill? 19

1.4 Road Map . 21

1.5 Acknowledgments . 22

2 Getting Started 24

2.1 Installing Groovy . 24

2.2 Running a Groovy Script (groovy) 27

2.3 Compiling Groovy (groovyc) 28

2.4 Running the Groovy Shell (groovysh) 28

2.5 Running the Groovy Console (groovyConsole) 33

2.6 Running Groovy on a Web Server (Groovlets) 33

2.7 Groovy + Eclipse . 37

2.8 Groovy + IntelliJ IDEA 38

2.9 Groovy + TextMate . 39

2.10 Groovy + [Insert Your IDE or Text Editor Here] 40

3 New to Groovy 41

3.1 Automatic Imports . 42

3.2 Optional Semicolons . 42

3.3 Optional Parentheses 44

3.4 Optional Return Statements 46

3.5 Optional Datatype Declaration (Duck Typing) 47

3.6 Optional Exception Handling 48

3.7 Operator Overloading 50

3.8 Safe Dereferencing (?) 52

3.9 Autoboxing . 53

3.10 Groovy Truth . 54

CONTENTS 8

3.11 Embedded Quotes . 56

3.12 Heredocs (Triple Quotes) 56

3.13 GStrings . 57

3.14 List Shortcuts . 58

3.15 Map Shortcuts . 62

3.16 Ranges . 65

3.17 Closures and Blocks . 67

4 Java and Groovy Integration 69

4.1 GroovyBeans (aka POGOs) 69

4.2 Autogenerated Getters and Setters 71

4.3 getProperty and setProperty 74

4.4 Making Attributes Read-Only 75

4.5 Constructor Shortcut Syntax 76

4.6 Optional Parameters/Default Values 77

4.7 Private Methods . 78

4.8 Calling Groovy from Java 79

4.9 Calling Java from Groovy 81

4.10 Interfaces in Groovy and Java 81

4.11 The Groovy Joint Compiler 82

4.12 Compiling Your Project with Ant 84

4.13 Compiling Your Project with Maven 85

5 Groovy from the Command Line 86

5.1 Running Uncompiled Groovy Scripts 86

5.2 Shebanging Groovy . 87

5.3 Accepting Command-Line Arguments 88

5.4 Running a Shell Command 89

5.5 Using Shell Wildcards in Groovy Scripts 90

5.6 Running Multiple Shell Commands at Once 91

5.7 Waiting for a Shell Command to Finish Before

Continuing . 91

5.8 Getting System Properties 92

5.9 Getting Environment Variables 94

5.10 Evaluating a String . 95

5.11 Calling Another Groovy Script 96

5.12 Groovy on the Fly (groovy -e) 98

5.13 Including JARs at the Command Line 98

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=8

CONTENTS 9

6 File Tricks 100

6.1 Listing All Files in a Directory 100

6.2 Reading the Contents of a File 104

6.3 Writing Text to a File . 105

6.4 Copying Files . 108

6.5 Using AntBuilder to Copy a File 109

6.6 Using AntBuilder to Copy a Directory 110

6.7 Moving/Renaming Files 112

6.8 Deleting Files . 112

6.9 Creating a ZIP File/Tarball 113

6.10 Unzipping/Untarring Files 114

7 Parsing XML 116

7.1 The “I’m in a Hurry” Guide to Parsing XML 116

7.2 Understanding the Difference Between XmlParser and

XmlSlurper . 117

7.3 Parsing XML Documents 121

7.4 Dealing with XML Attributes 121

7.5 Getting the Body of an XML Element 124

7.6 Dealing with Mixed-Case Element Names 125

7.7 Dealing with Hyphenated Element Names 126

7.8 Navigating Deeply Nested XML 127

7.9 Parsing an XML Document with Namespaces 132

7.10 Populating a GroovyBean from XML 134

8 Writing XML 136

8.1 The “I’m in a Hurry” Guide to Creating an XML Docu-

ment . 136

8.2 Creating Mixed-Case Element Names 137

8.3 Creating Hyphenated Element Names 138

8.4 Creating Namespaced XML Using MarkupBuilder . . . 138

8.5 Understanding the Difference Between MarkupBuilder

and StreamingMarkupBuilder 139

8.6 Creating Parts of the XML Document Separately . . . 140

8.7 Creating Namespaced XML Using StreamingMarkup-

Builder . 142

8.8 Printing Out the XML Declaration 142

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=9

CONTENTS 10

8.9 Printing Out Processing Instructions 143

8.10 Printing Arbitrary Strings (Comments, CDATA) 143

8.11 Writing StreamingMarkupBuilder Output to a File . . 145

8.12 StreamingMarkupBuilder at a Glance 145

8.13 Creating HTML on the Fly 146

8.14 Converting CSV to XML 148

8.15 Converting JDBC ResultSets to XML 151

9 Web Services 152

9.1 Finding Your Local IP Address and Name 152

9.2 Finding a Remote IP Address and Domain Name . . . 154

9.3 Making an HTTP GET Request 155

9.4 Working with Query Strings 159

9.5 Making an HTTP POST Request 164

9.6 Making an HTTP PUT Request 167

9.7 Making an HTTP DELETE Request 169

9.8 Making a RESTful Request 170

9.9 Making a CSV Request 172

9.10 Making a SOAP Request 172

9.11 Making an XML-RPC Request 174

9.12 Parsing Yahoo Search Results as XML 176

9.13 Parsing an Atom Feed 177

9.14 Parsing an RSS Feed . 178

10 Metaprogramming 181

10.1 Discovering the Class 182

10.2 Discovering the Fields of a Class 183

10.3 Checking for the Existence of a Field 185

10.4 Discovering the Methods of a Class 188

10.5 Checking for the Existence of a Method 190

10.6 Creating a Field Pointer 192

10.7 Creating a Method Pointer 193

10.8 Calling Methods That Don’t Exist (invokeMethod) . . . 193

10.9 Creating an Expando . 194

10.10 Adding Methods to a Class Dynamically (Categories) . 196

10.11 Adding Methods to a Class Dynamically (ExpandoMeta-

Class) . 198

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=10

CONTENTS 11

11 Working with Grails 200

11.1 Installing Grails . 201

11.2 Creating Your First Grails App 204

11.3 Understanding Grails Environments 212

11.4 Running Grails on a Different Port 213

11.5 Generating a WAR . 214

11.6 Changing Databases . 215

11.7 Changing the Home Page 218

11.8 Understanding Controllers and Views 219

11.9 Dynamic Scaffolding . 221

11.10 Validating Your Data . 224

11.11 Managing Table Relationships 227

11.12 Mapping Classes to Legacy Databases 232

12 Grails and Web Services 233

12.1 Returning XML . 233

12.2 Returning JSON . 235

12.3 Returning an Excel Spreadsheet 237

12.4 Setting Up an Atom Feed 239

12.5 Setting Up an RSS Feed for Podcasts 243

12.6 Installing Plug-Ins . 247

Index 248

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=11

Preface
Groovy is a successful, powerful, and mature language that all good

Java developers should have in their toolboxes. It can be used for mak-

ing your unit tests more expressive, for scripting tasks such as XML

parsing or data imports, for providing extension points in your applica-

tion where end users can customize the behavior with their own scripts,

for defining domain-specific languages to express readable and concise

business rules, or even as a full-blown general-purpose language for

writing applications from end to end with the Groovy-based Grails web

framework.

The main goal of Groovy has always been to simplify the life of devel-

opers by providing an elegant language that is easy to learn thanks to

its Java-like syntax, but it is also packed with useful features and APIs

for all the common programming tasks. Groovy also tries to address

the shortcomings of Java by propelling it into the 21st century. You

can use Groovy today—without waiting for Java 7, 8, or 9—and bene-

fit from closures; properties; native syntax for lists, maps, and regular

expressions; and more.

There are already several books about Groovy—yet another great sign

of Groovy’s popularity and maturity—but Groovy Recipes is unique in

that it is the fastest way to get up to speed with the language and to

find information on a specific language feature in no time, thanks to

its clear structure. But it is not only a bag of tips ’n’ tricks, because if

you really want to learn about Groovy, there’s a story to read, a guiding

hand that leads you to enlightenment by progressively teaching you

more about the language in a very natural and friendly fashion. To be

frank, I’ve even discovered a couple of tricks I didn’t know myself!

Me, Groovy project manager!

CONTENTS 13

I’m sure you’ll enjoy this book as much as I did and that you’ll keep it

on your desk to help you in your everyday developer life. You’ll get the

job done in no time with Groovy Recipes handy.

Guillaume Laforge (Groovy project manager)

January 3, 2008

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=13

Chapter 1

Introduction
Once upon a time, Java was the language you wrote once and ran any-

where. The ability to write code on one operating system (say, OS X) and

drop it unchanged onto another (Windows, Solaris, or Linux) ended up

being a huge win for users accustomed to waiting for the version that

would run on their machine. Before Java, didn’t it seem like your oper-

ating system was always the last one to be supported?

As we got to know Java better, it turns out that the platform (the

Java Virtual Machine, or JVM) is what provided the WORA magic, not

the language. Consequently, we are in the midst of the second Java

revolution—one in which Java the language shares the platform with

more than 150 other languages.1 Paradoxically, as Java the language

loses its monopoly, Java the platform is becoming more important than

ever.

With so many choices available to us as developers, what makes Groovy

stand out from the rest of the crowd? For that matter, why look beyond

the venerable Java language in the first place? I can sum it up in one

sentence: Groovy is what Java would look like had it been written in the

21st century.

Groovy is a new breed of language. It doesn’t replace old technology as

much as it enhances it. It was created by Java developers who wanted

the day-to-day experience of writing code to be simpler. You no longer

have to wade through all of that boilerplate code.

1. http://www.robert-tolksdorf.de/vmlanguages.html

http://www.robert-tolksdorf.de/vmlanguages.html

CHAPTER 1. INTRODUCTION 15

More important, however, this isn’t a “Hey, guys, let’s rewrite our entire

application from the ground up to take advantage of this new language”

approach to software development. No, this is a “Let’s use a language

that seamlessly integrates with our existing codebase” approach.

Groovy runs on the JVM you already have installed (1.4, 1.5, or 1.6).

You write Groovy in the same IDE you use for Java development. You

deploy it to the same application servers you already have in produc-

tion. As a matter of fact, drop a single groovy.jar into your classpath, and

you have just “Groovy-enabled” your entire application.

In this book, I hope to show the seasoned Java veteran how easy it is

to incorporate Groovy into an existing codebase. I hope to appeal to the

busy Java developer by presenting some quick Groovy code snippets

that solve everyday problems immediately. (“How do I parse an XML

document with namespaces?”) But most important, I hope to appeal

to the Java developer who is looking to breathe new life into a plat-

form that is more than a dozen years old. Features such as closures,

domain-specific languages, and metaprogramming are all now available

on a platform that the cool kids seem to have written off as hopelessly

behind the times.

Some technical books are read once. Then, after you learn the material,

the book sits on the shelf gathering dust. If my hunch is correct, this

will be one of the read many books in your collection, as helpful to you

after you become a Groovy master as it was when you read it for the

first time.

The reason I think you’ll keep reaching for this book is that most read

once books are written for sequential access—in other words, Chapter

7 doesn’t make sense unless you’ve read Chapters 1–6. This book is

optimized for random access. I’ve tried to lay it out in a way that you

will reach for it again and again, knowing you can quickly scan the

table of contents to find the snippet of code you need. Each section is

a stand-alone entity with plenty of breadcrumbs to point you to related

topics.

Having a PDF of this book on my laptop during the course of writing

has proven valuable more than once. If a PDF could get dog-eared,

mine would be nearly threadbare. Being able to electronically search

for either a code fragment or a phrase—right there in a window next to

my text editor—is absolutely priceless. It has changed the way I write

Groovy, and I had years of experience with the language before I started

writing the book!

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=15

GROOVY, THE WAY JAVA SHOULD BE 16

1.1 Groovy, the Way Java Should Be

Groovy was expressly designed to appeal to Java developers. Groovy is

Java at the end of the day. The other languages that run on the JVM

are just that—other languages. The point of JRuby2 is to get existing

Ruby code running on the JVM. The point of Jython3 is to get existing

Python code running on the JVM. The point of Groovy is to integrate

with your existing Java code.

I’m not trying to diminish the value of those other languages. If you

already have an existing codebase implemented in another language,

the benefits are undeniable. But how do they benefit Java developers

with an existing Java codebase? Groovy and Java are so compatible

that in most cases you can take a Java file—foo.java—and rename it to

foo.groovy. You will have a perfectly valid (and executable) Groovy file.

That trick won’t work with any of your other neighbors on the JVM.

But more than language-level compatibility, Groovy allows you to dra-

matically reduce the amount of code you would normally write in Java.

For example, let’s start with a simple Java class named Person.java that

has two attributes, firstName and lastName. As Java developers, we are

trained from a tender young age to create public classes with private

attributes. All outside access to the attributes is routed through public

getters and setters.

/** Java Code */

public class Person {

private String firstName;

private String lastName;

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

public String getLastName() {

return lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

}

2. http://jruby.codehaus.org/

3. http://www.jython.org

http://jruby.codehaus.org/
http://www.jython.org
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=16

GROOVY, THE WAY JAVA SHOULD BE 17

I’m not arguing with established Java practices. Encapsulation offers

many benefits. Unfortunately, it comes with a heavy verbosity tax.

It took us more than twenty lines of code to define a class that has two

attributes. Each new attribute will cost us six more lines of code for

boilerplate getters and setters. The fact that modern IDEs will generate

the requisite getters and setters for us doesn’t make the problem go

away; it makes the symptoms only slightly less painful.

What does the corresponding Groovy class look like? You can rename

Person.java to Person.groovy and the file will compile, but it is hardly

idiomatic Groovy.

What Java developers first notice about Groovy is its brevity. Good

Groovy code is Java boiled down to its essence. You can see this imme-

diately in the Groovy version of the Person class:

/** Groovy Code */

class Person {

String firstName

String lastName

}

Yes, that’s all there is. Even better, it’s a drop-in replacement for the

Java class. Compile it down to bytecode, and the Groovy version is

indistinguishable from its Java counterpart. You’ll need to have groovy.

jar in your classpath, but with that in place your Java code can seam-

lessly call any plain old Groovy object (POGO) in lieu of a POJO with

the same name and fields.

All POGOs are public by default. All attributes are private. There are

getters and setters for each field, but these methods are autogenerated

in the bytecode rather than the source code. This drops the 6:1 code

ratio for new fields down to exactly 1:1. Looking at this POGO compared

to the Java class, there is nothing more that could be left out. It is the

core of the POJO with all the syntactic noise stripped away.

Of course, you could slowly begin adding Java language features back

in one by one.

You could certainly use semicolons if you prefer. You could explicitly say

public class Person and private String firstName. There is nothing stopping

you from having getters and setters in your source code.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=17

STRIPPING AWAY THE VERBOSITY 18

Recall that you could literally rename Person.java to Person.groovy and

still have syntactically correct Groovy. But after you see the simple

elegance of the Groovy version, why would you want to add all that

complexity back in?

1.2 Stripping Away the Verbosity

Let’s explore this verbosity issue some more. Consider the canonical

“Hello World” example in Java:

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World");

}

}

Groovy scripts implicitly create the public class line as well as the public

static void main() line, leaving you with this for the drop-in replacement:

println "Hello World"

Again, both are bytecode compatible and fully interchangeable. The

Groovy example does exactly what the Java code does but with a frac-

tion of the lines of code.

As one final example, how many lines of Java would it take for you

to open a simple text file, walk through it line by line, and print the

results? By my count, it’s about thirty-five lines of code:

import java.io.BufferedReader;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

public class WalkFile {

public static void main(String[] args) {

BufferedReader br = null;

try {

br = new BufferedReader(new FileReader("../simpleFile.txt"));

String line = null;

while((line = br.readLine()) != null) {

System.out.println(line);

}

}

catch(FileNotFoundException e) {

e.printStackTrace();

}

catch(IOException e) {

e.printStackTrace();

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=18

GROOVY: THE BLUE PILL OR THE RED PILL? 19

finally {

if(br != null) {

try {

br.close();

}

catch(IOException e) {

e.printStackTrace();

}

}

}

}

}

I’m not suggesting that line count is the only thing you should be con-

sidering. If that were your only concern, you could shorten this example

by importing java.io.* instead of each class explicitly. You could move

some of the shorter catch blocks up to a single line for brevity’s sake.

No, the concern you should have about this code is the baked-in ver-

bosity. Here is the corresponding Groovy code:

new File("../simpleFile.txt").eachLine{line ->

println line

}

If you wanted to play loose and fast with styling rules, you could have

a one-liner that is a drop-in replacement for the thirty-five lines in the

Java example. The line count is simply one example of what I like about

Groovy—the fact that I can see the forest for the trees is a real benefit.

The fact that the Groovy code I write is a drop-in replacement for Java

is another. For these reasons, I like thinking of Groovy as “executable

pseudocode.”

1.3 Groovy: The Blue Pill or the Red Pill?

In the sci-fi movie The Matrix, the main character—Neo—is presented

with two choices. If he takes the blue pill, he will return to his every-

day life. Nothing changes. If, however, he chooses the red pill, he’ll be

granted a whole new perspective on the world. He’ll get superhero pow-

ers. (He chooses the red pill, of course. It wouldn’t be much of a movie

if he didn’t.)

Groovy offers you two paths as well.

The“blue pill” usage of Groovy simply makes Java easier to use. As

the Person class example illustrated, Groovy can be used as a drop-in

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=19

GROOVY: THE BLUE PILL OR THE RED PILL? 20

replacement for Java without changing any of the semantics of the Java

language. This should appeal to conservative organizations.

In “red pill” mode, Groovy introduces new language constructs that are

different from Java. File.eachLine is a closure—it is a whole new way

to iterate over a file without using java.util.Iterator. Closures are being

considered for inclusion in Java 1.7, yet you have them right here,

right now. This should appeal to folks who are envious of cool features

in other languages, wishing Java could do similar things.

Perhaps James Strachan said it best on August 29, 2003, when he

introduced the world to a little open source project he had been work-

ing on. In a blog entry4 titled “Groovy: The Birth of a New Dynamic

Language for the Java Platform,” he said this:

“Dynamically typed languages like Ruby and Python are getting quite

popular it seems. I’m still not convinced we should all move to dynami-

cally typed languages any time soon—however, I see no reason why we

can’t use both dynamically and statically typed languages and choose

the best tool for the job.

“I’ve wanted to use a cool dynamically typed scripting language specif-

ically for the Java platform for a little while. There’s plenty to choose

from, but none of them quite feels right—especially from the perspec-

tive of a die-hard Java programmer. Python and Ruby are both pretty

cool—though they are platforms in their own right. I’d rather a dynamic

language that builds right on top of all the groovy Java code out there

and the JVM.

“So I’ve been musing a little while if it’s time the Java platform had

its own dynamic language designed from the ground up to work real

nice with existing code, creating/extending objects normal Java can

use, and vice versa. Python/Jython [is] a pretty good base—add the

nice stuff from Ruby and maybe sprinkle on some AOP features, and

we could have a really groovy new language for scripting Java objects,

writing test cases, and, who knows, even doing real development in it.”

That is how Groovy got both its name and its worldview. Groovy is

a language that takes on the characteristics you’d like it to take on.

Traditional Java development made easier or a way to get all those

exciting new features from other languages onto the JVM? The answer

is both.

4. http://radio.weblogs.com/0112098/2003/08/29.html

http://radio.weblogs.com/0112098/2003/08/29.html
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=20

ROAD MAP 21

1.4 Road Map

You can read this book in several ways. Each chapter focuses on a par-

ticular topic such as XML, file I/O, web services, or metaprogramming.

To get a solid overview of the subject and how Groovy can help you,

simply read the chapter from start to finish like you would any other

book.

However, if you are in a hurry and have a specific problem you need

to fix, the table of contents is your friend. Each chapter is divided into

sections that solve a specific problem or describe a specific language

feature: “Listing all files in a directory,” “Reading the contents of a file,”

“Writing text to a file,” and so on. Each section starts with a block of

code, ready for you to type it in and go about your business. Read on

if you need a bit more explanation. I’ve tried to make each section as

independent as possible. If it uses features described elsewhere, the

sections are judiciously cross-referenced in a way that you should be

comfortable wherever you dive in.

Chapter 2, Getting Started, on page 24 shows how to install Groovy,

how to compile Groovy code, and how to Groovy-enable a text editor or

IDE.

Chapter 3, New to Groovy, on page 41 is a “red pill” chapter, showing

experienced Java developers all the interesting new features Groovy

brings to the party: duck typing, Groovy truth, and closures.

Chapter 4, Java and Groovy Integration, on page 69 is a “blue pill”

chapter, demonstrating how Groovy can be integrated with an existing

Java infrastructure.

Chapter 5, Groovy from the Command Line, on page 86 takes you some-

place you might not have considered Java a good match for: the com-

mand line. Groovy makes a heck of a shell-script replacement, which

allows you to leverage all the familiar Java idioms and libraries for sys-

tem administration tasks.

Chapter 6, File Tricks, on page 100 demonstrates the different ways you

can use Groovy to work with the filesystem: listing files in a directory,

reading files, copying them, and so forth.

Chapter 7, Parsing XML, on page 116 shows how easy XML can be to

work with in Groovy. You can parse XML documents, getting at ele-

ments and attributes with ease.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=21

ACKNOWLEDGMENTS 22

Chapter 8, Writing XML, on page 136 shows the flip side of the XML

coin: writing out XML documents. You’ll learn about everything from

simple XML marshaling to creating complex XML documents with dec-

larations, processing instructions, CDATA blocks, and more.

Chapter 9, Web Services, on page 152 brings remote systems into play.

We will explore making SOAP calls, RESTful calls, XML-RPC calls,

and more.

Chapter 10, Metaprogramming, on page 181 explores a new way of

thinking about programming on the JVM. Dynamically discovering

existing classes, fields, and methods quickly leads to creating new clas-

ses and methods on the fly, as well as adding new functionality to exist-

ing classes all at runtime.

Chapter 11, Working with Grails, on page 200 introduces a full-featured

web framework that is built atop familiar Java libraries such as Spring

and Hibernate but that uses Groovy as the dynamic glue to hold every-

thing together.

Chapter 12, Grails and Web Services, on page 233 shows how to use

Grails for more than returning simple HTML. We’ll look at RESTful web

services, JSON web services, Atom feeds, podcast feeds, and more.

1.5 Acknowledgments

Thanks once again to Dave Thomas and Andy Hunt for creating the

Pragmatic Bookshelf. This is my second book with them, and I continue

to be pleasantly surprised at what a developer-friendly publishing com-

pany they have put together, both as an author and an avid reader of

their titles.

This is also my second time around with Daniel Steinberg at the helm as

my editor. He took my semi-lucid vision of writing a code-first Groovy

book and, against all odds, coaxed out what you are holding in your

hands right now. His one-word comments of “Huh?” and “Why?” and

“Really?” gently nudged me toward expanding on ideas where I was

too terse, warming up the prose where it was too clinical, and offering

justifications and my real-world experiences where the curly braces and

semicolons weren’t enough. It was a real joy working with him, and I’m

truly looking forward to our next project together.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=22

ACKNOWLEDGMENTS 23

A warm thank you goes out to my fearless posse of technical review-

ers. Their keen eyes and sharp tongues kept me humble and my code

tight. The comments from Groovy project leader Guillaume Laforge and

Grails project leader Graeme Rocher were as shrewd and timely as you

might expect. Project committers Jeff Brown, Dierk Koenig, and Jason

Rudolph graciously shared their insider knowledge, while David Geary,

Ken Kousen, Joe McTee, and Greg Ostravich made sure that my exam-

ples were intelligible to folks not already waist-deep in the language.

A special thank you goes to my good friend Venkat Subramaniam—we

started working on this book together and then quickly realized that

two books were better than one. His strategic take on the language in

Learning Groovy is the perfect complement to the tactical approach I

take here.

Big thanks go to Jay Zimmerman, founder of the No Fluff, Just Stuff

symposium tour. He recognized early on what a gem Groovy is to the

Java development community and has actively supported it ever since.

He paid for professional development on the language until G2One was

formed by Graeme, Guillaume, and Alex Tkachman to take over. Groovy

and Grails presentations are featured prominently in the NFJS lineup,

and the 2G Experience—the first North American conference dedicated

to Groovy and Grails—continues to demonstrate his firm commitment

to broadening the language’s appeal. I’ve worked closely with Jay since

2003, and there has never been a dull moment.

Finally, my family deserves my deepest gratitude. While they often bear

the brunt of my odd writing schedule and ever-present deadlines, they

rarely complain about it—at least not to my face. My wife, Kim, doles

out seemingly bottomless portions of patience and encouragement, and

it does not go unnoticed. Her two most frequent questions during the

writing of Groovy Recipes were “Are you done with the book yet?” and

“When are you going to write something that I want to read?” I can

answer “Yes...finally” to one and “Soon...I hope” to the other. Young

Christopher was very supportive of the writing process as long as it

didn’t preempt our Norman Rockwellian walks to and from kinder-

garten or our time together on the Nintendo Wii. (I made sure that it

didn’t.) And young Elizabeth, now toddling and tall enough to reach the

doorknob to Daddy’s office at home, made sure that I didn’t go too long

without a big smile and an infectious giggle or two. Much love to each

of you.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=23

Chapter 2

Getting Started
Installing Groovy is just as easy as installing Ant, Tomcat, or Java

itself—unzip the distribution, create an environment variable, and en-

sure that the binaries are in your PATH. Once Groovy is in place, you

can run it in any number of ways—compiled or uncompiled, from the

shell or a GUI console, or from the command line or a web server. If you

have two minutes (or less!), you have enough time to begin experiment-

ing with Groovy. This chapter will have you up and running before you

can say “next-generation Java development.”

2.1 Installing Groovy

1. Download and unzip groovy.zip from http://groovy.codehaus.org.

2. Create a GROOVY_HOME environment variable.

3. Add $GROOVY_HOME/bin to the PATH.

Everything you need to run Groovy is included in a single ZIP file—

well, everything except the JDK, that is. Groovy 1.x runs on all modern

versions of Java—1.4, 1.5, and 1.6. If you are running an older ver-

sion of Java, cruise by http://java.sun.com for an update. If you don’t

know which version of Java you have installed, type java -version at a

command prompt:

$ java -version

===>

java version "1.5.0_13"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_13-b05-237)

Java HotSpot(TM) Client VM (build 1.5.0_13-119, mixed mode, sharing)

To take advantage of Java 1.5 language features such as annotations

and generics in Groovy, it probably goes without saying that you’ll need

at least a 1.5 JDK under the covers.

http://java.sun.com

INSTALLING GROOVY 25

Groovy runs noticeably faster on each new generation of the JVM, so

unless there is something else holding you back, my recommendation

is to run Groovy on the latest and greatest version of Java that you can.

Similarly, I recommend running the latest version of Groovy that you

can. Groovy 1.0 was released in January 2007. The next major release,

Groovy 1.5, shipped in December 2007. You’ll see how to determine

which version of Groovy you are running in a moment.

The Groovy development team took great pains to ensure that basic

syntax and interfaces stayed consistent between Groovy 1.0 and 1.5.

The jump in version numbers signified two things: the addition of Java

5 language features and the huge jump in stability and raw perfor-

mance. If you are still running Groovy 1.0, most of the examples in this

book will run unchanged. The ExpandoMetaClass class was added in

Groovy 1.5, but metaprogramming has been an integral part of the lan-

guage since the very beginning. The examples in Chapter 10, Metapro-

gramming, on page 181 that don’t specifically use an ExpandoMetaClass

class will behave the same way in either version of Groovy. The bottom

line is that all 1.x versions of Groovy should be reasonably interchange-

able. Breaking syntax changes are reserved for Groovy 2.x and beyond.

I’ve included information on how install Groovy with a section on the

specifics for Windows and another on the details for the Unix, Linux,

Mac OS X family.

Checking the Groovy Version

$ groovy -version

Groovy Version: 1.5.0 JVM: 1.5.0_13-119

You can tell which version of Groovy you have installed by typing groovy

-version at a command prompt. As shown here, this command shows the

Java version as well.

Installing Groovy on Unix, Linux, and Mac OS X

Download the latest Groovy ZIP file from http://groovy.codehaus.org. Un-

zip it to the directory of your choice. I prefer /opt. You will end up with

a groovy directory that has the version number on the end of it, such

as groovy-1.5. I like creating a symlink that doesn’t include the specific

version number: ln -s groovy-1.5 groovy. This allows me to switch between

versions of Groovy cleanly and easily.

http://groovy.codehaus.org
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=25

INSTALLING GROOVY 26

Since ZIP files don’t preserve Unix file permissions, be sure to swing by

the bin directory and make the files executable:

$ chmod a+x *

Once the directory is in place, you next need to create a GROOVY_HOME

environment variable. The steps to do this vary from shell to shell. For

Bash, you edit either .bash_profile or .bash_rc in your home directory.

Add the following:

Groovy

GROOVY_HOME=/opt/groovy

PATH=$PATH:$GROOVY_HOME/bin

export GROOVY_HOME PATH

For these changes to take effect, you need to restart your terminal ses-

sion. Alternately, you can type source .bash_profile to load the changes

into the current session. You can type echo $GROOVY_HOME to confirm

that your changes took effect:

$ echo $GROOVY_HOME

/opt/groovy

To verify that the Groovy command is in the path, type groovy -version. If

you see a message similar to this, then you have successfully installed

Groovy:

Groovy Version: 1.5.0 JVM: 1.5.0_13-119

Installing Groovy on Windows

Download the latest Groovy ZIP file from http://groovy.codehaus.org. Un-

zip it to the directory of your choice. I prefer c:\opt. You will end up with

a groovy directory that has the version number on the end of it, such

as groovy-1.5. Although you can rename it to something simpler such

as groovy, I’ve found that keeping the version number on the directory

name helps make future upgrades less ambiguous.

Once the directory is in place, you next need to create a GROOVY_HOME

environment variable. For Windows XP, go to the Control Panel, and

double-click System. Click the Advanced tab and then Environment

Variables at the bottom of the window. In the new window, click New

under System Variables. Use GROOVY_HOME for the variable name and

c:\opt\groovy-1.5 for the variable value.

To add Groovy to the path, find the PATH variable, and double-click it.

Add ;%GROOVY_HOME%\bin to the end of the variable. (Do not forget

http://groovy.codehaus.org
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=26

RUNNING A GROOVY SCRIPT (GROOVY) 27

the leading semicolon.) Click OK to back your way out of all the dialog

boxes. For these changes to take effect, you need to exit or restart any

command prompts you have open. Open a new command prompt, and

type set to display a list of all environment variables. Make sure that

GROOVY_HOME appears.

To verify that the Groovy command is in the path, type groovy -version. If

you see a message similar to this, then you have successfully installed

Groovy:

Groovy Version: 1.5.0 JVM: 1.5.0_13-119

2.2 Running a Groovy Script (groovy)

// hello.groovy

println "Hello Groovy World"

$ groovy hello.groovy

$ groovy hello

===> Hello Groovy World

One of the first things experienced Java developers notice about Groovy

is that they can run the code without compiling it first. You just type

and go—much more like writing JSP pages than Java classes. This

might lead you to believe that Groovy is an interpreted language. In

reality, Groovy is compiled into bytecode just like Java. The groovy com-

mand both compiles and runs your code. You won’t, however, find the

resulting .class file laying around anywhere. The bytecode is created in

memory and discarded at the end of the run. (If you want those class

files to stick around, see Section 2.3, Compiling Groovy (groovyc), on the

following page.)

On-the-fly bytecode compilation means that Groovy can offer an inter-

active shell. Typing commands and seeing them execute immediately is

the quickest way to experiment with the language. For more on this,

see Section 2.4, Running the Groovy Shell (groovysh), on the next page.

The drawback, of course, is that your code goes away once the shell

closes. The shell is great for experimentation, but you’ll want to create

Groovy scripts if you want to do anything more than quick-and-dirty

playing around.

To create a Groovy script, create a new text file named hello.groovy. Add

the following line:

println "Hello Groovy World"

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=27

COMPILING GROOVY (GROOVYC) 28

Save the file, and then type groovy hello.groovy at the command prompt.

Since you gave it a .groovy file extension, you can also type just groovy

hello. Congratulations! You are now officially a Groovy developer. Wel-

come to the club.

For more on running uncompiled Groovy, see Chapter 5, Groovy from

the Command Line, on page 86.

2.3 Compiling Groovy (groovyc)

$ groovyc hello.groovy

// on Unix, Linux, and Mac OS X

$ java -cp $GROOVY_HOME/embeddable/groovy-all-1.5.0.jar:. hello

===> Hello Groovy World

// on Windows

$ java -cp %GROOVY_HOME%/embeddable/groovy-all-1.5.0.jar;. hello

===> Hello Groovy World

If you are trying to run just a quick script, letting the groovy command

compile your code on the fly makes perfect sense. If, however, you are

trying to intermingle your Groovy classes with your legacy Java classes,

the groovyc compiler is the only way to go. As long as the Groovy JAR

is on your classpath, your Java classes can call Groovy as easily as

Groovy classes can call Java.

For more on compiling Groovy and integrating with Java classes, see

Chapter 4, Java and Groovy Integration, on page 69.

2.4 Running the Groovy Shell (groovysh)

$ groovysh

Groovy Shell (1.5.0, JVM: 1.5.0_13-119)

Type 'help' or '\h' for help.

--

groovy:000> println "Hello Groovy World"

Hello Groovy World

===> null

The Groovy shell allows you to work with Groovy interactively. There

is no need to create a file or compile anything—simply type groovysh

at the command prompt, and begin typing Groovy statements such as

println "Hello Groovy World". The results will appear each time you press

the Enter key. To exit the Groovy shell, type exit.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=28

RUNNING THE GROOVY SHELL (GROOVYSH) 29

That null message is nothing to worry about. It just means that the last

command you typed didn’t return a value. Had you typed something

like 2+2, the message would be the result of the statement: 4. The last

line of a method in Groovy is an implicit return statement, and the

Groovy shell behaves the same way:

groovy:000> 2+2

===> 4

groovy:000> s = "John"

===> John

groovy:000> s.toUpperCase()

===> JOHN

groovy:000> s.each{println it}

J

o

h

n

===> John

The toUpperCase() method comes straight from the java.lang.String class.

For more on the each closure, see Section 3.14, Iterating, on page 59.

The Groovy shell stores a history of everything you’ve typed—even after

you exit the shell. You can use the up and down arrow keys to quickly

reenter commands or correct a fat-fingered syntax error.

The :000 at the prompt indicates how many lines of Groovy code have

been typed without being run. For example, you can define a class on

the fly in the Groovy shell and use it right away. (Of course, the class

goes away once you exit the shell.)

groovy:000> class Person{

groovy:001> String name

groovy:002> String toString(){

groovy:003> "Hi! My name is ${name}"

groovy:004> }

groovy:005> }

===> true

groovy:000> p = new Person(name:"John")

===> Hi! My name is John

Did you notice that you didn’t see null either time? The first time you get

a true—that’s the Groovy shell’s way of saying, “OK, I was able to define

that class for you.” The second time you see the toString output of the

class. At the risk of sounding a bit cheeky, you’ll quickly learn to pay

attention to the Groovy shell’s results only when you care about what

it has to say....

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=29

RUNNING THE GROOVY SHELL (GROOVYSH) 30

Gotcha: Why Does the Groovy Shell Forget Your Variables?

groovy:000> String s = "Jane"
groovy:000> println s
===>
ERROR groovy.lang.MissingPropertyException:
No such property: s for class: groovysh_evaluate

groovy:000> s = "Jane"
groovy:000> println s
===> Jane

The Groovy shell has a curious case of amnesia when it comes
to typed variables. A variable declared with either a datatype
or a def is forgotten immediately. An untyped variable is remem-
bered for the duration of the shell session. This can be a source
of great confusion when copying code into the shell from a
script—in the script the code is fine, whereas in the shell it is
broken.

To make sense of this apparent discrepancy, you need to bet-
ter understand how the Groovy shell is implemented. (If you feel
your eyes beginning to glaze over, just leave the type declara-
tions off your shell variables, and move along....)

The Groovy shell is an interactive instance of a groovy.lang.

GroovyShell. This class is also what enables the evaluate com-
mand discussed in Section 5.10, Evaluating a String, on page 95.
Each GroovyShell stores locally declared variables (such as s =

"Jane") in a groovy.lang.Binding.

This Binding object is essentially the “big hashmap in the sky.”
When you type println s, the shell calls binding.getVariable("s")

behind the scenes. Variables declared with a datatype (String s

= "Jane") don’t get stored in the Binding, so they can’t be found
the next time you ask for them.

For more on the GroovyShell and Binding objects, see Sec-
tion 10.4, Discovering the Methods of a Class, on page 188.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=30

RUNNING THE GROOVY SHELL (GROOVYSH) 31

Figure 2.1: The Groovy console

Finding Class Methods on the Fly

groovy:000> String.methods.each{println it}

public int java.lang.String.hashCode()

public volatile int java.lang.String.compareTo(java.lang.Object)

public int java.lang.String.compareTo(java.lang.String)

public boolean java.lang.String.equals(java.lang.Object)

public int java.lang.String.length()

...

You can use the Groovy shell to quickly discover all the methods on a

given class. For example, let’s say you want to see all the String methods.

The previous example does the trick.

The nice thing about asking a class directly for its methods is that

it is always up-to-date—Javadocs, on the other hand, can easily get

out of sync with the live code. For more on class introspection, see

Chapter 10, Metaprogramming, on page 181.

At the beginning of this section, we discussed the null message that can

be safely ignored if a command has no output. Unfortunately, this is

another example of shell output that is more noise than information.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=31

RUNNING THE GROOVY SHELL (GROOVYSH) 32

The command String.methods.each{println it} returns an error after suc-

cessfully displaying all the methods on the class:

groovy:000> String.methods.each{println it}

...

public final native void java.lang.Object.notify()

public final native void java.lang.Object.notifyAll()

ERROR groovy.lang.MissingMethodException:

No signature of method:

org.codehaus.groovy.tools.shell.Groovysh$_closure1.call()

is applicable for argument types:

...

Remember when I said that you’ll quickly learn to pay attention to the

Groovy shell’s results only when you care about what it has to say?

After all the methods are displayed, the shell tries to execute the result

of the String.methods call (and fails spectacularly, I might add). Since I’m

used to seeing it, the error doesn’t bother me a bit. I ignore it since I

know that it is going to happen, and after all, this is ad hoc code. If

the error message bothers you, you can add a statement to the end

of the call that evaluates correctly, such as String.methods.each{println

it}; "DONE". You’ll be typing a few extra characters, but you’ll avoid the

wrath of an angry shell as well.

Getting Help

groovy:000> help

For information about Groovy, visit:

http://groovy.codehaus.org

Available commands:

help (\h) Display this help message

? (\?) Alias to: help

exit (\x) Exit the shell

quit (\q) Alias to: exit

import (\i) Import a class into the namespace

display (\d) Display the current buffer

clear (\c) Clear the buffer

show (\S) Show variables, classes or imports

inspect (\n) Inspect a variable or the last result

with the GUI object browser

purge (\p) Purge variables, classes, imports or preferences

edit (\e) Edit the current buffer

load (\l) Load a file or URL into the buffer

. (\.) Alias to: load

save (\s) Save the current buffer to a file

record (\r) Record the current session to a file

history (\H) Display, manage and recall edit-line history

alias (\a) Create an alias

set (\=) Set (or list) preferences

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=32

RUNNING THE GROOVY CONSOLE (GROOVYCONSOLE) 33

For help on a specific command type:

help command

Typing help while in the Groovy shell brings up some nice little hidden

gems. import behaves just as it does in Java source code, allowing you to

work with classes in other packages. If you are in the middle of defining

a long class and mess up, clear returns you to a :000 state. To wipe an

entire session clean, typing purge gets you back to the state you were

in when you first started the shell. record saves everything you type to

a file, allowing you to “play it back” later. history shows what the shell

remembers you typing in.

2.5 Running the Groovy Console (groovyConsole)

$ groovyConsole

In addition to a text-based Groovy shell, Groovy also provides a graphi-

cal console. (See Figure 2.1, on page 31.) Type commands in the upper

half of the window. Choose Script > Run, and look for the results in

the bottom half. (Choosing Script > Run Selection allows you to narrow

your focus to just the highlighted lines of code.)

The Groovy shell discussed in Section 2.4, Running the Groovy Shell

(groovysh), on page 28 appeals to command-line cowboys. The Groovy

console is meant to attract the more refined GUI crowd—those who

have grown accustomed to the niceties of Cut/Copy/Paste, Undo/Redo,

and so on. The console is no replacement for a true text editor, but it

offers a few more amenities than the shell. For example, if you have an

existing Groovy script, you can open it in the console by choosing File

> Open. You can also save a shell session by choosing File > Save.

You even have a graphical object browser to get a deeper look into fields

and methods available on a given class. The last object from the console

run is an instance of Person. Choose Script > Inspect Last to snoop

around, as shown in Figure 2.2, on the following page.

2.6 Running Groovy on a Web Server (Groovlets)

1. Copy $GROOVY_HOME/embeddable/groovy.jar to WEB-INF/lib.

2. Add groovy.servlet.GroovyServlet to WEB-INF/web.xml.

3. Place your Groovy scripts wherever you'd normally place your JSP files.

4. Create hyperlinks to your Groovy scripts.

Adding a single Groovy servlet to your web application gives you the

ability to run uncompiled Groovy scripts on the server.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=33

RUNNING GROOVY ON A WEB SERVER (GROOVLETS) 34

Figure 2.2: The Groovy object browser

The Groovy servlet acts like the groovy command on the command

line—it compiles your .groovy scripts on the fly.

To get started, copy groovy.jar from $GROOVY_HOME/embedded into the

WEB-INF/lib directory of your JEE application. This Groovy-enables your

entire web application. To run Groovlets on the fly, add the groovy.servlet.

GroovyServlet entry to the WEB-INF/web.xml deployment descriptor. You

can map whatever URL pattern you’d like, but *.groovy is the usual

mapping.

<web-app version="2.4"

xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee web-app_2_4.xsd">

<servlet>

<servlet-name>Groovy</servlet-name>

<servlet-class>groovy.servlet.GroovyServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>Groovy</servlet-name>

<url-pattern>*.groovy</url-pattern>

</servlet-mapping>

<!-- The Welcome File List -->

<welcome-file-list>

<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

</web-app>

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=34

RUNNING GROOVY ON A WEB SERVER (GROOVLETS) 35

Figure 2.3: A friendly Groovlet

You can now drop any uncompiled Groovy script into your web direc-

tory, and it will run. For example, create a file named hello.groovy in the

root of your web application directory. Add the following line:

println "Hello ${request.getParameter('name')}"

This Groovlet echoes whatever you pass in via the name parameter.

To test it, visit http://localhost:8080/g2/hello.groovy?name=Scott in a web

browser. The friendly Groovlet should say “Hello” in a personalized way.

(See Figure 2.3.)

You can easily create hyperlinks to your Groovlets, just as you would

any other file type:

Say Hello

The Groovlet can also handle form submissions. Notice that the form

method is GET and the field name is name. This will create the same

URL you typed by hand and put in the hyperlink earlier. For a slightly

more advanced Groovlet, see Section 10.3, Checking for the Existence of

a Field, on page 185.

<html>

<body>

<form method="get" action="hello.groovy">

Name: <input type="text" name="name" />

<input type="submit" value="Say Hi" />

</form>

</body>

</html>

Web Server Status-Check Groovlet

// stats.groovy

html.h1("Disk Free (df -h)")

html.pre('df -h'.execute().text)

html.hr()

html.h1("IP Config (ifconfig)")

html.pre('ifconfig'.execute().text)

http://localhost:8080/g2/hello.groovy?name=Scott
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=35

RUNNING GROOVY ON A WEB SERVER (GROOVLETS) 36

html.hr()

html.h1("Top (top -l 1)")

html.pre('top -l 1'.execute().text)

This is a common Groovlet that I have deployed to many of my web

servers. It allows me to see, at a glance, some of the key statistics that

help me judge the health of the server—the amount of disk space free,

the network settings, the current processes running on the server, and

so on.

Normally I’d ssh into the machine and type these various commands at

the command prompt. Instead, I can visit http://localhost:8080/stats.groovy

and get the same results. Any command that would normally be typed

by hand can be surrounded in quotes and executed by Groovy on my

behalf. (For more on this, see Section 5.4, Running a Shell Command,

on page 89.) Next, I can wrap those results in HTML fragments using

the MarkupBuilder named html that is available to every Groovlet. (For

more on this, see Section 8.13, Creating HTML on the Fly, on page 146.)

Here is what the resulting HTML looks like...

<h1>Disk Free (df -h)</h1>

<pre>Filesystem Size Used Avail Capacity Mounted on

/dev/disk0s2 149Gi 113Gi 36Gi 76% /

devfs 107Ki 107Ki 0Bi 100% /dev

fdesc 1.0Ki 1.0Ki 0Bi 100% /dev

map -hosts 0Bi 0Bi 0Bi 100% /net

map auto_home 0Bi 0Bi 0Bi 100% /home

</pre>

<hr />

<h1>IP Config (ifconfig)</h1>

<pre>lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1

inet 127.0.0.1 netmask 0xff000000

inet6 ::1 prefixlen 128

gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280

stf0: flags=0<> mtu 1280

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

...but, more important, in Figure 2.4, on the next page, you can see

what it looks like in the browser.

Groovlets aren’t meant to be a replacement for a full-feature web frame-

work. They are simply scripts that you can run on a web server as easily

as you could from the command line. For an example of using Groovy

within a web framework, see the chapters on Grails and Gorm.

http://localhost:8080/stats.groovy
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=36

GROOVY + ECLIPSE 37

Figure 2.4: A Groovlet showing server statistics

2.7 Groovy + Eclipse

http://groovy.codehaus.org/Eclipse+Plugin

If you are using Eclipse 3.2 or newer, there is a Groovy plug-in that

provides the same IDE support (code completion, syntax highlighting,

debugging) you’ve come to expect for Java.

Installing the Plug-In

To install the Groovy/Eclipse plug-in, follow these steps:

1. Choose Help > Software Updates > Find and Install > Search for

New Features.

