

Interface-Oriented Design

Ken Pugh

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Bookshelf
Pragmatic

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9766940-5-0

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, June 2006

Version: 2006-7-23

http://www.pragmaticprogrammer.com

Dedicated to Nameless II,
the cat who sat on my lap
while I typed this book.

Contents
Preface ix

Road Map . x
Who Should Read This Book xi
About the Cover . xii
So, What Else Is in Here? . xii
Acknowledgments . xiii

I All about Interfaces 1

1 Introduction to Interfaces 2
1.1 Pizza-Ordering Interface 2
1.2 Real-Life Interfaces . 5
1.3 Things to Remember . 11

2 Interface Contracts 12
2.1 The Three Laws of Interfaces 12
2.2 Design by Contract . 17
2.3 Testing Interfaces against Contracts 23
2.4 Levels of Contracts . 27
2.5 Contractual Quality . 29
2.6 Things to Remember . 30

3 Interface Ingredients 32
3.1 Data Interfaces and Service Interfaces 32
3.2 Data Access Interface Structures 35
3.3 Alternative Interfaces . 41
3.4 Stateless versus Stateful Interfaces 44
3.5 Transformation Considerations 47
3.6 Multiple Interfaces . 51
3.7 Things to Remember . 52

CONTENTS vi

4 What Should Be in an Interface? 53
4.1 Cohesiveness . 53
4.2 A Printer Interface . 54
4.3 Coupling . 58
4.4 Interface Measures . 60
4.5 Things to Remember . 63

5 Inheritance and Interfaces 64
5.1 Inheritance and Interfaces 64
5.2 Polymorphism . 65
5.3 Hierarchies . 68
5.4 An Interface Alternative for InputStream 76
5.5 Things to Remember . 82

6 Remote Interfaces 83
6.1 Introduction . 83
6.2 Procedural and Document Interfaces 85
6.3 Facets of External Interfaces 88
6.4 Discovery of Services . 91
6.5 More on Document Style 93
6.6 Security . 99
6.7 Testing . 100
6.8 Things to Remember . 101

II Developing with Interfaces 102

7 A Little Process 103
7.1 The Agile Model . 103
7.2 Vision . 104
7.3 Conceptualization . 104
7.4 Analysis and Design . 110
7.5 Interface-Oriented Design 110
7.6 Design . 116
7.7 Implementation . 120
7.8 Things to Remember . 120

III Interfaces in the Real World 121

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=vi

CONTENTS vii

8 Link Checker 122
8.1 Vision . 122
8.2 Conceptualization . 122
8.3 Analysis . 124
8.4 Design . 126
8.5 Tests . 132
8.6 Implementation . 134
8.7 Retrospective . 138
8.8 Things to Remember . 138

9 Web Conglomerator 140
9.1 Vision . 140
9.2 Conceptualization . 140
9.3 Analysis . 142
9.4 Testing . 145
9.5 Design . 146
9.6 Implementation . 148
9.7 Retrospective . 151
9.8 Things to Remember . 152

10 Service Registry 154
10.1 Vision . 154
10.2 Conceptualization . 156
10.3 Analysis . 157
10.4 Design . 164
10.5 Implementation . 165
10.6 Published Interface . 169
10.7 The Next Iterations . 172
10.8 Things to Remember . 175

11 Patterns 177
11.1 Introduction . 177
11.2 Factory Method . 177
11.3 Proxy . 179
11.4 Decorator . 181
11.5 Adapter . 183
11.6 Façade . 184
11.7 Composite . 185
11.8 Things to Remember . 186

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=vii

CONTENTS viii

A Appendix 187
A.1 More about Document Style 187
A.2 Service-Oriented Architecture 189
A.3 Collections and Collection Methods 192
A.4 Configuration . 196
A.5 Another Service Registry Iteration 197
A.6 Other Interface Issues . 199

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=viii

Preface
Interface-Oriented Design explores how you can develop software with
interfaces that interact with each other. We’ll look at techniques for
breaking down solutions into these interacting interfaces and then for
determining appropriate implementations for these interfaces to create
well-structured programs. We have plenty of examples that will show
you ways to create effective designs composed of interfaces to objects,
components, and services. And we’ll even have some fun along the way.

You’ve probably learned about (and experienced) software development
using object-oriented design. Interface-oriented design concentrates
on the interfaces of modules, which may or may not be implemented
with object-oriented languages. Designs that emphasize interfaces are
loosely coupled—and that’s a good thing. If you have only an interface
to which to code, you cannot write code dependent on an implementa-
tion, which helps keep us honest.

Distributed computing, such as service-oriented architectures, places
a particular emphasis on interfaces. The interfaces may be procedure
oriented (such as Remote Procedure Calls) or document oriented (such
as web services). We’ll explore the transparency and loose coupling
traits that are key to distributed interfaces to help you build better
distributed systems.

Inheritance is often a tricky technique to get correct—it is often one of
the most abused features in object-oriented languages. We’ll look at
designs that employ inheritance versus ones that emphasize interfaces
to demonstrate the trade-offs between the two.

This ongoing emphasis on interfaces may seem a bit extreme. But by
looking at one extreme, you’ll start to see a different viewpoint that can
give you fresh insights into your current approach to software develop-
ment.

ROAD MAP x

Here then is a road map for our journey through interface-oriented
design.

Road Map

Chapter 1, Introduction to Interfaces
We’ll start by ordering pizza. One should never read a book on
an empty stomach, so we’ll use the activities of finding a suitable
pizza shop and ordering a pizza as a nonprogramming introduc-
tion to interfaces. We’ll then briefly look at some code and textual
interfaces as introductory background for topics we’ll explore in
later chapters.

Chapter 2, Interface Contracts
It’s hard to use an interface if an implementation provides no
guarantee of working successfully. We’ll see how the Three Laws
of Interfaces applies to implementations and how Design by Con-
tract helps in understanding an interface’s protocol. Finally, you’ll
need to test an implementation to verify that it lives up to its side
of the contract.

Chapter 3, Interface Ingredients
You can structure interfaces in many ways, including pull versus
push and stateful versus stateless interfaces. We’ll explore the
trade-offs and benefits of these facets and finish by outlining how
to transform an interface from one facet to another.

Chapter 4, What Should Be in an Interface?
An interface should have cohesive functionality. There are no
absolute rules to what makes a cohesive interface, but we’ll look at
different sets of interfaces to explore the concept of cohesiveness
and see how it helps development.

Chapter 5, Inheritance and Interfaces
Inheritance in object-oriented programs is often overused. We’ll
investigate better ways to organize designs using interfaces and
delegation and discover the trade-offs and benefits over inheri-
tance.

Chapter 6, Remote Interfaces
Many programs these days are dependent on communicating with
remote interfaces. We’ll look at the ramifications of using remote

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=x

WHO SHOULD READ THIS BOOK xi

interfaces, see why document-style interfaces are becoming more
common, and learn how to best organize one.

Chapter 7, A Little Process
Interface-oriented design is but one part of the overall develop-
ment process. We’ll see how it fits in, and we’ll get ready for the
three design examples in the following chapters.

Chapter 8, Link Checker
In this chapter, we’ll develop a miniproject: a link checker for web
pages, demonstrating how interfaces provide flexibility in selecting
implementations.

Chapter 9, Web Conglomerator
Why rely on web sites to put information together in the way that
you want it? The web conglomerator project gathers information
into a single page and lets us explore interface cohesiveness and
interface generalization as we create this program.

Chapter 10, Service Registry
Remote services use directories to help you locate a service provi-
der. In this project, we’ll develop a service registry to explore how
directory services work and see an example of a document-style
interface.

Chapter 11, Patterns
The well-known “Gang of Four” book divides patterns into two
camps: class-based and object-based. To give another viewpoint,
we’ll look at some of those classic patterns as being interface-
based instead.

Who Should Read This Book

This book is aimed at developers who have some experience with pro-
gramming and who have been exposed to object-oriented design. Even
if you are heavy into object orientation, you might find the interface-
oriented approach helps you gain some insight into different ways of
approaching a design. Understanding interfaces will help you transi-
tion to designing Service-Oriented Architectures.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=xi

ABOUT THE COVER xii

About the Cover

Concentrating on interfaces is key to decoupling your modules.1 You
probably learned to type on a QWERTY keyboard, as shown on the
cover. That interface is the same regardless of whether the implemen-
tation is an old-fashioned typewriter, a modern electric typewriter, or a
computer keyboard. There have been additions to the keyboard, such
as function keys, but the existing layout continues to persist.

But other layouts, such as Dvorak,2 are more efficient for typing. You
can switch your computer keyboard to use an alternate layout; the
switching module works as an adapter. Inside the keyboard driver, the
keystrokes are converted to the same characters and modifiers (e.g.,
Shift, Alt, etc.) that are produced by the regular keyboard.

The QWERTY keyboard layout was derived from concern about imple-
mentation. According to one web site,3 “It is sometimes said that it was
designed to slow down the typist, but this is wrong; it was designed to
allow faster typing—under a constraint now long obsolete. In early
typewriters, fast typing using nearby type-bars jammed the mecha-
nism. So Sholes fiddled the layout to separate the letters of many
common digraphs (he did a far from perfect job, though; th, tr, ed, and
er, for example, each use two nearby keys). Also, putting the letters of
typewriter on one line allowed it to be typed with particular speed and
accuracy for demos. The jamming problem was essentially solved soon
afterward by a suitable use of springs, but the keyboard layout lives
on.”

Creating interfaces that are easy to use and decoupling their use from
their implementation are two facets that we’ll explore a lot in this book.
(And you may have thought the cover was just a pretty picture.)

So, What Else Is in Here?

Simple Unified Modeling Language (UML) diagrams show the class and
interface organization throughout the book. We use Interface-Respon-
sibility-Interaction (IRI) cards, a variation of Class-Responsibility-Colla-

1As Clemens Szyperski puts it, “The more abstract the class, the stronger the decou-
pling achieved.” See http://www.sdmagazine.com/documents/sdm0010k/.

2See http://www.microsoft.com/enable/products/dvlayout.aspx.
3See http://www.ctrl-c.liu.se/~ingvar/jargon/q.html.

http://www.sdmagazine.com/documents/sdm0010k/.
http://www.microsoft.com/enable/products/dvlayout.aspx.
http://www.ctrl-c.liu.se/~ingvar/jargon/q.html.
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=xii

ACKNOWLEDGMENTS xiii

boration (CRC) cards, as the primary method for creating an interface-
oriented designs. You’ll also find code examples in multiple languages
to show how interfaces are implemented in those languages.

On a terminology note, the OMG Modeling Language Specification (revi-
sion 1.3) uses the phrase realize interface, which means a component
implements the services defined in the interface. Allen Holub in Holub
on Patterns uses the term reify, which means “consider an abstract
concept to be real.” I thought about alternating one of those verbs with
the word implements, but they are less familiar. If you get tired of seeing
implementing, just imagine it’s reify.

You will see a few sections that look like this:

“Joe Asks...”
These sections provide answers for some common questions.

Acknowledgments

I would like to thank my reviewers for reading the draft copies of this
book and contributing numerous comments that helped improve the
book. Thanks to David Bock, Tom Ball, Ron Thompson, Gary K. Evans,
Keith Ray, Rob Walsh, David Rasch, Carl Manaster, Eldon Alameda,
Elias Rangel, Frédérick Ros, J. Hopkins, Mike Stok, Pat Eyler, Scott
Splavec, Shaun Szot, and one anonymous reviewer. Thanks to Michael
Hunter, an extraordinary tester, who found a lot of “bugs” in this book.
Thanks to Christian Gross, a reviewer who gave me many suggestions
that just couldn’t fit into this book and to Kim Wimpsett for proofread-
ing the manuscript.

I appreciate Andy Hunt, my editor and publisher, for encouraging me
to write this book, and all his help with the manuscript.

Thanks also to Leslie Killeen, my wife, for putting up with me writing
another book just as soon as I finished my previous book, Prefactor-
ing, winner of the 2006 Software Development Jolt Product Excellence
Award.4

And now, here we go!

4See http://www.ddj.com/dept/architect/187900423?pgno=3/.

http://www.ddj.com/dept/architect/187900423?pgno=3/
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=xiii

Part I

All about Interfaces

Chapter 1

Introduction to Interfaces
We’ll start our introduction to interfaces with ordering a pizza. The
pizza order is not just to ensure that reading begins on a full stomach;
by using non-computer-related matter, we can explore some general
topics relating to interfaces, such as polymorphism and implementa-
tion hiding, without getting bogged down in technology. Then we’ll
switch to real systems to show code and textual interfaces as back-
ground for topics in later chapters.

1.1 Pizza-Ordering Interface

If you’re a real programmer, or a serious pizza eater, you’ve probably
performed the following scenario hundreds of time.

The Pizza Order

You’re hungry so you call your favorite pizza joint.

“Yo,” the voice on the other end answers, ever so politely.

“I’d like a large pizza,” you reply.

“Toppings?” the voice queries.

“Pepperoni and mushrooms,” you answer.

“Address?” is the final question.

“1 Oak Street,” you reply.

“Thirty minutes,” you hear as the phone clicks off.

The steps you have just performed conform to the PizzaOrdering inter-
face, which is implemented by thousands of pizza shops all over the

PIZZA-ORDERING INTERFACE 3

world. You provide information on the size and toppings and where to
deliver the desired pizza. The response is the amount of time until it
will be delivered.

Using the same interface but with potentially different implementations
is the central concept of polymorphism. Multiple pizza shops provide the
same functionality. If I picked up the phone, dialed the number, and
handed the phone to you, you might not know from which particular
shop you were ordering. But you would use the same interaction with
any pizza shop. In addition, you would not have any knowledge of how
they really make the pizza. This interface does not constrain how the
pizza shop makes its pizza, how many people they employ, the brand of
flour they use, or anything else about the implementation.

How did you find an implementation of the PizzaOrdering interface? You
probably used an implementation of the PizzaOrderingFinder interface.
You looked in a directory under Pizza, went down the list of names,
and picked one you used before or one that had been recommended to
you by a friend. If you’re in a new place, you may just start with the
first name on the list. We’ll explore other ways to find pizza shops later
in this book.

PizzaOrderingFinder returns a pizza shop. Each pizza shop is different;
otherwise, there would be no need for more than one brand of pizza
shop. Shops vary on the quality of implementation: how fast they make
the pizza and the tastefulness of the result. You may be aware of the
variations between different pizza shops and ask PizzaOrderingFinder to
find one whose characteristics fit your needs. If you’re really hungry,
you might substitute speed for quality. Pizza shops also vary on price
(the requirements on the resources in your wallet). Whether resource
requirements bear any relationship to quality is an interesting question
that we’ll discuss later in regard to software.

The Pizza Interfaces

Now for those readers who are having a hard time relating pizza to soft-
ware development, let’s create a more formal definition of the PizzaOrder-

ing interface. We’ll use this example later in the book as we describe
the various facets of interfaces.

interface PizzaOrdering

enumeration Size {SMALL, MEDIUM, LARGE}

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=3

PIZZA-ORDERING INTERFACE 4

customer :PizzaOrdering

set_size(a_size)

set_toppings(toppings)

set_address(address)

get_time_till_delivered()

time_till_delivered

Figure 1.1: PizzaOrdering sequence diagram

enumeration Toppings {PEPPERONI, MUSHROOMS, PEPPERS, SAUSAGE}

set_size(Size)

set_toppings(Toppings [])

set_address(String street_address)

TimePeriod get_time_till_delivered()

Note that setting the address in our simulated conversation actually
returned the time_till_delivered. Having a function that sets a value
return a value of a completely different type gives me a bad feeling
in my stomach, and it ain’t from the pepperoni. So I added a method to
retrieve the time_till_delivered.

Figure 1.1 shows the PizzaOrdering interface in a UML sequence dia-
gram. The diagram captures the sequence of interaction between a
customer and an implementation of the PizzaOrdering interface (i.e., a
pizza shop). For those less familiar with sequence diagrams, I’ll explain
the details in Chapter 2.1

Here’s a more formal description for how you might find a pizza shop:

1You may look at this interface and say, “I know another way to do this.” Good! Write
it down. If you don’t see an equivalent interface later in this book, send it to me. I’ll
present several variations of interfaces in this book, but there is never one “best” answer,
and alternatives are always worth considering.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=4

REAL-LIFE INTERFACES 5

interface PizzaOrderingFinder

PizzaOrdering find_implementation_by_name

(String name_of_pizza_shop);

PizzaOrdering find_first_implementation()

PizzaOrdering find_default_implementation()

This interface finds vendors that implement the PizzaOrdering interface.
An implementation might not necessarily be a pizza shop; it might be
a regular restaurant that offers pizzas as a menu item for delivery.
It could be Sammy’s Computer and Snack Shop that started offering
pizzas when Sammy discovered that software development made pro-
grammers hungry.

You could realize this interface in a number of ways. You could perform
the operations yourself by grabbing a phone book and getting a number
and dialing it. You could ask a friend to do that for you. You could
call the operator and ask for a particular pizza shop. This variation
of possible implementations is another example of polymorphism in
action. The PizzaOrderingFinder interface illustrates another pattern that
will be discussed later in this book.2

1.2 Real-Life Interfaces

Software is not developed by pizza alone, even though it fuels much
development. Let’s first see what a software interface is all about, and
then we’ll explore examples of interfaces that exist in current systems.

What Is an Interface?

Interfaces are declared in code. In some languages, such as Java and
C#, interface is a keyword. It applies to a set of method signatures
(names and parameter lists). You use implements in Java to show that
a class implements an interface. For example:

interface SampleInterface

{

double findAverage(double [] numbers);

}

2In particular, the Factory Method pattern. See Design Patterns: Elements of Reusable
Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides (Addison-Wesley, 1995).

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=5

REAL-LIFE INTERFACES 6

class SampleImplementation implements SampleInterface

{

double findAverage(double [] numbers)

{

// calculate average and return it

return average;

}

}

In C#, you define an interface with the interface keyword, but you use
a colon (:) to show that an class implements the interface. Since the
same symbol is used to show inheritance, by convention the interface
name usually begins with I, as in the following example:

interface ISampleInterface

{

double findAverage(double [] numbers);

}

class SampleImplementation : ISampleInterface

{

double findAverage(double [] numbers)

{

// calculate average and return it

return average;

}

}

C++ programmers do not have an equivalent keyword; in C++ a class
with all pure virtual functions (described by using “ =0” for the function
body) and with no data members is the code equivalent of an interface.3

You use the inheritance symbol (:), even though there is no implemen-
tation to inherit.

class SampleInterface

{

double findAverage(double numbers [], int size) = 0;

}

class SampleImplementation : public SampleInterface

{

double findAverage(int numbers [], int size)

{

// calculate average and return it

return average;

}

};

3An interface can have enumeration definitions.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=6

REAL-LIFE INTERFACES 7

Other Interfaces

Even a non-object-oriented language, such as C, can support inter-
faces. In C, an interface is a set of functions that apply to a common
concept, such as the set of functions that operate on a file, as we’ll
explore in the next section.4

Text is another form of interface. The text specifies the functions to
perform (typically in a human-readable format but not necessarily). For
example, the command prompt of Windows is a textual interface—you
type a command to perform along with parameters. We will use the
term textual interface to differentiate this type of interface from one in
a programming language.

Unix Devices

The Unix operating system has a standard interface to all devices (hard
drives, displays, printers, and keyboards) and files, and it is expressed
in the C language. This interface is an example of polymorphism in
a non-object-oriented language: you always use the same functions,
regardless of the type of device or file.

To the user, each device appears as a file. Every device has an entry
in the file system in the /dev directory. For example, a printer entry
might be /dev/lp0 (for line printer 0). You open and write to a printer in
the same way you write to a file. The basic set of functions include the
following:5

open(filename, flags);

// Returns a file descriptor.

// Flags include O_RDONLY, O_WRONLY or O_RDWR

close(file_descriptor);

read(file_descriptor, buffer, count);

write(file_descriptor, buffer, count);

For example, you open a file with this:

file_descriptor1 = open("/home/ken/myfile.txt", O_WRONLY);

To open a printer, you use:

file_descriptor2 = open("/dev/lp0", O_WRONLY);

4In C, a structure that contains members that are function pointers acts as a poly-
morphic interface. For example, the file_operations structure for device drivers in Linux
describes the functions that a driver must support.

5This is a simplified version.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=7

REAL-LIFE INTERFACES 8

After this point, the remainder of your program reads and writes using
the file descriptors. The calls to these functions are the same, regard-
less of whether you are communicating to a file or the printer. For
example, both of these function calls write nine characters to the cor-
responding device:

write(file_descriptor1, "Something", 9);

write(file_descriptor2, "Something", 9);

The polymorphism that this interface provides is powerful. Suppose
you write a program that is intended to read from the keyboard and
write to the display. You can freely substitute other devices for the
keyboard and the display. From the command line, this is known as
I/O redirection. Because there is no difference between reading from a
file and reading from the keyboard, you can put commands into a file
and have a program read the commands from that file.6

For example, the cat program (short for concatenate) is nominally set
so that input comes from the keyboard and output goes to a display.
Using I/O redirection, if you write

cat < input_file > output_file

cat reads from input_file and writes to output_file. Suppose you want to
display your entire hard disk, assuming you have the necessary privi-
lege to read the device. You can use the following:

cat < /dev/hda1

You can copy an entire disk to another disk as simply as doing this:

cat < /dev/hda1 > /dev/hda2

The Interface

Object diehards might not consider the preceding set of C functions to
be an interface. The set of functions follows a common pattern that
starts with initiating a service request (open()) that returns an opaque
data identifier (a file descriptor). The identifier is passed to other func-
tions (write(), read(), and close()) for subsequent processing. Service
patterns like this can be transformed into a more familiar-looking inter-
face. A realization of this interface will have a file descriptor as a private
data member, but that is an implementation detail that is not part of
an interface.

6You can also use the polymorphic behavior to set the output of one program to be
the input of another program. Unix systems refer to this as a pipe.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=8

REAL-LIFE INTERFACES 9

interface File

open(filename, flags) signals UnableToOpen

read(buffer, count) signals EndOfFile, UnableToRead

write(buffer, count) signals UnableToWrite,

close()

We’ll look at this interface again in a few chapters, so if this thin veneer
doesn’t particularly appeal to you at the moment, wait a while, and we’ll
fix it up.

Textual Interfaces

Since every device in Unix operates through a common interface, you
need some method to communicate device-specific commands. One
way is to use a textual interface for these directives. The commands are
sent as a string of characters. A common textual interface is the origi-
nal modem interface created by the manufacturer Hayes. For example,
some of the common commands are as follows:

AT (attention, commands follow)

D (dial a number)

T (dial a number using tones, rather than pulses)

To dial a number, you send the modem the “ATDT9195551212” se-
quence. The replies from the modem are also textual. If the connection
was successful, the modem returns the “CONNECT” string. If the con-
nection was not successful, it returns a string denoting the error, as
the “NO CARRIER” or “BUSY” string. To hang up the phone, you send
the “ATH” string.

An advantage of a textual interface is that you can store the commands
in a file. Later you can read the file and send them to the device.

Other textual interfaces include the common Internet protocols such as
Simple Mail Transfer Protocol (SMTP) and File Transfer Protocol (FTP).
For example, FTP commands include the following:

open hostname #Open a connection

get filename #Get a file

close #Close a connection

You may run across other textual interfaces, although you might not
necessarily think of them as such. Both Unix and Windows can cre-
ate text files containing commands and data for printers; a standard
language for these commands is PostScript. The document is text, so

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=9

REAL-LIFE INTERFACES 10

it can be stored in a file or sent to a printer device. An example of
PostScript commands to print “Hello world” on a page is as follows:

/Times-Roman findfont

12 scalefont

setfont

newpath

200 300 moveto

(Hello world) show

showpage

The printer interprets the commands and prints the page. The set
of printers that understand PostScript can be considered polymorphic
implementations of the PostScript interface.7 Just like pizza shops,
their output may vary in quality and speed. But they all implement the
same functionality.

We’ll examine in Chapter 3 how to translate a textual interface, such
as the FTP commands, into a programmatic interface. The PostScript
file acts like a document-style interface. We’ll explore document-style
interfaces in more detail in Chapter 6.

The GUI Interface

Packages that support graphical user interfaces make extensive use of
polymorphism. In both Java and Windows, you draw in a graphics
context. In Java, the context is the Graphics class. For Windows, the
graphic context for the Microsoft Foundation Classes (MFC) is the CDC

(for device context) class. The graphics context could refer to a display,
a printer, an in-memory screen buffer, or a metafile. The user drawing
on the graphics context may not be aware to what they are actually
outputting.

In Java, you call drawString() to output a string to the display at a par-
ticular position:

void drawString(String string, int x, int y);

Given a reference to a Graphics object (say g), to output the string you
would code this:

g.drawString("Hello world", 200, 300);

For example, in MFC, you write text to the device context using the
following method:

7You can display PostScript files on Windows and Unix with GSView
(http://www.cs.wisc.edu/~ghost/gsview/get47.htm).

http://www.cs.wisc.edu/~ghost/gsview/get47.htm
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=10

THINGS TO REMEMBER 11

BOOL TextOut(int x, int y, const CString & string);

With a pointer to a CDC object (say, pDC), the code to output a string is
as follows:8

pDC->TextOut(200, 300, "Hello world");

Both graphics contexts are state-based interfaces; they contain the cur-
rent font with which the text is drawn as well as a plethora of other
items. In Chapter 3, we’ll see how we can translate this state-based
interface to a non-state-based interface.

The PostScript text in the previous section and these two code examples
perform the same operation. All three represent a realization of an
interface that you could declare as follows:

interface DisplayOutput

write_text(x_position, y_position, text)

I’ll describe many of the interfaces in this book at this level of detail.
This is to emphasize the functionality that an interface provides, rather
than the detailed code for any particular language.

1.3 Things to Remember

We’ve begun our exploration of interfaces with an emphasis on poly-
morphism. You’ve seen interfaces with a variety of functionality—from
ordering pizza to writing to devices to displaying text. You’ve seen the
same functionality as expressed in a programmatic interface and a tex-
tual interface. In the next chapter we’ll get down to business and dis-
cuss contracts that modules make when they implement an interface.

8The values of 200 and 300 in these examples do not refer to the same coordinate
system. For PostScript, the values are in points (1/72"). For drawstring(), the values are
in pixels.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=11

Chapter 2

Interface Contracts
In this chapter, we’re going to examine contracts. These contracts are
not the ones you make when you order pizzas but are the contracts
between the users of interfaces and their implementation. If you or the
implementation violates the contract, you will not get what you want,
so understanding contracts is essential.

We’ll start by considering three laws that all implementations should
obey, regardless of what services they offer. Then we’ll look at Bertrand
Meyer’s Design by Contract that outlines conditions for methods. You
cannot be sure that an implementation fulfills its contract until you test
it; contracts for pizzas and for files offer an opportunity to show types
of tests you can apply to interfaces. Also, you don’t measure the quality
of a pizza by just its speed of delivery. The nonfunctional qualities of
pizza are also important, so we conclude with a look at implementation
quality.

2.1 The Three Laws of Interfaces

One way to express one of the facets of the contract for an interface
is with three principles inspired by the Three Laws of Robotics. Isaac
Asimov first presented these laws in 1950 in his short-story collection,
Robot.1 Since computer programs often act like robots, this analogy of
the laws seems appropriate.

1You can find the original laws, as well as more details, at
http://www.asimovonline.com/.

http://www.asimovonline.com/

THE THREE LAWS OF INTERFACES 13

1. An Interface’s Implementation Shall Do What Its Methods
Says It Does

This law may seem fairly obvious. The name of a method should corre-
spond to the operations that the implementation actually performs.2

Conversely, an implementation should perform the operations intended
by the creator of the interface. The method should return a value or
signal an error in accordance with the explained purpose of the method.

If the purpose and meaning of a method are not unambiguously obvi-
ous from the method’s name and its place within an interface, then
those aspects should be clearly documented.3 The documentation may
refer to interface tests, such as those described later in this chapter, to
demonstrate method meaning in a practical, usage context.

An implementation needs to honor the meaning of a return value. The
sample PizzaOrdering interface in the previous chapter included the me-
thod TimePeriod get_time_till_delivered(). The return value represents the
amount of time until the pizza shows up on your doorstep. A delivery
should take no more than this amount of time. If TimePeriod is reported
in whole minutes, an implementation that rounds down an internal
calculated time (e.g., 5.5 minutes to 5 minutes) will return a value that
does not correspond to the described meaning.

2. An Interface Implementation Shall Do No Harm

Harm refers to an implementation interfering with other modules in a
program or with other programs. The user of an interface implementa-
tion should expect that the implementation performs its services in an
efficient manner.4

In particular, an implementation should not hog resources. Resources
in this case might include time, memory, file handles, database con-
nections, and threads. For example, if the implementation requires
connecting to a database that has limited connections, it should dis-
connect as soon as the required database operation is complete. Alter-

2This is also known as the Principle of Least Surprises.
3Michael Hunter suggests, “They should be documented regardless. Conversely, if

they need documentation, the name should be improved.”
4Andy Hunt suggests that implementation should use only those resources suggested

by its interface. For example, an interface whose purpose is to write to the screen should
not require a database connection.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=13

THE THREE LAWS OF INTERFACES 14

Liskov Substitution Principle

The first law corresponds to the Liskov Substitution Principle
(LSP), which states that a subtype should be indistinguishable
in behavior from the type from which it is derived. For object
design, methods in a base class should be applicable to
derived classes. In another words, a derived class should obey
the contract of the base class. Thus, any object of a derived
class is “substitutable” as an object of the base class. Bar-
bara Liskov and Jennette Wing introduced this principle in their
paper “Family Values: A Behavioral Notion of Subtyping.”∗

∗The full discussion is at
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-562b.pdf.

natively, the implementation could use a shared connection and release
that connection as soon as the operation finishes.5

If an implementation uses excessive memory, then it may cause page
faults that can slow down not only the program itself but also other
programs.

3. If An Implementation Is Unable to Perform Its
Responsibilities, It Shall Notify Its Caller

An implementation should always report problems that are encoun-
tered and that it cannot fix itself. The manner of report (e.g., the error
signal) can either be a return code or be an exception. For example, if
the implementation requires a connection to a web service (as described
in Chapter 5) and it cannot establish that connection, then it should
report the problem. If there are two or more providers of a web service,
then the implementation should try to establish a connection with each
of the providers.

5For example, implementations of J2EE Enterprise JavaBeans (EJBs) interfaces
share connections.

http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-562b.pdf.
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=14

THE THREE LAWS OF INTERFACES 15

Joe Asks. . .
What’s a Page Fault?

If you’ve ever seen your computer pause and the disk light
come on when you switch between two programs, you’ve seen
the effects of page faults. Here’s what happens.

A computer has a limited amount of memory. Memory is
divided into pages, typically 16 KB each. If a number of pro-
grams are running simultaneously, the total number of pages
they require may exceed the amount of physical memory. The
operating system uses the disk drive to store the contents of
pages that cannot fit in physical memory and that programs
are not currently accessing. The disk drive acts as “virtual”
memory.

When a program accesses a page not in physical memory (a
page fault), the operating system writes the current contents of
a memory page to disk and retrieves the accessed page from
the drive. The more memory required by programs, the greater
the chance that virtual memory is required and thus the greater
possibility of page faults and the slower the program will run.

Only if it is unable to connect to any of them should it report the prob-
lem to the caller.6,7

The errors that are denoted on the interface (either return codes or
exceptions) are part of the interface contract; an interface should pro-
duce only those errors. An implementation should handle nonspecified
situations gracefully. It should report an error if it cannot determine a
reasonable course of action.

6Michael Hunter notes that there can be hidden dangers if each interface implemen-
tation implements a retry process. An implementation may call another interface imple-
mentation. If both of them perform retries, then the report of failure to the user will take
longer. In one application, this failure report took more than five minutes because of the
number of interfaces in the process.

7For debugging or other purposes, the implementation may log the unsuccessful
attempts to connect with each of the services.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=15

THE THREE LAWS OF INTERFACES 16

Reporting Errors

You call the pizza shop.

You start to place the order, "I’d like a large pizza."

The voice comes back, "Johnny isn’t here."

You say, "With pepperoni," not having really listened to the pre-
vious statement.

The voice says, "Johnny isn’t here."

"So?" you say.

The voice says, "So, we can’t make a pizza."

You hang up.

It turns out Johnny is the cook. He’s not there. What do you
care? You really can’t do anything about that implementation
detail. The voice should say at the beginning, "I’m sorry, but we
can’t make any pizza today." You really do not care why. You
cannot call Johnny and tell him to go to work.

An interface should report problems only in terms that are
meaningful to the user. What are the potential problems for
the pizza shop?

• Unable to make pizza: As a customer, your response is to
hang up and find another pizza shop.

• Unable to deliver pizza: You could decide to pick up the
pizza, or you could try another pizza shop.

Technology exceptions should be converted into business
exceptions. Suppose the method returns a technology excep-
tion such as RemoteException. Then the interface is tied to a
particular implementation. Instead, the method should return
a business exception, such as UnableToObtainIngredients. If more
detailed information is required for debugging purposes, it can
be placed as data within the business exception.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=16

DESIGN BY CONTRACT 17

2.2 Design by Contract

To successfully use an interface, both the caller and implementer need
to understand the contract—what the implementation agrees to do for
the caller. You can start with informal documentation of that agree-
ment. Then, if necessary, you can create a standard contract.

Bertrand Meyer popularized Design by Contract in his book Object-
Oriented Software Construction (Prentice Hall, 1997). In the book, he
discusses standards for contracts between a method and a caller.8 He
introduces three facets to a contract—preconditions, postconditions,
and class invariants.

The user of an interface needs to ensure that certain conditions are
met when calling a method; these stipulations are the preconditions.
Each method in an interface specifies certain conditions that will be
true after its invocation is complete; those guarantees are the post-
conditions. The third aspect is the class invariant, which describes the
conditions that every object instance must satisfy. When dealing with
interfaces, these class invariants are typically properties of a particular
implementation, not of the interface methods.

If a precondition is not met, the method may operate improperly. If
the preconditions are met and a postcondition is not met, the method
has not worked properly.9 Any implementation of an interface can
have weaker preconditions and stronger postconditions. This follows
the concept that a derived class can have weaker preconditions and
stronger postconditions than the base class.

Contract Checking

An interface implementation is not required to check the preconditions.
You may assume that the user has met those preconditions. If the
user has not, the implementation is free to fail. Any failures should be
reported as in the Third Law of Interfaces.

If you decide to check the preconditions, you can do so in a number of
ways:

8See http://archive.eiffel.com/doc/manuals/technology/contract/ for a
discussion of contracts for components.

9You can use the Object Constraint Language (OCL) in UML to document the precon-
ditions and postconditions.

http://archive.eiffel.com/doc/manuals/technology/contract/
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=17

DESIGN BY CONTRACT 18

Pizza Conditions

Suppose a pizza-ordering interface specified that the allowed
toppings are pepperoni, mushrooms, and pineapple. An imple-
mentation that provides only pepperoni and mushrooms would
work only for a limited range of pizzas. It has stronger pre-
conditions. A pizza shop that also offered broccoli and ham has
weaker preconditions. An implementation with weaker pre-
conditions can meet the contract for the interface. One that
has stronger preconditions cannot.

Likewise, suppose that your requirement for delivery time is a
half hour. A pizza shop that may take up to one hour has a
weaker postcondition. One that may deliver in ten minutes
has a stronger postcondition. An implementation with stronger
postconditions meets the contract; one with weaker postcon-
ditions does not.

• You could use code embedded within each method to check the
conditions.

• In a less imposing way, you could use aspects,10 if a particular
language supports them.

• A third way is to use a contract-checking proxy. Chapter 11
describes the Proxy pattern.11

• nContracts is a C# language specific method. nContracts uses C#
attributes to specify the preconditions and postconditions. It does
not require change to the implementation source (like aspects),
but works like a contract checking proxy.12

A contract-checking proxy is an implementation of the interface that
checks the preconditions for each method. If all preconditions are met,
the proxy calls the corresponding method in the implementation that
does the actual work. Otherwise, it signals failure. If the corresponding
method returns and the postconditions are not met, it could also signal
failure.

10See aspect-oriented programming at http://aosd.net/
11The pattern can also be considered the Decorator pattern. See also Design Patterns.
12See http://puzzleware.net/nContract/nContract.html.

http://aosd.net/
http://puzzleware.net/nContract/nContract.html.
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=18

DESIGN BY CONTRACT 19

Pizza Contract

Let’s take a look at the PizzaOrdering interface. What are the contractual
obligations of this interface? OK, the pizza shop agrees to make and
deliver a pizza, and you also have to pay for the pizza. But you have
other facets. The interface requires a certain flow to be followed. If
you started by saying “1 Oak Street,” the order taker may get really
flustered and try to make you an Oak-sized pizza. So, the conditions
for each of the methods are as follows:

Method Preconditions Postconditions

set_size() None Size set

set_toppings() Size has been set Toppings set

set_address Size and toppings set Address set

get_time_till_delivered Size, toppings,
address set

None

Now you may want an interface that is a little less restrictive. You
might think you ought to be able to set the size, toppings, and address
in any order. You would eliminate the preconditions for the three set
methods, but the one for get_time_till_delivered() would still remain. For
a product as simple as a pizza, the strictness of the order is probably
unwarranted. For a more complex product, the method order may be
essential. For example, if you’re ordering a car, you can’t choose the
options until you’ve chosen the model.

File Contract

For a more computer-related example, let’s examine the contract for the
File interface we introduced in Chapter 1. Here’s the interface again:

interface File

open(filename, flags) signals UnableToOpen

read(buffer,count) signals EndOfFile, UnableToRead

write(buffer, count) signals UnableToWrite

close()

Before we investigate the contract for this interface, let’s examine the
abstraction that this interface represents. A realization of this interface
has these responsibilities:

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=19

DESIGN BY CONTRACT 20

Method Preconditions Postconditions

open(filename, flags)
signals UnableToOpen

None If (for writing)
 if user has permission
 File is opened for writing

if (for reading)
 if file exists and
 user has permission
 File is opened for reading

read(buffer, count)
signals EndOfFile,
UnableToRead

File opened
for reading

If not at end of file
 If count < bytes left in file
 Set file position to bytes after current
 else
 Set file position to end of file

write(buffer, count)
signals UnableToWrite

File opened
for writing

File position incremented by count

close() File is open File closed

Figure 2.1: Pre- and Postconditions for File interface

For writing out
Output a sequence of bytes to the device or file in the order in
which they are sent.

