

My Job Went to India
And All I Got Was This Lousy Book

Chad Fowler

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

B o o k s h e l fP r a g m a t i c
Many of the designations used by manufacturers and sellers to distinguish their products are

claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf and the linking g device are trademarks of

The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create

better software and have more fun. For more information, as well as the latest Pragmatic

titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2005 Chad Fowler.

All rights resersvg.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,

in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9766940-1-8

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, September 2005

Version: 2005-8-29

http://www.pragmaticprogrammer.com

For Kelly Jeanne

Contents
Introduction 1

Part I—Choosing Your Market 10

1. Supply and Demand . 12

2. Coding Don’t Cut It Anymore 16

3. Lead or Bleed? . 19

4. Invest in Your Intelligence 22

5. Be a Generalist . 26

6. Be a Specialist . 31

7. Don’t Put All Your Eggs in Someone Else’s Basket 34

8. Be the Worst . 36

9. Love It or Leave It . 39

Part II—Investing in Your Product 42

10. Learn to Fish . 45

11. Understand Business Basics 48

12. Find a Mentor . 50

13. Be a Mentor . 54

14. Practice, Practice, Practice 56

15. The Way That You Do It 61

16. On the Shoulders of Giants 64

17. Automate Yourself into a Job 67

Part III—Executing 71

18. Right Now . 73

19. Mind Reader . 75

20. Daily Hit . 78

21. Remember Who You Work For 81

22. Be Where You’re At . 83

23. How Good a Job Can I Do Today? 86

24. How Much Are You Worth? 89

25. A Pebble in a Bucket of Water 92

26. Learn to Love Maintenance 95

CONTENTS vii

27. Eight-Hour Burn . 99

28. Learn How to Fail . 102

29. Say “No” . 105

30. Say It, Do It, Show It . 108

Part IV—Marketing...Not Just for Suits 112

31. Perceptions, Perschmeptions 115

32. Adventure Tour Guide . 118

33. Me Rite Reel Nice . 121

34. Being Present . 123

35. Suit Speak . 127

36. Change the World . 129

37. Let Your Voice Be Heard 131

38. Build Your Brand . 134

39. Release Your Code . 136

40. Remarkability . 138

41. Making the Hang . 140

Part V—Maintaining Your Edge 143

42. Already Obsolete . 145

43. You’ve Already Lost Your Job 147

44. Path with No Destination 149

45. Make Yourself a Map . 151

46. Watch the Market . 153

47. That Fat Man in the Mirror 155

48. The South Indian Monkey Trap 158

Part VI—If You Can’t Beat ’Em 161

49. Lead ’Em . 163

50. Manage ’Em . 165

51. Learn from Open-Source 168

52. Think Global . 170

What I Learned in India 173

Resources 176

A.1 Bibliography . 176

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=vii

It is true India has the advantage in software and China in hardware.

If India and China cooperate in the IT industry, we will be able to lead

the world...and it will signify the coming of the Asian century of the IT

industry.

Wen Jiabao, Chinese Premier, April 11, 2005

Introduction
I awoke to an odd smell. Where am I? I asked (aloud, I think).

I was in Bangalore, India’s Garden City. That odd smell was the remark-

ably foreign combination of pollution, ultraspicy food from the hotel’s

kitchen, and something else that I could never quite put my finger on.

It was my first morning there, and I was late for work. I didn’t feel bad

about that, considering the hellish 32-hour journey I had suffered to get

there. And that my India-savvy co-worker tricked me into an all-night

cultural immersion in the world’s scariest hotel, after getting off the plane

in Bombay the night before.

After coming to, I felt a panic, realizing that my driver must have been

waiting downstairs for an hour. Oh God, he’ll be angry, I thought, as I scram-

bled to get ready for the first in a series of all-day interviewing sessions.

That’s just what I need on my first morning in a place like this...an angry taxi

driver.

I rushed downstairs, resisting the fabulous aroma of a South Indian break-

fast, and ran out to ask the doorman to page my driver. I asked if the

driver had been there long. He had. Two hours. Ugh.

I spent the first five minutes in the car with Joseph apologizing profusely

over being late and making him wait. He laughed dismissively. This is my

job. I wait all day. And as I found out later, he really did. He didn’t just

drop me off at work and come back at a fixed time. He waited at the office

until the very minute I was ready to go. Without warning, at any time,

I could come down from the office and expect to hop into the car and be

driven away.

My first exposure to India in daylight was that drive across town from the

northwestern corner of Bangalore to the southwestern corner. The culture

shock started to hit me.

Bangalore is known as India’s Silicon Valley. Being from a small city back

home, it was exciting to realize that I had come to a technical mecca.

INTRODUCTION 2

More surprising, though, were the extreme contrasts between high tech

and low tech. I saw half-naked children playing in the dirt in front of a

huge Yahoo! sign. I saw a rickshaw with a Novell advertisement on the

back and another with what looked like a Sun Solaris CD dangling from

the rearview mirror as an ornament.

We drove past beautiful, state-of-the-art office buildings, filled with the

employees of some of the Western world’s most innovative companies. We

dodged buffalo in the street and begrudingly yielded to rickety bicycles

and full families on single mopeds.

We passed by fields containing huts made from twigs, mud, tarps, and

assorted garbage. We drove through crowds of well-dressed young peo-

ple, drinking coffee outside their office buildings before the start of the

day, only to drive a little farther to be propositioned by lepers begging at

a traffic light.

So before I even reached the office on my first day, my perspective had

changed. This was a world of great extremes. These foreign voices I

had heard through scratchy, unreliable phone connections, attached to the

brains whose code I’d been ruthlessly reviewing, lived here? These are the

people who are allegedly stealing our jobs?

I had come to India in the first stage of the setting up of a new software

development center for my company. My job was to interview and select

about 25 people who would form the “seed team” of a development shop

that would eventually house 250 people. More precisely, my job was to

reject more than 200 people. We had advertised our open jobs and received

nearly 30,000 applications. That’s four zeroes. You are reading it correctly.

We hired outside firms to help us whittle the 30,000 down to a more man-

ageable number and then used our own U.S.-based employees to further

work that number down to a short list of a couple hundred that we could

interview in person.

I was to be our interview panel’s executioner, sniffing out the weak and

finishing them off quickly and (I hoped) painlessly. While in India, I vis-

ited the hotel conference rooms of three different cities and met hundreds

of people. I probably took a secret pleasure from the fact that I was going

to go over and stop all these people from getting through the system and

“stealing” our jobs.

It was post-boom time. By that, I mean the DotCom bubble had burst. The

IT sector’s lifestyle had gone from rock ’n’ roll to Holiday Inn lounge act,

and it was showing in India as well.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=2

INTRODUCTION 3

In fact, what I found was not an army of people, plotting to steal our com-

forts for themselves. Unlike their counterparts in the West, these people

weren’t angry that they had to get a small television set or even that they

might not be able to afford this month’s cable TV bill. These were sons

and daughters who were scraping by, trying to raise money to support

their parents and their spouses’ parents. These were mothers and fathers

whose IT jobs meant the difference between really educating their children

or sending them to a school from which the further educational options

have a hard limit. They weren’t trying to steal the American dream. They

were trying to squeeze a once-dry economy for a few drops of life-giving

cash flow.

Ultimately, I was an executioner very much fit for the task. No physical

injuries resulted, but many interviewees left with bruised egos. What I left

with was a changed perspective. Things had changed. A vibrant society

of highly motivated and intelligent people existed here. And they weren’t

playing for amenities; they were competing for the survival of their fami-

lies.

You can’t underestimate—or blame—someone with that kind of motiva-

tion.

Things Ain’t What They Used to Be

According to the U.S. government, IT unemployment has doubled since

2000. The Bureau of Labor Statistics reports that between 2000 and 2004,

the number of programmers in the American IT industry dropped by 17%.

In just the first three months of 2005, U.S. techology companies cut 60,000

jobs—twice the number cut in the same period of the previous year.1 The

numbers are sobering. In this world in which every device seems to con-

tain a computer, could software development be a doomed profession?

Matters are made more confusing by the bipolar temperament of the IT

job market. Had you left and went on retreat in a cave in 2000 for several

months, you would have emerged into an IT employment landscape that

was as unrecognizable as Java to a COBOL programmer. In the mid- to

late-nineties, a gold rush took place in the IT industry. I remember reading

about employers giving BMWs as signing bonuses. A team from another

company actually auctioned itself off on eBay for a huge signing bonus.

1“Challenger Tech Sector Job Cuts Report,” http://challengergray.com/

Report erratum

http://challengergray.com/
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=3

INTRODUCTION 4

IT employment was a seller’s market, and people were jumping ship from

other vocations in droves.

The market was suddenly being flooded with new talent (or, at least, peo-

ple who considered themselves talented). At the time, demand was still

outpacing supply. I saw Java programmers being shipped in from India

who seemed to have passed the time during their flights reading their first

Java manual. The flood surely gave passage to some great software peo-

ple. But it also introduced a large population of people who wouldn’t have

ever considered a career in software—and probably shouldn’t have.

We’re all painfully aware that the boom has ended. When the bubble

burst, it was as if an unruly bunch of children had been interrupted jump-

ing on the bed and suddenly realized how much of a mess they had made

of their room. It was a mess they now had to clean up. Our industry

was filled with piles of unneeded software, hollow business models, and

increasingly irrelevant people.

The turn of the century saw IT being demoted from knight to squire. Orga-

nizationally, CIOs had bubbled to the top, often reporting to their compa-

nies’ CEOs. They were now being reorg’d back down under the COOs

and CFOs where they started. And with this demotion came the budget

cuts.

Where IT departments were previously under pressure to scoop up the

best talent before the competition did, they were now under pressure to

shed the excess baggage they had collected. In many cases, the reduction

in force didn’t come with a reduction in workload. Bubble or not, the tech-

nology boom made our businesses more reliant on IT than ever before.

Business processes from the sales floor to the call center were now resting

on the backs of IT’s systems.

So, here we were with way too much work to do and way too few jobs to

support all the work. What’s a poor CIO to do?

“Offshoring.” This silly-sounding made-up word now strikes fear into the

hearts of IT professionals throughout the Western world. Too much work

mixed with budget reductions leaves little choice for the nation’s CIOs.

Programmers in India can be hired for as low as a tenth of the salary of a

programmer in the United States. And without a standardized, objective

way to compare and contrast the talent difference, that’s a bargain difficult

for a smart business person to turn down. Even with the time zone and

cultural differences, it’s hard for a finance manager to imagine not saving

real money with the right offshoring setup.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=4

INTRODUCTION 5

So, jobs have been shipped overseas by the boatload. Many American

programmers have found themselves either unemployed or supporting

the skeleton crew as one of the last of a dying breed. Early-morning or

late-night teleconferences through fuzzy telephone connections with peo-

ple who “talk funny” are becoming a common occurrence in the software

development world.

And it looks like the burst of the bubble didn’t make a temporary trough.

This is the new IT landscape. Over the years since the boom, offshoring

has been growing at a steady rate. In 2004, IT outsourcing grew by 37%.2

And according to Gartner, a research and advisory firm, worldwide off-

shore spending on application development will more than double, reach-

ing $50 billion dollars by 2010.

It’s not just grunt work that’s going, either. While we’re already spending

$1.2 billion on R&D outsourcing, that number is expected to shoot up to

$12 billion by 2010.3

The IT offshoring boom has been historically associated with India. India

started with a marked advantage over many other low-cost countries,

largely because of its excellent educational institutions and, more impor-

tant, the prominence of English as a first or second language. But even

for India, competition is heating up. More and more business is being

shipped to Eastern Europe (where it’s easier to find multilingual employ-

ees to support European language–speaking nations), Russia, Malaysia,

and the Phillipines, to name just a few.

Most recently, China has begun to figure into the equation. You know,

China. They’re the ones who manufactured almost everything in your

house. Go to Wal-Mart, and try to buy a clock or a phone that wasn’t

made in China. It’s a real challenge. And now, they’ve got some for-

ward thinking Indians wondering how long the “offshoring bubble” has

left in India. Leading management consultancy McKinsey & Company

reports that although it will be some time before China could eclipse India

in IT offshoring, progress is being made. Chinese offshoring revenues

are increasing by 42% each year on average, and the number of English-

speaking college graduates in the Chinese workforce has more than dou-

bled since 2000.4

2http://management.silicon.com/itdirector/0,39024673,39127146,00.htm
3http://informationweek.com/story/showArticle.jhtml?articleID=160400498
4http://www.mckinseyquarterly.com/article_page.aspx?ar=1556&L2=4&L3=115&srid=21&gp=1

Report erratum

http://management.silicon.com/itdirector/0,39024673,39127146,00.htm
http://informationweek.com/story/showArticle.jhtml?articleID=160400498
http://www.mckinseyquarterly.com/article_page.aspx?ar=1556&L2=4&L3=115&srid=21&gp=1
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=5

INTRODUCTION 6

The bottom line is that things have changed for us professional software

developers here in the Western world. All signs indicate that the change is

not temporary. We can expect our DotCom bubble glory days to become

a more and more distant memory as the world continues to turn to lower-

cost sources of software development labor.

It’s All Our Fault

It’s easy to demonize Big Money America or criticize the government for

not protecting us. Or, for the truly adventurous of imagination, it’s easy

to believe that Indians have developed some sinister plot to maliciously

rob us of our comforts. However, even if there is an ounce of truth in these

sentiments, it is outweighed by the pounds of mediocrity under which our

Western industry has languished for the last several years.

It’s understandable that forlorn programmers would dump their personal

tragedies at the feet of anonymous companies and governing bodies. It’s

somehow comforting to drown one’s fear or despair in a healthy helping

of anger and strategically directed blame. And to make matters worse,

media sensationalists such as Lou Dobbs prey on our fears, hyping up the

problem and sounding a rallying cry whose primary purpose is to get bet-

ter ratings. But ultimately, blaming corporations is a dead-end road. We

can’t change corporate America. And though we have democracy on our

side, none of us can single-handedly steer this massive ship of a country.

So though comforting in times of fear and uncertainty, this game of blame-

the-big-guy is fruitless. We have no one to blame but ourselves.

This self-blaming attitude isn’t defeatist, though. In fact, blaming the gov-

ernment is the defeatist choice here. Forming labor unions and picketing

would be defeatist. Sitting on the couch flipping news channels and curs-

ing in a fit of nationalist rage would be defeatist. All these courses of action

lay the blame—and the imperative for action—at someone else’s feet.

If we can calm down enough to look at the situation rationally, we see that

it is our own fault that we’re in this mess. We live and work in an economic

ecosystem. In ecosystems, it’s the strong who survive. During a period of

staggering success, we’ve allowed ourselves to get fat, lazy, and slow. The

state of our craft has been marred by years of mediocrity.

The fact that we can take responsibility for and see the path that led to

our predicament is a good thing. It means we can start to take (and own)

corrective action.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=6

INTRODUCTION 7

It’s Up to Us

It’s time to face the music. We are where we are, and waiting for things

to change by themselves isn’t going to lead us anywhere different. The

trends aren’t reversing, and the government has no incentive to bail us

out. The good news is that each of us has the power to do something

about it individually. We can each take control of our own piece of the

situation, bringing sanity to the collective whole.

Of course, if you can’t stand the heat, the most obvious action is to get

out of the proverbial kitchen. Western IT has its share of post-boom dead-

weight still lingering around, nervously drawing a paycheck. For some

not-insignificant percentage of IT workers, the safest bet is to start looking

for an alternate line of work. Choosing when you leave and where you

go next is a lot less difficult than being thrown out. If you don’t have pas-

sion and a drive that would force you to create software whether you were

being paid for it or not, you’re not going to be able to continue to compete

with those who do.

For those who remain, here is the key to survival: Software is a business.

We’re going to have to be businesspeople. Our companies don’t employ

us because they love us. They never have, and they never will. That’s not

the job of a business. Businesses don’t exist so we can have a place to go

every day. The purpose of a business is to make money. To stay employed,

you’re going to have to understand how you fit into the business’s plan to

make money.

As we’ll explore later, keeping you employed costs your company a signif-

icant amount of money. Your company is investing in you. Your challenge

is to become an obviously good investment. If the business value you bring

is clear, you are far less likely to end up on the offshoring chopping block.

Think of your career as if it is the life cycle of a product that you are cre-

ating. That product is made up of you and your skills. In this book, we’ll

look at four facets that a business must focus on when designing, manu-

facturing, and selling a product. And we’ll see how these four facets can

be applied to our careers:

1. Choose your market. Pick the technologies and business domains

you focus on consciously and deliberately. How do you balance risk

and reward? How do supply and demand factor into the decision?

2. Invest in your product. Your knowledge and skills are the corner-

stone of your product. Properly investing in them is a critical part

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=7

INTRODUCTION 8

of making yourself marketable. Simply knowing how to program

in Visual Basic isn’t good enough anymore. What other skills might

you need in the new economy? How can you compete with both

your offshore and onshore rivals?

3. Execute. Simply having employees with a strong set of skills doesn’t

pay off for a company. The employees have to deliver. How do you

keep up the delivery pace without driving yourself into the dirt?

How do you know you’re delivering the right value for the com-

pany?

4. Market! The best product in history won’t get purchased if nobody

knows it exists. How do you get find recognition in both your com-

pany and the industry as a whole without “sucking up”?

The goal of this book is to give you a systematic way of approaching the

challenges that lie ahead of you in the new world of IT. We will walk

through specific examples and present a set of actions that you can take

right now that will have both short-term and long-term positive effects.

Ultimately, the goal is not to bring our jobs back. These low-value jobs

we’ve lost were meant to be sent offshore. Instead, we should be preparing

for the new wave of higher value jobs that will be created in their places.

Acknowledgments

I would have never written a book if not for Dave Thomas and Andy Hunt.

The Pragmatic Programmer [HT00] served as a catalyst for me, and I’ve been

inspired by their work ever since. Without Dave’s encouragement and

guidance, I would have never believed I was qualified to write this.

Juliet Thomas served as an editor early in the process of writing this book.

Her enthusiasm and perspective were invaluable. I received an amazing

amount of feedback from first-draft reviewers: Carey Boaz, Karl Brophey,

Brandon Campbell, Vik Chadha, Mauro Cicio, Mark Donoghue, Pat Eyler,

Ben Goodwin, Jacob Harris, Adam Keys, Steve Morris, Bill Nall, Wesley

Reiz, Avik Sengupta, Kent Spillner, Sandesh Tattitali, Craig Utley, Greg

Vaughn, and Peter W. A. Wood. They truly made the book better, and I

can’t thank them enough for their time, energy, and insight.

The ideas in this book were inspired by the many great people I’ve had the

opportunity to work with, both officially and unofficially, over the years.

For listening, teaching, and talking, thanks to Donnie Webb, Ken Smith,

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=8

INTRODUCTION 9

Walter Hoehn, James McMurry, Carey Boaz, David Alan Black, Avi Bryant,

Rich Kilmer, Steve Akers, Ali Sareea, and Jim Weirich.

Thanks to the all extended family that adopted us in India, and espe-

cially to Suman Nag, Ramesh R., Bharath Kalyanram, Sheela Singh and

Singh Ji, Rupali Wadhi, Fayaz Uddeen, A.K. Sreekanth, Brenda D’Souza,

Vishal Kapoor, and Deepa Rajamani.

Thanks to my parents for their constant support. And most importantly,

thanks go to my wife, Kelly, for making this all worthwhile.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=9

Part I

Choosing Your Market

CHOOSING YOUR MARKET 11

You’re about to make a big investment. It may not be a lot of money, but

it’s your time—your life. Many of us just float down the stream of our careers,

letting the current take us where it may. We just happen to get into Java or

Visual Basic, and then our employers finally spring for a training class on one

of the latest industry buzzwords. So, we float down that path for a while until

something else is handed to us. Our career is one big series of undirected

coincidences.

In The Pragmatic Programmer [HT00], Dave Thomas and Andy Hunt talk

about programming by coincidence. Most programmers can relate to the

idea: you start working on something, add a little code here, and add

a little more there. Maybe you start with an example program that you

copy and paste from a website. It seems to work, so you change it a little

to be more like the program you really need. You don’t really understand

what you’re doing, but you keep nudging the program around until it almost

completely meets your needs. The trouble is, you don’t understand how it

works, and like a house of cards, each new feature you add increases the

likelihood your program will fall apart.

As a software developer, it’s pretty obvious that programming by coinci-

dence is a bad thing. Yet so many of us allow important career choices to

be, in effect, coincidences. Which technologies should we invest in? Which

domain should we develop expertise in? Should we go broad or deep with

our knowledge? These are questions we really should be asking ourselves.

Imagine you’ve started a company and you’re developing what is destined

to be the company’s flagship product. Without a “hit” with this product,

your company is going to go bankrupt. How much attention do you pay to

who your target customers are? Before actually manufacturing the prod-

uct, how much thought do you put into what the product actually is? None

of us would let decisions like these be made for us. We’d be completely

attentive to every detail of the decision-making process.

So, why is it that most of us don’t pay this kind of attention to the choices we

make in our careers? If you think of your career as a business (which it is),

your “product” is made up of the services you have to offer. What are those

services? Who are you going to sell them to? Is demand for your services

going to grow or decline over the coming years? How big of a gamble are

you willing to take on these choices?

This part will help you answer these important questions for yourself.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=11

SUPPLY AND DEMAND 12

1 Supply and Demand

When the Web started to really take off, you could make a lot of money

creating simple HTML pages for companies. Every company wanted a

web page, and relatively few people knew how to make them. Companies

were willing to pay top dollar for “experienced” web designers, which

back then, meant that they knew the basics of HTML, hyperlinking, and

how to structure a site.

Making HTML pages is pretty simple. It’s hard to make really nice-looking

pages, but the basics are easy to grasp. As people observed the prices these

web designers were demanding, more and more people started picking

up books on HTML and teaching themselves. The market was hot, the

salaries or hourly fees were attractive, and the supply of HTML experts

started to rise as a response.

As the market flooded with web designers, the web people started to strat-

ify between the truly artistic and the utilitarian. Furthermore, competition

started to drive the prices down. As a result of lower prices, more com-

panies were willing to take their first step into an internet presence. They

might not have paid $5,000 for their first website, but they would pay $500.

Of course, some companies were still willing to give up the big bucks for a

fantastic website. And, certain web designers could still command fantastic

compensation.

Eventually, the web designer flood at the low-to-middle cost tiers receded.

Less talented web designers were replaced by end users and other IT folk

who didn’t necessarily specialize in HTML design. At this point, the sup-

ply, demand, and price of HTML creation reached an equilibrium.

This armchair history of the vocation of web design demonstrates an eco-

nomic model that we’ve all heard of, called supply and demand. When most

of us think of supply and demand, we think that it has to do largely with

what price something can and will be sold at. If there are more of an item

for sale than the number of people who want to buy that item, then the

price of the item will decrease. If there are more people who want the item

than there are items available to be purchased, the price of the item will

increase as potential buyers compete.

In addition to predicting the prices of goods and services, the supply and

demand model can predict how price changes will affect the number of

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=12

SUPPLY AND DEMAND 13

people willing to sell and purchase a product or service. There are usually

more buyers for any given thing at a lower price than at a higher one.

You can’t compete on

price. In fact, you can’t

afford to compete on

price.

Why is this important to us? The offshore soft-

ware trend has just injected a large supply of

low cost IT people into our economy. Though

we’re worried about losing jobs domestically,

the lower cost per programmer has actually

increased overall demand. At the same time, as

demand increases, price decreases. Competition in high-demand prod-

ucts and services hinges on price. In the employment market, that means

salary. You can’t compete on price. You can’t afford it. So, what do you

do?

The offshore market has injected its low-cost programmers into a rela-

tively narrow set of technologies. Java and .NET programmers are a dime

a dozen in India. India has a lot of Oracle DBAs as well. Less mainstream

technologies are very much underrepresented by the offshore develop-

ment shops. When choosing a technology set to focus your career on,

you should understand the effects of increased supply and lower prices

on your career prospects.

As a .NET programmer, you may find yourself competing with tens of

thousands of more people in the job market than you would if you were,

for example, a Python programmer. This would result in the average cost

of a .NET programmer decreasing significantly, possibly driving demand

higher (i.e., creating more .NET jobs). So, you’d be likely to find jobs avail-

able, but the jobs wouldn’t pay all that well. The supply of Python pro-

grammers might be much smaller than that of .NET programmers with a

demand to match.

If the Python job market were to support noticably higher prices per-

programmer, additional people might be attracted to supply their services

at this higher price range, resulting in competition that would drive the

price back down.

The whole thing is a balancing act. But, one thing seems certain (for

now). India caters to the already balanced IT services markets. You don’t

find mainstream Indian offshoring companies jumping on unconventional

technologies. They aren’t first-movers. They generally don’t take chances.

They wait for technology services markets to balance, and they disrupt

those markets with significantly lower per-programmer costs.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=13

SUPPLY AND DEMAND 14

Based on this observation, you might choose to compete in segments of

the job market in which there is actually lower demand. As unintuitive as

that may sound, if you’re worried about losing employment to offshoring,

one strategy would be to avoid the types of work that offshore companies

are doing. Offshore companies are doing work that is in high demand.

So, focusing on niche technologies is a strategy that, while not necessarily

making the competition less fierce—there are fewer jobs to go around—

might change the focus of competition from price to ability. That’s what

you need. You can’t compete on price, but you can compete on ability.

Also, with the average price of these mainstream programmers decreas-

ing, the demand will increase. An overall increase in demand for Java

programmers, for example, might actually result in more jobs (of a certain

type) at home—not fewer. An increase in the lower-priced offshore market

could drive overall demand, including a higher bracket of developers.

This happens in practice. To make offshoring work well, many companies

realize the need for a reserve of high-end, onshore developers who can set

standards, ensure quality, and provide technical leadership. An increase in

overall Java programming demand would naturally lead to an increase in

this category of Java work. The low-end jobs might be going offshore, but

there are more of the elite jobs to go around than there were pre-offshoring.

As we saw in the niche job markets, in this tier of Java development work,

the competition would shift from price to ability.

Exploit market

imbalances.

The most important lesson we can learn from

the supply and demand model is that with

increased demand comes increased price com-

petition. The tried-and-true, follow-the-jobs

strategy will put you squarely in price competition with offshore devel-

opers as your skills fit into the offshore-friendly balanced markets. To

compete in the mainstream technology market, you’ll have to compete

at a higher tier. Alternatively, one could exploit market imbalances—going

where the offshore companies won’t go. In either case, it pays to under-

stand the forces at work and to be skilled and nimble enough to react to

them.

Act on it!

1. Research current technical skill demand. Use job posting and career

websites to find out which skills are in high demand and in low

demand. Find the websites of some offshore outsourcing compa-

nies (or talk to employees of those companies if you work with them).

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=14

SUPPLY AND DEMAND 15

Compare the skills available via these companies with the high-

demand list you compiled. Make note of which skills appear to be

in high demand domestically with little penetration offshore.

Do a similar comparison between leading-edge technologies and

the skills available via offshore outsourcing firms. Keep your eyes on

both sets of technical skills that are underserved by the offshore com-

panies. How long does it take for them to fill the holes (if ever)? This

time gap is the window during which a market imbalance exists.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=15

CODING DON’T CUT IT ANYMORE 16

2 Coding Don’t Cut It Anymore

It’s not enough to think about what technologies you’re going to invest in.

After all, the technology part is a commodity, right? You’re not going to be

able to sit back and simply master a programming language or an operat-

ing system, letting the businesspeople take care of the business stuff. If all

they needed was a code robot, it would be easy to hire someone in another

country to do that kind of work. If you want to stay relevant, you’re going

to have to dive into the domain of the business you’re in.

In fact, a software person should not only understand a business domain

well enough to develop software for it but also become one of its authori-

ties. At a previous company, I saw an excellent example of this. There was

a database administration team consisted of people who really weren’t

interested in database technology. When I was first exposed to them, it was

a bit of a shock. Why are these people in Information Technology?, I thought.

In terms of technical skill, they just weren’t very strong. But, this team

had something special. Being the keepers and protectors of our enterprise

data, they actually knew the business domain better than almost any busi-

ness analyst we had. Their knowledge and understanding of the business

made them hot commodities in the internal job posting market. While

us geeks were looking at them disdainfully, the business for which they

worked recognized a ton of value in them.

You should think of your business domain experience as an important part

of your repertoire. If you’re a musician, when you add something to your

repertoire, it doesn’t just mean you’ve played the song once. It means you

truly know the song. You should apply the same theory to your business

domain experience. For example, having worked on a project in the health

insurance industry doesn’t guarantee that you understand the difference

between a HIPAA 835 and a HIPAA 837 EDI transaction. It’s this kind of

knowledge that differentiates two otherwise equivalent software develop-

ers in the right situation.

You might be “just a programmer,” but being able to speak to your busi-

ness clients in the language of their business domain is a critical skill.

Imagine how much easier life would be if everyone you had to work with

really understood how software development works. You wouldn’t have

to explain to them why it’s a bad idea to return 30,000 records in a single

page on a web application or why they shouldn’t pass out links to your

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=16

CODING DON’T CUT IT ANYMORE 17

development server. This is how your business clients feel about you:

Imagine how much easier it would be to work with these programmers if they

just understood what I was asking them for without me having to dumb every-

thing down and be so ridiculously specific! And, guess what? It’s the business

that pays your salary.

Just like technologies that become hot, business domains can be selected

in the same way. Java and .NET are the Big Things right now in software

development. If you learn them, you can compete for a job in one of the

many companies that will employ these technologies. The same is true

of business domains. You should put the same level of care into selecting

which industry to serve as you put into selecting which technologies to

master.

Now is the time to think

about business domains

you invest your time in.

In light of the importance that you should

place on selecting a business domain when

rounding out your portfolio, the company and

industry you choose to work for becomes a

significant investment on your part. If you

haven’t yet given real, intentional thought to which business domains you

should be investing in, now is the time. Each passing day is a missed

opportunity. Like leaving your savings in a low-yield savings account

when higher interest rates are to be had, leaving your development on the

business front in stasis is a bad investment choice.

Act on it!

1. Schedule lunch with a businessperson. Talk to them about how they

do their job. As you talk to them, ask yourself what you would have

to change or learn if you aspired to have their job. Ask about the

specifics of their daily work. Talk to them about how technology helps

them (or slows them down) on the job. Think about your work from

their perspective.

Do this regularly.

2. Pick up a trade magazine for your company’s industry. You proba-

bly don’t even have to buy one. Most companies have back issues

of trade rags lying around somewhere. Start trying to work your way

through a magazine. You may not understand everything you read,

but be persistent. Make lists of questions you can ask your manage-

ment or business clients. Even if your questions seem stupid to you,

your business clients will appreciate that you are trying to learn.

Look for industry websites that you can monitor on a regular basis. In

both the websites and the magazines, pay special attention to what

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=17

CODING DON’T CUT IT ANYMORE 18

the big news items and the feature articles are about. What is your

industry struggling with? What’s the hot new issue right now? What-

ever it is, bring it up with your business clients. Ask them to explain it

and to give you their opinions. Think about how these current trends

affect your company, your division, your team, and eventually your

work.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=18

LEAD OR BLEED? 19

3 Lead or Bleed?

If you’re going to invest your money, a lot of options are available to you.

You could put it in a savings account, but the interest it accrues probably

wouldn’t keep up with the pace of inflation. You could put it in govern-

ment savings bonds. Again, you don’t make much money as a result, but

they’re a safe bet.

Or, you could invest your money in a small startup company. You may, for

example, put in several thousand dollars in exchange for a small portion

of ownership in the company. If the company’s idea is good and it’s able to

execute effectively on that idea, you could potentially make a lot of money.

On the other hand, you have no guarantee that you’ll even recoup your

original investment.

This concept is nothing new. You start to learn it as a child playing games.

If I run straight down the middle, it might surprise everyone, and nobody will tag

me. You are reminded of it constantly throughout daily life. You make the

risk-reward trade-off when you’re late for a meeting and trying to decide

on the right route to work. If traffic isn’t bad, I can get there 15 minutes quicker

if I drive down 32nd Street. If traffic is bad, I’m toast.

The risk-reward trade-off is an important part of making intentional

choices about which technologies and domains to invest in. Ten years

ago, a very low-risk choice would have been to learn how to program

in COBOL. Of course, there were also so many COBOL programmers to

compete with that the average salary of a COBOL programmer at the time

was not phenomenal. You could easily have found work, but the work

wouldn’t have been especially lucrative. Low risk. Low reward.

On the other hand, if at the same time you had chosen to investigate the

new Java language from Sun Microsystems, it might have been difficult

to find employment at a company that was actually doing anything with

Java for a while. Who knew if anyone would eventually do anything with

Java? But, if you were looking at the state of the industry at that time, as

Sun was, you may have seen something special in Java. You may have

had a strong feeling that it was going to be big. Investing in it early would

make you a leader in a big, upcoming technology trend.

Of course, in that instance, you would have been correct. And, if you

played your cards right, your personal investment in Java may have been

a very lucrative one. High risk. High reward.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=19

LEAD OR BLEED? 20

Now imagine that, also in 1995, you saw a demonstration of the new BeOS

from Be. It was incredible at the time. It was built from the ground up to

take advantage of multiple processors. The multimedia capabilities were

simply astounding. The platform created a definite buzz, and the pun-

dits were giddy in anticipation of a solid new contendor on the operating

system block. With the new platform, of course, came new ways of pro-

gramming, new APIs, and new user interface concepts. It was a lot to

learn, but it may have really seemed worth it. You could have poured a

lot of effort into becoming the first person to create, for example, an FTP

client or a personal information manager for the BeOS. As Be released an

Intel-compatible version of its OS, rumors circulated about Apple buying

the company out to use its technology as the foundation for the next gen-

eration of the Macintosh OS.

Apple didn’t buy Be. And, eventually, it became clear that Be wasn’t going

to capture even a niche market. The product just didn’t stick. Many devel-

opers who had mastered programming for the BeOS environment became

slowly and painfully aware that their investment wasn’t going to pay off

in the long-term. Eventually, Be was purchased by Palm, and the OS was

discontinued. BeOS was a risky but attractive technology investment that

didn’t yield concrete long term returns for the developers who chose to

invest in it. High risk. No reward.