2. Click New Remote Site.

3. Type Groovy in the Name field.

4. Type http://dist.codehaus.org/groovy/distributions/update/ in the URL

field, and click OK.

http://dist.codehaus.org/groovy/distributions/update/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=37

GROOVY + INTELLIJ IDEA 38

5. Check the Groovy repository, and click Finish.

6. Select Groovy under Select Features to Install, and click Next.

7. Read the agreement, and click Next.

8. Set the default location, and click Finish.

9. If you get a warning about the plug-in being unsigned, don’t worry.

Click Install.

Restart Eclipse, and you should be ready to use Groovy.

Starting a New Groovy Project

To start a new Groovy project, follow these steps:

1. Choose File > New > Project.

2. Choose Java Project, and click Next.

3. Type the name of your choice in the Project Name field.

4. Select Create Separate Source and Output Folders, and then click

Finish.

5. In the Package Explorer, right-click your project, and then choose

Groovy > Add Groovy Nature.

Finally, you will want to change the output folder for your compiled

Groovy code:

1. In the Package Explorer, right-click your project, and choose Build

Path > Configure Build Path.

2. Change the Default Output Folder from bin to bin-groovy.

2.8 Groovy + IntelliJ IDEA

http://www.jetbrains.com/idea/

IntelliJ IDEA 7.x offers native support for Groovy and Grails. Code com-

pletion, syntax highlighting, refactoring support, and more are all stan-

dard features. (See Figure 2.5, on the following page.) Look for the Jet-

Groovy plug-in if it’s not installed by default.

If you have IntelliJ IDEA 6.x, the GroovyJ plug-in will at least give you

rudimentary syntax highlighting. To install it, pull up the Preferences

screen, and click the Plugins button. Select GroovyJ from the list, and

click OK.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=38

GROOVY + TEXTMATE 39

Figure 2.5: Code completion in IntelliJ IDEA 7.x

2.9 Groovy + TextMate

http://macromates.com/

http://macromates.com/wiki/Main/SubversionCheckout

http://groovy.codehaus.org/TextMate

http://www.e-texteditor.com/

TextMate is a popular text editor for the Mac. It offers pluggable lan-

guage support through its Bundle system.

Check out the Groovy bundle (Groovy.tmbundle) from the Macromates

Subversion repository. Copy the file to ~/Library/Application Support/

TextMate/Bundles. Restart TextMate, and Groovy should appear under

the Bundles menu.

The Groovy TextMate wiki page lists other Groovy-related bundles, in-

cluding bundles for Grails and GANT (a Groovy implementation of Ant).

You can also create your own from scratch using the Bundle Editor.

Choose Bundles > Bundle Editor > Show Bundle Editor. (See Figure 2.6,

on the next page.)

Windows users might want to check out E Text Editor. It promises the

“power of TextMate on Windows.” TextMate bundles are supposed to

work in E Text Editor as well.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=39

GROOVY + [INSERT YOUR IDE OR TEXT EDITOR HERE] 40

Figure 2.6: TextMate’s Bundle Editor

2.10 Groovy + [Insert Your IDE or Text Editor Here]

http://groovy.codehaus.org/Other+Plugins

There is Groovy support available for nearly every modern IDE and text

editor. For details on NetBeans, XCode, TextPad, SubEthaEdit, Vim,

Emacs, and others, check out the Other Plugins page on the Groovy

wiki.

Another good source for information is your friendly neighborhood

search engine. For example, typing groovy xcode, groovy vi, or groovy

[your IDE] into a search engine yields a number of hits from various peo-

ple who have blogged about their successes (as well as their stumbling

blocks, of course).

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=40

Chapter 3

New to Groovy
Groovy is meant to complement Java, augment it, and in some cases

give it a much needed face-lift. (Java was, after all, released way back

in 1995. That’s pre-Cambrian in software years, isn’t it?) For example,

some things that are required in Java are optional in Groovy: semi-

colons, datatypes, and even exception handling. Groovy automatically

includes many more packages than Java does by default. Groovy adds

new convenience methods to existing classes such as String, List, and

Map. All of this is done to smooth out some of the speed bumps that

have historically slowed down the Java development process.

What is most interesting about Groovy is that you’ve been writing it all

along without even realizing it. Valid Java is valid Groovy about 99% of

the time—simply rename your .java file to .groovy, and you are ready to

run. (See Chapter 4, Java and Groovy Integration, on page 69 for the

few edge cases that keep Java from being 100% valid Groovy.) Groovy

is a superset of Java. It is in no way meant to replace Java. In fact,

Groovy would not exist without Java. Groovy is meant to be a better

Java than Java, while all along supporting your legacy codebase.

But Groovy does more than improve the existing language. Groovy in-

troduces new classes such as Closure, Range, and GString. Groovy intro-

duces the concept of safe dereferencing to avoid lengthy null-checking

blocks. Groovy offers heredocs—a new special multiline String variable.

Overall, Groovy “embraces and extends” Java in a positive way. Read

on to see what Java would look like if it had been written in the 21st

century.

AUTOMATIC IMPORTS 42

3.1 Automatic Imports

import java.lang.*;

import java.util.*;

import java.net.*;

import java.io.*;

import java.math.BigInteger;

import java.math.BigDecimal;

import groovy.lang.*;

import groovy.util.*;

Java automatically imports the java.lang package for you. This means

you can use classes such as String and Integer and call System.out.println()

without having to type import java.lang.* at the top of every Java file.

In Groovy, you get a number of additional packages. In other words, you

can use classes from these packages without having to explicitly import

them at the top of your file. The net effect of these automatic imports

is that much more of the JDK and GDK is available to you by default.

Java classes—along with their Groovy enhancements—such as List (Sec-

tion 3.14, List Shortcuts, on page 58), Map (Section 3.15, Map Shortcuts,

on page 62), File (Chapter 6, File Tricks, on page 100), and URL (Chap-

ter 9, Web Services, on page 152) are just there when you need them.

Additionally, common Groovy classes such as XmlParser and XmlSlurper

(Section 7.2, Understanding the Difference Between XmlParser and Xml-

Slurper, on page 117), Expando (Section 10.9, Creating an Expando, on

page 194), and ExpandoMetaClass (Adding Methods to a Class Dynami-

cally (ExpandoMetaClass), on page 190) are ready and waiting for you

thanks to the automatic importing that Groovy does on your behalf.

3.2 Optional Semicolons

msg = "Hello"

msg += " World"; msg += "!";

println msg;

===> "Hello World!"

In Groovy, semicolons are completely optional. You must use them if

you have many statements on the same line. Otherwise, using them

at the end of a line with a single statement is now a stylistic decision

instead of a compiler requirement.

This, of course, means we should get ready for our next big technologi-

cal holy war. “O Semicolon, Semicolon! Wherefore art thou, Semicolon?”

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=42

OPTIONAL SEMICOLONS 43

Sneaking Toward DSLs

def list = []
list.add("Groovy")
list.add "Groovy"
list << "Groovy"

All three of these statements are equivalent. Each adds the
word Groovy to the list. The first uses the traditional Java add()

method. The second calls the same method, only without the
parentheses. The third uses operator overloading (as discussed
in Section 3.7, Operator Overloading, on page 50). The << oper-
ator calls the add() method under the covers. Whether you
favor one syntax over the others is a matter of personal pref-
erence. In each case, Groovy is trying to make your code as
expressive and easy to read as possible while still leaving you
with something that will actually execute.

One of the benefits of using a dynamic language such as
Groovy is that it makes it easy to create domain-specific lan-
guages (DSLs).∗ Features such as optional parentheses (Sec-
tion 3.3, Optional Parentheses, on the following page) and
optional semicolons (Section 3.2, Optional Semicolons, on the
previous page) give developers the tools to make program-
ming feel, well, less like programming. A DSL could be viewed
as “executable pseudocode.” You could also view it as a way
to allow nonprogrammers to do simple programming tasks.

def shoppingList = []
def add = shoppingList.&add
def remove = shoppingList.&remove
add "Milk"
add "Bread"
add "Beer"
remove "Beer"
add "Apple Juice"
print shoppingList

In addition to leaving out parentheses and semicolons, this triv-
ial example uses method pointers (Section 10.7, Creating a
Method Pointer , on page 193) to further simplify the syntax. Very
quickly, you have something that doesn’t feel like writing source
code at all. add "Milk", remove "Beer", and print shoppingList all feel
very natural to write, even for nonprogrammers.

Continued on next page.

∗. http://en.wikipedia.org/wiki/Domain-specific_programming_language

http://en.wikipedia.org/wiki/Domain-specific_programming_language
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=43

OPTIONAL PARENTHESES 44

Sneaking Toward DSLs (cont.)

Compare this with the Java alternative: “Don’t forget to include
semicolons at the end of every line. Semicolons. Like the thing
in between the hour and the minutes in ’3:00,’ only with a dot
on top of a comma instead of two dots. You found it—it’s right
next to the L key on the keyboard. OK, now let’s move on to
public static void main(String[] args)....”

The best thing about DSLs is that they don’t just offer benefits to
beginners and nonprogrammers—simplifying source code is an
easy win for everyone involved.

I’m tired of arguing about where the opening curly brace should go—

if it’s good enough for Kernighan and Ritchie,1 then it’s good enough

for me. The VIctor of the text editor war2 has been decided as far as I

am concerned. You can have your Emacs—I have a VIable alternative.

(Although some people say behind my back that I am a VIctim of an old

VIce, I won’t dignify those VIcious rumors with a response.)

So, where does that leave us when it comes to optional semicolons? I

personally don’t use them and quite frankly don’t miss them. I think

that if they aren’t truly required, then they are little more than visual

clutter—a vestigial tail that echoes Groovy’s past rather than dictates

its future. Once you get bitten by the DSL bug (see the sidebar on the

previous page), the opportunity to leave off unpronounceable symbols

in favor of a more English-like programming style is a welcome change.

(Of course, I am always willing to have you buy me a beer and try to

show me the error of my ways. Be forewarned—it might take several

pints to convince me otherwise....)

3.3 Optional Parentheses

println("Hello World!")

println "Hello World!"

===> "Hello World!"

1. http://en.wikipedia.org/wiki/Indent_style

2. http://en.wikipedia.org/wiki/Editor_war

http://en.wikipedia.org/wiki/Indent_style
http://en.wikipedia.org/wiki/Editor_war
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=44

OPTIONAL PARENTHESES 45

Parentheses surrounding method arguments are optional in Groovy.

This is commonly used for simple methods such as println. However,

you must still use the parentheses if a method has no arguments. For

example:

def s = "Hello"

println s.toUpperCase()

===> HELLO

No-argument methods require parentheses because otherwise the com-

piler would not be able to tell the difference between method calls and

the abbreviated getter/setter calls discussed in Section 4.2, Getter and

Setter Shortcut Syntax, on page 72. After working with Groovy for a

while, when you see person.name in code, you’ll just know that it is a

Groovy shortcut for the call to person.getName().

How to Make No-Arg Method Parentheses Optional

Of course, if this whole “no-arg parentheses” requirement really keeps

you awake at night, there are a couple of clever ways to get around

it. (And no, “switching to Ruby” is not one of the options I’m going to

suggest.)

The first workaround is creating a method that looks like a getter, even

if it’s not truly a getter at all. I’m not a proud man—I’ve been known

to write methods such as getDeliver() on my Pizza class just so that I

can call pizza.deliver later. Granted, this breaks the holy “getter/setter”

contract that you were all required to sign as neophyte Java developers,

but why have rules if you don’t break ’em every once in a while?

Another option for getting around those pesky empty parentheses is

creating a method pointer, as discussed in Section 10.7, Creating a

Method Pointer, on page 193:

def pizza = new Pizza()

def deliver = pizza.&deliver()

deliver

When to Use Parentheses and When to Omit Them

Now that you’ve decided whether you are going to use semicolons, you

face the challenge of figuring out when to use parentheses.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=45

OPTIONAL RETURN STATEMENTS 46

My advice to you is the same as Supreme Court Justice Potter Stew-

art’s: you’ll know it when you see it.3 Doesn’t println "Hello" just seem

better than System.out.println("Hello")? I can’t tell you why—it just does.

But that doesn’t mean that I avoid parentheses at all times. I probably

use them more than I don’t. If I’m writing a DSL (as discussed in the

sidebar on page 43), I tend to use fewer parentheses. If I’m writing more

traditional Java/Groovy code, I’ll use them more often. But at the end

of the day, I don’t have a hard and fast decision-making process other

than “at this moment, leaving the parentheses off seems like the right

thing to do.”

3.4 Optional Return Statements

String getFullName(){

return "${firstName} ${lastName}"

}

//equivalent code

String getFullName(){

"${firstName} ${lastName}"

}

The last line of a method in Groovy is an implicit return statement. We

can explicitly use the return statement or safely leave it off.

So, why are return statements optional? Uh, because Al Gore said that

all of that extra unnecessary typing is the 623rd leading cause of global

warning. “Save the keystrokes, save the planet” isn’t just a catchy slo-

gan that I made up on the spot. (Actually it is, but don’t you agree that

it looks like something you’d see in An Inconvenient Truth?)

Just like all of the other optional things in this chapter, allowing you to

leave off return statements is an effort to cut down on the visual noise

of the programming language. Creating a method such as add(x,y){ x + y

} strikes me as the right balance of terseness while still being readable.

If it strikes you as too terse, then don’t use it. Really. It’s OK.

I find myself using return statements if I need to prematurely exit a

method. For example, I am a big believer in failing fast, so return "Insuf-

ficient funds - - try again later." will appear as soon as possible in my with-

draw() method. If I use return early in the method, I’ll probably use it

on the last line as well for visual symmetry. On the other hand, return

3. http://en.wikipedia.org/wiki/I_know_it_when_I_see_it

http://en.wikipedia.org/wiki/I_know_it_when_I_see_it
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=46

OPTIONAL DATATYPE DECLARATION (DUCK TYPING) 47

doesn’t add much clarity to quick little one-liner methods such as the

add method in the previous paragraph. The bottom line is that Groovy

allows me to program with intent instead of making me cave in to the

peer pressure of the compiler. I’ll use return when I’m darn good and

ready to, not because the compiler is nagging me to do so.

3.5 Optional Datatype Declaration (Duck Typing)

//In scripts:

w = "Hello"

String x = "Hello"

println w.class

===> java.lang.String

println w.class == x.class

===> true

//In compiled classes:

def y = "Hello"

String z = "Hello"

println y.class

===> java.lang.String

println y.class == z.class

===> true

Groovy does not force you to explicitly define the type of a variable.

def name = "Jane" is equivalent to String name = "Jane"—both are Strings.

The keyword def means, “I don’t much care what type this variable is,

and you shouldn’t either.” Notice that in scripts and the Groovy shell

(as opposed to compiled classes), you can be even more cavalier and

leave off the def entirely. In fact, in the Groovy shell you should leave

off the datatype declarations. (See the sidebar on page 30 for more

information.)

Java, on the other hand, is a statically typed language. This means you

must give each variable a datatype when you declare it:

Duck mallard = new Mallard();

In this code snippet, you can’t tell whether Duck is a class or an inter-

face. (Think List list = new ArrayList() versus ArrayList list = new ArrayList().) Per-

haps Duck is a parent class of Mallard. Perhaps it is an interface that

defines the behavior of a Duck. If the compiler allows you to stuff a Mal-

lard into a Duck-shaped variable, then Mallard must offer all the same

methods as a Duck. Regardless of how Mallard is actually implemented,

you can safely say—at the very least—that Mallard is of type Duck.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=47

OPTIONAL EXCEPTION HANDLING 48

This concept is called polymorphism—Greek for “many shapes.” Poly-

morphism is the fuel that runs popular dependency injection (DI)

frameworks such as Spring, HiveMind, and Google Guice. These DI

engines allow developers to keep their classes loosely coupled. For ex-

ample, if you hard-code references to the MySQL JDBC driver through-

out your code, you have to embark on an extensive search-and-replace

mission if you later decide to switch to PostgreSQL. On the other hand,

java.sql.Driver is an interface. You could simply code to the Driver inter-

face and allow Spring to inject the proper JDBC driver implementation

at runtime.

Groovy is written in Java, so by extension all variables have a specific

datatype. The difference in Groovy is that you aren’t forced to explicitly

declare the datatype of a variable before using it. In quick-and-dirty

scripts, this means you can simply write w = "Hello". You can tell that w

is truly of type java.lang.String, can’t you? When compiling your Groovy

with groovyc, you must use the def keyword if you want to declare a

variable without being explicit about the type.

Why is this important? It’s not just to save you a few precious key-

strokes here and there. It’s important because it moves Groovy from

being a statically typed language to a dynamically typed one. Objects

in dynamically typed languages don’t have to satisfy the “contract” of

the interface at compile time; they simply have to respond correctly to

method calls at runtime. (See Section 10.3, Checking for the Existence

of a Field, on page 185 and Section 10.5, Checking for the Existence of

a Method, on page 190 for examples of this.)

def d = new Duck()

Alex Martelli, author of several best-selling Python books, coined the

phrase duck typing4 to describe dynamically typed languages. Your

variable doesn’t have to be formally declared of type Duck as long as

it “walks” like a Duck and “quacks” like a Duck—in other words, it must

respond to those method calls at runtime.

3.6 Optional Exception Handling

//in Groovy:

def reader = new FileReader("/foo.txt")

4. http://en.wikipedia.org/wiki/Duck_typing

http://en.wikipedia.org/wiki/Duck_typing
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=48

OPTIONAL EXCEPTION HANDLING 49

//in Java:

try{

Reader reader = new FileReader("/foo.txt")

}

catch(FileNotFoundException e){

e.printStackTrace()

}

In Java, there are two types of exceptions: checked and unchecked.

Checked exceptions extend java.lang.Exception. We have to wrap meth-

ods that might throw an exception in a try/catch block. For example, the

FileReader constructor will throw a FileNotFoundException if you pass in a

filename that doesn’t exist. Unchecked exceptions extend java.lang.Error

or java.lang.RuntimeException. Exceptions such as NullPointerException,

ClassCastException, and IndexOutOfBoundsException might be thrown by

a method, but the compiler doesn’t require you to wrap them in a

try/catch block. The Javadoc for java.lang.Error says that we don’t need to

catch these sorts of exceptions “since these errors are abnormal condi-

tions that should never occur.”

Although it’s nice that Java allows this subtle sort of distinction be-

tween checked and unchecked exceptions, it’s unfortunate that we the

developers don’t get to decide the level of severity for ourselves. If the

FileReader constructor throws a checked exception and you decide that

it’s not important enough to catch, the compiler will respectfully dis-

agree with you and refuse to compile your code.

$ javac TestFile.java

TestFile.java:6: unreported exception java.io.FileNotFoundException;

must be caught or declared to be thrown

Reader reader = new FileReader("/foo.txt");

1 error

But what if you just explicitly created the file on the previous line?

When is the last time a file creation failed for you? Is it a 95% likely

occurrence? 5%? 0.0005%? Is it analogous to a SunSetException (some-

thing that happens every day) or a SunJustExplodedException? In other

words, is it something that you expect to happen or something that just

might happen (“abnormal conditions that should never occur”)?

What if you’ve been writing to that file all along and now you simply

want to read the contents back in? Does FileNotFoundException make

any sense here at all? What if you’re trying to get a handle to a direc-

tory that always exists on your operating system, such as /etc/hosts

or c:\windows? Even though the compiler has the best of intentions, a

simple one-line command now takes six lines of code.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=49

OPERATOR OVERLOADING 50

And even more insidiously, what do you think that the catch block now

contains? If you answered, “Nothing,” “Whatever my IDE generated,” or

“The bare minimum to get that stupid compiler to shut up,” you are

correct.

Glenn Vanderburg says, “Bad developers will move Heaven and Earth to

do the wrong thing.” But what about benign neglect—simply accepting

the code that your IDE autogenerates (which is most likely an empty

block with a todo tag)?

I apologize if I am kicking the shins of your favorite sacred cow. I appre-

ciate the intent of checked exceptions, but I shudder at the thought of

how many empty catch blocks are running in production right now,

how many developers catch Exception as a regular practice, and how

many exceptions are eaten and never rethrown with the misguided

intent of keeping the application up and running at all costs.

Now consider how much code out there is dedicated to the dreaded (yet

unchecked) NullPointerException. I get nulls on a regular basis, yet the

compiler classifies this as an “abnormal condition that should never

occur.” Clearly there is a gap between the intent and the reality of

checked and unchecked exceptions.

Groovy solves this by converting all checked exceptions to unchecked

exceptions. This one small move returns the decision of how severe

an exception is back to the developer. If you are running a web ser-

vice that frequently gets malformed requests from the end user, you

might choose to catch NullPointerException explicitly, even though the

Java compiler doesn’t require it. If you’re referring to a file that can’t

possibly be missing (WEB-INF/web.xml, for example), you can choose not

to catch FileNotFoundException. The definition of “abnormal conditions

that should never occur” is now back fully in your control, thanks to

Groovy. As with optional commas and parentheses, you’re program-

ming with intent. You’re catching an exception because you want to,

not because the compiler wants you to do so.

3.7 Operator Overloading

def d = new Date()

===> Sat Sep 01 13:14:20 MDT 2007

d.next()

===> Sun Sep 02 13:14:20 MDT 2007

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=50

OPERATOR OVERLOADING 51

(1..3).each{ println d++ }

===>

Sat Sep 01 13:14:20 MDT 2007

Sun Sep 02 13:14:20 MDT 2007

Mon Sep 03 13:14:20 MDT 2007

Operator overloading is alive and well in Groovy after a long absence

from the Java language. As you can see in this example, the ++ operator

calls the next() method under the covers. The following list shows the

operator and the corresponding method call:

Operator Method

a == b or a != b a.equals(b)

a + b a.plus(b)

a - b a.minus(b)

a * b a.multiply(b)

a / b a.div(b)

a % b a.mod(b)

a++ or ++a a.next()

a- - or - -a a.previous()

a & b a.and(b)

a | b a.or(b)

a[b] a.getAt(b)

a[b] = c a.putAt(b,c)

a << b a.leftShift(b)

a >> b a.rightShift(b)

a < b or a > b or a <= b or a >= b a.compareTo(b)

This syntactic sugar shows up throughout the GDK5 (Groovy enhance-

ments to the JDK). For example, Section 3.14, List Shortcuts, on page 58

demonstrates some convenience operators added to java.util.List. You can

add items to a List in the traditional Java way (list.add("foo")) or in the new

Groovy way (list << "foo").

Of course, you can add these methods to your own classes as well.

order.leftShift(item) becomes order << item in Groovy.

It’s up to you whether you use operator overloading, but I have to admit

that date + 7 feels a whole lot more natural than date.roll(Calendar.DATE,

7) ever did.

5. http://groovy.codehaus.org/groovy-jdk/

http://groovy.codehaus.org/groovy-jdk/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=51

SAFE DEREFERENCING (?) 52

3.8 Safe Dereferencing (?)

def s = "Jane"

s.size()

===> 5

s = null

s.size()

Caught: java.lang.NullPointerException: Cannot invoke method size()

on null object at CommandLine.run(CommandLine.groovy:2)

//notice that we can call size()

//without throwing a NullPointerException

//thanks to the safe dereferencing ? operator

s?.size()

===> null

Null references can appear unexpectedly. Since they are both common

and expensive (throwing an exception halts operation in Java), many

Java programmers are in the habit of programming defensively around

potentially null situations like this:

if(s != null){

s.doSomething();

}

This is tedious (and verbose) if receiving a null reference isn’t as catas-

trophic as the compiler would like you to believe. Groovy offers a short-

cut if you’d like to ignore the NullPointerException and proceed silently.

Put a question mark at the end of any potentially null object reference,

and Groovy will wrap the call in a try/catch block for you behind the

scenes.

s?.doSomething()

This safe dereferencing can be chained to any depth. Suppose you have

a Person class that has an Address class that has a PhoneNumber class.

You can safely drill all the way down to the phone number without wor-

rying about trapping for each individual potential NullPointerException.

//in Java:

if(person != null && person.getAddress() != null

&& person.getAddress().getPhoneNumber() != null){

System.out.println(person.getAddress().getPhoneNumber());

}

else{

System.out.println("");

}

//in Groovy:

println person?.address?.phoneNumber

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=52

AUTOBOXING 53

3.9 Autoboxing

def i = 2

println i.class

===> java.lang.Integer

def d = 2.2

println d.class

===> java.math.BigDecimal

Autoboxing helps overcome a peculiarity of the Java language: Java

is object-oriented, except when it isn’t. Java offers primitive datatypes

(int, float, double) as well as objects (Integer, Float, Double). In 1995, this

was a reasonable concession. Primitives were used for speed; objects

were used for developer convenience. When Java 5 was released, Sun

added autoboxing (transparently promoting primitives to its Uppercase

Brethren) to help smooth over this historical oddity. Sun didn’t elimi-

nate the primitive/object divide; it just made it less readily apparent.

Groovy takes Java 5 autoboxing one step further—it autoboxes every-

thing on the fly. This means you can perform interesting tasks such as

calling methods on what looks like a primitive to a Java developer’s eye:

2.class

===> class java.lang.Integer

2.toFloat()

===> 2.0

3.times{println "Hi"}

Hi

Hi

Hi

Even if you explicitly cast a variable as a primitive, you still get an

object. In Groovy, everything is an Object. Everything. Primitives no

longer exist as far as Groovy is concerned.

float f = (float) 2.2F

f.class

===> class java.lang.Float

What about calling a Java method that expects a primitive instead of

an object? No worries—Groovy unboxes these values as needed. If you

want more precise control over this, you can use the as keyword:

javaClass.javaMethod(totalCost as double)

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=53

GROOVY TRUTH 54

If you explicitly cast a number to a float or a double, it’ll get autoboxed

to a Float or a Double. If you just type a number with a decimal place,

it’ll get autoboxed to a BigDecimal. Why is this? Well, it’s primarily to

avoid the dreaded “floating-point arithmetic” bugaboo in Java:

//In Java:

public class PiggyBank{

public static void main(String[] args){

double sum = 0.0d;

for(int i = 0; i < 10; i++){

sum += 0.1d;

}

System.out.println(sum);

}

}

$ java PiggyBank

===> 0.9999999999999999

Let’s say you put a dime in your piggy bank for ten days in a row.

According to Java, do you end up with a dollar or with something that

asymptotically approaches a dollar without ever really getting there?

Joshua Bloch has an entire section devoted to this in his seminal book

Effective Java. On page 149, the title of Item 31 says it all: “Avoid float

and double if exact answers are required.” How does Groovy handle the

same problem?

//In Groovy:

def sum = 0

10.times{ sum += 0.1}

println sum

===> 1.0

The Javadoc for java.math.BigDecimal states that it is best used for “im-

mutable, arbitrary-precision signed decimal numbers. The BigDecimal

class gives its user complete control over rounding behavior.” The prin-

ciple of least surprise suggests that 1.1 + 1.1 ought to return 2.2 and 10

* 0.1 should equal 1.0. BigDecimal (and Groovy) gives you the results you

expect.

3.10 Groovy Truth

//true

if(1) // any non-zero value is true

if(-1)

if(!null) // any non-null value is true

if("John") // any non-empty string is true

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=54

GROOVY TRUTH 55

Map family = [dad:"John", mom:"Jane"]

if(family) // true since the map is populated

String[] sa = new String[1]

if(sa) // true since the array length is greater than 0

StringBuffer sb = new StringBuffer()

sb.append("Hi")

if(sb) // true since the StringBuffer is populated

//false

if(0) // zero is false

if(null) // null is false

if("") // empty strings are false

Map family = [:]

if(family) // false since the map is empty

String[] sa = new String[0]

if(sa) // false since the array is zero length

StringBuffer sb = new StringBuffer()

if(sb) // false since the StringBuffer is empty

“Groovy truth” is shorthand for what evaluates to true in the Groovy

language. In Java, the only thing that evaluates to true is, well, true. This

can lead to lots of extraneous typing. For example, if you are trying to

pull in a command-line argument in Java, you must do the following:

//in Java:

if(args != null && args.length > 0){

File dir = new File(args[0]);

}

else{

System.out.println("Usage: ListDir /some/dir/name");

}

Granted, you could simply write File dir = new File(args[0]) and hope for the

best. But what if your user doesn’t supply the correct number of param-

eters? What if they type java ListDir instead of java ListDir /tmp? Which error

do you prefer that they see?

//default message:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0

at ListDir.main(ListDir.java:6)

//your custom error message:

Usage: ListDir /some/dir/name

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=55

EMBEDDED QUOTES 56

Thanks to Groovy truth, that same error-trapping code block can be

shortened to this:

//in Groovy:

if(args){

dir = new File(args[0])

}

else{

println "Usage: ListDir /some/dir/name"

}

0, NULL, and "" (empty strings) all evaluate to false. This means a sim-

ple if(args) catches all the most likely things you want to avoid when

processing input from the user.

3.11 Embedded Quotes

def s1 = 'My name is "Jane"'

def s2 = "My name is 'Jane'"

def s3 = "My name is \"Jane\""

Groovy adds some nice new tricks to Java Strings. In Java, a single

quote is used to represent a single char primitive. In Groovy, we can use

single quotes to surround a String. This means we can use single quotes

to hold a String that has embedded double quotes without having to

escape them. The same, of course, is true of double-quoted Strings that

contain embedded single quotes. Escaping characters with a backspace

is the same in both languages.

3.12 Heredocs (Triple Quotes)

String s = """This is a

multi-line String.

"You don't need to escape internal quotes", he said.

"""

def ss = '''This

That, The Other'''

def xml = """

<book id="987">

<title>Groovy Recipes</title>

<author>Scott Davis</author>

</book>"""

def html = """<body onload="init()">...</body>"""

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=56

GSTRINGS 57

Heredocs6 are available in many dynamic languages, from Python to

Perl to Ruby. A heredoc allows you to store multiline Strings in a single

variable. Groovy uses triple quotes (three single quotes or three double

quotes) to define heredocs.

Even if your Strings are single-lined, heredocs are still quite valuable.

Dropping snippets of XML, HTML, or JSON into a variable is a great

strategy for unit testing. Not having to escape internal quotes makes

it easy to copy a bit of output into a variable and immediately begin

writing assertions against it.

For a real-world example of heredocs in action, see Section 12.4, Setting

Up an Atom Feed, on page 239.

3.13 GStrings

def name = "John"

println "Hello ${name}. Today is ${new Date()}"

===> Hello John. Today is Fri Dec 28 15:16:32 MDT 2007

Embedded dollar signs and curly braces inside Strings are a familiar

sight to anyone who works with Ant build files or Java Server Pages

(JSPs). It makes String concatenation much easier than traditional Java:

"Hello " + name + ".". Groovy brings this syntax to the language in the

form of GStrings (short for “Groovy strings,” of course). Any String with

an embedded expression is a GString:

println "Hello John".class

===> class java.lang.String

println "Hello ${name}".class

===> class org.codehaus.groovy.runtime.GStringImpl

Mixing GStrings with heredocs (Section 3.12, Heredocs (Triple Quotes),

on the preceding page) makes for an especially powerful combination:

def name = "John"

def date = new Date()

def amount = 987.65

def template = """

Dear ${name},

This is a friendly notice that ${amount} was

deposited in your checking account on ${date}.

"""

6. http://en.wikipedia.org/wiki/Heredoc

http://en.wikipedia.org/wiki/Heredoc
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=57

LIST SHORTCUTS 58

3.14 List Shortcuts

def languages = ["Java", "Groovy", "JRuby"]

println languages.class

===> java.util.ArrayList

Groovy offers a concise syntax for creating ArrayLists.

Put a comma-delimited list of values in square brackets to the right

of the equals sign, and you have a List. (Maps offer a similarly easy

construct—see Section 3.15, Map Shortcuts, on page 62.)

Although square brackets will give you an ArrayList by default, you can

put an as clause on the end of the line to coax out various other

datatypes. For example:

def languages = ["Java", "Groovy", "JRuby"] as String[]

def languages = ["Java", "Groovy", "JRuby"] as Set

Creating an Empty List

def empty = []

println empty.size()

===> 0

To create an empty List, simply use the empty set notation.

Adding an Element

def languages = ["Java", "Groovy", "JRuby"]

languages << "Jython"

===> [Java, Groovy, JRuby, Jython]

Adding items to a List is easy. Groovy overloads the << operator to the

leftShift() method to accomplish this. (For more on operator overloading,

see Section 3.7, Operator Overloading, on page 50.)

Getting an Element

def languages = ["Java", "Groovy", "JRuby"]

println languages[1]

println languages.getAt(1)

==> Groovy

Even though languages is technically a List, you can make array-like

calls to it as well. Groovy blurs the syntactic distinction between Lists

and Arrays, allowing you to use the style that is most pleasing to you.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=58

LIST SHORTCUTS 59

Iterating

def languages = ["Java", "Groovy", "JRuby"]

//using the default 'it' variable:

languages.each{println it}

===>

Java

Groovy

JRuby

//using the named variable of your choice:

languages.each{lang ->

println lang

}

===>

Java

Groovy

JRuby

Iterating through a List is such a common activity that Groovy gives you

a convenient way to do it. In the first example, you use the default name

for the iterator variable, it. In the second example, you explicitly name

the variable lang.

Of course, all the traditional Java ways of iterating over a List are still

available to you. If you like the Java 5 for..in syntax or java.util.Iterator,

you can continue to use it. Remember that Groovy augments Java; it

doesn’t replace it.

Iterating with an Index

def languages = ["Java", "Groovy", "JRuby"]

languages.eachWithIndex{lang, i ->

println "${i}: ${lang}"

}

===>

0: Java

1: Groovy

2: JRuby

eachWithIndex() gives you both the current element and a counter vari-

able.

Sort

def languages = ["Java", "Groovy", "JRuby"]

languages.sort()

===> [Groovy, JRuby, Java]

println languages

===> [Groovy, JRuby, Java]

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=59

LIST SHORTCUTS 60

You can easily sort a List. Note that this is a permanent change. sort()

modifies the internal sort order of the original List.

Reverse

def languages = ["Java", "Groovy", "JRuby"]

languages.reverse()

===> [JRuby, Groovy, Java]

println languages

===> [Java, Groovy, JRuby]

You can easily reverse a list. Note that reverse() does not modify the

original sort order of the List. It returns a new List.

Pop

def languages = ["Java", "Groovy", "JRuby"]

languages.pop()

===> "JRuby"

println languages

===> [Java, Groovy]

You can pop things off the List. The pop method uses LIFO, meaning

last in, first out. Note that this is a permanent change. pop() removes

the last item from the List.

Concatenating

def languages = ["Java", "Groovy", "JRuby"]

def others = ["Jython", "JavaScript"]

languages += others

===> [Java, Groovy, JRuby, Jython, JavaScript]

languages -= others

===> [Java, Groovy, JRuby]

You can easily add two Lists together. You can just as easily subtract

them back out again.

Join

def languages = ["Java", "Groovy", "JRuby"]

groovy> languages.join()

===> JavaGroovyJRuby

groovy> languages.join(",")

===> Java,Groovy,JRuby

The convenience method join() returns a string containing each element

in the List. If you pass a string argument into join(), each element will be

separated by the string.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=60

LIST SHORTCUTS 61

Find All

def languages = ["Java", "Groovy", "JRuby"]

languages.findAll{ it.startsWith("G") }

===> [Groovy]

findAll() allows you to query your List. It returns a new List that contains

all the elements that match your criteria.

Max, Min, Sum

def scores = [80, 90, 70]

println scores.max()

===> 90

println scores.min()

===> 70

println scores.sum()

===> 240

max() returns the highest value in the List. min() returns the lowest. sum()

adds up all elements in the List.

Collect

def languages = ["Java", "Groovy", "JRuby"]

languages.collect{ it += " is cool"}

===> [Java is cool, Groovy is cool, JRuby is cool]

If you want to modify each element in a List, you can use the collect()

method. Note that collect() does not modify the original List. It returns a

new List.

Flatten

def languages = ["Java", "Groovy", "JRuby"]

def others = ["Jython", "JavaScript"]

languages << others

===> [Java, Groovy, JRuby, [Jython, JavaScript]]

languages = languages.flatten()

===> [Java, Groovy, JRuby, Jython, JavaScript]

If you have a multidimensional List, flatten() returns a single-dimensional

array. Note that flatten() does not modify the original List. It returns a

new List.

Spread Operator (*)

def params = []

params << "jdbc:mysql://localhost:3306/bookstore_dev?autoreconnect=true"

params << "com.mysql.jdbc.Driver"

params << "username"

params << "password"

def sql = groovy.sql.Sql.newInstance(*params)

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=61

MAP SHORTCUTS 62

The spread operator, as the name implies, spreads the elements of a

List out. In this example, the newInstance method expects four string

arguments. *params takes the List and spreads the elements out into

each slot of the method arguments.

The spread-dot operator works in the opposite direction. It allows you to

concisely iterate over a list, calling the same method on each element:

def languages = ["Java", "Groovy", "JRuby"]

println languages*.toUpperCase()

===> [JAVA, GROOVY, JRUBY]

3.15 Map Shortcuts

def family = [dad:"John", mom:"Jane"]

println family.getClass()

===> java.util.LinkedHashMap

Groovy offers a concise syntax for creating Maps. You just put a comma-

delimited list of name/value pairs in square brackets to the right of the

equals sign, and you have a Map. (Lists offer a similarly easy construct—

see Section 3.14, List Shortcuts, on page 58.)

Creating an Empty Map

def empty = [:]

println empty.size()

===> 0

To create an empty Map, simply use the empty set notation with a

colon.

Getting an Element

def family = [dad:"John", mom:"Jane"]

family.get("dad")

family.dad

===> John

You can use the traditional Java get() method to return an element out

of the Map. However, Groovy shortens this syntax to make it look as if

you were calling the key directly.

If you wanted a more array-like syntax, family[’dad’] is yet another way

to get an element out of a map.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=62

MAP SHORTCUTS 63

Gotcha: Why Does .class Work on Everything Except Maps?

def family = [dad:"John", mom:"Jane"]
println family.class
===> null
println family.getClass()
===> java.util.LinkedHashMap

Since the dot notation is used to get elements out of the
Map, calling map.class returns null instead of the class type.
Why? Because your Map doesn’t contain an element named
class. With Maps, you must use the long Java form of the
method call—map.getClass(). Of course, getClass() works across
all classes, so this might be the safest form of the call to make if
you want it to work 100% of the time.

For more information, see the sidebar on page 73.

Adding an Element

def family = [dad:"John", mom:"Jane"]

family.put("kid", "Timmy")

family.kid2 = "Susie"

===> {dad=John, mom=Jane, kid=Timmy, kid2=Susie}

You can use the traditional Java put() method to add an element to

the Map. Groovy shortens this to the same dotted notation you use for

getting elements.

If you prefer a more array-like syntax, family[’kid2’] = "Susie" is also valid.

Iterating

def family = [dad:"John", mom:"Jane"]

//using the default 'it' variable:

family.each{println it}

===>

dad=John

mom=Jane

//getting the key and value from 'it'

family.each{println "${it.value} is the ${it.key}"}

===>

John is the dad

Jane is the mom

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=63

MAP SHORTCUTS 64

//using named variables for the key and value

family.each{k,v ->

println "${v} is the ${k}"

}

===>

John is the dad

Jane is the mom

Iterating through a Map is such a common activity that Groovy gives

you a convenient way to do it. The first example uses the default name

for the iterator variable, it. The next example uses it.key and it.value

to grab the separate parts of the name/value pair. The final example

explicitly names the key and value variables k and v, respectively.

Concatenating

def family = [dad:"John", mom:"Jane"]

def kids = [kid:"Timmy", kid2:"Susie"]

family += kids

===> {dad=John, kid=Timmy, kid2=Susie, mom=Jane}

kids.each{k,v->

family.remove("${k}")

}

===> {dad=John, mom=Jane}

You can easily add two Maps together. Groovy doesn’t offer a shortcut

for subtracting one Map from the other, but the syntax is so short that

it is a minor oversight at best.

Finding Keys

def family = [dad:"John", mom:"Jane"]

family.keySet()

===> [dad, mom]

family.containsKey("dad")

===> true

You can use the same strategies for finding keys to a Map in Groovy that

you use in Java—keySet() returns a List of all the keys, and containsKey()

lets you know whether a key exists.

Finding Values

def family = [dad:"John", mom:"Jane"]

family.values()

===> [John, Jane]

family.containsValue("John")

===> true

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=64

RANGES 65

You can use the same strategies for finding Map values in Groovy

that you use in Java—values() returns a List of all the values, and con-

tainsValue() lets you know whether a value exists.

3.16 Ranges

def r = 1..3

println r.class

===> groovy.lang.IntRange

r.each{println it}

===>

1

2

3

r.each{ println "Hi" }

===>

Hi

Hi

Hi

(1..3).each{println "Bye"}

===>

Bye

Bye

Bye

Groovy offers a native datatype for Ranges. You can store a range in a

variable, or you can create and use them on the fly.

All of the examples here use Integers for the sake of simplicity. But

Ranges are far more flexible. They can include any class that imple-

ments the Comparable interface and has next() and previous() methods.

Consider this quick example of a Range of Dates:

def today = new Date()

===> Sat Dec 29 23:59:28 MST 2007

def nextWeek = today + 7

===> Sat Jan 05 23:59:28 MST 2008

(today..nextWeek).each{println it}

===>

Sat Dec 29 23:59:28 MST 2007

Sun Dec 30 23:59:28 MST 2007

Mon Dec 31 23:59:28 MST 2007

Tue Jan 01 23:59:28 MST 2008

Wed Jan 02 23:59:28 MST 2008

Thu Jan 03 23:59:28 MST 2008

Fri Jan 04 23:59:28 MST 2008

Sat Jan 05 23:59:28 MST 2008

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=65

RANGES 66

Size, From, To

def r = 1..3

r.size()

===> 3

r.from

===> 1

r.to

===> 3

We can interrogate ranges about their size, starting point, and ending

point.

For

for(i in 1..3){ println "Attempt ${i}" }

===>

Attempt 1

Attempt 2

Attempt 3

(1..3).each{ println "Attempt ${it}" }

===>

Attempt 1

Attempt 2

Attempt 3

Ranges are commonly used in for loops, although calling each directly

on the Range is a bit more concise.

Contains

def r = 1..3

r.contains(1) && r.contains(3)

===> true

r.contains(2)

===> true

r.contains(12)

===> false

Ranges can tell you whether an arbitrary value falls within the range.

Both the start and end points are included in the range.

Reverse

r.reverse()

===> [3, 2, 1]

If you need to iterate backward through a Range, there is a convenient

reverse() method.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=66

CLOSURES AND BLOCKS 67

3.17 Closures and Blocks

def hi = { println "Hi"}

hi()

===> Hi

In its simplest form, a groovy.lang.Closure is a free-standing, named

block of code. It is behavior that doesn’t have a surrounding class.

Really, a closure is not a completely foreign concept. We have code

blocks in Java (if, for, while, try, catch, and so on), just not named code

blocks. Groovy adds this tiny semantic difference and leverages it to a

great extent. (For a real-world example of closures in action, see Sec-

tion 11.8, Understanding Controllers and Views, on page 219.)

I humbly offer my apologies if you don’t think this is a closure in the

strictest academic sense7 of the word. I’m also going to consciously

avoid using phrases such as “lambda-style functional programming.”8

I’m not being coy—the simple fact of the matter is that the implementing

class is named Closure.

Accepting Parameters
def hello = { println "Hi ${it}" }

hello("John")

hello "John"

===> Hi John

The familiar anonymous it parameter discussed in Section 3.14, List

Shortcuts, on page 58 and Section 3.15, Map Shortcuts, on page 62

comes into play here as well. Notice that you can leave off the paren-

theses when calling a closure just as you would if you were calling a

method. (See Section 3.3, Optional Parentheses, on page 44 for more

information.)

Here’s a slightly more advanced example of closures in action. Notice

how the it parameter is used in both the each and the convertToCelsius

closures.

def convertToCelsius = {

return (5.0/9.0) * (it.toFloat() - 32.0)

}

[0, 32, 70, 100].each{

println "${it} degrees fahrenheit in celsius: ${convertToCelsius(it)}"

}

7. http://en.wikipedia.org/wiki/Closure_%28computer_science%29

8. http://en.wikipedia.org/wiki/Functional_programming

http://en.wikipedia.org/wiki/Closure_%28computer_science%29
http://en.wikipedia.org/wiki/Functional_programming
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=67

CLOSURES AND BLOCKS 68

===>

0 degrees fahrenheit in celsius: -17.7777777792

32 degrees fahrenheit in celsius: 0.0

70 degrees fahrenheit in celsius: 21.1111111128

100 degrees fahrenheit in celsius: 37.7777777808

Named Parameters

def calculateTax = { taxRate, amount ->

return amount + (taxRate * amount)

}

println "Total cost: ${calculateTax(0.055, 100)}"

===> Total cost: 105.500

Although the anonymous it parameter is very convenient when writing

quick-and-dirty ad hoc scripts, naming your parameters will help the

readability and maintainability of your code in the long run. If your

closure expects more than one parameter, you really don’t have a choice

but to name them.

Currying Parameters

def calculateTax = { taxRate, amount ->

return amount + (taxRate * amount)

}

def tax = calculateTax.curry(0.1)

[10,20,30].each{

println "Total cost: ${tax(it)}"

}

===>

Total cost: 11.0

Total cost: 22.0

Total cost: 33.0

When you instantiate a closure, you can preload values into the param-

eters by using the curry method. In this example, hard-coding a default

value for taxRate would significantly reduce the closure’s reusability. On

the other hand, having to pass in the same tax rate each time you call

the closure is needlessly repetitive and verbose. Currying the taxRate

strikes just the right balance.

You can curry as many parameters as you like. The first curry call fills in

the leftmost parameter. Each subsequent call fills in the next parameter

to the right.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=68

Chapter 4

Java and Groovy Integration
One of the biggest selling points of Groovy is its seamless integration

with Java. In this chapter, we’ll explore this integration in various ways.

We’ll look at using plain old Groovy objects (POGOs) as drop-in replace-

ments for plain old Java objects (POJOs). We’ll call Groovy code from

Java and Java code from Groovy. And finally we’ll explore how to use

Ant to compile our entire project, including a healthy combination of

Groovy and Java classes.