For reading from
Input a sequence of bytes from the device or file in the order in
which they are received or read.

For files (not devices)
Save the output sequence of bytes for later retrieval by another
process. The saved sequence should persist after a system shut-
down and reboot.

The contract for this interface includes the preconditions and postcon-
ditions shown in Figure 2.1 .

If the caller does not call open(), the other methods will fail. They
should inform the caller of the failure. They should not cause harm in
the event of this failure (see the Second Law of Interfaces). For example,

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=20

DESIGN BY CONTRACT 21

suppose an implementation initialized a reference in open(). Without
calling open(), that reference is uninitialized (e.g., null). If the write
method attempted to use that uninitialized reference and an exception
or memory fault resulted, that would violate the second law.

Protocol

You can list the operations involved in an interface, including precon-
ditions, postconditions, parameters and their types, return values, and
errors signaled. But you need more than just how to use operations
and when to use each operation. You also need to know the protocol
to the interface—the set of allowable sequences of method calls. The
preconditions often imply a sequence, but they may not. The protocol
can also show the callbacks that an interface may create, events that
are generated, or observers that are called.

For the File interface, you must follow a distinct sequence of methods.
You must open a file before you can read, write, or close it. The pro-
tocol can be documented in words, in a sequence diagram, in a state
diagram, or in test code.

To express the protocol in words, I use a form of a use case.13 A use
case describes an interaction between a user and a system that fulfills
a goal. An internal use case describes an interaction between a caller
and an interface. To differentiate between the two cases, I refer to an
internal use case as a work case. Use cases are usually expressed in
technology-independent terms; work cases might include the names of
the methods in the interface. The work cases demonstrate the protocol
for an interface.

For the File interface, we have the following work cases:

Work Case: Read a File

1. Open a file for reading (open()).

2. Read bytes from file (read()).

3. Close file (close()).

13For more details, see Writing Effective Use Cases by Alistair Cockburn (Addison-
Wesley, 2000) and http://alistair.cockburn.us/crystal/articles/sucwg/structuringucswithgoals.htm.

http://alistair.cockburn.us/crystal/articles/sucwg/structuringucswithgoals.htm.
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=21

DESIGN BY CONTRACT 22

user :File

open(name,"w")

write(bytes)

close()

Figure 2.2: Sequence diagram for the protocol

Work Case: Write a File

1. Open a file for writing (open()).

2. Write bytes to file (write()).

3. Close file (close()).

A UML sequence diagram can also demonstrate the protocol. Figure 2.2
shows the sequence diagram that corresponds to the second work case.

A UML state diagram provides a different way of indicating a protocol.
For each state, it shows what methods you can call. Calls to methods
may alter the state of an implementation and therefore alter what other
methods you may call.

For a file, the states include CLOSED, and OPEN_FOR_READING,
OPEN_FOR_WRITING. If an error, such as reading a file opened for
writing, causes the file to become unusable, you could have an ERROR
state.14

Figure 2.3, on the next page shows the state diagram for File. Note that
read() and write() transition into the ERROR state, if the file has been
opened in the opposite mode. The diagram does not show transitions

14Note in many languages, there are input streams and output streams. You cannot
invoke read on an output stream or write on an input stream, since the methods do not
exist in the corresponding interfaces. That separation of interfaces decreases the number
of possible state transitions and possible ways that errors can be generated.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=22

TESTING INTERFACES AGAINST CONTRACTS 23

Closed

Open for
reading

Error

Open for
writing

write()

read()

write()

open(name,"w")

close()

close()

read()

open(name,"r")

close()

Figure 2.3: State diagram for File

from ERROR for read() and write(). So, these method calls are ignored
in that state, according to the diagram.15

2.3 Testing Interfaces against Contracts

There is no question that automated unit and acceptance testing dra-
matically help in developing software. Extreme Programming (XP) and
other agile processes have reemphasized and reinvigorated the con-
cepts of testing. But what are you testing for? Essentially, you are
testing to ensure that an implementation of an interface meets its con-
tract. You can specify a contract in documentation; however, a coded
test can make the contractual obligation clearer. Plus, it can verify that
the contract is met. As a general rule, no interface definition is com-
plete until you have all the contractual tests successfully running for
at least one implementation.

15We leave it up to you to determine for your particular language or operating system
whether there is an implied ERROR state and what happens with an incorrect use of
read() and write(). See whether the documentation clearly describes the situation.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=23

TESTING INTERFACES AGAINST CONTRACTS 24

Joe Asks. . .
What’s a UML Sequence Diagram?

A UML sequence diagram shows a sequence of interactions
between modules. The interactions take the form of messages
or method calls. The modules may be instances of classes or
implementations of interfaces. A box and dotted line represent
a module. The name is within the box. The name may rep-
resent an actual module or an unspecified implementation of
an interface. To show the latter, you use a colon before the
name of the interface. The dotted line represents the “life” of
the module. For example, for an object, the line represents how
long the object exists.

You show calls to a method by drawing a line between the
caller and the callee and giving the name of the method. Lines
in the reverse direction show return values from methods.

When an implementation is “active” (that is, doing something
rather than just existing), the lifeline shows up as a rectangle,
rather than a dotted line.∗

∗This explanation gives only facets of sequence dia-
grams that we use in this book. More details are at
http://www.sparxsystems.com/resources/uml2_tutorial/.

The Design Patterns book states, “Design to an interface, not an imple-
mentation.” A parallel guideline exists in testing. “Test to an interface,
not an implementation”. This is termed black box testing.16 You test
an interface without looking inside to see how it is coded. With more
services being provided remotely, you probably will not have access to
the code. Therefore, you can test only to the interface.

Writing tests for an interface can also help you work out difficulties in
the interface. You can find ambiguities or unclearness in the contrac-
tual obligations, the method definitions, or the protocol. If you find
that your interface is hard to test, then it probably will be hard to use.
If this happens, you can redesign your interface without even having
coded an implementation.

16White box testing uses knowledge of the code to devise tests, typically tests that
check performance and robustness.

http://www.sparxsystems.com/resources/uml2_tutorial/.
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=24

TESTING INTERFACES AGAINST CONTRACTS 25

Joe Asks. . .
What’s a State Diagram?

A state diagram shows states and how method calls (or other
events) cause transitions between states. The diagram has an
initial state marked by a line from a filled circle. A rounded rect-
angle represents each state. Lines with method names repre-
sent the transitions between states. A circle with a dot in it marks
the termination of the state transition.

Showing transitions for all methods for each state can com-
plicate a diagram. Accompanying text can explain whether
methods not shown on a transition line are ignored or cause an
implicit transition that terminates the state diagram.∗

∗This explanation gives facets only of state dia-
grams that we use in this book. More details are at
http://www.sparxsystems.com/resources/uml2_tutorial/.

Tests for the Pizza Contract

Let’s devise tests for the PizzaOrdering interface. We can create tests for
each individual method. But we also want to create a test for a work
case, which calls all the corresponding methods.17 This is the test for
the work case:

Test Case: Order a Pizza

1. Set the size (set_size()).

2. Set the toppings (set_toppings()).

3. Set the address (set_address()).

4. Call get_time_till_delivered().

5. Verify that a pizza is delivered to the address within the returned
time_till_delivered.

17Note that testing an implementation to ensure it is successful for all the combina-
tions of sizes and toppings could be expensive, time-consuming, and fattening. See Elis-
abeth Hendrickson’s article (http://www.qualitytree.com/ruminate/022105.htm)
for how to devise tests for random combinations.

http://www.sparxsystems.com/resources/uml2_tutorial/.
http://www.qualitytree.com/rumi nate/022105.htm
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=25

TESTING INTERFACES AGAINST CONTRACTS 26

Tests for the File Contract

For the File interface, we devise tests for each of the work cases, as well
as for the individual methods. The tests for the two work cases would
include the following:18

Test Case: Write Bytes to File

1. Open a file for writing.

2. Write a number of bytes that have known values.

3. Close file.

4. Verify that the bytes have been written.

Test Case: Read Bytes from File

1. Open a file for reading.

2. Read a number of bytes.

3. Verify that the bytes are equal to known values.

4. Close file.

We can create “misuse” cases (or “miswork” cases). Misuse cases state
ways that a caller or user might accidentally (or deliberately) violate the
protocol. Here are some misuse cases for File:

Test Case: Read a File Opened for Writing

1. Open a file for writing.

2. Read bytes from file. This operation should signal an error.

3. Close file.

Test Case: Write to an Unopened File

1. Write bytes to file. This operation should signal an error.

You should ensure that you have tests for all possible sequences of
method calls. A state diagram such as Figure 2.3, on page 23, can
clarify the sequences that need testing. For example, in addition to the

18These tests represent only a portion of the tests. We would also create variations
that include writing zero bytes, a single byte, and a large number of bytes.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=26

LEVELS OF CONTRACTS 27

previous tests, we should try writing to a file opened for writing and
then reading from it.

2.4 Levels of Contracts

Christine Mingins and Jean-Marc Jézéquel suggest that there are sev-
eral levels of contracts.19 The levels are:

• Basic type contracts as in typed programming languages

• Semantic contracts that include the preconditions and postcondi-
tions

• Performance contracts for real-time systems

• Quality of service contracts that are hard to quantify

You need to test for conformance with all these contracts. For typed
programming languages, the compiler enforces the type contract (we’ll
take a look at untyped languages in the next section). Testing for qual-
ity of service contracts is usually more difficult than testing for per-
formance contracts: quality may include resource usage, reliability,
scalability, and the other “ilities.”20 We’ll examine quality more shortly.

Other nonfunctional facets of interfaces include transactional behavior
(does it participate in a transaction?), security (e.g., is it called by or on
behalf of authorized users?), and logging. These facets can be applied
by aspect-based code, such as Java aspects, or by frameworks, such as
J2EE, in which the implementations reside. In either case, the interface
implementation has code only for the essential behavior. The aspects or
framework take care of the rest. We don’t cover security or transactions
in this book, because they require entire books by themselves.

Explicit versus Implicit Type Contracts

Languages differ in how they enforce the parameter data type contracts.
In some languages, such as Java and C++, you have to be explicit about
the data types of the parameters that are passed to a method. In other
languages, such as Python, Perl, and Ruby, the data type is implicit.
You do not specify a parameter type. How a method uses a parameter
implies the type.

19See http://archive.eiffel.com/doc/manuals/technology/bmarticles/sd/contracts.html.
20See Software Requirements by Karl Wiegers (Microsoft Press, 2003) for a full discus-

sion of the “illities.”

http://archive.eiffel.com/doc/manuals/technology/bmarticles/sd/contracts.html.
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=27

LEVELS OF CONTRACTS 28

Let’s look at an example of implicit typing in the Observer pattern.21 In
this common pattern, one object is interested in changes in the state of
another object. The interested party is the observer, and the watched
party is the observed.

Suppose we have a Customer class. An observer may be interested in
the event that the name or the address changed in the class. If we
program this class in an dynamically typed language such as Ruby, we
might code this:22

class Customer

def add_observer(observer)

@observer = observer

end

def address=(new_address)

@address=new_address

@observer.notify_address_change(new_address)

end

def name=(new_name)

@name=new_name

@observer.notify_name_change(new_name)

end

Note that observer must have two methods. If set_address() or set_name()
is called and the observer does not have a matching notify() method, a
runtime error occurs. The error occurs because the implicit contract
(having these two methods) has been violated.

In Java, the methods required by an observer are described by an
explicit interface:23

interface CustomerObserver

notify_address_change(address)

notify_name_change(name)

You state explicitly that the observer must have these methods by its
type declaration in the parameter list for add_observer(). For example:

21See Design Patterns for more details on the Observer pattern.
22In Ruby, we could also use the Observer mixin.
23This has been reduced from the usual multiple observers to a single observer to keep

the code simple.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=28

CONTRACTUAL QUALITY 29

class Customer

{

CustomerObserver the_observer;

void add_observer(CustomerObserver observer)

{

the_observer = observer;

}

void set_address(Address an_address)

{

// set address, then

observer.notify_address_change(an_address)

}

void set_name(name)

{

// set name, then

observer.notify_name_change(name)

}

}

The Java compiler complains if you pass an object that does not provide
the CustomerObserver interface to the add_observer() method.

In both Ruby and Java, you should write sufficient tests to ensure
that the observer/observed code works as you intended. So, one might
argue that an explicit interface is not required. However, typing the
parameter as CustomerObserver enforces in code the contract that the
object must support those methods. With implicit typing, the need for
the methods must be shown in the documentation.

2.5 Contractual Quality

We introduced a question in the original pizza example of whether price
has any relationship to quality; we might also ask whether speed of
delivery is more important than tastiness. We’re going to let these ques-
tions of pizza be an area of discussion for you and your fellow readers
of this book.

But these questions do have important analogies in software—the qual-
ity of implementation trade-offs. For example, one implementation of
an interface might be faster but require more memory.

The speed of an implementation can vary based on the demands placed
upon it. This makes it tricky if you cannot determine in advance the
requirements for the caller. For example, suppose you had a method
sort(Object []) that sorted the passed array using a comparison function

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=29

THINGS TO REMEMBER 30

of Object class.24 There are many different algorithms for sorting an
array. They differ in speed and memory resources required.25 The algo-
rithms’ variance in speed is often due to the degree of sorting already
in the array. For example, if an array is already sorted, a bubble sort
is the fastest, but the quicksort algorithm is faster than a bubble sort
most of the time. If the array is already sorted in the reverse direction,
quicksort is slower by far. Because of its recursive nature, quicksort
can demand somewhat more resources than the bubble sort. By using
interfaces to a sorting method, rather than specifying a particular one,
you can always substitute an implementation that is more aligned with
the requirements that spontaneously arise.

The sort example is a specific case of the general issue that implemen-
tation trade-offs are important. By using interfaces, rather than con-
crete implementations, you can make choices appropriate to a given
situation without having to alter code that uses the interface.

2.6 Things to Remember

An implementation of an interface should obey the three laws:

• Do what its methods say it does.

• Do no harm.

• Notify its caller with meaningful errors if unable to perform its
responsibilities.

Establish a contract for each interface (either formally or informally):

• Indicate the preconditions and postconditions for each method.

• Specify the protocol—the sequence of allowable method calls.

• Optionally, spell out nonfunctional aspects such as performance
or quality of implementation.

• Create tests to check that an implementation performs according
to its contract and that it obeys the three laws.

24You might supply a comparison function to the method to make the sort more flexi-
ble.

25Donald E. Knuth’s classic book on sorting and searching gives a whole slew of
algorithms: Art of Computer Programming, Volume 3: Sorting and Searching (Addison-
Wesley,1998).

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=30

THINGS TO REMEMBER 31

Sudoku and Quality

You may have noticed in your newspaper a new puzzle that has
nine columns and rows and some digits in the boxes. The dig-
its are a clue to the name Sudoku. Sudoku is an abbreviation
for a phrase meaning “the digits must remain single.” To com-
plete the puzzle, you fill in the empty boxes with the digits 1 to 9.
Every row and every column must contain every digit (i.e., with-
out repetition, since there are nine digits and nine boxes). In
addition, there are nine sets of three-by-three boxes that must
also contain every digit once.∗

At this point, you’re probably wondering what Sudoku has to
do with interfaces. Stay with me a moment....

When I saw the puzzle for the first time, I immediately thought of
how I could program the solution. It turns out I was not alone.
David Bock, who reviewed this book, also programmed a solu-
tion. He created a program that allows him to test the relative
quality of implementations of various solvers. The test program
is invoked with this:

measure_sudoku puzzle_file java_solution_class_name

The puzzle_file contains one or more Sudoku puzzles. The
java_solution_class_name is the name of a class (in the JAVA_PATH)
that implements the Solver interface, which looks like this:

public interface Solver
{
public Board solve(Board inBoard);
}

The measure_sudoku program reads the puzzle_file and turns
each puzzle into a Board. It then calls solve() for each Board
and records the amount of time the solution takes (you are
welcome to test your own Sudoku solver by downloading this
program from this book’s web site). Often you only have the
resources to create tests for the functional part of an interface
contract. For instance, the original test program measured only
the speed of solution. However, you should determine what
nonfunctional aspects should also be tested and how to test
for them. For a Solver, these aspects can include resource uti-
lization, robustness, and completeness. Resource utilization can
be measured by memory usage. For robustness, an unsolvable
puzzle can be given to the solver. For completeness, a puzzle
with multiple solutions can be passed to see whether a solver
can find all the solutions.

∗See http://www.sudoku.com for a manual solution.

http://www.sudoku.com
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=31

Chapter 3

Interface Ingredients
Now that we’ve covered the basics of interfaces, it’s time to examine the
ingredients of interfaces. Almost every interface you employ or develop
has a combination of these ingredients, so understanding them helps
you appreciate the whole pie. In this chapter, we’ll look at the spectrum
of interfaces from data-oriented to service-oriented and cover the trade-
offs in three distinct approaches to data-access interfaces.

You can always adapt an interface paradigm from one type to another
to make it more amenable to your project, so we’ll explore how to adapt
a stateful interface to a stateless one. Then we’ll look at transforming
a textual interface into a programmatic one and creating an interface
from a set of existing related methods.

3.1 Data Interfaces and Service Interfaces

There is a spectrum between data interfaces and service interfaces. We
use the term data interface when the methods correspond to those in
a class that contains mostly attributes. The methods in the interface
typically set or retrieve the values of the attributes.1 We use the term
service interface for a module whose methods operate mostly on the
parameters that are passed to it.

One example of a data interface is the classic Customer class. Customer

usually has methods like

• set_name(String name)

1Data interfaces also correspond to JavaBeans or pretty much any class that is a
wrapper around attributes with a bunch of getter/setters.

DATA INTERFACES AND SERVICE INTERFACES 33

Customer <<data interface>>
name
billing_address: Address
current_balance: Dollar

OrderEntry <<service interface>>

submit_an_order(an_order: Order)
cancel_an_order(an_order: Order)

Figure 3.1: Data vs. service interface

• set_billing_address(Address billing_address)

• get_current_balance().

Each of these methods affects or uses an attribute in the class. Imple-
mentations of data interfaces have state, which consists of the set of
values of all attributes in the class.

Service interfaces have methods that act on the parameters passed to
them, rather than the attributes of the implementation, for example
the methods submit_an_order(Order an_order) and cancel_an_order(Order

an_order). Figure 3.1 shows how data interfaces have just attributes
and service interfaces have just methods.

Service interface implementations usually have no attributes or only
ones that are associated with providing the service, such as connection
information that identifies where to submit an order or where to find
the current price for a stock. Implementations of service interfaces may
have no state, other than that of internal configuration values such as
this connection information.

This data versus service interface comparison is not pure black and
white, but rather a spectrum. An interface can range from a data trans-
fer object (DTO), whose methods refer only to attributes of the object,
to a command interface, which usually contains only service methods.
We could move away from a pure data interface by adding methods
to the Customer interface. We might add charge_an_amount(), which

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=33

DATA INTERFACES AND SERVICE INTERFACES 34

Entities, Control, Boundary

In Object-Oriented Software Engineering, Ivar Jacobsen intro-
duced three stereotypes for objects: entity, boundary, and
control. An entity depicts long-lived objects. Boundary objects
communicate between the system and the actors (users and
external systems). A control object represents behavior related
to a specific use case. It communicates with boundary objects
and entity objects to perform an operation.

These stereotypes relate to the data and service interfaces.
Data interfaces correspond to the entity objects. The under-
lying data mechanism (e.g., database table or XML file) is
opaque to the user of the entity object. An interface such as
Pizza, which contains just the size and toppings, is an entity.

A boundary corresponds to a service interface. You push a
button on a GUI or make a call to a method, and the underlying
service is performed. The PizzaOrdering interface presented in
Chapter 1 is a boundary interface.

A controller also corresponds to a service interface. Its methods
are typically called by a boundary interface. It can embody
business rules or services. A PizzaMaker that controls the mak-
ing of the Pizza() could exist between the PizzaOrdering() and a
Pizza(). The PizzaMaker() would be a controller.

alters current_balance; mail_statement(), which mails the current_balance

to the address; or is_credit_worthy(), which applies some business rules
to determine whether to extend credit to the customer.

Let’s take the PizzaOrdering interface in the first chapter and transform
it into two interfaces on each end of the spectrum. First we make a
pure DTO—a Pizza class containing just data on the pizza. For example:

class Pizza

set_size(Size)

set_topping(Topping)

Size get_size()

Topping [] get_toppings()

We now create a service interface that accepts a Pizza and places the
order:

interface PizzaOrderer

TimePeriod order_pizza(Pizza)

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=34

DATA ACCESS INTERFACE STRUCTURES 35

The method calling this interface first creates a Pizza and then passes
the Pizza to order_pizza().

We can turn the Pizza class into a class endowed with more behavior,
which is a guideline for object-oriented design. Let’s add a method so
that a Pizza orders itself:

class Pizza

// as above, plus:

order()

Pizza’s order() method could call an implementation of the PizzaOrderer

interface. One implementation could communicate the order over the
telephone; another implementation could fax it or email it. The user
of Pizza does not need to know about PizzaOrderer, unless they intend to
change the implementation that order() uses.2

In Chapter 1, you ordered a pizza over the phone. If PizzaOrderer repre-
sented a phone-based system, before accessing order_pizza(), you need
to call the shop. If we include that operation in this interface, it would
look like this:

interface PizzaOrderer

call_up()

TimePeriod order_pizza(Pizza)

hang_up()

Now PizzaOrderer represents a service provider interface, a variation of
the service interface. A service provider adds methods to the interface
that control the life cycle of the service provider. These methods are
often called initialize, start, or stop. Java applets, servlets, and session
beans are examples of service provider interfaces.

3.2 Data Access Interface Structures

You may run across different paradigms for interfaces that access data,
so it’s a good idea to appreciate the differences among them. An inter-
face can provide sequential or random retrieval of data. Users can
either pull data or have it pushed upon them.

2We explore ways to configure different implementations in Chapter 7.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=35

DATA ACCESS INTERFACE STRUCTURES 36

Sequential versus Random Retrieval

Data can be available in a sequential or random manner. For exam-
ple, the Java FileInputStream class allows only sequential access, while
RandomAccessFile allows access to the data in a file in any order.

The same dichotomy exists within collections and iterators. An iterator
interface allows access to a single element in a collection at a particular
time. Some styles of iterators, such as Java’s Iterator or C++’s forward
iterators, permit only one-way access. You have to start at the begin-
ning of the collection and continue in one direction to the end. On
the other hand, a vector or array index, or a C++ random-access iter-
ator, allows random access to any element in the set. If you have data
available with only sequential access and you want it to have random
access, you can build an adapter. For example, you can create a vector
and fill it with the elements from an iterator.

Other examples of sequential vs. random access are two Java classes
for accessing the data in an XML file. The Simple API for XML (SAX)
parser provides for sequential access to the XML elements; SAX does
not keep the data in memory. On the other hand, the Document Object
Model (DOM) allows random access. It creates an in-memory represen-
tation of the XML data. Note that a DOM parser can use a SAX parser
to help create the memory representation. These two interfaces have
corresponding advantages and disadvantages.

SAX: SEQUENTIAL ACCESS

Advantage—requires less resources to parse the file

Disadvantage—application cannot change the XML data

DOM: RANDOM ACCESS

Advantage—application can change the XML data

Disadvantage—requires memory to store the entire document

We’ll revisit SAX and DOM in a little more detail in a later section.

Pull and Push Interfaces

Interfaces move data in one of two ways: push or pull. You ask a pull-
style interface—for example, a web browser—for data. Whenever you
desire information, you type in a URL, and the information is returned.
On the other hand, a push-style interface transfers data to you. An
email subscription is a push-style interface. Your mail program receives

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=36

DATA ACCESS INTERFACE STRUCTURES 37

information whenever the mail subscription program sends new mail.
You don’t ask for it; you just get it.

You can use either a pull style or a push style when going through a
collection.3 An example of a pull style is the typical iteration through a
list or array:

Item an_item

for_each an_item in a_list

{

an_item.print()

}

For each element in a_list, the print() method is explicitly called. The
push style for this operation is as follows:

print_item(Item passed_item)

{

passed_item.print()

}

a.list.for_each(print_item)

The for_each() method iterates through a_list. For each item, for_each()
calls the print_item() method, which is passed the current item on the
list.

For each language, the actual code for the push style is different. For
example, in C++, you can use the for_each() function in the Standard
Template Library (STL). With this function, each item in the vector is
pushed to the print_item() function.

void print_item(Item item)

{

cout << item <<' ' ;
}

vector <Item> a_list;

for_each(a_list.begin(), a_list.end(), print_item);

In Ruby, the code could be as follows:

a_list = [1,2,3]

a_list.each { |passed_item| passeditem.print_item()}.

PUSH STYLE

Advantage—can be simpler code, once paradigm is understood

3Design Patterns refers to pull and push styles for a collection as internal and external
iterators.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=37

DATA ACCESS INTERFACE STRUCTURES 38

SAX

XML
PullParser DOM

Sequential Random

Push

Pull

No
implemen-
tation

Figure 3.2: Examples of data interfaces

PULL STYLE

Advantage—appears as a common control style (e.g., loop) in mul-
tiple languages

One from Each Column

Pull/push style and sequential/random styles can be intermixed in
combinations. As an example of a set of combinations in a specific
area, let’s revisit XML parsing. SAX is push/sequential; DOM is pull/
random. There is also a pull-style sequential interface called XMLPull-

Parser.4

Figure 3.2 shows how these three styles relate. The “No implemen-
tation” box shows a variation for which no current implementation
exists.5 Depending on what elements you want to retrieve from an XML
file, what you want to do with the elements, and memory constraints,
you choose one of these interface styles to create simpler code. To com-
pare how you might employ each of these versions, let’s take a look
at some logic in pseudocode. In each of these examples, we print the
count for one element in an XML file. The XML file looks like this:

4See http://www.xmlpull.org/v1/doc/api/org/xmlpull/v1/XmlPullParser.html
for full details.

5We can’t think of a need for this variation, so that may be why no one has created
one.

http://www.xmlpull.org/v1/doc/api/org/xmlpull/v1/XmlPullParser.html
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=38

DATA ACCESS INTERFACE STRUCTURES 39

<order>

<pizza>

<topping>

Pepperoni

</topping>

<topping>

Mushroom

</topping>

</pizza>

<icecream>

<topping>

Whipped Cream

</topping>

</icecream>

</order>

We want to print how many times the topping tag appears for a pizza.
To concentrate on the logic, we’ll ignore error handling and a few other
details. The pseudocode for the push/sequential SAX parser looks like
this:

SAXParser sax = new SAXParser(' file.xml');
sax.setContentHandler(new MyContentHandler());

sax.parse()

parse() reads the XML file. Every time parse() finds an XML tag, it
invokes the appropriate method in MyContentHandler. MyContentHandler

does not control the flow of method calls. It just provides the methods
that are called by parse(). The pseudocode for MyContentHandler looks
like:

class MyContentHandler

boolean foundPizza = false

int count = 0

startElement(String localName)

if (localName == "pizza")

count = 0

foundPizza = true

if (foundPizza && (localName == "topping"))

count++

endElement(String localName)

if (localName == "pizza")

foundPizza = false

print count

When a start tag is found by parse(), it calls startElement(). startElement()
needs to keep track of the place in the document it was invoked. It
does so by using foundPizza. This ensures that only toppings that are
associated with a pizza are counted.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=39

DATA ACCESS INTERFACE STRUCTURES 40

On the other hand, DOM reads the entire XML file and constructs an
object tree. Then you access the tree in whatever order you desire. The
pseudocode for DOM looks like this:

DOMParser dom = new DOMParser()

dom.parse(' file.xml')
Document document = dom.getDocument()

At this point, the document is completely parsed. You access the ele-
ments by calling methods in the Node class. For example, the method
getElementsByTagName() retrieves all the tags with a given name. The
pseudocode looks like:

Node [] thePizzas = document.getElementsByTagName("pizza")

for each Node in thePizzas

Node [] theToppings = node.getElementsByTagName("topping")

print length of theTopping

With XMLPullParser, you move through the XML document in a sequential
manner. Unlike the SAXParser, you ask the parser to give you the next
token. You then ask the token for its type. The pseudocode for handling
the parsed data looks like this:

XMLPullParser xml = new XMLPullParser(' file.xml')
while true

int event = parser.nextToken()

if (event == XmlPullParser.END_DOCUMENT)

break

if ((event == XmlPullParser.START_TAG) &&

(parser.getName() == "pizza"))

int count = 0

while (true)

event = parser.nextToken();

if ((event == XmlPullParser.START_TAG) &&

(parser.getName() == "topping"))

count ++;

if ((event == XmlPullParser.END_TAG) &&

(parser.getName() == "pizza"))

print count

break

Although the XMLPullParser code is longer than the other two examples,
the flow may be familiar to more programmers. You track where you
are in the document by which line of code you are executing.

Making general statements about combinations of interface styles is
difficult; you need to experience how you are going to use the combina-
tion. For the specific instance of XML parsing, to the advantages and

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=40

ALTERNATIVE INTERFACES 41

Asynchronous Pushing

Push methods may be called asynchronously. The Observer
pattern as commonly used in graphical user interfaces (GUIs)
is an example of asynchronous pushing. You provide a method
that is called when a button is clicked or a mouse hovers over
a widget such as a text box. The method may be called at any
time. Java’s ActionListener is an example of this Observer pat-
tern. When a button is clicked, the actionPerformed() is called.
If you have multiple buttons on the screen, any one of them
could be clicked at any time. Your program needs to be able
to handle the buttons in any order. The issues with dealing with
randomly ordered events are a topic for another book.

disadvantages previously mentioned for sequential/random dichotomy
of SAX and DOM, we could add these:

SAX—SEQUENTIAL ACCESS/PUSH

Disadvantage—user must keep track of previous events

DOM—RANDOM ACCESS/PULL

Advantage—simple to find particular elements

XMLPULLPARSER—SEQUENTIAL ACCESS/PULL

Advantage—flow may be familiar to more programmers

Disadvantage—may have more code than the other two alterna-
tives

3.3 Alternative Interfaces

You always face the problem of how to embody particular features in an
interface. You typically have at least two ways to structure a particular
feature. Let’s look at some of the issues involved in selecting a design.

Suppose you are creating an interface for a simple formatted document.
For example:

interface FormattedDocument

add_text(String)

You want to add the ability to format the text with either underlining
or bold attributes. You have at least two options for the methods: first,
you could use separate methods:

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=41

ALTERNATIVE INTERFACES 42

set_bold()

set_italic()

set_underline()

Second, you could have a single method with a parameter:

enumeration FontModifier { BOLD, ITALIC, UNDERLINE, NORMAL }

set_font_modifier(FontModifier)

The behavior in both these cases is the same—each method alters the
appearance of the formatted text.6 With only three font modifiers, the
trade-off between the two versions does not weigh heavily one way or
the other. In the first version, the method call is shorter, but you have
more methods. However, the second interface can be more resilient to
change. If you add a STRIKETHOUGH modifier, the method signatures
of the implementers do not have to change. Previous versions of the
set_font_modifier() method will not output STRIKETHROUGH, but they may
fail gracefully.

A similar trade-off occurs with the Observer pattern. In our example
from Chapter 2, we had two methods for the CustomerObserver. They
were the following:

interface CustomerObserver

notify_address_change(address)

notify_name_change(name)

If you add another event to the interface (say notify_balance_change()),
you have to change all the places where this interface is implemented.
Instead, you could cut down the interface to a single method. The
method could provide an indicator of what has changed, like this:

interface CustomerObserver

enumeration ChangeType {ADDRESS, NAME}

notify_change(ChangeType value)

If you add BALANCE to ChangeType, you do not have to change any ob-
servers. Alternatively, you might have the method pass the new and
old values:

interface CustomerObserver

notify_change(Customer old_customer, Customer new_customer)

6The two sets of methods differ on a more subtle level. A reviewer noted that the
definition of each alternative method did not specify whether the other font modifiers
were reset. For example, does calling set_bold() turn off all the other modifiers, or do you
need unset() methods? If set_font_modifier() allowed for multiple modifiers (e.g., BOLD and
ITALIC), then its contract could be to turn off all other modifiers.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=42

ALTERNATIVE INTERFACES 43

The observer would need to determine what the differences between the
old_customer and the new_customer were. But now you would not have
to change CustomerObserver at all.

MANY METHODS

Advantage—implementer does not have to determine type of
parameter

Disadvantage—implementer has to implement all the methods

SINGLE METHODS

Advantage—can be more resilient to change, because new meth-
ods do not have to be implemented

Disadvantage—must check parameter type to determine flow

This trade-off appears in listener interfaces in Java that are observer
interfaces for many of the GUI widgets. For example, to listen to events
occurring in a window, you must implement WindowListener. This inter-
face contains many methods:

interface WindowListener

{

windowActivated(WindowEvent)

windowClosed(WindowEvent)

windowClosing(WindowEvent)

windowDeactivated(WindowEvent)

windowDeiconified(WindowEvent)

windowIconified(WindowEvent)

windowOpened(WindowEvent)

}

A listener knows what event has occurred by which method is called.
The parameter that is passed is needed only for the details of the event,
not the type of event.

You may be interested in only one of the events, but you still need to
code a body for all the methods in the interface. This can be annoying,
so Java supplies a WindowListenerAdapter, which is really a WindowLis-

tener with default method bodies. Each method body does nothing. If
your class inherits from WindowListenerAdapter, it needs to override the
methods only for the events for which you are interested.

In this configuration, you really have not inherited an implementation.
You have just overcome a constraint of the language that requires a
class to implement all methods in an interface. The Java listener inter-
face could have been designed differently. There could have been mul-
tiple interfaces, like this:

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=43

STATELESS VERSUS STATEFUL INTERFACES 44

interface WindowClosedListener

{

windowClosed(WindowEvent)

}

interface windowIconifiedListener

{

windowIconified (WindowEvent)

}

If you wanted to listen to only a single event, you would need to imple-
ment only a single method. You would not need a WindowListenerAdapter.

In C# and Ruby, the callback method equivalent to windowClosed() does
not need to be part of an interface.7 The method can simply be any
one that matches the signature for a callback method. For example,
in Ruby, you hook up a listener for the window-closed event with the
following:

root = TkRoot.new()

frame = TkFrame.new(root)

frame.bind(' Destroy') { puts ' Window Closed' }

The code following frame.bind is executed when the window is de-
stroyed.

3.4 Stateless versus Stateful Interfaces

An interface implementation can either contain state (stateful) or not
contain state (stateless). In a stateful interface, the methods oper-
ate differently based on the current state, which is changed by the
sequence of method invocations. In a stateless interface, the behavior
is not dependent on the history of method invocations. Its behavior is
always the same. A stateful versus stateless PizzaFinder service illus-
trates the difference. Let’s examine the trade-offs between these two
types. Along the way, we’ll see how a stateful interface can be adapted
to a stateless one.8

Imagine if I were to call my mother and ask her to find the number for
Tony’s Pizza. She looks it up and says, “Well, there are five.” I say,
“Thanks, Mom, please give me the first one.” I hang up and call it only
to find out they don’t deliver to my neighborhood. I can call up my mom

7In C#, the keyword delegate is used to denote the signature of a callback method. In
Ruby, there are no interface declarations.

8Thanks to David Bock for providing this example.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=44

STATELESS VERSUS STATEFUL INTERFACES 45

and say, “Hi, Mom, please give me the next one.” She can then respond
with the next one. The conversation with my mother has state. She
remembers that I had asked about Tony’s Pizza and where I was in the
list.

Contrast this to calling the operator. I ask for the first Tony’s Pizza
on the list; they respond; I call, and it isn’t the right one. If I call back
information and say, “Give me the next,” the operator will say, “Next one
what, sir? I don’t know what you are talking about.” The conversation
with the operator is stateless. I will have to tell the operator on the
second phone call that I am calling about Tony’s Pizza, and I want the
second one in the list.

STATELESS

Advantage—a small number of operators can service many re-
quests. My mom would not be able to juggle more than a few
requestors at a time.

STATEFUL

Advantage—there is less chatter to get the same amount of work
done.

Let’s look at some program examples of stateful and stateless inter-
faces. We introduced programming a GUI in Chapter 1. In most lan-
guages, you have the equivalent of a GraphicsContext interface that con-
tains the state of the current font modifiers (e.g., BOLD). Suppose you
want to write a series of text with different modifiers. With a stateful
interface, you might code the equivalent of this:

GraphicsContext graphics_context;

graphics_context.set_font_modifier(BOLD)

graphics_context.print_text('In Bold')
graphics_context.print_text('Also in Bold')
graphics_context.set_font_modifier(ITALIC)

graphics_context.print_text('In Italics');

You first set the graphics_context to print in BOLD, which alters the
state of the GraphicsContext. All text from that point is printed in BOLD,
until the state of the graphic context is set to ITALIC.

The opposite form—a stateless interface—requires that you specify all
the font information in each call. The interface does not keep track of
the font modifiers. Calls to a stateless interface would look like this:

graphics_context.print_text(BOLD, ' In Bold')
graphics_context.print_text(BOLD, ' Also in Bold')
graphics_context.print_text(ITALIC, ' In Italics')

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=45

STATELESS VERSUS STATEFUL INTERFACES 46

Consistency

If you’re creating an interface, you should be consistent in your
parameter placement. You may have noticed that drawstring()
and TextOut() have parameter lists that are reversed. Similarly,
the parameter lists to create a font are reversed. Which one
is correct? Take a poll of your fellow programmers, and see
whether there is a preference.

I don’t have a definitive guideline other than being as consis-
tent as possible with the other interfaces you use in your organi-
zation.

STATELESS

Advantage—order of the method calls does not matter

Disadvantage—parameter lists are longer

STATEFUL

Advantage—parameter lists shorter

Disadvantage—order of method calls important

If you move the call to set_font_modifier(ITALIC) down one line
in the stateful example, then “In Italics” prints in bold. You can alter
the sequence of calls in the stateless interface, and the text is always
printed with the same font modifier.

The graphics contexts for Java and MFC (Graphics and CDC, respec-
tively) are stateful. The state includes values such as the current font
(e.g., Times Roman) for text output and the foreground and background
color of text. In both frameworks, you set the font, and then subsequent
drawing is in that font. In this Java example, graphics is the graphics
context:

Font font = new Font(' Times-Roman' ,12)
graphics.setFont(font);

graphics.drawString(' Hello world' , 200, 300);

MFC works in a similar fashion. The graphics context is represented
with a pointer, pDC.

