
Prepared exclusively for Trieu Nguyen

Learn to Program
Second Edition

Chris Pine

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Bookshelf
Pragmatic

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Chris Pine.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9766940-4-2

ISBN-13: 978-1-934356-36-4

Printed on acid-free paper.

P1.1 printing, March 2009

Version: 2009-7-22

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.pragprog.com

Contents
Preface to the Second Edition vii

Introduction x

What Is Programming? . xii

Programming Languages . xiii

The Art of Programming . xiv

1 Getting Started 1

1.1 Windows . 2

1.2 Mac OS X . 4

1.3 Linux . 7

2 Numbers 9

2.1 Did It Work? . 9

2.2 Introduction to puts . 10

2.3 Integer and Float . 10

2.4 Simple Arithmetic . 10

2.5 A Few Things to Try . 12

3 Letters 14

3.1 String Arithmetic . 15

3.2 12 vs. ’12’ . 16

3.3 Problems . 16

4 Variables and Assignment 19

5 Mixing It Up 23

5.1 Conversions . 23

5.2 Another Look at puts . 25

5.3 The gets Method . 26

5.4 Did It Work? . 26

5.5 The chomp Method . 27

5.6 A Few Things to Try . 28

5.7 Mind Your Variables . 28

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CONTENTS v

6 More About Methods 30

6.1 Fancy String Methods . 32

6.2 A Few Things to Try . 36

6.3 Higher Math . 36

6.4 More Arithmetic . 37

6.5 Random Numbers . 38

6.6 The Math Object . 40

7 Flow Control 41

7.1 Comparison Methods . 41

7.2 Branching . 43

7.3 Looping . 48

7.4 A Little Bit of Logic . 51

7.5 A Few Things to Try . 57

8 Arrays and Iterators 59

8.1 The Method each . 61

8.2 More Array Methods . 64

8.3 A Few Things to Try . 65

9 Writing Your Own Methods 67

9.1 Method Parameters . 71

9.2 Local Variables . 72

9.3 Experiment: Duby . 74

9.4 Return Values . 76

9.5 A Few Things to Try . 80

10 There’s Nothing New to Learn in Chapter 10 82

10.1 Recursion . 82

10.2 Rite of Passage: Sorting 88

10.3 A Few Things to Try . 90

10.4 One More Example . 90

10.5 A Few More Things to Try 97

11 Reading and Writing, Saving and Loading, Yin and... 98

11.1 Doing Something . 98

11.2 The Thing About Computers... 99

11.3 Saving and Loading for Grown-Ups 100

11.4 YAML . 101

11.5 Diversion: Double-Quoted Strings 103

11.6 Back to Our Regularly Scheduled Programming 105

11.7 Renaming Your Photos 107

11.8 A Few Things to Try . 110

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=v

CONTENTS vi

12 New Classes of Objects 112

12.1 The Time Class . 113

12.2 A Few Things to Try . 115

12.3 The Hash Class . 115

12.4 Ranges . 116

12.5 Stringy Superpowers . 118

12.6 A Few More Things to Try 120

12.7 Classes and the Class Class 121

13 Creating New Classes, Changing Existing Ones 122

13.1 A Few Things to Try . 123

13.2 Creating Classes . 123

13.3 Instance Variables . 124

13.4 new vs. initialize . 127

13.5 Baby Dragon . 128

13.6 A Few More Things to Try 133

14 Blocks and Procs 134

14.1 Methods That Take Procs 135

14.2 Methods That Return Procs 139

14.3 Passing Blocks (Not Procs) into Methods 140

14.4 A Few Things to Try . 142

15 Beyond This Fine Book 145

15.1 irb: Interactive Ruby . 145

15.2 The PickAxe: Programming Ruby 146

15.3 Ruby-Talk: The Ruby Mailing List 146

15.4 Tim Toady . 147

15.5 THE END . 149

A Possible Solutions 150

A.1 Exercises from Chapter 2 151

A.2 Exercises from Chapter 5 152

A.3 Exercises from Chapter 6 154

A.4 Exercises from Chapter 7 155

A.5 Exercises from Chapter 8 162

A.6 Exercises from Chapter 9 165

A.7 Exercises from Chapter 10 169

A.8 Exercises from Chapter 11 180

A.9 Exercises from Chapter 12 187

A.10 Exercises from Chapter 13 193

A.11 Exercises from Chapter 14 199

Index 206

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=vi

Preface to the Second Edition
I ran into an old friend the other day. It’s been more than a decade

since last we spoke. As we were catching up, I mentioned, “Oh, and I

sort of accidentally wrote a book a few years back.”

After all, I didn’t really mean to write this book. Once upon a time,

some of us Ruby fans were chatting about teaching programming, and

I had a few things to say about it. Not much. Just a few things.

Somehow the conversation migrated onto a wiki somewhere, and I

wrote up a few of my ideas. After a while, it seemed like I was the

only one writing, so I moved some of my thoughts to my own website.

Suddenly I realized it was starting to look suspiciously like a tutorial.

And not a very good one, I have to say.

Well, my initial attempts seemed pretty good to me, and I got positive

feedback from the other Ruby programmers who saw it. But then again,

we all knew how to program. When I actually showed the tutorial to a

nonprogrammer (my extremely patient wife), it was clear that there was

still much work to be done.

So, I reworked it and rewrote some sections, and it became...better.

Not great, though. It took several more iterations before it was really

usable. But by then I was hooked: I was going to make this tutorial

the best programming tutorial ever! Fortunately, it got plenty of use, I

got plenty of feedback, and it continued to improve. (I could never have

done it on my own. If it weren’t for all the comments and questions,

this whole thing never would have gone anywhere.)

And so it went, for about three years. Conversation moves to wiki. Wiki

migrates to tutorial. Tutorial becomes book. And at every step, I’m

answering as many emails as I can, noting where people are having the

most trouble, learning why they are having trouble, and smoothing the

way for the next programmers-to-be. At every step, it’s getting just a

tiny bit better.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

PREFACE TO THE SECOND EDITION viii

As it turns out, 5,000 tiny bits really add up.

And now that it’s done, I’m convinced I learned more from this book

than anyone else did—not about how to program, of course, but about

the way we learn programming and about learning in general.

Perhaps the most important principle in teaching programming is to

separate concepts as much as possible so that the programmer-to-be

has to learn only one concept at a time. This is much easier said than

done, though. There were just so many things that I was used to, so I

often didn’t realize when I was introducing a new concept. With some

practice, though, and much help from aspiring programmers, it became

easier as I went along.

Naturally, I tried to cover more basic concepts before working up to

more complex concepts. I was amazed, however, at how little of a

precedence hierarchy there really is. Many of the ideas could be taught

meaningfully independently of the others. Eventually, I just had to

pick an order, and I tried to arrange things so that each new section

was motivated by the previous one.

Another principle I realized early on is the importance of teaching only

one way to do something. It’s an obvious benefit in a book for people

who have never programmed before. For one thing, one way to do

something is easier to learn than two. Perhaps the more important

benefit, though, is that the fewer things you teach a new programmer,

the more creative and clever they have to be with the primitive bits they

do know. Since so much of programming is creative problem solving,

it’s crucial to encourage this as soon as possible.

I tried to piggyback programming concepts onto concepts the new pro-

grammer already has and to present ideas in such a way that their

intuition will carry the load, rather than the tutorial. Object-oriented

(OO) programming lends itself to this quite well. I was able to begin

referring to “objects” and different “kinds of objects” pretty early in the

tutorial, slipping those phrases in at the most innocent of moments. I

wasn’t saying anything like “everything in Ruby is an object” or “num-

bers and strings are kinds of objects,” because, beloved as they are

in the Ruby community, these statements really don’t mean anything

to a new programmer. Instead, I would talk about strings (not “string

objects”), and sometimes I would refer to “objects,” simply meaning “the

things in these programs.” The fact that all these things in Ruby are

objects (in the OO sense) made this sort of sneakiness on my part work

so well.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=viii

PREFACE TO THE SECOND EDITION ix

Although I wanted to avoid needless OO jargon, I did try to make sure

that if you do need to learn a word, you learn the right one. (You don’t

want to have to learn it twice, right?) So, I called them “strings,” not

“text.” Methods needed to be called something, so I just called them

“methods.”

As far as the exercises are concerned, I think I came up with some good

ones, but you can never have too many. Examples were much easier:

just come up with some joke that you can relate to the concept you’re

explaining, and there you go! But exercises...they were hard. Honestly,

I bet I spent half of my time just trying to come up with fun, interesting

exercises. Almost everything I came up with was just boring, and boring

exercises absolutely kill any desire to program. On the other hand, the

perfect exercise creates an itch you can’t help but scratch. I did my

best, but I don’t think any of them are perfect. I hope you will come

up with your own programming tasks or even just variations on those

given here.

I remember someone telling me that they had added a bunch of code to

their orange tree program so that it would actually draw an ASCII-art

orange tree! It grew as the tree got older and even displayed the correct

number of oranges! That’s amazingly cool!

A lot of software grows in this way: small, simple beginnings, with

tiny improvements here or an interface overhaul there, until you have

something much larger than what you started with. I guess books can

grow this way, too.

Chris Pine

January 2009

Oslo, Norway

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=ix

Introduction
I vividly remember writing my first program. (My memory is pretty

horrible; I don’t vividly remember many things, just things like waking

up after oral surgery or watching the birth of our children or that time

I was trying to flirt with this girl and she told me that my zipper was

down or when I set my shoes on fire in my middle-school gym class or

writing my first program...you know, things like that.)

I suppose, looking back, that it was a fairly ambitious program for a

newbie (twenty or thirty lines of code, I think). But I was a math major,

after all, and we are supposed to be good at things like “logical think-

ing.” So, I went down to the Reed College computer lab, armed only

with a book on programming and my ego, sat down at one of the Unix

terminals there, and started programming. Well, maybe “started” isn’t

the right word. Or “programming.” I mostly just sat there, feeling hope-

lessly stupid. Then ashamed. Then angry. Then just small. Eight

grueling hours later, the program was finished. It worked, but I didn’t

much care at that point. It was not a triumphant moment.

It has been more than a decade, but I can still feel the stress and

humiliation in my stomach when I think about it.

Clearly, this was not the way to learn programming.

Why was it so hard? I mean, there I was, this reasonably bright guy

with some fairly rigorous mathematical training—you’d think I would

be able to get this! And I did go on to make a living programming, and

even to write a book about it, so it’s not like I just “didn’t have what it

took” or anything like that. No, in fact, I find programming to be pretty

easy these days, for the most part.

So, why was it so hard to tell a computer to do something only mildly

complex? Well, it wasn’t the “mildly complex” part that was giving me

problems; it was the “tell a computer” part.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

INTRODUCTION xi

In any communication with humans, you can leave out all sorts of

steps or concepts and let them fill in the gaps. In fact, you have to

do this! We’d never be able to get anything done otherwise. The typical

example is making a peanut butter and jelly sandwich. Normally, if you

wanted someone to make you a peanut butter and jelly sandwich, you

might simply say, “Hey, could you make me a peanut butter and jelly

sandwich?” But if you were talking to someone who had never done it

before, you would have to tell them how:

1. Get out two slices of bread (and put the rest back).

2. Get out the peanut butter, the jelly, and a butter knife.

3. Spread the peanut butter on one slice of bread and the jelly on the

other one.

4. Put the peanut butter and jelly away, and take care of the knife.

5. Put the slices together, put the sandwich on a plate, and bring it

to me. Thanks!

I imagine those would be sufficient instructions for a small child. Small

children are needlessly, recklessly clever, though. What would you have

to say to a computer? Well, let’s just look at that first step:

1. a) Locate bread.

b) Pick up bread.

c) Move to empty counter.

d) Set down bread on counter.

e) Open bag of bread.

...

But no, this isn’t nearly good enough. For starters, how does it “locate

bread”? We’ll have to set up some sort of database associating items

with locations. The database will also need locations for peanut butter,

jelly, knife, sink, plate, counter....

Oh, and what if the bread is in a bread box? You’ll need to open it first.

Or in a cabinet? Or in your fridge? Perhaps behind something else? Or

what if it is already on the counter? You didn’t think of that one, did

you? So, now we have this:

• Initialize item-to-location database.

• If bread is in bread box:

– Open bread box.

– Pick up bread.

– Remove hands from bread box.

– Close bread box.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=xi

WHAT IS PROGRAMMING? xii

• If bread is in cabinet:

– Open cabinet door.

– Pick up bread.

– Remove hands from cabinet.

– Close cabinet door.

...

And on and on it goes. What if no clean knife is available? What if

there is no empty counter space at the moment? And you’d better pray

to whatever forces you find comfort in that there’s no twist-tie on that

bread!

Even steps such as “open bread box” need to be explained...and this

is why we don’t have robots making sandwiches for us yet. It’s not

that we can’t build the robots; it’s that we can’t program them to make

sandwiches. It’s because making sandwiches is hard to describe (but

easy to do for smart creatures like us humans), and computers are

good only for things that are (relatively) easy to describe (but hard to

do for slow creatures like us humans).

And that is why I had such a hard time writing that first program.

Computers are way dumber than I was prepared for.

What Is Programming?

When you teach someone how to make a sandwich, your job is made

much easier because they already know what a sandwich is. It is this

common, informal understanding of “sandwichness” that allows them

to fill in the gaps in your explanation. Step 3 says to spread the peanut

butter on one slice of bread. It doesn’t say to spread it on only one side

of the bread or to use the knife to do the spreading (as opposed to, say,

your forehead). You assume they just know these things.

Similarly, I think it will help to talk a bit about what programming is in

order to give you a sort of informal understanding of it.

Programming is telling your computer how to do something. Large

tasks must be broken up into smaller tasks, which must be broken up

into still smaller tasks, down until you get to the most basic tasks that

you don’t have to describe—the tasks your computer already knows

how to do. (These are really basic things such as arithmetic or display-

ing some text on your screen.)

My biggest problem when I was learning to program was that I was

trying to learn it backwards. I knew what I wanted the computer to
Report erratum

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=xii

PROGRAMMING LANGUAGES xiii

do and tried working backward from that, breaking it down until I got

to something the computer knew how to do. Bad idea. I didn’t really

know what the computer could do, so I didn’t know what to break the

problem down to. (Mind you, now that I do know, this is exactly how I

program these days. But it just doesn’t work to start out this way.)

That’s why you’re going to learn it differently. You’ll learn first about

those basic things your computer can do (a few of them) and then find

some simple tasks that can be broken down into a few of these basic

things. Your first program will be so easy that it won’t even take you a

minute.

Programming Languages

To tell your computer how to do something, you must use a program-

ming language. A programming language is similar to a human lan-

guage in that it’s made up of basic elements (such as nouns and verbs)

and ways to combine those elements to create meaning (sentences,

paragraphs, and novels). There are many languages to choose from

(C, Java, Ruby, Perl...), and some have a larger set of those basic ele-

ments than others. Ruby has a fine set and is one of the easiest to learn

(as well as being elegant and forgiving and the name of my daughter,

and so forth), so we’ll use that one.

Perhaps the best reason for using Ruby is that Ruby programs tend to

be short. For example, here’s a small program in Java:

public class HelloWorld {

public static void main(String []args) {

System.out.println("Hello World");

}

}

And here’s the same program in Ruby:

puts 'Hello World'

This program, as you might guess from the Ruby version, just writes

Hello World to your screen. It’s not nearly as obvious from looking at

the Java version.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=xiii

THE ART OF PROGRAMMING xiv

How about this comparison: I’ll write a program to do nothing! Nothing

at all! In Ruby, you don’t need to write anything at all; a completely

blank program will work just fine.

In Java, though, you need all this:

public class DoNothing {

public static void main(String[] args) {

}

}

You need all that just to do nothing, just to say, “Hey, I am a Java

program, and I don’t do anything!” So, that’s why we’ll use Ruby. (My

first program was not in Ruby, which is another reason why it was so

painful.)

The Art of Programming

An important part of programming is, of course, making a program

that does what it’s supposed to do. In other words, it should have no

bugs. You know all this. However, focusing on correctness, on bug-free

programs, misses a lot of what programming is all about. Programming

is not just about the end product; it’s about the process that gets you

there. (Anyway, an ugly process will result in buggy code. This happens

every time.)

Programs aren’t just built in one go, like a bridge. They are talked

about, sketched out, prototyped, played with, refactored, tuned, tested,

tweaked, deleted, rewritten....

A program is not built; it is grown.

Because a program is always growing and always changing, it must be

written with change in mind. I know it’s not really clear yet what this

means in practical terms, but I’ll be bringing it up throughout the book.

Probably the first, most basic rule of good programming is to avoid

duplication of code at all costs. This is sometimes called the DRY rule:

Don’t Repeat Yourself.

I usually think of it in another way: a good programmer cultivates the

virtue of laziness. (But not just any laziness. You must be aggressively,

proactively lazy!) Save yourself work whenever possible. If making a few

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=xiv

THE ART OF PROGRAMMING xv

changes now means you’ll be able to save yourself more work later, do

it! Make your program a place where you can do the absolute minimum

amount of work to get the job done. Not only is programming this way

much more interesting (it’s very boring to do the same thing over and

over and over...), but it produces less buggy code, and it produces it

faster. It’s a win-win-win situation.

Either way you look at it (DRY or laziness), the idea is the same: make

your programs flexible. When change comes (and it always does), you’ll

have a much easier time changing with it.

Well, that about wraps it up. Looking at other technical books I own,

they always seem to have a section here about “Who should read this

book” or “How to read this book” or something. Well...I think you should

read it, and front-to-back always works for me. (I mean, I did put the

chapters in this order for a reason, you know.) Anyway, I never read

that crap, so let’s program!

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=xv

Chapter 1

Getting Started
We’ll be using three main tools when we program: a text editor (to write

your programs), the Ruby interpreter (to run your programs), and your

command line (which is how you tell your computer which programs

you want to run).

Although there’s pretty much just one Ruby interpreter and one com-

mand line, there are many text editors to choose from—and some are

much better for programming than others. A good text editor can

help catch many of those “stupid mistakes” that beginner program-

mers make...oh, all right, that all programmers make. It makes your

code much easier for yourself and others to read in a number of ways:

by helping with indentation and formatting, by letting you set markers

in your code (so you can easily return to something you are working

on), by helping you match up your parentheses, and most important

by syntax coloring (coloring different parts of your code with different

colors according to their meanings in the program). You’ll see syntax

coloring in the examples in this book.

With so many good editors (and so many bad ones), it can be hard to

know which to choose. I’ll tell you which ones I use, though; that will

have to be good enough for now. :) But whatever you choose as your

text editor, do not use a word processor! Aside from being made for an

entirely different purpose, they usually don’t produce plain text, and

your code must be in plain text for your programs to run.

Since setting up your environment differs somewhat from platform to

platform (which text editors are available, how to install Ruby, how your

command line works...), we’ll look at setting up each platform covered

in this book, one at a time.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

WINDOWS 2

1.1 Windows

First, let’s install Ruby. Go get the One-Click Installer from the web-

site (http://rubyinstaller.rubyforge.org/wiki/wiki.pl) by clicking Download and

then clicking the highest-numbered version of Ruby you see there (ver-

sion 1.8.6-26 as of this writing). When you run it, it will ask you where

you want to install Ruby and which parts of it you want installed. Just

accept all the defaults.

Now let’s make a folder on your desktop in which you’ll keep all of your

programs. Right-click your desktop, select New, and then select Folder.

Name it something truly memorable, such as programs. Now double-

click the folder to open it.

To make a blank Ruby program, right-click in the folder, select New,

and then select Ruby Program. You can rename the file if you want,

but make sure to keep the .rb file extension, since that’s what tells your

computer this is a Ruby program (and not an email or a picture of Mr.

Bean or something).

Now, when you installed Ruby, you also installed a really nice text

editor called SciTE (which is what I use when I’m on Windows or Linux).

To use it to edit your new program, right-click your program, and select

Edit. (When you get to the next chapter, you’ll even write a program

here, but for now let’s just wait.)

To actually run your programs, you’ll need to go to your command line.

In your Start menu, select Accessories, and then choose Command Now some of you

overachievers may have

noticed that you can run

your programs straight

from SciTE by pressing

F5 . However, this will

not work for any but the

simplest of programs.

You will need to use the

command line, so you

might as well get used to

it now.

Prompt. You’ll see something like this:

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\chris>_

(That cursor at the end will probably be blinking; it’s your computer’s

way of asking, “What would you like?”)

So, here we are, at the command line, which is your direct connection

to the soul of your computer. You want to be somewhat careful way Boy, when I was a kid,

all we had was the

command line! None of

these fancy buttons or

mice. We typed! Up hill!

In the driving snow! And

we liked it!

down here, since it’s not too hard to do Bad Things (things such as

erase everything on your computer). But if you don’t try anything too

wacky, you should be fine.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://rubyinstaller.rubyforge.org/wiki/wiki.pl
http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=2

WINDOWS 3

So, here you are, basically just staring at your computer naked. It

would only be polite to say “hello” at this point, so type echo hello on

the command line, and press Enter . Your computer should reply with

a friendly hello as well, making your screen look something like this:

C:\Documents and Settings\chris>echo hello

hello

C:\Documents and Settings\chris>_

And your cursor is blinking again in a “What’s next?” sort of way. Now

that you’re acquainted, ask it to make sure Ruby is installed properly

and to tell you the version number. We do this with ruby -v:

C:\Documents and Settings\chris>ruby -v

ruby 1.8.6 (2007-09-24 patchlevel 111) [i386-mswin32]

C:\Documents and Settings\chris>_

Great! All we have left now is to find your programs folder through your

command line. It’s on your desktop, so we need to go there first. We do

this with cd desktop:

C:\Documents and Settings\chris>cd desktop

C:\Documents and Settings\chris\Desktop>_

So, now we see what the C:\Documents and Settings\chris was all about.

That’s where we were on the command line. But now we’re on the desk-

top (or C:\Documents and Settings\chris\Desktop according to the com-

puter).

Why cd? Well, way back in the olden days, before CDs (when peo-

ple were getting down to eight-track cassettes and phonographs and

such) and when command lines roamed the earth in their terrible splen-

dor, people didn’t call them folders on your computer. After all, there

were no pictures of folders (since this was before people had discov-

ered crayons and Photoshop), so people didn’t think of them as fold-

ers. They called them directories. So, they didn’t “move from folder

to folder.” They “changed directories.” But if you actually try typing

change_directory desktop all day long, you barely have time to get down

to your funky eight-track cassettes; so, it was shortened to just cd.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=3

MAC OS X 4

If you want to go back up a directory, you use cd ..:

C:\Documents and Settings\chris\Desktop> cd ..

C:\Documents and Settings\chris>_

And to see all the directories you can cd into from where you are, use

dir /ad:

C:\Documents and Settings\chris> dir /ad

Volume in drive C is System

Volume Serial Number is 843D-8EDC

Directory of C:\Documents and Settings\chris

07.10.2005 14:30 <DIR> .

07.10.2005 14:30 <DIR> ..

02.09.2005 10:45 <DIR> Application Data

04.10.2005 16:19 <DIR> Cookies

07.10.2005 14:24 <DIR> Desktop

15.08.2005 13:17 <DIR> Favorites

10.02.2005 02:50 <DIR> Local Settings

05.09.2005 13:17 <DIR> My Documents

15.08.2005 14:14 <DIR> NetHood

10.02.2005 02:50 <DIR> PrintHood

07.10.2005 15:23 <DIR> Recent

10.02.2005 02:50 <DIR> SendTo

10.02.2005 02:50 <DIR> Start Menu

25.02.2005 14:57 <DIR> Templates

25.02.2005 12:07 <DIR> UserData

0 File(s) 0 bytes

15 Dir(s) 6~720~483~328 bytes free

C:\Documents and Settings\chris>_

And there you go!

1.2 Mac OS X

If you’re using OS X, you’re in luck! You can use the best (in my opinion)

text editor, Ruby is already installed for you in OS X 10.2 (Jaguar) and

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=4

MAC OS X 5

up, and you get to use a real command line (not that silly wanna-be

command line we have to use on Windows)!

My absolute favorite editor is TextMate (http://macromates.com/). It’s

cute, it’s sweet, and it has great Ruby support. The only drawback

is that it’s not free. But if you code as much as I do, it’s worth the

(fairly cheap) price. And if you’re using a Mac, then I assume you are

accustomed to getting the best...and paying for it! :) In any case, it

has a fully functional free trial, so you can give it a try if you want. If If you decide to go with

the built-in TextEdit

editor (which I do not

advise), make sure you

save your programs as

plain text! (Select Make

Plain Text from the

Format menu.)

Otherwise, your

programs will not work.

you really need a free text editor, though, try TextWrangler (http://www.

barebones.com/products/textwrangler/). It gets the job done.

Next, you should make a folder on your desktop in which to keep your

programs. Right-click (oops! I mean Ctrl-click) on your desktop, and

select New Folder. You want to give it a name both descriptive and

alluring, such as programs. Nice.

Now, let’s get to know your computer a little better. The best way to

really have a one-on-one with your computer is on the command line.

You get there through the Terminal application (found in the Finder by

navigating to Applications/Utilities). Open it, and you’ll see something like

this:

Last login: Sat Oct 8 12:05:33 on ttyp1

Welcome to Darwin!

mezzaluna:~ chris$ _

(That cursor at the end might be blinking, and it might be a vertical line

instead of an underscore. Whatever it looks like, it’s your computer’s

way of asking “What would you like?”)

It’s telling me when I last logged in (though if it’s your first time, it might

not say that), welcoming me to Darwin (the deep, dark internals of OS

X), and giving me a command prompt and cursor. Prompts, like West-

Coast hairdos, come in a variety of shapes, sizes, colors, and levels

of expressivity. This isn’t the prompt I normally use (nor is this the

hairdo I normally use—I think this is the first time I’ve worn pigtails

out of the house), but it’s the default prompt. It’s showing the name

of this computer (“mezzaluna”), what two dots look like (“:”), something

else I’ll tell you about in just a bit (“~”), who I am (“chris”), and then

just a dollar sign (“$”). This is for good luck, I guess. Maybe it’s trying

to give my name a little bling bling. I don’t know.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://macromates.com/
http://www.barebones.com/products/textwrangler/
http://www.barebones.com/products/textwrangler/
http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=5

MAC OS X 6

Anyway, here we are, at the command line, which is the heart and soul

of your computer. You want to be somewhat careful what you do down

here, since it’s not too hard to do Bad Things here. (It’s easier to delete

everything on your computer than it is to get rid of that dollar sign, for

example.) But if you don’t try anything too rambunctious, you should

be fine.

Here you are, basically just staring at your computer naked. It would

only be polite to say “hello” at this point, so type echo hello on the

command line, and press Return . Your computer should reply with a

friendly hello as well, making your screen look something like this:

mezzaluna:~ chris$ echo hello

hello

mezzaluna:~ chris$ _

And your cursor is blinking again in a “What’s next?” sort of way.

Now that you’re acquainted, ask your computer whether it has Ruby

installed and, if so, which version. Do this with ruby -v:

mezzaluna:~ chris$ ruby -v

ruby 1.8.6 (2008-03-03 patchlevel 114) [universal-darwin9.0]

That’s good—I have Ruby 1.8.6 installed. At this very moment, 1.9.1

is the latest. But 1.8.anything is pretty good. If you have an earlier

version, you can still use it, but a few examples in this book might not

do exactly the same thing for you. (Almost everything should work,

though.)

Now that Ruby is ready to rumble, it’s time to learn how to get around

your computer from the command line and what that ~ in the prompt

is all about.

The ~ is just a short way of saying “your home directory,” which is just

a geek way of saying “your default folder,” which is still kind of geeky

anyway. And I’m OK with that.

That’s where you are: your home directory. If you want to change to a

different directory, you use cd. (No one wants to type change-directory,

not even once. I mean, I had to just then, to make a point, but in

general you really don’t want to type it.)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=6

LINUX 7

mezzaluna:~ chris$ cd Desktop

mezzaluna:~/Desktop chris$ _

So, my prompt changed, telling me that I’m now on my desktop, which

is itself in my home directory. (Notice that Desktop was capitalized. If

you don’t capitalize it, your computer will get angry and begin to swear

at you in computerese, with such insults as “No such” and “file” and

the worst one of all: “bash.”) You can go back up a directory with cd ..,

which in this case would put you back in your home directory. And

at any time, if you just type cd by itself, that takes you to your home

directory, no matter where you are. This is just like the Return spell in

Dragon Warrior (the original Dragon Warrior; I don’t play any of these

new-fangled “fun” versions...).

But we don’t want either of those. We want to go to your programs folder

(or directory, or whatever). Assuming you’re still in your Desktop folder

(if not, get there quick!), just do this:

mezzaluna:~/Desktop chris$ cd programs

mezzaluna:~/Desktop/programs chris$ _

But you probably could have guessed that.

As they say here in Norway: “Bra!” (See why I like it here? I’m not even

allowed to tell you what they say for “five” and “six.”) Now you’re ready

to program.

1.3 Linux

If you’re using Linux, you probably already have a favorite text editor,

you know how to install Ruby with your package manager, and you

better already know where to find your command line. :)

If you don’t have a text editor you’re fond of, though, might I recom-

mend SciTE? It’s made specifically for programming, it plays well with

Ruby, and it’s free. You can download it from http://www.scintilla.org/

SciTE.html. If you use another relatively popular editor (emacs, vim, and

so on), you can probably find Ruby syntax highlighting rules and such

for it.

Next, you’ll want to see whether you have Ruby installed already. Type

which ruby on your command line. If you see a scary-looking message

that looks something like /usr/bin/which: no ruby in (...) , then you’ll need

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.scintilla.org/SciTE.html
http://www.scintilla.org/SciTE.html
http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=7

LINUX 8

to install it. Otherwise, see what version of Ruby you are running with

ruby -v. If it is older than 1.8.6 (which is what I’m using), then you

might want to upgrade.

If you’re using Ubuntu, you can use the Synaptic Package Manager

to install or upgrade to the latest stable version of Ruby. You’ll find

it in the Main menu in the System/Administration group. (On other

Linux distributions you’ll want to use whatever is your default package

manager, of course, but the general idea is the same.)

In Synaptic Package Manager, search for ruby. A bunch of Ruby-related

packages will show up; find and install the package named simply ruby.

That’s it.

Run one final ruby -v, just to make sure the gods are still smiling on

you:

$ ruby -v

ruby 1.8.6 (2007-09-24 patchlevel 111) [i486-linux]

Perfect! Now all that’s left is to create a directory somewhere to keep

your programs in, cd into that directory, and you’re all set!

All right! Are you ready? Take a deep breath. Let’s program!

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=8

Chapter 2

Numbers
Now that you’ve gotten everything ready, it’s time to write your first

program! Open your text editor, and type the following:

puts 1+2

Save your program (yep, that’s a complete program!) as calc.rb. Now

run your program by typing ruby calc.rb into your command line. It

should put a 3 on your screen. See, programming isn’t so hard, now

is it?

2.1 Did It Work?

If it worked, that’s great. But I get a lot of emails from people who are

stuck right here. Did you see a window flash up and then disappear?

Or nothing at all? If so, the problem is probably that you didn’t run

your program from the command line.

Don’t just click your program’s icon.

Don’t just press F5 in your text editor.

Run it by typing ruby calc.rb into your command line. Trust me.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

INTRODUCTION TO PUTS 10

2.2 Introduction to puts

So, what’s going on in that program? I’m sure you can guess what the

1+2 does; our program is basically the same as this:

puts 3

puts simply writes onto the screen whatever comes after it.

2.3 Integer and Float

In most programming languages (and Ruby is no exception), numbers

without decimal points are called integers, and numbers with decimal

points are usually called floating-point numbers or, more simply, floats.

Here are some integers:

5

-205

9999999999999999999999999

0

And here are some floats:

54.321

0.001

-205.3884

0.0

In practice, most programs don’t use floats; they use only integers.

(After all, no one wants to look at 7.4 emails, browse 1.8 web pages,

or listen to 5.24 of their favorite songs.) Floats are used more for

academic purposes (physics experiments and such) and for audio and

video (including 3D) programs. Even most money programs use inte-

gers; they just keep track of the number of pennies!

2.4 Simple Arithmetic

So far, we have all the makings of a simple calculator. (Calculators

always use floats, so if you want your computer to act just like a cal-

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=10

SIMPLE ARITHMETIC 11

culator, you should also use floats.) You type numbers using the digit

keys (either at the top of your keyboard or on the numeric keypad). For

decimal points, you use the period (or full-stop, normally close to the

M key on the bottom row or over on the numeric keypad). Don’t, how-

ever, type commas into your numbers. If you enter 1,000,000, you’ll just

confuse Ruby.