4.1 GroovyBeans (aka POGOs)

package org.davisworld.bookstore

class Book{

String title

String author

Integer pages

}

As we saw in Section 1.1, Groovy, the Way Java Should Be, on page 16,

this is all there is to a POGO. Groovy boils JavaBeans down to their

pure essence.

Packaging

The first thing you’ll notice in this example is the packaging. You’ll prob-

ably never need to package ad hoc Groovy scripts, but Groovy classes

are packaged in the same way as Java classes. (See Chapter 5, Groovy

from the Command Line, on page 86 for more on writing Groovy scripts.)

The only thing that might seem strange to a Java developer’s eye is

the missing semicolon. (As we discussed in Section 3.2, Optional Semi-

colons, on page 42, you can add it back in if you’d like.)

GROOVYBEANS (AKA POGOS) 70

Public Classes, Private Attributes, Public Methods

// in Groovy:

class Book{

String title

String toString(){

return title

}

}

// in Java:

public class Book{

private String title;

public String toString(){

return title;

}

}

Classes in Groovy are implicitly public if you don’t provide an access

modifier (public, private, or protected). In Java, classes are package-

private if you don’t say otherwise. This can be a serious “gotcha” if you

aren’t paying attention when you move back and forth between the two

languages. (See the sidebar on the following page for more on this.)

Attributes in Groovy are implicitly private if you don’t provide an access

modifier. You can prove this through a little bit of introspection:

println Book.getDeclaredField("title")

===> private java.lang.String Book.title

Methods in Groovy are public by default. Here’s the proof:

println Book.getDeclaredMethod("toString")

===> public java.lang.String Book.toString()

So, what do Groovy developers have against package-private access?

Nothing, really. Their goal was to allow classes to do the right thing by

default, and package-private access was an unfortunate bit of collateral

damage.

Think about the last major Java project you worked on for a minute.

How many public POJOs did you have with private attributes? You can

probably safely invoke the “80/20 rule” here, but if I pressed you, it’d

most likely end up being 90% or greater. Public classes with private

attributes are the overwhelming majority of the Java code written, and

Groovy’s intelligent defaults reflect this business reality.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=70

AUTOGENERATED GETTERS AND SETTERS 71

Gotcha: No Package-Private Visibility

In Java, if you leave the access modifier off a class, attribute,
or method, it means that other classes in the same package or
direct subclasses in another package can access them directly.
This is called package-private access.∗ In Groovy, classes with-
out an access modifier are considered public. Attributes without
an access modifier are considered private. Methods without an
access modifier are public. Although this shortcut is arguably
more useful for mainstream usage, it represents one of the few
cases where Java semantics differ from Groovy semantics.

There is no way to give classes, attributes, or methods package-

private visibility in Groovy. Public, private, and protected elements
are all declared in Groovy the same way as they are in Java.

∗. http://java.sun.com/docs/books/tutorial/java/javaOO/accesscontrol.html

4.2 Autogenerated Getters and Setters

class Book{

String title

}

Book book = new Book()

book.setTitle("Groovy Recipes")

println book.getTitle()

===> Groovy Recipes

Although the absence of the oh-so-obvious public and private modifiers

cut down the class size a bit, it is the automatic generation of the getters

and setters that makes the real difference. Every attribute in a POGO

gets a matching set by default.

Think once again back to your last Java project. Did you lovingly hand-

craft each getter and setter, or did you let your IDE generate the boiler-

plate code?

If this code is rote and uninteresting, letting the Groovy compiler, in-

stead of your IDE, generate it for you dramatically reduces the visual

clutter in your project. And if, by chance, you are overriding the default

http://java.sun.com/docs/books/tutorial/java/javaOO/accesscontrol.html
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=71

AUTOGENERATED GETTERS AND SETTERS 72

behavior of a getter or a setter, see how your eye is immediately drawn

to the exception to the rule:

class Book{

String title

String author

Integer pages

String getTitle(){

return title.toUpperCase()

}

}

Getter and Setter Shortcut Syntax

class Book{

String title

}

Book book = new Book()

book.title = "Groovy Recipes"

//book.setTitle("Groovy Recipes")

println book.title

//println book.getTitle()

===> Groovy Recipes

Yet another way Groovy cuts down on visual clutter is the syntactic

shortcut it allows when dealing with class attributes. book.title is calling

book.getTitle() behind the scenes. This is an attempt to make it feel more

natural—it seems to be dealing with the Book’s title directly, rather than

calling the getTitle() method on the Book class that returns a String value.

(For more information, see the sidebar on the next page.)

The legacy Java getter and setter syntax is still perfectly valid in Groovy.

Suppressing Getter/Setter Generation

class Book2{

private String title

}

println Book2.getDeclaredField("title")

===> private java.lang.String Book2.title

println Book2.methods.each{println it}; "DONE"

// neither getTitle() nor setTitle() should appear in the list

Explicitly flagging a field as private in Groovy suppresses the creation

of the corresponding getter and setter methods. This little gem is quite

helpful if you want the field to be truly hidden from Java classes.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=72

AUTOGENERATED GETTERS AND SETTERS 73

Groovy Syntax Shortcuts

As demonstrated in Section 4.2, Getter and Setter Shortcut Syn-
tax , on the preceding page, book.getTitle() can be shortened
to book.title. Although this getter/setter shortcut is the default
behavior in Groovy, there are numerous places in the language
where it is selectively overridden to mean something com-
pletely different.

In Section 3.15, Map Shortcuts, on page 62, a call like book.title

on a hashmap is a shortcut for book.get("title"). In Chap-
ter 7, Parsing XML, on page 116, that same call is a quick
way to parse an XML snippet such as <book><title>Groovy

Recipes</title></book>. In Section 10.8, Calling Methods That
Don’t Exist (invokeMethod), on page 193, you’ll learn how to
take that call and do pretty much whatever you’d like with it.

I don’t consider this to be a gotcha; in fact, I consider it a pow-
erful language feature. But it can catch you off-guard if you
aren’t expecting it.

But what about visibility to other Groovy classes? Well, this code snip-

pet should make it abundantly clear that the field is still accessible

despite the lack of getter and setter methods:

def b2 = new Book2()

b2.title = "Groovy Recipes"

println b2.title

===> Groovy Recipes

Groovy has some issues with privacy—in a nutshell, it ignores the pri-

vate modifier. (Yeah, that’s a pretty big issue. See the sidebar on page 80

for more information.)

If you want to protect a private field from accidental modification in

Groovy, you can add a pair of do-nothing getters and setters. Flagging

the methods as private will prevent them from cluttering up the public

API.

class Book3{

private String title

private String getTitle(){}

private void setTitle(title){}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=73

GETPROPERTY AND SETPROPERTY 74

def b3 = new Book3()

b3.title = "Groovy Recipes"

println b3.title

===> null

It is important that your dummy getters and setters don’t modify the

value of the private field. Since Groovy ignores the private modifier on

the methods, you are actually invoking them when you call b3.title.

Although creating do-nothing getters and setters will protect your pri-

vate field from casual users, adding an @ prefix to the field name allows

you to access any field directly—public, private, or protected. The @

bypasses any getters and setters that might be in place, so at the end of

the day there is really no way to prevent a determined user from break-

ing encapsulation and mucking around with your private bits directly.

(For more information, see Section 10.6, Creating a Field Pointer, on

page 192.)

class Book3{

private String title

private String getTitle(){}

private void setTitle(title){}

}

def b3 = new Book3()

b3.@title = "Groovy Recipes"

println b3.@title

===> Groovy Recipes

4.3 getProperty and setProperty

class Book{

String title

}

Book book = new Book()

book.setProperty("title", "Groovy Recipes")

//book.title = "Groovy Recipes"

//book.setTitle("Groovy Recipes")

println book.getProperty("title")

//println book.title

//println book.getTitle()

===> Groovy Recipes

This example shows a third way of setting and getting properties on

a POGO—book.getProperty() and book.setProperty(). In traditional Java,

calling book.getTitle() is second nature. As we discussed in Section 4.2,

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=74

MAKING ATTRIBUTES READ-ONLY 75

Getter and Setter Shortcut Syntax, on page 72, Groovy allows you to

shorten book.getTitle() to book.title. But what if you want a more generic

way to deal with the fields of a class?

Groovy borrows a trick from java.lang.System in providing a generic way

to access the properties of a class. As discussed in Section 5.8, Get-

ting System Properties, on page 92, you can’t make a method call such

as System.getJavaVersion(). You must ask for System properties in a more

generic way—System.getPropery("java.version"). To get a list of all proper-

ties, you ask for System.getProperties(). These generic methods are now

available on every class, courtesy of the groovy.lang.GroovyObject

interface.

Yes, you could always do this sort of thing with the java.lang.reflect

package, but Groovy makes the syntax easy to work with. Once you

start dealing with metaprogramming on a more regular basis, this way

of interacting with classes will become as natural as book.getTitle() or

book.title. For more on this, see Section 10.2, Discovering the Fields of a

Class, on page 183.

Property Access with GStrings

class Book{

String title

}

def b = new Book()

def prop = "title"

def value = "Groovy Recipes"

b."${prop}" = value

println b."${prop}"

===> Groovy Recipes

As nice as the getProperty and setProperty methods are, there is an even

“groovier” way to generically deal with fields. You can pass the name of

the field into a GString for maximum flexibility. (For more on GStrings,

see Section 3.13, GStrings, on page 57.)

4.4 Making Attributes Read-Only

class Book{

final String title

Book(title){

this.title = title

}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=75

CONSTRUCTOR SHORTCUT SYNTAX 76

Book book = new Book()

book.title = "Groovy Recipes"

===>

ERROR groovy.lang.ReadOnlyPropertyException:

Cannot set readonly property: title for class: Book

Book book2 = new Book("GIS for Web Developers")

println book2.title

===>

GIS for Web Developers

The final modifier works the same way in both Groovy and Java. Specif-

ically, it means that the attribute can be set only when the class is

instantiated. If you try to modify the attribute after the fact, a groovy.

lang.ReadOnlyPropertyException is thrown.

4.5 Constructor Shortcut Syntax

class Book{

String title

String author

Integer pages

}

Book book1 = new Book(title:"Groovy Recipes", author:"Scott Davis", pages:250)

Book book2 = new Book(pages:230, author:"Scott Davis",

title:"GIS for Web Developers")

Book book3 = new Book(title:"Google Maps API")

Book book4 = new Book()

Groovy offers constructor convenience like nothing you’ve ever seen in

Java. By supporting named arguments and a variable-length argument

list, you can instantiate your class in any way you see fit. book1 and

book2 demonstrate that since the variables are named, you can supply

them in any order. book3 demonstrates the vararg part of the equation:

in this case, you just pass in the title. book4 demonstrates that none

of the Groovy convenience methods interferes with the default Java

constructor.

What’s especially neat about this constructor shortcut is that it is avail-

able on pure Java classes as well. The constructor behavior is added at

runtime, so it works for either Groovy or Java classes. For a real-world

demonstration of this, see Section 4.9, Calling Java from Groovy, on

page 81.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=76

OPTIONAL PARAMETERS/DEFAULT VALUES 77

4.6 Optional Parameters/Default Values

class Payment{

BigDecimal amount

String type

public Payment(BigDecimal amount, String type="cash"){

this.amount = amount

this.type = type

}

String toString(){

return "${amount} ${type}"

}

}

def pmt1 = new Payment(10.50, "cash")

println pmt1

//===> 10.50 cash

def pmt2 = new Payment(12.75)

println pmt2

//===> 12.75 cash

def pmt3 = new Payment(15.99, "credit")

println pmt3

//===> 15.99 credit

In this example, type defaults to “cash” unless you explicitly provide

another value. This streamlines the development process by not requir-

ing you to maintain two separate overloaded constructors—one that

accepts just an amount and a second one that accepts an amount and

a type. The really nice thing about optional parameters is that they are

available on any type of method. Consider the following method that

streamlines the purchase of a movie ticket:

class Ticket{

static String buy(Integer quantity=1, String ticketType="adult"){

return "${quantity} x ${ticketType}"

}

}

println Ticket.buy()

println Ticket.buy()

println Ticket.buy(2)

println Ticket.buy(4, "child")

===>

1 x adult

1 x adult

2 x adult

4 x child

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=77

PRIVATE METHODS 78

In this example, a single method offers a great deal of flexibility. If you

call it without parameters, it uses intelligent defaults for everything.

The next most likely scenario (in theory) is two people out on a date—

the code allows you to override the quantity while still defaulting the

ticketType to “adult.”

In the Payment example, the amount has no default value. You are

required to provide it every time you create a new Payment. The type, on

the other hand, defaults to “cash” if not provided. Optional parameters

must always come after all the required parameters. Optional parame-

ters should also be ordered by importance—the most likely parameter

to change should come first in the list, followed by the next most likely,

and so on, down to the least likely to be overridden of all.

static String buy(Integer quantity=1, String ticketType="adult",

BigDecimal discount=0.0)

//won't compile

Ticket.buy(0.15)

//will compile

Ticket.buy(1, "adult", 0.15)

Given the order of the parameters in the new buy() method, there is

no way you can request a 15% discount on one adult ticket without

specifying all three values. The cascading order of importance in the

optionals list says that you can safely ignore parameters to the right of

you, but you must specify parameters to the left of you.

4.7 Private Methods

class Book{

String title

private String getTitle(){

return title

}

private void setTitle(String title){

this.title = title

}

private void poke(){

println "Ouch!"

}

}

Book book = new Book()

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=78

CALLING GROOVY FROM JAVA 79

// notice that Groovy completely ignores the private access modifier

book.title = "Groovy Recipes"

println book.title

===> Groovy Recipes

book.poke()

===> Ouch!

Simply put, Groovy pays no attention to the private access modifier for

methods. You can call private methods as easily as you can call public

ones. (For more on this, see the sidebar on the next page.)

Private methods don’t show up in the public interface. This means that

poke() doesn’t appear when you call Book.methods.each{println it}. The

only way you’d know that poke() is available is if you had the source

code in front of you.

Java respects the private modifier. When instantiated in Java, you can-

not call poke() through normal means.

4.8 Calling Groovy from Java

public class BookstoreJava implements Bookstore {

private Book b; // written in Groovy

private Publisher p; // written in Java

public Book makeBook() {

b = new Book();

b.setAuthor("Scott Davis");

b.setTitle("Groovy Recipes");

b.setPages(250);

return b;

}

public Publisher makePublisher() {

p = new Publisher();

p.setName("Pragmatic Bookshelf");

return p;

}

}

You might be squinting at this point, looking for evidence that Book was

implemented in Groovy and that Publisher was implemented in Java.

That’s the point! Once a class written in Groovy is compiled, it looks no

different from a class written in Java. The autogenerated getters and

setters (Section 4.2, Autogenerated Getters and Setters, on page 71) are

indistinguishable from ones implemented in Java. This makes Groovy

a perfect drop-in replacement for your JavaBeans.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=79

CALLING GROOVY FROM JAVA 80

Gotcha: Groovy Ignores the Private Modifier

As demonstrated in Section 4.7, Private Methods, on page 78,
Groovy allows you to call private methods on a class just as eas-
ily as public ones. As demonstrated in Section 4.2, Suppressing
Getter/Setter Generation, on page 72, Groovy allows you to
access private fields as if they were public.

The bottom line is that Java respects the private access modi-
fier; Groovy doesn’t. Java is the neighbor that knocks on your
front door even though it knows where you hide the key. Groovy
is the neighbor that lets itself in to borrow a cup of sugar and
leaves you a note on the kitchen table. When I first started work-
ing with Groovy, this was the (ahem) feature that I found most
unsettling. At best it seems impolite to ignore the private modi-
fier. At worst, it can be downright dangerous.

Maybe it’s Groovy’s cavalier attitude toward privacy that
made me uncomfortable initially. It’s so easy to call a private

method that you think, “This has to be a bug.” You can, of
course, bypass the private modifier in Java as well by using the
java.lang.reflect package. But calling private methods in Java, for
some reason, just seems more circumspect. You have to con-
sciously go out of your way to call a private method in Java. You
have to know what you are doing. We are well off the beaten
path in Java—there is no mistaking that we are doing some-
thing out of the ordinary.

Although the lack of privacy in Groovy still occasionally both-
ers me intellectually, in practice this really hasn’t been much
of an issue. Private methods don’t show up in the public inter-
face, so usually the only way I know that a private method exists
is if I have the source code open in front of me. If I have that
level of access to the class, the onus is on me not to hopelessly
screw things up. Along those same lines, having access to pri-
vate methods and fields can actually be quite helpful when
staging a class for unit testing, especially if it wasn’t written to
be easily testable.

Bjarne Stroustrup famously said, “C makes it easy to shoot your-
self in the foot; C++ makes it harder, but when you do, it blows
your whole leg off.” Some might argue that in the case of private

methods, Groovy makes it easier to blow your whole leg off. My
personal take on the issue is a bit more pragmatic: I’d rather
have a sharper scalpel and a better-trained surgeon than a
duller blade. It’s the responsibility of the developer to use this
feature wisely.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=80

CALLING JAVA FROM GROOVY 81

You get identical behavior using a fraction of the code that you would

have to use in a pure Java implementation. The only things required

for this code to work are that your Groovy classes be compiled (which

we discuss in Section 4.11, The Groovy Joint Compiler, on the next page)

and that the single Groovy JAR found in $GROOVY_HOME/

embeddable is somewhere on your classpath.

4.9 Calling Java from Groovy

class BookstoreGroovy implements Bookstore{

Book b // written in Groovy

Publisher p // written in Java

Book makeBook(){

b = new Book(author:"Scott Davis", pages:250, title:"Groovy Recipes")

}

Publisher makePublisher(){

p = new Publisher(name:"Pragmatic Bookshelf")

}

}

In Section 4.8, Calling Groovy from Java, on page 79, we saw that

Groovy classes look just like Java classes when run from Java. In this

example, you can see that Java classes look just like Groovy classes

when run from Groovy. Even though Publisher is written in Java, you can

still use the cool constructor shortcut (Section 4.5, Constructor Shortcut

Syntax, on page 76) available to you in Groovy.

4.10 Interfaces in Groovy and Java

// Bookstore.java

public interface Bookstore {

public Book makeBook();

public Publisher makePublisher();

}

// BookstoreGroovy.groovy

class BookstoreGroovy implements Bookstore{...}

// BookstoreJava.java

public class BookstoreJava implements Bookstore {...}

What you can see here is another example of how well Groovy seam-

lessly integrates with Java. The Bookstore interface is written in Java. As

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=81

THE GROOVY JOINT COMPILER 82

previously discussed, Book is written in Groovy, and Publisher is written

in Java. The interface deals with both classes equally well.

Now take a look at BookstoreGroovy. It is written in Groovy, yet it is able

to implement Bookstore (written in Java) as easily as BookstoreJava.

The only things required for this code to work are that your Groovy

classes be compiled (which we discuss in Section 4.11, The Groovy Joint

Compiler) and that the single Groovy JAR found in $GROOVY_HOME/

embeddable is somewhere on your classpath.

4.11 The Groovy Joint Compiler

// compile Groovy code

$ groovyc *.groovy

// compile Java code

$ javac *.java

// compile both Groovy and Java code

// using groovyc for the Groovy code and javac for the Java code

$ groovyc * -j -Jclasspath=$GROOVY_HOME/embeddable/groovy-all-1.5.0.jar:.

Not surprisingly, groovyc compiles Groovy source into bytecode just as

javac compiles Java source. The Groovy compiler, however, adds one

more subtle but incredibly useful feature: the ability to jointly compile

Java and Groovy code using a single command.

Satisfying Dependencies

To appreciate what groovyc does, let’s take a deeper dive into the javac

life cycle. Before javac can compile your code, it has to satisfy all the

dependencies. For example, let’s try to compile the Bookstore interface:

$ javac Bookstore.java

// Bookstore.java

public interface Bookstore {

public Book makeBook();

public Publisher makePublisher();

}

The first thing javac tries to do is find Book and Publisher. Without them,

there’s no way that Bookstore can be compiled. So, javac searches the

CLASSPATH for Book.class and Publisher.class. They might be stored in a

JAR or just laying around on their own, but if javac can find them in an

already compiled state, it can proceed with the compilation of Bookstore.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=82

THE GROOVY JOINT COMPILER 83

If javac can’t find Book.class or Publisher.class, then it goes hunting for

Book.java and Publisher.java. If it can find the source code, it will compile

them on your behalf and then proceed with the compilation of Bookstore.

Does that make sense?

OK, so how does Groovy code throw a monkey wrench in the process?

Well, unfortunately javac knows how to compile only Java code. Several

pluggable compilers are available that can manage many different types

of source code—the GNU GCC compiler1 is a great example. Sadly, javac

isn’t one of them. If it can’t find Book.class or Book.java, it gives up. In

our example, if Book is written in Groovy, javac has this to say:

$ javac Bookstore.java

Bookstore.java:2: cannot find symbol

symbol : class Book

location: interface Bookstore

public Book makeBook();

^

1 error

In this simple example, the workaround is of the “Hey, Doc, it hurts

when I do this” variety. Since javac won’t compile your Groovy code for

you, try compiling Book.groovy first and then compiling Bookstore.java:

$ groovyc Book.groovy

$ javac Bookstore.java

$ ls -al

-rw-r--r-- 1 sdavis sdavis 5052 Dec 10 17:03 Book.class

-rw-r--r--@ 1 sdavis sdavis 60 Dec 10 16:57 Book.groovy

-rw-r--r-- 1 sdavis sdavis 169 Dec 10 17:03 Bookstore.class

-rw-r--r--@ 1 sdavis sdavis 93 Dec 10 16:56 Bookstore.java

-rw-r--r-- 1 sdavis sdavis 228 Dec 10 17:03 Publisher.class

-rw-r--r--@ 1 sdavis sdavis 48 Dec 10 16:58 Publisher.java

All is well with the world, right? You compiled Book.groovy into bytecode,

which allowed javac to compile Bookstore.java with nary a complaint.

(Notice that Publisher.java got compiled for free along with Bookstore.java.)

Although manually managing the Groovy/Java dependency chain is

feasible for simple projects, it quickly becomes a nightmare if you have

Groovy classes that depend on Java classes that depend on Groovy

classes—you get the idea.

1. http://gcc.gnu.org/

http://gcc.gnu.org/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=83

COMPILING YOUR PROJECT WITH ANT 84

One Command, Two Compilers

$ groovyc * -j -Jclasspath=$GROOVY_HOME/embeddable/groovy-all-1.5.0.jar:.

Since javac can’t be coaxed into compiling Groovy for you, you can

look to groovyc for this feature. But make no mistake, groovyc does not

compile Java code. By passing the -j flag to the compiler, it signals the

compiler to use javac for Java code and groovyc for Groovy code. You get

all the benefits of dependency resolution across both languages while

using each language’s native compiler.

The lowercase -j flag turns on joint compilation. You can include mul-

tiple uppercase -J flags to pass standard flags to the javac compiler.

This example is making sure that javac can find the Groovy JAR by

passing in the classpath argument. If you don’t have the CLASSPATH envi-

ronment variable set, you must use the classpath flag. If you don’t have

the Groovy JAR in the classpath, the Java code won’t be able to compile

against the Groovy classes.

In this example, you tell javac to generate classes that are compatible

with Java 1.4:

$ groovyc * -j -Jclasspath=$GROOVY_HOME/embeddable/groovy-all-1.5.0.jar:.

-Jsource=1.4 -Jtarget=1.4

4.12 Compiling Your Project with Ant

<taskdef name="groovyc"

classname="org.codehaus.groovy.ant.Groovyc"

classpathref="my.classpath"/>

<groovyc

srcdir="${src}"

destdir="${dest}"

classpathref="my.classpath"

jointCompilationOptions="-j -Jsource=1.4 -Jtarget=1.4" />

It’s great knowing that you can compile your Groovy code from the

command line (Section 4.11, The Groovy Joint Compiler, on page 82),

but most projects use Ant for this. Luckily, Groovy provides an Ant

task for just such an occasion.

To avoid the taskdef step, drop the Groovy JAR from $GROOVY_HOME/

embeddable into the $ANT_HOME/lib directory.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=84

COMPILING YOUR PROJECT WITH MAVEN 85

4.13 Compiling Your Project with Maven

http://mojo.codehaus.org/groovy

Although Groovy doesn’t provide Maven 2.0 support out of the box, the

Mojo project does. There is a Maven plug-in that allows you to compile

your Groovy code jointly (see Section 4.11, The Groovy Joint Compiler,

on page 82 for details). There is also a Maven Archetype plug-in that

generates a skeleton for your Groovy project.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=85

Chapter 5

Groovy from the Command Line
Java for shell scripting? Yeah, right.

Groovy, on the other hand, has pleasantly surprised me in this respect.

Now don’t get me wrong—no self-respecting Unix system administrator

is going to throw out their self-obfuscating Perl and shell scripts in favor

of Groovy. But for me—Java Guy—using a language that I’m intimately

familiar with for housekeeping tasks on the server is a perfect fit. I’m

not a full-time systems administrator, yet I am consistently faced with

chores such as wading through a directory full of Tomcat log files or

batch converting a directory full of images from one format to another.

Using Groovy for this kind of thing is so natural that I couldn’t imagine

doing it in any other language.

In this chapter, we’ll talk about running uncompiled Groovy scripts

from the command prompt and pulling in command-line arguments

from the user. You can call other Groovy scripts as easily as you call

native operating system commands. Groovy’s talent in acting as a glue

language is on full display here. Groovy blurs the distinction between

native operating system tasks and Java libraries with real aplomb,

making administrative tasks—dare I say it?—almost enjoyable.

5.1 Running Uncompiled Groovy Scripts

groovy hello.groovy

groovy hello

The groovy command allows you to run an uncompiled Groovy script.

For example, create a file named hello.groovy in the text editor of your

choice. Add the following line to it:

println "Hello Groovy World"

SHEBANGING GROOVY 87

To run your script, type groovy hello.groovy. If you use the .groovy file

extension, you can leave the extension off when typing it from the com-

mand prompt: groovy hello.

For those of us steeped in enterprise Java development and the accom-

panying “compile –> JAR –> WAR –> EAR –> deploy” life cycle, it seems

almost decadent to think we could actually just save a file and run it.

The instant turnaround of “think it –> code it –> run it” gets pretty

addictive once you’ve experienced it.

5.2 Shebanging Groovy

#!/usr/bin/env groovy

println "Hello Groovy World"

Fans of Unix-like operating systems are familiar with “shebanging” their

scripts—a contraction of “hash” and “bang,” the first two characters in

the first line of the script. Shebanging your script allows you to leave

off the command interpreter when typing at the command line. Instead

of typing groovy hello to run this script, you can simply type hello.groovy.

Since the script is self-aware (that is, it already knows it is a Groovy

script), you can even leave off the file extension when naming the file.

Typing hello at the command prompt makes it look like a native com-

mand.

Shebanging Groovy scripts assumes four things:

• You are on a Unix-like operating system: Linux, Mac OS X, Solaris,

and so on (sorry, Windows users, unless you are Cygwin1 users as

well).

• You have made the file executable (chmod a+x hello).

• The current directory (.) is in your PATH. If not, ./hello still isn’t too

bad.

• The environment variable GROOVY_HOME exists, and GROOVY_

HOME/bin is somewhere in your path. You can always hard-code

the exact path to the groovy command interpreter at the top of your

script, but that prevents you from flipping among various ver-

sions of Groovy using the symlink trick discussed in Section 2.1,

Installing Groovy on Unix, Linux, and Mac OS X , on page 25.

1. http://www.cygwin.com/

http://www.cygwin.com/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=87

ACCEPTING COMMAND-LINE ARGUMENTS 88

I have a number of utility scripts that I keep in ~/bin. They are she-

banged, chmodded, and already in my path. This means that wherever

I am on the filesystem, I can type doSomethingClever, vaguely remem-

bering at some level that I wrote the script in Groovy, but honestly not

really caring.

5.3 Accepting Command-Line Arguments

if(args){

println "Hello ${args[0]}"

}

else{

println "Hello Stranger"

}

Remember writing your first HelloWorld Java class? It probably looked

something like this:

public class HelloWorld{

public static void main(String[] args){

if(args != null && args.length > 0){

System.out.println("Hello " + args[0]);

}

else{

System.out.println("Hello Stranger");

}

}

}

After a javac HelloWorld.java to compile it, you then ran it by typing java

HelloWorld Bub.

Using Groovy, you can boil the same exercise down to its bare essen-

tials. Type the code that started this tip into a file named Hola.groovy.

Next type groovy Hola Bub. Since all Groovy scripts are compiled into

valid Java bytecode by the groovy command interpreter in memory, you

effectively end up with the Java example without having to type all of

that additional boilerplate code.

The reason this terse if statement works is thanks to Groovy truth. For

more information, see Section 3.10, Groovy Truth, on page 54.

Every Groovy script has an implicit argsString array that represents the

command-line arguments passed into the script. (You guessed it—this

is the args of public static void main(String[] args) fame.) To see the magic

args array in action, create a file named cli.groovy, and type the following:

args.each{println it}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=88

RUNNING A SHELL COMMAND 89

Typing groovy cli this is a test yields the following:

$ groovy cli this is a test

===>

this

is

a

test

5.4 Running a Shell Command

// in Windows:

println "cmd /c dir".execute().text

//in Unix / Linux / Mac OS X:

println "ls -al".execute().text

Running a shell command is as simple as calling .execute() on a String.

This returns a java.lang.Process. You can use this trick to run full

programs or simple command-line tasks. As the code examples demon-

strate, the commands inside the String will most likely differ between

operating systems. The ls command will work only on Mac OS X, Unix,

and Linux systems. The dir command will work only on Windows

derivatives.

If you simply call .execute() on a String, the resulting output text is not

captured. This might be acceptable for commands such as "rm some-

file.txt".execute(). If you want to see the output returned from the shell

command, you append .text to the end of .execute().

On Unix-like systems, most shell commands are actually executable

programs. Type which ls to see the path to the command. This means

that nearly everything you would normally type at the command line

can simply be wrapped up in quotes and executed. (One unfortunate

exception to this rule is when you are dealing with wildcards. See Sec-

tion 5.5, Using Shell Wildcards in Groovy Scripts, on the next page for

more details.) For example, you can run println "ifconfig".execute().text to

see the current network settings.

On Windows systems, println "ipconfig /all".execute().text returns similar

results. This trick works because ipconfig.exe lives on your path in

c:\windows\system32. Unfortunately, many of the most common com-

mands you type at a command prompt in Windows are not executable

programs at all. Search as you might, you’ll never find a dir.exe or

copy.com tucked away in a system directory somewhere. These com-

mands are embedded in cmd.exe.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=89

USING SHELL WILDCARDS IN GROOVY SCRIPTS 90

To execute them, you must type cmd /c. For a list of the embedded

commands, type cmd /? at a command prompt. You’ll see the following

list on Windows XP:

DIR

COPY

REN

DEL or ERASE

COLOR

CD or CHDIR

MD or MKDIR

PROMPT

PUSHD

POPD

SET

SETLOCAL

ENDLOCAL

IF

FOR

CALL

SHIFT

GOTO

START

ASSOC

FTYPE

Knowing this, many Windows users just prepend cmd /c to all com-

mands they execute in Groovy. Although it’s a bit more verbose, it cer-

tainly doesn’t hurt anything to type "cmd /c ipconfig /all".execute().text.

One last bit of advice for Windows users—don’t forget to escape your

backslashes in directories: println "cmd /c dir c:\\tmp".execute().text.

5.5 Using Shell Wildcards in Groovy Scripts

//in Windows:

println "cmd /c dir *.groovy".execute().text

def c = ["cmd", "/c", "dir *.groovy"].execute().text

println c

//in Unix / Linux / Mac OS X:

def output = ["sh", "-c", "ls -al *.groovy"].execute().text

println output

//sadly, these don't work

println "ls -al *.groovy".execute().text

println "sh -c ls -al *.groovy".execute().text

In Section 5.4, Running a Shell Command, on the preceding page, you

learned that some common commands that you type on a Windows

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=90

RUNNING MULTIPLE SHELL COMMANDS AT ONCE 91

machine (dir, copy, and so on) are embedded in the cmd shell. That

shell manages wildcard expansion as well. So, asking for all files that

end in .groovy is something that the shell expands into a list and then

passes on to the dir command.

On Unix-like systems, the shell is responsible for expanding wildcard

characters as well. Knowing that, explicitly including the shell in your

command makes sense. You can type sh -c "ls -al *.groovy" to get an idea

of what we are trying to accomplish.

Unfortunately, the embedded quotes required for this command cause

me a bit of heartburn if I try to call execute on a single string. Luckily,

we can call execute on a String array as well. The first element in the

array is the command, and all the following elements are passed in as

arguments. Although this form is a bit more verbose (and admittedly

not exactly intuitive at first glance), it does work. We get -1 for style

points, but +1 for getting the job done....

5.6 Running Multiple Shell Commands at Once

//in Windows:

println "cmd /c dir c:\\opt & dir c:\\tmp".execute().text

//in Unix / Linux / Mac OS X:

println "ls /opt & ls /tmp".execute().text

You can string together multiple shell commands using the & character.

Of course, this has nothing to do with Groovy—this is a feature of the

underlying OS. To prove it, try typing the commands surrounded by

quotes directly at a command prompt.

5.7 Waiting for a Shell Command to Finish Before Continuing

def p = "convert -crop 256x256 full.jpg tile.jpg".execute()

p.waitFor()

println "ls".execute().text

If you have a long-running command and want to wait for it to complete

before proceeding, you can assign the command to a variable and use

the .waitFor() method. This example shows the ImageMagick command

convert -crop, which takes a large image and breaks it up into 256-by-

256 pixel tiles. You’ll want to wait for the command to complete before

displaying the directory listing of the current directory to ensure that

all the resulting tiles appear.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=91

GETTING SYSTEM PROPERTIES 92

5.8 Getting System Properties

println System.getProperty("java.version")

===> 1.5.0_07

System.properties.each{println it}

===>

java.version=1.5.0_07

java.vm.vendor="Apple Computer, Inc."

os.arch=i386

os.name=Mac OS X

os.version=10.4.10

user.home=/Users/sdavis

...

The JVM provides you with a comfortable sandbox, shielding your code

from operating system differences. Sun coined the phrase “write once,

run anywhere” (WORA) to describe this phenomena, although the old-

timers and cynics bend this a bit to “write once, debug everywhere.”

Almost everything you are doing in this chapter expressly pokes

WORA in the eye. You are messing around at the OS level, running

commands that will almost certainly break if you try to run them any-

where but the operating system for which they were expressly written.

Given that, it’s nice to be able to determine programmatically what type

of hardware you are running on, what version of the JVM you are using,

and so on. The System.properties hashmap allows you to do this type of

introspection.

If you already know the name of the variable you are looking for, you

can ask for it explicitly; System.getProperty("file.separator"), for example,

lets you know whether you should be in a forward-slashy or backward-

slashy kind of mood.

On the other hand, you might feel like doing some window shopping

instead. Typing System.properties.each{println it} allows you to dump the

full list of properties out, one by one. This is a great tool for exposing

all the interesting bits of a running system. I usually have this one-

liner Groovlet running on each of my production servers so that I can

keep an eye on them remotely. (For more on Groovlets, see Section 2.6,

Running Groovy on a Web Server (Groovlets), on page 33. For more on

keeping your private bits from becoming public bits, see the venerable

Tomcat documentation on Security Realms.2)

2. http://tomcat.apache.org/tomcat-6.0-doc/realm-howto.html

http://tomcat.apache.org/tomcat-6.0-doc/realm-howto.html
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=92

GETTING SYSTEM PROPERTIES 93

Here are various useful system properties as they appear on my

MacBook Pro:

java.version=1.5.0_07

java.vendor=Apple Computer, Inc.

java.vendor.url=http://apple.com/

java.home=/System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/Home

groovy.home=/opt/groovy

java.class.path=/path/to/some.jar:/path/to/another.jar

file.separator=/

path.separator=:

line.separator=[NOTE: this is the OS-specific newline string.]

os.name=Mac OS X

os.version=10.4.10

os.arch=i386

user.dir=/current/dir/where/you/ran/this/script

java.io.tmpdir=/tmp

user.home=/Users/sdavis

user.name=sdavis

user.country=US

user.language=en

file.separator, path.separator, and line.separator

These, as you already know, are the most common things that

vary between Windows and Unix-like operating systems.

user.dir

This is the current directory (the directory from which the class

is being run). Knowing the user.dir is nice if you want to look for

directories and files relative to where you are right now.

java.io.tmp

This is a good place to write short-lived, temporary files. This vari-

able exists on every system, although the exact file path varies.

Having a generic dumping ground that is guaranteed to exist on

every system is a nice little hidden gem. Just don’t expect those

files to live beyond the current block of execution.

user.home

This little fella, like java.io.tmp, is guaranteed to exist on every sys-

tem, although the exact file path varies. This is a great place to

write more permanent data.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=93

GETTING ENVIRONMENT VARIABLES 94

Reading in Custom Values from -D or JAVA_OPTS

The System.properties hashmap is good for more than just dealing with

the boring old default values that appear on every system. Custom val-

ues can be passed into System.properties in a couple of ways. If you

have ever used the -D parameter with Ant targets (for example, ant

-Dserver.port=9090 deploy), you know they show up in System.properties

as well (System.getProperty("server.port")). Values stored in the JAVA_OPTS

environment variable also show up in System.properties.

5.9 Getting Environment Variables

println System.getenv("JAVA_HOME")

===> /Library/Java/Home

System.env.each{println it}

===>

PWD=/Users/sdavis/groovybook/Book/code/cli

USER=sdavis

LOGNAME=sdavis

HOME=/Users/sdavis

GROOVY_HOME=/opt/groovy

GRAILS_HOME=/opt/grails

JAVA_HOME=/Library/Java/Home

JRE_HOME=/Library/Java/Home

JAVA_OPTS= -Dscript.name=/opt/groovy/bin/groovy

SHELL=/bin/bash

PATH=/opt/local/bin:/usr/local/bin:...

Like system properties (as discussed in Section 5.8, Getting System

Properties, on page 92), environment variables are another rich vein to

mine for system-specific information.

If you already know the name of the environment variable you are

looking for, you can ask for it explicitly; System.getenv("GROOVY_HOME"),

for example, lets you know the directory where Groovy is installed.

To iterate through all the environment variables on the system, Sys-

tem.env.each{println it} does the trick.

You may notice some overlap between environment and system vari-

ables. For example, System.getProperty("groovy.home") and System.

getenv("GROOVY_HOME") both yield the same thing: /opt/groovy. Other

times, the specific bit of information you are looking for can be found

only in one place or the other. For example, the list of environment vari-

ables will likely contain variables such as TOMCAT_HOME, JBOSS_HOME,

and ANT_HOME that don’t appear in the list of system properties.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=94

EVALUATING A STRING 95

Like anything else, having both available to you will be important at dif-

ferent times. Your customization tweaks might come in via environment

variables or -D parameters. Those variables might point you toward the

user’s home directory or an application directory where config files can

be found such as server.xml, struts-config.xml, or .bash_profile. The impor-

tant thing is that you’ll be able to manage the whole system, regardless

of which specific mechanism is used.

5.10 Evaluating a String

def s = "Scott"

def cmdName = "size"

evaluate("println s.${cmdName}()")

===> 5

cmdName = "toUpperCase"

evaluate "println s.${cmdName}()"

===> SCOTT

In Section 5.4, Running a Shell Command, on page 89, we discussed

how to call execute on an arbitrary string. evaluate works slightly dif-

ferently.

Instead of running a shell command, evaluate allows you to dynamically

execute a random string as Groovy code. The previous examples were

dynamically calling two methods on a String—size() and toUpperCase().

(Did you notice the optional parentheses in the second example?) This

leads to some interesting capabilities, such as being able to iterate over

all methods on an object and call them:

//NOTE: This is pseudocode -- it won't actually run

def s = "Scott"

s.class.methods.each{cmdName ->

evaluate("s.${cmdName}()")

}

Although this example won’t work as written—it does not take into ac-

count the arguments that some of the String methods require such as

s.substring(2,4)—it shows the potential value of evaluating Groovy code

on the fly. It also quite nicely illustrates the risks. If you blindly accept

commands from an end user and execute them on the fly, you should

be prepared for the script kiddie who sends you rm -Rf /. For a working

example of evaluating methods on the fly, see Section 10.4, Discovering

the Methods of a Class, on page 188.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=95

CALLING ANOTHER GROOVY SCRIPT 96

5.11 Calling Another Groovy Script

// hello.groovy

println "Howdy"

// goodbye.groovy

hello.main()

println "Goodbye"

You probably call one Java class from inside another Java class all

the time. If the two classes are in the same package, you can call one

from the other directly: AnotherClass.doSomething();. If they live in sep-

arate packages, you need to import the other package or fully qualify

the class: com.elsewhere.AnotherClass.doSomething();. Calling one Groovy

script from another works in fundamentally the same way. As long as

you remember that Groovy code gets compiled to bytecode on the fly,

you’ll never go wrong.

In the previous example, hello.groovy gets compiled into the following

equivalent Java code:

public class hello{

public static void main(String[] args){

System.out.println("Howdy");

}

}

The lowercase class name might look strange, but Groovy simply uses

the filename as the class name. (Sound familiar?) Script content that

isn’t explicitly wrapped in a function/closure/whatever is that script’s

public static void main(String[] args). Two scripts living in the same direc-

tory are effectively in the same package. So, calling any script in the

same directory as you’re in is as simple as calling the static main method

on the class.

Calling Another Script with Parameters

//hello2.groovy

if(args){

println "Hello ${args[0]}"

if(args.size() > 1){

println "...and your little dog, too: ${args[1]}"

}

}

//goodbye2.groovy

hello2.main()

hello2.main("Glenda")

hello2.main("Dorothy", "Toto")

println "Goodbye"

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=96

CALLING ANOTHER GROOVY SCRIPT 97

Since the script body is effectively the public static void main(String[] args)

method, it only follows that you are able to pass in parameters via the

provided string array.

Calling Methods in Another Script

//hello3.groovy

if(args){

println "Hello ${args[0]}"

if(args.size() > 1){

println "...and your little dog, too: ${args[1]}"

}

}

def sayHola(){

println "Hola"

}

//goodbye3.groovy

hello3.main()

hello3.main("Glenda")

hello3.main("Dorothy", "Toto")

println "Goodbye"

h = new hello3()

h.sayHola()

If the other script has static methods (such as main), you can call

them statically. If the other script defines instance methods, you must

instantiate the script before you can call them.

Calling Another Script in a Different Directory

evaluate(new File("/some/other/dir/hello.groovy"))

Our friend evaluate comes back for another visit. (See Section 5.10,

Evaluating a String, on page 95 for an alternate use of evaluate.) This

time you are evaluating a file instead of an arbitrary string. This effec-

tively calls the main method of the other file.

If you are trying to do anything more complicated with script-to-script

calls than what we’ve already discussed, my recommendation is to com-

pile your scripts to bytecode, place them in the package of your choice,

JAR them up, and call them as you would any other Java class.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=97

GROOVY ON THE FLY (GROOVY -E) 98

5.12 Groovy on the Fly (groovy -e)

$ groovy -e "println System.properties['java.class.path']"

===>

/opt/groovy/lib/groovy-1.1-beta-2.jar:/System/Library/Frameworks

/JavaVM.framework/Versions/1.5.0/Classes/.compatibility/14compatibility.jar

Groovy makes it easy to run code quickly. You can save a file and run it

immediately. You can open up a quick Groovy shell or Groovy console to

work with the language interactively. But sometimes running a single

line of Groovy at the command line is all you need. The -e flag tells

Groovy to evaluate the string you just passed in.

For example, let’s say you are picking up a strange JAR on your class-

path. You can type echo $CLASSPATH on a Unix-like system to see if the

environment variable is the culprit. (set on a Windows system will give

you similar results.) If the classpath comes up empty, there are many

other places those pesky JARs can sneak in. Look in $JAVA_HOME/lib,

$JAVA_HOME/lib/ext, and $GROOVY_HOME/lib to see if any strangers are

lurking around. The previous example will show you exactly what the

JRE sees—it is up to you to hunt down the intruders from there.

5.13 Including JARs at the Command Line

$ groovy -classpath ~/lib/derbyclient.jar:~/lib/jdom.jar:. db2xml.groovy

If you have a script that depends on other libraries, you can pass groovy

a -classpath switch with a list of JARs. This is, of course, no differ-

ent from running java from the command line. To run our fictional

db2xml.groovy script, it’s not surprising that the script needs access to

both a database driver and an XML library.

Automatically Including JARs in the .groovy/lib Directory

//on Windows:

mkdir C:\Documents and Settings\UserName\.groovy\lib

//on Unix, Linux, and Mac OS X:

mkdir ~/.groovy/lib

// uncomment the following line in

// $GROOVY_HOME/conf/groovy-starter.conf

load user specific libraries

load !{user.home}/.groovy/lib/*.jar

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=98

INCLUDING JARS AT THE COMMAND LINE 99

You’ll soon grow tired of having to type commonly used JARs (such as

JDBC drivers) on the command line each time. If you create a .groovy/lib

directory in your home directory (don’t forget the leading dot), any JARs

found in this directory will be automatically included in the CLASSPATH

when you run Groovy from the command prompt. The .groovy/lib direc-

tory is disabled by default; be sure to enable it in $GROOVY_HOME/conf/

groovy-starter.conf.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=99

Chapter 6

File Tricks
Groovy offers many shortcuts for dealing with files and directories. List-

ing files, copying files, renaming files, deleting files—Groovy brings wel-

come help for all these mundane tasks. The fact that Groovy adds new

methods directly to the standard JDK classes such as java.io.File make

these new features feel like a natural part of the language.

The stalwart Java build tool Ant makes a cameo appearance in this

chapter as well. Ant goes far beyond the standard Java I/O library

capabilities, adding support for related functionality such as batch

operations and ZIP files. Even though Ant is written in Java, the inter-

face most developers are familiar with is the ubiquitous build.xml file.