So far, what I’ve been talking about is the difference between choosing

technologies that are still on the bleeding edge and technologies that are

firmly entrenched. Picking a stable technology that has already wedged

itself into the production systems of businesses worldwide is a safer, but

potentially less rewarding, choice than picking a flashy new technology

that nobody has deployed yet. But, what about the technologies that have

run their course? The ones that are just waiting for the last few nails to be

driven into their coffins?

Who drives those nails? You might think of the last few RPG program-

mers, for example, as being gray-haired and counting the hours until

retirement, while the new generation of youngsters hasn’t even heard of

RPG. They’re all learning Java and .NET. It’s easy to imagine that the

careers of the last remaining stalwarts of an aged and dying technology

are in the same death spiral as the technology itself.

But, the old systems don’t just die. They are replaced. Furthermore, in

most cases, homegrown systems are replaced in stages. In those stages, the

old systems have to talk to the new systems. Someone has to know how to

make the new speak to the old, and vice versa. Typically, the young tykes

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=20

LEAD OR BLEED? 21

don’t know (or want to know) how to make the old systems listen. Nor

do the crusty old pre-retirees know how to make the newfangled systems

talk to their beloved creatures.

The technology hospice
So, there’s a role to be filled by a calculating

technologist: technology hospice. Helping the

old systems die comfortably and with dignity

is a task that should not be underestimated. And, of course, most people

will jump ship before it sinks, either via retirement or by sidestepping into

another technology realm. Being the last one left to support still-critical

systems, you can pretty much call the shots. It’s risky, in that once the

technology really is gone, you’ll be an expert in something that doesn’t

exist. However, if you can move fast enough, you can look for the next

dying generation of legacy systems and start again.

The adoption curve has edges at either end. How far out on the edges do

you want to be?

Act on it!

1. Make a list of early, middle, and late adoption technologies based on

today’s market. Map them out on paper from left to right; the left is

bleeding edge, and the right is filled by technologies that are in their

sunsets. Push yourself to find as many technologies in each part of the

spectrum as possible. Be as granular as possible about where in the

curve they fall in relation to one another.

When you have as many technologies mapped out as you can think

of, mark the ones that you consider yourself strong in. Then, perhaps

in a different color, mark the ones that you have some experience

with but aren’t authoritative on. Where are most of your marks on the

adoption curve? Do they clump? Are they spread evenly across?

Are there any technologies around the far edges that you have some

special interest in?

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=21

INVEST IN YOUR INTELLIGENCE 22

4 Invest in Your Intelligence

When choosing what to focus on, it can be tempting to simply look at the

technologies that yield the most jobs and focus on those. Java is big. .NET

is big. Learning Java has a simple, transitive effect: if I know Java, I can

apply for, and possibly get, a job writing Java code.

Using this logic, it would be foolish to choose to invest in a niche technol-

ogy, especially if you had no plans to try to exploit that niche.

TIOBE Software uses Internet search engines to indicate the relative pop-

ularity of programming languages, based on people talking about those

languages on the Internet. According to TIOBE’s website, “The ratings

are based on the worldwide availability of skilled engineers, courses, and

third-party vendors.” It’s definitely not a scientifically provable measure

of popularity, but it’s a pretty good indicator.

At the time of writing, the most popular language is C, followed by Java.

C# is in a respectable ninth place, but with a slight downward trajectory.

SAP’s ABAP is in 16th place and is making strong progress upward. Ruby,

my personal favorite programming language—the one I do pretty much

all of my serious work in, and the one for which I co-organize an interna-

tional conference every year—is not even in the top twenty.

Am I crazy to use Ruby or just stupid? I must be one of the two, right?

In his essay “Great Hackers”,5 Paul Graham annoyed the industry with the

assertion that Java programmers aren’t as smart as Python programmers.

He made a lot of stupid Java programmers mad (did I say that?), causing

a lot of them to write counterarguments on their websites. The violent

reaction indicates that he touched a nerve. I was in the audience when his

essay was first presented, in the form of a speech. For me, it sparked a

flashback.

When I was in India weeding through hundreds of candidates for only

tens of jobs, the interview team was exhausting itself and running out

of time because of a poor interview-to-hire hit rate. Heads hurting and

eyes red, we held a late-night meeting to discuss a strategic change in the

way we would go through the candidates. We had to either optimize the

process so we could interview more people or somehow interview better

5http://paulgraham.com/gh.html

Report erratum

http://paulgraham.com/gh.html
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=22

INVEST IN YOUR INTELLIGENCE 23

people (or both). With what little was left of my voice after twelve straight

hours of trying to drag answers out of dumbstruck programmers, I argued

for adding Smalltalk to the list of keywords our headhunters were using

to search their résumé database. But, nobody knows Smalltalk in India, cried

the human resources director. That was my point. Nobody knew it, and

programming in Smalltalk was a fundamentally different experience than

programming in Java. The varying experience would give candidates a

different level of expectations, and the dynamic nature of the Smalltalk

environment would reshape the way a Java programmer would approach

a problem. My hope was that these factors would encourage a level of

technical maturity that I hadn’t been seeing from the candidates I’d met so

far.

The addition of Smalltalk to the requirements list yielded a candidate pool

that was tiny in contrast to our previous list. These people were diamonds

in the rough. They really understood object-oriented programming. They

were aware that Java isn’t the idealistic panacea it’s sometimes made out

to be. Many of them loved to program! Where have you been for the past two

weeks? we thought.

Unfortunately, our ability to attract these developers for the salaries we

were able to pay was limited. They were calling the shots, and most of

them chose to stay where they were or to keep looking for a new job.

Though we failed to recruit many of them, we learned a valuable recruit-

ing lesson: we were more likely to extend offers to candidates with diverse

(and even unorthodox) experience than to those whose experiences were

homogenous. My explanation is that either the good people seek out

diversity, because they love to learn new things, or being forced into alien

experiences and environments created more mature, well-rounded soft-

ware developers. I suspect it’s a little of both, but regardless of why it

works, we learned that it works. I still use this technique when looking

for developers.

So, other than trying to show up on my radar screen when I’m looking to

hire someone, why else would you want to invest in fringe technologies

that you may rarely or never have an opportunity to actually get paid to

use?

For me, as a hiring manager, the first reason is that it shows that

you’re interested. If I know you learned something for the sake of self-

development and (better) pure fun, I know you are excited and motivated

about your profession. When I first went to India, it drove me crazy to ask

people if they’d seen or used certain not-quite-mainstream technologies

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=23

INVEST IN YOUR INTELLIGENCE 24

only to hear, “I haven’t been given the opportunity to work on that” in

return. Given the opportunity?! Neither was I! I thought. I took the oppor-

tunity to learn.

I haven’t been given

the opportunity...? Seize

the opportunity!

After having lived in India for a while, I have

developed an armchair theory to explain why

“never given the opportunity” came up so

often. The citizens of this so-called low-cost

country were only one or two generations from

having been ruled by Great Britain. Their parents or grandparents had

probably experienced extremes of poverty that I couldn’t have imagined

before venturing out of the United States and Europe. I was talking to the

first- or second-generation upper middle class, and priority number one

was making sure they and their extended families remained upper middle

class.

Whereas you and I here in the West may have the luxury of making job

choices based on what excites us, the people of India are still a generation

or two away from the same financial freedoms we enjoy. I was disap-

pointed with their “never given the opportunity” response, but many of

these people don’t even have computers at home. Software developers

without their own computers! Perhaps they really haven’t been afforded

the opportunity to learn some of these skills that I might take for granted.

Hint: this is one of our key advantages—we have leisure time with which

we can choose to invest in ourselves, creating a greater depth than the

majority of these people could hope for. While you’re sitting on your

couch, choosing between an episode of Dharma and Greg, a round of XBox,

or a little self-study, our Indian competitors—the captors of our jobs—are

trying to work themselves up the management ladder so they can finally

buy the house in which they will live with their parents and spouse’s par-

ents.

More important than portraying the perception of being suitably moti-

vated and engaged by your field is that exposure to these fringe technolo-

gies and methodologies actually makes you deeper, better, smarter, and

more creative.

If that’s not good enough reason, you’re probably in the wrong profession.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=24

INVEST IN YOUR INTELLIGENCE 25

Act on it!

1. Learn a new programming language. But, don’t go from Java to C#

or from C to C++. Learn a new language that makes you think in a

new way. If you’re a Java or C# programmer, try learning a language

like Smalltalk or Ruby that doesn’t employ strong, static typing. Or,

if you’ve been doing object-oriented programming for a long time,

try a functional language like Haskell or Scheme. You don’t have to

become an expert. Work through enough code that you truly feel

the difference in the new programming environment. If it doesn’t feel

strange enough, either you’ve picked the wrong language or you’re

applying your old way of thinking to the new language. Go out of

your way to learn the idioms of the new language. Ask old-timers

to review your code and make suggestions that would make it more

idiomatically correct.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=25

BE A GENERALIST 26

5 Be a Generalist

For at least a couple of decades, desperate managers and business owners

have been pretending that software development is a manufacturing pro-

cess at heart. Requirements specifications are created, and architects turn

these specifications into a high-level technical vision. Designers fill out

the architecture with detailed design documentation, which is handed to

robot-like coders, who hold pulp-fiction novels in one hand while sleepily

typing in the design’s implementation with the other. Finally, Inspector 12

receives the completed code, which doesn’t receive her stamp of approval

unless it meets the original specifications.

It’s no surprise that managers want software development to be like man-

ufacturing. Managers understand how to make manufacturing work. We

have decades of experience in how to build physical objects efficiently

and accurately. So, applying what we’ve learned from manufacturing,

we should be able to optimize the software development process into the

well-tuned engine that our manufacturing plants have become.

In the so-called software factory, the employees are specialists. They sit

at their place in the assembly line, fastening Java components together or

rounding the rough edges of a Visual Basic application on their software

lathes. Inspector 12 is a tester by trade. Software components move down

the line, and she tests and stamps them in the same way each day. J2EE

designers design J2EE applications. C++ coders code in C++. The world

is very clean and compartmentalized.

Unfortunately, the manufacturing analogy doesn’t work. Software is at

least as malleable as software requirements. Things change in business,

and businesspeople know that software is soft and can be changed to meet

those requirements. This means architecture, designs, code, and tests must

all be created and revised in a fashion more agile than the leanest manu-

facturing processes can provide.

In this kind of rapidly changing environment, the flexible will survive.

When the pressure is on, a smart businessperson will turn to a software

professional can solve the problem at hand. So, how do you become that

person whose name comes up when they’re looking for a superhero to

save the day? The key is to be able to solve the problems that may arise.

What are those problems? That’s right: you don’t know. Neither do I.

What I do know is that those problems are as diverse as deployment issues,

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=26

BE A GENERALIST 27

critical design flaws that need to be solved and quickly reimplemented,

heterogenous system integration, and rapid, ad hoc report generation.

Faced with a problem set as diverse as this, poor Inspector 12 would be

passed over pretty quickly.

The label jack-of-all-trades—master of none is normally meant to be deroga-

tory, implying that the labelee lacks the focus to really dive into a subject

and master it. But, when your online shopping application is on the fritz,

and you’re losing orders by the hundreds as each hour passes, it’s the jack-

of-all-trades who not only knows how the application’s code works but

can also do low-level UNIX debugging of your web server processes, ana-

lyze your RDBM’s configuration for potential performance bottlenecks,

and check your network’s router configuration for hard-to-find problems.

And, more important, after finding the problem, the jack-of-all-trades can

quickly make architecture and design decisions, implement code fixes,

and deploy a new fixed system to production. In this scenario, the manu-

facturing scenario seems quaint at best and critically flawed at worst.

Another way in which the software factory breaks down is in that,

although in an assembly line the work keeps coming in a steady flow,

software projects are usually very cyclical. Not only is the actual flow

of projects cyclical, but the work inside a project is cyclical. A coder

sits on the bench while requirements are being specified, architected, and

designed, or the coder multitasks across many projects. The problem with

multitasking coders is that, despite the software factory’s intentions, when

the rubber meets the road, the coders rely a great deal on context and

experience to get their jobs done. Requirements, architecture, and design

documents can be a great head start, but ultimately if the programmers

don’t understand what the system is supposed to do, they won’t be able

to create a good implementation of the system.

Of course, I’m not just picking on coders here. The same is true at nearly

every spot on the software assembly line. Context matters, and multitask-

ing doesn’t quite work. As a result, we have an inefficient manufacturing

system. There have been various attempts to solve this problem of inef-

ficiency without departing from the manufacturing-inspired system, but

we have not yet figured out how to optimize our software factories to an

acceptable level.

If you are just a coder or a tester or a designer or an architect, you’re going

to find yourself sitting idle or doing busywork during the ebbs of your

business’s project flow. If you are just a J2EE programmer or a .NET pro-

grammer or a UNIX systems programmer, you’re not going to have much

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=27

BE A GENERALIST 28

to contribute when the focus of a project or a company shifts, even tem-

porarily, out of your focus area. It’s not about where you sit on the per-

ceived value chain of project work (where the architect holds the highest

spot of royalty). It’s about how generally useful you make yourself.

If your goal is to be the last person standing amid rounds of layoffs and

the shipment of jobs overseas, you better make yourself generally useful.

If you’re afraid that your once-crowded development office will become

home to an onshore skeleton crew, it would serve you well to realize that

when the team has only a few slots, a just-a-tester or just-a-coder is not going

to be in demand.

Generalists are

rare...and, therefore,

precious.

Something I have personally experienced in

searching for employees in low-cost countries

is that there aren’t many generalists. The

Indian IT industry, for example, was formed

in the image of its cultural heritage—one that

places great emphasis on rank and title. I interviewed people calling them-

selves team leaders who led teams of two (self-inclusive) and reported to

managers of two such teams. In many cases it can get so ridiculous, that

the organizations’ structures are parodies of themselves.

The software factory system of development is a perfect fit for the Indian

IT sector, because it naturally supports the hierarchy that the companies

and their employees desire. Testers are the bottom rung of the ladder, and

nearly everyone you meet there wants to become an architect and then a

high-level manager. The culture breeds specialists. Architects don’t stoop

to design. Designers don’t stoop to code, and so on.

The way to become a generalist is to not label yourself with a specific role

or technology. We can become typecast in our careers in many ways. To

visualize what it means to be a generalist, it can help to dissect the IT

career landscape into its various independent aspects. I can think of five,

but an infinite number exists (it’s all in how you personally divide topics):

• Rung on the career ladder

• Platform/OS

• Code vs. data

• Systems vs. applications

• Business vs. IT

These are different dimensions on which you can approach the problem

of becoming a generalist. This is just a way to think about the whole pic-

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=28

BE A GENERALIST 29

ture of your career, and you can probably come up with a better list for

yourself. For now, we’ll discuss these.

If companies need

generalists, they’re

going to have to get

them in the West.

First, you can choose to either be a leader or

manager type or be a technical person. Or,

you might pigeon hole yourself into architect

as opposed to being a programmer or tester.

The ability to be flexible in the roles you can

and will fill is an attribute that many people

don’t understand the value of. For example, while a strong leader should

avoid pinch hitting as often as possible, the new world of onshore skele-

ton crews can benefit from a person who knows how to lead people and

projects but can also roll up their sleeves and fix some last minute critical

bugs while the Offshore team is sleeping. The same is true of a software

architect who could perhaps dramatically speed up progress on a project if

he or she would only write some code to get things moving. When it comes

to hierarchical boundary crossing, it’s most often not reluctance that stops

people from doing it. It’s ability. Programmer geeks can’t lead and leaders

can’t hack. It’s rare to find someone who’s even decent at both.

Your skills should

transcend technology

platforms.

Another artificial (and inexcusable) line gets

drawn around platforms or operating systems.

Being a UNIX Guy who refuses to do Win-

dows is increasingly more impractical as the

jobs flow away. The same goes for .NET ver-

sus J2EE or any other such infrastructure platforms. Longevity is going to

require that you are platform neutral in the work place. We all have our

preferences, but you’re going to have to leave your ideals at home. Master

one and get good at the other. Your skills should transcend technology

platform. It’s just a tool. If we want a Windows person, we can hire them

in the Phillipines. If we want someone who really understands Windows

and UNIX development and can help us integrate them together, we’re

probably going to be looking Onshore. Don’t get passed up over what is

essentially team spirit.

The dividing line between database administrator (a role that has solid-

ified out of nothingness over the past decade) and software developer

should also be fuzzy. Being a database administrator, or DBA, has in many

organization come to mean that you know how to use some GUI admin

tool and you know how to setup a specific database product. You don’t

necessarily know much of anything about how to use the database. On the

flip side, software developers are growing increasingly lazy and ignorant

about how to work with databases. Each side feeds the other.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=29

BE A GENERALIST 30

What first amazed me most when I entered the information technology

field was that many well-educated programmers (maybe most) didn’t

know the first thing about how to set up the systems they used for devel-

opment and deployment. I worked with developers who couldn’t even

install an operating system on a PC if you asked them to, much less set

up an application server on which to deploy their applications. It’s rare,

and refreshing, to find a developer who truly understands the platform on

which he or she is working. Applications are better and work gets done

faster as a result.

Finally, as we discussed in Coding Don’t Cut It Anymore, on page 16, the

wall between The Business and IT should be torn down right now. Start

learning how your business operates.

Act on it!

1. On a piece of paper or a whiteboard, list the dimensions on which

you may or may not be generalizing your knowledge and abilities.

For each dimension, write your specialty. For example, if Platform

and Operating System is one of your dimensions, you might write Win-

dows/.NET next to it. Now, to the right of your specialty, write one or

more topics you should put into your TO-LEARN list. Continuing with

the same example, you might write Linux and Java (or even Ruby or

Perl).

As soon as possible (some time this week at the latest!), find thirty min-

utes of time to start addressing at least one of the TO-LEARN items on

your list. Don’t just read about it. If possible, get some hands-on expe-

rience. If it’s web technology, then download a web server package

and set it up yourself. If it’s a business topic, find one of your customers

at work and ask them to go out for lunch for a chat.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=30

BE A SPECIALIST 31

6 Be a Specialist

How would you write a program, in pure Java, that would make the Java Virtual

Machine crash? Dead silence. Hello?

I’m sorry. I’m not getting you. Could you repeat the question, please? The voice

sounded desperate. I knew from experience that repeating the question

wasn’t going to help. So, I repeated the question, slowly and more loudly.

How would you write a program, in pure Java, that would cause the Java Virtual

Machine to crash?

Uh...I’m sorry. I’ve never done this before.

I’m sure you haven’t. How about this question: how would you write a program

that would NOT cause the JVM to crash? I was looking for really good Java

programmers. To start the interview, I asked this person (and all the others

I had interviewed that week) to rate himself on a scale of one to ten. He

said nine. I’m expecting a star here. If this guy rates himself so high, why can’t

he think of a single abusive programming trick that would cause a JVM to crash?

Lack of technical depth.

Too many of us seem to

believe that specializing

in something simply

means not knowing

about other things.

This was someone who claimed to specialize in

Java. If you met him at a party and asked what

he did for a living, he would say, “I am a Java

developer.” Yet, he couldn’t answer this sim-

ple question. He couldn’t even come up with

a wrong answer. Over two-and-a-half intense

weeks of interviewing in Hyderabad, Banga-

lore, and Chennai, this was the rule—not the exception. Thousands of Java

specialists had applied for open positions, nearly none of whom could

explain how a Java class loader works or give a high-level overview of

how memory management is typically handled by a Java Virtual Machine.

Granted, you don’t have to know these things to hack out basic code under

the supervision of others. But, these were supposed to be experts.

Too many of us seem to believe that specializing in something simply

means you don’t know about other things. I could, for example, call my

mother a Windows specialist, because she has never used Linux or OS X.

Or, I could say that my relatives out in the countryside in Arkansas are

country music specialists, because they’ve never heard anything else.

Imagine you visit your family doctor, complaining about a strange lump

under the skin of your right arm. Your doctor refers you to a specialist
Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=31

BE A SPECIALIST 32

to have a biopsy performed. What if that specialist was a person whose

only credentials as a specialist were that they didn’t attend any classes in

medical school or have any experience in residencies that weren’t directly

relevant to the act of performing the specific procedure that they were

going to perform on you today? I don’t mean that they went deeper into

the topics related to today’s procedure. What if they had just skimmed the

surface of these topics, but they didn’t know anything else? What if that

machine over there starts beeping during the operation? you might ask. Oh,

that’s never happened before. It won’t happen this time. I don’t know what that

machine does, but it never beeps.

Thankfully, most software developers aren’t responsible for life or death

situations. If they mess up, it typically results in project overruns or pro-

duction bugs that simply cost their employers money—not lives.

Unfortunately, the software industry has churned out a whole lot of these

shallow specialists, who use the term specialist as an excuse for knowing

only one thing. In the medical industry, a specialist is someone with a

deep understanding of some specific area of the field. Doctors refer their

patients to specialists, because in certain specific circumstances, the spe-

cialist can give them better care than a general practioner.

So, what should a specialist be in the software field? I can tell you what I

was searching for in every nook and cranny in South India. I was search-

ing for people who deeply understood the Java programming and deploy-

ment environment. I wanted folks who could say “been there—done that”

in 80% of the situations we might encounter and whose depth of knowl-

edge could make the remaining 20% more livable. I wanted someone

who, when dealing with high-level abstractions, would understand the

low-level details of what went into the implementation of those abstrac-

tions. I wanted someone who could solve any deployment issue we might

encounter or would at least know who to call for help if they couldn’t.

This is the kind of specialist who will survive in the changing computer

industry. If you’re a .NET specialist, it’s not just an excuse for not know-

ing anything except .NET. It means that if it has to do with .NET, you are

the authority. IIS servers hanging and needing to be rebooted? No prob-

lem. Source control integration with Visual Studio .NET? I’ll show you how.

Customers threatening to pull the plug because of obscure performance

issues? Give me thirty minutes.

If this isn’t what specialist means to you, then I hope you don’t claim to be

one.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=32

BE A SPECIALIST 33

Act on it!

1. Do you use a programming language that compiles and runs on a

virtual machine? If so, take some time to learn about the internals of

how your VM works. For Java, .NET, and Smalltalk, many books and

websites are devoted to the topic. It’s easier to learn about than you

think.

Whether your language relies on a VM or not, take some time to study

just what happens when you compile a source file. How does the

code you type go from being text that you can read to instructions

that a computer can execute? What would it mean to write your own

compiler?

When you import or use external libraries, where do they come from?

What does it actually mean to import an external library? How

does your compiler, operating system, or virtual machine link multiple

pieces of code together to form a coherent system?

Learning these facts will take you several steps closer to being an

expert specialist in your technology of choice.

2. Find an opportunity—at work or outside—to teach a class on some

aspect of a technology that you would like to develop some depth

in. As you’ll see in Be a Mentor, teaching is one of the best ways to

learn.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=33

DON’T PUT ALL YOUR EGGS IN SOMEONE ELSE’S BASKET 34

7 Don’t Put All Your Eggs in
Someone Else’s Basket

While managing an application development group, I once asked one of

my employees, “What do you want to do with your career? What do you

want to be?” I was terribly disppointed by his answer: “I want to be a J2EE

architect.” I asked why not a “Microsoft Word designer” or a “RealPlayer

installer?”

This guy wanted to build his career around a specific technology created

by a specific company of which he was not an employee. What if the com-

pany goes out of business? What if it let its now-sexy technology become

obsolete? Why would you want to trust a technology company with your

career?

Somehow, as an industry, we fool ourselves into thinking market leader

is the same thing as standard. So, to some people, it seems rational to

make another company’s product a part of their identities. Even worse,

some base their careers around non-market-leading products—at least

until their careers fail so miserably that they have no choice but to rethink

this losing strategy.

Let’s take a moment again to remember that we should think of our career

as a business. Though it’s possible to build a business that exists as a

parasite of another (such as companies who build spyware removal prod-

ucts to make up for inadequacies in Microsoft’s browser security model),

as an individual, it’s an incredibly risky thing to do. A company, such

as the spyware example I just mentioned, can usually react to changing

forces in the market such as an unexpected improvement in Microsoft’s

browser security (or Microsoft deciding to enter the spyware removal mar-

ket), whereas an individual doesn’t have the bandwidth or the surplus

cash to suddenly change career direction or focus.

Vendor-centric views

are typically myopic.

The sad thing about a vendor-centric view of

the world is that, usually, the details of a ven-

dor’s software implementation are a secret.

You can really learn only so much about a piece

of proprietary software until you reach the professional services barrier. The

professional services barrier is the artificial barrier that a company erects

between you and the solution to a problem you may have, so that it can

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=34

DON’T PUT ALL YOUR EGGS IN SOMEONE ELSE’S BASKET 35

profit from selling you support services. Sometimes this barrier is inten-

tionally erected, and sometimes it’s erected as a side effect of the attempt

the company makes to protect its intellectual property (by not sharing its

source code).

So, while a single-minded investment in one particular technology is

almost always a bad idea, if you must do so, consider focusing on an open-

source option, as opposed to a commercial one. Even if you can’t or don’t

want to make the case for using the open-source solution in your work-

place, use the open-source option as the platform from which you can take

a deep dive into a technology. For example, you may want to become an

expert in how J2EE application servers work. Instead of focusing your

efforts on the details of how to configure and deploy a commercial appli-

cation server (after all, anybody can figure out how to tweak settings in a

config file, right?), download the open-source JBoss or Geronimo servers

and set aside time for yourself to not only learn how to operate the servers

but to study their internals.

Before long, you’ll realize you’re naturally changing your view. This J2EE

thing (or whatever you chose to get into) really isn’t all that special. Now

that you see the details of the implementation, you see that there are high-

level conceptual patterns at work. And, you start to realize that, whether

with Java or some other language or platform, distributed enterprise archi-

tecture is distributed enterprise architecture. Your view changes from nar-

row to wide, and your mind starts to open. You start to realize that these

concepts and patterns that your brain is sorting through and making sense

of are much more scalable and universal than any specific vendor’s tech-

nology. “Let the vendors come and go—I know how to design a system!”

Act on it!

1. Try a small project, twice. Try it once in your home base technology

and once, as idiomatically as possible, in a competing technology.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=35

BE THE WORST 36

8 Be the Worst

Legendary jazz guitarist Pat Metheny has a stock piece of advice for young

musicians: “always be the worst guy in every band you’re in.”6

Be the worst guy in

every band you’re in.

Before starting my career in information tech-

nology, I was a professional jazz and blues sax-

ophonist. As a musician, I had the good for-

tune of learning this lesson early on and stick-

ing to it. Being the worst guy in the band means always playing with

people who are better than you.

Now, why would you always choose to be the worst person in a band?

“Isn’t it unnverving,” you ask? Yes, it’s extremely unnerving at first. As

a young musician, I would find myself in situations where I was so obvi-

ously the worst guy in the band that I was sure I would stick out like a

sore thumb. I’d show up to a gig and not even want to unpack my saxo-

phone for fear I’d be forcefully ejected from the bandstand. I’d find myself

standing next to people I looked up to, expected to perform at their level—

sometimes as the lead instrument!

Without fail (thankfully!), something magical would happen in these situ-

ations: I would fit in. I wouldn’t stand out among the other musicians as

a star. On the other hand, I wouldn’t be obviously outclassed, either. This

would happen for two reasons. The first reason is that I really wasn’t as

bad as I thought. We’ll come back to this one later.

The more interesting reason that I would fit in with these superior

musicians—my heroes, in some cases—is that my playing would trans-

form itself to be more like theirs. I’d like to think I had some kind of

superhuman ability to morph into a genius simply by standing next to

one, but in retrospect I think it’s a lot less glamorous than that. It was more

like some kind of instinctual herd behavior, programmed into me. It’s the

same phenomenon that makes me adopt new vocabulary or grammatical

habits when I’m around people who speak differently than me. When we

returned from a year and a half of living in India, my wife would some-

times listen to me speaking and burst into laughter, “Did you hear what

you just said?” I was speaking Indian English.

6Originally spotted by Chris Morris at http://clabs.org/blogki

Report erratum

http://clabs.org/blogki
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=36

BE THE WORST 37

Being the worst guy in the band brought out the same behavior in me

as a saxophonist. I would naturally just play like everyone else. What

makes this phenomenon really unglamorous is that when I played in casi-

nos and hole-in-the-wall bars with those not-so-good bands, I played like

those guys. Also, like an alchoholic who slurs his speech even when he’s

not drunk, I’d find the bad habits of the bar bands carrying over to my

non-bar-band nights.

So, I learned from this that people can significantly improve or regress

in skill, purely based on who they are performing with. And, prolonged

experience with a group can have a lasting impact on one’s ability to per-

form.

The people around you

affect your own

performance. Choose

your crowd wisely.

Later, as I moved into the computer industry,

I found that this learned habit of seeking out

the best musicians came naturally to me as a

programmer. Perhaps unconciously, I sought

out the best IT people to work with. And, not

surprisingly, the lesson holds true. Being the

worst guy (or gal, of course) on the team has the same effect as being

the worst guy in the band. You find that you’re unexplainably smarter.

You even speak and write more intelligently. Your code and designs get

more elegant, and you find that you’re able to solve hard problems with

increasingly creative solutions.

Let’s go back to the first reason that I was able to blend into those bands

better than I expected. I really wasn’t as bad as I thought. In music,

it’s pretty easy to measure whether other musicians think you’re good.

If you’re good, they invite you to play with them again. If you’re not,

they avoid you. It’s a much more reliable measurement than just asking

them what they think, because good musicians don’t like playing with bad

ones. Much to my surprise, I found that in many of these cases, I would

get called by one or more of these superior musicians for additional work

or to even start bands with them.

Attempting to be the worst actually stops you from selling yourself short.

You might belong in the A band but always put yourself in the B band,

because you’re afraid. Acknowledging outright that you’re not the best

wipes away the fear of being discovered for the not-best person you are.

In reality, even when you try to be the worst, you won’t actually be.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=37

BE THE WORST 38

Act on it!

1. Find a “be the worst” situation for yourself—You may not have the

luxury of immediately switching teams or companies just because you

want to work with better people. Instead, find a volunteer project on

which you can work with other developers who will make you better

via osmosis. Check for developer group meetings in your city, and

attend those meetings. Developers are often looking for spare-time

projects on which to practice new techniques and hone their skills.

If you don’t have an active developer community nearby, use the

Internet. Pick an open-source project that you admire and whose

developers appear to be at that “next level” you’re looking to reach.

Go through the project’s TO-DO list or mailing list archives, pick a

feature or a major bug fix, and code away! Emulate the style of

the project’s surrounding code. Turn it into a game. Make your

design and code so indistinguishable from the rest of the project that

even the original developers eventually won’t remember who wrote

it. Then, when you’re satisfied with your work, submit it as a patch.

If it’s good, it will be accepted into the project. Start over and do

it again. If you’ve made decisions that the project’s developers dis-

agree with, either incorporate their feedback and resubmit or take

note of the changes they make. On your next patch, try to get it in

with less rework. Eventually, you’ll find yourself to be a trusted member

of the project team. You’ll be amazed at what you can learn from a

remote set of senior developers, even if you never get a chance to

hear their voices.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=38

LOVE IT OR LEAVE IT 39

9 Love It or Leave It

It may sound like some kind of rah-rah cheerleader crap, aimed at whip-

ping you into an idealistic frenzy, but it’s too important not to mention.

You have to be passionate about your work if you want to be great at your

work. If you don’t care, it will show.

When my wife and I moved to Bangalore, I was expecting to find like-

minded technologists with a passion for learning. I was expecting a

vibrant after-work life of user group meetings and deep, philosophical

discussions on software development methodologies and techniques. I

was expecting to find India’s Silicon Valley bursting at its seams with a an

overlow of artsians, enthusiastic in the pursuit of the great craft of soft-

ware development.

What I found were a whole lot of people who were picking up a paycheck

and a few incredibly passionate craftspeople.

Just like back home.

Of course, I didn’t realize it was just like back home at the time. I had a

few data points from the United States, but I always assumed I was just

working in bad cities or bad company environments. I counted situations

like my first experiences with IT employment as outliers. Most software

developers must get it, I thought. I just haven’t found the right environment yet.

I started work at my university’s IT department on a blind recommen-

dation from my friend Walter, who had seen me work with computers

enough to know I could probably make them do things better than most

of the people who needed help at the university. I didn’t believe I could,

having had no formal training. I was just a saxophone player who liked

to play video games. But, Walter actually filled out an application for me

and set up an interview. I was hired without so much as a single technical

question being asked, and I was to start immediately.

When I showed up on the job, I was paranoid I would be discovered as

the charlatan I really was. What is this saxophone player doing here with

us trained professionals? After all, I was working with people who had

advanced computer science degrees. And, here I was with only part of

a music degree trying to fit in as if I knew something.

Within a few days of work, the truth started to sink in. These people don’t

know what the hell they’re doing! In fact, some people were watching me

work and taking notes! People with master’s degrees in computer science!

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=39

LOVE IT OR LEAVE IT 40

My first reaction was to assume I was surrounded by idiots. After all, I

didn’t have any formal training. I spent my nights playing in bar bands

and my days playing computer games. I had learned how to work with

computers only because I was interested in them. In fact, I really learned

how to write programs because I wanted to make my own computer

games. I would come home late after a deafening evening at a bar and

browse Gopher7 sites with tutorials on programming until the sun came

up. Then I’d sleep, wake up, and continue my learning until I had to go

out and perform again. I’d break up the study with my beloved computer

games, eat, and then go back to goofing around with Gopher and what-

ever compilers I could get working.

Work because you

couldn’t not work.

Looking back on it, I was addicted, but in

a good way. My drive to create had been

ignited in much the same way that it had when

I started writing classical music or playing

improvisational jazz. I was obsessed with learning anything and every-

thing I could. I wasn’t in this for a new career. In fact, many of my musi-

cian friends thought of it as an irresponsible distraction from my actual

career. I was in it because I couldn’t not be.

This was the difference between me and my overeducated, underperform-

ing colleagues at work. Passion. These people had no idea why they were

in the IT field. They had stumbled into their careers, because they thought

computer programming might pay well, because their parents encouraged

them, or because they couldn’t think of a better major in college. Unfortu-

nately, their performance on the job reflected it.