CFont font;

font.CreateFont(12,' Times-Roman');
pDC->SelectObject(&font);

pDC->TextOut(200,300,' Hello world');

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=46

TRANSFORMATION CONSIDERATIONS 47

These graphics context methods eventually wind up calling methods in
Windows’ Graphics Display Interface (GDI), such as DrawText(). The GDI
methods then call methods in the Display Driver Interface (DDI), such
as DrvTextOut(). This function sends text out to a device. Here are some
of the relevant parameters:9

BOOL DrvTextOut(STROBJ * pointer_string_object,

FONTOBJ * pointer_font_object,

RECTL * pointer_opaque_rectangle);

This interface is stateless. The GDI passes everything that is needed—
the font in which to render the text (pointer_font_object), the position
at which to write the text (pointer_opaque_rectangle), and the text itself
(pointer_string_object). The current state of the graphics context is used
to fill in those parameters. So, the stateful interface of Java and MFC
invokes the stateful interface of GDI, which then executes the stateless
DDI. A stateful interface is transformed into a stateless one.10 This
statelessness simplifies coding of the device driver. It does not have to
remember “and what font was I printing in?”

Each device driver provides an implementation of the methods such
as DrvTextOut(). For a printer, the driver implementation converts the
information into a type specific to that particular printer. The driver
could output the text in PostScript or Hewlett Packard’s Printer Control
Language (PCL). Or the driver could create a bitmap of the text in the
processor and output that bitmap to the printer. The details of each
printer are opaque to the user of the Java or MFC interface.

If the output to the printer is a PostScript file, then the driver has
created a textual interface from a procedural one. So, the flow goes from
a stateful procedural interface at the user level to a stateless procedural
interface at the driver level to a textual interface. This sort of conversion
from one type of interface to another is common in many systems.

3.5 Transformation Considerations

“If you can’t be with the one you love, love the one you’re with,” wrote
Stephen Stills. You don’t have to love an interface you’re given. If you
don’t like way that an interface works, transform it into one you like.

9You can find the full interface at http://msdn.microsoft.com.
10A device driver may keep internal state to improve performance, but callers of the

interface do not rely upon that fact or even know it.

http://msdn.microsoft.com.
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=47

TRANSFORMATION CONSIDERATIONS 48

Nonobject Interface into Object Interface

Let’s examine a few ways that the Unix input/output interface can be
transformed into an object-oriented interface. In Chapters 1 and 2, we
presented the File interface:

interface File

open(filename, flags) signals UnableToOpen

read(buffer, count) signals EndOfFile, UnableToRead

write(buffer, count) signals UnableToWrite

close()

An implementation of this interface—such as MyFile—has a private in-
stance variable that represents the common element (the file_descriptor)
of the original C functions:

class MyFile implements File

private file_descriptor

open(filename, flags) signals UnableToOpen

read(buffer, count) signals EndOfFile, UnableToRead

write(buffer, count) signals UnableToWrite

close()

This straightforward translation of the original functionality raises an
interesting question as to the protocol for the interface. Should you
have a class that allows for possibly invalid instances? For exam-
ple, you could create an instance of the MyFile type without it being
connected to an open file. Then other methods (e.g., read(), write())
should check the state and not attempt to perform an operation on an
unopened file.

On the other hand, if a File object should exist only in the open state,
then a constructor should assume the functionality of the open method.
The destructor can perform the closing of the file. Objects that cannot
exist in an invalid state can make it easier to check the preconditions
and postconditions that were covered in Chapter 2.

A class with a constructor looks like this:

class FileWithConstructor

private file_descriptor

FileWithConstructor(filename, flags) signals UnableToOpen

read(buffer, count) signals EndOfFile, UnableToRead

write(buffer, count) signals UnableToWrite

destructor()

The FileWithConstructor class can implement a different interface, such
as FileAlwaysOpen. For example:

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=48

TRANSFORMATION CONSIDERATIONS 49

interface FileAlwaysOpen

read(buffer, count) signals EndOfFile, UnableToRead

write(buffer, count) signals UnableToWrite

Use a factory method to make use of this interface more opaque:

interface FileAlwaysOpenFactory

FileAlwaysOpen get_file(filename, flags) signals UnableToOpen

Inside the get_file() method, you create an instance of FileWithConstructor,
which implements the FileAlwaysOpen interface. The pseudocode for the
interface looks like this:

FileAlwaysOpen get_file(filename, flags) signals UnableToOpen

return new FileWithConstructor(filename, flags)

Note that the parameters to the get_file() method are the same as the
parameters for the constructor. You could always create a FileWithCon-

structor directly:

FileAlwaysOpen file = new FileWithConstructor(' myfile.txt' , READ_ONLY);

More Specific Interfaces

We discussed in Chapter 1 that you might want to send specialized
commands to particular types of devices. The Unix/Linux ioctl() method
and textual interfaces are two ways of sending device-specific com-
mands. To hide the details of communication, you could create device-
specific interfaces. The methods in the interface are applicable to only a
single device. For example, for a modem, you might have the following:

interface ModemDevice

hangup()

dial_phone_number(PhoneNumber) signals NoAnswer, NoDialTone, NoCarrier

// sends ' ATDT' + PhoneNumber to modem

The dial_phone_number() method sends the “ATDT” string, as shown in
Chapter 1. The user of this interface does not need to remember the
specific command string.

With the general FileAlwaysOpen factory, you could perhaps create a
FileAlwaysOpen and then ensure that it is a ModemDevice before you
try to dial a number with it. For example:

FileAlwaysOpen a_stream= FileAlwaysOpenFactory.get_file('/dev/mdm' ,
READ_WRITE);

if (a_stream is_a ModemDevice)

(ModemDevice) a_stream.dial_phone_number(' 5551212')

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=49

TRANSFORMATION CONSIDERATIONS 50

Alternatively, you could create a more specific factory method that
returns only a device that implements the ModemDevice interface. For
example:

class Modem implements FileAlwaysOpen, ModemDevice

Modem m = ModemFactory.get_modem();

m.dial_phone_number(' 5551212');

You could make an interface that parallels the “never invalid” concept
of FileAlwaysOpen. In this case, ModemDevice is hidden. The factory
always returns an instance of a dialed number.

class PhoneConnectionAlwaysOpen implements FileAlwaysOpen

interface PhoneConnectionFactory

PhoneConnectionAlwaysOpen get_phone_connection(PhoneNumber)

signals NoAnswer, NoDialTone, NoCarrier

PhoneConnectionAlwaysOpen m =

PhoneConnectionFactory.get_phone_connection('5551212');

Transforming Textual Interfaces to Programmatic Interfaces

Like the modem commands, you can transform most textual interfaces
into an interface with methods. For example, the File Transfer Protocol
(FTP) mentioned in Chapter 1 has commands such as the following:

open hostname #Open a connection

get filename #Get a file

close #Close a connection

You can transform these commands into a method interface by creating
methods for each command with the appropriate parameters and the
appropriate error signals. For example:

interface FTPService

open(hostname, username, password) signals

UnableToConnect, IncorrectUsernameOrPassword

get(filename) signals NoSuchFile, UnableToCommunicate

close()

On the server, the textual commands received from the client can be
transformed into method calls against a similar interface. The service
directory example in Chapter 9 gives another example of converting
from a method interface to a textual interface and back again.

DEVICE SPECIFIC

Advantage—hides device/protocol implementation issues

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=50

MULTIPLE INTERFACES 51

3.6 Multiple Interfaces

You are not stuck with a one-to-one relationship between an interface
and a module. A module can implement more than one interface. When
you implement multiple interfaces, you may have interface collision
problems. As an example, we’ll look at a pizza shop that also sells ice
cream.

Ice Cream Interface

You’re hungry for an ice cream cone. The PizzaOrdering interface doesn’t
allow you to order ice cream. So, you find an implementation of an
IceCreamOrdering interface that appears as follows:

enumeration Flavor { Chocolate, Vanilla, Coffee,Strawberry, ..}

enumeration ConeType { Sugar, Waffle}

interface IceCreamOrdering

set_number_scoops(Count)

set_cone_type(ConeType)

set_flavors(Flavor [])

Now an ice cream–only shop may implement the IceCreamOrderingin-
terface. On the other hand, a shop that offers the PizzaOrdering interface
may also offer the IceCreamOrdering interface. To do so, the shop must
provide an implementation of all methods in both interfaces as:

enumeration Toppings {PEPPERONI, MUSHROOMS, PEPPERS, SAUSAGE}

class CombinedPizzaIceCreamShop implements PizzaOrdering

and IceCreamOrdering

set_number_scoops(Count)

set_cone_type(ConeType)

set_flavors(Flavor [])

set_size(Size)

set_toppings(Toppings [])

set_address(String street_address)

TimePeriod get_time_till_delivered()

Trying to implement multiple interfaces can lead to some interesting
issues. Suppose that IceCreamOrdering also had a set_toppings() method:

enumeration Toppings {WHIP_CREAM, CHERRY, CHOCOLATE_JIMMIES, PINEAPPLE}

set_toppings(Toppings [])

If the Toppings enumeration contained all the choices for both pizzas
and ice cream, then set_toppings() would need to differentiate between
which item was being ordered. Otherwise, you might get sausage on
your ice cream. With most languages, the enumeration of Toppings for
IceCream and Pizza can be placed in its own namespace (e.g., in a mod-

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=51

THINGS TO REMEMBER 52

ule or package). So, CombinedPizzaIceCreamShop would implement two
methods that took different Topping enumerations:

set_toppings(PizzaOrdering.Toppings [])

set_toppings(IceCreamOrdering.Toppings [])

If the methods took more primitive parameters (e.g., String or double),
then differentiating them would be harder. For example, suppose you
had the following interface methods:

interface PizzaOrdering

set_toppings(String toppings)

interface IceCreamOrdering

set_toppings(String toppings)

then the combined shop could have only a single method:11

class CombinedPizzaIceCreamShop implements PizzaOrdering

and IceCreamOrdering

set_toppings(String toppings)

The set_toppings() method has to be a bit more complicated to handle
both ice cream and pizza toppings, or else you might be eating chocolate
syrup on your pizza or pepperoni on your vanilla cone.12

3.7 Things to Remember

We’ve looked at several key ingredients in creating interfaces, and we
explored the spectrum between data and service interfaces. When
designing code, keep in mind the advantages and disadvantages of sev-
eral approaches to interfaces:

• Sequential versus random data access

• Push versus pull interfaces

• Stateful versus stateless interfaces

• Multiple methods versus single methods

A module may implement multiple interfaces by providing method im-
plementations for all of the methods. You can transform interfaces
from non-object-oriented code to object-oriented interfaces and textual
interfaces into procedural-style interfaces.

11C# permits overriding methods that have the same signature if they appear in dif-
ferent interfaces.

12I’m sure there is someone somewhere who reads that and goes, “Wow, what a great
idea!” Let me know if you are this someone, so I can avoid having to watch you eat.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=52

Chapter 4

What Should Be in an Interface?
One of the most difficult decisions in developing a program is deter-
mining what should be in an interface. The oft-quoted guideline for
object-oriented programming is that classes should be cohesive and
loosely coupled. In this chapter, we’ll see how these two concepts apply
to interfaces.

You often face another question: how many methods should you have
in an interface? Many methods can make an interface more difficult
to understand but can also make it more powerful. We will explore the
trade-offs in minimal to complete interfaces.

4.1 Cohesiveness

Methods in an interface should be cohesive. They should provide ser-
vices that revolve around a common concept.1 The problem is that the
definition of commonness is relative. For example, a share of stock is
a liability to a corporation, an asset to the owner, and something to
sell for a broker. According to Flood and Carson, the United Kingdom
“could be seen as an economy by economists, a society by sociologists,
a threaded chunk of nature by conservationists, a tourist attraction by
some Americans, a military threat by rulers of the Soviet Union, and
the green, green grass of home to the more romantic of us Britons.”2

1The cohesion quality predates object-oriented programming. An original reference
is W.P. Stevens, G.J. Myers, and L.L. Constantine’s, “Structured Design”, IBM Systems
Journal, Vol. 13, No. 2, 1974.

2See Dealing with Complexity by Robert Flood and Ewart Carons (Plenum Press,
1988).

A PRINTER INTERFACE 54

What Sticks Together?

I had a psychology professor who gave exams that were
designed to make you fail. He would give four terms and
ask the question, how many of these go together? Well, it
all depended on how you interpreted “go together.” He col-
lected all the exams, so I don’t have an example. But let me
give you one from programming. These are programming lan-
guages: Fortran, C, C++, and Java. How many of these lan-
guages relate to one another? a.) Two, b.) Three, c.) Four, d.)
None

If you and your team agree on an answer, then you probably
share a common approach to cohesiveness.

You can find commonness in almost anything. For example, “Why is a
lightbulb like Doonesbury?” Neither one can whistle.

We’re going to look at the interface to a printer to demonstrate a range of
cohesiveness. Depending on your point of view, you might consider that
all printer operations belong in one interface, since they are all related
to printing. Or you might consider a narrower view of cohesiveness that
divides the operations into multiple interfaces.3

4.2 A Printer Interface

You have a number of different printers in your office; each of them
has different capabilities. Let’s create a spreadsheet that shows the
different features for each printer. You probably can think of many
more capabilities, but we need to have the table fit onto a single printed
page. In Figure 4.1, on the next page, a check mark indicates that a
printer performs a particular operation.

Suppose you were to create your own printing subsystem. The question
is, how do you place these capabilities into interfaces? Do you have a
single interface or multiple ones? You need to determine which capabil-
ities are available when printing a page. For example, if the printer has
the capability to turn over the page, you want to ask the user whether

3For a look at eight kinds of cohesion (from Functional Cohesion to Coincidental), see
http://elearning.tvm.tcs.co.in/SDO/SDO/3_3.htm.

http://elearning.tvm.tcs.co.in/SDO/SDO/3_3.htm.
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=54

A PRINTER INTERFACE 55

Function/
Printer

print_
text

eject_
page

print_
color_
image

print_
bw_
image

turn_
over_
page

which_
side_are_
you_on

get_
trays

select_
tray

print_
postscript

Model1

Model2

Model3

Model4

print_
pclt

Figure 4.1: Printer feature matrix

they want double sided printing. If it has the capability to print a black-
and-white image but not a color one, you may want to convert a color
image to black and white before printing it.

You could place methods for all these operations into a single interface.
Every printer has methods for all operations, but a method does noth-
ing for an operation that the printer does not perform. If the printer
is unable to perform an operation, the method should signal that it
couldn’t. Otherwise, the method violates the spirit of the Third Law of
Interfaces presented in Chapter 2 (“Notify callers if unable to perform”).
The interface might look like this:

interface Printer

print_text(Position, Font, String)

eject_page()

print_image_in_color(Position, Image)

print_image_in_black_and_white(Position, Image)

turn_over_page()

Side which_side_are_you_on()

select_tray(TrayID)

TrayID [] get_tray_ids()

print_postscript(PostscriptString)

print_pcl(PCLString)

Corresponding to each capability method, the interface could also have
a method that indicates whether it is capable of performing an oper-
ation. This would honor the spirit of the First Law of Interfaces (“Do
what the methods say they do”). For example, the interface would have
methods like the following:

Boolean can_turn_over_page()

Boolean can_print_pcl()

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=55

A PRINTER INTERFACE 56

Similar to the set_font_modifier() method in Chapter 3, these multiple
methods could be turned into a single one, like this:4

enumeration Operation {TURN_OVER_PAGE, PRINT_PCL,...}

Boolean can_perform(Operation)

Your printing subsystem asks the printer whether it can perform a par-
ticular operation before calling the corresponding method:

printing_subsystem (Printer a_printer)

if (a_printer.can_perform(TURN_OVER_PAGE)

// ask user if they want duplex printing

A second way to organize the model/feature table is to break up the
methods into multiple interfaces. Each interface consists of a related
set of methods. A particular printer model implements only the inter-
faces for which it has capabilities. For example, the printer interfaces
could be as follows:

interface BasicPrinter

print_text(Position, Font, String)

eject_page()

interface ColorPrinter

print_image_in_color(Position, Image)

print_image_in_black_and_white(Position, Image)

interface MonochromePrinter

print_image_black_and_white(Position, Image)

interface DoubleSidedPrinter

turn_over_page()

Side which_side_on_you_on()

interface MultiTrayPrinter

select_tray(TrayID)

TrayID [] get_tray_ids()

interface PostscriptPrinter

print_postscript(PostscriptString)

interface PCLPrinter

print_pcl(PCLString)

How do we decide what operations to put into what interface? It’s a
matter of cohesiveness. If the operations (e.g., turn_over_page() and
which_side_are_you_on()) will be used together, they should go into the
same interface. If printers always supply operations as a set, then they
should go together.

The single Printer interface collects all operations relating to printers.
So, you may consider it a cohesive interface. On the other hand, each

4Note that in Windows you can call the capability method, GetDeviceCaps(), to ask
whether a particular operation is supported. For example, GetDeviceCaps(TEXTCAPS)
returns a value indicating text capabilities, such as TC_UA_ABLE (can underline).

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=56

A PRINTER INTERFACE 57

of these specialized interfaces has methods relating only to a particular
capability. So, you might think of them as more cohesive. Note that
a printer does not need to have any knowledge of interfaces it cannot
provide.5 We do not have to ask a printer “can you do this for me?” for
each operation. We see that a printer can do something by the fact that
it implements an interface.

Before we move on, let’s quickly look at how you might find a particular
type of printer. A printer provides an implementation of one or more of
the interfaces. For example:

class MySpecialPrinter implements BasicPrinter, ColorPrinter,

MultiTrayPrinter

You can provide a method that lets the user find a printer that imple-
ments a particular interface. For example, they may want to find one
that can print in color. So, the user codes the following:

my_printing_method()

{

ColorPrinter a_printer = (ColorPrinter)

PrinterCollection.find(ColorPrinter)

a_printer.print_image_in_color(position, image)

}

Now what if you want to pass around just a reference to a BasicPrinter,
and inside a method you wanted to use it as a ColorPrinter? You could
simply cast the reference to a ColorPrinter. If it did not implement the
interface, then a cast exception would be thrown:

a_function (BasicPrinter a_printer) throws CastException

{

ColorPrinter color = (ColorPrinter) a_printer

color.print_image_in_color(position, image)

}

If you really needed to find out whether the printer had more capabil-
ities, you could ask it whether it implements a desired interface. This
is the equivalent of testing for capabilities (e.g., calling can_perform() for
Printer) but for a related set of capabilities.6

5An alternative is to have a base class, ComprehensivePrinter, that implements all inter-
faces but has null operations for most of the methods. Then each printer inherits from
ComprehensivePrinter. We look at inheritance in Chapter 5.

6The code looks like downcasting (casting a base class to a derived class). You should
usually avoid downcasting. In this example, the cast is to an interface, rather than a
derived class.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=57

COUPLING 58

a_function (BasicPrinter a_printer)

{

if (a_printer is_a ColorPrinter)

{

ColorPrinter color = (ColorPrinter) a_printer

color.print_image_in_color(position, image)

}

}

However, if a_function() really required a ColorPrinter, it should be passed
a reference to one, rather than having to test for it. That makes its
contract explicit. The cast exception will occur when the reference is
passed.

a_function (ColorPrinter a_printer)

{

a_printer.print_image_in_color(position, image)

}

SINGLE PRINTER INTERFACE

Advantage—can have single capability query method

Disadvantage—related capabilities may not be logically grouped
together

MULTIPLE PRINTER INTERFACES

Advantage—printer need only implement interfaces it supplies

Disadvantage—lots of interfaces

4.3 Coupling

Coupling measures how one module depends on the implementation of
another module. A method that depends upon the internal implemen-
tation of a class is tightly coupled to that class. If that implementation
changes, then you have to alter the method. Too much coupling—
especially when it’s not necessary—leads to brittle systems that are
hard to extend and maintain.

But if you rely on interfaces instead, then it’s difficult to tightly cou-
ple a method to another implementation. A method that just calls the
methods in another interface is loosely coupled to that interface. If you
simply use a reference to an interface implementation without calling
any methods, then the two are considered really loosely coupled.

In the printer example, my_printing_method() is loosely coupled to Color-

Printer and PrinterCollection:

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=58

COUPLING 59

Who’s Job Is It Anyway?

You probably have printed digital photographs. Printing a digi-
tal photograph brings up an interesting question: if you want to
print an image in a resolution different from the printer’s resolu-
tion, where should you assign the job of converting the image
to a different resolution?

You have two options:

• Pass the printer driver the image, and let it perform its
own resolution conversion (perhaps by calling a graphics
library).

• Ask the printer for the resolution it can handle, convert the
image to that resolution, and pass the converted image
to the printer.

You might say, what’s the difference? The result should be the
same. Maybe, maybe not. This is where the quality of imple-
mentation comes into play. The program that you are using to
print the image may have a much higher quality of resolution
conversion than the graphics library. The developers may have
done a better job in reducing conversion artifacts.

Although you may often trust the implementation of an inter-
face to do the right thing, you may want to perform your own
set of processing to ensure that you get exactly what you want.
This quality of implementation issue sometimes makes it hard to
determine what is the appropriate job for an interface.

my_printing_method()

ColorPrinter a_printer = (ColorPrinter)

PrinterCollection.find(ColorPrinter)

a_printer.print_image_in_color(position, image)

If this method did not call a method in ColorPrinter, then it would be
really loosely coupled. For example, it could simply pass the reference
to another method, as:

my_printing_method()

ColorPrinter a_printer = (ColorPrinter)

PrinterCollection.find(ColorPrinter)

print_some_color_image(a_printer, position, image);

Loose coupling allows you to vary the implementation of the called
interface without having to change the code that calls it. On the other

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=59

INTERFACE MEASURES 60

hand, tight coupling forces the code to change. Here’s a silly example
to show tight coupling:

class Pizza

wake_up_johnny

order

In this example, Johnny is the implementation of the order taker. He
needs to be woken up before he can take an order. If Johnny leaves and
Sam takes over, Sam may be able to stay awake. The wake_up_johnny()
method would go away, forcing any code that calls the method to be
altered. The solution is to decouple the implementation by using an
interface and hiding the implementation. For example:

interface Pizza

order

class PizzaWithJohnny implements Pizza

order

calls wake_up_johnny

and then performs regular order

TIGHT COUPLING

Disadvantage—callers have to be changed if implementation chan-
ges

LOOSE COUPLING

Advantage—callers do not need to be changed if implementation
changes

4.4 Interface Measures

Interfaces can be subjectively measured on a number of scales. Let’s
look at two of these measures: minimal versus complete and simple
versus complex. An interface you design or use can fall anywhere in
these ranges.

Minimal versus Complete

A minimal or sufficient interface has just the methods that a caller
needs to perform their work cases. A complete interface has more
methods. The File interface in Chapter 3 had the following:

interface File

open(filename, flags) signals UnableToOpen

read(buffer, count) signals EndOfFile, UnableToRead

write(buffer, count) signals UnableToWrite

close()

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=60

INTERFACE MEASURES 61

You might note that the interface does not have a skip() method. This
method would allow a caller to skip over a number of bytes so that
they do not have to read the intermediate bytes. A caller who needs to
skip some number of bytes can simply read that many bytes and ignore
them. If a caller wants to go backward, they can close the file, open it
again, and start reading from the desired position.7 The interface is
sufficient for a user to perform the needed functionality.

On the other extreme, a caller might want the File interface to have
additional methods, like these:

read_a_line()

find_a_regular_expression(expression)

Adding these methods makes the interface more complete, in the sense
that it will have all the potential methods that a user might need. How-
ever, a more complete interface becomes more difficult to implement,
because of the number of methods. An alternative is to create another
interface with these methods, like this:

interface FileCharacterReader

read_a_line()

find_a_regular_expression(expression)

This interface would use an implementation of the minimal File inter-
face for the read() method and add the logic to return the appropriate
set of characters. Creating this interface can also help with cohesive-
ness. You can place methods that treat a File as a set of characters in
FileCharacterReader.

MINIMAL

Advantage—easier to implement and test with fewer methods

Disadvantage—user must code their particular functionality and
may wind up with duplicate code for same functionality

COMPLETE

Advantage—user has all needed methods

Disadvantage—may be harder to understand an interface with
numerous methods

7A skip() method would probably be more efficient if it were implemented as part of
the interface.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=61

INTERFACE MEASURES 62

Simplicity versus Complexity

If you were making a pizza yourself, rather than ordering one, you might
have a class like this:

class SimplePizza

set_size(Size)

set_topping(Topping)

Size get_size()

Topping [] get_toppings()

make()

At the completion of the make() method, a SimplePizza is ready for your
eating pleasure.

You could have a more complex interface, such as this:

class PizzaYourWay

set_size(Size)

set_topping(Topping)

Size get_size()

Topping [] get_toppings()

mix_dough()

spin()

place_toppings(Topping [])

bake()

slice()

PizzaYourWay allows you to control the pizza-making process with more
precision. You could slice() the pizza before you place_toppings() and
then bake() the pizza. If you were splitting the pizza with a vegetarian,
you would not get the artichoke juice mixed in with your pepperoni (or
vice versa).

The implementation of each method in PizzaYourWay is simpler. However,
you have made the user’s job more difficult. This “slice before placing
toppings” flow is now the caller’s responsibility to code. They have to
call five methods in the appropriate sequence in order to make a pizza.

The make() method in the SimplePizza may internally call private versions
of mix_dough(), spin(), place_toppings(), bake(), and slice(). The make()
method would handle any errors that these functions generated, thus
simplifying the caller’s code.

If you want to offer alternative flows, such as “slice before placing top-
pings,” you could create another SimplePizza method such as
make_by_slicing_before_placing_toppings(). The user simply calls the ap-
propriate method, without having to deal with complexity. Now you are
on the way to having a complete interface (see the previous section).

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=62

THINGS TO REMEMBER 63

Simplicity versus Complexity

You always have trade-offs in life. The trade-off of “Simplicity,
but Where?”∗ suggests you should strive for simplicity. You can
make the API simpler, which will put more complexity (such as
error handling) into the responsibility of the implementation, or
you can make the implementation simpler, by adding com-
plexity to the interface. This trade-off is also referred to as the
“Law of Conservation of Complexity”†

∗David Bock suggested this name
†Ron Thompson suggested this name

You could offer both interfaces to the outside world. The SimplePizza

interface would call the appropriate methods in PizzaYourWay. In a
sense, this trade-off acts as in reverse of the minimal versus complete.
You create a simpler interface for a complex one.

SIMPLE

Advantage—easy for the user to perform common functions

Disadvantage—variations must be coded as new methods

COMPLEX

Advantage—users have flexibility to “do it their way”

Disadvantage—may be harder for users to understand

4.5 Things to Remember

Design cohesive interfaces. Determining what makes a cohesive inter-
face is the hard part.

Aim for loose coupling. Using interfaces drives you there.

Measures of interfaces include the following:

• Minimal to complete

• Simple to complex

If in doubt, make an interface at one end of a measure, and use it from
one made at the other end.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=63

Chapter 5

Inheritance and Interfaces
Finding commonality among classes makes for effective object-oriented
programming. Often, programmers express that commonality using an
inheritance hierarchy, since that is one of the first concepts taught in
object-oriented programming.

We’re going to go to the other extreme in this chapter to explore the
difference between using inheritance and using interfaces. An empha-
sis on interfaces guides you in determining what is the real essence of
a class; once you have determined the essence, then you can look for
commonalities between classes.

Creating an inheritance hierarchy prematurely can cause extra work
when you then need to untangle it. If you start with interfaces and
discover an appropriate hierarchy, you can easily refactor into that
hierarchy. Refactoring into an inheritance hierarchy is far easier than
refactoring out of an existing hierarchy.

We will look at examples of alternative designs that emphasize either
inheritance or interfaces, so you can compare the two approaches. An
interface-oriented alternative of a real-world Java inheritance hierarchy
demonstrates the differences in code.

5.1 Inheritance and Interfaces

You probably learned inheritance as one of the initial features of object-
oriented programming. With inheritance, a derived class receives the
attributes and methods of a base class. The relationship between the

POLYMORPHISM 65

derived and base class is referred to as “is-a” or more specifically as “is-
a-kind-of.” For example, a mammal “is-a-kind-of” animal. Inheritance
creates a class hierarchy.

You may hear the term inherits applied to interfaces. For example,
a PizzaShop that implements the PizzaOrdering interface is often said to
inherit the interface.1 However, it is a stretch to say that a PizzaShop

“is-a” PizzaOrdering. Instead, a more applicable relationship is that a Piz-

zaShop “provides-a” PizzaOrdering interface.2 Often modules that imple-
ment PizzaOrdering interfaces are not even object-oriented. So in this
book, we use the term inherits only when a derived class inherits from
a base class, as with the extends keyword in Java. A class “implements”
an interface if it has an implementation of every method in the inter-
face. Java uses the implements keyword precisely for this concept.3

Inheritance is an important facet of object-oriented programming, but it
can be misused.4 Concentrating on the interfaces that classes provide,
rather than on their hierarchies, can help prevent inheritance misuse,
as well as yield a more fluid solution to a design. Let’s look at some
alternate ways to view example designs using both an inheritance-style
approach and an interface-style approach. Both inheritance and inter-
faces provide polymorphism, a key feature of object-oriented design, so
let’s start there.

5.2 Polymorphism

A common form of polymorphism consists of multiple classes that all
implement the same set of methods. Polymorphism of this type can
be organized in two ways. With inheritance, a base class contains a
set of methods, and derived classes have the same set of methods.
The derived classes may inherit implementations of some methods and
contain their own implementations of other methods. With interfaces,
multiple classes each implement all the methods in the interface.

1Using a single term to represent two different concepts can be confusing. For exam-
ple, how many different meanings are there for the keyword static in C++?

2You may see adjectives used for interface names, such as Printable;. With an adjective,
you may see a reference such as a Document “is” Printable. The “is” in this case really
means that a Document “provides-a” Printable interface.

3See the examples in Chapter 1 for how to code interfaces in C# and C++.
4See Designing Reusable Classes by Ralph E. Johnson and Brian Foote,

http://www.laputan.org/drc/drc.html.

http://www.laputan.org/drc/drc.html
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=65

POLYMORPHISM 66

draw()

Shape

draw()
set_sides()

Rectangle

draw()
set_sides()

Square

Figure 5.1: Shape hierarchy

With inheritance, the derived classes must obey the contract (of Design
by Contract) of the base class. This makes an object of a derived class
substitutable for an object of the base class. With interfaces, the imple-
mentation must also obey the contract, as stated in the First Law of
Interfaces (see Chapter 2).

An example of an inheritance that violates a contract is the Shape hier-
archy. The hierarchy looks like Figure 5.1 .

class Shape

draw()

class Rectangle extends Shape

set_sides(side_one, side_two)

draw()

class Square extends Rectangle

set_sides(side_one, side_two)

draw()

A Rectangle is a Shape. A Square is a Rectangle. Square inherits the
set_sides() method from Rectangle. For a Rectangle, any two positive
values for side_one and side_two are acceptable. A Square can accept
only two equal values. According to Design by Contract, a derived class
can have less strict preconditions and stricter postconditions. This

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=66

POLYMORPHISM 67

draw()

<<interface>>
Shape

set_side()

<<interface>>
RegularPolygon

draw()
set_sides()

Rectangle

draw()
set_side()

Square

draw()
set_side()

EquilateralTriangle

Figure 5.2: Diagram of interfaces

situation violates that rule, and thus the hierarchy is not ideal.

Although a Square is a Rectangle from a geometric point of view, it does
not have the same behavior as a Rectangle. The error in this exam-
ple comes from translating the common statement that “a square is a
rectangle” into an inheritance hierarchy.

An alternative organization (Figure 5.2) using interfaces is as follows:

interface Shape

draw()

Rectangle implements Shape

set_sides(side_one, side_two)

draw()

interface RegularPolygon

set_side(measurement)

Square implements Shape, RegularPolygon

set_side(measurement)

draw()

EquilateralTriangle implements Shape, RegularPolygon

set_side(measurement)

draw()

With these interfaces, Square provides the Shape methods, but it also
provides the methods in RegularPolygon. Square can obey the contract in
both of these interfaces.

One difficulty with interfaces is that implementations may share com-
mon code for methods. You should not duplicate code; you have two
ways to provide this common code. First, you can create a helper class
and delegate operations to it. For example, if all RegularPolygons need to

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=67

HIERARCHIES 68

compute the perimeter and to compute the angles at the vertices, you
could have this:

class RegularPolygonHelper

set_side(measurement)

compute_perimeter()

compute_angle()

Implementers of RegularPolygon would delegate operations to this class
in order to eliminate duplicate code.

Second, you could create a class that implemented the interface and
provided code for many, if not all, of the methods (such as the Java
Swing adapter classes for event listeners shown in Chapter 3). You
would then derive from that class instead of implementing the interface.
For example:

interface RegularPolygon

set_side(measurement)

compute_perimeter()

compute_angle()

class DefaultRegularPolygon implements RegularPolygon

set_side(measurement)

compute_perimeter()

compute_angle()

class Square extends DefaultRegularPolygon, implements Shape

set_side(measurement)

compute_perimeter()

compute_angle()

draw()

In the case of single-inheritance languages, you need to decide which
of the two potential base classes (Shape or RegularPolygon) is the more
important one. If you decide on Shape, then you’ll still need RegularPoly-

gonHelper. Determining which one is important can be difficult until
you have more experience with the classes. Starting with interfaces
allows your to postpone that decision until you have that experience.

USING INTERFACES

Advantage—delay forming hierarchy until usage known

USING INHERITANCE

Advantage—less delegation of common operations

5.3 Hierarchies

The animal kingdom is a frequently used hierarchy example. The hier-
archy starts with Animal on top. Animal breaks down into Mammals,

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=68

HIERARCHIES 69

Mammal

Cat

Dog Horse

Elephant

German
Shepherd

Labrador
Retriever

Clydesdale Palomino

Figure 5.3: Mammalian hierarchy

Fishes, Birds, Reptiles, Amphibians, etc. The relationships parallel
those of an object-oriented hierarchy: a cow “is-a” Mammal. The sub-
classes (derived classes) have attributes in common with the super-
classes (base classes). This zoological classification is based on char-
acteristics used to identify animals; Figure 5.3 shows a portion of the
standard hierarchy.

The animal hierarchy is useful for identification, but it does not nec-
essarily represent behavior. The hierarchy represents data similarities.
Mammals all have hair (except perhaps whales and dolphins), are warm-
blooded, and have mammary glands. The organization does not refer
to services—things that animals do for us. Depending on your applica-
tion that uses animals, a service-based description of animals may be
more appropriate. The service-based description cuts across the nor-
mal hierarchy. Looking at what these animals do for us, we might have
the following:

• Pull a Vehicle: Ox, Horse

• Give Milk: Cow

• Provide Companionship: Cat, Dog, Horse

• Race: Horse, Dog

• Carry Cargo: Horse, Elephant

• Entertain: Cat, Dog, Tiger, Lion, Elephant

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=69

HIERARCHIES 70

Linnaean Taxonomy

Carolus Linnaeus developed the standard biological classifica-
tion system. The system classifies species based on similarities in
their forms and other traits that usually, but not always, reflect
evolutionary relationships.

A problem with Linnaean taxonomy is that reclassifica-
tion of an existing species or discovery of a new one
can lead to changes in rank. Rank (i.e., in the King-
dom/Phylum/Class/Order/Family/Genus/Species breakdown)
is denoted by suffices (e.g., “ae” as in “Hominidae”). A rank
change requires renaming whole suites of taxonomic groups.
(This need to reorganize an inheritance scheme may seem
familiar to programmers.)

Phylocode is another biological classification system. It is based
on common ancestry and the branching of the evolutionary
tree. It is organized by species and clades—group of organisms
sharing a particular ancestor. It is more immune to the need for
reorganization. Just as in programming, picking the appropri-
ate inheritance hierarchy can make changes simpler.∗

∗(See “Attacks on Taxonomy,” American Scientist, July–August, 2005)

We could organize these methods in the same way we did printers in
Chapter 3; e.g., each animal could have a “can you do this for me”
method, such as can_you_carry_cargo(). Alternatively, we could have a
set of interfaces as shown in Figure 5.4, on the next page. Animals
would implement only the interfaces they could perform. The methods
in the interfaces might be:

interface Pullers

hook_up

pull_hard

pull_fast

interface MilkGivers

give_milk

give_chocolate_milk

interface CompanionshipGivers

sit_in_lap

play_for_fun

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=70

HIERARCHIES 71

<<interface>>
Pullers

<<interface>>
MilkGivers

<<interface>>
Companion
shipGivers

<<interface>>
Racers

<<interface>>
CargoCarriers

<<interface>>
Entertainers

Cat

Dog

Horse

Cow

Tiger

Lion

Elephant

Ox

Figure 5.4: Animal interfaces

interface Racers

run_fast

run_long

interface CargoCarriers

load_up

get_capacity

interface Entertainers

jump_through_hoop

stand_on_two_legs

Depending on the application, you may employ both a hierarchy and
service-based interfaces. For example, you might have a Dog hierarchy
whose base class implemented the methods for CompanionShipGivers,
Racers, and Entertainers. Particular breeds of dogs could inherit from
Dog to obtain a default implementation.

You might also have a need for interfaces based on common character-
istics that cross hierarchies, such as LiveInWater, Vegetarian, etc. These
interfaces could each have a helper class that provided common imple-
mentations. Classes such as Cow, Horse, and Ox could delegate to a
VegetarianHelper class.

USING INTERFACES

Advantage—can cross hierarchies

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=71

HIERARCHIES 72

USING INHERITANCE

Advantage—captures common attributes

Inheritance and Methods

Inheritance delineates a hierarchy of classes that all implement meth-
ods of the base class. The base class represents a general type, such as
Mammal. The derived classes represent more specialized types, such as
Cow and Horse. The derived classes may not necessarily offer additional
methods.

On the other hand, derived classes can extend the base class and offer
more methods. For example, for the Printer class in Chapter 4, a Col-

orPrinter represents more services than a Printer. When a derived class
adds more methods to the base class, those additional methods can be
considered an additional responsibility for the derived class. An inter-
face could represent this additional responsibility.