Groovy’s native support for XML is covered extensively in Chapter 7,

Parsing XML, on page 116 and Chapter 8, Writing XML, on page 136. In

this chapter, you’ll see a great example of this in action with AntBuilder—

all the power of Ant, none of the XML. It’s pure code all the way; you’ll

never look at build files the same way again.

6.1 Listing All Files in a Directory

new File(".").eachFile{file ->

println file

}

//prints both files and directories

===>

./error.jsp

./GroovyLogo.zip

./index.jsp

./META-INF

./result.jsp

./WEB-INF

LISTING ALL FILES IN A DIRECTORY 101

The eachFile method that Groovy adds to the standard java.io.File makes

short work of displaying a directory listing. In this case, you’re looking

at the current directory ("."). You can, of course, pass in a fully qualified

directory name as well: new File("/opt/tomcat/webapps/myapp").

To give you an idea of the keystrokes Groovy saves you, here is the

corresponding code in Java:

import java.io.File;

public class DirList {

public static void main(String[] args) {

File dir = new File(".");

File[] files = dir.listFiles();

for (int i = 0; i < files.length; i++) {

File file = files[i];

System.out.println(file);

}

}

}

Again, you should note that Groovy augments the java.io.File object that

comes with Java. This means that all the standard JDK methods are

available for use as well as the new Groovy ones. The eachFile method

is added to the class, as discussed in Section 10.11, Adding Methods to

a Class Dynamically (ExpandoMetaClass), on page 198. To see all the

methods added to java.io.File, refer to the GDK documentation.1

Command-Line Input

$ groovy list /some/other/dir

//list.groovy:

new File(args[0]).eachFile{file ->

println file

}

For a more flexible version of this script, you can borrow the trick dis-

cussed in Section 5.3, Accepting Command-Line Arguments, on page 88.

Assuming that this script is saved in a file named list.groovy, this exam-

ple gives you the flexibility to pass in any directory name.

Listing Only Directories

new File(".").eachDir{dir ->

println dir

}

1. http://groovy.codehaus.org/groovy-jdk.html

http://groovy.codehaus.org/groovy-jdk.html
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=101

LISTING ALL FILES IN A DIRECTORY 102

===>

./META-INF

./WEB-INF

To limit your output to directories, you use File.eachDir. You can also

use File.eachDirRecurse to traverse the entire directory tree:

new File(".").eachDirRecurse{dir ->

println dir

}

===>

./META-INF

./WEB-INF

./WEB-INF/classes

./WEB-INF/classes/org

./WEB-INF/classes/org/davisworld

./WEB-INF/lib

Listing Only Files

new File(".").eachFile{file ->

if(file.isFile()){

println file

}

}

===>

./error.jsp

./GroovyLogo.zip

./index.jsp

./result.jsp

At the beginning of this section, we saw that File.eachFile returns both

files and directories. (Don’t blame Groovy—this mirrors the standard

JDK behavior of File.listFiles.) Luckily, you can use another standard JDK

method to filter your output: File.isFile.

Groovy also offers a File.eachFileRecurse method that allows you to see

all files in the directory tree:

new File(".").eachFileRecurse{file ->

if(file.isFile()){

println file

}

}

===>

./error.jsp

./GroovyLogo.zip

./index.jsp

./result.jsp

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=102

LISTING ALL FILES IN A DIRECTORY 103

./META-INF/MANIFEST.MF

./WEB-INF/web.xml

./WEB-INF/classes/org/davisworld/MyServlet.class

./WEB-INF/lib/groovy.jar

Listing Specific Files in a Directory

new File(".").eachFile{file ->

if(file.name.endsWith(".jsp")){

println file

}

}

===>

./error.jsp

./index.jsp

./result.jsp

The if statement is a perfect example of using Groovy and Java together.

file.name is the Groovy equivalent of file.getName(), as discussed in Sec-

tion 4.2, Getter and Setter Shortcut Syntax, on page 72. file.name returns

a String, which allows you to use the standard JDK endsWith() method.

If you’re a fan of regular expressions, Groovy offers a File.eachFileMatch

method:

new File(".").eachFileMatch(~/.*\.jsp/){file ->

println file

}

File.eachFileMatch technically accepts any class with a method boolean

isCase(String s). This means you could expand the example to include a

JspFilter class:

class JspFilter {

boolean isCase(String filename) {

return filename.endsWith(".jsp")

}

}

new File(".").eachFileMatch(new JspFilter()){file ->

println file

}

Unfortunately, File.eachFileMatch passes File.getName() to the filter class,

not File.getAbsolutePath(). In other words, the filter sees MyServlet.class,

not ./WEB-INF/classes/org/davisworld/MyServlet.class. This means that in

order to do any sophisticated filtering on the list (for example, listing

only those files bigger than a certain size), you should use File.eachFile

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=103

READING THE CONTENTS OF A FILE 104

or File.eachFileRecurse with your own if statement rather than relying on

File.eachFileMatch.

//list files greater than 500kb

new File(".").eachFile{file ->

if(file.size() > (500 * 1024)){

println file

}

}

===>

./GroovyLogo.zip

6.2 Reading the Contents of a File

new File("x.txt").eachLine{line->

println line

}

Just as you can walk through each file in a directory, you can also

easily walk through each line of a file using File.eachLine. For binary

files, there is also File.eachByte.

Section 8.14, Converting CSV to XML, on page 148 demonstrates a

slightly more sophisticated version of File.eachLine. In the example, a

comma-separated value (CSV) file is walked through line by line using

File.splitEachLine.

Reading the Contents of a File into a String Variable

String body = new File("x.txt").text

It’s pretty convenient to be able to read in the entire contents of a file

using a single method: File.getText(). This trick will prove to be conve-

nient in later sections such as Section 6.4, Copying Files, on page 108

and Section 6.3, Appending Data to an Existing File, on page 107.

For binary files, Groovy offers an alternate method, File.readBytes, which

returns the entire contents as a byte[].

Reading the Contents of a File into an ArrayList

List lines = new File("x.txt").readLines()

File.readLines returns the contents of the file as an ArrayList: one element

per line in the file. This provides the convenience of having the entire file

in memory (like File.getText()), while still allowing you to iterate through

it line by line (like File.eachLine).

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=104

WRITING TEXT TO A FILE 105

Quick-and-Dirty File Content Analysis

// juliet.txt

O Romeo, Romeo! wherefore art thou Romeo?

Deny thy father and refuse thy name;

Or, if thou wilt not, be but sworn my love,

And I'll no longer be a Capulet.

// FileStats.groovy

File file = new File("juliet.txt")

List lines = file.readLines()

println "Number of lines: ${lines.size()}"

int wordCount = 0

file.splitEachLine(" "){words ->

println words.size()

wordCount += words.size()

}

println "Number of words: ${wordCount}"

===>

Number of lines: 4

7

7

10

7

Number of words: 31

Using the few convenience methods on File that we’ve discussed in this

section, you can easily return some metadata such as line and word

count. In this case, I chose a quick snippet from Romeo and Juliet.2 As

programmers, it’s not too much of a reach to imagine a Groovy script

that could recurse through a directory, looking only at .java files, and

return a basic line count/file count for your project, is it?

6.3 Writing Text to a File

File file = new File("hello.txt")

file.write("Hello World\n")

println file.text

===>

Hello World

println file.readLines().size()

===>

1

2. http://www.gutenberg.org/dirs/etext98/2ws1610.txt

http://www.gutenberg.org/dirs/etext98/2ws1610.txt
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=105

WRITING TEXT TO A FILE 106

The convenience of a single File.write method in Groovy is pretty breath-

taking. Contrast the four lines of Groovy code with the forty-plus lines

of corresponding Java code:

import java.io.*;

public class NewFile {

public static void main(String[] args) {

File file = new File("hello.txt");

PrintWriter pw = null;

try {

pw = new PrintWriter(new BufferedWriter(new FileWriter(file)));

pw.println("Hello World");

} catch (IOException e) {

e.printStackTrace();

}

finally{

pw.flush();

pw.close();

}

BufferedReader br = null;

int lineCount = 0;

try {

br = new BufferedReader(new FileReader(file));

String line = null;

while((line = br.readLine()) != null){

System.out.println(line);

lineCount++;

}

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

finally{

try {

br.close();

} catch (IOException e) {

e.printStackTrace();

}

}

System.out.println(lineCount);

}

}

The File.write method is destructive: the contents of the file are overwrit-

ten with the new data. The ability to write an entire file in a single line

of code is used to great effect in Section 6.4, Copying Files, on page 108.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=106

WRITING TEXT TO A FILE 107

Appending Data to an Existing File

File file = new File("hello.txt")

println "${file.size()} lines"

===> 1 lines

file.append("How's it going?\n")

file << "I'm fine, thanks.\n"

println "${file.size()} lines"

===> 3 lines

While File.write is a destructive call, File.append leaves the existing con-

tent in place, adding the new text to the end of the file.

Did you notice the operator overloading in action? The << operator is

equivalent to the append() method call. (See Section 3.7, Operator Over-

loading, on page 50 for more information.)

Merging Several Text Files

? ls -al

drwxr-xr-x 8 sdavis sdavis 272 Dec 2 13:02 .

drwxr-xr-x 4 sdavis sdavis 136 Dec 2 12:53 ..

-rw-r--r--@ 1 sdavis sdavis 759 Nov 29 01:04 access.2007-11-28.log

-rw-r--r--@ 1 sdavis sdavis 823 Nov 30 01:01 access.2007-11-29.log

-rw-r--r--@ 1 sdavis sdavis 654 Dec 1 01:02 access.2007-11-30.log

-rw-r--r--@ 1 sdavis sdavis 233 Dec 2 13:04 merge.groovy

drwxr-xr-x 2 sdavis sdavis 68 Dec 2 12:59 summary

// merge.groovy

File logDir = new File(".")

File mergedFile = new File("summary/merged.log")

mergedFile.write("") //empty out the existing file

logDir.eachFile{file ->

if(file.isFile() && file.name.endsWith(".log")){

mergedFile << file.text

}

}

At the end of each month, I like rolling up my web server’s daily traffic

files into a monthly summary. With a mere eight lines of code, I can do

this with ease. I create a file in the summary directory named merged.log.

If the file already exists, a quick mergedFile.write("") ensures that it is

emptied out of any data from the previous run. I then walk through

each item in the current directory, limiting my focus to files that end

with .log. (The file.isFile check makes sure I don’t accidentally include a

directory name that ends with .log.) mergedFile.append(file.text) takes the

file contents of the current file and appends it to mergedFile.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=107

COPYING FILES 108

6.4 Copying Files

def src = new File("src.txt")

new File("dest.txt").write(src.text)

Combining the tricks from Section 6.2, Reading the Contents of a File,

on page 104 and Section 6.3, Writing Text to a File, on page 105, you

can see how easy it is to quickly write the text of one file to another.

You might think it’s odd that Groovy doesn’t provide a simple copy

method to do this on your behalf. I wish I had a better response than

“Uh, I agree.” At any rate, there are several other ways to copy files

using Groovy that are worth looking into. And thanks to the dynamic

nature of Groovy, at the end of this section I’ll show you how to fix this

interesting API omission. (You might also take a look at Section 6.5,

Using AntBuilder to Copy a File, on the following page for yet another

way to copy files.)

Copying Binary Files

File src = new File("src.jpg")

new File("dest.jpg").withOutputStream{ out ->

out.write src.readBytes()

}

The majority of the convenience methods Groovy adds to java.io.File are

geared toward text files. Luckily, binary files aren’t completely ignored.

Calling withOutputStream allows you to write binary data within the clo-

sure, knowing that all that silly flush() and close() nonsense is already

taken care of.

Of course, this method works for text files as well. What you sacrifice

in brevity you gain back in a generic algorithm that can be used for any

file, regardless of type.

Copying Files Using the Underlying Operating System

File src = new File("src.jpg")

File dest = new File("dest.jpg")

"cp ${src.name} ${dest.name}".execute()

Using what we discussed in Section 5.4, Running a Shell Command,

on page 89, letting your operating system do the heavy lifting makes

quick work of copying files. You lose platform independence using this

method, but you gain the full capabilities of the underlying operating

system. Sometimes abstractions like java.io.File are helpful; other times

they get in the way.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=108

USING ANTBUILDER TO COPY A FILE 109

Adding Your Own Copy Method to File

File.metaClass.copy = {String destName ->

if(delegate.isFile()){

new File(destName).withOutputStream{ out ->

out.write delegate.readBytes()

}

}

}

new File("src.jpg").copy("dest.jpg")

Now that we’ve explored several ways to copy files, you can add the

method of your choice directly to the java.io.File object. (For more infor-

mation, see Section 10.11, Adding Methods to a Class Dynamically

(ExpandoMetaClass), on page 198)

6.5 Using AntBuilder to Copy a File

def ant = new AntBuilder()

ant.copy(file:"src.txt", tofile:"dest.txt")

Anything that can be expressed in the traditional Ant XML format (usu-

ally found in a file named build.xml) can also be expressed in Groovy code

using an groovy.util.AntBuilder. (See Chapter 8, Writing XML, on page 136

for more on easily working with XML using Groovy builders.) Since the

underlying Ant JARs are included with Groovy, you don’t even need to

have Ant installed on your system to take advantage of AntBuilder.

In this example, we’re taking the <copy> task from Ant and using it in

Groovy. (A great place to see all the core Ant tasks and their parameters

is in the online documentation.3) Here is what this task looks like in its

native Ant dialect:

// build.xml

<project name="test" basedir=".">

<target name="copy">

<copy file="src.txt" tofile="dest.txt" />

</target>

</project>

$ ant copy

Buildfile: build.xml

copy:

[copy] Copying 1 file to /

BUILD SUCCESSFUL

Total time: 0 seconds

3. http://ant.apache.org/manual/index.html

http://ant.apache.org/manual/index.html
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=109

USING ANTBUILDER TO COPY A DIRECTORY 110

Creating an AntBuilder object in Groovy implicitly takes care of the boil-

erplate <project> and <target> code, much like a Groovy script takes

care of the boilerplate public class and public static void main(String[] args),

as discussed in Section 5.3, Accepting Command-Line Arguments, on

page 88. After that, ant.copy(file:"src.txt", tofile:"dest.txt") mirrors the Ant

XML, albeit in MarkupBuilder dialect.

It initially might seem strange to use Ant for things other than building

Java projects. But if you think about it for just a moment, <javac> is

only one of the many tasks that Ant supports natively. If Ant provides

convenient tasks for copying, moving, renaming, and deleting files—all

implemented in Java, therefore ensuring cross-platform compliance, I

might add—why not take advantage of it? If you already are familiar

with the common Ant tasks, this is a way you can reuse your existing

knowledge rather than learning Yet Another API.

Copying a File to a Directory

def ant = new AntBuilder()

ant.copy(file:"src.txt", todir:"../backup")

Another nicety that Ant offers is the ability to copy a file to a directory.

If you want the filename to remain the same, this cuts down on a bit of

repetition.

Overwriting the Destination File

def ant = new AntBuilder()

ant.copy(file:"src.txt", tofile:"dest.txt", overwrite:true)

By default, Ant will not overwrite the destination file if it is newer than

the source file. To force the copy to happen, use the overwrite attribute.

6.6 Using AntBuilder to Copy a Directory

def ant = new AntBuilder()

ant.copy(todir:"backup"){

fileset(dir:"images")

}

// build.xml

<project name="test" basedir=".">

<target name="backupImages">

<copy todir="backup">

<fileset dir="images" />

</copy>

</target>

</project>

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=110

USING ANTBUILDER TO COPY A DIRECTORY 111

To copy an entire directory of files (including subdirectories), you need

to use a nested fileset. Notice that the nested XML shows up as a nested

closure in Groovy.

Selectively Including/Excluding Files

//NOTE: this WILL NOT copy files in subdirectories

// due to the pattern in include and exclude

def ant = new AntBuilder()

ant.copy(todir:"backup", overwrite:true){

fileset(dir:"images"){

include(name:"*.jpg")

exclude(name:"*.txt")

}

}

Expanding the fileset allows you to selectively include and exclude files

based on pattern matching.

In accordance with Ant rules, the pattern *.jpg copies only those files

in the parent directory. Files in subdirectories will not be copied unless

you change the pattern to **/*.jpg:

//NOTE: this WILL copy files in subdirectories

// due to the pattern in include and exclude

def ant = new AntBuilder()

ant.copy(todir:"backup", overwrite:true){

fileset(dir:"images"){

include(name:"**/*.jpg")

exclude(name:"**/*.txt")

}

}

Flattening the Directory Structure on Copy

def ant = new AntBuilder()

ant.copy(todir:"backup", overwrite:true, flatten:true){

fileset(dir:"images"){

include(name:"**/*.jpg")

exclude(name:"**/*.txt")

}

}

// images (before):

images/logo.jpg

images/big_image.jpg

images/icons/button.jpg

images/icons/arrow.jpg

images/thumbnails/big_image_thumb.jpg

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=111

MOVING/RENAMING FILES 112

// backup (after):

backup/logo.jpg

backup/big_image.jpg

backup/button.jpg

backup/arrow.jpg

backup/big_image_thumb.jpg

Ant offers a quirky little attribute called flatten on the <copy> task. Let’s

assume you have files in images, images/icons, and images/thumbnails. If

you want to consolidate them all to the backup directory without pre-

serving the nested directory structure, you set the flatten attribute to

true. Of course, bear in mind that you run the risk of filename colli-

sions when you copy from many different directories into a single one.

Remember to set the overwrite attribute appropriately.

6.7 Moving/Renaming Files

// using the File method

File src = new File("src.txt")

src.renameTo(new File("dest.txt"))

// using the operating system

"mv src.txt dest.txt".execute()

// using AntBuilder

def ant = new AntBuilder()

ant.move(file:"src.txt", tofile:"dest.txt")

After Section 6.4, Copying Files, on page 108 and Section 6.5, Using

AntBuilder to Copy a File, on page 109, this section might be a bit

anticlimactic. You can move files using the standard JDK File.renameTo

method. You can also shell out to your operating system. You can also

use the AntBuilder.move method. They all do the same thing—it’s a mat-

ter of personal preference which technique you use.

6.8 Deleting Files

// using the File method

new File("src.txt").delete()

// using the operating system

"rm src.txt".execute()

// using AntBuilder

def ant = new AntBuilder()

ant.delete(file:"src.txt")

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=112

CREATING A ZIP FILE/TARBALL 113

The techniques covered in Section 6.4, Copying Files, on page 108 and

Section 6.5, Using AntBuilder to Copy a File, on page 109 apply equally

well here. You can use the standard JDK File.delete method. You can

also shell out to your operating system. You can also use the AntBuilder.

delete method.

Deleting a Directory

def ant = new AntBuilder()

ant.delete(dir:"tmp")

Just like with AntBuilder.copy, you can delete either an individual file or

a directory. Remember that AntBuilder.copy won’t overwrite a newer des-

tination file? Well, AntBuilder.delete won’t delete empty directories unless

you explicitly ask it to do so:

def ant = new AntBuilder()

ant.delete(dir:"tmp", includeemptydirs:"true")

Deleting Selected Files from a Directory

def ant = new AntBuilder()

ant.delete{

fileset(dir:"tmp", includes:"**/*.bak")

}

The same nested filesets we used in Section 6.6, Using AntBuilder to

Copy a Directory, on page 110 work here as well. Remember that *.bak

will delete only the files in the current directory; **/*.bak recursively

deletes files all the way down the directory tree.

6.9 Creating a ZIP File/Tarball

def ant = new AntBuilder()

// zip files

ant.zip(basedir:"images", destfile:"../backup.zip")

// tar files

ant.tar(basedir:"images", destfile:"../backup.tar")

ant.gzip(zipfile:"../backup.tar.gz", src:"../backup.tar")

ant.bzip2(zipfile:"../backup.tar.bz2", src:"../backup.tar")

AntBuilder comes to the rescue once again when it comes to creating

ZIP files. The techniques described here are similar to what we saw in

Section 6.5, Using AntBuilder to Copy a File, on page 109.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=113

UNZIPPING/UNTARRING FILES 114

Notice that AntBuilder.zip compresses the files by default. To compress

a .tar file, you should call AntBuilder.gzip or AntBuilder.bzip2. Gzip is the

more common compression format of the two, but bzip2 tends to yield a

smaller (more compressed) file.

Zipping Up Selected Files

def ant = new AntBuilder()

ant.zip(destfile:"../backup.zip"){

fileset(dir:"images"){

include(name:"**/*.jpg")

exclude(name:"**/*.txt")

}

}

The same nested filesets we discussed in Section 6.6, Using AntBuilder

to Copy a Directory, on page 110 work here as well. Remember that *.jpg

will zip up only those files in the current directory; **/*.jpg recursively

zips up files all the way down the directory tree.

AntBuilder.tar supports the same nested fileset that you see here with

AntBuilder.zip.

6.10 Unzipping/Untarring Files

def ant = new AntBuilder()

// unzip files

ant.unzip(src:"../backup.zip", dest:"/dest")

// untar files

ant.gunzip(src:"../backup.tar.gz")

ant.bunzip2(src:"../backup.tar.bz2")

ant.untar(src:"../backup.tar", dest:"/dest")

Not surprisingly, unzipping files looks much like what we discussed in

Section 6.9, Creating a ZIP File/Tarball, on the preceding page. If your

tarball is compressed, you should gunzip or bunzip2 it as appropriate.

Unzipping Selected Files

def ant = new AntBuilder()

ant.unzip(src:"../backup.zip", dest:"/dest"){

patternset{

include(name:"**/*.jpg")

exclude(name:"**/*.txt")

}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=114

UNZIPPING/UNTARRING FILES 115

This example is using a patternset in this example, although the same

nested filesets that we discussed in Section 6.6, Using AntBuilder to Copy

a Directory, on page 110 work here as well. Remember that *.jpg will

unzip files only in the root of the zip file; **/*.jpg recursively unzips files

all the way down the directory tree.

AntBuilder.untar supports the same nested patternset you can see here

with AntBuilder.unzip.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=115

Chapter 7

Parsing XML
Groovy makes working with XML a breeze. Of course, you can still

use the tried-and-true Java XML libraries in your toolkit, but once

you experience Groovy’s native parsers and slurpers, you’ll wonder why

you used anything else. Groovy minimizes the divide between XML and

code, making XML feel like a natural extension of the language.

For some real-world examples of how to use your newfound XML pars-

ing skills, see Chapter 9, Web Services, on page 152.

7.1 The “I’m in a Hurry” Guide to Parsing XML

def p = """<person id="99">John Smith</person>"""

def person = new XmlSlurper().parseText(p)

println person

===> John Smith

println person.@id

===> 99

The quickest way to deal with XML in Groovy is to slurp it up using

an XmlSlurper. As this example shows, you get the text of an element by

simply asking for it by name. To get an attribute value, you ask for it

using an @ and the attribute name.

Notice in this example how nicely Groovy heredocs work with XML? You

don’t have to worry about multiple lines or escaping internal quotes.

Everything is stored right in the pString variable. Whenever I’m dealing

with XML, HTML, JSON, or any other format that might have embed-

ded quotes, I simply wrap ’em up in triple quotes. See Section 3.12,

Heredocs (Triple Quotes), on page 56 for more information.

UNDERSTANDING THE DIFFERENCE BETWEEN XMLPARSER AND XMLSLURPER 117

def p2 = """

<person id="100">

<firstname>Jane</firstname>

<lastname>Doe</lastname>

<address type="home">

<street>123 Main St</street>

<city>Denver</city>

<state>CO</state>

<zip>80020</zip>

</address>

</person>"""

def person = new XmlSlurper().parseText(p2)

println person.firstname

===> Jane

println person.address.city

===> Denver

println person.address.@type

===> home

XmlSlurper allows you to navigate any arbitrarily deep XML structure by

simply asking for the nodes by name. For example, person.address.city

corresponds to <person><address><city>.

There are many subtle nuances to the Groovy/XML relationship. We’ll

introduce a second parser—the XmlParser—that complements the Xml-

Slurper in the next section. They can be either confusingly similar or

maddeningly different, depending on your point of view. We’ll spend

the rest of this chapter comparing and contrasting them. If, however,

all you need to do is parse some simple XML and you don’t want to

think too much about it, you use an XmlSlurper and get on with your life.

7.2 Understanding the Difference Between XmlParser and

XmlSlurper

def p = """<person id="99">John Smith</person>"""

// XmlParser (*** different ***)

def person = new XmlParser().parseText(p)

println person.getClass()

===> class groovy.util.Node

// XmlSlurper (*** different ***)

person = new XmlSlurper().parseText(p)

println person.getClass()

===> class groovy.util.slurpersupport.NodeChild

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=117

UNDERSTANDING THE DIFFERENCE BETWEEN XMLPARSER AND XMLSLURPER 118

Different or Same?

Understanding the differences between XmlParser and Xml-

Slurper can be a tricky business. Sometimes the differences
are blatant—this call will work only on that class. Other times,
the differences can be quite subtle. Of course, many times
because of happy coincidence the two classes operate in the
same way.

To help clarify things, I’ll flag code as (*** different ***) or (*** same

***) when I show you XmlParser and XmlSlurper in the same exam-
ple. Usually I’m trying to make one point or the other: “Hey, look
at how much these two are alike!” or “Here is an important dis-
tinction between the two.”

Groovy offers two native XML parsers: groovy.util.XmlParser and groovy.util.

XmlSlurper. Their APIs are almost identical, which is a never-ending

source of confusion. (“What is the difference?” “Which one should I

use?” “Why on Earth would I have two classes that do the same thing?”)

The answer is, of course, that they don’t do exactly the same thing.

They are both XML parsing libraries, but each takes a slightly different

approach to the problem.

An XmlParser thinks of the document in terms of nodes. When you start

dealing with more complex XML documents in just a moment, XmlParser

will return a List of nodes as you navigate the tree.

XmlSlurper, on the other hand, treats the document as a groovy.util.

slurpersupport.GPathResult. (Since GPathResult is an abstract class, you

can see groovy.util.slurpersupport.NodeChild show up as the implementa-

tion.) GPath is like XPath,1 only with a “groovier” syntax. XPath uses

slash notation to navigate deeply nested XML trees—GPath uses dots to

do the same thing.

We’re going to dig much deeper into these ideas throughout the chapter.

For right now, though, think of XmlParser as a way to deal with the nodes

of the XML document. Think of XmlSlurper as a way to deal with the data

itself in terms of a query result.

<person id="99">John Smith</person>

1. http://en.wikipedia.org/wiki/Xpath

http://en.wikipedia.org/wiki/Xpath
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=118

UNDERSTANDING THE DIFFERENCE BETWEEN XMLPARSER AND XMLSLURPER 119

If you look at this XML snippet and see a person whose value is John

Smith, then you are thinking like an XmlSlurper. If, instead, you see a

root node whose text() method should return the String John Smith,

then you are definitely more in the mind-set of an XmlParser. For a really

good example of why the differing worldviews of the two parsers matter,

see Section 7.8, Navigating Deeply Nested XML, on page 127.

You might be thinking, “Why not just marshal the XML directly into a

GroovyBean? Then you can call getters and setters on the object.” If

that’s the case, skip directly to Section 7.10, Populating a GroovyBean

from XML, on page 134, or look at projects like JAXB2 or Castor.3 I

agree that if you are using XML as a serialization or persistence format,

getting to a bean representation of the data is something you should do

as quickly as possible. But this chapter’s primary focus is on getting the

XML into Groovy in such a way that you can work with it programmati-

cally. There are plenty of XML files out there such as server.xml, web.xml,

and struts-config.xml where it is probably sufficient to deal with them as

ad hoc XML Groovy objects and leave it at that.

Understanding XmlParser

def p = """<person id="100">Jane Doe</person>"""

def person = new XmlParser().parseText(p)

println person.text()

===> Jane Doe

println person.attribute("id")

===> 100

println person.attribute("foo")

===> null

XmlParser.parseText() returns a groovy.util.Node. A Node is a great class for

holding things like XML elements. There is a text() method that returns

the body of the node. There is an attribute() method that accepts a name

and returns the given attribute. If you ask for an attribute that doesn’t

exist, attribute() returns null. Pretty straightforward, right?

The important thing to notice is that you are making method calls on

an object. There is no illusion of dealing with the XML directly. You call

the text() method to return text. You call the attribute() method to return

the attribute.

2. http://en.wikipedia.org/wiki/JAXB

3. http://castor.org

http://en.wikipedia.org/wiki/JAXB
http://castor.org
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=119

UNDERSTANDING THE DIFFERENCE BETWEEN XMLPARSER AND XMLSLURPER 120

If you prefer using Java libraries such as JDOM for programmatically

working with XML, XmlParser will make you feel right at home.

You should also note that I named the node person to match the element

name in the XML document. This is simply a convention that helps blur

the distinction between the XML and the Groovy code. Technically, you

could have just as easily named the node foo and called foo.text() to

return Jane Doe. XML isn’t a native datatype in Groovy (or in Java,

for that matter), but cleverly naming your variables helps minimize the

cognitive disconnect.

Understanding XmlSlurper

def p = """<person id="100">Jane Doe</person>"""

def person = new XmlSlurper().parseText(p)

println person

===> Jane Doe

println person.@id

===> 100

println person.@foo

===> (returns an empty string)

XmlSlurper.parseText() returns a groovy.util.slurpersupport.GPathResult. Tech-

nically this is a special class, but for now I’d like for you to think of it

as simply the String result of a GPath query. In this example, asking for

person returns the result of a query—the text (or body) of that element.

If you are familiar with XPath, you know that @ is used to query for

attributes. Asking for person.@id returns 100.

XmlSlurper is a null-safe XML parser. Asking for person.@foo (an attribute

that doesn’t exist) returns an empty string. Asking for person.bar (a node

that doesn’t exist) returns an empty string as well. This saves you from

needlessly mucking up your code with try/catch blocks to protect you

from the dreaded unchecked NullPointerException. XmlParser throws nulls

at you in both cases.

The important thing to notice here is that it feels like we are dealing

with the XML directly. There are no apparent method calls (although

this is simply a metaprogramming head trick the Groovy developers are

playing on you). You’ll be much happier if you don’t think too hard and

spoil the illusion. The best way to keep XmlSlurper distinct from XmlParser

is thinking of the latter as dealing with an API and the former as dealing

with the XML directly. Trust me.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=120

PARSING XML DOCUMENTS 121

What, you don’t trust me? You still want to know how XmlParser han-

dles calls like person.firstname and person.lastname when firstname and

lastname aren’t compiled parts of the API? See Section 10.8, Calling

Methods That Don’t Exist (invokeMethod), on page 193 for more infor-

mation.

7.3 Parsing XML Documents

def file = new File("person.xml")

def url = "http://somewhere.org/person.xml"

// XmlParser (*** same ***)

def person = new XmlParser().parse(file)

def person2 = new XmlParser().parse(url)

// XmlSlurper (*** same ***)

person = new XmlSlurper().parse(file)

person2 = new XmlSlurper().parse(url)

Both XmlParser and XmlSlurper share identical parse() methods. You can

pass parse() either a File or a String representing a URL—all the trans-

portation mechanics are handled for you behind the scenes. See the API

documentation at http://groovy.codehaus.org/api/ for more examples of

the overloaded parse() method accepting an InputSource, an InputStream,

and a Reader.

Parsing XML Strings

def p = """<person id="99">John Smith</person>"""

// XmlParser (*** same ***)

def person = new XmlParser().parseText(p)

// XmlSlurper (*** same ***)

person = new XmlSlurper().parseText(p)

Since the overloaded parse() method that accepts a String treats it as

a URL, there is a separate parseText() method that you can use if you

already have the XML stored in a String variable. We’ll use parseText() in

most examples in this section, only because the XML is inline with the

rest of the code for clarity and copy/paste friendliness.

7.4 Dealing with XML Attributes

def p = """<person id="99" ssn="555-11-2222">John Smith</person>"""

http://groovy.codehaus.org/api/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=121

DEALING WITH XML ATTRIBUTES 122

// XmlParser (*** same ***)

def person = new XmlParser().parseText(p)

println person.attributes()

===> ["ssn":"555-11-2222", "id":"99"]

person.attributes().each{name, value->

println "${name} ${value}"

}

===>

ssn 555-11-2222

id 99

// XmlSlurper (*** same ***)

person = new XmlSlurper().parseText(p)

println person.attributes()

===> ["ssn":"555-11-2222", "id":"99"]

person.attributes().each{name, value->

println "${name} ${value}"

}

===>

ssn 555-11-2222

id 99

Attributes are the XML equivalent of Java hashmaps—they are a series

of name/value pairs on the XML element. Both Node and GPathResult

have an identical attributes() method that returns a hashmap. See Sec-

tion 3.15, Map Shortcuts, on page 62 for all of the tricks you can do

with a hashmap.

Getting a Single Attribute

def p = """<person id="99" ssn="555-11-2222">John Smith</person>"""

// XmlParser (*** different ***)

def person = new XmlParser().parseText(p)

println person.attribute("id")

===> 99

println person.attribute("foo")

===> null

// XmlSlurper (*** different ***)

person = new XmlSlurper().parseText(p)

println person.@id

===> 99

println person.@foo

===> (returns an empty string)

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=122

DEALING WITH XML ATTRIBUTES 123

When using an XmlParser, you use the attribute() method to pull out indi-

vidual attributes. When using an XmlSlurper, you use the @ notation

directly on the attribute name.

Using Hashmap Syntax for Attributes

def p = """<person id="99" ssn="555-11-2222">John Smith</person>"""

// XmlParser (*** same ***)

def person = new XmlParser().parseText(p)

println person["@id"]

===> 99

def atts = ["id", "ssn"]

atts.each{att->

println person["@${att}"]

}

===>

99

555-11-2222

// XmlSlurper (*** same ***)

person = new XmlSlurper().parseText(p)

println person["@id"]

===> 99

atts.each{att->

println person["@${att}"]

}

===>

99

555-11-2222

Both XmlParser and XmlSlurper support an identical alternate syntax for

attributes. Using hashmap notation (person["@id"]) is an ideal way to

either blur the distinction between these two libraries or thoroughly

confuse yourself if you’re trying to tell them apart.

The best use I’ve found for this alternate hashmap syntax is for when I

need to pull out an attribute based on a generic variable. Knowing that

both classes support the same syntax—println person["@${att}"]—means I

don’t have to think too hard about the matter. I just use the syntax that

works in both cases.

Of course, in the case of XmlParser, you can just as easily ask for

person.attribute("${att}"). In the case of XmlSlurper, you can ask for

person."@${att}".

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=123

GETTING THE BODY OF AN XML ELEMENT 124

7.5 Getting the Body of an XML Element

def p = """<person id="100">Jane Doe</person>"""

// XmlParser (*** different ***)

def person = new XmlParser().parseText(p)

println person.text()

===> Jane Doe

// XmlSlurper (*** different ***)

person = new XmlSlurper().parseText(p)

println person

===> Jane Doe

Getting text out of an XML element requires slightly different syntax

from XmlParser and XmlSlurper. Recall from Section 7.2, Understanding

the Difference Between XmlParser and XmlSlurper, on page 117 that

each has a slightly different worldview. XmlSlurper treats everything like

a big GPath query. Asking for an element such as person is tacitly asking

for its text. XmlParser, on the other hand, treats everything like a node.

You have to call text() on the node. If you don’t, you are calling toString(),

which returns debug output:

def p = """<person id="100">Jane Doe</person>"""

def person = new XmlParser().parseText(p)

println person

===> person[attributes={id=100}; value=[Jane Doe]]

Using Hashmap Syntax for Elements

def p = """

<person id="100">

<firstname>Jane</firstname>

<lastname>Doe</lastname>

</person>"""

// XmlParser (*** different ***)

def person = new XmlParser().parseText(p)

println person['firstname'].text()

===> Jane

// XmlSlurper (*** different ***)

person = new XmlSlurper().parseText(p)

println person['firstname']

===> Jane

Both parsers allow you to treat each child XML node as if it were a Map

element of its parent. Calling person.firstname.text() or person[’firstname’].

text() (in the case of XmlParser) is purely a stylistic choice on your part,

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=124

DEALING WITH MIXED-CASE ELEMENT NAMES 125

although sometimes the Map syntax is easier to work with if you have

a List of element names to deal with:

def xml = """

<person id="100">

<firstname>Jane</firstname>

<lastname>Doe</lastname>

</person>

"""

def person = new XmlParser().parseText(xml)

def elements = ["firstname", "lastname"]

elements.each{element->

println person[element].text()

}

===>

Jane

Doe

7.6 Dealing with Mixed-Case Element Names

// notice the case difference in firstname and LastName

// Groovy code mirrors the case of the XML element name

def p = """

<person id="99">

<firstname>John</firstname>

<LastName>Smith</LastName>

</person>

"""

// XmlParser (*** different ***)

def person = new XmlParser().parseText(p)

println person.firstname.text()

===> John

println person.LastName.text()

===> Smith

// XmlSlurper (*** different ***)

person = new XmlSlurper().parseText(p)

println person.firstname

===> John

println person.LastName

===> Smith

Neither XML parser cares whether the XML element names are lower-

case, uppercase, or mixed case. You reference them in Groovy the same

way they show up in the XML file.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=125

DEALING WITH HYPHENATED ELEMENT NAMES 126

7.7 Dealing with Hyphenated Element Names

//notice the hyphenated and underscored element names

//Groovy has to use special syntax to deal with the hyphens

def p = """

<person id="99">

<first-name>John</first-name>

<last_name>Smith</last_name>

</person>

"""

// XmlParser (*** different ***)

def person = new XmlParser().parseText(p)

println person.first-name.text()

===>

Caught: groovy.lang.MissingPropertyException:

No such property: name for class: person

println person.'first-name'.text()

println person['first-name'].text()

===>

John

println person.last_name.text()

println person.'last_name'.text()

println person['last_name'].text()

===>

Smith

// XmlSlurper (*** different ***)

person = new XmlSlurper().parseText(p)

println person.'first-name'

println person['first-name']

===>

John

println person.last_name

println person.'last_name'

println person['last_name']

===>

Smith

Both XML parsers do their best to blur the distinction between XML and

Groovy, mirroring the node names wherever possible. Unfortunately, in

certain edge cases this facade breaks down when naming rules don’t

match up 100%. (This is known as a leaky abstraction.4)

4. http://en.wikipedia.org/wiki/Leaky_abstraction

http://en.wikipedia.org/wiki/Leaky_abstraction
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=126

NAVIGATING DEEPLY NESTED XML 127

Although hyphenated names are perfectly valid in XML, person.first-name

in Groovy means “take the value of the variable name and subtract it

from person.first.” Surrounding the hyphenated name with quotes turns

the statement back into a valid Groovy construct.

Notice, however, that names with underscores can be used as is. Under-

scores are valid in both Groovy and XML, so you can leave the quotes off

in Groovy. Move along, people—there’s nothing to see. No leaky abstrac-

tions here.

7.8 Navigating Deeply Nested XML

def p = """

<person id="100">

<firstname>Jane</firstname>

<lastname>Doe</lastname>

<address type="home">

<street>123 Main St</street>

<city>Denver</city>

<state>CO</state>

<zip>80020</zip>

</address>

</person>"""

// XmlParser (*** different ***)

def person = new XmlParser().parseText(p)

println person.address[0].street[0].text()

===> 123 Main St

// XmlSlurper (*** different ***)

person = new XmlSlurper().parseText(p)

println person.address.street

===> 123 Main St

Since the beginning of the chapter, I’ve been trying to tell you how dif-

ferent these two libraries are. Now, for the first time, you can really see

the two different worldviews manifest themselves.

XmlParser sees the XML document as an ArrayList of nodes. This means

you have to use array notation all the way down the tree. XmlSlurper

sees the XML document as one big GPath query waiting to happen.

Let’s explore each in greater detail.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=127

NAVIGATING DEEPLY NESTED XML 128

XmlParser: text(), children(), and value()

def p = """

<person id="100">

<firstname>Jane</firstname>

<lastname>Doe</lastname>

<address type="home">

<street>123 Main St</street>

<city>Denver</city>

<state>CO</state>

<zip>80020</zip>

</address>

</person>"""

def person = new XmlParser().parseText(p)

println person.text()

===> (returns an empty string)

println person.children()

===>

[

firstname[attributes={}; value=[Jane]],

lastname[attributes={}; value=[Doe]],

address[attributes={type=home}; value=[

street[attributes={}; value=[123 Main St]],

city[attributes={}; value=[Denver]],

state[attributes={}; value=[CO]],

zip[attributes={}; value=[80020]]

]]

]

println person.value()

// A generic function that returns either text() or value(),

// depending on which field is populated.

// In this case, person.value() is equivalent to children().

We have talked about the text() method already. Now it’s time to intro-

duce the other Node method you’ll use quite frequently: children().

Although text() returns a String, children() returns an ArrayList of nodes.

If you think about it, a node in an XML document can have only one or

the other. Person has children; firstname has text. Address has children;

city has text.

Understanding the dual nature of Node—coupled with a bit of Groovy

truth (as discussed in Section 3.10, Groovy Truth, on page 54)—makes

it trivial to determine whether a node is a leaf or a branch. This allows

you to recurse through a document of any arbitrary depth quite simply.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=128

NAVIGATING DEEPLY NESTED XML 129

if(person.text()){

println "Leaf"

} else{

println "Branch"

}

===> Branch

if(person.children()){

println "Branch"

} else{

println "Leaf"

}

===> Branch

The final method on Node you should be familiar with is value(). This

method returns either text() or children(), depending on which is

populated.

XmlParser: each()

def p = """

<person id="100">

<firstname>Jane</firstname>

<lastname>Doe</lastname>

<address type="home">

<street>123 Main St</street>

<city>Denver</city>

<state>CO</state>

<zip>80020</zip>

</address>

<address type="work">

<street>987 Other Ave</street>

<city>Boulder</city>

<state>CO</state>

<zip>80090</zip>

</address>

</person>"""

def person = new XmlParser().parseText(p)

println person.address[0].attribute("type")

===> home

println person.address[1].attribute("type")

===> work

person.address.each{a->

println a.attribute("type")

}

===>

home

work

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=129

NAVIGATING DEEPLY NESTED XML 130

Since children() returns an ArrayList of nodes, you can use all the tricks

you learned in Section 3.14, List Shortcuts, on page 58 to deal with

them. You can use array notation to get at the specific address you are

interested in, or you can use each() to iterate through the list.

When navigating the tree using XmlParser, the syntax reminds you at

every turn that each child node could potentially be one of many. In

the following example, we walk through each address in the document

and ask for the first city found. In this particular case, it’s kind of a

bummer—logically it doesn’t make sense for an address to have more

than one city, but there is no XML rule that would preclude it from

happening. Therefore, you must trap for it explicitly:

person.address.each{a->

println a.city[0].text()

}

===>

Denver

Boulder

On the positive side, XmlParser makes it trivial to take a vertical slice

through your XML. If you simply want every city across all addresses,

this code makes short work of it:

person.address.city.each{c->

println c.text()

}

===>

Denver

Boulder

I hope this section makes it abundantly clear that XmlParser considers

your XML document to be nothing more than nodes and lists of nodes.

XmlSlurper

def p = """

<person id="100">

<firstname>Jane</firstname>

<lastname>Doe</lastname>

<address type="home">

<street>123 Main St</street>

<city>Denver</city>

<state>CO</state>

<zip>80020</zip>

</address>

</person>"""

def person = new XmlSlurper().parseText(p)

println person.firstname

===> Jane

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=130

NAVIGATING DEEPLY NESTED XML 131

println person.lastname

===> Doe

println person.address.city

===> Denver

Whereas XmlParser treats everything like a node or a list of nodes, Xml-

Slurper treats everything like the result of a GPath query. This makes it

more natural to navigate the path. When you ask for person.address.city,

you are implicitly asking for the text in that element. Stated another

way, XmlParser has a strong affinity for branches. XmlSlurper is exactly

the opposite: it is optimized for leaves.

Of course, sometimes your query results can end up being looking like

nonsense if you aren’t specific enough:

println person

===> JaneDoe123 Main StDenverCO80020

println person.address

===> 123 Main StDenverCO80020

In each case, you were asking for a branch instead of a leaf. Making

sure you always are asking for a specific leaf will help ensure you get

the results you want. In the following example, you have to ask for the

city of a specific address in order to get a reasonable response:

def p = """

<person id="100">

<firstname>Jane</firstname>

<lastname>Doe</lastname>

<address type="home">

<street>123 Main St</street>

<city>Denver</city>

<state>CO</state>

<zip>80020</zip>

</address>

<address type="work">

<street>987 Other Ave</street>

<city>Boulder</city>

<state>CO</state>

<zip>80090</zip>

</address>

</person>"""

def person = new XmlSlurper().parseText(p)

println person.address.city

===>DenverBoulder

println person.address[0].city

===>Denver

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=131

PARSING AN XML DOCUMENT WITH NAMESPACES 132

On the other hand, if you truly want a vertical slice of all cities, you can

walk through each of them as you would any other list:

person.address.city.each{println it}

===>

Denver

Boulder

7.9 Parsing an XML Document with Namespaces

def p_xml = """

<p:person

xmlns:p="http://somewhere.org/person"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://somewhere.org/person

http://somewhere.org/person.xsd"

id="99">

<p:firstname>John</p:firstname>

<p:last-name>Smith</p:last-name>

</p:person>

"""

def person = new XmlParser().parseText(p_xml)

//the firstname element cannot be found without its namespace

println person.firstname.text()

===> []

def p = new groovy.xml.Namespace("http://somewhere.org/person")

println person[p.firstname].text()

===> John

println person[p.'last-name'].text()

===> Smith

When people grumble about XML, namespaces usually top the list. “It

complicates things,” they mutter under their breath. The benefits of

namespaces are, of course, that you can produce an XML document

that represents a complex domain. Consider a document that has name

elements used in different contexts:

<product:name>iPhone</product:name>

<vendor:name>Apple</vendor:name>

An alternative to namespacing the name elements is to make them

unique in the default namespace, but this might not be possible if you

are merging XML from disparate sources.

<product-name>iPhone</product-name>

<vendor-name>Apple</vendor-name>

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=132

PARSING AN XML DOCUMENT WITH NAMESPACES 133

Thankfully, Groovy makes dealing with namespaces as unobtrusive as

possible. You simply declare the namespace and then prefix all your

element references with the namespace variable:

def p = new groovy.xml.Namespace("http://somewhere.org/person")

println person[p.firstname].text()

===> John

Since the dot operator is used to traverse the tree, asking for person.

p.firstname would be ambiguous. When dealing with namespaced ele-

ments, you can use only the HashMap notation, as discussed in

Section 7.5, Using Hashmap Syntax for Elements, on page 124:

person[p.firstname].text(). You simply quote the element name: person[p.