If you think about the biographies you read or the documentaries you

watch about the greats in various fields, this same pattern of addictive,

passionate behavior surfaces. Jazz saxophone great John Coltrane report-

edly practiced so much that his lips would bleed.

Of course, natural talent plays a big role in ability. We can’t all be Mozart or

Coltrane. But, we can all take a big step away from mediocrity by finding

work we are passionate about.

It might be a technology or business domain that gets you excited. Or, on

the other hand, it might be a specific technology or business domain that

drags you down. Or a type of organization. Maybe you’re meant for small

7Gopher is a document-sharing system similar in intent to the World Wide Web. Its

popularity declined dramatically with the rise of the Web.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=40

LOVE IT OR LEAVE IT 41

teams or big teams. Or rigid processes. Or agile processes. Whatever the

mix, take some time to find yours.

You can fake it for a while, but a lack of passion will catch up with you

and your work.

Act on it!

1. Go find a job you’re actually passionate about.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=41

Part II

Investing in Your Product

INVESTING IN YOUR PRODUCT 43

While living in India, we had a car and a driver. It’s not that we were trying

to be big shots. Driving in India is scary. We didn’t want to take the risk of

trying to navigate Bangalore traffic under our own volition. The rules are so

different there, at best we’d have ended up in a fender bender or three

and at worst someone could have gotten badly hurt.

So, we were assigned a driver. His name was Ramesh. Like most Indians in his

line of work, Ramesh was undereducated, having dropped out of school to

help support his family business as a young teenager. He had spent a brief

stint in the military as a soldier and had lucked into the driving gig a few

years later. He lived in a small house, and his salary—hovering somewhere

around what I probably spend on coffee in a month—supported himself, his

wife, his baby girl, and his mother.

Our relationship with Ramesh started quietly. He was trained to respect his

customers by not speaking to them unless spoken to. He would come to

our place early in the morning and just wait in the car until we were ready

to go somewhere. When we got to our destination, he would wait in the

car until we were ready to go again. This would go on until sometimes late

at night, with brief bits of driving surrounded by long periods of sitting in the

car waiting.

My wife Kelly and I felt bad that he just sat there, probably bored out of

his mind while we took our sweet time eating dinner or shopping. I asked

Ramesh about this early on. It’s no problem, sir. I read while I wait, he said,

pointing to a pile of unintelligible pulp paper covered in Kannada script.

As I dug deeper, asking what he was reading about, it turned out that he

did nothing but read educational material. In fact, Ramesh spoke six lan-

guages fluently and was a bit of an expert on Indian history and culture.

We were hungry for Indian cultural lessons, and Ramesh quickly became

our cultural ambassador. Every ride in the car was a language, culture,

or history lesson. While we lived in India, he started learning both how to

speak and read Sanskrit and how to play South Indian classical music on

the veena (an instrument that was the precursor to the more well-known

sitar).

Other than his own hunger for knowledge, he spent all of this time study-

ing so that he could teach the subjects he learned to his young daughter,

Likhitha. He was determined to prepare her with the skills and knowledge

she would need to lead a better life than he had been born into. And,

though his formal education was lacking, he had made himself into some-

what of a Renaissance man in his spare time.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=43

INVESTING IN YOUR PRODUCT 44

Ramesh, sitting there in the lower middle class of a developing country,

spoke six languages fluently and devoted himself to study so that he could

change his family’s life. In principle, he was not unique in this respect.

If you work with Indian people now, it’s tempting to think that their some-

times unusual use of English or the accent they use somehow makes them

unintelligent. However, the people you’re talking to probably speak at min-

imum two or three languages and very possibly four or five! How many

languages do you speak? If you’re like most Americans, the answer is one.

I’m not telling you all this just to make you feel bad. But, you better not think

that you’re up against a bunch of people who, though cheaper to hire, are

not as smart as you. That could be a career-limiting mistake.

Nope. The people in India (and China, Hungary, the Ukraine, and other low-

cost outsourcing destinations) are not any less intelligent than you. Those

you deal with at work are probably better educated than you. I met people

with master’s degrees in the sciences working as call takers in call centers—

not even programming jobs. And, these people are hungry. I don’t mean

hungry for food, though many of them are only a generation away from

such circumstances, but they are hungry for a better and different life.

So, even if you think you have proof that they can’t be better than us,

don’t put your guard down and arrogantly assume that the cost of labor is

the only real point of competition. You’ve got to keep up, or you may find

yourself looking for a job as a taxi driver.

If you want to have a great product to sell on the job market—a product

that stands out, and that lets you really compete—you’re going to have to

invest in that product. In business, ideas are a dime a dozen. It’s the blood,

sweat, tears, and money you pour into a product that make it really worth

something.

In this part, we’ll look at investment strategies for your career. We’ll explore

how to choose which skills and technologies to invest in as well as look at

different ways of investing in ourselves. This part is where the real work starts.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=44

LEARN TO FISH 45

10 Learn to Fish

Lao Tzu said, “Give a man a fish; feed him for a day. Teach a man to fish;

feed him for a lifetime.” That’s all well and good. But Lao Tzu left out the

part where the man doesn’t want to learn how to fish and he asks you for

another fish tomorrow. Education requires both a teacher and a student.

Many of us are too often reluctant to be a student.

Don’t wait to be told.

Ask!

Just what is a fish in the software industry? It’s

the process of using a tool, or some facet of a

technology, or a specific piece of information

from a business domain you’re working in. It’s

how to check out a specific branch from your team’s source control system,

or it’s getting an application server up and running for development. Too

many of us take these details for granted. Someone else can take care of this

for me, you may think. The build guy knows about the source control

system. You just ask him to set things up for you when you need them.

The infrastructure team knows how the firewalls between you and your

customers are set up, so if you have an application need, you just send an

email and the team will take care of it.

Who wants to be at the mercy of someone else? Or, worse: if you were

looking to hire someone to do a job for you, would you want that person

to be at the mercy of the experts? I wouldn’t. I’d want to hire someone who

is self-sufficient.

The most obvious place to start is in learning the tools of your trade.

Source control, for example, is a powerful tool. An important part of its job

is focused on making developers more productive. It’s not just the place

where you put your code when you’re done with it, and you shouldn’t

treat it as such. It’s an integral part of your development process. Don’t

let such an important thing—the authoritative repository of your work—

be like voodoo to you. A self-sufficient developer can easily check differ-

ences between the version of a project that he or she has checked out and

the last known good one in the repository. Or perhaps you need to pull

out the last released code and make a bug fix. If your code has a critical

bug in the middle of the night, you don’t want to have to call someone

else to ask them to get you the right version so you can start troubleshoot-

ing. This goes for IDEs, operating systems, and pretty much every piece

of infrastructure your code or process rides on top of.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=45

LEARN TO FISH 46

Equally important is the technology platform you are employing. For

example, you may be developing applications using J2EE. You know you

have to create various classes, interfaces, and deployment descriptors. Do

you know why? Do you know how these things are used? When you start

up a J2EE container, what actually happens? You may not be an appli-

cation server developer, but knowing how this stuff works enables you

to develop solid code for a platform and to troubleshoot when something

goes wrong.

A particularly easy way to get lazy is to use a lot of wizards that gener-

ate code for you. This is particularly prevalent in the world of Windows

development where, to Microsoft’s credit, the development tools make a

lot of tasks really easy. The downside is that many Windows develop-

ers have no idea how their code really works. The work of the wizards

remains a magical mystery. Don’t get me wrong—code generation used

correctly can be a useful tool. For example, code generators are what

translate high-level C# code to byte codes that can run on the .NET run-

time. You obviously wouldn’t want to have to write all those byte codes

yourself. But, especially at the higher levels, letting the wizards have their

way leaves your knowledge shallow and leaves you limited to what the

wizards can already do for you.

We may easily overlook the fish in our business domain. If you’re work-

ing for a mortgage company, either you could ask an expert for the calcu-

lation of an interest rate for each scenario that you need during testing or

you could learn how to calculate it yourself. While interactions with your

customer are good, and it’s good to clarify business requirements with

them (as opposed to half-understanding and filling in the details yourself),

imagine how much faster you could go if you actually knew the ins and

outs of the business domain you’re working in. You probably won’t know

every single business rule—that’s not your job. But, you can at least learn

the basics. Many of the best software people I’ve worked with over the

years have become more expert in their domains than even some of their

business clients. This results in better products. Someone who is domain-

ignorant will let silly mistakes slip through—mistakes that a basic knowl-

edge of the business domain would have avoided. Furthermore, they’ll go

slower (and ultimately cost the company more) than the equivalent devel-

oper who understands the business.

For us software developers, Lao Tzu’s intent might be equally well served

with “Ask for a fish; eat for a day. Ask someone to teach you to fish; eat

for a lifetime.” Better yet, don’t ask to be taught—go learn for yourself.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=46

LEARN TO FISH 47

Act on it!

1. How and why?—Either as you sit here reading or the next time you’re

at work, think about the facets of your job that you may not fully

understand. You can ask yourself two extremely useful questions

about any given area to drill down into the murky layers: How does it

work? and Why does this (have to) happen?

You may not even be able to answer the questions, but the very act

of asking them will put you into a new frame of mind and will generate

a higher level of awareness about your work environment. How does

the IIS server end up passing requests to my ASP.NET pages?Why do

I have to generate these interfaces and deployment descriptors for

my EJB applications?How does my compiler deal with dynamic versus

static linking?Why do we calculate tax differently if a shopper lives in

Montana?

Of course, the answer to any of these questions will lead to another

potential opportunity to ask the question again. When you can’t go

any further down the how and why tree, you’ve probably gone far

enough.

2. Tip time—Pick one of the most critical but neglected tools in your tool-

box to focus on. Perhaps it’s your version control system, a library that

you use extensively but you’ve looked into only superficially, or it may

be the editor you use when programming.

When you’ve picked the tool, allot yourself a small period of time

each day to learn one new thing about the tool that will make you

more productive or put you in better control over your development

environment. You may, for example, choose to master the GNU

Bourne Again Shell (bash). During one of those times when your mind

starts to wander from the task at hand, instead of loading up Slashdot

you could search the Internet for bash tips. Within a minute or two,

you should find something useful that you didn’t know about how to

use the shell. Of course, now that you have a new trick, you can dive

into its guts with a series of Hows and Whys.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=47

UNDERSTAND BUSINESS BASICS 48

11 Understand Business Basics

In the previous chapter, we discussed the importance of making an inten-

tional choice about the business domain in which you work. Domain

knowledge, being at best an employment differentiator for a job and at

worst a showstopper, isn’t something you should take lightly. Before mak-

ing an investment in learning the ins and outs of a business domain, you

should make sure you’re investing in the right one for you and for the

state of the market.

But, one body of knowledge is neither technical nor domain-specific

and won’t be outdated at any time soon: the basics of business finance.

Regardless of your line of business, whether it be manufacturing, health-

care, nonprofit, or an educational institution, it is still a business. And, busi-

ness is itself a domain of knowledge that one can—indeed, must—learn.

I remember as a young programmer going to staff meetings, my eyes glaz-

ing over as some big-shot leader with whom I would never directly work

showed chart after chart of numbers that I believed to be completely irrele-

vant to me. I just want to go back and finish the application feature I’m working

on, I would whine to myself. My teammates sat together, looking like a

row of squirming children on a long car ride. None of us understood what

was being presented, and none of us cared. We blamed what we felt was a

complete waste of time on the incompetent managers who had called the

meeting.

You can’t creatively

help a business, until you

know how it works.

Looking back on it, I realize how foolish we

were. We worked for a business and our job

was to contribute to either making or saving

money for that business. Yet we didn’t under-

stand the basics of how the business came to

profitability. Worse, we didn’t think it was our job to know. We were pro-

grammers and system administrators. We thought our jobs were strictly

about those topics that we had devoted ourselves to. However, how were

we supposed to creatively help the business be profitable if we didn’t even

understand how the business worked?

The use of the word creatively in the previous paragraph is the key. It’s

plausible to have the view that we are indeed IT specialists and that is

what we are paid to be. Given the right projects and leadership, we should

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=48

UNDERSTAND BUSINESS BASICS 49

be putting effort into tasks that help the business. We don’t need to fully

understand how a business runs to provide value to it.

But, to creatively add value takes a more thorough understanding of the

business environment in which you work. In the business world, we hear

the phrase bottom line all the time. How many of us truly understand what

the bottom line is and what contributes to it? More important, how many

of us really understand how we contribute to the bottom line? Is your

organization a cost center or a profit center (do you add to or take away

from the bottom line)?

Understanding the financial drivers—and language—of your company

will give you the ability to make meaningful changes, rather than stab-

bing in the dark at things that seem intuitively right to you.

Act on it!

1. Go get a book on basic business, and work through it. A trick for

finding a good overview book is to look for books about getting an

MBA (Master’s of Business Administration) degree. One such book

that I found particularly useful (and pleasantly short) is The Ten-Day

MBA [Sil99]. You can actually get through it in ten days. That’s not a

very big investment.

2. Ask someone to walk you through the financials of your company or

division and explain them to you (if this is information your company

doesn’t mind sharing with its employees).

3. Explain them back.

4. Find out why the bottom line is called “the bottom line.”

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=49

FIND A MENTOR 50

12 Find a Mentor

One thing that I found in India that the people have really gotten right is

the practice of finding a mentor. Even in less craft-oriented lines of work,

it is common for younger Indian professionals to have a somewhat formal

mentoring relationship with a more experienced person they can trust.

Mentors provide advice on real issues that come up in the careers of those

who trust them. They help bail them out of tough situations. They help

them find the right jobs to grow their careers with. In exchange, the people

receiving the mentoring reciprocate in any ways they can.

Connections are made and people are hired every day via these relation-

ships. Indian society has created a self-organizing culture and set of cus-

toms around the mentor/mentee relationship. It’s a system that works so

well that you would suspect it was guided by some kind of organizing

body.

It’s OK to depend on

someone. Just make

sure it’s the right person.

In the Western world, we’re less likely to ask

each other for help. Depending on others is

often seen as a sign of weakness. We’re afraid

to admit that we’re not perfect. Everything is

competition. Only the strong survive, and all

that. Unfortunately, this leads to an extremly underdeveloped system of

mentoring. In a country like India, if I were to ask a handful of program-

mers, “who is your mentor?” most of them would have an answer. In the

United States, they’d probably respond with “What?”

It hasn’t always been like this here. The history of the West includes a

thriving system of mentoring, extending back into the Middle Ages. The

craftsmanship approach to professional training was even stronger and

more formalized than the system that has evolved in current Indian soci-

ety. Young people would start their professional careers as apprentices to

respected master craftsmen. They would work in exchange for a nominal

salary and the privilege of learning from the master. The master’s obliga-

tion was to train the apprentices to create things in the tradition (and of

the quality) of the master himself.

The first and most important purpose that a mentor serves is that of a

role model. It’s hard to know what’s possible until you see someone who

can stretch the limits you’re familiar with. A role model sets the standard

for what “good” means. If you thought of yourself as a chess player, for

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=50

FIND A MENTOR 51

example, just being able to beat the people in your immediate family might

feel pretty good. But, if you played with a tournament player, you would

find that chess is a much deeper game than you ever knew. If you were to

play with a grand master, you’d have another such revelation. If you keep

playing with, and beating, your immediate family members, you might

get the idea that you’re really good at chess. Without a role model, there’s

no incentive to get better.

A mentor can also give structure to your learning process. As you saw

in the previous chapter, you have an overwhelming number of choices to

make about which technologies and domains to invest in. Sometimes, too

many choices can get you stuck. Within reason, it’s better to be moving in

one direction than to be sitting still. A mentor can help take some of the

choice out of what to focus your energies on.

When I started my career as a system support person, I latched onto a saint

named Ken who was one of our university’s network administrators. He

came in to bail me out of a big problem with our campus NetWare network

that was crippling the students who were trying to use our computer labs,

and after that point he was unable to shake me (nor did he try). When I

prodded him to give me direction on how to become more knowledgeable

and self-sufficient, he gave me a simple recipe: dive into directory services,

get comfortable with a UNIX variant, and master a scripting language.

He picked three skills for me to learn from the infinite number available.

And, with the confidence that this person, who I considered to be a mas-

ter, had prescribed them, I set out to learn those three skills. My career

since has been built on the foundation of those pieces of knowledge, all

three of which are still completely relevant in everything I do. It’s not that

Ken’s direction was the absolute right answer—there are no absolute right

answers. The important thing is that he narrowed down the long list of

skills I could be learning into the short list of skills I learned.

A mentor also serves as a trusted party who can observe and judge your

decisions and your progress. If you’re a programmer, you can show them

your code and get pointers. If you’re planning to give a presentation at

the office or a local user group meeting, you can run it by your mentor

beforehand for feedback. A mentor is someone you can trust enough to

ask, “What should be different about me as a professional?” because you

know that they’ll not only criticize you but they’ll help you improve.

Finally, just as in India, not only do you create a personal attachment and

responsibility to your mentor, but the reverse happens as well. If my role

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=51

FIND A MENTOR 52

in a relationship is to help someone, I become invested in that person’s

success. I’m nudging someone along their career on a path that I believe

is the right one. So, if that path leads to success, it’s my success as well.

This creates incentive on the part of the mentor for his or her mentees

to succeed. Typically, being more experienced and already successful, a

person in such a role would have the respect of a significant network of

people. The mentor becomes a positively reinforced connection from you

to his or her network. The importance of this kind of connection can’t be

underestimated. After all, the phrase “It’s not what you know. It’s who

you know” isn’t a cliche for nothing.

The degree of formality in a mentor relationship is not important. Nobody

has to explicitly ask someone to be their mentor (though it’s definitely not

a bad thing if you do). In fact, your mentor may not even know they are

serving that role for you. What’s important is that you have someone you

trust and admire that can help give you career guidance and help you

hone your craft.

Act on it!

1. Mentoring yourself—We’d all ideally have someone to actively men-

tor us, but the reality is that we won’t always be able to find someone

in the same location that we can place in this role. Here’s a way to

proxy-mentor yourself.

Think of the person in your field whom you admire most. Most of us

have a short list already formulated from some stage in our careers.

It may be someone we’ve worked with, or it may be someone whose

work we admire. List the ten most important attributes of this role

model. Choose the attributes that are the reason why you have cho-

sen this person to be your role model. These attributes might be spe-

cific areas of skill, such as technology breadth, or the depth of their

knowledge in some particular domain. Or, they might be more per-

sonal traits like the ability to make team members comfortable or that

they are an engaging speaker.

Now, rank those qualities in order of importance, with 1 being the least

important and 10 being the most important. You have now created

and distilled a list of attributes that you find admirable and important.

These are the ways in which you should strive to emulate your chosen

role model. But, how do you choose which to focus on first?

Add a column to the list, and for each item on the list, imagine how

your role model would rate you on a scale of 1 to 10 (10 being the

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=52

FIND A MENTOR 53

best). Try to really put yourself into the mind of your role model and to

observe yourself as if a third person.

When you have the attributes, ranking, and your own ratings, in a final

column, subtract your rating in each row from the importance level

you gave it in the preceding column. If you ranked something as 10,

the most important attribute of your role model, and your rating was

3, that gives you a final priority score of 7. Having filled this column

in completely, sorting in descending order will you give a prioritized

top-ten list of areas in which you need to improve.

Start with the top two or three items, and put together a concrete list

of tasks you can start doing now to improve yourself.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=53

BE A MENTOR 54

13 Be a Mentor

If you want to really learn something, try teaching it to someone else.

There’s no better way to crystalize your understanding of something than

to force yourself to express it to someone else so that they can understand

it. The simple act of speaking is a known elixir for treating an unclear

mind. Speaking to puppets and other inanimate objects as a method of

problem solving is a fairly well-known element of solftware development

folklore.

To find out if you really

know something, try

teaching it to someone

else.

I saw Martin Fowler8 give a talk to a room of

developers in Bangalore, in which he said that

whenever he wants to really learn about some-

thing, he writes about it. Martin Fowler is a

well-known software developer and author. It

could be said that he is one of the best-known

and influential teachers this industry has to offer if we consider his role as

author to be that of a remote teacher and mentor.

We learn by teaching. It’s ironic, because we expect a teacher to already

know things. Of course, I don’t mean we can learn new facts altogether

by teaching them to someone—where would they come from? But, know-

ing facts is not the same as understanding their causes and ramifications.

It’s this kind of deeper understanding that we develop by teaching oth-

ers. We look for analogies to express complex concepts, and we internally

work through the reasons why one analogy seems to work but doesn’t and

another analogy would seem not to work but does. When you teach, you

have to answer questions that may have never occurred to you. Through

teaching, we clean the dusty corners of our knowledge as they are exposed

to us.

So, just as you can benefit from finding a mentor, you can benefit from

being a mentor to someone else.

Mentoring has positive social effects as well. An overlapping group of

mentors and their mentees creates a tight and powerful social network.

The mentor-to-mentee bond is a strong one, so the links in this kind of pro-

fessional network are stronger than those of more passive acquaintences.

8No, we’re not related.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=54

BE A MENTOR 55

When you are in a mentoring relationship with someone, you form an alle-

giance with each other. A network of this kind is a great place to circulate

difficult problems or look for work.

Mentors tend not to get

laid off.

You also shoudn’t underestimate that it just

feels good to help people. If you can hold the

interests of others in mind, you will have actu-

ally done something altruistic with your skills.

In the uncertainty of today’s economic environment, actually helping

someone is a job you can’t be laid off from. And, it pays in a currency

that doesn’t depreciate with inflation.

You find a mentee not by going out and declaring yourself a guru but by

being knowledgeable and willing to patiently share that knowledge. Don’t

be alarmed if you’re not an absolute expert on a topic. Chances are that

there is something that you have experience with that would qualify you to

help someone less experienced. Find that thing, and start being helpful.

You might, for example, have done a sizable amount of PHP work. You

could go to your local PHP user group meeting and offer to help less expe-

rienced users with their specific problems. Or, if you don’t have an imme-

diately available forum for providing face-to-face mentoring, you could

simply start answering questions in an online message board or IRC chan-

nel or help people debug application problems. Keep in mind, though,

that mentoring is about people. An online mentoring relationship can

never compare to one that happens between two humans in the same

place.

You don’t have to set up a formal mentoring relationship to get these ben-

efits. Just start helping people, and the rest will come naturally.

Act on it!

1. Look for someone to take under your wing. You might find someone

younger and less experienced at your company. Perhaps an intern.

Or, you could talk to the computer science or information systems

department at your local university and volunteer to mentor a college

student.

2. Find an online forum, and pick a topic. Start helping. Become known

for your desire and ability to patiently help people learn.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=55

PRACTICE, PRACTICE, PRACTICE 56

14 Practice, Practice, Practice

When I was a music student, I spent long nights in my university’s music

building. Through the thin walls of the university’s practice rooms, I was

constantly immersed in some of the ugliest musical sounds imaginable.

It’s not that the musicians at my school weren’t any good. Quite the con-

trary. But they were practicing.

When you practice music, it shouldn’t sound good. If you always sound

good during practice sessions, it means you’re not stretching your limits.

That’s what practice is for. The same is true in sports. Athletes push them-

selves to the limit during workouts, so they can expand those limits for the

real performances. They let the ugliness happen behind closed doors—not

when they’re actually working.

In the computer industry, it’s common to find developers stretched to their

limits. Unfortunately, this is usually a case of a developer being under-

qualified for the tasks that he or she has undertaken. Our industry tends

to practice on the job. Can you imagine a professional musician getting

onstage and replicating the jibberish from my university’s practice rooms?

It wouldn’t be tolerated. Musicians are paid to perform in public—not to

practice. Similarly, a martial artist or boxer stressing himself or herself to

fatigue during matches wouldn’t go very far in the sport.

As an industry, we need to make time for practice. We in the West often

make the case for domestic programmers based on the relatively high

quality of the code they produce versus that of offshore teams. If we’re

going to try to compete based on quality, we have to stop treating our jobs

as a practice session. We have to invest the time in our craft.

Several years back, I started experimenting with programming exercises

modeled after my musical practice sessions. Rule number one was that

the software I was developing couldn’t be something I wanted to use. I

didn’t want to cut corners, rushing to an end goal. So I wrote software

that wasn’t useful.

I cut no corners but was frustrated to find that a lot of the ideas I had

while practicing weren’t working. Though I was trying to do as good a

job as possible, the designs and code I was creating weren’t as elegant as I

had hoped they’d be.

Looking back on it now, I see that the awkward feeling I got from these

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=56

PRACTICE, PRACTICE, PRACTICE 57

experiences was a good sign. My code wasn’t completely devoid of bril-

liant moments. But I was stretching my mental muscles and building my

coding chops. Just like playing the saxophone, if I sat down to practice and

nothing but pretty sounds came out, I’d know I wasn’t practicing. Like-

wise, if I sit down to practice coding and nothing but elegant code comes

out, I’m probably sitting somewhere near the center of my current capa-

bilities instead of the edges, where a good practice session should place

me.

Practice at your limits.
So, how do you know what to practice? What

stretches your limits? The subject of how to

practice as a software developer could easily

fill a book of its own. As a start, I’ll borrow again from my experience as

a jazz musician. I’d break jazz practice down into the following categories

(simplified for the nonmusicians among us):

• Physical/coordination

• Sight reading

• Improvisation

These might serve as a framework for one way to think about practice as a

software developer.

Physical/coordination: Musicians have to practice the technical aspects of

their instruments: sound production, physical coordination (making your

fingers move nimbly, for example), speed, and accuracy are all important

to practice.

What equivalent do we software developers have of these musical funda-

mentals? What about the dusty corners of your primary programming

language that you rarely visit? For example, does your programming

language of choice support regular expressions? Regular expressions are

an extremely powerful and tragically underutilized feature of many pro-

gramming environments. Most developers don’t use them when they

could, because they don’t have the level of skill that it would take to be

productive with them. As a result, a lot of needless string parsing code

gets created and then has to be maintained.

The same rules apply to your language’s APIs or function libraries. If you

don’t get the environment’s many tools under your fingers (as musicians

say), it’s less likely you’ll pull them out when they could really help you.

Try truly digging into, for example, the way multithreaded programming

works in your chosen programming environment. Or, how about stream

libraries, network programming APIs, or even the set of utilities avail-

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=57

PRACTICE, PRACTICE, PRACTICE 58

able for dealing with collections or lists? Most modern programming lan-

guages offer rich and powerful libraries in all of these areas, but software

developers tend to learn a small subset, with which they can less efficiently

write the same code they could have written if they had mastered the full

set of tools available to them.

Sight reading: Especially as a studio musician, the ability to read and play

music near-perfectly the first time is paramount for a professional. I once

played saxophone on a jingle for Blockbuster (the video rental company).

I played both the lead and second alto parts on an up-tempo big-band

song. I saw the music for the first time literally as the tape started rolling.

We played through once on the lead part and once on the second part.

Any mistakes, and the whole band had to do it again—and the cost of the

studio time had to be accounted for.

As software developers, what would it mean to be able to sight read code?

Or requirements specifications or designs? An excellent place to find new

code with which to practice is the open-source community. Do you have

any favorite pieces of open-source software? How about trying to add

a feature? Go look at the TO-DO list for a piece of software you’d like

to practice with, and give yourself a constrained amount of time to imple-

ment the new feature (or at least to determine what it would take to imple-

ment it).

After choosing a feature, download the source code for the software, and

start exploring. How do you know where to look? What tricks do you use

to find your way around a significant body of code? What’s your starting

place?

This is an exercise you can practice often and in short periods of time.

You don’t actually have to implement the feature. Just use it as a starting

point. The real goal is to understand what you’re looking at as quickly as

possible. Be sure to vary the software you work with. Try different types of

software in different styles and languages. Take note of issues that make

it easier or harder for you to find your way around. What patterns are

you developing that help you work through the code? What virtual bread

crumbs do you leave for yourself to help you navigate as you move up

and down the call stack of a complex piece of functionality?

Improvisation: Improvisation is taking some structure or constraint and cre-

ating something new, on the fly, on top of that structure. As a programmer,

I’ve found myself doing the most improvision in times of stress. Oh no! The

wireless network app server is down, and we’re losing orders! That’s when some

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=58

PRACTICE, PRACTICE, PRACTICE 59

of the most creative, impromptu programming happens. That’s when you

do crazy stuff like recovering lost data by manually replaying packets over

a wireless network from a binary log file. Nobody meant for you to do

these things, especially not in the heat of the moment. That kind of sharp

and quick programming ability can be like a magical power when wielded

at the right time.

A great way to sharpen the mind and improve your improvisational cod-

ing skills is to practice with self-imposed constraints. Pick a simple pro-

gram, and try to write it with these constraints. My favorite exercise is to

write a program that prints the lyrics to the tired old song 99 Bottles of Beer

on the Wall. How could you write such a program without doing any vari-

able assignments? Or, how small of a program can you write that will still

print the lyrics correctly? For an additional constraint, how fast can you

code this program? How about practicing small, difficult problems with a

timer?

This is just one limited perspective on how to practice. You can mine

examples from any discipline, from visual arts to monastic religious prac-

tice. The important thing is to find your practice needs and to make sure

you’re not practicing during your performances (on the job). You have to

make time for practice. It’s your responsibility.

Act on it!

1. TopCoder—TopCoder.com is a long-standing programming compe-

tition site. You can register for an account and compete online for

prizes. Even if you’re not interested in competing with others, Top-

Coder offers a practice room with a large collection of practice prob-

lems that you can use as excellent fodder for your practice sessions.

Go sign up and give it a try.

2. Code Kata—Dave Thomas, one of the Pragmatic Programmers (our

beloved publisher), took the idea of coding practice and made

something....well, pragmatic out of it. He created a series of what he

calls Code Kata, which are small, thought-provoking exercises that

programmers can do in the language of their choice. Each kata

emphasizes a specific technique or thought process, providing a con-

crete flexing of one’s mental muscles.

At the time of this printing, Dave has created 21 such

kata and has made them available for free on his weblog

(http://blogs.pragprog.com/cgi-bin/pragdave.cgi/Practices/Kata).

On the weblog, you’ll also find links to a mailing list and to others’

Report erratum

http://blogs.pragprog.com/cgi-bin/pragdave.cgi/Practices/Kata
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=59

PRACTICE, PRACTICE, PRACTICE 60

solutions to the exercises along with discussion about how the

problems were solved.

Your challenge: work through all 21 kata. Keep a diary (perhaps a

weblog?) of your experiences with the kata. When you’ve finished

working through all 21 exercises, write your own kata and share it with

others.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=60

THE WAY THAT YOU DO IT 61

15 The Way That You Do It

“Developing software” is not a thing, a noun. Instead, “developing soft-

ware” is a verb; it’s the process of creating a thing. When we’re coding

away, it’s as important to focus on the process we’re using as it is to focus

on the product being developed. Take your eye off the process, and you

risk delivering late, delivering the wrong product, or not delivering at all.

These outcomes tend to be frowned on by our customers.

Fortunately, a lot of thought has been put into the process of making good

software (and products in general). Much of this prior art has been codi-

fied into a group of methodologies. These methodologies are the subject of

numerous books that can be found online or in your local bookstore.

Unfortunately, most developers don’t get to benefit from all this good

information. For the majority of teams, the process is an afterthought or

something imposed from above. The word methodology has, in their minds,

become synonymous with paperwork and long, meaningless meetings.

All too often, a methodology is something that their managers impose.

Managers intuitively know that they need to follow some kind of process,

but they often don’t know about the options that are now available. As a

result, they dust off the same processes that were imposed on them in the

1980s, wrap them up in buzzword-compliant ribbons (the pastel-colored

Agile ribbon is a good choice at the moment), and pass the practices on

to their teams. And unless someone breaks the cycle by actually doing

research on what works and what doesn’t, the same process will happen

again as the developers on the team become managers themselves.

You’d think that there must be a better way to develop software. And for

most teams there is.

If you’re a programmer, tester, or software designer, you may not think

the development process is your responsibility. As far as your company

is concerned, you’re probably right. Unfortunately, it’s usually nobody’s

responsibility. If it does get assigned to someone, it might fall into the hole

of a “process group” or some other similarly disconnected organization.

The truth is that for a software process to have any chance of being imple-

mented successfully, it has to be embraced by the people who are using

the process. People like you.

The best way to feel ownership of these processes is to help implement

them. If your organization has no process, research methodologies that

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=61

THE WAY THAT YOU DO IT 62

might work for you. Have brown-bag lunches with your team and discuss

current development problems and ways that adopting a standard process

might mitigate them. Put together a plan for rolling the chosen process

into your organization and get everyone’s buy-in. Then start to implement

your plan.

If you want to feel you

own a process, help

implement it.

Alternatively, you might work in an environ-

ment where a process is passed down from on

high. By the time the tablets arrive at the devel-

opment team, the practices have often been

watered down and reinterpreted to the point

where they’re unrecognizable from the originals. The process has suffered

the same fate as the secret phrase in a game of Chinese Whispers.9 Again,

this is an opportunity to take the initiative. Research the methodology

you’ve been given and help interpret what it really means, both to your

team and to your management. You’re not going to be able to fight that a

process has been imposed, so you may as well make it work by doing it

right.

The methodology world can quickly begin to sound like a hollow shell of

buzzwords. But, as buzzword compliant as some may be, you can always

learn something from the study of a software process—even if that some-

thing is what not to do. If you’re well versed in the software process land-

scape, you can make a more credible argument for how your team should

be working.

Even with the abundance of prescriptive methodologies to choose from,

it’s not likely you’ll ever work for a company that fully implements any

of them. That’s OK. The best process to follow is the one that makes your

team most productive and results in the best products. The only way to

find that hybrid (short of revelationary epiphany) is to study the available

options, pick out the pieces that make sense to you and your team, and

continuously refine them based on real experience.

Ultimately, if you can’t do the process, you can’t do the product. It’s much

easier to find someone who can make software work than it is to find

someone who can make the making of software work. So, adding knowl-

edge of the software development process to your arsenal can only help

you.