For example, GUI components are usually organized as an inheritance
hierarchy, like this:

class Component

set_position()

abstract draw()

class TextBox extends Component

draw()

set_text()

get_text()

class CheckBox extends Component

draw()

set_state()

get_state()

Here TextBox and CheckBox have additional methods that represent addi-
tional services for each derived class. Those additional methods could
be denoted as interfaces, like this :

class Component

set_position()

abstract draw()

interface Textual

set_text()

get_text()

class TextBox extends Component, implements Textual

draw()

set_text()

get_text()

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=72

HIERARCHIES 73

interface Checkable

set_state()

get_state()

class CheckBox extends Component, implements Checkable

draw()

set_state()

get_state()

If each derived class has its own unique set of additional methods, there
is no advantage to organizing the hierarchy with interfaces. However, if
many of the derived classes do have a common set of services, you may
make those commonalities more apparent by using interfaces.

For example, a drop-down box and a multiple selection list are usually
on one branch of a GUI hierarchy. Radio buttons and check boxes are
on another branch of the hierarchy. These two separate branches are
based on their relative appearances. Another way to group commonal-
ity is to put radio buttons and drop-down lists together and multiple-
selections lists and check boxes together. Each of those groups has
the same functionality. In the first group, the widgets provide selection
of a single value. In the second group, the widgets provide the option
of multiple values.5 In this organization, they are grouped based on
behavior, not on appearance. This grouping of behavior can be coded
with interfaces:

interface SingleSelection

get_selection()

set_selection()

interface MultipleSelection

get_selections()

set_selections()

class RadioButtonGroup implements SingleSelection

class CheckBoxGroup implements MultipleSelection

class DropDownList implements SingleSelection

class MultipleSelectionList implements MultipleSelection

USING INTERFACES

Advantage—can capture common set of usage

USING INHERITANCE

Advantage—captures set of common behavior

5You might also put a list that allows only a single selection into this group.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=73

HIERARCHIES 74

Football Team

The members of a football team can be depicted with either inheritance
or interfaces. If you represented the positions with inheritance, you
might have an organization that looks like this:6

FootballPlayer

run()

DefensivePlayer extends Football Player

tackle()

DefensiveBackfieldPlayer extends DefensivePlayer

cover_pass()

Offensive Player extends Football Player

block()

Center extends OffensivePlayer

snap()

OffensiveReceiver extends OffensivePlayer

catch()

run_with_ball()

OffensiveBackfieldPlayer extends OffensivePlayer

catch()

receive_handoff()

run_with_ball()

Quarterback extends OffensivePlayer

handoff()

pass()

An object of one of these classes represents a player. So, Payton Man-
ning would be an object of Quarterback. Based on the methods in the
hierarchy, Payton can run, block, hand off, and pass. This hierarchy
looks pretty good. On the other hand, we can make our organization
more fluid by using interfaces, like this:

interface FootballPlayer

run()

interface Blocker

block()

interface PassReceiver

catch()

6The services listed for each position are the required ones for each position. You
could require that all FootballPlayers be able to catch and throw. The base class Foot-

ballPlayer would provide a basic implementation of these skills.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=74

HIERARCHIES 75

interface BallCarrier

run_with_ball()

receive_handoff()

interface Snapper

snap()

interface Leader

throw_pass()

handoff()

receive_snap()

interface PassDefender()

cover_pass_receiver()

break_up_pass()

intercept_pass()

A role combines one or more interfaces. We might come up with the
following roles for team members:

Center implements FootballPlayer, Blocker, Snapper

GuardTackle implement FootballPlayer, Blocker

EndTightOrSplit implements FootballPlayer, Blocker, PassReceiver

RunningBack implements FootballPlayer, BallCarrier, PassReceiver

Fullback implements Blocker, FootballPlayer, BallCarrier, PassReceiver

WideReceiver implements FootballPlayer, PassReceiver

Quarterback implements FootballPlayer, Leader, BallCarrier

Now along comes Deion Sanders, who plays both offense and defense.
To fit Deion into the previous hierarchy, you need to create two objects:
one an OffensivePlayer and the other a DefensivePlayer. Or you’d need to
come up with some other workaround that does not fit cleanly into the
hierarchy. With interfaces, Deion simply fulfills another role, like this:

SwitchPlayer implements FootballPlayer, PassReceiver, PassDefender

Roles can even be more fluid. For example, in one professional game,
a backup quarterback lined up as a wide receiver.7 Trying to fit such a
role into a hierarchy can be daunting. With interfaces, he would have
simply implemented PassReceiver, or he could take on a role like this:

ReceiverQuarterback implements FootballPlayer, PassReceiver, Quarterback

USING INTERFACES

Advantage—give more adaptability for roles that cross hierarchies

Disadvantage—may have duplicated code without helper classes
to provide common functionality

7This was Seneca Wallace in a Carolina Panthers/Seattle Seahawks game, for you
trivia buffs.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=75

AN INTERFACE ALTERNATIVE FOR INPUTSTREAM 76

USING INHERITANCE

Advantage—base classes can provide common implementations

Disadvantage—difficult to adapt to new situations.

5.4 An Interface Alternative for InputStream

What do football players, mammals, and geometric shapes have in com-
mon? We’ve used them as examples to show the differences between
inheritance and interfaces. Let’s look at a real-life class hierarchy and
see how an alternative organization with interfaces would appear. This
is a concrete example of the concepts discussed in the previous sec-
tions.

Java’s java.io.InputStream class is an abstract class.8 InputStream con-
tains many methods defined as abstract, such as read(). Other methods
are concrete but contain this statement in the documentation: “This
method should be overridden by subclasses.” A few other methods only
suggest that they should be overridden. For example, a method that
reads an array of bytes is provided. Its code simply calls the read()
method for each byte, but the documentation suggests that a concrete
implementation could code this better. Many methods in the class have
an implementation that does nothing (e.g., close()).9

To contrast an inheritance approach with an interface approach in a
real-code example, we will transform the InputStream hierarchy into an
interface-based design. This transformation follows the concepts of the
“Replace Inheritance with Delegation” refactoring.10

InputStream Interface

Suppose we have a CustomInputStream we developed by inheriting from
InputStream such as in (Figure 5.5, on the following page. We start our
transformation by extracting an interface from the current methods of
the abstract InputStream class:

8See http://www.docjar.com/html/api/java/io/InputStream.java.html.
9This discussion ignores the additional methods that InputStream inherits from the

Object. InputStream does not override any of those methods. Any implementation of the
InputStream interface will also inherit from Object and thus have those same additional
methods.

10See Refactoring by Martin Fowler, et al.

http://www.docjar.com/html/api/java/io/InputStream.java.html.
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=76

AN INTERFACE ALTERNATIVE FOR INPUTSTREAM 77

InputStream

CustomInputStream

Figure 5.5: Inheritance

public interface InputStream

{

public int available() throws IOException;

public void close()throws IOException;

public void mark(int readlimit)

public boolean markSupported()

public int read()throws IOException;

public int read(byte [] bytes) throws IOException;

public int read(byte [] bytes, int offset, int length)

throws IOException;

public void reset()throws IOException;

public long skip(long n) throws IOException;

}

The current implementation code in InputStream is put into a Input-

StreamDefault class as shown in Figure 5.6, on the next page. A particu-
lar InputStream, say CustomInputStream, inherits from InputStreamDefault:

public class InputStreamDefault implements InputStream

{

// same as current source of java.io.InputStream class

}

public class CustomInputStream extends InputStream

{

}

At this point, we now have an interface that classes in other hierar-
chies can implement. We can transform CustomInputStream so that it
implements InputStream directly, by taking the method bodies in Input-

StreamDefault and moving them to CustomInputStream. But we would end
up with duplicate code if classes in other hierarchies implemented Input-

Stream. So, we remove the methods from InputStreamDefault and place

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=77

AN INTERFACE ALTERNATIVE FOR INPUTSTREAM 78

InputStream <<interface>>

InputStreamDefault <<abstract>>

CustomInputStream <<concrete>>

Figure 5.6: Inheritance

them in a helper class InputStreamHelper. CustomInputStream or other
classes can delegate operations to this helper class. (See Figure 5.7, on
the following page.)

public class InputStreamHelper

{

private InputStream inputStream;

public InputStreamHelper(InputStream input)

{

inputStream = input;

}

public int read(byte [] bytes) throws IOException

{

read(byte[], 0, byte.length);

}

public int read(byte [] bytes, int offset, int length)

throws IOException;

{

// calls inputStream.read() and places bytes into array

}

public long skip(long n) throws IOException

{

// Calls inputStream.read() to skip over n bytes

}

}

The code for CustomInputStream now looks like the following. We show
details only for the methods where we delegate operations to the helper
class.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=78

AN INTERFACE ALTERNATIVE FOR INPUTSTREAM 79

<<interface>>
InputStream

CustomInputStream InputStreamHelperdelegate_to

Figure 5.7: Delegation

class CustomInputStream implements InputStream

{

private InputStreamHelper inputHelper;

public CustomInputStream()

{

inputHelper = new InputStreamHelper(this);

}

public int available() throws IOException {...}

public void close()throws IOException {...}

public void mark(int readlimit) {...}

public boolean markSupported() {...}

public int read()throws IOException {...}

public int read(byte [] bytes) throws IOException

{

return inputHelper.read(bytes);

}

public int read(byte [] bytes, int offset, int length)

throws IOException

{

return inputHelper.read(bytes, offset, length);

}

public void reset()throws IOException

public long skip (long n) throws IOException

{

return inputHelper.skip(n) ;

}

}

The Input Marker

The mark methods (mark(), markSupported(), and reset()) in the java.io.

InputStream class are examples of “tell me if you do this” interfaces. For
those not familiar with the Java I/O library, these methods work as
follows.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=79

AN INTERFACE ALTERNATIVE FOR INPUTSTREAM 80

If markSupported() returns true, then mark() can be used to mark a posi-
tion in the input stream. When reset() is called, the next call to read()
returns bytes starting at the marked position. So, the same bytes are
returned again by read(). If the number of bytes read between the call
to mark() and the call to reset() exceeds the readlimit number of bytes,
then reset() does not have to work. Only classes that override markSup-

ported() to return true need to implement mark() and reset().

If a method receives a reference to a java.io.InputStream object, it should
call markSupported() before using mark() and reset().11 The code for this
method could look something like this:

void method(java.io.InputStream input)

{

if (input.markSupported())

mark();

//.... and other stuff

}

The InputStream interface that we created includes the markSupported()
method as well as the mark() and reset() methods. Instead of using the
“can you do this” method approach, we can add another interface:

interface Markable

{

public void mark(int readlimit) ;

public void reset()throws IOException ;

}

Only classes that support mark() and reset() need to implement this
interface. In a method, you can tell whether an InputStream supports
marking by performing a cast. If an exception is thrown, you could
pass the exception back to the caller as a violation of the interface
contract. (“You must call this method with a Markable InputStream.”)
The code looks like this:

a_method(InputStream input) throws ClassCastException

{

Markable marking = (Markable) input;

marking.mark(); //...and marking.reset()

}

Alternatively, if the method can perform its operation in an alternative
way without requiring the Markable interface, it does not need to throw
the exception.

11I’m sure there is some application where calling mark() or reset() without checking
markSupported() makes sense. I just can’t think of one at the moment.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=80

AN INTERFACE ALTERNATIVE FOR INPUTSTREAM 81

By separating the Markable interface, you’re simplifying the InputStream

interface. Also, it becomes clear from just looking at the class definition
which classes support marking. For example:

class ByteArrayInputStream implements InputStream, Markable

This definitively shows you can mark an object of ByteArrayInputStream.12

FileInputStream: Yet Another Interface

We’re still not done with evolving some more interfaces for InputStreams.
The java.io.FileInputStream class is derived from the java.io.InputStream

class. If we used interfaces as shown previously, we would state that
FileInputStream implements InputStream and does not implement Mark-

able. The java.io.FileInputStream class has additional methods that can
be grouped as an interface, say FileInterface. This interface includes two
methods:

FileInterface

FileChannel getChannel()

FileDescriptor getFD()

The java.io.FileDescriptor class refers to the underlying operating system
file descriptor (equivalent to the Unix file descriptor shown in the Unix
section in Chapter 1). The java.nio.channels.FileChannel class represents
a way to asynchronously access a file.13

With FileInterface, FileInputStream can be described as follows:

class FileInputStream implements InputStream, FileInterface

java.io.FileOutputStream is the corresponding class for file output. It is
derived from java.io.OutputStream in standard Java. Using interfaces,
we could describe this class as follows:

class FileOutputStream implements OutputStream, FileInterface.

Note that FileInterface is implemented by both FileInputStream and FileOut-

putStream. This shows the relationship between these two classes that

12“Definitively” may be too strong a word. As one reviewer noted, “Just because you
said you’re going to do it, doesn’t mean you really are doing it.” Declaring the class to
implement the interface really should imply that the class will honor the contract for the
interface.

13FileChannel provides additional methods for reading and writing to a file. FileChannel is
an abstract class that implements several interfaces. They include ByteChannel, Channel,
GatheringByteChannel, InterruptibleChannel, ReadableByteChannel, ScatteringByteChannel, and
WritableByteChannel. Without going into details about all these interfaces, suffice it to say
that the structure of the channel classes reflects an interface-based approach to design.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=81

THINGS TO REMEMBER 82

appear on different branches in the standard Java hierarchy. With the
standard library, there are separate implementations for the methods
in each class. Seeing a common interface may prompt you to provide
a common helper class for FileInterface that could eliminate this code
duplication.

InputStream Review

When you have multiple implementations of an interface such as Input-

Stream, you may duplicate logic in each implementation. If there are
common implementation methods and you do not use a helper class,
you may find yourself copying and pasting a lot. If you can create a
well-defined hierarchy with many inheritable implementations, you are
far better off using inheritance, rather than interfaces. But you may
find that starting with interfaces and then refactoring to inheritance
allows you to discover what is the best hierarchy.

INHERITANCE APPROACH

Advantage—easy to inherit an implementation

Disadvantage—may be difficult to adapt to changing roles

INTERFACE APPROACH

Advantages—can be clearer what methods must be implemented.

A class in another inheritance hierarchy can provide the services
of an interface.

Disadvantage—may end up with lots of helper classes.

5.5 Things to Remember

You can design with an emphasis on either inheritance or interfaces:

• Interfaces show commonality of behavior.

• Inheritance shows commonality of behavior along with common-
ality of implementation.

• Interfaces are more fluid than inheritance, but you need to use
delegation to share common code.

• Inheritance couples the derived classes to the base class, but it
allows them to easily share the common code of the base class.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=82

Chapter 6

Remote Interfaces
Systems today are moving away from self-contained programs; they
tend to interact with a number of other programs on remote hosts.
Dealing with remote interfaces involves several more issues than does
dealing with local interfaces, so we’ll explore these facets now.

Many remote interfaces use a document style, rather than a procedu-
ral style. Document-style interfaces have a different paradigm from
procedural-style interfaces and are less familiar to programmers, so we
will investigate documents in some detail. We’ll also examine how many
of the concepts we discussed before are applicable to remote interfaces,
such as statefulness versus statelessness.

6.1 Introduction

If you are physically in the pizza parlor, you can see the order taker.
You are aware whether he is writing down your order or discussing last
night’s ball game with the cook. If you are local, you don’t have to worry
about failure to connect.

The pizza interface we introduced in the first chapter is really a remote
interface: you make a connection over the phone network. Dealing with
a remote interface is different from a local interface. A whole host of
problems can occur that you might need to handle.

What if the phone is busy? Do you try the dialing again, or do you
try another pizza parlor? Is the busy phone because of a failure in the
phone company or a failure in the pizza parlor’s phone?

INTRODUCTION 84

What if it rings but no one answers? Do you try again, thinking you
may have dialed the wrong number? Do you assume that they aren’t
open?

Suppose you get cut off in the middle of the call. Do you call back?

External Interfaces

The problems of pizza ordering exist in any external interface. An exter-
nal interface is one called by other processes (either local or remote).
External interfaces differ from local interfaces by network considera-
tions, by nonhomogeneity of hosts, and by multiple process interac-
tions.1

If an entire software system is contained within a single process, the
system fails if the process fails. With a system consisting of multiple
processes, a calling process (e.g., a client) has to handle the unavail-
ability of other processes (e.g., a server). The client usually continues to
run in spite of the failure of servers, but it needs either to communicate
the server failure to the user or to act on that failure in a transparent
manner, as per the Third Law of Interfaces.

Remote interfaces are external interfaces that are accessed over a net-
work. In addition to server failure, with a network you may have a
network delay or a network failure. Note that if you are unable to con-
nect to a server, it is difficult to determine whether the network is down
or whether the server is down. Likewise, a delay may be due to an
overloaded network or an overloaded server that is handling too many
clients. In either case, the client needs to handle the failure.

With nonhomogeneity, the client and the server may be different pro-
cessor types (e.g., IBM mainframe versus PC). Even on a local machine,
where processor types are not a consideration, the caller and server
may be written in different programming languages.

Network Disruption

What would you do if you were ordering a pizza by phone and the call
dropped before you heard how long it was going to take? You’d call
back. You’d try to continue to describe the pizza you were ordering. But

1A local interface is usually called by only one process, although it may be called by
multiple threads within that process. A remote interface can typically be concurrently
called by multiple remote processes.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=84

PROCEDURAL AND DOCUMENT INTERFACES 85

the pizza shop says, “I’ve had hundreds of orders in the last minute for
just that type of pizza.” You don’t really want to order a second pizza.
And the store owner doesn’t want to make an unclaimed pizza. How
would we change the pizza-ordering interface to avoid this?

The store owner could take some identification at the beginning of a
call—a name or a phone number. If the circuit is broken, you call back
and give the same name or phone number. If the order taker determines
the name corresponds to one of the uncompleted orders, he pulls it off
the shelf and resumes at the appropriate place in the order sequence.2

Getting initial identification is a form of planning for the possibility of
communication disruption. The interface protocol should assume that
the network may go down. In a manner similar to the pizza shop, inter-
faces can use client-generated IDs to ensure that service invocations
are not duplicated. For example, when credit card transactions are
submitted to a bank, the merchant identifies each transaction with a
unique ID. If the connection is broken in the middle of transmitting a
transaction, the merchant resubmits transactions that have not been
explicitly confirmed. The bank knows by the ID for the particular mer-
chant whether a transaction has already been posted. If the transac-
tion has been posted, the bank merely confirms the transaction without
reposting it.

6.2 Procedural and Document Interfaces

In our example in Chapter 1, you called the pizza shop over the phone.
Your pizza shop may also accept fax orders. What is different about
making a phone call versus sending a fax order? In either case, the
order needs to be put into terms both you and the pizza shop under-
stand. With the voice system, you execute a series of operations to
create an order. With the fax, you have an order form that defines the
required and optional data.

Problems are discovered immediately in the voice system. For example,
you can ask for anchovies and get an immediate response. The voice on
the other end can say “nope,” meaning either they never have anchovies

2Some readers might note that a name such as Jim might be given for different orders.
If the given name matches a previous name, the order taker may inform you that you have
to give a different name. A phone number is not only good for identification but also for
verification. The store owner can check the caller ID against the phone number to see
whether it’s the same one you said.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=85

PROCEDURAL AND DOCUMENT INTERFACES 86

(a permanent error) or they don’t have any today (a temporary error).
In either case, you can make up your mind whether you want to have
an anchovyless pizza or find some other pizza place.

With the a fax-based system, you fill out an order and await a response.
The response may be a fax with the time till delivery or a fax saying,
“Don’t have any.” If the latter, you need to alter your order and resubmit
it. You may wonder whether your order was received. Since you may
have to wait a while to get a fax back, it is harder to determine when
to resend the order. The pizza parlor’s fax may be out of paper. The
scanner for the return fax may not be working. The order may have
been put onto a pile. Only when the order is retrieved from the pile is
a fax returned. We shall see how these issues of ordering by fax have
parallels in remote interfaces.

External interfaces can use either procedural style or document style.
A procedural interface looks like the interfaces we’ve been describing
in this book. On the other hand, document-style interfaces use sets of
data messages, similar to the fax-based pizza order.

For the most flexibility, the client (interface user) and the server (inter-
face implementation provider) should be loosely coupled in terms of
platform and language. A client written in any language should be able
to access the server. You can accomplish this decoupling with either
style.

Procedural Style

You can use Common Object Request Broker Architecture (CORBA) to
define procedural-style interfaces that are both language and platform
independent.3 With CORBA, you specify the interface with the Interface
Definition Language (IDL).4 IDL looks a lot like a C++ header or a Java
interface. A transformation program turns an IDL declaration into code
stubs appropriate for a particular language and platform. An example
of an interface defined in IDL is as follows:

enum Size {SMALL, MEDIUM, LARGE};

enum Toppings {PEPPERONI, MUSHROOMS, PEPPERS, SAUSAGE};

3You can define remote interfaces in a language-dependent manner, such as Java’s
Remote Method Invocation. You could also define them in a platform-dependent manner,
such as Window’s Distributed Component Object Model (DCOM).

4See http://www.omg.org for more information about CORBA and IDL.

http://www.omg.org
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=86

PROCEDURAL AND DOCUMENT INTERFACES 87

interface PizzaOrdering

{

exception UnableToDeliver(string explanation);

exception UnableToMake(string explanation);

typedef Toppings ToppingArray[5];

set_size(in Size the_size) raises (UnableToMake);

set_toppings(ToppingArray toppings) raises (UnableToMake);

set_address(in string street_address);

TimePeriod get_time_till_delivered() raises (UnableToDeliver);

}

Procedural-style remote interfaces look familiar to programmers. Calls
to methods in remote interfaces (a Remote Procedure Call [RPC]) appear
in your code as if they were calls to local interfaces. The only major dif-
ference is that the code must handle communication failure situations.
RPCs are typically used for an immediate request/response in interac-
tive situations. A client that called the PizzaOrdering interface can find
out immediately whether the shop cannot make the pizza.

Procedural-style interfaces tend to be fine-grained. For example, they
frequently contain operations for accessing individual values such as
set_size() in the PizzaOrdering interface.

Document Style

With document style, the client and server interchange a series of data
messages (documents). For a pizza order, the sequence might start with
a document:

Document: PizzaOrder

Size

Toppings

Address

The response could be either like this:

Document: SuccessResponse

TimePeriod time_to_deliver

or like this:

Document: ErrorResponse

String error_explanation

You may be less familiar with document-style interfaces. The docu-
ments represent a series of messages transmitted between the client
and the service provider. The protocol is defined by the sequence of
messages. We’ll explore a typical sequence later in this chapter. Mes-
sages are not necessarily processed immediately. Response documents,

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=87

FACETS OF EXTERNAL INTERFACES 88

such as SuccessResponse, may come almost immediately. However, they
may also be delayed. A client using the document interface to order
pizzas may not instantly find out whether the requested pizza can be
made.

A document-style interface tends to be very coarse-grained. For exam-
ple, a PizzaOrder document that contains the size and toppings is sent
in a single operation, like this:5

interface Ordering

submit_order(PizzaOrder)

PROCEDURAL STYLE

Advantage—remote and local interfaces can appear the same

Disadvantage—can require more communication (especially if
fine-grained)

DOCUMENT STYLE

Advantage—can require less communication

Disadvantages—style is less familiar to programmers

6.3 Facets of External Interfaces

We discussed several facets of interfaces in Chapter 3. Now we’ll exam-
ine some additional facets of external interfaces.

Synchronous versus Asynchronous

In Chapter 3, we described asynchronous event handling using the
Observer pattern. Likewise, communication between a client and a
server can be either synchronous or asynchronous. With synchronous
interfaces, the client does not end communication until a result is
returned.

With asynchronous interfaces, a result is returned at some other time
after the client has ended the original communication. For example,
documents are often placed on message queues. The client creates a

5The most general document interface consists of three operations:
Request/response—Document send_document_and_get_response(Document)

Request—void send_document(Document)

Response—Document receive_document()

That’s so coarse-grained, you can transmit anything. (OK, maybe not anything, but
almost anything).

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=88

FACETS OF EXTERNAL INTERFACES 89

document (message) and puts it onto a message queue. The client usu-
ally continues processing, handling other events. At some time, the
server retrieves the message from the queue and processes the docu-
ment. It then returns a response document, either directly to the client
or back onto the queue for retrieval by the client.

Two typical combinations of modes for applications that use exter-
nal interfaces are asynchronous/document (e.g., message queues) and
synchronous/procedural (e.g., RPCs). You could consider the World
Wide Web to be an synchronous/document interface: you send a doc-
ument (e.g., a filled-in form) and receive a document (a new web page)
in return. The least frequently used combination is asynchronous/
procedural.

SYNCHRONOUS

Advantage—practically immediate response

Disadvantage—cannot scale up as well

ASYNCHRONOUS

Advantage—can scale well, especially with document queues

Disadvantage—documents should be validated on client before
transmitting

Stateful versus Stateless

With remote interfaces, the distinction between stateful and stateless
interfaces is more critical. A server that keeps state for clients may not
be able to handle as many clients as a server that does not keep state.

For example, many web sites have shopping carts. In a stateful inter-
face, the contents of the shopping cart are kept in a semipersistent stor-
age on the server. Each new connection from a client (i.e., a browser)
creates a new shopping cart that is assigned a SessionID. The SessionID

is the key that identifies the data for a particular client on the server.
The browser returns this SessionID with each request for another web
page. The server uses the SessionID to retrieve current contents of the
shopping cart.

In a stateless interface, the server does not keep any state. For exam-
ple, with a Google search, the URL passes the search parameters every
time. If Google keeps any information on a search, it is for performance
reasons, rather than for interface reasons.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=89

FACETS OF EXTERNAL INTERFACES 90

A stateful interface can be turned into a stateless interface in a manner
similar to that shown in Chapter 3. All state information can be kept
on the client and passed every time to the server. The server updates
the state information and passes it back to the client. For a stateless
shopping cart, the entire contents of the shopping cart are transmitted
to and returned from the server for each web page.

REMOTE STATELESS

Advantages—servers can be easily scaled. If you have multiple ser-
vers processing client requests, any server can handle any client.

The service has redundancy. Any server could go down and the
client could continue with any other server.

Disadvantage—amount of state information passed between client
and server can grow, especially for a full shopping cart. In most
cases, this amount will be less than the size of the web pages for
which the state information is transferred.

REMOTE STATEFUL

Advantage—less information to communicate between client and
server

Disadvantage—if using central database where the state informa-
tion is stored, the amount of simultaneous connections to that
database could be a limiting factor to scalability

Stability versus Flexibility

Stability is a needed trait for external interfaces. You typically have
no knowledge of who is accessing the interface, so you can’t change it
willy-nilly. However, flexibility is also needed for interfaces, since you
may want to add features to them in the future. Both procedural and
document interfaces can be flexible.

You should follow a few guidelines in being flexible in interfaces. First,
never alter the semantics of existing methods or data. Second, you can
add methods or data; just don’t expect that users will add calls to the
new methods or provide the new data. For example, you could add a
country field to an address. But you still should handle a document
that does not contain a country, by creating a reasonable default value
for country.

But although adding functionality is easy, deleting methods or data is
hard. Callers may still expect that they still exist and call the methods

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=90

DISCOVERY OF SERVICES 91

or supply the data. Methods in some computer language libraries that
have been designated as “deprecated” may still be called years later.
Only if you have control of both sides of the interface (the client and
the server), or you have a sufficiently desired interface, do you have a
possibility of deleting deprecated methods.6

All interfaces should be identified by an explicit version ID. An ID pro-
vides a simpler way to determine the version of the client than by ascer-
taining which particular methods or data a client uses. Knowing a
client’s version aids the server in dealing with older versions. A server
should be able to handle not only the current version of a service but
also older versions. Obviously at some point, you would like to be able
to remove support for really old versions. Depending on the importance
of your service to the clients and your relative political strength, you
may need to continue to handle numerous versions for a long time.7

6.4 Discovery of Services

You’ve come to a new city. You’re dying for a pizza. You look up in the
Yellow Pages8 for a pizza place. (Ok, maybe you look on Google Maps
to find a close one.) You look under Pizza. You know that any listed
pizza shop should implement the PizzaOrdering interface.9 How do you
pick one from the hundreds of pizza places listed? You can choose the
random method, the first on the list, the closest, or you can go for a
known brand name.

You probably did this lookup once in your hometown and posted the
phone number on your bulletin board. That parallels how Microsoft’s
DCOM works. You make an entry in the registry to indicate where a

6The situation of telling users that methods that have been marked as deprecated are
finally being deleted is similar to that of passengers boarding a plane. Even though all
the passengers know when the flight is leaving, some passengers still need to be informed
over the loudspeakers. Even then, the gate agent needs to decide when to finally let the
plane depart without the missing passengers.

7To help you determine when it’s appropriate to remove support, you can log the
version IDs that clients use to access an interface. When the log shows that the only
clients using the old version are those for whom you have blackmailable information, you
can remove the old version.

8It’s always amazing what you learn when writing a book: “Yellow Pages” is a trade-
mark in the public domain.

9How do you know it’s really a pizza shop? Maybe the pizza is made on a truck as it’s
on its way to deliver the pizza to you.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=91

DISCOVERY OF SERVICES 92

Versioning

Versioning of interfaces is an old problem. Microsoft Windows
spawned the condition known as “DLL hell” in which incom-
patible versions of the same interface implementations (e.g.,
in dynamic link libraries) were needed by different programs on
the same computer. In the .NET Framework Microsoft has solved
this problem by creating versioned assemblies.

The same versioning issue occurs with JAR files. The Java Com-
munity Process is developing the Java Module System (JSR-
277).∗ JMS “defines a distribution format and a repository for
collections of Java code and related resources.” One of its
components is a “versioning scheme that defines how a mod-
ule declares its own version as well its versioned dependencies
upon other modules.”

∗See http://www.jcp.org/en/jsr/detail?id=277. David Bock, a
member of the committee, suggested this example.

particular interface is implemented. Later, you bypass the directory
service when getting the service.

We show in Chapter 9 a general directory mechanism for services.
Directory services of frameworks such as CORBA and web services
work similar to the one shown in that chapter. Similar to you using
the Yellow Pages for finding a pizza place, a service consumer (e.g., a
client) can use the directory service to discover the identity of service
providers (e.g., a server) for a particular service. In addition, the direc-
tories can provide the communication protocol and other information
needed to communicate with a service.

The consumer may be able to choose between providers (e.g., from
which host to download an open source software package). Alterna-
tively, the directory service can select one, based on some type of algo-
rithm (round robin, who is the cheapest, etc.). This automatic selection
of a server is often used when your browser requests a web server (one
that implements the Hypertext Transfer Protocol [HTTP] interface) for a
particular domain. The directory server returns the address of one of
a number of servers, making the multiplicity of servers opaque to the
client.

http://www.jcp.org/en/jsr/detail?id=277
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=92

MORE ON DOCUMENT STYLE 93

Published versus Unpublished

You can easily redesign interfaces used only within a program.
You only have that program to worry about. Restructuring or
refactoring the code to make the internal interfaces more con-
sistent, more cohesive, and less coupled is always beneficial.

Interfaces that are used by multiple systems or development
groups are more challenging. An interface used by multiple
systems can be considered “published.” Martin Fowler sug-
gests delaying publishing interfaces since they cannot easily be
changed. Once they’re published, you have to worry about all
the users of the interfaces.∗

For intracorporate interfaces, an individual or committee could
be responsible for the coordination of publishing interfaces,
especially for interfaces that are planned as utility interfaces for
the enterprise. The coordinators look at the interface from the
user’s side. For example, they may check to see that its style
matches those of existing interfaces and the protocol is logi-
cal. Examples of enterprise interfaces are a user authentication
interface for single logon and a universal logging capability for
applications.

∗Cf. http://www.martinfowler.com/ieeeSoftware/published.pdf.

6.5 More on Document Style

Since using documents as interfaces may be less familiar to many
developers, we continue our exploration of some of the facets of this
style.

Document Representation

You can represent documents in either external format or internal for-
mat. Common external formats are XML, EDI, and ANSI X12. In most
languages, a pure data object, such as a DTO, can represent the inter-
nal format of a document. Most documents have tree-like structures,
which DTOs can parallel. To keep the external representation opaque,
modules (other than those that actually convert the data to and from
external format) should deal with the DTO, rather than with the exter-
nal form.

http://www.martinfowler.com/ieeeSoftware/published.pdf.
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=93

MORE ON DOCUMENT STYLE 94

Suppose we decided to use XML as the external format for the PizzaOrder

shown earlier in this chapter:

<Pizza>

<Size>Large</Size>

<Toppings>

<Topping>Pepperoni</Topping>

<Topping>Mushroom</Topping>

</Toppings>

<Address>

<Street>1 Oak Street</Street>

<City>Mytown</City>

</Address>

</Pizza>

We can create an internal representation of this document:

class PizzaOrder

set_size(Size)

set_topping(Topping)

Size get_size()

Topping [] get_toppings()

set_size(Address)

Address get_size()

Only when we send a PizzaOrder to an external interface do we need to
convert the data to and from an external from, such as XML:10

Validating a Document

Did what you wrote on the order make sense to the pizza parlor staff?
Is the information readable? Based on an order that passes a validity
check, can the pizza parlor process the order? Does it have all the
necessary ingredients?

Like procedural interfaces, documents have interface contracts. There
are multiple levels of validity checking for a document to ensure that it
meets the interface contract: the syntax of the text itself, constraints
on the values, and validity of the values.11 Before sending a document,
you should validate the data and check the constraints as thoroughly
as possible to avoid needless retransmission.

10If the document is large and converting the entire document is resource intensive,
you can deal with it in an iterative form, such as SAX (shown in Chapter 3).

11A procedural-style interface has fewer levels of validity checking, since the syntax
is checked by the compiler and some constraints can be specified by using specific data
types for method parameters.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=94

MORE ON DOCUMENT STYLE 95

Suppose we represent the data in an XML format. The XML data
must be well-formed (e.g., the tags are correctly formed with nested
begin/end tags, etc.). An XML schema describes the required and
optional fields in an XML document. The organization of XML data
should be valid; that is, it should conform to a particular schema.12

Values of each of the data items have constraints that need to be hon-
ored, such as the type of data and low and high limits. An XML schema
not only can outline the structure of XML data; it can also give con-
straints on the data.

Some data constraints are expressible in a schema, and some are not.
For example, the schema can require that a data item must be one of
a set of choices or that a date must be in a particular range (the order
must be placed today or in the future). However, cross-data constraints
are difficult to express in a schema. For example, if you order beer in a
pizza parlor, then you have to order a pizza.13

You might perform validity checks by using an XML tool or by trans-
forming the document into a DTO and performing the checks in another
language. If you use a DTO to represent a document, you can perform
many of the validity checks in the set methods. You can also easily
perform cross-value checks, as well as any other rules that are not
expressible in a schema.

You can perform many data checks on the client computer. For exam-
ple, the client can check a CustomerID for the number and types of char-
acters. There are other checks that only the server can perform. For
example, is a CustomerID one that is registered in the system? Some
other checks might be difficult for both systems (the client or the server)
to perform, such as whether the sender of a document legally repre-
sents a particular customer.

Document Encoding

Although XML is a very adaptable and general form of encoding docu-
ments, it is not the only one. Depending on the environment in which
the document is used, you might find other encodings more efficient.

12Creating a valid, well-formed XML document is a relatively simple task with mod-
ern tools. (See http://www.w3.org/TR/xmlschema-0/ for more information about
schemas.)

13This is a law in at least one town in Massachusetts.

http://www.w3.org/TR/xmlschema-0/
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=95

MORE ON DOCUMENT STYLE 96

Here are several alternative text encodings, along with examples of
where they are employed:

• Straight text (text with line breaks is a lingua franca). Examples:

– Email messages

– Pipes and filters of Unix

• Text with field delimiters. Examples:

– Email headers

– Comma or tab delimited files

• Text with named tokens. Examples:

– Property files14

– HTTP form parameters

• Structured text, e.g., XML and YAML.15 Examples:

– Web services

– Configuration files

• Electronic Document Interchange (EDI) standards. Examples:

– Airline reservation systems

– Electronic orders16

Your application may require you to use a particular format for com-
munication. If not, select the simplest representation. XML is a good
choice for complex documents because of the number of tools available
for manipulating that format. However, if all you require is a few values,
using named tokens can be simpler.

Document-Based Business Flow

Similar to protocols for calling methods for a procedure-style interface,
there are protocols for document-style interfaces. You can’t send a
series of documents in just any order. The order must correspond to a
business flow.

14The old-style Microsoft Windows .ini files are an example of a property file.
15See www.yaml.org.
16See “Using Standard Documents” in the appendix.

www.yaml.org
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=96

MORE ON DOCUMENT STYLE 97

Let’s look at something that you may often do on the Web and see how
this flow is represented as an exchange of documents.17 These docu-
ments correspond to data sent from forms in your browser and data
returned on the displayed web pages. The encoding in one direction
is named tokens, and the encoding in the other direction is structured
text (Hypertext Markup Language [HTML]).

You go to Orbitz, Travelocity, or another travel site. You enter a request
for a one-way airfare from your home to New York City and click Search.
The transmitted information can be considered a request for quotation
document. The web browser transmits this information in the form of
tokens in the HTTP request:

Document: RequestForQuotationForOneWayAirfare

Origin

Destination

Date

Number Travelers

The response to this document is another document:18

Document: QuotationForOneWayAirfare

Selections []

FareAllInclusive

Legs []

Flight Number

Origin

Destination

DateTime Departure

DateTime Arrival

Once you have made your choice of the selections, you send back
another document:

Document: ReserveOneWayAirfare

Passenger

FareAllInclusive

Legs []

Flight

Number

Origin

Destination

DateTime Departure

DateTime Arrival

17To see another example, check out the Oasis Universal Business Language (UBL)
1.0, published September 15, 2004. (ID: cd-UBL-1.0). You can find a copy at
http://docs.oasis-open.org/ubl/cd-UBL-1.0/.

18And perhaps a call from the Department of Homeland Security; one-way flights seem
to get them a little skittish.

http://docs.oasis-open.org/ubl/cd-UBL-1.0/.
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=97

MORE ON DOCUMENT STYLE 98

The contents of ReserveOneWayAirfare could be shorter, if the server were
stateful. The server would need to remember what Selections had been
transmitted. Then ReserveOneWayAirfare could contain just an index
into the Selections of the QuotationForOneWayAirfare document. Once the
travel site has confirmed your reservation, the site returns a confirma-
tion document:

Document: ReservationConfirmation

Reservation Identification

Passenger

FareAllInclusive

Legs []

Flight Number

Origin Destination

DateTime Departure

DateTime Arrival

In the next step you pay for the reservation with the following docu-
ment:

Document: Payment

Reservation Identification

Credit Card Number

Credit Card Information

Amount

And the system returns this:

Document: PaymentReceived

Reservation Identification

The preceding documents communicate information between your web
browser and the web server. On the web server side, processing these
documents may generate other documents, such as requests for quota-
tions to the individual reservation systems for each airline, and charge
documents to a credit card processor.