For addition and subtraction, we use + and - , as we saw. For multipli-

cation, we use * , and for division we use / . Most keyboards have these

keys in the numeric keypad on the far-right side, but you can also use

Shift 8 and / (the same key as the ? key). Let’s try to expand our

calc.rb program a little. Try coding this program:

puts 1.0 + 2.0

puts 2.0 * 3.0

puts 5.0 - 8.0

puts 9.0 / 2.0

This is what the program returns:

3.0

6.0

-3.0

4.5

(The spaces in the program are not important; they just make the code

easier to read.) Well, that wasn’t too surprising. Now let’s try it with

integers:

puts 1+2

puts 2*3

puts 5-8

puts 9/2

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=11

A FEW THINGS TO TRY 12

This is mostly the same, right?

3

6

-3

4

Uh...except for that last one! When you do arithmetic with integers,

you’ll get integer answers. When your computer can’t get the “right”

answer, it always rounds down. (Of course, 4 is the right answer in

integer arithmetic for 9/2. It just might not be the answer you were

expecting.)

Perhaps you’re wondering what integer division is good for. Well, let’s

say you’re going to the movies but you have only $9. When I lived in

Portland a few years back, you could see a movie at the Bagdad for

two bucks. (It was cheaper for two people to go to the Bagdad and

get a pitcher of beer, good beer, than to go see a movie at your typical

theater. And the seats all had tables in front of them! For your beer!

It was heavenly!) Anyway, nostalgia aside, how many movies could you

see at the Bagdad for nine bucks? 9/2... 4 movies. You can see that

4.5 is definitely not the right answer in this case; they will not let you

watch half of a movie or let half of you in to see a whole movie...some

things just aren’t divisible.

So, now experiment with some programs of your own! If you want to

write more complex expressions, you can use parentheses. For exam-

ple:

puts 5 * (12-8) + -15

puts 98 + (59872 / (13*8)) * -51

5

-29227

2.5 A Few Things to Try

Write a program that tells you the following:

• Hours in a year. How many hours are in a year?

• Minutes in a decade. How many minutes are in a decade?

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=12

A FEW THINGS TO TRY 13

• Your age in seconds. How many seconds old are you? (I’m not

going to check your answer, so be as accurate—or not—as you

want.)

Here’s a tougher question:

• Our dear author’s age. If I am 1,025 million seconds old (which I

am, though I was in the 800 millions when I started this book),

how old am I?

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=13

Chapter 3

Letters
We’ve learned all about numbers, but what about letters? Words? Text?

We refer to groups of letters in a program as strings. (You can think of

beads with letters on them being strung together.) To make it easier to

see just what part of the code is in a string, I’ll color strings 'blue'. Here

are some strings:

'Hello.'

'Ruby rocks.'

'Nobody deserves a mime, Buffy.'

'Snoopy says #%^?&*@! when he stubs his toe.'

' '

''

As you can see, strings can have punctuation, digits, symbols, and

spaces in them...more than just letters. That last string doesn’t have

anything in it at all; we call that an empty string.

We used puts to print numbers; let’s try it with some strings:

puts 'Hello, world!'

puts ''

puts 'Good-bye.'

Hello, world!

Good-bye.

Dig it.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

STRING ARITHMETIC 15

3.1 String Arithmetic

Just as you can do arithmetic on numbers, you can also do arithmetic

on strings! Well, sort of...you can add strings, anyway. Let’s try to add

two strings and see what puts does with that:

puts 'I like' + 'apple pie.'

I likeapple pie.

Snap! I forgot to put a space between 'I like' and 'apple pie.'. Spaces don’t

usually matter much in your code, but they matter inside strings. (You

know what they say: computers don’t do what you want them to do,

only what you tell them to do.) Take two:

puts 'I like ' + 'apple pie.'

puts 'I like' + ' apple pie.'

I like apple pie.

I like apple pie.

(As you can see, it didn’t matter to which string I added the space.)

So, you can add strings, but you can also multiply them! (And I know

you wanted to...you were all like, “But, Chris, can we multiply them?”

Yes. Yes, you can.) Watch this:

puts 'blink ' * 4

And you get this:

batting her eyes

(Just kidding...not even Ruby is that clever.)

blink blink blink blink

If you think about it, this makes perfect sense. After all, 7*3 really just

means 7+7+7, so 'moo'*3 just means 'moo'+'moo'+'moo'.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=15

12 VS. ’12’ 16

3.2 12 vs. ’12’

Before we get any further, we should make sure we understand the

difference between numbers and digits. 12 is a number, but '12' is a

string of two digits.

Let’s play around with this for a while:

puts 12 + 12

puts '12' + '12'

puts '12 + 12'

24

1212

12 + 12

How about this?

puts 2 * 5

puts '2' * 5

puts '2 * 5'

10

22222

2 * 5

These examples are pretty clear. However, if you’re not too careful with

how you mix your strings and your numbers, you might run into...

3.3 Problems

At this point you may have tried some things that didn’t work. If not,

here are a few:

puts '12' + 12

puts '2' * '5'

#<TypeError: can't convert Fixnum into String>

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=16

PROBLEMS 17

Hmmm...an error message. The problem is that you can’t really add

a number to a string or multiply a string by another string. It doesn’t

make any more sense than this does:

puts 'Betty' + 12

puts 'Fred' * 'John'

Here’s something else to be aware of: you can write 'pig'*5 in a program,

since it just means five sets of the string 'pig' all added together. How-

ever, you can’t write 5*'pig', since that means 'pig' sets of the number 5,

which is...poetic, at best.

Finally, what if we want a program to print out You’re swell! ? We can

try this:

puts 'You're swell!'

Well, that won’t work; I can tell that just from the syntax coloring. I

won’t even try to run it. The problem is that your computer can’t tell

the difference between an apostrophe and a single quote (to end the

string). I think the confusion is reasonable here, though. They are the

same character, after all. We need a way to tell the computer “I want an

apostrophe here, inside this string.” How do we let the computer know

we want to stay in the string? We have to escape the apostrophe, like

this: Why is this called

escaping? I have no

idea—maybe because

we are escaping from the

normal way of doing

things? Yeah, that’s a bit

of a stretch. But

whatever the reason,

that’s what

programmers call it, so

that’s what we’ll call it.

puts 'You\'re swell!'

You're swell!

The backslash is the escape character. In other words, if you have a

backslash and another character, they are sometimes translated into

a new character. The only things the backslash escapes, though, are

the apostrophe and the backslash itself. (If you think about it, escape

characters must always escape themselves, too, in order to allow for

the construction of any string. Why is that?)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=17

PROBLEMS 18

Let’s see a few examples of escaping in strings:

puts 'You\'re swell!'

puts 'backslash at the end of a string: \\'

puts 'up\\down'

puts 'up\down'

You're swell!

backslash at the end of a string: \

up\down

up\down

Since the backslash does not escape a d but does escape itself, those

last two strings are identical. Obviously they don’t look the same in the

code, but when your program is actually running, those are just two

ways of describing identical strings.

You good so far? Good. Let’s start doing something slightly more

clever....

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=18

Chapter 4

Variables and Assignment
So far, whenever we have putsed a string or a number, the thing we

putsed is gone. What I mean is, if we wanted to print something out

twice, we would have to type it in twice: Sure, sure, we could

copy and paste that line,

but that is not maximally

lazy: what if we want to

change one of those lines

at some point in the

future? We don’t want to

have to change anything

twice. Copy and paste is

the opposite of “Don’t

Repeat Yourself.”

puts '...you can say that again...'

puts '...you can say that again...'

...you can say that again...

...you can say that again...

It would be nice if we could just type it in once and then hang on to

it...store it somewhere. Well, we can, of course. It would have been

insensitive to bring it up otherwise.

To store the string in your computer’s memory for use later in your

program, you need to give the string a name. Programmers often refer

to this process as assignment, and they call the names variables. A

variable name can usually be just about any sequence of letters and

numbers, but in Ruby the first character of this name needs to be a

lowercase letter. Let’s try that last program again, but this time I will

give the string the name my_string (though I could just as well have

named it str or myOwnLittleString or henry_the_8th): So, is this program

prettier than the first

example? Yes. This is

longer but prettier. We’ll

make it prettier still, and

even shorter than the

original, on page 63.

Beautiful....

my_string = '...you can say that again...'

puts my_string

puts my_string

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CHAPTER 4. VARIABLES AND ASSIGNMENT 20

...you can say that again...

...you can say that again...

Whenever you tried to do something to my_string, the program did it

to '...you can say that again...' instead. You can think of the variable

my_string as “pointing to” the string '...you can say that again...'. Here’s a

slightly more motivated example:

name = 'Anya Christina Emmanuella Jenkins Harris'

puts 'My name is ' + name + '.'

puts 'Wow! ' + name

puts 'is a really long name!'

My name is Anya Christina Emmanuella Jenkins Harris.

Wow! Anya Christina Emmanuella Jenkins Harris

is a really long name!
My wife made me put in

the Harris.

Also, just as we can assign an object to a variable, we can reassign a

different object to that variable. (This is why we call them variables—

what they point to can vary.)

composer = 'Mozart'

puts composer + ' was "da bomb" in his day.'

composer = 'Beethoven'

puts 'But I prefer ' + composer + ', personally.'

Mozart was "da bomb" in his day.

But I prefer Beethoven, personally.

Of course, variables can point to any kind of object, not just strings:

my_own_var = 'just another ' + 'string'

puts my_own_var

my_own_var = 5 * (1+2)

puts my_own_var

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=20

CHAPTER 4. VARIABLES AND ASSIGNMENT 21

just another string

15

In fact, variables can point to just about anything...except other vari-

ables. So, what happens if we try the following?

var1 = 8

var2 = var1

puts var1

puts var2

puts ''

var1 = 'eight'

puts var1

puts var2

8

8

eight

8

On the second line, when we tried to point var2 to var1, it really pointed

to 8 instead (just like var1 was pointing to). Then on the eighth line,

we had var1 point to the string 'eight', but since var2 was never really

pointing at var1, it stays pointing at the number 8. If you like to think

about these things visually, it might help to look at Figure 4.1, on the

next page.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=21

CHAPTER 4. VARIABLES AND ASSIGNMENT 22

Figure 4.1: Variables point to values.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=22

Chapter 5

Mixing It Up
We’ve looked at a few kinds of objects (integers, floats, and strings),

and we made variables point to them. Now it’s time for them all to play

nicely together.

We’ve seen that if we want a program to print 25 , the following does

not work, because you can’t add numbers and strings together:

var1 = 2

var2 = '5'

puts var1 + var2

Part of the problem is that your computer doesn’t know if you were

trying to get 7 (2 + 5) or if you wanted to get 25 ('2' + '5'). But we’ll learn

how to do both.

Before we can add these together, we need some way of getting the

string version of var1 or of getting the integer version of var2.

5.1 Conversions

To get the string version of an object, we simply write .to_s after it:

var1 = 2

var2 = '5'

puts var1.to_s + var2

25

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CONVERSIONS 24

Similarly, .to_i gives the integer version of an object, and .to_f gives the

float version. Let’s look at what these three methods do (and don’t do)

a little more closely:

var1 = 2

var2 = '5'

puts var1.to_s + var2

puts var1 + var2.to_i

25

7

Notice that, even after we got the string version of var1 by calling to_s,

var1 was always pointing at 2 and never at '2'. Unless we explicitly

reassign var1 (which requires an = sign), it will point at 2 for the life of

the program.

Now let’s try some more interesting (and a few just weird) conversions:

puts '15'.to_f

puts '99.999'.to_f

puts '99.999'.to_i

puts ''

puts '5 is my favorite number!'.to_i

puts 'Who asked you about 5 or whatever?'.to_i

puts 'Your momma did.'.to_f

puts ''

puts 'stringy'.to_s

puts 3.to_i

15.0

99.999

99

5

0

0.0

stringy

3

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=24

ANOTHER LOOK AT PUTS 25

So, this probably gave you some surprises. The first one is pretty stan-

dard, giving 15.0 . After that, we converted the string '99.999' to a float

and to an integer. The float did what we expected; the integer was, as

always, rounded down.

Next, we had some examples of some...unusual strings being converted

into numbers. On line 5, to_i ignores the first thing it doesn’t under-

stand (and the rest of the string from that point on). So, the first one

was converted to 5, but the others, since they started with letters, were

ignored completely, so the computer just picks zero.

Finally, we saw that our last two conversions did nothing at all, just as

we would expect.

5.2 Another Look at puts

There’s something strange about our favorite method. Take a look at

this:

puts 20

puts 20.to_s

puts '20'

20

20

20

Why do these three all print the same thing? Well, the last two should,

since 20.to_s is '20'. But what about the first one, the integer 20? For

that matter, what does it even mean to write the integer 20? When you

write a 2 and then a 0 on a piece of paper, you are writing a string, not

an integer. The integer 20 is the number of fingers and toes I have; it

isn’t a 2 followed by a 0.

Well, here’s the big secret behind our friend puts: before puts tries to

write out an object, it uses to_s to get the string version of that object.

In fact, the s in puts stands for string; puts really means put string.

This may not seem too exciting now, but Ruby has many, many kinds

of objects (you’ll even learn how to make your own), and it’s nice to

know what will happen if you try to puts a really weird object, such as

a picture of your grandmother or a music file or something. It’ll always

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=25

THE GETS METHOD 26

be converted to a string first. But that will come later. In the meantime,

we have a few more methods for you, and they allow us to write all sorts

of fun programs.

5.3 The gets Method

If puts means put string, I’m sure you can guess what gets stands for.

And just as puts always spits out strings, gets retrieves only strings.

And whence does it get them?

From you! Well, from your keyboard, anyway. And since your keyboard

makes only strings, that works out beautifully. What actually happens

is that gets just sits there, reading what you type until you press Enter .

Let’s try it:

puts gets

Is there an echo in here?

Is there an echo in here?

Of course, whatever you type will just get repeated back to you. Run it

a few times, and try typing different things.

5.4 Did It Work?

Maybe you didn’t need any help installing Ruby, so you skipped Chap-

ter 1. No problem.

Maybe you’ve done a little programming before, so you skipped Chapter

2. That’s fine.

The only thing is that you missed some stuff there that you didn’t really

need until now. If you haven’t been running your programs from the

command line, then you’ll almost certainly have problems with gets,

and we’re going to be using it a lot from now on. So, if you saved

your program as example.rb, you should really run your program by

typing ruby example.rb into your command line. If you’re having trouble

getting around on your command line, check out Chapter 1, Getting

Started, on page 1.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=26

THE CHOMP METHOD 27

5.5 The chomp Method

Excitement! Now we can make interactive programs! In this one, type

your name, and it will greet you:

puts 'Hello there, and what\'s your name?'

name = gets

puts 'Your name is ' + name + '? What a lovely name!'

puts 'Pleased to meet you, ' + name + '. :)'

Eek! I just ran it—I typed my name, and this is what happened:

Hello there, and what's your name?

Chris

Your name is Chris

? What a lovely name!

Pleased to meet you, Chris

. :)

Hmmm...it looks like when I typed the letters C , h , r , i , and s and

then pressed Enter , gets got all the letters in my name and the Enter !

Fortunately, there’s a method that deals with just this sort of thing:

chomp. It takes off any Enter characters hanging out at the end of

your string. Let’s try that program again, but with chomp to help us

this time:

puts 'Hello there, and what\'s your name?'

name = gets.chomp

puts 'Your name is ' + name + '? What a lovely name!'

puts 'Pleased to meet you, ' + name + '. :)'

Hello there, and what's your name?

Chris

Your name is Chris? What a lovely name!

Pleased to meet you, Chris. :)

Much better! Notice that since name is pointing to gets.chomp, we don’t

ever have to say name.chomp; name was already chomped. (Of course,

if we did chomp it again, it wouldn’t do anything; it has no more Enter

characters to chomp off. We could chomp on that string all day, and it

wouldn’t change it. Like week-old bubble gum.)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=27

A FEW THINGS TO TRY 28

5.6 A Few Things to Try

• Full name greeting. Write a program that asks for a person’s first

name, then middle, and then last. Finally, it should greet the

person using their full name.

• Bigger, better favorite number. Write a program that asks for a per-

son’s favorite number. Have your program add 1 to the number,

and then suggest the result as a bigger and better favorite number.

(Do be tactful about it, though.)

5.7 Mind Your Variables

When writing a program, I always try to have a good feel for what each

variable is pointing to: a number, a string, or whatever. Like in the

favorite number program, at some point you’ll have the person’s favorite

number as a string, and at another point you’ll have it as an integer.

It’s important to keep track of which is which, and you can do this by

keeping them in different variables.

And name the variables so that it’s easy to tell what they are at a glance.

If I had a variable for someone’s name, I might call it name, and I would

just assume it was a string. If I had someone’s age in a variable, I might

call it age, and I’d assume it was an integer. So if I needed to have the

string version of someone’s age, I’d try to make that obvious by calling

it something like age_string or age_as_string.

I’m not sure you know, but this book started out as an online tutorial.

(It was much shorter back then.) I’ve gotten hundreds of emails from

people getting stuck. In most of those cases, the problem was a conver-

sion problem. And usually, it was just someone trying to add an integer

and a string together. Let’s look at that error a bit more closely:

my_birth_month = 'August'

my_birth_day = 3

puts my_birth_month + my_birth_day

#<TypeError: can't convert Fixnum into String>

What is this error telling us? First, what’s a Fixnum? Basically, it’s an

integer. For performance reasons, given the way computers are built

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=28

MIND YOUR VARIABLES 29

and such, there are two different classes of integers in Ruby: Fixnums

and Bignums. Basically, really big integers are Bignums, and smaller Most programming

languages don’t have

anything like Bignum (at

least not built in), so all

of your integers have to

be relatively small, and

if you add two largish

integers, you might end

up with a very small one

or even a negative one.

Blech.

ones are Fixnums. You don’t really need to know this, though; all you

need to know is that when you see Fixnum or Bignum, you know it’s

an integer.

So, it can’t convert an integer into a string. Well, you know it can con-

vert an integer into a string, but it doesn’t want to without your explicit

instructions. (Eh...it’s only a computer, after all, and computers aren’t

exactly known for their independent thinking and initiative.) Honestly,

it’s probably a good thing, because maybe you don’t want to convert the

integer into a string, you know? Maybe you want to convert the string

into an integer. It’s the whole “2 plus 5 adding up to 7 or 25” problem

we covered on page 23.

It’s easy to get frustrated when your program has errors. I try not to

think of them as errors, though. I try to think of them as the pathetic

attempts of a socially inept non-native English speaker (your computer)

asking for help. If only your computer were a bit more cultured, it might

say something more like, “Excuse me, but I’m unclear as to just one

small point...did you want me to convert the integer to a string here, or

vice versa? Although it’s probably obvious to any human what you are

trying to do, I’m just not that bright.” Then it would laugh nervously.

Someday our computers will do just that, but in the meantime, pity the

poor fool.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=29

Chapter 6

More About Methods
So far we’ve seen a number of different methods—puts, gets, and so on.

(Pop quiz: List all the methods we have seen so far! There are ten of

them; the answer is below.) However, we haven’t really talked about

what methods are.

I believe the technical definition is that “methods are things that do

stuff.” If objects (such as strings, integers, and floats) are the nouns

in the Ruby language, then methods are like the verbs. And, just like

in English, you can’t have a verb without a noun to do the verb. For

example, ticking isn’t something that just happens; a clock (biological

or otherwise) has to do it. In English, we would say “The clock ticks.” In

Ruby we would say clock.tick (assuming that clock was a Ruby object,

of course, and one that could tick). Programmers might say we were

“calling clock’s tick method” or that we “called tick on clock.” (This goes a

long way toward explaining why we aren’t invited to many parties. We?

They! Why they aren’t invited to many parties....)

Anyway, did you take the quiz? Good. Well, I’m sure you remembered

the methods puts, gets, and chomp, since we just covered those. You

probably also got our conversion methods, to_i, to_f, and to_s. But did

you get the other four? Yeah? No? Why, it’s none other than our old

arithmetic buddies: +, -, *, and /! (See, it’s stuff like that, too. Arithmetic

buddies? It would have sounded way cooler if I had said it in Klingon.)

As I was saying, just as every verb needs a noun, every method needs an

object. It’s usually easy to tell which object is performing the method.

It’s what comes right before the dot, like in our clock.tick example or

in 101.to_s. Sometimes, though, it’s not quite as obvious, as with the

arithmetic methods. As it turns out, 5 + 5 is really just a shortcut way

of writing 5.+ 5.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CHAPTER 6. MORE ABOUT METHODS 31

For example:

puts('hello '.+ 'world')

puts((10.* 9).+ 9)

hello world

99

It isn’t very pretty, so we won’t ever write it like that; however, it’s

important to understand what is really happening. On my machine,

that also gives me a warning:

warning: parenthesize argument(s) for future version

It still ran the code just fine, but it’s telling me it’s having trouble fig-

uring out what I mean and to use more parentheses in the future. This

also gives us a deeper understanding of why we can do 'pig'*5 but we

can’t do 5*'pig': 'pig'*5 is telling 'pig' to do the multiplying, but 5*'pig' is

telling 5 to do the multiplying. 'pig' knows how to make 5 copies of itself

and add them all together; however, 5 will have a much more difficult

time of making 'pig' copies of itself and adding them together.

And, of course, we still have puts and gets to explain. Where are their

objects? In English, you can sometimes leave out the noun; for exam-

ple, if a villain yells “Die!” the implicit noun is whomever he is yelling

at. In Ruby, if I say puts 'to be or not to be', the implicit object is whatever

object you happen to be in. But we don’t even know how to be in an

object yet; we’ve always been inside a special object Ruby has created

for us that represents the whole program. You can always see what

object you are in by using the special variable self. Watch this:

puts self

main

If you didn’t entirely follow all of that, that’s OK. The important thing

to get from all this is that every method is being done by some object,

even if it doesn’t have a dot in front of it. If you understand that, then

you’re all set.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=31

FANCY STRING METHODS 32

6.1 Fancy String Methods

Let’s learn a few fun string methods. You don’t have to memorize them

all; you can just look up this page again if you forget them. I just want

to show you a small part of what strings can do. In fact, I can’t remem-

ber even half of the string methods myself—but that’s fine, because

you can find great references on the Internet with all the string methods

listed and explained. (I will show you where to find them in Chapter 15,

Beyond This Fine Book, on page 145.) Really, I don’t even want to know

all the string methods; it’s kind of like knowing every word in the dic-

tionary. I can speak English just fine without knowing every word in

the dictionary. (And isn’t that really the whole point of the dictionary?

You don’t have to know what’s in it.)

Our first string method is reverse, which returns a reversed version of

the string: FF1 SPOILER ALERT!

(From back when final

used to mean

something.)var1 = 'stop'

var2 = 'deliver repaid desserts'

var3 = '....TCELES B HSUP A magic spell?'

puts var1.reverse

puts var2.reverse

puts var3.reverse

puts var1

puts var2

puts var3

pots

stressed diaper reviled

?lleps cigam A PUSH B SELECT....

stop

deliver repaid desserts

....TCELES B HSUP A magic spell?

As you can see, reverse doesn’t change the original string; it just makes

a new backward version of it. That’s why var1 is still 'stop' even after we

called reverse on it.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=32

FANCY STRING METHODS 33

Another string method is length, which tells us the number of charac-

ters (including spaces) in the string:

puts 'What is your full name?'

name = gets.chomp

puts 'Did you know there are ' + name.length + ' characters'

puts 'in your name, ' + name + '?'

What is your full name?

Christopher David Pine

#<TypeError: can't convert Fixnum into String>

Uh-oh! See? There it is! It’s an easy mistake to make. Anyway, if You probably think that I

made that mistake on

purpose, since I’m

obviously such a

fabulous programmer

that I’m writing a book

on it. You were thinking

that, right? Well...never

mind.

you didn’t know to be on the lookout for this error, you can still figure

that the problem must have happened sometime after the line name =

gets.chomp, since I was able to type my name. See whether you can

figure it out.

The problem is with length: it gives us an integer, but we want a string.

That’s easy enough; we’ll just throw in a .to_s (and cross our fingers):

puts 'What is your full name?'

name = gets.chomp

puts 'Did you know there are ' + name.length.to_s + ' characters'

puts 'in your name, ' + name + '?'

What is your full name?

Christopher David Pine

Did you know there are 22 characters

in your name, Christopher David Pine?

No, I did not know that. Note: 22 is the number of characters in my

name, not the number of letters (count ’em). I guess we could write a

program that asks for your first, middle, and last names individually

and then adds those lengths together—hey, why don’t you do that? Go

ahead, I’ll wait.

Did you do it? Right on.

Well, unless your name is Bjørn or Håvard, in which case you had

some problems. Ruby is expecting only ASCII characters (basically the

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=33

FANCY STRING METHODS 34

stuff you can type on an American keyboard—the A in ASCII stands for

American). It is possible to use any character in any language, but it

requires some extra work and is just more advanced than what we’re

going to cover.

So, a number of string methods can also change the case (uppercase

and lowercase) of your string. upcase changes every lowercase letter to

uppercase, and downcase changes every uppercase letter to lowercase.

swapcase switches the case of every letter in the string, and finally,

capitalize is just like downcase, except it switches the first character to

uppercase (if it’s a letter).

letters = 'aAbBcCdDeE'

puts letters.upcase

puts letters.downcase

puts letters.swapcase

puts letters.capitalize

puts ' a'.capitalize

puts letters

AABBCCDDEE

aabbccddee

AaBbCcDdEe

Aabbccddee

a

aAbBcCdDeE

As you can see from the line puts ' a'.capitalize, the capitalize method cap-

italizes only the first character, not the first letter. Also, as we have seen

before, throughout all of these method calls, letters remains unchanged.

I don’t mean to belabor the point, but it’s important to understand.

Some methods do change the associated object, but we haven’t seen

any yet, and we won’t for some time.

The last of the fancy string methods we’ll look at do visual formatting.

The first, center, adds spaces to the beginning and end of the string to

make it centered. However, just like you have to tell the puts method

what you want it to print and you have to tell the + method what you

want it to add, you have to tell the center method how wide you want

your centered string to be.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=34

FANCY STRING METHODS 35

So if I wanted to center the lines of a poem, I would do it like this: I wanted to line up the

.center line_width part,

so I added those extra

spaces before the

strings. This is just

because I think it is

prettier that way.

Programmers often have

strong feelings about

code aesthetics, and

they often disagree

about them. The more

you program, the more

you will come into your

own style.

line_width = 50

puts('Old Mother Hubbard'.center(line_width))

puts('Sat in her cupboard'.center(line_width))

puts('Eating her curds and whey,'.center(line_width))

puts('When along came a spider'.center(line_width))

puts('Who sat down beside her'.center(line_width))

puts('And scared her poor shoe dog away.'.center(line_width))

Old Mother Hubbard

Sat in her cupboard

Eating her curds and whey,

When along came a spider

Who sat down beside her

And scared her poor shoe dog away.

Hmmm...I don’t think that’s how that nursery rhyme goes, but I’m too

lazy to look it up. Speaking of laziness, see how I stored the width of

the poem in the variable line_width? This was so that if I want to go back

later and make the poem wider, I have to change only the first line of

the program, instead of every line that does centering. With a very long

poem, this could save me a lot of time. That’s the kind of laziness we

want in our programs.

About that centering...you may have noticed that it isn’t quite as beau-

tiful as a word processor would have done. If you really want perfect

centering (and maybe a nicer font), then you should just use a word

processor. Ruby is a wonderful tool, but no tool is the right tool for

every job.

The other two string-formatting methods we’ll look at today are ljust and

rjust, which stand for left justify and right justify. They are similar to

center, except that they pad the string with spaces on the left and right

sides, respectively. Let’s take a look at all three in action:

line_width = 40

str = '--> text <--'

puts(str.ljust(line_width))

puts(str.center(line_width))

puts(str.rjust(line_width))

puts(str.ljust(line_width/2) + str.rjust(line_width/2))

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=35

A FEW THINGS TO TRY 36

--> text <--

--> text <--

--> text <--

--> text <-- --> text <--

6.2 A Few Things to Try

• Angry boss. Write an angry boss program that rudely asks what

you want. Whatever you answer, the angry boss should yell it

back to you and then fire you. For example, if you type in I want

a raise, it should yell back like this:

WHADDAYA MEAN "I WANT A RAISE"?!? YOU'RE FIRED!!

• Table of contents. Here’s something for you to do in order to play

around more with center, ljust, and rjust: write a program that will

display a table of contents so that it looks like this:

Table of Contents

Chapter 1: Getting Started page 1

Chapter 2: Numbers page 9

Chapter 3: Letters page 13

6.3 Higher Math

(This section is optional. Some of it assumes a fair degree of mathemati-

cal knowledge. If you aren’t interested, you can go straight to Chapter 7,

Flow Control, on page 41, without any problems. However, a quick scan

of this section might come in handy.)

There aren’t nearly as many number methods as there are string meth-

ods (though I still don’t know them all off the top of my head). Here

we’ll look at the rest of the arithmetic methods, a random number gen-

erator, and the Math object, with its trigonometric and transcendental

methods.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=36

MORE ARITHMETIC 37

6.4 More Arithmetic

The other two arithmetic methods are ** (exponentiation) and % (mod-

ulus). So if you want to say “five squared” in Ruby, you would write

it as 5**2. You can also use floats for your exponent, so if you want

the square root of 5, you could write 5**0.5. The modulus method gives Modulus, much like

integer division, might

seem bizarre, but it is

actually really useful,

often when used with

integer division.

you the remainder after division by a number. So, for example, if you

divide 7 by 3, you get 2 with a remainder of 1. Let’s see it working in a

program:

puts 5**2

puts 5**0.5

puts 7/3

puts 7%3

puts 365%7

25

2.23606797749979

2

1

1

From that last line, we learn that a (nonleap) year has some number

of weeks, plus one day. So if your birthday was on a Tuesday this

year, it will be on a Wednesday next year. You can also use floats

with the modulus method. Basically, it works the only sensible way it

could...but I’ll let you play around with that.

I have one last method to mention before we check out the random

number generator: abs. This method simply returns the absolute value

of the number:

puts (5-2).abs

puts (2-5).abs

3

3

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=37

RANDOM NUMBERS 38

6.5 Random Numbers

Ruby comes with a pretty nice random number generator. The method

to get a randomly chosen number is rand. If you call rand just like that,

you’ll get a float greater than or equal to 0.0 and less than 1.0. If you give

it an integer parameter (by calling rand(5), for example), it will give you

an integer greater than or equal to 0 and less than 5 (so five possible

numbers, from 0 to 4).

Let’s see rand in action: Why all the

parentheses? Well, when

I have several levels of

things going on, all on a

single line of code, I like

to add parentheses to

make sure the computer

and I agree on just what

is supposed to happen.

puts rand

puts rand

puts rand

puts(rand(100))

puts(rand(100))

puts(rand(100))

puts(rand(1))

puts(rand(1))

puts(rand(1))

puts(rand(9999999999999999999999999999999999999))

puts('The weatherman said there is a')

puts(rand(101).to_s + '% chance of rain,')

puts('but you can never trust a weatherman.')

0.623180804567097

0.7584826837572

0.507198805874463

4

24

25

0

0

0

5000684865397272822734700824226029800

The weatherman said there is a

39% chance of rain,

but you can never trust a weatherman.

Note that for the weatherman example I used rand(101) to get numbers

from 0 to 100 and that rand(1) always returns 0. Not understanding

the range of possible return values is the biggest mistake I see people

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=38

RANDOM NUMBERS 39

make with rand, even professional programmers, and even in finished

products you can buy at the store. I once had a CD player that if set on

Random Play, would play every song but the last one. (I wonder what

would have happened if I had put in a CD with only one song on it.)

Sometimes you might want rand to return the same random numbers in

the same sequence on two different runs of your program. (For exam-

ple, I used randomly generated numbers to generate the worlds in Civ-

ilization III. If I found a world that I really liked, I’d save it, run tests on

it, and so on.) In order to do this, you need to set the seed, which you

can do with srand:

srand 1976

puts(rand(100))

puts(rand(100))

puts(rand(100))

puts(rand(100))

puts ''

srand 1976

puts(rand(100))

puts(rand(100))

puts(rand(100))

puts(rand(100))

50

21

80

15

50

21

80

15

It will do the same thing every time you seed it with the same number.

If you want to get different numbers again (like what happens if you

never use srand), then just call srand, passing in no parameter. This

seeds it with a really weird number, using (among other things) the

current time on your computer, down to the millisecond.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=39

THE MATH OBJECT 40

6.6 The Math Object

Finally, let’s look at the Math object. They say a code example is worth

1,000 words: Math::PI is actually not a

variable; it’s a constant.

It doesn’t vary.

Remember how I said

that variables in Ruby

have to start with a

lowercase letter?