’last-name’].text(), if you have hyphenated elements that are also names-

paced.

Namespaces in XmlSlurper

def p = """

<p:person

xmlns:p="http://somewhere.org/person"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://somewhere.org/person

http://somewhere.org/person.xsd"

id="99">

<p:firstname>John</p:firstname>

<p:last-name>Smith</p:last-name>

</p:person>

"""

def person = new XmlSlurper().parseText(p)

println person.firstname

println person.'last-name'

===>

John

Smith

XmlSlurper differs from XmlParser when it comes to XML namespaces.

XmlSlurper, by default, ignores all namespaces, whereas XmlParser pays

attention to them. This makes it easy to rip through an XML document

in a loose (if not completely valid) way.XmlSlurper will respect names-

paces if you tell it about them. The GPathResult class has a declare-

Namespace() method that takes a Map of namespaces.

def itemXml = """

<item

xmlns:product="urn:somecompany:products"

xmlns:vendor="urn:somecompany:vendors">

<product:name>iPhone</product:name>

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=133

POPULATING A GROOVYBEAN FROM XML 134

<vendor:name>Apple</vendor:name>

<quantity>1</quantity>

</item>

"""

def item = new XmlSlurper().parseText(itemXml)

println item.name

===> iPhoneApple

def ns = [:]

ns.product = "urn:somecompany:products"

ns.vendor = "urn:somecompany:vendors"

item.declareNamespace(ns)

println item.'product:name'

===> iPhone

Without the namespaces declared, calling the name element returns

both names. Once the GPathResult knows about the namespaces, it will

allow you to call properly qualified elements.

Did you notice that XmlParser makes you use a dot between the names-

pace and the element name? XmlSlurper, once again, comes closer to

matching the original XML syntax. item.’product:name’ corresponds to

<item><product:name> using the same symbol: the colon. Unfortunately,

a colon isn’t a legal character in a variable name. In XmlSlurper, you need

to surround namespaced element names in quotes.

7.10 Populating a GroovyBean from XML

def p = """

<person>

<firstname>Jane</firstname>

<lastname>Doe</lastname>

</person>

"""

class Person{

String firstname

String lastname

}

def pxml = new XmlParser().parseText(p)

def person = new Person()

pxml.children().each{child ->

person.setProperty(child.name(), child.text())

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=134

POPULATING A GROOVYBEAN FROM XML 135

Although this solution doesn’t offer the richness of a true XML-to-Java

marshaling solution such as Castor,5 for the simplest possible case it’s

nice to know that you can easily construct a valid GroovyBean from

XML.pxml.children() returns a list of nodes. Each Node has a name()

method and a text() method. Using the native setProperty method on the

GroovyBean makes short work of constructing a valid class from XML.

If you know you have a more deeply nested XML structure, you should

call children() recursively. If you have attributes, you can call attributes()

on each node to return a Map. (See Section 7.8, XmlParser: text(), chil-

dren(), and value(), on page 128 for more tips on dynamic introspection

of the structure of an XML document.) The point here is not to present a

complete solution for every possible circumstance—the point is to show

the possibilities of dealing with XML using everyday Groovy classes.

5. http://castor.org

http://castor.org
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=135

Chapter 8

Writing XML
In Chapter 7, Parsing XML, on page 116, we explored different ways to

ingest XML. (Doesn’t “slurp” sound much cooler than “ingest” now that

you know all about XmlSlurper?) In this chapter, we’ll look at different

ways to write XML.

As with Groovy parsers, you have two similar (yet subtly different)

classes available to build XML documents—MarkupBuilder and Stream-

ingMarkupBuilder. By the end of this chapter, you should have a much

clearer idea of the strengths and weaknesses of each.

8.1 The “I’m in a Hurry” Guide to Creating an XML Document

def xml = new groovy.xml.MarkupBuilder()

xml.person(id:99){

firstname("John")

lastname("Smith")

}

===>

<person id='99'>

<firstname>John</firstname>

<lastname>Smith</lastname>

</person>

Like magic, XML documents seem to simply fall out of Groovy with

ease. This is because of the dynamic nature of groovy.xml.MarkupBuilder.

Methods such as person, firstname, and lastname look like they are native

to MarkupBuilder, although half a second of thought will convince us that

there is simply no way that MarkupBuilder could implement an entire

dictionary of words as methods just to facilitate this. Instead, we have to

give credit to our dynamic-enabling friend invokeMethod(), as discussed

CREATING MIXED-CASE ELEMENT NAMES 137

in Section 10.8, Calling Methods That Don’t Exist (invokeMethod), on

page 193.

As you make methods calls on MarkupBuilder that do not exist,

invokeMethod() catches those calls and interprets them as nodes for

the XML document. name:value pairs passed in as arguments for the

nonexistent methods are interpreted as attributes. (Groovy supports

named arguments and variable-length argument lists, as discussed in

Section 4.5, Constructor Shortcut Syntax, on page 76.) Values passed

in without a name prefix are interpreted as the element’s body. Nested

closures correspond to nesting in the XML document.

Capturing Output

def sw = new StringWriter()

def xml = new groovy.xml.MarkupBuilder(sw)

def fw = new FileWriter("/path/to/some/file.xml")

def xml2 = new groovy.xml.MarkupBuilder(fw)

By default, MarkupBuilder echos the output to System.out. If you want to

capture the output, an alternate constructor accepts a Writer. You can

pass in a StringWriter to capture the output in memory, or you can use a

FileWriter to write the results directly to file.

8.2 Creating Mixed-Case Element Names

def xml = new groovy.xml.MarkupBuilder()

xml.PERSON(id:100){

firstName("Jane")

LastName("Doe")

}

===>

<PERSON id='100'>

<firstName>Jane</firstName>

<LastName>Doe</LastName>

</PERSON>

As discussed in Section 7.6, Dealing with Mixed-Case Element Names,

on page 125, your Groovy code is meant to match your XML output as

closely as possible. Even though the odd cases in this example don’t

follow Java/Groovy coding conventions (classes begin with a capital

letter, variables begin with a lowercase letter, and constants are in all

caps), Groovy preserves the case so that your output is exactly as you’d

expect it to be.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=137

CREATING HYPHENATED ELEMENT NAMES 138

8.3 Creating Hyphenated Element Names

def xml = new groovy.xml.MarkupBuilder()

xml.person(id:99){

"first-name"("John")

last_name("Smith")

}

===>

<person id='99'>

<first-name>John</first-name>

<last_name>Smith</last_name>

</person>

As discussed in Section 7.7, Dealing with Hyphenated Element Names,

on page 126, element names with hyphens are perfectly valid in XML

but aren’t valid in Groovy.

To create hyphenated XML element names using a MarkupBuilder, you

simply surround the element name in quotes. Since underscores are

valid in Groovy, the MarkupBuilder passes them through unchanged.

If you forget to surround a hyphenated name in quotes, you’ll get an

exception:

def xml = new groovy.xml.MarkupBuilder()

xml.person(id:99){

first-name("John")

last_name("Smith")

}

===>

Caught: groovy.lang.MissingPropertyException:

No such property: first for class: builder

8.4 Creating Namespaced XML Using MarkupBuilder

def xml = new groovy.xml.MarkupBuilder()

def params = [:]

params."xmlns:product" = "urn:somecompany:products"

params."xmlns:vendor" = "urn:somecompany:vendors"

params.id = 99

xml.person(params){

"product:name"("iPhone")

"vendor:name"("Apple")

quantity(1)

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=138

UNDERSTANDING THE DIFFERENCE BETWEEN MARKUPBUILDER AND STREAMINGMARKUPBUILDER

139

===>

<person

xmlns:product='urn:somecompany:products'

xmlns:vendor='urn:somecompany:vendors'

id='99'>

<product:name>iPhone</product:name>

<vendor:name>Apple</vendor:name>

<quantity>1</quantity>

</person>

You can easily create XML documents with namespaces using a Markup-

Builder. Your namespace declarations in the root element are no different

from any other attributes. Your namespaced element names are no dif-

ferent from hyphenated element names—you simply surround them in

quotes.

OK, so technically MarkupBuilder doesn’t understand namespaces, but

that doesn’t stop it from blithely spitting out whatever you ask it to spit

out. In Section 8.7, Creating Namespaced XML Using StreamingMarkup-

Builder, on page 142, you can see a namespace-aware builder.

8.5 Understanding the Difference Between MarkupBuilder and

StreamingMarkupBuilder

// MarkupBuilder

def xml = new groovy.xml.MarkupBuilder()

xml.person(id:100){

firstname("Jane")

lastname("Doe")

}

===>

<person id='100'>

<firstname>Jane</firstname>

<lastname>Doe</lastname>

</person>

// StreamingMarkupBuilder

def xml = new groovy.xml.StreamingMarkupBuilder().bind{

person(id:100){

firstname("Jane")

lastname("Doe")

}

}

println xml

===>

<person id='100'><firstname>Jane</firstname><lastname>Doe</lastname></person>

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=139

CREATING PARTS OF THE XML DOCUMENT SEPARATELY 140

Like the siblings XmlParser and XmlSlurper we discussed in Section 7.2,

Understanding the Difference Between XmlParser and XmlSlurper, on

page 117, Groovy offers two ways to emit XML.

MarkupBuilder is the simpler, if more limited, of the two. StreamingMarkup-

Builder is a class that you can reach for when your needs exceed what

MarkupBuilder can offer.

There are three key differences between MarkupBuilder and Streaming-

MarkupBuilder:

• MarkupBuilder sends its output to System.out by default; Streaming-

MarkupBuilder is silent until you explicitly hand it off to a Writer.

• MarkupBuilder is synchronous; StreamingMarkupBuilder is asynchro-

nous. In other words, MarkupBuilder writes the XML document out

immediately. StreamingMarkupBuilder allows you to define the clo-

sure separately. The document is not generated until the Stream-

ingMarkupBuilder is passed to a Writer.

• Finally, MarkupBuilder pretty-prints its output, whereas Streaming-

MarkupBuilder does not. (All subsequent XML output from Stream-

ingMarkupBuilder in this chapter will be pretty-printed for readabil-

ity.) If you need to pretty-print the results, look to the command-

line tool Tidy1 (standard on most Unix/Linux/Mac systems, down-

loadable for Windows) or the Java library JTidy.2

The remainder of this chapter focuses on StreamingMarkupBuilder and the

advanced capabilities it brings to the party.

8.6 Creating Parts of the XML Document Separately

def builder = new groovy.xml.StreamingMarkupBuilder()

def person = {

person(id:99){

firstname("John")

lastname("Smith")

}

}

println builder.bind(person)

===>

<person id='99'><firstname>John</firstname><lastname>Smith</lastname></person>

1. http://tidy.sourceforge.net/

2. http://jtidy.sourceforge.net/

http://tidy.sourceforge.net/
http://jtidy.sourceforge.net/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=140

CREATING PARTS OF THE XML DOCUMENT SEPARATELY 141

StreamingMarkupBuilder allows you to define a closure and pass it in to

the bind() method. This means you can decouple the two—creating the

closure independently and binding it to the StreamingMarkupBuilder at

the exact moment you’d like to create the XML document.

If you can create a single closure independently, it only stands to rea-

son that you can create many closures independently and pull them

together as needed:

def builder = new groovy.xml.StreamingMarkupBuilder()

def person1 = {

person(id:99){

firstname("John")

lastname("Smith")

}

}

def person2 = {

person(id:100){

firstname("Jane")

lastname("Doe")

}

}

def personList = {

"person-list"{

out << person1

out << person2

}

}

println builder.bind(personList)

===>

<person-list>

<person id='99'>

<firstname>John</firstname><lastname>Smith</lastname>

</person>

<person id='100'>

<firstname>Jane</firstname><lastname>Doe</lastname>

</person>

</person-list>

In this example, the personList closure contains references to two other

closures: person1 and person2. StreamingMarkupBuilder supplies an out

target to which you should point the embedded closures. Without

out, StreamingMarkupBuilder could not tell the difference between an ele-

ment you want emitted (firstname) and a closure that needs to be

dereferenced.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=141

CREATING NAMESPACED XML USING STREAMINGMARKUPBUILDER 142

8.7 Creating Namespaced XML Using StreamingMarkupBuilder

def builder = new groovy.xml.StreamingMarkupBuilder().bind{

mkp.declareNamespace('':'http://myDefaultNamespace')

mkp.declareNamespace('location':'http://someOtherNamespace')

person(id:100){

firstname("Jane")

lastname("Doe")

location.address("123 Main St")

}

}

println builder

===>

<person id='100'

xmlns='http://myDefaultNamespace'

xmlns:location='http://someOtherNamespace'>

<firstname>Jane</firstname>

<lastname>Doe</lastname>

<location:address>123 Main St</location:address>

</person>

In Section 8.4, Creating Namespaced XML Using MarkupBuilder, on

page 138, we tricked MarkupBuilder into emitting namespaced XML

elements even though technically it isn’t namespace-aware. Streaming-

MarkupBuilder, on the other hand, is namespace-aware. You pass in

namespace declarations to the reserved namespace mkp. Anything pre-

fixed with mkp is interpreted as internal instructions to the builder

rather than output that should be emitted. Notice that location.address

is emitted as location:address, while mkp.declareNamespace is nowhere

to be found in the output. You specify the default namespace for the

XML document by passing in an empty string as the key.

8.8 Printing Out the XML Declaration

def builder = new groovy.xml.StreamingMarkupBuilder()

def person = {

mkp.xmlDeclaration()

}

println builder.bind(person)

===>

<?xml version="1.0" encoding="MacRoman"?>

//setting the encoding

def builder2 = new groovy.xml.StreamingMarkupBuilder()

builder2.encoding = "UTF-8"

println builder2.bind{

mkp.xmlDeclaration()

}

===>

<?xml version="1.0" encoding="UTF-8"?>

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=142

PRINTING OUT PROCESSING INSTRUCTIONS 143

The XML declaration is printed when you call xmlDeclaration() on the

reserved mkp namespace. You can set the encoding directly on the

instance of StreamingMarkupBuilder in order to override the default sys-

tem encoding.

8.9 Printing Out Processing Instructions

def builder = new groovy.xml.StreamingMarkupBuilder()

def person = {

mkp.pi("xml-stylesheet": "type='text/xsl' href='myfile.xslt'")

}

println builder.bind(person)

===>

<?xml-stylesheet type='text/xsl' href='myfile.xslt'?>

Processing instructions, like those used for XSLT, are printed when you

call pi() on the reserved mkp namespace.

8.10 Printing Arbitrary Strings (Comments, CDATA)

def comment = "<!-- address is optional -->"

def builder = new groovy.xml.StreamingMarkupBuilder().bind{

person(id:99){

firstname("John")

lastname("Smith")

mkp.yieldUnescaped(comment)

unescaped << comment

}

}

println builder

===>

<person id='99'>

<firstname>John</firstname>

<lastname>Smith</lastname>

<!-- address is optional -->

<!-- address is optional -->

</person>

The reserved namespace mkp has played prominently in the past few

sections. Calling mkp.declareNamespace() allows you to create names-

paces of your own. Calling mkp.xmlDeclaration() dumps out an XML dec-

laration. Calling mkp.pi() prints out processing instructions. Now you

see another method call—mkp.yieldUnescaped(). As the name implies,

this method prints the string you pass in unchanged. unescaped << is

a convenience target that does the same thing. It is purely a stylistic

decision as to which form you use.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=143

PRINTING ARBITRARY STRINGS (COMMENTS, CDATA) 144

If you want StreamingMarkupBuilder to escape the string for you, you call

mkp.yield() or out <<. (Remember out from Section 8.6, Creating Parts of

the XML Document Separately, on page 140?)

def comment = "<!-- address is optional -->"

def builder = new groovy.xml.StreamingMarkupBuilder().bind{

mkp.yieldUnescaped(comment)

unescaped << comment

mkp.yield(comment)

out << comment

}

println builder

===>

<!-- address is optional -->

<!-- address is optional -->

<!-- address is optional -->

<!-- address is optional -->

An interesting feature of mkp.yield() and out << is that it escapes Strings

by default but passes other closures through unchanged. I’ve been bit-

ten by this more than once if I flip between a String and a closure during

the development process. The good news is both mkp.yieldUnescaped()

and unescaped << pass a closure through unchanged as well. In other

words, you can use out and unescaped interchangeably for closures.

However, if you want to polymorphically flip between Strings and clo-

sures, unescaped is probably a better bet than out.

CDATA

def cdata = " >< & Look 'at' me & >< "

def builder = new groovy.xml.StreamingMarkupBuilder().bind{

unescaped << "<![CDATA[" + cdata + "]]>"

}

println builder

===>

<![CDATA[>< & Look 'at' me & ><]]>

In XML, CDATA3 sections are a hint to the parser to not treat the text

as markup. Rather, it should be interpreted as plain old character data.

Effectively, this means you can pass in characters that would ordinarily

need to be escaped, such as <, >, &, and quotes (both single and double).

Although it would be especially convenient if a mkp.cdata() method call

existed, you can achieve the same thing by using the humble unescaped

target that you already know.

3. http://en.wikipedia.org/wiki/CDATA

http://en.wikipedia.org/wiki/CDATA
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=144

WRITING STREAMINGMARKUPBUILDER OUTPUT TO A FILE 145

8.11 Writing StreamingMarkupBuilder Output to a File

def writer = new FileWriter("person.xml")

writer << builder.bind(person)

You can pass the output of a StreamingMarkupBuilder to any Java class

that implements the Writer interface.

8.12 StreamingMarkupBuilder at a Glance

def comment = "<!-- address is new to this release -->"

def builder = new groovy.xml.StreamingMarkupBuilder()

builder.encoding = "UTF-8"

def person = {

mkp.xmlDeclaration()

mkp.pi("xml-stylesheet": "type='text/xsl' href='myfile.xslt'")

mkp.declareNamespace('':'http://myDefaultNamespace')

mkp.declareNamespace('location':'http://someOtherNamespace')

person(id:100){

firstname("Jane")

lastname("Doe")

mkp.yieldUnescaped(comment)

location.address("123 Main")

}

}

def writer = new FileWriter("person.xml")

writer << builder.bind(person)

System.out << builder.bind(person)

===>

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type='text/xsl' href='myfile.xslt'?>

<person id='100'

xmlns='http://myDefaultNamespace'

xmlns:location='http://someOtherNamespace'>

<firstname>Jane</firstname>

<lastname>Doe</lastname>

<!-- address is new to this release -->

<location:address>123 Main</location:address>

</person>

Putting everything together you’ve learned in the past several sections

gives you the tools you need to build an XML document of any complex-

ity. MarkupBuilder is still there for simple jobs, but StreamingMarkupBuilder

is there when you need to do the complicated stuff.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=145

CREATING HTML ON THE FLY 146

8.13 Creating HTML on the Fly

def x = new groovy.xml.MarkupBuilder()

x.html{

head{

title("Search Results")

link(rel:"stylesheet", type:"text/css", href:"http://main.css")

script(type:"text/javascript", src:"http://main.js")

}

body{

h1("Search Results")

div(id:"results", class:"simple"){

table(border:1){

tr{

th("Name")

th("Address")

}

tr{

td{

a(href:"http://abc.org?id=100","Jane Doe")

}

td("123 Main St")

}

}

}

}

}

===>

<html>

<head>

<title>Search Results</title>

<link rel='stylesheet' type='text/css' href='http://main.css' />

<script type='text/javascript' src='http://main.js' />

</head>

<body>

<h1>Search Results</h1>

<div id='results' class='simple'>

<table border='1'>

<tr>

<th>Name</th>

<th>Address</th>

</tr>

<tr>

<td>

Jane Doe

</td>

<td>123 Main St</td>

</tr>

</table>

</div>

</body>

</html>

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=146

CREATING HTML ON THE FLY 147

MarkupBuilder is equally adept at emitting XML or HTML. In the previous

example, I put together a quick HTML page.

Bear in mind that you’re not in a full web framework like Grails. Grails

operates at a much higher level of abstraction, making it far easier

to emit HTML tables and the like. Groovy Server Pages (GSPs) are a

much better templating solution than writing out all of your HTML in

longhand as I did here, just as JSPs are generally better than having a

series of System.out.println statements in the doGet() method of a Servlet.

The point of this example is to demonstrate the DSL capabilities of

Groovy. (See the sidebar on page 43 for more on DSLs.) The Groovy

code matches the resulting HTML almost perfectly. For writing ad hoc

HTML pages on the fly in Groovy, I haven’t found anything better than

good old MarkupBuilder.

HTML and StreamingMarkupBuilder

def h = {

head{

title("Search Results")

link(rel:"stylesheet", type:"text/css", href:"http://main.css")

script(type:"text/javascript", src:"http://main.js")

}

}

def b = {

body{

h1("Search Results")

div(id:"results", class:"simple"){

table(border:1){

tr{

th("Name")

th("Address")

}

tr{

td{

a(href:"http://abc.org?id=100","Jane Doe")

}

td("123 Main St")

}

}

}

}

}

def html = new groovy.xml.StreamingMarkupBuilder().bind{

unescaped << '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"' +

'"http://www.w3.org/TR/html4/strict.dtd">'

html{

out << h

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=147

CONVERTING CSV TO XML 148

out << b

}

}

def htmlWriter = new FileWriter("test.html")

htmlWriter << html

Using StreamingMarkupBuilder, you are able to define blocks of the page

asynchronously and pull them together just as you need them. This

allows you to put together a more robust templating system.

8.14 Converting CSV to XML

// input file (addresses.csv):

99,John Smith,456 Fleet St,Denver,CO,80021

100,Jane Doe,123 Main St,Denver,CO,80020

101,Frank Jones,345 Center Blvd,Omaha,NE,68124

// groovy file:

def fileIn = new File("addresses.csv")

def fileOut = new FileWriter("addresses.xml")

def xml = new groovy.xml.MarkupBuilder(fileOut)

xml.addressBook{

fileIn.splitEachLine(","){ tokens ->

entry(id:tokens[0]){

name(tokens[1])

addresss(tokens[2])

city(tokens[3])

state(tokens[4])

zipcode(tokens[5])

}

}

}

// output file (addresses.xml):

<addressBook>

<entry id='99'>

<name>John Smith</name>

<addresss>456 Fleet St</addresss>

<city>Denver</city>

<state>CO</state>

<zipcode>80021</zipcode>

</entry>

<entry id='100'>

<name>Jane Doe</name>

<addresss>123 Main St</addresss>

<city>Denver</city>

<state>CO</state>

<zipcode>80020</zipcode>

</entry>

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=148

CONVERTING CSV TO XML 149

<entry id='101'>

<name>Frank Jones</name>

<addresss>345 Center Blvd</addresss>

<city>Omaha</city>

<state>NE</state>

<zipcode>68124</zipcode>

</entry>

</addressBook>

CSV files are quite common. Predating XML, CSV is yet another way

to store data in a vendor-, language-, and platform-neutral way. Com-

bining the splitEachLine() method discussed in Section 6.2, Reading the

Contents of a File, on page 104 and the MarkupBuilder discussed in Sec-

tion 8.1, The “I’m in a Hurry” Guide to Creating an XML Document, on

page 136, you can easily convert CSV to XML.

Parsing Complex CSV

// input file

99,John Smith,"456 Fleet St, Suite 123",Denver,CO,80021

100,Jane Doe,123 Main St,Denver,CO,80020

101,"Frank Jones, Jr.",345 Center Blvd,Omaha,NE,68124

// output file

<addressBook>

<entry id='99'>

<name>John Smith</name>

<addresss>"456 Fleet St</addresss>

<city> Suite 123"</city>

<state>Denver</state>

<zipcode>CO</zipcode>

</entry>

<entry id='100'>

<name>Jane Doe</name>

<addresss>123 Main St</addresss>

<city>Denver</city>

<state>CO</state>

<zipcode>80020</zipcode>

</entry>

<entry id='101'>

<name>"Frank Jones</name>

<addresss> Jr."</addresss>

<city>345 Center Blvd</city>

<state>Omaha</state>

<zipcode>NE</zipcode>

</entry>

</addressBook>

Unfortunately, CSV rarely presents itself as cleanly as it did in the

first example. Sometimes there will be embedded commas in the field,

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=149

CONVERTING CSV TO XML 150

requiring the entire field to be surrounded by quotes. (Did you catch

the bad XML addresses for John Smith and Frank Jones, Jr.?)

You’re going to need to do more than naively split the line on a comma

to parse out these CSV records. Here is a slightly more robust CSV

parsing class called SmartCsvParser that does a better job of dealing with

embedded commas within individual CSV fields:

def fileIn = new File("addresses2.csv")

def fileOut = new FileWriter("addresses2.xml")

def xml = new groovy.xml.MarkupBuilder(fileOut)

xml.addressBook{

use(SmartCsvParser){

fileIn.eachLine{ line ->

def fields = line.smartSplit()

entry(id:fields[0]){

name(fields[1])

addresss(fields[2])

city(fields[3])

state(fields[4])

zipcode(fields[5])

}

}

}

}

class SmartCsvParser{

static String[] smartSplit(String self){

def list = []

def st = new StringTokenizer(self, ",")

while(st.hasMoreTokens()){

def thisToken = st.nextToken()

while(thisToken.startsWith("\"") && !thisToken.endsWith("\"")){

thisToken += "," + st.nextToken()

}

list << thisToken.noQuote()

}

return list

}

static String noQuote(String self){

if(self.startsWith("\"") || self.startsWith("\'")){

return self[1..-2]

}

else{

return self

}

}

}

Let’s explore SmartCsvParser in the previous example. smartSplit looks at

each token. If the token starts with a double quote and doesn’t end with

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=150

CONVERTING JDBC RESULTSETS TO XML 151

a double quote, you must have a partial field on your hands. smartSplit

will continue adding tokens together until it finds the closing quote.

Once the fields are all properly joined together, the noQuote method

simply strips the surrounding quotes from the field value if necessary.

You used a category (as discussed in Section 10.10, Adding Methods

to a Class Dynamically (Categories), on page 196) to add the smart-

Split method to the string returned from fileIn.eachLine. This allowed

you to keep smartSplit local. If you thought this method was of more

global interest, you most likely would have used the ExpandoMetaClass

class instead (as discussed in Section 10.11, Adding Methods to a Class

Dynamically (ExpandoMetaClass), on page 198).

8.15 Converting JDBC ResultSets to XML

//table addressbook:

|name |address |city |st |zipcode

+------------+----------------+-------+---+-------

|John Smith |456 Fleet St |Denver |CO |80021

|Jane Doe |123 Main St |Denver |CO |80020

|Frank Jones |345 Center Blvd |Omaha |NE |68124

//groovy:

def sql = groovy.sql.Sql.newInstance(

"jdbc:derby://localhost:1527/MyDbTest;create=true",

"testUser",

"testPassword",

"org.apache.derby.jdbc.ClientDriver")

def xml = new groovy.xml.MarkupBuilder()

xml.addressBook{

sql.eachRow("select * from addressbook"){ row ->

entry{

name(row.name)

addresss(row.address)

city(row.city)

state(row.st)

zipcode(row.zipcode)

}

}

}

Much like File.eachFile allows you to iterate over every file in a directory

(Section 6.1, Listing All Files in a Directory, on page 100) and List.each

allows you to iterate over every item in a List (Section 3.14, List Shortcuts,

on page 58), a groovy.sql.Sql object allows you to iterate over a JDBC

ResultSet using an eachRow closure. Mixing in a MarkupBuilder gives you

a transparent JDBC-to-XML converter.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=151

Chapter 9

Web Services
Web services are everywhere these days. Once we as an industry figured

out that XML travels over HTTP as well as HTML, we entered a new

age of service-oriented architecture (SOA). This new way of grabbing

data from remote sources means that developers must understand the

mechanics of low-level TCP/IP and HTTP as well as the various higher-

level XML dialects out in the wild: SOAP, REST, and XML-RPC. Luckily,

Groovy helps us on all fronts.

In this chapter, we’ll start with the low-level basics of how to deter-

mine your local TCP/IP address and domain name and those of remote

systems. We’ll move up the stack to HTTP—learning how to GET, POST,

PUT, and DELETE programmatically. We’ll end the chapter with exam-

ples of how to send and receive SOAP messages, XML-RPC messages,

and RESTful requests. We’ll even parse a bit of comma-separated value

(CSV) data just for old-times’ sake.

9.1 Finding Your Local IP Address and Name

InetAddress.localHost.hostAddress

===> 63.246.7.76

InetAddress.localHost.hostName

===> myServer

InetAddress.localHost.canonicalHostName

===> www.aboutgroovy.com

Before you can communicate with anyone else, it always helps knowing

about yourself. In this example, you’ll discover your IP address, your

local host name, and the DNS name by which the rest of the world

knows you.

FINDING YOUR LOCAL IP ADDRESS AND NAME 153

The InetAddress class comes to you from the java.net package. You can-

not directly instantiate an InetAddress class (def addr = new InetAddress())

because the constructor is private. You can, however, use a couple of

different static methods to return a well-formed InetAddress. The getLo-

calHost() method for getting local information is discussed here; getBy-

Name() and getAllByName() for getting remote information are discussed

in Section 9.2, Finding a Remote IP Address and Domain Name, on the

next page.

The getLocalHost() method returns an InetAddress that represents the

localhost or the hardware on which it is running. As discussed in Sec-

tion 4.2, Getter and Setter Shortcut Syntax, on page 72, getLocalHost()

can be shortened to localHost in Groovy. Once you have a handle to

localHost, you can call getHostAddress() to get your IP address or getHost-

Name() to get the local machine name. This name is the private name of

the system, as opposed to the name registered in DNS for the rest of the

world to see. Calling getCanonicalHostName() performs a DNS lookup.

Of course, as discussed in Section 5.4, Running a Shell Command, on

page 89, the usual command-line tools that ship with your operating

system are just an execute() away. They might not be as easy to parse

as the InetAddress methods, but as you can see they expose quite a bit

more detail.

// available on all operating systems

"hostname".execute().text

===> myServer

// on Unix/Linux/Mac OS X

println "ifconfig".execute().text

===>

en2: flags=8963<UP,BROADCAST,SMART,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500

inet6 fe80::21c:42ff:fe00:0%en2 prefixlen 64 scopeid 0x8

inet 10.37.129.3 netmask 0xffffff00 broadcast 10.37.129.255

ether 00:1c:42:00:00:00

media: autoselect status: active

supported media: autoselect

// on Windows

println "ipconfig /all".execute().text

===>

Windows IP Configuration

Host Name : scottdavis1079

Primary Dns Suffix :

Node Type : Unknown

IP Routing Enabled. : No

WINS Proxy Enabled. : No

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=153

FINDING A REMOTE IP ADDRESS AND DOMAIN NAME 154

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . :

Description : Parallels Network Adapter

Physical Address. : 00-61-20-5C-3B-B9

Dhcp Enabled. : Yes

Autoconfiguration Enabled : Yes

IP Address. : 10.211.55.3

Subnet Mask : 255.255.255.0

Default Gateway : 10.211.55.1

DHCP Server : 10.211.55.1

DNS Servers : 10.211.55.1

Lease Obtained. : Tuesday, October 09, 2007 2:53:02 PM

Lease Expires : Tuesday, October 16, 2007 2:53:02 PM

9.2 Finding a Remote IP Address and Domain Name

InetAddress.getByName("www.aboutgroovy.com")

===> www.aboutgroovy.com/63.246.7.76

InetAddress.getAllByName("www.google.com").each{println it}

===>

www.google.com/64.233.167.99

www.google.com/64.233.167.104

www.google.com/64.233.167.147

InetAddress.getByName("www.google.com").hostAddress

===> 64.233.167.99

InetAddress.getByName("64.233.167.99").canonicalHostName

===> py-in-f99.google.com

In addition to its returning information about the local machine, you

can use InetAddress to find out about remote systems. getByName() re-

turns a well-formed InetAddress object that represents the remote sys-

tem. getByName() accepts either a domain name (for example, www.

aboutgroovy.com) or an IP address (for example, 64.233.167.99). Once

you have a handle to the system, you can ask for its hostAddress and its

canonicalHostName.

Sometimes a DNS name can resolve to many different IP addresses.

This is especially true for busy websites that load balance the traffic

among many physical servers. If a DNS name resolves to more than

one IP address, getByName() will return the first one in the list, whereas

getAllByName() will return all of them.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=154

MAKING AN HTTP GET REQUEST 155

Of course, the usual command-line tools for asking about remote sys-

tems are available to you as well:

// on Unix/Linux/Mac OS X

println "dig www.aboutgroovy.com".execute().text

===>

; <<>> DiG 9.3.4 <<>> www.aboutgroovy.com

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 55649

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;; QUESTION SECTION:

;www.aboutgroovy.com. IN A

;; ANSWER SECTION:

www.aboutgroovy.com. 300 IN A 63.246.7.76

;; AUTHORITY SECTION:

aboutgroovy.com. 82368 IN NS ns1.contegix.com.

aboutgroovy.com. 82368 IN NS ns2.contegix.com.

;; ADDITIONAL SECTION:

ns1.contegix.com. 11655 IN A 63.246.7.200

ns2.contegix.com. 11655 IN A 63.246.22.100

;; Query time: 204 msec

;; SERVER: 66.174.92.14#53(66.174.92.14)

;; WHEN: Tue Oct 9 15:16:16 2007

;; MSG SIZE rcvd: 130

// on Windows

println "nslookup www.aboutgroovy.com".execute().text

===>

Server: UnKnown

Address: 10.211.55.1

Name: www.aboutgroovy.com

Address: 63.246.7.76

9.3 Making an HTTP GET Request

def page = new URL("http://www.aboutgroovy.com").text

===>

<html><head><title>...

new URL("http://www.aboutgroovy.com").eachLine{line ->

println line

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=155

MAKING AN HTTP GET REQUEST 156

===>

<html>

<head>

<title>

...

The simplest way to get the contents of an HTML page is to call getText()

on the URL. This allows you to store the entire response in a String vari-

able. If the page is too big to do this comfortably, you can also iterate

through the response line by line using eachLine().

Groovy adds a toURL() method to java.lang.String, allowing you to make

identical requests using a slightly more streamlined syntax:

"http://www.aboutgroovy.com".toURL().text

"http://www.aboutgroovy.com".toURL().eachLine{...}

We’ll discuss how to streamline this to the point where you can simply

call "http://www.aboutgroovy.com".get() in Section 10.11, Adding Methods

to a Class Dynamically (ExpandoMetaClass), on page 198.

Processing a Request Based on the HTTP Response Code

def url = new URL("http://www.aboutgroovy.com")

def connection = url.openConnection()

if(connection.responseCode == 200){

println connection.content.text

}

else{

println "An error occurred:"

println connection.responseCode

println connection.responseMessage

}

Calling getText() directly on the URL object means that you expect every-

thing to go perfectly—no connection timeouts, no 404s, and so on.

Although you should be commended on your optimism, if you want

to write slightly more fault-tolerant code, then you should call open-

Connection() on the URL.

This returns a java.net.URLConnection object that will allow you to do

a bit more detailed work with the URL object. connection.content.text

returns the same information as url.text while allowing you to do more

introspection on the response—connection.responseCode for the 200 or

the 404; connection.responseMessage for OK or File Not Found.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=156

MAKING AN HTTP GET REQUEST 157

Getting HTTP Response Metadata

def url = new URL("http://www.aboutgroovy.com")

def connection = url.openConnection()

connection.responseCode

===> 200

connection.responseMessage

===> OK

connection.contentLength

===> 4216

connection.contentType

===> text/html

connection.date

===> 1191250061000

connection.expiration

===> 0

connection.lastModified

===> 0

connection.headerFields.each{println it}

===>

Content-Length=[4216]

Set-Cookie=[JSESSIONID=3B2DE7CBDAE3D58EC46D5A8DF5AF89D1; Path=/]

Date=[Mon, 01 Oct 2007 14:47:41 GMT]

null=[HTTP/1.1 200 OK]

Server=[Apache-Coyote/1.1]

Content-Type=[text/html]

Once you have a handle to the URLConnection, you have full access to

the accompanying response metadata. In addition to the responseCode

and responseMessage, you can ask for things such as the contentLength

and the contentType and can even iterate over each response header one

by one.

Creating a Convenience GET Class

class Get{

String url

String queryString

URLConnection connection

String text

String getText(){

def thisUrl = new URL(this.toString())

connection = thisUrl.openConnection()

if(connection.responseCode == 200){

return connection.content.text

}

else{

return "Something bad happened\n" +

"URL: " + this.toString() + "\n" +

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=157

MAKING AN HTTP GET REQUEST 158

connection.responseCode + ": " +

connection.responseMessage

}

}

String toString(){

return url + "?" + queryString

}

}

def get = new Get(url:"http://search.yahoo.com/search")

get.queryString = "p=groovy"

println get

===> http://search.yahoo.com/search?p=groovy

println get.text

===> <html><head>...

get.url = "http://www.yahoo.com/no.such.page"

println get.text

===>

Something bad happened

URL: http://www.yahoo.com/no.such.page?p=groovy

404: Not Found

Up to this point you’ve been writing some pretty procedural1 code. It

certainly gets the job done, but it suffers just a wee bit in terms of

lack of reusability. (Don’t you dare suggest that “copy and paste” is

a valid type of reuse. You’re a good object-oriented programmer—how

could you even think such a thing?) This custom Get class wraps every-

thing you’ve learned up to this point into something that can be reused.

It has a nice simple interface and hides enough of the HttpConnection

complexity to make it worth your time.

Now, nothing can compare to the simplicity of "http://www.aboutgroovy.

com".toURL().text. On the opposite end of the spectrum is Jakarta Com-

mons HttpClient2—a great library that is far more complete than any-

thing I could put together on my own. The drawback, of course, is

adding yet another dependency to the project. The custom Get class

splits the difference nicely. It is slightly more robust than "".toURL().text,

and yet it is implemented in pure Groovy so you don’t have to worry

about JAR bloat in your classpath.

1. http://en.wikipedia.org/wiki/Procedural_programming

2. http://jakarta.apache.org/httpcomponents/httpcomponents-client

http://en.wikipedia.org/wiki/Procedural_programming
http://jakarta.apache.org/httpcomponents/httpcomponents-client
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=158

WORKING WITH QUERY STRINGS 159

One more thing: the Get class adds support for a query string. This

is a collection of name/value pairs that can be appended to the end

of a URL to further customize it. See Section 9.4, Working with Query

Strings for more information.

RESTful GET Requests

"http://search.yahooapis.com/WebSearchService/V1/webSearch?

appid=YahooDemo&query=groovy&results=10".toURL().text

//alternately, using our Get class

def get = new Get()

get.url = "http://search.yahooapis.com/WebSearchService/V1/webSearch"

get.queryString = "appid=YahooDemo&query=groovy&results=10"

def results = get.text

RESTful web services are a type of web service. REST stands for Rep-

resentational State Transfer.3 Although there are many differing inter-

pretations of what it means to be truly RESTful, it is generally accepted

that an HTTP GET request that returns XML results (as opposed to

HTML or some other data format) constitutes the simplest form of a

RESTful web service.

Yahoo offers a RESTful API4 that returns query results in XML. This

query returns the top-ten hits for the search term groovy. For the result

of this query and how to parse it, see Section 9.12, Parsing Yahoo Search

Results as XML, on page 176.

9.4 Working with Query Strings

"http://search.yahoo.com/search?p=groovy".toURL().text

A query string allows you to make more complex HTTP GET requests

by adding name/value pairs to the end of the address. Now instead of

just asking for a static page at http://search.yahoo.com, you can make a

dynamic query for all pages that contain the word groovy.

The Web is transformed from a simple distributed filesystem to a fully

programmable Web.5 The mechanics of programmatically making an

HTTP GET request don’t change—it is no more complicated than what we

discussed in Section 9.3, Making an HTTP GET Request, on page 155.

3. http://en.wikipedia.org/wiki/Representational_State_Transfer

4. http://developer.yahoo.com/search/web/V1/webSearch.html

5. http://www.programmableweb.com/

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://developer.yahoo.com/search/web/V1/webSearch.html
http://www.programmableweb.com/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=159

WORKING WITH QUERY STRINGS 160

However, the semantics of using query strings opens up a whole new

world of programmatic possibilities.

For example, complicated web pages like a Google map showing the

Denver International Airport can be captured in a single URL. This

means we can hyperlink it, bookmark it, or email it to a friend sim-

ply by clicking Link to This Page in the upper-right corner of the page.

Each element in the query string represents a different aspect of the

map: ll for the latitude/longitude center point of the map (39.87075,-

104.694214), z for the zoom level (11), t for the type (h, or hybrid), and

so forth.

"http://maps.google.com/maps?f=q&hl=en&geocode=&time=&date=&ttype=

&q=dia&sll=37.0625,-95.677068&sspn=34.038806,73.125&ie=UTF8

&ll=39.87075,-104.694214&spn=0.2577,0.571289&z=11&iwloc=addr&om=1&t=h"

.toURL().text

Building the Query String from a List

def queryString = []

queryString << "n=" + URLEncoder.encode("20")

queryString << "vd=" + URLEncoder.encode("m3")

queryString << "vl=" + URLEncoder.encode("lang_en")

queryString << "vf=" + URLEncoder.encode("pdf")

queryString << "p=" + URLEncoder.encode("groovy grails")

def address = "http://search.yahoo.com/search"

def url = new URL(address + "?" + queryString.join("&"))

println url

===>

http://search.yahoo.com/search?n=20&vd=m3&vl=lang_en&vf=pdf&p=groovy+grails

println url.text

Often you’ll be tasked with assembling a well-formed query string from

an arbitrary collection of data values. The secret is to make sure the

values are URL encoded6 (“foo bar baz” ==> foo+bar+baz), while the

name portion (nonsense=) remains plain text. If you try to URL encode

the name and the value as a single string (“nonsense=foo bar baz”), the

equals sign (=) will get converted to %3D, and your web server will most

likely reject the request.

This example creates a List of name/value pairs, ensuring that only the

value gets URL encoded using the java.net.URLEncoder. Later when you

need the well-formed query string, you call queryString.join("&"). As we

6. http://en.wikipedia.org/wiki/Urlencode

http://en.wikipedia.org/wiki/Urlencode
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=160

WORKING WITH QUERY STRINGS 161

discussed in Section 3.14, Join, on page 60, this returns the list as a

single string with each element joined by the string you passed in as

the parameter.

This particular query string was built by performing an advanced Yahoo

search and cherry-picking the interesting name/value pairs from the

resulting URL. n returns twenty results instead of the default ten. vd

limits the results to those posted in the past three months. vl returns

only English pages. vf filters the results for only PDF documents. And

finally, p looks for results that mention either groovy or grails.

Building the Query String from a Map

def map = [n:20, vf:"pdf", p:"groovy grails"]

def list = []

map.each{name,value->

list << "$name=" + URLEncoder.encode(value.toString())

}

println list.join("&")

===> n=20&vf=pdf&p=groovy+grails

Groovy Maps are a great way to represent query strings since both nat-

urally have name/value pairs. This example still uses a temporary List

to store the URL-encoded values and a join("&") to put them together at

the last minute.

There is one edge case that keeps this from being a 100% solution.

Query strings are allowed to have duplicate named elements, whereas

Maps enforce unique names.

http://localhost/order?book=Groovy+Recipes&book=Groovy+In+Action

If you can live with this limitation, then Maps are the perfect solution.

If you need to support duplicate named elements, see Section 9.4, Cre-

ating a Convenience QueryString Class for more information.

Creating a Convenience QueryString Class

class QueryString{

Map params = [:]

//this constructor allows you to pass in a Map

QueryString(Map params){

if(params){

this.params.putAll(params)

}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=161

WORKING WITH QUERY STRINGS 162

//this method allows you to add name/value pairs

void add(String name, Object value){

params.put(name, value)

}

//this method returns a well-formed QueryString

String toString(){

def list = []

params.each{name,value->

list << "$name=" + URLEncoder.encode(value.toString())

}

return list.join("&")

}

}

def qs = new QueryString(n:20, vf:"pdf", p:"groovy grails")

println qs

===> n=20&vf=pdf&p=groovy+grails

def qs2 = new QueryString()

qs2.params.put("firstname", "Scott")

qs2.add("id", 99)

qs2.add "updated", new Date()

println qs2

===> firstname=Scott&id=99&updated=Wed+Oct+10+20%3A17%3A34+MDT+2007

Creating a convenience class allows you to encapsulate the mechanics

of building a well-formed query string into a reusable component.

The qs object accepts name/value pairs in the constructor that get

coerced into a Map. (You could have also passed in an existing Map

to the constructor.) The qs2 object demonstrates three different ways

to pass in name/values pairs—by accessing the params Map directly,

by using the convenient add() method with parentheses, and finally

by calling the same add() method while taking advantage of Groovy’s

optional parentheses.

Notice that the add() method accepts an Object for the value. This

allows you to store values such as integers and classes instead of sim-

ple strings. Calling URLEncoder.encode(value.toString()) ensures that the

values get plugged into the query string correctly.

Combining the query string with the Get class created in Section 9.3,

Creating a Convenience GET Class, on page 157 begins to demonstrate

the power you’ve managed to assemble with very little code—there are

fewer than fifty lines of code between Get and QueryString.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=162

WORKING WITH QUERY STRINGS 163

class Get{

String url

QueryString queryString = new QueryString()

URLConnection connection

String text

String getText(){

def thisUrl = new URL(this.toString())

connection = thisUrl.openConnection()

if(connection.responseCode == 200){

return connection.content.text

} else{

return "Something bad happened\n" +

"URL: " + this.toString() + "\n" +

connection.responseCode + ": " +

connection.responseMessage

}

}

String toString(){

return url + "?" + queryString.toString()

}

}

def get = new Get(url:"http://search.yahoo.com/search")

get.queryString.add("n", 20)

get.queryString.add("vf", "pdf")

get.queryString.add("p", "groovy grails")

println get

===> http://search.yahoo.com/search?n=20&vf=pdf&p=groovy+grails

println get.text

===> <html><head>...