Many other conditions may exist for this document sequence. For
example, you may have temporal constraints. If the Payment document
is not received within a given period of time after ReservationConfirmation

is sent, the reservation may be canceled.

A document flow can be expressed in procedural code. Assume each of
the documents has been transformed into a corresponding DTO. You
could code the sequence shown in Figure 6.1, on the next page as fol-
lows:

RequestForQuotationForOneWayAirfare rfq;

// Fill in rfq with desired values, then

QuotationForOneWayAirfare quotation = send_message(rfq)

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=98

SECURITY 99

RequestForQuotationForOneWayAirFare

ReserveOneWayAirFare

Payment

QuotationForOneWayAirfare

ReservationConfirmation

PaymentReceived

Figure 6.1: Document flow

// Put up GUI with selection

ReserveOneWayAirfare reserve;

// When user has selected an item, fill in reserve

// and send it

ReservationConfirmation confirmation = send_message(reserve)

Payment payment;

// Fill in payment with amount and other information

PaymentReceived payment_received = send_message(payment)

6.6 Security

Whenever you have an remote interface that is available to the outside
world, you need to worry about security. A detailed examination of
security topics is beyond the scope of this book, so we’ll just discuss
some general matters.19 Frameworks such as web services and CORBA
provide some solutions to general security issues such as authentica-
tion and confidentiality. However, you should examine each remote
interface to ensure that it is secure.

You need to authenticate the user of your interface. Authentication
determines, to a reasonable degree of certainty, that the user is really

19See Software Security: Building Security In by Gary McGraw (Addison-Wesley Profes-
sional, 2006) for a full discussion of security.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=99

TESTING 100

the user. Typical authentication schemes range from passwords to
encrypted certificates to biometric scans.

Once you know who the user is, you should check to see that the user
is authorized to access the interface or perform an operation. Typi-
cally, authorization is performed using an access control list (ACL) or
similar mechanism. The ACL lists the users who are authorized to per-
form a particular operation. To simplify administration, users are often
assigned roles, such as Customer or PizzaOrderer. The ACL associates
roles with particular operations or set of operations.

When data is transmitted over a network, you particularly need to be
concerned with confidentiality and data integrity. Encrypting data can
provide a degree of confidentiality. It can help prevent the data from
being altered as it traverses the network.

Even if you have mechanisms for providing all the previously men-
tioned security aspects, you need to worry about information escap-
ing. Suppose you work for a hospital and you use a remote provider to
check the ZIP codes for addresses. If those addresses are your patients’
addresses, you just provided private patient data to an unauthorized
party.

You should be particularly concerned with contract checking. Any
document-style interface should completely check the validity of the
received documents. Implementations of procedural-style interfaces
should employ strong contract checking, since the implementations
cannot be assured that the client has followed the contract.

6.7 Testing

In general, every external interface should have a testing implementa-
tion (e.g., a stub or a mock object). The testing implementation can
respond quicker than a remote implementation. The quick response
improves the speed of testing other units that depend on the remote
interface. The testing implementation can have additional methods (a
testing interface) that allow the user to set up a desired request/re-
sponse scenario (e.g., a request document and a response document). It
can also provide a way to create a failure condition (e.g., server unavail-
able) to see how the unit under test handles those conditions. Simulat-
ing these failures in software for rapid testing is a lot easier than having
to disconnect the network.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=100

THINGS TO REMEMBER 101

6.8 Things to Remember

We covered both procedural-style and document-style remote inter-
faces. When using or designing a remote interface, consider how it
may react to network delay or failure and make provisions for handling
those situations. For a document-style interface, follow these tips:

• Precisely specify the document flow protocol.

• Perform validity checking before transmitting a document.

• Use an appropriate document encoding schema.

We discussed a few matters that you should consider when you employ
a remote interface:

• Use a DTO or a data interface to make the external representation
of a document more opaque.

• Examine the security implications of any remote interface.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=101

Part II

Developing with Interfaces

Chapter 7

A Little Process
You probably already have a software development process. You may be
using the Rational Unified Process (RUP) or Extreme Programming (XP)
or something in between. This chapter shows how interface-oriented
design can fit into your process; we’ll outline the development phases
for a system with a concentration on interfaces. In the next three chap-
ters, we will create three types of systems to show interfaces at work in
other contexts.

Creating interfaces may seem contrary to a common measure of sim-
plicity, which is having the fewest lines of code. Using interfaces can
add code. However, designing with interfaces focuses on creating a con-
tract for an interface and testing that contract. It can prevent you from
getting mired in implementation details too early. Even if you decide
not to have the interface layer in code, thinking in interfaces helps
keep you focused on the real problems. Since refactoring consists of
changing code without changing its external interface, a well-designed
interface can make it easier to refactor.

7.1 The Agile Model

Since I do agile development in my work, I present interface-oriented
design in that context. We are not going to cover the details of agile
development methodologies. You can read these details in various
books on agile processes.1

1Books include Extreme Programming Explained: Embrace Change by Kent Beck and
Cynthia Andres (Addison-Wesley, 2004), or Agile Software Development with SCRUM by
Ken Schwaber and Mike Beedle (Prentice Hall, 2001).

VISION 104

In agile development, you create your software in iterations. Dur-
ing each iteration, you create the highest-priority remaining features
desired by the customer. This chapter shows discrete tasks of develop-
ment—vision, conceptualization, testing, analysis, design, and imple-
mentation. During an iteration, you may go through all these tasks to
develop a feature.

I outline specific development tasks to be able to separate the discus-
sion of the various portions of the process; no absolute milestones sig-
nal the end of one phase and the beginning of another. And these
phases aren’t followed linearly—feedback exists among them. You may
discover during implementation that an ambiguity existed in conceptu-
alization. You would go briefly back to conceptualizing, disambiguate
the concept, and then continue implementing.

7.2 Vision

Every software project needs a vision. The vision is a sentence or two
that outlines the business purpose for the software. In this chapter as
an example, we are going to create a pizza shop automator. The vision
is that this system decreases the amount of work necessary to process
pizza orders.

7.3 Conceptualization

Once you’ve established a vision, you need to capture requirements
for the software system. Functional requirements can be expressed in
many ways including formal requirement documents, user stories, and
use cases. I have found that use cases are easy for both the end user
and the developer to understand. They quickly demonstrate what the
system does for the user, as well as show what is inside the system and
outside the system. They form the basis for acceptance tests as well as
for internal interface tests. If a system cannot perform what the use
cases state, then the system has failed.2

We create the use cases together with the person requesting the system
and the end users. For the pizza shop automator, the actual making

2Passing tests for the use cases is necessary for system success but not sufficient.
The system must also pass nonfunctional tests (e.g., performance, robustness).

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=104

CONCEPTUALIZATION 105

Joe Asks. . .
Use Cases

A use case∗ “defines the interactions between external actors
and the system under consideration to accomplish a business
goal. Actors are parties outside the system that interact with
the system; an actor can be a class of users, a role that users
can play, or another system.”

Use cases treat the system as a “black box.” Interactions with
the system, including system responses, are documented from
outside the system. This is deliberate policy, because it simplifies
the description of requirements and avoids the trap of making
assumptions about how this functionality will be accomplished.

Note that this definition parallels how interfaces should be
treated.

Each use case has a name, shown in the use case diagram.
For each use case, you write down the individual steps that list
what the user does and how the system responds. A simple
format is as follows:†

∗This definition comes from http://en.wikipedia.org/wiki/Use_cases.
†You can add many more features to use cases. See Writing Effective Use

Cases by Alistair Cockburn (Addison-Wesley Professional, 2000) for details.

the pizza and delivering the pizza are outside of the software system.3

For this system, the main concern is the information flow between the
various actors.

We first identify the actors by the roles that they play, not their specific
positions. An OrderEnterer could be the person on the other end of the

3If we were creating an automated pizza shop, then the making of the pizza would be
inside the system.

http://en.wikipedia.org/wiki/Use_cases
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=105

CONCEPTUALIZATION 106

Pizza
Maker

Enter Pizza
Order

Notify Order
Ready

Post
Payment for

Order

Order
Enterer

Pizza
Deliverer

Figure 7.1: Use cases

phone, or it could be a customer on a web site. A PizzaDeliverer could be
a guy in a car, or it could be someone behind the counter who delivers
the pizza to a walk-in customer. We next determine what the actors will
use the system for and list these in a use case diagram (Figure 7.1).

For each use case, we list the interactions between the user and the
system. We try to write the interactions in a more general way (e.g.,
select the size of pizza), rather than in a specific way (e.g., choose the
size of pizza from a drop-down list).4 We want to explore the function-
ality of the user interface, rather than a specific implementation at this
point. Here are the details for each use case:

Use Case: Enter Pizza Order

1. Order Enterer enters order details.

2. System responds with time period till order is to be delivered.

4You can create GUI prototypes that use specific widgets, if the user needs to envision
how the system will appear to the end user in order to understand it.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=106

CONCEPTUALIZATION 107

Use Case: Notify Order Ready

1. Pizza Maker notifies system that order is complete.

2. System notifies Pizza Deliverer that order is ready for delivery.

Use Case: Post Payment for Order

1. Pizza Deliverer enters payment received from customer.

2. System records order as paid.

3. Pizza Deliverer puts remainder of money into his pocket as tip.

Each use case represents a portion of the user’s interface to the sys-
tem. Like the code-based interfaces we have been discussing, the user’s
interface has a contract and a protocol. We can also document the pre-
conditions and postconditions for each use case. For example, “Notify
Order Ready” has a precondition that “Enter Pizza Order” has occurred.

Before moving onward, it’s a good idea to write down some of the
assumptions we are making for this system. We simplified the flow to
concentrate on the process. We know that one pizza is just not enough
for a hungry customer. Our assumptions include the following:

• An order is for one pizza and no other menu items. Otherwise, we
need to handle partial orders (e.g., one pizza is ready, and another
is not).

• The system will handle only cash payments for pizza.

• Pizzas vary only by size and number of toppings.

Testing

It may seem odd to mention testing before even starting to design the
system, but outlining tests can provide additional insights in under-
standing a system. Often, you can find ways to structure your inter-
faces to make them easier to test. On the user level, we examine the
use cases to create an outline of the acceptance tests. Here are some
tests that we generated from the use cases:

Test Case: Normal Pizza Order

1. Order Enterer enters Pizza order.

2. Order Enterer should see time to deliver.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=107

CONCEPTUALIZATION 108

3. Pizza Maker should see order.

4. Pizza Maker notifies order is complete.

5. Pizza Deliverer should see delivery notice.

6. Pizza Deliverer enters payment from customer.

7. System should show order is paid.

Test Case: Normal Pizza Orders

1. Repeat Normal Pizza Order several times.

2. System should show all orders are paid for.

Test Case: Random Pizza Payments

1. Like Normal Pizza Orders, but Pizza Deliverer pays for orders in
random sequence.

2. System should show all orders are paid for.

These tests suggest that we should have a reporting mechanism that
lists orders and whether they have been paid. We can use that report-
ing mechanism to determine the success of these tests. This report-
ing mechanism suggests that we didn’t capture a use case involving
reports.

You can also generate “misuse” cases, which describe how the sys-
tem might be accidentally or deliberately misused. Misuse cases can
include the “fringe” cases in which you try entering values that are on
the edge of an acceptable range. Here are a few misuse cases:

Test Case: Pay for Paid Order

1. Pizza Deliverer pays for order that has already been paid.

2. System should not allow this.

Test Case: Overburden Pizza Maker

1. Order Enterer enters numerous orders for same address.5

5The same address is used in order to differentiate the response from that due to
delivery to different addresses.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=108

CONCEPTUALIZATION 109

2. System should respond with increasing time to deliver.

Test Case: Send Pizza Deliverer on Goose Chase

1. Order Enterer enters order for faraway place.

2. System should respond with what?

The third test suggests that we have not yet captured some require-
ments, since we are not sure how the system should respond. Our
users inform us that a pizza shop has a limited delivery area to ensure
that the delivered pizza is hot. You should not accept an order if the
delivery address is outside that delivery area. The idea of addresses
inspires a few more misuse cases:

Test Case: Place Order to Nonexistent Address

1. Order Enterer places order to nonexistent address.

2. System should respond that it cannot deliver to that address.

Test Case: Make Them Run All Over the Place

1. Order Enterer places orders to address that are widely separated
and timed so that they cannot all be delivered together.

2. System should respond that delivery time will be excessive.

These cases revolve around a common theme: the system should be
able to determine the validity of an address and to determine the deliv-
ery time for a particular address. We already know of some imple-
mentations that perform these operations (e.g., maps.google.com and
mapquest.com). When we get around to creating this feature, we’ll cre-
ate an interface that makes transparent which implementation we are
using.

We can come up with other misuse cases that test how the system
responds to large demands:

Test Case: Make Them Run Out of Ingredients

1. Order Enterer orders many, many pizzas.

2. System at some point should respond that it cannot handle any
more.

maps.google.com
mapquest.com
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=109

ANALYSIS AND DESIGN 110

This “Denial of Pizza” attack is the equivalent of a “Denial of Service”
network attack. Keep pounding at something to see whether it gives
up. The first release may not be able to pass this test, but we’ll keep it
on the list for future releases.

We could make up many more misuse cases, but you should get the
point by now. Each of these misuse cases helps us define the con-
tract for the user interface—how the system should respond for each
operation that the user requests.

7.4 Analysis and Design

The real boundary between analysis and design is not precise, but you
can separate them with formal definitions. Analysis is the process of
identifying the essential concepts (abstractions) in a system and deter-
mining the work that needs to be performed. Design develops those
abstractions into realizable components. In implementation, you write
the code for those components. In reality, you may develop some con-
cepts and implement them and then realize that you did not completely
understand the concept.

The term design is often applied to both analysis and design. The title
of this book is Interface-Oriented Design (IOD). The ideas of IOD appear
both in developing the abstractions and in turning those abstractions
into components.

7.5 Interface-Oriented Design

Interface-oriented design encompasses ideas found in other design phi-
losophies as responsibility-driven design, role-based design, and test-
first development.

Interface-oriented design revolves around these concepts:

• An interface represents a set of responsibilities.

• A responsibility is a service that the interface provides.

• Modules implement interfaces. A module can be a class, a compo-
nent, a remote service, or even a human being performing opera-
tions manually.

• A role represents one or more related interfaces.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=110

INTERFACE-ORIENTED DESIGN 111

<<interface>>
FootballPlayer

<<interface>>
Leader

<<interface>>
BallCarrier

<<role>>
Quarterback

<<module>>
BartStarr

<<implements>>

Figure 7.2: Interfaces, roles, and modules

• A module can implement one or more interfaces so that it can play
a role or multiple roles.

The diagram in Figure 7.2 , shows the relationship between interfaces,
roles, and implementations. The interfaces and roles are the ones de-
scribed in Chapter 5. Bart Starr is an implementation of the Quarter-
back role.6

In analysis, interface responsibilities are expressed in general terms.
In design, these responsibilities are usually expressed as methods.
Some responsibilities assigned to an interface may not be exposed as
a method, but simply end up as internal operations. In analysis, you
can come up with a rough draft of the interfaces for a system. You then
assign responsibilities to those interfaces. Alternatively, you can start
by grouping responsibilities into sets (roles) and then assigning names
to those roles.

Once you’ve come up with a draft of the interfaces and their responsi-
bilities, you work your way through the use cases to see whether they
can be performed with those interfaces.

6Bart Starr was the quarterback for the Green Bay Packers and MVP of Super Bowls
I and II.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=111

INTERFACE-ORIENTED DESIGN 112

How do you determine which interface is assigned which responsibility?
Here are a few general guidelines:

• Put together cohesive interfaces. The responsibilities should be
ones that seem like they go together.

• Decouple interfaces—separate responsibilities that may be imple-
mented differently.

• Divide into more interfaces to simplify the testing of each inter-
face.7

Rebecca Wirfs-Brock in Responsibility Driven Design8 suggests a num-
ber of stereotypes for objects. A stereotype describes the general cat-
egory of use for an object. Those stereotypes have a correspondence
in interface-oriented design. We already listed two (data interface and
service interface) in Chapter 2. Other stereotypes include the following:

• Storage interfaces (to hold persistent data)

• Entity interfaces that reflect models and business rules

• Interfaces to outside world

– Document interfaces

– View/controller GUI interface

No guaranteed way exists to determine what responsibilities should go
with which interfaces; designing interfaces takes the same effort as
designing classes. Bertrand Meyer says, “Finding classes is the cen-
tral decision in building an object-oriented software system; as in any
creative discipline, making such decisions right takes talent and expe-
rience, not to mention luck.” He goes on to say, “No book advice can
replace your know-how and ingenuity.” The same can be said for find-
ing the right set of cohesive interfaces.

IRI Cards

For analysis, I like to use what I call IRI cards, which are a variation of
the CRC cards of Ward Cunningham, Kent Beck, and Rebecca Wirfs-
Brock. CRC stands for class-responsibility-collaboration. IRI stands

7If you find yourself winding up with most interfaces having a single method, then
you are probably breaking up cohesive responsibilities.

8See Object Design: Roles, Responsibilities, and Collaborations by Rebecca Wirfs-
Brock and Alan McKean (Addison-Wesley Professional, 2002).

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=112

INTERFACE-ORIENTED DESIGN 113

Interface

 InteractionsResponsibilities

Figure 7.3: IRI card template

PizzaDeliverer

 Receives pizza
 Collects money
 Pays for order

Figure 7.4: IRI card example

for interface-responsibility-interaction. A IRI template is shown in Fig-
ure 7.3 . The main difference is that emphasizing interfaces makes
the cards more useful in designing both class- and service-oriented
designs, and it removes some emphasis on implementation issues, such
as classes.

On an index card, write down an interface name and a set of responsi-
bilities. Continue until all responsibilities are assigned to an interface.

If the responsibilities are complex, break them down into simpler ones.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=113

INTERFACE-ORIENTED DESIGN 114

Typically these simpler responsibilities will be offered by other inter-
faces. Create another card with names for those additional interfaces
and the responsibilities. Those additional interfaces are listed as inter-
actions on the interface card that needs them.

It’s not always necessary to go from the top down (starting from the
exterior responsibilities that are large and going inward to the most
detailed interface). You can start at either place. Starting at the bottom
may point out more reusable interfaces.

Examining our use cases, we come up with a preliminary set of inter-
faces. We could show these on index cards, such as the example shown
in Figure 7.4, on the page before, but that would just take up more
room. I tend to create more interfaces in the beginning. I have found it’s
easier to combine responsibilities from two or more cohesive interfaces
and then separate an interface’s responsibilities into multiple inter-
faces.

• Interface Pizza

– Keep track of size and kinds of toppings

• Interface Address

– Keep track of street, city, ZIP, phone number

– Determine distance to another address

• Interface Order

– Contains Pizza and Address

• Interface OrderEnterer

– Enter pizza order

– Display time to deliver

• Interface PizzaMaker

– Display pizza order to create

– Notify when order is ready

• Interface PizzaDeliverer

– Receives pizza

– Collects money

– Pays for order

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=114

INTERFACE-ORIENTED DESIGN 115

Now that we have a preliminary set of interfaces, we start with the use
cases and see whether we have captured all the responsibilities. Let’s
take the first use case, which we restate with the interfaces we have
created:

Use Case: Normal Pizza Order

1. OrderEnterer enters Pizza order.

2. OrderEnterer should see time to deliver.

Between the OrderEnterer, Order, and Pizza, we think that we have cap-
tured all the responsibilities for this use case, but we need to check.
So we trace how the system determines the time till an order is ready.
The OrderEnterer asks the PizzaMaker how long it will take to complete
the order. Then the OrderEnterer asks the PizzaDeliverer how long it will
take to deliver the pizza, assuming it is ready when the PizzaMaker says
it will be. Then the system can respond with this time period. With this
flow, we come up with additional responsibilities for the PizzaMaker and
the PizzaDeliverer:

• Interface PizzaMaker

– Determine how long it will take to make a pizza.

• Interface PizzaDeliverer

– Determine how long it will take to deliver a pizza, assuming it
will be ready at a particular time.

OrderEnterer now has interactions with these two interfaces, which we
show on the card in Figure 7.5, on the following page.

We could have the PizzaMaker report the time to delivery by asking the
PizzaDeliverer for the delivery time. However, that would tie PizzaMaker to
PizzaDeliverer. With that coupling, testing will become more complicated.

We can also run through the misuse test cases to see whether we need
to assign additional responsibilities. The Place Order to Nonexistent
Address misuse case comes to mind. The PizzaDeliverer needs to notify
the OrderEnterer if it cannot deliver the pizza because the address does
not exist (in compliance with the Third Law of Interfaces). At this point
we don’t specify the means of notification. When we start designing
and coding, we can determine how PizzaDeliverer should report this con-
dition.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=115

DESIGN 116

OrderEnterer

PizzaMaker
PizzaOrderer

Enter pizza order
Display time to deliver

Figure 7.5: IRI card with interactions

7.6 Design

Once we are somewhat satisfied that we have captured the essential
concepts and that we can perform the use cases with these abstrac-
tions, we can turn these IRI cards into more detailed interfaces. You
can write the interface declarations directly in your language of choice,
or you can put the interface definitions into some design tool and let
it generate the initial code. Many of the responsibilities show up as
methods in the corresponding interfaces:

enumeration Topping {MUSHROOMS, PEPPERONI, ...};

enumeration Size {SMALL, MEDIUM, LARGE};

interface Pizza

Size size

Topping [] toppings

interface Address

String street

String city

String zip

String phone_number

DistanceInMiles distance_to_address(Address another)

interface Order

Pizza

Address

interface OrderEnterer

TimePeriod enter_order(Order) signals AddressOutOfDeliveryArea

interface PizzaMaker

TimePeriod time_to_be_ready(Order)

place_order(Order)

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=116

DESIGN 117

Configuration Is Yet Another Interface

Most programs are not completely static. The end user should
be able to change some facets of a system without involving
the developer. Although for simplicity we showed Size and Top-
pings as enumerations in the previous interface definitions, most
likely these will need to change. These changes can be han-
dled by a configuration interface. For example:

interface Configuration
Size [] get_pizza_sizes()
Topping [] get_pizza_toppings()

Configuration information may be kept in a file, a database,
or an application registry. The Configuration interface hides its
actual representation. Alternative configurations can be used
for testing. These alternatives may be handled by either replac-
ing the entire representation for a configuration or by adding
set methods to the Configuration interface.∗

The appendix discusses configuration in more detail.
∗This configuration works as a Service Locator pattern. You might

also use the Dependency Injection pattern for configuration. See
http://www.martinfowler.com/articles/injection.html for a discus-
sion on the differences. Fowler appears to favor the Service Locator pattern
for application components and Dependency Injection for components that
are distributed in general libraries.

Order get_next_order()

interface PizzaDeliverer

notify_order_ready(Order)

pay_for_order(Order)

TimePeriod time_to_deliver(Order, TimePeriod when_ready)

The previous definitions are language-independent. You could write the
definitions directly in your implementation language. You could cre-
ate a separate interface definition and then create classes or modules
that implement that interface, or you could simply use the interface
as the basis for a class. For data interfaces, the latter is the simplest
approach. For service interfaces, the former is more flexible, especially
for testing, as we shall see.

http://www.martinfowler.com/articles/injection.html
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=117

DESIGN 118

Getting Something Working

You usually won’t be able to take every consideration into
account when defining interfaces. You should validate your
initial interface design by creating an implementation with the
basic responsibilities. This implementation corresponds to the
Pragmatic Programmer’s tracer bullets∗ Following that guide-
line, you “get something working”: an end-to-end implemen-
tation of a system. That implementation can help verify that
you made a good cut at creating an initial set of interfaces.
You can then tweak your design by creating new interfaces,
adding methods, altering method parameters, and so forth.

∗See the original in The Pragmatic Programmer: From Journeyman to Master
by Andy Hunt and Dave Thomas (Addison-Wesley Professional, 1999)

Interfaces Outside the Software System

Interfaces and services also apply outside the software realm.
We know we need a nonsoftware implementation of a Phys-
icalPizzaMaker whose job is to actually create the physical
pizza. An implementation of this interface may delegate
responsibilities to other interfaces, such as the DoughMaker, the
DoughThrower, the PizzaCreator, and the PizzaBaker. A real person
might implement just the PhysicalPizzaMaker or might implement
the other interfaces as well. With all these interfaces that have a
smaller set of responsibilities, the implementation for each can
be assigned to a different individual. Each individual interface
implementation can be independently tested.

An implementation of the PhysicalPizzaMaker might be an auto-
mated system. Such a system could make the dough, throw
the dough, place toppings on the pizza, put the pizza in the
oven, remove the pizza, and put it in a box. When we create
tests against the PhysicalPizzaMaker interface, we simply want to
ensure that an implementation meets its obligations. The tests
should not be dependent on whether humans or machines are
making the pizza. You just keep running the tests until the results
meet your expectations. This might be fattening.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=118

DESIGN 119

Testing

Given the explicit methods of the interfaces, we can turn the outline of
the tests we have developed directly into code; we’ll develop the tests for
the interface prior to creating the implementation. If we find that the
tests are difficult to create, that is usually a sign that the interface may
not be optimal. For example, here’s a portion of the test for a Normal
Pizza Order:9

Pizza pizza = new Pizza()

pizza.set_size(SMALL);

Topping [] toppings = {MUSHROOMS};

pizza.set_toppings(toppings);

Address address = new Address();

address.set_street("1 Oak Lane");

address.set_city("Durham");

address.set_zip("27701");

address.set_phone_number("919-555-1212");

Order order = new Order();

order.set_pizza(pizza)

order.set_address(address);

OrderEnterer order_enterer = OrderEntererFactory.get_instance();

TimePeriod time_period = order_enterer.enter_order(order);

AssertNotNull("Time period for order", time_period);

When we test this program, it’ll be hard to have cooks keep pushing
a button saying that a pizza is done. So we’ll need to write simula-
tors: implementations that simulate the operations contracted by an
interface. For example, here’s the interface for PizzaMaker again:

interface PizzaMaker

TimePeriod time_to_be_ready(Order)

place_order(Order)

Order get_next_order()

A simulator for PizzaMaker would accept an order (place_order()), wait
some period of time, and then invoke notify_order_ready() on the PizzaDe-

liverer interface. A more elaborate simulator might wait an amount of
time based on the number of pizzas currently on order. For fast testing
purposes, the simulator can be set to respond as quickly as possible.

9This test code uses the interface methods to set values since we’re dealing with
interfaces. All these set methods suggest that you might add constructors to the Pizza,
Address, and Order classes. The constructors will decrease the code for the test.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=119

IMPLEMENTATION 120

Developer testing would be stifled if it took 20 minutes for a response
to occur.

7.7 Implementation

As we get into implementing a particular interface, more interfaces may
be created. For example, to determine how long till an order is com-
plete, the PizzaMaker will need to keep some queue of Orders in process.
The PizzaMaker uses the number of Orders in the queue to determine the
amount of time before an order can be started. So in a lower level, we
may have an OrderQueue interface. We will create tests for that interface
that check that it performs according to its contract.

7.8 Things to Remember

In interface-oriented design, the emphasis is on designing a solution
with interfaces. When using IOD, here are some tips:

• Use IRI cards to assign responsibilities to interfaces.

• Keep service interface definitions in code separate from the code
for classes that implement it.

• Write tests first to determine the usability of an interface.

• Write tests against the contract for the interface.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=120

Part III

Interfaces in the Real World

Chapter 8

Link Checker
This chapter and the next two present three interface-oriented designs.
Each design emphasizes different aspects of interfaces:

• The Link Checker demonstrates using an interface to hide multi-
ple implementations that parse a web page.

• The Web Conglomerator shows how to delegate work among mul-
tiple implementations.

• The Service Registry presents a document-style interface and dem-
onstrates some issues with documents.

Having broken links on your web site can annoy your visitors. I’m sure
I have had several broken links on mine; the Net is an ever-changing
place. A link checker that ensures all links are working is a valuable
tool to keep your visitors happy. In this chapter, we’ll create a link
checker, and along the way, we’ll see how designing with interfaces
allows for a variety of easily testable implementations.

8.1 Vision

The vision for this system is short and sweet. The link checker exam-
ines links in the pages of a web site to see whether they refer to active
pages. It identifies links that are broken.

8.2 Conceptualization

It’s always a good idea to try to get definitions straight at the beginning.
We consider the two types of links and one variation. The user is going
to specify a domain, as “www.pughkilleen.com,” or a URL that includes

CONCEPTUALIZATION 123

Web
Server

Check Links
on URLUser

Figure 8.1: Use case for Link Checker

a domain, such as “www.pughkilleen.com/classes.html.” An internal
link is a link to a page with the same domain as the specified one. An
external link has a different domain. A variation on a link is one with an
anchor. An anchor is a specific location within a web page, denoted by a
label following a #, such as “www.pughkilleen.com/classes.html#Java.”
We should examine the referenced web page to see whether the anchor
exists in that page. To keep the first iteration short, we will save that
aspect to the next iteration.

The single use case is as follows:

Use Case: Check Links on URL

1. User enters a URL.

2. The system reports all broken internal and external links on all
pages in the domain that can be reached from the URL.

Even with one use case, a use case diagram such as Figure 8.1 is often
a nice way to depict what interactions a system has with outside actors.

Let’s describe in more detail the work that the system will perform in
response to the entered URL.

Use Case: Check Links on URL

1. User enters a URL.

2. The system determines the domain from the URL.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=123

ANALYSIS 124

3. The system retrieves the page for the URL from the appropriate
web server.

4. The system examines the retrieved page for internal and external
links:

a) For internal links, the system recursively retrieves the page
for each link and examines that page for links.

b) If a link is broken, the system reports it.

c) For external links, the system just retrieves the page to see
whether it is accessible.

5. The system stops when all internal links and external links have
been examined.

Since this GUI is really basic, a prototype report can help developers
and users visualize the results of the use case. We present an outline
of a report here:

Prototype Report

Domain: a_domain.com

Page: a_domain.com/index.html

Internal Broken Link(s)

Page: whatsup.html

Page: notmuch.html

External Broken Link(s):

Page: www.somewhere-else.com/nothingdoing.html

Page: www.somewhere-else.com/not_here.html

8.3 Analysis

Based on the conceptualization, we come up with a number of respon-
sibilities and assign them to interfaces using IRI cards. We follow the
guideline from Chapter 7 to decouple interfaces that may be imple-
mented differently. We know we need to retrieve pages, so we create a
WebPageRetriever interface that returns WebPages. We need to parse a
WebPage into links, so we add a WebPageParser. We include a LinkRepos-

itory to keep track of the links. The IRI cards we come up with appear
in Figure 8.2, on the following page. Each of the interfaces has clearly
defined responsibilities.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=124

ANALYSIS 125

WebPageRetriever

 WebPage
Retrieves page for a URL
Reports error if page is not
accessible

Retries a number of times
before declaring web page not
accessible

WebPage

Contents

ReportMaker

LinkRepositoryPrints report on a
LinkRepository

LinkRepository

Keeps track of the original
domain (so it knows what is an
internal link)

Keeps the links and pages that
references them

Retrieves internal and external
links in a nonduplicated
fashion

WebPageParser

WebPageDetermines links in a
WebPage

Figure 8.2: IRI cards

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=125

DESIGN 126

8.4 Design

We take the interfaces on the IRI cards and develop them into more
specific methods.

The Web Page

WebPage is just a data interface:

interface WebPage

set_url(URL)

set_contents(String)

String get_contents()

Parsing the Web Page

WebPageParser has a single method:

interface WebPageParser

URL [] parse_for_URLs(WebPage)

At this point, we’re not sure how we are going to parse a web page
into links. We could use a regular expression parser. We could use
SAX or DOM (Chapter 3), if the web pages are well-formed. Or we could
use javax.swing.text.html.parser.Parser, which parses most web pages. Hav-
ing this interface allows us to easily test whatever implementation we
decide to use. There is not much of a contract to enforce (Chapter 2).
The contractual tests consist of passing web pages with a variety of
content and checking that all the links are returned.

Using this interface decouples the implementation from the tests. If we
create a second implementation, we can use the same functional tests.
If we want to compare the two implementations for speed or ability to
handle poorly formed input, we write the tests against this interface.

Having the interface makes selecting an implementation less critical.
We pick one. If it’s too slow, we pick another. The code that requires
the parsing does not need to be changed.

The WebPageParser returns an array of URLs.1 This URL interface con-
tains mostly data:

data interface URL

protocol (e.g., http://)

1If you’re familiar with Java, you may recall that the Java library has a URL class.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=126

DESIGN 127

Multiple Implementations

Creating multiple implementations of the same interface is
often employed in high-reliability software. For example, three
teams each code an airplane guidance module. Each team
uses a different algorithm; another module compares the results
of the three. If they all agree, the comparison module uses that
value. If fewer than three agree, the module signals a prob-
lem to the pilot. If only two agree on a value, the comparison
module uses that value. If none of them agree, the compari-
son module has to make a decision. It might default to using
the one module that agreed most in the past with the other
two modules.

domain (e.g., www.pughkilleen.com)

port (optional, e.g., :8080)

file (e.g., /index.html)

anchor (optional, comes after ' #')
additional (optional, comes after ' ?')
to_string() // returns string of URL

from_string(String) // parses string into URL

Retrieving the Web Page

The WebPageRetriever retrieves the WebPage corresponding to a partic-
ular URL. We don’t want to report that a link is bad if there is just a
temporary failure in the Internet. So, WebPageRetriever could signal an
error if it cannot locate the URL in a reasonable number of tries, rather
than in a single try. It has a single method:

interface WebPageRetriever

WebPage retrieve_page(URL) signals UnableToContactDomain,

UnableToFindPage

Storing the Links

The LinkRepository stores the URLs that have been found in retrieved
pages. It needs to know the base domain so that it can distinguish
internal links from external links. LinkRepository also records which
URLs are broken and which are OK. LinkRepository is probably going
to create a type of object (say a Link), which contains the URL and this
information. But we really don’t care how it performs its responsibili-
ties. We just want it to do its job, which is defined like so:

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=127

DESIGN 128

Combining Interfaces

We could add retrieve() and parse() methods to Webpage to
make it have more behavior. Those methods would delegate to
WebPageParser and WebPageRetriever the jobs of retrieving and
parsing the page. The interface would look like this:

interface WebPage
set_url(URL)
set_contents(String)
String get_contents()
retrieve()
URL [] parse_for_URLs()

The methods are cohesive in the sense that they all deal with
a WebPage. Initially, we’ll keep the interfaces separate to sim-
plify testing. Later we can add the methods to WebPage. At
that point, we’ll need to decide how flexible we want to be.
If the implementations for WebPageParser and WebPageRetriever
should be changeable, we can set up a configuration inter-
face, which is called when a WebPage is constructed:

interface WebPageConfiguration
WebPageParser get_web_page_parser()
WebPageRetriever get_web_page_retriever()

Alternatively, we can use the Dependency Injection (Inversion
of Control) pattern∗ to set up the implementations. With this
pattern, we supply the WebPage with the desired implementa-
tions:

interface WebPage
set_parser(WebPageParser)
set_retriever(WebPageRetriever)
set_url(URL)
set_contents(String)
String get_contents()
retrieve()
URL [] parse_for_URLs()

USING CONFIGURATION
Advantage—hides implementation requirements

Disadvantage—services have dependency on a configu-
ration interface

USING INVERSION OF CONTROL
Advantage—common feature (used in frameworks)

Disadvantage—can be harder to understand
∗See http://martinfowler.com/articles/injection.html for more

details.

http://martinfowler.com/articles/injection.html
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=128

DESIGN 129

interface LinkRepository

set_base_domain(Domain base_domain)

add_URL(URL link, URL reference)

// adds reference (web page that it comes from)

URL get_next_internal_link()

// null if no more links

URL get_next_external_link()

// null if no more links

set_URL_as_broken(URL)

set_URL_as_okay(URL)

LinkRepository has a more complicated contract than WebPageRetriever.
For example, if you already know the status of the link, you don’t want
a URL to be returned by get_next_internal_link(). So, you need to check
that LinkRepository properly returns the URLs that have not already been
retrieved, regardless of how many times they may be referenced.

You should review your interfaces before you implement them. Oth-
erwise, you may implement methods that turn out to be useless.2 We
could add to LinkRepository the job of cycling through the links, retrieving
the pages, and parsing the pages. Its current responsibilities center on
differentiating between internal and external links and retrieving them
in a nonduplicated manner.

We could add a push-style interface to LinkRepository (see Chapter 3) to
perform the operation of cycling through the links. The push style in
this instance is somewhat more complicated. The method that is called
may add additional entries into the LinkRepository that invoked it. So,
we’ll start with pull style. Shortly, we’ll create another interface that
actually does the pulling.

We probably want an add_URLs(URL [] links, URL reference)3 as a convenience
method. After all, we are retrieving sets of URLs from pages, not just a
single URL. So, making a more complete interface simplifies its use.

The two get_next() methods return links that haven’t yet been retrieved.
If a link is internal, we are going to retrieve the page, parse it, and add
the new links to the LinkRepository. If a link is external, we are just going
to retrieve the page to see whether it exists, but not parse it. Now that
sounds like we might want to have an additional interface (say Link) with
two implementations: ExternalLink and InternalLink. They would contain a

2Thanks to Rob Walsh for this thought. He adds “or completely wrong.”
3Do the parameters in the method seem reversed? Should the links go after the

reference? Making the order consistent with every code reviewer’s idea of correct order is
impossible, as you can probably imagine.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=129

DESIGN 130

parse_for_URLs
(aWebPage)

aDomainLinkChecker aWebPageRetrieve aWebPageParser aLinkRepository

retrieve_page(URL)

aWebPage

URLs

URL

set_URL_as_unbroken(URL)

add_URLS(URLs)

get_next_internal_link()

determine_link_
status(URL)

Figure 8.3: Sequence diagram (for internal links that are not broken)

process method that implements the different steps we just noted. We
leave that alteration as an exercise to the reader.