9http://en.wikipedia.org/wiki/Chinese_whispers

Report erratum

http://en.wikipedia.org/wiki/Chinese_whispers
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=62

THE WAY THAT YOU DO IT 63

Methodologies: Not Just for Geeks

Other process disciplines that can set the course for a soft-
ware project. Though project management is not neces-
sarily bound to software development methodology, you
may find yourself running face first into your company’s
project management techniques. Numerous project man-
agement methodologies are in use throughout the indus-
try. Probably most notable is the Project Management Insti-
tute’s Project Management Book of Knowledge,∗ (with its
widely recognized certification program).

Six Sigma† is another non-software-specific quality method-
ology. Driven by companies such as General Electric and
Motorola, the Six Sigma approach emphasizes the mea-
surement and analysis of processes and products to drive
customer satisfaction and efficiency. While not specific to
software development, Six Sigma’s rigorous and methodi-
cal approach offers many lessons that are directly applica-
ble to your job as a programmer.

∗http://www.pmi.org/
†http://www.isixsigma.com/

Act on it!

1. Pick a software development methodology, and pick up a book, start

reading web sites, and join a mailing list. Look at the methodology

with a critical eye. What do you think would be its strong and weak

points? What would be the barriers to implementing it where you

work? Next, do the same with another. Contrast their strengths and

weaknesses. How could you combine their approaches?

Report erratum

http://www.pmi.org/
http://www.isixsigma.com/
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=63

ON THE SHOULDERS OF GIANTS 64

16 On the Shoulders of Giants
Imitate. Assimilate. Innovate.

Clark Terry, Jazz Trumpeter

As a jazz musician, I spent a lot of time listening to music. I didn’t just

play music in the background while I was reading or driving. I would

really listen to the music. If jazz improvisation is all about playing what

you hear over the chords of a song, then actually listening to music is

a critical source of inspiration and knowledge of what works and what

doesn’t. What sounds great and what just sits there.

The vast history of jazz recordings serves as an incredible body of knowl-

edge, there for the taking by anyone with the skill to hear it. Listening to

music, therefore, is not a passive activity for a jazz musician. It is study.

Furthermore, the ability to understand what you’re hearing is a skill that

you develop over time. My circle of musician friends actually did this kind

of listening explicitly. We would have listening parties, where a bunch

of jazz musician geeks would sit around listening to music and then dis-

cussing it. Sometimes we would play name that improviser where one of

us would play a recording of an improvised solo and the rest of us would

have to figure out, based on style, who the recorded improviser was.

We in the jazz world weren’t special, of course. Classical composers do

the same thing. So do novelists and poets. So do sculptors and painters.

Studying the work of masters is an essential part of becoming a master.

When listening to jazz recordings, we would discuss the musical devices

that improvisors would use to communicate their musical points. “Wow!

Did you hear the way he started sidestepping at the end of the form?” or

“That was really strange the way he was playing behind the beat on the

bridge.” These discussions would help us all distill and discover tricks

that we could take with us to our next improvisation session and try.

Mine existing code for

insights.

Software design and programming have a lot

in common with the arts in this way. We can

mine a huge body of existing code for patterns

and tricks. The design patterns movement (see

Design Patterns [GHJV95]) is focused on the discovery and documentation

of reusable solutions to common software development problems. Design

patterns have formalized the study of existing code, making the practice

accessible to a great number of software professionals. Still, design pat-

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=64

ON THE SHOULDERS OF GIANTS 65

terns address only a small subset of the kinds of learning we can enjoy

through code reading.

How do other programmers solve particular problems algorithmically?

How do others strategically use variable, function and stucture naming?

If I wanted to implement the Jabber instant messaging protocol in a new

language, how might I do it? What creative ways can I find to handle inter-

process communication between UNIX and Windows systems? These are

the type of questions you can answer through the study of existing code.

Use existing code to

reflect on your own

capabilities.

Even more important than finding solutions to

specific problems is the use of existing code

as a magnifying mirror to inspect our own

style and capabilities. Just as listening to a

John Coltrane recording always reminded me

of where I stood on the skill ladder as a saxophonist, reading the work of

a great software developer has a similarly humbling effect. Nevertheless,

it’s not just about being humbled. As you’re reading through code, you

will find things that you would have never done. You will find things you

might have never even thought of. Why? What was the developer think-

ing? What were his or her motivations? You can even learn from bad code

with this kind of critical, self-aware exploration of an existing work.

The act of learning from the work that came before you works well in the

arts world, because there is no hidden source code for a painting or a piece

of music. If you can hear the music or see the piece of art, you can learn

from it. Thankfully, as software developers we have access to a practically

infinite array of existing software in the form of open-source software.

Enough open-source software is available that it would be impossible to

ever actually read all of it. There are definitely some bad open-source

projects, but there are also quite a few great ones. There is open-source

code available implementing almost any task that can be done with soft-

ware in almost every available programming language.

As you look at this code with a critical eye, you will start to develop

your own tastes, just as you would for music, art, or literature. Various

styles and devices will amuse you, amaze you, anger you, and (I hope)

challenge you. If you’re really looking for them, you’ll find everything

from tricks that make you more productive to design paradigms that com-

pletely change the way you approach a class of problems. Just as in the

arts, by studying and learning from the habits of others, you will develop

your own distinctive style of software development.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=65

ON THE SHOULDERS OF GIANTS 66

A positive side effect of reading code is that you will learn more about

what already exists. When you have a new problem that needs solving,

you might remember that “Oh, I saw a library that implements MIME

type handling in such and such project.” If the licensing terms are right,

you may save yourself a lot of time and your company a lot of money

by becoming more aware of what’s already out there for the taking. You

might be amazed to realize just how much money we waste in the software

industry by reimplementing the wheel (invention would be too generous a

word) over and over again.

Sir Isaac Newton said, “If I have seen further, it is by standing on the

shoulders of giants.” Smart guys like Isaac know that there is much to

be learned from those who came before us. Be like Isaac.

Act on it!

1. Pick a project, and read it like a book. Make notes. Outline the good

and the bad. Write a critique, and publish it. Find at least one trick

or pattern that you can use from it. Find at least one bad thing that

you observed that you will add to your What not to do checklist when

you’re developing software.

2. Find a group of like-minded people, and meet once a month. Each

session have someone nominate some code to study—2 lines to 200

lines. Break it down. Discuss what’s behind it. Think of the decisions

that went into it. Ponder the code that isn’t there.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=66

AUTOMATE YOURSELF INTO A JOB 67

17 Automate Yourself into a Job

For the first three months of our stay in India, Kelly and I lived in a hotel

in Bangalore. One morning, we woke up and decided to go down to the

hotel restaurant for breakfast, instead of the usual outdoor stand-and-eat

South India fast-food fare. We took a small table near the window, with a

picturesque view of the beautiful hotel garden.

As we were having our first cups of chai, I got the feeling you get when

some kind of insect is crawling nearby, and you can see it out of the corner

of your eye. Something is moving where you don’t expect motion. In

this case, it was on the top of the roof of the garden canopy outside. The

garden was made up in oriental style, and a beautiful outdoor dining area

was covered with a strong, permanent wooden canopy. The roof of the

canopy was made of some kind of small, solid, stone-like shingles.

It wasn’t an insect—it was a hotel employee. He was sliding on his belly

across the roof of the dining area, cleaning each shingle by hand with a

polishing cloth. We had a good chuckle over what seemed like an embar-

rassing inefficiency of the hotel. But, we soon discovered that this was a

pattern. Not more than a week later, I walked out of our room to head to

work, and I looked down and saw two hotel employees crouching in the

lawn, very carefully cutting the grass—with scissors!10

And, it didn’t stop at the hotel. I noticed that the street workers didn’t

use heavy equipment. In fact, in many cases they seemed to be using

homemade equipment. For example, groups of people tearing up a road

to install cabling were bunched together pounding the asphalt with bare

metal rods. I saw the same swarm idea applied to building houses, paint-

ing billboards, and farming: India throws labor at problems.

It’s tempting to look at the street workers or the roof polishers and think,

I sure could save them some money—or at least some time!—by recommending

some machinery to them. But, as my wife first pointed out to me (and many

Indians validated later), introducing machinery would put a lot of people

out of work. In one of those forehead-slapping moments, I realized that

I was staring right into the heart of why I was in India in the first place:

labor is cheap there.

10It should be noted that not everyone in India cuts their grass with scissors

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=67

AUTOMATE YOURSELF INTO A JOB 68

This is not just something to worry and complain about. These experiences

offer an insight that can help us compete. I was in India for only a year

and a half, but most of the Indian people who are the recipients of the U.S.

IT industry’s jobs grew up there. To them, it’s perfectly normal to bash the

street up with a metal pole or for 50 women to carry sand, one large bowl

at a time, on their heads at a construction site.

Based on the positioning of the Indian IT labor force, it must also be per-

fectly normal to throw bodies at a software development project. Need

another application that looks like the one we’re already making for you? No

problem! We’ll just add more programmers!

There’s more than one way to skin that cat. If the goal is to enhance soft-

ware development throughput, you can either:

• get faster people to do the work,

• get more people to do the work, or

• automate the work.

Since we don’t yet know how to truly measure software development pro-

ductivity, it’s hard to prove that one person is faster than another. So, as

we discussed in the book’s introduction, finance managers focus on per-

hour costs. This leads to this simple (minded) formula, which assumes a

fixed period of time:

In some environments, it’s actually possible to calculate the true yield of

a software investment. In most, you’ll find squishy, amorphous measures

such as number of projects or number of requirements, with no repeatable way

of measuring one of those units.

So, the faster programmer approach is too hard to prove, and we don’t

want to encourage the add more cheap programmers approach. This leaves

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=68

AUTOMATE YOURSELF INTO A JOB 69

us with automation. As we’ve seen, automation is not generally ingrained

in Indian life. Going out on a limb, I’d assume that this applies in other

developing countries. By contrast, we in the West have been automating

ourselves out of work for years.

I remember the sensationalism surrounding job loss in the United States

in the 1980s. Back then, not only were we blaming other countries, but we

were blaming machines and, specifically, computers. Huge robotic arms

were being installed in manufacturing plants. These robotic arms could

outperform humans in both throughput and accuracy to a point that it

was not even worth comparing them. Everyone was upset—everyone,

that is, except for the people who created the robotic arms.

So, imagine your company is in the business of creating websites for small

businesses. You basically need to create the same site over and over again,

with contacts, surveys, shopping carts, the works. You could either hire

a small number of really fast programmers to build the sites for you, hire

an army of low-cost programmers to do the whole thing manually and

repetitively, or create a system for generating the sites.

If we plug some (made-up) numbers into our finance manager’s formula,

we get the equations shown in Figure 1, on the next page.

You see, automation even makes sense to the finance manager, and he

never seems to understand anything!

Automation is part of the DNA of the West. It’s one true advantage that

our pedigree affords. How can you provably make better software faster

and cheaper than your offshore competition? Make the robots. Automate

yourself into a job.

Act on it!

1. Pick a task you normally do repetitively, and write a code generator

for it. Start simple. Don’t worry about reusability. Just make sure your

generator saves you time.

Think of a way to raise the level of abstraction of what you’re gener-

ating.

2. Research Model Driven Architecture (MDA). Try some of the available

tools. Look for somewhere in your work to apply the concepts of MDA

if not the full toolset.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=69

AUTOMATE YOURSELF INTO A JOB 70

Figure 1: Productivity Comparisons

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=70

Part III

Executing

EXECUTING 72

You’ve been making all the right investments and in the right market. You

are becoming, for example, an expert in implementing Service Oriented

Architectures for wirelessly enabled pizza delivery applications, and the

pizza delivery industry is starting to boom like it has never boomed before.

Before getting too wrapped up in amore with yourself, I should warn you

that everything we’ve talked about so far is prep work. It all leads to this

moment, where the sauce hits the dough: You have to actually do some-

thing.

Unless you’re really lucky, you’re probably not getting paid to be smart. And

you aren’t you getting paid to be a leading expert in the latest technolo-

gies. You work for an institution that is, most likely, trying to make money.

Your job is to do something that helps the organization meet that goal. All

of this careful thought and preparation has made you ready to show up at

work and start kicking ass for your company.

Like the “I want to be a J2EE architect” guy from Don’t Put All Your Eggs in

Someone Else’s Basket , on page 34, most of us don’t find our identities in

our assocations with the companies we work for. I mean, I’m a program-

mer before I’m a person who helps a Fortune 500 company sell dishwash-

ers, right? I’m an application architect—not a power company employee.

From the perspective of viewing software as craft, this is not too surprising.

The craft we’ve chosen isn’t usually coupled with the domain in which we’re

applying that craft. An architect designing an office for a defense contrac-

tor is still an architect—not a defense contractor.

This identity observation creates some subtle problems, in that our macro-

goals may conflict with our micro-responsibilities. If the architect creates an

office that is dysfunctional for the defense contractor, he hasn’t created

something of value. Regardless of the aesthetic beauty of his creation, he’s

a bad architect.

We’re being paid to create value. This means getting up out of our reading

chairs and getting things done. To be successful, raw ability will get you only

so far. The final stretch is populated by closers—people who finish things.

Getting things done feels good. It’s often hard for people to get into a

rhythm (try searching Amazon for procrastination), but once you’ve felt a

fire under you, you won’t want to stop. Let’s start lighting the fire.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=72

RIGHT NOW 73

18 Right Now

Imagine you are in a race with a $100,000 cash prize. The first team that

creates software to implement a new accounts receivable application wins

the prize. You and your team at work have signed up to compete. The

contest is to take place over a weekend. To win, your code has to be fully

tested and implement a minimum set of specified features. You start on

Saturday morning, and you have until Monday morning to complete the

application. The first team to finish before Monday morning wins the race.

If no team finishes before Monday, the team with the most features imple-

mented wins.

You confidently peruse the application’s feature requirements. Looking at

the feature set, you realize that the system to be created is similar in size

and scope to a lot of systems you’ve worked on in the past. While your

team’s agreed-upon goal is to finish some time mid-day on Sunday, for a

fleeting moment, you start to question yourself. How is it that an application

of similar scope to those we spend weeks working on in the office is going to get

finished in a single weekend?

But as the opening bell sounds and you launch into coding, you realize

that your team is going to be able to meet its goal. The team is collectively

in a groove, churning out feature after feature, fixing each other’s bugs,

making split-second design decisions, and getting things done. It feels

good. At design reviews and status meetings in the office, you’ve often

daydreamed about taking a small team out of the bureacratic environment

and ripping through the creation of a new application in record time.

Many of us have this daydream. We know that our processes slow us

down. Not only that, but we know that the speed of our environments

cause us to slow down.

What can we do? Right

now?

Parkinson’s law states that “work expands so

as to fill the time available for its completion.”

The sad thing is that even when you don’t

want it to be this way, you can fall into the trap,

especially when there are tasks you don’t really want to do.

In the case of a weekend coding race, you don’t have time to put tasks off,

so you don’t. You can’t delay making a decision, so you don’t. You can’t

avoid the boring work, and you know that you have to do it so quickly

that nothing can get too boring.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=73

RIGHT NOW 74

Parkinson’s law is an empirical observation—not an unescapable human

mandate. A sense of urgency, even if manufactured, is enough to easily

double or triple your productivity. Try it, and you’ll see. You can do it

faster. You can do it now. You can get it done instead of talking about

getting it done.

If you treat your projects like a race, you’ll get to the end a lot faster than

if you treat them like a prison cell. Create movement. Be the one who

pushes. Don’t get comfortable.

Always be the one to ask, “But what can we do right now?”

Act on it!

1. Look at your proverbial plate. Examine the tasks that have been sitting

on it for a long time. The projects that are starting to grow mold. The

ones you’ve been just a little bit stuck on—perhaps in bureacracy,

perhaps in analysis paralysis.

Find one that you could just do in between the cracks of your normal

work, when you would normally be browsing the Web, checking your

e-mail, or taking a long lunch. Turn a multimonth project into a less-

than-one-week task.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=74

MIND READER 75

19 Mind Reader

I used to work with this guy named Rao. Rao was from a state in Southern

India called Andhra Pradesh, but he was located in the United States and

worked onsite with us. Rao was the kind of guy who could code anything

you asked him to code. If you needed low-level system programming

done, he was the guy you could ask. If you needed high-level application

programming, he could also do pretty much anything you asked him to

do.

However, what made Rao truly remarkable was what he did before you

asked him to. He had this uncanny ability to predict what you were going

to ask him to do and do it before you thought of it. It was like magic.

I believe I even accused him of playing tricks on me at one point, but

there’s no way it could have been a trick. I would say, “Rao, I’ve been

thinking about changing the way we’re encapsulating the controller on

our application framework. If we changed it just a tad, it could be used

for applications other than web applications. What do you think?”

“I did that earlier this week,” he would say. “It’s checked into CVS. Have

a look.” This was constantly happening with Rao. It happened so often

that the only way it could have been a coincidence is if Rao was liter-

ally doing everything imaginable with every piece of software that our team

maintained.

At the time, I was leading my company’s application architecture team.

Among other things, we built and maintained frameworks for use in the

company’s applications. My teammates spent a lot of time talking about

how we wanted to see the face of software development at the company

improve. We also talked a lot about the role of our core infrastructure

components in these improvements.

It’s hard to read minds

over a conference call.

That’s where Rao’s magic trick came in. He

didn’t talk much in those conversations, but he

was anything but disengaged. He was listen-

ing carefully. And, giving away his secret as

no magician would, he later told me the trick was that he was only doing

things that I had already said I wanted. I had just said them in ways that

were subtle enough that even I didn’t realize I had said them.

We might be standing around waiting for a pot of coffee to brew, and I

would talk about how great it would be if we had some new flexibility in

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=75

MIND READER 76

our code that didn’t exist before. If I said it often enough or with enough

conviction, even though I hadn’t really put it on the team’s TO-DO list,

Rao might fill the gaps between “real work” looking at the feasibility of

implementing one of these things. If it was easy (and cheap) to implement,

he’d whip it out and check it in.

Stay off the mind

reading high-wire until

you have a safety net.

Mind reading not only applies to your man-

agers but also to your customers. If they’re

giving you the right cues, you might be able

to add features that they’re either going to ask

for or would have asked for if they had realized

they were possible. If you always do what your customers ask for when

they ask for them, you will satisfy your customers. However, if you do

more than what they ask for or you have already done things before they

ask, you will delight them. That is, unless your ability to read minds is

defective.

This mind reading trick isn’t entirely safe. It’s a tight rope that you’ll want

to avoid walking unless you have left yourself a safety net. The major risks

(with some suggested mitigations) are as follows:

• You spend the company’s money doing work that nobody asked you

to do. What if you were wrong? Start small. Only do the guess-

work that you can fit in between the cracks of your normal job so the

impact is little to none. If you’re so inclined, take on these extra jobs

in your free time.

• Anytime you add code to a system, you stand the very strong chance

of making it less resilient to change. Avoid mind reading work that

may force the system down a particular architectural path or limit

what the system can do in some way. When the impact of change is

great enough, a business decision needs to be made. And, it’s seldom

just the developers who need to weigh in on such a decision.

• You might take it upon yourself to change a feature your customers

did ask for in a way that, unexectedly to you, makes it less functional

or desirable to the customer. Beware of guessing when it comes to

user interfaces especially.

Managing people and projects is challenging work. People who can keep

a project moving in the right direction without being given much guid-

ance are highly valued and appreciated by their often overworked man-

agers and customers. The mind reading trick, if done well, leads to people

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=76

MIND READER 77

depending on you—an excellent recipe for continued employment. It’s a

skill worth exploring and developing.

Act on it!

1. Karl Brophey suggests that: for your next project or a system you main-

tain, start making some notes about what you think your users and

managers are going to ask for. Be creative. Try to see the system

from their points of view. After you have a list of the not-so-obvious

features that might come up, think about how you could most effec-

tively implement each feature. Think about edge cases that your

users might not immediately have in mind.

As you get into the project or enhancement requests, track your hit

rate. How many of your guesses turned out to be features you were

actually asked to implement? When your guessed features did come

up, were you able to use the ideas you came up with in your brain-

storming session?

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=77

DAILY HIT 78

20 Daily Hit

We all like to believe, by virtue of our knowledge and that we’re good

software people, that we are going to naturally nail execution and be top

performers. For a lucky few (and I do mean to use the word luck here), a

strategy like this will work.

But, all of us can benefit from scheduling and tracking our accomplish-

ments. Common sense tells us that if we exceed our managers’ expecta-

tions, we’ll be on the A list. Given that exceeding expectations is a worthy

goal, surprisingly few of us have mechanisms of tracking how and when

we exceed the expectations of our employers.

As with most tasks that are worth doing, becoming a standout performer

is more likely with some specific and intentional work. When was the

last time you went above and beyond the call of duty? Did your manager

know about it? How can you increase the visible instances of this behavior?

Have an

accomplishment to

report every day.

James McMurry, a co-worker who’s also a

good friend,11 told me very early in both of our

careers about a system he had worked up to

make sure he was doing a good job. It struck

me as being remarkably insightful given his

level of experience (maybe it’s a hint he got from his parents), and I use

it to this day. Without warning his manager, he started tracking daily hits.

His goal was to, each day, have some kind of outstanding accomplishment

to report to his manager—some idea he had thought of or implemented

that would make his department better.

Simply setting a goal (daily, weekly, or whatever you’re capable of) and

tracking this type of accomplishment can radically change your behavior.

When you start to search for outstanding accomplishments, you naturally

go through the process of evaluating and prioritizing your activities based

on the business value of what you might work on.

Tracking hits at a reasonably high frequency will ensure that you don’t get

stuck: if you’re supposed to produce a hit per day, you can’t spend two

weeks crafting the perfect task. This type of thinking and work becomes

a habit rather than a major production. And, like a developer addicted

11http://www.semanticnoise.com

Report erratum

http://www.semanticnoise.com
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=78

DAILY HIT 79

Figure 2: One Week of Hits

to the green bar of a unit test suite, you start to get itchy if you haven’t

knocked out today’s hit. You don’t have to worry so much about tracking

your progress, because performing at this level becomes more akin to a

nervous tic than a set of tasks that need to be planned out in Microsoft

Project.

Act on it!

1. Block off half an hour on your calendar, and sit down with a pencil

and paper in a quiet place where you won’t be interrupted. Think

about the little nitpicky problems your team puts up with on a daily

basis. Write them down. What are the annoying tasks that waste a

few minutes of the team’s time each day but nobody has had the

time or energy to do anything about?

Where in your current project are you doing something manually that

could be automated? Write it down. How about your build or deploy-

ment process? Anything you could clean up? How might you reduce

failures in your build? Write all of these ideas down.

Give yourself a solid twenty minutes of this. Write down all of your

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=79

DAILY HIT 80

ideas—good or bad. Don’t allow yourself to quit until the twenty min-

utes are up. After you’ve made your list, on a new sheet of paper,

write out your five favorite (most annoying) items. Next week, on Mon-

day, take the first item from the list, and do something about it. On

Tuesday, take the second item, Wednesday the third, and so on.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=80

REMEMBER WHO YOU WORK FOR 81

21 Remember Who You Work For

It’s really easy to say, “Make sure your goals and your work align with

the goals of your business.” Really easy to say. Really hard to do, espe-

cially when you’re a programmer, buried under so many organizational

layers that you hardly know what your business is. Early in my career, I

worked for a major package delivery company in a software development

architecture team supporting the company’s revenue systems. This com-

pany was so encumbered with hierarchy, I never saw anything in my daily

work that gave me even a glimpse into the business of package delivery. I

can remember my team attending quarterly all-hands meetings and feel-

ing completely disjoint and alienated. “What is this achievement we’re

celebrating? What do all of these metrics mean?”

Granted, at that point in my career, I was more interested in building ele-

gant systems and hacking open-source software than digging into the guts

of a package delivery business. (OK, I admit it—I’m still more more inter-

ested in those things.) But, had I really wanted to align my work with the

major goals of the organization, I’m not sure I would have known where

to begin.

So, it’s all fine and dandy to say we need to align our work with the goals

of the company—to try to make sure we’re impacting the bottom line and

all that. However, truth be told, many of us just don’t have visibility into

how we can do this at the level from which we’re grasping. We can’t see

the forest for the trees.

Maybe this one isn’t our fault. We may be asking too much of ourselves.

Maybe the idea of trying to directly impact the company’s bottom line

feels a bit like trying to boil the ocean. So, we need to take a more com-

partmentalized view, breaking the business into boilable puddles.

The most obvious puddle to start with is your own team. It’s proba-

bly small and focused enough that you can conceptually wrap yourself

around it. You most likely understand the problems the team faces. You

know what your team is focused on improving, be it productivity, rev-

enue, error reduction, or anything else. If you’re not sure, you have one

obvious place to go to find out: your manager.

Ultimately, in a well-structured environment, the goals of your manager

are the goals of your team. Solve your manager’s problem, and you’ve

solved a problem for the team. Additionally, if your manager is taking

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=81

REMEMBER WHO YOU WORK FOR 82

the same approach you are, the problems you’re solving for him or her

are really his or her boss’s problems. And so on, and so on, until it rolls

up to the highest level of your company or organization—the CEO, the

shareholders, or even your customers.

By doing your small part, you’re contributing to the fulfillment of the goals

of your company. This can give you a sense of purpose. It gives your work

meaning.

Some may resist this strategy. “I’m not going to do his work for him.” Or,

“She’s just going to take credit for my work!”

Well, yea. Sort of. That’s the way it works. The role of a good manager is

not to, as Lister and Demarco say in Peopleware [DL99], “play pinch hitter,”

knowing how to do his or her whole team’s job and filling in when things

get difficult. The role of a good manager is to set priorities for the team,

make sure the team has what it needs to get the job done, and do what it

takes to keep the team motivated and productive, ultimately getting done

what needs to get done. A job well done by the team is a job well done by

the manager.

Your managers’

successes

are your successes.

If the manager’s job is to know and set priori-

ties but not to personally do all the work, then

your job is to do all the work. You are not doing

the manager’s job for him or her. You’re doing

your job.

If you’re really worried about who gets the credit, remember that it’s your

manager who holds the keys to your career (in your present company, at

least). In most organizations, it’s the direct manager who influences per-

formance appraisals, salary actions, bonuses, and promotions. So, the

credit you seek is ultimately cashed in with your manager.

Remember who you work for. You’ll not only align yourself with the

needs of the business, but you’ll align the business with your needs.

Act on it!

1. Schedule a meeting with your manager. The agenda is for you

to understand your manager’s goals for the team over the coming

month, quarter, and year. Ask how you can make a difference. After

the meeting, examine how your daily work aligns to the goals of your

team. Let them be a filter for everything you do. Prioritize your work

based on these goals.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=82

BE WHERE YOU’RE AT 83

22 Be Where You’re At

As a manager, I can tell you that the most frustrating thing to deal with

is an employee who’s always aiming for the next rung on the ladder. You

know the guy: you can’t sit with him for lunch without him bringing up

who got what promotion. He always has some kind of office gossip to

spread, and he seems to cling to corporate politics as if clinging to the

story line of a soap opera to which he has some sick and sinful addiction.

He complains about the incompetence of The Management and bitterly

completes his tasks, knowing full well that he could do the job of manage-

ment better than they can. They’re just too incompetent to understand his

potential.

He thinks many tasks are beneath him. He avoids them when possible and

does them begrudgingly (and slowly) when not. He cherry-picks work

that he thinks, even if subconciously, is in tune with his level and might

get him closer to his goal of the next promotion.

Be ambitious, but don’t

wear it on your sleeve.

The sad thing about this guy is that, because

he’s living in the next job, he’s usually doing a

mediocre job in his current role. It’s like mow-

ing the lawn for me. I hate mowing the lawn.

It makes me itch, and it makes me sweat. Worst of all, it keeps me from

doing something I’d rather be doing. You can hire people to mow the lawn.

I’ve been one of those people. That was a long time ago, and now I’ve

graduated. So, when I have to mow the lawn, what do I do? I rush. I do a

sloppy job. I spend the whole time thinking about how to get it finished

so I can get on to the stuff I’d rather be doing. In a nutshell, I do a terrible

job at mowing the lawn.

Thankfully, in my lawn mowing example, nobody is watching what I’m

doing and grading me on it (though, my wife has become sufficiently

annoyed that I’m not responsible for the lawn at our house anymore).

It’s my own problem if the lawn doesn’t look great when I’ve finished.

Nobody is holding me back to being “just a lawn mower” because of my

performance in the yard. In the case of an IT job, that very same behavior

could bring on a career catastrophe. Going back to our friend from the

previous paragraphs, how do you think his management is going to view

him? Will they see that they’ve been wrong to overlook his brilliance and

decide to promote him? Will they give him big raises to try to make him

happy?

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=83

BE WHERE YOU’RE AT 84

Of course not. He’s a mediocre performer with a bad attitude. So what

if he has high potential? Right now, he’s not showing it. The company

doesn’t make money because of potential. Shareholders don’t hang onto

investments if their potential isn’t met. Furthermore, his attitude makes

his managers want to stop investing in him.

So, that’s a manager’s view point. Now, of course, I’m not completely

guilt-free here myself. I’ve been this guy myself to some extent. It really

isn’t a very good from this side of the street either. You spend all your

time wanting something. Craving is the opposite of contentment. You

wake up in the morning and have to go to “that bloody job” where nobody

understands your potential. With resentment, you toil over your work,

going over strategies for how to get ahead. You fantasize about what you

would do in the latest situation that your manager screwed up—how you

would handle it differently. You put off living while you’re at work until

you can do it your way in the position you deserve.

Here’s a secret: that feeling will never end. If and when you finally land

the big promotion you’ve been dreaming about, you’ll quickly grow tired

and realize that it’s not this job you were meant for—it’s the next one. The

cycle begins again. I haven’t reached the top yet, but I have a strong hunch

that if there were such a position and I were to reach it, I would look ahead

and realize I’d been chasing a ghost. What a frustrating waste of a profes-

sional life.

But, shouldn’t we have ambitions? Would there be a Microsoft or a Gen-

eral Electric if the great entrepreneurs hadn’t been ambitious and had

goals?

Of course we should. I’m not advocating an apathetic outlook. It’s good

to have goals, and it’s good to want to succeed. But, think of the negative,

resentful guy I described at the beginning of this section. Do you think that

guy is going to be the one who succeeds? It seems backward, but keeping

your mind focused on the present will get you further toward your goals

than keeping your mind focused on the goal itself.

It sounds difficult at first. Monk-like, even. Casting off the daily drive

to succeed may sound like an ascetic, unattainable goal. You’ll find that

it’s very pragmatic, though. Focusing on the present allows you to enjoy

the small victories of daily work life: the feeling of a job well done, the

feeling of being pulled in as an expert on a critical business problem, the

feeling of being an integral member of a team that gels. These are what

you’ll miss if you’re always walking around with your head in the clouds.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=84

BE WHERE YOU’RE AT 85

You’ll always be waiting for the big one while ignoring the little things that

happen every day that make your job worth showing up for.

Your presence is a major

advantage you have

over your offshore

bretheren.

Not only will you feel better, but those around

you will feel it as well. Your co-workers, man-

agers, and customers will feel it. It will show

in your work. As unintuitive as it may be, let-

ting go of your desire to succeed will result in

an enhanced ability to succeed.

You are close to your clients. You are close to the leaders and decision

makers who will shape your career in the short term and, possibly, the

long term. Developers in India or the Phillipines don’t have this advan-

tage, but you do. So, be where you’re at.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=85

HOW GOOD A JOB CAN I DO TODAY? 86

23 How Good a Job Can I Do
Today?

It’s rewarding to do a good job and to be appreciated. While most of us

know this intuitively, we allow ourselves to be extremely selective about

where and when we really go out of our way to excel. We dote over the

design for the marketing department’s Next Big Thing project, or we’re

quick to jump in to save the day in the face of some big, visible catastro-

phe, because our brains are wired to understand these moments as oppor-

tunities to show our proverbial stuff. We’ll even do our work in the middle

of the night with a level of focus and detail that would normally bore us

to tears. A dire situation will often bring out the best in us.

I’ve let that intoxicating feeling of elation keep me awake and working

effectively through some of the most grueling system outages and missed

deadlines. Why is it that, without facing great pressure, we’re often unable

to work ourselves into this kind of altruistic, ultra-productive frenzy?

How well would you perform if you could treat the most uninteresting

and annoying tasks with the same feverish desire to do them right?

How much

more fun could you

make your job?

That last question may be better if we restate it.

How much more fun would your job be if you

could treat the most uninteresting and annoy-

ing tasks with the same feverish desire to do

them right? When we have more fun, we do

better work. So, when we have no interest in a task, we’re bored and our

work suffers as a result.

How can you make the boring work more fun? The answer to that ques-

tion might be more apparent if you flip it around. Why is the boring work

boring? Why isn’t it already fun? What’s the difference between the work

you enjoy and the work you abhor?

For most of us techies, the boring work is boring for two primary reasons.

The work we love lets us flex our creative muscles. Software development

is a creative act, and many of us are drawn to it for this reason. The work

we don’t like is seldom work that we consider to be creative in nature.

Think about it for a moment. Think about what you have on your TO-DO

list for the next week at work. The tasks that you’d love to let slip are

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=86

HOW GOOD A JOB CAN I DO TODAY? 87

probably not tasks that leave much to the imagination. They’re just-do-

’em tasks that you wish you could just get someone else to do.

The second reason that the boring tasks are boring, admittedly closely

joined to the first, is that the boring tasks are not challenging. We love

to dig in and solve a hard problem where others have failed. It’s the same

feeling that drives members of our species to recreationally risk their lives

scaling mountains and bungie jumping off bridges. We love to do things

to prove that we’re able. The boring tasks are usually no-brainers. Doing

them is about as challenging as taking out the trash.

So, how can we still use our creativity and challenge ourselves while tend-

ing to the mundane leftovers of our workday (which probably take up

greater than 80% of the time for most of us)?

What if you tried to do the boring stuff perfectly? Say, for example, you

hate unit testing. You love programming, but you get annoyed with hav-

ing to write automated test code. What if you strove to make your tests

perfect? How might that change your behavior? What does perfect even

mean with regard to unit testing? It probably has something to do with

test coverage. Perfect test coverage would mean that you had tested 100%

of the functionality of your real code. Perfect unit tests are also clean and

maintainable and don’t depend on a lot of external factors that might be

hard to replicate on another computer. They should be runnable directly

after a fresh version control checkout on a new machine. And, of course,

all of the tests should pass at 100%.