Constants start with an

uppercase letter. The

main difference is that

Ruby complains if you

try to reassign a

constant.

puts(Math::PI)

puts(Math::E)

puts(Math.cos(Math::PI/3))

puts(Math.tan(Math::PI/4))

puts(Math.log(Math::E**2))

puts((1 + Math.sqrt(5))/2)

3.14159265358979

2.71828182845905

0.5

1.0

2.0

1.61803398874989

The first thing you noticed was probably the :: notation. Explaining the

scope operator (which is what that is) is beyond the...uh...scope of this

book. No pun intended. I swear. Suffice it to say, you can use Math::PI

like it were any other variable.

As you can see, Math has all the features you would expect a decent

scientific calculator to have. And, as always, the floats are really close

to being the right answers but not exact; don’t trust them further than

you can calculate them.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=40

Chapter 7

Flow Control
We’ve covered a lot of the basics, but this is where we really breathe

life into our programs. Up to this point, our programs have been so

flat and predictable. Each time we run them, we’ll get pretty much the

same experience. I mean, if a program asks me for my name, I guess

instead of “Chris,” I could say “Stud-chunks McStallion” (as they used

to call me), but that’s hardly a new experience.

After this chapter, though, we’ll be able to write truly interactive

programs. In the past, we made programs that said different things

depending on your keyboard input, but after this chapter they will

actually do different things. But how will we determine when to do

one thing instead of another? We need...

7.1 Comparison Methods

You’re getting good at this, so I’ll try to let the code do the talking. First,

to see whether one object is greater than or less than another, we use

the methods > and <:

puts 1 > 2

puts 1 < 2

false

true

No problem.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

COMPARISON METHODS 42

Likewise, we can find out whether an object is greater than or equal to

another (or less than or equal to) with the methods >= and <=:

puts 5 >= 5

puts 5 <= 4

true

false

And finally, we can see whether two objects are equal using == (which

means “Are these equal?”) and != (which means “Are these different?”). But don’t feel too bad if

you do confuse = and ==

in your code; I still do it

from time to time. Just

try to be aware of it.

It’s important not to confuse = with ==. = is for telling a variable to point

at an object (assignment), and == is for asking the question “Are these

two objects equal?”

puts 1 == 1

puts 2 != 1

true

true

Of course, we can compare strings, too. When strings get compared,

Ruby compares their lexicographical ordering, which basically means

the order they appear in a dictionary. For example, cat comes before

dog in the dictionary, so we have this:

puts 'cat' < 'dog'

true

This has a catch, though. The way computers usually do things, they

order capital letters as coming before lowercase letters. (That’s how

they store the letters in fonts—for example, all the capital letters first

and then the lowercase ones.) This means it will think 'Xander' comes

before 'bug lady'. So if you want to figure out which word would come

first in a real dictionary, make sure to use downcase (or upcase or capi-

talize) on both words before you try to compare them.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=42

BRANCHING 43

puts 'bug lady' < 'Xander'

puts 'bug lady'.downcase < 'Xander'.downcase

false

true

Similarly surprising is this:

puts 2 < 10

puts '2' < '10'

true

false

OK, 2 is less than 10, so no problem. But that last one?! Well, the '1'

character comes before the '2' character—remember, in a string those

are just characters. The '0' character after the '1' doesn’t make the '1'

any larger.

One last note before we move on: the comparison methods aren’t giving

us the strings 'true' and 'false'; they are giving us the special objects true

and false that represent...well, truth and falsity. (Of course, true.to_s

gives us the string 'true', which is why puts printed true .) true and false

are used all the time in a language construct called branching, and

that’s a big enough topic that we need a fresh new page just to hold it.

7.2 Branching

Branching is a simple concept, but it’s powerful. In fact, it’s so simple

that I bet I don’t even have to explain it at all; I’ll just show you:

puts 'Hello, what\'s your name?'

name = gets.chomp

puts 'Hello, ' + name + '.'

if name == 'Chris'

puts 'What a lovely name!'

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=43

BRANCHING 44

Hello, what's your name?

Chris

Hello, Chris.

What a lovely name!

But if we put in a different name...

Hello, what's your name?

Chewbacca

Hello, Chewbacca.

And that is branching. If what comes after the if is true, we run the code

between the if and the end. If what comes after the if is false, we don’t.

Plain and simple.

I indented the code between the if and the end just because I think it’s

easier to keep track of the branching that way. Almost all programmers

do this, regardless of what language they are programming in. It may

not seem that helpful in this simple example, but when programs get

more complex, it makes a big difference. Often, when people send me

programs that don’t work but they can’t figure out why, it’s something

that is both:

• obvious to see what the problem is if the indentation is nice, and

• impossible to see what the problem is otherwise.

So, try to keep your indentation nice and consistent. Have your if and

end line up vertically, and have everything between them indented. I

use an indentation of two spaces.

Often, we would like a program to do one thing if an expression is true

and another if it is false. That’s what else is for.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=44

BRANCHING 45

puts 'I am a fortune-teller. Tell me your name:'

name = gets.chomp

if name == 'Chris'

puts 'I see great things in your future.'

else

puts 'Your future is...oh my! Look at the time!'

puts 'I really have to go, sorry!'

end

I am a fortune-teller. Tell me your name:

Chris

I see great things in your future.

Now let’s try a different name:

I am a fortune-teller. Tell me your name:

Boromir

Your future is...oh my! Look at the time!

I really have to go, sorry!

And one more:

I am a fortune-teller. Tell me your name:

Ringo

Your future is...oh my! Look at the time!

I really have to go, sorry!

Branching is kind of like coming to a fork in the code: do we take

the path for people whose name == 'Chris', or else do we take the other,

less fortuitous, path? (Well, I guess you could also call it the path of

fame, fortune, and glory. But it’s my fortune-teller, and I say it’s less

fortuitous. So there.) Clearly, branching can get pretty deep.

Just like the branches of a tree, you can have branches that themselves

have branches, as we can see on the next page.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=45

BRANCHING 46

puts 'Hello, and welcome to seventh grade English.'

puts 'My name is Mrs. Gabbard. And your name is....?'

name = gets.chomp

if name == name.capitalize

puts 'Please take a seat, ' + name + '.'

else

puts name + '? You mean ' + name.capitalize + ', right?'

puts 'Don\'t you even know how to spell your name??'

reply = gets.chomp

if reply.downcase == 'yes'

puts 'Hmmph! Well, sit down!'

else

puts 'GET OUT!!'

end

end

Hello, and welcome to seventh grade English.

My name is Mrs. Gabbard. And your name is....?

chris

chris? You mean Chris, right?

Don't you even know how to spell your name??

yes

Hmmph! Well, sit down!

Fine, I’ll capitalize my name:

Hello, and welcome to seventh grade English.

My name is Mrs. Gabbard. And your name is....?

Chris

Please take a seat, Chris.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=46

BRANCHING 47

Sometimes it might get confusing trying to figure out where all the ifs,

elses, and ends go. What I do is write the end at the same time I write

the if. So, as I was writing the previous program, this is how it looked

first:

puts 'Hello, and welcome to seventh grade English.'

puts 'My name is Mrs. Gabbard. And your name is....?'

name = gets.chomp

if name == name.capitalize

else

end

Then I filled it in with comments, stuff in the code the computer will

ignore:

puts 'Hello, and welcome to seventh grade English.'

puts 'My name is Mrs. Gabbard. And your name is....?'

name = gets.chomp

if name == name.capitalize

She's civil.

else

She gets mad.

end

Anything after a # is considered a comment (unless, of course, the #

is in a string). After that, I replaced the comments with working code.

Some people like to leave the comments in; personally, I think well-

written code usually speaks for itself. (The trick, of course, is in writing

well-written code.) I used to use more comments, but the more “fluent”

in Ruby I become, the less I use them. I actually find them distracting

much of the time. It’s a personal choice; you’ll find your own (usually

evolving) style.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=47

LOOPING 48

Anyway, my next step looked like this:

puts 'Hello, and welcome to seventh grade English.'

puts 'My name is Mrs. Gabbard. And your name is....?'

name = gets.chomp

if name == name.capitalize

puts 'Please take a seat, ' + name + '.'

else

puts name + '? You mean ' + name.capitalize + ', right?'

puts 'Don\'t you even know how to spell your name??'

reply = gets.chomp

if reply.downcase == 'yes'

else

end

end

Again, I wrote the if, else, and end all at the same time. It really helps

me keep track of “where I am” in the code. It also makes the job seem

easier because I can focus on one small part, such as filling in the code

between the if and the else. The other benefit of doing it this way is that

the computer can understand the program at any stage. Every one of

the unfinished versions of the program I showed you would run. They

weren’t finished, but they were working programs. That way I could

test them as I wrote them, which helped me see how my program was

coming along and where it still needed work. When it passed all the

tests, I knew I was done.

I strongly suggest you approach your programs in this way. These tips

will help you write programs with branching, but they also help with

the other main type of flow control.

7.3 Looping

Often, you’ll want your computer to do the same thing over and over

again. After all, that’s what they’re supposed to be good at doing.

When you tell your computer to keep repeating something, you also

need to tell it when to stop. Computers never get bored, so if you don’t

tell it when to stop, it won’t.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=48

LOOPING 49

We make sure this doesn’t happen by telling the computer to repeat

certain parts of a program while a certain condition is true. This works

kind of like how if works:

input = ''

while input != 'bye'

puts input

input = gets.chomp

end

puts 'Come again soon!'

Hello?

Hello?

Hi!

Hi!

Very nice to meet you.

Very nice to meet you.

Oh...how sweet!

Oh...how sweet!

bye

Come again soon!

It’s not a fabulous program, though. For one thing, while tests your con-

dition at the top of the loop. In this case we had to tweak our loop so it

could test there. This made us puts a blank line before we did our first

gets. In my mind, it just feels like the gets comes first and the echoing

puts comes later. It’d be nice if we could say something like this:

THIS IS NOT A REAL PROGRAM!

while just_like_go_forever

input = gets.chomp

puts input

if input == 'bye'

stop_looping

end

end

puts 'Come again soon!'

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=49

LOOPING 50

That’s not valid Ruby code, but it’s close! To get it to loop forever, we

just need to give while a condition that’s always true. And Ruby does

have a way to break out of a loop:

THIS IS SO TOTALLY A REAL PROGRAM!

while 'Spike' > 'Angel'

input = gets.chomp

puts input

if input == 'bye'

break

end

end

puts 'Come again soon!'

Hi, and your name is...

Hi, and your name is...

Cute. And original.

Cute. And original.

What, are you like... by little brother?!

What, are you like... by little brother?!

bye

bye

Come again soon!

Now, isn’t that better? OK, I’ll admit, the 'Spike' > 'Angel' thing is a little

silly. When I get bored coming up with jokes for these examples, I’ll

usually just use the actual true object:

while true

input = gets.chomp

puts input

if input == 'bye'

break

end

end

puts 'Come again soon!'

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=50

A LITTLE BIT OF LOGIC 51

Hey.

Hey.

You again?!

You again?!

bye

bye

Come again soon!

And that’s a loop. It’s considerably trickier than a branch, so take a

minute to look it over and let it sink in....

Loops are lovely things. However, like high-maintenance girlfriends or

bubble gum, they can cause big problems if handled improperly. Here’s

a big one: what if your computer gets trapped in an infinite loop? If you

think this may have happened, just go to your command line, hold

down the Ctrl key, and press C . (You are running these from the

command line, right?)

Before we start playing around with loops, though, let’s learn a few

things to make our job easier.

7.4 A Little Bit of Logic

Let’s take another look at our first branching program, on page 43.

What if my wife came home, saw the program, tried it, and it didn’t tell

her what a lovely name she had? I wouldn’t want her to flip out, so let’s

rewrite it: Mind you, Katy is as

lovely and sweet as she

is likely to read this

book, so I feel I should

point out that she would

never flip out about

something like this. She

saves that for when I’ve

done something really

horrible, like lose one of

her James Bond DVDs.

puts 'Hello, what\'s your name?'

name = gets.chomp

puts 'Hello, ' + name + '.'

if name == 'Chris'

puts 'What a lovely name!'

else

if name == 'Katy'

puts 'What a lovely name!'

end

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=51

A LITTLE BIT OF LOGIC 52

Hello, what's your name?

Katy

Hello, Katy.

What a lovely name!

Well, it works...but it isn’t a very pretty program. Why not? It just

doesn’t feel right to me that the whole “Katy” chunk of code is not lined

up with the “Chris” chunk of code. These are supposed to be totally

equal and symmetrical options, yet one feels distinctly subordinate to

the other. (In fact, this code would probably get me sleeping on the

couch faster than just leaving her out of the program altogether.) This

code just isn’t jiving with my mental model.

Fortunately, another Ruby construct can help: elsif. This code means

the same thing as the last program but feels so much lovelier:

puts 'Hello, what\'s your name?'

name = gets.chomp

puts 'Hello, ' + name + '.'

if name == 'Chris'

puts 'What a lovely name!'

elsif name == 'Katy'

puts 'What a lovely name!'

end

Hello, what's your name?

Katy

Hello, Katy.

What a lovely name!

This is a definite improvement, but something is still wrong. If I want

the program to do the same thing when it gets Chris or Katy, then it

should really do the same thing, as in execute the same code. Here we

have two different lines of code doing the same thing. That’s not right.

That’s not how I’m thinking about this.

More pragmatically, it’s just a bad idea to duplicate code anywhere.

Remember the DRY rule? Don’t Repeat Yourself! For pragmatic rea-

sons, for aesthetic reasons, or just because you’re lazy, don’t ever

repeat yourself! Weed out duplication in code (or even design) when-

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=52

A LITTLE BIT OF LOGIC 53

ever you see it. In our case, we repeated the line puts 'What a lovely

name!'. What we’re trying to say is just, “If the name is Chris or Katy,

do this.” Let’s just code it that way:

puts 'Hello, what\'s your name?'

name = gets.chomp

puts 'Hello, ' + name + '.'

if name == 'Chris' || name == 'Katy'

puts 'What a lovely name!'

end

Hello, what's your name?

Katy

Hello, Katy.

What a lovely name!

Nice. Much, much better. And it’s even shorter! I don’t know about you,

but I’m excited. It’s almost the same as the original program! Bliss, I

tell you...sparkly programming bliss!

To make it work, I used ||, which is how we say “or” in most program-

ming languages.

At this point, you might be wondering why we couldn’t just say this:

...

if name == ('Chris' || 'Katy')

puts 'What a lovely name!'

end

It makes sense in English, but you have to remember how staggeringly

brilliant humans are compared to computers. The reason this makes

sense in English is that humans are just fabulous at dealing with con-

text. In this context, it’s clear to a human that “if your name is Chris or

Katy” means “if your name is Chris or if it is Katy.” (I even used “it”—

another triumph of human context handling.) But when your computer

sees ('Chris' || 'Katy'), it’s not even looking at the name == code; before it

gets there, it just tries to figure out whether one of 'Chris' or 'Katy' is

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=53

A LITTLE BIT OF LOGIC 54

true...because that’s what || does. But that doesn’t really make sense,

so you have to be explicit and write the whole thing.

Anyway, that’s “or.” The other logical operators are && (“and”) and !

(“not”). Let’s see how they work:

i_am_chris = true

i_am_purple = false

i_like_beer = true

i_eat_rocks = false

puts i_am_chris && i_like_beer

puts i_like_beer && i_eat_rocks

puts i_am_purple && i_like_beer

puts i_am_purple && i_eat_rocks

puts

puts i_am_chris || i_like_beer

puts i_like_beer || i_eat_rocks

puts i_am_purple || i_like_beer

puts i_am_purple || i_eat_rocks

puts

puts !i_am_purple

puts !i_am_chris

true

false

false

false

true

true

true

false

true

false

The only one of these that might trick you is ||. In English, we often use

“or” to mean “one or the other, but not both.” For example, your mom

might say, ”For dessert, you can have pie or cake.” She did not mean

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=54

A LITTLE BIT OF LOGIC 55

you could have them both! A computer, on the other hand, uses || to

mean “one or the other, or both.” (Another way of saying it is “at least

one of these is true.”) This is why computers are more fun than moms.

(Obviously I think my mom is far less likely to read this book than my

wife is.)

Just to make sure everything is well cemented for you, let’s look at

one more example before you go it alone. This will be a simulation

of talking to my son, C, back when he was 2. (Just for background,

when he talks about Ruby, Nono, and Emma, he is referring to his

baby sister, Ruby, and his friends Giuliano and Emma. He manages to

bring everyone he loves into every conversation he has. And yes, we did

name our children after programming languages. And yes, my wife is

the coolest woman ever.) So, without further ado, this is pretty much

what happens whenever you ask C to do something:

while true

puts 'What would you like to ask C to do?'

request = gets.chomp

puts 'You say, "C, please ' + request + '"'

puts 'C\'s response:'

puts '"C ' + request + '."'

puts '"Papa ' + request + ', too."'

puts '"Mama ' + request + ', too."'

puts '"Ruby ' + request + ', too."'

puts '"Nono ' + request + ', too."'

puts '"Emma ' + request + ', too."'

puts

if request == 'stop'

break

end

end

Let’s chat with C a bit on the next page.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=55

A LITTLE BIT OF LOGIC 56

What would you like to ask C to do?

eat

You say, "C, please eat"

C's response:

"C eat."

"Papa eat, too."

"Mama eat, too."

"Ruby eat, too."

"Nono eat, too."

"Emma eat, too."

What would you like to ask C to do?

go potty

You say, "C, please go potty"

C's response:

"C go potty."

"Papa go potty, too."

"Mama go potty, too."

"Ruby go potty, too."

"Nono go potty, too."

"Emma go potty, too."

What would you like to ask C to do?

hush

You say, "C, please hush"

C's response:

"C hush."

"Papa hush, too."

"Mama hush, too."

"Ruby hush, too."

"Nono hush, too."

"Emma hush, too."

What would you like to ask C to do?

stop

You say, "C, please stop"

C's response:

"C stop."

"Papa stop, too."

"Mama stop, too."

"Ruby stop, too."

"Nono stop, too."

"Emma stop, too."

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=56

A FEW THINGS TO TRY 57

Yeah, that’s about what it was like. You couldn’t sneeze without hearing

about Emma or Nono sneezing, too. :)

7.5 A Few Things to Try

• “99 Bottles of Beer on the Wall.” Write a program that prints out

the lyrics to that beloved classic, “99 Bottles of Beer on the Wall.”

• Deaf grandma. Whatever you say to Grandma (whatever you type

in), she should respond with this:

HUH?! SPEAK UP, SONNY!

unless you shout it (type in all capitals). If you shout, she can

hear you (or at least she thinks so) and yells back:

NO, NOT SINCE 1938!

To make your program really believable, have Grandma shout a

different year each time, maybe any year at random between 1930

and 1950. (This part is optional and would be much easier if you

read the section on Ruby’s random number generator on page 38.)

You can’t stop talking to Grandma until you shout BYE.

Hint 1: Don’t forget about chomp! 'BYE' with an Enter at the end is

not the same as 'BYE' without one!

Hint 2: Try to think about what parts of your program should

happen over and over again. All of those should be in your while

loop.

Hint 3: People often ask me, “How can I make rand give me a

number in a range not starting at zero?” Well, you can’t; rand just

doesn’t work that way. So, I guess you’ll have to do something to

the number rand returns to you.

• Deaf grandma extended. What if Grandma doesn’t want you to

leave? When you shout BYE, she could pretend not to hear you.

Change your previous program so that you have to shout BYE

three times in a row. Make sure to test your program: if you shout

BYE three times but not in a row, you should still be talking to

Grandma.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=57

A FEW THINGS TO TRY 58

• Leap years. Write a program that asks for a starting year and an

ending year and then puts all the leap years between them (and

including them, if they are also leap years). Leap years are years

divisible by 4 (like 1984 and 2004). However, years divisible by

100 are not leap years (such as 1800 and 1900) unless they are

also divisible by 400 (such as 1600 and 2000, which were in fact

leap years). What a mess!

When you finish those, take a break! That was a lot of programming.

Congratulations! You’re well on your way. Relax, have a nice cold

(possibly root) beer, and continue tomorrow.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=58

Chapter 8

Arrays and Iterators
Welcome back! Let’s write a program that asks us to type in as many

words as we want (one word per line, continuing until we just press

Enter on an empty line) and then repeats the words back to us in

alphabetical order. OK?

So...first we’ll—uh...um...hmmm.... Well, we could—er...em....

You know, I don’t think we can do it. We need a way to store an

unknown number of words and to keep track of them altogether so

they don’t get mixed up with other variables. We need to put them in

some sort of a list. We need arrays.

An array is just a list in your computer. Every slot in the list acts like

a variable: you can see what object a particular slot points to, and you

can make it point to a different object. Let’s take a look at some arrays:

[]

[5]

['Hello', 'Goodbye']

flavor = 'vanilla' # Not an array, of course...

[89.9, flavor, [true, false]] # ...but this is.

First we have an empty array, then an array holding a single number,

and then an array holding two strings. Next we have a simple assign-

ment; then we have an array holding three objects, the last of which

is the array [true, false]. Remember, variables aren’t objects, so our last

array is really pointing to a float, a string, and an array. (Even if we

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CHAPTER 8. ARRAYS AND ITERATORS 60

were to set flavor to point to something else later in the program, that

wouldn’t change the array.)

To help us find a particular object in an array, each slot is given an

index number. Programmers (and most mathematicians) like to start

counting from zero, though, so the first slot in the array is slot zero.

Here’s how we would reference the objects in an array:

names = ['Ada', 'Belle', 'Chris']

puts names

puts

puts names[0]

puts names[1]

puts names[2]

puts names[3] # This is out of range.

Ada

Belle

Chris

Ada

Belle

Chris

nil

So, we see that puts names prints each name in the array names. Then

we use puts names[0] to print out the first name in the array and puts

names[1] to print the second. I’m sure this seems confusing, but you do

get used to it. You just have to really start thinking that counting begins

at zero and stop using words such as first and second. If you go out to

a five-course meal, don’t talk about the first course; talk about course

zero (and in your head, be thinking course[0]). You have five fingers on

your right hand, and their numbers are 0, 1, 2, 3, and 4. My wife and

I are jugglers. When we juggle six clubs, we are juggling clubs 0–5. In

the next few months, we hope to be able to juggle club 6 (and thus be

juggling seven clubs between us). You’ll know you have it when you

start using the word zeroth. :)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=60

THE METHOD EACH 61

Finally, we tried puts names[3], just to see what would happen. Were you

expecting an error? As we’ve seen in the past, sometimes when you

ask your computer a question, it just doesn’t make sense (at least to

the computer); that’s when you get an error. Sometimes, however, you

can ask a question, and the answer is nothing. What’s in slot three?

Nothing. What is names[3]? nil: Ruby’s way of saying “nothing.” nil is a

special object that means “not any other object.”

Now, I said the slots in your arrays act like variables. This means you

can assign to them as well. If you just had to guess what that code

looked like, you’d probably guess something like this: Others who were in C’s

oft-repeated list: baby

Edison, Mercedes, and

baby Melena.other_peeps = []

other_peeps[3] = 'beebee Meaner'

other_peeps[0] = 'Ah-ha'

other_peeps[1] = 'Seedee'

other_peeps[0] = 'beebee Ah-ha'

puts other_peeps

beebee Ah-ha

Seedee

nil

beebee Meaner

As you can see, you don’t have to assign to the slots in any particular

order, and any you leave empty are filled with nil by default.

If all this funny numbering of array slots is getting to you, fear not!

Often, we can avoid them completely by using various array methods,

such as each.

8.1 The Method each

The method each allows us to do something (whatever we want) to each

object the array points to. (It looks weird, though, and this can throw

people off, so brace yourself.)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=61

THE METHOD EACH 62

For example, if we want to say something nice about each language in

the following array, we could do something like this:

languages = ['English', 'Norwegian', 'Ruby']

languages.each do |lang|

puts 'I love ' + lang + '!'

puts 'Don\'t you?'

end

puts 'And let\'s hear it for Java!'

puts '<crickets chirp in the distance>'

I love English!

Don't you?

I love Norwegian!

Don't you?

I love Ruby!

Don't you?

And let's hear it for Java!

<crickets chirp in the distance>

What just happened? (Aside from Java getting pwn3d, heh-heh.) Well,

we were able to go through every object in the array without using any

numbers, so that’s definitely nice. There are those weird vertical-bar-

thingies around lang; I’ll get to that. But first, just to make sure you

understand what this code means (if not necessarily why it means it),

let’s translate it into English: for each object in languages, point the

variable lang to the object, and then do everything I tell you to, until

you come to the end.

We use do and end to specify a block of code. In this case, we’re send-

ing that block to the each method, saying “This is what I want you to

do with each of the objects in the array.” Blocks are great, but a bit

advanced, which is why we’re not really going to talk about them until

Chapter 14, Blocks and Procs, on page 134. Until then, however, we

can still use them. We just won’t talk about them. Much.

Except we’ll talk about the vertical-bar-thingies, like in |lang|. It looks

weird, but the idea is simple: lang is the variable that each will use

to point to the objects in the array. How would we otherwise refer to

the string 'English'? (Well, maybe using languages[0], but the whole point

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=62

THE METHOD EACH 63

here was to avoid messing with the slot numbers.) The vertical bars

don’t do anything to lang; they just let each know which variable to use

to feed in the objects in the array.

You might be thinking to yourself, “This is a lot like the loops we learned

about earlier.” Yep, it’s similar. One important difference is that the

method each is just that: a method. while and end (much like do, if, else,

and all the other keywords) are not methods. They are a fundamental

part of the Ruby language, just like = and parentheses; they are kind of

like punctuation marks in English.

But this isn’t true with each; each is just another array method. Meth-

ods like each that “act like” loops are often called iterators.

One thing to notice about iterators is that they are always followed by

a block—that is, by some code wrapped inside do...end. On the other

hand, while and if never had a do near them.

Here’s another cute little iterator, but this one is not an array method:

Go-go-gadget-integer-method...

3.times do

puts 'Hip-Hip-Hooray!'

end

Hip-Hip-Hooray!

Hip-Hip-Hooray!

Hip-Hip-Hooray!

It’s an integer method. Now you cannot tell me that ain’t the cutest

code you’ve ever seen! And, as promised on page 19, here’s that pretty

program again:

2.times do

puts '...you can say that again...'

end

...you can say that again...

...you can say that again...

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=63

MORE ARRAY METHODS 64

8.2 More Array Methods

We’ve learned each, but there are many other array methods, almost

as many as there are string methods. In fact, some of them (such as

length, reverse, +, and *) work just like they do for strings, except they

operate on the slots of the array rather than on the letters of the string.

Others, such as last and join, are specific to arrays. Still others, such

as push and pop, actually change the array. And just as with the string

methods, you don’t have to remember all of these, as long as you can

remember where to find out about them (and that would be right here).

Let’s look at to_s and join. join works much like to_s does, except that it

adds a string in between the array’s objects. Actually, I can’t think of a

time when I have ever used to_s on any array. I always use puts or join.

But I know you’re dying to know how to_s works, so take a look at the

following example:

foods = ['artichoke', 'brioche', 'caramel']

puts foods

puts

puts foods.to_s

puts

puts foods.join(', ')

puts

puts foods.join(' :) ') + ' 8)'

200.times do

puts []

end

Two hundred times?! No more sugar for me!

artichoke

brioche

caramel

artichokebriochecaramel

artichoke, brioche, caramel

artichoke :) brioche :) caramel 8)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=64

A FEW THINGS TO TRY 65

Whew! It’s good puts treats arrays differently from other objects; that

would have been a boring couple of pages if puts had written something

200 times. With arrays, puts calls puts on each of the objects in the

array. That’s why calling puts on an empty array 200 times doesn’t do

anything; the array doesn’t contain anything, so there’s nothing to puts.

Doing nothing 200 times is still doing nothing (unless you’re playing a

role-playing game, in which case you just leveled!). Try putsing an array

containing other arrays; did it do what you expected?

Now let’s take a look at push, pop, and last. The methods push and pop

are sort of opposites, like + and - are. push adds an object to the end

of your array, and pop removes the last object from the array (and tells

you what it was). last is similar to pop in that it tells you what’s at the

end of the array, except that it leaves the array alone. Again, push and

pop actually change the array:

favorites = []

favorites.push 'raindrops on roses'

favorites.push 'whiskey on kittens'

puts favorites[0]

puts favorites.last

puts favorites.length

puts favorites.pop

puts favorites

puts favorites.length

raindrops on roses

whiskey on kittens

2

whiskey on kittens

raindrops on roses

1

8.3 A Few Things to Try

• Building and sorting an array. Write the program we talked about

at the beginning of this chapter, one that asks us to type as many

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=65

A FEW THINGS TO TRY 66

words as we want (one word per line, continuing until we just

press Enter on an empty line) and then repeats the words back

to us in alphabetical order. Make sure to test your program thor-

oughly; for example, does hitting Enter on an empty line always

exit your program? Even on the first line? And the second? Hint:

There’s a lovely array method that will give you a sorted version of

an array: sort. Use it!

• Table of contents, revisited. Rewrite your table of contents pro-

gram on page 36. Start the program with an array holding all of

the information for your table of contents (chapter names, page

numbers, and so on). Then print out the information from the

array in a beautifully formatted table of contents.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=66

Chapter 9

Writing Your Own Methods
As we’ve seen, loops and iterators allow us to do the same thing (run the

same code) over and over again. However, sometimes we want to do the

same thing a number of times but from different places in the program.

For example, let’s say we were writing a questionnaire program for a

psychology student. From the psychology students I have known and

the questionnaires they have given me, it would probably go something

like this:

puts 'Hello, and thank you for taking the time to'

puts 'help me with this experiment. My experiment'

puts 'has to do with the way people feel about'

puts 'Mexican food. Just think about Mexican food'

puts 'and try to answer every question honestly,'

puts 'with either a "yes" or a "no". My experiment'

puts 'has nothing to do with bed-wetting.'

puts

We ask these questions, but we ignore their answers.

while true

puts 'Do you like eating tacos?'

answer = gets.chomp.downcase

if (answer == 'yes' || answer == 'no')

break

else

puts 'Please answer "yes" or "no".'

end

end

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

CHAPTER 9. WRITING YOUR OWN METHODS 68

while true

puts 'Do you like eating burritos?'

answer = gets.chomp.downcase

if (answer == 'yes' || answer == 'no')

break

else

puts 'Please answer "yes" or "no".'

end

end

We pay attention to *this* answer, though.

while true

puts 'Do you wet the bed?'

answer = gets.chomp.downcase

if (answer == 'yes' || answer == 'no')

if answer == 'yes'

wets_bed = true

else

wets_bed = false

end

break

else

puts 'Please answer "yes" or "no".'

end

end

while true

puts 'Do you like eating chimichangas?'

answer = gets.chomp.downcase

if (answer == 'yes' || answer == 'no')

break

else

puts 'Please answer "yes" or "no".'

end

end

puts 'Just a few more questions...'

while true

puts 'Do you like eating sopapillas?'

answer = gets.chomp.downcase

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=68

CHAPTER 9. WRITING YOUR OWN METHODS 69

if (answer == 'yes' || answer == 'no')

break

else

puts 'Please answer "yes" or "no".'

end

end

Ask lots of other questions about Mexican food.

puts

puts 'DEBRIEFING:'

puts 'Thank you for taking the time to help with'

puts 'this experiment. In fact, this experiment'

puts 'has nothing to do with Mexican food. It is'

puts 'an experiment about bed-wetting. The Mexican'

puts 'food was just there to catch you off guard'

puts 'in the hopes that you would answer more'

puts 'honestly. Thanks again.'

puts

puts wets_bed

Hello, and thank you for taking the time to

help me with this experiment. My experiment

has to do with the way people feel about

Mexican food. Just think about Mexican food

and try to answer every question honestly,

with either a "yes" or a "no". My experiment

has nothing to do with bed-wetting.

Do you like eating tacos?

yes

Do you like eating burritos?

yes

Do you wet the bed?

no way!

Please answer "yes" or "no".

Do you wet the bed?

NO

Do you like eating chimichangas?

yes

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=69

CHAPTER 9. WRITING YOUR OWN METHODS 70

Just a few more questions...

Do you like eating sopapillas?

yes

DEBRIEFING:

Thank you for taking the time to help with

this experiment. In fact, this experiment

has nothing to do with Mexican food. It is

an experiment about bed-wetting. The Mexican

food was just there to catch you off guard

in the hopes that you would answer more

honestly. Thanks again.

false

Psych majors.... Anyway, that was a pretty long program—a long, ugly

program with lots of ugly repetition. All of the sections of code around

the questions about Mexican food were identical except for the food,

and the bed-wetting question was only slightly different.

As we’ve talked about before, repetition is a Bad Thing. Still, we can’t

change the repeated code to a big loop or iterator, because sometimes

we have things we want to do between questions. In situations like

these, it’s best to write a method of your own. Let’s start with something

small and return to the psych program later.