Controlling the Cycling

We create a separate control interface (see Chapter 3), called Domain-

LinkChecker, for the logic that goes through each link, retrieves it, and
checks it. It’s going to need a LinkRepository into which to put all the
links. Alternatively, DomainLinkChecker could return to us a LinkRepos-

itory. The former is simpler, the latter more complex (see Chapter 4).
One reason for passing the LinkRepository is that we could record the
link status for multiple URLs in the same repository.

interface DomainLinkChecker

set_link_repository(LinkRepository)

determine_link_status(URL beginning_url)

// Recursively cycles through links

Figure 8.3 illustrates a sequence diagram for determine_link_status(). It
depicts how the interfaces we have introduced so far interact.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=130

DESIGN 131

Creating the Report

Once determine_link_status() is finished, we need to turn the information
in LinkRepository into a report. Decoupling the gathering of the informa-
tion from the presentation of the information not only gives flexibility
but also makes testing easier. We can populate a LinkRepository with
some known data and produce a report from it. We have a ReportMaker

interface that takes the information in LinkRepository and forms it into
the desired output. If this were a web-based link checker, this Report-

Maker could produce an HTML page, or we could employ JavaServer
Pages (JSPs) or Active Server Pages (ASPs) to generate the pages.

interface ReportMaker

set_link_repository(LinkRepository)

String get_output() // returns text stream

Currently, LinkRepository has no methods for retrieving information. We
need to add some, but in what form or order should the information
be retrieved? We have a prototype report that is in web page order
with internal and external links underneath the referencing page. How-
ever, that report is only a prototype, and we do not want to couple the
sequence of retrieval for LinkRepository to that particular report.

Introducing another data interface provides this decoupling. The report
needs the following information for each link:

interface LinkReference

URL referring_page

URL referred_to_page

Type {INTERNAL or EXTERNAL}

Broken {YES, NO, UNDETERMINED}

LinkReferences are kept in a LinkReferenceCollection. We give LinkRefer-

enceCollection the responsibility of returning the LinkReferences in the
desired order. So, we put all LinkReference sorting as part of a LinkRef-

erenceCollection. If another user wants to access the links in the same
order, the sort can be reused. If not, the user can add another sort
method to the collection.

interface LinkReferenceCollection

sort_by_referring_page()

sort_by_referred_to_page()

LinkReference get_next_link_reference()

add_link_reference(LinkReference)

We can use this data interface to simplify testing. You can create a
LinkReferenceCollection, fill it in with some data, and then use Report-

Maker to print a report. You can work with your users to create a report

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=131

TESTS 132

Simple or Complex?

You may have noted that LinkReferenceCollection contains two
methods for sorting the collection:

interface LinkReferenceCollection
sort_by_referring_page()
sort_by_referred_to_page()

This is an example of a simple interface (see Chapter 4). The
sort methods are supplied to the user; they do not have to do
any additional coding. However, they are limited to those sorts.
As an alternative, we could provide a more complex interface:

interface LinkReferenceComparator
boolean greater_than(LinkReference one, LinkReference two)

interface LinkReferenceCollection
sort_your_way(LinkReferenceComparator)

With sort_your_way(), the user provides a greater_than() that
compares to LinkReferences and returns an indication of which
should come later in the sort order. This is a little more complex,
but a lot more flexible.

that matches their needs. You’ll also create tests on LinkRepository to
check that it can produce the proper data in a LinkReferenceCollection.

With the LinkReferenceCollection, LinkRepository needs a method:

LinkReferenceCollection get_link_reference_collection()

Now the ReportMaker really needs only a LinkReferenceCollection, rather
than the entire LinkRepository, so let’s change its interface to the follow-
ing:

interface ReportMaker

set_link_reference_collection(LinkReferenceCollection)

String get_output() // returns text stream

8.5 Tests

Before starting implementation, we create an outline of the tests to be
run against these interfaces. We derive these tests from the workflow
introduced in the "Analysis" section. The tests may yield insights into
the degree of coupling between the interfaces.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=132

TESTS 133

• WebPage

– This class does not have much to test. It just has get and set
methods.

• WebPageParser

– Create a WebPageParser, and parse several different WebPages.

– Check to see that the links agree with manually identified
links on these pages.

• URL

– Create some URLs, and see whether the parts match manually
identified parts.

• LinkReferenceCollection

– Add some LinkReferences, sort them, and see whether results
are correct.

• LinkRepository

– Add URLs to the repository.

* Check that the next_link() methods return the appropriate
values.

– Add URLs to the repository.

* Set some as broken.

* Check to see list of broken links in LinkReferenceCollection

matches expectations.

• WebPageRetriever

– Retrieve some web pages, both internal and external, existing
and nonexisting, and see whether results are as expected.

• ReportMaker

– Print report on a LinkReferenceCollection (e.g., as created in the
LinkReferenceCollection test), and see whether the user agrees
with its format.

Since there are few dependencies in these tests, the interfaces are
loosely coupled. LinkRepository does not perform the URL retrieval, so
it is not coupled to WebPageRetriever or WebPageParser. If LinkRepository

were coupled to these interfaces, we would either have to create stub

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=133

IMPLEMENTATION 134

implementations for these two interfaces or wait until the real imple-
mentation was complete before testing LinkRepository. This easier testing
procedure supports our design choice.

The tests suggest an order for creation. URL and WebPage should be
completed first; WebPageRetriever, WebPageParser, and LinkRepository can
be done in parallel. LinkReferenceCollection should be created prior to
ReportMaker. Then the developer for ReportMaker can work with the end
user to determine the actual layout.

8.6 Implementation

We discussed in Chapter 2 that an interface definition is not complete
until there is at least one implementation of the interface. But my
publisher does not want me to fill up this book with code; he says the
purpose of web sites is to provide code, so the full implementation of
the Link Checker appears at the URL listed in the preface.

Using interface-oriented design, just as with other techniques, does not
guarantee that you’ll never have to restructure your interfaces or refac-
tor your code. As you develop a system, you usually discover additional
information that suggests a restructuring of the design.

For example, the tests for the system revealed that links in a web page
are not just links to other web pages.4 The links may be links to email
addresses (“mailto”), file transfer links (“ftp”), or other types of links.
Now comes the question: what to do with these links? How do you
check a “mailto”? Do you send the address a message? Do you see
whether the address is invalid? Do you wait for a response from the
recipient? File transfer links are a little easier. You could attempt to
retrieve the file. Even if the file were an internal link, you probably
would not want to parse the file for links.

Separating policy decisions from implementation can permit greater
reuse of interfaces and implementations. LinkRepository can store the
links, regardless of the type. Indeed, that is how these other links were
revealed. DomainLinkChecker can decide what to do with these other
links when it retrieves one from LinkRepository. We can add to the URL

interface a method that tells us the type of link, we can retrieve that

4You probably knew this already, like I did, but it was absent from my mind until
running the tests.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=134

IMPLEMENTATION 135

information from the URL and perform the test ourselves, or we can
create yet another interface.5

The Code

The system is coded in Java, since that’s a common language and
readily understood by most object-oriented programmers. The method
names have been changed to camel case to conform to typical Java
coding standards. Since exceptions are a widespread way of signaling
in Java, the error signals are thrown exceptions. Separate exceptions
were thrown for each type of error that the caller may want to deal with
differently.

To keep the code simple, interface implementations are created in the
code itself, rather than by calling a factory method. The following is
the code for the main routine. It reads the initial URL from the com-
mand line. ReportMakerSimple produces tab-delimited output, suitable
for import in a spreadsheet or other data manipulation program.6

public class LinkChecker

{

public static void main(String[] args)

{

if (args.length >= 1)

{

try

{

MyURL initialURL = new MyURL(args[0]);

DomainLinkChecker checker =

new DomainLinkCheckerImplementation();

LinkRepository repository =

new LinkRepositoryImplementation();

checker.setLinkRepository(repository);

checker.determineLinkStatus(initialURL);

LinkReferenceCollection linkRefColl =

repository.getLinkReferenceCollection();

ReportMaker reportMaker = new ReportMakerSimple();

reportMaker.SetLinkReferenceCollection(linkRefColl);

String output = reportMaker.getOutput();

// Could print it to a file

5We leave that decision for the reader to pursue.
6I renamed the URL class to MyURL to keep it distinct from the Java URL class. The

underlying code delegates most of its work to the Java library class.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=135

IMPLEMENTATION 136

System.out.println(output);

}

catch (BadPageDeviation e)

{

System.out.println("Bad URL " + args[0]);

}

}

else

{

System.out.println("You must specify the initial URL");

}

}

}

Here’s the implementation of DomainLinkChecker. Note that it has two
loops, one for internal links and one for external links. The system
does not parse external web pages for additional links.7

public class DomainLinkCheckerImplementation implements DomainLinkChecker

{

private LinkRepository linkRepository;

public void setLinkRepository(LinkRepository aRepository)

{

linkRepository = aRepository;

}

public void determineLinkStatus(MyURL beginningURL)

{

linkRepository.setBaseDomain(beginningURL);

WebPageRetriever webPageRetriever = new WebPageRetrieverUsingURL();

WebPageParser webPageParser = new WebPageParserByRegEx();

MyURL currentURL = beginningURL;

linkRepository.addURL(currentURL, currentURL);

linkRepository.setURLAsRetrieved(currentURL);

// Internal Links

while (currentURL != null)

{

try

{

if (!currentURL.isHTTP())

continue;

WebPage webPage = webPageRetriever.retrievePage(currentURL);

linkRepository.setURLAsNotBroken(currentURL);

7What if you wanted to check all external web pages to ensure that any links that
pointed to your site were not broken? The design and implementation of that system is
left as an exercise to the reader.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=136

IMPLEMENTATION 137

MyURL[] urls = webPageParser.parseForURLs(webPage);

linkRepository.addURLs(urls, currentURL);

}

catch (UnableToContactDomainDeviation e)

{

System.out.println("Unable to find page " + currentURL);

// Cannot contact our own domain - might as well leave

return;

}

catch (UnableToFindPageDeviation e)

{

linkRepository.setURLAsBroken(currentURL);

}

finally

{

currentURL = linkRepository.getNextUnretrievedInternalLink();

}

}

// External Links

currentURL = linkRepository.getNextUnretrievedExternalLink();

while (currentURL != null)

{

try

{

WebPage webPage = webPageRetriever.retrievePage(currentURL);

linkRepository.setURLAsNotBroken(currentURL);

}

catch (UnableToContactDomainDeviation e)

{

linkRepository.setURLAsBroken(currentURL);

}

catch (UnableToFindPageDeviation e)

{

linkRepository.setURLAsBroken(currentURL);

}

finally

{

currentURL = linkRepository.getNextUnretrievedExternalLink();

}

}

return;

}

}

Can this code be refactored? Your code style sense may suggest refac-
toring. With the clearly defined interfaces handling most of the work,
you can easily make changes to this code.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=137

RETROSPECTIVE 138

GUI Ideas

You can readily adapt this code to use in a GUI. The code in the main()
method can become the code for the method of an interface such as
LinkChecker:

interface LinkChecker

String check_links(MyURL url)

You can set up a dialog box that contains a text field for a URL and
a submit button. Clicking the button invokes the check_links() method.
The string returned by the method can be displayed in an edit box or a
separate window.

A GUI often has some sort of feedback mechanism to indicate to the
user that progress is being made. We can use a callback interface
(push-style interface from Chapter 3) to perform the feedback. We need
to make minor changes in the interfaces to pass a callback method.
Every time a new link is accessed, the current_link() method is called.
The method could display the name in a read-only text box.

interface LinkCheckerCallback

current_link(MyURL link)

interface DomainLinkChecker

determineLinkStatus(MyURL url, LinkCheckerCallback)

interface LinkChecker

String check_links(MyURL url, LinkCheckerCallback)

8.7 Retrospective

Separating responsibilities into several interfaces allows these inter-
faces to be employed in programs other than the one presented in this
chapter. For example, since web page retrieval has been separated from
the parsing, you can employ these classes in a web page (HTML) edit-
ing program. You can use WebPageParser to obtain links referenced in
a page for display in a window.

8.8 Things to Remember

The Link Checker demonstrated the following:

• Use IRI cards as an interface design tool.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=138

THINGS TO REMEMBER 139

• Create decoupled implementations with interfaces.

• Separate responsibilities to make simpler interfaces.

• Write tests against interfaces, rather than against particular im-
plementations, to allow for test reuse.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=139

Chapter 9

Web Conglomerator
We’re going to create an interface-oriented design for a web-based appli-
cation. A common development question is, when should you make a
design more general? In this application, we’ll show one case of trans-
forming a specific interface into a more general one and one case where
that transformation is deferred.

9.1 Vision

The Web Conglomerator is your own custom browsing portal. Many
web sites offer the ability to customize a web page with the information
in which you have an interest. The Web Conglomerator performs this
service on your machine. It presents a custom web page to you with
content derived from many sites. The example in this chapter specif-
ically shows travel-related information, but the information could be
about anything from the stock market to butterflies.

9.2 Conceptualization

We have only two use cases for the Web Conglomerator (See Figure 9.1,
on the following page): to configure the system and to request a current
display.1

Here are descriptions for both of the use cases:

1As a side note, the system should be arranged so the user must request an update
of the page. Creating a system that automatically updates places a burden on the infor-
mation providers.

CONCEPTUALIZATION 141

User

Information
Provider

Configure
Information

Request
Current
Display

Figure 9.1: Use cases

Use Case: Configure Information

1. User determines the blocks of information to be presented.

2. System stores the configuration information.

Use Case: Request Current Display

1. User requests that the Web Conglomerator display the current
page.

2. System responds with a page containing the current information.

GUI prototypes help both the developer and the user understand the
intended operation of a system. So, we prototype what our travel-
related conglomerator may look like (other forms of information could
easily be conglomerated as well).

From the user’s viewpoint, he initially loads a page into his browser, say
localhost:8080//travel.html. The browser displays that page, as
shown in Figure 9.2, on the next page. When the user submits a search
for a city or ZIP code, the browser contacts the web conglomerator,
which returns a page with the information corresponding to the display.
The web conglomerator creates the web page from content provided by
either web services or other web pages, or both.

localhost:8080//travel.html
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=141

ANALYSIS 142

Figure 9.2: Web browser results

9.3 Analysis

Let’s create some IRI cards for potential interfaces. We stated that we
are going to display the information in a web browser. However, the dis-
play of information should not be coupled to how we obtain the infor-
mation. Otherwise, changing a provider for a piece of information can
have ramifications throughout the system. So, we create data gatherer
interfaces, as well as data formatter interfaces. Instead of showing the
actual cards, we save a little paper and just list the proposed interfaces:

• IndividualDataGatherer

– Retrieves one type of information (e.g., weather) from an infor-
mation provider

• IndividualDataFormatter

– Formats information of a single information type

• WebConglomerator

– Formats information from IndividualDataFormatters

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=142

ANALYSIS 143

These interfaces may seem a bit too abstract to help us really under-
stand the system. So, using the prototype page in the previous section,
let’s examine the data we need to gather in a concrete instance. The
only caveat is that we do not want to limit ourselves to a particular
type of information. Generalization of these interfaces can be deferred
to a later time. We just want to keep in mind that if interfaces may be
generalized, we do not make any decisions that would obviously make
that generalization harder.

A Concrete Gatherer

We do a little checking of potential sources for weather information for
a DataGatherer. It turns out that if you do not have a recognizable
city, some sources return either an error message or a multiple-choice
selection. However, all the sources can use a ZIP code to uniquely
identify a location. So, the first step in obtaining weather information
is to find the ZIP code for a location.

So we start with a LocationFinder to obtain the ZIP code or the city/state
if a ZIP code is entered. This initial interface looks like this:

data interface Location

City

State

Zip

interface LocationFinder

Location find_by_city_state(City, State) signals LocationNotFound

Location find_by_zip(Zip) signals LocationNotFound

The Location data can be used by any of the other DataGatherers. When
either a city/state or a ZIP code is entered on the initial screen, this
interface can provide the ZIP code.

Using the Location, we obtain weather information. We break the data
into two interfaces to make a cohesive Wind interface, rather than hav-
ing WindSpeed and WindDirection be part of WeatherInformation:

data interface Wind

Direction

Speed

data interface WeatherInformation

Temperature

Humidity

Wind

interface WeatherInformationDataGatherer

WeatherInformation find_by_location(Location)

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=143

ANALYSIS 144

We create more interfaces to retrieve other information on a particular
location:

data interface PositionInformation

Longitude

Latitude

interface PositionInformationDataGatherer

PositionInformation find_by_location(Location)

data interface TimeInformation

Time

TimeZone

interface TimeInformationDataGatherer

TimeInformation find_by_location(Location)

The final interface is the one that searches for web page links to the
selected Location. If we want to use multiple link sources, the underly-
ing implementation simply combines the links from each service using
some internal mechanism.

data interface WebPageLink

Title

Description

URL

interface WebPageLinkDataGatherer

WebPageLink [] get_links_for_location(Location)

Corresponding to each of these DataGatherers is a DataFormatter. For
example, we have this:

interface WeatherInformationDataFormatter

String format_for_html_display(WeatherInformation)

We recognize that there may be a common interface for DataGatherers
and DataFormatters. We’ll come back to that issue shortly. Let’s take
a look at how these interfaces interact to offer the conglomeration fea-
ture. Here is the interface for the page to be displayed and for the
WebConglomerator itself:

interface CustomWebPage

add_html(String html_to_add)

String get_contents()

interface WebConglomerator

CustomWebPage find_by_city_state(City, State)

CustomWebPage find_by_zip_code(ZipCode)

To form a CustomWebPage, each DataGatherer is given the Location.
Then the DataFormatter is used to form HTML strings. Those strings

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=144

TESTING 145

find(someLocation)

aWebConglomerator aLocationFinder aWeatherGatherer aWeatherFormatter aCustomWebPage

find_by_city_state(city,state)

someLocation

someWeatherInfo

format_for_html(someWeatherInfo)

a_string add_html
(a_string)

Figure 9.3: Sequence diagram for the Web Conglomerator

are then added to the CustomWebPage. A sequence diagram for the
interactions between these interfaces appears in Figure 9.3 .

9.4 Testing

Before continuing to design, we outline some tests to be run against
these interfaces. Creating tests can point out coupling issues.2

• DataGatherer

– Check that the information returned by find_by_location()mat-
ches information from other sources. Because of the dynamic
nature of the data, we may need to create two implementa-
tions of DataGatherer and compare the data returned.3

• DataFormatter

– Put the display strings into a simple HTML file, and see whe-
ther the output is displayed in a readable form.

• WebPageLinkDataGatherer

– Check that the number of links and the data in each one
correspond to the information from the search results.

2A tester noted that not all these tests might be automated.
3See the “Multiple Implementations” sidebar in Chapter 8.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=145

DESIGN 146

• WebConglomerator

– See whether the page displays the same information as the
individual DataFormatters.

We will want implementations of DataGatherer that return constant
information for testing other classes. We need to set up some type of
configuration mechanism to switch between these constant test imple-
mentations and the real implementations.4

One situation we come up with is that a DataGatherer may be unable to
obtain the data because of network or provider problems. We need to
have the find_by_location() method signal that it is unable to obtain the
data in accordance with the Third Law of Interfaces. If there were mul-
tiple providers for the same information, the DataGatherer can attempt
to retrieve the data from all of them before signaling an error.

A couple of other situations that we’ll need to handle are the user enter-
ing a city and/or a state that LocationFinder cannot find and the user
entering a ZIP code for which a particular DataGatherer has no infor-
mation. We’ll be sure to test these cases. In any event, we want to
be sure that the output contains an indication that the information is
unavailable (again in accordance with the Third Law of Interfaces).

9.5 Design

We think we are ready to begin filling in some of the details. In the anal-
ysis of the previous section, we discussed that the information gather-
ing ought to be generalized. Let’s look at how we might accomplish
this. Two interfaces, each with a single method, appear for each of
the types of information. The WebConglomerator should not care what
type of information is being gathered or displayed. So, we make up an
InformationTransformer interface:

interface InformationTransformer

gather_data_for_location(Location)

signals DataUnavailable

String format_for_html_display()

4The configuration can be done by each DataGatherer using a common configuration
interface, or we can use Inversion of Control, as discussed in the sidebar in Chapter
8. (See also http://www.martinfowler.com/articles/injection.html for details.)
That’s an implementation decision that could go either way, depending on complexity.

http://www.martinfowler.com/articles/injection.html
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=146

DESIGN 147

Individual information transformers can implement this interface. We
keep the gathering of the data separate from the formatting, because
those are two distinct operations. For example:

interface WeatherInformationTransformer implements

InformationTransformer

gather_data_for_location(Location) signals DataUnavailable

String format_for_html_display()

The implementation of this interface uses WeatherInformation, Weather-

InformationDataGatherer, and WeatherInformationDataFormatter. Although
those interfaces are not visible in WeatherInformationTransformer, keep-
ing them as separate interfaces can make testing them easier. You
can test multiple WeatherInformationDataGatherers against each other by
comparing the WeatherInformation returned by each of them.5

The WebConglomerator now can contain a collection of InformationTrans-

formers. It gathers data from each one, formats it, and then adds it
to the CustomWebPage. Configuring WebConglomerator (the other use
case) simply involves adding or deleting InformationTransformers from this
collection.

You may note that the InformationTransformer interface shown previously
is stateful (see Chapter 3). The gather_data_for_location() method gets
information that is later output by format_for_html_display(). We could
turn it into a stateless interface:

interface InformationTransformer

String get_html_formatted_data_for_location(Location)

signals DataUnavailable

With the first version, we separated the retrieval of the data from the
display of the data. That makes the interface easier to test. However,
using this interface makes it simpler from the user’s standpoint: there’s
only one method to call. As discussed in Chapter 3, we could implement
this stateless interface by calling the stateful one, if a simpler interface
was desired.

Web Retrieval: A Textual Interface

We could use WebConglomerator in a stand-alone program. We could
have a dialog box to input the city and state, pass those to the WebCon-

glomerator, and then display the results in an HTML-aware text box.

5If the information is not the same, then you’ll have to figure out who provides the
most reliable and up-to-date information.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=147

IMPLEMENTATION 148

If we employ a browser to display the page, we are going to use a textual
protocol (see Chapter 1) to communicate between the browser and a
web server. The protocol is HTTP, which consists of a request and a
response.6

We need to run an implementation of a WebPageServer on the user’s
local machine. Any implementation of a WebPageServer that follows the
contract for HTTP can deliver the custom web page. The browser will
point to this server (e.g., http://localhost:8080/). The WebPage-

Server calls WebConglomerator to create the CustomWebPage and delivers
it to the user.

The essential aspects of HTTP that need to be implemented to deliver a
CustomWebPage are as follows:7

HTTP REQUEST

GET url HTTP/1.0

HTTP RESPONSE

HTTP/1.0 200 Success

Contents of url

The url after the GET reflects either an initial page display or the result
of a submit button. The three possible value for url for this system are
as follows:

/

search_by_zipcode?zipcode=27701

search_by_city_state?city=Durham&state=NC

The URL / represents the initial page. Based on the value following GET,
the WebPageServer returns a page that contains just a search form, or
it returns what WebConglomerator has created.

9.6 Implementation

This design has two interesting implementation issues: the WebPage-

Server and the DataGatherers. Let’s look at each.

We have multiple options for implementing WebPageServer. We want
the system to work even if the user does not have access to a web

6See http://www.w3.org/Protocols/rfc2616/rfc2616.html for more details.
7If you are implementing a full web server, then you need to handle more commands

and options. However, an implementation that just handled these messages can be used
as a simple web server.

http://localhost:8080/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=148

IMPLEMENTATION 149

server that they can customize. We could install an existing web server
implementation that supports server-side applications, such as Tom-
cat, on the user’s computer. In that case, we would create a servlet that
responds to the request by calling WebConglomerator.

Alternatively, we could write our own WebPageServer that processes just
the three variations of a request. If we were distributing WebConglomer-

ator to a wide audience, creating a small server that handles just these
requests avoids having a user install a full-blown web server. The code
available from the web site8 contains a small web server.

The other interface are the DataGatherers, such as:

interface WeatherInformationDataGatherer

WeatherInformation find_by_location(Location)

signals DataUnavailable

This interface decouples the information from the means used to get it.
An implementation of this interface may access a web service that pro-
vides the information. Alternatively, it might retrieve a web page that
contains the data and parse that page to find the desired information.
It might communicate to a data provider via a custom protocol. The
coupling between the user of the interface and the implementation is
just WeatherInformation.

The following is the code for WebConglomerator. You may notice that
it does not catch a DataUnavailable exception. Instead, each individual
InformationTransformer indicates that data is unavailable by placing “N/A”
into the returned HTML. The Third Law of Interfaces does not require
a particular type of signal. It just requires that an implementation
indicate that there was a problem.

public class WebConglomeratorImplementation implements WebConglomerator

{

LocationInformationTransformer[] transformers = {

new PositionInformationTransformer(),

new WeatherInformationTransformer(),

new WebPageLinkInformationTransformer()

}

public CustomWebPage findByCityState(String city, String state)

{

LocationFinder finder = new LocationFinderImplementation();

CustomWebPage webPage;

8See the preface for the URL.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=149

IMPLEMENTATION 150

try

{

Location location = finder.find_by_city_state(city, state);

webPage = createCustomWebPage(location);

}

catch (LocationNotFound e)

{

webPage = getErrorPage("Location Not Found");

}

catch (CommunicationException e)

{

webPage = getErrorPage(e.getMessage());

}

return webPage;

}

private CustomWebPage createCustomWebPage(Location location)

{

for (int i = 0; i < transformers.length; i++)

{

transformers[i].gatherDataForLocation(location);

}

CustomWebPage webPage = new CustomWebPage();

StringBuffer contents = new StringBuffer();

contents = originalPageHeader();

contents.append(new LocationInformationFormatter().

formatForHTMLDisplay(location));

for (int i = 0; i < transformers.length; i++)

{

contents.append("<td><tr>");

contents.append(transformers[i].formatForHTMLDisplay());

contents.append("</td></tr>");

}

contents.append(originalPageFooter());

webPage.setContents(contents.toString());

return webPage;

}

private CustomWebPage getErrorPage(String message)

{

CustomWebPage webPage = new CustomWebPage();

StringBuffer contents = new StringBuffer();

contents = originalPageHeader();

contents.append(message);

contents.append(originalPageFooter());

webPage.setContents(contents.toString());

return webPage;

}

public CustomWebPage getOriginalPage()

{

CustomWebPage webPage = new CustomWebPage();

StringBuffer contents = new StringBuffer();

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=150

RETROSPECTIVE 151

contents = originalPageHeader();

contents.append(originalPageFooter());

webPage.setContents(contents.toString());

return webPage;

}

}

For the most part, the methods follow the interfaces introduced in
this chapter. The originalPageHeader() and originalPageFooter() methods
return HTML for the header and the footer of the page. The header con-
tains the search form. LocationInformationFormatter formats in HTML,
with the Location passed to it.

This code does not implement the first use case—Configure Informa-
tion. Configuration consists of adding, removing, or rearranging the
order of InformationTransformers. In the code that is shown, these values
are fixed. You need to create a collection of InformationTransformers and
a web interface or a stand-alone program that manipulates that collec-
tion. Collections are fairly standard components in language libraries.
You can just use the interface to that collection.9

9.7 Retrospective

We decided to “get something working” before examining how to make
WebConglomerator more general. The current design appears to work
well for gathering location-based information. If we want to gather
information relating to items, such as stocks or sports teams, we can
employ the same general framework. The InformationTransformer and
WebConglomerator interfaces have to change. Those interfaces specif-
ically required location-related parameters:

interface InformationTransformer

gather_data_for_location(Location)

signals DataUnavailable

String format_for_html_display()

interface WebConglomerator

CustomWebPage find_by_city_state(City, State)

CustomWebPage find_by_zip_code(ZipCode)

We first could rename these interfaces to LocationInformationTransformer

and LocationWebConglomerator. Then we make up equivalent interfaces

9The appendix shows one approach for creating a custom interface to a collection of
InformationTransformers.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=151

THINGS TO REMEMBER 152

for the new items, such as StockInformationTransformer. We may need
a StockFinder that parallels LocationFinder. The StockFinder would find a
stock ticker given a company name. The interfaces could look like this:

data interface Stock

Ticker

CompanyName

interface StockFinder

Stock find_by_ticker(Ticker) signals StockNotFound

Stock find_by_name(CompanyName) signals StockNotFound

interface StockInformationTransformer

gather_data_for_stock(Stock)

signals DataUnavailable

String format_for_html_display()

interface StockWebConglomerator

CustomWebPage find_by_ticker(Ticker)

CustomWebPage find_by_name(CompanyName)

With this approach, the generalization of WebConglomerator to cover
other types of information is in the reuse of the framework—the pattern
of the interfaces involved—rather than attempting to create a universal
WebConglomerator.

You could generalize these interfaces using a language-specific generic
mechanism. For example, a more general interface might be coded with
a template, as follows:10

template <Type>

interface InformationTransformer

{

gather_data(Type key);

String format_for_html_display();

}

interface WebConglomerator

{

CustomWebPage find(Type key);

}

9.8 Things to Remember

The Web Conglomerator demonstrated a number of points to keep in
mind:

10Developing this generic interface suggests that the Finder methods should be called
outside of the WebConglomerator. We leave that alteration to the reader.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=152

THINGS TO REMEMBER 153

• Construct tests for interfaces as you create the interfaces.

• Create functional tests that are implementation independent.

• Separate information retrieval from information display.

The system also showed when developing interfaces that may be useful
in a variety of contexts, you can:

• Create a concrete implementation of an interface before abstract-
ing it.

• Develop application specific interfaces before generalizing them.

• Generalize interfaces using frameworks or templates

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=153

Chapter 10

Service Registry
In Chapter 5 on remote interfaces, we discussed looking up service
providers for an interface in a directory. In this chapter, we’re going to
create a general service registry as a means for exploring some issues in
providing networked services. This registry also will give us an oppor-
tunity to experience a document-style interface.

10.1 Vision

The Service Registry allows users to advertise the availability of service
providers, even if their computers do not have static Internet Protocol
(IP) addresses.

The services do not have to be on reserved ports, such as the HTTP port
(80), or use any particular protocol, such as SOAP or RMI. A couple of
examples demonstrate how the Service Registry will work.

Suppose you have a video camera connected to your computer in your
house. Your computer connects to the Internet via a dynamically as-
signed IP address.1 Since the IP address is dynamic, you need some
way to discover it. The Service Registry provides that ability.

The program connected to your camera registers a service identifier (a
ServiceID), an IP address, and a port with the Service Registry. You
are sitting at work and want to see the picture on your web cam. On

1Dynamic addresses tend to be the same for long periods of time. Suppose you want
to look at the video from the camera on other computers, such as the one in your office.
You might note the IP address before you left the house. The address may be the same
when you attempt to connect. However, in general, you should not rely on a “static”
dynamic IP address.

VISION 155

IP Addresses and Ports

The Domain Name System (DNS) supplies IP addresses (e.g.,
66.15.240.233) for host names (e.g., www.pughkilleen.com).∗

The IP address is usually the same for long periods of time
(static). A dynamic DNS address provides a way to connect to
computers that do not have static IP addresses, such as those
connected via cable, DSL, or phone lines. Dynamic DNS’s are
updated frequently with new addresses.

Servers, such as a web server, communicate over a port. You
can think of a port as the equivalent to the number of a phone
extension. To communicate with a server, you need to know on
what port it is communicating. Standard services, such as web
servers, have fixed port numbers. For example, web servers
communicate on port 80 and mail servers on port 25.

Nonstandard services may communicate on any port. DNS
(normal or dynamic) provides only IP addresses. So, it’s harder
to provide nonstandard services that do not have fixed port
numbers.†

∗See http://en.wikipedia.org/wiki/Dns for more information.
†Remote Procedure Calls (RPCs) have a separate mechanism (e.g., Unix’s

RPC Mapper) that runs on each host for providing port numbers for services.
Java’s JINI provides a Java language version of a combined IP address/port
number lookup.

your office computer, the program that displays the video looks up the
ServiceID in the Service Registry, retrieves the IP address and port, and
then connects to the program on your home computer.

As another example, suppose you are developing a new interactive game
that involves communication between two or more players. The players
install your software on their computers and want to link up. Unless
they are using fixed IP addresses with fixed port assignments, they will
have to manually communicate to each other their current IP addresses
and ports.

When your game program starts up on each player’s computer, it sends
to the Service Registry your game’s ServiceID and the IP address and
port that the game program has been assigned by the operating sys-
tem. Your game also looks up on the Service Registry any current reg-
istered providers for your game’s ServiceID. It can use the retrieved IP

http://en.wikipedia.org/wiki/Dns
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=155

CONCEPTUALIZATION 156

Service
Provider

Service
Consumer

Register
Service

Unregister
Service

Find Service
Provider

Figure 10.1: Use cases

addresses and ports to talk to the other currently registered game pro-
grams. When your game program exits, it tells the Service Registry to
remove its registration.

10.2 Conceptualization

We come up with three use cases for this system, as shown in Figure
Figure 10.1 .

To simplify the descriptions of the use cases, let’s create an abstraction:

• ServiceProviderInformation

– ServiceID identifies the service.

– ConnectionInformation identifies the means to connect, e.g., IP
address, protocol, and port.

The Service Registry does not specify the protocol to be used between
the provider of a service (a ServiceProvider) and the user of that service
(a ServiceConsumer). The protocol could be anything from simple text
transfer to SOAP to binary data, such as video. The person creating the
ServiceProvider for a ServiceID is responsible for determining the desired
protocol and placing the appropriate values into ConnectionInformation.
We made ConnectionInformation more abstract so that it applies to any
type of connection, such as a phone number, a mail address, or a GPS

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=156

ANALYSIS 157

location. But following the “get something working” guideline, we will
limit the implementation to Internet connections.

Here are informal descriptions of each use case:

Use Case: Register Service

1. ServiceProvider sends ServiceProviderInformation.

2. Server registers ServiceProviderInformation.

Use Case: Unregister Service

1. ServiceProvider sends ServiceProviderInformation.

2. Server unregisters ServiceProviderInformation.

Use Case: Find Service Provider

1. ServiceConsumer sends ServiceID

2. If ServiceProviderInformation with matching ServiceID is registered,

Server returns ConnectionInformation

else

Server signals ServiceIDNotFound.

10.3 Analysis

The IRI cards we created are shown in Figure 10.2, on the following
page. Since the use cases are simple, the cards turn out to also be
simple. The Service Registry has all the responsibilities.

We work through the use cases to see whether we have captured all
the essential features. For Register Service, the ServiceProvider sends
ServiceProviderInformation to the registry. The registry stores that infor-
mation. For Unregister Service, the ServiceProvider also sends the Servi-

ceInformation to the registry, and the registry removes it from storage.

In Find Service Provider, a ServiceConsumer requests the ConnectionInfor-

mation for a ServiceProvider by providing a ServiceID. The registry returns
either the ConnectionInformation for a ServiceProvider or an indication that
no associated ServiceProvider exists.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=157

ANALYSIS 158

ServiceConsumer

ServiceProviderInfo

ServiceID
ConnectionInformation

ServiceRegistry

Service-
ProviderInfo

Register ServiceProviderInfo

Unregister ServiceProviderInfo

Search for
ConnectionInformation by
ServiceID

Figure 10.2: Service Registry IRI cards

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=158

ANALYSIS 159

Working through the use cases with these cards provides no additional
insights, so we start developing tests for this system.

Unique ServiceIDs

We’re not registering users for the Service Registry. Anyone can use the
system. How can we ensure that each service uses a unique ServiceID?
We can use a universal unique identifier (UUID) to identify the service
and the servers.2 A UUID can be generated on almost any computer
and is practically guaranteed to be unique. No central registration is
required to guarantee this uniqueness. The UUID is 128-bits long and
is typically expressed as a 36-character string (with some hyphens).

Testing Registration

We come up with the tests that follow. Once again, the use cases are
simple, so the functional tests are simple.

Test Case: Simple Registration and Lookup

1. Register a ServiceProvider.

2. Look up ServiceID—it should succeed.

Test Case: Registration, Deregistration and Lookup

1. Register ServiceProvider.

2. Unregister that ServiceProvider.

3. Look up a ServiceID—should signal ServiceIDNotFound.

Test Case: No Registration and Lookup

1. Look up ServiceID for unregistered service—it should signal Servi-

ceIDNotFound.

2This is a GUID to you Microsoft folks. A UUID can use an Ethernet address and
the time of day to generate a unique identifier. Ethernet addresses are usually unique,
unless two administrators set an updatable Ethernet address to the same value. Another
version of UUID uses a random number generator to create a unique identifier.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=159

ANALYSIS 160

Test Case: Two Service Providers

1. Register a ServiceProvider.

2. Register a second ServiceProvider.

3. Look up a ServiceID—should return two ConnectionInformations.

4. Unregister first ServiceProvider.

5. Look up a ServiceID—should return ConnectionInformation for sec-
ond ServiceProvider

6. Unregister second ServiceProvider

7. Look up a ServiceID—should return ServiceIDNotFound

We probably want to try some variations of Two Service Providers test,
such as unregistering the second and registering it again. To further
help understand the system we are developing, we create some misuse
tests:

Test Case: Double Registration and Lookup

1. Register a ServiceProvider with some values for ConnectionInforma-

tion

2. Register same ServiceProvider again (without unregistering) with
different values for ConnectionInformation

3. Look up ServiceID—what should it return?

Tests can clarify the contract (see Chapter 2) that a ServiceProvider has
with a ServiceRegistry. In the Double Registration and Lookup test, a
ServiceProvider fails to unregister itself. When the same ServiceProvider

next registers, it may have different connection information. How does
the ServiceRegistry know which ServiceProvider to overwrite? Even if there
were only one entry, it’s possible that another ServiceProvider registered
it. It appears we need to add a ServiceProviderID to the ServiceProviderIn-

formation block. That way, we know definitively which entry to replace
if the same ServiceProvider registers twice for the same ServiceID with-
out unregistering. It appears this change is easy to implement—we
can look up current ServiceProviders either by a ServiceProviderID or by
ConnectionInformation.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=160

ANALYSIS 161

Unregistration

Another issue comes up with the failure to unregister. It’s possible that
a ServiceProvider never unregisters and never contacts the ServiceRegistry

again. Suppose the computer that provides the service is a laptop. The
owner walks into a wireless access point, starts the computer, and reg-
isters the service. Then he closes up the laptop without unregistering
and walks out. The entry is still in the registry. The entry would become
stale and take up space.