This is starting to sound difficult; 100% test coverage almost sounds

impossible. And the business of decoupling the tests so that they can run

without external dependencies presents a lot of challenges. In fact, you’ll

probably have to change your code to make this even possible. But, if you

could do it, the tests would be incredible.

I don’t know about you, but that sounds kind of fun to me. Granted, this

is a manufactured example, but you can apply the same type of thinking

to most of the tasks that cross your path. Try it tomorrow. Look at your

workday and ask yourself, “How good a job can I do today?” You’ll find

that you’ll like your job better, and your job will like you.12

12Thanks to Andy Hunt for this idea (http://www.toolshed.com/blog/articles/2003/07/09/how-good

Report erratum

http://www.toolshed.com/blog/articles/2003/07/09/how-good-a-job-can-you-do
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=87

HOW GOOD A JOB CAN I DO TODAY? 88

Act on it!

1. Make it visible—Turn those boring tasks into a competition with your

co-workers. See who can do them better. Don’t like writing unit tests?

Print out the number of test assertions for the code you checked in

every day, and hang it on your cubicle walls. Keep a scoreboard for

the whole team. Compete for bragging rights (or even prizes). At the

end of a project, arrange for the winner to have his or her grunt work

done by the rest of the team for a whole week.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=88

HOW MUCH ARE YOU WORTH? 89

24 How Much Are You Worth?

Have you ever stopped to consider exactly how much you cost to the com-

pany you work for? I mean, you know your salary. That part is easy. What

about benefits, management overhead, training, and all that other stuff

that doesn’t necessarily show up on your paycheck?

It’s easy to get into the mode of just wanting more. It unfortunately seems

to be a basic human tendency, in fact. You get a salary increase, and it feels

good for a little while, but then you’re thinking about the next one. “If I

could make just 10% more, I could afford that new....” We’ve all done it.

At some point, the actual number becomes abstract. It’s not about $5,000

more per year. It’s about making whatever the baseline number is go up. If

we don’t get a satisfactory salary increase one year, we become dissatisfied

with our work and our company. “Why don’t they appreciate me?”

How much do you really cost? As I already mentioned, it’s obviously

more than your base salary. For the sake of discussion, let’s estimate it at

roughly two times your base salary. So, if you make $60k per year, the

company actually spends about $120k keeping you employed.

That was easy. Now’s the hard part: How much value did you produce

last year? What was your positive impact on the company’s bottom line?

We already know that you cost the company (in our imaginary scenario)

roughly $120k. What did you give back? How much money did you cause

the company to save? How much more in revenues did you contribute?

Is that number bigger than twice your salary?

It’s a difficult exercise to go through, because it’s often hard to relate every

aspect of our work to the bottom line of the company. It may even seem

like an unreasonable question to you. “How do I know? I’m just a coder!”

That, of course, is the point. You work for a business, and unless you pro-

vide some kind of real value, you are a waste of money. It’s easy to fall

into the trap of thinking that salary increases are an entitlement. Analo-

gously, a company has the right to charge more for its products every year.

But, consumers have the right to not purchase that product if the price isn’t

attractive.

Now that you’ve started thinking about how much you cost versus how

much you deliver, how much do you think you need to deliver to be con-

sidered a worthwhile investment to the company? We’ve talked about the

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=89

HOW MUCH ARE YOU WORTH? 90

rough twice-your-salary figure, but is that enough? If you deliver value

totaling twice your salary, the company has broken even. Is that a good

way to spend money?

As a point of reference, think about the interest rate on a typical consumer

savings account. It’s not great, right? Still, it’s definitely better than zero.

Given the choice, would you put a year’s worth of savings into a savings

account that yields 0% or 3%? To deliver only twice your salary in value is

as unappealing a prospect for a company as a 0% savings account is to you.

They’ve tied up $120k in cash for the year, and you’re not even delivering

enough value to keep up with the economy’s inflation rate. Breaking even

in this case is actually still a loss.

I can remember when I started thinking this way. It made me paranoid

at first. A month would pass, and I would think, “What did I deliver this

month?” Then, I started getting as granular as weeks and days. “Was I

worth it today?”

Ask, “Was I worth it

today?”

You can make this concrete. Just how much

value do you add? Talk to your manager about

how to best quantify it. The very fact that

you want to quantify it will be taken as a good

thing. How could you creatively save the company money? How could

you make your development team more efficient? Or what about the end

users of your software? You’ll be surprised at how many opportunities

you can spot if you start asking these questions. Now, start implementing

some of them. Hold that figure in your head: twice my salary. Don’t let

yourself off the hook until you’ve surpassed that number for the year.

Act on it!

1. When companies make investments, they try to make sure they’re

using their money in the best possible way. Simply calculating a return

on investment (I put in $100 and get back $120) isn’t enough to make

a smart decision. Among other factors, companies have to take infla-

tion, opportunity cost, and risk into consideration. Specifically unintu-

itive to those of us who haven’t been to business school is the concept

of the time value of money. At risk of oversimplification, it goes some-

thing like this: a dollar today is worth more than a dollar next year,

because a dollar today can be used to generate more dollars.

Most companies set a rate of return bar, under which an investment

will not be made. Investments have to yield an agreed-upon per-

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=90

HOW MUCH ARE YOU WORTH? 91

centage in an agreed-upon period of time, or they aren’t made. This

number is called the hurdle rate.

Find out what your company’s hurdle rate is and apply it to your salary.

Are you a good investment?

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=91

A PEBBLE IN A BUCKET OF WATER 92

25 A Pebble in a Bucket of Water

What would happen if you got up and walked out of your office, never

to return? I know a lot of programmers who take comfort in imagining

that scene. You just stand up, walk to your boss’s office, and hand in your

resignation. I’ll show them why they needed me! This works as a daydream

to get you through the really bad days, but it’s obviously not a very pro-

ductive attitude to carry with you all the time.

Beside that, it’s not true. People leave companies every day. Many of

them are let go. Many choose to leave. Some even live out your daydream

and walk out with no notice. But in few cases do the companies they

leave actually feel a significant impact as a result of their departure. In

most cases, even in critical positions, the effect is surprisingly low. Your

presence on the job is, to the company, like a pebble in a bucket of water.

Sure, the water level is higher as a result. You get things done. You do

your part. But, if you take the pebble out of the bucket and stand back to

look at the water, you can’t really see a difference.

I’m not trying to depress you. We all need to feel that our contributions

mean something. And, they do. But, we spend so much time being me that

we can easily forget that everyone else is a me, too. Everyone employed at

your company walks around, a sentient and autonomous being, stuck in

this thing called a self, which is the only window from which they see their

jobs. Think of it this way: if you left tomorrow, the difference would be

(on the average) no more or less impactful than if any of your co-workers

left.

I once worked for a CIO who was one of the most powerful CIOs in one

of the most powerful companies in the world. He and his team (of which

I was a part) were winning every award and setting every IT standard in

the company. This was a guy who had obviously figured out some kind

of magic elixir and was sprinkling it into the free lunches and dinners that

he had served during Y2K parties.

One of the few real pieces of advice that I ever got from this CIO—and I

heard it over and over again—is that you should never get too comfort-

able. He professed to waking up every day and intentionally and explic-

itly reminding himself that he could be knocked off of his pedestal any

day. Today could be it, he’d say.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=92

A PEBBLE IN A BUCKET OF WATER 93

His staff would look at him incredulously. No. Today couldn’t be it.

Things are going so well. You’ve got too much going for you.

Beware of being

blinded by your own

success.

That was his point. Humility is not just some-

thing we develop so we can claim to be more

spiritual. It also allows you to see your own

actions more clearly. What our CIO was teach-

ing us was that the more successful you are, the

more likely you are to make a fatal mistake. When you’ve got everything

going for you, you’re less likely to question your own judgment. When

the way you’ve always done it has always worked, you’re less likely to

recognize a new way that might work better. You become arrogant, and

with arrogance you develop blind spots. The less replaceable you think

you are, the more replaceable you are (and the less desirable you become).

Feeling irreplaceable is a bad sign, especially as a software developer. If

you can’t be replaced, it probably means you perform tasks in such a way

that others can’t also do them. While we’d all like to claim some kind of

special genius, few software developers are so peerless that they in fact

should be irreplaceable.

I’ve heard lots of programmers half-joking about creating “job security”

with unmaintainable code. And, I’ve seen actual programmers attempt to

do it. In every case, these people have become targets. Sure, it was scary

for the company to finally let go of them. Ultimately, though, fear is the

worst that ever came of it. Attempting to be irreplaceable is a defensive

maneuver that creates a hostile relationship with your employer (and your

co-workers) where one may not have already existed.

Using this same logic, attempting to be replaceable should create an unhos-

tile working relationship. We’re all replaceable. Those of us who embrace

and even work toward this actually differentiate ourselves and, unintu-

itively, improve our own chances. And, of course, if you are replaceable

nothing is stopping you from moving up to the next big job.

Act on it!

1. Inventory the code you have written or maintain and all the tasks you

perform. Make a note of anything for which the team is completely

dependent on you. Maybe you’re the only one who fully understands

your application’s deployment process. Or there is a section of code

you’ve written that is especially difficult for the rest of the team to

understand.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=93

A PEBBLE IN A BUCKET OF WATER 94

Each of these items goes on your TO-DO list. Document, automate, or

refactor each piece of code or task so that it could be easily under-

stood by anyone on your team. Do this until you’ve depleted your

original list. Proactively share these documents with your team and

your leader. Make sure the documents are stored somewhere so that

they will remain easily accessible to the team.

Repeat this exercise periodically.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=94

LEARN TO LOVE MAINTENANCE 95

26 Learn to Love Maintenance

When we set up our development center in Bangalore, we faced a chal-

lenge we never expected. Everyone wanted to make new systems.

Nobody wanted to maintain old systems. And with the IT market boom-

ing in India for the past several years, we had to pay a lot of attention to

what our people wanted to do with their careers.

Everyone likes creating. That’s when we feel we are given the opportu-

nity to really put our stamps on a piece of work. To feel like we own it.

To express ourselves through our creation. We also tend to believe who

project work is the most visible to our organizations. The people who

build the new generation are the ones that must get the glory, right? I

knew this attitude to be prevalent because of my experience back at home.

But, in Bangalore, I saw this to an extreme that I never expected.

I think the motivation behind doing project work was almost caste-like in

India. Though the caste system is officially dead in India, the hierarchical

thinking it imposed lives on in the hearts and minds of its citizens. Pro-

grammers want to be designers want to be architects, and so on. And, the

project-to-project mentality of the hired-gun offshore consultants empha-

sizes the insertion of a completed project in one’s curriculum vitae. Main-

tenance work gives them neither a notch in their belts nor a clear, elevated

role (such as architect) that they can tell their parents.

So, the motivating factors are the ability to be creative and the chance to

make steps toward a promotion. The funny thing about it is that project

work is not necessarily the best place to do either.

Maintenance work is typically littered with old, rotting systems and pushy

end users. Since the software is thought of as being done, IT departments

are usually focused on reducing the cost of maintaining these systems,

so they look for the cheapest possible way to keep the systems running.

That usually amounts to too few resources being assigned to look after the

systems and no significant investment dollars being pumped into rejuve-

nating the systems.

Project work, on the other hand, is where you start with a nice, clean, green

field. In a well-run company, every project contributes to either making or

saving money, so the projects are usually funded sufficiently for the work

to be done (though, experiences may vary here). There is no existing mine-

field of old code that the programmers have to tiptoe carefully through so

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=95

LEARN TO LOVE MAINTENANCE 96

they can develop features “right” with fewer hinderances than if they were

working on an existing system. In short, the circumstances in project land

are usually much more ideal.

If I give you $1,000 and ask you to go get me a cup of coffee, I’m going to

be very unhappy if you return with 1,000 less dollars and no cup of coffee.

I’m even going to be unhappy if you bring me plenty of really nice coffee,

but it takes you two hours. If I give you $0 and ask you to go get me a

cup of coffee, I’ll be extremely appreciative if you actually return with the

coffee, and I’ll be understanding if you don’t. Project work is like the first

scenario. Maintenance is like the second.

When we don’t have the constraints of bad legacy code and lack of funding

to deal with, our managers and customers rightfully expect more from

us. And, in project work, there is an expected business improvement. If

we don’t deliver it, we have failed. Since our companies are counting on

these business improvements, they will often put tight reigns on what gets

created, how, and by when. Suddenly, our creative playground starts to

feel more like a military operation—our every move dictated from above.

Maintenance can be a

place of freedom and

creativity.

But in maintenance mode, all we’re expected

to do is keep the software running smoothly

and for as little money as possible. Nobody

expects anything flashy from the maintenance

crew. Typically, if all is going well, customers

will stay pretty hands-off with the daily management of the maintainers

and their work. Fix bugs, implement small feature requests, and keep it

running. That’s all you have to do.

What if a bug turns up the need to redesign a subsystem in the application?

That’s all part of bug fixing, right? The designs may be old and moldy,

and broken windows13 may be scattered throughout the system. That’s

an opportunity to put your refactoring chops to the test. How elegant can

this system be? How much faster can you fix or enhance this section next

time because of the refactoring you’re doing this time?

As long as you’re keeping it running and responding to user requests in

a timely fashion, maintenance mode is a place of freedom and creativity.

You are project leader, architect, designer, coder, and tester. You can flex

your creative abilities all you like, and measurable success or failure of the

system is yours to bear.

13For more on broken windows, see The Pragmatic Programmer [HT00].

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=96

LEARN TO LOVE MAINTENANCE 97

When you’re maintaining a system, you can also plan for more visible

improvements. Your three-year-old web system might not take advantage

of some of the snappy new user interface features available to modern

web browsers. If you can work it in between keeping the system running

and making bug fixes, you could visibly enhance the user experience with

the system. Adding a few well-placed bells and whistles your customers

weren’t expecting is not too different from surprising your wife with flow-

ers or, as a kid, cleaning the house while your parents were out shopping.

And, without the bureacracy of a full-blown project underway, you’ll be

surprised at just how much you can fit into those cracks. Your customers

will be too.

A hidden advantage of doing maintanence work is that, unlike the con-

tractual environment of many of today’s project teams, the maintenance

programmer often has the opportunity to interact directly with his or her

customers. This means that more people will know who you are, and

you’ll have the chance to build a larger base of advocates in your busi-

ness. It also puts you in a prime spot for truly learning the inner workings

of your business. If you’re responsible for a business application in its

entirety, always working with its end users through problems and ques-

tions, chances are that even without much effort, you will come to under-

stand what the application actually does as well as many of its business

users. Business rules are encoded into application logic that businesspeo-

ple can’t usually read. I’ve seen many situations where it was only the

maintenance programmers who fully understood how a specific business

process in a company worked. No one else had direct exposure to the

authoritative encoding of that business logic.

The big irony surrounding the project versus maintenance split is that

project work is maintenance. As soon as your project team has written

its first line of code, each additional feature is being grafted onto a living

code base. Sure, the code might be cleaner or there might be less of it than

if you were working on a legacy application, but the basic act is the same.

New features are being added to and bugs are being fixed in existing code.

Who knows how to do this better and faster than someone who has truly

embraced maintenance programming and made it a mission to learn how

to do it well?

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=97

LEARN TO LOVE MAINTENANCE 98

Act on it!

1. Measure, improve, measure—For the most critical application or

code that you maintain, make a list of measurable factors that repre-

sent the quality of the application. This might be response time for the

application, number of unhandled exceptions that get thrown during

processing, or application uptime. Or, if you handle support directly,

don’t directly assess quality for the application, support request turn-

around time (how fast do you respond to and solve problems) is an

important part of your users’ experience with the application.

Pick the most important of these measurable attributes, and start

measuring it. After you have a good baseline measurement, set

a realistic goal, and improve the application’s (or your own) per-

formance to meet that goal. After you’ve made an improvement,

measure again to verify that you really made the improvement you

wanted. If you have, share it with your team and your customers.

Pick another metric, and do it again. After the first one, you’ll find that

it becomes fun, like a game. Measurably improving things like this gets

addictive.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=98

EIGHT-HOUR BURN 99

27 Eight-Hour Burn

One of the many sources of controvery around the Extreme Programming

movement is its initial assertion that team members should work no more

than 40 hours per week. This kind of talk really upsets slave-driving man-

agers who want to squeeze as much productivity as possible from their

teams. It even kind of upset programmers themselves. The number of

hours worked continuously becomes a part of the developer machismo,

like how many beers a frat boy can chug at a kegger.

Bob Martin,14 one of the Extreme Programming community’s luminar-

ies, turned the phrase around in a way that made it much more tolerable

for both parties while staying true to Kent Beck’s original intent. Mar-

tin renamed 40-hour workweek to “eight-hour burn.” The idea is that you

should work so relentlessly that there is no way that you could continue

longer than eight hours.

Before we go too deeply into the burn, why the emphasis on keeping the

number of hours down anyway? This chapter is about getting things done.

Shouldn’t we be talking about working more hours?

When it comes to work, less really can be more. The primary reason cited

by the Extreme Programmers is that when we’re tired, we can’t think as

effectively as when we’re rested. When we’re burnt out, we aren’t as cre-

ative, and the quality of our work reduces dramatically. We start making

stupid mistakes that end up costing us time and money.

Projects are marathons,

not sprints.

Most projects last a long time. You can’t keep

up the pace of a sprint and finish a marathon.

Though your short-term productivity will sig-

nificantly increase as you start putting in the

hours, in the long term you’re going to crash so hard that the recovery

time will be larger than the productivity gains you enjoyed during your

80-hour weeks.

You can also think of your time in the same way you think of your money.

When I was a teenager, working part-time jobs for minimum wage, I

would have been happy to live off of the amount of money that I waste

now. I have so much more money available to me now than I did when I

14http://www.objectmentor.com

Report erratum

http://www.objectmentor.com
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=99

EIGHT-HOUR BURN 100

was a teenager that I tend to be less aware as I spend each dollar. Some-

how, I was able to survive back then. I had a place to live, a car to drive,

and food to eat. I have the same things today. And, I don’t lead a par-

ticularly extravagant lifestyle now. Apparently, when money was scarce,

I found ways to be more efficient with my cash. And, the end result was

essentially the same.

We treat scarce resources as being more valuable, and we make more effi-

cient use of them. In addition to money matters, we can also apply this

to our time. Think about day 4 of the last 70-hour week you worked. No

doubt, you were putting in a valiant effort. But, by day 4, you start to get

lax with your time. It’s 10:30 AM, and I know I’m going to be here for hours

after everyone else goes home. I think I’ll check out the latest technology news for

a while. When you have too much time to work, your work time reduces

significantly in perceived value. If you have 70 hours available, each hour

is less precious to you than when you have 40 hours available.

When the value of the dollar suffers from inflation, you need more dollars

to buy the same stuff. When the value of the hour is deflated, you need

more hours to do stuff. Bob Martin’s eight-hour burn places a constraint

on you and gives you a strategy for dealing with that constraint. You get

to work and think, I’ve only got eight hours! Go go go! With strict barriers

on start and end times, you naturally start to organize your time more

effectively. You might start with a set of tasks that need to get done for the

day, and you lay them out in prioritized order and start nailing them one

at a time.

The eight-hour burn creates an environment that feels like that ultrapro-

ductive weekend you might have occasionally spent in college, cramming

for a test in a course that you had been neglecting or jamming out a term

paper that had fallen prey to procrastination. The difference is that this is

constrained cramming. Times of cramming are usually extremely produc-

tive, because time becomes scarce and therefore extremely valuable. The

eight-hour burn is a method of cramming early and often without having

to stay up all night taking NoDoze and drinking Jolt Cola.

As thought workers, even if we’re not in front of a computer or in the

office, we can be working. You might be working while you’re driving to

dinner with your spouse or while you’re watching a movie. Your work is

following you around nagging you.

My work usually nags me when I haven’t paid enough attention to it. I

might be letting a specific task slip or letting tasks pile up and not taking

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=100

EIGHT-HOUR BURN 101

care of them. This is when the work follows me home and badgers me

while I’m trying to relax. If you work intensely every day, you’ll find that

the work doesn’t follow you home. Not only are you deliberately stopping

yourself from working after-hours, but your mind will actually allow you

to stop working after-hours.

Budget your work hours carefully. Work less, and you’ll accomplish more.

Work is always more welcome when you’ve given yourself time away

from it.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=101

LEARN HOW TO FAIL 102

28 Learn How to Fail

As programmers, we know that the sooner in the development process

that we can discover software failures, the more robust the software is

going to be. Unit testing helps us ferret out the strange bugs as early as we

can. If we discover bizarre errors in our own code, if they happen early, we

are happy. Though they signify a small failure on our part as developers—

we made a programming error—finding them early and often is a good

sign of what the health of the software will become.

We are taught to allow our programming errors to be loud and messy

early on. You want to know about them when they happen so you can

put the correct fixes or defensive measures in place. When you’re coding,

you don’t go out of your way to silence the little software failures that are

destined to arise during development. That is the code’s way of talking to

you. Those little failures are part of the strengthening process. So, we add

assertions that crash our programs when something goes wrong or unit

tests that turn a bar red if we goof up.

The little failures we encounter also teach us what kind of failures to

expect. If you’ve never walked through a minefield before, you might

not know which lumps of dirt not to step on. If your software hasn’t been

complaining to you regularly, you might not know where the dangerous

nooks and crannies are. You can program just so defensively when you’re

coding blind.

Furthermore, it’s important to program defensively. Software quality is

really put to the test when things go wrong. It’s inevitable that something

will happen for which you did not build a contingency case. Segfaults and

blue screens in production code mean that the programmers didn’t do a

good job of dealing with the failures they couldn’t foresee.

Every wrong note is but

one step away from a

right one.

The same principles apply on the job. A

craftsperson is really put to the test when the

errors arise. Learning to deal with mistakes is

a skill that is both highly valuable and difficult

to teach. As a jazz improvisor, I learned that

every wrong note is at most one step away from a right one. What makes

improvisations bad is when the improvisor doesn’t know what to do when

the wrong note pops out. Standing in front of a band on one side and an

audience on another, the sound of a real stinker of a note is enough to

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=102

LEARN HOW TO FAIL 103

freeze an amateur to the bone. Even the masters play wrong notes. But

they recover in such a way that the listener can’t tell that the whole thing

wasn’t intentional.

We’re all going to make stupid mistakes on the job. It’s part of being

human. We make coding mistakes that lead to customers looking at stack

traces. We paint ourselves into corners with critical design mistakes. Or,

worse, we say the wrong things to our team members, managers, and cus-

tomers. We make bad commitments or false claims about what we’re capa-

ble of doing. Or we accidentally give our team members bad advice on

how to solve a technical problem, wasting hours of their time.

Because we all make mistakes, we also know that everyone else makes

mistakes. So, within reason, we don’t judge each other on the mistakes we

make. We judge each other on how we deal with those inevitable mistakes.

Whether it is a technical, communication, or project management mistake,

the following rules apply:

• Raise the issue as early as you know about it. Don’t try to hide it

for any length of time. As in software development and testing, mis-

takes caught early are less of a problem than mistakes caught late.

The earlier you suck it up and expose what you’ve done, the less the

negative impact is likely to have.

• Take the blame. Don’t try to look for a scapegoat even if you can find

a good one. Even if you’re not wholely to blame, take responsibility

and move on. The goal is to move past this point as quickly as pos-

sible. A problem needs a resolution. Lingering on whose fault it is

only prolongs the issue.

• Offer a solution. If you don’t have one, offer a plan of attack for find-

ing a solution. Speak in terms of concrete, predictable time frames. If

you’ve designed your team into a corner, give time frames on when

you will get back with an assessment of the effort required to reverse

the issue. Concrete, attainable goals, even if small and immaterial,

are important at this stage. Not only do they keep things moving

from bad to good, but they help to rebuild credibility in the process.

• Ask for help. Even if you are solely to blame for a problem, don’t let

your pride make it worse by refusing help in a resolution. Your team

members, management, and customers will look at you in a much

more positive light if you can maintain a healthy attitude and set

your ego aside while the team helps you dig your way out. Too often,

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=103

LEARN HOW TO FAIL 104

we feel a sense of responsibility that drives us to proudly shoulder

a burden too large, and we end up thrashing unproductively until

someone forcibly intervenes.

Think about the last time you experienced a customer service issue at a

restaurant. Perhaps you waited way too long for the wrong dish to ulti-

mately reach your table. Think about how the waiter reacted to your com-

plaint.

Stressful times offer the

best opportunities to

build loyalty.

The wrong reaction is for the waiter to make

excuses or to blame the cooks. The wrong reac-

tion would be for the waiter to walk off to

resubmit the order and stay out of sight while

you sit there starving and wondering when the

hell your food is finally going to arrive. Of the course, the really wrong

reaction would be for the waiter to arrive with a dish that he already

knows is wrong, hoping you would either not notice or not complain.

The difference between how a company treats us when they make a mis-

take can be the ultimate in loyalty building (or destroying). A mistake

handled well might make us more loyal customers than we would have

been had we never experienced a service problem. Remember this with

your customers when you make mistakes on the job.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=104

SAY “NO” 105

29 Say “No”

The quickest path to missing your commitments is to make commitments

that you know you can’t meet. I know that sounds patently obvious, but

we do it every day. We are put on the spot and we don’t want to disap-

point our leaders, so we agree to impossible work being done in impossi-

ble timelines.

Saying “yes” to avoid

disappointment is just

lying.

Saying “yes” is an addictive and destructive

habit. It’s a bad habit masquerading as a good

one. But there’s a big difference between a can-

do attitude and the misrepresentation of one’s

capabilities. The latter causes problems not

only for you but for the people to whom you are making your promises.

If I am your manager and I ask you if you can rewrite the way we track

shipments in our company’s fulfillment system by the end of the month,

chances are that I asked specifically about the end of the month for a rea-

son. Someone probably asked me if it could be done by then. Or there

might be another critical business change we’re trying to make that is

dependent on the fulfillment system. So, armed with your assurance that

you can make the date, I run off and commit to my customers that it will

be done.

Saying “yes” in this way is as good as lying. I’m not saying it’s malicious.

We lie to ourselves as much as we do to those we make the commitments

to. After all, saying “no” feels bad. We are programmed to want to always

succeed. And, saying we can’t do something feels like we failed.

What we humans fail to internalize is that “yes” is not always the right

answer. And, “no” is seldom the wrong answer. I say internalize, because

I think we all know this to be true. After all, none of us wants to be the

recipient of false commitments.

The inability to say “no” happens to be a common part of the Indian cul-

ture. Companies that are inexperienced with offshore outsourcing almost

always run into it. You learn with time to sniff out uncertainty and ask

the right questions. Enough “one more day until it’s done” conversations

naturally train you to probe deeper. And, it’s not only a part of the IT

culture. When I lived in Bangalore, I stayed home from work no less than

five times waiting for a cable modem installation that never happened.

It turned out that for the first three times the company didn’t even have

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=105

SAY “NO” 106

the parts required to do the installation when they made the appointment.

But, they didn’t want to disappoint me. I told them I was hoping to have

the cable modem installed next week, so they promised that it would be

installed, knowing full well that the installation was not going to be pos-

sible next week.

Though the intent is positive, the ramifications are negative. I eventually

got a little nasty with my cable modem installers and even made them

come to my house on a holiday to do the installation. I didn’t trust the

promise that it would be installed “tomorrow, after the holiday.” Repeat-

edly missing commitments had destroyed any chance I had of trusting

them. In fact, I’d developed a sense of hostility toward them.

On the other hand, what happens when you’re asked to do a critical task

and you say that you can’t? As a manager of both onshore and offshore

teams, I can tell you that “no” has become a source of relief to me. If I

have a team member who has the strength to say “no” when that’s the

truth, then I know that when they say “yes,” they really mean it. A com-

mitment from someone like this is going to be more credible and carry a

lot of weight. If they actually hit the targets that they commit to, I’m not

going to question them when they say they can’t hit one.

If someone always says “yes”, they’re either incredibly talented or lying.

The latter is usually the case.

“I don’t know” is also a great thing to say when it’s appropriate. You might

be responding to whether you can meet a date and need time to research

the task before committing. Or you might be asked how a technology

works or how some piece of your project’s code is implemented. Just as in

the case of commitments, not knowing the answer to something feels like

a small failure. But, your co-workers and managers will have more faith

in you when you claim to know something. You’ll notice that when you

meet a real guru in a subject area, they’re never afraid to admit when they

don’t know something. “I don’t know” is not a phrase for the insecure.

That same courage can also come in handy when dealing with decisions

from above. How many times have you seen a technology decision dic-

tated by a manager who caused the team members to sit around the table

quietly looking at their shoes, waiting for the chance to escape the meeting

room so they could complain to each other? Managers are often the target

of the Emperor’s New Clothes phenomenon. Everyone knows that a decision

is bad, but they’re all afraid to speak up. As a manager, I make decisions

or strong suggestions all the time. However, I don’t hire my employees

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=106

SAY “NO” 107

to be robots. It’s the ones who speak up and offer a better suggestion that

become my trusted lieutenants.

Don’t go overboard with the “no” game. Can-do attitudes are still appre-

ciated, and it’s good to have stretch goals. If you’re not sure you can do

something but you want to give it a try, say that. “This is going to be a

challenge, but I’d like to give it a try” is a wonderful answer. Sometimes,

of course, the answer is simply “yes.”

Be courageous enough to be honest.

Act on it!

1. Karl Brophey, a reviewer, suggests keeping a list of every commitment

you make.

• What was asked of you for a due date?

• What did you commit to?

• If you were overridden, record both what you thought and what

you were told to accept.

• Record when you delivered.

Examine this daily. Communicate where you’ll fail as soon as you

know. Examine this monthly—what is your hit rate? How often are

you right on?

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=107

SAY IT, DO IT, SHOW IT 108

30 Say It, Do It, Show It

The easiest way to never get anything done is to never commit to any-

thing. If you don’t have a deadline, you don’t have any pressure or much

incentive to finish something. This is especially true when the something

that needs to get done isn’t 100% exciting.

Even a bad manager’s instinct usually tells them that it’s important to

plan. For some developers, the invocation of the word plan is cause for

alarm. Endless meetings with pointy-haired bosses creating reams of

printed Microsoft Project plans that nobody understands or uses are a

valid cause for alarm. So, techies often overcompensate in our rebellion

against perceived overplanning by constantly flying by the seat of our

pants.

Planning isn’t such bad-tasting medicine that we should have to hold our

breath to force it down. Planning can be a liberating experience. When you

have too much to do, a plan can make the difference between confused

ambiguity at the start of a workday and clear-headed confidence when

attacking the tasks ahead.

Plans don’t have to be big and drawn out. A list in a text document or e-

mail is perfectly fine. Plans don’t have to cover a large span of time. Being

able to start the day and answer the question, “What are you going to do

today?” is a great first step. I know many people whose days stay so hectic

that they would almost always fail this test. A good first step would be to

find time this afternoon and list everything you want to get done on the

next workday and arrange them in priority order. Try to be realistic about

what can fill a day, though you’re likely to be wrong and specifically likely

to overcommit yourself.

You can be as detailed or as loose as you want with your one-day plan. I

had a roommate in college named Chris who would wake up every morn-

ing and, even at risk of being late for his first class, would meticulously

plan out his day, specifically focusing on his piano practice schedule (he

was a jazz piano major). His schedule was fairly rigid already with the

selection of classes he had to attend. Still, Chris would actually plan down

to how he was going to use the fifteen minutes between classes to fit in prac-

tice routines that could be done quickly. Many of his classes were in the

same building, so it was common to have plenty of leisure time in between

them for some quick socializing or grabbing a drink from the vending

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=108

SAY IT, DO IT, SHOW IT 109

machines. Chris would be cramming in scales or ear training while the

rest of us were sitting around waiting for the next class to start. He would

even divide his schedule into multiple three-to-five-minute segments, so

he could fit more than one practice exercise into a given ten-minute period.

Chris ended up becoming one of the most respected musicians in our city.

Natural talent had something to do with it, of course, but I’ve since held

the belief that he planned and executed his way into the musical elite.

So, you’ve made your plan. It may not be as detailed as Chris’s, but it’s

enough to answer the question of what you’re going to do with your day.

When you get to work tomorrow, pull out the list and start on the first

item. Work through the list until you go to lunch, and then pick up where

you left off and try to finish the list.

As you complete each item on the list, mark it DONE. Use capital letters.

Say the word, done. Be happy. At the end of the day, look at your list of

DONE stuff and feel like you’ve accomplished something. Not only did

you know what you were going to do today, but now you know what

you’ve done.

If you didn’t get everything done, don’t worry about it. You knew you

weren’t going to be right about how much would fit in a day anyway.

Just move the incomplete items from today (if they’re still relevant) onto

tomorrow’s list, and start the process again. It’s a stimulating process. It’s

rhythmic. It allows you to divide your days and weeks into a series of

small victories, each one propelling you to the next. You’ll find that not

only does it give you visibility into what you’re accomplishing but you’ll

actually get more done than if you weren’t watching things so closely.

Having established a rhythm of plan and attack, you are ready to start

thinking in terms of weeks and even months. Of course, the larger the

time span you’re planning for, the higher level your plan should get. Think

of week and day plans as being tactical battle plans, with thirty, sixty and

ninety-day plans focusing on more strategic goals that you want to accom-

plish.

The very act of thinking about what you want to have accomplished in

ninety days is something unnatural for software soldiers on the field. We

are tactical people. Forcing yourself to imagine an end state for your sys-

tem, your team’s processes, or your career after ninety days will cause

things to surface that you never expected. The view from above the field

shows us very different things than the view from the ground. It will be

difficult at first, but stick with it. Like all good skills, it gets easier with

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=109

SAY IT, DO IT, SHOW IT 110

practice, and the benefits will be visible to both you and those who work

with you (even if they don’t know you’re doing it).

Status reports can help

you market yourself.