Let’s write a method that just says “moo”:

def say_moo

puts 'mooooooo...'

end

Um...our program didn’t say_moo. Why not? Because we didn’t tell it

to. We told it how to say_moo, but we never actually said to do it. Let’s

give it another shot.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=70

METHOD PARAMETERS 71

def say_moo

puts 'mooooooo...'

end

say_moo

say_moo

puts 'coin-coin'

say_moo

say_moo

mooooooo...

mooooooo...

coin-coin

mooooooo...

mooooooo...

Ahhh, much better. Just in case you don’t

speak French, that was

a French duck in the

middle of the program.

The ducks over there say

“coin-coin,” I hear.

Unfortunately, the only

things I retained from

Compulsory French 101

were that and a few

words I’m not allowed to

write (in case we ever

decide to translate this

book into Canadian).

So, we defined the method say_moo. (Method names, like variable

names, almost always start with a lowercase letter. There are a few

exceptions, though, such as + or ==.) But don’t methods always have to

be associated with objects? Well, yes, they do, and in this case (as with

puts and gets), the method is just associated with the object represent-

ing the whole program. In Chapter 13, Creating New Classes,

Changing Existing Ones, on page 122, we’ll see how to add methods to

other objects. But first...

9.1 Method Parameters

You may have noticed that some methods (such as gets, reverse, to_s,

and so on) can just be called on an object. However, other methods

(such as +, -, puts...) take parameters to tell the object how to do the

method. For example, you wouldn’t just say 5+, right? You’re telling 5

to add, but you aren’t telling it what to add.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=71

LOCAL VARIABLES 72

To add a parameter to say_moo (let’s say, the number of moos), we

would do the following:

def say_moo number_of_moos

puts 'mooooooo...'*number_of_moos

end

say_moo 3

puts 'oink-oink'

This last line should give an error

because the parameter is missing...

say_moo

mooooooo...mooooooo...mooooooo...

oink-oink

#<ArgumentError: wrong number of arguments (0 for 1)>

number_of_moos is a variable that points to the parameter passed in. I’ll

say that again, but it’s a little confusing: number_of_moos is a variable

that points to the parameter passed in. So, if I type say_moo 3, then the

parameter is 3, and the variable number_of_moos points to 3.

As you can see, the parameter is now required. After all, what is say_moo

supposed to multiply 'mooooooo...' by if you don’t give it a parameter?

Your poor computer has no idea.

If objects in Ruby are like nouns in English and methods are like verbs,

then you can think of parameters as adverbs (like with say_moo, where

the parameter told us how to say_moo) or sometimes as direct objects

(like with puts, where the parameter is what gets putsed).

9.2 Local Variables

The following program has two variables:

def double_this num

num_times_2 = num*2

puts num.to_s+' doubled is '+num_times_2.to_s

end

double_this 44

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=72

LOCAL VARIABLES 73

44 doubled is 88

The variables are num and num_times_2. They both sit inside the method

double_this. These (and all the variables you have seen so far) are local

variables. This means they live inside the method, and they cannot

leave. If you try, you will get an error:

def double_this num

num_times_2 = num*2

puts num.to_s+' doubled is '+num_times_2.to_s

end

double_this 44

puts num_times_2.to_s

44 doubled is 88

#<NameError: undefined local variable ‘num_times_2'>

Undefined local variable.... In fact, we did define that local variable, but

it isn’t local to where we tried to use it; it’s local to the method, which

means it’s local to double_this.

This might seem inconvenient, but it’s actually quite nice. Although

it does mean you have no access to variables inside methods, it also

means they have no access to your variables and thus can’t screw them

up, as the following example shows:

tough_var = 'You can\'t even touch my variable!'

def little_pest tough_var

tough_var = nil

puts 'HAHA! I ruined your variable!'

end

little_pest tough_var

puts tough_var

HAHA! I ruined your variable!

You can't even touch my variable!

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=73

EXPERIMENT: DUBY 74

In fact, two variables in that little program are named tough_var: one

inside little_pest and one outside of it. They don’t communicate. They

aren’t related. They aren’t even friends. When we called little_pest

tough_var, we really just passed the string from one tough_var to the

other (via the method call, the only way they can even sort of com-

municate) so that both were pointing to the same string. Then lit-

tle_pest pointed its own local tough_var to nil, but that did nothing to

the tough_var variable outside the method.

9.3 Experiment: Duby

OK, local variables, neat trick...but maybe you’re wondering, “What’s

the point?” Legitimate question, but it’s kind of hard to see the point

without considering what it would be like without local variables. It’s

like if you’d never seen a seatbelt, and I’m here telling you all about

the different tension mechanisms, how it connects to the car, and the

different kinds of latches, and you’re all, “And the point is...?” Well,

imagine a world without seatbelts. You get in a wreck. You fly out the

window. You die.

The negative consequences of programming without local variables are

certainly not as dramatic, but neither are they as easily explained. To

get a feel for life without locals, let’s imagine a fake language called

Duby (for Dumb Ruby).

Duby is just like regular Ruby, except that all variables live in the same

scope (that is, they have the same visibility). There’s no idea of local or

global. Let’s say we wanted to make a method to square a number:

def square x

puts(x * x)

end

Now we’ve used the variable x here, but we’re just using it as a place-

holder. What I mean is, we could just as well have used y or my_fabulous_

number; it should make no difference, right? The whole point is to

say that the square of something is just “something times something.”

That’s the abstraction that methods provide. In this particular case,

no matter what variable you are squaring, “the square of something”

simply means “something times something.” That’s what you’re trying

to say when you define this method.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=74

EXPERIMENT: DUBY 75

Now let’s say, in Duby, you wrote this:

x = 5

square x

Now at this point, assuming you defined square like we did earlier, then

x is pointing to 5, before and after we called square. No problem.

And what about this program (again, in Duby)?

my_number = 5

square my_number

Basically it’s the same program, just with a different variable name.

Now my_number is pointing to 5. But what about x? What is it pointing

to?

I guess it would also have to be 5. In order to use the square method, the

value passed into it (5, pointed to by my_number) needs to be assigned

to x (that is, have x point to it) before you can run the x * x code. So, x is

5. So far, so good.

Now consider this code:

x = 10

my_number = x / 2

square my_number

In this case, my_number is half of x (so it must be 5), but that means

x must also have been set to 5 when we called square, even though

we had just set it to 10. And this is the big bad: calling the square

method displays the squared value, but it also has the nasty side effect

of resetting x to be whatever was passed in. This is Just Plain Wrong. I

mean, x used to be 10! Now it’s 5! This is insane.

What if we don’t want any of our variables to be changed? What if we

just want to display the square of whatever number we pass in? Can

we get around the problem of the unintended side effects? Maybe.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=75

RETURN VALUES 76

We could start defining all of our methods like this:

def square liauwechygfakcuewhalcufe

liauwechygfakcuewhalcufe * liauwechygfakcuewhalcufe

end

And we could just hope that we don’t use liauwechygfakcuewhalcufe any-

where else in the program, but that hardly seems ideal. :) I’m not going

to write code like that, and neither should you. Can’t we do better than

this?

What if the x used in the square method was a different x, a totally

private x that we use only for the square method; it doesn’t mean “the x

you were using.” It’s just a temporary name for this value. It’s just a

local variable.

That’s exactly what Ruby does. (And just about every other program-

ming language.)

9.4 Return Values

You may have noticed that some methods give you something back

when you call them. For example, we say gets returns a string (the

string you typed in), and the + method in 5+3 (which is really 5.+(3))

returns 8. The arithmetic methods for numbers return numbers, and

the arithmetic methods for strings return strings.

It’s important to understand the difference between a method return-

ing a value (returning it to the code that called the method), and your

program outputting information to your screen, like puts does. Notice

that 5+3 returns 8; it does not output 8 (that is, display 8 on your

screen).

So, what does puts return? We never cared before, but let’s look at it

now:

return_val = puts 'This puts returned:'

puts return_val

This puts returned:

nil

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=76

RETURN VALUES 77

The first puts returned nil. Though we didn’t test it, the second puts did,

too; puts always returns nil. Every method has to return something,

even if it’s just nil.

Take a quick break, and write a program to find out what say_moo

returns.

Are you surprised? Well, here’s how it works: the value returned from a

method is simply the last expression evaluated in the method (usually

just the last line of the method). In the case of say_moo, this means

it returns puts 'mooooooo...'*number_of_moos, which is just nil since puts

always returns nil. If we wanted all our methods to return the string

'yellow submarine', we would just need to put that at the end of them:

def say_moo number_of_moos

puts 'mooooooo...'*number_of_moos

'yellow submarine'

end

x = say_moo 3

puts x.capitalize + ', dude...'

puts x + '.'

mooooooo...mooooooo...mooooooo...

Yellow submarine, dude...

yellow submarine.

(I have no idea why you’d want say_moo to work that way, but there you

have it.)

Notice I said “the last expression evaluated” instead of simply “the last

line” or even “the last expression”; it’s possible for the last line to be

only a small part of an expression (like the end in an if expression),

and it’s possible for the last expression not to be evaluated at all if the

method has an explicit return:

def favorite_food name

if name == 'Lister'

return 'vindaloo'

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=77

RETURN VALUES 78

if name == 'Rimmer'

return 'mashed potatoes'

end

'hard to say...maybe fried plantain?'

end

def favorite_drink name

if name == 'Jean-Luc'

'tea, Earl Grey, hot'

elsif name == 'Kathryn'

'coffee, black'

else

'perhaps...horchata?'

end

end

puts favorite_food('Rimmer')

puts favorite_food('Lister')

puts favorite_food('Cher')

puts favorite_drink('Kathryn')

puts favorite_drink('Oprah')

puts favorite_drink('Jean-Luc')

mashed potatoes

vindaloo

hard to say...maybe fried plantain?

coffee, black

perhaps...horchata?

tea, Earl Grey, hot

Make sure you follow each of the six delicious examples.

I did two different things in that program: with favorite_food I used I feel like I’m supposed

to tell you now that it

doesn’t make any

difference which way

you use; it is just a

matter of style. But I

don’t believe that. You

want your code to reflect

your intent, not just the

solution. You want your

code to be beautiful.

explicit returns, and in favorite_drink I didn’t. Depending on the feel of the

code, I’ll write a method one way or the other. If I’m trying to prune off

special cases, I might use returns and leave the general case on the last

line. If I think the options are all of relatively equal importance, I might

use elsif and else like that...feels more egalitarian, you know?

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=78

RETURN VALUES 79

OK, now that we can write our own methods, let’s try that psychology

experiment program again. This time we’ll write a method to ask the

questions for us. It will need to take the question as a parameter and

return true if the person answers yes and false if they answer no. (Even

though most of the time we just ignore the answer, it’s still a good idea

for our method to return the answer. This way we can use it for the

bed-wetting question, too.) I’m also going to shorten the greeting and

the debriefing, just so this is easier to read:

def ask question

while true

puts question

reply = gets.chomp.downcase

if (reply == 'yes' || reply == 'no')

if reply == 'yes'

answer = true

else

answer = false

end

break

else

puts 'Please answer "yes" or "no".'

end

end

answer # This is what we return (true or false).

end

puts 'Hello, and thank you for...'

puts

ask 'Do you like eating tacos?' # Ignore this return value

ask 'Do you like eating burritos?' # And this one

wets_bed = ask 'Do you wet the bed?' # Save this return value

ask 'Do you like eating chimichangas?'

ask 'Do you like eating sopapillas?'

puts 'Just a few more questions...'

ask 'Do you like drinking horchata?'

ask 'Do you like eating flautas?'

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=79

A FEW THINGS TO TRY 80

puts

puts 'DEBRIEFING:'

puts 'Thank you for...'

puts

puts wets_bed

Hello, and thank you for...

Do you like eating tacos?

yes

Do you like eating burritos?

yes

Do you wet the bed?

no way!

Please answer "yes" or "no".

Do you wet the bed?

NO

Do you like eating chimichangas?

yes

Do you like eating sopapillas?

yes

Just a few more questions...

Do you like drinking horchata?

yes

Do you like eating flautas?

yes

DEBRIEFING:

Thank you for...

false

Not bad, huh? We were able to add more questions (and adding ques-

tions is easy now), but our program is still quite a bit shorter. Nice...a

lazy programmer’s dream.

9.5 A Few Things to Try

• Improved ask method. That ask method I showed you was OK, but I

bet you could do better. Try to clean it up by removing the answer

variable. You’ll have to use return to exit from the loop. (Well, it will

get you out of the whole method, but it will get you out of the loop

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=80

A FEW THINGS TO TRY 81

in the process.) How do you like the resulting method? I usually

try to avoid using return (a personal preference), but I might make

an exception here.

• Old-school Roman numerals. In the early days of Roman numer-

als, the Romans didn’t bother with any of this new-fangled sub-

traction “IX” nonsense. No sir, it was straight addition, biggest

to littlest—so 9 was written “VIIII,” and so on. Write a method

that when passed an integer between 1 and 3000 (or so) returns a

string containing the proper old-school Roman numeral. In other

words, old_roman_numeral 4 should return 'IIII'. Make sure to test

your method on a bunch of different numbers. Hint: Use the inte-

ger division and modulus methods on page 37.

For reference, these are the values of the letters used:

I = 1 V = 5 X = 10 L = 50

C = 100 D = 500 M = 1000

• “Modern” Roman numerals. Eventually, someone thought it would

be terribly clever if putting a smaller number before a larger one My bet is that it was a

stone carver in some

year that ended in a 9,

tasked with dating

public buildings or

statues or something.

meant you had to subtract the smaller one. As a result of this

development, you must now suffer. Rewrite your previous method

to return the new-style Roman numerals so when someone calls

roman_numeral 4, it should return 'IV'.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=81

Chapter 10

There’s Nothing New
to Learn in Chapter 10

Congratulations! You’re a programmer! At this point we’ve covered

most of the basics of programming. The rest of the book is pretty much

just fleshing things out for you, showing a few tricks, presenting ways

to save time, and so on.

But it hasn’t been easy, I imagine. If your brain isn’t already hurting

by this point, either you’re brilliant, you were already a programmer

before picking up this book, or you do not yet comprehend the power

(and terror) of what you’ve just learned.

Since you’ve done so well making it this far, I’ll make you a deal: we This should make all of

our lives a bit easier. :)
won’t cover anything new in this chapter! We’ll just sort of...reminisce.

10.1 Recursion

You know how to make methods, and you know how to call methods.

(Your very first program did that! Ahhh, those simple days of one-line

programs....) When you write methods, you’ll usually fill them with

method calls. You can make methods, and they can call methods...see

where I’m going with this? Yeah? No?

What if you wrote a method that called itself?

That’s recursion.

Well, on the surface, it’s an absurd idea; if all a method did was call

itself, which would just call itself again, it would loop like that forever.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

RECURSION 83

(Although this is not technically a loop, it is similar; we can usually

replace loops with recursion if we feel like it.) But of course, it could do

other things as well and maybe call itself only some of the time.

Let’s look at what our ask method from our psych program would look

like with recursion instead of while loops:

def ask_recursively question

puts question

reply = gets.chomp.downcase

if reply == 'yes'

true

elsif reply == 'no'

false

else

puts 'Please answer "yes" or "no".'

ask_recursively question # This is the magic line.

end

end

ask_recursively 'Do you wet the bed?'

Do you wet the bed?

no way!

Please answer "yes" or "no".

Do you wet the bed?

NO, dude!

Please answer "yes" or "no".

Do you wet the bed?

I said, "NO!"

Please answer "yes" or "no".

Do you wet the bed?

NOOOOOOOOOOOOOOOOOOOO!!!!!

Please answer "yes" or "no".

Do you wet the bed?

nonononononononono

Please answer "yes" or "no".

Do you wet the bed?

<gasp>

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=83

RECURSION 84

Please answer "yes" or "no".

Do you wet the bed?

yes

Oh, nice! That is smooth, with a capital Smooth...er, as they say. Wow. As who said? Ten points

if you know.
Now I feel kind of bad about pushing that sorry loop version onto you

in the previous chapter. This one is super short, has no unnecessary

variables, and has no returns; it just does what it does.

Honestly, I’m a little surprised at how nice that was. I would not nor-

mally have thought of using recursion here. In general, I try to use

loops when I’m going to be doing the same thing over and over again,

and I use recursion when a small part of the problem resembles the

whole problem; the classic example is in computing factorials. Maybe I

should think about using recursion more often....

Anyway, since I brought them up and since there seems to be some

universal law that every introduction to recursion involves computing

factorials, we might as well give it a whirl. I’m feeling pretty rebellious,

anyway, for not using factorials as my first recursion example, so look

at this before the recursion police take me away:

def factorial num

if num < 0

return 'You can\'t take the factorial of a negative number!'

end

if num <= 1

1

else

num * factorial(num-1)

end

end

puts factorial(3)

puts factorial(30)

6

265252859812191058636308480000000

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=84

RECURSION 85

There you are: factorials. For those of you who had better things to do

than go to math class (clearly I did not), the factorial of an integer is

the product of all the integers from itself down to 1. In other words,

the factorial of 3 (written 3!, as if to fool you into thinking factorials

are really exciting) is just 3 times 2 times 1, or 6. And 0! is 1 (I could

give you a “sound of one hand clapping” sort of argument you may or

may not find satisfying, or you could just take my word for it), and the

factorial of a negative number is just plain bad sportsmanship.

But these examples have been sort of contrived (though I did end up

really liking how ask_recursively turned out). How about a real example?

When I was generating the worlds for the game Civilization III, I wanted

worlds with two primary supercontinents; those tend to be a lot of

fun and just sort of feel “earthy” and...real. So after I generated the

land masses (which was some pretty clever programming there, too),

I wanted to test them to see what the sizes of the different continents

were. If there were two of relatively equal size (say, differing by a factor

of 2 or less) and no others close in size, I’d say that was a pretty good

world.

The process, then, was something like the following:

1. Build the world.

2. Find a “continent” (which could be a one-tile island...at this point

I wouldn’t know).

3. Compute its size.

4. Find another continent (making sure not to count any of them

twice but also making sure each gets counted), and repeat the

process.

5. Then find the largest two, and see whether they look like fun to

play on.

The fun part (actually, it was all fun, not just this part!) was in comput-

ing each continent’s size, because the best way to do that was recur-

sively.

Let’s look at a trimmed-down version. Let’s say we have an 11x11

world (represented as an array of arrays...basically just a grid) and that

we want to find the size of the continent in the middle (that is, the

continent of which tile (5,5) is a part). We don’t want to count any land

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=85

RECURSION 86

tiles belonging to any of the other continents. Also, as in Civilization III,

we’ll say that tiles touching only at the corners are still considered to

be on the same continent (since units could walk along diagonals).

But before we get to the code, let’s solve the problem in English first.

My initial plan was to look at every tile on the map, and if that tile is

a land tile on the continent I’m looking for, we add 1 to the running

total. The problem, though, is how do we know whether a land tile is

on the same continent as some other land tile? There are ways to solve

this problem, but they all seemed to be too messy; either I was keeping

track of lots of information I didn’t feel like I needed or I seemed to be

doing the same computation over and over again.

But then I thought, hey, two tiles are on the same continent if you

can walk from one to the other. (That was essentially the operating

definition of continent in Civilization III.) So that’s how the code should

work! First, you count the spot you are standing on (duh); in this

case, that means tile (5,5). Then, you send out eight little guys, one in

each direction, and tell them to count the rest of the continent in that

direction. The only rule is that no one can count a tile that someone

else has already counted. When those eight guys return, you add their

answers to your already-running total (which is just 1, from the tile you

started with), and that’s your answer.

Brilliant! Except for one tiny little detail...how are those eight little guys

supposed to determine the size of the continent? You just shrugged the

problem onto them! The only tile you counted was the one you were

standing on. This is pretty frickin’ lazy. Which is probably a good

thing....

How are your eight little helpers supposed to compute the size of the

continent? The same way you do! So somehow, by a bunch of lit-

tle, lazy, imaginary helpers counting only the tile they are on, you get

the size of the whole continent. (We still need to make sure no tile is

counted twice, but we can just mark each tile as it is visited to keep

track.) Without further ado, behold the magic of recursion.

(OK, so there is some ado. But just a little. Only a soupçon of ado.

And that’s only because I want to display all the code on a single page

spread, and there isn’t enough room on this page, so I have to fill up

the space with this paragraph so the code will start at the top of the

next page.)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=86

RECURSION 87

These are just to make the map

easier for me to read. "M" is

visually more dense than "o".

M = 'land'

o = 'water'

world = [[o,o,o,o,o,o,o,o,o,o,o],

[o,o,o,o,M,M,o,o,o,o,o],

[o,o,o,o,o,o,o,o,M,M,o],

[o,o,o,M,o,o,o,o,o,M,o],

[o,o,o,M,o,M,M,o,o,o,o],

[o,o,o,o,M,M,M,M,o,o,o],

[o,o,o,M,M,M,M,M,M,M,o],

[o,o,o,M,M,o,M,M,M,o,o],

[o,o,o,o,o,o,M,M,o,o,o],

[o,M,o,o,o,M,o,o,o,o,o],

[o,o,o,o,o,o,o,o,o,o,o]]

def continent_size world, x, y

if world[y][x] != 'land'

Either it's water or we already

counted it, but either way, we don't

want to count it now.

return 0

end

So first we count this tile...

size = 1

world[y][x] = 'counted land'

...then we count all of the

neighboring eight tiles (and,

of course, their neighbors by

way of the recursion).

size = size + continent_size(world, x-1, y-1)

size = size + continent_size(world, x , y-1)

size = size + continent_size(world, x+1, y-1)

size = size + continent_size(world, x-1, y)

size = size + continent_size(world, x+1, y)

size = size + continent_size(world, x-1, y+1)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=87

RITE OF PASSAGE: SORTING 88

size = size + continent_size(world, x , y+1)

size = size + continent_size(world, x+1, y+1)

size

end

puts continent_size(world, 5, 5)

Drumroll, please....

23

And there you have it. Even if the world was much, much larger and

the continent was totally bizarre and oddly shaped, it would still work

just fine. Well, there is actually one small bug for you to fix. This code

works fine because the continent does not border the edge of the world.

If it did, then when we send our little guys out (that is, call continent_size

on a new tile), some of them would fall off the edge of the world (that

is, call continent_size with invalid values for x and/or y), which would

probably crash on the very first line of the method.

It seems like the obvious way to fix this would be to do a check before

each call to continent_size (sort of like sending your little guys out only

if they aren’t going to fall over the edge of the world), but that would

require eight separate (yet nearly identical) checks in your method.

Yuck. It would be lazier to just send your guys out and have them

shout back “ZERO!” if they fall off the edge of the world. (In other

words, put the check right at the top of the method, very much like the

check we put in to see whether the tile was uncounted land.) Go for it!

Of course, you’ll have to make sure it works; test it by extending the

continent to touch one (or better yet, all four) of the edges of the world.

And that, my friends, is recursion. It’s not really anything new, just a

new way of thinking of the same old stuff you already learned.

10.2 Rite of Passage: Sorting

Remember the sorting program you wrote on page 65 where you asked

for a list of words, sorted it, and then displayed the sorted list? The pro-

gram was made much easier because you used the array’s sort method.

But, like the Jedi who constructs his own lightsaber, you’ll exhibit a

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=88

RITE OF PASSAGE: SORTING 89

greater mastery if you write your own sorting method. Hey, we’ve all

done it. It’s not easy, but this kind of problem solving is part of nearly

every program you’ll write, so you’d best get your practice now.

But where do you begin? Much like with continent_size, it’s probably

best to try to solve the problem in English first. Then translate it into

Ruby when you’ve wrapped your head around it.

So, we want to sort an array of words, and we know how to find out

which of two words comes first in the dictionary (using <).

What strikes me as probably the easiest way to do this is to keep two

more lists around: one will be our list of already-sorted words, and the

other will be our list of still-unsorted words. We’ll take our list of words,

find the “smallest” word (that is, the word that would come first in the

dictionary), and stick it at the end of the already-sorted list. All of the

other words go into the still-unsorted list. Then you do the same thing

again but using the still-unsorted list instead of your original list: find

the smallest word, move it to the sorted list, and move the rest to the

unsorted list. Keep going until your still-unsorted list is empty.

That doesn’t sound too bad, but it’s keeping all of the details straight

that makes it so tricky. Go ahead and try it, and see how it looks.

In fact, try it twice: once using recursion and once without. With the

recursion, you might need a wrapper method, a tiny method that wraps

up another method into a cute little package, like this:

def sort some_array # This "wraps" recursive_sort.

recursive_sort some_array, []

end

def recursive_sort unsorted_array, sorted_array

Your fabulous code goes here.

end

What was the point of the wrapper method? Well, recursive_sort took

two parameters, but if you were just trying to sort an array, you would

always have to pass in an empty array as the second parameter. This

is a silly thing to have to remember. Here, the wrapper method passes

it in for us, so we never have to think about it again.

When you’re done, make sure to test your code! Type in duplicate words

and things like that. A great way to test would be to use the built-in

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=89

A FEW THINGS TO TRY 90

sort method to get a sorted version of your list right away. Then, after

you have sorted it for yourself, make sure the two lists are equal.

10.3 A Few Things to Try

• Shuffle. Now that you’ve finished your new sorting algorithm, how

about the opposite? Write a shuffle method that takes an array and

returns a totally shuffled version. As always, you’ll want to test it,

but testing this one is trickier: How can you test to make sure you

are getting a perfect shuffle? What would you even say a perfect

shuffle would be? Now test for it.

• Dictionary sort. Your sorting algorithm is pretty good, sure. But

there was always that sort of embarrassing point you were hop-

ing I’d just sort of gloss over, right? About the capital letters?

Your sorting algorithm is good for general-purpose sorting, but

when you sort strings, you are using the ordering of the charac-

ters in your fonts (called the ASCII codes) rather than true dictio-

nary ordering. In a dictionary, case (upper or lower) is irrelevant

to the ordering. So, make a new method to sort words (something

like dictionary_sort). Remember, though, that if I give your program

words starting with capital letters, it should return words with

those same capital letters, just ordered as you’d find in a dictio-

nary.

10.4 One More Example

I think another example method would be helpful here. We’ll call this

one english_number. It will take a number, like 22, and return the English

version of it (in this case, the string 'twenty-two'). For now, let’s have it

work only on integers from 0 to 100:

def english_number number

We accept numbers from 0 to 100.

if number < 0

return 'Please enter a number zero or greater.'

end

if number > 100

return 'Please enter a number 100 or less.'

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=90

ONE MORE EXAMPLE 91

num_string = '' # This is the string we will return.

"left" is how much of the number

we still have left to write out.

"write" is the part we are

writing out right now.

write and left... get it? :)

left = number

write = left/100 # How many hundreds left?

left = left - write*100 # Subtract off those hundreds.

if write > 0

return 'one hundred'

end

write = left/10 # How many tens left?

left = left - write*10 # Subtract off those tens.

if write > 0

if write == 1 # Uh-oh...

Since we can't write "tenty-two"

instead of "twelve", we have to

make a special exception for these.

if left == 0

num_string = num_string + 'ten'

elsif left == 1

num_string = num_string + 'eleven'

elsif left == 2

num_string = num_string + 'twelve'

elsif left == 3

num_string = num_string + 'thirteen'

elsif left == 4

num_string = num_string + 'fourteen'

elsif left == 5

num_string = num_string + 'fifteen'

elsif left == 6

num_string = num_string + 'sixteen'

elsif left == 7

num_string = num_string + 'seventeen'

elsif left == 8

num_string = num_string + 'eighteen'

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=91

ONE MORE EXAMPLE 92

elsif left == 9

num_string = num_string + 'nineteen'

end

Since we took care of the digit in the

ones place already, we have nothing left to write.

left = 0

elsif write == 2

num_string = num_string + 'twenty'

elsif write == 3

num_string = num_string + 'thirty'

elsif write == 4

num_string = num_string + 'forty'

elsif write == 5

num_string = num_string + 'fifty'

elsif write == 6

num_string = num_string + 'sixty'

elsif write == 7

num_string = num_string + 'seventy'

elsif write == 8

num_string = num_string + 'eighty'

elsif write == 9

num_string = num_string + 'ninety'

end

if left > 0

num_string = num_string + '-'

end

end

write = left # How many ones left to write out?

left = 0 # Subtract off those ones.

if write > 0

if write == 1

num_string = num_string + 'one'

elsif write == 2

num_string = num_string + 'two'

elsif write == 3

num_string = num_string + 'three'

elsif write == 4

num_string = num_string + 'four'

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=92

ONE MORE EXAMPLE 93

elsif write == 5

num_string = num_string + 'five'

elsif write == 6

num_string = num_string + 'six'

elsif write == 7

num_string = num_string + 'seven'

elsif write == 8

num_string = num_string + 'eight'

elsif write == 9

num_string = num_string + 'nine'

end

end

if num_string == ''

The only way "num_string" could be empty

is if "number" is 0.

return 'zero'

end

If we got this far, then we had a number

somewhere in between 0 and 100, so we need

to return "num_string".

num_string

end

puts english_number(0)

puts english_number(9)

puts english_number(10)

puts english_number(11)

puts english_number(17)

puts english_number(32)

puts english_number(88)

puts english_number(99)

puts english_number(100)

Well, I certainly don’t like this program very much. First, it has too

much repetition. Second, it doesn’t handle numbers greater than 100.

Third, it has too many special cases and too many returns. Let’s use

some arrays and try to clean it up a bit. Plus, we can use recursion for

handling large numbers, since when we write out 123,123,123 (giving

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=93

ONE MORE EXAMPLE 94

us “one hundred twenty-three million, one hundred twenty-three thou-

sand, one hundred twenty-three”), we write “one hundred twenty-three”

exactly the same three times. So, here we go:

def english_number number

if number < 0 # No negative numbers.

return 'Please enter a number that isn\'t negative.'

end

if number == 0

return 'zero'

end

No more special cases! No more returns!

num_string = '' # This is the string we will return.

ones_place = ['one', 'two', 'three',

'four', 'five', 'six',

'seven', 'eight', 'nine']

tens_place = ['ten', 'twenty', 'thirty',

'forty', 'fifty', 'sixty',

'seventy', 'eighty', 'ninety']

teenagers = ['eleven', 'twelve', 'thirteen',

'fourteen', 'fifteen', 'sixteen',

'seventeen', 'eighteen', 'nineteen']

"left" is how much of the number

we still have left to write out.

"write" is the part we are

writing out right now.

write and left...get it? :)

left = number

write = left/100 # How many hundreds left?

left = left - write*100 # Subtract off those hundreds.

if write > 0

Now here's the recursion:

hundreds = english_number write

num_string = num_string + hundreds + ' hundred'

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=94

ONE MORE EXAMPLE 95

if left > 0

So we don't write 'two hundredfifty-one'...

num_string = num_string + ' '

end

end

write = left/10 # How many tens left?

left = left - write*10 # Subtract off those tens.

if write > 0

if ((write == 1) and (left > 0))

Since we can't write "tenty-two" instead of

"twelve", we have to make a special exception

for these.

num_string = num_string + teenagers[left-1]

The "-1" is because teenagers[3] is

'fourteen', not 'thirteen'.

Since we took care of the digit in the

ones place already, we have nothing left to write.

left = 0

else

num_string = num_string + tens_place[write-1]

The "-1" is because tens_place[3] is

'forty', not 'thirty'.

end

if left > 0

So we don't write 'sixtyfour'...

num_string = num_string + '-'

end

end

write = left # How many ones left to write out?

left = 0 # Subtract off those ones.

if write > 0

num_string = num_string + ones_place[write-1]

The "-1" is because ones_place[3] is

'four', not 'three'.

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=95

ONE MORE EXAMPLE 96

Now we just return "num_string"...

num_string

end

puts english_number(0)

puts english_number(9)

puts english_number(10)

puts english_number(11)

puts english_number(17)

puts english_number(32)

puts english_number(88)

puts english_number(99)

puts english_number(100)

puts english_number(101)

puts english_number(234)

puts english_number(3211)

puts english_number(999999)

puts english_number(1000000000000)

zero

nine

ten

eleven

seventeen

thirty-two

eighty-eight

ninety-nine

one hundred

one hundred one

two hundred thirty-four

thirty-two hundred eleven

ninety-nine hundred ninety-nine hundred ninety-nine

one hundred hundred hundred hundred hundred hundred

Ahhhh...that’s much, much better. The program is fairly dense, which

is why I put in so many comments. It even works for large numbers,

though not quite as nicely as one would hope. For example, I think 'one

trillion' would be a nicer return value for that last number, or even 'one

million million' (though all three are correct). In fact, you can do that right

now....

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=96

A FEW MORE THINGS TO TRY 97

10.5 A Few More Things to Try

• Expanded english_number. First, put in thousands; it should return

'one thousand' instead of (the sad) 'ten hundred' and 'ten thousand'

instead of 'one hundred hundred'.

Now expand upon english_number some more. For example, put in

millions so you get 'one million' instead of 'one thousand thousand'.