Notice that upgrading your queryString field from a String to a full-fledged

QueryString object requires touching the Get class in only two places.

The field declaration now creates a new QueryString(), and the toString()

method calls queryString.toString(). This upgrade now allows you to let

the Get class create the well-formed QueryString instead of forcing you

to create one on your own. Calls such as get.queryString.add("p", "groovy

grails") do the right thing behind the scenes, ensuring that the values

are properly URL encoded.

Remember the query string/hashmap mismatch we discussed in Sec-

tion 9.4, Building the Query String from a Map, on page 161? Because

the QueryString class is currently implemented, each call to qs.add()

replaces the name/value pair. To support duplicate named elements,

the QueryString class would need to be refactored to append values to a

List if the name existed. For an idea of how to add this feature, see Sec-

tion 10.8, Calling Methods That Don’t Exist (invokeMethod), on page 193.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=163

MAKING AN HTTP POST REQUEST 164

9.5 Making an HTTP POST Request

def url = new URL("http://search.yahoo.com/search")

def connection = url.openConnection()

//switch the method to POST (GET is the default)

connection.setRequestMethod("POST")

//write the data

def queryString = "n=20&vf=pdf&p=groovy+grails"

connection.doOutput = true

Writer writer = new OutputStreamWriter(connection.outputStream)

writer.write(queryString)

writer.flush()

writer.close()

connection.connect()

//print the results

println connection.content.text

===> <html><head>...

When making an HTTP POST request, you cannot use the same get-

Text() shortcut on the URL class that you could when making a GET

request. You must get the URLConnection so that you can set the request

method to POST (GET is the default). For a GET request, the query string

is appended to the end of the URL object. In contrast, the query string

of a POST is embedded in the body of the request. To accomplish this,

you must do three things: set the doOutput value of the URLConnection

to true, get the outputStream, and write the query string to it before you

call connect().

Building the Query String from a List

def queryString = []

queryString << "n=" + URLEncoder.encode("20")

queryString << "vf=" + URLEncoder.encode("pdf")

queryString << "p=" + URLEncoder.encode("groovy grails")

def url = new URL("http://search.yahoo.com/search")

def connection = url.openConnection()

connection.setRequestMethod("POST")

connection.doOutput = true

Writer writer = new OutputStreamWriter(connection.outputStream)

writer.write(queryString.join("&"))

writer.flush()

writer.close()

connection.connect()

def results = conn.content.text

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=164

MAKING AN HTTP POST REQUEST 165

As discussed in Section 9.4, Building the Query String from a List, on

page 160, the secret to building up a query string from a List is making

sure the values get URL encoded and then joining the elements together

with an &.

Creating a Convenience Post Class

class Post{

String url

QueryString queryString = new QueryString()

URLConnection connection

String text

String getText(){

def thisUrl = new URL(url)

connection = thisUrl.openConnection()

connection.setRequestMethod("POST")

connection.doOutput = true

Writer writer = new OutputStreamWriter(connection.outputStream)

writer.write(queryString.toString())

writer.flush()

writer.close()

connection.connect()

return connection.content.text

}

String toString(){

return "POST:\n" +

url + "\n" +

queryString.toString()

}

}

def post = new Post(url:"http://search.yahoo.com/search")

post.queryString.add("n", 20)

post.queryString.add("vf", "pdf")

post.queryString.add("p", "groovy grails")

println post

===>

POST:

http://search.yahoo.com/search

n=20&vf=pdf&p=groovy+grails

println post.text

===> <html><head>...

Putting all the complicated connection logic into a Post class—combined

with the QueryString class you created in Section 9.4, Creating a Conve-

nience QueryString Class, on page 161—makes for a pretty compelling

development experience.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=165

MAKING AN HTTP POST REQUEST 166

Mocking HTML Forms for Testing

<form method="post" action="http://localhost:8888/jaw/controller">

<input type="hidden" name="action" value="saveCar" />

Make: <input type="text" name="make" value="" /></td>

Model: <input type="text" name="model" value="" /></td>

Year: <input type="text" name="modelYear" value="" /></td>

<input type="submit" name="save" value="Save" />

</form>

Now that you have Post class, you can easily mock up an HTML form

submission using code. Given this HTML form, you could simulate a

user filling out the form and clicking the submit button using the fol-

lowing code:

def post = new Post(url:"http://localhost:8888/jaw/controller")

post.queryString.add("action", "saveCar")

post.queryString.add("make", "Toyota")

post.queryString.add("model", "Prius")

post.queryString.add("modelYear", 2012)

println post.text

All that is left to do at this point is to write the assertion on post.text

that verifies the form submission was performed correctly.

RESTful POST Requests Using XML

def xml = """<car>

<make>Toyota</make>

<model-year>2012</model-year>

<model>Prius</model>

</car>"""

def url = new URL("http://localhost:8888/jaw/car")

def connection = url.openConnection()

//set the metadata

connection.setRequestMethod("POST")

connection.setRequestProperty("Content-Type","application/xml")

//write the data

connection.doOutput = true

Writer writer = new OutputStreamWriter(connection.outputStream)

writer.write(xml)

writer.flush()

writer.close()

connection.connect()

def results = connection.content.text

In RESTful web services, the HTTP verb used for the request has deep

semantic meaning. A common database metaphor—create, retrieve,

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=166

MAKING AN HTTP PUT REQUEST 167

update, delete (CRUD)—is equally applicable to RESTful applications,7

although the verbs used in SQL statements aren’t identical. The SELECT

you perform against a database is analogous to an HTTP GET. You INSERT

records into a table, whereas you POST form data to a website. HTTP PUT

is the equivalent of a database UPDATE. DELETE is the least surprising of

all—it has the same meaning in both SQL and HTTP.

RESTful web services usually expect XML in the body of the POST as

opposed to the query strings being demonstrated up to this point. To

pass in XML, you need to make two minor changes to your code. First,

you’ll most likely need to change the Content-Type from application/x-

www-form-urlencoded (the default for POST) to application/xml. (The exact

Content-Type depends on the RESTful service you are calling.) The other

thing you need to do is not URL encode the data. The XML payload

should be transported in its native format. For another example of

POSTing XML, see Section 9.10, Making a SOAP Request, on page 172.

9.6 Making an HTTP PUT Request

def xml = """<car id="142">

<make>Toyota</make>

<model-year>2012</model-year>

<model>Prius, Luxury Edition</model>

</car>"""

def url = new URL("http://localhost:8888/jaw/car/142")

def connection = url.openConnection()

connection.setRequestMethod("PUT")

connection.setRequestProperty("Content-Type","application/xml")

connection.doOutput = true

Writer writer = new OutputStreamWriter(connection.outputStream)

writer.write(xml)

writer.flush()

writer.close()

connection.connect()

def result = connection.content.text

Performing an HTTP PUT is syntactically identical to performing a POST

with one exception—connection.setRequestMethod("PUT"). As discussed in

Section 9.5, RESTful POST Requests Using XML, on the preceding page,

a PUT is semantically an UPDATE, whereas a POST is equivalent to a SQL

INSERT. This example updates the model description to include “Luxury

Edition.”

7. http://en.wikipedia.org/wiki/Create%2C_read%2C_update_and_delete

http://en.wikipedia.org/wiki/Create%2C_read%2C_update_and_delete
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=167

MAKING AN HTTP PUT REQUEST 168

Creating a Convenience Put Class

class Put{

String url

String body

String contentType = "application/xml"

URLConnection connection

String text

String getText(){

def thisUrl = new URL(url)

connection = thisUrl.openConnection()

connection.setRequestMethod("PUT")

connection.setRequestProperty("Content-Type", contentType)

connection.doOutput = true

Writer writer = new OutputStreamWriter(connection.outputStream)

writer.write(body)

writer.flush()

writer.close()

connection.connect()

return connection.content.text

}

String toString(){

return "PUT:\n" +

contentType + "\n" +

url + "\n" +

body

}

}

def xml = """<car id="142">

<make>Toyota</make>

<model-year>2012</model-year>

<model>Prius, Luxury Edition</model>

</car>"""

def put = new Put(url:"http://localhost:8888/jaw/car/142")

put.body = xml

println put

===>

PUT:

application/xml

http://localhost:8888/jaw/car/142

<car id="142">

<make>Toyota</make>

<model-year>2012</model-year>

<model>Prius, Luxury Edition</model>

</car>

def result = put.text

The Put class is almost identical to the Post class with three distinctions.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=168

MAKING AN HTTP DELETE REQUEST 169

The queryString field is exchanged for a plain old Stringbody field. Also,

you expose a contentType field so that you can change it as needed.

Finally, the requestMethod is set to PUT.

9.7 Making an HTTP DELETE Request

def url = new URL("http://localhost:8888/jaw/car/142")

def connection = url.openConnection()

connection.setRequestMethod("DELETE")

connection.connect()

def result = connection.content.text

Performing an HTTP DELETE is syntactically identical to performing a

GET with one exception—connection.setRequestMethod("DELETE"). Whereas

POST and PUT requests have data in the body, GET and DELETE (as well

as HEAD, OPTION, and the rest of the HTTP verbs) have only a URL.

As discussed in Section 9.5, RESTful POST Requests Using XML, on

page 166, a DELETE does exactly what you’d expect it to do—effectively

delete from cars where id=142.

Creating a Convenience Delete Class

class Delete{

String url

QueryString queryString = new QueryString()

URLConnection connection

String text

String getText(){

def thisUrl = new URL(this.toString())

connection = thisUrl.openConnection()

connection.setRequestMethod("DELETE")

if(connection.responseCode == 200){

return connection.content.text

}

else{

return "Something bad happened\n" +

"URL: " + this.toString() + "\n" +

connection.responseCode + ": " +

connection.responseMessage

}

}

String toString(){

return "DELETE:\n" +

url + "?" + queryString.toString()

}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=169

MAKING A RESTFUL REQUEST 170

def delete = new Delete(url:"http://localhost:8888/jaw/car/142")

println delete

===>

DELETE:

http://localhost:8888/jaw/car/142

def results = delete.text

The Delete class is almost identical to the Get class with one distinction:

requestMethod is set to DELETE.

9.8 Making a RESTful Request

def partialRestRequest = "http://geocoder.us/service/rest/geocode?address="

def address = "1600 Pennsylvania Ave, Washington DC"

def restUrl = new URL(partialRestRequest + URLEncoder.encode(address))

def restResponse = restUrl.text

This request returns the latitude/longitude for the White House as

XML. Feel free to substitute your own address. You can see the returned

point on a map by visiting http://geocoder.us or by typing the coordinate

pair into the search box of any of the major mapping websites.

Parsing a RESTful Response

//Response:

<rdf:RDF

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<geo:Point rdf:nodeID="aid76408515">

<dc:description>

1600 Pennsylvania Ave NW, Washington DC 20502

</dc:description>

<geo:long>-77.037684</geo:long>

<geo:lat>38.898748</geo:lat>

</geo:Point>

</rdf:RDF>

def restResponse = restUrl.text

def RDF = new XmlSlurper().parseText(restResponse)

println RDF.Point.description

println RDF.Point.long

println RDF.Point.lat

XmlSlurper allows you to avoid dealing with the namespaces and extract

the pertinent fields. See Section 7.9, Parsing an XML Document with

Namespaces, on page 132 for more information.

http://geocoder.us
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=170

MAKING A RESTFUL REQUEST 171

Web Services Case Study: Geocoder.us

If you’ve ever used Google Maps,∗ Yahoo! Maps,† MapQuest,‡

Microsoft Live Search,§ or any of the other mapping websites,
you’ve been using web services without even realizing it. The
address you type into the site—123 Main St., for example—is not
inherently mappable. To plot the address on the map, the street
address must be converted into a latitude/longitude point. The
type of web service that does this sort of conversion is called a
geocoder.

All of the major mapping websites offer geocoding APIs,
but there is an independent geocoding website that plays
a prominent role in several of the examples in this chapter.
Geocoder.us¶ works well as fodder for Section 9.8, Making a
RESTful Request , on the preceding page; Section 9.9, Making a
CSV Request , on the next page; Section 9.10, Making a SOAP
Request , on the following page; and Section 9.11, Making an
XML-RPC Request , on page 174. That’s because it allows you to
make the same basic query in a variety of different web service
dialects. Geocoder.us is a free service for noncommercial use
based on free data from the U.S. Census Bureau.

There are a few other formats that Geocoder.us doesn’t sup-
port at the time of this writing—RSS and Atom. You can reach
out to AboutGroovy.com for real-world examples of them, but
don’t be surprised if Geocoder.us adds these formats into the
mix at some point. GeoRSS and GeoAtom both exist and are
gaining popularity. Flickr,‖ for example, offers a GeoRSS feed at
the bottom of every search results page.

∗. http://maps.google.com

†. http://maps.yahoo.com

‡. http://www.mapquest.com

§. http://maps.live.com/

¶. http://geocoder.us

‖. http://flickr.com

http://maps.google.com
http://maps.yahoo.com
http://www.mapquest.com
http://maps.live.com/
http://geocoder.us
http://flickr.com
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=171

MAKING A CSV REQUEST 172

9.9 Making a CSV Request

def partialCsvRequest = "http://geocoder.us/service/csv/geocode?address="

def address = "1600 Pennsylvania Ave, Washington DC"

def csvUrl = new URL(partialCsvRequest + URLEncoder.encode(address))

def csvResponse = csvUrl.text

This request returns the latitude/longitude for the White House as

CSV. Feel free to substitute your own address. You can see the returned

point on a map by visiting http://geocoder.us or by typing the coordinate

pair into the search box of any of the major mapping websites.

Parsing a CSV Response

//Response:

38.898748,-77.037684,1600 Pennsylvania Ave NW,Washington,DC,20502

def csvResponse = csvUrl.text

def tokens = csvResponse.split(",")

println "Latitude: [${tokens[0]}]"

println "Longitude: [${tokens[1]}]"

println "Address: [${tokens[2]}]"

println "City: [${tokens[3]}]"

println "State: [${tokens[4]}]"

println "Zip: [${tokens[5]}]"

Calling split(",") on the result string allows you to easily get at the indi-

vidual fields. For more information on parsing CSV, see Section 8.14,

Converting CSV to XML, on page 148.

9.10 Making a SOAP Request

def address = "1600 Pennsylvania Av, Washington, DC"

def soapRequest = """<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema"

xmlns:tns="http://rpc.geocoder.us/Geo/Coder/US/">

<SOAP-ENV:Body>

<tns:geocode

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<location xsi:type="xsd:string">${address}</location>

</tns:geocode>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>"""

def soapUrl = new URL("http://geocoder.us/service/soap")

def connection = soapUrl.openConnection()

connection.setRequestMethod("POST")

connection.setRequestProperty("Content-Type","application/xml")

connection.doOutput = true

http://geocoder.us
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=172

MAKING A SOAP REQUEST 173

Writer writer = new OutputStreamWriter(connection.outputStream)

writer.write(soapRequest)

writer.flush()

writer.close()

connection.connect()

def soapResponse = connection.content.text

This returns the latitude/longitude for the White House as SOAP. Feel

free to substitute your own address. You can see the returned point on

a map by visiting http://geocoder.us or by typing the coordinate pair into

the search box of any of the major mapping websites.

What you’re seeing here is the way to make the raw SOAP request

by POSTing the SOAP envelope directly. You can find the WSDL doc-

ument for this service at http://geocoder.us/dist/eg/clients/GeoCoder.wsdl.

Once you have the WSDL, you can always use any of the standard

wsdl2java/java2wsdl utilities that ship with most SOAP frameworks.

Parsing a SOAP Response

//Response:

<?xml version="1.0" encoding="utf-8"?>

<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/1999/XMLSchema"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<namesp9:geocodeResponse

xmlns:namesp9="http://rpc.geocoder.us/Geo/Coder/US/">

<geo:s-gensym111 xsi:type="SOAP-ENC:Array"

xmlns:geo="http://rpc.geocoder.us/Geo/Coder/US/"

SOAP-ENC:arrayType="geo:GeocoderAddressResult[1]">

<item xsi:type="geo:GeocoderAddressResult">

<number xsi:type="xsd:int">1600</number>

<lat xsi:type="xsd:float">38.898748</lat>

<street xsi:type="xsd:string">Pennsylvania</street>

<state xsi:type="xsd:string">DC</state>

<city xsi:type="xsd:string">Washington</city>

<zip xsi:type="xsd:int">20502</zip>

<suffix xsi:type="xsd:string">NW</suffix>

<long xsi:type="xsd:float">-77.037684</long>

<type xsi:type="xsd:string">Ave</type>

<prefix xsi:type="xsd:string" />

</item>

</geo:s-gensym111>

</namesp9:geocodeResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

http://geocoder.us
http://geocoder.us/dist/eg/clients/GeoCoder.wsdl
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=173

MAKING AN XML-RPC REQUEST 174

def soapResponse = connection.content.text

def Envelope = new XmlSlurper().parseText(soapResponse)

println Envelope.Body.geocodeResponse.'s-gensym111'.item.long

println Envelope.Body.geocodeResponse.'s-gensym111'.item.lat

//since the array's name ('s-gensym111') changes with each request

// we can deal with it generically as such:

def itor = Envelope.Body.geocodeResponse.breadthFirst()

while(itor.hasNext()){

def fragment = itor.next()

if(fragment.name() == "item"){

println fragment.lat

println fragment.long

}

}

XmlSlurper allows you to avoid dealing with the namespaces and extract

the pertinent fields. See Section 7.9, Parsing an XML Document with

Namespaces, on page 132 for more information.

The SOAP interface to Geocoder.us is a bit atypical. The namespace for

geocodeResponse and the element name of the array element inside it

both vary from response to response. This makes it impossible to hard-

code a GPath to the deeply buried elements lat and long. In every other

SOAP-based web service I’ve dealt with, element names and names-

paces are quite stable and rarely change.

Despite the bugs, I decided to stick with this site for the SOAP exam-

ple. The ability to make the same request to the same service in four

different dialects, coupled with the unexpected “bonus” of being able to

show how to flexibly work around response oddities, made it too good

to pass up. Since I’m trying to show you client-side code rather than

a canonical server-side SOAP example, I figured that you’d be able to

overlook a bump or two in the road.

9.11 Making an XML-RPC Request

def address = "1600 Pennsylvania Av, Washington, DC"

def xmlrpcRequest = """<methodCall>

<methodName>geocode</methodName>

<params>

<param>

<value><string>${address}</string></value>

</param>

</params>

</methodCall>"""

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=174

MAKING AN XML-RPC REQUEST 175

def xmlrpcUrl = new URL("http://geocoder.us/service/xmlrpc")

def connection = xmlrpcUrl.openConnection()

connection.setRequestMethod("POST")

connection.setRequestProperty("Content-Type","application/xml")

connection.doOutput = true

Writer writer = new OutputStreamWriter(connection.outputStream)

writer.write(xmlrpcRequest)

writer.flush()

writer.close()

connection.connect()

def xmlrpcResponse = connection.content.text

This request returns the latitude/longitude for the White House as

XML-RPC. Feel free to substitute your own address. You can see the

returned point on a map by visiting http://geocoder.us or by typing the

coordinate pair into the search box of any of the major mapping

websites.

Parsing an XML-RPC Response

//Response:

<?xml version="1.0" encoding="UTF-8"?>

<methodResponse><params><param><value><array><data><value><struct>

<member><name>number</name><value><int>1600</int></value></member>

<member><name>lat</name><value><double>38.898748</double></value></member>

<member><name>street</name><value><string>Pennsylvania</string></value></member>

<member><name>state</name><value><string>DC</string></value></member>

<member><name>city</name><value><string>Washington</string></value></member>

<member><name>zip</name><value><int>20502</int></value></member>

<member><name>suffix</name><value><string>NW</string></value></member>

<member><name>long</name><value><double>-77.037684</double></value></member>

<member><name>type</name><value><string>Ave</string></value></member>

<member><name>prefix</name><value><string/></value></member>

</struct></value></data></array></value></param></params></methodResponse>

def xmlrpcResponse = connection.content.text

def methodResponse = new XmlSlurper().parseText(xmlrpcResponse)

methodResponse.params.param.value.array.data.value.struct.member.each{member ->

if(member.name == "lat" || member.name == "long"){

println "${member.name}: ${member.value.double}"

}

}

XmlSlurper allows you to avoid dealing with the namespaces and extract

the pertinent fields. See Section 7.9, Parsing an XML Document with

Namespaces, on page 132 for more information. Despite the almost

comical depth of the nested response (your target lat and long elements

are eleven levels deep), you are able to get at them with ease and print

the results.

http://geocoder.us
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=175

PARSING YAHOO SEARCH RESULTS AS XML 176

9.12 Parsing Yahoo Search Results as XML

def yahooAddress = "http://search.yahooapis.com/WebSearchService/V1/webSearch?"

def queryString = "appid=YahooDemo&query=groovy&results=10"

def xmlResponse = "${yahooAddress}${queryString}".toURL().text

As discussed in Section 9.3, RESTful GET Requests, on page 159, Yahoo

offers a RESTful API that returns search results as XML instead of the

usual HTML. You can adjust the query in a number of different ways

by simply tweaking the name/value pairs on the query string.

Parsing XML Yahoo Search Results

//Response:

<ResultSet

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:yahoo:srch"

xsi:schemaLocation="urn:yahoo:srch

http://api.search.yahoo.com/WebSearchService/V1/WebSearchResponse.xsd"

type="web"

totalResultsAvailable="20700000"

totalResultsReturned="10"

firstResultPosition="1"

moreSearch="/WebSearchService/V1/webSearch?query=groovy&appid=YahooDemo">

<Result>

<Title>Groovy - Home</Title>

<Summary>Groovy ... </Summary>

<Url>http://groovy.codehaus.org/</Url>

<ClickUrl>http://uk.wrs.yahoo.com/</ClickUrl>

<DisplayUrl>groovy.codehaus.org/</DisplayUrl>

<ModificationDate>1191394800</ModificationDate>

<MimeType>text/html</MimeType>

<Cache><Url>http://uk.wrs.yahoo.com/</Url><Size>39661</Size></Cache>

</Result>

</ResultSet>

def ResultSet = new XmlSlurper().parseText(xmlResponse)

ResultSet.Result.each{

println it.Title

println it.Url

println "-----"

}

===>

Groovy - Home

http://groovy.codehaus.org/

Groovy - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Groovy

...

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=176

PARSING AN ATOM FEED 177

XmlSlurper allows you to avoid dealing with the namespaces and extract

the pertinent fields. See Section 7.9, Parsing an XML Document with

Namespaces, on page 132 for more information.

9.13 Parsing an Atom Feed

def atom = "http://aboutgroovy.com/item/atom".toURL().text

Grabbing the Atom8 syndication feed for AboutGroovy.com is trivial.

Since it is a simple HTTP GET that doesn’t even require a query string,

it almost seems anticlimactic compared to the heroic steps we had to

go through to POST a SOAP request.

//Response:

<feed xmlns="http://www.w3.org/2005/Atom">

<title type="text">aboutGroovy.com</title>

<link rel="alternate" type="text/html" href="http://aboutGroovy.com"/>

<link rel="self" type="application/atom+xml"

href="http://aboutGroovy.com/item/atom" />

<updated>2007-10-10T13:15:23-07:00</updated>

<author><name>Scott Davis</name></author>

<id>tag:aboutgroovy.com,2006-12-18:thisIsUnique</id>

<generator uri="http://aboutGroovy.com" version="0.0.2">

Hand-rolled Grails code</generator>

<entry xmlns='http://www.w3.org/2005/Atom'>

<author><name>Scott Davis</name></author>

<published>2007-10-10T10:44:48-07:00</published>

<updated>2007-10-10T10:44:48-07:00</updated>

<link href='http://aboutGroovy.com/item/show/258'

rel='alternate'

title='G2One, Inc. -- Professional Support for Groovy and Grails'

type='text/html' />

<id>tag:aboutgroovy.com,2006:/item/show/258</id>

<title type='text'>

G2One, Inc. -- Professional Support for Groovy and Grails

</title>

<content type='xhtml'>

<div xmlns='http://www.w3.org/1999/xhtml'>

<p>Category: news</p>

<p>Original Source</p>

<p>Groovy and Grails now have a corporate home -- G2One. The project

leads for both Groovy and Grails (Guillaume Laforge and Graeme

Rocher) have joined forces with Alex Tkachman (until recently

with JetBrains) to form a new company.</p>

</div>

</content>

</entry>

</feed>

8. http://en.wikipedia.org/wiki/Atom_%28standard%29

http://en.wikipedia.org/wiki/Atom_%28standard%29
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=177

PARSING AN RSS FEED 178

def feed = new XmlSlurper().parseText(atom)

feed.entry.each{

println it.title

println it.published

println "-----"

}

===>

SAP Adds Groovy/Grails Support

2007-10-10T10:52:21-07:00

G2One, Inc. -- Professional Support for Groovy and Grails

2007-10-10T10:44:48-07:00

...

XmlSlurper allows you to avoid dealing with the namespaces and extract

the pertinent fields. See Section 7.9, Parsing an XML Document with

Namespaces, on page 132 for more information.

Atom is an implementation of REST that is gaining popularity beyond

simple blogosphere syndication. Google officially deprecated its SOAP

API in December 2006. It is migrating all of its web services to Atom

under the GData9 initiative. For a well-documented example of a fully

RESTful API—one that includes authentication and full CRUD using

HTTP GET, POST, PUT, and DELETE—see the Google Calendar API.

For information on how to create an Atom feed, see Section 12.4, Setting

Up an Atom Feed, on page 239.

9.14 Parsing an RSS Feed

def rssFeed = "http://aboutgroovy.com/podcast/rss".toURL().text

Getting an RSS feed is as simple as making a plain old HTTP GET

request.

//Response:

<rss xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd" version="2.0">

<channel>

<title>About Groovy Podcasts</title>

<link>http://aboutGroovy.com</link>

<language>en-us</language>

<copyright>2007 AboutGroovy.com</copyright>

<itunes:subtitle>

Your source for the very latest Groovy and Grails news

</itunes:subtitle>

9. http://code.google.com/apis/gdata/

http://code.google.com/apis/gdata/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=178

PARSING AN RSS FEED 179

<itunes:author>Scott Davis</itunes:author>

<itunes:summary>About Groovy interviews</itunes:summary>

<description>About Groovy interviews</description>

<itunes:owner>

<itunes:name>Scott Davis</itunes:name>

<itunes:email>scott@aboutGroovy.com</itunes:email>

</itunes:owner>

<itunes:image href="http://aboutgroovy.com/images/aboutGroovy3.png" />

<itunes:category text="Technology" />

<itunes:category text="Java" />

<itunes:category text="Groovy" />

<itunes:category text="Grails" />

<item>

<title>AboutGroovy Interviews Neal Ford</title>

<itunes:author>Scott Davis</itunes:author>

<itunes:subtitle></itunes:subtitle>

<itunes:summary>Neal Ford of ThoughtWorks is truly a polyglot programmer.

In this exclusive interview, Neal opines on Groovy, Ruby, Java, DSLs, and

the future of programming languages. Opinionated and entertaining, Neal

doesn't pull any punches. Enjoy.

</itunes:summary>

<enclosure url="http://aboutgroovy.com/podcasts/NealFord.mp3"

length="33720522" type="audio/mpeg" />

<guid>http://aboutgroovy.com/podcasts/NealFord.mp3</guid>

<pubDate>2007-04-17T01:15:00-07:00</pubDate>

<itunes:duration>44:19</itunes:duration>

<itunes:keywords>java,groovy,grails</itunes:keywords>

</item>

</channel>

</rss>

def rss = new XmlSlurper().parseText(rssFeed)

rss.channel.item.each{

println it.title

println it.pubDate

println it.enclosure.@url

println it.duration

println "-----"

}

===>

AboutGroovy Interviews Neal Ford

2007-04-17T01:15:00-07:00

http://aboutgroovy.com/podcasts/NealFord.mp3

44:19

AboutGroovy Interviews Jeremy Rayner

2007-03-13T01:18:00-07:00

http://aboutgroovy.com/podcasts/JeremyRayner.mp3

50:54

...

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=179

PARSING AN RSS FEED 180

XmlSlurper allows you to avoid dealing with the namespaces and extract

the pertinent fields. See Section 7.9, Parsing an XML Document with

Namespaces, on page 132 for more information.

Yahoo has a number of RSS feeds that offer more than simple blog

syndication. For a couple of examples of RSS feeds that send real data

down the wire, see both http://developer.yahoo.com/weather/ as well as

http://developer.yahoo.com/traffic/.

http://developer.yahoo.com/weather/
http://developer.yahoo.com/traffic/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=180

Chapter 10

Metaprogramming
Metaprogramming1 is writing code that has the ability to dynamically

change its behavior at runtime. (I’d like this class to have that method

on it right now.) It gives a fluidity and flexibility to your code that can

seem positively alien if you are steeped in static programming lan-

guages such as C or Java. Dynamic languages such as Smalltalk and

Ruby have this capability, and now Groovy allows you to do the same

type of thing within a Java environment.

No self-respecting dynamic language would be complete without the

complementary idea of reflection2—the ability to programmatically ask

itself about itself at runtime. (What fields does this class have? What

methods will it respond to?) Although this is possible in Java by using

the Reflection API, in practice it is rarely used. Some might argue that

the concepts are less relevant in a statically typed language than a

dynamically typed one—after all, once you define an interface in Java,

why programmatically ask the interface which methods it defines? You

already know the answer to the question a priori, and in Java the inter-

face will never change. (Polymorphism is based on this concept.)

In Chapter 3, New to Groovy, on page 41, we discussed interesting

add-ons to the Java language. Most developers already know what

a java.util.ArrayList is, so pointing out the additional cool new methods

is an exercise in working with a familiar class in a new way. Unless

you’ve already been working with the Reflection API in Java or habitu-

ally instantiating all of your classes via Class.forName(), the ideas in this

1. http://en.wikipedia.org/wiki/Metaprogramming

2. http://en.wikipedia.org/wiki/Reflection_%28computer_science%29

http://en.wikipedia.org/wiki/Metaprogramming
http://en.wikipedia.org/wiki/Reflection_%28computer_science%29

DISCOVERING THE CLASS 182

chapter might be a bit of a stretch in a new direction. (Why should you

programmatically ask this class if it has a field or responds to a specific

method—isn’t that what your compiler does for you?)

This chapter shows you ways to programmatically ask your class what

fields and methods it has. We’ll also look at how to dynamically add

new fields and methods at runtime via the MetaClass class. We’ll talk

about calling methods that don’t exist using invokeMethod(). There are

even objects called Expandos that are wholly created at runtime. Enjoy

Groovy-style metaprogramming at its finest.

10.1 Discovering the Class

def s = "Hello"

println s.class

===> java.lang.String

Every object in Java has a getClass() method. In Groovy, you can shorten

the call to class. (See Section 4.2, Getter and Setter Shortcut Syntax, on

page 72 for more on this.)

Notice in this example that you use duck typing to declare the variable

s—def instead of String. Even so, the variable correctly identifies itself as

a String when asked. (For more information, see Section 3.5, Optional

Datatype Declaration (Duck Typing), on page 47.)

Once you have the class, you can ask it all sorts of interesting ques-

tions. For the record, all this is available to you via the boring old

java.lang.Class class. Groovy just adds the each() syntactic sugar for

iteration, as well as the default it variable. (For more information, see

Section 3.14, List Shortcuts, on page 58.)

String.constructors.each{println it}

===>

public java.lang.String()

public java.lang.String(char[])

public java.lang.String(byte[])

public java.lang.String(java.lang.StringBuffer)

public java.lang.String(java.lang.StringBuilder)

public java.lang.String(java.lang.String)

...

String.interfaces.each{println it}

===>

interface java.io.Serializable

interface java.lang.Comparable

interface java.lang.CharSequence

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=182

DISCOVERING THE FIELDS OF A CLASS 183

10.2 Discovering the Fields of a Class

def d = new Date()

println d.properties

===> {month=8, day=6, calendarDate=2007-09-01T08:38:55.348-0600,

time=1188657535348, timeImpl=1188657535348, class=class java.util.Date,

timezoneOffset=360, date=1, hours=8, minutes=38, year=107,

julianCalendar=sun.util.calendar.JulianCalendar@d085f8, seconds=55}

Calling getProperties() on a class returns a java.util.HashMap of all the

fields. For slightly prettier output, you can call each() on the HashMap.

(Recall that it is the default iterator variable, as we discussed in Sec-

tion 3.14, Iterating, on page 59.)

d.properties.each{println it}

===>

month=8

day=6

calendarDate=2007-09-01T08:38:55.348-0600

time=1188657535348

timeImpl=1188657535348

class=class java.util.Date

timezoneOffset=360

date=1

hours=8

minutes=38

year=107

julianCalendar=sun.util.calendar.JulianCalendar@d085f8

seconds=55

Java offers you a way to do almost the same thing. Every java.lang.Class

offers a getDeclaredFields() method that returns an array of java.lang.

reflect.Field objects.

d.class.declaredFields.each{println it}

===>

private static final sun.util.calendar.BaseCalendar java.util.Date.gcal

private static sun.util.calendar.BaseCalendar java.util.Date.jcal

private transient long java.util.Date.fastTime

private transient sun.util.calendar.BaseCalendar$Date java.util.Date.cdate

private static int java.util.Date.defaultCenturyStart

private static final long java.util.Date.serialVersionUID

private static final java.lang.String[] java.util.Date.wtb

private static final int[] java.util.Date.ttb

Wait a second...how come the getProperties call doesn’t match the

getDeclaredFields call? Perhaps the Javadocs3 on the latter method can

shed some light on the issue: “getDeclaredFields() returns an array

3. http://java.sun.com/javase/6/docs/api/java/lang/Class.html#getDeclaredFields()

http://java.sun.com/javase/6/docs/api/java/lang/Class.html#getDeclaredFields()
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=183

DISCOVERING THE FIELDS OF A CLASS 184

of Field objects reflecting all the fields declared by the class or inter-

face represented by this Class object. This includes public, protected,

default (package) access, and private fields, but excludes inherited

fields.”

Although the Java method is technically more correct—the fields month,

day, and year are technically part of an internal class—the Groovy

method getProperties simply picks up the getters and setters on the

class. Even though they aren’t really fields of the Date object, the API

designer seems to want you to treat the object as if it did have those

fields. Both methods are presented here so that you can choose the

method that best suits your needs.

Groovy’s MetaClass Field

class Person{

String firstname

String lastname

}

def p = new Person(firstname:"John", lastname:"Smith")

p.properties.each{println it}

===>

firstname=John

lastname=Smith

class=class Person

metaClass=groovy.lang.MetaClassImpl@ebd7c4[class Person]

Calling getProperties() on a Java class returns exactly the number of

fields you would expect. In Groovy, one more interesting field of note

appears: metaClass.

You shouldn’t be surprised in the least to see firstname and lastname

appear in the list. You might not expect to see class in the list, but

recall from the previous section that getProperties() returns all inherited

fields on an object, not just the ones you define. Since Person extends

java.lang.Object, you see the getClass() method appear here as if it were

a field on the Person class.

It is the last unexpected field—the MetaClass—that makes Groovy spe-

cial. All Groovy classes implement the groovy.lang.GroovyObject inter-

face. It is the getMetaClass() method on this interface that is responsible

for bringing your last unexpected field to the party.

MetaClass is what makes Groovy a dynamic language. It is what allows

new fields and methods to be added to classes at runtime instead of

compile time. It is what allows you to add methods like execute() and

toURL() to a java.lang.String, even though it is a Final class.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=184

CHECKING FOR THE EXISTENCE OF A FIELD 185

Starting with the next section—Section 10.3, Checking for the Existence

of a Field—and continuing through the rest of this chapter, the power

of the MetaClass will slowly unfold. You’ll see how to get it here. We’ll

discuss what you can do with it throughout the rest of the chapter.

MetaClasses for Java Classes

// in Groovy 1.0

GroovySystem.metaClassRegistry.getMetaClass(Date)

// in Groovy 1.5

Date.metaClass

Java objects in Groovy 1.0 don’t expose a MetaClass easily, but they all

still have one. To find it, you have to query the MetaClassRegistry for the

JDK class. In Groovy 1.5, this process has been greatly simplified—you

simply ask the class, Groovy or Java, directly for its MetaClass.

10.3 Checking for the Existence of a Field

class Person{

String firstname

String lastname

}

def p = new Person()

if(p.metaClass.hasProperty(p, "firstname")){

p.firstname = "Jane"

}

println p.firstname

===> Jane

p.last = "Doe"

ERROR: groovy.lang.MissingPropertyException: No such property:

last for class: Person

Every java.lang.Class has a getField() method that returns the field if it

exists. If the call fails, it throws a java.lang.NoSuchFieldException. Groovy

allows you to be a bit more fail-safe by querying the class before making

the call. Calling the hasProperty() method on the MetaClass returns the

field if it exists and returns null if it does not.

As discussed in Section 3.10, Groovy Truth, on page 54, a null response

evaluates to false, allowing you to be both cautious and dynamic. This

technique is exactly what JavaScript developers have done for years to

ensure that their code works across different browsers.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=185

CHECKING FOR THE EXISTENCE OF A FIELD 186

Groovy 1.0 Workaround

if(p.properties.containsKey("firstname")){

p.firstname = "Jane"

}

The hasProperty() method came along in Groovy 1.5. In Groovy 1.0, you

can effectively do the same check using the containsKey() method on the

HashMap returned by the getProperties() method.

When Would You Use This?

// url to test this code:

http://localhost:8080/groovlets/person.groovy?

firstname=Scott&lastname=Davis&title=Bench+Warmer

// person.groovy

class Person{

String firstname

String lastname

String toString(){"${firstname} ${lastname}"}

}

def person = new Person()

request.parameterMap.each{name, value->

if(person.metaClass.hasProperty(person, name)){

person.setProperty(name, value[0])

}

}

println "QueryString: ${request.queryString}"

println "
"

println "Incoming parameters: ${request.parameterMap}"

println "
"

println "Resulting Person: ${person}"

Dynamically determining which fields a class has helps tremendously

when you are populating it on the fly. For example, here is a simple

Groovlet that fills in a class based on name/value pairs passed in via

the query string. (In Figure 10.1, on the following page, you can see the

rendered results in a browser.)

This is a problem that every web framework in existence has to solve.

But even if you’re not doing web development, this technique is equally

handy. Anytime you dynamically populate a POGO—be it from XML,

CSV, a hashmap, or anything else—you should politely ask the POGO

whether it can handle the data stream rather than brusquely ramming

it down its throat.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=186

CHECKING FOR THE EXISTENCE OF A FIELD 187

Figure 10.1: A Groovlet demonstrating the value of hasProperty()

To begin, you define the Person class and instantiate it. Next, you walk

through the QueryString value by value. Based on the URL in the exam-

ple, you should find firstname, lastname, and title entries in the query

string. If you simply walked the key list and blithely called setProperty()

on the person, bad things would happen by the time you reached title

since person doesn’t have a title field. (Specifically, Groovy would com-

plain with a groovy.lang.MissingPropertyException.) Wrapping the setProp-

erty() call in a hasProperty() check ensures that only the fields that person

knows how to deal with are injected. All unmatched fields are simply

discarded.

If you want to make the code a wee bit prettier, you can add a hasProp-

erty() convenience method right on the person class:

// person.groovy

class Person{

String firstname

String lastname

String toString(){"${firstname} ${lastname}"}

MetaProperty hasProperty(String property){

return this.metaClass.hasProperty(this, property)

}

}

def person = new Person()

request.parameterMap.each{name, value->

if(person.hasProperty(name)){

person.setProperty(name, value[0])

}

}

println "QueryString: ${request.queryString}"

println "
"

println "Incoming parameters: ${request.parameterMap}"

println "
"

println "Resulting Person: ${person}"

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=187

DISCOVERING THE METHODS OF A CLASS 188

For more information on Groovlets, see Section 2.6, Running Groovy on

a Web Server (Groovlets), on page 33. For more on query strings, see

Section 9.4, Working with Query Strings, on page 159.

10.4 Discovering the Methods of a Class

def d = new Date()

d.class.methods.each{println it}

===>

...

public void java.util.Date.setTime(long)

public long java.util.Date.getTime()

public int java.util.Date.getYear()

public int java.util.Date.getMonth()

public int java.util.Date.getDate()

public int java.util.Date.getHours()

public int java.util.Date.getMinutes()

public int java.util.Date.getSeconds()

...

Every Class has a getMethods() method. Iterating through this list is

no different from iterating through the fields like we discussed in Sec-

tion 10.2, Discovering the Fields of a Class, on page 183.

You can simplify your list a bit if you just show the method names:

d.class.methods.name

===>

[hashCode, compareTo, compareTo, equals, toString, clone, parse,

after, before, setTime, getTime, getYear, getMonth, getDate, getHours,

getMinutes, getSeconds, UTC, setYear, setMonth, setDate, getDay, setHours,

setMinutes, setSeconds, toLocaleString, toGMTString, getTimezoneOffset,

getClass, wait, wait, wait, notify, notifyAll]

Dynamically Calling Methods on a Class Using Evaluate

def d = new Date()

d.class.methods.each{method ->

if(method.name.startsWith("get")){

print "${method.name}: "

evaluate("dd = new Date(); println dd.${method.name}()")

}

}

===>

getTime: 1188665901916

getYear: 107

getMonth: 8

getDate: 1

getHours: 10

getMinutes: 58

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=188

DISCOVERING THE METHODS OF A CLASS 189

getSeconds: 21

getDay: 6

getTimezoneOffset: 360

getClass: class java.util.Date

In Section 5.10, Evaluating a String, on page 95, we talked about run-

ning Groovy code by evaluating an arbitrary String. What if you want

to walk through all the methods on your Date object and dynamically

execute all the getters? This example does the trick.

Although this code works as expected, did you notice the fast one

I pulled on you in the evaluate statement? You have multiple Date

instances in play here: the d instance whose methods you iterate

through and a separate dd that gets instantiated each time in the loop.

You had to do this because each evaluate creates its own groovy.lang.

GroovyShell, and unfortunately it can’t see the d variable. If you try to

call d.${method.name}(), you’ll get an error message:

Caught: groovy.lang.MissingPropertyException:

No such property: d for class: Script1

Script1 is the anonymous script created by the evaluate call.

There’s a second way to solve this issue—one that reuses the same Date

instance. In the sidebar on page 30, we talked about the groovy.lang.

Binding class. This is essentially a hashmap of values that you can pass

into the constructor of a GroovyShell. With just a few more lines of code,

you can ensure that d is visible to the evaluate method call:

def d = new Date()

def binding = new Binding()

binding.setVariable("d", d)

def gs = new GroovyShell(binding)

d.class.methods.each{method ->

if(method.name.startsWith("get")){

print "${method.name}: "

gs.evaluate("println d.${method.name}()")

}

}

Dynamically Calling Methods on a Class Using a GString

def d = new Date()

d.class.methods.each{method ->

if(method.name.startsWith("get")){

print "${method.name}: "

println d."${method.name}"()

}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=189

CHECKING FOR THE EXISTENCE OF A METHOD 190

It’s important to understand the subtle points around evaluate, Groovy-

Shell, and Binding, but it’s also important never to forget the power of

the GString. This is the easiest, most concise way to dynamically call a

method on a class—put it into a GString, and let the runtime evaluation

of the statement do the rest.

Additional Methods of a Groovy Class

class Person{

String firstname

String lastname

}

def p = new Person()

p.class.methods.name

===> [getMetaClass, setMetaClass, invokeMethod, getFirstname,

setFirstname, getLastname, setLastname, setProperty, getProperty,

hashCode, getClass, equals, toString, wait, wait, wait, notify, notifyAll]

Let’s evaluate this list of methods found on a Groovy object. The getters

and setters for the fields are no surprise:

getFirstname, setFirstname, getLastname, setLastname

The methods from java.lang.Object and java.lang.Class are present and

accounted for:

hashCode, getClass, equals, toString, wait, wait, wait, notify, notifyAll

What is left are the additions from groovy.lang.GroovyObject:

getMetaClass, setMetaClass, invokeMethod, setProperty, getProperty

10.5 Checking for the Existence of a Method

class Person{

String firstname

String lastname

}

def p = new Person()

if(p.metaClass.respondsTo(p, "getFirstname")){

println p.getFirstname()

}

p.foo()

ERROR: groovy.lang.MissingMethodException: No signature of method:

Person.foo() is applicable for argument types: () values: {}

As we did in Section 10.3, Checking for the Existence of a Field, on

page 185, you can use the MetaClass to dynamically verify the existence

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=190

CHECKING FOR THE EXISTENCE OF A METHOD 191

of a method before you call it by using the respondsTo method. This

method was added in Groovy 1.5.

Groovy 1.0

def list = p.class.methods as List

if(list.contains("getFirstname")){

p.getFirstname()

}

For Groovy 1.0 users, you can accomplish the same thing by querying

the list of methods on the class. Since getMethods() technically returns

an array, you return it as a list so that you can use the convenient

contains() method.

When Would You Use This?

We discussed duck typing in Section 3.5, Optional Datatype Declaration

(Duck Typing), on page 47. Java is a statically typed language, which

means that all the behavior of a class is defined at compile time. Groovy

is a dynamically typed language, which means that behavior can be

added at runtime that didn’t exist when the classes were compiled.

(See Section 10.8, Calling Methods That Don’t Exist (invokeMethod), on

page 193 for an example of this.) In simple terms, this means it is not

necessary for you to be a duck (Duck d = new Duck()) as long as you

walk and quack like a duck (respondsTo("walk") && respondsTo("quack")) at

runtime.

Checking for Overloaded Methods

class Greeting{

def sayHello(){

println "Hello, Stranger"

}

def sayHello(String name){

println "Hello, ${name}"

}

}

def g = new Greeting()

if(g.metaClass.respondsTo(g, "sayHello", null)){

g.sayHello()

}

===> Hello, Stranger

if(g.metaClass.respondsTo(g, "sayHello", String)){

g.sayHello("Jane")

}

===> Hello, Jane

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=191

CREATING A FIELD POINTER 192

println "Number of sayHello() methods: " +

g.metaClass.respondsTo(g, "sayHello").size()

===> Number of sayHello() methods: 2

g.metaClass.respondsTo(g, "sayHello").each{m ->

println "${m.name} ${m.nativeParameterTypes}"

}

===>

sayHello {class java.lang.String}

sayHello {}

If your class has several overloaded methods, you can pass additional

parameters to the respondsTo method—one for each parameter’s unique

datatype. If the method doesn’t accept any parameters (such as say-

Hello()), you pass in null for the parameter check.