You should start communicating your plans to

your management. The best time to start com-

municating the plans is after you have gotten

through at least one cycle of the plan through

execution. And—this is an important point—start doing it before they ask

you to do it. No manager in his or her right mind would be unhappy

to receive a succinct weekly e-mail from an employee stating what was

accomplished in the past week and what they plan to do in the next. To

receive this kind of regular message unsolicited is a manager’s dream.

Start by communicating week by week. When you’ve gotten comfortable

with this process, start working in your thirty, sixty, and ninety-day plans.

On the longer views, stick to high-level, impactful progress you plan to

make on projects or systems you maintain. Always state these long-term

plans as proposals to your manager, and ask for feedback. Over time,

these anticipation attempts will require less tweaking from your managers

as you learn which items usually go unedited and which are the subject of

more thrashing.

The most critical factor to keep in mind with everything that goes onto a

plan is that it should always be accounted for later. Every item must be

either visibly completed, delayed, removed, or replaced. No items should

go unaccounted for. If items show up on a plan and are never mentioned

again, people will stop trusting your plans, and the plans and you will

counteract the effectiveness of planning. Even if the outcome is bad, you

should communicate it as such. We all make mistakes. The way to differ-

entiate yourself is to address your mistakes or inabilities publicly and ask

for help resolving them. Consistently tracing tasks on a plan will create

the deserved impression that no important work is getting lost in the mix.

Get this process going, and suddenly in the eyes of your management you

have exposed your strategic side. Creating and executing plans shows that

you are not just a robot typing code, but you are a leader. It’s this kind of

independent productivity that companies need as they reduce overhead.

A final benefit of communicating in terms of plans is that your commit-

ments become more credible. If you say what you’re going to do and then

you do it and show that it’s done, you develop a reputation for being a

doer. With credibility comes influence. Imagine you want to introduce a

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=110

SAY IT, DO IT, SHOW IT 111

new process, such as an agile development practice,15 into an organization

or you want to bring in a new technology. With the proven ability to make

and meet commitments, you’ll be granted more leeway to try new things.

In our Bangalore software center, we had a team that had been working

night shifts for more than a year. Of the seven members on the team, two

were always on the night shift. They rotated weekly, so every third or

fourth week, each team member would switch to a 7 PM–3 AM schedule.

The team was getting frustrated and burnt out, saying that they almost

constantly felt jet-lagged. But, the team was playing a critical support

role, and the team’s U.S.-based internal customers were convinced they

couldn’t get by without live real-time help from the group in Bangalore.

So, the team put together a plan of attack. They looked at their various

support processes and associated measurements and crafted a plan to both

switch back to a single-day shift and to make significant improvements in

their customer experience, simultaneously. As acting operations leader of

the software center, I helped them fine-tune their plan and was present (as

moral support) for the formal proposal they made to their manager in the

United States.

They knew this was going to be a touchy subject for their manager, who

had to answer to his U.S.-based customers in person. There was natu-

rally much trepidation among the team members as the meeting started.

However, the team’s manager was so impressed that he immediately and

happily signed off on the proposal, and the team put its plan into action.

Within weeks, the jet lag was over, and everyone was back on day shifts.

The solidity of their plan for how to not only deal with the change in

work hours but how they were going to strategically improve the per-

formance of their team inspired great confidence in the leaders and, even-

tually their customers. The team’s manager used the plan when commu-

nicating the change with his customers. And, the team followed through.

Within months, the team was running at a new level of efficiency. They’ve

since gained such credibility and confidence that they have taken more

and more ownership and independence over the workings of their team.

The team used its plan as a concrete response to a problem. They came to

their manager not with complaints but with proposed solutions.

Your leaders want you to have independence and ownership. Making,

executing, and communicating plans will help you attain both.

15http://www.agilemanifesto.org

Report erratum

http://www.agilemanifesto.org
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=111

Part IV

Marketing...Not Just for Suits

MARKETING...NOT JUST FOR SUITS 113

You are the most talented software developer you know. Elegant designs

flow out of the seemingly unending river of your creativity. Your architectural

insightfulness is unmatched in your workplace. You can code faster and

more accurately than anyone your company has ever employed.

So what?

Many software developers—especially the most conceited ones, it seems—

live with the misconception that their skill should be self-evident to any

clued-in manager or employer. They are able to comfortably veil this lie

inside the cloud of a make-believe moral ethic: they’re just too “humble”

to market their own abilities. Going out of their way to make their abiliities

known would be brownnosing. No self-respecting programmer would be

caught dead sucking up to The Man.

This is all just an excuse. Actually, they’re afraid.

Most programmer types were the last kids picked for every team when they

were in school. They probably avoided social situations where possible and

failed miserably where not possible. It’s no suprise that these people are

afraid to stick their necks out by trying to show someone their capabilities.

Suspending disbelief for a minute, let’s pretend the moral ethic nonsense

isn’t such a put-on after all. Regardless of one’s intentions, it’s stupid not to

let people know what you’re capable of doing. Think of it this way: you are

employed to develop software that adds value to a company. The job of

a leader is to develop teams that deliver the maximum amount of value to

the company. How is a leader to do his or her job without knowing who in

an organization is capable of what kind of work?

As one manager told me recently, if someone does something truly fantas-

tic and nobody knows about it, in his eyes, it didn’t happen. It may sound

ruthless, but from a company’s perspective it makes sense. Pragmatically

speaking, managers don’t have time to keep close tabs on what each

employee is doing every day. And neither companies nor their employees

would want managers spending their time this way. Companies want man-

agers focusing on the big picture—not tracking daily tasks. And employees

(especially programmers) hate to be micromanaged.

In short, you may have the best product in history, but if you don’t do some

kind of advertising, nobody is going to buy it. We all know—especially in

the software world—that the best product doesn’t always win. There’s a lot

more to success in the marketplace than having a great product. Let’s not

forget this truth in the job market.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=113

MARKETING...NOT JUST FOR SUITS 114

Enough already...what should I do?

On the surface, marketing yourself is simple. You have only two goals: to let

people know you exist and to let them know you are the person who can

solve the tough problems that keep them up at night. This applies not only

to the job market at large but also to the company at which you currently

work. Don’t assume that just because you’re employed with a company,

its management knows who you are. Furthermore, don’t assume that just

because a leader knows your name that he or she has even the faintest

understanding of your capabilities.

This part will not only help make sure your current leaders understand what

you’re capable of but it will show you how to expand your scope to the

industry at large. In the book so far, we’ve talked about how to be mar-

ketable. Now we’re going to learn how to put that marketability into action.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=114

PERCEPTIONS, PERSCHMEPTIONS 115

31 Perceptions, Perschmeptions

It’s comfortable to play the idealist and pretend you don’t care what other

people think about you. But, that’s a game. You can’t let yourself believe

it. You should care what other people think about you. Perception is reality.

Get over it.

You probably know the old clichéd philosophical question, “If a tree falls

in the forest but nobody is there to hear it fall, did it make a sound?” The

correct answer to the question is, “Who cares?”

I mean, the fall probably made a sound. That’s not a very exciting answer

on a metaphysical level, but it probably did. But, if nobody heard it fall,

then the fact that it made a sound doesn’t really matter.

The same goes for your work. If you kick ass and no one is there to see,

did you really kick ass? Who cares? No one.

In the subculture of Indian IT bureaucracy, I was amazed at how people

just didn’t get this simple truth. Almost everyone I dealt with there didn’t

understand why it should matter that their managers, for example, knew

what they were doing. If you knew you were better than so and so, then it

should be reflected in your performance reviews, ratings, and salary. They

had fooled themselves into thinking that how other people perceived them

was somehow subservient to the truth, whatever that was.

This truth thing...what is it? Who defines it? What is good and what is bad

in an absolute sense?

The answer is that there is no absolute good or bad, at least not in terms

of judging who is better at a creative, knowledge worker job. How do you

define what makes a good song? What about a good painting? You might

have your own definitions, but I doubt I would agree with them. They’re

subjective.

Performance appraisals

are never objective.

Horrible risk-averse human resources depart-

ments in horrible risk-averse companies spin

their wheels chasing objective measures of the

people they employ. Sometimes they even

implement “objective” appraisal systems. All of my team members in

India thought they wanted to be measured this way. That’s because they

had never experienced it before.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=115

PERCEPTIONS, PERSCHMEPTIONS 116

There is no way to objectively measure the quality of a knowledge worker,

and there is no way to objectively measure the quality of their work. Go

ahead. Disagree. Now think about your argument for a while. See the

holes?

So, if the measure of your goodness at your company (or in the industry

or the job market or wherever) is subjective, what does that mean? That

means that you are always going to be measured based on someone else’s

perception of you. Your potential promotions or salary increases—even the

decision of whether you should continue to be on the payroll at all—is

completely dependent on the perceptions of others.

Subjectivity, being based on personal taste, implies that you can’t count on

any two opinions being the same. Different people are impressed with dif-

ferent factors. Some people might like rigid structure while others prefer

loose, free creativity. Some may prefer to communicate via e-mail and oth-

ers face to face or by phone. Some managers may like their employees to

be aggressive while others prefer them to act like a subordinate. You say

“Poh tay toh”—I say “poh tah toh.”

It doesn’t come down only to personal preference. People in different roles

and relationships to you build their perceptions based on the qualities

most important to making that particular relationship work well. If I’m

a project manager, the quality of your source code is a lot less important to

me than the quality of your communications. If I’m a fellow programmer,

your raw ability and creativity drive my perception of you more than, for

example, your follow-through. But, if I’m your manager, raw ability is

ultimately meaningless to me unless you actually do something with it.

We’ve culturally trained ourselves to perceive that managing perception is

somehow a dirty and shameful activity. But, as you can see, managing

perception is just practical. When you explicitly take note of the factors

that drive other people’s perceptions of you, you more firmly discover

how to make them happy customers. You’re not going to impress your

nontechnical business client with your object-oriented design skills. You

might be a design genius, but if you can’t communicate effectively and

you don’t manage to complete your work on time, your customers will

think you stink. It’s not their fault. You do stink.

Perceptions really do matter. They keep you employed (or unemployed).

They get you promoted or get you stuck in the same job for years. They

give you raises or lowball you on salary. The sooner you get over yourself

and learn to manage perceptions, the sooner you’ll be on the right track.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=116

PERCEPTIONS, PERSCHMEPTIONS 117

Act on it!

1. Perceptions are driven by different factors, depending on who the

audience is. Your mother doesn’t much care how well you can design

object-oriented systems, but your teammates might.

Understanding what’s important in each of your relationships is an

important part of building credible perceptions with those you inter-

act with. Think about the different classes of relationships you gener-

ally have with people in the office. For example, you probably have

teammates who do the same type of job you do. You also probably

have a direct manager, and you may have one or more customers,

and a project manager.

Take these different groups (or whichever actually apply given the

structure of your workplace), and list them. Next to each, write down

which of your attributes is most likely to drive that group’s perception

of you. Here’s an example:G r o u p P e r c e p t io n D r iv e r sT e a m m a t e s T e c h n ic a l s k i l ls , s o c ia l s k i l ls , t e a m w o r k .M a n a g e r L e a d e rs h i p a b i l it y , c u s t o m e r f o c u s , c o m m u n ic a t io ns k i l ls , f o l lo w t h r o u g h , t e a m w o r k .C u s t o m e rs C u s t o m e r f o c u s , c o m m u n ic a t io n s k i l ls ,f o l lo w t h ro u g h .P ro j e c t m a n a g e r C o m m u n ic a t io n s k i l ls , f o l lo w t h r o u g h ,p r o d u c t iv it y , t e c h n ic a l s k i l ls .
Put some thought into your own list. How might you change your

behavior as a result of this list? In what ways have you already been

adjusting your focus as you interact with each group? In what ways

have you not been appropriately adjusting your behavior?

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=117

ADVENTURE TOUR GUIDE 118

32 Adventure Tour Guide

At risk of stating the obvious, the most important, aspect of getting the

word out in the workplace is your ability to communicate. Gone are the

days of the disheveled hacker, crouching over his terminal, coding by the

light of his monitor in the deepest bowels of the server room. The occa-

sional monosyllabic grunt between feats of wizardry isn’t gonna cut it.

As disturbing a proposition as it may be, put yourself into the mind of

a manager or customer (I’ll just use the word customer throughout this

section to refer to both).

They’re responsible for something gravely important which they ulti-

mately have to entrust to some scary IT guys for implementation. They

do what they can to help move things along, but ultimately they’re at the

mercy of these programmers. Moreover, they have no idea how to control

them or even to communicate intelligently about what it is that they’re

doing. In this situation, what’s the most important attribute they’ll be

looking for in a team member? I’ll bet you the price of this book it’s not

whether they’ve memorized the latest design patterns or how many pro-

gramming languages they know.

They’re going to be looking for someone who can make them comfortable about the

project they’re working on.

Your customers are

afraid of you.

These managers and customers we’re talking

about have a dirty little secret: they are afraid of

you. And for good reason. You’re smart. You

speak a cryptic language they don’t under-

stand. You make them feel stupid with your sometimes sarcastic com-

ments (which you might not have even intended to be sarcastic). And,

your work is often the last and most important toll gate between a project’s

conception and its birth.

Your job is to be your customer’s tour guide through the unforgiving ter-

rain of the information technology world. You will make your customers

comfortable while guiding them through an unfamiliar place. You will

show them the sights and take them where they want to go while avoid-

ing the seedy parts of town you’ve encountered in the past.

Nonprogrammers are, on the average, as intelligent as programmers.

(That is to say that most of them aren’t very intelligent, but a few of them

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=118

ADVENTURE TOUR GUIDE 119

really are.) Chances are high that your customer is just as smart as you

but just doesn’t happen to know how to program a computer. That’s OK.

You probably don’t know how to do much of what he or she does on a

daily basis. That’s why there are two of you, and you’re both being paid

to come to work.

I mention the bit about intelligence because computer people all too often

assume that anyone who doesn’t know how to operate a computer is not

intelligent. Saying it explicitly like this makes it sound idiotic, but that’s

true of all prejudices. However, this feeling is so ingrained in many of us

that we don’t even know when we’re feeling it. Explicitly trying to control

it doesn’t work.

My advice is to reverse the relationship. Instead of feeling like you are the

computer genius, descending from computer heaven to save your poor

customer from purgatory, turn the tables around. If you’re, for example,

working in the insurance industry, think of your customer as a subject

matter expert in insurance from which you have to learn in order to get

your job done.

That being said, you need to be cognizant that your customers may need

topics toned down a bit when you’re discussing software-related matters.

There’s a delicate balance between too techy and too dumb.

“Why all this talk of how to treat your customers? I thought we were

going to talk about how to market myself.” If you work in a typical IT

shop, much of the budget that keeps you gainfully employed comes from

a business function—the same business function for which your customers

work and influence decisions. When staffing decisions are being made, the

best advocate you can have is a customer who doesn’t want to live without

you. On the flip side, imagine the impact of a customer who feels you are

condescending. Your customer represents the needs of the business, and

you are paid to provide for those needs. Don’t forget this.

Act on it!

1. Check yourself—Are you the grumpy old code ogre everyone fears?

Are you sure? Are they afraid to tell you?

Go through your mailbox, and find examples of e-mails that you have

sent to less-technical co-workers, managers, and customers. As you

read through, try to see things from the recipient’s perspective. If

some time has passed since sending the messages, you’ll be able

to see yourself as a third-party observer would.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=119

ADVENTURE TOUR GUIDE 120

Even better, show the e-mails to your mom. Tell her that someone

you work with sent the messages to a customer, and ask her how the

messages would make her feel.

2. Hop the fence—Find an opportunity to be flung into a situation in

which you are not the expert and are dependent on others who are.

If you have two left feet, imagine yourself on a soccer team. If you

have two left thumbs, imagine you’re part of the National Knitting

Team. How would you like your teammates to communicate with

you?

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=120

ME RITE REEL NICE 121

33 Me Rite Reel Nice

The days of the monosyllabic programmer grunt are over. If companies

want to have difficulty communicating with their programmers, they’ll sit

the programmers on a different continent and in a different time zone and

communicate with them only via e-mail and phone. That’s what you and

I are trying to avoid, right?

So, the communication issue is an important one. On the list of tasks you

need to do to stay gainfully employed, it might sound a little contrived,

silly, or trivial. You might feel a bit like you’re back in high-school English

class. That’s OK. You can actually pay attention this time.

We’ll get the most boring one over with first: grammar and spelling are

important. You’ve probably got a degree in an advanced subject like engi-

neering or computer science, and here I am telling you to learn how to

spell. The nerve!

But, at least here in the United States, we have a problem.

According to a report by the National Commission on Writing, more than

half of companies consider writing skills when making both hiring and

promotion decisions. Forty percent of surveyed companies in the services

sector said that a third or fewer of their new hires had the writing skills

they desired.16

When you really step back and take a look at the big picture, writing skills

are both necessary and are in short supply.

As you know, the world’s workforce is distributing itself globally (that’s

why you’re reading this book, right?). As this trend continues, there will

come a time—for some, that time is now!—when most workplace commu-

nication will take place in written form via either instant messaging or

e-mail.

You’re going to be writing a lot. If so much of your job is going to involve

writing, you better get good at it. More than ever, perceptions of you are

going to be formed based on your writing ability. You may be a great

coder, but if you can’t express yourself in words, you won’t be very effec-

tive on a distributed team.

16http://www.writingcommission.org/report.html

Report erratum

http://www.writingcommission.org/report.html
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=121

ME RITE REEL NICE 122

The ability to write creates both a superficial perception of you and a real

insight into how your mind works. If you can’t organize your thoughts in

your mother tongue so that others can clearly understand them, how can

we expect that you can do it in a programming language? The ability to

shape an idea and lead a reader through a thought process to a logical con-

clusion is not much different from the ability to create a clear design and

system implementation that future maintainers will be able to understand.

This isn’t all about being judged, either. If you have team members in

different time zones and distant locations, writing may be the only way

you have to explain what you’ve done, how you’ve designed something,

or what your team members need to work on.

You are what you

can explain.

Communication, especially through writing, is

the bottleneck through which all your wonder-

ful ideas must pass. You are what you can

explain.

Act on it!

1. Start keeping a development diary. Write a little in it each day,

explaining what you’ve been working on, justifying your design deci-

sions, and vetting tough technical or professional decisions. Even

though you are the primary (or only—it’s up to you) audience, pay

attention to the quality of your writing and to your ability to clearly

express yourself. Occasionally re-read old entries, and critique them.

Adjust your new entries based on what you liked and disliked about

the old ones. Not only will your writing improve, but you can also use

this diary as a way to strengthen your understanding of the decisions

you make and a place to refer back to when you need to understand

how or why you did something previously.

2. Learn to type. If you don’t already “touch type,” take a course or

download some software that will teach you. You’re more likely to be

comfortable and natural in your writing if you are comfortable with

the input method itself. Of course, with all this writing you’ll be doing,

you’ll save yourself some time by learning to type quickly.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=122

BEING PRESENT 123

34 Being Present

You have the advantage of being face to face with your leaders and your

business customers. Don’t squander the opportunity.

While I was living in Bangalore as CTO of our software development cen-

ter, I had the unpleasant experience of reporting to a manager who I not

only disliked (and who disliked me) but who was in the United States.

We had strained, late-night or early-morning phone conversations, made

increasingly frustrating by background noise or unintended disconnec-

tions. I would write long, descriptive e-mails in an attempt to help close

the distance and time zone gap, only to be ignored. And, if I complained

about being ignored, I would be criticized for writing long e-mails. It

seemed like a no-win situation.

My company at the time had an annual performance review process in

which managers would list their employees’ strengths and (so-called)

development needs. The top of my development needs list that year was

something called presence.

Now, presence in this context is an ultracorporate word describing an

ever-so-fuzzy leadership trait. It’s the unmeasurable quality of having

your presence felt—particularly in face-to-face situations. It also includes

the equally unmeasurable quality of carrying yourself like a leader.

When I was sitting down talking about my performance review (over the

phone) with my beloved manager, I muted my phone when she said “pres-

ence.” I didn’t want the laugh to be audible. I wondered if she could hear

the half-grimace and half-smile that I couldn’t wipe from my lips for the

rest of our conversation. She and I both knew that the real problem was

presence in the more common form of the word: I just wasn’t there in the

United States with everyone else.

Most of us who were willing to share our feelings disliked this manager.

She did little to command respect, so it wasn’t much of a surprise. The

pattern that emerged was that the only employees who had really negative

relationships with her were the ones who weren’t in the same geographic

place as her. Those in other countries such as India, Hungary, and Great

Britain (in decreasing order) had strained relationships with her, since we

were not only physically separated but we had time zone, infrastructure,

culture, and language boundaries as well.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=123

BEING PRESENT 124

It seemed as though even for the people in the United States who were

doing everything they could to avoid this manager, physical proximity

and the occasional face-to-face conversation was all it took to make this

manager comfortable. And, of course, the “out of sight—out of mind”

phenomenon was very quickly validated when I hit the ground in India.

In addition to just telling a story about a bad manager, you can learn

something from this experience. Physical proximity is an advantage in

the workplace.

Think about the last time a relative or friend who was not computer savvy

called you to ask for help with a computer problem. You try to walk them

through the problem over the phone, and if they’re not getting it, you just

get more and more agitated. If I could only just show them... In contrast,

face-to-face communication is incredibly effective. You can hear the other

party more clearly. You can explicitly use visual aids to get points across,

by using hand motions or drawings on whiteboards. And, we all implic-

itly express a great deal of content in our facial expressions without even

conciously realizing it.

Not only do we see greater productivity and enhanced communication

from face-to-face interactions, but we also form tighter personal bonds.

It takes a lot longer to create something you would call a friendship if

you never meet someone in person. Fifteen years ago, it was unheard of.

These days, with the ubiquity of the Internet, it’s just less common than

traditional face-to-face friendships. For many of the same reasons that we

work less effectively via phone, e-mail, and chat, we are also much less

efficient in building relationships that way. Add to that the discomfort

of the unnaturalness of e-mail and chat-based conversation (something

that the next generation probably won’t remember), and in the majority

of cases, the relationship built in a remote work environment will remain

strictly centered around accomplishing tasks.

A strong team relationship with effective, high-bandwidth communica-

tion makes for better software delivered faster. In most environments,

important project decisions are made in person, over coffee breaks and

side conversations. These are fairly obvious observations, and the advan-

tage one has by being a part of this is also fairly obvious. What’s not so

obvious—especially to us geeks—is the importance of being seen.

I never go into a bank. I do any banking I have to do either online or

via automated teller machines. My grandparents are different. They do

virtually all their banking in the bank talking to real people. They don’t even

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=124

BEING PRESENT 125

like to do business over the phone. It just doesn’t make them comfortable.

They also know the people at the grocery store they go to. They go back

over and over again and chat with them as they’re checking out. They

wouldn’t consider changing grocery stores (or banks), because the choice

of bank or grocery store is more than a pragmatic weighing of cost and

convenience. It’s personal.

Until we have robots or computer programs to perform our performance

appraisals, all business will continue to be personal. We people like to

interact with other people in person. Some of us, anyway.

The natural work mode of a computer person is to hole up in a cubicle

or office, put on a pair of headphones, and get into “the zone” until it’s

time to eat. Douglas Coupland, in his book Microserfs [Cou96] tells the

entertaining story of a team having to buy flat food to slide under the

office door of a programmer on a mission. This kind of focused isolation

has become part of the culture and folklore of the software industry.

Unfortunately, speaking for your career, this is bad for business. If you’re

locked up in an office, accessible only by phone (if you answer) or e-mail,

perhaps even working all hours of the night and sleeping late as a result,

there’s no difference between you being onsite with your bosses and your

customers and being offshore. You are missing a huge opportunity to

become a sticky fixture in your company. Remember, you need to make it

personal, and to do that you have to remember the natural human tendency

to want to work with other humans. Not voicemail, e-mail, or instant mes-

saging but actual people.

Learn about your

colleagues.

In today’s distributed environment, you may

find that while you’re in the same country as

the people you’re working with, you’re not in

the same city or state. Regular trips for face-to-

face meetings are great in these situations if they’re practical for you and

your company. But, the best thing you can do is pick up the phone and

call your bosses and co-workers. Don’t use speaker phones when you can

help it, and don’t rely on scheduled meetings. You need to try to simulate

the kind of casual, coffee-break conversation that you might experience if

you lived and worked in the same place, so budget time for (apparently)

spontaneous conversations. On occasion, take the opportunity to make the

conversation personal. Let “How are you today?” continue into “What

do you generally do on the weekends?” Try to actually learn about the

people you work with. Not only does it more firmly entrench you into

your company, but it’s a more enriching way to live.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=125

BEING PRESENT 126

Act on it!

1. One day in the next week, force yourself (within reason) not to send

any e-mail. Every time you would normally send an e-mail, either call

the person you would have sent it to on the phone or (better) walk to

their office and speak to them in person.

2. Make a list of co-workers, bosses, and customers who you don’t talk

to enough. Put recurring appointments on your calendar to call and

check in with them (either by phone or in person). Make the conver-

sations short and meaningful. Use them to communicate something

work related and also to simply make a human connection.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=126

SUIT SPEAK 127

35 Suit Speak

My young nephews all use computers regularly. They are, relatively

speaking, quite computer savvy. They use computers to communicate

with friends all over the world. They are completely comfortable with

instant messaging, e-mail, web browsing, and of course personal publish-

ing and the other stuff you might use if you were a high-school student

working on assignments.

But, if I were to brag to them that my new computer had a 10,000 RPM

Serial ATA hard drive, they might at best do a teenage-level job of feigning

enthusiasm. They would probably be equally unimpressed if I told them

it had one gigabyte of RAM and a GPU that was faster than the CPUs in

the systems I used just five years ago.

However, if I told them they could run Half Life 2 at full resolution without

so much as a stutter in the game’s visual appearance, they’d sit up and take

notice.

Gigahertz and revolutions per minute aren’t interesting to the average

fourteen-year-old boy. Computer games are.

Businesspeople aren’t that interested in gigahertz and RPMs either. They

like it when their applications are fast, because they don’t have to wait

while on the phone with a customer or while trying to close out the books

for the quarter. But, they don’t care how many requests per second your

new custom application server process can handle.

Market your

accomplishments in the

language of your

business.

Businesses and those who run them are inter-

ested in business results. So, marketing your

accomplishments in any language other than

the language of the business is ineffective.

You wouldn’t market a product to American

audiences in German. A soft drink company

wouldn’t try to sell a drink to consumers based on the measured quantity

of red dye #8 it contains. Common sense tells you that to sell a product

to an audience, you have to speak to that audience in a language they can

both understand and relate to.

As a software developer, that means framing your accomplishments in the

context of the business you work for. Sure, you got it done, but what was

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=127

SUIT SPEAK 128

it? Why did it matter? How was this so-called accomplishment not just a

waste of company time?

My guess is that if you were to think about the past month’s accomplish-

ments, you might not be able to articulate just why they were useful tasks

to do in the first place. Sure, you might have been told to do them, but

what benefit did they deliver to the business?

At General Electric, there is an urban legend that former Chief Executive

Jack Welch used to enjoy getting on the elevator of one of the tall GE build-

ings with whatever random GE employee might have gotten on with him.

He would then turn and ask the already-frightened underling, “What are

you working on?” and then (here’s where it might hurt) “What is the ben-

efit of that?” The moral of the story was that you should always have your

elevator speech ready, just in case.

What would you say if your CEO asked you the same question out of the

blue? Even given a few minutes to prepare, would you be able to explain

the business benefit of the tasks you are doing or the tasks you had recently

done. Could you do it in words that a totally nontechnical senior executive

could not only understand but also appreciate?

Act on it!

1. Make a list of your recent accomplishments. Write out the business

benefit for each. If there are accomplishments on the list that you

can’t write a business benefit for, ask a manager or trusted acquain-

tance how they would frame the benefit.

2. Make your elevator speech, and memorize it.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=128

CHANGE THE WORLD 129

36 Change the World

The worst thing anyone at work can ask about you is “What does he (or

she) do?” Having to ask this question means that they don’t know what

you’ve done.

It’s sad, but I don’t know what most of the people I’ve worked with in big-

company IT have done. People just don’t think that way. They go to work,

do their assigned thing, and go home. There’s no lasting impact, other

than the trail of code, documents, and e-mail they leave behind them.

That’s what happens when you show up to work without a mission. You

just sit around waiting to be told what to do. And, when you do what

people tell you, the only people who know what you’ve done afterward

are the ones who asked you to do it. That’s fine if you want to work in

retail sales or maybe even if you want to be an offshore programmer.

Have a mission. Make

sure people know it.

But if you want to be a software developer in

a high-cost country, you need to come to work

with a mission. You need to effect change but

not change within yourself or your own work

(that’s a given). You need to effect visible change through your team, orga-

nization, or company.

The change can be small. You might be carrying the torch for unit test-

ing, driving test practices into the hearts of the unwashed masses of your

company’s programmer pool. Or, it might be something bigger, like a rad-

ical new technology introduction that will lead to cheaper, better systems

made faster.

You do these things because you are internally driven to do them. You can’t

stand back and watch the people in your company do things wrong. You

know things could be better, and you have to change them.

Of course, if you’re out to change the world, you’re bound to make some

people angry. That’s OK as long as your intentions are right. Don’t be

a jerk about it, but don’t tiptoe around, always playing it conservative,

either.

If you do end up ticking a few people off, you can at least take comfort in

the fact that they won’t ever ask, “What does he (or she) do?”

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=129

CHANGE THE WORLD 130

If you don’t know what your crusade is, you probably don’t have one. If

you’re not already actively trying to make your mark, you’re probably not

making it.

Act on it!

1. Catalog the crusades you’ve personally witnessed in the workplace.

Think of the people you’ve worked with who have behaved as if on

a mission. Think of the most driven and effective people in the places

where you’ve worked. What were their missions?

Can you think of any such missions that were inappropriate? Where is

the line between drive and zealotry? Have you seen people cross it?

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=130

LET YOUR VOICE BE HEARD 131

37 Let Your Voice Be Heard

The ideas we’ve explored so far have been fairly conservative and focused

on being recognized for the work you do in your workplace. If you want to

be noticed, move up, or even stay employed with your current company,

the topics we’ve touched on will be critical.

But, how boring!

The world is changing. If you want to write your ticket, you’ve got to

think bigger than the IT workers of yesteryear. While moving from level-

23 Programmer to level-24 Programmer Analyst might really be your short-

term career goal, as a programmer today, you need to think beyond the

next promotion or even your current place of employment.

Set your sights higher. Don’t think of yourself as a programmer at a spe-

cific company—after all, it’s not likely that you’ll be at the same place

forever—but as a participating member of an industry. You are a craftsper-

son or an artist. You have something to share beyond the expense report-

ing application you’re developing for your human resources department

or the bugs you’ve got stacked up in your company’s issue tracking sys-

tem.

Companies want to hire experts. While a résumé with a solid list of

projects is a good way to demonstrate experience, nothing is better at a

job interview than for the interviewer to have already heard of you. It’s

especially great if they’ve heard of you because they’ve read your articles

or books or they’ve seen you speak at a conference. Wouldn’t you want to

hire the person who “wrote the book” on the technology or methodology

you’re attempting to deploy?

In my previous life as a professional saxophonist, I played a lot in the

clubs in and around Memphis’s Beale Street. As I began to adapt to the

computer industry, I saw a lot of overlap between the way you have to

get your name out in music and in the computer industry. As a musician

trying to find work, the following properties were true:

• (This one’s the most important.) The best saxophonist doesn’t

always get the gig.

• Who you’ve played with is at least as important as how well you

play; musicians are cool by association.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=131

LET YOUR VOICE BE HEARD 132

• Sometimes, the better musicians are overlooked for work because

everyone assumes they won’t be available or because they are too

intimidated to ask.

• Music works via a network effect. If your social/music network

terminates before reaching someone, it’s not likely you’ll ever be

asked to perform with that person until an intermediary connection

is made.

The computer industry is the same way. No objective system exists for

rating and employing software developers. Being good is important, but

it doesn’t get you all the way there. Our industry, like the music industry,

is a big, complex web of people connecting each other. The more places

you are attached to the network, the better your chances of connecting

with that perfect job or career break. Limiting yourself to the company

you work for places serious limits on the number of connections you can

form.

What better ways than publishing and public speaking are there for your

name to be propagated and your voice to be heard? So, how do you

go from Joe Schmoe programmer to published author and then to pub-

lic speaker? Start on the Web.

First, read weblogs. Learn about weblog syndication and get yourself set

up with an aggregator. If you don’t know what to read, think of a few of

your favorite technical book authors and search the Web. You will proba-

bly find that they have a weblog. Subscribe to their feed and to the feeds

of the people they link to. Over time, your list of feeds will grow as you

read and find links to the weblogs other people have been writing.

Now open your own weblog. Many free services are available for hosting

and driving a weblog. It’s dead simple to do. Start by writing about (and

linking to) the stories in your aggregator that you find interesting. As you

write and link, you’ll discover that the weblog universe is itself a social

network—a microcosm of the career network you are starting to build.

Your thoughts will eventually show up in the feed aggregators of others

like you, who will write about and spread the ideas you’ve created.

The weblog is a training ground. Write on the Web as if you were writing

a feature column for your favorite magazine. Practice the craft of writing.

Your skill will increase, and your confidence will grow.

Your writings on the Web will also provide work examples that you can

use in the next step. Now that you’re writing in your own forum, you

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=132

LET YOUR VOICE BE HEARD 133

might as well take your writing to community websites, magazines, or

even books. With a portfolio of your writing ability available on the Web,

you’ll have plenty of example material to include in an article or book pro-

posal. Get yourself in print, and your network grows. More writing leads

to more writing opportunities. And all of these lead to the opportunity to

speak at conferences.

Just as we started easily with the Web in our writing endeavors, you

can start your speaking career in your local developer group meetings.

If you’re a .NET person, prepare a presentation for your local Microsoft

development group. If you’re a Linux programmer, do a talk at your Linux

users group. Practice makes perfect when it comes to speaking. Be sure to

put a lot of thought into preparing for these talks. Don’t take them lightly.