Then try adding billions, trillions, and so on.

• Wedding number. How about wedding_number? It should work

almost the same as english_number, except it should insert the word

and all over the place, returning things like 'nineteen hundred and

seventy and two', or however wedding invitations are supposed to

look. I’d give you more examples, but I don’t fully understand it

myself. You might need to contact a wedding coordinator to help

you. (I’m really just kidding. You don’t have to do this one. I didn’t

even do this one.)

• “Ninety-nine Bottles of Beer on the Wall.” Using english_number and

your old program on page 57, write out the lyrics to this song

the right way this time. Punish your computer: have it start at

9999. (Don’t pick a number too large, though, because writing all

of that to the screen takes your computer quite a while. A hundred

thousand bottles of beer takes some time; and if you pick a million,

you’ll be punishing yourself as well!)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=97

Chapter 11

Reading and Writing,
Saving and Loading,

Yin and...Something Else
Now if you were sitting here next to me, you’d probably ask why I didn’t

put on any clothes before you came over. (Well, I didn’t know you were

coming; you weren’t here like ten seconds ago.) But if you had given

more warning and I was wearing clothes, you’d be more likely to say

something like, “Chris” (and it’s a good thing you started with my name,

because as anyone near and dear to me will tell you, it’s best to make

sure you have my attention before striking up a conversation, lest I

interrupt you 45 seconds later with, “You aren’t talking to me, are you?

Uh...eel paste in your chair...what?”). “Chris,” you might say, “I still

can’t write a program that really does anything.”

And I’d say, “Yep.”

11.1 Doing Something

So far, after your program is done running, there’s really no evidence

that it ever ran (aside from your memory of it). Nothing on your com-

puter has been changed at all. The least I can do is show how to save

the output of your program. For example, let’s say you wanted to save

the output of your nifty new “99 Bottles of Beer on the Wall” program.

All you have to do is add a little bit onto the command line when you

run it:

ruby 99bottles.rb > lyrics.txt

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

THE THING ABOUT COMPUTERS... 99

That’s not even really programming; that’s just a command-line trick.

And it’s not a terribly exciting one, since you can’t really use it for a

program with any kind of interactivity or to save to more than one file

or to save at a time other than the end of the program.... But, hey—it’s

something. What’s happening is that all of the program’s output (from

all of the putses) is being grabbed and funneled to the named file instead

of being printed on your screen.

11.2 The Thing About Computers...

Before we get to real saving and loading, you and I need to talk about

something. Something important. It’s about computers. The thing

about computers—desktops, laptops, cell phones, you name it—is that,

well, they suck. This is not by nature, mind you—it isn’t intrinsic—and

I yearn for the day when they won’t suck. But for the moment, by (poor)

design, they do. This is most powerfully seen when your computer loses

a bunch of your information.

A few years back I was working on a project (thankfully I was the only

one on the project at the time). To make a long story short, I dropped

the database. All of the information in the database—gone. The very

structure of the database (which was itself days and days of work for

me)—gone. It was all just gone. It felt like Scotty had beamed up my

stomach but forgot the rest of me. I walked around for several hours,

just feeling sick, not punching things that would certainly have injured

my hand, muttering, “I can’t believe I dropped the database....” It was

horrible. You know how I did it? It was a mouse-click about 15 pixels

too high, followed by a totally reflexive (at that point) hitting of the OK

button on the confirmation pop-up. And it was all gone.

User error, you say? Yeah, I suppose it was. I certainly blamed myself.

But at some point you have to ask yourself, why is it so fast and so easy

to screw things up so catastrophically? At some point you have to start

blaming the computer.

Anyway, I’m telling you this because now that your programs can actu-

ally do something, it means they can do something bad. Now you have

to be careful. Make backups. Make them on different computers if you

can. Look into source code management systems. (I use Mercurial, and

I love it.) I tend to favor things like Gmail, where I can use it from any

machine (just in case my main computer melts...it happened once, with

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=99

SAVING AND LOADING FOR GROWN-UPS 100

actual melting) and where it’s someone else’s job to make sure I don’t

lose anything important.

From this point on, just be careful, OK?

11.3 Saving and Loading for Grown-Ups

Now that you’re good and afraid, let’s get to it. A file is basically just a

sequence of bytes. A string is also, ultimately, just a sequence of bytes.

This makes saving strings to files pretty easy, at least conceptually.

(And Ruby makes it pretty easy in practice.)

Here’s a quick example where we save a simple string to a file and then

read it back out again. (I’ll just show you the program first, and then

I’ll talk some more about it.)

The filename doesn't have to end

with ".txt", but since it is valid

text, why not?

filename = 'ListerQuote.txt'

test_string = 'I promise that I swear absolutely that ' +

'I will never mention gazpacho soup again.'

The 'w' here is for write-access to the file,

since we are trying to write to it.

File.open filename, 'w' do |f|

f.write test_string

end

read_string = File.read filename

puts(read_string == test_string)

true

File.open is how you open a file, of course. It creates the file object,

calls it f (because that’s what we said to call it), runs all the code until

it gets to the end, and then closes the file. When you open a file, you

always have to close it again. In most programming languages you

have to remember to do this, but Ruby takes care of it for you at the

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=100

YAML 101

end. Reading files is even easier than writing them; with File.read Ruby

takes care of everything behind the scenes. (I’m not sure why they

made writing more complicated, but we’ll fix that in just a bit.)

Well, that’s all well and good if all you want to save and load are single

strings. But what if you wanted to save an array of strings? Or an

array of integers and floats? And what about all of the other classes of

objects that we don’t even cover until the next chapter? What about the

bunnies?

All right, one thing at a time. Now we can definitely save any kind

of object, just as long as we have some well-defined way of converting

from a general object to a string and back again. So, maybe an array

would be represented as text separated by commas. But what if you

wanted to save a string with commas? Well, maybe you could escape

the commas somehow....

Figuring this all out would take us a ridiculous amount of time. I

mean, it’s pretty cool that you can do it at all, but you didn’t pay good

money for “pretty cool.” No sir, this is a De-Luxe-Supremium book you

have here. And for that, my friend, we need some serious saving. We

need some full-frontal loading. Yes, when you’re looking for De-Luxe-

Supremium, you want YAML.

11.4 YAML

What is YAML? To know what YAML is, you have to see it for yourself.

Or you could see a movie about it. Or I could just tell you. The thing with geeky

acronyms is that they

are often recursive

(which, hey, that’s pretty

cute, you’ve got to admit)

and rarely informative

(as likely to tell you what

they aren’t as what they

are). Take LINUX, for

example: Linux Is Not

Uncle Xenophobe. There

you go. Anyway, I think

YAML stands for Yaml

Ate My Landlord.

YAML is a format for representing objects as strings. You can use other

formats, but YAML is nice because it’s human-readable (and human-

editable) as well as computer-readable. My wife actually writes YAML

all the time, right there in her text editor. Then another program reads

it in later. Pretty cool.

YAML is not actually part of the Ruby core (it is its own thing, and

many other languages can use YAML), but it is part of the standard

distribution. What does that mean? Well, when you install Ruby, you

install YAML, too. But if you want to actually use YAML, you’ll need to

import it into your program. This is really easy, though, with the require

method.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=101

YAML 102

require 'yaml' # Told you it was easy.

test_array = ['Give Quiche A Chance',

'Mutants Out!',

'Chameleonic Life-Forms, No Thanks']

Here's half of the magic:

test_string = test_array.to_yaml

You see? Kind of like "to_s", and it is in fact a string,

but it's a YAML description of "test_array".

filename = 'RimmerTShirts.txt'

File.open filename, 'w' do |f|

f.write test_string

end

read_string = File.read filename

And the other half of the magic:

read_array = YAML::load read_string

puts(read_string == test_string)

puts(read_array == test_array)

true

true

Simple. Just two extra lines of code (well, three if you count the require

line at the top). So, I’m sure the question burning in all of our hearts is

“What does the YAML string look like?!” Run it yourself, and you’ll see

this in RimmerTShirts.txt:

- Give Quiche A Chance

- Mutants Out!

- "Chameleonic Life-Forms, No Thanks"

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=102

DIVERSION: DOUBLE-QUOTED STRINGS 103

Pretty clear. I’m not sure why that last line is in double quotes—

perhaps because of the dash? I wouldn’t be surprised if leaving out

the quotes worked, too; YAML is very forgiving...I think it added the

quotes only for our benefit. (A quick check says yes, indeed, we can

leave those quotes out.)

Wait a second, wait a second...I said that we were saving and loading

only one string. But that file has four lines in it. What, one may be

well-justified in asking, gives?

Well, it is one string. It’s a four-line string. How does a string get to

have four lines? It has three newline characters. You can add newline

characters to strings by just hitting Enter in your code and continuing

your string on the next line, though that doesn’t play well with proper

indentation and ends up looking ugly. There are somewhat less ugly

ways of dealing with it, but they require a different way of defining

strings. When we want to make a string, we enclose some text in single

quotes, and viola! A string. But there are other ways—like, five other

ways—to define strings. I don’t even know what they all are. To learn

them all, there are great references out there (I’ll point them out in

Chapter 15, Beyond This Fine Book, on page 145), but in the meantime,

let’s just learn one more that is commonly used....

11.5 Diversion: Double-Quoted Strings

So far, we’ve used only single-quoted strings. They are the easiest to

use, in the same sense that a shovel is easier to use than a backhoe:

when the job gets big enough, it stops being easier.

Consider multiline strings:

buffy_quote_1 = '\'Kiss rocks\'?

Why would anyone want to kiss...

Oh, wait. I get it.'

buffy_quote_2 = "'Kiss rocks'?\n" +

"Why would anyone want to kiss...\n" +

"Oh, wait. I get it."

puts buffy_quote_1

puts

puts(buffy_quote_1 == buffy_quote_2)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=103

DIVERSION: DOUBLE-QUOTED STRINGS 104

'Kiss rocks'?

Why would anyone want to kiss...

Oh, wait. I get it.

true

Using double quotes, we can indent the strings so they all line up. You’ll

notice the "\n", which is the escape sequence for the newline character.

With this, you can also put a multiline string on one line of code:

puts "3...\n2...\n1...\nHAPPY NEW YEAR!"

3...

2...

1...

HAPPY NEW YEAR!

But it doesn’t work with the simpler single-quoted strings:

puts '3...\n2...\n1...\nHAPPY NEW YEAR!'

3...\n2...\n1...\nHAPPY NEW YEAR!

And just as you must escape single quotes in single-quoted strings (but

not double quotes), you must escape double quotes in double-quoted

strings (but not single quotes):

puts 'single (\') and double (") quotes'

puts "single (') and double (\") quotes"

single (') and double (") quotes

single (') and double (") quotes

So, that’s double-quoted strings. In most cases, I prefer the simplicity

of single-quoted strings, honestly. But there’s one thing that double-

quoted strings do very nicely: interpolation. It’s sort of a cross between

string addition, to_s conversion, and salsa. (The food or the dance—pick

whichever metaphor works best for you.)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=104

BACK TO OUR REGULARLY SCHEDULED PROGRAMMING 105

name = 'Luke'

zip = 90210

puts "Name = #{name}, Zipcode = #{zip}"

Name = Luke, Zipcode = 90210

Snazzy, no? We got to use the variable names right in the string, just

by putting it inside "#{...}". And you’ll notice that we didn’t have to say

zip.to_s to convert the ZIP code to a string; Ruby knows that you want it

to be a string in this case, so it does the conversion for you.

But it gets even better! You’re not limited to variables when using string

interpolation—you can use any expression you want! Ruby evaluates

the expression for you, converts to string, and injects the result into

the surrounding string:

puts "#{2 * 10**4 + 1} Leagues Under the Sea, THE REVENGE!"

20001 Leagues Under the Sea, THE REVENGE!

Good stuff. (Don’t say I never gave you nothing.)

11.6 Back to Our Regularly Scheduled Programming

Now where were we? Ah, yes, YAML. As I was saying, YAML takes (or

returns) a multiline string. Go ahead and play around with your YAML

code. Get familiar with it. Toss in some arrays within arrays; try to fool

it with the integer 42 as opposed to the string '42' or with the true object

as opposed to the string 'true'. YAML is pretty smart and, if I may be so

bold, darned convenient.

You know what would be even better, though? It would be cool if I could

just save an object with one method call, just one line of code. And it’d

be cool if I could load with just one method call, too. Check it, yo!

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=105

BACK TO OUR REGULARLY SCHEDULED PROGRAMMING 106

require 'yaml'

First we define these fancy methods...

def yaml_save object, filename

File.open filename, 'w' do |f|

f.write(object.to_yaml)

end

end

def yaml_load filename

yaml_string = File.read filename

YAML::load yaml_string

end

...and now we use these fancy methods.

test_array = ['Slick Shoes',

'Bully Blinders',

'Pinchers of Peril']

Hey, time for some "me" trivia:

In Portland once, I met the guy who

played Troy's dad. True story.

filename = 'DatasGadgets.txt'

We save it...

yaml_save test_array, filename

We load it...

read_array = yaml_load filename

We weep for the po' fools that ain't got it...

puts(read_array == test_array)

true

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=106

RENAMING YOUR PHOTOS 107

Who’s your daddy? Or at the very least an acquaintance of his? Or

maybe just knows that you have a daddy? That’s right, baby, it’s me.

11.7 Renaming Your Photos

Let’s do something really useful now. A day ago I got an email from

someone wanting to know how to rename a bunch of files. A year ago

my wife wanted a program to download the pictures from her camera’s

memory card and rename them. I’ll show you a modified version of her

program.

But first, we ought to talk about a few new methods we’ll be using in

this program. The first is the Dir[] method. We’ve seen [] used with

arrays before...you did know that was a method, didn’t you? Oh, yeah,

it sure is. You say “arr[2]” and I say “arr.[] 2”—it’s all the same.

Anyway, rather than using an array’s [] method, we’re using the object

Dir’s [] method. (The Dir is for directory.) And instead of passing in a

number, like with arrays, this time you pass in a string. This is not just

any string; it’s a string describing which filenames you are looking for. For simplicity, I’m just

going to say “filename”

when I really mean

“absolute or relative path

and filename.”

It then searches for those files and returns an array of the filenames

(strings) it found.

The format of the input string is pretty easy. It’s basically just a file-

name with a few extra goodies. In fact, if you just pass in a filename,

you’ll get either an array containing the filename (if the file exists) or an

empty array (if it doesn’t).

puts Dir['ParisHilton.jpg']

Naturally, it didn’t find anything...what kind of programmer do you

think I am?

Anyway, I could search for all JPEGs with Dir['*.jpg']. Actually, since

these are case-sensitive searches, I should probably include the all-

caps version as well, Dir['*.{JPG,jpg}'], which roughly means “Find me all

files starting with whatever and ending with a dot and either JPG or

jpg.” Of course, that searches for JPEGs only in the current working

directory, which (unless you change it) is the directory you ran the pro- There are more things

you can do with Dir[]; I

don’t even know what

they all are. This will be

enough for us, though.

gram from. To search in the parent directory, you’d want something

like Dir['../*.{JPG,jpg}']. If you wanted to search in the current directory

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=107

RENAMING YOUR PHOTOS 108

and all subdirectories (a recursive search), you’d want something like

Dir['**/*.{JPG,jpg}'].

And remember I said you could change your current working directory?

You do that with Dir.chdir; just pass in the path to your new working

directory.

We’ll also be using File.rename. It should be fairly obvious how it works. I

have one thing to say about renaming, though. According to your com-

puter, moving a file and renaming a file are really the same task. Often,

only one of these is presented as an option. And, if you think about,

this kind of makes sense. If you rename a file from ThingsToWrite/book.txt

to ThingsToRead/book.txt, you just moved that file. And if you move a file

to the same location, but with a different name, you have renamed it.

The last new method we’ll be using is print, which is almost exactly like

puts, except it doesn’t advance to the next line. I don’t use it that often, Yes, I’m using forward

slashes. Yes, Windows

uses backslashes. Yes,

it’s perfectly OK to use

forward slashes in

Ruby. This helps make

Ruby programs more

cross-platform (though

obviously not this one—it

runs only on Katy’s

machine).

but it’s nice for making little progress bars and things.

Finally, let me tell you a bit about my wife’s computer. It’s a Windows

machine, so the absolute paths are going to be C:/is/for/cook.ie and such.

Also, her F:/ drive is really her card reader for her camera’s memory

card. We’re going to move the files to a folder on her hard disk and

rename them as we do so. (And since, as we all know, move and rename

are the same thing, we’ll do this in one fell swoop. Fell stroke? How

does that go?)

For Katy, with love.

(I always write little notes in the programs

I write for her. I deleted all of the dirty

ones, though, so that one is all that's left.)

This is where she stores her pictures before

she gets her YAML on and moves them to the server.

Just for my own convenience, I'll go there now.

Dir.chdir 'C:/Documents and Settings/Katy/PictureInbox'

First we find all of the pictures to be moved.

pic_names = Dir['F:/**/*.{JPG,jpg}']

puts 'What would you like to call this batch?'

batch_name = gets.chomp

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=108

RENAMING YOUR PHOTOS 109

puts

print "Downloading #{pic_names.length} files: "

This will be our counter. We'll start at 1 today,

though normally I like to count from 0.

pic_number = 1

pic_names.each do |name|

print '.' # This is our "progress bar".

new_name = if pic_number < 10

"batch_name0#{pic_number}.jpg"

else

"batch_name#{pic_number}.jpg"

end

This renames the picture, but since "name"

has a big long path on it, and "new_name"

doesn't, it also moves the file to the

current working directory, which is now

Katy's PictureInbox folder.

Since it's a *move*, this effectively

downloads and deletes the originals.

And since this is a memory card, not a

hard drive, each of these takes a second

or so; hence, the little dots let her

know that my program didn't hose her machine.

(Some marriage advice from your favorite

author/programmer: it's all about the

little things.)

Now where were we? Oh, yeah...

File.rename name, new_name

Finally, we increment the counter.

pic_number = pic_number + 1

end

puts # This is so we aren't on progress bar line.

puts 'Done, cutie!'

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=109

A FEW THINGS TO TRY 110

The first time I wrote this

program, I forgot that

little line that increments

the counter. What

happened? It copied

every picture to the same

new filename...over the

previous picture! This

effectively deleted every

picture except for the last

one to be copied. Good

thing I always, always,

always make backups.

Because, you know, the

thing about computers....

Nice! Of course, the full program I wrote for her also downloads the

movies, deletes the thumbnails from the camera (since only the camera

can use them), extracts the time and date from the actual .jpg or .avi

file, and renames the file using that. It also makes sure never to copy

over an existing file. Yep, it’s a pretty fancy program, but that’s for

another day.

11.8 A Few Things to Try

• Safer picture downloading. Adapt the picture-downloading/file-

renaming program to your computer by adding some safety fea-

tures to make sure you never overwrite a file. A few methods you

might find useful are File.exist? (pass it a filename, and it will return

true or false) and exit (like if return and Napoleon had a baby—it kills

your program right where it stands; this is good for spitting out

an error message and then quitting).

• Build your own playlist. For this to work, you need to have some

music ripped to your computer in some format. We’ve ripped

a 100 or so CDs, and we keep them in directories something

like music/genre/artist_and_cd_name/track_number.ogg. (I’m partial

to the .ogg format, though this would work just as well with .mp3s

or whatever you use.)

Building a playlist is easy. It’s just a regular text file (no YAML

required, even). Each line is a filename, like this:

music/world/Stereolab--Margarine_Eclipse/track05.ogg

What makes it a playlist? Well, you have to give the file the .m3u

extension, like playlist.m3u or something. And that’s all a playlist

is: a text file with an .m3u extension.

So, have your program search for various music files and build

you a playlist. Use your shuffle method on page 90 to mix up your

playlist. Then check it out in your favorite music player (Winamp,

MPlayer, and so on)!

• Build a better playlist. After listening to playlists for a while, you

might start to find that a purely random shuffle just doesn’t quite

seem...mixed up enough. (Random and mixed up are not at all

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=110

A FEW THINGS TO TRY 111

the same thing. Random is totally clumpy.) For example, here’s

an excerpt from a playlist I made a while back of Thelonius Monk

and Faith No More:

music/Jazz/Monk--Nutty/track08.ogg

music/Jazz/Monk--London_Collection_1/track05.ogg

music/Jazz/Monk--Nutty/track13.ogg

music/Jazz/Monk--Round_Midnight/track02.ogg

music/Jazz/Monk--Round_Midnight/track14.ogg

music/Jazz/Monk--Round_Midnight/track15.ogg

music/Jazz/Monk--Round_Midnight/track08.ogg

music/Rock/FNM--Who_Cares_A_Lot_2/track02.ogg

music/Rock/FNM--Who_Cares_A_Lot_2/track08.ogg

music/Rock/FNM--Who_Cares_A_Lot_1/track02.ogg

music/Rock/FNM--Who_Cares_A_Lot_2/track01.ogg

Hey! I asked for random! Well, that’s exactly what I got...but I

wanted mixed up. So, here’s the grand challenge: instead of using

your old shuffle, write a new music_shuffle method. It should take an

array of filenames (like those listed previously) and mix them up

good and proper.

You’ll probably need to use the split method for strings. It returns

an array of chopped-up pieces of the original string, split where

you specify, like this:

awooga = 'this/is/not/a/daffodil'.split '/'

puts awooga

this

is

not

a

daffodil

Mix it up as best you can!

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=111

Chapter 12

New Classes of Objects
So far we’ve seen several kinds, or classes, of objects: strings, integers,

floats, arrays, a few special objects (true, false, and nil), and so on. In

Ruby, these class names are always capitalized: String, Integer, Float,

Array, File, and Dir. (You remember back on page 100 when we asked

the File class to open a file for us, and it handed us back an actual file,

which we called, in a fit of rabid creativity, f? Those were the days....

Anyway, we never ended up needing an actual directory object from Dir,

but we could have gotten one if we had asked nicely.)

File.open was a mildly unusual way to get an object from a class. In

general, you’ll use the new method:

alpha = Array.new + [12345] # Array addition.

beta = String.new + 'hello' # String addition.

karma = Time.new # Current date and time.

puts "alpha = #{alpha}"

puts "beta = #{beta}"

puts "karma = #{karma}"

alpha = 12345

beta = hello

karma = Wed Jul 22 11:42:21 -0500 2009

Because we can create array and string literals using [...] and '... ', we

rarely create them using new. (Though it might not be clear from the

example there, String.new creates an empty string, and Array.new creates

an empty array.) Also, numbers are special exceptions: you can’t create

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

THE TIME CLASS 113

an integer with Integer.new. (Which one would it create, you know?) You

can make one only using an integer literal (just writing it out as you’ve

been doing).

12.1 The Time Class

What’s the story with this Time class? Time objects represent (you

guessed it) moments in time. You can add (or subtract) numbers to

(or from) times to get new times; adding 1.5 to a time makes a new time

one-and-a-half seconds later:

time = Time.new # The moment we ran this code.

time2 = time + 60 # One minute later.

puts time

puts time2

Wed Jul 22 11:42:21 -0500 2009

Wed Jul 22 11:43:21 -0500 2009

You can also make a time for a specific moment using Time.local:

puts Time.local(2000, 1, 1) # Y2K.

puts Time.local(1976, 8, 3, 13, 31) # When I was born.

Sat Jan 01 00:00:00 -0500 2000

Tue Aug 03 13:31:00 -0400 1976

You’ll notice the -0400 and -0500 in these times. That’s to account for

the difference between the local time and Greenwich mean time (GMT,

the One True Time Zone, dontcha know). This can be because of being

in a different time zone or daylight saving time or who knows what else.

So, you can see that I was born in daylight saving time, while it was not

daylight saving time when Y2K struck. (By the way, the parentheses

are to group the parameters to local together; otherwise, puts might

start thinking those are its parameters.) The more parameters you add

to local, the more accurate your time becomes.

On the other hand, if you want to avoid time zones and daylight saving

time altogether and just use GMT, there’s always Time.gm.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=113

THE TIME CLASS 114

puts Time.gm(1955, 11, 5) # A red-letter day.

Sat Nov 05 00:00:00 UTC 1955

You can compare times using the comparison methods (an earlier time

is less than a later time), and if you subtract one time from another,

you’ll get the number of seconds between them. Play around with it!

There’s really only one snag with the Time class. It thinks the world

began at epoch: the stroke of midnight, January 1, 1970, GMT. I don’t

really know of any satisfying way of explaining this, but here goes: at

some point, probably before I was even born, some people (Unix folks, I Presumably this was

done because the

momentous fashion

advances of the time

rivaled the birth of Jesus

in terms of cultural and

spiritual

significance...it’s Jesus

Christ vs. Jesus Christ

Superstar, and that, my

friends, is a tough call.

believe) decided that a good way to represent time on computers was to

count the number of seconds since the very beginning of the 70s. So,

time “zero” stood for the birth of that great decade, and they called it

epoch.

Now this was all long before Ruby. In those ancient days (and program-

ming in those ancient languages), you often had to worry about your

numbers getting too large. In general, a number would either be from 0

to around 4 billion or be from -2 billion to +2 billion, depending on how

they chose to store it.

For whatever reasons (compatibility, tradition, cruelty...whatever),

Ruby decided to go with these conventions. So (and this is the impor-

tant point), you can’t have times more than 2 billion seconds away from

epoch! This restriction isn’t too painful, though, because this span is

from sometime in December 1901 to sometime in January 2038.

In all fairness, Ruby does provide other classes, such as Date and Date-

Time, for handling just about any point in history. But these are such

a pain to use compared to Time that I don’t feel like figuring them out

myself, much less teaching them to you. What’s the difference between

civil time and commercial time? I have no idea. Julian calendar vs.

Gregorian calendar? Italian vs. English reform dates? I’m sure there’s

a Perfectly Good Reason for all that complexity. (In case you weren’t

sitting across from me as I typed that, I was rolling my eyes.) But in

the meantime, unless you are older than my great-grandma (101 next

week!), you should be able to do these exercises.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=114

A FEW THINGS TO TRY 115

12.2 A Few Things to Try

• One billion seconds! Find out the exact second you were born (if

you can). Figure out when you will turn (or perhaps when you did

turn) one billion seconds old. Then go mark your calendar.

• Happy birthday! Ask what year a person was born in, then the

month, and then the day. Figure out how old they are, and give

them a big SPANK! for each birthday they have had.

12.3 The Hash Class

Another useful class is the Hash class. Hashes are a lot like arrays:

they have a bunch of slots that can point to various objects. However,

in an array, the slots are lined up in a row, and each one is numbered

(starting from zero). In a hash, the slots aren’t in a row (they are just

sort of jumbled together), and you can use any object to refer to a slot,

not just a number. It’s good to use hashes when you have a bunch of

things you want to keep track of but they don’t really fit into an ordered

list. For example, we can make a dictionary for little C’s vocabulary:

dict_array = [] # array literal; same as Array.new

dict_hash = {} # hash literal; same as Hash.new

dict_array[0] = 'candle'

dict_array[1] = 'glasses'

dict_array[2] = 'truck'

dict_array[3] = 'Alicia'

dict_hash['shia-a'] = 'candle'

dict_hash['shaya'] = 'glasses'

dict_hash['shasha'] = 'truck'

dict_hash['sh-sha'] = 'Alicia'

dict_array.each do |word|

puts word

end

dict_hash.each do |c_word, word|

puts "#{c_word}: #{word}"

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=115

RANGES 116

candle

glasses

truck

Alicia

shasha: truck

sh-sha: Alicia

shaya: glasses

shia-a: candle

If I use an array, I have to remember that slot 0 is for “shia-a,” slot 1 is

for “shaya,” and so on. But if I use a hash, it’s easy! Slot 'shia-a' holds

the word for “shia-a,” of course. There’s nothing to remember. You

might have noticed that when we used each, the objects in the hash

didn’t come out in the same order we put them in. (I mean, they could,

I suppose...it’s technically possible. They just don’t usually.) Arrays are

for keeping things in order; hashes are for keeping things referenced by

other things.

Though people usually use strings to name the slots in a hash, you

could use any kind of object, even arrays and other hashes. (I have no

idea why you’d want to do this, though.)

weird_hash = Hash.new

weird_hash[12] = 'monkeys'

weird_hash[[]] = 'emptiness'

weird_hash[Time.new] = 'no time like the present'

Hashes and arrays are good for different things; it’s up to you to decide

which one is best for a particular problem. I probably use hashes at

least as often as arrays; they’re wonderful.

Actually, you can have

intervals of letters,

strings, times...pretty

much anything you can

place in order—where

you can say things like

this < that and such. It’s

not always clear, though,

just what a range of

strings is. In practice, I

never use ranges over

anything but integers.

12.4 Ranges

Range is another great class. Ranges represent intervals of numbers.

On the next page is just a quick glance at some of the methods ranges

have.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=116

RANGES 117

This is your range literal.

letters = 'a'..'c'

Convert range to array.

puts(['a','b','c'] == letters.to_a)

Iterate over a range:

('A'..'Z').each do |letter|

print letter

end

puts

god_bless_the_70s = 1970..1979

puts god_bless_the_70s.min

puts god_bless_the_70s.max

puts(god_bless_the_70s.include?(1979))

puts(god_bless_the_70s.include?(1980))

puts(god_bless_the_70s.include?(1974.5))

true

ABCDEFGHIJKLMNOPQRSTUVWXYZ

1970

1979

true

false

true

Do you really need ranges? No, not really. It’s the same with hashes

and times, I suppose. You can program fairly well without them (and

most languages don’t have anything like them, anyway). But it’s all

about style, about intention, and about capturing snapshots of your

brain right there in your code.

And this is all just the tip of the iceberg. Each of these classes has

way more methods than I have shown you, and this isn’t even a tenth

of the classes that come with Ruby. But you don’t really need most of

them...they are just time-savers. You can pick them up gradually as

you go. That’s how most of us do it.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=117

STRINGY SUPERPOWERS 118

12.5 Stringy Superpowers

I’d really feel like I was doing you a disservice if I didn’t show you at

least a little more of what strings can do (in Ruby, at least). Plus, if I

do, I can give you more interesting exercises. :) Mind you, I’m still not

going to show you even half, but I’ve just got to show you a little more.

Remember back on page 64 when I said a lot of the string methods also

work on arrays? Well, it goes both ways: some of the array methods

you’ve learned also work on strings.

Perhaps the most important and versatile is the [...] method. The first

thing you can do with it is pass in a number and get the character at

that position in the string. Well, you get the code for the character,

anyway. Actually, it’s a bit strange at first:

da_man = 'Mr. T'

big_T = da_man[4]

puts big_T

puts ?T

puts 84.chr

84

84

T

The character code for a capital T is 84. If all you want is the code

for a specific character, you can precede it with a question mark, and

if you have an integer and want its corresponding character, you can

use the chr method. The question mark trick is particularly useful for

comparisons:

puts "Hello. My name is Julian."

puts "I'm extremely perceptive."

puts "What's your name?"

name = gets.chomp

puts "Hi, #{name}."

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=118

STRINGY SUPERPOWERS 119

if name[0] == ?C

puts 'You have excellent taste in footwear.'

puts 'I can just tell.'

end

Hello. My name is Julian.

I'm extremely perceptive.

What's your name?

Chris

Hi, Chris.

You have excellent taste in footwear.

I can just tell.

This is a bit awkward, perhaps, but not too bad. This is just the begin-

ning of our friend, the [...] method. Instead of picking out only one

character (well, one character code), we can pick out substrings in two

ways. One way is to pass in two numbers: the first tells us where to

start the substring, and the second tells us how long of a substring we

are looking for.

The second way, though, is quite possibly too sexy for your car: just

pass in a range.

And both of these ways have a little twist. If you pass in a negative

index, it counts from the end of the string. Dude!

prof = 'We tore the universe a new space-hole, alright!'

puts prof[12, 8]

puts prof[12..20]

puts

def is_avi? filename

filename.downcase[-4..-1] == '.avi'

end

Vicarious embarrassment.

puts is_avi?('DANCEMONKEYBOY.AVI')

Hey, I wasn't even 2 at the time...

puts is_avi?('toilet_paper_fiasco.jpg')

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=119

A FEW MORE THINGS TO TRY 120

universe

universe

true

false

12.6 A Few More Things to Try

• Party like it’s roman_to_integer 'mcmxcix'! Come on, you knew it

was coming, didn’t you? It’s the other half of your roman_numeral

1999 method. Make sure to reject strings that aren’t valid Roman

numerals.