If you want to see whether Greeting has a sayHello(String name1, String

name2) method before you call it, try this:

if(g.metaClass.respondsTo(g, "sayHello", String, String)){

g.sayHello("Jane", "Doe")

}

This technique is exactly what JavaScript developers have done for

years to ensure that their code works across different browsers.

10.6 Creating a Field Pointer

class Person{

String name

String getName(){

"My name is ${name}"

}

}

def p = new Person()

p.name = "Jane"

println p.name

===> My name is Jane

println p.@name

===> Jane

When you write p.name, you are calling p.getName(). If you want to

bypass encapsulation and access the field directly (even if it is private!),

simply prefix the name of the field with an @. For example: p.@name.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=192

CREATING A METHOD POINTER 193

You should exercise great caution in using this—breaking encapsula-

tion is nothing that should be done on a whim. It can yield

unpredictable results if the getter or setter is doing anything other than

directly setting the value of the attribute.

10.7 Creating a Method Pointer

def list = []

def insert = list.&add

insert "Java"

insert "Groovy"

println list

===> ["Java", "Groovy"]

Groovy allows you to create a pointer to a method by using an & pre-

fix. In this example, insert is an alias for list.&add(). This allows you

to create your own domain-specific language. The fact that Groovy

allows optional parentheses (see Section 3.3, Optional Parentheses, on

page 44) and optional semicolons (see Section 3.2, Optional Semicolons,

on page 42) makes this seem less like a programming language and

more like plain English.

One of my favorite features of Groovy—println "Hello"—wouldn’t exist if

Groovy couldn’t alias calls to System.out.println().

For more on DSLs, see the sidebar on page 43.

10.8 Calling Methods That Don’t Exist (invokeMethod)

class Person{

String name

Map relationships = [:]

Object invokeMethod(String what, Object who){

if(relationships.containsKey(what)){

who.each{thisPerson ->

relationships.get(what).add(thisPerson)

}

}

else{

relationships.put(what,who as List)

}

}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=193

CREATING AN EXPANDO 194

def scott = new Person(name:"Scott")

scott.married "Kim"

scott.knows "Neal"

scott.workedWith "Brian"

scott.knows "Venkat"

scott.workedWith "Jared"

scott.knows "Ted", "Ben", "David"

println scott.relationships

===>

["married":["Kim"],

"knows":["Neal", "Venkat", "Ted", "Ben", "David"],

"workedWith":["Brian", "Jared"]]

With invokeMethod(), you can begin to see the power of dynamic lan-

guages. In this example, you want complete flexibility in how you define

relationships with Person. If you want to say scott.likesToEatSushiWith "Chris",

you don’t want to have to create a likesToEatSushiWith() method and stati-

cally compile it into the class. You want to be able to create new types

of relationships on the fly.

While the relationshipsMap gives you the flexibility to store arbitrary

name/value pairs, having to write scott.put("onceWentRollerSkatingWith",

"Megan") isn’t as elegant as scott.onceWentRollerSkatingWith "Megan".

invokeMethod(String name, Object args) is at the heart of Groovy metapro-

gramming. Every method call on an object is intercepted by invoke-

Method. The name parameter is the method call (married, knows, and

workedWith). The args parameter is an Object array that catches all sub-

sequent parameters (Kim, Neal, and Brian).

Without invokeMethod(), none of the parsers or slurpers discussed in

Chapter 7, Parsing XML, on page 116 would work as elegantly as they

do, allowing you to call the child XML elements as if they were method

calls on the parent node.

10.9 Creating an Expando

def e = new Expando()

e.class

===> class groovy.util.Expando

e.properties

===> {}

e.class.methods.name

===> [invokeMethod, getMetaPropertyValues, hashCode, equals,

toString, setProperty, getProperty, getProperties, getMetaClass,

setMetaClass, getClass, wait, wait, wait, notify, notifyAll]

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=194

CREATING AN EXPANDO 195

Expandos are curious little creatures. They are blank slates—objects

that are just waiting for you to attach new fields and methods to them.

You can see that after you create them, they have no fields to speak of

and only the basic methods that they inherit from java.lang.Object and

groovy.lang.GroovyObject.

So then, what are they good for?

e.latitude = 70

e.longitude = 30

println e

===> {longitude=30, latitude=70}

Expandos will magically expand to support any fields you need. You

simply attach the field to the object, and your expando begins to take

shape. (Dynamic languages such as JavaScript use this to great effect.)

And what about methods? Simply add a new closure to the expando.

(See Section 3.17, Closures and Blocks, on page 67 for more informa-

tion.)

e.areWeLost = {->

return (e.longitude != 30) || (e.latitude != 70)

}

e.areWeLost()

===> false

e.latitude = 12

e.areWeLost()

===> true

In this example, the areWeLost closure accepts no arguments. Here is

an example of a closure that takes a single parameter:

e.goNorth = { howMuch ->

e.latitude += howMuch

}

println e.latitude

===> 12

e.goNorth(20)

===> 32

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=195

ADDING METHODS TO A CLASS DYNAMICALLY (CATEGORIES) 196

10.10 Adding Methods to a Class Dynamically (Categories)

use(RandomHelper){

15.times{ println 10.rand() }

}

class RandomHelper{

static int rand(Integer self){

def r = new Random()

return r.nextInt(self.intValue())

}

}

===> 5 2 7 0 7 8 2 3 5 1 7 8 9 8 1

Categories allow you to add new functionality to any class at runtime.

This means you can add those missing methods that the original author

forgot—even if you don’t have access to the original source code.

In this example, we add a rand() method to the Integer class. Calling

10.rand() returns a random number from 0 to 9. Calling 100.rand() does

the same from 0 to 99. You get the idea. Any Integer inside the use

block gets this method automatically. Anything outside the use block is

unaffected.

Notice that there is nothing special about the RandomHelper class—it

doesn’t extend any magical parent class or implement a special inter-

face. The only requirement is that the methods all must accept an

instance of themselves (self) as the first argument. This type of class

is called a category in Groovy.

Using pure Java, you’d be blocked from adding new behavior directly to

the java.lang.Integer class for a couple of reasons. First, your chances of

adding the rand() method to the source code of Integer, compiling it, and

getting widespread distribution is pretty slim. (“Hey, which version of

Java does your application require?” “Uh, 1.5. Scott...how many servers

do you have with that version in production?”)

OK, so modifying the source code is ruled out. The next logical step is

to extend Integer, right? Well, it would be if Integer weren’t declared final.

(D’oh!) So, using a pure Java solution, you are left to create your own

com.mycompany.Integer class that wraps a java.lang.Integer with your

custom behavior. The problem with this solution is that because of

Java’s strong typing, you cannot polymorphically swap Sun’s Integer

out for your own. This six-line solution is looking better all the time,

isn’t it?

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=196

ADDING METHODS TO A CLASS DYNAMICALLY (CATEGORIES) 197

A Slightly More Advanced Category Example

use(InternetUtils){

println "http://localhost:8080/".get()

println "http://search.yahoo.com/search".get("p=groovy")

def params = [:]

params.n = "10"

params.vl = "lang_eng"

params.p = "groovy"

println "http://search.yahoo.com/search".get(params)

}

class InternetUtils{

static String get(String self){

return self.toURL().text

}

static String get(String self, String queryString){

def url = self + "?" + queryString

return url.get()

}

static String get(String self, Map params){

def list = []

params.each{k,v->

list << "$k=" + URLEncoder.encode(v)

}

def url = self + "?" + list.join("&")

return url.get()

}

}

In this example, you define an InternetUtils class that offers a couple

of new methods: a no-argument get method that converts any String

to a URL object and performs an HTTP GET request, an overloaded get

method that accepts a String as a query string, and finally an overloaded

get method that constructs a well-formed query string out of the params

hashmap. (For more on using Groovy to streamline HTTP GET requests,

see Section 9.3, Making an HTTP GET Request, on page 155.)

The use block keeps the new functionality narrowly scoped. You don’t

have to worry about your new methods sneaking out to all Strings across

your entire application. >Of course, if you do want to globally apply

these new methods to all Strings, see Section 10.11, Adding Methods to

a Class Dynamically (ExpandoMetaClass), on the next page.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=197

ADDING METHODS TO A CLASS DYNAMICALLY (CATEGORIES) 198

You can use as many categories as you want in a single use block.

Simply pass a comma-separated list to the use block:

use(RandomHelper, InternetUtils, SomeOtherCategory) { ... }

Categories are just as useful in Java as they are in Groovy. (Sorry,

I couldn’t resist the pun.) InternetUtils is a pretty handy class to have

around in either language. There is nothing that explicitly ties it to

Groovy. The use block, of course, is pure Groovy syntactic sugar, but

the Category class can be used anywhere you need it in either language.

Mixing in new functionality to any class is now at your fingertips. Once

you get hooked on this new programming paradigm, you’ll wonder how

you ever lived without it. (See Section 8.14, Parsing Complex CSV , on

page 149 for another example of categories in action.)

10.11 Adding Methods to a Class Dynamically

(ExpandoMetaClass)

Integer.metaClass.rand = {->

def r = new Random()

return r.nextInt(delegate.intValue())

}

15.times{ println 10.rand() }

===> 2 5 5 5 8 7 2 9 1 4 0 9 9 0 8

In Section 10.2, Groovy’s MetaClass Field, on page 184, we learned

that every class in Groovy has a MetaClass. In Section 10.9, Creating

an Expando, on page 194, we learned about malleable objects that can

have new methods added to them on the fly. The ExpandoMetaClass class

combines these two concepts—every class’s MetaClass can be extended

at runtime like an expando. In this example, we add the rand() method

directly to Integer’s MetaClass. This means that all Integers in the running

application now have a rand() method.

When using categories (as discussed in Section 10.10, Adding Meth-

ods to a Class Dynamically (Categories), on page 196), each method

must have a self parameter. When using ExpandoMetaClass, the dele-

gate serves this role. The this keyword gives you the MetaClass—delegate

gives you one class up in the chain. In this particular case, the call to

delegate gives you 10.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=198

ADDING METHODS TO A CLASS DYNAMICALLY (CATEGORIES) 199

A Slightly More Advanced ExpandoMetaClass Example

String.metaClass.get = {->

return delegate.toURL().text

}

String.metaClass.get = {String queryString ->

def url = delegate + "?" + queryString

return url.get()

}

String.metaClass.get = {Map params ->

def list = []

params.each{k,v->

list << "$k=" + URLEncoder.encode(v)

}

def url = delegate + "?" + list.join("&")

return url.get()

}

println "http://localhost:8080/".get()

println "http://search.yahoo.com/search".get("p=groovy")

def params = [:]

params.n = "10"

params.vl = "lang_eng"

params.p = "groovy"

println "http://search.yahoo.com/search".get(params)

In terms of functionality, the three methods here are identical to the

examples found in Section 10.10, Adding Methods to a Class Dynami-

cally (Categories), on page 196. In terms of implementation, you’re faced

with code that is firmly grounded in Groovy syntax and idioms. The

self references have all been changed to delegate. Closures are used as

opposed to static methods grouped together in a category class.

So, which should you use—a category or ExpandoMetaClass? The answer

is “It depends.” (Isn’t that always the answer?) A category is perfect if

you want to limit the scope of your new methods to a well-defined block

of code. An ExpandoMetaClass is better if you want to have your new

methods applied to all instances across the entire running application.

If you want your new functionality to be easily shared by both Java and

Groovy code, categories leave you with a plain old Java class with static

methods. ExpandoMetaClasses are more closely tied to Groovy, but they

are significantly more performant as well.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=199

Chapter 11

Working with Grails
Up to this point, we’ve been focusing on Groovy. In this chapter, we

introduce Grails. All of the lessons we learned about the core language

will now be applied to this modern web framework.

The Grails story is similar to the Groovy story—you get seamless inte-

gration with Java classes, you use standard JEE technologies such as

WAR files, you deploy to standard servlet containers, and so on.

Grails is based on popular libraries such as Spring and Hibernate, so

you don’t have to check your experience with these APIs at the door. But

just as Groovy has a few new tricks up its sleeve, Grails does as well.

It uses convention over configuration1 to virtually eliminate XML files

such as struts-config.xml. It offers a new twist on Ant builds in GANT—a

pure Groovy implementation of Ant. It wraps Hibernate in a Groovy API

it calls GORM—the Grails Object/Relational Mapper.

What Groovy does for Java development, Grails does for web develop-

ment. You’ll be amazed at how quickly you can have a new web appli-

cation up and running. Let’s dive right in!

1. http://en.wikipedia.org/wiki/Convention_over_Configuration

http://en.wikipedia.org/wiki/Convention_over_Configuration

INSTALLING GRAILS 201

11.1 Installing Grails

1. Download and unzip grails.zip from http://grails.org.

2. Create a GRAILS_HOME environment variable.

3. Add $GRAILS_HOME/bin to the PATH.

Does this sound vaguely familiar? It should—these are the same steps

you take to install Groovy; only the names have changed. (See Sec-

tion 2.1, Installing Groovy, on page 24 for details.) Everything you need

to install Grails is included in the single ZIP file.

Interestingly, you don’t even need to have Groovy installed separately

on your system to run Grails. As discussed in Section 4.8, Calling

Groovy from Java, on page 79, the way to Groovy-enable a Java project

is to drop the single Groovy JAR from $GROOVY_HOME/embeddable into

your CLASSPATH. In this case, the Groovy JAR included in the Grails

ZIP file ends up in WEB-INF/lib alongside spring.jar, hibernate.jar, and the

rest of the dependencies. You don’t have to do a thing to Groovy-enable

Grails—it is Groovy-enabled out of the box.

You will, however, need to have a JDK installed. Grails 1.x runs on

all modern versions of Java—1.4, 1.5, and 1.6. If you are running an

older version of Java, visit http://java.sun.com for an update. If you don’t

know which version of Java you have installed, type java -version at a

command prompt:

$ java -version

===>

java version "1.5.0_13"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_13-b05-237)

Java HotSpot(TM) Client VM (build 1.5.0_13-119, mixed mode, sharing)

To take advantage of Java 1.5 language features, you’ll need at least a

1.5 JDK under the covers. Grails runs noticeably faster on each new

generation of the JVM. I strongly recommend running Grails on the

most recent version of Java that you can.

To install Grails on your operating system, see Section 11.1, Installing

Grails on Unix, Linux, and Mac OS X , on page 203 or Section 11.1,

Installing Grails on Windows, on page 204.

Checking the Grails Version

$ grails -version

Welcome to Grails 1.0 - http://grails.org/

Licensed under Apache Standard License 2.0

Grails home is set to: /opt/grails

http://java.sun.com
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=201

INSTALLING GRAILS 202

Base Directory: /svn/src

/svn/src does not appear to be part of a Grails application.

The following commands are supported outside of a project:

create-app

create-plugin

help

list-plugins

package-plugin

plugin-info

set-proxy

Run 'grails help' for a complete list of available scripts.

To check the version of Grails you are running, type grails -version. Notice

that the grails command recognizes that it isn’t being run from the root

directory of a Grails project. In Section 11.2, Creating Your First Grails

App, on page 204, we’ll explore the grails create-app command in greater

detail. In Section 12.6, Installing Plug-Ins, on page 247, we’ll explore

Grails plug-ins. grails help, as you might imagine, gives you a full list of

all available Grails commands:

$ grails help

...

Usage (optionals marked with *):

grails [environment]* [target] [arguments]*

Examples:

grails dev run-app

grails create-app books

Available Targets (type grails help 'target-name' for more info):

grails bootstrap

grails bug-report

grails clean

grails compile

grails console

grails create-app

grails create-controller

grails create-domain-class

grails create-integration-test

grails create-plugin

grails create-script

grails create-service

grails create-tag-lib

grails create-unit-test

grails doc

grails generate-all

grails generate-controller

grails generate-views

grails help

grails init

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=202

INSTALLING GRAILS 203

grails install-plugin

grails install-templates

grails list-plugins

grails package

grails package-plugin

grails package-plugins

grails plugin-info

grails release-plugin

grails run-app

grails run-app-https

grails set-proxy

grails set-version

grails shell

grails stats

grails test-app

grails upgrade

grails war

Installing Grails on Unix, Linux, and Mac OS X

Download the latest Grails ZIP file (or tarball) from http://grails.org. Unzip

it to the directory of your choice. I prefer /opt. You will end up with

a grails directory that has the version number on the end of it, such

as grails-1.0. I like creating a symlink that doesn’t include the specific

version number: ln -s grails-1.0 grails. This allows me to switch between

versions of Grails cleanly and easily.

Since ZIP files don’t preserve Unix file permissions, be sure to swing by

the bin directory and make the files executable:

$ chmod a+x *

Once the directory is in place, you next need to create a GRAILS_HOME

environment variable. The steps to do this vary from shell to shell. For

Bash, edit either .bash_profile or .bash_rc in your home directory. Add the

following:

Grails

GRAILS_HOME=/opt/grails

PATH=$PATH:$GRAILS_HOME/bin

export GRAILS_HOME PATH

For these changes to take effect, you need to restart your terminal ses-

sion. Alternately, you can type source .bash_profile to load the changes

into the current session. Type echo $GRAILS_HOME to confirm that your

changes took effect.

$ echo $GRAILS_HOME

/opt/grails

http://grails.org
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=203

CREATING YOUR FIRST GRAILS APP 204

To verify that the Grails command is in the path, type grails -version.

If you see a message similar to the one in Section 11.1, Checking the

Grails Version, on page 201, you have successfully installed Grails.

Installing Grails on Windows

Download the latest Grails ZIP file from http://grails.org. Unzip it to the

directory of your choice. I prefer c:\opt. You will end up with a grails

directory that has the version number on the end of it, such as grails-

1.0. Although you can rename it to something simpler like grails, I’ve

found that keeping the version number on the directory name helps

make future upgrades less ambiguous.

Once the directory is in place, you next need to create a GRAILS_HOME

environment variable. For Windows XP, go to the Control Panel, and

double-click System. Click the Advanced tab and then Environment

Variables at the bottom of the window. In the new window, click New

under System Variables. Use GRAILS_HOME for the variable name and

c:\opt\grails-1.0 for the variable value.

To add Grails to the path, find the PATH variable, and double-click it.

Add ;%GRAILS_HOME%\bin to the end of the variable. (Don’t forget the

leading semicolon.) Click OK to back out of all the dialog boxes.

For these changes to take effect, you need to exit or restart any com-

mand prompts you have open. Open a new command prompt, and type

set to display a list of all environment variables. Make sure GRAILS_HOME

appears.

To verify that the Grails command is in the path, type grails -version.

If you see a message similar to the one in Section 11.1, Checking the

Grails Version, on page 201, you have successfully installed Grails.

11.2 Creating Your First Grails App

1. $ grails create-app bookstore

2. $ cd bookstore

3. $ grails create-domain-class book

4. add fields to bookstore/grails-app/domain/Book.groovy

5. $ grails generate-all Book

6. $ grails run-app

You’ll be amazed at how quickly you can have your first Grails applica-

tion up and running—60 seconds or less is no exaggeration.

http://grails.org
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=204

CREATING YOUR FIRST GRAILS APP 205

Step 1: Creating the Initial Application

$ grails create-app bookstore

Make sure you are in a clean directory, and then type grails create-app

bookstore. This, of course, assumes you want your application to be

named bookstore. The name you supply will be used for the URL, the

WAR file that gets generated, and all manner of other things. It can

be easily overridden in the bookstore/application.properties file that gets

generated along with the rest of the standard directory structure, but

as you can see, convention over configuration comes into play before

you even write a single line of code.

// application.properties

app.version=0.1

app.servlet.version=2.4

app.grails.version=1.0

app.name=bookstore

Step 2: Exploring the Directory Structure

$ cd bookstore

$ ls -al

total 32

-rw-r--r-- application.properties

-rw-r--r-- bookstore.launch

-rw-r--r-- bookstore.tmproj

-rw-r--r-- build.xml

drwxr-xr-x grails-app

drwxr-xr-x lib

drwxr-xr-x scripts

drwxr-xr-x src

drwxr-xr-x test

drwxr-xr-x web-app

Like Maven, Rails, or AppFuse, Grails scaffolds out a standard directory

structure for you. If you feel hopelessly constrained by this limitation

and cannot work with a framework unless you can meticulously design

your own custom directory tree, you aren’t going to have much fun

working with Grails.

One of the main benefits of convention over configuration is, uh, the

convention part. You can sit down with any Grails application and know

immediately which bits are stored in what bucket.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=205

CREATING YOUR FIRST GRAILS APP 206

Directory What It Holds

grails-app Models, views, controllers—all of the interesting bits

of the application

lib Custom JARs such as database drivers (WEB-INF/lib)

scripts Custom Groovy scripts

src Java source files to be compiled (WEB-INF/classes)

test Unit and integration tests

web-app GSPs, CSS, JavaScript, and other traditional web files

Step 3: Creating a Domain Class

$ grails create-domain-class book

Make sure you are in the bookstore directory, and then type grails create-

domain-class book. The majority of the Grails commands are context

sensitive—in other words, they must be run from the root of the Grails

application directory.

The result of the create-domain-class command is two stubbed out empty

files: Book.groovy in bookstore/grails-app/domain and BookTests.groovy in

bookstore/test/integration.

// Book.groovy

class Book {

}

// BookTests.groovy

class BookTests extends GroovyTestCase {

void testSomething() {

}

}

Book.groovy is where we’ll focus our energies for the rest of this chapter.

Testing, although important, is a topic for another book. BookTests.groovy

is a GroovyTestCase, which is simply a thin Groovy facade over a JUnit

3.x TestCase. This means it will snap in seamlessly with your existing

JUnit testing infrastructure. For more on GroovyTestCases, see the online

Groovy Testing Guide.2 For more on testing Grails applications, see the

testing section in the online Grails documentation.3

2. http://groovy.codehaus.org/Testing+Guide

3. http://grails.org/doc/1.0.x/guide/single.html#9.%20Testing

http://groovy.codehaus.org/Testing+Guide
http://grails.org/doc/1.0.x/guide/single.html#9.%20Testing
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=206

CREATING YOUR FIRST GRAILS APP 207

Figure 11.1: Book, BookController, and Book views

The grails-app/domain directory is special. Every file in this directory

gets persisted to a database automatically. Grails walks this directory

on start-up and creates a table in the embedded HSQLDB database for

each POGO it finds.

Step 4: Adding Fields to the Domain Class

// bookstore/grails-app/domain/Book.groovy

class Book {

String title

String author

Integer pages

String toString(){

return "${title} by ${author}"

}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=207

CREATING YOUR FIRST GRAILS APP 208

You probably recognize this POGO from Chapter 4, Java and Groovy

Integration, on page 69. The domain classes in a Grails app are Groovy-

Beans, plain and simple. Of course, if you already have legacy Jav-

aBeans created, you can put them in bookstore/src/java.

The interesting thing about domain classes in Grails is that they get

more than just automatic getters and setters. They get instance meth-

ods such as book.save() and book.delete() that do exactly what you’d

expect them to do—save and delete the corresponding record in the

table. The domain classes also get static methods such as Book.get()

and Book.list(). These, again, do the sort of thing they sound like they’d

do. They allow you to pull a single Book out of the table or a list.

The domain classes get additional fields such as id and version to store

the primary key and help with optimistic locking. You can even call

methods that don’t exist like Book.findByAuthor("Scott Davis") and Book.

findAllByPagesBetween(500, 1000). (That sounds a lot like Section 10.8,

Calling Methods That Don’t Exist (invokeMethod), on page 193, doesn’t

it?) Notice, however, that you don’t have to extend a parent class or

implement a magic interface. All this behavior comes about because of

the wonders of metaprogramming (Chapter 10, Metaprogramming, on

page 181).

Step 5: Generating the Controller and Views

$ grails generate-all Book

Once your domain class has all the fields it needs, you can type grails

generate-all Book. This instructs Grails to create a controller and a set of

views for the Book class. At this point you have all the pieces of a classic

Model-View-Controller pattern.4

The Book.groovy domain class is the model. It holds the data in a way

that is independent of any particular presentation format. The views

are Groovy Server Pages (GSPs) named create.gsp, edit.gsp, list.gsp, and

save.gsp. (We’ll see in Section 12.1, Returning XML, on page 233 and

Section 12.4, Setting Up an Atom Feed, on page 239 how you can pro-

vide many different views for the same model.) And finally, BookCon-

troller.groovy does what controllers do—it makes sure the model gets the

data it needs and hands it off to the appropriate view.

4. http://en.wikipedia.org/wiki/Model_view_controller

http://en.wikipedia.org/wiki/Model_view_controller
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=208

CREATING YOUR FIRST GRAILS APP 209

It helps seeing everything in context. In Figure 11.1, on page 207, you

can see Book.groovy, BookController.groovy, and each of the GSPs in the

views directory. There is not a single line of XML that needs to be written

in order to get these classes to work together. Convention over config-

uration dictates that a Book model has a corresponding BookController

and a corresponding set of views in the views/book directory.

As you dig deeper into these files, you’ll see more autowiring in action.

For instance, the list method in BookController corresponds to the list.gsp

file. You still may end up using an XML configuration file on occasion

(such as grails-app/conf/spring/resources.xml), but the days of baby-sitting

a struts-config.xml file are a thing of the past in Grails.

Generating actual files for the controller and views is nice because you

can see all the moving parts and how they interrelate. The problem

with these files, however, is that they can get stale. Once you add new

fields to the POGO, you have to regenerate the controller and views, or

they won’t match up with the model. In Section 11.8, Understanding

Controllers and Views, on page 219, you’ll see how you can dynami-

cally scaffold out the controllers and views at runtime, in memory. This

keeps everything in sync. In production, I end up using a healthy com-

bination of files on disk and dynamically scaffolded views.

Step 6: Running the Application

$ grails run-app

OK, let’s see the fruits of our labors. Type grails run-app to launch the

embedded version of Jetty, your web server and servlet container. (To

launch your Grails app in another container, see Section 11.5, Gener-

ating a WAR, on page 214.) After Jetty starts, Grails scans the grails-

app/domain directory, creating new tables in the in-memory HSQLDB

database. (To store things in another database, have a look at Sec-

tion 11.6, Changing Databases, on page 215.) After a flurry of Log4j

messages fly past on the console, you should be rewarded with a mes-

sage that says this:

Server running. Browse to http://localhost:8080/bookstore

If you already have a server running on port 8080, you’ll be scolded

with a core dump that ends with this:

Server failed to start: java.net.BindException: Address already in use

Don’t worry. Take a look at Section 11.4, Running Grails on a Different

Port, on page 213 to get Jetty running somewhere else.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=209

CREATING YOUR FIRST GRAILS APP 210

Figure 11.2: The Grails welcome screen

Anytime you want to shut down the server, simply press Ctrl+C.

Once you have the application up and running, visit http://localhost:8080/bookstore

in a web browser. You’ll be greeted by the stock welcome screen. (See

Figure 11.2.) Every subsequent controller you create will be automat-

ically added to this page. Open bookstore/web-app/index.gsp, and you’ll

see a familiar each iteration going on with an interesting twist: GSPs

have a <g:each> tag that is the equivalent of the List.each closure dis-

cussed in Section 3.14, List Shortcuts, on page 58. Each item () in

the bulleted/unordered list () is a controller from the grailsApplica-

tion.getControllerClasses() call.

<g:each var="c" in="${grailsApplication.controllerClasses}">

<li class="controller">

<g:link controller="${c.logicalPropertyName}">${c.fullName}</g:link>

</g:each>

We’ll see how to change the default home page in Section 11.7, Chang-

ing the Home Page, on page 218.

http://localhost:8080/bookstore
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=210

CREATING YOUR FIRST GRAILS APP 211

Figure 11.3: Creating a new book

Click the BookController link, and you’ll be presented with an empty

list of Books. Let’s fix that problem. Click New Book, and fill in the

blanks. (See Figure 11.3.) This, of course, is grails-app/views/create.gsp.

We’ll look more at GSPs in Section 11.8, Understanding Controllers and

Views, on page 219.

Clicking Create brings you to the show page—grails-app/views/show.gsp.

From here you can either create a new book or head back to the list

page. (See Figure 11.4, on the following page.) You probably also noticed

that you can edit or delete the book as well.

So, you get a full CRUD application in less than 60 seconds. More

important, you get a full CRUD application in, what, less than a dozen

lines of typing? And this application uses Spring and Hibernate, both

well-understood Java libraries. This application is a standard WAR file,

able to be deployed on any standard servlet container or application

server (Tomcat, Jetty, JBoss, Geronimo, WebSphere, WebLogic, and so

on). This application can talk to any database that has a JDBC driver

and a Hibernate dialect. All Groovy does is provide a bit of glue code to

hold everything together.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=211

UNDERSTANDING GRAILS ENVIRONMENTS 212

Figure 11.4: A list of books

In order to get a quick snapshot of the size of your new application,

type grails stats:

$ grails stats

+----------------------+-------+-------+

| Name | Files | LOC |

+----------------------+-------+-------+

| Controllers | 1 | 66 |

| Domain Classes | 1 | 8 |

| Integration Tests | 1 | 4 |

+----------------------+-------+-------+

| Totals | 3 | 78 |

+----------------------+-------+-------+

Overall, we have an interesting little web framework on our hands that

mixes the familiar with the cutting edge. Not bad, not bad.

11.3 Understanding Grails Environments

$ grails run-app

$ grails dev run-app // the default environment

$ grails test run-app

$ grails prod run-app

Grails ships with three standard environments—development, test, and

production. These environments make it easy to change things such as

database connections and Log4j settings based on the mode in which

you’re running. Each environment also has distinct behavior: in dev

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=212

RUNNING GRAILS ON A DIFFERENT PORT 213

mode, all files get reloaded automatically. This means you can make

changes to your code without having to bounce the server. But this

dynamic reloading comes a bit of a cost in terms of performance, so

prod mode is optimized for speed instead of flexibility.

To see per-environment configuration settings, look no further than

grails-app/conf/DataSource.groovy. (For an example of DataSource.groovy,

see Section 11.6, Changing Databases, on page 215.) Settings outside

the environments block are global. Settings inside blocks such as devel-

opment can selectively override the global settings.

Although there is no environments block in grails-app/conf/Config.groovy,

you can add one yourself. Type the following at the top of the file:

environments{

production{

println "I'm in production"

}

foo{

println "I'm in foo"

}

}

Save the file, and then type grails prod run-app. You should see I’m in

production show up early in the console output.

Custom Environments

$ grails -Dgrails.env=foo run-app

The three default environments are supported natively at the command

line. If you set up a custom environment, you have just a bit more

typing to do. You have to set the grails.env property yourself by using

the customary -D flag. If you added the code to Config.groovy in the

previous section, typing grails -Dgrails.env=foo run-app should give you I’m

in foo in the console output.

11.4 Running Grails on a Different Port

$ grails -Dserver.port=9090 run-app

-- OR --

$GRAILS_HOME/scripts/Init.groovy

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=213

GENERATING A WAR 214

Grails tries to run on port 8080 by default. You can override this from

the command line by explicitly passing in an alternate server.port via the

-D flag. This is nice for ad hoc testing—you can run several servers on

the same physical machine...one on 6060, another on 7070, and so on.

If, however, you always want to run Grails on port 9090, this extra

bit of typing quickly becomes tedious and error-prone. You can set the

default at the source in $GRAILS_HOME/scripts/Init.groovy.

serverPort = System.getProperty('server.port') ?

System.getProperty('server.port').toInteger() : 9090

Did you notice that Init.groovy is a GANT file? GANT5 is a Groovy imple-

mentation of Ant. If you like the conventions of Ant but prefer the

expressiveness of a dynamic language over the rigidity of static XML,

GANT is something you should look into.

11.5 Generating a WAR

$ grails war

Although running Grails in the embedded Jetty container is convenient

for development, few companies run Jetty in production. (This, by the

way, is a real shame. Jetty is a mature servlet container that is ranked

regularly as one of the fastest on the market.)

Luckily, Grails can generate an industry-standard WAR file that can be

deployed on any application server that you have in production. Simply

type grails war, and after a bit of activity, you’ll be presented with a file

named bookstore-0.1.war. The version number, as well as the application

name, comes from application.properties. You can change these values to

whatever is appropriate.

// application.properties

app.version=0.1

app.servlet.version=2.4

app.grails.version=1.0

app.name=bookstore

It probably goes without saying that the WAR file runs in production

mode. (For more information, see Section 11.3, Understanding Grails

Environments, on page 212.)

5. http://gant.codehaus.org/

http://gant.codehaus.org/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=214

CHANGING DATABASES 215

11.6 Changing Databases

1. Set up the database and user.

2. Copy the driver JAR into lib.

3. Adjust settings in grails-app/conf/DataSource.groovy.

The embedded database HSQLDB is great to get things up and run-

ning quickly, but most production Grails applications end up rely-

ing on an external database. The good news is if your database is

supported by Hibernate, it is supported by Grails as well. The Grails

Object/Relational Mapper (GORM) is a thin Groovy facade over Hiber-

nate.

For demonstration purposes, we’ll migrate our bookstore application to

MySQL.6

Step 1: Setting Up the Database and User

$ mysql --user=root

mysql> create database bookstore_dev;

mysql> use bookstore_dev;

mysql> grant all on bookstore_dev.* to grails@localhost identified by 'server';

mysql> flush privileges;

mysql> quit

$ mysql --user=grails -p --database=bookstore_dev

Assuming that MySQL is already installed and running, you’ll next

want to log in as a user with administration privileges. create database

bookstore_dev; creates the target database in MySQL. (While you’re here,

you might want to create database bookstore_prod; and create database

bookstore_test;.)

Once the target database is created, you’ll want to create a user. Even

though the syntax shown here is MySQL specific, it still demonstrates

various things you’ll want to consider when setting up your own user

account. grant all on bookstore_dev.* says, “I want this user that I’m cre-

ating to have all permissions on all items in the bookstore_dev database.

I want them to be able to create, alter, and delete tables. I want them

to be able to create indices, views, and all types of database artifacts.”

If you traditionally create more restricted users, you should take a look

at Section 11.6, Adjusting dbCreate, on page 217 to get a better idea of

what Grails expects to be able to do out of the box.

6. http://www.mysql.org

http://www.mysql.org
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=215

CHANGING DATABASES 216

If you limit what Grails can do, you’ll need to take responsibility for

these tasks on your own.

The second half of the command—to grails@localhost identified by ’server’—

says, “The username should be grails, the password should be server,

and this user should be able to log in only from localhost.” If you want

to create an account that can log in from a remote server, try something

like grails@192.168.1.1.

Finally, it’s always helpful to sanity check your work by testing it by

hand. If you’re able to log in by typing mysql - -user=grails -p - -database=

bookstore_dev, your user account was created successfully.

Step 2: Copying the Database Driver

$ cp ~/mysql-connector-java-3.1.13-bin.jar bookstore/lib

This is the easiest step of the three. Copy the JDBC driver JAR into the

lib directory, and Grails will have the software it needs to connect to the

database. The last step is to configure the connection settings.

Step 3: Adjusting the Configuration in DataSource.groovy

dataSource {

pooled = false

driverClassName = "com.mysql.jdbc.Driver"

username = "grails"

password = "server"

}

hibernate {

cache.use_second_level_cache=true

cache.use_query_cache=true

cache.provider_class='org.hibernate.cache.EhCacheProvider'

}

// environment specific settings

environments {

development {

dataSource {

// one of 'create', 'create-drop','update'

dbCreate = "update"

url = "jdbc:mysql://localhost:3306/bookstore_dev?autoreconnect=true"

}

}

test {

dataSource {

dbCreate = "update"

url = "jdbc:hsqldb:mem:testDb"

}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=216

CHANGING DATABASES 217

production {

dataSource {

dbCreate = "update"

url = "jdbc:hsqldb:file:prodDb;shutdown=true"

}

}

}

To get Grails pointed to your newly created MySQL database, you need

to adjust four values:

driverClassName com.mysql.jdbc.Driver

username grails

password server

url jdbc:mysql://localhost:3306/bookstore_dev

Recall that Grails supports modifying the configuration based on the

mode in which it is running. (See Section 11.3, Understanding Grails

Environments, on page 212.) In the earlier example, the driverClassName,

username, and password settings are shared across all environments.

This is clearly a problem since we left HSQLDB artifacts laying around

in test and production that will not work with MySQL. You have two

choices: you can move the MySQL-specific driverClassName, username,

and password values into the development block and set up similar ones

for test and production, or you change the url to a valid MySQL one in the

other blocks.

Adjusting dbCreate

environments {

development {

dataSource {

// one of 'create', 'create-drop','update'

dbCreate = "update"

}

}

}

While you are in grails-app/conf/DataSource.groovy adjusting connection

settings to your database, you might want to tweak the dbCreate value.

This variable corresponds to the hibernate.hbm2ddl.auto setting in Hiber-

nate. By default, Grails lets Hibernate create the tables that correspond

to the classes in the grails-app/domain directory. dbCreate allows you to

fine-tune the table generation behavior.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=217

CHANGING THE HOME PAGE 218

Setting Start-Up Shutdown

create-drop Creates tables Drops tables

create Creates or alters tables Deletes only data

update Creates or alters tables Leaves data intact

dbCreate is set to create by default for development; for test and produc-

tion, it is set to update. I generally set dbCreate to update for development

as well—it’s a bummer always losing your data.

Bear in mind that since create and update alter the tables instead of

creating them from scratch each time Grails starts up, they are con-

servative in the changes they’ll make. They will happily add fields, but

they won’t delete fields. Similarly, they will lengthen fields, but they will

not shorten them. Anything that might cause data loss is your respon-

sibility to manage.

And don’t worry—if your DBA breaks out in a cold sweat at the thought

of Hibernate mucking around with some precious tables, commenting

out the dbCreate variable turns this feature off completely. If you are

dealing with legacy tables or tables that are shared with other applica-

tions, commenting out dbCreate should be the first thing you change in

DataSource.groovy.

11.7 Changing the Home Page

// web-app/index.gsp

<% response.sendRedirect("book/list") %>

As nice as the default home page is while you’re in development, you

will probably want to customize it at some point. (See Figure 11.2, on

page 210.) The default pages in a Grails app are named index.gsp.

Since Jetty is a standards-compliant servlet container, it also supports

index.jsp. Be warned that if you have both an index.jsp and index.gsp in

the same directory, the .jsp page takes precedence.

Oftentimes Grails apps simply redirect to one of the existing controllers.

The previous example redirects to the list view of the book controller.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=218

UNDERSTANDING CONTROLLERS AND VIEWS 219

A slightly more robust way to change the home page is to add a custom

mapping for the root URL (/) to grails-app/conf/UrlMappings.groovy:

// grails-app/conf/UrlMappings.groovy

class UrlMappings {

static mappings = {

"/" (controller:"book", action:"list")

}

}

UrlMappings.groovy gives you fine-grained control over how your URLs

get mapped to controllers in a Grails application. For more information,

see the online documentation.7

11.8 Understanding Controllers and Views

// grails-app/controllers/BookController.groovy

class BookController {

def list = {

if(!params.max) params.max = 10

[bookList: Book.list(params)]

}

def show = {

[book : Book.get(params.id)]

}

...

}

The controllers of a Grails application are the glue that binds the views

to the models. Every URL you see—http://localhost:8080/bookstore/book/list—

corresponds to an action in a controller—Bookstore.list. Notice that the

Controller suffix is dropped from the name in Grails URLs. With few

exceptions, the controller actions have a partner in the grails-app/views

directory named the same thing—list.gsp. (The exceptions to this rule

are discussed in Section 11.8, Render, on page 221.)

Understanding Grails controllers boils down to understand the three

Rs: redirect, return, and render.

Redirect

def index = { redirect(action:list,params:params) }

7. http://grails.codehaus.org/URL+mapping

http://localhost:8080/bookstore/book/list
http://grails.codehaus.org/URL+mapping
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=219

UNDERSTANDING CONTROLLERS AND VIEWS 220

Every controller should have an index. This action is the default action

of the controller, much like index.gsp, as discussed in Section 11.7,

Changing the Home Page, on page 218.

In this example, we see that absent any other directive, the controller

will redirect bookstore/book requests to the list action. Any accompanying

QueryString parameters are stored in the params map and passed along

to the action.

Redirects can also accept a controller argument. Hypothetically, if saving

a book required that the user be logged in and have sufficient permis-

sions, you could redirect the request to the Logon controller.

Return

def list = {

if(!params.max) params.max = 10

[bookList: Book.list(params)]

}

def show = {

[book : Book.get(params.id)]

}

The last line of a Groovy method is an implicit return statement. (See

Section 3.4, Optional Return Statements, on page 46 for more informa-

tion.) The last line of a Grails action returns a Map of values to the

corresponding GSP page of the same name.

In the case of the list action, if no one supplies a max parameter on the

query string, it will return an ArrayList of ten Books from the database.

You can see the bookList element used in list.gsp here:

<g:each in="${bookList}" status="i" var="book">

<tr class="${(i % 2) == 0 ? 'odd' : 'even'}">

<td>

<g:link action="show" id="${book.id}">${book.id?.encodeAsHTML()}</g:link>

</td>

<td>${book.author?.encodeAsHTML()}</td>

<td>${book.pages?.encodeAsHTML()}</td>

<td>${book.title?.encodeAsHTML()}</td>

</tr>

</g:each>

Notice that each call to encodeAsHTML() uses the null-safe ? operator

to make sure you don’t get hung up with a NullPointerException. (See

Section 3.8, Safe Dereferencing (?), on page 52 for more information.)

bookstore/book
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=220

DYNAMIC SCAFFOLDING 221

In the case of the show action, Book.get pulls the appropriate Book out

of the database and passes it to the show.gsp view. The id parame-

ter can be named explicitly—bookstore/book/show?id=1—but Grails will

also interpret anything in the PathInfo as an id parameter as well—

bookstore/book/show/1. Regardless of how the id is passed in, the book is

added to the map and used happily by show.gsp:

<tr class="prop">

<td valign="top" class="name">Id:</td>

<td valign="top" class="value">${book.id}</td>

</tr>

<tr class="prop">

<td valign="top" class="name">Author:</td>

<td valign="top" class="value">${book.author}</td>

</tr>

Render

def save = {

def book = new Book(params)

if(!book.hasErrors() && book.save()) {

flash.message = "Book ${book.id} created"

redirect(action:show,id:book.id)

}

else {

render(view:'create',model:[book:book])

}

}

The third R of Grails controllers is perhaps the most versatile of the

three. Here in the save action, we see render used to point to a GSP

that isn’t named save.gsp. As a matter of fact, looking in the grails-

app/views/book directory, we can see that save.gsp doesn’t even exist.

If the book is successfully saved without errors, the save action passes

controller over to the show action. The render method can do much more

than render GSP pages. In Chapter 12, Grails and Web Services, on

page 233, we’ll see render used to return XML, Atom and RSS feeds,

and even Excel spreadsheets.

11.9 Dynamic Scaffolding

// grails-app/Controller/PublisherController.groovy

class PublisherController {

def scaffold = Publisher

}

// grails-app/domain/Publisher.groovy

class Publisher{

String name

bookstore/book/show?id=1
bookstore/book/show/1
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=221

DYNAMIC SCAFFOLDING 222

String address

String city

String state

String zipcode

String toString(){

return name

}

}

In Section 11.2, Creating Your First Grails App, on page 204, you typed

grails generate-all Book to create controllers and views for the Book model.

This is helpful because it produces files that you can explore while you

are learning Grails.

But the real power of Grails is on display when you begin dynami-

cally scaffolding your controllers and views. In a single line—def scaf-

fold = Publisher—you’re asking Grails to create the controller and views in

memory at runtime. This is incredibly useful early in the process when

your domain classes are still taking shape. You’re more apt to add a

few new attributes here and drop a couple there if you don’t have to

constantly keep rebuilding the views. The dynamic scaffolding becomes

even more valuable when you discover that you can selectively override

controller actions and views. If you add your own save action to Pub-

lisherController (say, to automatically add a timestamp to the record), all

other actions will continue to behave as they normally do. If you want

a special look and feel for list.gsp, add that file to the views directory.

Changing the Field Order

class Publisher{

static constraints = {

name()

address()

city()

state()

zipcode()

}

String name

String address

String city

String state

String zipcode

String toString(){

return name

}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=222

DYNAMIC SCAFFOLDING 223

Figure 11.5: Grails alphabetizes dynamically scaffolded fields.

When you first look at your dynamically scaffolded views, you might be

taken aback. Absent any other instructions, Grails alphabetizes your

fields in the views. (See Figure 11.5.) At first blush that may seem

half-again too clever, but the order of the fields in a JavaBean is not

defined by the order in which they appear in the source code. POJOs

and POGOs should be thought of conceptually as a Map of fields rather

than a List.

To let Grails know how you’d like the fields to be ordered in all views

(list, show, create, and edit), create a static constraints block and list the

fields. This might not seem very DRY,8 but the constraints block is used

for more than just field ordering. In Section 11.10, Validating Your Data,

on the next page, we’ll see another use of the constraints block.

8. http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=223

VALIDATING YOUR DATA 224

Making Changes to the Default Templates

$ grails install-templates

You have the ability to completely customize the look and feel of your

scaffolded views and the default behavior of your controllers. Type grails

install-templates, and look in src/templates. There you’ll find the starter

material to adjust things to your heart’s content.

11.10 Validating Your Data

class Book {

static constraints = {

title(blank:false, maxSize:50)

author(blank:false)

cover(inList:["Hardback", "Paperback", "PDF"])

pages(min:0, max:1500)

category(inList:["", "Technical", "Fiction", "Non-fiction"])

excerpt(maxSize:5000)

}

String title

String author

Integer pages

String cover = "Paperback"

String category

String excerpt

String toString(){

"${title} by ${author}"

}

}

Here we see the full power of the static constraints block. It not only con-

trols the field order of the dynamically scaffolded views (as discussed in

Section 11.9, Changing the Field Order, on page 222), but it also allows

you to validate data entry.