Though you’re speaking only to a small crowd in your home city, this is

where you live and work. A job really well done will (eventually) not go

unrewarded. You’ll find that if you give it the right amount of attention

locally, these small talks are no different from the big ones at major indus-

try conferences. Those are obviously the next logical step.

With all these ways to get your name and your voice out there, the most

critical tip of all is to start sooner than you think you’re ready. Most people

undersell themselves. You have something to teach. You will never feel 100

percent ready, so you might as well start now.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=133

BUILD YOUR BRAND 134

38 Build Your Brand

Brand building has two parts: actually making your mark so that people

will recognize it and then making sure that mark is associated with posi-

tive traits. Recognition and respect.

Today, when we see a swastika, we think of Hitler and Nazi Germany.

From a brand building perspective, that’s very good for the Nazis. They

accomplished the first half of brand building: awareness. But, those of us

who are mentally healthy have an extremely negative association with all

things related to the Holocaust. So, the Nazis ultimately failed miserably

in the positive association department. In fact, Hitler stole the swastika

from the Hindus, perpetrating the crime that all companies serious about

their brands struggle to prevent. To the Hindus, who lay original claim

to the swastika (or swasti), it is an auspicious symbol of well being. But,

now throughout the West, this spiritual icon has been defamed. Lots of

recognition and little respect.

On the flip side is Charlie Wood.17 Charlie is an incredible singer, song-

writer, and Hammond B3 organ player in Memphis, Tennessee. He plays

five nights a week in a club on Beale Street. Everyone who knows him or

has heard him knows how amazing he is. They all look up to him. He is

as talented as you can get when it comes to rhythm and blues music.

But relatively nobody knows who the hell he is. No recognition and lots

of respect.

What you want is both recognition and respect. Your name is your brand.

Your name is your brand.
This entire part of the book is all about how to

get both recognition and respect. Right here in

this paragraph, what you need to understand

is that the combination of the two is an asset worth building and guarding.

Unlike a big, scared, corporate marketing department suing college kids

over websites that misappropriate a corporate image or phrase, you don’t

need to spend too much time guarding your brand against other people.

The most potentially destructive force for Brand You is yourself.

Don’t water down what you stand for. Be careful where you let your name

show up. Don’t do lousy projects or send lousy e-mails to large groups of

17http://www.charliewood.us

Report erratum

http://www.charliewood.us
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=134

BUILD YOUR BRAND 135

people (or make lousy weblog posts for the whole Internet to read). Don’t

be a jerk. Nobody likes a jerk, even if they somehow deserve to be a jerk.

Google never forgets.
Most important, remember that the things you

choose to do and associate yourself with have

a lasting impact on what your name means to

people. And, now that so many of our interactions take place via the Inter-

net on public forums, websites, and mailing lists, a lot of are actions are

public record and are cached, indexed, and searchable—forever.

You might forget, but Google doesn’t.

Guard your brand with all your might. Protect it from yourself. It’s all

you’ve got.

Act on it!

1. Google yourself—Search Google for your full name in quotes. Look

through the first four pages of results (are there actually four pages of

results?). What could someone surmise about you following only the

links from the first four pages of Google results? Are you even repre-

sented in the first four pages of search results for your name? Is the

picture that these first four pages paints a picture that you appreci-

ate?

Do the same search again, but this time pay special attention to

forum and mailing list conversations. Are you a jerk?

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=135

RELEASE YOUR CODE 136

39 Release Your Code

Imagine how much easier it would be to find a job if there were companies

already relying on software you had written. You could say, “Oh, are you

running Nifty++? I can help you with that—I wrote it.” That would be

different. Interviewers and hiring managers would remember you. That’s

what you want.

Just a decade ago, while sounding like a wonderful idea, there wouldn’t

have been many opportunities for such a scenario to be played out. You

would have had to work for a commercial software vendor first, and your

credentials would have been tied to the products you helped develop

while working for that software vendor. But things have changed. You

don’t have to work for the Big Guys to develop popular, name-brand soft-

ware anymore.

Now there’s another outlet: open-source. Open-source software has hit

the mainstream. As IT shops start new projects, the age-old debate has

shifted from build vs. buy to build vs. buy vs. download. If not entire applica-

tions, frameworks ranging from small libraries to full-blown application

containers are being released under open-source licenses and are becom-

ing de facto standards.

And the people who are developing this software, for the most part, are

people like you. They are people sitting in their homes in the evenings and

on the weekends, pounding out software as a labor of love. Sure, there are

some corporate-funded efforts creating or supporting Open Source prod-

ucts. But, the majority of Open Source developments are done by inde-

pendent developers as a hobby.

Anyone can use Struts.

Few can say

Struts committer.

While many of these developers are just hav-

ing fun and expressing themselves, some real

incentives exist there. They are moving their

way up the social chain of a community. They

are building a name for themselves. They are

building a reputation in the industry. They may not be doing it on pur-

pose, but they are marketing themselves in the process.

Aside from building a name for yourself, contributing to open-source soft-

ware shows you are passionate about your field. Even if a company hasn’t

used or heard of your software, the fact that you’ve created and released

it is a differentiator in itself. Think about it this way; if you were looking

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=136

RELEASE YOUR CODE 137

to hire someone as a software developer, would you prefer to pick some-

one who puts in their nine-to-five day and then goes home and watches

TV? Or would you prefer someone who is so passionate about software

development that they take it upon themselves to do software develop-

ment after-hours and on weekends?

Open-source contributions demonstrate skill. If you’re making real code

and contributing to a real project, it’s a lot better on your résumé than just

saying you know a technology. Anyone can write Struts or Nant on their

résumé. Very few can write Struts committer or Nant committer.

Leading an open-source project can demonstrate much more than techni-

cal ability. It takes skills in leadership, release management, documenta-

tion, and product and community support to foster a community around

your efforts. And, if you do these things successfully—in your spare time

as a hobby—you’ll be amazingly different from most of the other people

competing for the same jobs. Most companies can’t pay their developers to

do all these things and do them well. Most can’t even pay their developers

to do some of them well. Showing that you can not only do them, but you

care enough to do them for free shows an incredible amount of initiative.

If you create something really useful, you might even end up being

famous. You could be famous in a small technical field—maybe famous

among Struts people, for example. Or if you’re lucky, you could be really

famous even outside the geek community like Linus Torvalds or...well,

like Linus. Even if you’re not quite famous, releasing your code will def-

initely make you more famous. If fame means that lots of people know

who you are, then having one more person know about you makes you

more famous. And the open-source community is a worldwide network of

people who, searching the Web for code, may come across your software,

install it, and use it. In doing so, they will come to know about you, and

as your software spreads, so will your name and reputation. That’s what

marketing is all about. That’s what you want.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=137

REMARKABILITY 138

40 Remarkability

Traditional marketing curricula refer to the four Ps of marketing: product,

price, promotion, and placement. The idea is that if you cover all four of

these categories, you’ll have a complete marketing plan. Equal weighting

is put on each of the four categories.

But, what is the goal of marketing? Its purpose is to create a connection

between producers and consumers of a product or service. This link starts

with awareness about a product. The traditional mechanism of build-

ing awareness is via promotions, including advertisements, mailings, and

educational seminars.

Recently the marketing world has turned its attention to what is called

viral—word of mouth—marketing. Viral marketing happens when an idea

is remarkable enough that consumers spread it from one person to the

next. It spreads like a virus, with each new infected consumer potentially

infecting many others.

Viral marketing is preferred not simply because it’s expensive to send out

paper mailing and buy television ad space. It’s preferred because con-

sumers trust their friends more than they trust television commercials and

junk mail. They are more likely to buy something they hear about from

a colleague at work than something on a pamphlet they dig out from the

middle of their Sunday newspaper.

In his book Purple Cow [God03], master marketer Seth Godin makes the

somewhat obvious assertion that the best way to get a consumer to remark

on a product is to make your product remarkable. Godin goes so far as

to say that the traditional four Ps are obsolete and that consumers have

become numb to the old spray-and-pray strategies of mass marketing. The

only way to stand out in the crowd, he says, is truly to be outstanding.

So, here’s where the cynical readers start to applaud. All the market-

ing mumbo jumbo you might try is nothing compared to the power of

a remarkable set of capabilities. Before you start saying, “I told you so,”

we should probably talk about the definition of remarkable.

Remarkable definitely doesn’t mean the same thing as good. Usually,

products that are remarkable are good. But, products that are good are

seldom remarkable. To be remarkable means that something is worthy of

attention. You will not become a remarkable software developer by sim-

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=138

REMARKABILITY 139

ply being better than all the other software developers you know. Being

incrementally better than someone else isn’t striking enough to result in

the viral spread of your reputation. If someone were to ask, you might

have a glowing report card, but remarkability means that people talk about

you before they are asked.

To be remarkable, you have to be significantly different from those around

you. Many of the self-marketing strategies discussed in this chapter are

geared toward remarkability. Releasing successful open-source software,

writing books and articles, and speaking at conferences may all increase

your remarkability.

Demo or die!
If you look back at that last sentence, though

not an exhaustive list, you’ll notice that each

of the items I’ve included as being potentially

remarkable involve doing something. You might be the smartest or the

fastest, but just being isn’t good enough. You have to be doing.

Godin uses the phrase purple cow to remind us of what it takes to be

remarkable. Not best cow or most milk-giving cow or prettiest cow. A purple

cow would stand out in a crowd of best, most milk-giving, and prettiest

cows. It would be the purple one that you would talk about if you saw

that group.

What can you do that would make you and your accomplishments like the

purple cow? Don’t just master a subject—write the book on it. Write code

generators that take what used to be a one-week process to a five-minute

process. Instead of being respected among your co-workers, become your

city’s most recognized authority on whatever technologies you’re focusing

on by doing seminars and workshops. Do something previously unthink-

able on your next project.

Don’t let yourself just be the best in the bunch. Be the person and do the

things that people can’t not talk about.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=139

MAKING THE HANG 140

41 Making the Hang

When I was a young jazz saxophonist in Arkansas, people often asked me,

“Oh, do you know Chris?” I didn’t. Chris was apparently the other high-

school teenager in Arkansas who was a serious aspiring jazz musician. So,

when people met me they would make the obvious connection, expecting

us to be comrades in our very unhighschoolish jazziness.

One summer, I had the opportunity to see the Count Basie Jazz Orchestra

perform an outdoor concert at an ampitheater on the bank of the Arkansas

River. Through some combination of good mood and uncharacteristic

courage, I ended up backstage chatting with the musicians before they

went on. I’ve never been a very chatty person, so this was a real twist of

fate. I stood in the back talking to one of the saxophonists from the orches-

tra, and another young kid walked up and started chatting. After five or

ten minutes, the band started, leaving the two of us standing unattended.

Are you Chris/Chad? we said simultaneously.

In the years to come, I would spend a lot of my free time with Chris. Chris,

I soon learned, had a strange knack for associating himself with the town’s

best musicians. He was just a high-school kid. But, he was already playing

gigs, substituting for Little Rock’s most respected jazz pianists. Chris was

pretty good—especially for his age—but he wasn’t that good.

It didn’t take me long to understand what was happening. We went out,

several nights per week sometimes, to clubs where jazz music was being

performed. It was always a somewhat uncomfortable experience for intro-

verted me, because like clockwork, when the band we were watching took

a set break, Chris would break mid-sentence and just walk away from me

to go talk to the band members. He was like a robot. I have to admit,

it was a little sickening to watch him. He was so predictable. Wasn’t he

annoying these poor musicians? They were taking a break, for God’s sake.

They didn’t want to talk to this damned kid! Being left hanging, I had to

either follow him or sit awkwardly by myself waiting. Occasionally, on

the days when I just didn’t have the energy, I chose the latter. However,

for the most part I would follow Chris and try to pretend I was fitting in.

Usually, much to my surprise, the musicians on break actually seemed to

enjoy talking to Chris—and even to me. He was pushy as hell and would

always ask if he could sit in with the band, no matter how inappropri-

ate it seemed to me. He would also ask the musicians for lessons, which

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=140

MAKING THE HANG 141

meant that he would go to their houses, listen to music, and chat about jazz

improvisation with them. I would occasionally be dragged along, with the

same feeling I had on the set breaks—that I was imposing.

But, I was obviously the one who was confused about this relationship

that Chris was developing with these musicians. He was getting real, pay-

ing gigs with really good musicians. I was just some guy that hung around

with him. He was my conduit to the city’s best musicians. The only differ-

ence between us being that he was more outgoing.

Over the years, Chris’s “be the worst” strategy coupled with the abiilty

to unabashedly force himself on people, led him to become an incredible

pianist. In fact, he squeezed his way into playing with some really famous

jazz musicians. I, on the other hand, was still the guy he knew. He pulled

me into some of these more high-profile gigs, but it was always him doing

the pulling—not the other way around.

Since then, I’ve seen the same pattern in people I’ve met in classical music,

the American Tibetan Buddhist community, software development, and

even the confines of a single office. Chris called it “making the hang,”

which made it even more repulsive to me. But, the short story is this: the

really good people won’t mind if you want to know them. People like to

be appreciated, and they like to talk about the topics they are passionate

about. The fact that they are the professional, or the guru, or the leader,

or the renowned author doesn’t change that they’re human and like to

interact with other humans.

Fear gets between us

and the pros.

Speaking for myself (and extrapolating from

there), the most serious barrier between us

mortals and the people we admire is our own

fear. Associating with smart, well-connected

people who can teach you things or help find you work is possibly the

best way to improve yourself, but a lot of us are afraid to try. Being part of

a tight-knit professional community is how musicians, artists, and other

craftspeople have stayed strong and evolved their respective artforms for

years. The gurus are the supernodes in the social and professional net-

work. All it takes to make the connection is a little less humility.

Of course, you don’t want to just randomly start babbling at these people.

You’ll obviously want to seek out the ones with which you have some-

thing in common. Perhaps you read an article that someone wrote that

was influential. You could show them work you’ve done as a result and

get their input. Or, maybe you’ve created a software interface to a sys-

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=141

MAKING THE HANG 142

tem that someone created. That’s a great and legitimate way to make the

connection with someone.

Of course, you can make the hang online as well as in person. A lasting

connection is a lasting connection. The heroes of the software world are

globally distributed. The same is true in the music industry, though you

can’t take for granted that all musicians are connectable via e-mail. So, the

music world tends to form local professional clumps, whereas software

developers have the advantage of being able to easily reach each other no

matter where we may be. This makes it easy to not only reach out to the

gurus in your own city but to reach out to the gurus, period. Some of the

most influential minds in software development are readily accessible via

e-mail or even real-time chat.

The story that leads to me writing this book actually started with an e-mail

about a Ruby library to one of its publishers followed by many conver-

sations via online chat. Though I was timid about sending that original

e-mail, apparently it didn’t annoy Dave too much, and here you are read-

ing my words. Thanks, Chris.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=142

Part V

Maintaining Your Edge

MAINTAINING YOUR EDGE 144

Do you remember a pop star named Tiffany (no last name) from the 1980s?

She was in the top of the top forty, and a constant sound on the radio

back then. She enjoyed immense success, becoming for a short time a

household name.

When was the last time (if ever) you heard anything about her? My guess is

that you can’t remember. I can’t.18

Tiffany had what it took to be a hit in the 80s—at least for a short time.

Then the 90s came along, and Tiffany was way out of style. Apparently, if

she tried, she didn’t move fast enough to hold the affection—or even the

attention—of her fans. When the tastes of the nation turned from bubble

gum to grunge, Tiffany suddenly became obsolete.

The same thing can happen to you in your career. The process in this book

is a loop that repeats until you retire. Research, invest, execute, market,

repeat. Spending too much time inside any iteration of the loop puts you

at risk of becoming suddenly obsolete.

It can creep up on you if you’re not explicitly watching for it. And when it

catches you off guard, it’s too late. Tiffany probably had no idea the grunge

thing was going to take off. She was putting all of her efforts into being a

teenage, bubble-gum pop star, and by the time grunge music took over

the top forty, she was irreversibly out of style.

This part will show you how to avoid becoming a one-hit wonder.

18Apparently, Tiffany has staged a comeback within the last year, so I might be wrong.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=144

ALREADY OBSOLETE 145

42 Already Obsolete

Many of us are drawn to the IT industry because things are always chang-

ing. It’s an exciting and fresh work environment. There’s always some-

thing new to learn. On the flip side, though, is the disheartening fact that

our hard-earned investments in technology-related knowledge depreciate

faster than a new Chevy. Today’s hot new item is tomorrow’s obsolete

junk with a limited shelf life.

Your shiny new skills are

already obsolete.

In Leading the Revolution [Ham02], Gary Hamel

talks about how the incumbent industry lead-

ers in any given industry become complacent

and, through their complacency, develop blind

spots. The more successful your business, the more likely you are to grow

comfortable with your business model, making you incredibly vulnerable

to those who come along behind you with a radical idea—even a stupid

one—that might make your wonderful, winning business model look like

an old, worn-out sweater at a disco. The same can be said of technology

choices. If you’ve mastered the Big One of any given time period, such as

J2EE or .NET at the time this book was published, you may feel extremely

comfortable. It’s the profitable place to be, right? Every job website and

newspaper classified section serves as an affirmation of your decision.

Beware. Success breeds hubris, which breeds complacency. A wave like

J2EE might feel like it will never end. But, all waves either dissipate or

meet the shore eventually. Too much comfort for too long might leave you

defenseless, wondering what you’d do in a non-J2EE world.

That being said, folks have been pronouncing COBOL’s death for decades.

Every new incumbent is called “the COBOL of the 21st century,” or some

variation thereof. These days, the label’s applied to Java. As much as I hate

to touch, see, or be near COBOL code, to call Java the COBOL of the 21st

century is quite a compliment. As much as some of us would love to see it

go away, COBOL is here, and it has been working for a long time. COBOL

programmers have been working with COBOL for an entire career. That’s

really saying something in this roller coaster of an industry. It’s hard to

say if the same kind of investment would work in today’s economy.

COBOL’s story is the exception—not the rule. Few technologies provide

such a lasting platform for employment. The message here isn’t to run

out and shed yourself of your mainstream knowledge. That would be

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=145

ALREADY OBSOLETE 146

irresponsible. I will say that the more mainstream your knowledge, the

greater risk you have of being left in the technology stone age.

We’ve all heard the extrapolations of Moore’s law, which say that com-

puting power doubles every eighteen months. Whether the numbers are

exactly correct, it’s easy to see that technology is still advancing at roughly

the same rate as it was in 1965 when Intel’s Gordon Moore made this asser-

tion. And, with these advances in hardware horsepower come advances

in what is possible to do with software.

Computing power doubles. With technology progressing so quickly, there

is too much happening for any given person to keep up. Even if your

skills are completely current, if you’re not almost through the process of

learning the Next Big Thing, it’s almost too late. You can be ahead of the

curve on the current wave and behind on the next. Timing becomes very

important in an environment like this.

You have to start by realizing that even if you’re on the bleeding edge

of today’s wave, you’re already probably behind on the next one. Tim-

ing being everything, start thinking ahead with your study. What will be

possible in two years that isn’t possible now? What if disk space was so

cheap it was practically free? What if processors were two times faster?

What would we not have to worry about optimizing for? How might

these advances change what’s going to hit?

Yes, it’s a bit of a gamble. But, it’s a game that you will definitely lose if

you don’t play. The worst case is that you’ve learned something enriching

that isn’t directly applicable to your job in two years. So, you’re still better

off looking ahead and taking a gamble like this. The best case is that you

remain ahead of the curve and can continue to be an expert in leading-

edge technologies.

Looking ahead and being explicit about your skill development can mean

the difference between being blind or visionary.

Act on it!

1. Carve out weekly time to investigate the bleeding edge. Make room

for at least two hours each week to research new technologies and

to start to develop skills in them. Do hands-on work with these new

technologies. Build simple applications. Prototype new-tech versions

of the hard bits of your current-tech projects to understand what the

differences are and what the new technologies enable. Put this time

on your schedule. Don’t let yourself miss it.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=146

YOU’VE ALREADY LOST YOUR JOB 147

43 You’ve Already Lost Your Job

The job you were hired to do no longer exists. You might still be drawing

a paycheck. You might be adding value. You might even be making your

employer ecstatically happy. But, you’ve already lost your job.

The one certain thing is that everything is changing. The economy is shift-

ing. Jobs are moving offshore and back on. Businesses are trying to figure

out how to adapt. Things have not reached a steady point in our indus-

try. Our industry is like the awkward adolescent going through puberty.

Awkward, ugly, and different year after year—day after day.

So, if you were hired to be a programmer, don’t think of yourself as a

programmer. Think of yourself as maybe not a programmer anymore.

Keep doing your job, but don’t get too comfortable. Don’t try to settle into

the identity of a programmer. Or a designer. Or a tester.

In fact, it’s no longer safe (as if it ever was) to identify yourself too closely

with the job you were hired to do. If your surroundings are changing and

the context of your work is constantly moving, clinging to your job creates

an unhealthy dissonance that infects your work. You may find yourself as

the would-be programmer doing the job of a should-be project manager.

And doing it poorly.

You are not your job.
Back before you lost your job, you might have

had plans. You might have imagined your pro-

gression through the company’s ranks. You

would do your time as a designer and take the architect role when your

just reward is due. You could see the entire progression from architect to

analyst to team leader up the management chain.

But, you’ve already lost your job, and your plans have changed. They’re

going to keep changing. Every day. It’s good to have ambition, but don’t

buy too heavily into a long, imagined future. You can’t afford to have

tunnel vision with something too far off in the future. If you want to hit a

moving target, you don’t aim for the target itself. You aim for where the

target is likely to go. The path from here to there is no longer a straight

line. It’s an arc at best but most probably a squiggle.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=147

YOU’VE ALREADY LOST YOUR JOB 148

Act on it!

1. If you’re a programmer, try a day or two of doing your job as if you

were a tester or a project manager. What are the many roles that you

might play from day to day that you have never explicitly considered?

Make a list, and try them on for size. Spend a day on each. You might

not even change your actual work output, but you’ll see your work

differently.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=148

PATH WITH NO DESTINATION 149

44 Path with No Destination

One of America’s biggest problems is that it is a goal-oriented society.

We’re a nation of people who are always focused on the outcome of a pro-

cess, whether it is the process of learning, one’s career, or even a drive in

the car. We’re so centered on the outcome that we forget to look at the

scenery.

If you think about it, the focus on outcomes is logically the reverse of what

we should be spending our time on. You typically spend all your time

doing things and little of your time actually reaching goals. For example,

when you’re developing software, the development process is where you

spend all your time, not on the actual event of the finished software pop-

ping out of the end of the process.

This is true of your career as well. The real meat of your career is not

the promotions and salary advances. It’s the time you spend working

toward those advances. Or, more important, it’s the time you spend work-

ing regardless of the advances.

If this is the core of your work life—the actual work—then you’ve already

arrived at your destination. The goal-oriented, destination-focused think-

ing that you usually do leads only from one goal to the next. It has no

logical end. What most of us fail to realize is that the path is the end.

Back to the software development example, it’s easy to get wrapped up

in the delivery of the code you are creating. Your customer needs a web

application up, and you focus on finishing that application. But, a living

application is never “done.” One release leads to the next. Too much focus

on the end product distracts us from the real deliverable: the sustainable

development of a new entity.

Focus on doing, not on

being done.

Focusing on the ending makes you forget to

make the process good. And, bad processes

create bad products. The product might meet

its minimum requirements, but its insides will

be ugly. You’ve optimized for the short-term end goal—not for the

inevitable, ongoing, future of the product’s development.

Not only do bad processes make bad products, but bad products make bad

processes. Once you have one of these products that is messy inside, your

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=149

PATH WITH NO DESTINATION 150

processes adapt around it. Your product’s broken windows lead to broken

windows in your process. It’s a vicious cycle.

So instead of constantly asking, “Are we there yet? Are we there yet?”

realize that the only healthy answer is “yes.” It’s how you traverse the

path that’s important—not the destination.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=150

MAKE YOURSELF A MAP 151

45 Make Yourself a Map

When you’re in maintenance mode, it’s easy to snap into a groove and

just keep on being like you are. As a software developer, you know this

is true from your experience with systems. If you maintain an application

or a library that other developers use, it will sit stagnant in bug-fix mode

(or worse) unless you have a solid feature road map. You might make the

occasional enhancement because of user requests or your own needs, but

the code will usually reach a steady state and change at an exponentially

slower rate as you consider it done.

But a living application is never done unless it’s on the road to retirement.

The same is true of you and your career. Unless you’re looking to exit the

industry, you need a road map. If Microsoft had considered Windows 3.1

done, we’d all be using Macintoshes right now. If the Apache developers

had considered their web server done when they reached 1.0, they might

not be overwhelmingly leading the market right now.

Your personal product road map is what you use to tell whether you’ve

moved. When you’re going to the same office day in and day out, working

on a lot of the same things, the scenery around you doesn’t change. You

need to throw out some markers that you can see in the distance, so you’ll

know that you’ve actually moved when you get to them. Your product

“features” are these markers.

Unless you really lay it out and make a plan, you won’t be able to see

beyond the next blip on the horizon. In Chapters 2 and 3, you discovered

how to be intentional about your choice of career path and how to invest

in our professional selves. Though I focused on what seemed like a one-

time choice of what to invest in, each choice should be part of a greater

whole. Thinking of each new set of knowledge or capability as equiva-

lent to a single feature in an application puts it in context really well. An

application with one feature isn’t much of an application.

What’s more, an application with a bunch of features that aren’t cohesive

is going to confuse its users. Is this an address book or a chat application?

Is it a game or a web browser? A personal product road map can not only

help you stay on track, constantly evolving, but it can also show you the

bigger picture of what you have to offer. It can show you that no single

feature stands alone. Each new investment is part of a larger whole. Some

work fabulously well together. Others require too much of a mental leap

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=151

MAKE YOURSELF A MAP 152

for potential employers. Is he a system administrator or a graphic designer? Is

she an application architect or a QA automation guru?

While it’s definitely OK to learn diverse skills—it expands your thinking—

it’s also a good idea to think about the story your skillset tells. Without

a road map, your story might look more like a Jack Kerouac novel than

a cohesive set of logically related capabilities. Without a road map, you

might even actually get lost.

Act on it!

1. Before mapping out where you want to go, it can be encouraging

and informative to map out where you’ve been. Take some time to

explicitly lay out the timeline of your career. Show where you started

and what your skills and jobs were at each step. Notice where you

made incremental improvements and where you seemed to make

big leaps. Notice the average length of time it took to make a major

advancement. Use this map as input as you look forward in your

career. You can set more realistic goals for yourself if you have a clear

image of your historical progress. Once you’ve created this historical

map, keep it updated. It’s a great way to reflect on your progress as

you move toward your newly defined goals.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=152

WATCH THE MARKET 153

46 Watch the Market

You’d be a fool to invest your money in a volatile stock and then ignore

it. Even if you’ve done a great deal of research and made an intentional

choice about what to invest in, the market is uncertain. You can’t just fire-

and-forget when it comes to investments. Stock value might be increasing

now, but that doesn’t mean a stock isn’t going to start tanking tomorrow.

You might also be missing an opportunity. You may find a really safe bet,

yielding a ten percent annual return. That sounds like a pretty good deal

as long as the rest of the market isn’t suddenly doing much better than ten

percent. Your workhorse investment of today, even if it continues to per-

form, may not be very impressive compared to what’s possible tomorrow.

As the conditions of the market change, not paying attention could result

in money lost or money that could have been earned, missed.

The same holds true for your knowledge investments. Java is the conser-

vative choice of today. What might change to make that not true anymore?

How might you know if it changed?

What if, for example, Sun Microsystems started showing signs of going

under? Java isn’t an open standard. It is dictated and developed by Sun.

At any point, a dying Sun might attempt to suddenly make its language

and virtual machine into a last-minute profit center. They might introduce

incompatible changes or suddenly change the license restrictions of Java,

causing an industry panic followed by a mass exodus.

With your head in your monitor coding, you might not even hear about

something like this until it was too late. You might find yourself on the job

market with a suddenly less valuable skill. This is an unlikely hypothetical

situation, but something like this could happen.

Even more likely is that, comfortable in your current job with your current

set of skills, you might remain blissfully ignorant of the Next Big Thing as

it rolls in. Ten years ago, you would have been surprised to find out just

how big object-oriented languages with garbage collection would become.

But, there were definitely signs if you were watching. Ten years from now,

who knows what the Next Big Thing will be?

You’ve got to keep your eyes and ears open. Watch the technology news,

both the business side and the purely technical side, for developments that

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=153

WATCH THE MARKET 154

might cause a ripple. As Tim O’Reilly19 of O’Reilly and Associates says,

watch the alpha geeks. Alpha geeks are those supernerds who are always

on the bloodiest tip of the bleeding edge, at least in their hobby activities.

Tim’s assertion, which I have since observed in the wild, is that if you

can find these people and see what they’re into, you can get a glimpse of

what’s going to be big one or two years down the road. It’s uncanny how

well this works.

Watch the alpha geeks.
However you choose to do it, you need to be

aware that in the technology sector, what’s a

good investment today will eventually not be

a good investment. And, in case you pay attention to the mood of the

market, it might catch you by surprise. You don’t want this kind of sur-

prise.

Act on it!

1. Spend the next year trying to become one of the alpha geeks. Or at

least make the hang with one.

19http://tim.oreilly.com/

Report erratum

http://tim.oreilly.com/
http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=154

THAT FAT MAN IN THE MIRROR 155

47 That Fat Man in the Mirror

I am, unfortunately, overweight. I have been for a long time. While living

in India, though, I lost a lot of weight. Part of it was due to diet. Part due

to exercise. But, mostly it was from getting sick. After I came back to the

U.S,. I slowly gained the weight back. It was a disappointing thing, which

I reacted to by signing up for a gym and a fitness instructor. The weight

started coming back off.

I’ve gone through several such fluctuations. What’s fascinating about

them is that I can’t really tell when I’m gaining or losing weight. The only

way I know is if someone tells me or my clothes suddenly stop fitting the

same. Or if someone tells me. My wife sees me every day, so she can’t tell

either, and, in the U.S,. people generally don’t mention it when you gain

weight. In India, they do.

I can’t tell, because I see me too often. If you’re constantly exposed to

something, it’s hard to see it changing unless change happens rapidly. If

you sit and watch a flower bloom, it will take a long time to notice that

anything has happened. However, if you leave and come back in two

days, you’ll see something very noticably different from when you left.

You’ll notice the same phenomenon with your career. Actually, you won’t

notice it. That’s the problem. You might look at yourself in the metaphor-

ical mirror each day and not see an ounce of change. You seem as well

adjusted as before. You seem as competitive as before. Your skills seem to

be as up-to-date as before.

Then suddenly, one day your job (or your industry) doesn’t fit you any-

more. It’s just uncomfortable at first, but you’ve already reached a critical

point at which you have to either act quickly or go buy a new pair of

(metaphorical) pants.

When it comes to fluctuations in body weight, you have a scale, so it’s

fairly easy to measure your progress (or lack thereof, in my case). There

is unfortunately no such scale for measuring your marketability or your

skill as a software developer. If there were, we could sit you on a scale and

autogenerate your paychecks. Since we don’t have that scale, you’ll have

to develop your own.

An easy way to measure your progress is to use a trusted third party. A

mentor or a close colleague doesn’t live in your head with you and can

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=155

THAT FAT MAN IN THE MIRROR 156

help give you a more objective look at where you stand. You might discuss

your abilities as a software developer, project leader, communicator, team

member, or any other facet of the total package that makes you who you

are. At GE, there is a process called a 360-degree review, which formalizes

this idea and encourages employees to seek feedback from peers, man-

agers, and internal customers. Despite the corporate doublespeak nature

of its name, the process is a great way to get a number of different perspec-

tives of yourself as an employee.

Developer, review

thyself.

The most important thing to ferret out as you

go through a process like this (either alone or

with help) is where your blind spots are. You

don’t have to fix all of them. You just have to

know where they are. Without being explicit about it, you’ll be blind to

your blind spots. That’s when the bad things happen and take you by

surprise. Bad things will happen, so it’s best to know they’re coming.

Even if you had a magic value scale that you could weigh yourself on, it

would do you no good unless you used it. Schedule your reviews. You

won’t reflect unless you make the reflection time explicit. Saying, don’t

forget to ask for feedback isn’t a strong enough message. If you have a calen-

dar program that pops up reminders, make appointments for yourself for

self-evaluation. First determine your measurement system, and then put

it on the schedule. If it’s not a built-in part of your work life, you won’t do

it.

If your company has such processes in place already, don’t write them off

as HR nonsense. Take them seriously and make good come out of them.

They may be implemented poorly where you work, but the motivation (at

least what used to be the motivation) for them is right on.

Finally, when you’ve got your system in place and you’ve scheduled time

to make sure it gets fit in, capture the results in writing. Keep your eval-

uation somewhere handy. Review and revise it often. Tying the self-

evaluation process to a physical artifact will make it concrete.

Don’t let obsolescence creep up on you like a pair of tight-fitting pants.

Act on it!

1. Do a 360 review:

• Make a list of trusted people who you feel comfortable asking

for feedback. The list should preferably contain representatives

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=156

THAT FAT MAN IN THE MIRROR 157

from your peers, customers, and managers (and subordinates if

you have any).

• Make another list of about ten characteristics you believe are

important measurements of you as a professional.

• Convert this list to a questionaire. On the questionaire, ask for

participants to rate you in terms of each characteristic. Also

include the question, “What should I have asked?”

• Distribute the questionaire to the list of people from the first step.

Ask that your reviewers be constructively critical. What you need

is honest feedback—not sugarcoating.

When you get the completed answers back, read through all of them

and compile a list of actions you are going to take as a result. If you’ve

asked the right questions of the right people, you are going to get

some actionable items. Share your the outcome of your questionaire

with your reviewers—not the answers but the resultant changes you

plan to make. Be sure to thank them.

Repeat this process occasionally.

2. Start keeping a journal. It could be a weblog, as we discussed in

Let Your Voice Be Heard, on page 131, or a personal diary. Write

about what you’re working on, what you’re learning, and your opin-

ions about the industry.

After you’ve been keeping the journal for some time, re-read old

entries. Do you still agree? Do they sound naive? How much have

you changed?