For potential solutions to this problem, we can look for analogies in
other systems. The DNS has a TimeToLive field that describes how long
an entry should be kept in a cache. Following along those lines, we
can add a TimeToLive to the ServiceProviderInformation. The ServiceRegistry

can periodically clean itself by discarding entries that died long ago,
or it can delete dead entries it finds when searching for a service. The
addition of TimeToLive requires that ServiceProviders reregister themselves
periodically (i.e., before the TimeToLive expires). We’ll program our first
iteration without this feature, as well-behaved ServiceProviders do not
require it. We note that the feature should be implemented in a future
iteration.

Testing Performance

The next test checks to see how well the ServiceRegistry reacts to a large
number of ServiceProviders. This can be used as both a capacity perfor-
mance test and a speed performance test.

Test Case: Multiple Service Providers

1. Register many ServiceProviders.

2. Look up ServiceID should return equal number of ConnectionInfor-

mations.

3. Repeat this sequence with random registration and deregistration
for ServiceProviders, and see whether numbers and ServiceProviders
agree with expectations.

The Multiple Service Providers test brings up an interesting issue. If
a service was popular, there may be hundreds, if not thousands, of
ServiceProviders for that service. Responding to a request by a Service-

Consumer for that service may yield a very long result. We could place
a limit on the number of ServiceProviders that are registered for a par-

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=161

ANALYSIS 162

ticular ServiceID. Or we could limit the number of ConnectionInformations
that are returned for a request. At this point, the rule of “get something
working” applies here. We note this issue in our design notebook so we
can deal with it latter.

Security

Since this service can be used by anyone in the outside world, we need
to play close attention to security. Typically, frameworks such as J2EE
provide security with user authentication (e.g., username/password)
and authorization (e.g., access controls). But in this case, we are not
requiring any logon, so we’ll need to incorporate some security mecha-
nisms in the system. A full-fledged risk assessment is beyond the scope
of this book, so we’ll just take a brief look.3 Let’s consider some security
issues that may affect our design.

This service does not provide authentication of a ServiceProvider. The Ser-

viceRegistry can ensure only that the IP address in the ConnectionInforma-

tion matches the IP address that is used to register the ServiceProvider.
It’s possible that a ServiceProvider registers a server for a ServiceID that
works like a Trojan (the server appears to offer the real service, but it’s
really something else). If security is an issue, then the ServiceConsumer

needs to verify the ServiceProvider’s identity by a mechanism external to
this registry. We need to make clear to our users that the contract (see
Chapter 2) of ServiceRegistry does not include authentication.

For example, suppose each copy of a multiplayer game program regis-
ters itself as a ServiceProvider. Each game program retrieves the other
ServiceProviders. The programs can interact and provide identification
that gives a relative level of certainty that each is a legitimate game
program. The game program might have registration keys or digital cer-
tificates that are interchanged, and each game could check the validity
of the other’s registration keys.

A ServiceConsumer may try to find a service to which they should not be
allowed to connect. We could leave it up to the ServiceProvider to authen-
ticate a ServiceConsumer. For example, the ServiceConsumer could pro-
vide a password directly to a ServiceProvider to authenticate itself. On
the other hand, the RegistryService might provide one more level of secu-
rity by having the ServiceProvider submit a password. ServiceConsumers

3See Software Security: Building Security In by Gary McGraw (Addison-Wesley Profes-
sional, 2006) for a full discussion of security.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=162

ANALYSIS 163

would have to submit a password value that matches the ServicerProvider

password before the registry returns the ConnectionInformation for a par-
ticular ServiceProvider. That way, a ServiceConsumer would not be able to
easily learn the location of a ServiceProvider. We acknowledge the poten-
tial need for this feature but place it in a future iteration. The addition
will have some effect on the communication, so we need to ensure a
way of transitioning (see “Versioning” in Chapter 6).

We could check that unregistration for a ServiceProvider came from the
IP address in the ConnectionInformation. However, that would not allow a
ServiceProvider that switched IP addresses to remove the previous entry.
If we permitted unregistration from a different IP, a hacker could try
to unregister a ServiceProvider, if they knew the ServiceProviderID. We’ll
make sure that the ServiceProviderID is not sent to a ServiceConsumer, so
the hacker would need to try many values for ServiceProviderID. These
attempts would probably show up as a Denial of Service (DOS) attack.

A DOS attack is a major concern. Registrations or lookups could be
sent at a rate that could overwhelm the server. If the requests were all
coming from the same IP address, then you can easily deny multiple
connections or repetitive connections from that IP address. You could
limit requests from an IP address to a reasonable number (e.g., one
per second). Requests after a certain number during a period might
be refused. However, this defense will not prevent distributed attacks
that come from multiple IP addresses. A firewall can provide some
protection against DOS attacks. However, we may want to add internal
protection if we are running this system on a host not protected by a
firewall that we can control or just as a second layer of defense. In our
initial iteration, we let the firewall have full responsibility for handling
DOS attacks. That simplifies our development.

We should be concerned about eavesdropping on communication be-
tween the registry server and the clients. To protect the communica-
tions, we can use the underlying security of web connections for pro-
tection, such as the encryption in the Secure Socket Layer (SSL). For
our original development we can use unencrypted communication. We
should be attentive in developing the interfaces to ensure that the type
of communication (unencrypted or encrypted) is opaque.

We put the password, DOS, and encryption issues onto the feature lists
to be addressed in future iterations.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=163

DESIGN 164

10.4 Design

We have two parts to design: the remote client and the ServiceRegistry

server. Let’s first work on the communication between the two. We will
use document-style interfaces (see Chapter 6) to communicate between
the two systems. This style allows communication between different
types of platforms and languages.

The Document Interface

With this service registry, the documents match the three actions: reg-
ister, unregister, and lookup. The documents contain a common ele-
ment, ServiceProviderInformation:

Data: ServiceProviderInformation

ServiceID

ConnectionInformation

ServiceProviderID

Document: Registration

Version

ServiceProviderInformation

Document: RegistrationResponse

Version

Status // Success or failure

Document: Unregistration

Version

ServiceProviderInformation

Document: LookupRequest

Version

ServiceID

Document: LookupResponse

Version

ServiceID

ConnectionInformation []

We added a Version to each document. We know we have potential
changes, but we don’t know whether or when we are going to make
those changes. The version identifier allows both the server and the
client to easily distinguish between the current and older versions.

The document flow (interface protocol) appears in Figure 10.3, on the
next page.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=164

IMPLEMENTATION 165

Registration

Unregistration

LookupRequest

RegistrationResponse

UnRegistrationResponse

LookupResponse

Figure 10.3: Document flow

Since we are not in control of the code the ServiceProvider uses for sub-
mittal, the server should validate the document before further process-
ing it. These documents do not have much data to validate. The Version

should be a recognized one. The ServiceProviderID, ServiceID, and Con-

nectionInformation should follow a prescribed format.

We figured out the information we need to convey in the documents, but
we haven’t specified the format. We also haven’t specified the format
that will be used to transmit and receive the documents. Our document
flow should be independent of the format and protocol, as discussed
in Chapter 6. In the next section, we’ll create an interface to these
documents to simplify their use.

10.5 Implementation

We’ll create an interface to demonstrate the issues with which a client
may have to deal. We’d also like to provide an interface for the clients
so they do not need to code each element in the document interface.
This keeps the format of transmission more opaque.

Interfaces to the Document

Let’s first create an interface for the documents that are going to be
interchanged. These represent DTOs (see Chapter 6) that are derived

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=165

IMPLEMENTATION 166

from the document structure previously presented. Each of these DTOs
can validate as much as possible the information that is placed into it
(e.g., the UUID contains the correct number of characters), as well as
transform itself to and from the external format.

data interface ServiceProviderInformation

UUID service_id

ConnectionInformation connection_information

UUID service_provider_id

data interface Registration

Version the_version

ServiceProviderInformation provider_information

enumeration StatusValue {Success, Failure, Warning}

data interface RegistrationResponse

Version the_version

Status StatusValue

String status_explanation

data interface Unregistration

Version the_version

ServiceProviderInformation provider_information

data interface UnRegistrationResponse

Version the_version

Status StatusValue

String status_explanation

data interface LookupRequest

Version the_version

UUID service_id

data interface LookupResponse

Version the_version

uuid service_id

ConnectionInformation [] connections

A ServiceRegistry client constructs the documents, sends them to the
server, and interprets the response. We can add higher-level procedural
interfaces that perform these operations. The interfaces for the two
kinds of ServiceRegistry users might look like this:

interface ServiceConsumer

ConnectionInformation [] lookup_service(UUID service_id)

signals UnableToConnect, NoServiceProviders

interface ServiceProvider

register_service(UUID service_id, UUID server_id,

ConnectionInformation connect_info) signals UnableToConnect,

RegistrationFailure,

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=166

IMPLEMENTATION 167

Client Mock ServerDocuments

Mock Client ServerDocuments

Client ServerDocuments

Figure 10.4: Tests

unregister_service(UUID service_id, UUID server_id,

ConnectionInformation connect_info) signals UnableToConnect,

UnRegistrationFailure

The implementation of each of these interfaces may fail to connect to
the server. If so, they signal UnableToConnect. We’ll leave it up to the
client to determine what to do in that situation. They may try again
or immediately notify the user of the failure. These interfaces need to
implement the flow of the document protocol as shown in Figure 10.3,
on page 165.

Using these two interfaces, we code the tests we created in the analysis
section. To test the client, we can create a mock server that returns a
response appropriate to the request. To test the server, we can create
a set of documents using the DTOs, send them to the server, and then
check the response documents. To test the system as a whole, the
client sends the documents to the server. See Figure 10.4 .

Document Format Details

The selection of the document format should affect only the code that
translates to the external format and from the external. We could use
almost any form of communication between the client and the server
(e.g., web services, HTTP, etc.). The considerations for picking a format
include choosing one that is easy to parse and fairly standard.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=167

IMPLEMENTATION 168

Code

The full code for the client interfaces and the document interfaces is on
the web site listed in the preface. To show how the interfaces interact,
here is the code in Java for the two types of clients. The code transforms
the document-style interface into a procedural-style interface.

public class ServiceProviderImplementation implements ServiceProvider

{

public void registerService(UUID serviceID, UUID serverID,

ConnectionInformation connectInfo)

throws UnableToConnectException, BadFormatException,

UnableToRegisterException

{

ServiceProviderInformation spi = new ServiceProviderInformation(

serviceID, serverID, connectInfo);

RegistrationDocument registration = new RegistrationDocument(spi);

RegistrationResponseDocument response =

(RegistrationResponseDocument)

RegistryConnection.getResponseDocument(

Configuration.getRegistryDomain(), registration);

if (!response.getStatus())

{

throw new UnableToRegisterException();

}

return ;

}

public void unregisterService(UUID serviceId, UUID serverId,

ConnectionInformation connectInfo)

// Looks the same, except the document are for unregistration

}

Here is the code for a ServiceConsumer implementation:

public class ServiceConsumerImplementation implements ServiceConsumer

{

public ConnectionInformation[] lookupService(UUID serviceID)

throws UnableToConnectException, BadFormatException,

NoServiceProviders

{

LookupRequestDocument lookupRequest =

new LookupRequestDocument(serviceID);

LookupResponseDocument lookupResponse =

(LookupResponseDocument) RegistryConnection

.getResponseDocument(Configuration.getRegistryDomain(),

lookupRequest);

if (lookupResponse.getConnectionInformation().length == 0)

throw new NoServiceProviders();

return lookupResponse.getConnectionInformation();

}

}

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=168

PUBLISHED INTERFACE 169

10.6 Published Interface

This is going to be a “published interface” (see Chapter 6). So before
we start distributing the document interface specifications, we ought
to consider how the interface might change in the future. If we can
anticipate some of the changes, based on knowledge of other systems
or past experience, we may avoid some messy redoing of the interface.
We cannot anticipate everything, but if we’ve seen the situation before,
we ought to consider the consequences.

We’ve previously looked at some of the changes in the documents them-
selves that might be required for security. The two issues we’ll now look
at concern making the system more resilient to failure and making it
more scalable. The design of any system that provides remote inter-
faces needs to address these two facets. Issues here may affect the flow
of documents, not just the contents of the documents.

Multiple Servers

In a real-life system, a single server is a single point of failure for the
system. If that server fails, no one can use the service. We should have
multiple servers. The ServiceProvider and ServiceConsumer interfaces we
outlined in the previous section are not going to change. But either the
server is going to become more complicated or the underlying code for
these client interfaces is going to have to handle multiple servers.

We could use the master/slave form of backup that the DNS uses. One
server acts as the master for the information. The slaves periodically
contact the master for new information. However, with the DNS the
information changes infrequently. The information for a new domain or
a new mail server may take a bit of time (up to 24 hours) to disseminate.
With the ServiceRegistry, entries are constantly being updated, so using
the same structure would necessitate a lot of communication between
servers.

We make a simple decision. The ServiceProvider is responsible for con-
tacting multiple servers. Each registry server will think it is the only
server. For retrieval, a ServiceConsumer needs to contact one server. If
that server goes down or does not have a ServiceProvider entry, it can
contact another server.

Let’s give an example. Suppose we have three servers at the following
addresses:

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=169

PUBLISHED INTERFACE 170

mainserver1.1020.net

mainserver2.1020.net

mainserver3.1020.net

The ServiceProvider contacts all three of these servers and registers/un-
registers on all three. If it cannot contact any of them, then an Unable-

ToConnect signal is generated.

On the other hand, a ServiceConsumer starts by contacting one of these
servers. If it cannot reach the first server, it contacts one of the other
ones. It reports UnableToConnect only if all servers are not available. If
it cannot find a ServiceProvider entry on any of the servers, it returns
NoServiceProviders.4

Distributed Servers

We expect that the system will attract a number of people who want to
use it as a directory service. One server will not be able to handle Server-

ProviderInformations for the entire universe. We need to have additional
servers for handling some of the work and a mechanism for distribut-
ing the work. Once again, we turn to the existing DNS for a model on
how to distribute servers.5 A program looks up a domain name in the
DNS by first contacting a “root” server. A number of root servers pro-
vide redundancy. The root server responds with the names of servers
that may have the detailed information for a particular domain. The
program then contacts one of those servers to see whether it has the
details. That server can respond with either the IP addresses for names
or other servers that actually have the addresses.

To create an analogy of that flow, we can add two document types: Ser-

viceIDServerLookupRequest and ServerIDServerLookupResponse. They look
like this:

Document: ServiceIDServerLookupRequest

Version

ServiceID

Document: ServerIDServerLookupResponse

Version

ServiceID

ConnectionInformation []

4There is a possible situation where a ServiceProvider can connect to some of the
servers, but the ServiceConsumers can connect only to the others. What to do? Luckily, we
did not make any guarantees as to performance, so we can simply say, “Sorry.”

5This is a simplified version of how the DNS works. For more information, see
http://en.wikipedia.org/wiki/DNS.

http://en.wikipedia.org/wiki/DNS
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=170

PUBLISHED INTERFACE 171

These documents look practically the same as LookupRequest and Lookup-

Response. The difference is that the requested service is one defined by
the registry itself, rather than by an end user. Before registering or
looking up a ServiceID, the client makes a ServiceIDServerLookupRequest

to determine which server to contact.

A ServiceProvider would always send ServiceIDServerLookupRequest. We
might require a ServiceConsumer also to send it, or we could return two
different documents (LookupResponse and ServerIDServerLookupResponse)
to a LookupRequest. The ServiceConsumer would need to distinguish be-
tween the two responses to see whether it needed to perform another
lookup. In either case, the procedural ServiceConsumer interface does
not change. Its implementation just becomes a little more complicated.
Having LookupRequest return two different responses cuts down on the
number of documents that need to be transmitted, at a slight compli-
cation of handling two different response documents.

Even though we have only a single server for the moment, we should
consider the changes to the document interface that might be required
if we need to expand to distributed servers. We will develop our first
iteration without multiple servers and deploy it to a small number of
test users. Before publishing the interface to a larger audience, we will
want to add the distributed service messages. The changes are not
just additions to existing documents, but rather reflect a change in the
document protocol.

Implementation

This following code implements multiple servers for a ServiceConsumer.
Note that the method interface is the same for the single version. When
accessing multiple implementations, you need to handle the exceptions
from each individual service. In this case, an exception is returned only
if all implementations produced that exception.

public ConnectionInformation[] lookupService(UUID serviceID)

throws UnableToConnectException, BadFormatException,

NoServiceProviders

{

ServiceIDServerLookupRequestDocument lookupRequest =

new ServiceIDServerLookupRequestDocument(

serviceID);

ConnectionInformation[] servers = lookupServers(

Configuration.getRegistryDomain(), serviceID);

if (servers.length == 0)

throw new NoServiceProviders();

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=171

THE NEXT ITERATIONS 172

int countUnableToConnect = 0;

int countBadFormat = 0;

int countNoServiceProviders = 0;

for (int i = 0; i < servers.length; i++)

{

try

{

ConnectionInformation[] connInfo =

lookupService(servers[i].toString(), serviceID);

return connInfo;

}

catch (UnableToConnectException e)

{ countUnableToConnect++;}

catch (BadFormatException e)

{ countBadFormat++;}

catch (NoServiceProviders e)

{ countNoServiceProviders++;}

}

if (countUnableToConnect == servers.length)

throw new UnableToConnectException();

if (countBadFormat == servers.length)

throw new BadFormatException("Bad format");

if (countNoServiceProviders == servers.length)

throw new NoServiceProviders();

return new ConnectionInformation[0];

}

10.7 The Next Iterations

Software should be developed in incremental iterations; you’ll have the
joy of a working system at the end of each iteration, rather than waiting
years to see something happening. During each iteration, you may
discover new insights into a system—this applies both to developers
and to end users.

We have our basic ServiceRegistry working. It’s time to add a few features
and see how they will affect the published interface. We’d like to be able
to gracefully change the interface without requiring users of older ver-
sions to make changes. We’ll add TimeToLive to ServiceProviderInformation,
as previously discussed in this chapter. We’ll also add authorization for
ServiceProviders/ServiceConsumers, which we considered in the first iter-
ation. We delayed implementing these features, as we wanted to make
sure our minimum feature set was working.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=172

THE NEXT ITERATIONS 173

TimeToLive

When we add TimeToLive to ServiceProviderInformation, the data in Service-

ProviderInformation changes. Since we used a version identifier, as shown
in Chapter 6, we increase that value. In the server, we need to check
the version in the incoming document against that value. If the incom-
ing document is an earlier version, we need to set a default value for
the missing TimeToLive.

Now we have an example of a common trade-off to make in updating
a document protocol. Should the default value be more restrictive or
less restrictive? In this example, should we default TimeToLive to be a
long time or a short time? What did we specify in the original interface
contract? We stated through the document protocol that a registration
terminated when it was unregistered. However, we did not specify the
length of time a registration could be present.

We could default TimeToLive to a large time to make it correspond to our
implicit contract. If we default to a short time, we need to communicate
with our users that the contract has changed, in the spirit of the First
Law of Interfaces. We can make a change in our client contract by
adding a Warning. If the status of a response is Warning, the client should
probably notify the user with a message.

We could put TimeToLive either in ServiceProviderInformation or in Registra-

tion. You can decide based on which data TimeToLive seems more cohe-
sive (Chapter 4). Is it closer associated with a registration itself or the
information contained within? It’s a toss-up in this case, since there is
only one set of information provided within the registration. We’ll make
it part of ServiceProviderInformation:

Data: ServiceProviderInformation

ServiceID

ConnectionInformation

ServiceProviderID

TimeToLIve

Document: Registration

Version

ServiceProviderInformation

The tests involved for this change include the following:

• Making a registration with a short TimeToLive and checking that the
information is not returned after that time

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=173

THE NEXT ITERATIONS 174

• Making a registration with an older version and seeing whether a
Warning is received

ServiceConsumer Authorization

As we noted previously, a ServiceProvider may want to provide a service
only to selected ServiceConsumers. You would not want everybody in the
world to be able to access your home video. So, we can add authoriza-
tion information (e.g., a password). We will provide ConnectionInforma-

tion to a ServiceConsumer only if they supply authorization information
matching that supplied by the ServiceProvider.

The document interface changes are as follows:

Data: ServiceProviderInformation

ServiceID

ConnectionInformation

ServiceProviderID

TimeToLive

Authorization

Document: LookupRequest

Version

ServiceID

Authorization

If a ServiceProvider does not require authorization, the Authorization is
blank (zero-length string). Otherwise, the ServiceRegistry server returns
ConnectionInformation only for the ServiceProviderInformation entries whose
Authorization matches the Authorization in the LookupRequest.

This additional data item does not require a substantial change in the
contract. It’s clear that the default for Authorization should be blank for
an older document that does not contain an Authorization field. If a Ser-

viceProvider decides that it wants to start using authorization, it needs
to upgrade to the new version of the interface. Each corresponding
ServiceConsumer also needs to upgrade.6

The tests involved for this change include the following:

• Making a registration with a blank Authorization and checking to
see whether it is returned for a service lookup

6In addition, the users of ServiceProvider need to contact the users of each ServiceCon-

sumer to give them the password. That communication occurs outside of the ServiceRegistry

system.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=174

THINGS TO REMEMBER 175

So, How Do We Get a ServiceID?

You may be wondering how a ServiceConsumer determines
what ServiceID to look for. If the ServiceConsumer is part of a
distributed program, the author of that program provides the
ServiceID. If not, other systems already in place can provide the
means to discover what is the ServiceID for a particular service.
For example, a service provider can send an email with the Ser-
viceID to anybody who’s interested in using that service. They
could place the ServiceID on a web page along with enough
contextual information that it could be found with a Google
search. For example, the page could contain this:

ServiceName1020: Texas Hold' Em Poker Players
ServiceUUID1020: c8b522d1-5cf3-11ce-ade5-00aa0044773e
ServiceDescription1020: This service identifies players

who want to play Texas Hold' Em.

You could create a program that performs a search for services
and return the ServiceID. The program could be based on the
ideas in the Web Conglomerator in Chapter 9.

• Making a registration with a value in Authorization, and making a
service lookup with a blank Authorization and checking to see that
the corresponding registration is not returned for a service lookup

• Making a registration with a value in Authorization, and making a
service lookup with the same value in Authorization and checking
to see that the corresponding registration is returned for a service
lookup

10.8 Things to Remember

We explored a specific example of using remote document-style inter-
faces. Along the way, we saw how to:

• Examine the initial interface before publishing.

• Plan for document versioning.

• Create a procedural-style interface for a document-style interface.

• Create tests to understand how the document flow should handle
errors.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=175

THINGS TO REMEMBER 176

We investigated some issues with remote interface providers such as
the service directory:

• Explore security considerations starting in the initial design.

• Consider how the client should react to connection or server fail-
ures

• Determine how to handle server redundancy.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=176

Chapter 11

Patterns
11.1 Introduction

We introduced some patterns in the previous chapters. In this chapter,
we’ll review those patterns and cover a few patterns that revolve pri-
marily around the substitutability of different implementations. Using
common patterns can make your design more understandable to other
developers.

Each pattern has trade-offs. The "Gang of Four" book1 details the trade-
offs. In this chapter, we list some of the prominent trade-offs.

11.2 Factory Method

The Factory Method pattern is the quintessential way to obtain an
implementation of an interface. You call a method that returns a refer-
ence to an implementation. With a factory method, you can easily sub-
stitute implementations without having to change a single line of code
in the calling method. Let’s take the example of the WebPageParser. In
the code that uses the method, we could create an instance of a partic-
ular parser. For example:

class RegularExpressionWebPageParser implements WebPageParser

{// some code} .

WebPageParser web_page_parser = new RegularExpressionWebPageParser();

From that point onward in the code, we really don’t care what the
implementation is for WebPageParser. However, if we want to change

1Design Patterns by Gamma, et al

FACTORY METHOD 178

the implementation, we have to alter the type of object we are creating.
Instead, we can use a factory method to create a WebPageParser:2

class WebPageParserFactory

static WebPageParser get_web_page_parser()

// Use of method

WebPageParser web_page_parser =

WebPageParserFactory.get_web_page_parser();

Now we can change the implementing class in a single place, and all
users will get the new implementation.

We could make the factory method a little more intelligent and specify
some criteria for choosing a particular parser. We might want a fast
but possibly inaccurate parser or a meticulous one that can parse any-
thing. We do not need to specify a particular name, just our needs. For
example:

WebPageParser web_page_parser =

WebPageParserFactory.get_web_page_parser(SLOW_BUT_METICULOUS);

A registry lookup works like the Factory Method pattern. You request
an implementation of an interface using a service identifier. The method
call is a little more generic. For example:

WebPageParser web_page_parser =

(WebPageParser) registry.lookup(WebPageParserID)

The Abstract Factory pattern works one more level up from a Factory
Method pattern. You may have multiple interfaces, and for each one
you want to create related implementations. In the Service Registry
example in Chapter 10, we had several different documents. The rep-
resentation of these documents could be in XML, YAML, tab-delimited
text, or another format. We could provide implementations for each
document that encoded the data in a particular representation. For
example:

interface RegistrationDocument

set_version()

set_service_provider_information()

interface LookupResponseDocument

set_version()

set_service_id()

set_connection_information()

2We show this as static, which makes get_web_page_parser() a class method. Other-
wise, we would have to create or find an implementation of WebPageParserFactory before
we can get a WebPageParser.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=178

PROXY 179

interface DocumentFactory

RegistrationDocument get_registration_document()

LookupResponseDocument get_lookup_response_document()

Now you create multiple implementations of DocumentFactory. Each
version of DocumentFactory creates RegistrationDocuments and LookupRe-

sponseDocuments that encode information in a particular format.

FACTORY METHOD

Advantage—makes implementation of interface transparent

ABSTRACT FACTORY

Advantage—makes implementation of set of interfaces transpar-
ent

11.3 Proxy

In the Proxy pattern, you have multiple implementations of a single
interface. One implementation (the proxy) acts as an intermediary to
another implementation. Each method in the proxy may perform some
internal operations and then call the corresponding method in another
implementation. The implementations may be in the same program, in
the same computer, in different processes, or in different computers.

The caller of a proxy usually need not be aware that the proxy being
called is making calls to other implementations. The functions that
proxies can perform include security, caching of results, and synchro-
nization3 A common use of a proxy is to provide a local interface to a
remote interface. This is termed a remote proxy. For example, here’s an
interface to get the current price for a stock:

interface StockTickerQuoter

Dollar get_current_price(Ticker)

You can get a local copy by using either a specific class or a factory
method, as in the previous section. For example:

StockTickerQuoter stock_ticker_quoter =

new StockTickerQuoterLocalImplementation()

The local implementation connects to a remote implementation via a
network connection, typically a Remote Procedure Call (see Chapter 6).

3See http://www.research.umbc.edu/~tarr/dp/lectures/Proxy-2pp.pdf for
more details.

http://www.research.umbc.edu/~tarr/dp/lectures/Proxy-2pp.pdf
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=179

PROXY 180

aStockTickerQuoter
LocalImplementation

aStockTickerQuoter
(remote)

get_current_price(aTicker)

get_current_price(aTicker)

currentPrice

currentPrice

Figure 11.1: Connection sequence

The remote implementation has exactly the same interface. Figure 11.1
shows the sequence diagram.

The same interface might be used with multiple proxies that perform
various services. The services could include security checking, encryp-
tion/decryption, and logging.4 If we want these services to be dynam-
ically added, typically the interface includes a way to denote another
proxy in the chain. For example, we could log each time a price was
requested by adding another implementation in the chain:

interface StockTickerQuoter

Dollar get_current_price(Ticker)

set_next_stock_ticker_quoter(StockTickerQuoter);

class StockTickerQuoterLogger implements StockTickerQuoter

{

StockTickerQuoter next_stock_ticker_quoter;

set_next_stock_ticker_quoter(StockTickerQuoter stq)

{

next_stock_ticker_quoter = stq;

}

4Some authors suggest that these additional services would make this a Decorator
pattern (see the next section).

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=180

DECORATOR 181

Dollar get_current_price(Ticker a_ticker)

{

Logger.send_message("Another quote");

return next_stock_ticker_quoter.

get_current_price(Ticker a_ticker)

}

}

Now we can give the original implementation of the interface another
implementation to invoke:

StockTickerQuoter stock_ticker_quoter =

new StockTickerQuoterLogger();

stock_ticker_quoter.set_next_stock_ticker_quoter

(new StockTickerQuoterLocalImplementation());

(Some authors consider this a variation of the Decorator pattern, which
is discussed next. They suggest that the StockTickerQuoterCounter deco-
rates another StockTickerQuoter by adding a logging functionality.)

When we get a current price, the price is not only retrieved, but a mes-
sage is also logged. After the initial setup, the use of StockTickerQuoter

in the remainder of the program does not change.

PROXY

Advantage—additional features (security, logging, etc.) can be
added transparently.

11.4 Decorator

The Decorator pattern works like the Proxy pattern. The decorator has
the same interface as the decorated interface. Typically, it also has
an additional interface that represents the decoration. In the previ-
ous Proxy pattern example, the user might not be aware that StockTick-

erQuoterLogger was part of the proxy chain.

On the other hand, the user typically is the one decorating a class. For
example, we might add a feature that counts the number of times we
asked for a stock quote. This feature is provided by an additional inter-
face, Counter. The decorator implements this interface as well as the
original one. For each method in the original interface, it may just call
the one in the decorated implementation, or it may add some function-
ality. For example:

interface Counter

{

int get_count();

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=181

DECORATOR 182

reset_count()

}

class StockTickerQuoterCounter implements StockTickerQuoter, Counter

{

int counter;

int get_count()

{

return counter;

}

void reset_count()

{

counter = 0;

}

StockTickerQuoter next_stock_ticker_quoter;

set_next_stock_ticker_quoter(StockTickerQuoter stq)

{

next_stock_ticker_quoter = stq;

}

Dollar get_current_price(Ticker a_ticker)

{

counter++;

return next_stock_ticker_quoter.

get_current_price(Ticker a_ticker)

}

}

The get_current_price() method delegates to another implementation. In
addition, it increments a count that is accessible by the Counter inter-
face. When we’re using this class, we give it an implementation to
decorate:

StockTickerQuoterCounter stock_ticker_quoter_decorator =

new StockTickerQuoterCounter();

stock_ticker_quoter_decorator.set_next_stock_ticker_quoter

(new StockTickerQuoterLocalImplementation());

This code looks a lot like the proxy version. The difference is that
you can call additional methods on stock_ticker_quoter_decorator, such
as get_count(). Another difference is that proxies are often designed
to work together. The Decorator pattern can be used on classes that
existed before the decorator is created.

DECORATOR

Advantage—adds behavior on classes not explicitly designed for
expansion

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=182

ADAPTER 183

11.5 Adapter

Adaptation is a major feature of interface-oriented design. You create
the interface you need. If a module exists whose interface is close to
your need, you can alter your interface to match that existing inter-
face. Otherwise, you can adapt the interface of that module to match
your desired interface. For example, in the Link Checker, we created a
WebPageParser interface:

interface WebPageParser

URL [] parse_for_URLs(WebPage)

Java has an HTMLParser that performs the services needed by a realiza-
tion of this interface. It has different method names. So, we create
an adapter that implements the WebPageParser interface by using the
HTMLParser class.

An implementation of WebPageParser can adapt different interface styles
to the style represented by WebPageParser. For example, WebPageParser

uses a pull style. You ask it for a set of links after it parses the docu-
ment. You could create an implementation that employs the push style,
such as the SAX parser. Internal methods would gather the links into
a collection, and parse_for_URLs() would return that collection.

The interface an existing class provides may not meet the paradigm that
you want for your classes. So, you create an adapter for that interface.
For example, suppose you find that opening a buffered file in Java is a
little complicated. You create a class MyFileInputStream that adapts that
class. The interface for this class could look like the following:5

class MyFileInputStream

{

MyFileInputStream(Filename name) throws FileNotFoundDeviation,

FileNotAccessibleDeviation, FileError

{ ... }

read() throws EndofFileDeviation, FileError

{...}

close()

{...}

//... Other methods,

}

5This is a simple example of an adapter. You always have trade-offs in using an
adapter class for library routines. A developer new to a project needs to learn a new
class.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=183

FAÇADE 184

A Textual Adapter

Adapting interfaces is not limited to such programmatic inter-
faces. You can adapt textual interfaces. An example of adap-
tation is the sendmail configuration process. sendmail is a com-
mon email server. It uses the configuration file sendmail.cf.
The syntax for that file is, well, to put it nicely, “interesting.” To
simplify configuration, there is a sendmail.mc file. The syntax
of that file is in a macro language (m4). You transform send-
mail.mc into sendmail.cf by using the m4 program.

The sendmail.mc file represents a textual adapter. Now, peo-
ple might suggest that the syntax of that file is still somewhat
“interesting.” But at least it’s simpler than the sendmail.cf file.

The buffering is internal to this class. The methods signal a set of
conditions that you find more meaningful than just IOException.6 The
close method does not throw an exception. The exception is caught
within the adapter, which simplifies using the interface. If an exception
occurs, it is logged.

ADAPTER

Advantage—you use an interface designed on your needs.

Disadvantage—adapting standard interfaces creates more inter-
faces to learn.

11.6 Façade

The Adapter pattern turns a single interface into a different interface.
The Façade pattern turns multiple interfaces into a single interface.
For example, the WeatherInformationTransformer interface in the Web Con-
glomerator solution (Chapter 9) hides the multiple interfaces of Weath-

erInformation, WeatherInformationDataGatherer, and WeatherInformationDis-

playFormatter.

6I like to split errors into deviations (failures that may occur during normal operation
of a program) and errors (failures that should not normally occur). For example, not
having permission to read a file is something that could happen. A user could alter the
permissions of the file and rerun the operation. An error reading from a file because of a
hardware problem should never be normally encountered.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=184

COMPOSITE 185

The user of WeatherInformationTransformer is not aware of the underlying
interfaces.

FAÇADE

Advantage—a single interface can be easier to understand than
multiples

11.7 Composite

In the Composite pattern, an interface to a group of objects is the same
as that to a single object. The Composite pattern is commonly used
with trees. A leaf on a tree has an interface. A branch (which has
multiple leaves) has the same interface, plus an additional interface
for adding or removing leaves. For example, the organization of a GUI
usually works as a tree. The leaves are Components, and the branches
are Containers:

interface Component

draw()

interface ComponentContainer

add_component(Component)

remove_component(Component)

Widget implements Component

draw()

Window implements ComponentContainer, Component

draw()

add_component(Component)

remove_component(Component)

The draw() method for a Container such as Window invokes the draw()
method for each of the Components it contains. Suppose a method
receives a reference to a Component and wants to draw it. It does not
matter whether the reference actually refers to a Widget or a Window. In
either case, the method simply calls draw().

We can also use the Composite pattern to make a group of interfaces
act like a single interface. For example, given the following interface:

interface StockTickerQuoter

Dollar get_current_price(Ticker)

we could create an implementation that simply connects to a single
source to provide the current price:

class StockTickerQuoterImplementation implements

StockTickerQuoter

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=185

THINGS TO REMEMBER 186

Alternatively, we could have an implementation that connects to mul-
tiple sources. It could average the prices from all sources, or it could
call each source in turn until it found one that responded. The user’s
code would look the same, except for setting up the StockTickerQuoter-

Container:

interface StockTickerQuoterContainer

add(StockTickerQuoter)

remove(StockTickerQuoter)

class StockTickerQuoterMultiple implements StockTickerQuoter,

StockTickerQuoterContainer

A factory method can make using a composite like this transparent.
Inside the method, StockTickerQuoter implementations can be added to
StockTickerQuoterContainer. We might obtain an implementation with
this:

enumeration StockTickerQuoterType = {

FREE_BUT_DELAYED_SINGLE_SOURCE,

PRICEY_BUT_CURRENT_SINGLE_SOURCE,

AVERAGE_ALL_SOURCES};

StockTickerQuoter stock_ticker_quoter =

StockTickerQuoterFactory.get_instance(AVERAGE_ALL_SOURCES)

COMPOSITE

Advantage—calls to multiple implementations appear the same as
calls to a single implementation

11.8 Things to Remember

We’ve looked at a number of patterns that deal with interfaces. These
patterns are ways that multiple interfaces or multiple implementations
can be opaque to the user. Employing these patterns can make your
code more flexible and potentially easier to test.

• Factory Method

• Proxy

• Adapter

• Decorator

• Façade

• Composite

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=186

Appendix
You may be reading this because you didn’t see the title “Appendix.”
Why is this material in an appendix? Well, it’s “an accessory structure
of the body” of the book. Some people might find particular topics in
here that they think should have been part of the regular text. Just
because the topics are in here doesn’t mean they are not important;
they just didn’t fit into the flow. So, they got relegated to here.1

A.1 More about Document Style

We discussed document-style interfaces in Chapter 6. Here are a few
more suggestions on how to employ them.

Document Suggestions

The XML Design ASC X12C Communications and Controls Commit-
tee compiled a number of suggestions for creating XML documents.2

These suggestions can be useful, regardless of the actual form of the
document. The suggestions include the following:

• Keep the use of features and choices to a minimum.

• Make the schema prescriptive: have schemas that are specific to
a particular use, not generalized. More schemas make for fewer
options, and thus you can have tighter validation.

• Limit randomness: have a limited number of variations.3

1And they really might not be that important to some people—that’s OK; I won’t be
offended if you skip them.

2http://www.x12.org/x12org/xmldesign/X12Reference_Model_For_XML_Design.pdf
3The committee notes that limiting randomness provides a good philosophical basis

for disallowing features such as substitution groups and the “ANY” content model when
designing document schemas.

MORE ABOUT DOCUMENT STYLE 188

• Create reusable parts and context-sensitive parts. Examples of
reusable parts are Addresses and Contact Information.

• Form a tree of compositions with optional and repetition specifiers

• Have a document version number. If changes have been made in
the document, update the version number. (Or have a chain of
unique IDs that reference previous versions.)

Using Standard Documents

If you are developing documents for internal use, you are free to develop
your own forms. However, you may want to investigate the standards
to avoid re-creating the wheel. Standard documents may have more
data than you really need or desire, but they offer a good starting point
for creating your own documents. For example, if you are developing
a commerce system, investigate all the standard transaction sets of
the federal government. These standards are being converted to XML
(OASIS ebXML). If those sets do not make sense in your application,
then search the Internet for ones that might be more appropriate.