• Birthday helper! Write a program to read in names and birth dates

from a text file. It should then ask you for a name. You type one

in, and it tells you when that person’s next birthday will be (and,

for the truly adventurous, how old they will be). The input file

should look something like this:

Christopher Alexander, Oct 4, 1936

Christopher Lambert, Mar 29, 1957

Christopher Lee, May 27, 1922

Christopher Lloyd, Oct 22, 1938

Christopher Pine, Aug 3, 1976

Christopher Plummer, Dec 13, 1927

Christopher Walken, Mar 31, 1943

The King of Spain, Jan 5, 1938

(That would be me Christopher Pine, not the young James T. Kirk;

I don’t care when he was born.) You’ll probably want to break each

line up and put it in a hash, using the name as your key and the

date as your value. In other words: words:

birth_dates['The King of Spain'] = 'Jan 5, 1938'

(You can store the date in some other format if you prefer.)

Though you can do it without this tip, your program might look

prettier if you use the each_line method for strings. It works pretty

much like each does for arrays, but it returns each line of the

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=120

CLASSES AND THE CLASS CLASS 121

multiline string one at a time (but with the line endings, so you

might need to chomp them). Just thought I’d mention it....

12.7 Classes and the Class Class

I’ll warn you right now: this section is a bit of a brain bender, so if

you’re not feeling particularly strong of stomach, you can skip to the

next chapter. At least for now, it’s mainly of academic interest. But

just in case you were wondering...

As you may have noticed, we can call methods on strings (things such

as length and chomp), but we can also call methods on the actual String

class, methods such as new. This is because, in Ruby, classes are real

objects. (This isn’t the case in most languages.) And since every object

is in some class, classes must be, too. We can find the class of an object

using the class method:

puts(42.class)

puts("I'll have mayonnaise on mine!".class)

puts(Time.new.class) # No shocker here.

puts(Time.class) # A little more interesting...

puts(String.class) # Yeah, OK...

Hold your breath through the tunnel, boys and girls!

puts(Class.class)

<gasp!>

Fixnum

String

Time

Class

Class

Class

If this makes sense to you right now, then stop thinking about it! You

might screw it up! Otherwise...don’t sweat it too much. Move on; let

your subconscious do the work later.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=121

Chapter 13

Creating New Classes,
Changing Existing Ones

Back on page 93, we wrote a method to give the English phrase for a

given integer. It wasn’t an integer method, though; it was just a generic

“program” method. Wouldn’t it be nice if you could write something like

22.to_eng instead of english_number 22? Here’s how:

class Integer

def to_eng

if self == 5

english = 'five'

else

english = 'forty-two'

end

english

end

end

I'd better test on a couple of numbers...

puts 5.to_eng

puts 42.to_eng

five

forty-two

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

A FEW THINGS TO TRY 123

Well, I tested it; it seems to work. :)

We defined an integer method by jumping into the Integer class, defin-

ing the method there, and jumping back out. Now all integers have

this (somewhat incomplete) method. In fact, you can do this with any

method in any class, even the built-in methods. If you don’t like the

reverse method for strings, you can just redefine it in much the same

way, but I don’t recommend it! It’s best to leave the old methods alone

and to make new ones when you want to do something new.

Confused yet? Let me go over that last program some more. So far,

whenever we executed any code or defined any methods, we did it in

the default “program” object. In our last program, we left that object for

the first time and hopped into the Integer class. We defined a method

there (which makes it an integer method), and now all integers can use

it. Inside that method we use self to refer to the object (the integer)

using the method.

13.1 A Few Things to Try

• Extend the built-in classes. How about making your shuffle method

on page 90 an array method? Or how about making factorial an

integer method? 4.to_roman, anyone? In each case, remember to

use self to access the object the method is being called on (the 4 in

4.to_roman).

13.2 Creating Classes

We’ve now seen a smattering of different classes. However, it’s easy to

come up with kinds of objects that Ruby doesn’t have—objects you’d

like it to have. Fear not; creating a new class is as easy as extending an

old one. Let’s say we wanted to make some dice in Ruby, for example.

Here’s how we could make the Die class:

class Die

def roll

1 + rand(6)

end

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=123

INSTANCE VARIABLES 124

Let's make a couple of dice...

dice = [Die.new, Die.new]

...and roll them.

dice.each do |die|

puts die.roll

end

1

3

(If you skipped the section on random numbers, rand(6) just gives a

random number between 0 and 5.) And that’s it! These are objects of

our very own. Roll the dice a few times (run the program again), and

watch what turns up.

We can define all sorts of methods for our objects...but there’s some-

thing missing. Working with these objects feels a lot like programming

before we learned about variables. Look at our dice, for example. We

can roll them, and each time we do they give us a different number.

But if we wanted to hang onto that number, we would have to create

a variable to point to the number. It seems like any decent die should

be able to have a number and that rolling the die should change that

number. If we keep track of the die, we shouldn’t also have to keep

track of the number it is showing.

However, if we try to store the number we rolled in a (local) variable

in roll, it will be gone as soon as roll is finished. We need to store the

number in a different kind of variable, an instance variable.

13.3 Instance Variables

Normally when we want to talk about a string, we will just call it

a string. However, we could also call it a string object. Sometimes

programmers might call it an instance of the class String, but it’s just

another way of saying string. An instance of a class is just an object of

that class.

So, instance variables are just an object’s variables. A method’s local

variables last until the method is finished. An object’s instance vari-

ables, on the other hand, will last as long as the object does. To tell

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=124

INSTANCE VARIABLES 125

instance variables from local variables, they have @ in front of their

names:

class Die

def roll

@number_showing = 1 + rand(6)

end

def showing

@number_showing

end

end

die = Die.new

die.roll

puts die.showing

puts die.showing

die.roll

puts die.showing

puts die.showing

2

2

3

3

Very nice! roll rolls the die, and showing tells us which number is show-

ing. However, what if we try to look at what’s showing before we’ve

rolled the die (before we’ve set @number_showing)?

class Die

def roll

@number_showing = 1 + rand(6)

end

def showing

@number_showing

end

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=125

INSTANCE VARIABLES 126

Since I'm not going to use this die again,

I don't need to save it in a variable.

puts Die.new.showing

nil

Hmmm...well, at least it didn’t give us an error. Still, it doesn’t really

make sense for a die to be “unrolled,” or whatever nil is supposed to

mean here. It would be nice if we could set up our new Die object right

when it’s created. That’s what initialize is for; as soon as an object is

created, initialize is automatically called on it:

class Die

def initialize

I'll just roll the die, though we could do something else

if we wanted to, such as setting the die to have 6 showing.

roll

end

def roll

@number_showing = 1 + rand(6)

end

def showing

@number_showing

end

end

puts Die.new.showing

4

(One thing to note here: in the previous code, we are first just defining

what the Die class is by defining the methods initialize, roll, and showing.

However, none of these is actually called until the very last line.)

Very nice. Our dice are just about perfect. The only feature that might

be missing is a way to set which side of a die is showing...why don’t

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=126

NEW VS. INITIALIZE 127

you write a cheat method that does just that? Come back when you’re

done (and when you tested that it worked, of course). Make sure that

someone can’t set the die to have a 7 showing; you’re cheating, not

bending the laws of logic.

13.4 new vs. initialize

That’s some pretty cool stuff we just covered. But the relationship

between new and initialize is a bit subtle. And “subtle” may as well mean

“confusing.” Just what is the deal?

The methods new and initialize work hand in hand. You use new to

create a new object, and initialize is then called automatically (if you

defined it in your class). They pretty much happen at the same time.

How do you keep keep them straight?

First, new is a method of the class, while initialize is a method of the

instance. You use new to create the instance, and then initialize is auto-

matically called on that instance. This means that the call to new must

come first! Until you call new, there’s no instance to call initialize upon.

Second, you define initialize in your class, but you never define new. (It’s

already built in to all classes.) Conversely, you call new to create an

object, but you never call initialize. The method new takes care of that

for you.

(Strictly speaking, it is possible to call initialize, just as it is possible to

define new. But doing so is either very advanced or very stupid. Or

both. Let’s not even go there.)

The reason for having these two methods is that you really need one of

them to be a class method and the other to be an instance method. If

you think about it, new has to be a class method, because when you

want to create an object, the object you want does not exist yet! You

can’t say, for example, the following:

die.new

because die doesn’t exist yet.

And initialize really has to be an instance method, because you are ini-

tializing that object. This means that you need access to the instance

variables and such. You can’t do that from a class method, because it

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=127

BABY DRAGON 128

wouldn’t know which instance to get the instance variables from. (You

certainly don’t want to initialize every single instance of Die every time

you create a new one.)

So just remember, you define the instance method initialize, and you call

the class method new (and not the other way around).

13.5 Baby Dragon

Great! You know how to create your own classes, even some of the

subtle bits, but so far you’ve really only seen a small, fluffy, toy exam-

ple. Let me give you something a bit more chewy. Let’s say we want to

make a simple virtual pet, a baby dragon. Like most babies, it should

be able to eat, sleep, and poop, which means we will need to be able to

feed it, put it to bed, and take it on walks. Internally, our dragon will

need to keep track of whether it is hungry, tired, or needs to go, but

we won’t be able to see that when we interact with our dragon, just like

you can’t ask a human baby, “Are you hungry?” We’ll also add a few

other fun ways we can interact with our baby dragon, and when he is

born, we’ll give him a name. (Whatever you pass into the new method

is then passed onto the initialize method for you.) OK, let’s give it a shot:

class Dragon

def initialize name

@name = name

@asleep = false

@stuff_in_belly = 10 # He's full.

@stuff_in_intestine = 0 # He doesn't need to go.

puts "#{@name} is born."

end

def feed

puts "You feed #{@name}."

@stuff_in_belly = 10

passage_of_time

end

def walk

puts "You walk #{@name}."

@stuff_in_intestine = 0

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=128

BABY DRAGON 129

passage_of_time

end

def put_to_bed

puts "You put #{@name} to bed."

@asleep = true

3.times do

if @asleep

passage_of_time

end

if @asleep

puts "#{@name} snores, filling the room with smoke."

end

end

if @asleep

@asleep = false

puts "#{@name} wakes up slowly."

end

end

def toss

puts "You toss #{@name} up into the air."

puts 'He giggles, which singes your eyebrows.'

passage_of_time

end

def rock

puts "You rock #{@name} gently."

@asleep = true

puts 'He briefly dozes off...'

passage_of_time

if @asleep

@asleep = false

puts '...but wakes when you stop.'

end

end

private

"private" means that the methods defined here are

methods internal to the object. (You can feed your

dragon, but you can't ask him whether he's hungry.)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=129

BABY DRAGON 130

def hungry?

Method names can end with "?".

Usually, we do this only if the method

returns true or false, like this:

@stuff_in_belly <= 2

end

def poopy?

@stuff_in_intestine >= 8

end

def passage_of_time

if @stuff_in_belly > 0

Move food from belly to intestine.

@stuff_in_belly = @stuff_in_belly - 1

@stuff_in_intestine = @stuff_in_intestine + 1

else # Our dragon is starving!

if @asleep

@asleep = false

puts 'He wakes up suddenly!'

end

puts "#{@name} is starving! In desperation, he ate YOU!"

exit # This quits the program.

end

if @stuff_in_intestine >= 10

@stuff_in_intestine = 0

puts "Whoops! #{@name} had an accident..."

end

if hungry?

if @asleep

@asleep = false

puts 'He wakes up suddenly!'

end

puts "#{@name}'s stomach grumbles..."

end

if poopy?

if @asleep

@asleep = false

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=130

BABY DRAGON 131

puts 'He wakes up suddenly!'

end

puts "#{@name} does the potty dance..."

end

end

end

pet = Dragon.new 'Norbert'

pet.feed

pet.toss

pet.walk

pet.put_to_bed

pet.rock

pet.put_to_bed

pet.put_to_bed

pet.put_to_bed

pet.put_to_bed

Norbert is born.

You feed Norbert.

You toss Norbert up into the air.

He giggles, which singes your eyebrows.

You walk Norbert.

You put Norbert to bed.

Norbert snores, filling the room with smoke.

Norbert snores, filling the room with smoke.

Norbert snores, filling the room with smoke.

Norbert wakes up slowly.

You rock Norbert gently.

He briefly dozes off...

...but wakes when you stop.

You put Norbert to bed.

He wakes up suddenly!

Norbert's stomach grumbles...

You put Norbert to bed.

He wakes up suddenly!

Norbert's stomach grumbles...

You put Norbert to bed.

He wakes up suddenly!

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=131

BABY DRAGON 132

Norbert's stomach grumbles...

Norbert does the potty dance...

You put Norbert to bed.

He wakes up suddenly!

Norbert is starving! In desperation, he ate YOU!

Whew! Of course, it would be nicer if this were an interactive pro-

gram...oh, I think I smell an exercise coming on.

We saw a few new things in that example. The first is the word private

that we stuck right in the middle of our class definition. I could have

left it out, but I wanted to enforce the idea that certain methods are

things you can do to a dragon and other methods are used only within

the dragon. You can think of these as being “under the hood”: unless

you are an automobile mechanic, all you really need to know is the gas

pedal, the brake pedal, and the steering wheel. A programmer might

call those the public interface of your car. How your airbag knows when

to deploy, however, is internal to the car; the typical user (driver) doesn’t

need to know how that works.

Actually, for a bit more concrete example along those lines, let’s talk

about how you might represent a car in a video game. First, you would

want to decide what you want your public interface to look like; in other

words, which methods should people be able to call on one of your car

objects? Well, they need to be able to push the gas pedal and the brake

pedal, but they would also need to be able to specify how hard they

are pushing the pedal. (There’s a big difference between flooring it and

tapping it.) They would also need to be able to steer, and again, they

would need to be able to say how hard they are turning the wheel. I

suppose you could go further and add a clutch, turn signals, rocket

launcher, afterburner, flux capacitor, and so on.... It depends on what

type of game you are making.

Internal to a car object, though, much more would need to be going on;

other things a car would need are a speed, a direction, and a position

(at the most basic). These attributes would be modified by pressing

on the gas or brake pedals and turning the wheel, of course, but the

user would not be able to set the position directly (which would be like

warping). You might also want to keep track of skidding or damage,

whether you have caught any air, and so on. These would all be internal

to your car object (that is, not directly accessible by the player; these

would be private).

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=132

A FEW MORE THINGS TO TRY 133

13.6 A Few More Things to Try

• Orange tree. Make an OrangeTree class that has a height method

that returns its height and a one_year_passes method that, when

called, ages the tree one year. Each year the tree grows taller (how-

ever much you think an orange tree should grow in a year), and

after some number of years (again, your call) the tree should die.

For the first few years, it should not produce fruit, but after a while

it should, and I guess that older trees produce more each year

than younger trees...whatever you think makes the most sense.

And, of course, you should be able to count_the_oranges (which

returns the number of oranges on the tree) and pick_an_orange

(which reduces the @orange_count by 1 and returns a string telling

you how delicious the orange was, or else it just tells you that there

are no more oranges to pick this year). Make sure any oranges you

don’t pick one year fall off before the next year.

• Interactive baby dragon. Write a program that lets you enter com-

mands such as feed and walk and calls those methods on your

dragon. Of course, since you are inputting just strings, you will

need some sort of method dispatch, where your program checks

which string was entered and then calls the appropriate method.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=133

Chapter 14

Blocks and Procs
This is definitely one of the coolest features of Ruby. Some other lan-

guages have this feature, though they may call it something else (like

closures), but most of the more popular ones don’t, and it’s a shame.

And, in any case, Ruby makes it so pretty with its cute little syntax!

What is this cool new thing? It’s the ability to take a block of code (code

in between do and end), wrap it up in an object (called a proc), store

it in a variable or pass it to a method, and run the code in the block

whenever you feel like it (more than once, if you want). So, it’s kind of

like a method itself, except it isn’t bound to an object (it is an object),

and you can store it or pass it around like you can with any object. I

think it’s example time:

toast = Proc.new do

puts 'Cheers!'

end

toast.call

toast.call

toast.call

Cheers!

Cheers!

Cheers!

I created a proc (which I think is supposed to be short for procedure,

but far more important, it rhymes with block) that held the block of

code, and then I called the proc three times. As you can see, it’s a lot

like a method.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

METHODS THAT TAKE PROCS 135

Actually, it’s even more like a method than I have shown you, because

blocks can take parameters:

do_you_like = Proc.new do |good_stuff|

puts "I *really* like #{good_stuff}!"

end

do_you_like.call 'chocolate'

do_you_like.call 'Ruby'

I *really* like chocolate!

I *really* like Ruby!

OK, so we see what blocks and procs are, and how to use them, but

what’s the point? Why not just use methods? Well, it’s because there

are some things you just can’t do with methods. In particular, you can’t

pass methods into other methods (but you can pass procs into meth-

ods), and methods can’t return other methods (but they can return

procs). This is simply because procs are objects; methods aren’t.

(By the way, is any of this looking familiar? Yep, you’ve seen blocks

before...when you learned about iterators. But let’s talk more about

that in a bit.)

14.1 Methods That Take Procs

When we pass a proc into a method, we can control how, if, or how

many times we call the proc. For example, let’s say we want to do

something before and after some code is run:

def do_self_importantly some_proc

puts "Everybody just HOLD ON! I'm doing something..."

some_proc.call

puts "OK everyone, I'm done. As you were."

end

say_hello = Proc.new do

puts 'hello'

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=135

METHODS THAT TAKE PROCS 136

say_goodbye = Proc.new do

puts 'goodbye'

end

do_self_importantly say_hello

do_self_importantly say_goodbye

Everybody just HOLD ON! I'm doing something...

hello

OK everyone, I'm done. As you were.

Everybody just HOLD ON! I'm doing something...

goodbye

OK everyone, I'm done. As you were.

Maybe that doesn’t appear particularly fabulous...but it is. It’s all too

common in programming to have strict requirements about what must

be done when. Remember opening and closing a file? If you want to

save or load a file, you have to open the file, write or read the relevant

data, and then close the file. If you forget to close the file, Bad Things

can happen. But each time you want to save or load a file, you have

to do the same thing: open the file, do what you really want to do, and

then close the file. It’s tedious and easy to forget. But with this trick,

it’s not even an issue.

You can also write methods that will determine how many times (or

even whether) to call a proc. Here’s a method that will call the proc

passed in about half of the time and another that will call it twice:

def maybe_do some_proc

if rand(2) == 0

some_proc.call

end

end

def twice_do some_proc

some_proc.call

some_proc.call

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=136

METHODS THAT TAKE PROCS 137

wink = Proc.new do

puts '<wink>'

end

glance = Proc.new do

puts '<glance>'

end

maybe_do wink

maybe_do wink

maybe_do glance

maybe_do glance

twice_do wink

twice_do glance

<wink>

<wink>

<wink>

<wink>

<glance>

<glance>

These are some of the more common uses of procs that enable us to do

things we simply could not have done using methods alone. Sure, you

could write a method to wink twice, and you could do it with your left

pinky! But you couldn’t write one to just do something twice.

Before we move on, let’s look at one last example. So far the procs we

have passed in have been fairly similar to each other. This time they will

be quite different, so you can see how much such a method depends on

the procs passed into it. Our method will take some object and a proc

and will call the proc on that object. If the proc returns false, we quit;

otherwise, we call the proc with the returned object. We keep doing

this until the proc returns false (which it had better do eventually, or

the program will crash). The method will return the last non-false value

returned by the proc.

def do_until_false first_input, some_proc

input = first_input

output = first_input

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=137

METHODS THAT TAKE PROCS 138

while output

input = output

output = some_proc.call input

end

input

end

build_array_of_squares = Proc.new do |array|

last_number = array.last

if last_number <= 0

false

else

Take off the last number...

array.pop

...and replace it with its square...

array.push last_number*last_number

...followed by the next smaller number.

array.push last_number-1

end

end

always_false = Proc.new do |just_ignore_me|

false

end

puts do_until_false([5], build_array_of_squares).inspect

yum = 'lemonade with a hint of orange blossom water'

puts do_until_false(yum, always_false)

[25, 16, 9, 4, 1, 0]

lemonade with a hint of orange blossom water

OK, so that was a pretty weird example, I’ll admit. But it shows how dif-

ferently our method acts when given very different procs. (Do yourself

a favor, and try that lemonade. Unbelievable.)

The inspect method is a lot like to_s, except the string it returns tries

to show you the Ruby code for building the object you passed it. Here

it shows us the whole array returned by our first call to do_until_false.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=138

METHODS THAT RETURN PROCS 139

Also, you might notice that we never actually squared that 0 on the end

of that array, but since 0 squared is still just 0, we didn’t have to do

this. And since always_false was, you know, always false, do_until_false

didn’t do anything at all the second time we called it; it just returned

what was passed in.

14.2 Methods That Return Procs

One of the cool things you can do with procs is create them in methods

and return them. This allows all sorts of crazy programming power

(things with impressive names, such as lazy evaluation, infinite data

structures, and currying). I don’t actually do these things very often,

but they are just about the sexiest programming techniques around.

In this example, compose takes two procs and returns a new proc that,

when called, calls the first proc and passes its result into the second:

def compose proc1, proc2

Proc.new do |x|

proc2.call(proc1.call(x))

end

end

square_it = Proc.new do |x|

x * x

end

double_it = Proc.new do |x|

x + x

end

double_then_square = compose double_it, square_it

square_then_double = compose square_it, double_it

puts double_then_square.call(5)

puts square_then_double.call(5)

100

50

(Notice that the call to proc1 had to be inside the parentheses for proc2

in order for it to run first.)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=139

PASSING BLOCKS (NOT PROCS) INTO METHODS 140

14.3 Passing Blocks (Not Procs) into Methods

OK, so this has been more theoretically cool than actually cool, partly

because this is all a bit of a hassle to use. I’m man enough to admit

that. A lot of the problem is that we have to go through three steps

(defining the method, making the proc, and calling the method with the

proc) when it sort of feels like there should be only two (defining the

method and passing the block of code right into the method, without

using a proc at all), since most of the time you don’t want to use the

proc/block after you pass it into the method. It should be...more like

how iterators work! Sho’ nuff, baby:

class Array

def each_even(&was_a_block__now_a_proc)

We start with "true" because

arrays start with 0, which is even.

is_even = true

self.each do |object|

if is_even

was_a_block__now_a_proc.call object

end

Toggle from even to odd, or odd to even.

is_even = !is_even

end

end

end

fruits = ['apple', 'bad apple', 'cherry', 'durian']

fruits.each_even do |fruit|

puts "Yum! I just love #{fruit} pies, don't you?"

end

Remember, we are getting the even-numbered *elements*

of the array, which in this case are all odd numbers,

because I live only to irritate you.

[1, 2, 3, 4, 5].each_even do |odd_ball|

puts "#{odd_ball} is NOT an even number!"

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=140

PASSING BLOCKS (NOT PROCS) INTO METHODS 141

Yum! I just love apple pies, don't you?

Yum! I just love cherry pies, don't you?

1 is NOT an even number!

3 is NOT an even number!

5 is NOT an even number!

To pass in a block to each_even, all we had to do was stick the block

after the method. You can pass a block into any method this way,

though many methods will just ignore the block. In order to make your

method not ignore the block but grab it and turn it into a proc, put the

name of the proc at the end of your method’s parameter list, preceded

by an ampersand (&). So, that part is a little tricky but not too bad, and

you have to do that only once (when you define the method). Then you

can use the method over and over again, just like the built-in methods

that take blocks, such as each and times. (Remember 5.times do...? What

a cutie....)

If you get confused (I mean, there’s this each and its block inside

each_even), just remember what each_even is supposed to do: call the

block passed in with every other element in the array. Once you’ve

written it and it works, you don’t need to think about what it’s actually

doing under the hood (“which block is called when?”); in fact, that’s

exactly why we write methods like this—so we never have to think

about how they work again. We just use them.

I remember one time I wanted to profile some code I was writing; you

know, I wanted to time how long it took to run. I wrote a method that

takes the time before running the code block, then runs it, then takes

the time again at the end, and finally figures out the difference. And it

went a little something like this:

def profile block_description, &block

start_time = Time.new

block.call

duration = Time.new - start_time

puts "#{block_description}: #{duration} seconds"

end

profile '25000 doublings' do

number = 1

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=141

A FEW THINGS TO TRY 142

25000.times do

number = number + number

end

puts "#{number.to_s.length} digits"

That's the number of digits in this HUGE number.

end

profile 'count to a million' do

number = 0

1000000.times do

number = number + 1

end

end

7526 digits

25000 doublings: 0.124976 seconds

count to a million: 0.19972 seconds

How simple! How elegant! Dude, admit it: you think I’m cool. With that

tiny method, we can now easily time any section of any program; we

just throw the code in a block, send it to profile, and do a little dance....

What could be simpler? Though we didn’t do it, you could find the

slow parts of your code and add more profiling calls nested inside your

original calls! Beautiful! In most languages, I would have to explicitly

add that timing code (the stuff in profile) around every section I wanted

to time. What a hassle. In Ruby, however, I get to keep it all in one

place and (more important) out of my way!

14.4 A Few Things to Try

• Even better profiling. After you do your profiling, see the slow parts

of your program, and either make them faster or learn to love them

as they are, you probably don’t want to see all of that profiling

anymore. But (I hope) you’re too lazy to go back and delete it

all...especially because you might want to use it again someday.

Modify the profile method so you can turn all profiling on and off

by changing just one line of code. Just one word!

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=142

A FEW THINGS TO TRY 143

• Grandfather clock. Write a method that takes a block and calls it

once for each hour that has passed today. That way, if I were to

pass in the block:

do

puts 'DONG!'

end

it would chime (sort of) like a grandfather clock. Test your method

out with a few different blocks.

Hint: You can use Time.new.hour to get the current hour. However,

this returns a number between 0 and 23, so you will have to alter

those numbers in order to get ordinary clock-face numbers (1 to

12).

• Program logger. Write a method called log that takes a string

description of a block (and, of course, a block). Similar to the

method do_self_importantly, it should puts a string telling you it

started the block and another string at the end telling you it fin-

ished and also telling you what the block returned. Test your

method by sending it a code block. Inside the block, put another

call to log, passing a block to it. In other words, your output

should look something like this:

Beginning "outer block"...

Beginning "some little block"...

..."some little block" finished, returning:

5

Beginning "yet another block"...

..."yet another block" finished, returning:

I like Thai food!

..."outer block" finished, returning: false

• Better program logger. The output from that last logger was kind

of hard to read, and it would just get worse the more you used it.

It would be so much easier to read if it indented the lines in the

inner blocks. So, you’ll need to keep track of how deeply nested

you are every time the logger wants to write something. To do

this, use a global variable, which is a variable you can see from

anywhere in your code. To make a global variable, just precede

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=143

A FEW THINGS TO TRY 144

your variable name with $, like so: $global, $nesting_depth, and

$big_top_pee_wee. In the end, your logger should output code like

this:

Beginning "outer block"...

Beginning "some little block"...

Beginning "teeny-tiny block"...

..."teeny-tiny block" finished, returning:

lots of love

..."some little block" finished, returning:

42

Beginning "yet another block"...

..."yet another block" finished, returning:

I love Indian food!

..."outer block" finished, returning:

true

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=144

Chapter 15

Beyond This Fine Book
Well, that’s about all you’re going to learn from this book. Congratula-

tions, programmer! You’ve learned a lot! Maybe you don’t feel like you

remember everything, or you skipped over some parts...really, that’s

just fine. Programming isn’t about what you know; it’s about what you

can figure out. As long as you know where to find out the things you

forgot, you’re doing just fine. (I was looking stuff up constantly as I was

writing this.)

Where do you look stuff up (besides here)? If there’s something strange

and it don’t look good...who you gonna call?

I look for help with Ruby in three main places. If it’s a small question,

and I think I can experiment on my own to find the answer, I use irb.

If it’s a bigger question, I look it up in my PickAxe. And if I just can’t

figure it out on my own, then I ask for help on ruby-talk.

15.1 irb: Interactive Ruby

If you installed Ruby, then you installed irb. To use it, just go to your

command prompt, and type irb. When you’re in irb, you can type in

any Ruby expression you want, and it will tell you the value of it. Type

in 1+2, and it will tell you 3 (note that you don’t have to use puts). It’s

kind of like a giant Ruby calculator. When you are done, type exit.

There’s a lot more to irb than this, but you can learn all about it in the

PickAxe.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

THE PICKAXE: Programming Ruby 146

15.2 The PickAxe: Programming Ruby

Absolutely the Ruby book to get is Programming Ruby, The Pragmatic

Programmers’ Guide by Dave Thomas and others (from the Pragmatic

Bookshelf).1 Although I highly recommend picking up the second edi-

tion of this excellent book, which covers all of Ruby 1.8 (that is, the

Ruby in this book), you can also get a slightly older (but still mostly

relevant) version for free online. (Actually, if you installed the Windows

version of Ruby, you already have it.)

At the time of this writing, Ruby 1.8 is the stable, production version

of the language; Ruby 1.9 is the cutting-edge version. If you are using

Ruby 1.9, then you’ll want the latest version: Programming Ruby 1.9,

The Pragmatic Programmers’ Guide.2

You can find just about everything about Ruby, from the basic to the

advanced, in this book. It’s easy to read, it’s comprehensive, and it’s

just about perfect. I wish every language had a book of this quality. At

the back of the book, you’ll find a huge section detailing every method

in every class, explaining it and giving examples. (This is where you

really want the second edition.) I just love this book!

You can get it from a number of places (including the Pragmatic Pro-

grammers’ own site). My favorite place for the free first edition is http://

ruby-doc.org/. That version has a nice table of contents on the side, as

well as an index. (ruby-doc.org has lots of other great documentation

as well, such as for the Core API and Standard Library...basically, it

documents everything Ruby comes with right out of the box. Check it

out.)

And why is it called the PickAxe? Well, there’s a picture of a pickaxe on

the cover of the book. It’s a silly name, I guess, but it stuck.

15.3 Ruby-Talk: The Ruby Mailing List

Even with irb and the PickAxe, sometimes you still can’t figure it out. Or

perhaps you want to know whether someone already created whatever

it is you are working on and want to see whether you could use it

instead of writing your own. In these cases, the place to go is ruby-talk,

the Ruby mailing list. It’s full of friendly, smart, helpful people. People

1http://www.pragprog.com/titles/ruby/programming-ruby
2http://www.pragprog.com/titles/ruby3/programming-ruby-1-9

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://ruby-doc.org/
http://ruby-doc.org/
http://www.pragprog.com/titles/ruby/programming-ruby
http://www.pragprog.com/titles/ruby3/programming-ruby-1-9
http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=146

TIM TOADY 147

like...you know, me. To learn more about it, or to subscribe, have a

look at http://www.ruby-lang.org/en/community/mailing-lists/.

WARNING: There’s a lot of mail on the mailing list every day. I have mine

automatically sent to a specific mail folder so it doesn’t get in my way.

If you don’t want to deal with all that mail, though, you don’t have to;

the ruby-talk mailing list is mirrored to the newsgroup comp.lang.ruby,

and vice versa, so you can see the same messages there.

15.4 Tim Toady

Something I have tried to shield you from, but that you will surely

run into soon, is the concept of TMTOWTDI (pronounced Tim Toady, I

think): There’s More Than One Way To Do It.

Now some will tell you what a wonderful thing TMTOWTDI is, while

others feel quite differently. I think it’s pretty cool, because having

more than one way to do something feels more expressive. Nonetheless,

I think it’s a terrible way to teach someone how to program. (Learning

one way to do something is challenging and confusing enough.)

However, now that you are moving beyond this book, you’ll be see-

ing much more diverse code. For example, I can think of at least five

other ways to make a string (aside from surrounding some text in single

quotes), and each one works slightly differently. I showed you only the

simplest of the six.

And when we talked about branching, I showed you if, but I didn’t show

you unless. I’ll let you figure that one out in irb.

Another nice little shortcut you can use with if, unless, and while is the

cute one-line version:

These words are from a program I wrote to generate

English-like babble. Cool, huh?

puts 'combergearl thememberate' if 5 == 2**2 + 1**1

puts 'supposine follutify' unless 'Chris'.length == 5

combergearl thememberate

And finally, there is another way of writing methods that take blocks

(not procs). We saw the thing where we grabbed the block and turned it

into a proc using the &block trick in our parameter list when we define

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://www.ruby-lang.org/en/community/mailing-lists/
http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=147

TIM TOADY 148

the method. Then, to call the block, we just use block.call. Well, there’s

a shorter way (though I personally find it more confusing). Instead of

this...

def do_it_twice(&block)

block.call

block.call

end

do_it_twice do

puts 'murditivent flavitemphan siresent litics'

end

murditivent flavitemphan siresent litics

murditivent flavitemphan siresent litics

you do this...

def do_it_twice

yield

yield

end

do_it_twice do

puts 'buritiate mustripe lablic acticise'

end

buritiate mustripe lablic acticise

buritiate mustripe lablic acticise

I don’t know...what do you think? Maybe it’s just me, but yield?! If it

was something like call_the_hidden_block, that would make a lot more

sense to me. A lot of people say yield makes sense to them. But I guess

that’s what TMTOWTDI is all about: they do it their way, and I’ll do it

my way.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=148

THE END 149

15.5 THE END

You go, you big, bad programmer, you. And if you liked the book or

didn’t (but especially if you did), drop me a line:

chris@pine.fm

Use it for good and not for evil. :)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=149

Appendix A

Possible Solutions
Since the first edition of this book, the single question I have been asked

the most is “Where are the answers to the exercises?”