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=157

THE SOUTH INDIAN MONKEY TRAP 158

48 The South Indian Monkey Trap

In Zen and the Art of Motorcycle Maintenance [Pir00], Robert Pirsig tells an

enlightening story about how people in South India used to catch mon-

keys. I don’t know if it’s true, but it teaches a useful lesson, so I’ll para-

phrase it.

The people of South India, having been pestered by monkeys over the

years, developed an ingenious way of trapping them. They would dig

a long, narrow hole in the ground and then use an equally long, slender

object to widen the bottom of the hole. Then they would pour rice down

into the wider portion at the bottom of the hole.

Monkeys like to eat. In fact, that’s a large part of what makes them such

pests. They’ll jump onto cars or risk running through large groups of

people to snatch food right out of your hand. People in South India are

painfully aware of this. (Believe me, it’s surprisingly unsettling to be

standing serenely in a park and have a macaque come suddenly barrel-

ing through to snatch something from you.)

So, according to Pirsig, the monkeys would come along, discover the rice,

and stretch their arms deep into the hole. Their hands would be at the

bottom. They would greedily clutch as much of the rice as possible into

their hands, making a fist in the process. Their fists would fit into the

larger portion of the hole, but the rest of the narrow opening was too small

for the monkeys to pull their fists through. They’d be stuck.

Of course, they could just let go of the food, and they’d be free.

But, monkeys place a high value on food. In fact, they place such a high

value on food that they cannot force themselves to let go of it. They’ll grip

that rice until either it comes out of the ground or they die trying to pull it

out. It was typically the latter that happened first.

Pirisig tells this story to illustrate a concept he calls value rigidity. Value

rigidity is what happens when you believe in the value of something so

strongly that you can no longer objectively question it. The monkeys val-

ued the rice so highly that when forced to make the choice between the

rice and captivity or death, they couldn’t see that losing the rice was the

right thing to do at the time. The story makes the monkeys seem really

stupid, but most of us have our own equivalents to the rice.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=158

THE SOUTH INDIAN MONKEY TRAP 159

If you were asked whether it was a good idea to help feed starving chil-

dren in developing countries, you would probably say “yes” without even

thinking about it. If someone tried to argue the point with you, you might

think they were crazy. This is an example of value rigidity. You believe in

this one thing so strongly that you can’t imagine not believing it. Clearly,

not all values that we hold rigidly are bad. For most people, religion (or

lack thereof) is also a set of personal beliefs and values that are unfaltering.

But not all rigidly held values are good ones. Also, many times something

that is good in one set of circumstances is not good in another.

Rigid values make you

fragile.

For example, it’s easy to get hung up on tech-

nology choices. This is especially true when

our technology of choice is the underdog. We

love the technology so much and place such

a high value on defending it as a choice for adoption that we see every

opportunity as a battle worth fighting—even when we’re advocating what

is clearly the wrong choice. An example I encounter (and have probably

been guilty of myself) is the overzealous Linux fan base. Many Linux users

would put Linux on the desktop of every receptionist, office assistant, and

corporate vice president with no regard for the fact that, in terms of usabil-

ity, the toolset just doesn’t compare to much of the commercial software

that’s available for a commercial operating system. You look foolish and

make your customers unhappy when you give the right software to the

wrong people.

It’s hard to tell you’re losing weight because you see yourself every day.

Value rigidity works the same way. Since we live every day in our careers,

it’s easy to develop value rigidity in our career choices. We know what has

worked, and we keep doing it. Or, maybe you’ve always wanted to be pro-

moted into management, so you keep striving toward that goal, regardless

of how much you like just programming.

It’s also possible for your technology of choice to become obsolete, leaving

you suddenly without a foundation to stand on. Like a frog in a slowly

heating pot of water, you can suddenly find yourself in a bad situation.

Many of us in the mid-1990s swore by Novell’s NetWare platform when it

came to providing file and print services in the enterprise. Novell was way

ahead of its time with its directory services product, and those of us “in

the know” were almost cocky in our criticism of competing technologies.

Novell’s product was enjoying a healthy majority in market share, and it

was hard to imagine the tide turning.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=159

THE SOUTH INDIAN MONKEY TRAP 160

No single event made it obvious that Novell was losing to Microsoft.

Microsoft never made that magic Active Directory release that made us all

say, “Wow! Drop NetWare!” But, Netware has slowly gone from bleeding-

edge innovator to legacy technology. For many NetWare administrators,

the water was boiling before they ever even realized the pot was warm.

Whether it is the direction your career is taking or the technologies you

advocate and invest in, beware of monkey traps. Those originally inten-

tentional choices may become the last handful of rice you find yourself

gripping prior to your career being clubbed to death.

Act on it!

1. Find your monkey traps—What are your rigid assumptions? What are

those values that guide your daily actions without you even con-

ciously knowing it?

Make a table with two columns, Career and Technology. Under each

heading list the values that you hold unfalteringly true. For exam-

ple, under Career, what have you always known to be one of your

strengths? Or your weaknesses? What is your career goal (“I want to

be a CEO!,”)? What are the right ways to achieve your goal?

In the Technology column, list what you most value about the tech-

nologies you choose to invest in. What are the most important

attributes of a technology that should be considered when making

a choice? How do you make a scalable system? What’s the most

productive environment in which to develop software? What are the

best and worst platforms in general?

When you’ve got your list down and you feel like it’s fairly complete,

go one at a time through the list and mentally reverse each state-

ment. What if the opposite of each assertion were true? Allow yourself

to honestly challenge each assertion.

This is a list of your vulnerabilities.

2. Know your enemy—Pick the technology you hate most, and do a

project in it. Developers tend to stratify themselves into competing

camps. The .NET people hate J2EE, and the J2EE people hate .NET.

The UNIX people hate Windows, and the Windows people hate UNIX.

Pick an easy project, and try to do a great application in the technol-

ogy you hate. If you’re a Java person, show those .NET folks how a real

developer uses their platform! Best case, you’ll learn that the technol-

ogy you hate isn’t all that bad and that it is in fact possible to develop

good code with it. You’ll also have a (granted, undeveloped) new

skill that you might need to take advantage of in the future. Worst

case, the exercise will be a practice session for you, and you’ll have

better fodder for your arguments.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=160

Part VI

If You Can’t Beat ’Em

IF YOU CAN’T BEAT ’EM 162

You can’t beat ’em. Nor should you try.

When I got into software development, what thrilled me was the chance

to use my creativity, along with skills that other people didn’t have, to solve

tough problems for people. For many people in companies around the

world, technology is a scary thing. It’s exciting to be able to play tour guide

in such an ostensibly hostile environment, making it look easy along the way.

It’s rewarding to watch someone’s fear turn into confidence with you at the

helm.

As much as we’d like to blame these evil businesspeople for incubating the

threat of offshoring, most of our customers are no more comfortable than

we are about it. If you were a businessperson dependent on an IT group

to deliver software that was a critical part of your personal success, how

comfortable would you be replacing your onsite team, members of which

you might have shared a common hometown or college, with a group of

distant people whose names you have trouble pronouncing? Add to this

the possibility that you are already somewhat afraid of the technology, and

it makes for a chilling proposition.

So, we have a new kind of challenge that we can master. It requires at least

as much creativity and skill to overcome it. How do we make offshoring

work?

It’s not going away. Even offshoring’s biggest proponents readily admit that

it’s not easy to do. The ability to make offshoring work is a skill that is just

as important as any programming language or operating system you might

have put on your résumé in the past.

Companies are going to keep moving work offshore. They’re going to need

people to help them do it. People who aren’t afraid. People who are open-

minded enough to see that their jobs are changing—not going away.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=162

LEAD ’EM 163

49 Lead ’Em

While I was living in India, I played a technical leadership role in our soft-

ware business. Part of my job was to increase the overall skill level of the

team in India, driving independence into the India team. The more self-

sufficient the team in India was, the more productive they would be. The

less they would drag the U.S. team members into daily meetings, explana-

tory e-mails, and extended instant messaging conversations.

Being there on the other side of the ocean myself, I finally saw the problem

from the Indian perspective. The Americans (myself included) constantly

complained that the team members in India didn’t “get it” or wouldn’t

drive to their own technical conclusions. The Indian team just wasn’t “as

good” as the American team, so they said.

However, to a team member in India, every suggestion they made to their

American peers fell on deaf ears. E-mails were ignored. New ideas, many

of which were authentic improvements, were stonewalled. The team in

India was being ignored.

I left behind in the U.S. a team of talented software developers and archi-

tects. They were well known in the company for their collective ability

both to dream up the innovative technical solutions that ran our business

and to confidently walk their customers through the minefields of tech-

nology change.

If they were so good, and the Indian team was so “green,” why the hell

couldn’t they make the Indian team better? Why was it that, even with me

in India helping, the U.S.-based software architects weren’t making a dent

in the collective skill level of the software developers in Bangalore?

The answer was obvious. They didn’t want to. As much as they professed

to want our software development practices to be sound, our code to be

great, and our people to be stars, they didn’t lift a finger to make it so.

These people’s jobs weren’t at risk. They were just resentful. They were

holding out, waiting for the day they could say “I told you so,” then come

in and pick up after management’s mess-making offshore excursions.

But that day didn’t come. And it won’t. The offshoring effort was a major

cost-saving initiative for the company. It was one of the few strategic

focuses for the IT group. By sitting back waiting for it to fail, the team

in the U.S. was nothing but a barrier to progress. If offshoring was about

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=163

LEAD ’EM 164

saving money for the business, then the U.S. team was wasting money.

If application quality was a concern, the U.S. team was serving only to

reduce quality by not doing what was in its power to help.

By fighting against the perceived threat, the U.S. team members were in

fact putting themselves at risk.

Offshore outsourcing is big business, and it’s going to keep getting big-

ger. To companies that venture into it, it’s a strategic direction—not an

afterthought. But, offshore outsourcing is difficult to do. To do it well,

companies absolutely require the help of skilled developers to coach and

guide new teams through the process.

Offshoring isn’t going away. Given the social and economic dynamics in

the popular offshore destinations, chances are that companies doing work

offshore will be working with a much lower average experience level than

they are accustomed to with domestic employees. The people in these

countries are just as smart as and probably more motivated than many of us

here. But, being (on the average) young, they need guidance from highly

skilled developer mentors.

If you refuse to help,

you’re useless.

You might be one of those skilled software

developers. You may have chosen the right

technologies and continuously made the right

investments of time and effort to bring your

skill level up above the crowd. But, even if you’re smart enough and

knowledgeable enough, if you refuse to help, you’re useless.

On the other hand, if you can take a handful of green recruits who are

working for a lower wage, half a world away, and put your mark on them,

what a great accomplishment! You can give the company both higher

quality and lower cost. You can take a scary situation and make it feel

safe. You can be the hero.

And, you won’t just be the hero to the people in your time zone. You will

be genuinely helping your offshore colleagues. It’s rewarding work, if you

can talk yourself into doing it. You’ll be amazed at how much you learn in

the process.

Don’t try to sink the offshoring effort. Do your part to lead it to vic-

tory. The ability to lead offshore teams—even if only in terms of technical

direction—is a skill you need on your résumé. It’s a skill that’s likely to

remain relevant longer than many of the technologies you currently work

with.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=164

MANAGE ’EM 165

50 Manage ’Em

When you split a project team across geographical, time zone, and cultural

barriers, it doesn’t matter how good the people are—you’re going to run

into some problems.

Think of a software system you’ve worked on that you would say is of

medium complexity. Now, in your head or to a friend who will tolerate it,

try to explain the system without using any visual aids. No whiteboard.

No hand gestures. No ability to see the face of the person you’re explain-

ing it to, so you can’t see if they’re getting it. Now imagine the person

you’re explaining it to can’t hear you very well and speaks English as a

second language.

Now imagine asking someone a touchy, personal question over the phone.

And, imagine that with this person you can half-expect them to fib in order

to skirt the issue. How can you tell if they’re lying over the phone? How

much easier is it for you to tell a white lie over the phone than face to face?

I’m not implying that offshore developers are liars, but it can be hard to

pin people down on due dates for tasks when they aren’t colocated with

you.

These imagined scenarios pointedly reflect a portion of the sort of trouble

you will run into when you do geographically distributed work. Commu-

nication can be a killer. How do you clearly express application require-

ments or designs to someone you might never see in person and with

whom you have, at best, only a couple of hours of time zone overlap?

How, as they start working, do you make sure that what you’ve asked for

is what is actually being developed?

Working with offshore teams is a new and harder problem when it comes

to project management. Many companies have very relaxed project man-

agement processes, relying heavily on high-bandwidth face-to-face com-

munication and constant interaction between the participants involved in

each project. These work really well when everyone is together. But, try

using your same old processes with an offshore team, and believe me,

you’re in for a disappointment.

Offshore teams need someone who can keep a close eye on what’s going

on. Requirements have to be explained in enough detail so that the team

members can work productively without the opportunity to ask clarifying

questions until the end of their workday. Even if you could spend hours on

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=165

MANAGE ’EM 166

the phone, most projects will require visual aids in order for the offshore

teams to understand application functionality, flow, or software design.

...a new kind of project

manager with a new set

of skills.

Additionally, because of a combination of the

relative inexperience of the average offshore

developer and the history of how offshore

teams are typically used, the teams are going to

need much more concrete work direction than

the typical onsite development team. Someone is going to have to decom-

pose application requirements into tasks that can be added to a checklist

and crossed off when finished. The task definitions will have to be more

verbose than you would imagine. There’s a fine line between specifying

tasks so much that you might as well have just done the task yourself and

specifying them too sparsely so that the team can’t make any progress.

You’ll learn where that line begins via trial and error. Just be aware that it

exists and that you’re going to get close to it.

Now that a team has all of these little well-specified tasks underway, some-

one has to start tracking which ones are getting done and which ones

need to get done next. And, “done” needs to be explicitly defined. With

so much room for misinterpretation and communication breakdown, the

only way to really measure completeness is to divide tasks into working

pieces of functionality and then actually run the code that is created.

Being removed from the onsite fray of activity, it’s easy for an offshore

team to get stuck. Given an unanswered question coupled with the usual

cultural aversion to admitting defeat, I’ve seen teams sit idle for days on

end waiting for a resolution that isn’t even in the pipeline. The most

important role that needs to be played on the onsite side of an offshore

development team is the “roadblock breaker.” This person will spend a

portion of each day doing the onsite legwork to get the offshore team’s

questions answered so they can get back to business when they get in the

next day.

What I’ve just described is a project manager. But it’s a new kind of project

manager with a new set of skills. It’s a project manager who must act at

a different level of intensity than the project managers of the past. This

project manager needs to have strong organizational, functional, and tech-

nical skills to be successful. This project manager, unlike those on most

onsite projects, is an absolutely essential role for the success of an offshore-

developed project.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=166

MANAGE ’EM 167

This project manager possesses a set of skills and innate abilities that are

hard to come by and are in increasingly high demand.

It could be you.

Act on it!

1. The ability to write clear, complete functional and technical specifi-

cations is critical in the world of offshore development. Read a book

on writing use cases. If you don’t already know the Unified Modeling

Language (UML), learn it. Practice modeling and writing specifica-

tions on your current project. Imagine you had to delegate some of

your work to someone with whom the only ways you could communi-

cate were via specification documents and UML diagrams.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=167

LEARN FROM OPEN-SOURCE 168

51 Learn from Open-Source

What makes offshoring so hard? This should be pretty easy to answer,

right? Let’s try a list:

• It’s hard to communicate without being face to face. Most commu-

nication is done via e-mail.

• People being in different time zones doesn’t allow enough overlap-

ping hours of work.

• Language and cultural barriers inhibit communication.

• It’s difficult to keep track of who is working on what task with a

geographically distributed team.

Pulling something like this off sounds more like a magic trick than some-

thing that big, conservative, corporate America is likely to take part in.

But, we actually have a successful existing model that we can look to for

examples of how to make it work: Open-source software development.

Open-source projects are done by geographically distributed teams. In

most Open-source efforts, the team members never get a chance to meet

each other, much less work face to face. It’s not even common for Open-

source developers to speak to each other on the phone. They typically use

e-mail or IRC (internet relay chat) for their meetings. They tend to use text

(especially code) to communicate requirements and design. Open-source

teams are often made up of people from all over the globe, speaking many

different languages.

Open-source projects don’t usually have “project managers.” They are

self-organizing. There is usually a leader, but the role of the leader is not

at all focused around project management. Tasks get done because people

need them to get done. Software and products evolve in the same way.

Open-source project leaders will sometimes create high-level product road

maps, but they usually don’t break these down into workable tasks. That

happens naturally and in a self-directed way, driven by members of the

distributed team.

They manage all of this complexity, creating high-quality software that we

are all using in some capacity somewhere.

They do it for free.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=168

LEARN FROM OPEN-SOURCE 169

If I were a software developer looking to add Distributed Software Develop-

ment (offshoring) Expert to my list of credentials, I’d go underground in the

open-source world like a journalist going undercover with a street gang.

I’d study their habits. I’d try to become one of them. See how they man-

age to pull this stuff together. See how they fail. What makes a successful

project succeed? What makes a failure fail? (Hint: there are a lot of failures

to draw on.)

Go underground in the

open-source world.

Unlike a street gang, open-source projects are,

well, “open.” Thousands of case studies are

wide open and ready for studying. In fact,

with mailing lists and IRC channels logged

and archived, you can follow the evolution of an idea from conception

to implementation.

Also unlike a street gang, it’s not likely you’ll be killed trying to study the

inner workings of an open-source project. Give it a try.

Act on it!

1. Observe successful open-source projects. make notes of how they

do: communication, design, tracking work, tracking defects, source

control.

2. Get involved in an open-source project. Fix bugs, add new features,

respond to support requests, and try to get included in the release

process.

3. Think about how offshore programmers are different from open-

source developers. How does that change the way you deal with

them? Which open-source processes are unlikely to work as well with

the average offshore programmer? Which will work just as well?

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=169

THINK GLOBAL 170

52 Think Global

Namaste. I could see eyes in the room light up. Mera naam Chad hai. Those

still looking sleepy were suddenly at the edges of their seats. Those who

had already taken notice looked as if they were on the verge of bursting

with joy. I suddenly had the attention of this team of emloyees in a way

that I was rarely able to achieve back home. All for saying, Hello. My name

is Chad in India’s official national language, Hindi.

As I got to know our team members in India, I often heard them say that I

wasn’t like the typical American manager. When I asked what they meant,

those who felt comfortable enough would say, You actually take an interest

in us. Most of you are just angry and short with us.

It became quickly apparent, as I interacted with the team in India, that this

difference they had noted was a big advantage for me. Most of my col-

leagues in the United States, viewing offshoring as a necessary evil at best,

treat offshore teams accordingly. They keep the teams at arm’s length.

And, it’s not just managers. In this environment everyone has to interact

with offshore teams, from managers to project leads, to businesspeople, to

programmers, so we all need to be good at crossing the cultural bound-

aries, and most of us are bad at it.

I’m not just getting touchy-feely here about bringing the world together by

having us all become global thinkers. There are pragmatic reasons to get

involved and learn about the cultures of the people you work with. The

most obvious reason is that, without putting forth an effort, it’s very likely

that you and the people you have to work with on a daily basis won’t

understand what each other is saying. Sure, you both speak English, but

that vague thing we call English isn’t enough to allow two diverse groups

of people to really understand each other. There are obviously issues of

accent and colloquialisms to deal with. For example, if I say, “I went down

to the military hotel for a fag and saw Ramesh getting down from the

auto,” would you know what actually happened? The American English

translation would read, “I went down to the non-vegetarian restaurant for

a cigarette and saw Ramesh get out of a rickshaw.”

One of my roles at the software center in India was translator. I do speak

Hindi, but my translator job had nothing to do with that. Our business

was headquartered in Kentucky, so many of the people there speak with

something of a drawl. And, of course, the team members in Bangalore,

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=170

THINK GLOBAL 171

hailing from all parts of India, spoke with all manners of Indian accent,

when speaking English. I was pulled into meetings that were completely

irrelevant to me simply so I could translate English to English.

I remember the first time it happened. We were on a speakerphone talking

to a network administrator in Kentucky. We were planning the upgrade of

a file server in Bangalore, and the Kentuckian was instructing our Indian

team member on how to perform the upgrade, since he had just completed

the same operation at headquarters. The Kentuckian spoke for a minute

or two, ending with a question. I was disinterested and zoned out for a

moment until I realized there was an abnormally long pause. The Indian

was looking at me with a worried look. Did you understand? I asked. He

shook his head. So, I repeated what the Kentuckian said, pretty much

word for word. In English. After I finished, the Indian network adminis-

trator responded (in English). The Kentuckian paused, and then asked if I

could repeat what was said. And so on, and so on.

The problem as I saw it was that neither of these people was trying to

either understand the other or help make themselves understood. They

were both either insensitive or lazy (or both). Because of their cultural

ignorance, we had to have a translator with no special qualifications

bridge the gap between them. How horribly inefficient! Thankfully, over

time, we campaigned enough that both sides of the ocean made great

strides toward understanding each other both verbally and culturally.

There are other tangible reasons to explore the culture of your offshore

colleagues. As I illustrated at the beginning of this section, a basic attempt

to understand the culture of a colleague shows you are interested in this

colleague as both a co-worker and a human. Americans are particularly

bad about taking for granted that everyone they interact with is America

savvy. If they aren’t, they must be stupid. So, it’s no surprise to us that our

colleagues in India should know about our pop culture and our history. In

fact, if they don’t understand us already, we get irritated.

However, what do you know about India (or any other country you might

be working with)? In my experience, the average American’s answer

would be “zilch.” People in India, for example, don’t speak Hindu (Hindu

is a religion). And, there’s no such thing as a Hindi temple (Hindi is a lan-

guage). What’s worse is that these mistakes were made by people who

had been to India.

Nope. Most of us just don’t care about other cultures. It’s sad but true.

But that leaves openings for those of us who do to be special. I am gen-

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=171

THINK GLOBAL 172

uinely interested in India, its culture, and its people. Whenever I work

with Indian offshore teams, I delight in asking each team member where

they’re from, what languages they speak, and what their favorite foods

are. It brings them closer, and strong working relationships make happier,

more productive teams. If I have to depend on someone to get something

done for me or to deliver a piece of software that I have to successfully

integrate with, I’m going to have much better luck if that person feels I

respect them and if they respect me. Would you respect someone who

wouldn’t even bother to learn how to pronounce your name?

If I have to depend on

someone...I’m going to

have better luck if that

person feels that I

respect them.

As with most of the topics I talk about in this

book, none of this is limited to India. I had the

same experience in Hungary. I went over from

Bangalore for a week to lay the foundation for

a new development center my company was

going to set up. A week before I went, I got

a book and started learning some Hungarian

phrases. When I met people, I would attempt to greet them in my bro-

ken Hungarian. Within a couple of days, the news had spread, and I was

greeted by every new person I met with a boisterous “Jo Napot Kivanok!”

and a smile. I was now known as the American who speaks Hungar-

ian, which was a shameful overstatement. But, the resultant attitudes and

cooperation of the people I had to work with were greatly appreciated,

and my week in Hungary was a very successful one.

What I’ve noticed since coming back from India is that in America we are

so focused on ourselves that we don’t even take the time to learn about our

teammates from other parts of the United States. What’s the special food in

Minnesota? What do Arizonans do on the weekends in their nonexistent

winters? The United States is a diverse place, and we don’t even bother to

learn about our own diverse culture, much less the cultures of people on

the outside. The same principles apply: if you show your teammates that

you are interested in them as people, you will form tighter bonds and, on

the whole, do better work.

Act on it!

• Learn to say “hello” in every language anyone you know speaks. Use

those words on a regular basis when you speak with the appropri-

ate people. Next, branch out, and learn more words, such as “thank

you.” Or learn short, fun colloquial phrases that will make people

smile. Don’t be afraid to sound stupid. It’s inevitable. That makes

it better.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=172

But I say to you that when you work you fulfill a part of earth’s

furthest dream, assigned to you when that dream was born, and in

keeping yourself with labour, you are in truth loving life, and to love

life through labour is to be intimate with life’s inmost secret.

Kahlil Gibran, The Prophet

What I Learned in India
Naturally, after living in Bangalore for a year and a half, I felt a little anx-

iety in the days leading up to our return from India. We had immersed

ourselves quite fully in what it means to be Indian, and now we were

going back to the incredibly foreign world of Big Macs and basketball. I

regarded it as a visit to the dentist. I know going to the dentist is good for

me, but it always makes me nervous. And the worst part of a dentist visit

is not the visit itself but the time leading up to it.

But, late one balmy May night, we packed up the last of our scant few

belongings and took the long drive across Bangalore to the airport. We

looked out the car windows at the pothole-filled streets with a sense of

belonging. We passed row after row of shops with their garage-door fronts

closed. What was once exotic was now familiar. This alien world was now

home to us.

Change is like that. The new quickly becomes old. The things you desire

now will become at best familiar and at worst junk after you’ve attained

them. The exotic and the mundane had traded places for us. We were

now faced with the adventure of returning home. As we were sad to say

goobye to home when we left it, we were now sad to say goodbye to our

new home. It was fitting that we were driving out at night. Everything

was shut down. The party had ended, and everyone was at home.

A trip to or from India is so long and so exhausting that it serves as a kind

of mental reset. This mental reset was amplified for us, because we chose

to stop in Europe for a day to break up the trip. By the time we reached the

United States, we were tired and confused. Walking out of the airport in

Chicago, I felt like an immigrant arriving for the first time, wide-eyed and

awe-struck by the sterile, mechanical engine of capitalism that unfolded

in front of us.

Our first experience back in the motherland involved hailing a cab to take

us to a hotel from which we would recover enough to drive back home to

Louisville. In the United States, people drive really, really fast. It’s freakish

WHAT I LEARNED IN INDIA 174

the first time you get in a car and glide onto the ice-smooth roadways. It’s

scary. You probably can’t imagine that it could be scary to ride in a car

here, but it is.

In America, you get farther faster than is possible in India. In fact, you can

generally do everything faster. Life is more convenient that way.

When you’re thirsty, you can go to the tap and pour a glass of water and

drink it. You don’t have to wait the eternity it takes for water to drip

indignantly from a filter. You just pour and drink with no fear for your

health. And, when you turn on the tap, water almost always comes out.

You don’t have to buy alarm clocks with batteries, because, unlike in Ban-

galore, on most days the power doesn’t go out.

And the Internet! Being the junkie that I am, I was amazed at how fast

it was. Downloads were so quick that they were unnoticable. I was irra-

tionally convinced that the Internet had actually somehow sped up since

I’d left. And with the electricity always being available and our cable

modem service reliable as it is in the United States, I once again felt recon-

nected to the thriving community of technology thinkers that I had missed

so much since I’d moved. I could pop down to the local bookstore and get

anything I wanted. In America, you can turn on a firehose of informa-

tion whenever you like. I thirstily drowned myself in books, articles, and

open-source software as soon as I returned.

Having been immersed in the Indian IT perspective for well over a year,

part of me worried how the IT people of the United States could keep up.

I’d seen the IT sector growing so fast in India that I wondered how my

compatriots could possibly maintain their hold on the job market. How-

ever, as soon as I returned, I saw it. Americans are blessed with the infras-

tructure, the wealth, and the freedom to choose their destinies. This is a

damned good place for a software developer to live. The best place, in

fact.

So, why did it feel so grim back in the office?

If there’s one thing I took away from India, it’s that people there who live

in what we Americans would consider to be destitute poverty are on aver-

age happier than us. I met people who were dirt poor, living in tiny little

houses, but had somehow managed to develop an outlook that was decid-

edly much healthier than mine.

It’s from this exposure that I really learned that it’s not what you do for

a living or what you have that’s important. It’s how you choose to accept

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=174

WHAT I LEARNED IN INDIA 175

these things. It’s internal. Satisfaction, like our career choices, is some-

thing that should be sought after and decided upon with intention.

Report erratum

http://books.pragprog.com/titles/mjwti/errata/add?pdf_page=175

Resources
A.1 Bibliography

[Cou96] Douglas Coupland. Microserfs. Regan Books, New York, 1996.

[DL99] Tom Demarco and Timothy Lister. Peopleware: Productive

Projects and Teams. Dorset House, New York, NY, second edi-

tion, 1999.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-

sides. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, Reading, MA, 1995.

[God03] Seth Godin. Purple Cow: Transform Your Business by Being

Remarkable. Portfolio, 2003.

[Ham02] Gary Hamel. Leading the Revolution: How to Thrive in Turbulent

Times by Making Innovation a Way of Life. 2002.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Programmer:

From Journeyman to Master. Addison-Wesley, Reading, MA,

2000.

[Pir00] Robert M. Pirsig. Zen and the Art of Motorcycle Maintenance: An

Inquiry into Values. Perennial Classics, reprint edition edition,

2000.

[Sil99] Steven A Silbiger. The Ten-Day MBA: A Step-By-step Guide To

Mastering The Skills Taught In America’s Top Business Schools.

Quill, 1999.

Pragmatic Starter Kit Series
Version Control. Unit Testing. Project Automation. Three great titles, one objective. To get

you up to speed with the essentials for successful project development. Keep your source

under control, your bugs in check, and your process repeatable with these three concise,

readable books from The Pragmatic Bookshelf.

Pragmatic Version Control
• Keep your project assets safe—never lose a great idea

• Know how to UNDO bad decisions—no matter when they

were made • Learn how to share code safely, and work in

parallel • See how to avoid costly code freezes • Manage

3
rd party code • Understand how to go back in time, and

work on previous versions.

Pragmatic Version Control using CVS

Dave Thomas and Andy Hunt

(176 pages) ISBN: 0-9745140-0-4. $29.95

Pragmatic Version Control using Subversion

Mike Mason

(224 pages) ISBN: 0-9745140-6-3. $29.95

Pragmatic Unit Testing
• Write better code, faster • Discover the hiding places

where bugs breed • Learn how to think of all the things

that could go wrong • Test pieces of code without using the

whole project • Use JUnit to simplify your test code • Test

effectively with the whole team.

Pragmatic Unit Testing

Andy Hunt and Dave Thomas

(176 pages) ISBN: 0-9745140-1-2. $29.95

(Also available for C#, ISBN: 0-9745140-2-0)

Pragmatic Project Automation
• Common, freely available tools which automate build, test,

and release procedures • Effective ways to keep on top

of problems • Automate to create better code, and save

time and money • Create and deploy releases easily and

automatically • Have programs to monitor themselves and

report problems.

Pragmatic Project Automation

Mike Clark

(176 pages) ISBN: 0-9745140-3-9. $29.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

http://pragmaticprogrammer.com/catalog

Help for Programmers
A large part of the message in this book is that “just a programmer” doesn’t cut it anymore.

Developers increasingly have to branch out into project and management areas if they are to

stay competitive (and employable). Here are some books that will help.

Ship It!
This book shows you how to run a project and Ship It!,

on time and on budget, without excuses. You’ll learn the

common technical infrastructure that every project needs

along with well-accepted, easy-to-adopt, best-of-breed prac-

tices that really work, as well as common problems and how

to solve them.

Ship It!: A Practical Guide to Successful Software Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

Behind Closed Doors
If you’ve been lucky, you may have seen the results of great

management, but it’s not always easy to see how managers

achieve those results. Great management happens in one-on-

one meetings with team members and in meetings with other

managersŕall in private. It’s hard to learn management by

example when you can’t see it. This book opens the doors

wide so you can see exactly how it’s done: • Delegate effec-

tively • Use feedback and goal-setting • Develop influ-

ence • Handle one-on-one meetings • Coach and mentor

• Decide what work to doŕand what not to do • ...and more.

Behind Closed Doors

Johanna Rothman and Esther Derby

(200 pages) ISBN: 0-9766940-2-6. $24.95

(Available Fall 2005)

Visit our secure online store: http://pragmaticprogrammer.com/catalog

http://pragmaticprogrammer.com/catalog

The Pragmatic Bookshelf
The Pragmatic Starter Kit series: Three great titles, one objective. To get you up to speed with

the essentials for successful project development. Keep your source under control, your bugs

in check, and your process repeatable with these three concise, readable books.

Facets of Ruby series: Learn all about developing applications using the Ruby programming

language, from the famous Pickaxe book to the latest books featuring Ruby On Rails.

The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help programmers stay on top of their game.

Visit Us Online
My Job Went to India

pragmaticprogrammer.com/titles/mjwti

This book’s home page, including errata and other resources.

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available for

purchase at our store: pragmaticprogrammer.com/titles/mjwti.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/titles/mjwti
www.pragmaticprogrammer.com/catalog

	Introduction
	Choosing Your Market
	Supply and Demand
	Coding Don't Cut It Anymore
	Lead or Bleed?
	Invest in Your Intelligence
	Be a Generalist
	Be a Specialist
	Don't Put All Your Eggs in Someone Else's Basket
	Be the Worst
	Love It or Leave It

	Investing in Your Product
	Learn to Fish
	Understand Business Basics
	Find a Mentor
	Be a Mentor
	Practice, Practice, Practice
	The Way That You Do It
	On the Shoulders of Giants
	Automate Yourself into a Job

	Executing
	Right Now
	Mind Reader
	Daily Hit
	Remember Who You Work For
	Be Where You're At
	How Good a Job Can I Do Today?
	How Much Are You Worth?
	A Pebble in a Bucket of Water
	Learn to Love Maintenance
	Eight-Hour Burn
	Learn How to Fail
	Say ``No''
	Say It, Do It, Show It

	Marketing...Not Just for Suits
	Perceptions, Perschmeptions
	Adventure Tour Guide
	Me Rite Reel Nice
	Being Present
	Suit Speak
	Change the World
	Let Your Voice Be Heard
	Build Your Brand
	Release Your Code
	Remarkability
	Making the Hang

	Maintaining Your Edge
	Already Obsolete
	You've Already Lost Your Job
	Path with No Destination
	Make Yourself a Map
	Watch the Market
	That Fat Man in the Mirror
	The South Indian Monkey Trap

	If You Can't Beat 'Em
	Lead 'Em
	Manage 'Em
	Learn from Open-Source
	Think Global

	What I Learned in India
	Resources
	Bibliography

	Very good points