To make use of the standards, set up a data interface (a DTO) that par-
allels the document structure. Use this interface to create the docu-
ment with appropriate validation. For an example, let’s use the Federal
Information Processing Standards.4 One of the standard documents
for a purchase order is the FIPS 850 Purchase Order Transaction Set.5

A data interface, such as the DTO given next, can represent this trans-
action set. We don’t show the entire interface, since the specification
for this transaction set is 262 pages long.6 The specification is bro-
ken down into elements that have initials. The element initials are at
the beginning of each name in the DTO. Normally the names in a DTO
should not be tied to specific numbers. In this case, however, they are
used to explicitly tie the fields to the specification.

data interface PurchaseOrderTransactionSet

ST_TransactionSetHeader

ST01_TransactionSetCode = 850

String ST02_TransactionSetControlNumber

enumeration PurposeCode {ORIGINAL, DUPLICATE, ...}

enumeration POTypeCode {CONTRACT, GRANT...}

4See http://www.itl.nist.gov/fipspubs/ to get complete documents.
5See http://www.sba.gov/test/wbc/docs/procure/csystsba.html for an in-

troductory description of the ASC X12 transaction sets.
6See http://fedebiz.disa.mil/FILE/IC/DOD/3010/R3010/R3010/Rev1/31r850_a.pdf.

http://www.itl.nist.gov/fipspubs/
http://www.sba.gov/test/wbc/docs/procure/csystsba.html
http://fedebiz.disa.mil/FILE/IC/DOD/3010/R3010/R3010/Rev1/31r850_a.pdf
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=188

SERVICE-ORIENTED ARCHITECTURE 189

BEG_BeginningSegmentForPurchaseOrder

PurposeCode BEG01_TransactionSetPurposeCode

POTypeCode BEG02_PurchaseOrderTypeCode

CommonString BEG03_PurchaseOrderNumber

enumeration UnitCodes {EACH, FEET,...}

PO1_baseline_item_data []

String PO101_assigned_identification

Count PO102_quantity_ordered

UnitCodes PO103_unit_or_basis_for_measurement

Money PO104_unit_price

Just creating the DTO may help you understand the organization of
the document. You can build into this DTO checks for the rules for
the transaction set. For simple validation, the set methods for each
field can enforce the rules. An overall validation method can handle
the cross-validation of fields.

Your internal document may not require all the fields listed in the spec-
ification. So just include the ones you need. If you need to convert your
internal document to an external one that matches this specification,
you’ll find it easy to copy the corresponding fields.

A.2 Service-Oriented Architecture

Service-oriented architecture (SOA) is an emerging standard for provid-
ing remote services both to clients internal to an organization and to
external organizations. Chances are you soon will communicate using
SOA services. An SOA service is reusable, well-defined, published, and
standards-compliant. An SOA service groups a set of operations, sim-
ilar to the way that service interfaces, described in Chapter 2, group a
set of methods. Like service interfaces and implementations, how an
SOA service performs an operation is entirely opaque to a consumer of
that service.

SOA operations tend to be business-oriented operations, such as the
individual steps in the airline reservation example shown in Chapter 6,
rather than technical operations, such as retrieving a database record.
A business process uses a sequence of these operations to perform
a particular action, such as the airline reservation process. Examin-
ing an enterprise for reusable services and creating an entire service-
oriented architecture are beyond the scope of this book. Designing the
services’ contract and their protocol (sequence of operations or docu-
ments) is the essence of creating an SOA service. The same contrac-

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=189

SERVICE-ORIENTED ARCHITECTURE 190

tual and protocol design trade-offs that we have explored in this book
for interfaces also apply to services. Services are effectively interfaces,
albeit at a higher level.

SOA frameworks provide additional services beyond standards for doc-
uments and communication protocols that ensure interoperability. For
example, they can offer security: encryption of communication, authen-
tication (identification of a user), and authorization (determining that a
user is entitled to perform specific operations). Using an SOA frame-
work with its attendant services decreases the amount of time involved
in creating an external interface.7

As this book is going to print, the Organization for the Advancement of
Structured Information Standards (OASIS) is working on SOA standard
models. Depending on your viewpoint, SOA uses either only message-
based interfaces (document-style) or both message-based and Remote
Procedure Call–based (procedural-style) interfaces. A general consen-
sus says that an SOA must have the following characteristics:

• Interface is platform-independent (OS, language)—loosely coupled.

• Services are discoverable—dynamically locatable.

• Services are self-contained.

SOA frameworks such as web services and CORBA meet these charac-
teristics. Some authors suggest another constraint:

• Service provider and consumer communicate via messages (i.e., a
document-style interface)

In that case, CORBA would not be considered an SOA.

An SOA framework, mapped to web services and CORBA, is shown in
Figure A.1, on the next page.

The PizzaOrdering document interchange shown in Chapter 6 can form
the basis for a simple SOA service. Figure A.2, on the following page
shows how a service consumer connects to an implementation of a Piz-

zaOrdering service. The consumer contacts the directory service and
requests information about a host that provides an implementation of

7See http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/
for more details about SOAs.

http://www-128.ibm.com/developerworks/webservices/library/ws- soad1/
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=190

SERVICE-ORIENTED ARCHITECTURE 191

Service description

Service protocol

Discovery of services

Platform independence
mechanism

WSDL—Web Service
Description Language

SOAP—
Simple Object
Access Protocol

UDDI—Universal DIscovery,
Description, and Integration

XML

IDL

IIOP—Internet Inter-Orb
Protocol

Directory
Services

Translation into
local platform/language
stub

Feature Web Services CORBA

Figure A.1: PizzaOrdering service

Directory Service
PizzaOrdering
Entry

PizzaOrdering
implementation

Client

Executes
PizzaOrdering

Find PizzaOrdering
(UDDI)

PizzaOrdering
Implementation

(WSDL)

Figure A.2: PizzaOrdering service

the interface. The consumer then contacts the implementation host
and executes the protocol for the interface.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=191

COLLECTIONS AND COLLECTION METHODS 192

JINI

The JINI (Jini Is Not Initials) technology takes a different ap-
proach to making the platform and the protocol opaque. A
client looks up a particular service, identified by a Java inter-
face, in a JINI directory. When the client contacts a provider of
that service, a Java implementation of the interface is down-
loaded to the client (thus providing platform independence).
The client accesses the service through that implementation.
The implementation may provide the service locally, or it may
communicate with remote servers using any type of protocol
(thus offering protocol opaqueness).

The client needs to be programmed in Java, but the remote
servers can be coded in any language.∗

∗You can find more information at
http://www.artima.com/jini/jiniology/and at
http://www.jini.org/.

A.3 Collections and Collection Methods

Interfaces can decouple the use of data from the means used to store
the data. We examine interface design that can be used for decoupling.
We also explore Apple’s innovative approach.

Suppose the pizza shop wants to keep track of orders for its pizzas. You
have three elements: the Pizza, the Customer, and the Order. An Order

represents the order by a Customer for a Pizza. You might come up with
the following classes, which represent data interfaces:

class Pizza

Toppings []

Size

class Customer

Address

Name

class Order

Customer

Pizza

Now the Orders are going to be kept in a collection somewhere. The
collection could be a database, an XML file, or a comma-delimited file.
In any event, the interface to the collection should be the same. The

http://www.artima.com/jini/jiniology/
http://www.jini.org/
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=192

COLLECTIONS AND COLLECTION METHODS 193

use of the collection should not be coupled to the implementation for
the collection.8 The interface may look like this:

interface OrderCollection

Order [] find_orders_containing_toppings(Toppings [])

Order [] find_orders_for_customer(Customer)

Order [] find_order_by_size(Size)

Now how about finding all orders placed by customers who lived more
than five miles away? You might as well make the method a little more
general:

Order [] find_orders_from_customers_at_distances (Distance minimum,

Distance maximum)

With a little switch in the interface design, we can allow for ANDs
and ORs of criteria. Instead of the find methods returning an array
of Orders, they could return an OrderCollection:

interface OrderCollection

OrderCollection find_orders_containing_toppings(Toppings [])

OrderCollection find_orders_for_customer(Customer)

OrderCollection find_order_by_size(Size)

OrderCollection merge(OrderCollection)

OrderCollection oc = new OrderCollectionImplementation();

Then we can apply a sequence of method calls to further select (i.e., do
an AND) from a returned OrderCollection. For example:

OrderCollection selection = oc.find_orders_for_customer(a_customer).

find_order_by_size(size)

The merge allows an ORing opportunity. You can take the results from
two different finds and merge them.

If you start using complex search criteria, then you may want to split
the responsibilities for the collection. You can separate the matching
criteria from the find. For example:

interface OrderCollection

Order [] find_orders(callback_selection_method)

The callback_selection() method determines whether a particular Order

should be included in the output. This is the push version of going
through a collection.

8Let me state that this statement is probably one of the most controversial in this
book. So, you may be on the other side and have a strong opinion on it. Just consider
this a look at the dark side.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=193

COLLECTIONS AND COLLECTION METHODS 194

Boolean this_order_matches(Order current_order)

{

//Return true if the order meets your criteria

}

With this organization, you can make up more matching criteria with-
out having to alter the OrderCollection class. However, we force going
through the collection on an element-by-element basis. If you have an
SQL database underneath, you may want to have this callback return
a WHERE clause that can be added to the query. For example:9

String orders_by_size(Size size)

{

return "SIZE = " + size;

}

If you put all the different methods in the collection as in the first ver-
sion, it becomes a more complete interface (see Chapter 4), which is
simple to use. But its completeness may be a turn-off to some users.
You could provide the simple interface as in the second version (which
is what most collections do with predicates). You could then add the
first as a complete interface that calls the second one, for users who
like simplicity.

Web Conglomerator

In the Web Conglomerator example, we hinted that you could write a
configuration GUI that allows the user to alter which InformationTrans-

formers are displayed. You can use a collection class (regular or tem-
plate) from a language library to hold this collection. You may want to
create a specific interface to that collection that adds specific methods.

In creating a user interface, we found that we missed an important data
element. Each InformationTransformer needs a name that can be displayed
to the user:

interface InformationTransformer

String display_name

gather_data_for_location(Location)

signals DataUnavailable

String format_for_html_display()

9This is an outstanding example where you cannot have completely opaque interfaces,
especially when performance is critical.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=194

COLLECTIONS AND COLLECTION METHODS 195

Predicates

Apple’s Mac OS X application framework is called Cocoa;∗

part of Cocoa uses predicates to encode queries in an man-
ner independent of the backing store (e.g., the database).
The predicates are a filtering mechanism. They can be sim-
ple comparisons (age > 30), case-insensitive matches (name
contains[smith]), and logical operations (AND, OR, NOT).

A predicate query is translated into whatever language is
required by the backing store (e.g., SQL, XML). The predicates
do not provide all possible queries that a particular backing
store can support. On the other hand, they represent a larger
set of queries than some backing stores support. In the doc-
umentation, Apple notes, “Not all possible predicate queries
are supported by all backing stores.... When constructing pred-
icates, you should take care that they will work with your data
store. The back end may downgrade the predicate (for exam-
ple it may make a case-sensitive comparison case-insensitive)
or raise an exception if you try to use an unsupported operator.”

Microsoft also has a similar project underway, as part of the .NET
framework, called .NET Language Integrated Query (LINQ).†.

∗Thanks to Keith Ray for bringing Cocoa to my attention. See
http://developer.apple.com/documentation/Cocoa/Conceptual/Predicates/index.html.
†http://msdn.microsoft.com/netframework/future/linq/default.aspx?pull=/library/en-us/dnd

We can display the list of names so that the user can select and unse-
lect items for display, as well as add and delete InformationTransformers.
Working through the possibilities yields an interface like this:

interface LocationInformationTransformerCollection

String [] get_names_of_selected_for_display()

String [] get_names_of_all()

LocationInformationTransformers [] get_selected_for_display()

LocationInformationTransformers [] get_all()

add(LocationInformationTransformer)

remove(index)

select_for_display(index)

unselect_for_display(index)

set_order_for_display(index, order)

store()

load()

This interface doe not specify how the collection is stored. You could

http://developer.apple.com/documentation/Cocoa/Conceptual/Predicates/index.html
http://msdn.microsoft.com/netframework/future/linq/default.aspx?pull=/library/en-us/dndotnet/html/linqprojectovw.asp
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=195

CONFIGURATION 196

convert the data to text, save it with Java serialization, or use a data-
base. This interface is more complete (see Chapter 4), which makes it
simpler to use.

How to design the GUI interface that manipulates this collection is left
to other design books.

A.4 Configuration

Configuration was mentioned in a sidebar in Chapter 7. You may won-
der how you get an implementation of the Configuration interface. You
could have a factory method. At some point, you’ll need the Singleton
pattern (see Design Patterns) either as a class or as a method. Whether
you use a separate class or simply have a classwide (static) method is
up to you. For example:

class ConfigurationFactory

static Configuration getConfiguration();

or

class ConfiguratonFactory

static ConfigurationFactory getInstance();

Configuration getConfiguration();

In either case, an instance of Configuration is returned. The Configuration

interface listed in the chapter had only get methods. You can also have
set methods. The configuration values could be set with a stateful-
looking or stateless-looking interface (see Chapter 3):

interface Configuration

set_pizza_toppings(Topping [] toppings);

or

interface Configuration

add_pizza_topping(Topping topping);

clear_pizza_toppings();

You could also create a generic configuration interface:

set_item_value(String name, String value)

String get_item_value(String item_name)

In this case, you do not have type checking on the configuration val-
ues. The user needs to ensure that the configuration values are valid
(just like with the document-style remote interface in Chapter 6). On
retrieval the user has to convert the values back into the appropriate
data types.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=196

ANOTHER SERVICE REGISTRY ITERATION 197

Configuration and Factories

A particular place where configuration can occur is when using a fac-
tory. The actual implementation that is returned from a factory is
opaque to the caller; it simply implements the required interface. The
factory needs to decide what implementation to return. In some instan-
ces, you might want the factory to return a test Implementation, and
in other instances, you might want it to return the production version.
You could make this selection in two ways.

First, the factory could access a configuration mechanism that indi-
cated which implementation to return. Second, the factory could have
additional methods for setting its configuration.10 These methods would
not necessarily be called by the caller. Instead, the caller would ask a
configuration mechanism to return a factory that is configured appro-
priately. (Swing is an example of this mechanism.)

Now we get into one more level of indirection. The factory itself hides the
implementation. Then instead of simply accessing a singleton factory,
we first create a factory that has the appropriate configuration and then
use it to return an appropriate implementation.

A.5 Another Service Registry Iteration

For those who didn’t think two iterations were enough, here are the
features for a third one.

Matching Criteria

We can’t stop coming up with new ideas for the Service Registry in
Chapter 10. Here’s yet another one with possible changes to the inter-
faces. What is interesting about this feature is that the decision of
assigning responsibility for implementing the feature has substantial
ramifications. Whatever you scratch on your IRI cards as the responsi-
ble interface is probably bound to change.

We briefly discussed the case of having hundreds of ServiceProviders offer
the same ServiceID. One way to avoid returning a large number of Ser-

viceProviders is to establish a mechanism for selecting a smaller num-
ber. For example, a ServiceConsumer may want to select a ServiceProvider

10This is the Dependency Injection pattern (also called Inversion of Control). See
http://www.martinfowler.com/articles/injection.html for a discussion of this
pattern.

http://www.martinfowler.com/articles/injection.html
http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=197

ANOTHER SERVICE REGISTRY ITERATION 198

based on criteria other than just providing a service. The ServiceProvider

could supply some details, such as the skill level of the player (for an
interactive game), location information, or any other information that
a ServiceConsumer might want to use in selecting a ServiceProvider. We
cannot think of all the possible criteria, so we just create a DetailInforma-

tion field that will contain the criteria. A particular service determines
how information in that field is used for matching.

Matching could take place in two places. The client could get the Detail-

Information for all ServiceProviders and then wade through them to find
desired matches in whatever manner is desired. That can place a bur-
den on the Service Registry to return lots of matches. Alternatively, the
criteria could be matched in the Service Registry. That seems to be a
bit more work for the Service Registry, but it can substantially decrease
the number of ConnectionInformations that are returned.

You are often faced with similar trade-offs in communicating over the
network. The server can perform more internal processing and cut
down on the communication between the client and the server, or vice
versa. The choice is dependent on the relative time and cost differences
between processing and communicating.

The document interface will be different in the two cases, but the Ser-

viceConsumer interface will almost be the same. We add DetailInformation

to ServiceProviderInformation. Since we are performing matching on the
server, then we need to add MatchCriteria to the LookupRequest. The
interfaces for ServiceConsumer and ServiceProvider change slightly:

interface ServiceConsumer

ConnectionInformation [] lookup_service(UUID service_id,

MatchCriteria match_criteria, Authorization authorization)

signals UnableToConnect, StatusFailure

interface ServiceProvider

register_service(UUID service_id, UUID server_id,

TimePeriod time_to_live,

ConnectionInformation connect_info, DetailInformation

detail_information,

Authorization authorization) signals UnableToConnect,

StatusFailure

unregister_service(UUID service_id, UUID server_id,

ConnectionInformation connect_info) signals UnableToConnect,

StatusFailure

We haven’t specified the details for MatchCriteria. We’re pretty sure it will
have “contains” matching. There are other possibilities, such as regular
expression matching or wildcard matching. We’ll leave those details

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=198

OTHER INTERFACE ISSUES 199

until we check with our user base and also determine the processing
requirements.

A.6 Other Interface Issues

Here’s a few more ideas on various topics. Consider this an appendix
to the appendix

Forcing Interfaces Together

You may want to generalize interfaces into a common interface. We
didn’t do that with the InformationTransformers in Chapter 9, but just
considered them as a framework. In Chapter 3, we introduced the
IceCreamOrdering interface. We presented the PizzaOrdering interface in
Chapter 1. These interfaces have different methods. We could rework
them so that they appear as a single interface. For example, we could
have the following:

interface OrderItem

specify_options()

interface Order

order_item(OrderItem)

IceCream implements OrderItem

specify_options()

// Ask for and sets cone type

// and flavors

Pizza implements OrderItem

specify_options()

// Ask for and sets size and toppings

Mixins

The Ruby language features (among other things) mixins. These are
modules that can be included in a class definition. The methods in a
mixin act as anonymous base classes. The methods get added to the
methods defined in the class. For example, the Comparable mixin adds
the comparison operators <, < =, ==, >=, and > to a class. However,
the Comparable module relies on the presence of the <=> operator in
the class in which it is included. This operator compares two objects
and returns -1, 0, or +1, which represents the object’s definition of
less than, equal, and greater than. The Comparable module calls that
operator to implement the other comparison operators.

The need for this operator is documented in the description of Com-

parable. Executing one of the operators without having defined the

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=199

OTHER INTERFACE ISSUES 200

<=> operator results in a runtime error, not a compile-time error, since
Ruby does not have explicit typing. One could document the need for
the <=> operator by saying that a module must implement an interface
as follows:

interface Comparison

operator <=> (another)

If this same method was needed by other mixins or by other code, cre-
ating an interface makes the common need more explicit.

Composition over Inheritance

This is another example of the benefits of composition over inheritance,
in case you haven’t been convinced.11 Suppose you build an application
for a veterinarian. Suppose that you create a hierarchy with Pet as the
base class and Cats, Dogs, and Birds as derived classes with different
data for each. An attribute of Pet is Owner.

When the Discovery Channel calls and asks you to build a system to
help keep track of their animal documentaries, you cannot reuse that
animal domain, because that domain is hardwired to have all animal
types with “owners” and be classified as Pets.

A pet is a role an animal plays, not a special kind of animal. Roles
are best modeled with composition. Had your original animal domain
allowed for the animal to have a role object (or perhaps a set of roles),
you could now have a role for Pet, a role for DocumentarySubject, and
so on, leveraging the domain model you already had. (However, trying
to design for ultimate reuse ends up creating a system with so many
abstraction layers that the rubber can never meet the road.)

11David Bock supplied this example.

http://books.pragprog.com/titles/kpiod/errata/add?pdf_page=200

Index
Symbols
/ filename, 148
: symbol (C#), 6

A
Abstract Factory pattern, 178, 179
abstraction, 19, 110, 116, 156, 200
Access control list (ACL), 100
Adapter, 183–184

advantage of, 184
disadvantage of, 184
Link Checker example, 183
textual, 184

Agile Software Development with
SCRUM (Schwaber and Beedle),
103

Analysis, 110
Link Checker, 124
Service Registry, 157–163
Web Conglomerator, 142–145

Anchors, 123
Andres, Cynthia, 103
Art of Computer Programming, Vol 3

(Knuth), 30n
Asimov, Isaac, 12
ASP (Active Server Pages), 131
Asynchronous interfaces, 88–89
Authorization, 100

B
Beck, Kent, 103, 113
Beedle, Mike, 103
Black box testing, 24
Bock, David, 44, 63, 92n
Boundary objects, 34

C
C++

interface keyword, 6
interfaces in, 6

C#
: symbol, 6
interface keyword, 5

Carson, Ewart, 53n
Class invariants, 17
Client-generated IDs, 85, 89, 91
Cockburn, Alistair, 21
Cohesiveness, 54, 56, 61
Complete interfaces, 60–61
Complex interfaces, 62–63, 132
Composite pattern, 185–186

advantage of, 186
and Factory Method, 186
grouping interfaces, 185
uses, 185

Conceptualization, 104–107
of Link Checker, 122
for Service Registry, 156–157
of Web Conglomerator, 140–141

Configuration, 117
Constantine, LL, 53n
Contract

Design by, 12, 17, 67
Contracts, 17–31

checking, 17–18
class invariants, 17
defining, 110
and document interfaces, 94
explicit, 27–29
File interface, 19–21
implicit, 27–29
and inheritance, 66
and interfaces, 66
levels of, 27–29
pizza, 19
pizza conditions example, 18
postconditions, 17

CONTROL OBJECTS 202 APPENDIX

preconditions, 17
protocols, 22f, 21–23
quality of, 29–30
and security, 100
testing interfaces against, 23–27,

160
Control objects, 34
CORBA, 86, 99
Coupling, 58–60

decoupling, 131, 138, 149
defined, 58
pizza shop automator example, 115

CRC cards, see IRI cards
Cunningham, Ward, 113

D
Data interfaces, 32–41

and asynchronous pushing, 41
defined, 32
examples of, 32–33, 38f
pull style, 36–41
push style, 36–41
retrieval, sequential vs. random, 36
vs service interface, 33f, 33
style combinations of, 38–41
web page, as example of, 126

Data transfer object (DTO), 33, 34, 95,
98, 166

Dealing with Complexity (Flood and
Carons), 53n

Decorator pattern, 181–182
see also Proxy pattern

Denial of service (DOS) attack, 163
Dependency injection, 128
Design, 110–120

document flow, 165f
interface definitions, 116, 117
interface responsibilities, expressing,

111, 112
Interface-oriented, 110–115
and IRI cards, 113–115
for Link Checker, 126–132
responsibility driven, 110
role-based, 110
Service Registry, 164–165
stereotypes for objects, 112
Test-First Development, 110
testing, 119–120
use cases and, 111
Web Conglomerator, 146–148

see also Development process, see
also Patterns

Design by Contract, 12, 17, 67
Design Patterns: Elements of Reusable

Object-Oriented Software (Gamma
et al), 28n, 177n

“Designing Reusable Classes” (Johnson
and Foote), 65

Development process, 103–120
use cases, 106f
and agile model, 103–104
analysis, 110
conceptualization, 104–107
design, 110–115
testing, 107–110
use cases, 104–107
vision, 104

Device drivers, 47
Device interfaces, 7
Distributed servers, 170–171
DNS, 155, 169, 170
Document flow, 99f
Document interfaces, 85–88, 93–98

business flow in, 96–98
constraints, 98
contracts, 94–95
document flow, 98, 99f
encoding, 96
external format, 93
internal format, 93
vs. procedural, 88
representation, 93
Service Registry example, 154–176
validating, 94–95

DOM
pull/random advantage, 41
as pull/random style example, 40
as pull/sequential style example, 40
and random access, 36

Domain Name System, see DNS
DOS attack, see Denial of service (DOS)

attack
Downcasting, 57n

E
Electronic document interchange (EDI),

96
Entity objects, 34
Exceptions (technology vs business), 16
External interfaces, 84, 88–93

EXTERNAL ITERATORS 203 APPENDIX

External iterators, see Push style
interfaces

External links, 123, 127
Extreme Programming Explained:

Embrace Change (Beck and
Andres), 103

F
Façade, 184
Factory Method, 177–179

Abstract Factory pattern, 178
advantage of, 179
and composite pattern, 186
WebPageParser example, 177

factory method
implementing class changes, 178

“Family Values: A Behavioral Notion of
Subtyping” (Liskov and Wing), 14

File contracts, 20f
File interface

contracts, 19–21
testing, 26–27
transform into object-oriented

interface, 48–49
work cases for, 21

First Law of Interfaces, 13
Flexible interfaces, 90–93
Flood, Robert, 53n
football example (inheritance vs

interfaces), 74–76
Foote, Brian, 65
Fowler, Martin, 93

G
Graphics Display Interface (GDI), 47
GUI interfaces, 10–11, 72

prototypes, 141
and use cases, 106n

GUID, see Universal unique identifier
(UUID)

H
Hayes, 9
Hendrickson, Elisabeth, 25
Hierarchies, 68–76

animal interface diagram, 71f
and derived classes, 73
football example, 74–76
identification vs service-based

description, 69–71
and InputStream, 76–82

and interfaces, 73
mammalian example, 69f
serviced-based, 71

HTTP request (tokens), 97
Hunt, Andy, 13
Hunter, Michael, 13

I
I Robot (Asimov), 12
Ice cream interface, 51–52
Implementations

and interface design, 120
of Link Checker, 134–137
quality trade-offs, 29
reporting errors, 14, 16
resources for, 13
Service Registry, 165–168
of Web Conglomerator, 148–151

Inheritance, 64–82
advantage of, 71, 73, 76, 82
animal interface diagram, 71f
class hierarchy, 72
derived classes, 72
and Design by Contract, 66
disadvantage of, 76, 82
football example, 74–76
and GUI components, 72
hierarchies, 68–76
in InputStream, 77, 78f
interfaces diagram, 67f
methods and, 72–73
polymorphism, 65–68
Shape hierarchy example, 66f
single-inheritance languages, 68
transform to interface, 76–78

Input marker, 79–81
InputStream, 76–82
InputStream interface, 76–78

CustomInputStream class, 78
delegation, 79f
FileInputStream class, 81–82
inheritance, 77, 78f
input marker, 79–81
InputStream class, 76, 79–81
InputStreamDefault class, 77, 78
mark() method, 80
markSupported() method, 80
read() method, 80
reset() method, 80
review, 82

Interface Definition Language (IDL), 86

INTERFACE-RESPONSIBILITY-INTERACTION 204 APPENDIX

Interface-responsibility-interaction, see
IRI cards

Interfaces
cohesiveness, 54
combining, 75
consistency and, 46
coupling, 58–60
Data transfer object (DTO), 33
defined, 5–7
device specific, 49–50
features, structure of, 41–44
measures, 60–63
multiple, 51–52
multiple implementations of, 127
outside of software realm, 118
polymorphism, 3
review of, 129
Three Laws of, 12–15
transformations of, 47–50
see also specific names of interfaces

Internal links, 123, 127
Internet Protocol (IP) address, see IP

addresses and ports
IOD, see Development process, design
IP addresses and ports, 154, 155, 162,

163
IRI cards, 113–115

card, 116f
example of, 113f
for Link Checker, 124, 125f
Service Registry, 158f, 157–163
template for, 113f
for Web Conglomerator, 142–145

J
Jézéquel, Jean-Marc, 27
Jacobsen, Ivar, 34
Java

URL class, 126
extends keyword, 65
FileChannel class, 81
FileInputStream class, 81–82
graphics, 46
I/O library methods, 79
implements keyword, 65
InputStream, 76
InputStream class, 76
interface keyword, 5
Java Module System (JMS), 92
JSP, 131
versioning, 92

see also InputStream
Johnson, Ralph, 65

K
Knuth, Donald E., 30n

L
Languages (single-inheritance), 68
“Law of Conservation of Complexity”,

63
Laws of Interfaces, 12–15
Levels, contract, 27–29
Link Checker

analysis, 124
conceptualization, 122
defined, 122
design

combining interfaces, 128
control interface, 130
dependency injection, 128
interface interaction, 130f
sequence diagram for links, 130f
storing the links, 127–130
web page retrieval, 127, 138

IRI cards for, 125f
refactoring, 137
tests for, 132–134
Use cases for, 123f
vision for, 122

Link checker, 122–138
design, 126–132

report, creating, 131–132
web page parsing, 126

implementation of, 134–137
Linneaus, Carolus, 70
Liskov Substitution Principle (LSP), 14
Liskov, Barbara, 14
Loose coupling, 59, 60

M
McKean, Alan, 112n
Measures, 60–63

minimal vs. complete, 61
simplicity vs. complexity, 62–63

Methods
conditions for, 17
graphic context, 47
for information retrieval, 131
and inheritance, 72–73
loosely coupled, 58–60
many vs. single, 43

MEYER 205 APPENDIX

naming, 13
tightly coupled, 58–60

Meyer, Bertrand, 12, 17, 112
Microsoft

DCOM, 91
property files, 96

Microsoft Foundation Classes (MFC),
46

CDC objects in, 10–11
Mingins, Christine, 27
Minimal interfaces, 60–61
Modem interface, 9
Multiple implementations, 127
Multiple interfaces (printer example),

56
Multiple servers, 169–170
Myers, GJ, 53n

N
Network disruption, 84–85
Non-object-oriented languages

interfaces in, 7
Nonobject interface (transform into

object interface), 48–49

O
Object Design: Roles, Responsibilities,

and Collaborations (Wirfs-Brock
and McKean), 112n

Object Oriented Software Engineering
(Jacobsen), 34

Object-oriented programming, 65
Object-Oriented Software Construction

(Meyer), 17
Objects (stereotypes for), 34
Observer pattern

and feature structuring, 42
implicit typing in, 28

P
Page Faults, 15
Patterns, 177–186

Adapter, 183–184
Composite pattern, 185–186
Decorator pattern, 181–182
Façade, 184
Factory Method, 177–179
Proxy, 180f, 179–181

Phylocode, 70
Pizza ordering interface, 2–5

conditions for, 18
contracts, 19
defined, 3
document style, 87
and DOM, 40
multiple interfaces, 51–52
pizza shop automator, 104–107,

114–118
and SAX parser, 39
as service interface, 34, 35
simplicity vs. complexity, 62–63
simulators for testing, 119
stateful vs. stateless, 44–47
testing, 25
trade-offs, 63
and XML PullParser, 40

PizzaOrdering interface
sequence diagram (in UML), 4f

Polymorphism, 3, 65–68
device interfaces and, 8
GUI interfaces and, 10
with inheritance, 65, 66
with interfaces, 65
interfaces diagram, 67f

Postconditions, 17, 20f
PostScript, 9
Preconditions, 17–18, 20f
Principle of Least Surprises, 13
Printer interface

features matrix, 55f
Printer interfaces, 54–58

assigning jobs, 59
capability testing, 57
and cohesiveness, 56
and First Law, 55
multiple, 58
single, 58
and Third Law, 55

Procedural interfaces, 85–87
CORBA, 86
vs. document, 88
and remote interfaces, 87

Process, see Development process
Protocols, 21–23

Sequence diagram for, 22f
state diagram for, 23f

Proxy pattern, 179–181
advantage of, 181
connection sequence, 180f
functions of, 179
see also Decorator pattern

PUBLISHED INTERFACES 206 APPENDIX

Published interfaces, 93, 169–171
Pull style interfaces, 36–41

advantage of, 38
example of, 37
and Link Checker, 129

Push style interfaces, 36–41
advantage of, 37
example of, 37
languages and, 37
and Link Checker, 129

R
Refactoring, 103
Refactoring: Improving the Design of

Existing Code (Fowler, et al.), 76n
Remote interfaces, 83–100

and client-generated IDs, 85
disadvantages of, 84
document style, 93–98
external, 84, 88–93
vs. local, 83
network disruption, 84–85
procedural vs. document, 85–88
proxy for, 179
and security, 99–100
stability vs. flexibility, 90–93
state vs. stateless, 89
testing, 100

Remote Procedure Calls (RPCs), 87,
155n, 180

Remote proxy, 179
Reporting errors, 14, 16
Resources (for implementations), 13
Return value, 13
“role”, 75
RPC, see Remote Procedure Calls

(RPCs)

S
SAX

and external interface format, 94
push/sequential disadvantage, 41
as push/sequential style example,

39
and sequential access, 36

Schwaber, Ken, 103
Second Law of Interfaces, 13
Secure Socket Layer (SSL), 163
Security, 99–100, 162–163
Service ID, 175
Service interfaces, 32–35

boundary, 34
controller, 34
vs data interface, 33f, 33
defined, 32
example of, 33
service provider interface, 35

Service Registry, 154–176
Abstract Factory pattern, 178
analysis, 157–163
conceptualization, 156–157
design, 164–165
DNS, 161
document flow, 165f
future iterations, 172–175
implementation, 165–168
IRI cards, 158f, 157–163
performance testing, 161
registration testing, 159
security, 162–163
Service ID, 175
tests, 167f
unique service IDs, 159
unregistration, 161
use cases, 156f, 156–157
vision, 154–156

Simple interfaces, 62–63, 132
“Simplicity, but where”, 63
Simulators, 119
Software development, see

development process
Software Requirements, (Wiegers), 27n
Stabile interfaces, 90–93
State diagram, 23f, 25
State interfaces, 89–90
Stateful interfaces, 44–47, 98

advantage of, 45, 46
defined, 44
disadvantage of, 46
example of, 45, 46, 147

Stateless interfaces, 44–47, 89–90
advantage of, 45, 46
defined, 44
disadvantage of, 46
example of, 45, 147

Stereotypes, 112
Stevens, WP, 53n
Straight text, 96
“Structured Design” (Stevens, Myers

and Constantine), 53n
Synchronous interfaces, 88–89

TESTING 207 APPENDIX

T
Testing

black box, 24
for capabilities, 57
for conformance with contracts, 27
design, 119–120
in design process, 107, 132
for file contract, 26–27
Link Checker, 132–134
misuse cases, 108, 109, 115, 160
for pizza contract, 25
for pizza ship automator, 107–110
remote interfaces, 100
reporting mechanism for, 108
reuse of, 138
simulators, 119
Web Conglomerator, 145–146
white box, 24n

Textual interfaces, 9–10
defined, 7
device specific commands, 9, 49–50
example of, 147–148
Internet protocols as, 9
transform to programmatic, 50

Third Law of Interfaces, 15
Thompson, Ron, 63
Three Laws of Interfaces, 12–15
Tight coupling, 60

U
UML sequence diagram, 24
Unix, 7, 8
Unix interface (transform into

object-oriented interface), 48–49
Unpublished interfaces, 93
Use cases, 21, 106f, 104–107

assumptions and, 107
for Check links, 123f
defined, 105
design, role in, 111
enter pizza order, 106
GUI prototypes, 106n
for Link Checker, 123–124
notify order ready, 107
post payment for order, 107
responsibilities, capturing, 115
Service Registry, 156f

for Service registry, 156–157
testing, 107–110
for Web Conglomerator, 140–141

UUID, see Universal unique identifier
(UUID)

V
Versioning, 92
Virtual memory, 15
Vision, 104

for Link Checker, 122
for Service Registry, 154–156
for Web Conglomerator, 140

W
Walsh, Rob, 129
Web Conglomerator, 140–152

/ filename, 148
analysis, 142–145
conceptualization, 140–141
design, 146–148
generalization of framework,

151–152
implementation, 148–151
information transformers, 147
IRI cards, 142–145
sequence diagram for, 145f
testing, 145–146
and the Third Law, 146
use cases for, 141f
vision for, 140
web browser results, 142f
web retrieval of, 147

Web services, 99
White box testing, 24n
Wiegers, Karl, 27n
Wing, Jeannette, 14
Wirfs-Brock, Rebecca, 112, 113
Work cases, 21
“Writing Effective Use Cases”

(Cockburn), 21

X
XML PullParser

pull/sequential advantage, 41
pull/sequential disadvantage, 41

	Preface
	Road Map
	Who Should Read This Book
	About the Cover
	So, What Else Is in Here?
	Acknowledgments

	All about Interfaces
	Introduction to Interfaces
	Pizza-Ordering Interface
	Real-Life Interfaces
	Things to Remember

	Interface Contracts
	The Three Laws of Interfaces
	Design by Contract
	Testing Interfaces against Contracts
	Levels of Contracts
	Contractual Quality
	Things to Remember

	Interface Ingredients
	Data Interfaces and Service Interfaces
	Data Access Interface Structures
	Alternative Interfaces
	Stateless versus Stateful Interfaces
	Transformation Considerations
	Multiple Interfaces
	Things to Remember

	What Should Be in an Interface?
	Cohesiveness
	A Printer Interface
	Coupling
	Interface Measures
	Things to Remember

	Inheritance and Interfaces
	Inheritance and Interfaces
	Polymorphism
	Hierarchies
	An Interface Alternative for InputStream
	Things to Remember

	Remote Interfaces
	Introduction
	Procedural and Document Interfaces
	Facets of External Interfaces
	Discovery of Services
	More on Document Style
	Security
	Testing
	Things to Remember

	Developing with Interfaces
	A Little Process
	The Agile Model
	Vision
	Conceptualization
	Analysis and Design
	Interface-Oriented Design
	Design
	Implementation
	Things to Remember

	Interfaces in the Real World
	Link Checker
	Vision
	Conceptualization
	Analysis
	Design
	Tests
	Implementation
	Retrospective
	Things to Remember

	Web Conglomerator
	Vision
	Conceptualization
	Analysis
	Testing
	Design
	Implementation
	Retrospective
	Things to Remember

	Service Registry
	Vision
	Conceptualization
	Analysis
	Design
	Implementation
	Published Interface
	The Next Iterations
	Things to Remember

	Patterns
	Introduction
	Factory Method
	Proxy
	Decorator
	Adapter
	Façade
	Composite
	Things to Remember

	Appendix
	More about Document Style
	Service-Oriented Architecture
	Collections and Collection Methods
	Configuration
	Another Service Registry Iteration
	Other Interface Issues