My reluctance centered around the first occurrence of the word the in

that question.

The answers? There’s more than one right answer, of course. Many,

many more. These aren’t math problems. Even the first exercises,

which are sort of like math problems, have many possible solutions.

If, instead of writing a program about orange trees or the minutes in a

decade, you were asked to write a poem about them, it would be silly (if

not downright harmful) to include “the answers.”

That was my reasoning, anyway. Kind of stupid, in retrospect—while

these aren’t math problems, neither are they poems.

Still, I’m really attached to the idea that there’s no one right answer

here, so I did a few things to drive that point home. First, notice the

title to this appendix: possible solutions, not the solutions.

Then I went through and did each exercise twice. Yes, seriously. The No more complaining

about how hard the

exercises were, OK? At

least you had to do them

only once.

first time is to show just one possible way that you could have done it,

given what you have learned up to that point in the book. The second

time is to show you how I would do it, using whatever techniques tickled

my fancy. Some of these techniques are not covered in this book, so it’s

OK if you don’t understand exactly what’s going on. These programs

tend to be more complex but also shorter (sometimes much shorter)

and sometimes more correct or robust. Often cuter. (I like cute code.)

Ignore them or study them as you prefer.

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

EXERCISES FROM CHAPTER 2 151

A.1 Exercises from Chapter 2

Hours in a Year (from on page 12)

How you could do it:

puts 24*365

8760

How I would do it:

depends on if it's a leap year

puts 24*365

puts "(or #{24*366} on occasion)"

8760

(or 8784 on occasion)

Minutes in a Decade (from on page 12)

How you could do it:

puts 60*24*(365*10 + 2)

5258880

How I would do it:

depends on how many leap years in that decade

puts "#{60*24*(365*10 + 2)} or #{60*24*(365*10 + 3)}"

5258880 or 5260320

Your Age in Seconds (from on page 13)

How you could do it:

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=151

EXERCISES FROM CHAPTER 5 152

puts 60*60*24*(365*32 + 9)

1009929600

How I would do it:

puts(Time.new - Time.gm(1976, 8, 3, 13, 31))

1040353874.92412

Our Dear Author’s Age (from on page 13)

How you could do it:

puts 1025000000/(60*60*24*365)

32

And that’s pretty much how I would do it, too. :)

A.2 Exercises from Chapter 5

Full Name Greeting (from on page 28)

How you could do it:

puts 'What is your first name?'

f_name = gets.chomp

puts 'What is your middle name?'

m_name = gets.chomp

puts 'What is your last name?'

l_name = gets.chomp

full_name = f_name + ' ' + m_name + ' ' + l_name

puts 'Hello, ' + full_name + '!'

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=152

EXERCISES FROM CHAPTER 5 153

What is your first name?

Sam

What is your middle name?

I

What is your last name?

Am

Hello, Sam I Am!

How I would do it:

puts "What's your first name?"

f_name = gets.chomp

puts "What's your middle name?"

m_name = gets.chomp

puts "What's your last name?"

l_name = gets.chomp

puts "Chris Pine is cooler than you, #{f_name} #{m_name} #{l_name}."

What's your first name?

Marvin

What's your middle name?

K.

What's your last name?

Mooney

Chris Pine is cooler than you, Marvin K. Mooney.

Bigger, Better Favorite Number (from on page 28)

How you could do it:

puts 'Hey! What\'s your favorite number?'

fav_num = gets.chomp.to_i

better_num = fav_num + 1

puts 'That\'s ok, I guess, but isn\'t '+better_num.to_s+' just a bit better?'

Hey! What's your favorite number?

5

That's ok, I guess, but isn't 6 just a bit better?

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=153

EXERCISES FROM CHAPTER 6 154

How I would do it:

puts "Hey! What's your favorite number?"

fav_num = gets.chomp.to_i

puts "That's ok, I guess, but isn't #{fav_num + 1} just a bit better?"

Hey! What's your favorite number?

5

That's ok, I guess, but isn't 6 just a bit better?

A.3 Exercises from Chapter 6

Angry Boss (from on page 36)

How you could do it:

puts 'CAN\'T YOU SEE I\'M BUSY?! MAKE IT FAST, JOHNSON!'

request = gets.chomp

puts 'WHADDAYA MEAN "' + request.upcase + '"?!? YOU\'RE FIRED!!'

CAN'T YOU SEE I'M BUSY?! MAKE IT FAST, JOHNSON!

I want a raise

WHADDAYA MEAN "I WANT A RAISE"?!? YOU'RE FIRED!!

How I would do it:

names = ['johnson', 'smith', 'weinberg', 'filmore']

puts "CAN'T YOU SEE I'M BUSY?! MAKE IT FAST, #{names[rand(4)].upcase}!"

request = gets.chomp

puts "WHADDAYA MEAN \"#{request.upcase}\"?!? YOU'RE FIRED!!"

CAN'T YOU SEE I'M BUSY?! MAKE IT FAST, WEINBERG!

I quit

WHADDAYA MEAN "I QUIT"?!? YOU'RE FIRED!!

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=154

EXERCISES FROM CHAPTER 7 155

Table of Contents (from on page 36)

How you could do it:

title = 'Table of Contents'.center(50)

chap_1 = 'Chapter 1: Getting Started'.ljust(30) + 'page 1'.rjust(20)

chap_2 = 'Chapter 2: Numbers'.ljust(30) + 'page 9'.rjust(20)

chap_3 = 'Chapter 3: Letters'.ljust(30) + 'page 13'.rjust(20)

puts title

puts

puts chap_1

puts chap_2

puts chap_3

Table of Contents

Chapter 1: Getting Started page 1

Chapter 2: Numbers page 9

Chapter 3: Letters page 13

And how would I do it? Well, that was a different exercise (at the end of

Chapter 8).

A.4 Exercises from Chapter 7

“99 Bottles of Beer on the Wall” (from on page 57)

How you could do it:

num_at_start = 5 # change to 99 if you want

num_now = num_at_start

while num_now > 2

puts num_now.to_s + ' bottles of beer on the wall, ' +

num_now.to_s + ' bottles of beer!'

num_now = num_now - 1

puts 'Take one down, pass it around, ' +

num_now.to_s + ' bottles of beer on the wall!'

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=155

EXERCISES FROM CHAPTER 7 156

puts "2 bottles of beer on the wall, 2 bottles of beer!"

puts "Take one down, pass it around, 1 bottle of beer on the wall!"

puts "1 bottle of beer on the wall, 1 bottle of beer!"

puts "Take one down, pass it around, no more bottles of beer on the wall!"

5 bottles of beer on the wall, 5 bottles of beer!

Take one down, pass it around, 4 bottles of beer on the wall!

4 bottles of beer on the wall, 4 bottles of beer!

Take one down, pass it around, 3 bottles of beer on the wall!

3 bottles of beer on the wall, 3 bottles of beer!

Take one down, pass it around, 2 bottles of beer on the wall!

2 bottles of beer on the wall, 2 bottles of beer!

Take one down, pass it around, 1 bottle of beer on the wall!

1 bottle of beer on the wall, 1 bottle of beer!

Take one down, pass it around, no more bottles of beer on the wall!

How I would do it:

num_at_start = 5 # change to 99 if you want

num_bot = proc { |n| "#{n} bottle#{n == 1 ? '' : 's'}" }

num_at_start.downto(2) do |num|

puts "#{num_bot[num]} of beer on the wall, #{num_bot[num]} of beer!"

puts "Take one down, pass it around, #{num_bot[num-1]} of beer on the wall!"

end

puts "#{num_bot[1]} of beer on the wall, #{num_bot[1]} of beer!"

puts "Take one down, pass it around, no more bottles of beer on the wall!"

5 bottles of beer on the wall, 5 bottles of beer!

Take one down, pass it around, 4 bottles of beer on the wall!

4 bottles of beer on the wall, 4 bottles of beer!

Take one down, pass it around, 3 bottles of beer on the wall!

3 bottles of beer on the wall, 3 bottles of beer!

Take one down, pass it around, 2 bottles of beer on the wall!

2 bottles of beer on the wall, 2 bottles of beer!

Take one down, pass it around, 1 bottle of beer on the wall!

1 bottle of beer on the wall, 1 bottle of beer!

Take one down, pass it around, no more bottles of beer on the wall!

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=156

EXERCISES FROM CHAPTER 7 157

Deaf Grandma (from on page 57)

How you could do it:

puts 'HEY THERE, SONNY! GIVE GRANDMA A KISS!'

while true

said = gets.chomp

if said == "BYE"

puts 'BYE SWEETIE!'

break

end

if said != said.upcase

puts 'HUH?! SPEAK UP, SONNY!'

else

random_year = 1930 + rand(21)

puts 'NO, NOT SINCE ' + random_year.to_s + '!'

end

end

HEY THERE, SONNY! GIVE GRANDMA A KISS!

hi, grandma

HUH?! SPEAK UP, SONNY!

HI, GRANDMA!

NO, NOT SINCE 1946!

HOW YOU DOING?

NO, NOT SINCE 1934!

I SAID, HOW YOU DOING?

NO, NOT SINCE 1937!

OK

NO, NOT SINCE 1946!

BYE

BYE SWEETIE!

How I would do it:

puts 'HEY THERE, SONNY! GIVE GRANDMA A KISS!'

while true

said = gets.chomp

break if said == "BYE"

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=157

EXERCISES FROM CHAPTER 7 158

response = if said != said.upcase

'HUH?! SPEAK UP, SONNY!'

else

"NO, NOT SINCE #{1930 + rand(21)}!"

end

puts response

end

puts 'BYE SWEETIE!'

HEY THERE, SONNY! GIVE GRANDMA A KISS!

hi, grandma

HUH?! SPEAK UP, SONNY!

HI, GRANDMA!

NO, NOT SINCE 1934!

HOW YOU DOING?

NO, NOT SINCE 1942!

I SAID, HOW YOU DOING?

NO, NOT SINCE 1941!

OK

NO, NOT SINCE 1938!

BYE

BYE SWEETIE!

Deaf Grandma Extended (from on page 57)

How you could do it:

puts 'HEY THERE, PEACHES! GIVE GRANDMA A KISS!'

bye_count = 0

while true

said = gets.chomp

if said == 'BYE'

bye_count = bye_count + 1

else

bye_count = 0

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=158

EXERCISES FROM CHAPTER 7 159

if bye_count >= 3

puts 'BYE-BYE CUPCAKE!'

break

end

if said != said.upcase

puts 'HUH?! SPEAK UP, SONNY!'

else

random_year = 1930 + rand(21)

puts 'NO, NOT SINCE ' + random_year.to_s + '!'

end

end

HEY THERE, PEACHES! GIVE GRANDMA A KISS!

HI, GRANDMA!

NO, NOT SINCE 1937!

BYE

NO, NOT SINCE 1937!

BYE

NO, NOT SINCE 1947!

ADIOS, MUCHACHA!

NO, NOT SINCE 1938!

BYE

NO, NOT SINCE 1935!

BYE

NO, NOT SINCE 1945!

BYE

BYE-BYE CUPCAKE!

How I would do it:

puts 'HEY THERE, PEACHES! GIVE GRANDMA A KISS!'

bye_count = 0

while true

said = gets.chomp

if said == 'BYE'

bye_count += 1

else

bye_count = 0

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=159

EXERCISES FROM CHAPTER 7 160

break if bye_count >= 3

response = if said != said.upcase

'HUH?! SPEAK UP, SONNY!'

else

"NO, NOT SINCE #{1930 + rand(21)}!"

end

puts response

end

puts 'BYE-BYE CUPCAKE!'

HEY THERE, PEACHES! GIVE GRANDMA A KISS!

HI, GRANDMA!

NO, NOT SINCE 1932!

BYE

NO, NOT SINCE 1935!

BYE

NO, NOT SINCE 1931!

ADIOS, MUCHACHA!

NO, NOT SINCE 1933!

BYE

NO, NOT SINCE 1930!

BYE

NO, NOT SINCE 1942!

BYE

BYE-BYE CUPCAKE!

Leap Years (from on page 58)

How you could do it:

puts 'Pick a starting year (like 1973 or something):'

starting = gets.chomp.to_i

puts 'Now pick an ending year:'

ending = gets.chomp.to_i

puts 'Check it out... these years are leap years:'

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=160

EXERCISES FROM CHAPTER 7 161

year = starting

while year <= ending

if year%4 == 0

if year%100 != 0 || year%400 == 0

puts year

end

end

year = year + 1

end

Pick a starting year (like 1973 or something):

1973

Now pick an ending year:

1977

Check it out... these years are leap years:

1976

How I would do it:

puts 'Pick a starting year (like 1973 or something):'

starting = gets.chomp.to_i

puts 'Now pick an ending year:'

ending = gets.chomp.to_i

puts 'Check it out... these years are leap years:'

(starting..ending).each do |year|

next if year%4 != 0

next if year%100 == 0 && year%400 != 0

puts year

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=161

EXERCISES FROM CHAPTER 8 162

Pick a starting year (like 1973 or something):

1973

Now pick an ending year:

1977

Check it out... these years are leap years:

1976

A.5 Exercises from Chapter 8

Building and Sorting an Array (from on page 65)

How you could do it:

puts 'Give me some words, and I will sort them:'

words = []

while true

word = gets.chomp

if word == ''

break

end

words.push word

end

puts 'Sweet! Here they are, sorted:'

puts words.sort

Give me some words, and I will sort them:

banana

apple

cherry

Sweet! Here they are, sorted:

apple

banana

cherry

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=162

EXERCISES FROM CHAPTER 8 163

How I would do it:

puts 'Give me some words, and I will sort them:'

words = []

while true

word = gets.chomp

break if word.empty?

words << word

end

puts 'Sweet! Here they are, sorted:'

puts words.sort

Give me some words, and I will sort them:

banana

apple

cherry

Sweet! Here they are, sorted:

apple

banana

cherry

Table of Contents, Revisited (from on page 66)

How you could do it:

title = 'Table of Contents'

chapters = [['Getting Started', 1],

['Numbers', 9],

['Letters', 13]]

puts title.center(50)

puts

chap_num = 1

chapters.each do |chap|

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=163

EXERCISES FROM CHAPTER 8 164

name = chap[0]

page = chap[1]

beginning = 'Chapter ' + chap_num.to_s + ': ' + name

ending = 'page ' + page.to_s

puts beginning.ljust(30) + ending.rjust(20)

chap_num = chap_num + 1

end

Table of Contents

Chapter 1: Getting Started page 1

Chapter 2: Numbers page 9

Chapter 3: Letters page 13

How I would do it:

title = 'Table of Contents'

chapters = [['Getting Started', 1],

['Numbers', 9],

['Letters', 13]]

puts title.center(50)

puts

chapters.each_with_index do |chap, idx|

name, page = chap

chap_num = idx + 1

beginning = "Chapter #{chap_num}: #{name}"

ending = "page #{page}"

puts beginning.ljust(30) + ending.rjust(20)

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=164

EXERCISES FROM CHAPTER 9 165

Table of Contents

Chapter 1: Getting Started page 1

Chapter 2: Numbers page 9

Chapter 3: Letters page 13

A.6 Exercises from Chapter 9

Improved ask Method (from on page 80)

How you could do it:

def ask question

while true

puts question

reply = gets.chomp.downcase

if reply == 'yes'

return true

end

if reply == 'no'

return false

end

If we got this far, then we're going to loop

and ask the question again.

puts 'Please answer "yes" or "no".'

end

answer # This is what we return (true or false).

end

likes_it = ask 'Do you like eating tacos?'

puts likes_it

Do you like eating tacos?

yes

true

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=165

EXERCISES FROM CHAPTER 9 166

How I would do it:

def ask question

while true

puts question

reply = gets.chomp.downcase

return true if reply == 'yes'

return false if reply == 'no'

puts 'Please answer "yes" or "no".'

end

answer # This is what we return (true or false).

end

puts(ask('Do you like eating tacos?'))

Do you like eating tacos?

yes

true

Old-School Roman Numerals (from on page 81)

How you could do it:

def old_roman_numeral num

roman = ''

roman = roman + 'M' * (num / 1000)

roman = roman + 'D' * (num % 1000 / 500)

roman = roman + 'C' * (num % 500 / 100)

roman = roman + 'L' * (num % 100 / 50)

roman = roman + 'X' * (num % 50 / 10)

roman = roman + 'V' * (num % 10 / 5)

roman = roman + 'I' * (num % 5 / 1)

roman

end

puts(old_roman_numeral(1999))

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=166

EXERCISES FROM CHAPTER 9 167

MDCCCCLXXXXVIIII

How I would do it:

def old_roman_numeral num

raise 'Must use positive integer' if num <= 0

roman = ''

roman << 'M' * (num / 1000)

roman << 'D' * (num % 1000 / 500)

roman << 'C' * (num % 500 / 100)

roman << 'L' * (num % 100 / 50)

roman << 'X' * (num % 50 / 10)

roman << 'V' * (num % 10 / 5)

roman << 'I' * (num % 5 / 1)

roman

end

puts(old_roman_numeral(1999))

MDCCCCLXXXXVIIII

“Modern” Roman Numerals (from on page 81)

How you could do it:

def roman_numeral num

thous = (num / 1000)

hunds = (num % 1000 / 100)

tens = (num % 100 / 10)

ones = (num % 10)

roman = 'M' * thous

if hunds == 9

roman = roman + 'CM'

elsif hunds == 4

roman = roman + 'CD'

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=167

EXERCISES FROM CHAPTER 9 168

else

roman = roman + 'D' * (num % 1000 / 500)

roman = roman + 'C' * (num % 500 / 100)

end

if tens == 9

roman = roman + 'XC'

elsif tens == 4

roman = roman + 'XL'

else

roman = roman + 'L' * (num % 100 / 50)

roman = roman + 'X' * (num % 50 / 10)

end

if ones == 9

roman = roman + 'IX'

elsif ones == 4

roman = roman + 'IV'

else

roman = roman + 'V' * (num % 10 / 5)

roman = roman + 'I' * (num % 5 / 1)

end

roman

end

puts(roman_numeral(1999))

MCMXCIX

How I would do it:

def roman_numeral num

raise 'Must use positive integer' if num <= 0

digit_vals = [['I', 5, 1],

['V', 10, 5],

['X', 50, 10],

['L', 100, 50],

['C', 500, 100],

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=168

EXERCISES FROM CHAPTER 10 169

['D', 1000, 500],

['M', nil, 1000]]

roman = ''

remaining = nil

Build string "roman" in reverse.

build_rev = proc do |l,m,n|

num_l = m ? (num % m / n) : (num / n)

full = m && (num_l == (m/n - 1))

if full && (num_l>1 || remaining)

must carry

remaining ||= l # carry l if not already carrying

else

if remaining

roman << l + remaining

remaining = nil

end

roman << l * num_l

end

end

digit_vals.each {|l,m,n| build_rev[l,m,n]}

roman.reverse

end

puts(roman_numeral(1999))

MIM

A.7 Exercises from Chapter 10

Rite of Passage: Sorting (from on page 88)

How you could do it:

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=169

EXERCISES FROM CHAPTER 10 170

def sort arr

rec_sort arr, []

end

def rec_sort unsorted, sorted

if unsorted.length <= 0

return sorted

end

So if we got here, then it means we still

have work to do.

smallest = unsorted.pop

still_unsorted = []

unsorted.each do |tested_object|

if tested_object < smallest

still_unsorted.push smallest

smallest = tested_object

else

still_unsorted.push tested_object

end

end

Now "smallest" really does point to the

smallest element that "unsorted" contained,

and all the rest of it is in "still_unsorted".

sorted.push smallest

rec_sort still_unsorted, sorted

end

puts(sort(['can','feel','singing','like','a','can']))

a

can

can

feel

like

singing

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=170

EXERCISES FROM CHAPTER 10 171

How I would do it (well, aside from just using the built-in sort method):

The well-known quicksort algorithm.

def sort arr

return arr if arr.length <= 1

middle = arr.pop

less = arr.select{|x| x < middle}

more = arr.select{|x| x >= middle}

sort(less) + [middle] + sort(more)

end

p(sort(['can','feel','singing','like','a','can']))

["a", "can", "can", "feel", "like", "singing"]

Shuffle (from on page 90)

How you could do it:

def shuffle arr

shuf = []

while arr.length > 0

Randomly pick one element of the array.

rand_index = rand(arr.length)

Now go through each item in the array,

putting them all into new_arr except for the

randomly chosen one, which goes into shuf.

curr_index = 0

new_arr = []

arr.each do |item|

if curr_index == rand_index

shuf.push item

else

new_arr.push item

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=171

EXERCISES FROM CHAPTER 10 172

curr_index = curr_index + 1

end

Replace the original array with the new,

smaller array.

arr = new_arr

end

shuf

end

puts(shuffle([1,2,3,4,5,6,7,8,9]))

1

5

4

8

7

9

6

2

3

How I would do it:

def shuffle arr

arr.sort_by(&:rand)

end

p(shuffle([1,2,3,4,5,6,7,8,9]))

#<TypeError: wrong argument type Symbol (expected Proc)>

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=172

EXERCISES FROM CHAPTER 10 173

Dictionary Sort

(from on page 90)

How you could do it:

def dictionary_sort arr

rec_dict_sort arr, []

end

def rec_dict_sort unsorted, sorted

if unsorted.length <= 0

return sorted

end

So if we got here, then it means we still

have work to do.

smallest = unsorted.pop

still_unsorted = []

unsorted.each do |tested_object|

if tested_object.downcase < smallest.downcase

still_unsorted.push smallest

smallest = tested_object

else

still_unsorted.push tested_object

end

end

Now "smallest" really does point to the

smallest element that "unsorted" contained,

and all the rest of it is in "still_unsorted".

sorted.push smallest

rec_dict_sort still_unsorted, sorted

end

puts(dictionary_sort(['can','feel','singing.','like','A','can']))

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=173

EXERCISES FROM CHAPTER 10 174

A

can

can

feel

like

singing.

How I would do it:

The well-known quicksort algorithm.

def dictionary_sort arr

return arr if arr.length <= 1

middle = arr.pop

less = arr.select{|x| x.downcase < middle.downcase}

more = arr.select{|x| x.downcase >= middle.downcase}

sort(less) + [middle] + sort(more)

end

words = ['can','feel','singing.','like','A','can']

puts(dictionary_sort(words).join(' '))

A can can feel like singing.

Expanded english_number (from on page 97)

How you could do it:

def english_number number

if number < 0 # No negative numbers.

return 'Please enter a number that isn\'t negative.'

end

if number == 0

return 'zero'

end

No more special cases! No more returns!

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=174

EXERCISES FROM CHAPTER 10 175

num_string = '' # This is the string we will return.

ones_place = ['one', 'two', 'three',

'four', 'five', 'six',

'seven', 'eight', 'nine']

tens_place = ['ten', 'twenty', 'thirty',

'forty', 'fifty', 'sixty',

'seventy', 'eighty', 'ninety']

teenagers = ['eleven', 'twelve', 'thirteen',

'fourteen', 'fifteen', 'sixteen',

'seventeen', 'eighteen', 'nineteen']

zillions = [['hundred', 2],

['thousand', 3],

['million', 6],

['billion', 9],

['trillion', 12],

['quadrillion', 15],

['quintillion', 18],

['sextillion', 21],

['septillion', 24],

['octillion', 27],

['nonillion', 30],

['decillion', 33],

['undecillion', 36],

['duodecillion', 39],

['tredecillion', 42],

['quattuordecillion', 45],

['quindecillion', 48],

['sexdecillion', 51],

['septendecillion', 54],

['octodecillion', 57],

['novemdecillion', 60],

['vigintillion', 63],

['googol', 100]]

"left" is how much of the number

we still have left to write out.

"write" is the part we are

writing out right now.

write and left...get it? :)

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=175

EXERCISES FROM CHAPTER 10 176

left = number

while zillions.length > 0

zil_pair = zillions.pop

zil_name = zil_pair[0]

zil_base = 10 ** zil_pair[1]

write = left/zil_base # How many zillions left?

left = left - write*zil_base # Subtract off those zillions.

if write > 0

Now here's the recursion:

prefix = english_number write

num_string = num_string + prefix + ' ' + zil_name

if left > 0

So we don't write 'two billionfifty-one'...

num_string = num_string + ' '

end

end

end

write = left/10 # How many tens left?

left = left - write*10 # Subtract off those tens.

if write > 0

if ((write == 1) and (left > 0))

Since we can't write "tenty-two" instead of

"twelve", we have to make a special exception

for these.

num_string = num_string + teenagers[left-1]

The "-1" is because teenagers[3] is

'fourteen', not 'thirteen'.

Since we took care of the digit in the

ones place already, we have nothing left to write.

left = 0

else

num_string = num_string + tens_place[write-1]

The "-1" is because tens_place[3] is

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=176

EXERCISES FROM CHAPTER 10 177

'forty', not 'thirty'.

end

if left > 0

So we don't write 'sixtyfour'...

num_string = num_string + '-'

end

end

write = left # How many ones left to write out?

left = 0 # Subtract off those ones.

if write > 0

num_string = num_string + ones_place[write-1]

The "-1" is because ones_place[3] is

'four', not 'three'.

end

Now we just return "num_string"...

num_string

end

puts english_number(0)

puts english_number(9)

puts english_number(10)

puts english_number(11)

puts english_number(17)

puts english_number(32)

puts english_number(88)

puts english_number(99)

puts english_number(100)

puts english_number(101)

puts english_number(234)

puts english_number(3211)

puts english_number(999999)

puts english_number(1000000000000)

puts english_number(109238745102938560129834709285360238475982374561034)

zero

nine

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=177

EXERCISES FROM CHAPTER 10 178

ten

eleven

seventeen

thirty-two

eighty-eight

ninety-nine

one hundred

one hundred one

two hundred thirty-four

three thousand two hundred eleven

nine hundred ninety-nine thousand nine hundred ninety-nine

one trillion

one hundred nine quindecillion two hundred

thirty-eight quattuordecillion seven hundred forty-five ...

And that’s just about how I would do it, too.

Wedding Number (from on page 97)

I told you I didn’t do this one. It was a joke! Move on!

“Ninety-nine Bottles of Beer on the Wall.” (from on page 97)

How you could do it:

english_number as above, plus this:

num_at_start = 5 # change to 9999 if you want

num_now = num_at_start

while num_now > 2

puts english_number(num_now).capitalize + ' bottles of beer on the wall, ' +

english_number(num_now) + ' bottles of beer!'

num_now = num_now - 1

puts 'Take one down, pass it around, ' +

english_number(num_now) + ' bottles of beer on the wall!'

end

puts "Two bottles of beer on the wall, two bottles of beer!"

puts "Take one down, pass it around, one bottle of beer on the wall!"

puts "One bottle of beer on the wall, one bottle of beer!"

puts "Take one down, pass it around, no more bottles of beer on the wall!"

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=178

EXERCISES FROM CHAPTER 10 179

Five bottles of beer on the wall, five bottles of beer!

Take one down, pass it around, four bottles of beer on the wall!

Four bottles of beer on the wall, four bottles of beer!

Take one down, pass it around, three bottles of beer on the wall!

Three bottles of beer on the wall, three bottles of beer!

Take one down, pass it around, two bottles of beer on the wall!

Two bottles of beer on the wall, two bottles of beer!

Take one down, pass it around, one bottle of beer on the wall!

One bottle of beer on the wall, one bottle of beer!

Take one down, pass it around, no more bottles of beer on the wall!

How I would do it:

english_number as above, plus this:

num_at_start = 5 # change to 9999 if you want

num_bot = proc { |n| "#{english_number n} bottle#{n == 1 ? '' : 's'}" }

num_at_start.downto(2) do |num|

bottles =

puts "#{num_bot[num]} of beer on the wall, #{num_bot[num]} of beer!".capitalize

puts "Take one down, pass it around, #{num_bot[num-1]} of beer on the wall!"

end

puts "#{num_bot[1]} of beer on the wall, #{num_bot[1]} of beer!".capitalize

puts "Take one down, pass it around, no more bottles of beer on the wall!"

Five bottles of beer on the wall, five bottles of beer!

Take one down, pass it around, four bottles of beer on the wall!

Four bottles of beer on the wall, four bottles of beer!

Take one down, pass it around, three bottles of beer on the wall!

Three bottles of beer on the wall, three bottles of beer!

Take one down, pass it around, two bottles of beer on the wall!

Two bottles of beer on the wall, two bottles of beer!

Take one down, pass it around, one bottle of beer on the wall!

One bottle of beer on the wall, one bottle of beer!

Take one down, pass it around, no more bottles of beer on the wall!

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=179

EXERCISES FROM CHAPTER 11 180

A.8 Exercises from Chapter 11

Safer Picture Downloading (from on page 110)

Well, since I was asking you to adapt it to your computer, I can’t really

show you how to do it. I will show you the program I actually wrote,

though.

It’s a bit more complex that the other examples here, partly because it’s

a real, working tool.

For Katy, with love.

Download pictures from camera card.

require 'win32ole'

STDOUT.sync = true

Thread.abort_on_exception = true

Dir.chdir 'C:\Documents and Settings\Chris\Desktop\pictureinbox'

Always look here for pics.

pic_names = Dir['!undated/**/*.{jpg,avi}']

thm_names = Dir['!undated/**/*.{thm}']

Scan for memory cards in the card reader.

WIN32OLE.new("Scripting.FileSystemObject").Drives.each() do |x|

#driveType 1 is removable disk

if x.DriveType == 1 && x.IsReady

pic_names += Dir[x.DriveLetter+':/**/*.{jpg,avi}']

thm_names += Dir[x.DriveLetter+':/**/*.{thm}']

end

end

months = %w(jan feb mar apr may jun jul aug sep oct nov dec)

encountered_error = false

print "Downloading #{pic_names.size} files: "

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=180

EXERCISES FROM CHAPTER 11 181

pic_names.each do |name|

print '.'

is_movie = (name[-3..-1].downcase == 'avi')

if is_movie

orientation = 0

new_name = File.open(name) do |f|

f.seek(0x144,IO::SEEK_SET)

f.read(20)

end

new_name[0...3] = '%.2d' % (1 + months.index(new_name[0...3].downcase))

new_name = new_name[-4..-1] + ' ' + new_name[0...-5]

else

new_name, orientation = File.open(name) do |f|

f.seek(0x36, IO::SEEK_SET)

orientation_ = f.read(1)[0]

f.seek(0xbc, IO::SEEK_SET)

new_name_ = f.read(19)

[new_name_, orientation_]

end

end

[4,7,10,13,16].each {|n| new_name[n] = '.'}

if new_name[0] != '2'[0]

encountered_error = true

puts "\n"+'ERROR: Could not process "'+name+

'" because it\'s not in the proper format!'

next

end

save_name = new_name + (is_movie ? '.orig.avi' : '.jpg')

Make sure we don't save over another file!!

while FileTest.exist? save_name

new_name += 'a'

save_name = new_name + (is_movie ? '.orig.avi' : '.jpg')

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=181

EXERCISES FROM CHAPTER 11 182

case orientation

when 6

‘convert "#{name}" -rotate "90>" "#{save_name}"‘

File.delete name

when 8

‘convert "#{name}" -rotate "-90>" "#{save_name}"‘

File.delete name

else

File.rename name, save_name

end

end

print "\nDeleting #{thm_names.size} THM files: "

thm_names.each do |name|

print '.'

File.delete name

end

If something bad happened, make sure she

sees the error message before the window closes.

if encountered_error

puts

puts "Press [Enter] to finish."

puts

gets

end

Build Your Own Playlist (from on page 110)

How you could do it:

using the shuffle method as defined above

all_oggs = shuffle(Dir['**/*.ogg'])

File.open 'playlist.m3u', 'w' do |f|

all_oggs.each do |ogg|

f.write ogg+"\n"

end

end

puts 'Done!'

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=182

EXERCISES FROM CHAPTER 11 183

And that’s exactly how I’d do it, too.

Build a Better Playlist (from on page 110)

How you could do it:

def music_shuffle filenames

We don't want a perfectly random shuffle, so let's

instead do a shuffle like card-shuffling. Let's

shuffle the "deck" twice, then cut it once. That's

not enough times to make a perfect shuffle, but it

does mix things up a bit.

Before we do anything, let's actually *sort* the

input, since we don't know how shuffled it might

already be, and we don't want it to be *too* random.

filenames = filenames.sort

len = filenames.length

Now we shuffle twice.