Grails supports a number of standard validations. Here are the most

popular of the bunch. (See the online Grails Validation Reference9 for

all the possible validation options.)

9. http://grails.org/Validation+Reference

http://grails.org/Validation+Reference
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=224

VALIDATING YOUR DATA 225

Setting Value What It Does

blank true | false Prevents empty fields

email true | false Checks for well-formed email

addresses

inList ["a", "b", "c"] Displays a combo box

min, max number Minimum, maximum value for a

numeric field

minSize, maxSize number Minimum, maximum length for a

text field

unique true | false Prevents duplicate values in

database

Methods such as book.save() validate the object before saving it. (See

Section 11.8, Render, on page 221 to see this in action.) You can also

call book.validate() if you want to check the validation yourself without

saving to the database.

if(book.validate()) {

// do something

}

else {

book.errors.allErrors.each {

println it

}

}

Now that you have some validation in place, you have a fighting chance

of keeping those silly users from trying to create Books with -1 pages.

(See Figure 11.6, on the following page.)

In grails-app/views/book/create.gsp, there is a block of code that looks for

errors and displays them in the web page:

<g:hasErrors bean="${book}">

<div class="errors">

<g:renderErrors bean="${book}" as="list" />

</div>

</g:hasErrors>

Custom Validation Messages

// grails-app/i18n/messages.properties

default.invalid.min.message=Property [{0}] of class [{1}]

with value [{2}] is less than minimum value [{3}]

// your custom message

book.pages.min.notmet=Who are you trying to kid?

No book could have [{2}] pages.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=225

VALIDATING YOUR DATA 226

Figure 11.6: Grails validation

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=226

MANAGING TABLE RELATIONSHIPS 227

All the standard error messages are internationalized and stored in

Java properties files in grails-app/i18n. You can make a change here,

and the error message will be changed throughout the application.

To further internationalize your Grails application, install the i18n Tem-

plates plug-in by typing grails install-plugin i18n-templates. For more on this

plug-in, see the online reference material.10 For more on plug-ins in

general, see Section 12.6, Installing Plug-Ins, on page 247.

You can supply a custom error message per domain class per field by

adding it to messages.properties. The property key varies slightly from

the default keys. Here is a list of the customization keys for the stan-

dard validations listed earlier. Again, see the online Grails Validation

Reference11 for all the possible validation message codes.

Setting Value

blank className.propertyName.blank

email className.propertyName.email.invalid

inList className.propertyName.not.inList

max className.propertyName.max.exceeded

maxSize className.propertyName.maxSize.exceeded

min className.propertyName.min.notmet

minSize className.propertyName.minSize.notmet

unique className.propertyName.unique

11.11 Managing Table Relationships

static hasMany = [books:Book]

static belongsTo = [publisher:Publisher]

With these two little phrases—hasMany and belongsTo—you can model

table relationships with ease. Let’s see some one-to-many, one-to-one,

and many-to-many relationships in action.

One-to-Many Relationships

// grails-app/domain/Publisher.groovy

class Publisher{

static constraints = {

name()

}

10. http://grails.org/I18n+Templates+Plugin

11. http://grails.org/Validation+Reference

http://grails.org/I18n+Templates+Plugin
http://grails.org/Validation+Reference
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=227

MANAGING TABLE RELATIONSHIPS 228

static hasMany = [books:Book]

String name

String toString(){

return name

}

}

// grails-app/domain/Book.groovy

class Book {

static constraints = {

title()

author()

pages()

publisher()

}

static belongsTo = [publisher:Publisher]

String title

String author

Integer pages

String toString(){

"${title} by ${author}"

}

}

A Publisher wouldn’t be much of a Publisher if it offered only one Book. So

it goes to follow that one Publisher needs to have many Books. Notice the

static hasMany line in Publisher.groovy. This is a Map, since a good Publisher

might also have many Editors, many Distributors, and so on.

To make the connection on the Book side of the equation, add a corre-

sponding static belongsTo. Now you might be thinking that you should

create an Integer field for the Publisher.id. In fact, that is exactly how the

tables get linked in the database behind the scenes. But by adding the

Publisher class, we are using the more Java-centric Composition pat-

tern. GORM will deal with loading up the Book class with values from

separate tables transparently.

This also allows you to use GPath and drill into the Publisher class from

Book, like println book.publisher.name. For more on GPath, see Section 7.2,

Understanding the Difference Between XmlParser and XmlSlurper, on

page 117.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=228

MANAGING TABLE RELATIONSHIPS 229

Figure 11.7: One-to-many relationships

GORM takes care of the back-end database work for you, and the

dynamic scaffolding discussed in Section 11.9, Dynamic Scaffolding,

on page 221 does a great job of visually representing this relationship

between Book and Publisher. (See Figure 11.7.) The Publisher field is a

combo box populated by the Publisher table. The value that appears in

the combo box is the toString method.

With just a static hasMany=[books:Book] on the one side and a Publisher

publisher field declaration on the many side, you have created a 1:M

relationship between Publisher and Book. However, if you delete a given

Publisher, all the associated Books will be left as orphans in the database.

If you want to enforce cascading deletes and updates, specify static

belongsTo = Publisher in Book.

One-to-One Relationships

// grails-app/domain/Author.groovy

class Author{

static constraints = {

name()

address()

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=229

MANAGING TABLE RELATIONSHIPS 230

String name

Address address

String toString(){

return name

}

}

// grails-app/domain/Address.groovy

class Address{

static constraints = {

street()

city()

state()

zipcode()

}

String street

String city

String state

String zipcode

String toString(){

return "${street}, ${city}, ${state}, ${zipcode}"

}

}

Continuing with the book example, let’s examine the authors. They

have to live somewhere, but only the lucky few can afford more than

one house. It’s a pretty safe bet that you can model Author and Address

as a 1:1 relationship.

Just giving the Author an Address field creates the 1:1 relationship. As

with a 1:M relationship, the Author table has an Address.id field, but

GORM presents you with the full object upon request. In Figure 11.8,

on the next page, you can see how Grails portrays the relationship in

HTML. Again, the toString method of Address is used to populate the

combo box.

Technically, what you have in place at this point is not a true 1:1

relationship since there is nothing stopping another Author from liv-

ing at the same Address. Adding a unique constraint as discussed in

Section 11.10, Validating Your Data, on page 224 closes this loophole.

If you want to maintain Author and Address as separate classes but save

them both to the same table, you can do this by adding static embedded

= ["address"] to the Author class. GORM will create fields like address_street

and address_city to guard against name collisions in the embedded class.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=230

MANAGING TABLE RELATIONSHIPS 231

Figure 11.8: One-to-one relationship

Many-to-Many Relationships

// grails-app/domain/Book.groovy

class Book {

static belongsTo = Author

static hasMany = [authors:Author]

String title

Author author

}

// grails-app/domain/Author.groovy

class Author {

static hasMany = [books:Book]

String name

}

At this point, many-to-many relationships should be no surprise.GORM

creates a third association table and adds a foreign key back to both

Book and Author. Unfortunately, the dynamic scaffolding won’t model

this relationship in HTML. You are left to write your own GSP pages.

Some clever soul might create a ManyToMany plug-in to help with this,

so keep your eyes open for developments on this front.

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=231

MAPPING CLASSES TO LEGACY DATABASES 232

11.12 Mapping Classes to Legacy Databases

class Magazine{

String title

String editorInChief

static mapping = {

table 'periodical'

columns {

id column:'periodical_id'

title column:'publication_name'

editorInChief column:'person_in_charge'

}

}

}

Developing a new application from scratch is a lot of fun, but many

times you must deal with legacy applications. In this situation, you

might be tempted to name your classes and fields to match the existing

tables. Although this isn’t a bad strategy, you can also use a static

mapping block to link your class names to table names, as well as

attribute names to column names. See the online ORM DSL Guide12

for all the details.

12. http://grails.org/GORM+-+Mapping+DSL

http://grails.org/GORM+-+Mapping+DSL
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=232

Chapter 12

Grails and Web Services
The Grails framework can be used for far more than just plain old

HTML. In this chapter, we’ll explore RESTful web services, JSON web

services, Atom feeds, podcast feeds, and more. Heck, you can even

return Excel spreadsheets from a Grails application if you want.

12.1 Returning XML

import grails.converters.*

class BookController {

// return a single book as xml

def showXml = {

render Book.get(params.id) as XML

}

// return a list of books as xml

def listXml = {

def list = Book.list(params)

render(contentType:"text/xml"){

books{

for(b in list){

book(id:b.id){

title(b.title)

author(b.author)

pages(b.pages)

unescaped << "<!-- coverPrice is coming in the next version -->"

}}}}}}

In Section 11.8, Render, on page 221, we used render to return a partial

GSP fragment. In this example, we use two different forms of render to

RETURNING XML 234

return well-formed XML. If you are a fan of RESTful web services (as

discussed in Section 9.3, RESTful GET Requests, on page 159), you can

see how easy it is to get started down that path with Grails.

Render as XML

// return a single book as xml

def showXml = {

render Book.get(params.id) as XML

}

<book id="1">

<author>Scott Davis</author>

<pages>250</pages>

<title>Groovy Recipes</title>

</book>

The standard show method renders a POGO in a GSP page. The showXml

method here demonstrates how to return XML instead. As long as you

remember to import grails.converters.* at the top of the file, you can simply

render any POGO as XML.

If you have wget installed on your system (it comes standard on Linux,

Unix, Mac OS X; you can download1 it for Windows), you can test this

by typing wget "http://localhost:8080/bookstore/book/showXml/1". You can,

of course, also visit that URL in your web browser.

In this example, we’ll leave off the parentheses on the render method to

make it feel more like a DSL. See Section 3.3, Optional Parentheses, on

page 44 for more information.

Render Using a StreamingMarkupBuilder

// return a list of books as xml

def listXml = {

def list = Book.list(params)

render(contentType:"text/xml"){

books{

for(b in list){

book(id:b.id){

title(b.title)

author(b.author)

pages(b.pages)

unescaped << "<!-- coverPrice is coming in the next version -->"

}}}}}

1. http://www.gnu.org/software/wget/

http://www.gnu.org/software/wget/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=234

RETURNING JSON 235

<books>

<book id='1'>

<title>Groovy Recipes</title>

<author>Scott Davis</author>

<pages>250</pages>

<!-- coverPrice is coming in the next version -->

</book>

<book id='2'>

<title>GIS for Web Developers</title>

<author>Scott Davis</author>

<pages>255</pages>

<!-- coverPrice is coming in the next version -->

</book>

</books>

If you want to customize the XML output in any way—ignore certain

fields, render some of the data as attributes instead of elements, and

so on—you can use the alternate form of render demonstrated in listXml.

Since as XML won’t work on ArrayLists, converting a list of POGOs to XML

requires this extended form of render.

You first pass in contentType:"text/xml" to the render method. contentType

can be any valid MIME type. Next, you use the included Streaming-

MarkupBuilder to emit your XML. (See Section 8.12, StreamingMarkup-

Builder at a Glance, on page 145 for more information.) Typing wget

"http://localhost:8080/bookstore/book/listXml" allows you to test the output.

12.2 Returning JSON

import grails.converters.*

class BookController {

// return a single book as json

def showJson = {

render Book.get(params.id) as JSON

}

// return a list of books as json

def listJson = {

def list = Book.list(params) as Book[]

render list as JSON

}

}

If you’ve done any web development recently, you’ve probably come

across JavaScript Object Notation (JSON).2 Parsing complex XML in the

2. http://en.wikipedia.org/wiki/Json

http://en.wikipedia.org/wiki/Json
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=235

RETURNING JSON 236

browser can be a slow and tedious process. JSON avoids the problem

by returning native JavaScript objects. One simple eval, and you have a

well-formed JavaScript object ready for use. http://json.org has pointers

to support libraries implemented in dozens of languages other than

JavaScript, but you don’t need ’em in Grails. The same as XML syntax

you see in Section 12.1, Returning XML, on page 233 can be used here

as JSON.

Render as JSON

// return a single book as json

def showJson = {

render Book.get(params.id) as JSON

}

{"id":1,

"class":"Book",

"author":"Scott Davis",

"pages":250,

"title":"Groovy Recipes"

}

The standard show method renders a POGO in a GSP page. The showJson

method here demonstrates how to return JSON instead. As long as you

remember to import grails.converters.* at the top of the file, you can simply

render any POGO as JSON.

If you have wget installed on your system (it comes standard on Linux,

Unix, Mac OS X; you can download3 it for Windows), you can test this

by typing wget "http://localhost:8080/bookstore/book/showJson/1". You can,

of course, also visit that URL in your web browser.

In this example, we’re leaving off the parentheses on the render method

to make it feel more like a DSL. See Section 3.3, Optional Parentheses,

on page 44 for more information.

Rendering a JSON List

// return a list of books as json

def listJson = {

def list = Book.list(params) as Book[]

render list as JSON

}

[

{"id":1,

3. http://www.gnu.org/software/wget/

http://json.org
http://www.gnu.org/software/wget/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=236

RETURNING AN EXCEL SPREADSHEET 237

"class":"Book",

"author":"Scott Davis",

"pages":250,

"title":"Groovy Recipes"},

{"id":2,

"class":"Book",

"author":"Scott Davis",

"pages":255,

"title":"GIS for Web Developers"}

]

Using the as JSON converter works on arrays as well. Notice that you

must convert the ArrayList of books to an array for this to work. (See

Section 3.14, List Shortcuts, on page 58 for more information.)

Typing wget "http://localhost:8080/bookstore/book/listJson" will allow you to

test the output.

12.3 Returning an Excel Spreadsheet

class BookController {

def listExcel = {

def list = Book.list(params)

render(contentType:"application/vnd.ms-excel") {

html{

body{

h1("Books")

table{

// table header

tr{

th("ID")

th("Title")

th("Author")

th("Pages")

}

//table body

for(b in list) {

tr{

td(b.id)

td(b.title)

td(b.author)

td(b.pages)

}}}}}}}}

This is actually possible thanks to Microsoft Excel’s ability to ren-

der HTML and a little bit of HTTP trickery. You start by building a

straightforward HTML document using render’s embedded Streaming-

MarkupBuilder. (See Section 8.12, StreamingMarkupBuilder at a Glance,

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=237

RETURNING AN EXCEL SPREADSHEET 238

Figure 12.1: Saving Excel spreadsheets from Grails

on page 145 for more information.) For a more complex spreadsheet,

you might have better luck creating a grails-app/views/listExcel.gsp file.

This document is simple enough that I chose to render it inline here.

If you set the contentType to text/html, the web browser will dutifully

render the page itself. (Feel free to try this.) Since you’re explicitly telling

the browser that this is an Excel document, the browser passes it off to

the appropriate viewer. Visit http://localhost:8080/bookstore/book/listExcel

in your web browser. If you are using Internet Explorer, the spreadsheet

will show up right in the browser. If you are using Firefox or Safari,

Excel should launch in a separate window. Neat, eh?

You can use this trick for more than just spreadsheets. If the appli-

cation in question understands HTML, try passing in the appropriate

MIME type4 and see what happens.

Also bear in mind that you don’t even have to be running Grails to

take advantage of this. I’ve done this sort of thing plenty of times from

plain old Groovlets. (See Section 2.6, Running Groovy on a Web Server

(Groovlets), on page 33 for more information.)

4. http://www.iana.org/assignments/media-types/

http://localhost:8080/bookstore/book/listExcel
http://www.iana.org/assignments/media-types/
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=238

SETTING UP AN ATOM FEED 239

Saving the Spreadsheet as an Attachment

def listExcel = {

def list = Book.list(params)

response.setHeader("Content-Disposition", "attachment; filename=foo.xls")

render(contentType:"application/vnd.ms-excel") {

...

}

}

With one more bit of HTTP tomfoolery, you can induce the web browser

to display a Save As dialog box instead of actually rendering the spread-

sheet. (See Figure 12.1, on the preceding page.) The Content-Disposition

header is a hint to the browser. It says to treat this response as an

attachment named foo.xls.

12.4 Setting Up an Atom Feed

class ItemController {

def atom = {

def itemList = Item.list(params)

def df = new java.text.SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss'-07:00'")

// feed header

def updated = df.format(itemList[0].datePosted)

def feedHeader = """<feed xmlns="http://www.w3.org/2005/Atom">

<title type="text">aboutGroovy.com</title>

<updated>${updated}</updated>

...

"""

// feed body

StringBuffer feed = new StringBuffer()

itemList.each{item ->

def sw = new java.io.StringWriter()

def x = new groovy.xml.MarkupBuilder(sw)

x.entry(xmlns:"http://www.w3.org/2005/Atom"){

author{name("Scott Davis")}

published(df.format(item.datePosted))

...

}

feed.append(sw.toString() + "\n")

}

// feed footer

def feedFooter = "</feed>"

response.setContentType("application/atom+xml")

render "${feedHeader}${feed}${feedFooter}"

}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=239

SETTING UP AN ATOM FEED 240

The code we see here has been in production at AboutGroovy.com for

several years. It is battle-tested and quite stable. It takes the brute-force

approach to generating Atom since when I originally wrote it the plug-in

infrastructure was just a twinkle in Graeme Rocher’s eye. (Graeme is

the founder and tech lead of the Grails project.)

There is a constant stream of new and exciting software coming from

the Grails plug-in community. (See Section 12.6, Installing Plug-Ins, on

page 247.) Something might get released next week that makes this

code look clunky and obsolete. (It wouldn’t be tough to do.)

However, by avoiding external dependencies, this code has proven to

be remarkably resilient across Groovy upgrades, Grails upgrades, and

everything else. That alone speaks volumes about the power of learning

a specification versus learning a library that manages the specification

on your behalf. Atom is a reasonably simple format with plenty of good

documentation.5

Part 1: The Setup

def atom = {

params.max = 10

params.sort = 'datePosted'

params.order = 'desc'

def itemList = Item.list(params)

def df = new java.text.SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss'-07:00'")

// feed header

...

// feed body

...

// feed footer

...

}

The first thing you do is pull the Items out of the table and put them

in itemList. Since syndication feeds usually show the most recent items

first, you sort the list by item.datePosted in descending order.

Speaking of dates, Atom requires all dates to appear in the RFC 33396

format. The SimpleDateFormatter gives you a single class that you can

reuse throughout this method.

5. http://en.wikipedia.org/wiki/Atom_%28standard%29

6. http://www.ietf.org/rfc/rfc3339.txt

http://en.wikipedia.org/wiki/Atom_%28standard%29
http://www.ietf.org/rfc/rfc3339.txt
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=240

SETTING UP AN ATOM FEED 241

Part 2: The Header

def atom = {

...

// feed header

def updated = df.format(itemList[0].datePosted)

def feedHeader = """<feed xmlns="http://www.w3.org/2005/Atom">

<title type="text">aboutGroovy.com</title>

<link rel="alternate" type="text/html" href="http://aboutGroovy.com"/>

<link rel="self" type="application/atom+xml"

href="http://aboutGroovy.com/item/atom" />

<updated>${updated}</updated>

<author><name>Scott Davis</name></author>

<id>tag:aboutgroovy.com,2006-12-18:thisIsUnique</id>

<generator uri="http://aboutGroovy.com" version="0.0.2">

Hand-rolled Grails code

</generator>

"""

// feed body

...

// feed footer

...

}

The header is largely boilerplate text. The only variable is updated,

which you pull from the most recent entry in the list and format using

the SimpleDateFormatter.

Part 3: The Body

def atom = {

// feed header

...

// feed body

StringBuffer feed = new StringBuffer()

itemList.each{item ->

def sw = new java.io.StringWriter()

def x = new groovy.xml.MarkupBuilder(sw)

x.entry(xmlns:"http://www.w3.org/2005/Atom"){

author{name("Scott Davis")}

published(df.format(item.datePosted))

updated(df.format(item.datePosted))

link(href:"http://aboutGroovy.com/item/show/${item.id}",

rel:"alternate", title:item.title, type:"text/html")

id("tag:aboutgroovy.com,2006:/item/show/${item.id}")

title(type:"text", item.title)

content(type:"xhtml"){

div(xmlns:"http://www.w3.org/1999/xhtml"){

p("Category: ${item.type}")

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=241

SETTING UP AN ATOM FEED 242

p{a(href:item.url, "Original Source")}

p(item.shortDescription)

p(item.description)

}

}

}

feed.append(sw.toString() + "\n")

}

// feed footer

...

This is arguably the most important block of code in the method. You

walk through each Item in the list and create the Atom <entry>. You

fake out the namespace in the MarkupBuilder. At some point I should

probably refactor this to be a true namespace, but it works for now.

(See Section 8.7, Creating Namespaced XML Using StreamingMarkup-

Builder, on page 142 for more information.) This is arguably the most

important block of code in the method. You walk through each Item

in the list and create the Atom <entry>. You fake out the namespace

in the MarkupBuilder. At some point I should probably refactor this to

be a true namespace, but it works for now. (See Section 8.7, Creating

Namespaced XML Using StreamingMarkupBuilder, on page 142 for more

information.)

Here is the Item domain class:

class Item {

static constraints = {

title(blank:false)

type(inList:['news', 'event', 'media'])

shortDescription(maxSize:255)

description(maxSize:4000)

url(blank:false)

postedBy()

datePosted()

}

String url

String title

String shortDescription

String description

String type

Date datePosted

Integer postedBy

String toString(){

return "$type: $title"

}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=242

SETTING UP AN RSS FEED FOR PODCASTS 243

Part 4: Rendering the Result

def atom = {

// feed header

...

// feed body

...

// feed footer

def feedFooter = "</feed>"

response.setContentType("application/atom+xml")

render "${feedHeader}${feed}${feedFooter}"

}

In this final block of code, you close up the feed element, set the

ContentType to application/atom+xml, and render the three strings to-

gether as a single response. In Section 9.13, Parsing an Atom Feed, on

page 177, we can see what the resulting XML document looks like.

12.5 Setting Up an RSS Feed for Podcasts

class PodcastController {

def rss = {

def itemList = Podcast.list(params)

def df = new java.text.SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss'-07:00'")

// feed header

def updated = df.format(itemList[0].datePosted)

def feedHeader = """

<rss xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd"

version="2.0">

<channel>

<title>About Groovy Podcasts</title>

<link>http://aboutGroovy.com</link>

...

"""

// feed body

StringBuffer feed = new StringBuffer()

itemList.each{item ->

def tmp = """<item>

<title>${item.title}</title>

<itunes:author>Scott Davis</itunes:author>

<enclosure url="${item.url}"

length="${item.fileSize}" type="audio/mpeg" />

...

"""

feed.append(tmp + "\n")

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=243

SETTING UP AN RSS FEED FOR PODCASTS 244

// feed footer

def feedFooter = "</channel></rss>"

response.setContentType("text/xml")

render "${feedHeader}${feed}${feedFooter}"

}

}

If you read Section 12.4, Setting Up an Atom Feed, on page 239, this

example should look remarkably similar. The mechanics of putting

together a text-based Atom feed are no different from putting together

a podcast feed. Only the dialect is different.

Apple provides a thorough set of online documentation7 to guide you

through the RSS dialect required for a well-formed podcast feed.

Part 1: The Setup

def rss = {

params.max = 10

params.sort = 'datePosted'

params.order = 'desc'

def itemList = Podcast.list(params)

def df = new java.text.SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss'-07:00'")

// feed header

...

// feed body

...

// feed footer

...

}

You first pull the Podcasts out of the table and put them in itemList. Since

syndication feeds usually show the most recent items first, you sort the

list by podcast.datePosted in descending order.

Speaking of dates, all dates should appear in the RFC 33398 format.

The SimpleDateFormatter gives you a single class that you can reuse

throughout this method.

7. http://www.apple.com/itunes/store/podcaststechspecs.html

8. http://www.ietf.org/rfc/rfc3339.txt

http://www.apple.com/itunes/store/podcaststechspecs.html
http://www.ietf.org/rfc/rfc3339.txt
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=244

SETTING UP AN RSS FEED FOR PODCASTS 245

Part 2: The Header

def rss = {

...

// feed header

def feedHeader = """

<rss xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd"

version="2.0">

<channel>

<title>About Groovy Podcasts</title>

<link>http://aboutGroovy.com</link>

<language>en-us</language>

<copyright>2007 AboutGroovy.com</copyright>

<itunes:subtitle>

Your source for the very latest Groovy and Grails news

</itunes:subtitle>

<itunes:author>Scott Davis</itunes:author>

<itunes:summary>About Groovy interviews</itunes:summary>

<description>About Groovy interviews</description>

<itunes:owner>

<itunes:name>Scott Davis</itunes:name>

<itunes:email>scott@aboutGroovy.com</itunes:email>

</itunes:owner>

<itunes:image href="http://aboutgroovy.com/images/aboutGroovy3.png" />

<itunes:category text="Technology" />

<itunes:category text="Java" />

<itunes:category text="Groovy" />

<itunes:category text="Grails" />

"""

// feed body

...

// feed footer

...

}

The header is completely boilerplate text. There is not a single variable

bit of information.

Part 3: The Body

def rss = {

// feed header

...

// feed body

StringBuffer feed = new StringBuffer()

itemList.each{item ->

def tmp = """<item>

<title>${item.title}</title>

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=245

SETTING UP AN RSS FEED FOR PODCASTS 246

<itunes:author>Scott Davis</itunes:author>

<itunes:subtitle></itunes:subtitle>

<itunes:summary>${item.shortDescription}</itunes:summary>

<enclosure url="${item.url}" length="${item.fileSize}" type="audio/mpeg" />

<guid>${item.url}</guid>

<pubDate>${df.format(item.datePosted)}</pubDate>

<itunes:duration>${item.duration}</itunes:duration>

<itunes:keywords>java,groovy,grails</itunes:keywords>

</item>

"""

feed.append(tmp + "\n")

}

// feed footer

...

This is arguably the most important block of code in the method. In it,

you walk through each Podcast in the list and create the RSS <item>. In

Section 12.4, Setting Up an Atom Feed, on page 239, we used a Markup-

Builder to build the body. In this case, you just use a simple GString.

(Scandalous, isn’t it?)

Here is the Podcast domain class:

class Podcast {

static constraints = {

title(blank:false)

shortDescription(maxSize:255)

description(maxSize:4000)

url(blank:false)

fileSize()

duration()

postedBy()

datePosted()

}

String url

String title

String shortDescription

String description

Date datePosted

Integer postedBy

Integer fileSize

String duration

String toString(){

return "$title"

}

}

http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=246

INSTALLING PLUG-INS 247

Part 4: Rendering the Result

def rss = {

// feed header

...

// feed body

...

// feed footer

def feedFooter = "</channel></rss>"

response.setContentType("text/xml")

render "${feedHeader}${feed}${feedFooter}"

}

In this final block of code, you close up the rss element, set the Con-

tentType to text/xml, and render the three strings together as a single

response. In Section 9.14, Parsing an RSS Feed, on page 178, we can

see what the resulting XML document looks like.

12.6 Installing Plug-Ins

$ grails list-plugins

$ grails install-plugin [NAME]

The real power of Grails comes from its vibrant, community-driven

plug-in system. Visit http://grails.org/Plugins or type grails list-plugins to get

an idea of the different ways that Grails can be extended. There are

plug-ins that add SOAP and XML-RPC support. Flash and Google Web

Toolkit clients can be developed as an alternate to Groovy Server Pages.

Acegi and JSecurity can be used for security-minded sites. Plug-ins for

Captchas can keep spambots out of your public forums. The Search-

able plug-in brings in Lucene to enable Google-like searches. The list of

available plug-ins is ever growing and limited only by the creativity and

enthusiasm of the Grails community.

http://grails.org/Plugins
http://books.pragprog.com/titles/sdgrvr/errata/add?pdf_page=247

Index
Symbols
++ operator, 51

<< operator, 43, 107

@ symbol, 74

Expando, 194–195

GStrings, 57, 75, 190

& character, 91, 165

A
Ant, compiling with, 84

AntBuilder, 109–112

Appending data, 107

Arguments, accepting, 88–89

Arrays, files contents as, 104

Atom feed, parsing, 177–178

Atom feed, setting up, 239–243

Attributes

private, 70, 71

read-only, 76

XML, 121–123

Autoboxing, 53

Autogenerated getters and setters,

71–74

Automatic imports, 42

B
Binary files, copying, 108

Bloch, Joshua, 54

Blocks, 67–68

C
Castor, 119, 135

Category, 195–198

CDATA, 144

Checked exceptions, 49

Classes

fields, 183–186

finding methods for, 31

mapping to legacy databases, 232

metaprogramming and, 182

methods for, 188–190

public, 70, 71

Closures, 67n, 67–68, 141, 144

Comma-separated value, see CSV

Command-line Groovy, 86–99

accepting arguments, 88–89

calling another script, 96–97

environment variables, 94

groovy -e, 98

including JARs, 98–99

input, 101

running a shell command, 89–90

shebanging, 87–88

shell wildcards, 90–91

strings, evaluating, 95

system properties, 92–94

uncompiled scripts, 86–87

waiting for a shell command, 91

Compatibility, 16

Compiling, 28

Concatenating, 60, 64

Console, 33

Constructor shortcuts, 76

Controllers and views, 208–209,

219–221

Convenience GET class, 158

Convention over configuration, 200,

205

Copying files, 108–109

CRUD, 167, 211

CSV

converting to XML, 148–151

parsing, 149

requests, 172

Currying parameters, 68

Cygwin, 87

DATA VALIDATION 249 GROOVY

D
Data validation, 226f, 224–227

Datatype declaration, 47

Default values, 77–78

Deleting files, 113

Dependencies, 82

Dependency injection (DI), 48

Directories, see Files and directories

Document parsing, 121

Domain-specific languages (DSLs), 43

DRY principle, 223

Duck typing, 47, 191

Dynamic scaffolding, 223f, 221–224

E
Eclipse, 37–38

Effective Java (Bloch), 54

Elements

hyphenated names, 125–127

hyphenated names for, 138

mixed-case names for, 125, 137

in XML, 123–125

Embedded quotes, 56

Empty lists, 58

Empty set notation, 62

Encapsulation, 17

Environment variables, 94

Excel, Grails and, 238f, 237–239

Exception handling, 49–50

ExpandoMetaClass, 198–199

F
Failing fast, 46

Field pointer, 192

Fields, checking for, 185–188

Filename collisions, 112

Files and directories, 100–115

AntBuilder and, 109–112

copying, 108–109

copying with Ant, 110

deleting, 113

listing files, 100–104

moving and renaming, 112

reading contents, 104–105

unzipping, 114

writing to, 105–107

ZIP files, 113–114

Floating-point arithmetic, 54

Forms, Groovlet, 35

G
GANT files, 214

GData initiative, 178

Geocoder.us, 171

GetProperty, 74–75

Getters and setters, 71–74

GNU GCC compiler, 83

Gore, Al, 46

GORM, 228, 231

GPath, 118

Grails, 200–247

application basics, 204–212

controller and views, 208–209

directory structure, 205–206, 207f

domain class, adding fields to, 208

domain class, creating, 206–207

running, 209–212

shutting down server, 210

Atom feed, 239–243

book list, 212f

book, creating, 211f

changing databases, 215–218

changing homepage, 218–219

commands, 202

controllers and views, 219–221

data validation, 226f, 224–227

dynamic scaffolding, 223f, 221–224

environments, 213

generating a WAR, 214

installation of, 201–204

mapping classes to legacy databases,

232

plug-ins for, 247

returning Excel spreadsheet, 238f,

237–239

returning JSON, 236–237

returning XML, 233–235

RSS feed, 243–247

running on a different port, 214

tables, managing, 227–231

one-to-many relationships, 229f

one-to-one relationships, 231f

website for, 203

welcome screen, 210f

Grails validation reference, 227

Groovlets, 35f, 34–36, 37f

Groovy

advantages of, 14–20

Ant and, 84

calling from Java, 79–81

compatibility, 16

GROOVY -E 250 LISTS

compiling, 28

console, 33

design of, 16–18

Eclipse and, 37–38

GDK documentation for, 101n

help, 33

installation of, 24

IntelliJ IDEA and, 38, 39f

interfaces in, 82

as Java extension, 41

joint compiler, 82–84

Maven and, 85

new projects in, 38

object browser, 34f

objects in, 53

origins of, 20n

privacy in, 73, 80

running, 27

shell, 31f, 28–33

support, 40

TextMate and, 39, 40f

usage of, 19–20

versions of, 25

on a web server, 34–36, 37f

see also Grails

groovy -e, 98

Groovy Maps, 161

Groovy Server Pages (GSP), 147

Groovy truth, 54–56

GroovyBeans, 69–71, 119, 135

groovyConsole, 33

GROOVY_HOME environment variable, 26

groovysh, 28–33

GroovyTestCases, 206

H
Help, 33

Heredocs, 57

HTML

creating, 145–148

for testing, 166

HTTP

DELETE requests, 169–170

GET requests, 156–159

POST requests, 163–167

PUT requests, 167–169

Hyphenated element names, 125–127,

138

I
Imports, 42

Installation, 24–37

of Grails, 201–204

IntelliJ IDEA, 38, 39f

Interfaces, 82

IP address and name, 152–154

Iterating, 64

J
Jakarta Commons HttpClient, 158

JARs, including, 98–99

Java

calling from Groovy, 81

drawbacks of, 17

exceptions in, 49

Groovy as extension of, 41

interfaces in, 82

object-oriented, 53

platform, 14, 15

as static language, 47

see also Grails

Java virtual machine (JVM), 14, 15

Javadocs, 184

JAXB, 119

JDBC, converting to XML, 151

Joint compiler, 82–84

JRuby, 16

JSON, Grails and, 236–237

JTidy, 140

Jython, 16

K
Kernighan, Brian, 44

Keys, 64

L
Leaky abstraction, 126

Linux, 25, 203

Lists

adding elements to, 58

concatenating, 60

of directories, 102

of files, 102

of files in a directory, 100–104

flattening to array, 61

in Grails, 212f

iterating, 59

iterating with an index, 59

joining, 60

modifying elements in, 61

popping items off, 60

MAC OS X 251 QUOTES

query strings and, 160, 165

querying, 61

reversing, 60

shortcuts for, 58–62

sorting, 60

of specific files, 103

spread operator and, 62

M
Mac OS X, 25, 203

Maps

adding elements, 63

.class, 63

concatenating, 64

empty, 62

getting an element, 62

iterating through, 64

keys and values, 64

query strings and, 161

shortcuts for, 62

MarkupBuilder, 139

Martelli, Alex, 48

Maven, compiling with, 85

metaClass, 184

Metaprogramming, 181–199

class fields, 183–185

classes, overview of, 182

defined, 181

expando, 194–195

field pointer, creating, 192

fields, checking for, 185–188

hasProperty Groovlet, 187f

method pointer, creating, 193

methods of a class, 188–190

methods, ExpandoMetaClass, 198–199

methods, calling, 193–194

methods, categories, 195–198

methods, checking existence of,

190–192

Method pointer, 193

Methods

adding, 109

adding dynamically (categories),

195–198

adding dynamically

(expandometaclass), 198–199

calling, 193–194

calling in another script, 97

checking existence of, 190–192

of a class, 188–190

finding, 31

private, 79

MIME type, 238

Mixed-case element names, 125, 137

Model-view-controller pattern, 208

Moving files, 112

MySQL, 215, 216

N
Named parameters, 68

Namespaces

creating in XML, 142

parsing XML documents with,

132–134

in XmlSlurper, 133

Naming conventions

Grails, 205

variables, 120

New projects, 38

No-arg parentheses, 45

Null references, 52

O
Object browser, 34f

Operator overloading, 51

ORM DSL Guide, 232

P
Package-private access, 71

Parameters

accepting, 67

currying, 68

named, 68

optional, 77–78

Parentheses, 45

Parsing documents, 121

Plain old Groovy objects (POGOs), 17,

69–71

Plug-ins

Grails, 227, 240, 247

Groovy/Eclipse, 37

website for, 40

Podcasts, 244

Polymorphism, 48

private, 73

Private methods, 79

Procedural programming, 158

Processing instructions, 143

Q
Query strings, 160–163

Quotes, embedded, 56

RANGES 252 WEB SERVICES

R
Ranges, 65–66

Reading files, 104–105

Reflection, 181

RESTful requests, 170

GET requests, 159

POST requests with XML, 166

return statements, 46

RFC 3339 format, 240, 244

Ritchie, Dennis, 44

Three Rs, 219

RSS feed, parsing, 178–180

RSS feed, setting up, 243–247

Running groovy, 27

S
Safe dereferencing, 52

Security Realms, 92

Semicolons, 42–44

Service-oriented architecture (SOA),

152

setProperty, 74–75

Shebanging scripts, 87–88

Shell commands

multiple, 91

running, 89–90

Shell wildcards, 90–91

Shortcuts

constructor syntax, 76

for files and directories, 100–115

getter and setter, 72

for lists, 58–62

for maps, 62

syntax, 73

SOAP requests, 172–174

Sorting lists, 60

Speed, 98

Spread operator, 62

Static constraints block, 224

Stewart, Potter, 46

Strachan, James, 20

StreamingMarkupBuilder, 139–140, 142

overview, 145

writing to output file, 145

see also XML

Strings

evaluating, 95

parsing in XML, 121

printing, 143–144

query, 160–163

Stroustrup, Bjarne, 80

Syntax shortcuts, 73

System properties, 92–94

T
Testing

Grails applications, 206

Grails database migration to MySQL,

216

Groovy Testing Guide, 206

HTML forms for, 166

TextMate, 39, 40f

Three Rs, 219

Tidy, 140

Tomcat, 92

true, 54–56

U
Unchecked exceptions, 49

Uncompiled scripts, 86–87

Underscores, 127

Unix, 25, 203

URL encoding, 160

V
Vanderburg, Glenn, 50

Variables

datatypes and, 48

environment, 94

in Groovy shells, 30

naming, 120

Verbosity, 17–19, 106

Versions, 25

W
Web servers, status check, 36

Web services, 152–180

CSV requests, 172

finding your IP address, 152–154

Grails and, 233–247

Atom feed, 239–243

returning Excel spreadsheet, 238f,

237–239

returning JSON, 236–237

returning XML, 233–235

RSS feed, 243–247

HTTP DELETE requests, 169–170

HTTP GET requests, 156–159

HTTP POST requests, 163–167

HTTP PUT requests, 167–169

mapping, 171

WEBSITES 253 XML

parsing Atom feed, 177–178

parsing RSS feed, 178–180

parsing Yahoo search results,

176–177

query strings and, 160–163

RESTful requests, 170

SOAP requests, 172–174

XML-RPC requests, 174–175

Websites

for access control, 71n

for Ant online documentation, 109n

for Atom, 177n

for Atom dates format, 240n

for Atom documentation, 240n

for Castor, 119n, 135n

for CDATA information, 144n

for convention over configuration,

200n

for CRUD, 167n

for Cygwin, 87n

for DRY principle, 223n

for DSLs, 43n

for duck typing, 48n

on functional programming, 67n

for GANT, 214n

for GData, 178n

for GNU GCC complier, 83n

for Grails, 203

for Grails plugins, 227n

for Grails testing, 206n

for Grails Validation Reference,

224n, 227n

for Groovy enhancements to the

JDK, 51n

for Groovy GDK, 101n

for Groovy installation, 25

for Groovy origins, 20n

for Groovy Testing Guide, 206n

for heredocs, 57n

I know when I see it, 46n

for Jakarta Commons HTTPClient,

158n

for Java updates, 24

for Java’s platform, 14n

for Javadocs, 183n

for JAXB, 119n

for JRuby, 16n

for JSON, 235n

for JTidy, 140n

for Jython, 16n

for leaky abstraction, 126n

for mapping, 171

for media types, 238n

for metaprogramming, 181n

for Model-view-controller pattern,

208n

for MySQL, 215n

for open curly braces, 44n

for ORM DSL Guide, 232n

for procedural programming, 158n

for Programmable web, 159n

for reflection, 181n

for RESTful API, 159n

for RFC 3339 date format, 244n

for RSS podcasts, 244n

for Tidy, 140n

for Tomcat on Security Realms, 92n

for URL encoding, 160n

for URL mapping, 219n

for wget, 234n

for XPath, 118n

Wildcards, 90–91

Windows

Grails installation, 204

Groovy installation, 26

wget download, 234n

Write once, run anywhere (WORA),

92–94

Writing to files, 105–107

X
XML

attributes, 121–123

body of element in, 123–125

creating HTML, 145–148

creating hyphenated names, 138

creating mixed-case element names,

137

creating parts separately, 140–141

from CSV, 148–151

finding a remote IP address, 154

Grails and, 233–235

hyphenated element names,

125–127

from JDBC results, 151

and MarkupBuilder, 139

MarkupBuilder vs.

StreamingMarkupBuilder, 139–140

mixed-case element names, 125

navigation (deeply nested XML),

127–132

parsing documents, 121

XML-RPC REQUESTS 254 ZIP FILES

populating a GroovyBean, 135

printing declaration, 142–143

printing processing instructions, 143

printing strings, 143–144

speed of, 116–117, 136–137

StreamingMarkupBuilder, 145

writing StreamingMarkupBuilder output,

145

XmlParser vs. XmlSlurper, 117–121,

132–134

XML-RPC requests, 174–175

XPath, 118

Y
Yahoo

RSS feeds, 180

search results, parsing, 176–177

Z
ZIP files, creating, 113–114

ZIP files, unzipping, 114

	Contents
	Preface
	Introduction
	Groovy, the Way Java Should Be
	Stripping Away the Verbosity
	Groovy: The Blue Pill or the Red Pill?
	Road Map
	Acknowledgments

	Getting Started
	Installing Groovy
	Running a Groovy Script (groovy)
	Compiling Groovy (groovyc)
	Running the Groovy Shell (groovysh)
	Running the Groovy Console (groovyConsole)
	Running Groovy on a Web Server (Groovlets)
	Groovy + Eclipse
	Groovy + IntelliJ IDEA
	Groovy + TextMate
	Groovy + [Insert Your IDE or Text Editor Here]

	New to Groovy
	Automatic Imports
	Optional Semicolons
	Optional Parentheses
	Optional Return Statements
	Optional Datatype Declaration (Duck Typing)
	Optional Exception Handling
	Operator Overloading
	Safe Dereferencing (?)
	Autoboxing
	Groovy Truth
	Embedded Quotes
	Heredocs (Triple Quotes)
	GStrings
	List Shortcuts
	Map Shortcuts
	Ranges
	Closures and Blocks

	Java and Groovy Integration
	GroovyBeans (aka POGOs)
	Autogenerated Getters and Setters
	getProperty and setProperty
	Making Attributes Read-Only
	Constructor Shortcut Syntax
	Optional Parameters/Default Values
	Private Methods
	Calling Groovy from Java
	Calling Java from Groovy
	Interfaces in Groovy and Java
	The Groovy Joint Compiler
	Compiling Your Project with Ant
	Compiling Your Project with Maven

	Groovy from the Command Line
	Running Uncompiled Groovy Scripts
	Shebanging Groovy
	Accepting Command-Line Arguments
	Running a Shell Command
	Using Shell Wildcards in Groovy Scripts
	Running Multiple Shell Commands at Once
	Waiting for a Shell Command to Finish Before Continuing
	Getting System Properties
	Getting Environment Variables
	Evaluating a String
	Calling Another Groovy Script
	Groovy on the Fly (groovy -e)
	Including JARs at the Command Line

	File Tricks
	Listing All Files in a Directory
	Reading the Contents of a File
	Writing Text to a File
	Copying Files
	Using AntBuilder to Copy a File
	Using AntBuilder to Copy a Directory
	Moving/Renaming Files
	Deleting Files
	Creating a ZIP File/Tarball
	Unzipping/Untarring Files

	Parsing XML
	The ``I'm in a Hurry'' Guide to Parsing XML
	Understanding the Difference Between XmlParser and XmlSlurper
	Parsing XML Documents
	Dealing with XML Attributes
	Getting the Body of an XML Element
	Dealing with Mixed-Case Element Names
	Dealing with Hyphenated Element Names
	Navigating Deeply Nested XML
	Parsing an XML Document with Namespaces
	Populating a GroovyBean from XML

	Writing XML
	The ``I'm in a Hurry'' Guide to Creating an XML Document
	Creating Mixed-Case Element Names
	Creating Hyphenated Element Names
	Creating Namespaced XML Using MarkupBuilder
	Understanding the Difference Between MarkupBuilder and StreamingMarkupBuilder
	Creating Parts of the XML Document Separately
	Creating Namespaced XML Using StreamingMarkupBuilder
	Printing Out the XML Declaration
	Printing Out Processing Instructions
	Printing Arbitrary Strings (Comments, CDATA)
	Writing StreamingMarkupBuilder Output to a File
	StreamingMarkupBuilder at a Glance
	Creating HTML on the Fly
	Converting CSV to XML
	Converting JDBC ResultSets to XML

	Web Services
	Finding Your Local IP Address and Name
	Finding a Remote IP Address and Domain Name
	Making an HTTP GET Request
	Working with Query Strings
	Making an HTTP POST Request
	Making an HTTP PUT Request
	Making an HTTP DELETE Request
	Making a RESTful Request
	Making a CSV Request
	Making a SOAP Request
	Making an XML-RPC Request
	Parsing Yahoo Search Results as XML
	Parsing an Atom Feed
	Parsing an RSS Feed

	Metaprogramming
	Discovering the Class
	Discovering the Fields of a Class
	Checking for the Existence of a Field
	Discovering the Methods of a Class
	Checking for the Existence of a Method
	Creating a Field Pointer
	Creating a Method Pointer
	Calling Methods That Don't Exist (invokeMethod)
	Creating an Expando
	Adding Methods to a Class Dynamically (Categories)
	Adding Methods to a Class Dynamically (ExpandoMetaClass)

	Working with Grails
	Installing Grails
	Creating Your First Grails App
	Understanding Grails Environments
	Running Grails on a Different Port
	Generating a WAR
	Changing Databases
	Changing the Home Page
	Understanding Controllers and Views
	Dynamic Scaffolding
	Validating Your Data
	Managing Table Relationships
	Mapping Classes to Legacy Databases

	Grails and Web Services
	Returning XML
	Returning JSON
	Returning an Excel Spreadsheet
	Setting Up an Atom Feed
	Setting Up an RSS Feed for Podcasts
	Installing Plug-Ins

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