2.times do

l_idx = 0 # index of next card in left pile

r_idx = len/2 # index of next card in right pile

shuf = []

NOTE: If we have an odd number of "cards",

then the right pile will be larger.

while shuf.length < len

if shuf.length%2 == 0

take card from right pile

shuf.push(filenames[r_idx])

r_idx = r_idx + 1

else

take card from left pile

shuf.push(filenames[l_idx])

l_idx = l_idx + 1

end

end

filenames = shuf

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=183

EXERCISES FROM CHAPTER 11 184

And cut the deck.

arr = []

cut = rand(len) # index of card to cut at

idx = 0

while idx < len

arr.push(filenames[(idx+cut)%len])

idx = idx + 1

end

arr

end

songs = ['aa/bbb', 'aa/ccc', 'aa/ddd',

'AAA/xxxx', 'AAA/yyyy', 'AAA/zzzz', 'foo/bar']

puts(music_shuffle(songs))

foo/bar

AAA/yyyy

aa/bbb

aa/ddd

AAA/xxxx

AAA/zzzz

aa/ccc

Well, that’s OK, I guess. It’s not all that random, and maybe if you

had a larger playlist you’d want to shuffle it three or four times...I don’t

really know.

A better way would be mix more carefully and on every level (genre,

artist, album). For example, if I have a playlist that is two-thirds lounge

and one-third jazz, I want a jazz song roughly every third song (and

rarely two in a row and never three in a row). Further, if I had, among

all the jazz songs, only two by Kurt Elling (travesty, I know), then one

should be somewhere in the first half of the playlist, and the other

should be somewhere in the last half. (But where in the respective

halves they appear should be truly random.) And all these constraints

must be met simultaneously.

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=184

EXERCISES FROM CHAPTER 11 185

What I do is find similar songs (let’s say songs on the same CD), mix

them up, and spread them out as far away from each other as I can in

the next grouping (say, songs by the same artist). Then I do the same

for the next level up (say, genre). The nice thing is that this algorithm

is recursive, so I can add levels for free if I want. For example, I have a

Billie Holiday CD with multiple recordings of one of the songs. I like it,

but I’d like those to be spread out as far from each other as possible in

the playlist (while respecting all other constraints at higher levels). No

problem—I just make a directory inside the CD directory and move the

similar recordings all in there, and the recursion takes care of the rest!

Enough talk; here’s how I would do it:

def music_shuffle filenames

songs_and_paths = filenames.map do |s|

[s, s.split('/')] # [song, path]

end

tree = {:root => []}

put each song into the tree

insert_into_tree = proc do |branch, song, path|

if path.length == 0 # add to current branch

branch[:root] << song

else # delve deeper

sub_branch = path[0]

path.shift # like "pop", but pops off the front

if !branch[sub_branch]

branch[sub_branch] = {:root => []}

end

insert_into_tree[branch[sub_branch], song, path]

end

end

songs_and_paths.each{|sp| insert_into_tree[tree, *sp]}

recursively:

- shuffle sub-branches (and root)

- weight each sub-branch (and root)

- merge (shuffle) these groups together

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=185

EXERCISES FROM CHAPTER 11 186

shuffle_branch = proc do |branch|

shuffled_subs = []

branch.each do |key, unshuffled|

shuffled_subs << if key == :root

unshuffled # At this level, these are all duplicates.

else

shuffle_branch[unshuffled]

end

end

weighted_songs = []

shuffled_subs.each do |shuffled_songs|

shuffled_songs.each_with_index do |song, idx|

num = shuffled_songs.length.to_f

weight = (idx + rand) / num

weighted_songs << [song, weight]

end

end

weighted_songs.sort_by{|s,v| v}.map{|s,v| s}

end

shuffle_branch[tree]

end

songs = ['aa/bbb', 'aa/ccc', 'aa/ddd',

'AAA/xxxx', 'AAA/yyyy', 'AAA/zzzz', 'foo/bar']

puts(music_shuffle(songs))

AAA/yyyy

aa/ccc

aa/bbb

foo/bar

AAA/zzzz

AAA/xxxx

aa/ddd

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=186

EXERCISES FROM CHAPTER 12 187

It might be hard to tell with such a tiny playlist, but with 500 songs

you really begin to appreciate how well this method works.

A.9 Exercises from Chapter 12

One Billion Seconds! (from on page 115)

Well, I don’t know your brithday, so I don’t know how you’d do it, but

here’s how I would do it:

I don't know what second I was born.

puts(Time.gm(1976, 8, 3, 13, 31) + 10**9)

And yes, I had a party. It was awesome

(at least the parts I remember).

Fri Apr 11 15:17:40 UTC 2008

Happy Birthday! (from on page 115)

How you could do it:

puts 'What year were you born?'

b_year = gets.chomp.to_i

puts 'What month were you born? (1-12)'

b_month = gets.chomp.to_i

puts 'What day of the month were you born?'

b_day = gets.chomp.to_i

b = Time.local(b_year, b_month, b_day)

t = Time.new

age = 1

while Time.local(b_year + age, b_month, b_day) <= t

puts 'SPANK!'

age = age + 1

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=187

EXERCISES FROM CHAPTER 12 188

What year were you born?

2002

What month were you born? (1-12)

2

What day of the month were you born?

20th

SPANK!

SPANK!

SPANK!

SPANK!

SPANK!

SPANK!

SPANK!

How I would do it:

puts 'Hey, when were you born? (Please use YYYYMMDD format.)'

input = gets.chomp

b_year = input[0..3].to_i

b_month = input[4..5].to_i

b_day = input[6..7].to_i

t = Time.new

t_year = t.year

t_month = t.month

t_day = t.day

age = t_year - b_year

if t_month < b_month || (t_month == b_month && t_day < b_day)

age -= 1

end

if t_month == b_month && t_day == b_day

puts 'HAPPY BIRTHDAY!!'

end

age.times { puts 'SPANK!' }

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=188

EXERCISES FROM CHAPTER 12 189

Hey, when were you born? (Please use YYYYMMDD format.)

20020220

SPANK!

SPANK!

SPANK!

SPANK!

SPANK!

SPANK!

SPANK!

Party Like It’s roman_to_integer mcmxcix! (from on page 120)

How you could do it:

def roman_to_integer roman

digit_vals = {'i' => 1,

'v' => 5,

'x' => 10,

'l' => 50,

'c' => 100,

'd' => 500,

'm' => 1000}

total = 0

prev = 0

index = roman.length - 1

while index >= 0

c = roman[index].chr.downcase

index = index - 1

val = digit_vals[c]

if !val

puts 'This is not a valid roman numeral!'

return

end

if val < prev

val = val * -1

else

prev = val

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=189

EXERCISES FROM CHAPTER 12 190

total = total + val

end

total

end

puts(roman_to_integer('mcmxcix'))

puts(roman_to_integer('CCCLXV'))

1999

365

How I would do it:

def roman_to_integer roman

digit_vals = {'i' => 1,

'v' => 5,

'x' => 10,

'l' => 50,

'c' => 100,

'd' => 500,

'm' => 1000}

total = 0

prev = 0

roman.reverse.each_char do |c_or_C|

c = c_or_C.downcase

val = digit_vals[c]

if !val

puts 'This is not a valid roman numeral!'

return

end

if val < prev

val *= -1

else

prev = val

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=190

EXERCISES FROM CHAPTER 12 191

total += val

end

total

end

puts(roman_to_integer('mcmxcix'))

puts(roman_to_integer('CCCLXV'))

#<NoMethodError: undefined method ‘each_char' for "xicxmcm":String>

Birthday Helper! (from on page 120)

How you could do it:

First, load in the birthdates.

birth_dates = {}

File.read('birthdates.txt').each_line do |line|

line = line.chomp

Find the index of first comma,

so we know where the name ends.

first_comma = 0

while line[first_comma].chr != ',' &&

first_comma < line.length

first_comma = first_comma + 1

end

name = line[0..(first_comma - 1)]

date = line[-12..-1]

birth_dates[name] = date

end

Now ask the user which one they want to know.

puts 'Whose birthday would you like to know?'

name = gets.chomp

date = birth_dates[name]

if date == nil

puts "Oooh, I don't know that one..."

else

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=191

EXERCISES FROM CHAPTER 12 192

puts date[0..5]

end

Whose birthday would you like to know?

Christopher Plummer

Dec 13

How I would do it:

First, load in the birthdates.

birth_dates = {}

File.readlines('birthdates.txt').each do |line|

name, date, year = line.split(',')

birth_dates[name] = Time.gm(year, *(date.split))

end

Now ask the user which one they want to know.

puts 'Whose birthday would you like to know?'

name = gets.chomp

bday = birth_dates[name]

if bday == nil

puts "Oooh, I don't know that one..."

else

now = Time.new

age = now.year - bday.year

if now.month > bday.month || (now.month == bday.month && now.day > bday.day)

age += 1

end

if now.month == bday.month && now.day == bday.day

puts "#{name} turns #{age} TODAY!!"

else

date = bday.strftime "%b %d"

puts "#{name} will be #{age} on #{date}."

end

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=192

EXERCISES FROM CHAPTER 13 193

Whose birthday would you like to know?

Christopher Pine

Christopher Pine will be 33 on Aug 03.

A.10 Exercises from Chapter 13

Extend the Built-in Classes (from on page 123)

How you could do it:

class Array

def shuffle

arr = self

Now we can just copy the old shuffle method.

shuf = []

while arr.length > 0

Randomly pick one element of the array.

rand_index = rand(arr.length)

Now go through each item in the array,

putting them all into new_arr except for

the randomly chosen one, which goes into

shuf.

curr_index = 0

new_arr = []

arr.each do |item|

if curr_index == rand_index

shuf.push item

else

new_arr.push item

end

curr_index = curr_index + 1

end

Replace the original array with the new,

smaller array.

arr = new_arr

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=193

EXERCISES FROM CHAPTER 13 194

shuf

end

end

class Integer

def factorial

if self <= 1

1

else

self * (self-1).factorial

end

end

def to_roman

I chose old-school roman numerals just to save space.

roman = ''

roman = roman + 'M' * (self / 1000)

roman = roman + 'D' * (self % 1000 / 500)

roman = roman + 'C' * (self % 500 / 100)

roman = roman + 'L' * (self % 100 / 50)

roman = roman + 'X' * (self % 50 / 10)

roman = roman + 'V' * (self % 10 / 5)

roman = roman + 'I' * (self % 5 / 1)

roman

end

end

puts [1,2,3,4,5].shuffle

puts 7.factorial

puts 73.to_roman

3

5

4

1

2

5040

LXXIII

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=194

EXERCISES FROM CHAPTER 13 195

How I would do it:

class Array

def shuffle

sort_by(&:rand) # "self" is implied, remember?

end

end

class Integer

def factorial

raise 'Must not use negative integer' if self < 0

(self <= 1) ? 1 : self * (self-1).factorial

end

def to_roman

I chose old-school roman numerals just to save space.

raise 'Must use positive integer' if self <= 0

roman = ''

roman << 'M' * (self / 1000)

roman << 'D' * (self % 1000 / 500)

roman << 'C' * (self % 500 / 100)

roman << 'L' * (self % 100 / 50)

roman << 'X' * (self % 50 / 10)

roman << 'V' * (self % 10 / 5)

roman << 'I' * (self % 5 / 1)

roman

end

end

Get ready for the pure awesome...

p 7.factorial.to_roman.split(//).shuffle

["X", "X", "M", "M", "M", "X", "M", "X", "M"]

Orange Tree (from on page 133)

How you could do it:

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=195

EXERCISES FROM CHAPTER 13 196

class OrangeTree

def initialize

@height = 0

@orange_count = 0

@alive = true

end

def height

if @alive

@height

else

'A dead tree is not very tall. :('

end

end

def count_the_oranges

if @alive

@orange_count

else

'A dead tree has no oranges. :('

end

end

def one_year_passes

if @alive

@height = @height + 0.4

@orange_count = 0 # old oranges fall off

if @height > 10 && rand(2) > 0

tree dies

@alive = false

'Oh, no! The tree is too old, and has died. :('

elsif @height > 2

new oranges grow

@orange_count = (@height * 15 - 25).to_i

"This year your tree grew to #{@height}m tall," +

" and produced #{@orange_count} oranges."

else

"This year your tree grew to #{@height}m tall," +

" but is still too young to bear fruit."

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=196

EXERCISES FROM CHAPTER 13 197

else

'A year later, the tree is still dead. :('

end

end

def pick_an_orange

if @alive

if @orange_count > 0

@orange_count = @orange_count - 1

'You pick a juicy, delicious orange!'

else

'You search every branch, but find no oranges.'

end

else

'A dead tree has nothing to pick. :('

end

end

end

ot = OrangeTree.new

23.times do

ot.one_year_passes

end

puts(ot.one_year_passes)

puts(ot.count_the_oranges)

puts(ot.height)

puts(ot.one_year_passes)

puts(ot.one_year_passes)

puts(ot.one_year_passes)

puts(ot.one_year_passes)

puts(ot.one_year_passes)

puts(ot.height)

puts(ot.count_the_oranges)

puts(ot.pick_an_orange)

This year your tree grew to 9.6m tall, and produced 119 oranges.

119

9.6

This year your tree grew to 10.0m tall, and produced 125 oranges.

Oh, no! The tree is too old, and has died. :(

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=197

EXERCISES FROM CHAPTER 13 198

A year later, the tree is still dead. :(

A year later, the tree is still dead. :(

A year later, the tree is still dead. :(

A dead tree is not very tall. :(

A dead tree has no oranges. :(

A dead tree has nothing to pick. :(

That’s pretty much how I would do it, too: clean and simple.

Interactive Baby Dragon (from on page 133)

How you could do it:

using the Dragon class from the chapter

puts 'What would you like to name your baby dragon?'

name = gets.chomp

pet = Dragon.new name

while true

puts

puts 'commands: feed, toss, walk, rock, put to bed, exit'

command = gets.chomp

if command == 'exit'

exit

elsif command == 'feed'

pet.feed

elsif command == 'toss'

pet.toss

elsif command == 'walk'

pet.walk

elsif command == 'rock'

pet.rock

elsif command == 'put to bed'

pet.put_to_bed

else

puts 'Huh? Please type one of the commands.'

end

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=198

EXERCISES FROM CHAPTER 14 199

How I would do it:

using the Dragon class from the chapter

puts 'What would you like to name your baby dragon?'

name = gets.chomp

pet = Dragon.new name

obj = Object.new # just a blank, dummy object

while true

puts

puts 'commands: feed, toss, walk, rock, put to bed, exit'

command = gets.chomp

if command == 'exit'

exit

elsif pet.respond_to?(command) && !obj.respond_to?(command)

I only want to accept methods that dragons have,

but that regular objects *don't* have.

pet.send command

else

puts 'Huh? Please type one of the commands.'

end

end

A.11 Exercises from Chapter 14

Even Better Profiling (from on page 142)

How you could do it:

def profile block_description, &block

To turn profiling on/off, set this

to true/false.

profiling_on = false

if profiling_on

start_time = Time.new

block.call

duration = Time.new - start_time

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=199

EXERCISES FROM CHAPTER 14 200

puts "#{block_description}: #{duration} seconds"

else

block.call

end

end

How I would do it:

$OPT_PROFILING_ON = false

def profile block_description, &block

if $OPT_PROFILING_ON

start_time = Time.new

block[]

duration = Time.new - start_time

puts "#{block_description}: #{duration} seconds"

else

block[]

end

end

Grandfather Clock (from on page 142)

How you could do it:

def grandfather_clock &block

hour = Time.new.hour

if hour >= 13

hour = hour - 12

end

if hour == 0

hour = 12

end

hour.times do

block.call

end

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=200

EXERCISES FROM CHAPTER 14 201

grandfather_clock do

puts 'DONG!'

end

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

How I would do it:

def grandfather_clock &block

hour = (Time.new.hour + 11)%12 + 1

hour.times(&block)

end

grandfather_clock { puts 'DONG!' }

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

Program Logger (from on page 143)

How you could do it:

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=201

EXERCISES FROM CHAPTER 14 202

def log desc, &block

puts 'Beginning "' + desc + '"...'

result = block.call

puts '..."' + desc + '" finished, returning: ' + result.to_s

end

log 'outer block' do

log 'some little block' do

1**1 + 2**2

end

log 'yet another block' do

'!doof iahT ekil I'.reverse

end

'0' == 0

end

Beginning "outer block"...

Beginning "some little block"...

..."some little block" finished, returning: 5

Beginning "yet another block"...

..."yet another block" finished, returning: I like Thai food!

..."outer block" finished, returning: false

How I would do it:

def log desc, &block

puts "Beginning #{desc.inspect}..."

result = block[]

puts "...#{desc.inspect} finished, returning: #{result}"

end

log 'outer block' do

log 'some little block' do

1**1 + 2**2

end

log 'yet another block' do

'!doof iahT ekil I'.reverse

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=202

EXERCISES FROM CHAPTER 14 203

end

'0' == 0

end

Beginning "outer block"...

Beginning "some little block"...

..."some little block" finished, returning: 5

Beginning "yet another block"...

..."yet another block" finished, returning: I like Thai food!

..."outer block" finished, returning: false

Better Program Logger (from on page 143)

How you could do it:

$logger_depth = 0

def log desc, &block

prefix = ' '*$logger_depth

puts prefix + 'Beginning "' + desc + '"...'

$logger_depth = $logger_depth + 1

result = block.call

$logger_depth = $logger_depth - 1

puts prefix + '..."' + desc + '" finished, returning: ' + result.to_s

end

log 'outer block' do

log 'some little block' do

log 'teeny-tiny block' do

'lOtS oF lOVe'.downcase

end

7 * 3 * 2

end

log 'yet another block' do

'!doof naidnI evol I'.reverse

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=203

EXERCISES FROM CHAPTER 14 204

'0' == "0"

end

Beginning "outer block"...

Beginning "some little block"...

Beginning "teeny-tiny block"...

..."teeny-tiny block" finished, returning: lots of love

..."some little block" finished, returning: 42

Beginning "yet another block"...

..."yet another block" finished, returning: I love Indian food!

..."outer block" finished, returning: true

How I would do it:

$logger_depth = 0

def log desc, &block

prefix = ' '*$logger_depth

puts prefix+"Beginning #{desc.inspect}..."

$logger_depth += 1

result = block[]

$logger_depth -= 1

puts prefix+"...#{desc.inspect} finished, returning: #{result}"

end

log 'outer block' do

log 'some little block' do

log 'teeny-tiny block' do

'lOtS oF lOVe'.downcase

end

7 * 3 * 2

end

log 'yet another block' do

'!doof naidnI evol I'.reverse

end

'0' == "0"

end

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=204

EXERCISES FROM CHAPTER 14 205

Beginning "outer block"...

Beginning "some little block"...

Beginning "teeny-tiny block"...

..."teeny-tiny block" finished, returning: lots of love

..."some little block" finished, returning: 42

Beginning "yet another block"...

..."yet another block" finished, returning: I love Indian food!

..."outer block" finished, returning: true

Report erratum
Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=205

Index
Symbols
! operator, 54

comments, 47

<, 41

<=, 42

==, 42

>, 41

>=, 42

[...] (), 118

** (exponentiation), 37

:: operator, 40

% (modulus), 37

&& operator, 54

~ in prompt, 6

< (), 89

\n (escape), 104

A
abs, 37

Alphabetizing, 42, 90

Angry boss program, 36

Arithmetic, 11–12

exponentiation, 37

factorials, 84

modulus and, 37

numbers vs. digits, 16

strings and, 15

Arrays, 116

described, 59–61

each (), 62–63

for English number example, 93

exercises for, 66

index numbers for slots, 60

iterators and, 63

methods for, 64–65

variables and, 63

ASCII characters, 34, 90

ask (), 83

Assignment, 19

B
Baby dragon exercise, 128–132

Bed-wetting experiment, 67, 79, 83

Bignums, 28

Blocks

exercises for, 143

iterators and, 63

methods and, 147

overview of, 134–135

parameters and, 135

passing to methods, 140–142

specifying, 62

Branching, 43–48

C
Calculator program, 11–12

capitalize (), 34

center (), 34–36

cheat (), 127

chomp (), 27, 57

chr (), 118

Civilization III example, 85

Classes

baby dragon exercise, 128–132

Class class, 121

creating, 123–124

exercises for, 115, 120, 123, 133

Hash class, 115–116

instance variables and, 124–127

methods, redefining, 122–123

naming, 112

new vs. initialize, 127–128

Range class, 116

Time class, 113–114

Closures, 134

Command prompt, 5, 9

gets (), 26

Comments, 47

Comparisons, 41–43, 114

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

COMPOSE () 207 METHODS

compose (), 139

Computers, headaches and, 99

Constants, 40

Conversions, 23–25, 29

Core API, 146

D
Deaf grandma program, 57

Digits vs. numbers, 16

Dir[] (), 107

Directories, overview of, 3

do keyword, 62

double_this (), 73

Double-quoted strings, 103–105

downcase (), 34, 42

DRY rule, xiv, 19, 70

Duby example, 74–76

E
each (), 62–63, 141

each_even (), 141

elsif keyword, 52

end keyword, 62, 100

English number example, 90–96

Epoch, 114

Exponentiation, 37

Expressions, 77, 105

F
Factorials, 84

File.open (), 100

File.read (), 101

Files

finding, 107

opening, 100

reading, 101

renaming, 107

saving, 100–101

Fixnums, 28

Floating-point numbers, 10

Floats, 10, 11, 25

Flow control

branching, 43–48

comparisons, 41–43

exercises for, 57–58

logical operators, 51–57

looping, 48–51

Folders, see Directories

G
gets (), 26, 49

Grandfather clock example, 143

Greenwich mean time (GMT), 113

H
Happy birthday program, 115

Hash class, 115–116

I
Index numbers, 60

Infinite loop, 51

initialize (), 126–128

inspect (), 138

Installation

Linux, 7–8

Mac OS X, 5–7

Windows, 2–4

Instance variables, 124–127

Integer class, 123

Integers, 10, 11, 24, 113

methods for, 123

types of, 28

irb, 145

Iterators, 63

J
Jaguar, 5

join (), 64

K
Keywords, 63

L
last (), 65

Laziness, as virtue, xiv, 35

Leap year program, 58

length (), 33

Lexicographical ordering, 42

Linux, Ruby installation, 7–8

Lists, see Arrays

ljust (), 35, 36

Local variables, 72–76

Logger exercises, 143

Logic exercise, 51

Logical operators, 54

Looping, 48–51

M
Mac OS X, Ruby installation, 5–7

Math object, 40

Methods

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

MODULUS 208 RUBY

about, 30–31

for arrays, 64–65

blocks and, 140–142, 147

comparison, 41–43

defining, 71

English number example, 90–96

expressions and, 77

local variables and, 73

naming, 71

objects and, 30

parameters for, 71–72

procs and, 135–139

procs, returning, 139

recursion and, 82–88

redefining, 123

return values and, 76–80

sorting and, 88–90

from String class, 121

string vs. number, 36

strings, 32–35

wrapper, 89

Modulus, 37

N
new (), 112, 121

Newline characters, 103

new vs. initialize, 127–128

“99 Bottles of Beer” program, 57, 97, 98

Numbers

arithmetic and, 11–12

vs. digits, 16

integers and floats, 10

programming exercises, 12

random, 38–39

see also Arithmetic; Integers

O
Objects, 30

in arrays, 60

creating, 127

creating and initializing, 126

equalities, 42

instance variables and, 124

saving, 101

YAML and, 101

see also Procs; Classes

Orange tree exercise, 133

P
Parameters, 71–72

blocks and, 135

Parentheses, 31, 38

Peanut butter and jelly sandwich

example, xi–xii

Photos, renaming, 107

PickAxe, 145, 146

Playlist exercise, 110

pop (), 65

print (), 108

private keyword, 132

Procs, 135–139

overview of, 134–135

returning, 139

profile (), 142

Profiling, 141

Programming

Angry boss example, 36

as an art form, xiv

defined, xii

DRY rule of, xiv, 19, 70

languages of, xiii

name exercise, 28

numbers exercises, 12

power of, 82

resources for, 145

Programming Ruby: The Pragmatic

Programmer’s Guide (Thomas et

al.), 146

Psychology survey program, 67, 79, 83

Public interface, 132

push (), 65

puts (), 10, 14, 25–26, 49, 65, 76

Q
Question mark, 118

R
rand (), 39, 57

Random numbers, 38–39

Ranges, 116–117

Recursion, 82–88, 93

recursive_sort (), 89

Repetition, see DRY rule

require (), 101

Return values, 76–80

reverse (), 32

rjust (), 35, 36

roll (), 125, 126

Roman numerals example, 81

Ruby

installation

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

RUBY-TALK 209 YIELD KEYWORD

Linux, 7–8

Mac OS X, 5–7

Windows, 2–4

version of, 3, 6, 8, 146

ruby-talk, 145, 146

S
Saving

importance of, 99

“99 Bottles of Beer” program, 98

with one method call, 105

string files, 100–101

YAML and, 101–103

SciTE, 2, 7

Scope operator, 40

Seed, 39

showing (), 125, 126

Slots, 60, 115, 116

sort (), 88

Sorting, 88–90

Spaces, 15, 35

square (), 75

srand (), 39

Standard Library, 146

Strings

arithmetic and, 15

arrays and, 118–119

assignment and variables, 19

case of, 34

comparing, 42

conversions, 23–25

described, 14

double-quoted, 103–105

hash slots and, 116

methods and, 32–35

newline characters and, 103

numbers vs. digits, 16

range, 116

spaces and, 15, 35

troubleshooting, 16–18

variables and, 105

YAML, 102

swapcase (), 34

Syntax coloring, 1

T
Table of contents exercise, 66

Text editors, 1, 2, 5, 7

TextMate, 5

TextWrangler, 5

Thomas, Dave, 146

“Tim Toady”, 147

Time class, 113–114

TMTOWTDI, 147

to_s (), 33

Troubleshooting

command prompt, 9

computer nature and, 99

gets (), 26

strings and numbers, 16–18

U
Ubuntu, 8

unless keyword, 147

upcase (), 34

V
Variables, 19–21, 22f, 28–29

instance, 124–127

local, 72–76

use of, 105

Versions, Ruby, 3, 6, 8, 146

W
Warning, 31

while keyword, 83

Windows, Ruby installation, 2–4

Wrapper method, 89

Y
YAML, 101–103, 105–107, 110

yield keyword, 148

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

The Pragmatic Bookshelf
Available in paperback and DRM-free PDF, our titles are here to help you stay on top of

your game. The following are in print as of July 2009; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with

Ruby

2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2008 9781934356173 200

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Continued on next page

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

pragprog.com

Title Year ISBN Pages

Learn to Program, 2nd Edition 2009 9781934356364 230

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy

Production-Ready Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Continued on next page

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

Title Year ISBN Pages

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

All About Ruby

Programming Ruby 1.9 (The Pickaxe for 1.9)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language.

• Up-to-date and expanded for Ruby version 1.9

• Complete documentation of all the built-in

classes, modules, and methods • Complete

descriptions of all standard libraries • Learn more

about Ruby’s web tools, unit testing, and

programming philosophy

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

Dave Thomas with Chad Fowler and Andy Hunt

(992 pages) ISBN: 978-1-9343560-8-1. $49.95

http://pragprog.com/titles/ruby3

Everyday Scripting with Ruby
Don’t waste that computer on your desk. Offload

your daily drudgery to where it belongs, and free

yourself to do what you should be doing: thinking.

All you need is a scripting language (free!), this

book (cheap!), and the dedication to work through

the examples and exercises. Learn the basics of the

Ruby scripting language and see how to create

scripts in a steady, controlled way using test-driven

design.

Everyday Scripting with Ruby: For Teams,

Testers, and You

Brian Marick

(320 pages) ISBN: 0-9776166-1-4. $29.95

http://pragprog.com/titles/bmsft

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragprog.com/titles/ruby3
http://pragprog.com/titles/bmsft

Ruby & GUIs

FXRuby
Get started developing GUI applications using

FXRuby. With a combination of tutorial exercises

and focused, technical information, this book goes

beyond the basics to equip you with proven,

practical knowledge and techniques for developing

real-world FXRuby applications. Learn directly

from the lead developer of FXRuby, and you’ll be

writing powerful and sophisticated GUIs in your

favorite programming language.

FXRuby Create Lean and Mean GUIs with Ruby

Lyle Johnson

(240 pages) ISBN: 978-1-9343560-7-4. $36.95

http://pragprog.com/titles/fxruby

Scripted GUI Testing with Ruby
If you need to automatically test a user interface,

this book is for you. Whether it’s Windows, a Java

platform (including Mac, Linux, and others) or a

web app, you’ll see how to test it reliably and

repeatably.

This book is for people who want to get their hands

dirty on examples from the real world—and who

know that testing can be a joy when the tools don’t

get in the way. It starts with the mechanics of

simulating button pushes and keystrokes, and

builds up to writing clear code, organizing tests,

and beyond.

Scripted GUI Testing with Ruby

Ian Dees

(192 pages) ISBN: 978-1-9343561-8-0. $34.95

http://pragprog.com/titles/idgtr

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragprog.com/titles/fxruby
http://pragprog.com/titles/idgtr

Ruby on Rails

Agile Web Development with Rails
Rails is a full-stack, open-source web framework,

with integrated support for unit, functional, and

integration testing. It enforces good design

principles, consistency of code across your team

(and across your organization), and proper release

management. This is the newly updated Third

Edition, which goes beyond the award winning

previous editions with new material covering the

latest advances in Rails 2.0.

Agile Web Development with Rails: Third

Edition

Sam Ruby, Dave Thomas, and David Heinemeier

Hansson, et al.

(784 pages) ISBN: 978-1-9343561-6-6. $43.95

http://pragprog.com/titles/rails3

Advanced Rails Recipes
A collection of practical recipes for spicing up your

web application without a lot of prep and cleanup.

You’ll learn how the pros have solved the tough

problems using the most up-to-date Rails

techniques (including Rails 2.0 features).

Advanced Rails Recipes

Mike Clark

(464 pages) ISBN: 978-0-9787392-2-5. $38.95

http://pragprog.com/titles/fr_arr

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragprog.com/titles/rails3
http://pragprog.com/titles/fr_arr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Learn To Program’s home page

http://pragprog.com/titles/ltp2

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/ltp2.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Prepared exclusively for Trieu Nguyen

Download at Boykma.Com

http://pragprog.com/titles/ltp2
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/ltp2
www.pragprog.com/catalog

	Contents
	Preface to the Second Edition
	Introduction
	What Is Programming?
	Programming Languages
	The Art of Programming

	Getting Started
	Windows
	Mac OS X
	Linux

	Numbers
	Did It Work?
	Introduction to puts
	Integer and Float
	Simple Arithmetic
	A Few Things to Try

	Letters
	String Arithmetic
	12 vs. '12'
	Problems

	Variables and Assignment
	Mixing It Up
	Conversions
	Another Look at puts
	The gets Method
	Did It Work?
	The chomp Method
	A Few Things to Try
	Mind Your Variables

	More About Methods
	Fancy String Methods
	A Few Things to Try
	Higher Math
	More Arithmetic
	Random Numbers
	The Math Object

	Flow Control
	Comparison Methods
	Branching
	Looping
	A Little Bit of Logic
	A Few Things to Try

	Arrays and Iterators
	The Method each
	More Array Methods
	A Few Things to Try

	Writing Your Own Methods
	Method Parameters
	Local Variables
	Experiment: Duby
	Return Values
	A Few Things to Try

	There's Nothing New to Learn in Chapter 10
	Recursion
	Rite of Passage: Sorting
	A Few Things to Try
	One More Example
	A Few More Things to Try

	Reading and Writing, Saving and Loading, Yin and...
	Doing Something
	The Thing About Computers...
	Saving and Loading for Grown-Ups
	YAML
	Diversion: Double-Quoted Strings
	Back to Our Regularly Scheduled Programming
	Renaming Your Photos
	A Few Things to Try

	New Classes of Objects
	The Time Class
	A Few Things to Try
	The Hash Class
	Ranges
	Stringy Superpowers
	A Few More Things to Try
	Classes and the Class Class

	Creating New Classes, Changing Existing Ones
	A Few Things to Try
	Creating Classes
	Instance Variables
	new vs. initialize
	Baby Dragon
	A Few More Things to Try

	Blocks and Procs
	Methods That Take Procs
	Methods That Return Procs
	Passing Blocks (Not Procs) into Methods
	A Few Things to Try

	Beyond This Fine Book
	irb: Interactive Ruby
	The PickAxe: Programming Ruby
	Ruby-Talk: The Ruby Mailing List
	Tim Toady
	THE END

	Possible Solutions
	Exercises from Chapter 2
	Exercises from Chapter 5
	Exercises from Chapter 6
	Exercises from Chapter 7
	Exercises from Chapter 8
	Exercises from Chapter 9
	Exercises from Chapter 10
	Exercises from Chapter 11
	Exercises from Chapter 12
	Exercises from Chapter 13
	Exercises from Chapter 14

	Index

